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THEORY OF ORBIT DETERMINATION

Determining orbits of natural and artificial celestial bodies is an essential step in the
exploration and understanding of the Solar System. However, recent progress in the quality
and quantity of data from astronomical observations and spacecraft-tracking has generated
orbit determination problems which cannot be handled by classical algorithms. This book
presents new algorithms capable of handling the millions of bodies which could be observed
by next-generation surveys, and which can fully exploit tracking data with state-of-the-art
levels of accuracy.

After a general mathematical background and summary of classical algorithms, the new
algorithms are introduced using the latest mathematical tools and results, to which the
authors have personally contributed. Case studies based on actual astronomical surveys and
space missions are provided, with applications of these new methods. Intended for grad-
uate students and researchers in applied mathematics, physics, astronomy, and aerospace
engineering, this book is also of interest to non-professional astronomers.

andrea milani is Full Professor of Mathematical Physics in the Department of Mathe-
matics, University of Pisa. His areas of research include the N-body problem, the stability of
the Solar System, asteroid dynamics and families, satellite geodesy, planetary exploration,
orbit determination, and asteroid impact risk.

giovanni f. gronchi is a Researcher of Mathematical Physics in the Department
of Mathematics, University of Pisa. His research is on Solar System body dynamics,
perturbation theory, orbit determination, singularities, and periodic orbits of the N-body
problem.

COVER ILLUSTRATION: The orbits of eight potentially hazardous asteroids (PHA); they
have a minimum intersection distance with the orbit of the Earth of less than 0.05 astronom-
ical units. Together with many more smaller objects, they form a swarm surrounding the
orbit of our planet (represented, not to scale, in green, orbit in yellow), are observable with
either telescopes or radar, and provide a good example of an orbit determination problem.
The objects in this figure are the brightest PHA, with diameters larger than 2 km; thus
an impact with the Earth would result in a global catastrophe. There has been interesting
recent progress in the theory of orbit determination, to which the authors of this book have
contributed. New algorithms have been developed to exclude the possibility that any of
these objects have the possibility of impacting the Earth, at least in the next 100 years.
The same result also applies to somewhat smaller PHA, but the impact of either a much
smaller known asteroid or an asteroid still to be discovered is still possible; thus the orbit
determination work must go on. The orbit diagram is superimposed on an actual image
of the sky (courtesy of G. Rhemann, Astrostudio, Vienna) which includes a Solar System
body: a comet discovered in 2008 by A. Boattini, showing its coma.
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PREFACE

This book is a tool for our own teaching and an opportunity to rethink and
reorganize the results of our own research. However, I think such a book can
be useful to others, for two main reasons. First, spaceflight is no longer the
privilege of the few superpowers, but is becoming available to many nations
and agencies. Orbit determination is an essential knowhow, both in the
planning phase of mission analysis and in the operations of space missions.
Thus its mathematical tools need to become widely available.

Second, the knowledge and skill used in orbit determination, for both
natural and artificial celestial bodies, was available only among a restricted
group of specialists. The prevailing attitude was a proprietary one: the
knowledge and the software were protected by formal copyright and/or by
secrecy, although protecting in this way the pure mathematical theory is,
in the long run, impossible. This attitude might have been justified under
the conditions of the world of 30–40 years ago, in the critical phases of the
competition to achieve space firsts. Now it is time to teach and disseminate
this knowledge, allowing the formation of a wider group of specialists.

I know that many of the rules of thumb and practical advice contained
in this book will be rated as well known, even obvious, by the few experts,
but this is not the point. Even well-known results may need to be presented
in a rational, rigorous, and didactically effective new way, together with the
outcome of recent innovative research. On the other hand, this book does
not have the intent of providing a comprehensive review of all that has been
done in this field, because the size would become impractical. This book
is about making widely available the outcome of the research done by my
group over many years, and includes methods for which there are rigorous
mathematical arguments and which have been fully tested by us first hand,
and found to be effective. In the last � 15 years there has been enormous
progress in this field, and several other research groups have given important
contributions: we are in no way claiming that their methods would not work,
we are just giving a list of methods which we know to work.
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x PREFACE

The above arguments may not be enough for the approval of all the people
in this field, but I do think that to state the mathematical foundations and
rules of orbit determination, thus removing a vague flavor of craftmanship,
can also benefit the already existing specialists. The orbit determination
expert, in the very competitive environment in which space missions and
large astronomical projects are selected today, is too often under pressure to
endorse claims of wonderful results to be achieved with very limited means.
By ignoring the rules of good practice it is possible to claim illusory precision
and/or completeness for the solution, including the orbits and other param-
eters which can be operationally, technologically, and scientifically relevant.
Maybe being able to cite a textbook stating clearly what is appropriate and
what is illusory can help in relieving this improper pressure.

This book is based on the experience accumulated in � 30 years of research
with my coworkers of the former Space Mechanics Group (now Celestial
Mechanics Group) at the Department of Mathematics, University of Pisa.
Thus it contains, besides the formal mathematical theory and the teaching
examples, a number of “case studies” based upon actual research projects.
They are about space missions and about natural objects: one of the goals is
to stress the common mathematics used in satellite geodesy and in dynamical
astronomy, and at the same time to present clearly the main differences.

The preparation of this book has been made possible by the collaboration
of my younger colleague, Dr. Giovanni F. Gronchi. Besides classical material
and original results by myself and Gronchi, this book contains the output
of research done by the members of our group and by either regular or
occasional external coworkers. Thus I would like to include a long, but
still possibly incomplete, list of coworkers whose contributions have to be
acknowledged: L. Anselmo, O. Arratia, S. Baccili, A. Boattini, C. Bonanno,
M. Carpino, G. Catastini, L. Cattaneo, S.R. Chesley, S. Cicalò, L. Denneau,
L. Dimare, P. Farinella, D. Farnocchia, Z. Knežević, L. Iess, R. Jedicke, A.
La Spina, M. de’ Michieli Vitturi, A.M. Nobili, A. Rossi, M.E. Sansaturio,
G. Tommei, G.B. Valsecchi, D. Villani, D. Vokrouhlický.

This book is dedicated to two good friends and valuable coworkers: Paolo
Farinella and Steve Chesley. They could have been among the authors of
this book, but they both left in the year 2000, when the book project was
immature. Steve went back to his home country, from where he can still
advise me on these subjects. Paolo went where he can give me neither his
essential scientific insight nor the warmth of his friendship. Thus I would
like to thank both of them for what I learned with them and from them.

Andrea Milani Comparetti, Pisa, December 2008
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THE PROBLEM OF ORBIT DETERMINATION

In this chapter we define the problem of orbit determination, by specifying
its three basic mathematical elements: the dynamics, the observations and
the error model. We state the minimum principle, the least squares principle
as the main case, and attempt a classification of the types of orbit deter-
mination found in astronomy and astrodynamics. The last section contains
suggestions on the reading sequence, to adapt this book to different needs.

1.1 Orbits and observations

The two essential elements of an orbit determination problem are orbits and
observations. Orbits are solutions of an equation of motion:

dy
dt

= f(y, t, μ)

which is an ordinary differential equation; y ∈ Rp is the state vector, μ ∈
Rp′ are the dynamical parameters, such as the geopotential coefficients,
t ∈ R is the time. In the asteroid case the equation of motion is the N -body
problem, the asteroid orbit being perturbed by the gravitational attraction
of the planets; for many comets and some exceptionally accurate orbits of
asteroids the non-gravitational effects are also relevant. For an artificial
satellite the equation of motion is the satellite problem, the orbit being
mostly perturbed by the asymmetric part of the geopotential, but also by
non-gravitational perturbations.

The initial conditions are the value of the state vector at an epoch t0:

y(t0) = y0 ∈ Rp.

In the two simple cases cited above we have p = 6, i.e., the vector of the
initial condition is just formed by the position and velocity of the small

3



4 THE PROBLEM OF ORBIT DETERMINATION

body in some inertial reference system. The orbits are specific solutions,
for a given value of y0 and μ, of the equation of motion (initial condition
problem). All the orbits together form the general solution

y = y(t,y0, μ),

also known as integral flow when considered as a mapping from the initial
conditions (and dynamical parameters) to the current state at time t:

y(t) = Φt
t0 (y0, μ).

For the second element we introduce an observation function

R(y, t, ν)

depending on the current state, directly upon time, and also upon a number
of kinematical parameters ν ∈ Rp′′ . The function R is assumed to be
differentiable. The composition of the general solution with the observation
function is the prediction function

r(t) = R(y(t), t,ν)

which is used to predict the outcome of a specific observation at some time
ti, with i = 1, . . . , m. However, the observation result ri is generically not
equal to the prediction, the difference being the residual

ξi = ri − R(y(ti), ti, ν), i = 1, . . . , m.

The observation function can depend also upon the index i, the most com-
mon case being the use of a two-dimensional observation function like (right
ascension, declination) or (range, range-rate), in which case R has two dif-
ferent analytical expressions, one for i even, the other for i odd. All the
residuals can be assembled forming a vector in Rm

ξ = (ξi)i=1,...,m

which is in principle a function of all the p + p′ + p′′ variables (y0, μ, ν).
The above equations define a fully deterministic model: each residual is a

single valued function of the p+p′+p′′ parameters. This function is obtained
from the observation function, for which we assume an explicit analytical
expression, by using the general solution, which is not known as an analyt-
ical expression but is uniquely defined by the differential equations; both
functions are assumed to be differentiable, see Chapter 2. These assump-
tions may not be the whole truth, as we shall see in Chapters 14 and 17,
but we shall work with them for now.
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The random element is introduced by the assumption that every obser-
vation contains an error. Even assuming we know with perfect accuracy all
the true values (y0

∗, μ∗, ν∗) of the parameters, that our model is perfectly
complete (both for the equation of motion and for the observations), and
that our explicit computations are perfectly accurate (they are computed in
“exact arithmetic”, not with a realistic computer), nevertheless the residuals

ξ∗i = ri − R(y(y0
∗, ti, μ

∗), ti, ν∗, i) = εi

would not be zero but random variables. The joint distribution of ε =
(εi)i=1,...,m needs to be modeled, that is we need some assumptions, either
in the form of a probability density function or as a set of inequalities,
describing the observation errors we rate as acceptable. The probabilistic
approach in most cases uses Gaussian distributions, discussed in Chapter 3.

1.2 The minimum principle

The basic tool of the classical theory of orbit determination (Gauss 1809)
is the definition of a target function Q(ξ) depending on the vector of
residuals ξ. The target function cannot be chosen arbitrarily, but needs to
satisfy suitable conditions of regularity and convexity. We shall focus on the
simplest case, in which Q is proportional to the sum of squares of all the
residuals:

Q(ξ) =
1
m

ξT ξ =
1
m

m∑
i=1

ξ2
i .

A quadratic form of general type, provided it is non-negative, can be handled
with exactly the same formalism (see Chapter 5) and often needs to be
used in practical applications. Since each residual is a function of all the
parameters,

ξi = ξi(y0, μ, ν),

the target function is also a function of (y0, μ, ν). The next step is to select
the parameters to be fit to the data: let x ∈ RN be a subvector of (y0, μ, ν) ∈
Rp+p′+p′′ , that is x = (xi), i = 1, N , with each xi either a component of the
initial conditions, or a dynamical parameter, or a kinematical parameter.
Then we consider the target function

Q(x) = Q(ξ(x))

as a function of x only, leaving the vector of the consider parameters
k ∈ Rp+p′+p′′−N (all the parameters not included in x) fixed at the assumed
value.
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The minimum principle selects as nominal solution the point x∗ ∈
RN where the target function Q(x) has its minimum value Q∗. The principle
of least squares is the minimum principle with as target function the sum
of squares Q(ξ) = ξT ξ/m, or some other quadratic form.

1.3 Two interpretations

The minimum principle should not be understood as if the “real” solution
needs to be the point of minimum x∗. Two interpretations can be used.

According to the optimization interpretation, x∗ is the optimum point
but values of the target function immediately above the minimum are also
acceptable. The set of acceptable solutions can be described as the confi-
dence region

Z(σ) =
{
x ∈ RN

∣∣∣∣Q(x) ≤ Q∗ +
σ2

m

}

depending upon the confidence parameter σ > 0. For least squares

Z(σ) =

{
x ∈ RN

∣∣∣∣∣
N∑

i=1

ξ2
i ≤ mQ∗ + σ2

}
.

The intuitive meaning of the confidence region is clear: the solutions x in
Z(σ) correspond to observation errors larger than those for x∗, but still
compatible with the available information on the observation procedure.
The choice of the value of σ bounding the acceptable errors is not easy.

The alternative probabilistic interpretation describes the observation
errors εi as random variables with an assumed probability density, which
should be the result of an error model, justified by a priori knowledge of
the observation process and/or a posteriori statistical tests. The vector
ε = (εi), i = 1, m, is then a set of jointly distributed random variables
(see Section 3.1), and also the joint probability density function needs to be
known; in particular, independence of the errors for observations at different
times cannot be assumed, but needs to be justified by statistical tests.

Then the probabilistic model of the observation errors can be mapped in
a probabilistic model of the result of orbit determination, with a probability
density for the random variables x which in principle exists and can be, at
least under some hypotheses, explicitly computed. The probability that the
true orbit coincides exactly with the nominal solution x∗ is zero, although
under reasonable hypotheses x could be both the mode (point of maximum
of the probability density) and the expected value.
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In other words, the optimization interpretation describes the possible so-
lutions as a subset of the x space where the target function has an acceptable
value, surrounding the nominal solution which is the minimum point. The
probabilistic interpretation regards the solutions as a probability density
cloud, surrounding the point of highest probability density. Both interpre-
tations can be useful, having different advantages and limitations.

1.4 Classification of the problem

Orbit determination appears as a number of different problems, with differ-
ent dynamical systems and observation techniques. One way to classify the
dynamical systems is to decompose the right-hand side of the equation of
motion into three parts:

dy
dt

= f0(y, t, μ) + f1(y, t, μ) + f2(y, t, μ);

the unperturbed equation of motion has only the main term f0, with |f0| �
|f1|. The main term may not contain unknown parameters, or very few.
The perturbations are subdivided into the most relevant ones f1 and the
negligible ones f2. Negligible means not only that |f1| � |f2| but also that
the effects of the f2 terms on the general solution are small (with respect
to the observational accuracy), thus the equation of motion actually solved
to compute the predictions contains only f0 + f1. The choice of the terms to
be neglected in each specific case is therefore a delicate issue, discussed in
Sections 4.6, 15.3, and 17.3.

Let us focus on the main term f0. For a satellite of the Earth it is the
monopole gravitational attraction of the Earth; for an object in heliocentric
orbit it is the monopole attraction from the Sun, and so on. In most cases
the unperturbed equation of motion is a two-body problem. Only in a few
exceptional examples is there no dominant two-body term.

Thus we can classify orbit determination problems by the central body:

• Earth satellite orbits, for the Moon, artificial satellites, and space debris;
• heliocentric orbits, including the planets, the smaller asteroids, comets,

meteoroids, trans-neptunian objects, and artificial interplanetary probes;
• satellite orbits of other planets, for the natural satellites, planetary or-

biters, binary asteroids, and asteroid/comet orbiter missions;
• the orbits around another star, for binary stars and extrasolar planets;
• the cases without a dominant central body, such as orbits near the La-

grangian equilibrium points, temporary satellite captures, very small in-
terplanetary dust with motion dominated by radiation pressure.
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The orbit determination problems may differ also in the observation
method, in the number and timing of the data, and in their accuracy. The
main difference is between the collaborative and the population orbit deter-
mination problems.

Tracking

In collaborative orbit determination the object whose orbit has to be
determined has a man-built device specifically intended to assist the ob-
server. In this case the observation procedure is usually called tracking.

The most common case is tracking by radio waves: artificial satellites
are normally equipped with a device called a transponder, which receives,
amplifies, and retransmits the radio signal received from a ground station in
a given frequency band.1 Then the range-rate, the time derivative of the
distance between the spacecraft and the ground station, can be measured
by the Doppler shift between the signal emitted from the ground station
and the one received back. If the signal also contains, beside the carrier,
an encoded signal and the transponder is regenerative, that is it can send
back this encoded signal on top of the return carrier, then also the range,
or distance from the ground station, can be measured. This is possible also
at interplanetary distance, thus the spacecraft could be in heliocentric orbit
but also orbiting around another planet, or around an asteroid/comet.

In the above example the spacecraft needs to consume energy in the
transponder, thus it has to be active, with a power system and possibly
with attitude control to suitably point some antenna. There are examples in
which the spacecraft is totally passive, such as the Earth satellites specifically
launched for satellite laser ranging: they are only equipped with a special
class of mirror, the corner cubes, to return a light ray in the same direction
it came from with minimal dispersion. The ground stations are equipped
with lasers capable of powerful but short-duration pulses of monochromatic
light: the time interval between the emission of each pulse and the return
signal detection measures the distance to the satellite.

The above examples are about artificial celestial bodies, that is man-made
spacecraft. However, a tracking device can be planted on a natural body:
e.g., corner cubes have been placed on the Moon by American and Soviet
missions in the 1970s, thus lunar laser ranging has been regularly per-
formed for more than 30 years, and the orbit of our natural satellite is
known with centimeter level accuracy, actually more accurately than the
1 The return signal can be shifted in frequency with respect to the received one, but this is done

with phase locking, preserving very accurately the timing information.
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orbit of any artificial satellite, affected by non-gravitational perturbations.
The Viking landers have been on the surface of Mars for more than five
years with operational transponders, and this has allowed the computation
of the orbit of Mars with an accuracy of a few tens of meters. The in-
terplanetary space probes like Voyager can be used to constrain the orbit
of the planets they encounter. Planetary orbiters like Cassini (now around
Saturn) and the future BepiColombo (around Mercury) will provide very ac-
curate orbit determination for these planets and for the natural satellites of
Saturn, thanks to the very accurate transponders on these spacecraft. Thus
the main difference is not between natural and artificial orbits.

The specific properties of the collaborative cases are three.
First, the body has some built in capability to respond to tracking; thus

the number of observations, their distribution in time and their accuracy
are planned in the design phase of the mission. A simulation of orbit de-
termination is a compulsory phase of mission analysis, the study showing
that some proposed space mission is feasible from the astrodynamics point
of view. If the simulated orbit determination gives poor results, the required
frequency and accuracy of the observations has to be improved. Thus the
most difficult cases of divergent orbit determination should not occur in the
collaborative case; even strong nonlinearity and chaos should not happen.
However, if there is some failure, either hardware like an antenna failing to
deploy, or software like a faulty on-board computer program, or planning like
an orbit determination simulation providing illusory results, then a track-
ing case may show some problems of the non-collaborative case, including
divergence, excessive nonlinearity, and chaos.

Second, the observation data contain information on which object is being
tracked. In the simplest case, there is only one spacecraft answering in a
given frequency band in a given direction (within a given solid angle). Fre-
quency bands and orbit slots (e.g., in the geosynchronous belt) are allocated
by international authorities to avoid confusion and interference between sig-
nals to and from the satellites. In other cases (e.g., satellite constellations,
such as navigation satellites) the satellite encodes its identity in the signal
sent back to the ground. Thus we can assume we always know to which
spacecraft each batch of tracking data belongs.2 In most cases it is possi-
ble to treat each spacecraft as a separate problem of orbit determination;
the exceptions are the cases of satellite-to-satellite tracking, where the ra-
dio/laser beam travels between two (or more) satellites, in which case the
orbits of the two (or more) have to be solved simultaneously.

2 Of course also this can occasionally fail, making orbit determination quite messy.
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Third, if the amount of observational data and their accuracy exceeds
what is required for the determination of the orbit in the strictest sense,
that is for fitting the initial conditions y0, the additional information can
be used to fit other parameters, either dynamical or kinematical, and in fact
this is often the case. This is the key idea of satellite geodesy, where
the gravity field of the central planet (the Earth, the Moon, another planet,
an asteroid) is determined from the tracking data, rather than from the
inhomogeneous ground-based gravimetry. In satellite geodesy around the
Earth also the position of the ground stations can be determined with an
accuracy far superior to that possible with ground-based measurements.

Catalogs

In the case of population orbit determination the observations are a
scarce resource because the objects do not assist the observer. The total
number of observations may not be small; actually it can be comparable to
that of the tracking data points for a scientific space mission, e.g., tens of
millions. The problem is that they refer to objects of a large population, and
the average number of observations per object is small: e.g., 107 observations
of a population of 106 objects (down to the minimum size observable).

The example most extensively discussed in this book is the orbit determi-
nation of the small bodies of the Solar System, including asteroids, comets,
meteoroids and trans-neptunian objects. The number of objects needs to
be qualified by a class of orbits and a minimum size: e.g., there are of the
order of 106 main belt asteroids of size ≥ 1 km in diameter (this is just
an estimate, extrapolated from the orbits already determined). A survey
consists of a number of telescopes scanning the sky and looking for objects
with stellar appearance which move with respect to the approximately fixed
stars; this is the origin of the name asteroid, as proposed by Herschel. When
such a moving object is detected the amount of information is minimal,
typically only astrometry, that is angular positions, and photometry, that
is apparent magnitude. There is a signature neither to identify the object
with the ones already discovered, nor to decide it is new.

As we will see in Chapter 8, orbit determination is typically not possible
with the discovery data alone. Thus the orbit determination problem cannot
be disentangled from the identification problem, that is to find the inde-
pendent discoveries referring to the same physical object: only by joining the
information, contained in such separate discoveries, we can gather enough
data for a solution. The output of the identification/orbit determination
procedure is a catalog containing the list of distinct objects discovered, their
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best fit orbits, an estimate of their uncertainty and the little physical infor-
mation available, in most cases just the absolute magnitude, a measure of
the intrinsic capability of the object to reflect sunlight.3

The above example refers to passive observations detecting photons of
reflected sunlight. Active observations are used in planetary radar observa-
tions, where a powerful beam of microwaves is directed towards a celestial
body such as a major planet, a natural planetary satellite, an asteroid, a
comet. At the present state-of-the-art, given that the signal-to-noise ratio at
distance r is proportional to 1/r4, only the major inner planets, some very
large satellites (e.g., Titan), and large asteroids can be observed by radar
at interplanetary distances. Most of the targets therefore are near-Earth
asteroids, which have the possibility of comparatively close approaches to
the Earth.4 Radar observations are a complex subject, because the radar
return signal contains photons reflected from different parts of the asteroid
surface, each with a different range and range-rate with respect to the radar
antenna. In fact, the radar astrometry data are normal points obtained from
a large fit providing also information on the size, shape, radar reflectivity,
and rotation state of the object. The information constraining the orbit can
be synthesized into an equivalent observation of range and range-rate. The
accuracy of radar astrometry is between two and three orders of magnitude
better than conventional astrometry.

The above examples are about natural bodies, but a very similar problem
is obtained by considering spacecraft whose operational life is over. They
can be observed in a non-collaborative way, with exactly the same techniques
as asteroids, that is by astrometry and by radar. In most cases, however,
these observations do not allow us to discriminate one dead spacecraft from
another (actually, some care needs to be used to identify among the ob-
servations the ones belonging to operational spacecraft). As the search for
this space debris progresses towards smaller and smaller Earth-orbiting
objects, the list of bodies increases by adding spent rocket stages, pieces
of exploded satellites and rocket motors, screws, bolts, and small pieces re-
leased during stage separation and antenna deployment, as well as particles
of fuel, of frozen cooling liquid, all kinds of trash. A current estimate places
at about 350 000 the number of orbiting debris above 1 cm of diameter.
Thus the space debris problem is a population orbit determination problem,
and surveys have to be set up to compile catalogs of all the particles above

3 The absolute magnitude gives an indication of the diameter and mass, but the correspondence
between these quantities contains unknown parameters such as the albedo and the density.

4 With the current technology, radar astrometry for small asteroids (diameter < 1 km) is possible
up to a distance of 0.2–0.3 AU.
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a given size. The analogy is striking because there is an impact monitor-
ing problem: the objects larger than a few mm could seriously damage the
International Space Station by colliding at a relative speed of several km/s.

Thus the specific properties of the population cases are three, and they
are opposite to those of the collaborative case.

First, the number of observations is not under our control. A survey can
be designed to obtain a very large number of observations, but unavoidably
the larger the data set, the larger the set of distinct objects for which the
orbit has to be determined. Thus the average number of observations per
object is small, typically of the order of 10.

Second, the batches of observations which can be immediately assigned to
a single object are not enough to compute an orbit, thus the identification
problem needs to be solved before orbit determination is possible. On the
other hand, an identification can be considered reliable only if an orbit can
be consistently fit to all the data believed to be of the same physical ob-
ject. Thus orbit determination and identification are just a single algorithm,
necessarily complex.

Third, the dynamical and kinematical parameters are normally not deter-
mined. After the reliable identifications have been established, each orbit
can be solved individually, fitting just N = p = 6 parameters. Additionally,
a separate fit of the photometric data can provide the absolute magnitude.
However, this has to be performed for millions of bodies.

Planetary systems

There are a few examples of orbit determination which do not fit well into
the binary classification collaborative/population. Interesting examples are
the planetary systems. There are two main cases.

Our Solar System contains a small number NP of planets.5 The equation
of motion for the planets needs to take into account the perturbations from
the other planets, relativistic corrections, the perturbations from the larger
satellites (especially the Moon), and the larger asteroids. The masses of
the major planets appear as dynamical parameters μ, together with the
post-Newtonian parameters describing general relativity effects.

Thus the orbits of the planets have to be determined all at once, including

5 The exact definition of planet has been controversial, e.g., Pluto has size and mass comparable
to those of other trans-neptunian bodies previously classified as minor planets, and it is signif-
icantly smaller than some satellites such as the Moon, Ganymede, and Titan. What matters
in our discussion is the number of bodies whose masses are large enough to produce observable
perturbations in the orbits of other planets, as discussed in Section 4.6; for the current accuracy
in astrometric observations Pluto does not need to be included.
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that of the Earth. The list of parameters may include p = 6NP initial
conditions, p′ ≥ NP dynamical, and a number of kinematical parameters.
The observations include astrometry, planetary radar, occultations, plane-
tary landers, and spacecraft data. This example will be discussed mostly in
Chapter 6 because of the rank deficiency.

Planets (and very small companion stars) orbiting around another star can
be detected by measuring the star’s radial velocity, that is the range-rate.
Although the motion of the planet is much wider, the dim luminosity of the
planet in most cases cannot be discriminated from the much brighter signal
from the star. If we assume there is a single planet (or companion star),
the dynamical system is a two-body problem and the orbit determination
problem is simple, once the symmetries have been properly accounted for
(see Chapter 6). These extrasolar planets can be considered as a population:
indeed there is now a large data set of high-resolution radial velocity data.
However, each planetary system can be solved on its own, without possibility
of confusion among the data from different stars. If there are more planets
around the same star the problem becomes more complex, but still not as
much as the satellite geodesy and population orbit determination problems.
Thus this problem is comparatively simple, but this does not mean it can
be solved without care.

There is a separate theory for the orbit determination of binary stars,
when both are observable from the Earth. We are not discussing this case
in this book, but there are specialized textbooks such as (Aitken 1964).

There is also an intermediate case of orbit determination for artificial
satellites, the constellation orbit determination, when a set of dozens
of satellites on similar orbits is used in such a way that measurements have
to be simultaneously taken from different constellation members, to exploit
the higher accuracy of differences with respect to absolute measurements.6

Then the orbits of the navigation satellites have to be determined all at
once.

1.5 How to read this book

This textbook is intended for people interested in the general mathematical
framework of orbit determination and in at least one of the main classes of
applications (tracking, populations, and planetary systems). We expect that
a significant fraction of the readers will not wish to read all the details about

6 Another advantage of this method is that by measuring phase differences between the signals,
from satellites also sending timing information, it is possible to solve for the time at the station,
thus dispensing with accurate clocks.
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applications very far from the ones they are working on. Thus we suggest
three ways to select your customized path through this book.

If you are interested in satellite geodesy, mission analysis and operations of
space missions, planetary exploration, and similar topics, you should check
that you know the required material of Chapters 2 and 3, then read the basic
theory of Chapters 5 and 6. You need the specific background on satellite
orbits of Chapters 13 and 14. At this point you are ready for the satellite
geodesy and planetary exploration case studies of Chapters 14, 15, 16 and
17.

If you are interested in asteroid/comet orbit determination, you should
begin with Chapters 2 and 3 as in the other case, but you cannot skip
Chapter 4 unless you already have a specific background in celestial me-
chanics. Then you should read the basic theory of Chapters 5 and 6. At
this point you should be ready for the theory of simultaneous identifica-
tion and orbit determination of Chapters 7–10. Chapter 11 contains a case
study of an asteroid survey. Chapter 8 contains useful suggestions if you
need comparable work for space debris. If you are interested in one of the
most impressive applications of orbit determination, namely impact moni-
toring, which is a necessary tool to protect the Earth from collisions with
asteroids, you may also read Chapter 12.

If you are only interested in planetary systems, the relevant examples
are discussed in Chapter 6, thus you can read the first six chapters; some
additional information is contained in Chapter 17.

If you are interested in all the possible applications of orbit determination,
you can choose what you like, possibly using the subject index to identify
where the definitions are given (on the pages with numbers in bold). We
hope you will appreciate the effort done to present this subject in a unified
way, based on our long and varied experience.

The appendices contain auxiliary material, which may be of significant
help if you are undertaking the design and implementation of your own orbit
determination software. Both for reasons of space in the book and to make
the updates easier, the appendixes are not contained in this book but will
be available online at the URL http://adams.dm.unipi.it/orbdetbook.
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DYNAMICAL SYSTEMS

This chapter contains some basic material on dynamical systems which is
required for the following. We are giving no formal proofs, but just recall
the statements of the main results to be used. Several textbooks on the
subject are available, including (Hartmann 1964, Milani 2002a).

2.1 The equation of motion

We shall describe the motion by an ordinary differential equation of the form

dy
dt

= f(y, t, μ)

where f : Rp+p′+1 → Rp is a function obeying some regularity requirements,
the state vector y ∈ Rp is the unknown, and μ ∈ Rp′ are the dynamical
parameters, that we may assume as constant (μ = μ0). We are interested
in the solutions of the initial value problem (the Cauchy problem)

dy
dt

(t) = f(y(t), t,μ), y(t0) = y0; (2.1)

the general solution of (2.1) is a function of the time, the initial conditions,
and the parameters

y(t) = y(t, t0,y0, μ).

We can study the problem as an autonomous dynamical system, by intro-
ducing the variable z, the initial conditions z0, and the function g

z =

⎛
⎝ y

t − t0
μ

⎞
⎠ ; z0 = z(t0) =

⎛
⎝ y0

0
μ0

⎞
⎠ ; g =

⎛
⎝ f

1
0

⎞
⎠

15
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(0 is the zero vector in Rp′): with these notations the problem becomes

dz
dt

(t) = g(z(t)), z(t0) = z0. (2.2)

The general solution of (2.2) is usually denoted with either Φt
t0 (z0) or

z(t, t0, z0), and it is called the integral flow. The map Φt
t0 depends on the

two parameters t0, t and, for each value of t, it sends the initial conditions
z0 into z(t), the value of the solution at time t. The integral flow has the
following semigroup property: for each t0, t1, t2 ∈ R

Φt2
t1
◦ Φt1

t0
= Φt2

t0
.

As Φt0
t0

is the identity application, the integral flow Φt
t0 is invertible and

its inverse is Φt0
t . For autonomous differential equations like (2.2), we have

time-shift invariance of the solutions:

Φt
t0 (z0) = Φt−t0

0 (z0) = z(t − t0, 0, z0);

thus, given the initial time t0, we can either consider t−t0 as time variable or
we can assume that t0 = 0, and we can use the simplified notation Φt = Φt

0.

Second-order equations

Sometimes the equation of motion is a second-order differential equation

d2x
dt2

= h(x,v, μ, t), x(t0) = x0, v(t0) = v0 (2.3)

with v = dx/dt, as is the case when the orbits are computed in Cartesian
coordinates. Then the problem can be reduced to (2.1) simply by setting
y = (x,v), y0 = (x0,v0), and f(y) = (v,h).

2.2 Solutions of the equation

We recall some basic results about existence, uniqueness, and regularity of
the solutions of (2.2). A proof of these results can be found in several books
on dynamical systems, e.g., (Hartmann 1964).

Existence and uniqueness of the solutions

Let us consider an open set Ω ⊆ Rn. A function g : Ω → Rn is uniformly
Lipschitz-continuous on Ω if there exists L > 0 such that

|g(z1) − g(z2)| < L |z1 − z2| ∀z1, z2 ∈ Ω.
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If g is uniformly Lipschitz-continuous, then for each z0 ∈ Ω there exists
a unique solution z(t) of (2.2) defined in an interval (−ε, ε) with ε > 0
depending on z0. If g is locally Lipschitz-continuous in Ω there exists locally
a unique integral flow z(t, z0) defined on an open set in Rn+1.

Note that if g is differentiable of class C1 (with continuous partial deriva-
tives) in a larger open set Ω1 containing the compact K and Ω ⊂ K, then it
is also uniformly Lipschitz-continuous on Ω. In celestial mechanics the regu-
larity of the equation of motion is guaranteed because the gravitational po-
tential is a harmonic function (see Chapter 13). Only some non-gravitational
perturbations may introduce regularity problems, see Section 14.3.

Maximal solutions

A solution of (2.2) is maximal if it is defined in a maximal time interval,
i.e., no solution with that initial data can be defined in a larger interval.

Let z0 ∈ Ω and z = z(t) be a solution of (2.2) on an open interval I ∈ R
containing 0. If the solution z(t) defined for t ≥ 0 on a limited interval [0, t1)
is contained in a compact set K ⊂ Ω then z(t) is not a maximal solution;
similarly for t ≤ 0. The maximal solutions defined only in a limited interval
must get out of any compact set in Ω.

Lipschitz-continuity of the flow

The integral flow z(t, z0) is Lipschitz-continuous as a function of the initial
conditions z0; this can be shown using the Gronwall lemma: let y : I → R
be a non-negative function defined in an interval I ⊆ R; if there are α, β > 0
such that

0 ≤ y(t) ≤ β + α

∫ t

0
y(s) ds, then 0 ≤ y(t) ≤ β exp(α t).

An immediate consequence of the Gronwall lemma: if z1(t), z2(t) are solu-
tions of (2.2), with different initial conditions z1(0), z2(0), then assuming
that g is uniformly Lipschitz-continuous we have

|z1(t) − z2(t)| ≤ |z1(0) − z2(0)| + L

∫ t

0
|z1(s) − z2(s)| ds.

Then by the Gronwall lemma

|z1(t) − z2(t)| ≤ |z1(0) − z2(0)| exp (L t), (2.4)

i.e., the integral flow is Lipschitz-continuous with respect to the initial data.
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2.3 The variational equation

Let us define the state transition matrix as the Jacobian matrix

A(t, z0) =
∂z
∂z0

(t, z0).

If the integral flow z(t, z0) is regular enough we can differentiate it twice,
with respect to the time t and the initial condition z0, and exchanging the
order of the derivatives we obtain the same result:1

∂

∂t

[
∂z
∂z0

(t, z0)
]

=
∂

∂z0

[
∂z
∂t

(t, z0)
]
. (2.5)

Using (2.5) and the fact that z(t, z0) is the solution of (2.2), we obtain the
differential equation

∂

∂t

[
∂z
∂z0

(t, z0)
]

=
∂g
∂z

(z(t, z0))
∂z
∂z0

(t, z0). (2.6)

Equation (2.6) together with the initial condition ∂z/∂z0 = I at (t, z) =
(0, z0), where I is the identity matrix, give the Cauchy problem⎧⎨

⎩
∂A

∂t
(t, z0) =

∂g
∂z

(z(t, z0)) A(t, z0)

A(0, z0) = I.
(2.7)

The linear differential equation in (2.7) is the variational equation. It
can be interpreted as the linearized equation for the relative motion. Let
z(0)(t, z0) = z(t, z0) be the general solution of (2.2) and let z(ε)(0, z0) =
z0 + εv0 be the initial condition with the small perturbation εv0, where

z(ε)(t, z0) = z (t, z0 + εv0) .

The Taylor expansion of z(ε) with respect to the small parameter ε gives

z(ε)(t, z0) = z(0)(t, z0) + ε z(1)(t, z0) + O(ε2)

where

z(1)(t, z0) =
∂z
∂z0

(t, z0)v0.

The Taylor expansion of g
(
z(ε)

)
gives

g(z(ε)) = g(z(0) + εz(1) + O(ε2)) = g(z(0)) + ε
∂g
∂z

(z(0))z(1) + O(ε2).

1 We use the symbol ∂
∂ t

instead of d
dt

when we consider the integral flow z(t, z0 ) of (2.2), where
also z0 may vary, in place of the solution z(t) of (2.2) for z0 fixed.
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By equating the terms of order zero and one in ∂z(ε)/∂t = g
(
z(ε)

)
and

neglecting the higher order terms in ε we obtain

∂

∂t
(z(ε) − z(0)) =

∂g
∂z

(z(0))(z(ε) − z(0))

that is, the relative motion v(t, z0) = z(ε)(t, z0) − z(0)(t, z0) is the solution
of the system ⎧⎨

⎩
∂v
∂t

(t, z0) =
∂g
∂z

(z(0)(t, z0)) v(t, z0)

v(0, z0) = v0

(2.8)

whose general solution is given by the variational equation (2.7).

Variational equation with dynamical parameters

Let us write explicitly the variational equation for eq. (2.1). The state
transition matrix is

A(t) =
∂z
∂z0

=

⎡
⎢⎢⎣

∂y
∂y0

∂y
∂μ

∂μ

∂y0

∂μ

∂μ

⎤
⎥⎥⎦ =

⎡
⎣ ∂y

∂y0

∂y
∂μ

0 I

⎤
⎦

where 0, I are respectively the zero and the identity matrix, with dimensions
suitable to their place in the matrix A(t). Furthermore we have

∂g
∂z

=

⎡
⎣ ∂f

∂y
∂f
∂μ

0 0

⎤
⎦

so that the variational equation (2.7) gives the system

∂

∂t

(
∂y
∂y0

)
=

∂f
∂y

∂y
∂y0

,
∂

∂t

(
∂y
∂μ

)
=

∂f
∂y

∂y
∂μ

+
∂f
∂μ

with initial data
∂y
∂y0

(0) = I,
∂y
∂μ

(0) = 0.

Variational equation for second-order equations

If the equation of motion is of second order, like eq. (2.3), then we can
decompose the state transition matrix as follows

B =
∂x
∂x0

, C =
∂x
∂v0

, D =
∂x
∂μ

.
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We use here, and widely in this book, the dot notation ẋ = dx/dt. Note
that

Ḃ =
∂v
∂x0

, Ċ =
∂v
∂v0

, Ḋ =
∂v
∂μ

.

Then the variational equation is obtained by exchanging the derivatives: for
B and C, with the double dot indicating second time derivatives,⎧⎨

⎩ B̈ =
∂h
∂v

Ḃ +
∂h
∂x

B

B(t0) = I, Ḃ(t0) = 0,
(2.9)

⎧⎨
⎩ C̈ =

∂h
∂v

Ċ +
∂h
∂x

C

C(t0) = 0, Ċ(t0) = I,
(2.10)

while for D the linear equations are non-homogeneous⎧⎨
⎩ D̈ =

∂h
∂v

Ḋ +
∂h
∂x

D +
∂h
∂μ

D(t0) = 0, Ḋ(t0) = 0.
(2.11)

Differentiability of the solutions

We state another regularity property of the integral flow. Let Ω ⊆ Rn be
an open set and g : Ω → Rn a C1 function. Then for each z̄0 ∈ Ω there is
an open set W ⊂ R×Ω containing (0, z̄0) such that the integral flow Φt(z0)
restricted to W is a C1 function in the variable (t, z0). Furthermore the
mixed derivatives ∂2Φt(z0)/∂t ∂z0 exist and are continuous; in particular
the procedure followed to obtain the variational equation (2.7) makes sense.
The proof can be given using the variational equation itself and the Gronwall
lemma. This result can also be extended to functions g of class Ck , getting
solutions of class Ck in all the variables.

2.4 Lyapounov exponents

Given the solution z(t, z0) of the Cauchy problem (2.2) let vt(z0) be the
solution of the variational equation (2.7). If the limit

lim
t→+∞

1
t

log
|vt(z0)|
|v0|

exists, we denote it by χ = χ(z0,v0) and we call it a Lyapounov exponent
of the dynamical system. The inverse of the maximum positive Lyapounov
exponent, if it exists, is the Lyapounov time over which two nearby orbits
diverge, on average, by a factor exp(1).
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Let us consider two different solutions z1(t), z2(t) of (2.2) obtained from
different initial conditions z1(0), z2(0). By the Gronwall lemma we have
eq. (2.4):

Δ(t) = |z1(t) − z2(t)| ≤ Δ(0) · exp(L t), so that
1
t

log
Δ(t)
Δ(0)

≤ L.

Passing to the limit as Δ(0) → 0 and t → +∞ we obtain the inequality

χ(z0,v0) ≤ L, (2.12)

where L is the Lipschitz constant of g. This inequality is sharp, as shown
by the following example: the equation dz/dt = λ z with initial condition
z(0) = z0 has solution z(t) = exp(λ t) z0 and the difference Δ(t) increases
in size according to

Δ(t)
Δ(0)

=
|z1(t) − z2(t)|
|z1(0) − z2(0)| = exp(λ t), so that

1
t

log
Δ(t)
Δ(0)

= λ,

that is, it has λ as Lyapounov exponent.

2.5 Model problem dynamics

We shall consider the simple nonlinear problem

da

dt
= 0,

dλ

dt
= n(a) =

k

a3/2 (2.13)

with initial conditions a(0) = a0, λ(0) = λ0; here k > 0 is the Gauss gravita-
tional constant, that is k2 = G m�. This problem is modeled on the planar
two-body problem, with the nonlinear dependence of the mean motion upon
the semimajor axis, in a zero eccentricity approximation; it is extensively
used in Chapters 5, 6 and 7 as a model problem. The integral flow is a shift
map

a(t, a0, λ0) = a0, λ(t, a0, λ0) = λ0 + n0 t (2.14)

with n0 = n(a0), that is two initially nearby orbits diverge linearly with
time; the Lyapounov exponents are all zero. The corresponding variational
equation is as follows: the state transition matrix

A(t, a0, λ0) =
∂(a, λ)

∂(a0, λ0)

is the solution of the Cauchy problem

∂A

∂t
=

⎡
⎣ 0 0

−3
2

n0

a0
0

⎤
⎦ A, A(0) = I. (2.15)
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The integral flow of a linear Cauchy problem

dz
dt

(t) = M z(t), z(0) = z0 (2.16)

where M is an n × n matrix, is given by Φt(z0) = exp(M t) z0 where the
matrix exponential is defined by

exp(M t) =
∞∑
i=0

Miti

i!
. (2.17)

This series converges uniformly with respect to t in every compact interval.
For the case of eq. (2.15)

A(t, a0, λ0) = exp

⎡
⎣ 0 0

−3
2

n0

a0
t 0

⎤
⎦ =

⎡
⎣ 1 0

−3
2

n0

a0
t 1

⎤
⎦ .

The partial derivatives with respect to the dynamical parameter k

B(t, a0, λ0) =
[
∂a(t, a0, λ0)

∂k
,

∂λ(t, a0, λ0)
∂k

]T

are the solution of the Cauchy problem

∂B

∂t
=

⎡
⎣ 0 0

−3
2

n0

a0
0

⎤
⎦ B +

⎡
⎣ 0

1

a
3/2
0

⎤
⎦ , B(0) =

[
0
0

]

and can be written as

B(t, a0, λ0) =
[
0 , t/a

3/2
0

]T
.
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ERROR MODELS

We outline the basic tools of probability theory needed in the following
chapters, with special emphasis on the Gaussian, or normal, distributions,
which have an essential connection with the least squares principle (see
Section 5.7). We give very few proofs; the others can be found in many
textbooks, e.g., (Jazwinski 1970, Mood et al. 1974).

3.1 Continuous random variables

A continuous random variable X is defined by a probability density
function, a real function pX (x) ≥ 0 defined and continuous for all x ∈ R
with the property ∫ +∞

−∞
pX (x) dx = 1. (3.1)

It follows that X has also a distribution function dX (x), defined for all
x ∈ R and continuously differentiable:

dX (x) =
∫ x

−∞
pX (s) ds, so that pX (x) =

d

dx
dX (x),

by which we can compute a probability measure PX on R. The probability
for X to be inside an open interval (a, b) is

PX (a < X < b) = dX (b) − dX (a) =
∫ b

a
pX (x) dx. (3.2)

Note that PX (a < X < b) = PX (a ≤ X ≤ b), hence we have also a
probability measure for the closed intervals [a, b]. Because the probability
density pX (x) has a bounded integral, there is a large algebra of subsets B

23
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of R such that the probability for X to be inside can be computed by

PX (X ∈ B) =
∫

B
pX (x) dx.

Indeed, finite and countable infinite disjoint unions of open intervals are
included, and the algebra is closed with respect to the complement; this is
called the Borel σ-algebra for R.1 The continuous random variables are not
enough to describe all cases occurring in the applications, in particular in
the measurement errors: there are also discrete distributions, and random
variables X can be defined as combinations of continuous and discrete ones,
such that, for some a, PX (x = a) > 0; they cannot be represented by
continuous distribution functions and have no probability density function.
These do occur in the errors, e.g., whenever the data are digitized by hand
the copyist mistakes are discrete. However, for a large data set this kind of
mistake is not very important, and the use of continuous random variables
as error models is justified when the largest errors, which are exceptional
events and hard to model, are removed (see Section 5.8).

Given a continuous random variable X, we use the following definitions:

E(X) =
∫ +∞

−∞
x pX (x) dx mean (or expectation),

Var(X) =
∫ +∞

−∞
[x − E(X)]2 pX (x) dx variance,

RMS(X) =
√

Var(X) standard deviation
(or root mean square),

μn(X) =
∫ +∞

−∞
[x − E(X)]n pX (x) dx n-th moment,

K(X) =
μ4(X)

Var(X)2 kurtosis.

Jointly distributed random variables

Two continuous random variables X, Y are jointly distributed if they are
defined by a joint probability density function pX,Y (x, y) which is con-

1 The integral appearing in (3.2) should be the Lebesgue integral, to give a measure to all
the elements of the Borel σ-algebra. However, in the applications the subsets of R whose
probability has to be measured are simple: usually they are intervals, thus we can regard the
integral appearing in (3.2) as the Riemann integral.
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tinuous in the vector variable (x, y) ∈ R2 and such that

pX,Y (x, y) ≥ 0,

∫
R2

pX,Y (x, y) dx dy = 1.

Following the same steps of the univariate case we can define a probability
measure PX,Y : first we define

PX,Y

(
a < X < b

c < Y < d

)
=
∫ b

a

∫ d

c
pX,Y (x, y) dx dy

for the rectangles (a, b)× (c, d), then we consider the subsets of R2 that are
finite or countable infinite unions of rectangles, or the complement of them,
i.e. the Borel σ-algebra for R2. If D is one of these subsets, we define2

PX,Y (D) =
∫

D
pX,Y (x, y) dx dy.

For the continuous random variables X, Y we define the mean and the
variance of X:

E(X) =
∫

R2
x pX,Y (x, y) dx dy,

Var(X) =
∫ +∞

−∞
[x − E(X)]2 pX,Y (x, y) dx dy,

and similarly for Y . Moreover we define the covariance of X, Y

Cov(X, Y ) =
∫

R2
[x − E(X)][y − E(Y )] pX,Y (x, y) dx dy

= E ([X − E(X)][Y − E(Y )])

and the covariance matrix

Γ =
[

Var(X) Cov(X, Y )
Cov(X, Y ) Var(Y )

]
.

The normal matrix is defined as C = Γ−1. The coefficient of correlation
of X and Y is the ratio

Corr(X, Y ) =
Cov(X, Y )√

Var(X)
√

Var(Y )

and we shall say that the two variables are uncorrelated if this coefficient is
zero, correlated if it is not zero.

It is possible to generalize these definitions to n jointly distributed contin-
uous random variables X1, . . . , Xn. They are defined by a joint probability
2 This is a Riemann integral if D is measurable according to Peano–Jordan.
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density function pX1 ,X2 ,...,Xn (x1, x2, . . . , xn) which is non-negative, continu-
ous in all the variables, and has unit integral on Rn. The probability measure
of a subset D of Rn can be computed as the multiple integral

PX1 ,...,Xn ((X1, X2, . . . , Xn) ∈ D) =
∫

D
pX1 ,X2 ,...,Xn dx1 dx2 . . . dxn

provided D satisfies conditions like those of the two-dimensional case.
Given n jointly distributed continuous random variables Xj , j = 1, n, the

mean and the variance of each variable is

E(Xj) =
∫

Rn

xjpX1 ,...,Xn (x1, . . . , xn) dx1 . . . dxn,

Var(Xj) =
∫

Rn

[xj − E(Xj)]
2 pX1 ,...,Xn (x1, . . . , xn) dx1 . . . dxn,

the covariance of Xi, Xj is

Cov(Xi, Xj) =
∫

Rn

[xi−E(Xi)][xj−E(Xj)] pX1 ,...,Xn (x1, . . . , xn) dx1 . . . dxn,

and the normal matrix C is the inverse of the covariance matrix Γ = (γij)i,j

whose coefficients are γii = Var(Xi) and γij = Cov(Xi, Xj) for i = j. The
correlation coefficients can also be deduced from the covariance matrix

Corr(Xi, Xj) =
γij√
γiiγjj

.

Independence, marginal and conditional probability

For two jointly distributed random variables X, Y we define the marginal
density functions

pX (x) =
∫ +∞

−∞
pX,Y (x, y) dy, pY (y) =

∫ +∞

−∞
pX,Y (x, y) dx,

which can be regarded as probability densities of one of the jointly dis-
tributed random variables, valid for each value of the other variable.

The jointly distributed X, Y are independent random variables if

pX,Y (x, y) = pX (x) pY (y). (3.3)

If X, Y are independent, Cov(X, Y ) = 0. The converse is not always true.
Given X, Y continuous random variables with probability density

pX,Y (x, y) the conditional density functions are

pX |Y (x; y) =
pX,Y (x, y)

pY (y)
, pY |X (y; x) =

pX,Y (x, y)
pX (x)

,
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for pY (y) > 0 and pX (x) > 0, respectively, where we use “;” to stress the
different role of the two variables. The independence of X and Y can be
expressed in terms of conditional density functions as either pY |X (y; x) =
pY (y) or pX |Y (x; y) = pX (x).

3.2 Gaussian random variables

There are continuous random variables that play an important role in the
least squares principle: those with density function of the type

pX (x) = N(μ, σ2)(x) =
1√
2πσ

exp
(
−(x − μ)2

2σ2

)
, (3.4)

where μ = E(X) and σ = RMS(X). Such variables are called Gaussian or
normally distributed. The following relation is useful:∫ +∞

−∞
exp

(
− x2

2σ2

)
dx =

√
2πσ;

it can be computed from the integral over the plane R2 of the function
exp

(
x2 + y2

)
in polar coordinates. It can be easily checked that a Gaussian

variable satisfies the property (3.1) of a probability density function.

Rotational invariance

A geometric characterization of the Gaussian densities is as follows. If two
jointly distributed continuous random variables X, Y are independent, with
equal marginal densities pX (x) = pY (x) = f(x) and the probability density
function pX,Y (x, y) is invariant under rotations, i.e., there exists a function
g : R → R such that pX,Y (x, y) = g(x2 + y2), then they are Gaussian with
zero mean:

pX (x) = N(0, σ2)(x).

This can be shown as follows:

g(x2 + y2) = f(x) f(y) =⇒ g(x2) = f(x) f(0)

where f(0) = k is constant. Thus f(x) = g(x2)/k = k h(x2) and by substi-
tuting in the formula above

h(x2 + y2) = h(x2) h(y2) =⇒ log h(x2) + log h(y2) = log h(x2 + y2),

thus log h(z) is a linear function: log h(x2) = s x2 and f(x) = k exp(s x2).
For f to have a limited integral, s must be negative, say s = −1/2σ2 and

pX (x) = f(x) = k exp
(
− 1

2 σ2

)
.
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Then the normalization property (3.1) implies k = 1/σ
√

2π. Hence the
two-dimensional rotation invariant Gaussian is

pX,Y (x, y) = N(0, σ2)(x) N(0, σ2)(y) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
.

Two-dimensional Gaussian variables

We take two independent jointly distributed Gaussian variables X, Y with
joint density function pX,Y (x, y) = pX (x) pY (y) with zero mean and different
standard deviations σx, σy . In this case the covariance matrix is

Γ =
(

σ2
x 0
0 σ2

y

)
,

the normal matrix is C = Γ−1 and the joint probability density is

pX,Y (x, y) = N(0, Γ)(x, y) =

√
det C

2π
exp

[
−1

2
(x, y) C

(
x

y

)]

=
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)]
.

More generally, let us consider two correlated Gaussian random variables
X, Y , with normal matrix C and covariance matrix Γ defined by

C =
1

1 − ρ2

(
1/σ2

x −ρ/(σxσy)
−ρ/(σxσy) 1/σ2

y

)
, Γ =

(
σ2

x ρσxσy

ρσxσy σ2
y

)

where ρ = Corr(X, Y ). The marginal probability densities are the same as
in the independent case:

pX (x) = N(0, σ2
x)(x), pY (y) = N(0, σ2

y)(y),

but the joint probability density is different:

pX,Y (x, y) = N(0, Γ)(x, y)

=
1

2π σxσy

√
1 − ρ2

exp
[
− 1

2(1 − ρ2)

(
x2

σ2
x

− 2ρ x y

σx σy
+

y2

σ2
y

)]
.

The result is valid also for jointly distributed continuous random variables
with non-zero mean: in this case the density function is

pX,Y (x, y) = N(m, Γ)(x, y) (3.5)

=

√
det C

2π
exp

[
−1

2
(x − mx, y − my) C

(
x − mx

y − my

)]
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where

m = (mx, my) = (E(X), E(Y ));

the marginal density functions of X and Y are normal

pX (x) = N(mx, σ2
x), pY (y) = N(my, σ

2
y).

Moreover, if Corr(X, Y ) = 0 then both the normal and the covariance matrix
are diagonal, and X, Y are independent.

Regression line

Given two jointly distributed Gaussian variables X, Y , with probability den-
sity (3.6), the conditional probability density of X given Y is also Gaussian:

pX |Y (x; y) = N

(
mx + ρ

σx

σy
(y − my), σ2

x(1 − ρ2)
)

(x).

The above formula uses the regression line

y = my +
σy

σx
ρ(x − mx),

giving the expected conditional value E[Y |X](x) =
∫

R
pY |X (y; x) dy. A

similar formula gives the conditional probability density of Y given X

pY |X (y; x) = N

(
my + ρ

σy

σx
(x − mx), σ2

y(1 − ρ2)
)

(y),

which uses the other regression line

x = mx +
σx

σy
ρ(y − my).

The regression lines are shown in Figure 5.1.

Multidimensional Gaussian variables

Given n jointly distributed random variables X1, X2, . . . , Xn, we say that
they are Gaussian, or normally distributed, if their joint density function is
of the form

pX1 ,X2 ,...,Xn (x1, x2, . . . , xn) =

√
detC

(2π)n/2 exp
[
−1

2
(x − m)T C (x − m)

]

where m = (m1, . . . , mn)T is the vector of the means and C, the normal
matrix, is symmetric and positive definite. The notation N(m, Γ) is used
for the above probability density function, where Γ = C−1. Again, if C is
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diagonal so is Γ, and the Xj are all independent: for Gaussian variables,
being independent and uncorrelated is equivalent.

For a multidimensional Gaussian, we need to generalize the result on
marginal probability densities: let us consider the two vector random vari-
ables

X = (X1, . . . , Xn), Y = (Y1, . . . , Ym)

jointly distributed, Gaussian with probability density

pX,Y(x,y) = N ((mx;my),Γxy) ,

where x = (x1, . . . , xn), y = (y1, . . . , ym), (mx;my) is the stacking of the
two vectors, and the covariance matrix can be decomposed as

Γ =
[

Γx Γxy

Γyx Γy

]
, Γyx = ΓT

xy ,

where Γx is an n × n matrix, Γy is m × m, and Γxy is n × m. Then the
marginal probability densities are

pX = N(mx, Γx), pY = N(my , Γy), (3.6)

that is the marginal covariance matrix is the restriction, to the corre-
sponding linear subspace, of the covariance matrix. For the conditional
covariance matrix the following formula applies

pX |Y (x; y) = N(mx + ΓxyΓ−1
y (y − my),Γx − ΓxyΓ−1

y Γyx), (3.7)

which can be described by the statement that the conditional normal
matrix Cx is the restriction, to the corresponding linear subspace, of the
normal matrix C = Γ−1. Similarly for pY |X (y; x), see Section 5.4.

3.3 Expected values and transformations

Given a continuous random variable X and a continuous real function f(x),
we can define the random variable Y = F (X) with probability measure

PY (a < Y < b) = PX (X : a < F (X) < b) .

The question is whether Y is a continuous random variable, i.e., whether
a continuous probability density function pY (y) can be defined. Under the
assumptions

(i) y = f(x) is bijective from W = {x ∈ R : pX (x) > 0} to a set D ⊂ R;
(ii) x = f−1(y) has in D continuous derivative, different from 0;
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Y = F (X) is a continuous random variable with probability density

pY (y) =
∣∣∣∣df−1(y)

dy

∣∣∣∣ pX (f−1(y))

inside D and 0 outside.
This definition can be generalized to n variables as follows. Given a set

X = (X1, . . . , Xn) of jointly distributed continuous random variables with
probability density function pX(x), where x = (x1, . . . , xn), and given a
continuous function f(x) = y, with y = (y1, . . . , yn), let

W = {x ∈ Rn such that pX(x) > 0}

and D = f(W ), with f : W → D a bijective function. If f−1 ∈ C1(D) with
Jacobian J different from zero, then

pY(y) = |detJ | pX(f−1(y)) (3.8)

inside D, 0 outside, is the probability density that defines the continuous
vector random variable Y = F(X).

Linear transformations of Gaussians

Given a continuous random variable X, let y = f(x) = Ax + b, with A

an n × n matrix, be an affine transformation in Rn. If X is Gaussian, with
probability density pX(x) = N(m, Γ), m ∈ Rn and Γ a symmetric positive
definite n × n matrix, then Y = F(X) also has a normal distribution, with
probability density

pY(y) = N
(
Am + b, A Γ AT

)
, (3.9)

that is, with expected value f(m) and covariance matrix A Γ AT . This is
called the covariance propagation rule.

In this case the transformation is invertible: x = A−1 (y − b) with
det ∂x/∂y = det−1(A). Then eq. (3.8), by using x − m = A−1 [y − f(m)]
and (AT )−1 C A−1 = (A Γ AT )−1, gives

pY(y) =

√
det C (det A)−2

(2π)n/2 exp
[
−1

2
[y − f(m)]T (AT )−1 C A−1 [y − f(m)]

]

=

√
det(A Γ AT )−1

(2π)n/2 exp
[
−1

2
[y − f(m)]T (A Γ AT )−1 [y − f(m)]

]
= N

(
f(m), A Γ AT

)
.

A generalization to transformations y = f(x) = B (x + b) of the Gaussian
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variable X with density N(m, Γ), where B is an m×n matrix (m < n) with
maximal rank m, can be obtained as follows. Let Π = [I|0] be the matrix of
the projection onto the subspace of the first m coordinates and let A be an
invertible n× n matrix with B = Π A: we use relation (3.9) to compute the
probability density N(A(m+b), A Γ AT ) of the random variable defined by
the invertible transformation z = A(x + b), and then relation (3.6), about
marginal densities, to obtain

pY(y) = N
(
ΠA(m + b),Π A Γ AT ΠT

)
= N

(
f(m), B Γ BT

)
. (3.10)

Conditional probability density on a linear subspace

We need to generalize the formula for the conditional probability density of
a Gaussian to an ambient space of arbitrary dimension m and to an affine
subset of arbitrary dimension N < m; this is used in Section 5.7.

Let W be an N -plane, image of RN by a linear (non-homogeneous) map
defined by the m × N matrix B and the reference point ξ∗

W = {ξ ∈ Rm : ξ = B x + ξ∗,x ∈ RN };
moreover, we may assume that ξ∗ is a vector orthogonal to W (otherwise
the component parallel to W can be subtracted). Let pΞ(ξ) = N(0, I) be
a rotation-invariant Gaussian probability density; we need to compute the
conditional probability density of the random variable Ξ on W .

We use a rotation matrix R such that

R (ξ − ξ∗) =
[

ξ′

ξ′′

]
=⇒ RT

[
0
ξ′′

]
+ ξ∗ ∈ W, (3.11)

that is, ξ′′ ∈ RN parameterizes W . The probability density of Ξ′′ is the
conditional probability density of R(Ξ) given ξ′ = R ξ∗, but the distribu-
tion N(0, I) is rotation invariant, thus the probability density of Ξ′′ can
be computed from eq. (3.7) and Ξ′′ is Gaussian with as normal matrix the
restriction of the normal matrix of Ξ

pΞ′′ = N(0, I)

with I the N×N identity matrix. Geometrically, the intersection of (m−1)-
spheres with N -planes can only be (N − 1)-spheres, and these are the level
surfaces of the probability density of Ξ′′.
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THE N–BODY PROBLEM

This chapter presents the basic theory of the gravitational N -body problem,
the coordinate systems used for both theoretical investigations and practical
applications, and how to select the dynamical model for a Solar System orbit.

4.1 Equation of motion and integrals

By (N+1)-body problem we mean the ordinary differential equation defining
the motion of N +1 point masses with positions rj , velocities ṙj , and masses
mj , interacting only through the mutual gravitational attraction

mj r̈j =
∑
i �=j

Gmimj

|ri − rj |3
(ri − rj), j = 0, . . . , N (4.1)

where the dots indicate time derivatives and G is the universal gravitational
constant; this is the equation of motion in Newtonian form. We need to
express it in another form, more suitable both to discuss symmetries and in-
tegrals and to perform coordinate changes. The mutual gravitational forces
admit a potential, thus we can define the potential energy

V = −
∑

0≤i<j≤N

G mi mj

|ri − rj |
;

we introduce the kinetic energy T and the Lagrange function (or
Lagrangian) L:

T =
1
2

N∑
i=0

mi |ṙi|2, L = T − V. (4.2)

The Newton equation of motion is equivalent to the Lagrange equation

d

dt

(
∂L

∂ṙj

)
− ∂L

∂rj
= 0 (4.3)

33
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with two important properties. The first one has to do with integrals of
motion, the second is discussed in Section 4.2. A first integral of the
Lagrange equation (4.3) is a function of all the positions and velocities

I = I(R, Ṙ), R = (r0, r1, . . . , rN ), Ṙ = (ṙ0, ṙ1, . . . , ṙN )

such that the total time derivative along the solutions is identically zero:

dI

dt
=

∂I

∂R
Ṙ +

∂I

∂Ṙ
R̈ = 0;

thus the value of I is constant along the orbits.

Symmetries and integrals

A one-parameter group of symmetries of the Lagrange function L is a
diffeomorphism Fs of the positions R depending (in a differentiable way)
upon a parameter s ∈ R so that Fs ◦Fz = Fs+z and the Lagrange function
is invariant:

L

(
Fs(R),

d

dt
F s(R)

)
= L

(
Fs(R),

∂F s

∂R
Ṙ
)

= L(R, Ṙ).

F 0 is the identity transformation; we also assume the mixed derivatives
∂2Fs/∂R∂s are continuous. A local one-parameter group of symmetries of
the Lagrange function is defined by the same properties for s in a neighbor-
hood of 0. The main result we need is the Noether theorem, stating that if
the Lagrange function L admits a local one-parameter group of symmetries
Fs then

I(R, Ṙ) =
∂L

∂Ṙ
· ∂Fs(R)

∂s

∣∣∣∣
s=0

(4.4)

is a first integral of the Lagrange equation (4.3).
To apply this theorem to the (N + 1)-body problem we look for symme-

tries of the Lagrange function in (4.2), a function of the mutual distances
|ri−rj | and of the velocities |ṙj |. Thus every isometry of the space of posi-
tions, preserving distances and independent of time, preserves the Lagrange
function. The isometries of the Euclidean space R3 are the functions

G(x) = R x + q,
dG

dt
(x) = R ẋ,

where R is an orthogonal matrix (RT R = I) and q a constant vector, both
independent of time. The symmetry group of three-dimensional space has
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dimension 6 and is generated by six one-parameter subgroups.1 There are
three one-parameter symmetry groups of translations (R = I):

Fs(x) = x + s v̂h,
∂F s(x)

∂s
= v̂h

where v̂h is the unit vector along one coordinate axis, for h = 1, 2, 3. If
equal translations are applied to all bodies, then the integral of (4.4) is

ph = v̂h ·
N∑

j=0

mj ṙj ,

the component along the axis v̂h of the total linear momentum p. The
latter is a vector integral, and the center of mass b0 moves with constant
velocity:

b0 =
1

M0

N∑
j=0

mj rj ; M0 =
N∑

j=0

mj (total mass); b0(t) =
t

M0
p + b0(0).

(4.5)

In the above formula, b0(0) is a constant vector which can be obtained as
a combination of positions and velocities, but with coefficients depending
upon time: each of its components is a time-dependent first integral.

The other three one-parameter symmetry groups are groups of rotations
(q = 0). A three-dimensional x rotates by an angle of s radians around an
axis v̂h; the rotation is counterclockwise for s > 0, as seen from the tip of
v̂h,

Fs(x) = Rsv̂h
x,

∂F s(x)
∂s

∣∣∣∣
s=0

= v̂h × x

and the integral of the Noether theorem

ch =
N∑

j=0

(v̂h × rj) · mj ṙj = v̂h ·
N∑

j=0

mj (rj × ṙj)

is the component along v̂h of the total angular momentum

c =
N∑

j=0

mj (rj × ṙj) , (4.6)

thus the motion preserves the angular momentum vector integral.
There is one additional integral, the total energy integral, which is not

deduced from the Noether theorem.2 By computing the total time deriva-
1 The tangent space to the unit element, the Lie Algebra, is generated by the tangents to these

subgroups. Only orientation preserving isometries are included in the one-parameter subgroups.
2 It could be interpreted, with the Hamiltonian formalism, as a consequence of the invariance

with respect to time, thus it corresponds to the symmetry t 	→ t + s.
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tives

dT

dt
=

N∑
j=0

mj r̈j · ṙj ,
dV

dt
=

N∑
j=0

∂V

∂rj
· ṙj

and by eq. (4.1) they are opposite, thus E = T + V is a first integral.
There is one additional symmetry in the (N + 1)-body problem, which

involves not only the coordinates but also the time and possibly the masses:
the change of scale. It is also associated with a first integral, which is not
independent of the previous ones. If the lengths are changed by a factor λ,
the times by a factor τ , the masses by a factor μ, then

mj r̈j �→
μ λ

τ 2 mj r̈j ,
∂V

∂rj
�→ μ2

λ2
∂V

∂rj
,

and the equation of motion is satisfied by the scaled orbits if and only if

λ3 = μ τ 2, (4.7)

the dimensional version of Kepler’s third law. If τ = 1 it is possible to scale
the lengths compensating with a scaling of the masses λ3 = μ; this may
imply the impossibility of determining masses and lengths (see Section 6.2).

When a scaling with λ3 = μ τ 2 is applied, the energy integral is scaled

T �→ μλ2

τ 2 T, V �→ μ2

λ
V =⇒ E �→ μλ2

τ 2 E

and the angular momentum vector integral scales as c �→ μλ2/τ c, thus the
combination E c2, where c = |c|, scales as

E c2 �→ μλ2

τ 2
μ2λ4

τ 2 E c2 = μ5 E c2;

thus E c2 is invariant if μ = 1, that is, if masses are not scaled.
A deep result obtained by the celestial mechanicians of the late nineteenth

century states that for N ≥ 3 there are no first integrals in the (N + 1)-
body problem independent of the 10 classical ones of the linear and angular
momentum and total energy (seven time independent and three time depen-
dent).

4.2 Coordinate changes

The first integrals have to be exploited to reduce the dimensionality of the
equation of motion, and this is for two reasons. First, the dimensions 3N +3
of the configuration space, and 6N +6 of the phase space (of the initial con-
ditions), are too large to understand the properties of the solutions. Second,
the symmetries associated with the integrals may result in degeneracy of the
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orbit determination problem, as discussed in Chapter 6; one of the possible
remedies is to decrease the number of variables. Also for the above purpose,
we need to know how the equation of motion transforms under a coordinate
change: this is easier for the Lagrange equation.

Let B = (b0,b1, . . . ,bn) be another set of coordinates for the positions
of the N + 1 bodies, and R = R(B) a coordinate change which is a diffeo-
morphism (with continuous second derivatives) of the (3N +3)-dimensional
space; we are thus assuming that the Jacobian matrix A(B) = ∂R/∂B is
invertible at each point B. The corresponding change in the velocities is

Ṙ =
∂R
∂B

(B) Ḃ = A(B) Ḃ.

Let L(R, Ṙ), L(B, Ḃ) be Lagrange functions corresponding by value:

L(B, Ḃ) = L
(
R(B), Ṙ(B, Ḃ)

)
= L

(
R(B), A(B) Ḃ

)
;

then the left-hand side of the Lagrange equation is transformed as follows:

d

dt

(
∂L
∂Ḃ

)
− ∂L

∂B
=
[

d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R

]
A(B). (4.8)

The Lagrange equations in the two coordinate systems are equivalent

d

dt

(
∂L
∂Ḃ

)
− ∂L

∂B
= 0 ⇐⇒ d

dt

(
∂L

∂Ṙ

)
− ∂L

∂R
= 0;

solutions of one are transformed by R = R(B) into solutions of the other.

Reduction of the two-body problem

We shall start from the simplest case, the two-body problem, to get some
ideas to be exploited in the general case. The Lagrange function is

L =
1
2
m0 |ṙ0|2 +

1
2
m1 |ṙ1|2 +

Gm0 m1

|r0 − r1|
.

We can change coordinates by using, in place of r0, r1, the coordinates of
the center of mass and the relative position of r1 with respect to r0

b0 = μ1 r1 + (1 − μ1)r0, μ1 =
m1

m0 + m1
, b1 = r1 − r0. (4.9)

Then V = V(b1) = −Gm0m1/b1, with b1 = |b1|; to write T as a function of
b0,b1 we express ṙ0 and ṙ1 as a function of ḃ0, ḃ1 and substitute in T :

2T = m0 ṙ2
0 + m1 ṙ2

1 = (m0 + m1) ḃ2
0 +

m0m1

m0 + m1
ḃ2

1
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the mixed terms canceling. The Lagrange function as a function of b0,b1 is

L =
1
2

M0 ḃ2
0 +

1
2

M1 ḃ2
1 +

GM0 M1

b1

with M0 = m0 + m1 the total mass and M1 the reduced mass:

M1 =
m0m1

m0 + m1
. (4.10)

Then the Lagrange function L can be decomposed as the sum of two La-
grange functions L = M0 L0(ḃ0) + M1 L1(b1, ḃ1), one containing only b0,
the other containing only b1, and the Lagrange equation decouples:

M0 b̈0 = 0, M1 b̈1 = −∂V(b1)
∂b1

.

The first equation states that the center of mass moves with constant velocity
along a straight line, the second equation is the Kepler problem, with a
particle of mass M1 attracted by a fixed center of mass M0.

By repeating the same computations done for T , we find that also the
angular momentum has a simple expression in the B coordinates:

c = m0 r0 × ṙ0 + m1 r1 × ṙ1 = M0 b0 × ḃ0 + M1 b1 × ḃ1.

When b0(t) from eq. (4.5) is substituted, the b0 contribution is constant

c0 = b0 × ḃ0 =
1

M0
b0(0) × p, c = M0 c0 + M1 c1

and the contribution from b1 is c1 = b1 × ḃ1, the angular momentum per
unit (reduced) mass of r1 with respect to the center r0, which is also a vector
first integral. Thus b1, ḃ1 will lie for each t in the orbital plane normal
to c1.

Solution of the two-body problem

The two-body problem has another vector integral, not occurring in the
N ≥ 3-body problem: the Laplace–Lenz vector

e =
1

G M0
ḃ1 × c1 −

1
b1

b1. (4.11)

This can be shown by using a reference frame formed by three mutually
orthogonal unit vectors, vz = c1/c1 (c1 = |c1|), vr = b1/b1, and vθ such
that ḃ1 ·vθ > 0. If θ is the angle between the vector vr and a fixed direction
in the orbital plane, and r = b1, we have

c1 = r vr ×
d

dt
(r vr) = r vr × (ṙ vr + rθ̇ vθ) = r2 θ̇ vr × vθ = r2 θ̇ vz ,
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GM0 e = −r2 ṙ θ̇ vθ + (r3 θ̇2 − G M0) vr. (4.12)

Along the solutions we have

ċ1 = 0, 2ṙθ̇ + rθ̇2 = 0, r̈ = −GM0

r2 +
c2
1

r3 ,

so that

GM0 ė = b̈1 × c1 − G M0 θ̇ vθ = −G M0 θ̇ (vr × vz + vθ) = 0.

Thus e contains two integrals independent of c1 (not three because e·c1 = 0).
We define the true anomaly v as the angle between e and vr on the orbital
plane, that is

e cos v = e · vr =
r3 θ̇2

G M0
− 1 =

c2
1

GM0 r
− 1

where r2θ̇ = c1 is the (scalar) angular momentum of b1 and is constant.
From this we find the familiar formula of a conic section

r =
c2
1/GM0

1 + e cos v

and the interpretation of the two additional two-body integrals as eccen-
tricity e = |e| and argument of pericenter ω, that is the angle of e with
a fixed direction in the orbital plane, in such a way that θ = v + ω. The
eccentricity e is an integral depending upon angular momentum and energy.
The energy integral of the two-body problem in (b0,b1) coordinates is

E(B, Ḃ) = M0 E0 + M1 E1, E0 =
1
2
|ḃ0|2, E1 =

1
2
|ḃ1|2 −

GM0

|b1|
and the eccentricity squared, computed from eq. (4.12), is

e2 = e · e =
r4 θ̇2 ṙ2 +

(
r3 θ̇2 − G M0

)2

G2 M2
0

= 1 +
2 E1 c2

1

G2 M2
0
.

If the energy of the relative motion E1 is negative, then e < 1 and the
trajectory of b1 is an ellipse with semimajor axis

a =
q + Q

2
=

1
2

[
c2
1/GM0

1 + e
+

c2
1/GM0

1 − e

]
=

GM0

−2 E1
,

where q, Q are the pericenter and apocenter distances, and the scalar angular
momentum of the relative motion is c1 =

√
GM0 a (1 − e2). Formulae to

express explicitly the solutions of the two-body problem are available in
Appendix A.
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4.3 Barycentric and heliocentric coordinates

The set of positions of the N + 1 bodies can be represented in different
coordinates; we are interested in the linear coordinate changes of the form

bj =
N∑

i=0

aji ri, A = (aji), i, j = 0, N (4.13)

where the matrix A is a function of the masses only. The purpose is to
exploit the integrals of the center of mass to reduce the number of equations,
generalizing the results of the two-body case. A natural choice is to use the
center of mass as b0, thus by (4.5) the first row of the matrix A is

a0i =
mi

M0
, i = 0, N. (4.14)

The choice of the other bi, i = 1, N , is not as simple as in the two-body case.
Different choices have different advantages, and can be used for different
purposes. We shall review in this and in the next section the most common
coordinate systems used for the (N + 1)-body problem.

Barycentric coordinates

The barycentric coordinate system uses the fact that a reference system
with a constant velocity translation with respect to an inertial system is
also inertial. Thus a reference system with b0 = 0 as origin and barycentric
positions bi = ri − b0 for i = 1, N is inertial, and the equation of motion
is the same as eq. (4.1). The change to barycentric is not just a change of
coordinates, but also a reduction of the dimension of the problem: we write
three differential equations less. The barycentric coordinates of body 0 (e.g.,
the Sun) are not dynamical variables, but are deduced from the coordinates
of the other bodies and b0, by eq. (4.5):

s = s(B) = r0 − b0 = −
N∑

i=1

mi

m0
bi, (4.15)

where the first term is assumed to be zero. The equation of motion is

mj b̈j =
N∑

i �=j,i=1

G mi mj

|bi − bj |3
(bi − bj) +

Gm0 mj

|bj − s|3 (s − bj) j = 1, . . . , N

(4.16)
and can be written in conservative form

mj b̈j = −∂V(s,b1,b2, . . . ,bn)
∂bj

, j = 1, N,
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with the potential energy V(B) = V (R(B)), where the partial derivatives
of V have to be computed before substituting s = s(B). The integrals of
energy and angular momentum have a less simple expression, including the
contributions from ṡ.

Barycentric coordinates are efficient to be used for numerical integrations:
only the 3N equations (4.16) have to be integrated, and the only additional
computation to be performed at each step is s according to (4.15). The
computed orbit does not need to be used in barycentric coordinates: to
change the output back to heliocentric coordinates is the normal procedure.

Barycentric coordinates need to be used when the inertial velocities are
directly observable: this is the case when the radial velocity of some star
is measured (either by radio astronomy, for pulsars, or by spectroscopy, for
normal stars). This is used to detect the small velocity of the star as a result
of the presence of a small companion, such as a planet, see Section 6.5. The
measured radial velocity is the difference between ṡ of the star and ḃ3 of
the Earth; to use heliocentric coordinates for the Earth would result in a
serious mistake.3 The barycentric coordinates also play a role in the general
relativistic corrections to the Newton equation, see Section 6.6.

On the other hand, barycentric coordinates are seldom used in analytical
developments and in theoretical discussions, because of the lack of symmetry
of the equation and of the less simple expressions for the classical integrals.

Heliocentric coordinates

A possible choice to represent the motion of planets and asteroids is the use
of heliocentric coordinates. These follow the same idea used in the two-
body case, eq. (4.9), namely use the motion of bodies j = 1, N relative to the
one with index 0, usually the Sun. Since m0 � mj, j = 1, N , the Sun moves
little, but this motion cannot be neglected in the differential equations. The
positions are thus represented by the vectors bi = ri − r0 and the equation
of motion can be simply derived from eq. (4.1), taking into account the
non-inertial frame, that is adding the apparent force exactly opposite to the
acceleration of the Sun times the mass of the body:

mj b̈j =
N∑

i �=j,i=0

G mi mj

|ri − rj |3
(ri − rj) − mj r̈0.

3 It would lead to a pretended discovery of a companion with a period of one year!
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The equation can be written in terms of the heliocentric vectors, since they
contain only the differences bi − bj = ri − rj and bi = ri − r0

mj b̈j = −G m0 mj

|bj |3
bj +

N∑
i �=j,i=1

Gmi mj

|bi − bj |3
(bi − bj) − mj r̈0.

The value of the acceleration of the Sun, resulting from the gravitational
attraction of all the planets, is obtained from eq. (4.1) for j = 0; by substi-
tuting into the equation and removing the common factor mj

b̈j = −Gm0

|bj |3
bj +

N∑
i �=j,i=1

G mi

|bi − bj |3
(bi − bj) −

N∑
i=1

Gmi

|bi|3
bi. (4.17)

The equations above allow us to compute a solution for each heliocentric
vector bi, i = 1, n, without the need to compute the position of the Sun in
an inertial frame. Taking into account that in the acceleration of the Sun
there is also a component due to the same planet

b̈j = −G (m0 + mj)
|bj |3

bj+
N∑

i �=j,i=1

G mi

|bi − bj |3
(bi−bj)−

N∑
i �=j,i=1

Gmi

|bi|3
bi. (4.18)

In this way the equation of motion is split into the two-body part, with the
planet orbiting around a fixed center with mass m0 +mj (as in the reduction
of a two-body problem with the Sun and the planet j only), the direct
perturbations by the attraction of the other planets, and the indirect
perturbations, resulting from the other planets accelerating the Sun.

The heliocentric coordinates are a natural choice for Solar System orbits.
The relative positions rj −rk = bj −bk generate the only quantities observ-
able inside our Solar System, e.g., the direction angles in optical astrometry
and the range and range-rate in radar observations. The center of mass b0

and the barycentric position s of the Sun are derived quantities containing
the mass ratios mj/m0. Thus, a catalog of asteroid orbital elements, com-
puted from Cartesian coordinates in a barycentric system, would contain
values dependent upon the planetary masses: every time the masses are
corrected, the catalog should be revised. If the orbital elements are com-
puted from heliocentric coordinates, there is no need for revision when the
estimated values of the planetary masses change, with the exception of the
asteroids having close approaches to a planet whose mass has been revised.
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4.4 Jacobian coordinates

The Jacobian coordinates are obtained by selecting, among the linear
coordinate changes of the form (4.13), the ones with the center of mass as
first vector, thus fulfilling eq. (4.14), with the simplest equation of motion.
This requires a matrix A, thus a set of Jacobian vectors b0,b1,b2, . . . ,bN ,
and a set of reduced masses M0, M1, M2, . . . , MN with the properties

[1] the first vector b0 is the center of mass, M0 is the total mass;
[2] the Lagrange equation in the R coordinates is transformed into the

Lagrange equation in the Jacobian coordinates of the same form:

mi r̈i = −∂V

∂ri
⇐⇒ Mi b̈i = − ∂V

∂bi

where V(B) = V (R) is the potential energy in the Jacobian coordinates.

The conditions on A resulting from [1] are given in (4.14), the ones resulting
from [2] require that the kinetic energy remains in diagonal form:

2T =
N∑

i=0

mi |ṙi|2 =
N∑

j=0

Mj |ḃj |2;

then the Jacobian momentum is Mj ḃj and the equation is in the simple
form required by [2]. By substituting eq. (4.13) in the above formula

2T =
N∑

i,k=0

ṙi · ṙk

N∑
j=0

ajiMjajk =
N∑

i,k=0

ṙi · ṙk miδik

where δik = 1 for i = k, and δik = 0 for i = k. Thus the equations for A are

miδik =
N∑

j=0

ajiMjajk i, k = 0, N. (4.19)

In matrix form, if m, M are the diagonal matrices with the masses and the
reduced masses, respectively, as coefficients

m = diag[m0, m1, . . . , mN ], M = diag[M0, M1, . . . , MN ]

then eq. (4.19) can be written with AT , the transposed matrix

m = AT M A. (4.20)
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The Jacobian coordinates have another property, which is a consequence
of [2]: the total angular momentum (4.6) has also a simple expression

c =
N∑

i=0

ri × mi ṙi =
N∑

j=0

bj × Mj ḃj ,

i.e., the total angular momentum of the (N +1)-body system is the angular
momentum of the free motion of the center of mass b0 × M0 ḃ0 plus the
sum of the angular momentum of the two-body subsystems bj × Mj ḃj ,
j = 1, . . . , N .

Equation (4.20) implies det(m) = det(M) det(A)2, where the determi-
nants of m, M are the product of all masses and the product of all reduced
masses, respectively. Thus [1] and [2] allow rescaling of the masses; a change
of orientation is also possible. To avoid this, two additional properties have
to be added to the definition of Jacobian coordinates:

[3] the product of the masses is equal to the product of the reduced masses

N∏
i=0

mi =
N∏

j=0

Mj ; (4.21)

[4] the linear transformation defined by A preserves orientation: det(A) > 0.

Properties [2], [3], and [4] imply det(A) = +1.

Existence and conditional uniqueness of Jacobian coordinates

If the transformation (4.13) fulfills [1], [2], [3], and [4], it defines a system
of Jacobian coordinates. Matrices A with all these properties exist but they
are not unique for a given N and for the given set of masses mi. To obtain
a unique selection we proceed as follows.

Let bN
0 , . . . ,bN

N be a set of Jacobian vectors satisfying [1]–[4], with re-
duced masses MN

0 , . . . , MN
N . Let mN+1, rN+1 be the mass and position of

an additional body. Then there are unique Jacobian coordinates, satisfy-
ing [1]–[4], with N unchanged Jacobian vectors and N unchanged reduced
masses

bN+1
j = bN

j , MN+1
j = MN

j j = 1, N.

The new reduced masses are

MN+1 =
mN+1M

N
0

MN+1
0

, MN+1
0 = MN

0 + mN+1 (4.22)
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and the new Jacobian vectors are

bN+1 = rN+1 − bN
0 , bN+1

0 =
1

MN+1
0

N+1∑
j=0

mj rj . (4.23)

This can be shown by comparing eqs. (4.19) and (4.21) for N +1 and N +2
bodies (Milani and Nobili 1983).

The solutions (4.23) and (4.22) can be described as follows. A Jacobian
coordinate system is a way to decompose an (N + 1)-body system into free
motion of the center of mass and N two-body subsystems. To add a new
body, the new Jacobian vector is the position of the new body rN+1 relative
to the center of mass bN

0 of the previous system, and the new reduced mass
is the harmonic mean of the new mass mN+1 and of the previous total mass
MN

0 . This generalizes the reduction of the two-body problem (4.9), (4.10).
As for uniqueness, the reduction of the two-body problem to the central

force problem gives the Jacobian coordinates for N +1 = 2 bodies. However,
if the list of bodies was {r1, r0} the Jacobian vector would be b1 = r0 − r1.
For N + 1 = 3 the standard solution is to first couple (m0, m1), that is

b1 = r1 − r0, M1 =
m0 m1

m0 + m1

then use the vector b2 relative to the center of mass of (m0, m1), that is

b2 = r2 −
m0

m0 + m1
r0 −

m1

m0 + m1
r1, M2 =

m2 (m0 + m1)
m0 + m1 + m2

.

This solution is not unique: it is possible to form first the binary (m2, m0),
that is b1 = r0 − r2 and then join r1 to the center of mass of (m2, m0).
A third solution corresponds to the sequence of couplings ((m1, m2), m0);
there are three more solutions violating [4].

The choice of a solution depends upon the sequence of coupling operations,
which can be represented by a symbol like ((m0, m1), m2) for the standard
three-body solution. At a purely formal level, each of the (N + 1)! ways to
order the N +1 bodies results, by applying recursively the procedure above,
in a set of Jacobian coordinates. When the relative size of the perturbation is
computed, as in the next section, the solutions are found to be by no means
equivalent. As an example, if m0 corresponds to the Sun, m1 to the Earth,
m2 to the Moon, the best Jacobian system is the one with ((m1, m2), m0),
that is the center of mass of the Earth–Moon system is orbiting around the
Sun, while the Moon is orbiting around the Earth–Moon center of mass.
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Planetary hierarchy
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Fig. 4.1. Three examples of hierarchies and of the corresponding Jacobian vectors. The planetary
hierarchy and the double binary hierarchy are described in the text. The hierarchy in the lower
part of the figure could be used to describe a planetary system around the star r0 , with planets
r2 , r3 , r5 and r6 ; planet r3 has one satellite, planet r6 has two satellites.

Planetary and binary type hierarchies

The non-uniqueness of the Jacobian coordinates becomes more significant
for N + 1 = 4 bodies. Let us assume some Jacobian coordinates have
been selected for the first three bodies, e.g., according to the coupling order
((m0, m1), m2). When a body m4, r4 is added, there are two options. One
is the recursive procedure of the previous subsection, that is b3 = r3 − b3

0.
The other is to set b2 = r3 − r2 and to replace r2 with the center of mass of
the binary (m2, m3), that is to use as b3 the vector joining the two centers
of mass of the binary subsystems (m0, m1) and (m2, m3)

b1 = r1 −r0, b2 = r3 −r2, b3 = [(1−μ2) r2 +μ2 r3]− [(1−μ1) r0 +μ1 r1]

where μ2 = m3/(m2 + m3). Then the reduced mass M2 is the harmonic
mean of the masses m2 and m3, M3 is the harmonic mean of the masses
(m0 + m1) and (m2 + m3):

M1 =
m0 m1

m0 + m1
, M2 =

m2 m3

m2 + m3
, M3 =

(m0 + m1) (m2 + m3)
m0 + m1 + m2 + m3

.

The first option is called a planetary hierarchy and is represented by the
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coupling symbol (((m0, m1), m2), m3); the second is a double binary hi-
erarchy and is represented by ((m0, m1), (m2, m3)). Formally, both choices
are equivalent, in that both provide a Jacobian coordinate system satisfying
[1], [2], [3], and [4]. The planetary hierarchy suggests that all the “planets”
of masses m1, m2, m3 orbit around the “star” of much larger mass m0, at
increasing distances |r1 − r0|, |r2 − r0|, and |r3 − r0|. The double binary
hierarchy suggests that the “interior planet” m1 orbits around the “star”
m0 at a smaller distance than the “exterior planet” m2, the latter having a
“satellite” m3. To give rigorous meaning to this suggestion, we need to show
that dynamical configurations, with different mass and distance ratios, are
better represented in either one or the other hierarchy.

In general, given two subsystems with N ′ and N ′′ bodies, each with Jaco-
bian coordinates, centers of mass b′

0, b′′
0 and total masses M ′

0, M ′′
0 , respec-

tively, there is a Jacobian system for the joint system of N ′+N ′′ masses with
a new Jacobian vector joining the two centers of mass, and a new reduced
mass equal to the harmonic mean of the two total masses

bN ′+N ′′ = b′′
0 − b′

0, MN ′+N ′′ =
M ′

0 M ′′
0

M ′
0 + M ′′

0
;

b0 is the center of mass of all bodies, and the other (N ′ − 1) + (N ′′ − 1)
vectors coincide with the previously defined ones. This is the only way to
combine the two subsystems, preserving N ′ + N ′′ − 2 Jacobian vectors (not
including the centers of mass of the subsystems). In this way we can build
a Jacobian system for an arbitrary coupling symbol. For example, for the
hierarchy shown in the lower portion of Figure 4.1 the coupling symbol is
(((((m0, m1), m2), (m3, m4)), m5), (m6, m7)).

4.5 Small parameter perturbation

We would like to assess how relevant are the perturbations resulting from
each additional body included in the dynamical model of a planetary system.
The Jacobian coordinates provide a direct way to estimate the relative size
of the perturbations, with the Roy–Walker parameters.

The perturbing function

We shall discuss first a three-body case, in Jacobian coordinates, with stan-
dard hierarchy ((m0, m1), m2). The Lagrange function is

L(B, Ḃ) =
3∑

i=1

1
2

Mi |ḃi|2 +
G m0 m1

|b1|
+

Gm1 m2

|r2 − r1|
+

Gm0 m2

|r2 − r0|
,
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with

r2 − r1 = b2 −
m0

m0 + m1
b1, r2 − r0 = b2 +

m1

m0 + m1
b1.

Our goal is to express the Lagrange function as a sum of three “unperturbed”
Lagrange functions and a perturbing function. Since the kinetic energy,
in Jacobian coordinates, is already decomposed as needed, only the potential
needs to be transformed. We use the sum of masses

Nj =
j∑

i=0

mi, N1 M1 = m0 m1, N2 M2 = M0 M2 = m2 (m0 + m1)

to form the three unperturbed Lagrange functions

L0(b0, ḃ0) =
1
2
|ḃ0|2, Li(bi, ḃi) =

1
2
|ḃi|2 +

GNi

|bi|
, i = 1, 2

corresponding to the free motion of the center of mass and to the two-body
motion of bi around an attracting center of mass Ni, for i = 1, 2. The
perturbing function is simply what is left:

L(B, Ḃ) = M0 L0(b0, ḃ0) + M1 L1(b1, ḃ1) + M2 L2(b2, ḃ2) + R12(b1,b2),

R12(b1,b2) = m2 G N1

{
μ1

|r2 − r1|
+

1 − μ1

|r2 − r0|
− 1

|b2|

}
(4.24)

where μ1 = m1/(m0 + m1) is the mass ratio of the b1 binary. R12 has
three terms, corresponding to the potential (the opposite of the gravitational
potential energy) at the position r2 of the mass m0, of the mass m1, and
to the opposite of the potential of a mass m0 + m1 placed in the center
of mass of (m0, m1). This is because the hypothetical potential of a mass
m0 + m1 in the center of mass of the first binary has been used to form
the unperturbed Lagrange function of the binary (m0 + m1, m2). Thus
the perturbing function is the gravitational potential of a mass distribution
consisting of three masses, one of which is negative, with total mass zero.

Expansions in spherical harmonics

We expand the perturbing function R12 in spherical harmonics. Three
masses m0, m1, and −(m0 + m1), located at r0, r1 and at the center of
mass b1

0 = μ1 r1 + (1 − μ1) r0 form the mass distribution generating the
perturbing function: since these three masses are aligned, the potential is
axially symmetric and can be expressed by zonal spherical harmonics only
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(see Section 13.2). We are only interested in the first few terms in the
harmonics expansion, and shall compute the harmonic coefficients directly.

Let the angle between b1 and b2 be ψ, and θ = π/2−ψ the latitude (with
respect to an equatorial plane through b1

0 and perpendicular to the b1 axis).
We shall now compute the three distances appearing in the denominators
in R12(b1,b2) as functions of the lengths b1 = |b1| and b2 = |b2| and of the
angle θ. The distance between m2 and of m1 is

|r2 − r1|2 = |b2 − (1 − μ1)b1|2 = b2
2 + (1 − μ1)2 b2

1 − 2(1 − μ1) b1 b2 sin θ.

Then we shall express the power −1 of the distance by means of the un-
perturbed distance b2 and the ratio α1 = b1/b2, with α1 < 1 (if not, the
hierarchy should be changed):

1
|r2 − r1|

=
1
b2

{
1 − 2(1 − μ1)α1 sin θ + (1 − μ1)2 α2

1
}−1/2

and by using the Taylor formula (1 + x)−1/2 = 1 − 1/2x + 3/8 x2 + O(x3)
we obtain the expansion, with respect to the small parameter α1,

1
|r2 − r1|

=
1
b2

{
1 + (1 − μ1)α1 P1(sin θ) + (1 − μ1)2 α2

1 P2(sin θ) + O(α3
1)
}

,

where we have used the first and the second Legendre polynomials (for a
discussion of the Legendre functions, see Section 13.2)

P1(sin θ) = sin θ, P2(sin θ) =
3
2

sin2 θ − 1
2
.

The formula for the distance between the position of m2 and of m0 is

|r2 − r0|2 = |b2 + μ1 b1|2 = b2
2 + μ2

1 b2
1 + 2μ1 b1 b2 sin θ,

so that
1

|r2 − r0|
=

1
b2

{
1 − μ1 α1 P1(sin θ) + μ2

1 α2
1 P2(sin θ) + O(α3

1)
}

.

The perturbing function R12 is a linear combination of the previous expres-
sions minus 1/b2, in which both the monopole term 1/b2 and the dipole term
containing P1 cancel out, as it has to be expected when the expansion in
spherical harmonics is centered at the center of mass

1
m2

R12(b1,b2) =
GN1

b2
μ1 (1 − μ1)

[
α2

1 P2(sin θ) + O(α3
1)
]

(4.25)

where the remainder has been indicated taking into account that the O(α3
1)

term also contains the coefficient μ1 (1 − μ1); this can be checked by com-
puting of the degree 3 zonal harmonics.
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Perturbations in Jacobian coordinates

The effect of the perturbing function on each of the binaries can be measured
as a change in the related two-body energy. The integral of energy

E(B, Ḃ) = M0 E0 + M1 E1 + M2 E2 − R12

contains a linear combination of the two-body energies (per unit mass) of
the subsystems

E0 =
1
2
|ḃ0|2, Ei = Ti + Vi =

1
2
|ḃi|2 −

GNi

|bi|
, i = 1, 2. (4.26)

The perturbing potential R12 has the relative effect R12/(M2 E2) on the b2

subsystem: this ratio can be approximated, for order of magnitude com-
putations, assuming V2 = −G N2/b2 � 2 E2, which is exact for a circular
orbit

R12

M2 E2
� 2 R12

M2 V2
= −2μ1 (1 − μ1)

[
α2

1 P2(sin θ) + O(α3
1)
]

and for α1 � 1 this leads to the approximate upper bound∣∣∣∣ R12

M2 E2

∣∣∣∣ ≤ 2 ε12, ε12 = μ1 (1 − μ1) α2
1.

The same argument applied to the b1 subsystem is V1 = −G N1/b1 � 2 E1

and gives∣∣∣∣ R12

M1 E1

∣∣∣∣ ≤ 2
M2 N2 μ1 (1 − μ1)

M1 N1
α3

1 = 2 ε21, ε21 =
μ2

1 − μ2
α3

1.

Thus the size of the perturbing function, relative to the size of the un-
perturbed potential energy, is estimated by the Roy–Walker parameters
ε12, ε21. Note they both contain mass ratios and the ratio α1 of the Ja-
cobian vector lengths: the exterior perturbation decreases like the cube of
α1, the interior one like the square. The effect of such a perturbation on
the semimajor axes aj of the two orbits of bj , j = 1, 2, assuming εij small,
could be estimated by the simple rule Δaj/aj = −ΔEj/Ej .

The four-body case

A hierarchy can be understood just as a combinatorial structure, repre-
sented by either a symbol like ((m0, m1), (m2, m3)) or a graph like the one
of Figure 4.1, top right. Not all graphs are suitable to represent a hierarchy:
each vector bj must have one and only one “superior” vector bs(j), with the
exception of the “top” vector with no superior: in the example above of the
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double binary hierarchy the vector b3 is at the top and is the superior for
both b2 and b1. Then for each Jacobian vector (not at the top) bj we can
define a length ratio αj = bj/bs(j). A hierarchy becomes more than a com-
binatorial device if the superior vectors are also longer, that is, if the length
ratios αj are small. Then we can estimate the relative size of the perturbing
functions, describing the interaction of each two binaries, by using powers
of the αj and mass ratios to form generalized Roy–Walker parameters.

For a double binary hierarchy, the potential energy is the sum of three
two-body terms and a perturbing function with three terms

V = −
∑

0≤i<j≤4

Gmi mj

|ri − rj |
= M1 V1 + M2 V2 + M3 V3 − R13 − R23 − R12

where the perturbing terms are (Milani and Nobili 1983)

R13 = N2 R1(b23), R1(x) = G N1

[
μ1

|x − r1|
+

1 − μ1

|x − r0|
− 1

|x − b01|

]

R23 = N1 R2(b01), R2(x) = G N2

[
μ2

|x − r3|
+

1 − μ3

|x − r2|
− 1

|x − b23|

]

for the perturbations between each of the two binaries with state vector
b1,b2 and the “handle” with state vector b3, and

R12 = N1 {μ1 R2(r1) + (1 − μ1)R2(r0) −R2(b01)}
= N2 {μ2 R1(r3) + (1 − μ2)R1(r2) −R1(b23)}

for the perturbations between binaries, with bik = (mi bi + mk bk)/(mi +
mk) the centers of mass of the binaries for (i, k) = (0, 1), (2, 3). By using
essentially the same formalism as in the three-body case, it is possible to
estimate the ratio of the perturbing functions to the two-body potential
energies: e.g., for the perturbations between b3 and b1∣∣∣∣ R13

M1 V1

∣∣∣∣ =
GM1 N1

b1

[
μ1 (1 − μ1)α2

1 P2(sin θ) + O(α3
1)
] b1

GN1 N2

=
N2 μ1 (1 − μ1)

N1
α3

1 + O(α4
1) = ε31 + O(α4

1),∣∣∣∣ R31

M3 V3

∣∣∣∣ =
GN1 N2

b3

[
μ1 (1 − μ1)α2

1 P2(sin θ) + O(α3
1)
] b3

G M3 N3

= μ1 (1 − μ1) α2
1 + O(α3

1) = ε13 + O(α3
1)

and the Roy–Walker parameters have the same expression as in the three-
body case; the same occurs for ε32, ε23.

The case of ε12 estimating the perturbations of the binary b1 onto b2,
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is more complicated. It can be shown (Milani and Nobili 1983) that the
lowest order term in the expansion (in powers of α1, α2) of the perturbing
function R12 contains μ1 (1 − μ1) μ2 (1 − μ2) α2

1 α2
2. That is, ε12 is of the

same order in the small parameters as the product ε13 ε23. Thus the mutual
perturbation of the two binaries in a double binary hierarchy is negligible in
many practical cases, such as the perturbations of the satellites of Jupiter
on the orbits of the inner planets.

Perturbations in heliocentric coordinates

To estimate the size of the perturbations to the two-body orbital elements in
heliocentric coordinates we need to take into account separately the indirect
perturbations resulting from the non-inertial origin in the Sun.

Let us consider the simplest case N = 2 and use the analogs of eq. (4.26)
for the two-body energies of bj = rj − r0 orbiting around the Sun

Ej =
1
2
|ḃj |2 −

G (m0 + mj)
|bj |

= −G (m0 + mj)
2 aj

,

with aj the semimajor axis of the osculating heliocentric orbit. In the equa-
tion of motion (4.17) (j = 1, 2) the first term is two-body like, not affecting
Ej ; the time derivative of the two-body energies is the power of the perturb-
ing forces

Ėj = Ėdir
j + Ėind

j , Ėdir
j = G mi

bi − bj

|bi − bj |3
· ḃj , Ėind

j = −Gmi
bi

|bi|3
· ḃj .

The indirect part can be estimated with a circular orbit approximation

|bj | � aj, |ḃj | = nj aj, nj =
√

Gm0 mj/a3
j

taking also into account that the main terms of this perturbation have the
frequency nj − ni, resulting in an approximate amplitude of oscillation in
Ej with this frequency, due to the indirect part only

|ΔindEj | � 1
|nj − ni|

Gmi aj nj

a2
i

.

The oscillation amplitude of the heliocentric semimajor axis is estimated by

|Δindaj |
aj

� |ΔindEj |
Ej

= 2
mi

(m0 + mj)
nj

|nj − ni|
a2

j

a2
i

.

For the indirect perturbation by an exterior planet j = 1, i = 2, n1 � n2
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and, assuming m0 � m1, m2,

|Δind
2 a1|
a1

� 2
m2

m0

a2
1

a2
2
.

For the indirect perturbation of an interior planet j = 2, i = 1

|Δind
1 a2|
a2

� 2
m1

m0

a2
2 n2

a2
1 n1

� 2
m1

m0

√
a2√
a1

.

For an upper bound to the direct perturbations we use the triangular in-
equality and the circular orbit approximation |bi − bj | ≥ |aj − ai|

|ΔdirEj | � 1
|nj − ni|

G mi

|aj − ai|2
nj aj

and for the semimajor axis amplitude

|Δdiraj |
aj

� |ΔdirEj |
Ej

= 2
mi

(m0 + mj)
nj

|nj − ni|
a2

j

|ai − aj |2
.

For the direct perturbation by an exterior planet j = 1, i = 2

|Δdir
2 a1|
a1

� 2
m2

m0

a2
1

a2
2
,

that is the same estimate obtained for the indirect part. For the direct
perturbation of an interior planet j = 2, i = 1

|Δdir
1 a2|
a2

� 2
m1

m0

a2
2 n2

a2
2 n1

� 2
m1

m0

a1
3/2

a23/2 ,

which is qualitatively different from the estimate for the indirect part: for
a2/a1 → +∞ the direct perturbation of the interior planet → 0, the indirect
perturbation → +∞. The indirect perturbation of an interior planet may
perturb the semimajor axis to arbitrarily large values, even to an apparent
hyperbolic orbit. For growing a2 the attraction of the other bodies → 0
while the acceleration of the Sun due to m1,b1 remains constant, until the
indirect perturbation is larger than the attraction from the Sun.

For the perturbations from an exterior planet the estimates for the pertur-
bations on the heliocentric semimajor axis contain the ratio a2

1/a2
2, while the

corresponding estimate computed in Jacobian coordinates would contain the
Roy–Walker parameter ε21, proportional to a3

1/a3
2. That is, for large a2/a1

the heliocentric perturbations are larger, but still → 0 for a2/a1 → +∞.
The conclusion from the discussion in this section and in Section 4.3 is

that it may be necessary to use heliocentric coordinates to express planetary
orbits with elements independent of the values of the mass ratios mj/m0,
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but these elements could be sharply changing with time as a result of per-
turbations from interior planets. Jacobian coordinates could provide orbital
elements more stable in time, but dependent upon the masses. Barycentric
coordinates have an intermediate behavior, with perturbations larger than
the Jacobian ones but without the divergence for a2/a1 → +∞ of the he-
liocentric coordinates. Thus there is no choice optimal for all purposes: we
need to use coordinate changes to exploit the best properties of each system.

4.6 Solar System dynamical models

The equation of motion for an (N + 1)-body system needs to be used as a
dynamic model for the orbit determination of objects belonging to a plan-
etary system, especially our own Solar System. Which terms have to be
included in the equation of motion for a given orbit determination problem?
This depends upon the orbits and upon the accuracy of the observations.

This section discusses the number of bodies to be included in the gravi-
tational perturbation model and the non-gravitational perturbations. The
effect of a non-spherical shape of the bodies is discussed in Chapter 13. The
general relativistic perturbations are discussed in Section 6.6.

How many bodies?

The first question about an (N + 1)-body model for the orbit of a given
object is: how to choose N? Our Solar System contains the Sun, a number
of major planets,4 the natural satellites of the planets, and a large population
of minor bodies (asteroids, comets, trans-neptunian objects, Centaurs, even
meteoroids). Of course we need to cut off at some level, and to use a
consistent approximation we need to select some order of magnitude of the
perturbations and to neglect the bodies resulting in lesser effects on the
target body (or bodies) of the orbit determination.

The most efficient method to do this is to use the Jacobian coordinates
and the Roy–Walker small parameters to estimate the perturbative effects.
This does not imply that we have to use Jacobian coordinates as variables
to be determined. The values of the εij parameters for perturbations by
superior and inferior planets are given in Table II of (Walker et al. 1980);
here we either reproduce or recompute some values.5

The conclusions to be drawn from Table 4.1, and from similar computa-
tions, of course depend upon the application. The accuracy required in the
4 The number of objects to be considered major planets requires some discussion, see below.
5 The data of the 1980 paper are not up to date for the perturbations by Pluto, whose mass has

been reassessed to a value 200 times smaller with the observations of the Pluto–Charon binary.
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Table 4.1. Roy–Walker parameters for three-body subsystems of the Solar
System.

Subsystem ε12 ε21

Sun–Mercury–Earth 2.5 × 10−8 1.7 × 10−7

Sun–Venus–Earth 1.3 × 10−6 1.1 × 10−6

Sun–Earth–Mars 1.3 × 10−6 9.2 × 10−8

Sun–Earth–Ceres 4.0 × 10−7 2.2 × 10−11

Sun–Earth–Jupiter 1.1 × 10−7 6.8 × 10−6

Sun–Earth–Saturn 3.3 × 10−8 3.3 × 10−7

Sun–Earth–Uranus 8.2 × 10−9 6.2 × 10−9

Sun–Earth–Neptune 3.3 × 10−9 1.9 × 10−9

Sun–Earth–Pluto 4.8 × 10−10 7.5 × 10−13

Earth–Moon–Sun 7.9 × 10−8 5.7 × 10−3

Jupiter–Ganymede–Sun 1.5 × 10−10 2.7 × 10−6

orbit computation has to be adequate for the accuracy of the observations.
As an example, this table contains the parameters to be used to discuss the
dynamical model for the orbit of the Earth, allowing the following conclu-
sions: the perturbations from Ceres are more important than the ones from
Pluto, the perturbations from Ganymede are negligible, and the problem of
the orbit of the Moon is strongly coupled to the orbit of the Earth–Moon
center of mass, thus it cannot be solved independently.

Non-gravitational perturbations

Gravitation is the most penetrating interaction, in that it is coupled to the
entire mass of a celestial body, without distinction between the near surface
and the central portions. The other perturbations act essentially on the
surface only. For example, electrostatic forces cannot be too important for
macroscopic bodies even if they become highly charged, because charges tend
to migrate towards the surface. Electromagnetic radiation interacts only
with a comparatively thin layer near the surface, with thickness comparable
to the wavelength. Drag is an interaction, due to electromagnetic forces, of
external particles with the surface. Thus a small parameter appearing in all
non-gravitational perturbations is the area-to-mass ratio

A

m
� π R2

4π
3 ρ R3

=
3

4 ρ R

where A is the cross-sectional area, ρ the average density, R the radius of the
perturbed body, and the approximate formula becomes exact for a spherical
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body. The simplest example is the direct radiation pressure force due to
sunlight F = (Φ/c) A, where Φ is the radiation energy flow (per unit cross-
section) at the given distance from the Sun r� and c is the speed of light.
The ratio of radiation pressure force to gravitational attraction is

β =
Φ A r2

�
G m� m c

where m� = m0 is the Sun mass. The energy flow from the Sun, because
of E = mc2, carries away mass from the Sun at a rate ṁ� = 4 π r2

� Φ/c2 �
7 × 10−14 m�/y, that is, the Sun decreases its mass due to shedding of
photons with a characteristic time6 t� = m�/ṁ� � 1.5 × 1013 y. Thus

β � A

m

ṁ�
m�

c

4 π G
.

In CGS units, c/4 π G � 3 × 1016 and 3 × 1016 s � 109 y, thus

β =
A

m

1
t�

� A

m

1
15 000

(unit of t� in billion years).

Let us use this estimate to assess when radiation pressure can be a signif-
icant perturbation of a heliocentric orbit.

• For a planet, e.g., Mercury, ρ � 5 and R � 2 400 km, A/m � 6 × 10−10

and β � 4× 10−14: radiation pressure is almost at the rounding off level.
• For a small asteroid with ρ � 1.5 and R � 500 m, A/m � 2 × 10−5

and β � 1.3× 10−9: radiation pressure is small, negligible for astrometric
observations, but it cannot be neglected if very accurate observations (e.g.,
radar, tracking of an orbiter) are available.

• For a spacecraft, A � 5 m2 and m � 500 kg, A/m � 0.1 and β � 7×10−6

is not negligible at all. Radiation pressure and other non-gravitational
forces acting on spacecraft are discussed in Chapter 14.

• For a dust particle of given density, e.g., ρ = 2, there is a critical radius at
which β = 1: for spherical shape A/m = 3/8 R and β = 2.5×10−5/R = 1
implies R = 0.25 micron. For a particle of this size this is a simplistic
model of the particle/wave interaction, but the order of magnitude is right,
particles in the sub-micron range released from a Solar System orbit at
low relative velocity are not bound to the Solar System: they are called
β-particles.

6 This time is related to the time span over which the Sun will remain a main sequence star,
which corresponds to the conversion in radiation of about 1/1000 of the mass. The Sun also
sheds mass as charged particles in the solar wind.



Part II

Basic Theory





5

LEAST SQUARES

In this chapter we give the basic formulation of orbit determination as a
nonlinear least squares problem. First we introduce the linear least squares
problem and the classical iterative methods: Newton’s method and differ-
ential corrections. The uncertainty of the result is described by confidence
ellipsoids, with the optimization interpretation. We show that the proba-
bilistic interpretation gives strictly analogous results, if the observation error
is Gaussian; this assumption is also discussed. This chapter contains mostly
classical material: the main reference is (Gauss 1809). Only Section 5.8
contains recent results, based on (Carpino et al. 2003).

5.1 Linear least squares

The basic idea of the least squares problem is to fit some model of an un-
known function f(t) of time, given a finite number of observations. The
problem is linear if the model can be expressed as a linear combination

f(t) =
N∑

k=1

xk fk(t)

of a set of N base functions fk ; then the coefficients xk of the linear combina-
tions are the fit parameters. The observational data are the m ≥ N pairs
(ti, λi) < i = 1, m: let us introduce the vectors x = (xk) ∈ RN , t = (ti),λ =
(λi) ∈ Rm . Given the observations, we compute the vector of residuals1

ξ = (ξi) ∈ Rm ,

ξi = λi − f(ti) = λi −
N∑

k=1

xk fk(ti) = ξi(x).

1 The minus sign in front of the prediction is an old convention: residual= observed − computed.

59
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The problem is converted to an optimization one by defining a target func-
tion which is proportional to the sum of squares of the residuals

Q(x) =
1
m

m∑
i=1

[
λi −

N∑
k=1

xk fk(ti)

]2

.

By using the design matrix

B =
∂ξ

∂x
= (bik), bik = −fk(ti), i = 1, m; k = 1, N

we have the target function in vector/matrix notation:

Q(x) =
1
m

(λ + B x)T (λ + B x) =
1
m

[
λT λ + 2λT B x + xT BT B x

]
.

The stationary points of the target function are the solutions of

m
∂Q

∂x
= 2 [λT B + xT BT B] = 0

that is the normal equation BT B x = −BT λ where the normal matrix
C = BT B is symmetric and defines a non-negative quadratic form. If this
quadratic form is positive, the quadratic form Q(x) defines level hyper-
surfaces m Q(x) = σ2 in RN which are ellipsoids. The inverse Γ = C−1 is
the covariance matrix and provides the solution x∗ = −Γ BT λ. The center
of all these ellipsoids is x∗, that is

m Q(x) = m Q∗ + (x − x∗)T C (x − x∗)

where Q∗ = Q(x∗) is the minimum value of the target function; its value
can be computed by comparing the expansions of Q(x)

mQ∗ = λT λ − λT B Γ BT λ ≤ λT λ.

The vector of the residuals after the fit is

ξ = λ + B x∗ = λ − B Γ BT λ (5.1)

and is = 0, unless λ belongs to the subspace spanned by the columns of B.

Model problem

Let us consider the model problem introduced in Section 2.5, by using the
variables (n, λ) instead of (a, λ): the general solution is

n(t) = n0, λ(t) = n0 t + λ0
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where (n0, λ0) are the initial conditions. The residuals and their partial
derivatives are

ξi = λi − n0 ti − λ0, i = 1, m ,
∂ξ

∂(n0, λ0)
= B = [−t − 1]

where the first column is just minus the times, the second one has −1 in all
the entries. The normal matrix is

C = BT B =
[

t · t t · 1
1 · t 1 · 1

]
=
[ ∑

t2i
∑

ti∑
ti m

]
.

Assuming as initial conditions n0 = 0, λ0 = 0, the residuals are the same as
the observations and the right-hand side of the normal equation is

D = −BT ξ = −BT λ =
[ ∑

tiλi∑
λi

]
.

By using the definition of mean, variance, and covariance for a finite set

t =
1
m

m∑
i=1

ti, Var(t) =
1
m

m∑
i=1

(ti−t)2, Cov(t, λ) =
1
m

m∑
i=1

(ti−t) (λi−λ),

with λ the mean of the λi, and by the identities t · t = mVar(t) + m t
2,

t · λ = mCov(λ, t) + mt λ, we get

C = m

[
Var(t) + t

2
t

t 1

]
, D = m

[
Cov(t, λ) + t λ

λ

]
. (5.2)

If detC = m2Var(t) > 0 then the covariance matrix is

Γ =
1

mVar(t)

[
1 −t

−t Var(t) + t
2

]

and the solution (n∗, λ∗) is the regression line, such that

n∗ = Cov(t, λ)/Var(t), λ∗ = λ − n∗ t.

The residuals ξ = λ − n∗ t − λ∗ 1 are such that the mean ξ = 0 and

Var(ξ) = Q∗ = Var(λ) − Cov2(t,λ)
Var(t)

= Var(λ) [1 − Corr2(t,λ)]

where the correlation

Corr(t, λ) =
Cov(t, λ)√

Var(t) Var(λ)

is a parameter between −1 and 1 measuring the decrease in target function
with respect to the pre-fit value Q(0) = Var(λ).
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5.2 Nonlinear least squares

The target function of the nonlinear least squares problem

Q(x) =
1
m

ξT (x) ξ(x)

is a differentiable function of the fit parameters x, although it is not just a
quadratic function. The partial derivatives of the residuals with respect to
the fit parameters are assembled in the arrays

B =
∂ξ

∂x
(x), H =

∂2ξ

∂x2 (x)

where the design matrix B is an m × N matrix, with m ≥ N , and H is a
three-index array of shape m×N×N . In the context of orbit determination,
the partial derivatives of the residuals are the partials of the prediction
function (with sign changed). These can be computed by using the chain
rule from the partials of the observation function R and the partials of the
general solution y(t) = y(y0, t, μ, ν) of the equation of motion

∂ξi

∂xk
= −∂R

∂y
∂y(ti)
∂xk

− ∂R

∂xk

where the first term is relevant if xk is a component of the vector (y0, μ)
(either an initial condition or a dynamical parameter), the second one if xk

is a component of ν (a kinematical parameter). The formula for H is less
simple, containing first and second derivatives of the general solution of the
equation of motion.

To find the minimum, we look for stationary points of Q(x):

∂Q

∂x
=

2
m

ξT B = 0.

Two problems contribute in making this case not as simple as the linear one.
First, the equation above is a system of nonlinear equations, and generally
does not have an explicit solution. Second, a stationary point does not need
to be the absolute minimum point: it could be a saddle, or a local minimum.
The first problem can be handled by using some iterative method, such as
the Newton method, or some modification of it. The second one requires
us to check the Hessian matrix of second derivatives to exclude saddles; the
methods to ensure that a local minimum found by some iterative method is
the absolute minimum are computationally expensive.
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The Newton method

The standard Newton method involves the computation of the second
derivatives of the target function:

∂2Q

∂x2 =
2
m

(BT B + ξT H) =
2
m

Cnew (5.3)

where Cnew is an N ×N matrix, non-negative in the neighborhood of a local
minimum.2 Given the residuals ξ(xk) obtained from the value xk of the
parameters at iteration k, the (non-zero) gradient is expanded around xk

∂Q

∂x
(x) =

∂Q

∂x
(xk) +

∂2Q

∂x2 (xk) (x − xk) + · · ·

where the dots stand for terms of higher order in (x − xk). If this gradient
has to be zero in x = x∗

0 =
∂Q

∂x
(xk) +

∂2Q

∂x2 (xk) (x∗ − xk) + · · ·

that is

Cnew (x∗ − xk) = −BT ξ + · · ·

Neglecting the higher order terms, if the matrix Cnew , as computed at the
point xk , is invertible then the iteration k + 1 of the Newton method provides
a correction xk −→ xk+1 with

xk+1 = xk + C−1
newD, D = −BT ξ,

where also D = D(xk). The point xk+1 should be a better approximation to
x∗ than xk . In practice, the Newton method may converge or not, depending
upon the choice of the first guess x0 selected to start the iterations.

Differential corrections

The most used method is a variant of the Newton method, known in this
context as differential corrections, with each iteration making the cor-
rection

xk+1 = xk − (BT B)−1 BT ξ

where the normal matrix C = BT B, computed at xk , replaces the matrix
Cnew . This amounts to neglecting, on top of the terms of order ≥ 2 in
(x∗ − xk), also the term ξT H (x∗ − xk). The additional neglected term
is of first order in (x∗ − xk) but contains also the residuals, thus it is
2 By ξT H we mean the matrix with components

∑
i ξi ∂2 ξi /∂xj ∂xk .
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smaller than C (x∗ − xk) if the residuals are small enough. However, this
qualitative argument does not always apply (see Section 10.2).

The main practical motivation for this simplification of the Newton
method is that the computation of the three-index arrays of second deriva-
tives ∂B/∂x = ∂2ξ/∂x2 for P = p′ + p′′ dynamical parameters (p′ initial
conditions and p′′ parameters to be solved appearing in the equation of mo-
tion) requires us to solve p′ P 2 scalar differential equations on top of the
usual p′ + p′ P for the equation of motion and the variational equation.

One iteration of differential corrections is just the solution of a linear least
squares problem, with normal equation

C (xk+1 − xk) = D

where the right-hand side D = −BT ξ is the same as in the Newton method.
This linear problem can be obtained by truncation of the target function

Q(x) � Q(xk) +
2
m

ξT B (x − xk) +
1
m

(x − xk)T C (x − xk),

which is not the Taylor expansion to order 2, since Cnew is replaced by C.

Convergence and comparison with the linear case

An iteration, that is a differential correction step, is possible if the covariance
matrix, the inverse of the normal matrix Γ = C−1, can be computed. Since
C = BT B, it is always positive semidefinite, and indeed positive definite if
B has rank N (this requires m ≥ N). All this applies in exact arithmetic:
numerical problems can arise for badly conditioned matrices C and Γ. The
conditioning number cond(A), for a symmetric positive definite matrix
A, is3 the ratio of the largest to the smallest eigenvalue of A.

If C is a badly conditioned matrix, that is its conditioning number is
very large, comparable to the inverse of the rounding off, the computation
of its inverse may become numerically unstable. There are methods such
as the Cholewsky algorithm and the eigenvalues algorithm allowing us to
handle badly conditioned cases in a numerically stable way. For a linear
least squares fit this is a solution, although also the covariance matrix is
badly conditioned (the small eigenvalues of C corresponding to the large
eigenvalues of Γ).

In an iterative procedure, to succeed in accurately inverting a badly con-
ditioned normal matrix C is by no means a guarantee of success. If Γ has
large eigenvalues then one step of differential corrections could apply a large
correction xk+1 − xk = Γ D, in particular with large components along the
3 This is only one of the alternative definitions found in the literature; it is the most intuitive

and is enough for our purposes. For a more detailed discussion, see Section 6.4.
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weak direction corresponding to the largest eigenvalue of Γ (see Chapter 10).
With large corrections the approximations done by truncating the equation
∂Q/∂x = 0 are poor and the value Q(xk+1) may fail to decrease with re-
spect to Q(xk). If the target function begins to increase, often it goes on
increasing, then the size of the successive corrections also increases, until
physically meaningless values are reached for some of the parameters x.

In conclusion there are two main differences between solving a linear least
squares problem and a nonlinear one. First, the linear problem always has
a solution; if the normal matrix is badly conditioned, even with zero eigen-
values, it is always possible to find a solution algorithm.4

Second, the nonlinear problem requires a number of iterations, e.g., of
the differential corrections step: experience shows that convergence may
fail either catastrophically, by divergence passing from absurd values, or
by undamped oscillations, or by correction steps of approximately constant
size moving in the same weak direction. Thus we need criteria to terminate
the iteration and to proclaim success, that is a good approximation to the
convergence which would be achieved only at the limit for k → +∞. We
also need criteria to decide when it is better to give up and to proclaim
failure, i.e., when the iterations do not show any tendency to converge.

We can use two criteria to terminate the iterations with an acceptable
approximation to x∗. One is based on the size of the last correction Δx =
xk+1 − xk . To decide Δx is small we need a metric in the N -dimensional
space of fit parameters. One such metric is defined by the normal matrix

||Δx||C =
√

ΔxT CΔx/N,

with an immediate interpretation either in terms of confidence ellipsoids (see
Section 5.4) or probabilistic (see Section 5.7). If ||Δx||C � 1 the following
iterations will not provide significant improvements of the solution. The
second criterion uses the target function at each iteration Qk = Q(xk): if

|Qk+1 − Qk |/Qk+1 � 1

the change of the last step has not been very useful for the goal of minimizing
the target function. However, one iteration with a small relative change
in the value of Q is not enough to predict that the value of Q will not
change significantly in the following iterations: to terminate the iterations,
it is better to require either that there is no significant change in Q for a
number (3–5) of iterations, or that ||Δx|| is small.

4 For the case with det C = 0 a (non-unique) solution always exists, and the pseudo-inverse
algorithm can be used to compute it, see Section 6.1.
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The criteria to give up orbit determination can be selected depending
upon the circumstances. If many orbits have to be computed, and failure
in a fraction of them is acceptable, then the iterative procedure could be
terminated under weaker conditions, e.g., when either the target function has
increased for a number (3–5) of iterations, or the fit parameters x are outside
of some acceptable region. If the orbit determination failure is considered
unacceptable, the differential corrections iterations should be continued until
either convergence or catastrophic divergence, in which case some other
initial guess and/or some other iterative method should be attempted, as
discussed in Chapters 7–10.

There are additional problems specific to nonlinear least squares. First,
the nominal solutions are in general local minima of the target function
and they could be more than one. In some cases there is only one mini-
mum with an acceptable value of Q(x∗), but it is possible that two local
minima have comparable values: see in particular the cases discussed in
Chapter 9 and Section 10.2; then both nominal solutions, and the points
in their neighborhoods, are possible solutions and neither of them can be
discarded arbitrarily.

Second, the differential corrections search for stationary points of Q(x),
thus there could be convergence to a saddle point, that is a stationary point
in which the Hessian matrix ∂2Q/∂x2 has some negative eigenvalues. From
eq. (5.3) we find that negative eigenvalues are due to the H term containing
the second derivatives of the residuals, not to the BT B = C part, thus the
presence of saddles can occur either for comparatively large ξ or when the
normal matrix C is badly conditioned. If differential corrections are used,
the array H is not computed and the data to decide if the convergence point
x∗ is a saddle rather than a local minimum are not available. There are
very few examples documented in the literature of a saddle point in an orbit
determination problem (Sansaturio et al. 1996).

5.3 Weighting of the residuals

A simple generalization of the least squares problem is the weighted least
squares problem, with a non-negative quadratic form as target function:

Q(ξ) =
1
m

ξT W ξ =
1
m

m∑
i=1

m∑
k=1

wik ξi ξk

where W = (wik) is the weight matrix, a symmetric matrix with non-
negative eigenvalues. The only change in the formulae established so far
is that the normal matrix and the right-hand side of the normal equation
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become

C = BT W B, D = −BT W ξ.

In the simplest case W = 1/s2 I (I the m × m identity matrix),

C =
1
s2 BT B, D = − 1

s2 BT ξ

and the parameter s appears through the factor s2 in the covariance ma-
trix Γ = C−1 and disappears in the differential correction ΓD. That is,
a uniform weight does not matter in the solution, although it matters in
the uncertainty. A uniform weight is implicitly used anyway, to express the
residuals in some appropriate units: e.g., residuals of angular observations
could be expressed in arcseconds, of distances in km.

Non-uniform weights express the assumption that different observations
are rated to have different accuracy: this changes the nominal solution as
well as the covariance matrix. Non-uniform weights can be formally intro-
duced by using a normalization of the residuals. If the weight matrix
is diagonal W = diag[s−2

1 , s−2
2 , . . . , s−2

m ] we can change notation and use
ξ′ = (ξ′i) for the true residuals, ξ = (ξi) for the normalized ones:

ξ =
√

W ξ′, ξi =
ξ′i
si

and then C = BT B and D = −BT ξ as in the simple least squares case.
A slightly more complicated case can occur if the observation errors are

correlated (see Section 5.8) and the weight matrix W is not diagonal. In
this case we cannot abuse the notation

√
W because there are many possible

“matrix square roots” which can be computed with a number of well known
algorithms: we shall mention only two of them.

The Cholewsky algorithm is a procedure to find an upper triangular
matrix P such that PT P = W (Bini et al. 1988, Section 4.17). The eigen-
values algorithm uses a rotation matrix R to diagonalize the matrix W ,
then computes the square root of the diagonal matrix (that is, the square
root of each eigenvalue), and rotates back to the original reference system
(Bini et al. 1988, Section 4.15). In this way a matrix P = R

√
DRT is ob-

tained with the property P 2 = W (also PT P = W because P is symmetric).
Both methods are used to solve the normal equation, because they have sig-
nificant advantages with respect to computing the inverse of the matrix W .
With the Cholewsky decomposition the triangular P can be inverted by
successive substitutions, then [PT P ]−1 = P−1 [PT ]−1; in this way badly
conditioned matrices can be inverted by an algorithm with denominators of
the order of the square root of the conditioning number. With the eigenvalue
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method, if RT W R = diag[λk ] then W−1 = R diag[λ−1
k ] RT . Given a nu-

merically robust method to find the eigenvalues and eigenspaces, this allows
us to handle cases with even higher conditioning numbers than Cholewsky.

Having computed such a matrix P we can again change notation, with
the normalized residuals ξ obtained from the true residuals ξ′ by ξ = P ξ′.
The matrix of partial derivatives B of the normalized residuals is obtained
from the matrix of partial derivatives B′ of the true residuals

B =
∂ξ

∂x
=

∂ξ

∂ξ′
∂ξ′

∂x
= P B′,

C = (B′)T W B′ = (B′)T PT P B′ = BT B,

D = −(B′)T W ξ′ = −(B′)T PT P ξ′ = −BT ξ

and the weight matrix again disappears from the normal equation. Thus
we may use the formulae in which the weight matrix W does not appear
but still assume that the observations have been weighted, either with a
diagonal matrix expressing non-uniform individual weights, or possibly with
a full matrix W expressing also correlations.

We have assumed the weight matrix W has no negative eigenvalues (oth-
erwise some combination of residuals would give a negative target function,
and the existence of a minimum would be doubtful); however, W could have
a 0 eigenvalue. This can be used to handle an observation to be discarded,
e.g., observation number i is given a weight wii = 0; if the observations are
correlated, we also need to set wij = wji = 0 for j = i. This is either be-
cause they are known a priori to be faulty as a result of some quality control
(which precedes their use for orbit determination), or because they are found
a posteriori to have residuals too large to be acceptable (see Section 5.8).

5.4 Confidence ellipsoids

In a neighborhood of a nominal solution x∗, the target function Q has a value
somewhat above the minimum Q∗ = Q(x∗), that is Q(x) = Q∗ +ΔQ(x); we
call ΔQ(x) the penalty. By expanding Q around x∗, where the gradient
−ξT B is zero, the lowest order part of the penalty is a quadratic form in
Δx, with Cnew(x∗)/m as coefficient matrix. As shown by eq. (5.3), if ξ is
small enough, this quadratic form can be replaced by

ΔQ(x) =
1
m

(x − x∗)T C (x − x∗) + · · · ,

where the dots stand for both terms of degree ≥ 3 in Δx and for those of
degree 2 in Δx containing also ξ.
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In Chapter 1 we have defined the confidence region as the set of x such
that the penalty does not exceed a control value. By the expansion above
the confidence region can be approximated by a confidence ellipsoid

ZL(σ) = {x ∈ RN |(x − x∗)T C (x − x∗) ≤ σ2}
which is indeed the inside of an (N−1)-dimensional ellipsoid if and only if C

is positive definite. How do the confidence ellipsoids describe the uncertainty
of the parameters xk, k = 1, N , both one by one and by subsets? (See
Section 3.2.) Let us suppose the vector of the parameters to be solved is split
into two components, along orthogonal linear subspaces of the parameter
space:

x =
[

h
g

]
, x∗ =

[
h∗

g∗

]
.

By decomposing the normal and covariance matrices as

C =
[

Chh Chg

Cgh Cgg

]
, Γ =

[
Γhh Γhg

Γgh Γgg

]

the quadratic approximation to the penalty is

m ΔQ � (h − h∗) · Chh (h − h∗)

+ 2(h − h∗) · Chg (g − g∗) + (g − g∗) · Cgg (g − g∗).

The uncertainty of the component g of the solution is expressed by three
different formulae, depending upon the assumption we make on the role of
the orthogonal h subspace. In the particular case in which g has dimension
1 we obtain the uncertainty of one coordinate xk .

Conditional ellipsoids for nominal values

Case 1: uncertainty of g for fixed h = h∗. We have

m ΔQ � (g − g∗) · Cgg (g − g∗)

and the conditional confidence ellipsoid in the g subspace has matrix
Cgg , the submatrix of C corresponding to the subspace. Cgg is the normal
matrix of the fit obtained by selecting x = g and moving the h variables in
the consider parameters, left at their nominal value. Note that the covari-
ance matrix Γg = C−1

gg of the variables g considered in isolation does not
coincide with the restriction Γgg of the covariance Γ, unless Chg = Γhg = 0.

Geometrically this corresponds to the intersection of the confidence ellip-
soid with the affine subspace parallel to the linear subspace of the g variables
and passing through h∗, see Figure 5.1 and Section 3.3.



70 LEAST SQUARES

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

g

h

Fig. 5.1. The regression line of g given h (dash dot) contains the centers of the h = const
sections, in this N = 2 case the midpoint of the horizontal intersection segments. The regression
line of h given g (dotted) contains the midpoints of the vertical intersections segments, including
the points of tangency of the ellipse with vertical lines.

Marginal ellipsoids

Case 2: uncertainty of g for arbitrary h. Geometrically we are project-
ing the confidence ellipsoid onto the g subspace. To find the boundary of
the projection we find the values of g corresponding to the points on the
ellipsoids where the tangent linear space is parallel to the h subspace:

∂

∂h
[m ΔQ] � 2(h − h∗)T Chh + 2(g − g∗)T Cgh = 0

that is, if Chh is invertible, which is the case if C is positive definite,

h − h∗ = −C−1
hhChg (g − g∗).

This is the parametric equation of the regression subspace of h given g,
whose intersection with the confidence ellipsoid projects onto the marginal
confidence ellipsoid of g, for arbitrary h (see Figure 5.1 and Section 3.3).
Substituting into the quadratic approximation to ΔQ

mΔQ � (g − g∗) · Cgg (g − g∗), Cgg = Cgg − Cgh C−1
hh Chg .
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The marginal confidence ellipsoid in the g subspace has matrix Cgg , which
is not the corresponding submatrix of C. The minus sign in the above for-
mula, in front of a non-negative quadratic form, implies that the confidence
ellipsoid for arbitrary h contains the ellipsoid of confidence for h = h∗.
The definition of Cgg can be deduced by a purely algebraic approach. We
partition the normal system into two equations restricted to the subspaces:{

Chh Δh + Chg Δg = Dh

Cgh Δh + Cgg Δg = Dg

and then we solve it by eliminating Δh. From the first equation

Δh = C−1
hh [Dh − Chg Δg] ,

by substituting into the other equation, we obtain another linear system

Cgg Δg = Dg − Cgh C−1
hh Dh

with the matrix Cgg as defined above; if Cgg is invertible, we have Γgg =
(Cgg)−1 and the solution, in terms of a partitioned covariance matrix, is{

Δg = Γgg Dg − Γgg Cgh C−1
hh Dh

Δh = Γhh Dh − C−1
hh Chg Γgg Dg

where Γhh = C−1
hh + C−1

hh Chg Γgg Cgh C−1
hh . This solution by substitution is

possible only if Chh and Cgg are invertible; it is not required that Cgg be
invertible. In this hypothesis, it is possible to describe the matrix of the
confidence ellipsoid in the g space for arbitrary h in terms of the covariance
matrix Cgg = Γ−1

gg , where Γgg is the restriction of Γ to the subspace. This
has a probabilistic interpretation in terms of marginal probability distribu-
tion, see Section 3.2. By exchanging the role of h and g we obtain

Chh = Chh − Chg C−1
gg Cgh

and if it is invertible the inverse is Γhh, the restriction of the covariance
matrix to the h subspace. This provides a complete solution computable for
Cgg and Chh invertible, but not requiring Chh to be invertible. The choice
of the matrices to be inverted can become important for numerical stability
reasons when C and Γ are badly conditioned matrices.

Conditional ellipsoids for non-nominal values

Case 3: uncertainty of g for fixed h = h0 = h∗. The approximation is

m ΔQ � (h0 − h∗) · Chh (h0 − h∗)

+ 2(h0 − h∗) · Chg (g − g∗) + (g − g∗) · Cgg (g − g∗),
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and the minimum with respect to g is a solution of

∂

∂g
[mΔQ] = 2(h0 − h∗)T Chg + 2 (g − g∗)T Cgg = 0.

Provided Cgg is invertible, the minimum point for fixed h = h0 is

g0 = g∗ − C−1
gg Cgh (h0 − h∗)

which is the regression subspace of g0 given h0. g0 is in general different from
g∗, unless the subspaces are uncorrelated, that is unless Cgh is a zero matrix.
We can now compute the penalty ΔQ as a function of the displacement
g − g0 with respect to this minimum: upon substitution of

g − g∗ = (g − g0) + (g0 − g∗) = (g − g0) − C−1
gg Cgh (h0 − h∗),

m ΔQ � (g − g0) · Cgg (g − g0) + (h0 − h∗) · Chh (h0 − h∗).

This means that the constraint h = h0 implies a minimum penalty

m ΔQh = (h0 − h∗) · Chh (h0 − h∗)

which is a quadratic form in the difference h0 −h∗ with matrix Chh = Γ−1
hh.

The quadratic form expressing the supplementary penalty, for moving g
from the constrained minimum g0, has matrix Cgg as in the h = h∗ case,
but the conditional confidence ellipsoid in the g space is smaller because

m ΔQ � σ2 ⇔ (g − g0) · Cgg (g − g0) = σ2 − (h0 − h∗) · Chh (h0 − h∗)

and the last term to be subtracted is positive (for h0 = h∗) when Chh is
positive definite, that is when C and Γ are positive definite. This has a
probabilistic interpretation in terms of the conditional probability distribu-
tion.

5.5 Propagation of covariance

Let y represent the state vector at some time t, the solution of the equation
of motion. The differential of the integral flow Φt

t0 (y0), where y0 = y(t0),
is expressed by a matrix of partial derivatives, the state transition matrix

∂y(t)
∂y0

= DΦt1
t0

(y0)

which is in turn the solution of the variational equation, a system of lin-
ear ordinary differential equations. The variational equation has a solution
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which can be computed numerically, simultaneously with the solution of the
equation of motion. We shall use the semigroup property

Φt0
t

(
Φt

t0 (y0)
)

= Φt0
t0

(y0) = y0,
∂y
∂y0

∂y0

∂y
= I.

Let us first assume that the vector of fit variables x coincides with y0. By
the use of the state transition matrix, the normal and covariance matrices for
y0 can be propagated from time t0 to an arbitrary time t. We shall indicate
with subscript 0 the quantities referring to the epoch t0, with subscript t

the quantities for epoch t; for the normal matrix

C0 =
∂ξ

∂y0

T ∂ξ

∂y0

the propagation to time t is obtained by assuming the fit variables are y(t),
then by applying to the Jacobian matrix the chain rule

Ct =
∂ξ

∂y

T ∂ξ

∂y
=
(

∂ξ

∂y0

∂y0

∂y

)T (
∂ξ

∂y0

∂y0

∂y

)

=
∂y0

∂y

T

C0
∂y0

∂y
=
(

∂y
∂y0

T)−1

C0

(
∂y
∂y0

)−1

. (5.4)

The covariance matrices are the inverse of the normal matrices, thus

Γ0 = C−1
0 , Γt = C−1

t =
∂y
∂y0

Γ0
∂y
∂y0

T

, (5.5)

giving the covariance propagation formula, corresponding to eq. (3.9). In
conclusion to propagate the normal and covariance matrix, and to compute
the confidence ellipsoid for another epoch, it is not necessary to solve again
the least square problem, but only to solve the variational equation. How-
ever, as we can see already in our model problem, the assumption of linearity
is often questionable for this step of the computation.

If the fit parameters x include, besides y0, some of the constants μ, ν,
then the state transition matrix for x is of the form

∂x(t)
∂x(t0)

=
[

∂y(t)/∂y0 0
0 I

]

and the propagation formulae can be used in exactly the same way.
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Sources of nonlinearity

The problem of nonlinearity arises from two phenomena. First, the linear
approximation may result in normal and covariance matrices with a large
conditioning number. Then the confidence ellipsoids have a very elongated
shape: if λj, j = 1, N , are the eigenvalues of the propagated normal matrix
Ct, the lengths of the semiaxes of the confidence ellipsoid are σj = 1/

√
λj ,

and the ratio of the longest to the shortest is
√

cond(C). Ratios such as
105 � 106 are often found, thus the distance of points in the confidence
ellipsoid from the nominal solution can become large. Second, the quadratic
approximation can fail when it is used to describe a large region in the
parameter space: that is, the confidence region is significantly different from
the confidence ellipsoid. The two phenomena act together: nonlinearity is
important when the longest axis of the ellipsoid is too long.

Both the wild increase in the size of the longest semiaxis, and the dom-
inance of the nonlinear effects, can occur in each of the two steps in the
computation of the propagated confidence region. The first step is the com-
putation of the confidence region for the fit parameters x at epoch t0, sup-
posedly near to the center of the observations time span. Still, when the
observational data are inadequate the normal matrix C0 (for epoch t0) is
badly conditioned.

The second step is the propagation of the uncertainty to the time t1.
The integral flow Φt1

t0
is nonlinear, and its derivative, the state transition

matrix, has some coefficients growing at least linearly with time. Then
the propagation of the normal and covariance matrices, eq. (5.4) and (5.5),
results in conditioning numbers increasing at least quadratically with time.
In a chaotic dynamics, that is with positive Lyapounov exponents, some
coefficients of the state transition matrix grow exponentially with time and
the effects described above are enormously enhanced. This is the case for
an asteroid on a planet-crossing orbit, see Chapter 12.

5.6 Model problem

Let us use as an example the model problem, discussed in Section 5.1, in
the nonlinear formulation with variables (a, λ). The general solution is

a(t) = a0, λ(t) = n(a0) t + λ0

with n(a) a monotonically decreasing and convex function defined for a > 0

n(a) =
k

a3/2 ,
dn

da
= −3

2
n

a
< 0,

d2n

da2 =
15
4

n

a2 > 0.
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The partial derivatives and the design matrix are

∂ξi

∂a0
=

3
2

n0

a0
ti,

∂ξi

∂λ0
= −1, B =

[
3
2

n0

a0
t −1

]
,

where n0 = n(a0). Let us select a suitable origin of time in such a way that
t = 0, then

∑
t2i = mVar(t) and

∑
ti λi = mCov(t, λ), thus by eq. (5.2)

C = BT B = m

[
(9n2

0/4 a2
0) Var(t) 0
0 1

]
.

We have to start from a first guess a = a0, λ = λ0 with a0 > 0 and
n0 = n(a0) > 0: the residuals are ξ = λ − n0 t − λ0 1 and taking into
account t · ξ = t · λ − n0t · t the right-hand side of the normal equation is

D = −BT ξ = m

[
−(3n0/2 a0) (Cov(t, λ) − n0 Var(t))

λ − λ0

]
.

The first differential correction, starting from the first guess (a0, λ0), is

a1 = a0 −
2
3

a0

n0

[
n0 −

Cov(t, λ)
Var(t)

]
, λ1 = λ0 + (λ − λ0);

this first iteration needs to be compared with the results of the linear fit in
the (n, λ) variables, which was n∗ = Cov(t, λ)/Var(t), λ∗ = λ. Thus the
first iteration corrects λ at once to the right value, which is preserved in the
following iterations. The correction to a can be interpreted as

a1 = a0 −
n(a0) − n∗

dn/da
,

i.e., one step of the Newton method to solve the equation n(a) − n∗ = 0
with first guess a = a0. In this simple case we can find whether the iterative
differential corrections are convergent. If a1 = [(5/2)n0 − n∗]/(3n0/2 a0) is
negative the second iteration is impossible: this occurs for a0 > (5/2)2/3 a∗ �
1.84 a∗, where a∗ is the value such that n(a∗) = n∗. Else, if a0 < a∗ the
iterations take place where the convex decreasing function n(a) has a value
larger than n∗, and convergence is guaranteed. Else, if (5/2)2/3 a∗ > a0 >

a∗ we have 0 < a1 < a∗ and the following iterations are in the region of
guaranteed convergence. We can conclude that the differential corrections
are convergent for 0 < a0 < (5/2)2/3 a∗, whatever λ0.

We can see the effect of the nonlinearity also in the propagated confidence
region (Figure 5.2). The propagation of the normal matrix C0 to Ct at time
t by eq. (5.4) uses the inverse of the state transition matrix

∂(a, λ)
∂(a0, λ0)

=
[

1 0
−(3n0/2 a0) t 1

]
,

∂(a0, λ0)
∂(a, λ)

=
[

1 0
(3n0/2 a0) t 1

]
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Fig. 5.2. Semilinear prediction compared with linear confidence ellipse for the model problem.

Ct = m

[
(9n2

0/4 a2
0) (Var(t) + t2) (3n0/2 a0) t

(3n0/2 a0) t 1

]

which is the same as the normal matrix computed for time t = 0 when the
average time is t = −t. Thus it is no longer diagonal, but the determinant
is still the same: that is, the propagated confidence ellipse has the same
area, but it is skewed along the λ axis, and the ratio of the major semiaxis
to the minor semiaxis increases. The image, by the full nonlinear integral
flow, of the confidence ellipses for a0, λ0, that is of the ellipses defined by
C0, becomes increasingly banana shaped as the time t increases in absolute
value (Figure 5.2). For large t such a semilinear prediction can become
strongly incompatible with the linear one, see Section 7.4.

Observations of angle variables

The model problem can be made more realistic if we consider that λ is
an angle variable, that is defined mod 2 π. Indeed, when the satellite
is observed at longitude λi at time ti for i = 1, 2 the observations do not
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contain the information about whether the orbital arc covered in the interval
[t1, t2] has been λ2 − λ1 rather than λ2 − λ1 + 2 p π, with p integer.

As a simple example let us assume the m = 2 h + 1 observations are at
constant time intervals of length Δt, with t = 0, that is ti = (i − h − 1) Δt;
let the best fit mean motion be n∗. Then λi+1 − λi � n∗ Δt if the satellite
has done less than one revolution; but of course also λi+1−λi � n∗ Δt+2 π p

for p ∈ Z provides a good fit, thus an alternative nominal solution with

n∗
p � n∗ Δt + 2π p

Δt
= n∗ +

2 π

Δt
p.

There is no way to decide among these alternative solutions until a new
observation, at time t+ with t+/Δt not an integer, is available. In a simple
numerical test, it is easy to get convergence to a value a∗1, with n(a∗1) � n∗

1.
Then for a time not an integer multiple Δt the predictions are completely
off, which could result in a failed recovery.

This change in the topology of the problem, with multiple minima of the
target function if the observable is an angle variable, is because the residuals
are not λi − λ(ti) but ξi = [λi − λ(ti, a0, λ0) + π] mod(2π) − π where the
shift by π before reducing to the principal value has the purpose of ensuring
that the function Q is smooth at ξi = 0; however, it is not differentiable at
ξi = π. Thus the target function Q(a0, λ0) is not differentiable everywhere,
and separate minima can be found in each domain of differentiability. If dif-
ferential corrections are started with a first guess far from the true solution,
the Newton method on a0 can lead to the spurious values a∗p (corresponding
to n∗

p with p = 1, 2, . . .). As we will see in Section 7.4, selecting an integer
number of revolutions is a critical step of the identification problem.

5.7 Probabilistic interpretation

The probabilistic interpretation uses as source random variables the resid-
uals themselves: the simplest assumption is that, after the best possible
value has been found for the fit parameters x, each residual ξi is a continu-
ous random variable Ξi with zero mean and unit variance (in some appro-
priate unit), independent of the index i. It is also assumed that the error
of each observation is a random variable independent (see Section 3.1) of
those of the other observations. Under the additional hypothesis that the
joint probability density is rotation invariant, thus it is a function depend-
ing only upon the target function, the only possible probability density is
the Gaussian one pΞi(ξ) = N(0, 1)(ξ) (see Section 3.2). Then the resid-
uals random vector ξ has probability density pΞ(ξ) = N(0, I)(ξ), with I
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the m × m identity matrix. Under these conditions the solution for the fit
parameters x can be seen as a set of jointly distributed random variables X:
the goal is to compute the probability density pX(x), given the probability
density pΞ(ξ). The residuals are a function of the fit parameters

G : RN −→ Rm, ξ = G(x)

obtained by subtracting from the observations the prediction function. Let
x∗ be the nominal solution and ξ∗ = G(x∗) the corresponding residuals. G

is a differentiable function, thus we can linearize at the nominal solution

ξ − ξ∗ = B(x∗) (x − x∗) + · · ·

where B(x∗) is the design matrix, computed at convergence, and the dots
stand for terms of order higher than 1 in |x−x∗|. The image of the fit param-
eters space V = G(RN ) is an N -dimensional submanifold of the residuals
space Rm . This manifold can have singularities, but the point ξ∗ cannot be
singular, because the matrix B(x∗) has rank N , otherwise differential cor-
rections would fail and the nominal solution x∗ could not be reached. Thus
we can assume that the manifold V is smooth, at least in a neighborhood
of ξ∗. We need to compute the conditional density function of Ξ on V , as a
step to compute the probability density of X on RN .

If we can neglect the higher order terms we can write a linearized equation

Δξ = B(x∗) Δx, Δξ = ξ − ξ∗, Δx = x − x∗,

which is the tangent map between RN and the linear N -plane TV (ξ∗) tan-
gent to V at the point ξ∗. To use this linearization is the same as considering
the linear least squares problem with quadratic target function

Q(x) = Q∗ +
1
m

(x − x∗)T C (x − x∗)

neglecting all higher order terms. Note that by using C instead of Cnew we
are neglecting the ξT H term in eq. (5.3).

By using a rotation R in the residuals space as in eq. (3.11), that is
with coordinates (ξ′, ξ′′) such that ξ′′ parameterizes TV (ξ∗), the conditional
probability density of Ξ on TV (ξ∗) is Gaussian with the N × N identity
matrix as covariance pΞ′′ = N(0, I). In these coordinates the linearized map
B(x∗) has a simpler structure, since the ξ′ component of the image is 0:

R B(x∗) =
[

0
A

]

with A = A(x∗) an invertible N × N matrix. Then the normal matrix
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C = C(x∗) is

C = BT B = BT RT R B = AT A.

The inverse transformation from TV (ξ∗) to RN is given by the matrix A−1:
by the Gaussian transformation formula (3.9) the probability density of X

pX(x) = N
(
x∗, A−1 I [A−1]T

)
is Gaussian with covariance matrix

Γ = A−1 [A−1]T = [AT A]−1 = [BT B]−1 = C−1.

This is the fundamental result obtained by Gauss (1809): the solution of a
linear least squares problem has a Gaussian probability density, with mean
equal to the nominal solution and covariance matrix equal to the inverse
of the normal matrix. Γ = C−1 is the matrix solving the normal equation,
thus connecting the probabilistic interpretation, the differential corrections
“last step”, and the optimization interpretation.

Additional connections between the two interpretations can be found by
reviewing the results of Section 5.4 taking into account the probabilistic
interpretation. The Gaussian probability density of the solution is

pX(x) =

√
det C

(2π)N/2 exp
[
−1

2
(x − x∗)T C (x − x∗)

]
.

Then the probability density contains x only through the penalty function5

ΔQ = Q−Q∗. The boundaries of the confidence ellipsoids are the level sur-
faces of the probability density function. The boundaries of the conditional
and marginal confidence ellipsoids are the level surfaces of the conditional
and marginal probability densities, respectively. In short, the computations
required by the optimization and by the probabilistic interpretation are ex-
actly the same. We can decide which interpretation to adopt after having
computed the result, which is defined by x∗, C(x∗), Γ(x∗), Q∗.

Normalization of the probability density

The hypotheses used above for the probabilistic interpretation are too re-
strictive to be applied in most cases. However, these hypotheses can be ap-
plied to the normalized residuals. For example, the variance of the true resid-
uals ξ′i could change with the index i, and even the mean could be non-zero:

5 This applies in the approximation of neglecting the higher order terms; a fully nonlinear prob-
ability density could in principle be defined by the general transformation formula (3.8), but
it cannot be explicitly computed by an analytical formula.
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pΞ′
i
(ξ′i) = N(bi, σ

2
i )(ξ

′
i). In this case the normalized residuals ξi = (ξ′i−bi)/σi,

with bias bi removed and the scale changed by the standard deviations σi,
would all be random variables with the same probability density N(0, 1).

Even the independence hypothesis can be relaxed: the joint random
variables Ξ′ could be a multivariate Gaussian with non-zero correlations
pΞ′(ξ′) = N(b, Γξ′)(ξ′) and the normalization can be obtained with a square
matrix P such that PT P = Cξ′ = Γ−1

ξ′ . The normalized residuals are defined
by ξ = P (ξ′−b), thus pΞ(ξ) = N(0, I)(ξ) with I the m×m identity matrix.
This procedure to normalize the residuals probability density function uses
the same algorithms, giving the matrix square root P , to remove the weight
matrix W from the weighted least squares problem; indeed, the residual
normalization has a probabilistic interpretation with W = Cξ′ = Γ−1

ξ′ .

5.8 Gaussian error models and outlier rejection

That the errors in the observations, used for orbit determination, have a
Gaussian distribution cannot be assumed a priori: it is an empirical fact to
be confirmed by experience, by applying rigorous statistical tests. Experi-
ence shows that, whenever large data sets are processed, the error distri-
bution cannot be described by a single normal distribution. There are two
main reasons for this.

First, some observations are “wrong”, that is contain errors which arise
from unusual circumstances, including human error, software bugs, excep-
tionally difficult observing conditions: poor weather, too low signal-to-
noise ratio (S/N), very fast moving objects, and so on. It is too difficult to
include these cases in a statistical error model, and besides it would not be
beneficial to the accuracy of the least squares solution. The best strategy is
to decompose the residuals ξi into two subsets, one for which a probabilis-
tic error model is attempted, the other containing the outliers which are
removed from the fit (they are given weights wii = 0, see Section 5.3).

Second, even for the subset of residuals whose distribution is ruled by some
probabilistic model, we cannot assume that the same probability density
function, depending only upon the residuals values, can be applied to all.
This is because there are hidden parameters, e.g., the S/N, the size of the
pixels in the detector, the amount of trailing in the image, the accuracy of
the star catalog used in the astrometric reduction, and more: the RMS error
cannot be the same for different values of these parameters. The values of
the hidden parameters are not always available, and they are not constant
even for a given observing station: the accuracy of a given observatory often
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Fig. 5.3. Histograms of residuals for the declination of numbered asteroids as measured from
the LINEAR observing station. For each of the 400 bins of width 0.03 arcsec, the four lines show,
starting from the higher to the lower on the left side: all the residuals 1997–2003; only the outliers,
automatically removed by the algorithm discussed in this section; the residuals actually used in
the orbit fits; the Gaussian distribution with the same mean and the same RMS of the residuals
actually used (the vertical scale is logarithmic, thus the Gaussian is represented by a parabola).

improves with time, as a result of the “learning curve” of the astronomers
and of sporadic hardware, software, and star catalog upgrades.

To confirm this, we shall use as an example a large data set from popula-
tion orbit determination; the collaborative case is discussed in Chapter 15.

In a typical population case, Figure 5.3 shows histograms of the residuals
in one of the two angular coordinates, the declination δ, after fitting orbits
of numbered asteroids, for which the orbit is over-determined: the residuals
are essentially due to the astrometric errors, orbit errors giving a very small
contribution. Only the residual from a single observatory, the most prolific
producer of asteroid astrometry, are included: more than 9 million observa-
tions have been processed to produce this figure. The upper curve, showing
the distribution of all the residuals, is clearly not a Gaussian, but has a
significant tail of comparatively large residuals. For such a large data set,
it is impossible to use human judgement to select the outliers, there needs
to exist a fully automated outlier removal procedure, which is described



82 LEAST SQUARES

below; these rejections remove the tail of large residuals. The other residu-
als have a distribution which is not a single Gaussian, but can be modeled
as a combination of Gaussian distributions.

Outlier removal for weak fit

To select the outliers, to be discarded from the fit, it is not always enough to
pick up the residuals with the largest absolute values. This would work for
a strongly over-determined fit, when the average sampling time of the obser-
vations is shorter than the time-scale of the real signal: a single “wrong” ob-
servation cannot significantly change the nominal solution, as in Figure 5.4,
top. This is normally the case in collaborative orbit determination, when the
sampling time is decided as a design parameter of the tracking instruments,
knowing the time-scale of the changes in the signal.
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Fig. 5.4. The effect of an outlier on a fit. The points have a Gaussian distribution N (0, 1),
the outlier (cross) is 4 RMS away from the mean. Above: for an over-determined fit with dense
data (80 points, polynomial degree 10) the polynomial solution including the outlier (dashed) is
different from the one without it (solid line), at least locally, but the outlier clearly has the largest
residual. Below: for a weak fit with sparse data (10 points, polynomial degree 3) the fit with the
outlier is bent towards it, thus making the residual much less prominent.
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On the contrary, when the observations are sparse, the solutions with and
without the “wrong” one are quite different, thus other residuals may become
larger (see the residual at time 4 in Figure 5.4, bottom). This often happens
in the population case, when the fits are only marginally over-determined.

To take this effect into account, we use eq. (5.1) for a linearized approxi-
mation of the post-fit residuals ξ as a function of the pre-fit residuals ξ0

ξ =
[
I − B Γx BT

]
ξ0

where B is the design matrix, and compute the corresponding covariance by
the propagation formula (5.5), with the uncertainty of the pre-fit residuals6

given by the covariance matrix expressing the observation errors Γξ0 = I

Γξ =
[
I − B Γx BT

]
I
[
I − B Γx BT

]
= I − B Γx BT .

For an individual post-fit residual ξi, the variance is

γξ,i,i = 1 − Bi Γx BT
i (5.6)

where Bi = ∂ξi/∂x is the relevant row of the design matrix. In a similar
way it is possible to compute the covariance matrix of a discarded residual
ξk , namely the residual (with respect to the orbital solution) of an observa-
tion which has not been used in the fit: the contribution from the orbital
uncertainty is just Bk Γx BT

k . In this case, however, the prediction error and
the measurement error can be considered uncorrelated, thus the discarded
residual has variance which is the simple sum of the two error sources

γξ,k,k = 1 + Bk Γx BT
k . (5.7)

Thus, if a residual has been used in the fit, it has to be normalized by
dividing by the square root of the variance (5.6), which is ≤ 1, else if it has
already been discarded the normalized value is obtained by dividing by the
square root of the variance (5.7), which is ≥ 1.

An algorithm for outlier rejection could be as follows: a residual ξi is
discarded if its normalized absolute value is ≥ χdisc; a discarded residual
ξk is recovered if its normalized absolute value is ≤ χrec. The choice of the
two parameters χrec < χdisc is delicate, although the standard χ2 tables can
be used to give an indication. Of course this is just a step of an iterative
procedure, with the nominal solution recomputed between steps.

A practical implementation of a fully automated outlier rejection proce-
dure needs to be complicated, to guarantee convergence of the differential
corrections at each step and convergence of the subset of outliers: if there
are very large residuals they have to be removed first, that is the values
6 We are assuming that the residuals have already been normalized, as in Section 5.3. For the

same formulae with a general weight matrix W , see (Carpino et al. 2003, Section 2.2.1).
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of χreq, χdisc have to be adapted at each step: for a detailed description see
(Carpino et al. 2003, Section 2.2.2). Moreover, the observations are often
rejected by groups, as in the case of astrometric observations, where the
two-dimensional observations (αi, δi) are rejected/recovered together: this
requires the analog of eqs. (5.6) and (5.7) for 2 × 2 covariance matrices.

Binning and local Gaussian models

Ideally, the weight matrix for the observations should be based upon com-
plete information on the measurement process, including the assessment by
the observer, who is generally the best judge of the data quality. In prac-
tice the information is always incomplete, or anyway it has not been made
available to the orbit computer. A possible way out has been explored by
Carpino et al. (2003): by using all the information actually available, the
data are split into bins which should represent homogeneous observing and
measuring conditions.

The data are binned first by observatory, by observing technology,7 and
by time. The data with low accuracy warnings, as in the primitive method
of storing less significant digits, are binned separately. They can be further
split by using the available information on the conditions which make the
measurement difficult, such as low S/N, fast proper motion, dense star fields
(e.g., observations close to the galactic plane). If the S/N value is not
available, the apparent magnitude can be used as a proxy (by assuming that
the exposure time is uniform for a given station in the same time period).

Once the data are binned, for each bin j a best fitting normal distribution
N(bj , σ

2
j ) is computed (not using the outliers). It might be argued that the

bias bj should be 0, otherwise the data should be re-calibrated: in practice,
this calibration has often to be done a posteriori. The kurtosis value can
be used as a control that the distribution is not too far from a Gaussian.
Then the error model is the list of bins (with their definitions, such that
each observation can be classified in one and only one bin) with their values
bj , σj . Such a model already contains useful information because the RMS
values for different observatories and different years may differ by an order
of magnitude, from 0.2 to 2 arcsec, and the biases can be very significant
(Carpino et al. 2003, Figures 4–5); however, this is not enough.

7 For example, the reduction technique for astrometric observations performed with CCD are
very different from those using photographic plates.
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Correlations

Even after the residuals have been scaled with the appropriate weights, and
shifted by the appropriate biases, it is not the case that their probability dis-
tributions are correctly represented by independent, unit variance Gaussian
functions: they are found not to be independent. For Gaussian distributions,
independence and zero correlation are equivalent, thus we can test the hy-
pothesis of independence by measuring the correlation of a set of couples of
residuals (ξi, ξj), with (i, j) ∈ B:

Corr(ξ, B) =
1

NB

∑
(i,j)∈B

ξi ξj (5.8)

where NB is the total number of couples in the subset B, and the residuals
are already shifted by the bias and scaled by the RMS of their bin.

The question is how to select the sets B of couples. Carpino et al. (2003)
discuss several tests showing that the most significant correlations are time-
wise, appearing as a function of the time difference between the observa-
tions: they occur between observations of the same asteroid from the same
station and with time differences of up to few weeks, with the largest values
(typically in the range 0.2–0.4) for observations in the same night.

Correlations of this order cannot be safely neglected in the least squares
fit: as the simplest example, let us suppose the covariance matrix of a set
of m observations taken in the same night has 1 on the diagonal and α < 1
outside. Such a matrix has the vector 1 as eigenvector with the largest
eigenvalue 1 + (m − 1)α. For a tracklet containing m = 5 observations,
correlations α = 0.2–0.4 correspond to a longest semiaxis of the confidence
ellipsoid ZL(1) of

√
1.8–

√
2.6, while neglecting correlations means replacing

it with a sphere of radius 1. According to Carpino et al. (2003), spatial
correlations, depending upon the position on the sky, did not need to be
accounted for at the data quality level current at the time.

Thus the binning is done by time difference: from the values of the corre-
lations (5.8) estimated for each time difference bin a linear model has to be
fit, in such a way that the correlation Corr(δt, S) between two observations
(from the same station S and of the same asteroid) can be represented as
Corr(δt, S) =

∑
i ci fi(δt) for any time difference δt. However, we cannot

use a linear combination of an arbitrary set of base functions fi, because the
covariance matrix of the observation errors has to be positive definite. It can
be shown (Mussio 1984) that some functions of time have the property of en-
suring that the correlation matrix is positive definite, so that also the covari-
ance matrix is positive definite. One requirement is that all of these functions
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must decay to zero with time: limδt→+∞ fi(δt) = 0. The list includes expo-
nential decaying functions exp(−c δt), Gaussian-like functions exp(−c δt2),
quadratic times exponential functions of the form (1−d δt2) exp(−cT ), and
all their linear combinations. Carpino et al. (2003) provide tables of the
coefficients ci for these base functions, applicable to the observatories pro-
viding the largest data sets, thus allowing us to compute the non-diagonal
weight matrix W to be used in the formulae of Section 5.3.

The above attempt to build an error model by processing incomplete infor-
mation cannot give completely reliable results. Moreover, as the accuracy of
the observations improves, the shortcomings of a “naive” error model (such
as weighting all the observations at 1 arcsec) become more and more trou-
blesome, especially for critical applications such as those of Chapter 12. A
recent reanalysis of the set of residuals from all the astrometric observations
of numbered asteroids (Baer et al. 2008) confirms the presence of significant
biases and correlations reported by Carpino et al. (2003), but has also de-
tected significant spatial correlations, such as declination biases depending
upon the declination of the observations and found in the data of different
observatories; the values of such biases can be as large as 0.2 arcsec. The
most obvious interpretation is that there are regional systematic errors in
the star catalogs mostly used by asteroid observers.8 Whatever the cause,
the effect of biases which are not constant for a given observatory cannot
be removed by binning by observatory. They need to be removed by bin-
ning by region on the celestial sphere all the observations astrometrically
reduced with the same star catalog. At the time this book is being written,
the information on star catalogs used has not yet been made available to the
orbit computers, thus there is no rigorous solution to the astrometric error
model problem which is immediately applicable. This is a serious limitation
to the reliability of a probabilistic interpretation of the orbit determination
problem, which has nothing to do with the mathematical formulation but
with the real-world limitations of an incomplete open data policy.

8 It is not easy to find the cause of these regional errors, which should be investigated by the
compilers of the catalogs.
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RANK DEFICIENCY

This chapter discusses the cases in which the standard differential correc-
tion procedure for orbit determination fails. The worst failure is when the
normal matrix is degenerate: this can result from the action of a group of
symmetries leaving the residuals unchanged. The differential corrections as
an iterative process may fail even when each individual step can be com-
puted. The most common cause is an approximate degeneracy, which can
result from an approximate symmetry. Different methods to constrain and
stabilize the differential corrections in such difficult cases are discussed. This
chapter systematizes and generalizes the results published in several papers
(Milani and Melchioni 1989, Milani et al. 1995, Bonanno and Milani 2002,
Milani et al. 2002, Milani et al. 2005d).

6.1 Complete rank deficiency

If, at some step xj of the differential corrections, the normal matrix C is
not invertible, then the correction solving

BT B (xj+1 − xj) = −BT ξ

cannot be computed by means of the covariance matrix Γ. Nevertheless
solutions of the normal equation always exist (but are not unique). Let us
introduce the pseudo-inverse C∗, defined as the matrix associated to the
null map on the kernel of C times the inverse of C restricted to the subspace
orthogonal to the kernel; C∗ provides the solution of minimum norm

xj+1 = xj − C∗ BT ξ.

The pseudo-inverse C∗ can be used as generalized covariance matrix for some
purposes (see Section 8.3). However, corrections based on the pseudo-inverse
are unlikely to converge towards a minimum of the target function.

87



88 RANK DEFICIENCY

Under these conditions, the rank deficiency order d is an integer such
that the matrix C has rank N −d, that is a kernel of dimension d. Then the
matrix B has the same rank N − d, its column m-vectors {bj}, j = 1, N ,
are linearly dependent: they span a linear subspace of dimension N −d, and
there is a subspace K ⊂ RN of dimension d, such that

v ∈ K =⇒ B v = 0. (6.1)

The effect on the residuals of a change in any one of the directions v ∈ K

is of second order (with respect to the size of the change)

ξ(xi + sv) − ξ(xi) = s B v + O(s2) = O(s2). (6.2)

The intuitive interpretation is the following: some linear combinations of
the parameters x are uninfluential on the residuals, thus they cannot be
constrained by the least squares optimization.

All the above discussion assumes exact arithmetic, e.g., that the inverses
of the matrices are computed exactly when the determinant is non-zero, and
are not computable when the determinant is zero. With a digital computer,
rounding-off effects could result either in inverse matrices being computed
even when the exact determinant is zero or in failure of the computation
even for small but non-zero determinant. In practice, when rank deficiency
occurs the iterative procedure fails disastrously, e.g., with increasingly large
corrections until a meaningless value for some of the parameters x is reached.

Curing rank deficiency

The only solution in case of rank deficiency is to change the problem. Either
fewer parameters are to be solved, or more observations are to be used.

If there is no way to increase the number of observations to be used,
the only solution is descoping. That is, d parameters have to be removed
from the fit list x (and added to the consider parameter list k) in such a
way that the matrices B and C remain of rank N − d. This implies that
the values of the additional consider parameters are fixed at some nominal
value, which are arbitrary unless a priori information is available (from other
measurements). A more general procedure is as follows: change the basis
in the space RN of x in such a way that the first d vectors {vj}, j = 1, d,
are a basis of K; the other N − d coordinates can be selected as the new
fit parameters. By using Gram–Schmidt orthonormalization, it is possible
to do this with an orthogonal N × N matrix as coordinate change: with a
suitable selection of signs, the coordinate change is a rotation.

As we shall see in the examples of this book, this procedure is natural when
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the rotation is done among parameters of the same type, such as the initial
conditions y0, the dynamical parameters μ, the kinematical parameters ν.
When we are forced to “rotate” a mix of variables with different dimensions
and physical interpretations this solution is far from intuitive.

Another option is the use of a priori observations. This is equivalent
to assuming that some information was available, on at least some of the
variables x, before processing the current set of observations. That is, we
add to the set of observations constraints x = xP on the values of the
parameters, with xP ∈ RN a set of assumed values, and give to the a priori
observations xi = xP

i weights 1/σi, i = 1, N corresponding to the assumption
that the a priori standard deviation is σi. This is equivalent to adding the
a priori normal equation

CP x = CP xP (6.3)

with CP = diag[σ−2
i ]; a non-diagonal a priori normal matrix could be used

if this is a better representation of the information already available. Thus
an “a priori penalty” is added to the target function

Q(x) =
1

N + m

[
(x − xP )T CP (x − xP ) + ξT ξ

]
and the complete normal equation becomes[

CP + BT B
]

Δx = −BT ξ + CP (xP − xj)

with Δx = (xj+1 − xj) as unknown. If the a priori uncertainties σi are
small enough, the new normal matrix C = CP + BT B has rank N and the
problem is solved. The question is whether the a priori information used is
reliable. For the parameters belonging to y0, this means assuming that some
information on the orbit was already available. For the parameters belonging
to μ, ν the a priori information could be available from measurements having
nothing to do with the orbit. For example, the coefficients of the gravity
field could be available from ground-based gravimetry; the position of the
observing stations could have been measured by previous missions.

The a priori observations could be applied to only N ′ < N of the fit param-
eters xi, with a minimum of d (at least as many a priori observations as the
rank deficiency). If N ′ = d and the a priori uncertainties tend to zero, the so-
lution of the rank deficiency problem based upon a priori observations tends
to the previous solution, based on assuming d fit parameters as known with
some exact value. In practice, assuming a very strong constraint is the same
as assuming exact values; this allows us to handle both methods to solve the
rank deficiency problem with the same formulae. On the contrary, a weak
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constraint is a way to introduce a non-exclusive preference for some por-
tions of the parameter space: for example, in solving for an orbit in
Keplerian elements, we can introduce an a priori observation of the eccen-
tricity of the form e = 0± 1 to force the solution to be elliptic, still allowing
for hyperbolic orbits only if there are significantly larger residuals for
all the e < 1 solutions. This corresponds to the a priori information that
strongly hyperbolic orbits are very rare in the Solar System (indeed, none
is known), thus assuming an e < 1 orbit is better in almost all cases, nev-
ertheless the orbit determination algorithm should not be strongly biased
against discovering objects belonging to a new orbital class.

The use of a priori information can take a more general form, as a pri-
ori constraints to the least squares solution: the search for a minimum of
the target function is restricted to the set of parameters x fulfilling a set
of k equations f(x) = 0. If k ≥ d functional constraints are suitably cho-
sen, the rank deficiency can be removed. The general theory of constrained
optimization is beyond the aim of this book; see, e.g., (Conn et al. 1992).
We linearize the constraint by taking the differential of f at the current
value xk of the parameters (at a given iteration of the differential correc-
tions); let A = ∂f/∂x(xk) be the Jacobian matrix. Then the constraint can
be described by adding to the target function a quadratic function of the
correction xk+1 − xk , defined by using A (see Section 15.5).

Model problem with degeneracy

The general solution of the model problem of Section 5.6 depends upon the
parameter k, proportional to the square root of the mass of the central body

a(t) = a0, λ(t) =
k

a
3/2
0

t + λ0, (6.4)

the derivatives of the residuals with respect to the parameters (a0, λ0, k) are

B =
[
3
2

n0

a0
t −1 − n0

k
t
]

;

the first and the last column are proportional. For t = 0 the normal matrix

C = BT B = m

⎡
⎢⎢⎣

9
4

n2
0

a2
0

Var(t) 0 − 3
2

n2
0

k a0
Var(t)

0 1 0

− 3
2

n2
0

k a0
Var(t) 0 n2

0
k2 Var(t)

⎤
⎥⎥⎦
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has determinant zero. In the normal equation

C

⎡
⎣ Δa0

Δλ0

Δk

⎤
⎦ = D = −BT ξ = m

⎡
⎣ − 3

2
n0
a0

[Cov(t, λ) − n0 Var(t)]
λ − λ0

n0
k [Cov(t, λ) − n0 Var(t)]

⎤
⎦

there are only two independent equations

Δλ0 = λ − λ0,
n0

2

[
−3

Δa0

a0
+ 2

Δk

k

]
= n∗ − n0 (6.5)

where n∗ is the solution of the linear model problem. Thus there are infinite
solutions, with all the combinations of Δa0 and Δk satisfying the second
equation. The condition to be satisfied by the solution is n∗ = n(a0) =
k/a

3/2
0 ; the equation (6.5) above constraining Δa0 and Δk is obtained by

expanding and neglecting second-order terms. Fixing the value of either a0

or k removes the problem. An a priori observation of either a0 or k removes
the rank deficiency, although it may leave an approximate one, see below.

6.2 Exact symmetries

An exact symmetry of an orbit determination problem is the action of a
group on the space of the fit parameters x, such that all the residuals are
invariant. Let G be a group of transformations g[x] of RN : if for every g ∈ G

ξ(x) = ξ(g[x]) (6.6)

then G is a group of exact symmetries of the orbit determination. The sim-
plest case is a one-parameter group of symmetries of the orbit determination:
G is either R or R/(2πZ), that is g(s) ∈ G is parameterized by either a real
number or an angle variable; the internal operation in G corresponds to the
sum of the parameters. Moreover, we assume that there is a differentiable
action, that is the map (s,x) �→ g(s)[x] is differentiable, and that G has no
isotropy, that is g(s)[x] = x for every x unless s = 0 applies.1 As for the
other form of symmetries discussed in Section 4.1, the same results apply to
a local one-parameter group of symmetries, with the same properties only
for s in a neighborhood of 0.

If there is a (local) one-parameter group of exact symmetries the normal
equation has rank deficiency ≥ 1. The residuals do not change with s:

0 =
∂ξ(s)[x]

∂s
=

∂ξ

∂x
∂g(s)[x]

∂s
= B

∂g(s)[x]
∂s

1 If s is an angle variable, unless s = 0 (mod 2 π).
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and the hypothesis that the group has no isotropy implies that

0 = ∂g(s)[x]
∂s

∣∣∣∣
s=0

= v1 ∈ RN .

The vector v1 plays the same role as one of the vk in the previous section:
it is orthogonal to each of the rows of B, thus it belongs to the kernel of
C = BT B. The hypothesis of no isotropy can be relaxed as follows: if

0 = ∂g(s)[x∗]
∂s

∣∣∣∣
s=0

the rank deficiency occurs for the normal matrix at the nominal solution x∗.
If there are d groups of symmetries with one parameter and the vectors

vk , defined by the derivative with respect to s of each group action, are
linearly independent, then the rank deficiency is d.

The symmetries could be organized in higher dimension groups, such as
the groups of translations and rotations. In such case we need to exploit the
differentiable structure of the groups, that is they have to be Lie groups
with differentiable actions on the parameter space RN . The no-isotropy
condition cannot in general be satisfied and the group internal operation may
not be commutative (the rotation group SO(3) acting on R3 is an example
of both difficulties). A theory of the Lie groups of symmetries would require
some mathematical background, which is not worth presenting here. Thus in
this book we shall replace, e.g., the symmetry group SO(3), with three one-
parameter symmetry groups, corresponding to the rotations around three
orthogonal axes; this is analogous to what was done in Section 4.1.

If there is a symmetry group, then there is also a corresponding rank
deficiency. If there is a rank deficiency, by (6.2) the one-parameter group
of translations x �→ x + sv is such that the residuals change by quantities
O(s2), of higher order with respect to the change sv, that is a “first order
symmetry”. Is there also an exact symmetry, defined by a one-parameter
group operating by transformations other than translations? Under some-
what more restrictive hypotheses, this can be guaranteed. If the normal
matrix C(x), as computed at each value of the fit parameters x, always has
rank N−1, then the eigenvector with zero eigenvalue defines a smooth vector
field.2 The integral flow of such a vector field provides the symmetry group.

In conclusion, symmetries imply rank deficiencies, and (under some addi-
tional hypotheses) rank deficiencies imply symmetries. The two phenomena
occur in the same cases: the examples in this and in the following chapters
show that they occur often, and their understanding is critical.
2 For the details of this construction, see Section 10.1.
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Model problem with scaling

In the model problem with integral flow (6.4) there is a symmetry with a
multiplicative parameter w ∈ R+

k �→ w3 k, a0 �→ w2 a0

leaving n invariant, thus the general solution of the equation of motion is
also invariant, and so is the prediction function (the observation function
being just a projection onto the second component of the state vector). This
is a change of scale (see Section 4.1), e.g., could be obtained by changing the
unit of length by a factor L = w2 without changing the unit of time, then
k2 would change by a factor L3 = w6. The symmetry can be represented
with an additive parameter s by setting w = exp(s). The derivative of the
symmetry group action with respect to s is

da0

ds
= 2 w2 a0,

dk

ds
= 3 w3 k

and for s = 0, w = 1 this gives a vector (2 a0, 3 k) orthogonal to (−3/a0, 2/k)
which is the vector of coefficients of the equation constraining Δa0 and Δk.

6.3 Approximate rank deficiency and symmetries

An approximate rank deficiency of order d means there is a subspace K

of dimension d in RN , and a constant ε with 0 < ε � 1, such that

v ∈ K, |v| = 1 =⇒ |B v| ≤ ε, (6.7)

a generalization of (6.1). Moreover (6.7) must not apply to a subspace of
dimension > d. Equation (6.7) implies that the quadratic form defined by
the normal matrix C, restricted to K, has values of order ε2 on unit vectors:

v ∈ K, |v| = 1 =⇒ vT C v = (B v)T B v ≤ ε2.

We shall now study the properties of the eigenvalues of C. Let vj , for
j = 1, N , be unit eigenvectors of the normal matrix C, with non-negative
eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λN . The values of the quadratic form on
the unit sphere are constrained by the spectrum of the matrix C:

min|x|=1 xT C x = λ1, max|x|=1 xT C x = λN ,

thus λ1 ≤ ε2. In the simple case d = 1 there is one eigenvalue of the
normal matrix ≤ ε2, one eigenvalue of the covariance matrix ≥ 1/ε2, and
one semiaxis of the confidence ellipsoid ZL(1) of length ≥ 1/ε.
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Approximate rank deficiency of order d > 1

For d > 1 a similar result holds: if the subspace K has dimension d, and the
quadratic form defined by C, restricted to the unit vectors of K, is ≤ ε2,
then the matrix C has at least d eigenvalues ≤ ε2.

This can be proven by recursion on d. The case d = 1 has been proven
above. Let us prove the result for d, assuming it applies to d − 1.

Let Z be the linear subspace of RN orthogonal to the eigenvector v1. The
intersection K ′ = K ∩Z does not contain v1 ∈ K and has dimension d− 1.
Thus we can apply the same result to K ′ ⊂ Z: the quadratic form defined
by C restricted to Z has values ≤ ε2 on the unit vectors of K ′. Thus the
restriction of C to Z has d−1 eigenvalues less than ε2, but these eigenvalues
are λ2 ≤ λ3 ≤ · · · ≤ λN : we conclude λd ≤ ε2.

This has implications on the uncertainty of the results: in an approximate
rank deficiency of order d, there are d eigenvalues of the covariance matrix
Γ = C−1 larger than 1/ε2 and the confidence ellipsoid ZL(1) has d semiaxes
longer than 1/ε. The converse is also true: if there are d semiaxes longer
than 1/ε, then there are d eigenvalues of C smaller than ε2, and the subspace
K generated by the related eigenvectors v1,v2, . . .,vd fulfills the definition
for approximate rank deficiency of order d, with small parameter ε.

This implies that approximate rank deficiency can be found a posteriori by
principal components analysis, that is, after computing the covariance
matrix Γ and its eigenvalues, by selecting the ones larger than some value,
or anyway the few largest ones. As we shall see in the applications of this
method, see Section 16.5, if the approximate rank deficiency is found a
posteriori from the spectrum of the covariance matrix, we need additional
effort to understand what is the source of the problem and whether it can
be fixed or just needs to be swept under the carpet by descoping.

Approximate symmetries

An approximate symmetry is a differentiable group action changing the
residuals by O(ε), where ε is a small parameter. If G is a one-parameter
group with a differentiable action on the fit parameters x, such that for each
g(s) ∈ G

ξ (g(s)[x]) = ξ(x) + ε s a + O(s2), a ∈ Rm ; |a| = 1 (6.8)

and the no-isotropy condition applies, at least locally near x∗, then

ε a =
dξ (g(s)[x])

ds

∣∣∣∣
s=0

=
∂ξ

∂x
(x)

∂g(s)[x]
∂s

∣∣∣∣
s=0

= B v.
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Thus, if |v| = v for the corresponding unit vector

B v̂ =
ε

v
a

and the small parameter is ε/v. We conclude that there is an eigenvalue of
the covariance matrix ≥ v2/ε2.

The case of a higher dimension group of symmetries is more delicate. We
proceed as in Section 6.2 and assume that there are d local one-parameter
groups of approximate symmetries, resulting in d weak directions vi:

B vi = ε ai, |ai| ≤ 1.

To simplify the discussion, we assume the symmetry groups have been re-
parameterized in such a way that |vi| = vi = 1. Let K be the subspace of
dimension d generated by the vi. Then the quadratic form defined by C,
restricted to K, has values O(ε2). However, if we need an explicit estimate
we have to find the value p such that

x ∈ K, |x| = 1 =⇒ xT C x ≤ p ε2.

In general p ≤ d2, and a better estimate can be obtained in special cases.
Then, by applying the same recursive argument as before, there are d eigen-
values of C which have to be ≤ p ε2. Thus there are d semiaxes of the
ellipsoid ZL(1) longer that 1/(ε

√
p).

Taking also into account the re-parameterization problem, the above re-
sult is weaker than the statement “d one-parameter approximate symmetry
groups imply an approximate rank deficiency of order d”, because the small
parameter is not the same. Still, symmetries can be an effective heuristic
method to find and explain rank deficiencies, even approximate ones.

This method can be effectively used in case of symmetry breaking, if
the residuals can be expanded in power series of some small parameter ε:

ξ = ξ0 + ε ξ1 + O(ε2).

This can occur for different reasons, e.g., ξ0 could be the residuals obtained
for some unperturbed equation of motion, ε ξ1 could be the first-order change
due to a minor perturbation containing ε. If a group G is an exact symmetry
of the unperturbed problem obtained for ε = 0, but the perturbation ε ξ1 is
not symmetric, then G is a group of approximate symmetries, although the
explicit computation of the factor p is far from trivial. We shall see many
examples of this in Section 6.5, and in Chapters 15, 16, and 17.
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6.4 Scaling and approximate rank deficiency

Rank deficiency and exact symmetries are topological properties, that is
their definitions (6.1) and (6.6) are independent of the choice of a metric
in the x space of fit parameters. Approximate rank deficiency (and ap-
proximate symmetries) are metric properties, that is, (6.7) and (6.8) are
conditions on the Euclidean lengths of the vectors v and Bv, with v in
some subspace. If the Euclidean norms |v|, |Bv| are replaced by some other
norms, such as ||v||W =

√
vT W v, with a symmetric positive definite weight

matrix W , the definitions for the same ε are changed.
Let P be a diagonal matrix P = diag[p1, p2, . . . , pN ] with all pi > 0.

By scaling we mean a linear transformation in the space RN of the fit
parameters x = P y. A scaling changes the metric, that is |x| = ||y||W with
W = P 2, and has the following effects on the normal equation

By =
∂ξ

∂y
= B P, Cy = BT

y By = P C P, Γy = P−1 Γ P−1,

thus also the eigenvalues of C, Γ are changed by scaling. Scaling is implicit
in the choice of units to convert the quantities to be determined into the nu-
meric fit vector x. The problem is, the units used to measure dimensionally
different quantities are not easy to be compared. Are the initial conditions
measured in astronomical units, rather than in centimeters, more or less
suitable to be compared with the normalized3 harmonic coefficients of the
gravity of some planet? This question has no firm answer, still the change
introduces a factor �

[
1.5 × 1013

]2 in the matrix W .
We would like to define approximate rank deficiency in a way independent

of the units used in the x space, that is invariant with respect to the choice
of an arbitrary diagonal weight matrix. To this goal we need to define some
standard metric, applicable to all orbit determination problems. There are
two meaningful ways to do this.

A posteriori scaling

The a posteriori scaling of the normal matrix C is obtained by reducing to
unitary length the columns of the design matrix B

bi =
∣∣∣∣ ∂ξ

∂xi

∣∣∣∣ =
√

cii, pi = 1/bi for i = 1, N, (6.9)

with C = (cij). Then the scaled normal matrix Cy has all the main diagonal
coefficient equal to 1, all the others less than 1 in absolute value. This is
not possible if some bi = 0, but then there would be exact rank deficiency.
3 Another example of scaling is the normalization of the harmonic coefficients, see Section 13.2.
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A posteriori scaling is also used to increase the numerical stability of the
matrix inversion C−1 = Γ, by computing Γy = C−1

y and then rescaling it
to Γ = P Γy P . The reason is that the conditioning number of Cy is often
much smaller than that of C. For example, if the matrix C is diagonal,
whatever cond(C) the inversion is trivial, indeed Cy = I has conditioning
number 1; if C is diagonal dominant4 then Cy is also diagonal dominant
and the inversion is numerically stable, even when cond(C) is very large.
The scaled cond(Cy) indeed characterizes the difficulty of inversion and the
stability of the result: even if there are methods (discussed in Section 5.3) to
perform the inversion for very large cond(Cy), the iterations of differential
corrections may diverge if this is the case.

The approximate rank deficiencies could be analyzed for the a posteriori
scaled matrix Cy . They indicate aliasing, that there are some fit parameters
x which cannot be accurately entangled, having equivalent effect on the
residuals (to first order). They also measure the numerical difficulty of
inversion, even with rescaling: since the eigenvalues of Cy cannot be very
large (they are anyway ≤ N), if there is a large cond(Cy) there needs to
be at least one eigenvalue of Cy smaller than ε = N/cond(Cy), thus an
approximate rank deficiency for Cy of order d ≥ 1, with ε as small parameter.

The matrices Cy , Γy have no obvious probabilistic interpretation. If we
scale the covariance matrix so that the main diagonal has coefficients 1

Corr(x) = (rij), rij =
γij√
γii γjj

we obtain the correlation matrix: rij(x) = Corr(xi, xj) measures the
dependence of the random variables xi and xj ; if only these two were
considered, there would be a simple interpretation in terms of regres-
sion line and of the size of the residuals (Section 5.1). Unfortunately,
cond(Corr(x)) = cond(Γy), although numerical tests with random design
matrices B show that they are of the same order of magnitude.

A priori scaling

The a priori scaling of the normal matrix C is obtained by considering
an a priori diagonal normal matrix C0. It is not meant to represent a
formal a priori knowledge, which could be handled with the addition of a
priori observations according to eq. (6.3). The matrix C0 could be built
from upper bounds, derived from theory and/or very weak observational
constraints, e.g., of the form |xi| ≤ 1/

√
cii. Then the a priori scaling would

4 There are different possible definitions, e.g., with the coefficients on the main diagonal larger
than the sum of the absolute values of the others on the same row or column.
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be given by the diagonal matrix P such that P C0 P = I; i.e., each parameter
xi would be measured as a fraction of its upper bound.

The approximate rank deficiencies could be analyzed for the a priori scaled
matrix Cy . They are useful to identify the parameters, or group of param-
eters, which cannot be measured at all with the current experiment, to the
point that the values formally determined may be absurd.

As the simplest example, if there is just one parameter such that the
corresponding column of the a priori scaled design matrix By = B P has a
norm < ε, then the unit vector v̂ along the corresponding axis is such that
v̂T Cy v̂ < ε2 and the confidence ellipsoid has at least one semiaxis larger
than 1/ε. In this case it does not matter whether the matrix inversion is
stable, anyway the result is going to be absurd, and the following iterations
of differential corrections may destabilize the result for other parameters. In
such cases either descoping or constraining needs to be applied.

In conclusion, approximate rank deficiencies and approximate symmetries
are extremely valuable as heuristic tools, either to debug the design of an
orbit determination experiment or to warn about the unreliable results of
one actual test. However, in most cases they provide only order of magnitude
estimates, and have to be used with a bit of common sense.

6.5 Planetary systems: extrasolar planets

Planets orbiting around a star different from the Sun are one of the most
important astronomical discoveries of recent years. Most such extrasolar
planets have been discovered by measuring the radial velocity of the star
with respect to the Solar System. As of October 2007, this was the case for
245 extrasolar planets5 out of a confirmed total of 279. In most cases the
radial velocity of the star was measured by spectrometry, with accuracies
currently at a few m/s; in a few cases planets have been discovered around
pulsars, where the radial velocity is measured by the Doppler shift of the
pulsar. Anyway, the radial velocity needs to be measured with respect to
the barycenter of the Solar System, thus the orbit of the Earth from which
we observe must also be accurately computed in barycentric coordinates
(see Section 4.3) and its radial velocity component along the line of sight
has to be subtracted.6 In this section we will outline the procedure for orbit
determination of an extrasolar planetary system.

5 See http://vo.obspm.fr/exoplanetes/encyclo/catalog.php for an up-to-date list; occulta-
tion is currently the second most effective method.

6 If this subtraction were not accurate enough, it would lead to a pretended discovery of a planet
with period an integer fraction of a year; in fact this happened once.
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One planet

If there is only one planet, the dynamical model is the two-body problem
with m0, the mass of the observed star, significantly larger than m1, the mass
of the planet. Neglecting the interaction with the other stars (and with the
galaxy) the center of mass of the system of two bodies with position vectors
r0, r1 has a constant velocity in any inertial system, such as the one we
adopt, which is moving with the center of mass of the Solar System. We
are also neglecting stellar and galactic perturbations on the Solar System
barycenter motion. The acceleration of the Sun towards the galactic center
is just a few m/day2, and if the star is much closer than the galactic center,
the differential acceleration is much less.

With the standard reduction of the two-body problem, eq. (4.9),

b0 = μ1 r1 + (1 − μ1)r0, μ1 =
m1

m0 + m1
, b1 = r1 − r0

the coordinate of the star is s = r0 −b0 = −μ1b1 in the barycentric system,
and r0 = b0 + s = b0 − μ1b1, with respect to the center of mass of our
Solar System. Let (x, y, z) be the Cartesian coordinates of b1 in a reference
system with the z axis in the direction ẑ of the Earth, (x0, y0, z0) the cor-
responding coordinates of the center of mass, and let (a, e, I,Ω, ω, v) be the
Keplerian orbital elements of the two-body orbit of b1; the mean motion is
n =

√
G M0/a3, with M0 = m0 + m1.

In an orthogonal reference system centered in b0, with the x1 axis directed
along the Laplace–Lenz vector e and the z1 axis along the direction ĉ1 of
the angular momentum of b1, the coordinates of the Keplerian orbit are⎡

⎣ x1

y1

z1

⎤
⎦ =

⎡
⎣ r cos v

r sin v

0

⎤
⎦ , r =

a (1 − e2)
1 + e cos v

.

By rotating this vector around the angular momentum axis by an angle ω⎡
⎣ x2

y2

z2

⎤
⎦ = Rω ĉ1

⎡
⎣ x1

y1

z1

⎤
⎦ =

⎡
⎣ r cos(v + ω)

r sin(v + ω)
0

⎤
⎦

we have the x2 axis along the ascending node N̂ = (ẑ× ĉ1)/ sin I. Rotating
by an angle I around N̂⎡

⎣ x3

y3

z3

⎤
⎦ = RI N̂

⎡
⎣ x2

y2

z2

⎤
⎦ =

⎡
⎣ r cos(v + ω)

r sin(v + ω) cos I

r sin(v + ω) sin I

⎤
⎦
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and finally, rotating by an angle Ω around the ẑ axis, we obtain the vector
b1, but this is not necessary because z = z3. In conclusion the observable
radial velocity of the star is

ṙ0 · ẑ = ḃ0 · ẑ − μ1ż = ż0 − μ1 sin I
d

dt
[r sin(v + ω)] ,

with time derivative
d

dt
[r sin(v + ω)] = ṙ sin(v + ω) + r v̇ cos(v + ω)

where v̇ is obtained from the angular momentum c1

v̇ =
c1

r2 =
√

GM0 a (1 − e2)
(1 + e cos v)2

[a (1 − e2)]2
=

n

(1 − e2)3/2 (1 + e cos v)2

r v̇ =
n a√
1 − e2

(1 + e cos v)

and ṙ is obtained from the derivative of the conic section equation

ṙ =
a (1 − e2)

(1 + e cos v)2 e sin v v̇ =
n a√
1 − e2

e sin v.

Then
d

dt
[r sin(v + ω)] =

n a√
1 − e2

[cos(v + ω) + e cos ω] ,

ṙ0 · ẑ = ż0 −
μ1 sin I n a√

1 − e2
[cos(v + ω) + e cos ω] (6.10)

is the observable as an explicit function of the orbital elements, dependent
upon time only through the true anomaly v.

Circular approximation

If we assume a circular orbit (e = 0) then v̇ = n, ω is just a phase, and

ṙ0 · ẑ = ż0 − K cos(v + ω) = ż0 + (−K cos ω) cos v + (K sinω) sin v, (6.11)

where K = μ1 sin I n a =
G1/3 n1/3 m1 sin I

M
2/3
0

is a constant depending upon the masses m0, m1, the mean motion n, and
the inclination I. If we have measured the mean motion n as the main
frequency of the signal, then eq. (6.11) is a linear model (Section 5.1) with
three constants k1 = ż0, k2 = −K cos ω, k3 = K sinω to be fitted.
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If the observations were available for every time t this would be the sim-
plest problem of Fourier analysis, but in practice the observations are given
at times sampled in a non-uniform way (only during the nights) and over a
finite time span. Let the m observations ṙ = (ṙi) be at times t = (ti) and
let us assemble the vectors of values cosv = cos(v(ti)), sinv = sin(v(ti)):

ξ = ṙ − k1 1 − k2 cosv − k3 sinv,

B =
∂ξ

∂(k1, k2, k3)
= − [1 cosv sinv] .

If cosv · 1 = sinv · 1 = cosv · sinv = 0 the normal matrix is diagonal and
the solution is

k1 = ṙ =
1
m

m∑
i=1

ṙi, k2 =
ṙ · cosv

cosv · cosv
, k3 =

ṙ · sinv
sinv · sinv

.

Moreover, if the data points are evenly distributed with respect to the phase
of the signal sinusoidal terms, then cosv · cosv � sinv · sinv � m/2 and
the least squares solution is given by the classical Fourier analysis formulae,
the integrals being replaced by finite sums over the available data points.
In practice the base vectors are not orthogonal, the normal matrix is full
and it has to be inverted. A solution could be obtained by Gram–Schmidt
orthonormalization of the three vectors 1, cosv, sinv (Ferraz-Mello 1981).
If the time span of observations is not much longer than the period 2π/n,
the correlations between the constant and the sine wave are large and the
solution is significantly different from the one obtained by the Fourier
analysis formulae.

Anyway the result is that the radial velocity ż0 of the center of mass,
the phase ω, and the amplitude K can be independently determined. The
problem is that, even assuming n is known, K contains three parameters
m1, m0, sin I. Let us assume the mass of the star is measured independently
from the spectrum, using the Hertzsprung–Russel relationship between color
and mass, and let us approximate M0 � m0.7 Then only the product
m1 sin I appears in the signal. Inspection of eq. (6.10) shows that this
has nothing to do with the circular orbit approximation, but is an intrinsic
property of the observable radial velocity.

7 A more rigorous procedure would assign an uncertainty to this estimate and add an a priori
observation to account for this. Also, if the planetary mass m0 is not negligible with respect
to that of the star, the nonlinear effects are stronger.
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First order in eccentricity

A solution applicable to eccentric orbits, but approximated by neglecting
the terms of degree two in eccentricity, can be obtained by truncation from
the formula for the time derivative of the true anomaly v

(1 − e2)3/2

(1 + e cos v)2 v̇ = n =⇒ l = n (t − t0) =
∫ v

0
(1 − 2 e cos v) dv + O(e2)

providing an approximate expression for the mean anomaly l

v − 2 e sin v + O(e2) = l

and the inverse formula

v = l + 2 e sin l + O(e2)

implying

sin v = sin l + e sin(2 l) + O(e2), cos v = cos l + e cos(2 l) − e + O(e2).

Substituting into cos(v + ω) we obtain, neglecting O(e2) terms,

ṙ0 · ẑ = ż0 − μ1 sin I n a [cos(l + ω) + e cos(2 l + ω)]

and the signal appears as a constant plus two trigonometric terms, with
frequencies n and 2n and phase constants −n t0+ω, −2 n t0+ω, respectively.
Assuming n is known from frequency analysis, this suggests using a linear
model with five base functions and five coefficients ki, i = 1, 5:

ṙ0 · ẑ = k1 + k2 cos(n t) + k3 sin(n t) + k4 cos(2 n t) + k5 sin(2n t).

Thus it is possible to find a linear least squares solution for these param-
eters, determining e, ω, m1 sin I, t0 and ż0; a is determined from n (again
assuming m0 is known, and approximating M0 � m0). The orbital ele-
ment Ω cannot be determined at all, and the mass m1 cannot be entangled
from the orbit plane parameter sin I. Thus, if the problem were posed with
eight parameters to be solved (a, e, I,Ω, ω, t0, ż0, m1) there would be a rank
deficiency of 2. Again, this is not due to the first-order truncation in e.

Rank deficiency of the exoplanet problem

In this problem there is an exact symmetry, even without any truncation
to some power of e: the rotations of the exoplanetary system around the z

axis Rs ẑ, for each rotation angle s, leave the z component of ṙ0 unchanged,
thus the residuals are exactly the same. The effect of such rotation in the
orbital elements, given that the inclination is measured with respect to the
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plane parallel to (x, y) passing through the star, is simply Ω → Ω + s. Thus
∂ξ/∂Ω = 0, that is, if Ω is included in the list of parameters to be solved,
the matrix B has one column of zeros, and the normal matrix C = BT B

has one row and one column of zeros. This problem is easily solved by
descoping, that is by determining a list of parameters not including Ω.

In the approximation M0 � m0 the observables of eq. (6.10) contain m1

and sin I only through their product m1 sin I

m1
∂ξ

∂m1
= sin I

∂ξ

∂(sin I)
,

thus two rows of the matrix B are always linearly dependent and there is
one additional rank deficiency. A vector v satisfying B v = 0 is

v = sin I ∇(m1) + m1 ∇(sin I)

where ∇(m1), ∇(sin I) are vectors pointing in the direction of change of
m1, sin I, respectively.

Again descoping is the only solution, that is the parameter to be solved
is just the product m1 sin I. This has a serious implication due to the fact
that an extrasolar planet is, by definition, not a companion star. Thus to
prove that an extrasolar system contains a planet it is necessary to provide
an upper limit for the mass (e.g., 13 times the mass of Jupiter is estimated
to be the lower mass limit for deuterium fusion, thus for a body shining by
its own radiation). If only the combination m1 sin I is constrained by the
observations, there is often no way to exclude a very low value of I and a
large mass. In some cases it is possible to exclude a low I because partial
occultations of the star by the planet are observable.

Exoplanetary systems

The rank deficiencies described above can be found also in an extrasolar
planetary system with more than one planet. Let us suppose there is
a star and two planets, with masses m0, m1, m2 and let b0,b1,b2 be their
positions in barycentric coordinates. Then the observable is

ṙ0 · ẑ = [ḃ0 + ṡ] · ẑ

with the barycentric star position

s = −m1

M0
b1 −

m2

M0
b2,

where M0 is the total mass. The rotations Rs ẑ around the line of sight
are exact symmetries of the equation of motion. If the two planets are
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parameterized by Keplerian orbital elements (aj, ej , Ij , Ωj , ωj , vj), j = 1, 2,
the effect of Rs ẑ is Ωj → Ωj + s. Thus a rank deficiency occurs with

∂ξ

∂Ω1
+

∂ξ

∂Ω2
= 0.

The solution is to remove Ω1 and Ω2 from the list of parameters, replacing
them with Ω2 − Ω1. However, even after this descoping by one parameter
the system still has some approximate rank deficiencies, resulting from the
smallness of the mass ratios m1/m0, m2/m0. If we were to neglect the
mutual perturbations of the two planets (both direct and indirect), by using
eq. (6.10) for each of the two planets we obtain

ṙ0 · ẑ = ż0 −
2∑

j=1

mj sin Ij nj aj

(m0 + mj)
√

1 − e2
j

[cos(vj + ωj) + ej cos ωj ]

with nj =
√

Gm0/a3
j . Then both angles Ωj do not appear and the incli-

nations appear only in the combinations mj/(m0 + mj) sin Ij . If we were
trying to solve for 15 parameters (2×6 orbital elements plus m1, m2, ż0) the
normal matrix would have rank 11.

The equation of motion for a three-body system in barycentric coordinates
can be described as two two-body systems with perturbing accelerations
containing the planetary masses m1, m2. We define an adimensional small
parameter μ = (m1 +m2)/m0, which is contained in all perturbation terms.
Then the short periodic perturbations of the two two-body subsystems are
O(μ) and the perturbations in the observable due to these perturbations are
O(μ2). Hence the observable is ż0 + O(μ) + O(μ2), the second-order part
depending only upon the perturbations. Thus the coupling between two (or
more) planets is an example of symmetry breaking with small parameter
μ, and there is an approximate rank deficiency of order 3, with ε = O(μ);
however, an explicit computation of ε is not easy. The practical rule of
thumb is that an observation time span of the order of 1/μ periods of the
planets is required to determine m1, m2, I1, I2 in a robust way.8

6.6 Planetary systems: the Solar System

The orbits of the major planets of our Solar System can be the subject of or-
bit determination. From the discussion in Section 4.6, at least the eight ma-
jor planets have significant interactions, thus their orbits need to be solved at
8 In systems with two planets in a mean motion resonance a time span of the order of 1/

√
μ

could be enough.
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once, with all their masses among the fit parameters. Some of the major
satellites (especially the Moon) and the largest asteroids need to be taken
into account. To control the complexity of the problem, it is possible to
decouple the orbit determination for some satellites and asteroids.

Symmetries

This orbit determination problem has symmetries and rank deficiencies de-
pending upon the set of available observations. If the observations are only
relative, between planets of our Solar System (e.g., if all the observations
are from Earth), then all observables, be they either angles or distances be-
tween planets or their derivatives, are exactly symmetric with respect to the
rotation group SO(3). Thus it is essential to add three a priori constraints,
that is to select an inertial reference system (see Appendix C).

If the observations are absolute, connected to some extrasolar inertial
reference system, e.g., angles relative to “fixed stars” (in practice, a non-
rotating astrometric catalog of stars), then the SO(3) symmetry disappears.
If there are only angular observations the change of scale defined in Sec-
tion 4.1 is an exact symmetry and rank deficiency of order 1 occurs. Thus
the classical results on the orbit determination of the planets were only ex-
pressed in terms of a unit of length, the astronomical unit (AU), whose
value in terrestrial units could not be accurately determined.9

The current state-of-the-art is more complex. Both absolute angular ob-
servations of the planets (with respect to star catalogs) and relative range/
range-rate observations are available. The latter are obtained by planet-
ary radar, by Lunar laser ranging, by tracking landers on other planets, by
the orbit determination of artificial satellites of other planets. In general,
range observations are more accurate than angular observations, although
there has been progress also in the latter. For example, in the case study
of Chapter 17 the accuracy in range is expected to be 10 cm over a dis-
tance � 1 AU, with a relative accuracy < 10−12. Thus there is an ap-
proximate SO(3) symmetry, in that the angular observations are by far less
accurate.

The translations of the barycenter b0 (see Section 4.3) do not affect ob-
servations between Solar System bodies. To remove the corresponding exact
rank deficiency we can use an equation of motion in barycentric coordinates
(4.16) with a priori constraints b0 = ḃ0 = 0: the coordinates of the Sun are
eliminated, being computed from (4.15).

9 The first accurate value of the AU was obtained from the parallax of the asteroid Eros in 1898.
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Relativistic effects

A full discussion of the complex problem of the planetary ephemerides
is beyond the scope of this book. We would like to mention one key fea-
ture, which will be needed in Chapter 17. The equation of motion for the
planets to be used for orbit determination, given the current observational
accuracy, is not just that of the N -body problem, but has to be fully com-
pliant with general relativity. Also the observation functions have to be
fully relativistic, taking into account the non-Newtonian properties of light
propagation in a curved space-time, and the space-time coordinates have to
be selected with care and computed with accurate transformation equations.
We have used two simulations of an orbit determination experiment for a
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Fig. 6.1. The relativistic signal in range (including dynamics and Shapiro effect) from a Mercury
orbiter over a 1-year mission has a peak-to-peak amplitude of � 900 km, with S/N � 9 × 106

(assuming the accuracy of the experiment described in Chapter 17). In range-rate the peak-to-
peak signal is � 1 m/s with S/N � 3 × 105 .

Mercury orbiter, one with a pure Newtonian N -body model for the orbits of
the planets, the other with a fully relativistic model. The differences plotted
in Figure 6.1 show that, with state-of-the-art tracking systems, there is a
very large signal-to-noise ratio in the relativistic effects.
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There is no way to really explain general relativity in short. We shall
give the equation of motion by using the parametric post-Newtonian
approach: the relativistic equation of motion is linearized with respect to
the small parameters v2

i /c2 and Gmi/rik , where vi is the barycentric velocity
for each of the bodies of mass mi, c is the speed of light, and rik is a
mutual distance, appearing in the metric of the curved space-time, hence
in the equations for geodesic motion. This can be formalized by adding
to the Lagrangian LNEW of the N -body problem, given in eq. (4.2), some
corrective terms of post-Newtonian (PN) order 1 in the small parameters

L = LNEW + LGR. (6.12)

By using the notation (Moyer 2003)

rij = rj − ri, rij = |rij |
vij = ṙj − ṙi = vj − vi, vij = |vij | ,

LGR can be written in a synthetic way as

LGR =
1

8 c2

∑
i

miv
4
i − 1

2 c2

∑
i

∑
j �=i

∑
k �=i

G2 mi mj mk

rij rik
(6.13)

+
1

2 c2

∑
i

∑
j �=i

G mi mj

rij

×
[
3
2
(v2

i + v2
j ) −

7
2
(vi · vj) −

1
2 r2

ij

(rij · vi) (rij · vj)
]
.

If the observations are between bodies of the Solar System, including space
probes, the position and velocity of the Sun have to be constrained by the
barycenter integrals to avoid an exact rank deficiency of order 6. However,
the integrals for the Lagrangian system defined by L are different from the
ones of LNEW : by using the translations group of symmetries and Noether’s
theorem we get a relativistic total linear momentum p:

p =
∑

i

∂L

∂vi
=
∑

i

mivi

[
1+

v2
i

2 c2 − Ui

2 c2

]
− 1

2 c2

∑
i

∑
j �=i

Gmi mj

r3
ij

(rij · vj) rij

(6.14)
where Ui =

∑
k �=i Gmk/rik is the potential at the i-th body, neglecting

terms of PN order 2. We have ṗ = 0, thus p is a vector integral. The vector

P =
∑

i

miri

[
1 +

v2
i

2 c2 − Ui

2 c2

]
(6.15)

has the property, again neglecting O(v4/c4), that Ṗ = p, thus it moves in a
linear uniform way like the Newtonian center of mass. A relativistic center
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of mass can be defined as

b0 =

∑
i miri

[
1 + v2

i
2 c2 − Ui

2 c2

]
∑

i mi

[
1 + v2

i
2 c2 − Ui

2 c2

] (6.16)

where the denominator, neglecting PN order 2 terms, is
∑

i mi +H/c2, with
H the Hamiltonian, and it is also an integral. Thus we can use the constraint
b0 = ḃ0 = 0 to reduce the dimensionality of the vector of parameters to
be solved: the position and velocity of the Sun can be eliminated from the
equation of motion and computed from those of the other bodies by

r0 =
−∑

i �=0 miri

[
1 + v2

i
2 c2 − Ui

2 c2

]
m0

(
1 + v2

0
2 c2 − U0

2 c2

) . (6.17)

With this Lagrangian formalism, the relativistic equation of motion at the
post-Newtonian order 1 are well defined and can be used for orbit determi-
nation of the planets, also of interplanetary space probes. Moreover, with
state-of-the-art interplanetary tracking data, given the very large S/N ratio
of the relativistic effects as shown in Figure 6.1, it is possible to test general
relativity to great accuracy. The same formalism allows us to parameterize
the equation of motion (and other relativistic effects) with constants hav-
ing fixed values in Einstein’s theory, and to solve for their value, together
with the initial conditions and instrumental parameters, in the orbit deter-
mination procedure. One such post-Newtonian parameter γ, with value 1
in general relativity, controls how the space-time curvature depends upon
the gravitational potential energy. A deviation from general relativity can
be introduced with velocity-dependent terms

Lγ̄ =
γ̄

2c2

∑
i

∑
j �=i

Gmimj

rij
v2
ij ,

where γ̄ = γ − 1. The Eddington parameter β, equal to 1 in general
relativity, appears in the three-body interactions, thus a violation can be
introduced with

Lβ̄ = − β̄

c2

∑
i

∑
j �=i

∑
k �=i

G2 mi mj mk

rij rik
,

where β̄ = β − 1. In the general relativity theory of Einstein the only
free parameter is G, which is constant (Ġ = 0); nevertheless, the product
Gm0 changes because of the mass shed by the Sun as radiation and charged
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particles, see Section 4.6. This effect can be included in the dynamical model
by the Lagrangian term

Lζ = (t − t0) ζ
∑
i �=0

G m0 mi

ri0
, ζ =

d(Gm0)/dt

Gm0
,

where t0 is a reference epoch for m0. For an accurate orbit determination
of Mercury, the non-spherical shape of the rotating Sun does matter, since
r10/R� � 900: the corresponding Lagrangian term LJ2� is the zonal spher-
ical harmonic of degree 2 of the Sun, with respect to the rotation axis of the
Sun, see Section 13.2. Thus the equation of motion has to be deduced from
the Lagrangian

L = LNEW + LGR + Lγ̄ + Lβ̄ + Lζ + LJ2�. (6.18)

Equation (6.14) for the total linear momentum does not change for the added
terms, because the ∂Lγ/∂vi cancel in the sum (

∑
i ∂Lγ/∂vi = 0), the other

three terms do not depend upon the velocities, thus the equation (6.17) for
the Sun is not changed.

Lagrangian terms can describe other violations, e.g., the violations of the
strong equivalence principle and preferred frame effects (see Section 17.5).
A violation of the equivalence principle is obtained by assuming that in
the Newtonian Lagrangian LNEW the gravitational masses mi, mj , as they
appear in the potential terms G mi mj/rij , are not the same as the inertial
masses mI

j appearing in the kinetic energy terms mI
j v2

j /2. The difference
may depend upon the composition of the mass mj , e.g., the fraction of the
mass which results from the rest mass, from nuclear binding energy, from
gravitational self-energy. While the dependence upon the nuclear binding
energy has been excluded by laboratory experiments to very great accuracy
(better than 10−12), the dependence on gravitational self-energy is difficult
to test because this fraction is very small for all bodies we can use: even for
the Sun the fraction is Ω0 � −3.52×10−6. If we assume mI

0 = m0 [1 − η Ω0],
the parameter η can be tested by orbit determination. However, in the
equation of motion for the planets in barycentric coordinates the inertial
mass of the Sun mI

0 does not appear directly. The change occurs in the
integral of the center of mass, where m0 is replaced by mI

0, resulting in a
modified equation for the coordinates of the Sun

r0 =
−∑

i �=0 miri

[
1 + v2

i
2 c2 − Ui

2 c2

]
m0 [1 − η Ω0]

(
1 + v2

0
2 c2 − U0

2 c2

) .

The indirect perturbation from this displacement of the Sun affects the
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orbits of the other bodies: ∂r̈j/∂η = 0 contains Ω0 mk for each k = 0, the
contribution of Jupiter is as large as that of all the other planets together.

To model preferred frame effects requires us to add to the Lagrangian

Lα =
α2 − α1

4 c2

∑
j

∑
i �=j

G mi mj

rij
(vi + w) · (vj + w)

− α2

4 c2

∑
j

∑
i �=j

[rji · (vj + w)] [rji · (vi + w)]
Gmi mj

r3
ij

with two additional post-Newtonian parameters α1, α2 and with w the ve-
locity of the Solar System barycenter with respect to the preferred frame,
usually assumed to be that of the cosmic microwave background, thus
|w| = 370 ± 10 km/s in the direction (α, δ) = (168◦, 7◦).

The problem arises from the presence of additional terms in the total linear
momentum integral p: the Lagrangian L + Lα, where L is from eq. (6.18),
is still invariant by translation. The integral from Noether’s theorem is∑

i

∂(L + Lα)
∂vi

= p +
∑

i

∂Lα

∂vi

with p from eq. (6.14). This integral is not the derivative of P and this
cannot be fixed by changing the definition, that is, a center of mass integral
does not exist (Will 1981, Section 4.4). A possible solution to formulate in
a consistent way the equation of motion with preferred frame effects is still
to use a reference system centered in b0 as defined in eq. (6.15), which is
however accelerated by

b̈0 = −
d
dt

∑
i

∂Lα
∂vi∑

i mi

[
1 + v2

i
2 c2 − Ui

2 c2

] ,

and the equation of motion is the Lagrange equation with Lagrangian L+Lα,
with the additional “apparent acceleration” −b̈0.

There are many other possibilities of violations of the fundamental laws
of gravitation and of inertia, including violations of the conservation of total
linear momentum, of total angular momentum, and of total energy, and
also violations of the action–reaction law, but most of these appear unlikely.
Thus a list of parameters to be solved including γ, β, ζ, J2�, η, α1, α2 can be
appropriate for a test of the theory of gravitation based on Solar System
orbit determination. More on this subject is explained in Chapter 17.
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THE IDENTIFICATION PROBLEM

The identification problem is the attempt to find, among independent
detections of celestial bodies, those belonging to the same physical ob-
ject. The problem becomes more difficult as the population of observed
objects increases (see Chapter 11). This chapter is based on (Milani 1999,
Milani et al. 2000a, Milani et al. 2001a) and ongoing research. The main
example is the population of small Solar System bodies. Most of the
observable ones are asteroids, although the observed population contains
a smaller fraction of comets and others. We will use the word asteroid in
the following discussion, although it applies also to the other populations.

An asteroid is typically observed only over a time span of a few hours to
a few weeks, and is bright enough to be visible only over the apparition,
a time interval spanning at most a few months. If this time span is not ex-
ploited in full, the single apparition orbit determination either is impossible
or results in a rapidly growing prediction uncertainty: by the time of the
next apparition the asteroid could be in a portion of the sky larger than the
field of view of the telescopes available for the recovery. Thus we have a
lost asteroid, that is, it is more likely to be rediscovered by chance than
by looking at the predicted position. The databases of detected Solar Sys-
tem objects contain many single apparition arcs: the goal is to join together
those of the same object, allowing for an accurate orbit determination.

7.1 Classification of the problem

The identification problem deals with separate sets of observations, which
might, and might not, belong to the same object. As a basic form of the
problem, we assume that these observations are partitioned into exactly two
arcs, and that the observations of the same arc are of the same object.1

1 The latter assumption may also fail, as discussed in Chapter 11.
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Orbit identification

The problem can be classified as orbit identification when the observations
of both arcs are sufficient to separately solve for two least squares orbits,
one for each arc: then the input data include two sets of orbital elements,
with their covariance matrices and residuals. The identification is confirmed
if the observations from both arcs can be fitted to a single orbit.

To test two given orbits for possible identification is not simple, because of
the strong nonlinearity of the orbit determination problem: we need a first
guess orbit to start the differential corrections procedure. Nevertheless, this
basic problem is much less difficult than the global problem: given a catalog
containing N short arc orbits, we want to know which of the N(N − 1)/2
couples belong to the same object, and how to compute a catalog of all
the orbits of the physically distinct objects. With the modern catalogs
including hundreds of thousands of orbits, and the next-generation surveys
expected to discover tens of millions of objects, such a problem could lead
to unacceptable computational complexity, unless it is tackled with a smart
algorithm. Thus there are three steps in the orbit identification problem:

(i) to propose identifications, by selecting a small subset of couples;
(ii) to compute a preliminary orbit as first guess for each couple in (i);
(iii) to iterate differential corrections for each couple of arcs together,

checking convergence to an orbit solution with acceptable residuals.

Attribution

The identification problem can be classified as attribution when an amount
of data insufficient to compute a unique orbit for one arc (e.g., two two-
dimensional observations, that is m = 4) is compared to an orbit already
computed for the other arc. Not enough information is available in the
orbit space, thus we need to compare the data in the observation space: the
predictions from the orbit with the observations from the other arc.

If there is a catalog of N orbits and M observed arcs, each one too short
to compute an orbit, this global problem has to be decomposed into three
steps similar to those of the orbit identification case. The number of pro-
posed attributions in step (i) must be much smaller than M × N . Step (ii)
can be less difficult in that the original orbit from the better arc could be
good enough to serve as preliminary orbit, but this is not always the case.
Step (iii) is the same as above, but the quality control to be applied to the
residuals can take into account the asymmetry between the two arcs.
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Recovery and precovery

This is the procedure to search for other observations belonging to the same
physical object, assuming they are not already in the databases of past
observations. It can take two forms: recovery in the future and in the sky,
by pointing a telescope at one or more predicted positions of an already
known object, and precovery in the past and in the archives of images
of the sky, looking for observations which were either not measured or not
included in the observation databases.

The main problem of recovery/precovery is that the resources needed
(telescope time for recovery, human labor, and/or computational resources
for precovery) depend upon the uncertainty of the prediction. When re-
covery observations are performed, often intruder asteroids are found along
with (sometimes instead of) the wanted one; the same for precovery. Thus
an attribution problem has to be solved after obtaining the observations.

Linkage

The most difficult kind of identification problem is linkage, when two arcs
of observations, both too short to perform orbit determination, are to be
joined into an arc good enough to compute an orbit. In this case there is
no way to directly compare quantities of the same nature, such as orbits
with orbits, observations with observations: orbits are not available, and
observations at different times cannot be directly compared (unless the time
difference is very short). Thus the sequence of steps has to be different:

(i) to compute one or more hypothetical orbit, compatible with the ob-
servations of the first arc, together with some replacement of the
covariance matrix to assess uncertainty;

(ii) to compare predictions of the observations from the hypothetical or-
bit(s) with the observations of the other arcs, selecting the couples
proposed for identification;

(iii) to compute a preliminary orbit compatible with both arcs;
(iv) to check the convergence of differential corrections, with the data of

both arcs, and the quality of the residuals.

Linkage may be a difficult problem even when there are just a few observed
arcs. Thus, when dealing with a large database of observed arcs too short
for orbit determination, it is especially necessary to keep under control the
computational complexity of the global linkage problem. Since linkage is
a more difficult problem than the other classes of identifications, it will be
discussed in the dedicated Chapter 8.
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7.2 Linear orbit identification

The starting point for the basic orbit identification problem is a set of two
nominal orbits, obtained by convergent differential corrections, as described
in Chapter 5, with the initial conditions as the only fit parameters. Let
x1,x2 ∈ R6 be two separately determined vectors of initial conditions, and
C1, C2, Γ1, Γ2 be the normal and covariance matrices computed at conver-
gence, that is at x1,x2, respectively. We assume that these initial conditions
are at the same epoch; if this is not the case, the orbits and the matrices have
to be propagated to some common epoch (see Section 5.5). To determine
x1,x2 we have used two separate sets of observations

(ti, ri), i = 1, m1, (ti, ri), i = m1 + 1, m1 + m2

with m1 observations in the first arc and m2 in the second arc; they have
resulted in the residuals, with respect to the nominal solutions,

ξ1 = (ξi), i = 1, m1, ξ2 = (ξi), i = m1 + 1, m1 + m2.

We can compute the two separate target functions for i = 1, 2

Qi(x) =
1

mi
ξi ·ξi = Qi(xi)+ΔQi(x) = Qi(xi)+

1
mi

(x−xi) ·Ci (x−xi)+ · · ·

where the dots contain the terms of degree 3 in (x−xi) and those of degree
2 containing the residuals, see Section 5.2. The two penalties ΔQi would
be zero if the nominal orbits could be assumed, but if a single physical
body has been observed, there must be a single orbit fitting both sets of
observations, and we cannot assume x = x1 and x = x2. Then the joint
target function Q contains a linear combination Q0 of the two separate
minima Q1(x1), Q2(x2) plus a penalty ΔQ measuring the increase of the
target function resulting from the hypothesis that the two objects are the
same: with m = m1 + m2

mQ(x) = ξ1 · ξ1 + ξ2 · ξ2 = m1Q1(x) + m2Q2(x) = mQ0 + mΔQ(x)

m Q0 = [m1Q1(x1) + m2Q2(x2)]

mΔQ(x) = m1ΔQ1(x) + m2ΔQ2(x)

= (x − x1) · C1 (x − x1) + (x − x2) · C2 (x − x2) + · · ·

Linear theory

The linear algorithm to solve the problem is obtained when the linear ap-
proximation can be used, not only locally, in the neighborhood of the two
separate solutions x1 and x2, but even globally for the joint solution. This is
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a strong assumption, because we cannot assume that the two separate solu-
tions are near to each other. However, if the assumption is true, we can use
the quadratic approximation for both penalties ΔQi, and obtain an explicit
formula for the solution of the identification problem (Milani et al. 2000a).
Neglecting all the higher order terms (the dots in the previous formula)

m ΔQ(x) � (x − x1) · C1 (x − x1) + (x − x2) · C2 (x − x2)

= x · (C1 + C2)x − 2x · (C1 x1 + C2 x2) + x1 · C1 x1 + x2 · C2 x2 .

Then the minimum of the penalty ΔQ can be found by minimizing the
non-homogeneous quadratic form of the formula above. If the new joint
minimum is x0, then by expanding around x0 we have

m ΔQ(x) � (x − x0) · C0 (x − x0) + K

and by comparing the last two formulae we find:

C0 = C1 + C2,

C0 x0 = C1 x1 + C2 x2,

K = x1 · C1 x1 + x2 · C2 x2 − x0 · C0 x0.

If the matrix C0, which is the sum of the two separate normal matrices C1

and C2, is positive definite, then it is invertible and we can solve for the new
minimum point by using the covariance matrix Γ0 = C−1

0 :

x0 = Γ0 (C1 x1 + C2 x2). (7.1)

This has a simple interpretation in terms of differential corrections: at con-
vergence in each of the two iterations, x → xi with Ci = Ci(xi) and the
right-hand side of the normal equation Di = Di(xi) = Ci Δxi is 0. Thus

C1 (x − x1) = 0 and C2 (x − x2) = 0 =⇒ (C1 + C2)x = C1 x1 + C2 x2.

By the linearity assumption C1, C2 have the same values at x1,x2 and at x0;
under these conditions x = x0 is the result of the first differential correction
for the joint problem.

The identification penalty K/m approximates the minimum of the
penalty ΔQ(x), normalized by the number of observations: in the linear
approximation K/m = ΔQ(x0). Since K is translation invariant

x0 → x0 + v, x1 → x1 + v, x2 → x2 + v

K → K + 2v · (C1 x1 + C2 x2 − C0 x0) + v · (C1 + C2 − C0)v = K,

we can compute K after a translation by −x1, that is assuming x1 → 0,
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x2 → x2 − x1 = Δx, and x0 → Γ0 C2 Δx:

K = Δx · C2 Δx − (x0 − x1) · C0 (x0 − x1) = Δx · CΔx, (7.2)

with C = C2 − C2 Γ0 C2. Alternatively, translating by −x2 , that is with
x2 → 0, x1 → −Δx and x0 → Γ0 C1 (−Δx):

K = Δx · C1 Δx − (x0 − x2) · C0 (x0 − x2) = Δx · (C1 − C1 Γ0 C1) Δx

and the same matrix C can be defined by the alternative expression C =
C1 −C1 Γ0 C1. Both these formulae only assume that Γ0 = C−1

0 exists, then

C = C2 − C2 Γ0 C2 = C1 − C1 Γ0 C1. (7.3)

The above equality is true in exact arithmetic, but might be violated in
a numerical computation if the matrix C0 is badly conditioned. We can
summarize the conclusions by the formula

Q(x) � Q0 +
1
m

Δx · C Δx +
1
m

(x − x0) · C0 (x − x0)

which allows also to assess the uncertainty of the identified solution, by
defining confidence ellipsoids with matrix C0.

This algorithm has a geometrical interpretation in terms of intersections
of the two families of confidence ellipsoids. To result in a low penalty, say
mΔQ < ε, a compromise solution x0 has to belong to the intersection of
the two confidence ellipsoids m1 ΔQ1 < ε and m2 ΔQ2 < ε.

Probabilistic interpretation

If x∗
i is the nominal solution of the differential corrections with normal ma-

trix Ci and covariance matrix Γi = C−1
i , the probability density of the initial

conditions xi according to the Gaussian model (see Section 5.7) is

pXi (xi) = N(xi, Γi) =
√

detCi

(2π)N/2 exp
(
−1

2
(xi − x∗

i ) · Ci(xi − x∗
i )
)

.

Let us assume X1 and X2 are independent random variables, that is their
joint probability density function is pX1X2 (x1,x2) = pX1 (x1) · pX2 (x2).
This hypothesis is justified because the set of observations of the two in-
dependent discoveries is disjoint. Then the probability of the identification
PI = P(X1 = X2) is obtained as

PI =
∫

R6
pX1 ,X2 (x,x) dx =

∫
R6

pX1 (x) · pX2 (x) dx.
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The product pX1 (x) · pX2 (x) is not the probability density of the identifi-
cation orbit, because the integral over the entire initial conditions space is
not equal to 1. Indeed, to obtain the conditional density function of the
identification orbit (under the hypothesis x1 = x2), the product has to be
renormalized by dividing by the probability of the identification PI .

Then both the probability PI and the conditional density function of the
identified orbit can be computed starting from the product

pX1 (x) · pX2 (x) =

√
det(C1 C2)
(2π)N

exp
{
−1

2

[
(x − x1) · C1(x − x1)

+ (x − x2) · C2(x − x2)
]}

and replacing the sum of two quadratic forms in the exponent with the single
quadratic form centered in x0, with normal matrix C0:

pX1 (x) · pX2 (x) =

√
det(C1C2)
(2π)N

exp
{
−1

2
[(x − x0) · C0 (x − x0) + K]

}

= N(x0, Γ0)(x) ·
√

det(C1C2)
(2π)N/2

√
det C0

exp
(
−K

2

)
.

To simplify this expression, let us assume both C1 and C2 are positive def-
inite. Then they can be diagonalized simultaneously, that is, there is an
orthogonal matrix S such that

SC1S
T = diag[λ1j ], SC2S

T = diag[λ2j ], SC0S
T = diag[λ1j + λ2j ],

SCST = SC2S
T − SC2S

T S C−1
0 ST SC2S

T = diag
[

λ1jλ2j

λ1j + λ2j

]
.

From this we can compute the determinants

det(C1 C2)
det(C1 + C2)

= det(S)−2

∏N
j=1 λ1j

∏N
j=1 λ2j∏N

j=1(λ1j + λ2j)
= det(C)

and find that the factor multiplying N(x0, Γ0) has a simple interpretation

pX1 (x) · pX2 (x) = N(x0, Γ0)(x) ·
√

detC

(2π)N/2 exp
[
−1

2
K

]
= N(x0, Γ0)(x) · N(0, C−1)(Δx).

The probabilistic interpretation of the above formula is

pX1 (x) · pX2 (x)
PI

= N(x0, Γ0)
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with the identification probability estimated as PI = N(0, C−1)(Δx).
In conclusion, the probability that the identification is true is the value

of the Gaussian N(x1, C
−1)(x2) = N(x2, C

−1)(x1), computed by using the
normal matrix C (the same used to compute the identification penalty K).
Assuming the identification is true, the identification orbit has the normal
distribution N(x0, Γ0). The correspondence between the probabilistic and
the optimization interpretations is maintained in the linear identification
theory, as in the linear orbit determination theory.

7.3 Semilinear orbit identification

The applicability of the linear identification algorithm depends upon the
nonlinearity, that is upon the difference between the confidence regions and
the confidence ellipsoids of the two separate solutions x1 and x2.

Nonlinearity

As discussed in Section 5.5, there are two main sources of nonlinearity in
the confidence regions. First, each of the two separate confidence regions for
the solutions x1 and x2 could be already strongly nonlinear. Second, even
assuming that the two separate confidence regions are well approximated
by the confidence ellipsoids, the initial conditions have to be determined at
times t1, close to the times of the first m1 observations, and t2, close to the
last m2 observations, respectively.2 When the orbits, determined at t1 and
t2, respectively, are propagated to a common time, say t0 = (t1 + t2)/2, the
conditioning number of the propagated normal matrices increases at least
quadratically with the time spans |t0 − ti|. Thus, as the time span between
the two arcs increases, the confidence ellipsoids at the common time t0 be-
come more and more elongated, they are worse and worse approximations
of the confidence regions, and the intersection of the confidence regions may
have nothing to do with the intersection of the confidence ellipsoids.

There is a third source of nonlinearity which is specific to the coordinates
used to represent the initial conditions of the orbit (see Section 10.3 for
a discussion of different coordinates). In the Keplerian orbital elements
(a, e, I,Ω, ω, �) the values e = 0 and I = 0 correspond to singularities, in
which some of the angle variables (Ω, ω, �) are not uniquely defined. If
the values e = 0 and/or I = 0 are within the confidence ellipsoid, then

2 The model problem of Sections 5.1 and 5.6 already shows that the best time for obtaining
well-conditioned normal and covariance matrices is the average of the observation times.



7.3 Semilinear orbit identification 121

linearity fails even when the confidence region is small. For this reason non-
singular elements like the equinoctial elements (a, h, k, p, q, λ) are used,
see (Broucke and Cefola 1972), with

h = e sin(Ω + ω), k = e cos(Ω + ω)

p = tan(I/2) sin Ω, q = tan(I/2) cos Ω, λ = � + Ω + ω.

The variables (h, k, p, q, λ) are defined for e = 0 and/or I = 0 (by h = k = 0
for e = 0 and by p = q = 0 for I = 0) and they are smooth as functions of
Cartesian initial conditions.

Restricted orbit identification

To find the orbit identifications among a large catalog of orbits it is necessary
to start from step (i) of the procedure outlined in Section 7.1: to select
a small subset of the couples of orbit, and with a simple algorithm, not
including any orbit propagation. Thus we would like to compare orbital
elements which are constant in the two-body approximation, e.g., excluding
λ in equinoctial elements. This also removes the effect of the nonlinearity
in the propagation of λ, which occurs even in the two-body problem, as
already appears from our model problem, see Section 5.6. We may also take
advantage of the fact that some elements are typically better determined
than others, even with a short observed arc: this is the case for the orbital
plane variables, either (I,Ω) in Keplerian or (p, q) in equinoctial ones.

Thus we need to perform a restricted identification, computing a
penalty K2 in a two-dimensional space of elements (p, q) and/or a penalty
K5 in a five-dimensional space (a, h, k, p, q). In general, we split the vector
x of estimated parameters into two components h and g, and let g contain
the elements to which the comparison is restricted.

The normal and covariance matrices C and Γ are decomposed as in Sec-
tion 5.4. Then the marginal uncertainty of g (for arbitrary h) can be de-
scribed by the penalty, with respect to the minimum point g∗

mΔQ � (g − g∗) · Cgg (g − g∗), Cgg = Cgg − Cgh C−1
hh Chg

and by the marginal covariance matrix Γgg = (Cgg)−1. Note that this
penalty as a function of g has been obtained by changing the value of h
from the nominal h∗ to a suitable point of the regression subspace.

We use this restricted penalty formula for the restricted identification
problem: let x1 = (h1,g1) and x2 = (h2,g2) be the separate nominal solu-
tions for the two arcs, and Cgg(x1) and Cgg(x2) the corresponding marginal



122 THE IDENTIFICATION PROBLEM

normal matrices. The variables h are given as a function of g by:{
h1(g) = h1 − C−1

h (x1)Chg(x1) (g − g1)

h2(g) = h2 − C−1
h (x2)Chg(x2) (g − g2).

(7.4)

By the same formalism of the previous section:

m

2
ΔQ � (g − g0) · Cgg

0 (g − g0) + Kg

Cgg
0 = Cgg

1 (x1) + Cgg
2 (x2)

g0 =
(
Cgg

0
)−1 (

Cgg
1 (x1)g1 + Cgg

2 (x2)g2
)

Cg = Cgg
2 (x2) − Cgg

2 (x2)
(
Cgg

0
)−1

Cgg
2 (x2)

= Cgg
1 (x1) − Cgg

1 (x1)
(
Cgg

0
)−1

Cgg
1 (x1)

Kg = (g2 − g1) · Cg (g2 − g1).

Kg is not the same as the complete minimum penalty K of the previous
section, but it is obtained by assuming that x1 = (h1(g0),g0) in the compu-
tation of ΔQ1, x2 = (h2(g0),g0) in the computation of ΔQ2, g0 being the
proposed restricted identification. Thus Kg ≤ K: Kg is the minimum of
the penalty over the space of variables (g,h1,h2), while K is the minimum
under the additional constraint h1 = h2, and the minimum of a function
can only increase when constraints are added.

The penalty Kg can be used as a preliminary control, that is, if Kg > Σ,
for a positive parameter Σ, then also K > Σ and many couples can be
discarded without doing a computation with the larger matrices. This allows
us to select a subset of couples candidates for identification with the linear
identification algorithm.

Multistage identification procedure

An effective procedure for proposing orbit identifications can be obtained
by a sequence of filtering stages:

(i) restricted identification comparing only g = (p, q), selecting the cou-
ples with two-dimensional penalty K2 below a control Σ2 > 0;

(ii) restricted identification comparing only g = (a, h, k, p, q), selecting
the couples with five-dimensional penalty K5 below a control Σ5 > 0;

(iii) full identification between the orbits x1 and x2 propagated to a com-
mon time t0, selecting the couples with full penalty K below some
control Σ > 0.
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The three filters are applied in series, that is each one is applied only to
the couples passing the previous one. After passing all three filter stages,
the proposed identification has to be confirmed by differential corrections,
starting from the first guess x0 of eq. (7.1), and quality control.

To control computational complexity, the most critical is filter 1, because
it has to be applied to all the � N 2/2 couples in a catalog containing N

orbits. If N is very large, it may be necessary to use an algorithm of com-
putational complexity O(N log N) which could be very similar to the one
discussed in Section 11.3. Because the orbital plane variables are indeed
better determined, the control Σ2 can be quite tight (Milani et al. 2000a,
Figure 2). This helps in decreasing the number of couples passed to filter
2: in a test reported by Milani et al. (2000a), with Σ2 = 30 only a fraction
� 0.006 of the couples passed filter 1. The second filter with Σ5 = 5 000
passed a fraction 0.07 of those passed by filter 1. The choice of the val-
ues for Σ5 and Σ is not easy; a method to optimally select them for best
performance is in (Milani et al. 2005c, Section 5).

The most tricky stage is filter 3, for two reasons. First, propagation
of both x1 and x2, with covariance and normal matrices, to a common
time t0 = (t1 + t2)/2 specifically for each couple passing filter 2 would be
computationally expensive. A possible solution is to prepare in advance a
number of propagated orbit catalogs at suitably selected times, in such a
way that filter 3 can be applied to the catalog corresponding to the epoch
most suitable for the given couple. Although the propagation of an orbit
with a full N -body model is computationally expensive, the complexity for
propagating the entire catalog is O(N).

Second, the propagation including the variable λ is anyway nonlinear. If
the time spans |t0 − ti| are long, the shape of the confidence regions are
different from the ellipsoids computed with the propagated normal matri-
ces (see Figure 5.2), and the intersections of the confidence ellipsoids can
be very different from those of the confidence regions. If the time interval
between the two separate observed arcs is not too long, and the nonlinear
effects are not too pronounced, this can be compensated by selecting a value
of Σ much larger than the linear identification algorithm would suggest. For
example, by using the standard χ2 tables the probability of such an iden-
tification would be ridiculously small. Because of the exponential decrease
of the normal probability density, the probabilistic interpretation based on
the linear Gaussian formulae is incompatible with nonlinear effects, even if
they are moderate; see Chapter 12. We call such an algorithm semilinear
identification. In the test of Milani et al. (2000a) the value Σ = 1000 000
was used, with a very large increase of the computational load because only
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a fraction 0.01 of the differential corrections attempted were convergent
(low accuracy). The number of successful identifications was very encour-
aging, although this number was a small fraction of the single apparition
orbits cataloged, leaving the suspicion that there might be many more to
be discovered. For an even more intensive effort to find large numbers of
identifications, see Section 10.2.

7.4 Nonlinear orbit identification

We would like to find algorithms allowing us to cope with fully nonlinear
identification problems, e.g., with the case of two short observed arcs, with
poorly determined orbits, separated in time by years. This is a very difficult
problem, which has not been fully solved yet. To find such an algorithm we
need a better understanding of the nonlinearity arising in the identification
problem, and for this we restart from our model problem.
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Fig. 7.1. The identification in the coordinates (n, λ), the latter being considered a real number.
The two vertical segments at λ � 0 and at λ � 20 are in fact very thin confidence ellipses,
representing the uncertainty (with confidence parameter σ = 3) at the central times of the two
arcs. The slanted lines are also thin ellipses, the propagated confidence ellipses at the central time
t0 � 10. Their intersection contains the true identification orbit, which is easily found with the
linear identification formula starting from the two nominal solutions (marked with small circles).
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Model identification problem

The main effect of nonlinearity can be illustrated in our model problem. In
all the figures of this subsection we use an example with two arcs that are 20
orbital periods apart, each with four observations spanning � 0.005 periods.
The RMS observation error is 0.001 radians. The true orbit has a = 1 (in
units such that n = 1).

If we attempt the identification of the two arcs in the space of the (n, λ)
coordinates, considering λ as a real number (as if we could observe the
number of revolutions), the problem is exactly linear (see Figure 7.1) and
the linear formulae discussed above provide a very good first guess for the
identification orbit. Indeed the first guess x0 and the final nominal solution,
obtained by differential corrections, are very close.
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Fig. 7.2. The identification in the coordinates (a, λ), the latter being considered a real number.
The slanted lines are in fact thin confidence ellipses for the two orbits propagated to the time t0 ,
while the two curves (tangent at the nominal solutions) are thin semilinear confidence boundaries.

If we use the same algorithm in the space of the (a, λ) coordinates (still
considering λ ∈ R), the problem becomes nonlinear. In Figure 7.2 we show
the confidence ellipses of the two orbits, as obtained by propagating the nor-
mal matrices to the common time t0 (by the formula of Section 5.5) and also
the curves obtained by propagation, point by point, of the confidence ellipses
at the times t1 and t2, respectively, to the common time t0 (the so-called
semilinear approximation, further discussed in Section 7.5). The nonlin-
ear confidence regions have a connected intersection, although it is disjoint
from the intersection of the linear confidence ellipses. Nevertheless, the first
guess x0 computed with the linear identification formula, which belongs to
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the intersection of the linear confidence ellipses, is good enough to allow
convergence of differential corrections to the true identification orbit, which
belongs to the intersection of the nonlinear confidence regions.
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Fig. 7.3. The identification in the coordinates (n, λ), the latter being considered as an angle.
The spurious solution with n � 0.69 is near one of the four intersections of the wrapped confidence
ellipses, the one which would be suggested by the linear identification formula.

The problem becomes more difficult if we take into account the fact that
λ is an angle: when, after many years, an asteroid is independently redis-
covered there is no way to know a priori how many revolutions have been
completed between the two discoveries. Figure 7.3 shows that the problem
is no longer linear, not even in the (n, λ) coordinates; indeed the confidence
ellipses, linearly propagated to the common time t0 and then wrapped on
the cylinder obtained by identification of λ = −π with λ = +π, have (in
this example) an intersection with four connected components. The first
guess for the identification orbit x0 obtained by the linear identification for-
mulae turns out, in this case, to belong to a different connected component
from the one containing the true solution. Thus the differential corrections
starting from x0 converge to the spurious solution closest to x0.

Of course in the coordinates (a, λ) the two nonlinear effects (from the non-
linearity of the integral flow and from the wrapping on a cylinder) combine
and result in a geometrically complicated situation. As shown in Figure 7.4,
the intersection of both the linear and the nonlinear confidence regions can
have a dozen connected components; the number of connected components
does not even need to be the same.
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Fig. 7.4. The identification in the coordinates (n, λ), the latter as an angle. The spurious
solution for a � 1.29 corresponds to the one found in the other coordinates. The nonlinear
confidence regions have an intersection with more connected components than the linear ones.

Cycle slip estimation

We propose a solution to the nonlinearity problem as shown above in the
model problem. Let us split the orbital elements, in equinoctial coordi-
nates with a replaced by the mean motion n, into the part corresponding
to our model problem and the part containing the variables connected with
eccentricity and inclination:

x =
[

g
h

]
, g =

⎡
⎢⎢⎣

e sin�

e cos �

tan(I/2) sin Ω
tan(I/2) cos Ω

⎤
⎥⎥⎦ , h =

[
n

λ

]
.

Let the central times of the two separate arcs of observations be t1, t2 with
t1 < t2, and xi, Ci, Γi for i = 1, 2 be the nominal orbital elements, the normal
and the covariance matrices corresponding to each arc. We want to find a
partial identification based only upon h1 = (n1, λ1) and h2 = (n2, λ2). From
each arc we have a marginal confidence interval for the mean motion

n−
i = ni − σ · RMS(ni) ≤ n ≤ n+

i = ni + σ · RMS(ni);

then the common range of values for n is

n− = max(n−
1 , n−

2 , 0) ≤ n ≤ n+ = min(n+
1 , n+

2 ).
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If the interval [n−, n+] is not empty, let us select a time t0 such that t1 <

t0 < t2. The two-body predictions for λ(t0) are

λ1 + n− (t0 − t1) ≤ λ10 ≤ λ1 + n+ (t0 − t1)

λ2 + n+ (t0 − t2) ≤ λ20 ≤ λ2 + n− (t0 − t2)

and by subtracting the inequalities

n− Δt − Δλ ≤ λ10 − λ20 ≤ n+ Δt − Δλ

where Δλ = λ2 − λ1 and Δt = t2 − t1 > 0. To obtain an intersection
of the two lines of possible predictions for the time t0, that is a common
possible orbit, the predictions λ10 and λ20 need to be equal as angle variables:
λ10 − λ20 = 2π k, with k an arbitrary integer (in fact k ≥ −1). From this
equation it is possible to find the finite number of possible values k for the
number of cycles slipped

n− Δt − Δλ

2 π
≤ k ≤ n+ Δt − Δλ

2 π

implying that k− ≤ k ≤ k+ with

k− = Ceiling
(

n− Δt − Δλ

2 π

)
, k+ = Floor

(
n+ Δt − Δλ

2 π

)
.
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Fig. 7.5. The identification in the coordinates (n, λ), the latter being considered as an angle.
For each intersection of the confidence ellipse, the cycle slip algorithm computes a separate first
guess; all five of them lead to convergent differential corrections, with different quality of fit.
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Selecting a value of the cycle slip number k in this range implies selecting
the coordinates h0 for the preliminary orbit at epoch t0

nk =
2 π k + Δλ

Δt
λ0k ≡ nk(t0 − t1) + λ1 (mod 2π) ≡ nk(t0 − t2) + λ2 (mod 2π).

This algorithm can be illustrated with our model problem, containing only
the variables h. Figure 7.5 shows a case with five intersections of the con-
fidence ellipses. By testing five different first guess orbits, corresponding
to k = 4, 5, 6, 7, 8, the differential corrections converge to five different solu-
tions. The true solution corresponds to k = 5 and has a normalized residuals
RMS � 1.01. Note that the linear algorithm, without cycle slip, would pro-
vide a h0 close to the intersection with n � 1.21, corresponding to k = 6;
from this, the differential corrections converge to a spurious solution with
normalized RMS � 0.91. This example shows that to choose among alter-
native solutions for the identification orbit is far from easy, especially when
the data are of poor quality, as in this example.

Constrained orbit identification

If the portion h0 of the identification orbit has been selected already, then
the other part g0 should be selected in a consistent way. In the two-body
approximation, the value of g is independent of time, thus gi are the predic-
tions for epoch t0 from ti, for i = 1, 2. The uncertainty of these predictions
can be computed, given the fixed value of h = h0, by the formula for the
conditional case of Section 5.4: the nominal conditional value is

g0i = gi − C−1
gg (xi)Cgh(xi) (h0 − hi) for i = 1, 2

and the normal matrices are the same Cgg(xi). The conditional identi-
fication penalty KC contains three terms: one from forcing h1(t0) to h0,
one from forcing h2(t0) to h0, the third by the compromise between g01 and
g02:

KC = K1
h + K2

h + Kg

K1
h = (h0 − h1(t0)) · Chh(x1) (h0 − h1(t0))

K2
h = (h0 − h2(t0)) · Chh(x2) (h0 − h2(t0))

Kg = (g02 − g01) · Cg (g02 − g01)

Cg = Cgg(x1) − Cgg(x1) [Cgg(x1) + Cgg(x2)]
−1 Cgg(x1)

and the point of minimum penalty is at

g0 = [Cgg(x1) + Cgg(x2)]
−1 (Cgg(x1) g01 + Cgg(x2) g02) .
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7.5 Recovery and precovery

The problem is how to describe the uncertainty of the position of the as-
teroid on the celestial sphere, taking into account the nonlinearity of the
relationship between orbital elements at some epoch and the observations
to be predicted at some other time.

The confidence ellipse

Let a least squares orbit be available with initial conditions x at some epoch
t0, with normal and covariance matrices C, Γ. At some later time t1 an
observation is either performed or planned. An astrometric observation
is a map G from the elements space to the celestial sphere, parameterized
by two coordinates (usually right ascension and declination) y = (α, δ) :

y(t1) = G(x(t1)), G : W −→ R2, W ⊂ R6

with W an open set.3 x(t1) is the state vector at time t1, a function of the
initial conditions x = x(t0) through the integral flow x(t1) = Φt1

t0
(x(t0)).

The composition of the observation function with the integral flow

y = F (x) = G
(
Φt1

t0
(x)

)
, F : W −→ R2

is the astrometric prediction function; its Jacobian matrix can be computed
by means of the state transition matrix DΦt1

t0
, by DF = DG DΦt1

t0
.

The astrometric prediction function F maps the orbital elements space
onto the observation space, and the confidence region ΔQ ≤ σ2 into a
confidence prediction region in the observation space. The linearized
function DF maps the displacement (from the least squares solution x∗) in
the orbital elements space Δx = x− x∗, into linearized deviations from the
prediction y∗ = F (x∗):

Δy = y − y∗ = DF (x∗) Δx

and therefore maps the confidence ellipsoid Δx · C Δx ≤ σ2 onto a confi-
dence ellipse in the observation coordinate plane: Δy · Cy Δy ≤ σ2. The
matrix Cy is the normal matrix for the observations y (at a given time
t1), and the inverse Γy = C−1

y is the corresponding covariance matrix. In
the probabilistic interpretation, by using standard result from the theory of
multivariate Gaussian distribution (see Section 3.3), the covariance matrix
is transformed by Γy = DF Γ DFT , then the normal matrix is computed
as Cy = Γ−1

y .

3 For example, W can be the Poincaré domain of the orbits with negative energy.
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To obtain the same result within the optimization interpretation, and
also to gain some geometrical insight, let us consider in the x space the rows
of DF , that is the gradients of the observable angles. If the two angular
variables observed are independent4 the subspace spanned by the rows of
DF has dimension 2. Thus x ∈ R6 can be decomposed into a component
g in this subspace, and a component h in the four-dimensional orthogonal
subspace. That is, there is a rotation matrix R in R6 such that

R x =
[

g
h

]
, g ∈ R2, h ∈ R4

and then the map DF is an isomorphism between g and y:

DF = A ◦ Πg ◦ R (7.5)

where Πg is the 2 × 6 matrix of the projection on the two-dimensional sub-
space and A is an invertible 2×2 matrix. The normal and covariance matrix
can be transformed into the new coordinate system by R, RT ; then we can
use the formulae of Section 5.4 and compute the marginal covariance for g:

Γ−1
gg = Cgg = Cgg − Cgh C−1

hh Chg .

Since A is invertible, the same formulae for covariance propagation of Sec-
tion 5.5 apply, that is

Cy =
(
A−1)T

Cgg A−1, Γy = A Γgg AT

and by combining all the transformations of the covariance with eq. (7.5)

Γy = A Πg R Γ RT ΠT
g AT = DF Γ DFT ,

that is, the same formula of the probabilistic interpretation.
This linear prediction formalism is used as a matter of routine in the col-

laborative case, and it has been proposed to use it systematically for asteroid
astrometry. However, the astrometric prediction function F is nonlinear,
and there is no guarantee that the confidence ellipse is a good approxima-
tion of the confidence prediction region: this is indeed not the case when a
poorly determined orbit is used to predict the observations at a time t1 very
far from the last observation used in the orbit determination.

4 This condition is violated only where (α, δ) are singular coordinates for the celestial sphere,
that is for δ = ±π/2.
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Semilinear predictions

We would like to have an algorithm to compute an approximation of the
fully nonlinear confidence prediction region which is a better approximation
than the linear one, and nevertheless can be computed explicitly. The astro-
metric prediction function contains the integral flow, thus in realistic cases
to compute it accurately we can only numerically propagate a finite number
of orbits from time t0 to time t1.

The geometric idea of the semilinear confidence boundary comes from the
regression subspace of h given g, that is the dimension 2 linear subspace

h − h∗ = −C−1
hh Chg (g − g∗)

where h∗,g∗ are the nominal values[
g∗

h∗

]
= R x∗, g∗ ∈ R2, h∗ ∈ R4.
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Fig. 7.6. Simulated recovery of the asteroid 4161 PLS, lost in September 1960, at the epoch of
the discovery of the asteroid 1992 BU, that is 31 year later. The recovery observation (cross) is
well inside the semilinear confidence boundary corresponding to the σ = 3 level. Reprinted from
(Milani 1999) with permission from Elsevier.

The values of h from the above formula have the property that, for a
given g, thus for a given linearized prediction Δy = DF Δx, the quadratic
penalty ΔhQ = ΔxT C Δx/m is minimum. In particular, the intersection of
the regression subspace of h given g with the outer surface of the confidence
ellipsoid ΔxT C Δx = σ2 is an ellipse γ in the x space, which projects (by
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Πg ◦ R) onto the marginal confidence ellipse in the g space, thus also (by
DF ) onto the confidence ellipse in the y space.

We define the semilinear confidence boundary as the image, by the
nonlinear astrometric prediction function F , of the ellipse γ defined above
into the y space of astrometric observations. In practical cases, the semi-
linear boundary is very different from the linear ellipse when the size of both
figures is large, e.g., several degrees. This happens when the orbit has been
determined by using only a short observed arc and/or when the prediction is
for a time remote from the observations. Figure 7.6 shows a rather extreme
case of an asteroid lost after being observed only during a survey in 1960 and
recovered 31 years later. In such a case the mean longitude at the prediction
time has an enormous uncertainty, thus the semilinear boundary follows the
curvature of the image of a long segment of the λ coordinate axis in the
space of equinoctial elements.

7.6 Attribution

In the attribution case the problem is how to define the observation space
in which the comparison between prediction and available data has to be
performed. We assume an orbit x1 has been fit to the first set of m1 observa-
tions, with epoch time t1, and the uncertainty is described by the covariance
and normal matrices Γ1, C1. The second arc includes m2 scalar observations.

It is possible to compute a prediction for each of the m2 observations,
with its uncertainty, and to apply a test on the size of each of the normalized
residuals, but this is inefficient for two reasons. First, the predictions for
observations close in time are correlated, thus the marginal uncertainty of
each one gives a less stringent control than performing a single test for
all, with a full normal matrix for the vector prediction in R2 m2 . Second,
to compute an accurate prediction for a sequence of times requires us to
propagate the orbit to each one of the (distinct) times ti of the second arc.
The number m2 can be comparatively large, and still we can have a too
short arc to fit an orbit, when many observations are taken over a short
time span.

Thus it is useful to synthesize the information contained in the second arc
into a vector observation at a single time t2: this is the attributable.

Attributables

Let (ρ, α, δ) ∈ R+ × [−π, π) × (−π/2, π/2) be spherical coordinates for the
topocentric position of a celestial body. The angular coordinates (α, δ) are
defined by a topocentric reference system that can be arbitrarily selected.
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Usually, in the applications, α is the right ascension and δ the declination
with respect to an equatorial reference system (e.g., J2000).

We shall call attributable a vector

A = (α, δ, α̇, δ̇) ∈ [−π, π) × (−π/2, π/2) × R2,

representing the angular position and velocity of the body at a time t̄ in the
selected reference frame. A natural operation is trying to attribute the data
used for A to an already existing orbit, hence the name.

A detection of a moving object today is done by comparing two or more
images of the same field, taken at short intervals of time. Thus an at-
tributable can be computed from a short arc of astrometric observations
of a celestial body. Given the observed values (ti, αi, δi) for i = 1, m with
m ≥ 2, we can compute an attributable with its uncertainty. We can fit
both angular coordinates with linear functions of time, that is with the
same fit of the model problem of Section 5.1. More precisely, let t̄ be the
mean of the ti and let the fit solution at time t̄ be (α, α̇, δ, δ̇); this solu-
tion is obtained with the regression line formulae, together with the two
2 × 2 normal matrices C(α,α̇), C(δ,δ̇) and covariance matrices Γ(α,α̇), Γ(δ,δ̇).
The normal matrix CA of A is composed just by joining the two normal
matrices, and is not singular provided the observations refer to ≥ 2 distinct
times; its inverse ΓA is also composed by joining the two 2 × 2 covariance
matrices.

On the other hand, if there are m ≥ 3 observations and the time span is
not too short, a more accurate estimate of the attributable A is obtained by
fitting both angular coordinates as a function of time with a quadratic model.
Then the solution (α, α̇, α̈, δ, δ̇, δ̈) is obtained with the standard formulae of
the least squares problem, together with the two 3 × 3 covariance matrices
Γ(α,α̇,α̈), Γ(δ,δ̇,δ̈). The marginal covariance matrix ΓA of A, whatever the

values of (α̈, δ̈), is obtained by extracting the relevant 4× 4 submatrix, and
the normal matrix is computed by CA = Γ−1

A .
Note that the observations can be weighted. If there are only two ob-

servations with equal weight 1/σ2 and difference in times 2Δt, then the
correlations Corr(α, α̇),Corr(δ, δ̇) are zero and CA, ΓA are diagonal:5 the
standard deviation of both angles is σ/

√
2 and the standard deviation of

the angular rates is
√

2 σ/Δt.

5 We are assuming that the α and δ error components of an astrometric observation are not
correlated, otherwise the 4 × 4 normal and covariance matrix of all the variables could be full.
This assumption would fail if the timing was a significant source of error.
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Prediction for an attributable

Predictions of an attributable A(t) are a straightforward generalization of
the standard ephemerides (α(t), δ(t)) discussed in Section 7.5. Let us assume
the prediction function G maps an open set of the initial conditions space
into a four-dimensional space, that is the vector of observables is

y(t̄) = (α(t̄), δ(t̄), α̇(t̄), δ̇(t̄)) = G (x(t̄)) .

Given initial conditions x at time t0 with covariance Γ, the prediction func-
tion F = G◦Φt0 is also four-dimensional and its partial derivatives form the
matrix DF of dimension 4 × 6: the covariance and normal matrix, by the
same argument of Section 7.5, are the 4 × 4 matrices obtained from Γ by

Γy = (DF ) Γ (DF )T , Cy = Γ−1
y .

The matrix Γy can be used to assess the uncertainty of all the components
of the attributable, e.g., the RMS uncertainty of the angles (α, δ) (see Fig-
ure 8.4) as well as that of the angular rates (α̇, δ̇). The normal matrix Cy

can be used to define the metric used in the attribution algorithm.

Attribution penalty

Let x1 be the attributable, that is the four-dimensional vector representing
the set of observations to be attributed, and C1 be the 4× 4 normal matrix
of the fit used to compute it. Let x2 be the predicted attributable, com-
puted from the known least squares orbit, and Γ2 be the covariance matrix
of such a four-dimensional prediction, obtained by propagation of the co-
variance of the orbital elements (as discussed above). Then C2 = Γ−1

2 is the
corresponding normal matrix. With this new interpretation for the symbols
x1,x2, C1, C2, the algorithm for linear attribution uses the same formulae of
Section 7.2 applied in the four-dimensional attributable space:

C0 = C1 + C2, Γ0 = C−1
0

K4 = (x2 − x1) · [C1 − C1 Γ0 C1] (x2 − x1) (7.6)

x0 = Γ0 [C1 x1 + C2 x2] .

In particular, the attribution penalty K4/m (m = 8, the number of scalar
components of the two attributables) is computed and used as a control to
filter out the orbit-attributable pairs which cannot belong to the same object
(unless the observations are exceptionally poor). For the orbit-attributable
couples with K4 below some control value, the next stages are to select a
preliminary orbit and to perform differential corrections.
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If, for an orbit-attributable couple, the orbit is good enough, it could be
used as a preliminary orbit without modifications. That is, the orbit com-
puted with the data of the first arc is used as a first guess for the differential
correction iterations, fitting the observations of both arcs. In more difficult
cases, e.g., when the orbit for the first arc has not been obtained by a least
squares fit, but is itself a preliminary orbit, a better preliminary orbit can
be estimated from the four-dimensional compromise attributable x0. This
is discussed in Section 8.5.

Attribution procedure

As in the case of orbit identification, a procedure to try to attribute a large
number of attributables to a large orbit catalog needs to use a sequence of
filters. We have experimented with the following filters:

(i) comparison of the two-dimensional prediction (α, δ) from the orbit at
the attributable time with the angles of the attributable;

(ii) computation of the attribution penalty K4 from the attributable and
the predicted attributable from the orbit;

(iii) confirmation by differential corrections and quality control.

The choice of the controls for selection in each filter is very delicate,
and needs to be based on experience since there is no analytic estimate avail-
able. The extensive tests of Milani et al. (2001a) have resulted in a large
number (thousands) of identifications. Additional and even more extensive
tests have been performed in the context of the simulation of future Solar
System surveys, see (Milani et al. 2005a, Milani et al. 2008) and Chapters 8
and 11.

The case which has not been fully studied yet is the one in which two
very different data sets are used, e.g., attributables from a current survey
and a catalog of orbits from historic data. If the cataloged orbits are based
on much longer observed arcs, possibly with lower accuracy observations, an
ad hoc quality control procedure needs to be used, based on the increase of
the quality control parameters as a result of the attribution rather than the
absolute value of the controls.
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In Chapter 7 we explained how to compute an attributable

A = (α, δ, α̇, δ̇) ∈ [−π, π) × (−π/2, π/2) × R2 (8.1)

at a certain time t̄, given ≥ 2 observations of a celestial body. Through-
out this chapter, we shall use only the information contained in the at-
tributable to try to achieve identifications and therefore orbit determi-
nation. This chapter is based on (Milani et al. 2001a, Milani et al. 2004,
Milani et al. 2005a, Tommei et al. 2007, Gronchi et al. 2008) and ongoing
research.

8.1 Admissible region

Let A be an attributable at time t̄ for a celestial body B (e.g., an asteroid).
We denote by r and q the heliocentric position vectors of the body and the
observer on the Earth at time t̄. Let r = ‖r‖, q = ‖q‖ be the Euclidean
norms of these vectors. We also write (ρ, α, δ) ∈ R+ × [−π, π)× (−π/2, π/2)
for the spherical coordinates of the topocentric position ρ = r − q of the
body, with ρ = ‖ρ‖. The information contained in the attributable A leaves
completely unknown the topocentric distance ρ and the radial velocity ρ̇ of
B.1 The purpose of this section is to constrain the possible values of ρ, ρ̇

with the hypothesis that the observed object is a Solar System body.

Excluding interstellar orbits

We introduce the following notation: let

E�(ρ, ρ̇) =
1
2
‖ṙ(ρ, ρ̇)‖2 − k2 1

r(ρ)
, (8.2)

1 The same quantities are called range and range-rate in the context of spacecraft tracking.
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with k = 0.017 202 098 95 the Gauss constant, be the two-body energy of
the heliocentric orbit of B, in the approximation neglecting the mass of B.
Note that we are using 1 AU as the unit of length and 1 ephemeris day as
the unit of time; we do not need to specify the unit of mass as E�(ρ, ρ̇) is
the two-body energy per unit mass of B. We describe the region excluding
interstellar orbits, that is satisfying the condition

E�(ρ, ρ̇) ≤ 0. (8.3)

In particular we shall show that this region can have either one or two
connected components. The heliocentric position of B is given by

r = q + ρ ρ̂, (8.4)

where ρ̂ is the unit vector in the observation direction. Using the spherical
coordinates (ρ, α, δ), the heliocentric velocity ṙ of B is

ṙ = q̇ + ρ̇ ρ̂ + ρ α̇ ρ̂α + ρ δ̇ ρ̂δ , (8.5)

where ρ̂α = ∂ρ̂/∂α, ρ̂δ = ∂ρ̂/∂δ, and q̇ is the heliocentric velocity of the
observer. In coordinates

ρ̂ = (cos α cos δ, sinα cos δ, sin δ),

ρ̂α = (− sinα cos δ, cos α cos δ, 0),

ρ̂δ = (− cos α sin δ,− sinα sin δ, cos δ),

ρ̂ · ρ̂α = ρ̂ · ρ̂δ = ρ̂α · ρ̂δ = 0, ‖ρ̂‖ = ‖ρ̂δ‖ = 1, ‖ρ̂α‖ = cos δ.

Thus the squared norms of the heliocentric position and velocity are

r2(ρ) = ρ2 + 2ρ q · ρ̂ + ‖q‖2, (8.6)

‖ṙ(ρ, ρ̇)‖2 = ρ̇2 + 2ρ̇q̇ · ρ̂ + ρ2
(
α̇2 cos2 δ + δ̇2

)
+ 2ρ

(
α̇q̇ · ρ̂α + δ̇q̇ · ρ̂δ

)
+ ‖q̇‖2 . (8.7)

We shall use the coefficients2

c0 = ‖q‖2

c1 = 2q̇ · ρ̂
c2 = α̇2 cos2 δ + δ̇2 = η2

c3 = 2α̇ q̇ · ρ̂α + 2δ̇ q̇ · ρ̂δ

c4 = ‖q̇‖2

c5 = 2q · ρ̂,

(8.8)

2 For more accurate results, the position q(t̄) and the velocity q̇(t̄) should be computed con-
sistently with the interpolation used for ρ̂(t̄), by using the Poincaré observer interpolation
method.



8.1 Admissible region 139

and the polynomial expressions

‖ṙ(ρ, ρ̇)‖2 = 2T�(ρ, ρ̇) = ρ̇2 + c1ρ̇ + c2ρ
2 + c3ρ + c4,

r2 = S(ρ) = ρ2 + c5ρ + c0, W (ρ) = c2ρ
2 + c3ρ + c4. (8.9)

By substituting the last expressions in (8.2), condition (8.3) reads

2E�(ρ, ρ̇) = ρ̇2 + c1ρ̇ + W (ρ) − 2k2/
√

S(ρ) ≤ 0.

To have real solutions for ρ̇, the discriminant of E�, as a polynomial of degree
2 in ρ̇, must be non-negative, i.e.,

c2
1/4 − W (ρ) + 2k2/

√
S(ρ) ≥ 0.

Let us set γ = c4 − c2
1/4 (note that γ ≥ 0), and define P (ρ) = c2ρ

2 + c3ρ+γ;
then condition (8.3) implies

2k2/
√

S(ρ) ≥ P (ρ). (8.10)

The polynomial P (ρ) is non-negative for each ρ: it is the opposite of the
discriminant of T�(ρ, ρ̇), regarded as a polynomial in the variable ρ̇. T� is
a kinetic energy and is non-negative, thus its discriminant is non-positive.
Also S(ρ) is non-negative, thus we can square both sides of (8.10) and obtain
an inequality involving a polynomial of degree 6

4k4 ≥ V (ρ) = P 2(ρ)S(ρ) =
6∑

i=0

Ai ρ
i, (8.11)

with coefficients

A0 = c0γ
2, A1 = c5γ

2 + 2c0c3γ, A2 = γ2 + 2c3c5γ + c0(c2
3 + 2c2γ),

A3 = 2c3γ + c5(c2
3 + 2c2γ) + 2c0c2c3,

A4 = c2
3 + 2c2γ + 2c2c3c5 + c0c

2
2, A5 = c2(2c3 + c2c5), A6 = c2

2.

The most important property of the region defined by (8.3) is that it has
at most two connected components. For a proof, see (Milani et al. 2004).

If the motion of the observer is approximated by a circular heliocentric
orbit, it is possible to show that the region of Solar System orbits is con-
nected when the direction of observation is at quadrature (orthogonal to the
direction to the Sun). At opposition (direction of observation opposite to
the Sun) there can be two connected regions only if the path of the body B
on the celestial sphere is retrograde, as in the following example (see Fig-
ure 8.1): we have used the attributable (α, δ, α̇, δ̇) = (0, 0,−0.09, 0.01), with
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α̇, δ̇ in degrees per day (assuming the Earth is at (x, y, z) = (1, 0, 0) in equa-
torial coordinates, lengths in AU). We have also plotted the level curves for
small positive and negative values of E�, showing the qualitative change.
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Fig. 8.1. An example with two connected components. On the left three level curves of E�,
including the zero level curve, and E⊕ = 0 (dashed curve) in the plane (ρ, ρ̇); on the right the same
plot in the plane (log10 (ρ), ρ̇). Reproduced with permission of Springer from Milani et al. (2004).

To know the number of components of the region defined by (8.3) we have
to compute the roots of the degree six polynomial V (ρ) − 4k4. There are
fast and reliable algorithms in the numerical analysis literature providing
the roots of a polynomial (as a complex vector), with rigorous upper
bounds for the errors including rounding off. We use the algorithm by Bini
(1997) and the corresponding public domain software.3

The inner boundary

A difficulty in the practical usage of the region defined by condition (8.3)
as a tool for the identification problem is that it is not a compact set, that
is, the observed object could be at an arbitrarily small distance from the
observer. This makes it impossible to sample it with a finite number of
points in such a way that the corresponding orbits are representative of the
range of ephemeris uncertainty (see the discussion in Section 8.4). There
are several ways to assign an inner boundary to the region where B could
be, based on different practical considerations:

• an inner boundary can be assigned requiring that B is not a satellite of
the Earth, i.e., by imposing a condition on the geocentric energy E⊕(ρ, ρ̇);

3 For the Fortran 77 version see http://www.netlib.org/numeralgo/na10 ;
for Fortran 90 see http://users.bigpond.net.au/amiller/pzeros.f90 .
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• a minimal distance can be dictated by physical limitations, such as the
Earth’s atmosphere or the Earth’s radius R⊕ in the geocentric approxi-
mation;

• a minimal distance can be assigned by requiring that B is not too small,
if photometric measurements are supplied together with the astrometry
used to compute the attributable.

Excluding satellites of the Earth

We look for a simple description of the region satisfying the condition
E⊕(ρ, ρ̇) ≥ 0. A simplifying approximation is obtained by assuming that
the observations are geocentric: with q⊕ the heliocentric position of the
Earth’s center, assuming r = ρ + q⊕, the geocentric energy is

E⊕(ρ, ρ̇) =
1
2
‖ρ̇‖2 − k2μ⊕

1
ρ
≥ 0, (8.12)

where μ⊕ is the ratio between the mass of the Earth and the mass of the
Sun. By using ‖ρ̇(ρ, ρ̇)‖2 = ρ̇2 + ρ2 η2, where η =

√
α̇2 cos2 δ + δ̇2 is the

proper motion, (8.12) becomes

ρ̇2 + ρ2 η2 − 2k2μ⊕
1
ρ
≥ 0,

that is

ρ̇2 ≥ G(ρ), with G(ρ) =
2k2μ⊕

ρ
− η2ρ2, (8.13)

where G(ρ) > 0 for 0 < ρ < ρ0 = 3
√

(2k2μ⊕)/η2.
However, condition (8.12) is meaningful only inside the sphere of influence

of the Earth, otherwise the dynamics of B is dominated by the Sun, not by
the Earth. Thus we need to introduce the condition

ρ ≥ RSI = a⊕
3
√

μ⊕/3 (8.14)

where RSI is the radius of the sphere of influence, and a⊕ is the semimajor
axis of the Earth. To exclude the satellites of the Earth we have to assume
that either (8.12) or (8.14) apply. If ρ0 ≤ RSI the region of the satellites to
be excluded is defined simply by eq. (8.13); this occurs for

ρ3
0 = 2k2μ⊕/η2 ≤ R3

SI = a3
⊕ μ⊕/3

thus, taking into account Kepler’s third law a3
⊕ n2

⊕ � k2 with n⊕ the mean
motion of the Earth, we have ρ0 ≤ RSI if and only if η ≥

√
6 n⊕. Otherwise,

if ρ0 > RSI , the boundary of the region containing satellites of the Earth is
formed by a segment of the straight line ρ = RSI and the two arcs of the
ρ̇2 = G(ρ) curve with 0 < ρ < RSI , as in Figures 8.1 and 8.2.
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Fig. 8.2. The qualitative features of the region of heliocentric orbits in the (ρ, ρ̇) plane: by
combining conditions (8.3), (8.12), (8.14) and ρ ≥ R⊕, we are left with the domain sketched. This
figure refers to a case with only one connected component and the plot is in the plane (log10 (ρ), ρ̇).

The shape of the inner boundary

To understand the shape of the boundary of the Earth satellites region we
need to find possible intersections between the curves E⊕ = 0 and E� = 0.
However, if E⊕ is computed in a geocentric approximation, these intersec-
tions are physically meaningful only if they occur for R⊕ < ρ < RSI , that
is, during a close approach to the Earth, but above its physical surface.
In (Milani et al. 2004) we prove that for R⊕ ≤ ρ ≤ RSI the condition
E⊕(ρ, ρ̇) ≤ 0 implies E�(ρ, ρ̇) ≤ 0.

This result shows that the intersections of the two zero-energy curves
occur only where they do not matter; it also implies that the region of
Solar System orbits excluding the satellites of the Earth does not have more
connected components than the region satisfying condition (8.3) only. This
applies only for particular values of the mass, radius, and orbital elements of
the planet on which the observer is located. It is a physical property of the
Earth, not a general property of whatever planet. A larger planet, such as
Jupiter, can have satellites whose velocity would lead to a hyperbolic orbit
with respect to the Sun, if Jupiter was not controlling the orbit; the Earth
cannot have satellites with this behavior.

The tiny object boundary

An alternative method to assign a lower limit to the distance is to impose the
condition that the object is not a “shooting star” (very small and very close
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to the Earth). We assume that the size is controlled by setting a maximum
for the absolute magnitude H

H(ρ) ≤ Hmax. (8.15)

If some value of the apparent magnitude is available, then the absolute
magnitude H can be computed from h, the average of the measured apparent
magnitudes, using the relation

H = h − 5 log10 ρ − x(ρ), (8.16)

where the correction x(ρ) accounts for the distance from the Sun and the
phase effect.4 For small ρ (e.g., ρ < 0.01 AU) the correction x(ρ) has a
negligible dependence upon ρ because the distance from the Sun is � 1 AU
and the phase is close to the angle between ρ̂ and the opposition direc-
tion. Thus we can approximate x(ρ) with a quantity x0 independent of ρ.
Also for larger values of ρ this is an acceptable approximation. Moreover,
we are using ρ, the distance at the reference time t̄, for all the epochs of
the observations including photometry: this is a fair approximation unless
the relative change of distance during the time span of the observed arc is
relevant, which can happen only for very small distances. In this approxi-
mation, condition (8.15) becomes

Hmax ≥ H = h − 5 log10 ρ − x0 =⇒ log10 ρ ≥ h − Hmax − x0

5
def
= log10 ρH ,

that is, given the apparent magnitude h, we have a minimum distance ρH =
ρ(Hmax) for the object to be of significant size. If we use Hmax = 30 (a few
meters diameter) and x0 = 0 then, for example

h = 20 =⇒ ρ ≥ 0.01 AU, h = 15 =⇒ ρ ≥ 0.001 AU .

In any case, the absolute magnitude of the object is not a function of ρ̇ and
the region satisfying condition (8.15) is just a half-plane ρ ≥ ρH . We call
the tiny object boundary the straight line ρ = ρH .

Provided ρH ≥ R⊕ (for Hmax = 30 this occurs for h ≥ 8.1) it is possible
to use the same arguments of the theorem on the intersection between the
energy curves to show that condition (8.15) does not increase the number of
connected components with respect to the region defined by excluding the
satellites of the Earth. On the contrary it is quite possible that the geometry
of the region becomes simpler. If Hmax = 30 and h > 20 the entire sphere of
influence of the Earth is excluded by condition (8.15), thus condition (8.14)
is implied by (8.15) and condition (8.12) becomes irrelevant.
4 See the IAU definition of absolute magnitude (Bowell et al. 1989).
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Definition of admissible region

We wish to determine a region which is a good approximation of the subset
in the ρ > 0 half-plane where the object B we are searching for has to be
located. Thus we adapt the definition to the goal of the population orbit
determination at hand, e.g., it has to be different in a search for objects
in heliocentric limited orbit (asteroids, comets, trans-neptunian objects),
for objects passing very close to the Earth (meteoroids), and for objects in
geocentric orbits (artificial satellites, space debris).

We give as an example a definition appropriate in a search for objects in
heliocentric orbit with significant size, thus we can assume that ρ(Hmax) >

RSI . Given an attributable A and selecting a maximum absolute magnitude
Hmax, we define as the admissible region the set

D(A) = {(ρ, ρ̇) : ρ ≥ ρH , E�(ρ, ρ̇) ≤ 0}. (8.17)

This definition does not use any geocentric approximation, avoiding the
problems discussed in Sections 8.7 and 9.4. For smaller objects the portions
of the conditions (8.12) and (8.14) should be taken into account.

8.2 Sampling of the admissible region

The admissible region consists of at most two compact connected com-
ponents. Its boundary has an outer part, given by arcs of the curve
E�(ρ, ρ̇) = 0, symmetric with respect to the line ρ̇ = −c1/2. The bound-
ary also has an inner part consisting, in the simplest case, of a segment of
the line ρ = ρ(Hmax); for smaller objects, with ρ(Hmax) < RSI , the inner
boundary has a more complicated shape like the one shown in Figure 8.2.

To sample the admissible region we start by sampling its boundary. We
would like to select points that are equispaced on the boundary, that is, if
the boundary is parameterized by its arc length s, then the distance of each
couple of consecutive points corresponds to a fixed increment of s. To avoid
the computation of the arc length parameter we use the following idea: we
choose a large number of points, equispaced in one of the two coordinates,
and then we use an elimination rule to be iterated until we are left with
the desired number of points. It can be shown (Milani et al. 2004) that the
remaining points are close to the ideal distribution, equispaced in arc length.

Delaunay triangulations

Consider the polygonal domain D̃ defined by connecting with edges the
sample of boundary points of the admissible region D; we shall define a
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method to triangulate D̃. A triangulation of D̃ is a pair (Π, τ), where
Π = {P1, . . . , PN } is a set of points (the nodes) of the domain, and τ =
{T1, . . . , Tk} is a set of triangles with vertices in Π such that:

(i)
⋃

i=1,k Ti = D̃ ;
(ii) for each i = j the set Ti

⋂
Tj is either empty or a vertex or an edge of a

triangle .

To each triangulation (Π, τ) we can associate the minimum angle, that is the
minimum among the angles of all the triangles Ti. Among all possible trian-
gulations of a convex domain a Delaunay triangulation is characterized
by these properties (Bern and Eppstein 1992):

(i) it maximizes the minimum angle;
(ii) it minimizes the maximum circumcircle;
(iii) for each triangle Ti, the interior part of its circumcircle does not contain

any nodes of the triangulation (Risler 1991).

These properties are all equivalent for convex domains.
If the domain is a convex quadrangle whose vertexes Π are not on the

same circle, then there exist two possible triangulations (Π, τ1), (Π, τ2): by
property (iii), only one of these is Delaunay (see Figure 8.3). In this case
the Delaunay triangulation can be obtained from the other one by an edge-
flipping technique, which consists of substituting the diagonal P1P3 (non-
Delaunay edge) of the quadrangle, corresponding to the common edge, with
the diagonal P2P4 (Delaunay edge). The edge-flipping also results in an
increase of the minimum angle.

If, in addition to the set of points Π, we give as input also some edges
PiPj , for example the boundary edges as we do for D̃, we refer to the cor-
responding triangulation containing the prescribed edges as a constrained
triangulation.

The domain D̃ is in general not convex; in this case we need to give as input
the edges along the boundary. Then there still exists a constrained trian-
gulation that maximizes the minimum angle (also minimizes the maximum
circumcircles, i.e., (i), (ii) hold), called constrained Delaunay triangulation
(Bern and Eppstein 1992), but property (iii) is not guaranteed. Figure 8.3
suggests how to transform any triangulation of D̃ into a constrained Delau-
nay: for each triangle Ti, we iterate a procedure over the adjacent triangles;
if the common edge with an adjacent triangle is not Delaunay, we apply
the edge-flipping technique. Repeating this procedure until all edges of the
triangulation are Delaunay or edges of the boundary of D̃, at each step the
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Fig. 8.3. Possible triangulations of the quadrangle P1 P2P3 P4 : the one in (A) is a Delaunay
triangulation. We mark in both cases the minimum angle and we draw the circumcircles corre-
sponding to triangle P2 P3 P4 (left plot) and to triangle P1 P2 P3 (right plot). Reproduced with
permission of Springer from Milani et al. (2004).

minimum angle increases and at the end we obtain the triangulation that
maximizes the minimum angle (Delaunay 1934).

The procedure adopted to triangulate our domain uses as input the sam-
pling of the boundary described above and the polygon formed by these
boundary points. The first phase is to generate a constrained Delaunay tri-
angulation (Π0, τ0) with these boundary points and boundary edges. Once
the initial triangulation is obtained, we refine it by adding new points in-
ternal to the domain, keeping at each insertion the Delaunay property.
At each step we add a point extending to the internal part of the do-
main the discrete density defined on the boundary points by the quanti-
ties ρ(Pj) = minl �=j d(Pl − Pj) where d is some distance.5 Let Gi be the
barycenters of the triangles Ti; we define the corresponding densities

ρ̃(Gi) =
1
3

3∑
m=1

ρ(Pim )

(Pim , m = 1, 2, 3, belongs to the same triangle Ti) and we add as a new point
the barycenter Gk̄ that maximizes the minimum distance (weighted with its
density ρ̃(Gk̄)) from the nodes of the triangulation. Then we eliminate the
corresponding triangle Tk̄ and we add to τ the triangles obtained joining
the edges of Tk̄ with the new point (keeping at each triangle insertion the
Delaunay optimal property by means of the edge-flipping technique). We

5 ρ(Pj ) is indeed an approximation of the inverse of a density function.
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iterate this insertion procedure until

max
Gi

(
min

j

{
d(Gi, Pj)

ρ̃(Gi)

})
> σ, (8.18)

where σ is a fixed small parameter. In (de’ Michieli Vitturi 2004) it is
shown that the algorithm converges and the final number of triangles is
< μ(∂D̃)n0/

√
3 σ, where n0 is the number of points on the boundary of

length μ(∂D̃).
When no new point needs to be added, either because some maximum

number has been reached, or because the convergence criterion (8.18) is ful-
filled, we apply to the triangulation obtained as above a mesh improvement
technique, generalizing Laplacian smoothing (Winslow 1964, Field 1988).
We move every internal point Pj of the triangulation to the center of mass
(weighted with the density defined above) of the polygon formed by all its
neighboring points (i.e., the ones connected to Pj by an edge), if it lies inside
the polygon. This technique improves the quality of the triangulation, but
it can produce a triangulation that is not Delaunay, so that we apply again
the edge-flipping technique at the end of the smoothing algorithm. The final
result is a triangulation optimal from the point of view of property (i), that
is avoiding as much as possible “flattened” triangles.

The definition of Delaunay triangulation uses distances and angles, thus it
depends on the metric selected for the space (ρ, ρ̇), in fact its own definition
is based on computations of distances and angles. In particular we can
select a strictly increasing function f(ρ) and perform the triangulation of
the admissible region with the metric ds2 = df(ρ)2 + dρ̇2, i.e., we can work
in the plane (f(ρ), ρ̇) endowed with the Euclidean metric. In our work we
have selected an adaptive metric, defined by the function

f(ρ) = 1 − exp
(
− ρ2

2 s2

)
. (8.19)

Since f ′(ρ) is maximum at ρ = s, by choosing the parameter s we select
which part of the admissible region should be more densely sampled. For
example, we can use s = ρmax, the largest root of the polynomial equation
obtained by selecting the equal sign in (8.11); with this choice we enhance
the portion of the space (ρ, ρ̇) farthest from the observer. If our purpose
is to search for objects in a particular portion of the (ρ, ρ̇) space, then we
can use a metric selected ad hoc. For example, to enhance the region near
the Earth we can use either a smaller s, or possibly f(ρ) = log10(ρ) as in
Figure 8.1.
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8.3 Attributable orbital elements

Given a short arc of observations, after computing the attributable we are
left with a totally undetermined point in the (ρ, ρ̇) plane. Following Sec-
tion 8.1, we can assume that this point belongs to an admissible region
of Solar System orbits, and we can sample this compact region by a finite
Delaunay triangulation. Each node defines a virtual asteroid, that is a
possible, but by no means determined, set of six quantities6

X = [α, δ, α̇, δ̇, ρ, ρ̇]

which are topocentric spherical polar coordinates, in a different order. A set
of six initial conditions uniquely determines the orbit of an asteroid, thus
it is a set of orbital elements, belonging to a new type (different from the
classical coordinates, such as Keplerian, equinoctial, cometary, Cartesian,
etc.). We shall call such data a set of attributable orbital elements.

Distance-dependent corrections

We need to refer a set of orbital elements to an epoch time t0; we can also
obtain a value for the absolute magnitude H if there are photometric mea-
surements together with the astrometric ones. The values of these quantities
are not equal to the mean observation time t̄ and the mean apparent mag-
nitude h computed with the attributable, but require distance dependent
corrections. An observation at time t̄ of an asteroid needs to be corrected
for aberration. The light spends a significant time δt = ρ/c, with c the
speed of light, to reach the observer from B; this means that the asteroid is
observed at time t̄ for its position at the time t̄− δt = t0, the epoch time of
the orbital elements, which is a function of ρ.

Equation (8.16) describing the relationship between apparent magnitude
h and the absolute magnitude H has the form H = h+Z(ρ), thus also H =
H(ρ). In conclusion, both t0 and H change for different virtual asteroids
with the same attributable.

Two approximations are used in the above definitions. The values of the
angles (α, δ) are corrected for aberration with an approximation to some
order7 in δt. A single δt(ρ) and a single Z(ρ) are used for all observations,
while the value of ρ is not constant in time: this approximation may fail if
the distance changes significantly during the arc time span, that is if ρ̇ δt is
of the order of ρ, in practice this can happen only for very small ρ.
6 Five of these are measured by real numbers, while α is an angle, defined mod 2π; this is

important whenever we compute a difference of two such vectors.
7 For higher order aberration corrections see Chapter 17.
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To convert from attributable elements to Cartesian ones we use eqs. (8.4),
and (8.5), thus (r, ṙ) are functions of (ρ, ρ̇), of ρ̂ = ρ̂(α, δ), and other quan-
tities depending upon the attributable. However, they also contain q and q̇,
which represent the position and velocity of the observer at time t̄ = t0 + δt.
The observer position is close to the geocenter position at the same time:
P = q − q⊕ is small, |P| � R⊕ � 4 × 10−5 |q⊕|, but a significant contribu-
tion to the heliocentric velocity comes from the observer geocentric velocity,
which has size |Ṗ| = Ω⊕ R⊕ cos θ � 0.5 cos θ km/s ≤ |q̇⊕|/60, where Ω⊕
is the angular velocity of the Earth’s rotation and θ is the latitude of the
observer.

The problem is that the main frequency of the geocentric motion is Ω⊕,
more than two orders of magnitude faster than the mean motion of both the
Earth and the asteroid. Thus the quadratic interpolation used to compute
the attributable fails to represent correctly the motion of the observer (see
Figure 9.1), unless the time span of the observations used for the attributable
is much shorter than one day. In (Poincaré 1906), to solve a similar problem
(see Section 9.4), it is suggested to make a quadratic interpolation for the
geocentric position vectors at the individual observations times to estimate
P(t̄) and Ṗ(t̄). These values must be used in eqs. (8.4) and (8.5) when the
time span of the observations used to form the attributable is of the order
of one day or more, and can improve the results even for shorter arcs.

Structure of the confidence regions

The problem is how to represent the uncertainty of a set of attributable
orbital elements, obtained from a given attributable. This case is quite
different from the customary one, in which the uncertainty of a set of orbital
elements is described by a positive definite 6×6 covariance matrix, computed
in the differential corrections, by a fit to ≥ 3 observations well separated in
time and in direction, see Section 10.5.

Among the attributable orbital elements, the first four coordinates are the
attributable A, computed by a least squares fit, thus with a positive definite
4 × 4 covariance matrix ΓA. The last two coordinates are the point B =
(ρ, ρ̇), to be selected in the admissible region. To describe the uncertainty
of the attributable orbital elements X = [A, B] we need to translate into a
mathematical formalism the intuitive statement that the attributable A is
measured, the point B is just conjectured.

The inverse of the covariance matrix ΓA, which is used in the least squares
fit to compute A, is the 4× 4 conditional normal matrix CA, appearing in a
probabilistic interpretation in the Gaussian probability density for the vari-
ables A assuming that B has a given value, that is assuming the selected
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virtual asteroid. CA can be built with the design matrix, giving the par-
tials of the observations (αi, δi) with respect to the four coordinates of A.
Thus also ΓA is the conditional covariance matrix8 of the attributable. We
can formally define the conditional covariance matrix for the attributable
elements X as the 6 × 6 symmetric matrix

ΓX =
[

ΓA 0
0 0

]
,

with 0 suitable matrices with null coefficients. ΓX is obviously not positive
definite: it has the B subspace as kernel (null space). The 2 × 2 submatrix
in the lower right-hand corner is ΓB = 0 because the value of B has been
assumed at some exact value, no uncertainty. The companion matrix

CX =
[

CA 0
0 0

]

is the conditional normal matrix in 6-space. CX and ΓX are not inverse of
each other, but pseudo-inverse, that is ΓX is indeed the matrix providing
the least squares differential correction for X when B is constrained to a
fixed value, see eq. (10.9).

A covariance matrix which is not positive definite, such as ΓX , can be used
in the same way (with some caution) as a conventional covariance matrix
to compute the uncertainty of predictions, such as future observations. The
covariance ΓX can be propagated and/or transformed to a covariance matrix
in some other coordinate system, e.g., Cartesian coordinates Y . Then, given
the Jacobian matrix ∂Y/∂X,

ΓY =
∂Y

∂X
ΓX

∂Y

∂X

T

(8.20)

is also not positive definite, with a two-dimensional null space, containing
the radial direction in both position and velocity. It is possible to propagate
also the normal matrix, by using the inverse Jacobian matrix ∂X/∂Y

CY =
∂X

∂Y

T

CX
∂X

∂Y
.

CY also has a null space of dimension 2, CY and ΓY are pseudo-inverse.
In the formulae of this section we have used so far a rather standard no-

tation; from now on we will face the following ambiguity: a normal matrix
and a covariance matrix are functions of the values of the variables for which
they are computed. The matrices resulting from the differential corrections
8 The conditional covariance matrix is the inverse of the conditional normal matrix, see Sec-

tions 5.4 and 3.3.



8.3 Attributable orbital elements 151

process are the ones at convergence, e.g., if the vector A has to be deter-
mined, and the nominal least squares solution is A1, the normal matrix CA

must be computed by using the design matrix computed in A1; then the
notation should stress this:

CA |A=A1 , ΓA |A=A1 .

However, we shall also use the abbreviated version CA1 , ΓA1 . A similar prob-
lem occurs for partial derivatives of a function F (A): confusion is possible
between the variable, with respect to which derivation is performed, and
the value assumed by the corresponding argument. We shall use the short
notation:

∂F

∂A

∣∣∣∣
A1

=
∂F

∂A

∣∣∣∣
A=A1

.

Quasi-product structure

As discussed in Section 8.1, for each value A of the attributable we can define
an admissible region D(A) in the plane of B = (ρ, ρ̇), such that for B ∈ D(A)
the attributable orbital elements X = [A, B] belong to a Solar System body.
The set D(A) is compact with at most two connected components, and its
boundary can be explicitly computed.

Even if we cannot determine the value of B from the observations (no
significant curvature information, see Section 9.1), we can assume that, if
the exact value of the attributable is A, the value of B is contained in
D(A). The existence of an observable real body with B outside D(A) is
not impossible, but is either very unlikely (observable hyperbolic comets
are rare) or outside the scope of this investigation (artificial satellites of the
Earth do exist, but they have to be handled separately, see Section 8.7).

Thus the confidence region, describing the uncertainty of the attributable
orbital elements X = [A, B], is defined by

ZX (σ) =
{
[A, B]

∣∣(A − A1)T CA1 (A − A1) ≤ σ2 and B ∈ D(A)
}

(8.21)

where σ > 0 is a parameter, A1 is the nominal (least squares) value of
the four attributable coordinates at time t̄1, and CA1 is the corresponding
normal matrix. This set is not a Cartesian product, although in many cases
it can be approximated by the product of a confidence ellipsoid in the space
of A times the admissible region computed with the nominal attributable
A1:

Z1
X (σ) =

{
A
∣∣(A − A1)T CA1 (A − A1) ≤ σ2 } ×D(A1). (8.22)
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The quasi-product structure of eq. (8.21) and its approximation with the
product of eq. (8.22) will play an important role in the following.

Sampling the confidence region

The practical problem is how to sample the confidence region ZX (σ) with
a finite number of virtual asteroids. Our approach is to use the nodes of a
Delaunay triangulation of the admissible region D(A1), the points {Bi

1 =
(ρi, ρ̇i)}i=1,k in D(A1); then the orbits of the virtual asteroids are defined
by the attributable orbital elements

{Xi = [A1, B
i
1]} i = 1, k

with epoch times ti1 = t̄1 − ρi/c. The sampling is adequate for prediction if

(i) the sampling of D(A1) by the nodes {Bi
1} is dense enough;

(ii) the uncertainty in the A subspace is not too large, and anyway is
appropriately accounted for by the covariance matrix ΓA1 ;

(iii) D(A) is not too different from D(A1) for values of A far from the
nominal, but still inside the confidence ellipsoid for A.

All the above are hypotheses to be verified in concrete cases. Some pa-
rameters, such as the number of points in the Delaunay triangulation, can be
adjusted to meet the requirements of condition (i). Condition (ii) refers to
the reliability of the astrometric measurement error model (see Section 5.8);
condition (iii) remains to be investigated.

8.4 Predictions from an attributable

We now discuss how to compute a prediction, starting from a set of virtual
asteroids, that is from a set of attributable orbital elements with uncertainty

Xi, ti1, H; ΓXi

with Xi = [A1, B
i
1], obtained as described in the previous section. The

process of prediction consists of two steps. The first is the orbit propagation
Φ from Xi at the epoch time ti1 to the prediction time t̄2: this gives a set of
orbital elements with uncertainty

Y i, t̄2, H; ΓY i

where the new covariance matrix ΓY i is given by an equation analogous to
(8.20). As already mentioned, the elements Y i can be given in a different
coordinate system, e.g., Cartesian coordinates. It follows again from formula
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(8.20) that the conditional covariance matrix ΓY i has rank 4, that is, it is
not positive definite with a two-dimensional null space.

The second step is to compute the observation function A : Y i �→ Ai with
Ai the attributable predicted at the new observation epoch t̄2. Since the light
leaves the observed body at a time earlier than t̄2 an aberration correction
has to be applied again. The Jacobian matrix of partial derivatives of the
prediction function F is the 4 × 6 matrix

∂A
∂Y

∣∣∣∣
Y i

.

Generically9 this matrix has rank 4. A formula similar to (8.20) for covari-
ance propagation holds also for mappings between spaces of different dimen-
sions, provided the rank of the Jacobian matrix is maximum, see (3.10):

ΓAi =
∂A
∂Y

∣∣∣∣
Y i

ΓY i

[
∂A
∂Y

∣∣∣∣
Y i

]T

.

By (8.20), taking into account the zeros of ΓXi , this formula implies

ΓAi =
∂A′

∂X

∣∣∣∣
Xi

ΓXi

[
∂A′

∂X

∣∣∣∣
Xi

]T

=
∂A′

∂A

∣∣∣∣
Xi

ΓA1

[
∂A′

∂A

∣∣∣∣
Xi

]T

(8.23)

where A′ = A ◦ Φ and the derivatives are with respect to the attributable
A at time t̄1. What is the rank of the 4 × 4 matrix ΓAi ? The following two
statements give a partial answer. First, for t̄2 → t̄1, Ai has A1 as limit, the
transformation between the two attributables approaches the identity and
ΓAi → ΓA1 , which has rank 4. Thus for t̄2 − t̄1 small enough the rank of
ΓAi is 4. However, we do not know how small t̄2 − t̄1 has to be for this to
be guaranteed.

Second, generically the rows of ∂A′/∂X are linearly independent, and they
do not belong to the null space of ΓXi . Thus generically ΓAi has rank 4.
However, a matrix can be of maximum rank but numerically degenerate if its
conditioning number is larger than the inverse of the machine accuracy. In
this case, the matrix has an inverse in exact arithmetic, but the computation
of the inverse is numerically unstable and requires the utmost caution.

Thus we expect, in almost all cases, the matrix ΓAi to be invertible. We
can think of ΓAi as the marginal covariance matrix associated to the portion
Ai of the attributable orbital elements Y i = [Ai, Bi

2]. Indeed, the uncertainty
of the attributable Ai is computed without making any assumption on the
non-measured quantities Bi

2 = (ρi
2, ρ̇

i
2). By the rule dual to the one used

9 The precise mathematical definition of a generic property is not simple; we can describe it by
saying that this occurs almost always.
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for the conditional matrices, the marginal normal matrix CAi = Γ−1
Ai

generically exists, but it may be difficult to compute.10 If the inverse matrix

M =
[

∂A′

∂A

∣∣∣∣
Xi

]−1

(8.24)

exists, then CAi can be computed by the formula derived from (8.23)

CAi = MT CA1 M. (8.25)

Thus it is possible in most (maybe not all) cases, to define a confidence
ellipsoid for the prediction Ai, corresponding to the assumption Bi

1, in
4-space of the attributables A′ at time t̄2:

ZAi (σ) =
{
A′ ∣∣(A′ − Ai)T CAi (A′ − Ai) ≤ σ2 }. (8.26)

This is actually the interior part of a three-dimensional ellipsoid in the four-
dimensional space of the attributables, where the second attributable is
predicted to be, within a confidence level described by the parameter σ.
However, this confidence parameter σ cannot be interpreted as a χ. In fact,
it is not possible to provide a probabilistic prediction model, unless there is
a way to assign probabilities to the points in the admissible region.11

Triangulated ephemerides

We can draw the conclusions from the discussion in this section and give a
definition of the confidence region for the prediction Ai even in the case we
are discussing, that is when the only information available is an attributable.

The confidence region for the attributable orbital elements derived from
the attributable A1 is ZX (σ) defined by (8.21); we assume it can be approxi-
mated by the product Z1

X (σ), defined by (8.22). The image on the attributa-
bles space at time t̄1 of the admissible region D(A1) is a two-dimensional
compact manifold with boundary V = A (Φ (D(A1))). We have no way to
explicitly compute this manifold as a function of B = (ρ, ρ̇), because the
map X → A′(X) does not have an analytic expression (A′(X) is the pre-
dicted attributable at the second time). We can compute a triangulation
of this manifold by using the image of the already computed triangulation
{Bi

1}, i = 1, k, of D(A1). The nodes of the triangulation Ai = A(Φ(Xi)) in
the four-dimensional observations space at t̄2 are the predictions from the
VAs Xi, in turn defined by the nodes Bi

1.
10 The marginal normal matrix is the inverse of the marginal covariance matrix, see Sections 5.4

and 3.3.
11 A population model could provide this informative a priori probability density in the (ρ, ρ̇)

plane. We have not yet tested this possibility.
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Fig. 8.4. For the asteroid 2003 BH84 , the observations 12 days after the discovery have been
predicted in the triangulated form by using only the attributable computed with the observations
of the discovery night. The ellipses indicate the projected uncertainty coming from the fit of
the attributable. The recovery attributable, computed with the actually observed data of the
later night, is at −α = −111◦.8, δ = 11◦.9, well within the bundle of ellipses. Reprinted from
(Milani et al. 2005a) with permission from Elsevier.

The triangulated ephemerides have to be computed in the four-
dimensional predictions space, although some two-dimensional projections
can be used to have a good perception of the uncertainty of the attributable
and assess the difficulty of a planned recovery, see Figure 8.4.

We associate to each node of the triangulated ephemerides its covariance.
We have to think of each node surrounded by its own confidence ellipsoid
Zi

A, defined by eq. (8.26); thus the projections, such as in Figure 8.4, are
surrounded by a confidence ellipse. This is an approximation to the tubular
neighborhood T (V ) of the two-manifold V which would be obtained by the
union of confidence ellipsoids centered in every point of V .

This tubular neighborhood, so difficult to be computed, plays an essential
role in different kinds of identification: recovery, precovery, and linkage. For
recovery/precovery, given a candidate attributable found either in the sky
or in the archives, to decide if the objects are the same we need to assess
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not only how much each observation is close to the prediction(s), but also
whether this discrepancy can be accounted for by the prediction uncertainty.

When planning what area (either in the sky or in the archive images) has
to be scanned, the answer is simply that we need the covered area to include
the projection on the celestial sphere of T (V ). This can be approximated by
the union of the ellipses, the projection of each Zi

A on the celestial sphere. It
does not matter how many ellipses overlap, because we are not computing
a probability density. Figure 8.4 suggests that, with some care to take
into account the lower density of the predicted observations along the tiny
object boundary, this approximation can give a good idea of the region to
be scanned for a recovery/precovery of a certain body.

8.5 Linkage by sampling the admissible region

We assume that for a given object B the only observational information
available is contained in two attributables, A1 at time t̄1 and A2 at time t̄2.
Neither from the first nor from the second can we compute an orbit, thus
we have a linkage problem.

The idea is to generate a swarm of virtual asteroids Xi, sampling as
described in the previous section the confidence region of one of the two
attributables, let us say A1. Then we compute, from each of the Xi, a pre-
diction Ai for the epoch t̄2, each with its covariance matrix ΓAi . Generically
these covariance matrices will be invertible, and the corresponding normal
matrices CAi can be computed from eq. (8.25). We also know the normal
matrix C2 of the attributable A2. Thus for each virtual asteroid Xi we can
compute an attribution penalty according to eq. (7.6)

Ki
4 = (A2 − Ai) · [C2 − C2 Γ0 C2] (A2 − Ai), Γ0 = [C2 + CAi ]−1

and use the values as a criterion to select some of the virtual asteroids to
proceed to the orbit computation. Note that the identification penalty Ki

4,
computed for a given node Bi

1 of the triangulation of D(A1), does not need
to be small. First, we cannot know a priori whether the two objects observed
at times t̄1 and t̄2 are indeed the same. Second, even if they were the same,
the value of Bi

1 could be totally wrong with respect to the true values of the
distance and its derivative at time t̄1. In both cases the two attributables
cannot fit, and this will be revealed by a large value of Ki

4.
Thus the procedure might be as follows. If for all nodes i the value of

the penalty is large, say Ki
4 > Kmax, then we discard the couple (A1, A2) as

not likely to belong to the same body. If there are some nodes Bi
1 such that

Ki
4 ≤ Kmax, then we proceed to the next step.



8.5 Linkage by sampling the admissible region 157

The value of the control Kmax to be used is difficult to establish a priori,
because we lack an analytical theory. We cannot use χ2-tables for dimension
8, because we are sampling the confidence region with a finite number of
points Bi

1, thus we cannot assume that the minimum among the Ki
4 is the

absolute minimum we could get by trying all values of B1 ∈ D(A1), that is

mini=1,kK
i
4 ≥ minB1∈D(A1 )K4(A1, B1) (8.27)

and we cannot compute analytically the safety margin to be left to take into
account this difference. We conclude that the value of Kmax to be used in
large-scale production of linkages can only be dictated by the analysis of the
results of large-scale tests, such as the ones cited in Chapter 11.

The procedure described above provides us also with a number of best
fitting corrected attributables Ai

2 = Γ0
[
CAi Ai + C2 A2

]
, according to the

third equation of (7.6). Each Ai
2 comes with its penalty value Ki

4, which
is not too large, that is, an orbit with Bi

1 as distance and radial velocity
at time ti1 and giving the attributable Ai

2 as observation at time t̄2, can fit
both A1 and A2 with not too large residuals; the fit is performed in the
eight-dimensional space of the residuals of both attributables.

To start differential corrections we need a set of orbital elements to be used
as first guess, with a consistent set of six coordinates at the same epoch; such
a set is called a preliminary orbit. There is no requirement that such an
orbit is accurate: it is only hoped that it belongs to the convergence domain
of the differential corrections. To achieve this, we have a number of options,
the simpler one is to use the attributable Ai

2 and the value Bi
2 = (ρi

2, ρ̇
i
2)

as computed from the orbit Xi = [A1, B
i
1] at ti1. The epoch of this set of

initial conditions is t̄2 − ρi
2/c. Another possibility is to use the attributable

back-propagated (linearly) to time t̄1, starting from Ai
2

Ai
1 = A1 + M (Ai

2 − Ai),

with M from eq. (8.24), and the value Bi
1 of the node, at the epoch ti1.

In both cases, we find an orbit which could fit both attributables if the
quadratic approximation of (7.6) is good enough.

In Figure 8.5 we show the linkage procedure for the asteroid 2003
BH84. We use the attributable of the discovery night and another at-
tributable computed with the observations made five days later. The
nodes of the triangulated admissible region with identification penalty
Ki

4 < (0.6)2 are encircled and the edges joining them are en-
hanced with solid lines. From each of the encircled nodes a con-
strained differential corrections procedure, explained in Chapter 10, al-
lows us to obtain some orbits that fit better to the observations.



158 LINKAGE

The latter are represented here by the points with the same labels as the
encircled nodes; a linear fit shows that they are quite well aligned.
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Fig. 8.5. Attributable from the discovery night of 2003 BH84 identified with the attributable
from five days later. The solid lines join the nodes with penalty Ki

4 < (0.6)2 , used to compute pre-
liminary orbits: from each of them we have started a constrained differential correction procedure,
finding solutions on the line of variations (see Chapter 10). Reprinted from (Milani et al. 2005a)
with permission from Elsevier.

8.6 Linkage by the two-body integrals

We shall describe a method (Gronchi et al. 2008) to produce preliminary
orbits starting from two attributables A1, A2 of the same Solar System body
at two epochs t̄1, t̄2. It is based on the use of the two-body integrals, which
had been proposed also in (Taff and Hall 1977).

Angular momentum and energy

For a given attributable A the angular momentum vector per unit mass can
be written as a polynomial function of the radial distance and velocity ρ, ρ̇

c(ρ, ρ̇) = r × ṙ = Dρ̇ + Eρ2 + Fρ + G, (8.28)
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where

⎧⎪⎪⎨
⎪⎪⎩

D = q × ρ̂

E = α̇ρ̂ × ρ̂α + δ̇ρ̂ × ρ̂δ = η n̂
F = α̇q × ρ̂α + δ̇q × ρ̂δ + ρ̂ × q̇
G = q × q̇

(8.29)

depend only on the attributable A and the motion of the observer q, q̇ at the
attributable time t̄. The vectors ρ̂, ρ̂α, ρ̂δ have been defined in Section 8.1.

For the given A the two-body energy as a function of ρ, ρ̇

2E(ρ, ρ̇) = ρ̇2 + c1ρ̇ + c2ρ
2 + c3ρ + c4 −

2k2√
ρ2 + c5ρ + c0

(8.30)

depends on A,q, q̇ only through the coefficients cj of (8.8).

Equating the integrals

Now take two attributables A1 = (α1, δ1, α̇1, δ̇1), A2 = (α2, δ2, α̇2, δ̇2) at
epochs t̄1, t̄2; we shall use subscripts 1 and 2 referring to the different epochs.
If A1, A2 correspond to the same physical object, then the angular momen-
tum vectors at the two epochs must coincide: this gives

D1ρ̇1 − D2ρ̇2 = J(ρ1, ρ2) (8.31)

where

J(ρ1, ρ2) = E2ρ
2
2 − E1ρ

2
1 + F2ρ2 − F1ρ1 + G2 − G1.

Relation (8.31) is a system of three equations in the four unknowns ρ1, ρ̇1, ρ2,

ρ̇2, with constraints

ρ1 > 0, ρ2 > 0.

By scalar multiplication of (8.31) with D1 × D2 we eliminate the variables
ρ̇1, ρ̇2 and obtain the scalar equation

D1 × D2 · J(ρ1, ρ2) = 0. (8.32)

The left-hand side of (8.32) is a quadratic form in the variables ρ1, ρ2: we
write it as

q(ρ1, ρ2) = q20ρ
2
1 + q10ρ1 + q02ρ

2
2 + q01ρ2 + q00 (8.33)

with

q20 = −E1 · D1 × D2,

q10 = −F1 · D1 × D2,

q00 = (G2 − G1) · D1 × D2.

q02 = E2 · D1 × D2,

q01 = F2 · D1 × D2,
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In the geocentric approximation for the observations we note that Gi is the
angular momentum of the Earth at epoch t̄i, i = 1, 2, thus G1 = G2 and
q00 = 0. In this case there is a spurious solution ρ1 = ρ2 = 0.

The use of the angular momentum integral to determine an orbit of a
Solar System body is already present in (Mossotti 1816). More recently,
Kristensen (1995) proposed a method to compute a preliminary orbit from
two short arcs of observations in which the basic idea is to equate the angular
momentum vectors at the two mean epochs of observations.

For the given A1, A2 we can also equate the corresponding two-body en-
ergies E1, E2. By vector multiplication of (8.31) with D1 and D2, projecting
on the direction of D1 × D2, we obtain

ρ̇1(ρ1, ρ2) =
(J × D2) · (D1 × D2)

|D1 × D2|2
, ρ̇2(ρ1, ρ2) =

(J × D1) · (D1 × D2)
|D1 × D2|2

(8.34)
and, substituting into E1 = E2,

F1(ρ1, ρ2) −
2k2√
G1(ρ1)

= F2(ρ1, ρ2) −
2k2√
G2(ρ2)

, (8.35)

for some polynomial functions F1(ρ1, ρ2), F2(ρ1, ρ2), G1(ρ1), G2(ρ2) with
degrees deg(F1) = deg(F2) = 4 and deg(G1) = deg(G2) = 2. By squaring
twice we obtain the polynomial equation

p(ρ1, ρ2) =
[
(F1 −F2)2G1G2 − 4k4(G1 + G2)

]2 − 64k8G1G2 = 0 (8.36)

with total degree 24. Some spurious solutions may have been added.

Intersections between the curves

We study the semialgebraic intersection problem{
p(ρ1, ρ2) = 0
q(ρ1, ρ2) = 0,

ρ1, ρ2 > 0 (8.37)

with classical algebraic geometry methods, see (Cox et al. 1996). Let us
write

p(ρ1, ρ2) =
20∑

j=0

aj(ρ2) ρj
1, (8.38)

where deg(aj) =

⎧⎨
⎩

20 for j = 0 . . . 4
24 − (j + 1) for j = 2k − 1 with k ≥ 3
24 − j for j = 2k with k ≥ 3
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and

q(ρ1, ρ2) = b2 ρ2
1 + b1 ρ1 + b0(ρ2) (8.39)

for some univariate polynomial coefficients ai, bj , depending on ρ2.
We consider the resultant Res(ρ2) of p, q with respect to ρ1: it is a poly-

nomial with degree ≤ 48, defined as the determinant of the Sylvester matrix

Sylv(ρ2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a20 0 b2 0 . . . . . . 0
a19 a20 b1 b2 0 . . . 0
...

... b0 b1 b2 . . .
...

...
... 0 b0 b1 . . .

...

a0 a1
...

...
... b0 b1

0 a0 0 0 0 0 b0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (8.40)

The positive real roots of Res(ρ2) are the only possible values of ρ2 for a
solution (ρ1, ρ2) of (8.37). Thus we can use the following scheme to compute
the solutions of (8.37):

(1) find the positive roots ρ2(k) of Res(ρ2) by using a global solution method
such as (Bini 1997);

(2) for each k solve q(ρ1, ρ2(k)) = 0 and compute the two possible values
for ρ1(k, 1), ρ1(k, 2), discarding negative solutions;

(3) compute p(ρ1(k, 1), ρ2(k)), p(ρ1(k, 2), ρ2(k)) and select ρ1(k) from the
pair that gives zero (at least in exact arithmetic: in practice we select
the pair giving the smaller absolute value);

(4) discard spurious solutions, resulting by squaring to obtain (8.36) from
(8.35);

(5) for the obtained values of ρ1, ρ2 compute the values of ρ̇1(k), ρ̇2(k) by
(8.34);

(6) change coordinates to Cartesian heliocentric elements at times
t1(k), t2(k), corrected by the aberration due to the finite velocity of
the light, and by using the Poincaré observer interpolation method (see
Section 8.3);

(7) change coordinates to Keplerian elements at times t1(k), t2(k).

Note that the values of the angular momentum vector and of the energy
at a given time fix the values of the Keplerian elements a, e, I,Ω. The two
attributables A1, A2 at epochs t̄1, t̄2 give eight scalar data, thus the problem
is over-determined. From a non-spurious pair (ρ̃1, ρ̃2), the solution of (8.37),
we obtain the same values of a, e, I,Ω at both times t̃i = t̄i − ρ̃i/c, i =
1, 2, with the aberration correction, but we must check the compatibility
conditions

ω1 = ω2, �1 = �2 + n(t̃1 − t̃2), (8.41)
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Fig. 8.6. Intersections of the curves p = 0, q = 0 in the plane ρ1 , ρ2 . This example is for asteroid
(243) Ida and the intersection corresponding to the true object is marked with an asterisk.

where ω1, ω2 and �1, �2 are the arguments of perihelion and the mean anoma-
lies of the body at times t̃1, t̃2 and n = ka−3/2 is the mean motion of the
celestial body. The first of conditions (8.41) corresponds to the fifth integral
of the Kepler problem, from the Laplace–Lenz vector integral (4.11), the
second involves a two-body propagation (e.g., by the Kepler equation).

In Figure 8.6 we show the intersections of the algebraic curve p(ρ1, ρ2) = 0
with the conic q(ρ1, ρ2) = 0 from two attributables obtained from the orbit
of the asteroid (243) Ida, assuming geocentric observations at epochs > 38
days apart. There are eight intersections with ρ1, ρ2 > 0: seven are shown in
the figure and one is very near the origin. Removing spurious solutions only
three are left, one of which gives a hyperbolic orbit and one grossly fails the
conditions (8.41); the only solution left gives a very good preliminary orbit.

This method has been developed recently (Gronchi et al. 2008) and has
not yet been submitted to a large-scale test. From a few examples it appears
to have a good potential in providing preliminary orbits for difficult linkages
between very short observed arcs, providing little information beyond the
respective attributables, and separated by a time interval much larger than
the arc time spans.
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8.7 The space debris problem

Near-Earth space is filled by more than 300 000 artificial debris particles
with diameter larger than 1 cm (Rossi, 2005). This population is similar
to the asteroidal one because its long-term evolution is affected by high-
velocity mutual collisions. Another analogy is that there is an impact risk,
that is space assets (e.g., the International Space Station) could be seriously
damaged by a collision with some debris (see Chapter 12). The space where
the debris is placed can be divided into three main regions: low-Earth orbit
(LEO), below about 2000 km, medium-Earth orbit (MEO), above 2000 km
and below 36 000 km and geosynchronous Earth orbit (GEO) at about 36 000
km of altitude.

In this section we outline the theoretical basis of the orbit determination
algorithms for space debris. The main problem to compute the orbits of the
observed space debris is the identification12 of two or more sets of observa-
tional data. Exactly as for asteroids, the data contained in the observations
during a single pass over an observing station are not enough to obtain a
least squares orbit solution. As an example, if the image moves together
with the fixed stars, the debris produces a trail the two extremes of which
are measured: this gives us a tracklet. The information contained in such
data is just the mean angular position and the first time derivatives, that is
the attributable, defined by the same formula (8.1) as the asteroid case.

Admissible regions for Earth satellites

Following Tommei et al. (2007), we use a new interpretation of eq. (8.4)
with the geocentric position r of the debris, the geocentric position q of the
observer, and the topocentric position ρ of the debris: r = ρ+q still applies,
and eq. (8.2) is replaced by

E⊕(ρ, ρ̇) =
1
2
‖ṙ(ρ, ρ̇)‖2 − Gm⊕

r(ρ)
. (8.42)

Then a definition of admissible region such that only satellites of the Earth
are allowed includes the condition

E⊕(ρ, ρ̇) ≤ 0. (8.43)

Given the attributable A at time t obtained from the observations, eqs.
(8.5), (8.6), (8.7), and (8.8) are the same, as well as the derivation leading
to the degree 6 inequality (8.11). Thus the same conclusions apply, namely
12 Identification is also called, in this context, correlation; we do not use this terminology to avoid

confusion with the other well-established meaning of the word, see Section 3.1.
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the region in the (ρ, ρ̇) half-plane ρ > 0 fulfilling (8.43) has at most two
connected components. One component has an open inner boundary ρ > 0,
if a second component exists, it is compact.

The admissible region needs to be compact for the reasons explained in
the asteroid case, thus a condition defining an inner boundary needs to be
added. The choice for the inner boundary depends upon the specific orbit
determination task: a simple method is to add constraints ρmin ≤ ρ ≤ ρmax

allowing us, e.g., to focus the search of identifications on one of the three
classes LEO, MEO, and GEO, as in (Tommei et al. 2007). Another natural
choice for the inner boundary is to take ρ ≥ hatm where hatm is the thickness
of a portion of the Earth’s atmosphere in which a satellite cannot remain
in orbit for a significant time span.13 As an alternative, it is possible to
constrain the semimajor axis of the satellite to be larger that R⊕+hatm = R̄,
and this leads to an equation

E⊕(ρ, ρ̇) ≥ −Gm⊕
2 R̄

(8.44)

which defines another degree 6 inequality with the same coefficients as
eq. (8.11) but for a different constant term. Figure 8.7 shows the inter-
play of different definitions of the inner boundary.

Another possible way to find an inner boundary is to exclude trajectories
impacting the Earth in less than one revolution, that is to use an inequality
on the perigee q (Farnocchia 2008)

q = a(1 − e) ≥ R̄. (8.45)

By substituting into the two-body formulae from Section 4.2 we obtain√
1 +

2E⊕||c||2
G2 m2

⊕
≤ 1 +

2E⊕R̄

Gm⊕
. (8.46)

Since the left-hand side is e ≥ 0, we need to impose the condition

1 +
2E⊕R̄

G m⊕
≥ 0

on the right-hand side; this is again a ≥ R̄. By squaring (8.46) we obtain

||c||2 ≥ 2 R̄ (G m⊕ + E⊕R̄). (8.47)

Given the expressions (8.28) for c and (8.42) for E⊕, the above condition
is an algebraic inequality in the variables (ρ, ρ̇); by another squaring it is
possible to convert it into a polynomial equation of degree 10 in ρ and
13 In practice, hatm is just few times the scale height H of the atmosphere, see Section 14.4.
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Fig. 8.7. The admissible region for an Earth satellite must be a subset of the region with negative
geocentric energy. Additional constraints may be added by using the physical boundary R̄ =
R⊕ + hatm defined by the atmosphere and the dynamical boundary defined by the sphere of
influence r ≤ RS I : a ≥ R̄, q ≥ R̄ and Q ≤ RS I can be used.

degree 4 in ρ̇. Figure 8.7 also shows this inner boundary, as well as an
alternative outer boundary constraining the apocenter Q at some large value
(the equations are analogous). The main limitation of this approach is that
we do not have a rigorous proof that the region defined by eqs. (8.45) and
(8.43) has at most two connected components.

Sampling

The admissible region for space debris can be used in the same way as
in the asteroid case, to be sampled by a swarm of virtual debris, which
is analogous to the virtual asteroids. In this way the linkage problem is
transformed into a multiple hypothesis attribution problem, for which the
theory is the same as in Sections 8.4 and 8.5.

If the Delaunay triangulation method of Section 8.2 is used, the starting
point is a sampling of the boundary of the admissible region. For the outer
boundary this is the same as in the asteroid case, for the inner one we can
use either a minimum ρ or a minimum perigee q, that is (8.45). The first
choice is simpler and leads more easily to a reliable algorithm, because with
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condition (8.45) we cannot be sure of the number of connected components.
A reasonable approach would be to triangulate a region with the simplest
inner boundary, then discard the nodes which turn out to have a ballistic
orbit with q < R̄.

The two-body integrals method for optical observations

Linkage between attributables belonging to space debris can also be obtained
by the prime integrals method. All the formulae of Section 8.6 are the same,
with the geocentric interpretation of r and q and with Gm⊕ in place of k2.
The main difference is a simplification: the geocentric motion of the observer
q has the frequency Ω⊕, which cannot be much faster than the mean motion
of the satellites, in most cases it is slower. Thus step (6) of the algorithm of
the previous section is simplified, without any need for the Poincaré observer
interpolation method.

As an example, this method could be suitable for GEO debris: with two
tracklets belonging to consecutive nights, that is spaced by about one orbital
period, it could provide accurate preliminary orbits. There is just one pitfall
to be avoided: two attributables spaced in time by one day, taken from the
same station, result in an approximate rank deficiency in eq. (8.32), because
D1 and D2 are nearly the same (Gronchi et al. 2008). Thus images of the
same portion of the GEO belt have to be taken at different hours.

This method has not yet been submitted to large-scale tests; however, we
have a program under way to test and compare the prime integrals and the
recursive attribution methods specifically for debris in the GEO region.

Radar attributable and admissible regions

Active artificial satellites and space debris can also be observed by radar:
because of the 1/ρ4 dependence of the signal-to-noise for radar observa-
tions, range and range-rate are currently measured only for debris in LEO.
When a return signal is acquired, the antenna pointing angles are also
available. Given the capability of modern radars to scan very rapidly the
entire visible sky,14 radar can be used to discover all the debris above
a minimum size while visible from an antenna, or a system of antennas
(Mehrholz et al. 2002).

When a radar observation is performed we assume that the measured
quantities (all with their own uncertainty) are the range, the range-rate,
14 The pointing of the radar can also be achieved by phased array technology, without physical

motion of the antenna.
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and also the antenna pointing direction, that is the debris apparent position
on the celestial sphere, expressed by two angular coordinates such as right
ascension α and declination δ. The time derivatives of these angular coor-
dinates, α̇ and δ̇, are not measured: therefore the concept of attributable
must be modified and an admissible region defined in the (α̇, δ̇) plane.

We define as radar attributable a vector

Arad = (α, δ, ρ, ρ̇) ∈ [−π, π) × (−π/2, π/2) × R+ × R, (8.48)

containing the information from a radar observation, at time t; note that,
by analogy with other cases, we assume t is the receive time. Given a radar
attributable Arad, we define as radar admissible region for a space debris
the set of values of (α̇, δ̇) such that, for the given radar attributable Arad

E⊕(α̇, δ̇) ≤ 0. (8.49)

In order to compute the admissible region we use the geocentric energy,
given by the formula

2E⊕ = ρ̇2 + c1ρ̇ + c2ρ
2 + c3ρ + c4 −

2Gm⊕√
ρ2 + c5ρ + c0

(8.50)

analogous to eq. (8.30), as a function of the unknown quantities α̇ and δ̇.
Among the coefficients (8.8), only c2 = η2 and c3 depend on α̇ and δ̇, thus
from eq. (8.30) we have a quadratic polynomial in α̇ and δ̇

2E⊕ = z11 α̇2 + 2 z12 α̇ δ̇ + z22 δ̇2 + 2 z13 α̇ + 2 z23 δ̇ + z33, (8.51)

with

z11 = ρ2 cos2 δ

z12 = 0
z22 = ρ2

z13 = ρ q̇ · ρα

z23 = ρ q̇ · ρδ

z33 = ρ̇2 + c1 ρ̇ + c4 − 2 Gm⊕/
√

S(ρ),

where S(ρ) is defined as in (8.9). The boundary of the admissible region in
the (α̇, δ̇) plane is then given by

E⊕(α̇, δ̇) = 0. (8.52)

For each value of Arad, this equation represents a conic section in the (α̇, δ̇)
plane; more precisely, since z11, z22 > 0 and z12 = 0, it is an ellipse with
its axes aligned with the coordinate axes. Actually, in a plane (α̇ cos δ, δ̇),
with the axes rescaled according to the metric of the tangent plane to the
celestial sphere, the curves E⊕(α̇, δ̇) = 0 are circles.

The region defined by negative geocentric energy E⊕(α̇, δ̇) ≤ 0 is the inside
of one ellipse (or circle in the rescaled coordinates). Thus it is a compact
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set, and the problem of defining an inner boundary of the admissible region
is less important than in the optical attributable case. Anyway, it is possible
to define an inner boundary by constraining the semimajor axis a > R̄, that
is by eq. (8.44), resulting in a concentric inner ellipse (circle), thus in an
admissible region forming an elliptic (circular) annulus.

It is also possible to exclude the ballistic trajectories by imposing q > R̄,
that is by using inequality (8.47), in which α̇, δ̇ are to be considered as
variables. Then the geocentric energy is given by (8.51), and the angular
momentum by

c = r × ṙ = E + F α̇ + G δ̇ (8.53)

where

⎧⎨
⎩

E = r × q̇ + ρ̇q × ρ̂,

F = r × ρ ρ̂α,

G = r × ρ ρ̂δ .

(8.54)

Fig. 8.8. Possible shapes of a radar admissible region, including the negative energy condition
(outer ellipse) and the pericenter condition (intermediate ellipse on the left, hyperbola on the
right); the lower bound to the semimajor axis (inner ellipse) is implied by the pericenter condition.

Note that the geocentric vector r is fully determined by the radar at-
tributable as r = q+ρ ρ̂ and contains no unknown. By a sequence of simple
algebraic passages, similar to those of the optical case, we can conclude that
the admissible region defined by E⊕ ≤ 0 and q ≥ R̄ is the set of solutions of
the system of three inequalities

E⊕ ≤ 0, E⊕ ≥ −G m⊕/2R̄, ||c||2 ≥ 2 R̄ (Gm⊕ + E⊕R̄),

all three quadratic in the (α̇, δ̇) variables. Thus the admissible region can be
geometrically described as a region bounded by three conics: the first two
are concentric ellipses (circles in the rescaled coordinates), the third one can
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be either an ellipse or a hyperbola, with a different center and different
symmetry axes. Figure 8.8 shows the possible qualitatively different cases.

The sampling of the radar admissible region could be obtained by a Delau-
nay triangulation, but the algorithm would be cumbersome because of the
need to distinguish geometrically distinct cases for the boundary. A simpler
method would be to use a spider web sampling for the annulus, that is, in
the plane of the rescaled coordinates (α̇ cos δ, δ̇), to use a rectangular grid in
the polar coordinates centered in the common center of the two circles. The
virtual debris obtained in this way could then be tested for the condition
q > R̄ and the ones failing this test discarded, if ballistic trajectories (such
as very recent launches) are not among the target of the survey.

The two-body integrals method for radar observations

The two-body integrals method for linkage of the previous section can also
be applied to the case of two radar attributables A1, A2 with receive times
t1, t2. The formulae for geocentric energy and angular momentum are given
by (8.51) and (8.53), polynomials of degree 2 and 1 in the unknowns (α̇, δ̇),
respectively. Thus the system of four scalar equations obtained by equating
the two energies and the two angular momentum vectors contains three
linear equations and a quadratic one, and has overall algebraic degree 2. It
follows that such a system can be solved by elementary algebra.

We use subscripts 1 and 2 referring to the different epochs: the angular
momentum equations are

E1 + F1 α̇1 + G1 δ̇1 = E2 + F2 α̇2 + G2 δ̇2, (8.55)

where Ei,Fi,Gi for i = 1, 2 are the quantities defined in (8.54) for each
of the two radar attributables. The equation above is a system of three
linear equations in four unknowns (α̇1, δ̇1, α̇2, δ̇2) and can be solved for three
unknowns as a function of one of the four. By scalar multiplication with
G1 × F2 we can obtain α̇1 as a function of δ̇2, and so on. This procedure
fails only if the four vectors F1,F2,G1,G2 do not generate a linear space of
dimension 3. Apart from coordinate singularities, this can happen only if r1

is parallel to r2, e.g., when the time interval is equal to the orbital period.
When the equations for, say, (α̇1, δ̇1, α̇2) as a function of δ̇2 are substituted

in the equation for the energies

E⊕,1(α̇1, δ̇1) = E⊕,2(α̇2, δ̇2)

we obtain a quadratic equation in δ̇2, which can be solved by elementary
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algebra, giving at most two real solutions. Geometrically, the angular mo-
mentum equation (8.55) can be described by a straight line in a plane, e.g.,
in (α̇2, δ̇2), where the energy equation defines a conic section.

The practical application of this method to a real case of one or more radar
stations surveying for space debris requires some non-trivial additional steps.
In particular, it is necessary to check that the assumption that a two-body
model is a good approximation for the orbit over the time span from t1 to
t2. Because the radar observations are limited to LEO, the debris performs
between 12 and 16 orbits per day; this implies that in just one day the
orbital perturbations due to the non-spherical shape of the Earth’s orbit are
significant, especially on the longitude of the node Ω. The largest changes
to Ω are due to the secular perturbation

Ω(t2) − Ω(t1) � −(t2 − t1)
3
2
n

(
R⊕
a

)2 J2

(1 − e2)2 cos I

where J2 = −C20 is the coefficient of the second zonal spherical harmonic
of the Earth’s gravity field (see Section 13.2). It is possible to account for
the precession of the node in a modified version of the two-body integrals
method (Farnocchia 2008), obtaining a system of four algebraic equations,
but the overall degree is 112. Such a system could be solved with the same
methods described in the previous section and in (Gronchi et al. 2008), but
it is not yet clear whether this would result in an efficient algorithm.

The simpler method, with explicit solution by elementary algebra, could
be applicable if the radar system had the capability of acquiring two radar
attributables from most debris within the same pass, or at most at the next
pass (< 2 hours later). If this was possible, it would provide a very good
example of how to transform a difficult problem of orbit determination, such
as linkage, into one with an elementary solution.
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METHODS BY LAPLACE AND GAUSS

In this chapter we discuss the classical methods by Laplace and Gauss to
obtain some preliminary orbit, a solution of the two-body problem, given
at least three observations of two angular coordinates (α, δ) on the celestial
sphere. We will show that these procedures are controlled by the presence of
curvature, that is information beyond that contained in an attributable. We
also discuss the possibility of non-unique solutions. This chapter is based
on our papers (Milani et al. 2008, Gronchi 2009).

9.1 Attributables and curvature

If there are m ≥ 3 observations (αi, δi) of a Solar System body B (e.g., an
asteroid) at different times ti, i = 1, m, we can compute an attributable A

by fitting both angular coordinates as a function of time with a polynomial
model. In most cases a degree 2 model, centered at the mean t̄ of the times
ti, is satisfactory:

α(t) = α(t̄) + α̇(t̄) (t − t̄) +
1
2
α̈(t̄) (t − t̄)2,

δ(t) = δ(t̄) + δ̇(t̄) (t − t̄) +
1
2
δ̈(t̄) (t − t̄)2;

the vector (α, α̇, α̈, δ, δ̇, δ̈) is obtained as a solution of the problem of Sec-
tion 5.1, together with the two 3 × 3 covariance matrices Γα, Γδ . We are
assuming that the α and δ error components are not correlated, otherwise
the 6 × 6 covariance matrix of all the variables could be full.

171
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Computation of curvature

The heliocentric position of the observed body B is the vector r ∈ R3 and
the topocentric position is

ρ = ρ ρ̂ = r − q,

where q is the heliocentric position of the observer, ρ̂ is the unit vector
defining the observation direction, ρ the topocentric distance of B.

We shall use an orthonormal basis adapted to the apparent path of B on
the celestial sphere, that is the image of ρ̂(t). Following Danby (1988) we
note that

v =
dρ̂

dt
= η v̂, v̂ · ρ̂ = 0,

where η = ‖v‖ is the proper motion. By using the arc length parameter
s, defined by ds/dt = η, we have dρ̂/ds = v̂. Denoting with a prime the
derivative with respect to s, the derivative v̂′ has the properties

v̂′ · ρ̂ =
d

ds
[v̂ · ρ̂] − v̂ · ρ̂′ = −1,

v̂′ · v̂ =
1
2

d

ds
‖v̂‖2 = 0;

in the orthonormal basis {ρ̂, v̂, n̂}, with n̂ = ρ̂ × v̂, we can express v̂′ as

v̂′ = −ρ̂ + κ n̂

for a scalar function κ called the geodesic curvature of the path. It
measures the deviation of the path from a great circle (a geodesic on the
sphere).

The second derivative of the path ρ̂(t) with respect to t can be computed
from v̂′ and is

d2ρ̂

dt2
= −η2ρ̂ + η̇ v̂ + κη2n̂. (9.1)

The three components of the vector d2ρ̂/dt2 give us information on the
curvature of the path: the component along n̂ is strictly related to the
geodesic curvature, that along v̂ is called the along-track acceleration,
and that along ρ̂ simply means that the path is on a sphere.

To compute the two components κη2, η̇ of curvature starting from the
values of (α, δ, α̇, δ̇, α̈, δ̈), obtained by a polynomial fit of the observations,
we use the orthogonal basis {ρ̂, ρ̂α, ρ̂δ}, where

ρ̂ = (cos δ cos α, cos δ sin α, sin δ),

ρ̂α =
∂ρ̂

∂α
= (− cos δ sinα, cos δ cos α, 0),
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ρ̂δ =
∂ρ̂

∂δ
= (− sin δ cos α,− sin δ sinα, cos δ),

with ‖ρ̂‖ = ‖ρ̂δ‖ = 1, ‖ρ̂α‖ = cos δ. We have the following relations:

v̂ = ρ̂′ = α′ ρ̂α + δ′ ρ̂δ ,

n̂ = ρ̂ ×
(
α′ ρ̂α + δ′ ρ̂δ

)
= − δ′

cos δ
ρ̂α + α′ cos δ ρ̂δ ,

v̂′ =
(
α′′ρ̂α + δ′′ρ̂δ

)
+
(
α′2ρ̂αα + 2α′δ′ρ̂αδ + δ′2ρ̂δδ

)
,

and the second derivative vectors are

ρ̂αα =
∂2ρ̂

∂α2 = (− cos δ cos α,− cos δ sinα, 0),

ρ̂αδ =
∂2ρ̂

∂α ∂δ
= (sin δ sinα,− sin δ cos α, 0),

ρ̂δδ =
∂2ρ̂

∂δ2 = (− cos δ cos α,− cos δ sin α,− sin δ).

We also need the scalar products1

ρ̂αα · ρ̂α = 0 = Γαα,α ρ̂αα · ρ̂δ = sin δ cos δ = Γαα,δ

ρ̂αδ · ρ̂α = − sin δ cos δ = Γαδ,α ρ̂αδ · ρ̂δ = 0 = Γαδ,δ

ρ̂δδ · ρ̂α = 0 = Γδδ,α ρ̂δδ · ρ̂δ = 0 = Γδδ,δ

to compute the geodesic curvature

κ = v̂′ · n̂ = (δ′′α′ − α′′δ′) cos δ + α′ (1 + δ′2) sin δ

as a function of the derivatives with respect to the arc length. To obtain an
expression containing the time derivatives we need to use

α′′ =
1
η

d

dt

(
α̇

η

)
=

η α̈ − η̇ α̇

η3

and the analog for δ′′; with the terms containing η̇ canceling out we obtain

κη2 =
1
η

[
(δ̈α̇ − α̈δ̇) cos δ + α̇(η2 + δ̇2) sin δ

]
. (9.2)

To compute the along-track acceleration we consider the second derivative

d2ρ̂

dt2
=
(
α̈ ρ̂α + δ̈ ρ̂δ

)
+
(
α̇2 ρ̂αα + 2 α̇ δ̇ ρ̂αδ + δ̇2 ρ̂δδ

)
so that

η̇ =
d2ρ̂

dt2
· v̂ =

α̈ α̇ cos2 δ + δ̈ δ̇ − α̇2 δ̇ cos δ sin δ

η
. (9.3)

1 That is, the Riemannian connection of the sphere, as expressed by the Christoffel symbols.
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9.2 The method of Laplace

In the orthonormal basis {ρ̂, v̂, n̂} we can write the first and second time
derivatives of the topocentric vector ρ as follows:

ρ̇ = ρ̇ ρ̂ + ρ η v̂,

ρ̈ = (ρ η̇ + 2 ρ̇ η)v̂ + ρ η2 κn̂ + ρ̈ − ρ η2ρ̂.

The Laplace method uses the following approximations: q is the po-
sition of the center of the Earth (geocentric approximation) and the mass
of all the planets is zero. Then the two-body formula can be used for the
accelerations ρ̈ and q̈

ρ̈ =
−μ r
r3 +

μ q
q3

where r is the heliocentric distance of the asteroid, q is the heliocentric
distance of the Earth, μ the mass of the Sun times the gravitational constant.
Note that the denominator of the first fraction is r3 = S(ρ)3/2 where

S(ρ) = ρ2 + 2qρ cos ε + q2 (9.4)

is the same polynomial appearing in Section 8.1, with q = q q̂ and cos ε =
q̂ · ρ̂. Equation (9.4) is a geometric relation among q, r, and ρ and it is often
called the geometric equation in the orbit determination literature.

We compute the components of ρ̈ along n̂ and v̂: using ρ̂ · n̂ = 0 we have

ρ̈ · n̂ =
−μ q · n̂

r3 +
μ q · n̂

q3 = ρ η2 κ, (9.5)

ρ̈ · v̂ =
−μ q · v̂

r3 +
μ q · v̂

q3 = ρ η̇ + 2 ρ̇ η. (9.6)

Let us define

C =
η2 κ q3

μ q̂ · n̂ ; (9.7)

then, in the two-body approximation, eq. (9.5) takes the form

1 − C
ρ

q
=

q3

S(ρ)3/2 , (9.8)

which is often called the dynamical equation; in fact, it express only the
n̂ component of the dynamics.

By substituting in (9.8) the possible values of ρ obtained by eq. (9.4) and
squaring, we obtain a polynomial equation of degree eight in r

p(r) = C2r8 − q2 (C2 + 2C cos ε + 1
)
r6 +2q5(C cos ε+1)r3 − q8 = 0, (9.9)
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which is equivalent to eq. (9.8) if the left-hand side of (9.8) is positive, that
is, only if q/ρ > C.

From relation (9.6) we can compute the value of ρ̇ from a value of ρ that
solves (9.5) and then define an orbit in attributable orbital elements.

9.3 The method of Gauss

For the times ti, i = 1, 2, 3, let ri, ρi denote the heliocentric and topocentric
position of the body, respectively; qi is the heliocentric position of the ob-
server. The Gauss method uses three observations corresponding to the
positions

ri = ρi + qi i = 1, 2, 3 (9.10)

at times t1 < t2 < t3. We assume that ti − tj , 1 ≤ i, j ≤ 3, is much smaller
than the period of the orbit and we write O(Δt) for the order of magnitude
of the time differences. The coplanarity of the ri implies

λ1r1 − r2 + λ3r3 = 0 (9.11)

for some λ1, λ3 ∈ R. The vector product of both sides of eq. (9.11) with
r1 and r3 and the fact that the vectors ri × rj for i = j have the same
orientation as c = rh × ṙh, for h = 1, 2, 3 (that is the angular momentum
integral per unit mass at any of the three times) allows us to write

λ1 =
r2 × r3 · ĉ
r1 × r3 · ĉ

, λ3 =
r1 × r2 · ĉ
r1 × r3 · ĉ

triangle area ratios.

From (9.10) and the scalar product of ρ̂1 × ρ̂3 with eq. (9.11) we obtain

ρ2[ρ̂1 × ρ̂3 · ρ̂2] = ρ̂1 × ρ̂3 · [λ1q1 − q2 + λ3q3]. (9.12)

The differences ri − r2, i = 1, 3, can be expanded in powers of tij =
ti − tj = O(Δt), e.g., by using the f and g series (Herrick 1971,
Everhart and Pitkin 1983); thus ri = fir2 + giṙ2, with

fi = 1 − μ

2
t2i2
r3
2

+ O(Δt3), gi = ti2

(
1 − μ

6
t2i2
r3
2

)
+ O(Δt4). (9.13)

Then ri × r2 = −gi c, r1 × r3 = (f1g3 − f3g1) c and

λ1 =
g3

f1g3 − f3g1
, λ3 =

−g1

f1g3 − f3g1
, (9.14)

f1g3 − f3g1 = t31

(
1 − μ

6
t231

r3
2

)
+ O(Δt4). (9.15)
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Using (9.13) and (9.15) in (9.14) we obtain

λ1 =
t32

t31

[
1 +

μ

6r3
2
(t231 − t232)

]
+ O(Δt3), (9.16)

λ3 =
t21

t31

[
1 +

μ

6r3
2
(t231 − t221)

]
+ O(Δt3). (9.17)

Let V = ρ̂1×ρ̂2 ·ρ̂3. By substituting (9.16), (9.17) into (9.12), using relations
t231 − t232 = t21(t31 + t32) and t231 − t221 = t32(t31 + t21), we can write

− V ρ2t31 = ρ̂1 × ρ̂3 · (t32 q1 − t31 q2 + t21 q3) (9.18)

+ ρ̂1 × ρ̂3 ·
[

μ

6r3
2
[t32t21(t31 + t32)q1 + t32t21(t31 + t21)q3]

]
+O(Δt4).

If the O(Δt4) terms are neglected, the coefficient of 1/r3
2 in (9.19) is

B(q1,q3) =
μ

6
t32t21ρ̂1 × ρ̂3 · [(t31 + t32)q1 + (t31 + t21)q3]. (9.19)

Then multiply (9.19) by q3
2/B(q1,q3) to obtain

− V ρ2 t31

B(q1,q3)
q3
2 =

q3
2

r3
2

+
A(q1,q2,q3)

B(q1,q3)
,

where

A(q1,q2,q3) = q3
2 ρ̂1 × ρ̂3 · [t32 q1 − t31 q2 + t21 q3].

Let

C2 =
V t31 q4

2
B(q1,q3)

, γ2 = −A(q1,q2,q3)
B(q1,q3)

; (9.20)

then

C2
ρ2

q2
= γ2 −

q3
2

r3
2

(9.21)

is the dynamical equation of the Gauss method.
After the possible values for r2 have been found by (9.21) and the geo-

metric equation r2
2 = ρ2

2+q2
2 +2ρ2q2 cos ε2, the velocity vector ṙ2 can be com-

puted by different methods, e.g., from the Gibbs formula (Herrick 1971,
Chapter 8). Given the values of λ1, λ3, from the scalar product of eq. (9.11)
with ρ̂1 × ρ̂2 we obtain a linear equation for ρ3, from the scalar product
with ρ̂2 × ρ̂3 a linear equation for ρ1; from this we can compute r1 and r3.
The Gibbs method provides ṙ2 in the form (Herrick 1971, Chapter 8)

ṙ2 = −d1 r1 + d2 r2 + d3 r3 (9.22)
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where

di = Gi + Hi r−3
i , i = 1, 2, 3,

G1 =
t232

t21 t32 t31
, G3 =

t221
t21 t32 t31

, G2 = G1 − G3,

H1 = μ t32/12 , H3 = μ t21/12 , H2 = H1 − H3.

When r2 and ṙ2 are available, they provide a set of initial conditions (at
epoch t2 − ρ2/c), from which we can compute two-body solutions r1, r3

for the times t1 − ρ1/c, t3 − ρ3/c (by using a two-body propagator, see
Appendix A). Then the coefficients λ1, λ3 are available from eq. (9.11), and
eq. (9.12) provides an improved value of ρ2, from which a new iteration
could be started. This is just one of the many iterative methods described
in the literature to improve the preliminary orbit, with the goal of obtaining
smaller residuals with respect to the three observations.

As shown by Celletti and Pinzari (2005), each step in these iterative pro-
cedures used to improve the preliminary orbits (which they call a Gauss
map2) can be shown to increase the order in Δt in the approximation of
the exact solutions to the two-body equation of motion. Celletti and Pinzari
(2006) have also shown that the iteration of a Gauss map can diverge when
the solution of the degree 8 equation is far from the fixed point, outside of
the convergence domain. Thus the Gauss map should be used with some
caution, e.g., with a recovery procedure in case of divergence.

9.4 Topocentric Gauss–Laplace methods

The critical difference between the methods of Gauss and Laplace is the
following. Gauss uses a truncation (to order O(Δt2)) in the motion r(t)
of the asteroid but the positions of the observer (be it coincident with the
center of the Earth or not) are used in their exact values. Laplace uses a
truncation to the same order of the relative motion ρ(t) (see eq. (9.2) in
Section 9.1), thus implicitly approximating the motion of the observer. In
this section we examine the consequences of the difference between the tech-
niques.

Gauss–Laplace equivalence

To directly compare the two methods let us introduce in Gauss’ method
the same approximation to order O(Δt2) in the motion of the center of the

2 The classical treatises, such as (Crawford et al. 1930), use the term differential corrections for
algorithms of the same class of the Gauss map in (Celletti and Pinzari 2005). We follow the
terminology of the recent papers because, in modern usage, differential corrections refers to
the iterative method to solve the least squares problem.
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Earth, which we assumed to coincide with the observer. Using the f , g series
for the Earth we obtain

qi =
(

1 − μ

2
t2i2
q3
2

)
q2 + ti2 q̇2 +

μ

6
t3i2
q3
2

[
3(q2 · q̇2)q2

q2
2

− q̇2

]
+ O(Δt4). (9.23)

By substituting (9.23) in (9.19) we find

B(q1,q3) =
μ

6
t32t21 ρ̂1 × ρ̂3 · [3t31 q2 + t31(t32 − t21) q̇2 + O(Δt3)].

If t32 − t21 = t3 + t1 − 2t2 = 0, that is, the interpolation for d2/dt2 is done
at the central value t2, then

B(q1,q3) =
μ

2
t21t32t31 ρ̂1 × ρ̂3 · q2 (1 + O(Δt2));

else, if t2 = (t1 + t3)/2, the last factor is just (1 + O(Δt)). Substituting
(9.23) in (9.24) we have

A(q1,q2,q3) = −μ

2
t21t32t31 ρ̂1 × ρ̂3 ·

{
q2

+
1
3

(t21 − t32)
[
3(q2 · q̇2)q2

q2
2

− q̇2

]}
+ O(Δt5).

(9.24)

If, as above, t32 − t21 = t3 + t1 − 2t2 = 0 then

A(q1,q2,q3) = −μ

2
t21t32t31 ρ̂1 × ρ̂3 · q2 (1 + O(Δt2))

and we can conclude from (9.20) that

γ2 = −A

B
= 1 + O(Δt2);

else, if t2 = (t1 + t3)/2, the last factor is just (1 + O(Δt)). For V we use
(9.1) to make a Taylor expansion of ρ̂i in t2:

ρ̂i = ρ̂2 + ti2ηv̂2 +
t2i2
2

(−η2ρ̂2 + η̇v̂2 + κη2n̂2) + O(Δt3).

This implies that

ρ̂1 × ρ̂3 · ρ̂2 =
1
2
[
t12ηv̂2 × t232κ η2n̂2 − t32η v̂2 × t212κ η2 n̂2

]
· ρ̂2 + O(Δt4);

if t2 = (t1 + t3)/2 then the term O(Δt4) vanishes and the remainder is
O(Δt5). Thus

V = −κη3

2
(t12t

2
32 − t32t

2
12) (1 + O(Δt2)) =

κη3

2
t21t32t31 (1 + O(Δt2)),
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C2 =
V t31q

4
2

B
=

κη3t31q
4
2 + O(Δt3)

μρ̂1 × ρ̂3 · q2 (1 + O(Δt))
.

In the denominator, ρ̂1 × ρ̂3 computed to order Δt2 is

ρ̂1 × ρ̂3 = t31 η n̂2 +
t232 − t212

2
(η̇ n̂2 − κ η2 v̂2) + O(Δt3). (9.25)

As a conclusion, if t32 − t21 = t3 + t1 − 2t2 = 0 then

C2 =
κ η3 t31q

4
2 + O(Δt3)

μ t31 η q2q̂2 · n̂2 + O(Δt3)
=

κ η2 q3
2

μ q̂2 · n̂2
(1 + O(Δt2)),

otherwise the last factor is (1 + O(Δt)).
Thus, neglecting the difference between topocentric and geocentric obser-

vations, the coefficients of the two dynamical equations (9.8) and (9.21) are
the same to order zero in Δt, also to order one if t2 is the average time.

Topocentric Laplace method

Now let us remove the approximation that the observer lies at the center of
the Earth and introduce topocentric observations into the Laplace method.
The center of mass of the Earth is at q⊕ but the observer is at q = q⊕ +P.
We derive the dynamical equation by also taking into account the accelera-
tion contained in the geocentric position of the observer P, that is

d2ρ

dt2
= −μr

r3 +
μq⊕
q3
⊕

− P̈.

By scalar multiplication with n̂, using eq. (9.1), we obtain

d2ρ

dt2
· n̂ = ρη2κ = μ

[
q⊕

q̂⊕ · n̂
q3
⊕

− q⊕
q̂⊕ · n̂

r3 − P
P̂ · n̂
r3

]
− P̈ · n̂.

The term P P̂ · n̂/r3 can be neglected. This approximation is legitimate
because P/q⊕ ≤ 4.3 × 10−5 and the neglected term is smaller than the
planetary perturbations. Thus we obtain the dynamical equation

C
ρ

q⊕
= (1 − Λn) − q3

⊕
r3 (9.26)

where

C =
η2κq3

⊕
μq̂⊕ · n̂ , Λn =

q2
⊕P̈ · n̂

μq̂⊕ · n̂ =
P̈ · n̂

(μ/q2
⊕) q̂⊕ · n̂ . (9.27)
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Note that Λn is singular only where C is also singular. The analog of
eq. (9.6), again neglecting O(p/q⊕), is

ρη̇ + 2ρ̇η =
μ q̂⊕ · v̂

q2
⊕

(
1 − Λv −

q3
⊕

r3

)
, Λv =

q2
⊕ P̈ · v̂

μ q̂⊕ · v̂ . (9.28)

The important fact is that Λn and Λv are by no means small. The centripetal
acceleration of the observer (towards the rotation axis of the Earth) has size
|P̈| = Ω2

⊕ R⊕ cos θ where Ω⊕ is the angular velocity of the Earth rotation,
R⊕ the radius of the Earth, and θ the latitude; the maximum of |P̈| is � 3.4
cm s−2 and occurs at the equator. The term μ/q2

⊕ in the denominator of Λn

is the size of the heliocentric acceleration of the Earth, � 0.6 cm s−2. Thus
|Λn| can be > 1, and the coefficient 1−Λn can be very different from 1 (it may
even be negative). Without taking into account the observer geocentric ac-
celeration, the classical Laplace method is not a good approximation, except
when the observations of different nights are taken from the same station at
the same sidereal time, so that the observer acceleration cancels out.

The common procedure for the Laplace method is to go back to the
geocentric observation case by applying a topocentric correction,
simulating the observations as they would appear to an observer placed at
the center of the Earth. Some value of ρ is assumed as a first guess, e.g.,
ρ = 1 AU (Leuschner 1913, page 15). If this value is approximately correct,
by iterating the cycle (topocentric correction – Laplace determination of
ρ) convergence is achieved. If the starting value is really wrong, e.g., if
the object is undergoing a close approach to the Earth, the procedure may
well diverge. These reliability problems discourage the use of the classical
form of the Laplace method when processing a large data set, containing
discoveries of different orbital classes and therefore spanning a wide range of
distances.

The same argument applies to the algorithms used to improve Laplace
preliminary orbits, e.g. (Leuschner 1913, Crawford et al. 1930). The differ-
ence with the Gauss map is that in the Laplace method the observations
in the first approximation are treated as geocentric (or possibly corrected
with an assumed distance), while in the Gauss method already the first
approximation properly handles topocentric observations.

Topocentric, Gauss–Laplace equivalence

When taking into account the displacement P, the Taylor expansion of qi(t)
of eq. (9.23) is not applicable. We need to use

qi = q2 + ti2q̇2 +
t2i2
2

q̈2 + O(Δt3)
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where q2(t) and its derivatives contain also P(t). By using eq. (9.25) and
assuming t21 = t32, (9.19) and (9.24) become

B(q1,q3) =
μ η

2
t21t32t

2
31 n̂2 · q2 + O(Δt6),

A(q1,q2,q3) =
q3
2 η

2
t21t32t

2
31 n̂2 · q̈2 + O(Δt6).

Note that q̇2 does not appear in A at this approximation level. Thus

h0 = −A

B
= −q3

2 n̂2 · q̈2 + O(Δt2)
μ n̂2 · q2 + O(Δt2)

and, neglecting once again P/q⊕ terms,

h0 = −q3
2 n̂2 · q̈⊕2

μ n̂2 · q2
− q3

2 n̂2 · P̈2

μ n̂2 · q2
+ O(Δt2)

=
q3
2

q3
⊕2

− q3
2 n̂2 · P̈2

μ n̂2 · q2
+ O(Δt2).

Finally

n̂2 · q2 = q2 n̂2 ·
(

q⊕2

q2
+

P2

q2

)
= q2

(
n̂2 · q̂⊕2 + O

(
P2

q2

))
,

then

γ2 = 1 − q3
⊕2 n̂2 · P̈2

μ n̂2 · q2
+ O(Δt2) + O

(
P2

q2

)
= 1 − Λn2 + O(Δt2) + O

(
P2

q2

)

where Λn2 is the same quantity as Λn of eq. (9.27) computed at t = t2.
The conclusion is that the Gauss method used with the heliocentric posi-

tions of the observer qi = q⊕i + Pi is equivalent to the topocentric Laplace
method to lowest order in Δt and neglecting the very small term O(P2/q2).

Problems in the topocentric Laplace method

The Laplace method, with the geocentric approximation, is not really equiv-
alent to the Gauss method: by using the observer positions in (9.19) and
(9.24), the Gauss method naturally accounts for topocentric observations.
Can we account for topocentric observations in the Laplace method (with-
out iterations) by adding the term Λn from eq. (9.27)? The answer is con-
tained in (Poincaré 1906). To summarize the argument of Poincaré, we can
use plots showing the shape of the topocentric correction as a function of
time.

Figure 9.1 shows the simulated path of an approaching asteroid as seen
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Fig. 9.1. The path in the sky of the near-Earth asteroid (101955) 1999 RQ36 as it would have
been seen in July 2005 if an observatory on Mauna Kea had been observing continuously. The
solid portions of the curve are possible observations, the dotted ones are not possible (altitude
< 15◦). The continuous curve shows observations from the geocenter. Coordinates are RA and
DEC in radians. Reprinted from (Milani et al. 2008) with permission from Elsevier.

from an observing station. The darker portions of the curve indicate possible
observations, the dotted ones are practically impossible, with an altitude
< 15◦. The apparent motion of the asteroid from night to night cannot be
approximated using parabolic motion segments fitted to a single night. For
the geocentric path (continuous curve) the parabolic approximation to ρ̂(t),
used by Laplace, would be applicable. Topocentric observations contain
more information beyond the attributable; to reduce the observations to the
geocenter by using the topocentric correction is a bad strategy.

Poincaré suggests computing Λn, Λv by using, in place of P̈(t̄), a value
obtained by interpolating3 the positions P(ti) at the times ti of the obser-
vations (not limited to 3, one of the advantages of the Laplace method).
Poincaré gives no examples, but we have implemented this procedure and
found that it works (see Section 8.3 and 8.6, where the same method is
used). This method has not undergone a large-scale test, thus its practical
advantages have not yet been assessed.

When the observations are performed from an artificial satellite (such as

3 Our translation of Poincaré: It is necessary to avoid computing these quantities by starting
from the law of rotation of the Earth.
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the Hubble Space Telescope or, in the future, from Gaia) the acceleration
P̈ � 900 cm s−2 and the Λn and Λv coefficients can be up to � 1500. A few
hours of observations extending to several orbits produce multiple kinks as
in (Marchi et al. 2004, Figure 1), containing important orbital information.

9.5 Number of solutions

Charlier gave a geometric interpretation of the occurrence of alternative solu-
tions for a Laplace method preliminary orbit (Charlier 1910, Charlier 1911).
He realized that (neglecting the errors in the measurements and in the
model) this depends only on the position of B in a reference plane defined
by the Sun, the Earth, and the body at a given time, and he was able to
divide this plane into four connected components by two algebraic curves,
separating regions with a unique solution from those with two solutions.

In this section we have shown that the Gauss method allows us to take
into account topocentric observations in a natural way, and also the Laplace
method can be modified to consider this effect. In both cases from the two-
body dynamics we obtain an equation like (9.30), with the same algebraic
structure as eq. (9.8) of the geocentric Laplace method, but it depends on
the additional parameter γ2, and reduces to eq. (9.8) only for γ2 = 1. Thus
generically Charlier theory cannot be applied. We introduce a generalization
of Charlier theory, providing a qualitative theory of alternative solutions also
in the more realistic case of topocentric observations.

The intersection problem

Assume that we have three observations of a celestial body whose motion is
dominated by the gravitational attraction of the Sun.

We write r, ρ, q, ε for the values of the quantities corresponding to
ri, ρi, qi, εi at the average time t̄. Note that q and qi, i = 1, 2, 3, can be
obtained from planetary ephemerides and Earth rotation models, ε can be
computed by interpolating the values of εi (computed in turn from αi, δi,
qi), while r, ρ are unknown because ri, ρi are also.

Actually the results we shall present do not depend on the value of q.
By choosing a different unit of length we could set q = 1 without loss of
generality; we prefer to leave q in all the formulae, since different units may
be used in the applications of the theory to specific problems.

The geometry of the three bodies immediately gives the relation

r2 = q2 + ρ2 + 2qρ cos ε geometric equation. (9.29)
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Using the two-body dynamics we can deduce the following relation:

C ρ

q
= γ − q3

r3 dynamical equation, (9.30)

where γ, C ∈ R are constants computed from the observations, correspond-
ing to γ2, C2 in the Gauss method, see (9.20) and to 1−Λn, C in the Laplace
method, see eqs. (9.26) and (9.7), reducing to 1, C in the geocentric approx-
imation, see eq (9.8).

Equations (9.29) and (9.30) define surfaces of revolution around the axis
q̂ passing through the center of the Sun and the observer. If the center of
the Sun, the observer, and the observed body are not collinear at time t̄, the
observation line (also called the line of sight: a half-line from the observer
position) and the axis q̂ define univocally a reference plane, which we shall
use to study the intersection of these surfaces.

We introduce the intersection problem⎧⎨
⎩

D(r, ρ) = (qγ − Cρ)r3 − q4 = 0
G(r, ρ) = r2 − q2 − ρ2 − 2qρ cos ε = 0
r, ρ > 0,

(9.31)

that is, given (γ, C, ε) ∈ R2×[0, π] we search for pairs (r, ρ) of strictly positive
real numbers, solutions of (9.30) and (9.29). For given values of (γ, C, ε)
the solutions of (9.31) correspond to the intersections of the observation line
with the planar algebraic curve defined by (9.30) in the reference plane (see
Figure 9.2).

We can perform elimination of the variable ρ by means of resultant theory
(see Cox et al. 1996), thus from (9.31) we obtain the reduced problem{

P (r) = res (D, G, ρ) = 0
r > 0

(9.32)

where res(D, G, ρ) stands for the resultant of the polynomials D(r, ρ) and
G(r, ρ) with respect to the variable ρ. The resultant computation gives

P (r) = C2r8 − q2(C2 + 2Cγ cos ε + γ2)r6 + 2q5(C cos ε + γ)r3 − q8. (9.33)

The reduced formulation (9.32) is suitable to obtain an upper bound for
the maximum number of solutions, in fact P (r) has only four monomials,
thus by Descartes’ sign rule there are at most three positive roots of P (r),
counted with multiplicity. Note that, if r = r̄ is a component of a solution
of (9.31), from (9.30) we obtain a unique value ρ̄ for the other component
and, conversely, from a value ρ̄ of ρ we obtain a unique r̄; there are no more
than three values of ρ that are components of the solutions of (9.31).
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Fig. 9.2. Geometric view of the intersection problem: given a direction of observation, the
solutions are the intersections with level curves of C.

We define as a spurious solution of (9.32) a positive root r̄ of P (r) that is
not a component of a solution (r̄, ρ̄) of (9.31) for any ρ̄ > 0, that is it gives
a non-positive ρ through the dynamical equation (9.30).

The question is how many solutions are possible for the intersection prob-
lem, thus also for the preliminary orbit problem; from each solution of (9.31)
a full set of orbital elements can be determined, in fact knowledge of the
topocentric distance ρ allows us to compute the corresponding value of ρ̇.
In case of alternative solutions all of them should be used as a first guess
for the differential corrections, not to miss the right solution.

9.6 Charlier theory

The Charlier theory describes the occurrence of alternative solutions in
the problem defined by eqs. (9.8) and (9.4), with geocentric observations.
Nevertheless, if we interpret ρ and q as the geocentric distance of the ob-
served body and the heliocentric distance of the center of the Earth, then
eq. (9.30) with γ = 1 corresponds to (9.8) and eq. (9.29) corresponds to
(9.4). Therefore we shall discuss Charlier theory by studying the alternative
solutions of (9.31) with γ = 1, and we shall see that in this case the solu-
tions of (9.31) can be at most two. The discussion presented in this section
is based on (Plummer 1918).

Charlier was the first to realize that the condition for the appearance of
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another solution simply depends on the position of the observed body. We
stress that it assumes that the two-body model for the orbit of the observed
body is exact and neglects the observation and interpolation errors in the
parameters C, ε. The previous hypotheses imply the following assumption:

the parameters C, ε are such that the corresponding intersection
problem with γ = 1 admits at least one solution.

(9.34)

In real astronomical applications (9.34) may not be fulfilled and the inter-
section problem may have no solution. A reason for that is the presence of
errors in the observations; these affect mostly the computation of C. How-
ever we observe that condition (9.34) may hold also taking into account
these errors, therefore it is more interesting for the applications.

For each choice of C, ε the polynomial P (r) in (9.32) has three changes of
sign in the sequence of its coefficients; the coefficient of r3 is positive because
from (9.30) and (9.29) we have

C cos ε + 1 =
1

2ρ2r3

[
(r3 − q3)(r2 − q2) + ρ2(r3 + q3)

]
> 0 ,

thus the positive roots of P (r) can be up to three. As P (q) = 0, there
is always the physically meaningless solution corresponding to the center of
the Earth, in fact, from the dynamical equation, r = q corresponds to ρ = 0.
Using (9.34), Descartes’ sign rule and the relations

P (0) = −q8 < 0 ; lim
r→+∞

P (r) = +∞,

we conclude that there are always three positive roots of P (r), counted with
multiplicity. By (9.34) at least one of the other two positive roots r1, r2 is
not spurious; if either r1 or r2 is spurious the solution of (9.31) is unique,
otherwise we have two non-spurious solutions.

To detect the cases with two solutions we write P (r) = (r− q)P1(r), with

P1(r) = C2r6(r + q) + (r2 + qr + q2)
[
q5 − (2C cos ε + 1)q2r3]

P1(q) = 2 q7 C (C − 3 cos ε).

From P1(0) = q7 > 0 and limr→+∞ P1(r) = +∞, it follows that if P1(q) < 0
then r1 < q < r2, thus one root of P1(r) is spurious. Else, if P1(q) > 0 either
r1, r2 < q or r1, r2 > q, and because of (9.34) both roots give meaningful
solutions of (9.31). If P1(q) = 0 there is only one non-spurious root of P (r).

The dynamical equation gives us an expression of C as an algebraic func-
tion either in bipolar coordinates C(r, ρ) or in geocentric polar coordinates
C(ρ, ε); we shall plot the figures in a full plane, with −π < ε ≤ π, but the
situation is symmetric with respect to the q̂ axis. Thus we can define two
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Fig. 9.3. The limiting curve and the zero circle divide the reference plane into four connected
regions, two with a unique solution of (9.31) and two with two solutions (shaded in this figure).
The singular curve (dotted) divides the regions with two solutions into two parts, with one solu-
tion each. The Sun and the Earth are labeled with S and E , respectively. We use heliocentric
rectangular coordinates, and astronomical units (AU) for both axes. Reprinted from Gronchi
(2009) with permission from Springer.

curves in this plane: the zero circle C(ρ, ε) = 0 and the limiting curve
C(ρ, ε) − 3 cos ε = 0, where

C(ρ, ψ) =
q

ρ

[
1 − q3

r3

]
, r =

√
ρ2 + q2 + 2qρ cos ψ.

The limiting curve has a loop inside the zero circle and two unlimited
branches with r > q. By the previous discussion the limiting curve and the
zero circle divide the reference plane, containing the center of the Sun, the
observer, and the observed body at time t̄, into four connected components
(see Figure 9.3), separating regions with a different number of solutions of
the orbit determination problem. More precisely, given the position (ρ, ε)
of a celestial body in the reference plane at time t̄, eq. (9.30) with γ = 1
defines a value C such that the intersection problem defined by C, ε and
γ = 1 has the solution (r, ρ) = (

√
ρ2 + q2 + 2qρ cos ε, ρ) and, if the body is

situated in a region with two solutions, we can find the second solution in
the same region as the first. Using heliocentric polar coordinates (r, φ), with
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ρ2 = r2 + q2 − 2qr cos ε, the limiting curve is given by

4 − 3
r

q
cos ε =

q3

r3 (9.35)

and, in heliocentric rectangular coordinates (x, y) = (r cos φ, r sinφ), by

4 − 3
x

q
=

q3

(x2 + y2)3/2 .

Figure 9.3 shows that, when the celestial body has been observed close to the
opposition direction, the solution of the Laplace method of preliminary orbit
determination is unique. The two tangents to the limiting curve correspond
to tan ε0 = 2, thus only for |ε| ≥� 63.43◦ could there be a double solution.

9.7 Generalization of the Charlier theory

In this section we consider the intersection problem (9.31) for a generic
γ ∈ R. Given a value of γ and the position (ρ, ε) of the observed body in
the reference plane, in topocentric polar coordinates, eq. (9.30) defines a
value of C such that the intersection problem defined by (γ, C, ε) has the
solution (r, ρ) = (

√
ρ2 + q2 + 2qρ cos ε, ρ). Therefore in the following we

shall speak about the intersection problem corresponding to, or related to, a
fixed γ ∈ R and to a point of the reference plane. We introduce the following
assumption, that generalizes (9.34):

the parameters γ, C, ε are such that the corresponding
intersection problem admits at least one solution.

(9.36)

Generically r = q is not a root of P (r), in fact

P (q) = q8 (1 − γ) (2 C cos ε − (1 − γ)) ,

thus we cannot follow the steps of Section 9.6 to define the limiting curve.
From the dynamical equation we define the function

C(γ)(x, y) =
q

ρ

[
γ − q3

r3

]
, (9.37)

where ρ =
√

(q − x)2 + y2 and r =
√

x2 + y2.
If γ > 0 we can also define the zero circle as the set of points such that

C(γ)(x, y), that is r = r0 = q/ 3
√

γ.
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The topology of the level curves

For each γ ∈ R

lim
‖(x,y)‖→+∞

C(γ)(x, y) = 0, lim
(x,y)→(0,0)

C(γ)(x, y) = −∞,

lim
(x,y)→(q,0)

C(γ)(x, y)

⎧⎨
⎩

= −∞ for γ < 1
does not exist for γ = 1

= +∞ for γ > 1.

The stationary points of C(γ)(x, y) have y = 0 and depend on γ as follows:

• for γ ≤ 0 there is only one saddle point, with x ∈ (0, 3
4q];

• for 0 < γ < 1 there are three points: one saddle point inside the zero
circle, one saddle and one maximum point outside.

• for γ ≥ 1 there is a unique saddle point with x < −r0 = −q/ 3
√

γ.

This result is useful to understand the topological changes in the level curves
of C(γ)(x, y), see Figure 9.4 for all the significantly different cases, i.e. γ ≤ 0,
0 < γ < 1, γ = 1, and γ > 1.

Table 9.1. Number of solutions at opposition.

# solutions 0 1 2 3

γ ≤ 0 C ≥ 0 C < 0 / /
0 < γ < 1 C > Cmax C ≤ 0 0 < C ≤ Cmax /

γ = 1 C ≤ 0 or C ≥ 3 0 < C < 3 / /
γ > 1 C ≤ 0 C > 0 / /

In Table 9.1, for each value of γ, we describe the change with C in the
number of solutions, when we observe in the opposition direction. Cmax is
the maximum value of C(γ)(x, y).

The singular curve

The function C(γ)(x, y) in topocentric polar coordinates (ρ, ε) is given by

C(γ)(ρ, ε) =
q

ρ

[
γ − q3

r3

]
, where r = r(ρ, ε) =

√
ρ2 + q2 + 2qρ cos ε.

As the Jacobian of the transformation (ρ, ε) �→ (x, y) = (q + ρ cos ε, ρ, sin ε)
has determinant equal to ρ, the stationary points of C(γ)(ρ, ε) just correspond
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Fig. 9.4. The level curves of C(γ ) (x, y). The Sun and the Earth are denoted by � and ⊕,
respectively. The saddle points are marked with × and the maximum point (present only for
0 < γ < 1) with +. Top left: γ = −0.5. Top right: γ = 0.8. Bottom left: γ = 1. Bottom right:
γ = 1.5. Reprinted from Gronchi (2009) with permission from Springer.

to those of C(γ)(x, y). For a given γ ∈ R we define

F (C, ρ, ε) = C ρ

q
− γ +

q3

r3(ρ, ε)
.

The tangency points between the level lines of C(γ)(ρ, ε) and the observa-
tion lines fulfill the equations

F (C, ρ, ε) = Fρ(C, ρ, ε) = 0 (9.38)
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for each non-stationary value C of C(γ)(ρ, ε), where

Fρ(C, ρ, ε) =
C
q
− 3

q3

r5 (ρ + q cos ε)

is the derivative of F (C, ρ, ε) with respect to ρ. We can eliminate the depen-
dence on C in (9.38) by considering the difference

F (C, ρ, ε) − ρFρ(C, ρ, ε) = −γ +
q3

r3 + 3q3 ρ

r5 (ρ + q cos ε) ,

with r =
√

ρ2 + q2 + 2ρq cos ε. The function r5(F − ρFρ) in heliocentric
rectangular coordinates becomes

G(x, y) = −γr5 + q3(4r2 − 3qx), r =
√

x2 + y2.

We define the singular curve as the set

S = {(x, y) : G(x, y) = 0}.

Note that S contains all the points whose polar coordinates fulfill (9.38) plus
(x, y) = (0, 0). The shape of the singular curve for different values of γ, see
Figure 9.5, is as follows. If γ = 1, the singular curve S contains a number
of components, each a regular and simply closed curve:

• if γ ≤ 0 it has a unique component, which is convex;
• if 0 < γ < 1 it has two components inside and outside the zero circle;
• if γ > 1 it has a unique non-convex component intersecting the zero circle;
• if γ = 1 it has a self-intersection point at the observer position (q, 0).

An even or an odd number of solutions

For γ ≤ 0, eq. (9.30) has no real solution if C ≥ 0. Let us consider the poly-
nomial P (r) defined in (9.33). If C < 0, from P (0) < 0 and limr→+∞ P (r) =
+∞ the number of roots of P (r) in the interval (0, +∞), counted with their
multiplicity, is odd and none of these roots is spurious.

Assuming γ > 0, let r0 = q/ 3
√

γ be the radius of the zero circle; we have

P (r0) =
C2q8

γ8/3 (1 − γ2/3). (9.39)

If 0 < γ < 1 and C = 0, from P (0) < 0 < P (r0) and limr→+∞ P (r) = +∞
we obtain that in the interval (0, r0) the number of roots of P (r) is odd,
while in (r0, +∞) it is even. By relation (9.30) the roots of P (r) in (0, r0)
are spurious iff C > 0, those in (r0, +∞) are spurious iff C < 0. For C = 0
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right: γ = 0.8. Bottom left: γ = 1. Bottom right: γ = 1.1. Note that the zero circle does not
exist for γ ≤ 0. Reprinted from Gronchi (2009) with permission from Springer.

the intersection problem (9.31) reduces to r = r0, with ρ deduced from the
geometric equation, and this solution is not spurious.

If γ > 1 and C = 0, from P (0), P (r0) < 0 and limr→+∞ P (r) = +∞ we
obtain that in the interval (0, r0) the number of roots of P (r) is even, while
in (r0, +∞) it is odd. As in the previous case, the roots of P (r) in (0, r0)
are spurious iff C > 0, those in (r0, +∞) iff C < 0. Since for γ > 1 we have
r0 < q, there is no solution for C = 0 if cos ε <

√
q2 − r2

0/q, while if cos ε ≥√
q2 − r2

0/q the solutions are (r, ρ) =
(
r0,−q cos ε ±

√
q2 cos2 ε − (q2 − r2

0)
)
.

We give a summary of this discussion in Table 9.2.
The bound on the solutions of the reduced problem implies that the solu-

tions of the intersection problem cannot be more than three. In particular,
for (γ, C, ε) fulfilling (9.36) with γ = 1, when the number of solutions of
(9.31) is even, they are two, when it is odd they are either one or three.
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Table 9.2. The table shows, for each value of γ = 1, the values of C allowing an
even or an odd number of solutions of (9.31).

even odd

γ ≤ 0 C ≥ 0 C < 0
0 < γ < 1 C > 0 C ≤ 0

γ > 1 C ≤ 0 C > 0

The limiting curve

Indeed the assertion by Charlier that the occurrence of alternative solutions
depends only on the position of the observed body cannot be generalized
to the Gauss method of preliminary orbit determination or to the modified
Laplace method, with topocentric observations; in fact the position of the
body defines different intersection problems for different γ ∈ R. Actually for
each fixed value of γ ∈ R we shall divide the reference plane into connected
components such that, if a solution of an intersection problem lies in one of
these components, then we know how many solutions occur in that problem,
and all of them lie in the same component.

In the applications of this theory the parameters γ, C, ε are computed
from the three observations, thus there is no guarantee that assumption
(9.36) holds. The failure of this assumption can occur for different reasons:
mostly due to the unavoidable errors in the observations, and to the error
made in considering three observations of different objects as belonging to
the same.

For γ = 1 we define, with r =
√

x2 + y2, the sets

D2(γ) =

⎧⎨
⎩

∅ if γ ≤ 0
{(x, y) : r > r0} if 0 < γ < 1
{(x, y) : r ≤ r0} if γ > 1

and D(γ) = R2 \ (D2(γ) ∪ {(q, 0)}). To use a simpler notation, we shall
suppress the dependence on γ in D(γ),D2(γ). For a fixed γ = 1, if we
consider a point in D2 and if (9.36) holds for the parameters (γ, C, ε) of the
corresponding intersection problem, then there are two solutions of (9.31),
both contained in D2. We shall also say that D2 is a region with two solutions
of (9.31). Our aim is to divide the complementary set D into two connected
regions, each with the same number of solutions of (9.31). Let S = S⋂D
be the portion of the singular curve S contained in D. Note that S is
connected. In D the solutions of (9.31) are one or three, and the solutions
lying on the singular curve have intersection multiplicity ≥ 2, therefore for
each point P ∈ S the related intersection problem must have three solutions.
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P

Fig. 9.6. We sketch the tangent intersection between an observation line and a level curve of
C(γ ) (x, y), giving rise to a residual point in the region D with an odd number of solutions.
Case (a) is a generic situation, with P corresponding to a solution with multiplicity two and P′
corresponding to the third solution (the residual point). Case (b) is non-generic: P is a self-
residual point, with intersection multiplicity equal to three. Reprinted from Gronchi (2009) with
permission from Springer.

There are two cases, sketched in Figure 9.6 with labels (a), (b). Case (a) is
the generic situation: we have Fρρ(C, ρ̄, ψ̄) = 0 for (ρ̄, ψ̄) corresponding to P
and C such that F (C, ρ̄, ψ̄) = 0, thus P corresponds to a solution of (9.31)
with multiplicity two and there is another point P′ = P corresponding to
the third solution of (9.31). In case (b) we have Fρρ(C, ρ̄, ψ̄) = 0, so that
in P the observation line is tangent to both the singular curve and to the
level curve C(γ)(x, y) = C, and it corresponds to a solution with multiplicity
three of the related intersection problem. For γ = 1 there are only two
points of the reference plane, outside the x-axis, corresponding to solutions
with multiplicity three (Gronchi 2009).

Let us fix γ = 1 and let (ρ̄, ψ̄) correspond to a point P ∈ S. If
Fρρ(C, ρ̄, ψ̄) = 0, we call the residual point related to P the point P′ = P
lying on the same observation line and the same level curve of C(γ)(x, y) (see
Figure 9.6 (a)). If Fρρ(C, ρ̄, ψ̄) = 0 we call P a self-residual point, i.e.,
we consider P as a residual point related to itself. We agree that the point
(x, y) = (q, 0), corresponding to the observer position, is the residual point
related to (x, y) = (0, 0), when the latter belongs to S. For γ = 1 each point
of the singular curve has the observer position as residual point.

Let γ = 1. The limiting curve L is the set of all the residual points
related to the points in S. By the symmetry of S and of the level curves of
C(γ)(x, y), the limiting curve is also symmetric with respect to the x axis.
If the point (q, 0) is in L, it is not isolated. It has the following properties:

• (separating property): for γ = 1 the limiting curve L is a connected
simple continuous curve, separating D into two connected regions D1,D3;
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D3 contains the whole portion S of the singular curve. If γ < 1 then L is
a closed curve, if γ > 1 it is unbounded;

• (transversality): the level curves of C(γ)(x, y) cross L transversely, ex-
cept for the two self-residual points and where L meets the x axis;

• (limiting property): for γ = 1 the limiting curve L divides the set
D into two connected regions D1,D3: the points of D1 are the unique
solutions of the corresponding intersection problem; the points of D3

are solutions of an intersection problem with three solutions, all lying
in D3.
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Fig. 9.7. Summary of the results on alternative solutions for all the qualitatively different cases.
The regions with a different number of solutions are shaded: we use light gray for two solutions,
dark gray for three solutions. Top left: γ = −0.5. Top right: γ = 0.8. Bottom left: γ = 1
(Charlier case). Bottom right: γ = 1.1. Reprinted from Gronchi (2009) with permission from
Springer.
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Figure 9.7 summarizes the results for all the significantly different cases:
we distinguish among regions with a unique solution of (9.31) (white), with
two solutions (light gray), and with three solutions (dark gray). For γ =
−0.5 (top left) there are only two regions, with either one or three solutions.
For γ = 0.8 (top right) in the region outside the zero circle there are two
solutions; the region inside is divided by the limiting curve into two parts,
with either one or three solutions. On the bottom left, we have the Charlier
case (γ = 1), discussed in Section 9.6. For γ = 1.1 (bottom right) inside
the zero circle there are two solutions; the region outside can contain either
one or three solutions. In each case the singular curve separates the regions
with alternative solutions into parts with only one solution each.

The numbers of solutions are generically different from those of Charlier:
the solutions can be up to three, and up to two close to the opposition.

It is not easy to find a good example with three solutions; in many cases
the solution nearest to the observer has distance ρ too small for the he-
liocentric two-body approximation to be applicable. A value ρ = 0.01 AU
corresponds approximately to the sphere of influence of the Earth, i.e., the
region where the perturbation from the Earth is more important than the
attraction from the Sun. Thus, a solution with such a small ρ can be con-
sidered spurious because the approximation used in the Gauss and Laplace
methods is poor.

An example of the qualitative changes when γ2 = 1, based upon real data,
is given by the first three nights of observation of asteroid 2002 AA29: with
ε ∼ 79◦, there is only one solution with ρ = 0.045 (see Figure 9.8, left)
which leads to a least squares solution with ρ = 0.044. Although the value
of γ2 is not very far from 1 the existence of the solution depends critically
on γ2 = 1: for γ2 = 1 there would be no solution (Figure 9.8, right).
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Fig. 9.8. For the preliminary orbit of 2002 AA29 we show the relevant level curve (C2 = 1.653)
and the zero circle; the observation direction is dotted. Left: using the actual value γ2 = 1.025.
Right: using a value of γ2 = 1 not accounting for topocentric observations. Reprinted from
Milani et al. (2008) with permission from Elsevier.
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WEAKLY DETERMINED ORBITS

In most cases of population orbit determination the fit parameters x are just
the initial conditions for an orbit, thus x ∈ R6. We assume that there are at
least enough observations to compute an attributable; if the arc is short, an
approximate rank deficiency can occur, with order 1 or at most 2. In this
chapter we discuss the special techniques which can be used to handle this
kind of weak orbit determination, how to sample large confidence regions,
the origin of such weakness, typically in a too short observations time span,
and the impact on the quality of the orbit solution. This chapter is based
on our papers (Milani et al. 2005c, Milani et al. 2007, Milani et al. 2008).

10.1 The line of variations

Given any point x in the space of initial conditions, we can compute the 6×6
normal matrix C(x). Even when the inverse Γ(x) cannot be computed, or is
numerically unstable because of a large conditioning number, we can define

ZL(σ) = {y|(y − x) · C(x) (y − x) ≤ σ2}
which is an ellipsoid if C(x) is positive definite. The main assumption in this
chapter is that the observation information is above the minimum required
to compute an attributable,1 to the point that the matrix C(x) has rank
> 4. Still it could have rank 5, with a zero eigenvalue, or rank 6, but with
a very small eigenvalue.

Ellipsoid long axis and weak direction

Let v1(x) be an eigenvector of C(x) with the smallest eigenvalue λ1(x) ≥ 0:

C(x)v1(x) = λ1(x)v1(x).
1 This implies that the number of scalar observations is > 4.

197
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The other eigenvalues λj(x), j = 2, 6, are assumed strictly > λ1(x). In the
extreme case λ1(x) = 0, ZL(σ) is a cylinder with axis parallel to v1(x). If
λ1(x) > 0, the longest semiaxis of the confidence ellipsoid is in the direction
v1(x) and has length k1(x) = 1/

√
λ1(x) for σ = 1. v1(x) is also an eigen-

vector of Γ(x) = C−1(x) with the largest eigenvalue 1/λ1(x) = k2
1(x), thus

it defines the weak direction of the least squares fit.
If the fit were linear, the nominal solution x∗ could be found from C x∗ =

D (see Section 5.2), without iterations, and the target function would be
just

m Q(y) = (y − x∗) · C (y − x∗) + mQ∗.

Let H be the hyperplane spanned by the other eigenvectors vj(x), j =
2, . . . , 6. The tip x1 = x∗ + k1 v1 of the longest axis of the confidence
ellipsoid is the minimum point of the target function restricted to the affine
hyperplane x1 + H and is also a local minimum point of the target function
restricted to the sphere |y − x∗| = k1|v1|. These properties, equivalent in
the linear regime, are not equivalent in general.

The weak direction vector field

For each x, let us select the eigenvector v1(x) to be a unit vector. Then

F(x) = k1(x)v1(x), (10.1)

with k1(x) = 1/
√

λ1(x), is a vector field. The unit eigenvector v1 is not
uniquely defined, −v1 is also a unit eigenvector. Thus k1(x) v1(x) is what
is called an axial vector, with well-defined length and direction but an
arbitrary sign. However, given an axial vector field defined over a simply
connected set, there is always a way to define a true vector field F(x) such
that the function x �→ F(x) is continuous. At an initial point we can select
the sign according to some rule, e.g., such that the directional derivative of
the semimajor axis a is positive in the direction v1(x). Then the orientation
is maintained by imposing that v1(x) is continuous.

Problems could arise, for some value of x, if either λ1(x) = 0 or the nor-
mal matrix C(x) had its smallest eigenvalue of multiplicity 2. If the normal
matrix is degenerate, see the discussion in Section 6.1. The exact equality of
two eigenvalues does not occur generically, and even an approximate equal-
ity is rare in applications, as we have found from a large set of examples.
Anyway, whenever the two smallest eigenvalues are of the same order of
magnitude this method has serious limitations, as discussed in Section 10.3.
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Given the vector field F(x) defined above, the differential equation

dx
dσ

= F(x) (10.2)

has a unique solution for each initial condition, because the vector field is
smooth. If a nominal solution x∗ has been found, let us select the initial
condition x(0) = x∗, that is σ = 0 corresponds to the nominal solution, and
let us denote with x(σ) the unique solution with such initial value. In the
linear approximation, the solution x(σ) is one tip of the major axis of the
confidence ellipsoid ZL(σ). Without approximations x(σ) is indeed curved
and can be computed by numerical integration of the differential equation.

This approach could be used to define a special curve in the initial con-
ditions space. However, such a definition may not be a constructive one,
because of two problems. First, the definition cannot be used unless the
nominal solution x∗ is known. Second, there is a numerical instability in
the algorithm to compute it. As an intuitive analogy, for weakly determined
orbits the graph of the target function is like a very steep valley with an
almost flat river bed at the bottom. The river valley is steeper than any
canyon you can find on Earth; so steep that a very small deviation from the
stream line sends you up the valley slopes by a great deal. This problem
cannot be efficiently solved by brute force, that is by increasing the order
or decreasing the step-size in the numerical integration of the differential
equation. The only way is to slide down the steepest slopes until the river
bed is reached again, which is the intuitive analog of the definition below.

Constrained differential corrections

Where the vector field v1(x) is defined, the orthogonal hyperplane H(x) is

H(x) = {y | (y − x) · v1(x) = 0}.

Given an initial guess x, it is possible to compute one step of the differential
corrections constrained to H(x) by defining the 5 × m matrix Bh(x) with
the partial derivatives of the residuals with respect to the coordinates of the
vector h of H(x). Then the constrained normal equation is defined by the
constrained normal matrix Ch, which gives the restriction of the linear map
associated to C to the hyperplane H(x), and by the right-hand side Dh,
which is the projection of the vector D along the hyperplane:

Ch = BT
h Bh, Dh = −BT

h ξ, ChΔh = Dh
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with solution

Δh = Γh Dh, Γh = C−1
h

where the constrained covariance matrix Γh is not the restriction of the
covariance matrix Γ to the hyperplane (see Section 5.4). The computation
of Ch, Dh can be performed by means of a rotation to a basis with v1(x) as
the first vector; then Ch is obtained by removing the first row and the first
column of C, Dh by removing the first coordinate from D.

The constrained differential corrections process gives the corrected x′ =
x + Δx where Δx coincides with ΔH along H(x) and has zero component
along v1(x). Then the weak direction v1(x′) and the hyperplane H(x′) are
recomputed, and the next correction is constrained to H(x′). This procedure
is iterated until convergence.2 At the convergence value x, Dh(x) = 0, that
is the right-hand side D(x) of the unconstrained normal equation is parallel
to the weak direction v1(x). This equation is equivalent to the following
property: the restriction of the target function to the hyperplane H(x)
has a stationary point in x. The constrained corrections correspond to the
intuitive idea of “falling down to the river”.

Thus we can define the line of variations (LOV) as the set

{x | D(x) = sv1(x) for some s ∈ R}, (10.3)

where the gradient of the target function is in the weak direction; if there is
a nominal solution x∗ with D(x∗) = 0, it also belongs to the LOV. However,
the LOV is defined independently of the existence of a local minimum of
the target function. The definition by eq. (10.3) does not give the same
curve as that resulting from the solutions of eq. (10.2), unless the prob-
lem is linear. For a discussion of different possible definitions of LOV, see
(Milani et al. 2005c, Appendix A).

Parameterizing and sampling the LOV

The equation D(x) = sv1(x) corresponds to five scalar equations in six
unknowns, thus it has generically a smooth one-parameter set of solutions,
i.e., a differentiable curve. However, we have an analytical expression neither
for the points of this curve nor for its parameterization (e.g., by the arc
length).

An algorithm to compute the LOV by continuation from one of its points x
is the following. The vector field F(x), deduced from the weak direction vec-
tor field v1(x), is orthogonal to H(x). A step in the direction of F(x), such
2 In a numerical procedure, convergence is defined as having the last iteration with a small

enough correction; in this context, the following properties are satisfied only approximately.
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as an Euler step of the solution of the differential equation dx/dσ = F(x),
that is x′ = x+ δσ F(x), does not provide another point on the LOV, unless
the LOV itself is a straight line; this does not depend on the method em-
ployed to find a numerical solution of the differential equations (we normally
use a second-order implicit Runge–Kutta–Gauss). However, x′ will be close
to another point x′′ on the LOV, which can be obtained by applying the
constrained differential corrections algorithm, starting from x′ and iterating
until convergence, as shown in Figure 10.1.
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Fig. 10.1. The procedure to obtain multiple solutions; only two steps are shown projected onto
the (a, e) plane. Top: starting from x∗ (circle), the LOV solutions are obtained by propagation of
eq. (10.2) followed by constrained differential corrections (each iteration is a cross); they converge
to the “river” (continuous line), whose points have been computed by the same procedure with
a much smaller step. Bottom: the RMS of the residuals is large at the starting point of each
constrained differential corrections procedure, and rapidly converges towards the much smaller
values obtained along the “river” line (circles). Reprinted from (Milani 1999) with permission
from Elsevier.

If the LOV parameter of the starting point x is σ0, we can set x′′ =
x(σ0 + δσ), which is an approximation (the value σ0 + δσ actually pertains
to x′). As an alternative, if we already know the nominal solution x∗ and
the local minimum value of the target function Q(x∗), we can compute
the χ parameter as a function of the value of the target function at x′′ by
χ =

√
m · [Q(x′′) − Q(x∗)]. In the linear regime, the two definitions are
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related by σ = ±χ, but this is by no means the case in strongly nonlinear
conditions. Thus we can adopt the definition σQ = ±χ, where the sign is
taken to be the same as that of σ, for an alternative parameterization of the
LOV. If we assume that the probability density at the initial conditions x is
an exponentially decreasing function of χ, as in the Gaussian distributions
of Chapter 3, then it is logical to terminate the sampling of the LOV at some
value of χ, that is, to use the intersection of the LOV with the nonlinear
confidence region Z(b), where b is the maximum χ value.

This algorithm to compute the LOV can be used when a nominal solution
x∗ is known and when it is unknown, even non-existent. If x∗ is known,
then we can set x∗ = x(0) as the origin of the parameterization and pro-
ceed by using either σ or σQ as parameters for the other points computed
with the alternating sequence of numerical integration steps and constrained
differential corrections. Else, when a nominal solution is not available, we
must first reach some point on the LOV by constrained differential correc-
tions starting from some initial condition (a preliminary orbit). Once on the
LOV, we can begin moving along it as was done from the nominal solution.
In such cases, we set the LOV origin x(0) to whatever point x of the LOV
we have found first. Then we compute the other points as above and use the
parameterization σ with arbitrary origin. The parameterization σQ cannot
be computed point by point: it can be derived a posteriori.

10.2 Applications of the constrained solutions

There are two classes of applications. First, a single LOV solution can be
used as intermediary for further orbit determination (or for identification).
This may stabilize the procedure of orbit determination and/or identifica-
tion, allowing us to increase its efficiency. Second, multiple solutions
sampling the LOV can be computed in the attempt of representing all the
possible orbits within some confidence region. For example, 2p + 1 LOV so-
lutions xk can be computed, with −p ≤ k ≤ p, with x0 the nominal solution
if available, and with a fixed step Δσ in the σ LOV parameter between two
consecutive ones. Possibly the most important application of confidence re-
gion sampling along the LOV is impact monitoring, discussed in Chapter 12.

Orbit determination

A procedure for computing an orbit from the astrometric data, by the meth-
ods of this and the previous chapter, consists of the following steps, depend-
ing upon the quality control parameter Σ to be selected:
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(i) if no orbit is already available, compute a preliminary orbit x with
either the Gauss method or with the methods of Chapter 8;

(ii) compute constrained differential corrections by using x as first guess;
(iii) if constrained differential corrections converge to a LOV solution x

(with RMS of the residuals ≤ w Σ, for some margin w > 1), then
attempt differential corrections by using x as first guess;

(iv) if the full differential corrections converge to a nominal solution x∗

(with RMS of the residuals ≤ Σ) then adopt this as orbit, with un-
certainty described by its covariance;

(v) if the full differential corrections fail, then adopt x as orbit if it has
RMS ≤ Σ;3

(vi) if the constrained differential corrections fail to converge, attempt full
differential corrections with the preliminary orbit x as first guess.

After obtaining a least squares orbit, be it a nominal or just a LOV
solution, we can apply the continuation algorithm of the previous section
for multiple LOV solutions. By this procedure, it is possible to obtain a
significantly larger number of orbits, which can be the starting point for the
applications which follow; this increase results from

• LOV solutions in case nominal solutions are not available;
• nominal solutions computed starting from LOV orbits, when the iterations

starting from the preliminary orbits diverge;
• multiple LOV solutions computed from the nominal ones;
• multiple LOV solutions computed from one of them, without a nominal.

Multiple ephemerides and recovery

Sampling along the LOV is a very useful tool when the predictions have
a large uncertainty and are extremely nonlinear. This happens when the
confidence region is very large, either at the initial epoch (because of very
limited observational data) or at some subsequent time, after the propa-
gation has stretched the confidence region preferentially in the along-track
direction, as it is already clear from the model problem of Section 5.6.

A typical use of multiple solutions is to compute observation predictions,
that is ephemerides. For each observation epoch t, we can compute the
2p+1 points yk = F (xk(t)) on the celestial sphere, and plot the line joining
these points, as in Figure 10.2. This method (Milani 1999) is comparable to
3 In this case, the covariance provides uncertainty information but it does not define a confidence

region, because the minimum value of the target function is not known (may not exist). There
is also a problem in the use of the same quality control parameter Σ for orbits with a different
number of free parameters, see Section 11.5.
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Fig. 10.2. Multiple solutions for the asteroid 1992 BU give multiple ephemerides 31 years before,
when 4161 PLS was discovered. The actual observation of 4161 PLS is marked with a cross.
Reprinted from Milani (1999) with permission from Elsevier.

that of the semilinear confidence boundary when the orbit determination at
an epoch near the observations is quasi-linear, but can work even for orbits
which are very poorly determined at all times. This method has been found
useful to search for precoveries in plate archives (Boattini et al. 2001).

Multiple orbit identification

Identifications could be achieved by comparing multiple solutions for two
asteroids, observed during short and widely separated arcs. As an example,
in Figure 10.3 we show the already mentioned case of 4161 PLS = 1992
BU studied in this way. The two curves, plotted in the (a, e) plane (the
inclination and node are typically better determined), are the multiple so-
lutions computed for both single opposition orbits (the gaps correspond to
the nominal). The two lines cross in only one point; we select, among the
multiple solutions computed, the two which are closest to this intersection
point. From them by the linear identification formula (7.1) we compute the
first guess for the least squares fit to all the observations of both arcs; the
differential corrections converge to an orbit, shown with a cross.

A better method computes orbit identification penalties from (7.2) for
each couple of multiple solutions, finds the minimum of the (2p + 1)2 penal-
ties, for a given couple of objects, and proposes the couple as identification if
this minimum is below some control value. An effective method requires us
to reduce the computational complexity for N objects below O(N2(2p+1)2).
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Milani et al. (2005c, Section 5) discuss the systematic application of this
class of methods to a large data set of asteroid orbits, with considerable
success (� 1500 confirmed identifications found in a single run).

Recursive attribution

In the linkage problem, after computing the preliminary orbits, e.g., with
the methods of Section 8.5 and/or those of Section 8.6, the next step is
to compute, starting from the preliminary orbits, least squares solutions.
However, in most cases the observational data available are very limited
even after the identification, e.g., just enough to compute two attributables.
Thus constrained differential corrections are necessary as the first step, and
in most cases the LOV solutions are the only ones achievable.

Figure 10.4 summarizes a hypothetical procedure of linkage for the Cen-
taur (31824) Elatus: it was discovered in October 1999, given the designation
1999 UG5, and then followed up until a good orbit could be computed, allow-
ing us to attribute to it prediscovery observations from October 1998. The
test consists in linking the data from the discovery night with the precovery
data one year earlier, with the methods of Section 8.5. The figure shows
the admissible region computed from the October 1999 attributable and the



206 WEAKLY DETERMINED ORBITS

0 2 4 6 8 10 12 14

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

range (AU)

ra
ng

e-
ra

te
 (

A
U

/d
ay

)

1

2

3
4

5

6

7

8

9
10

11

12

13
14

15

16

17

18

19
20

21

22

23
24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

4041

42

43 44

45

46

47

48

49

50

51

52

2

7

10

14

best
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Delaunay triangulation to create a swarm of virtual asteroids, with the same
conventions as Figure 8.5. The nodes for which the attribution penalty is
below some control have been used to compute preliminary orbits, in turn
used as a first guess of constrained differential corrections: the points in
the (ρ, ρ̇) plane corresponding to the LOV solutions fit well to a straight
line. The LOV also contains a nominal solution, which is hyperbolic: it
has been computed by using Cartesian coordinates; it would not exist in
Keplerian/equinoctial elements. Then the LOV solutions have been used to
attribute another one-night arc from September 14, 1999, and this provides
a three-night full least squares solution, marked with a crossed square in
the figure, which is very close to the line fitting the LOV, not close to the
two-night nominal solution.

The above example is extreme, with a very long time span between the
first two attributables. Thus it is a strong confirmation of the feasibility
of recursive attribution, by which the data from single nights, providing
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attributables, are added one by one. The procedure starts from linkage,
which in fact, with the virtual asteroids method, is also an attribution.

Qualitative analysis

The sampling along the LOV is also useful to understand the situation when-
ever the orbit determination is extremely nonlinear. The problem of nonlin-
earity in orbit determination is too complex to be discussed in full generality
here. We shall show the use of the LOV sampling as a tool to understand
the geometry of the nonlinear confidence region in a single case study, in
which there are multiple local minima of the target function.

The asteroid 1998 XB was discovered in December 1998, at an elongation
� 93◦ from the Sun. The first orbit published by the Minor Planet Center,
with observation time span Δt � 10 days, had a = 1.021 AU. In the following
days the orbit was repeatedly revised by the MPC, with semimajor axis
gradually decreasing to 0.989 AU for Δt � 13 days. Then, with observations
extending Δt to 16 days, the semimajor axis jumped to 0.906 AU.
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Fig. 10.5. The RMS of the residuals (in arcsec), for different observation data sets, as a function
of the LOV parameter σ; σ = 0 has been fixed at one of the nominal solutions found for nine days.
The lines are marked with plus signs (arc time span of nine days), crosses (10 days), stars (11 days),
boxes (13 days), full boxes (14 days) and circles (16 days). Reprinted from Milani et al. (2005c)
with permission from Astronomy and Astrophysics.

To understand this behavior we compute the LOV for different data sets,
corresponding to Δt = 9, 10, 11, 13, 14, 16 days. Figure 10.5 shows a double
minimum of the residuals RMS on the LOV; the secondary minimum moves
in the direction of lower a as the data increase, but not as far as the location
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of the other minimum. The secondary minimum disappears with 16 days of
data, then the differential corrections lead to the other solution.

As discussed in Chapter 9, the classical preliminary orbit methods can
have two distinct solutions, especially when the elongation is below 116.5◦.
When applied with three observations selected in the shorter time spans, it
can provide preliminary orbits close to both the primary and the secondary
minimum. As an example, with data over 10 days we can compute with the
Gauss method a preliminary orbit with a = 0.900, and from this a full least
squares solution, which is a minimum of the target function, with a = 0.901
and RMS = 0.47 arcsec. There is also an alternative preliminary solution
with a = 1.046, and from this we can compute another nominal solution,
which is a local minimum, with a = 1.032 and RMS = 0.58 arcsec.

Indeed, if there were only three observations, both preliminary orbit solu-
tions would correspond to very low RMS of residuals (not zero, because of
planetary perturbations); the two local minima of the target function would
be roughly at the same level. As the amount of data increases, the RMS in-
creases for both the nominal solutions, but for one more than for the other.
The existence of two local minima implies that there needs to be a saddle
point, where the Hessian matrix of second derivatives has some negative
eigenvalue, somewhere in the x space of orbital elements.4 However, the
LOVs for which the RMS is plotted in Figure 10.5 join two local minima
without necessarily passing from the saddle, and even if they did, the LOV
computation algorithm does not provide a way to find this out. Indeed,
the normal matrices C(x) used in the computation of the multiple solutions
have eigenvalues ≥ 0; only the normal matrix of Newton’s method, Cnew

of eq. (5.3), can have negative eigenvalues. Saddle points actually exist in
asteroid orbit determination, but to find them it is necessary to use at least
some approximation for the second partial derivatives of the residuals, and
a more sophisticated optimization method (Sansaturio et al. 1996).

10.3 Selection of a metric

The eigenvalues λj of the normal matrix C are not invariant under a coordi-
nate change. Thus a different weak direction and a different LOV would be
obtained by using some other coordinates y = y(x). This is true even when
the coordinate change is linear y = S x: the normal matrix is transformed
as Cy =

[
S−1

]T
Cx S−1 and the eigenvalues are the same if S−1 = ST , that

is if the change of coordinates is isometric. Otherwise, the eigenvalues in
4 Actually, the existence of saddle points may depend upon the coordinates used: as in Figure 10.4

the minimum is outside the e = 1 boundary, the same could occur for a saddle point.
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the y space are not the same, and the eigenvectors are not the image by S

of the eigenvectors in the x space. Thus the weak direction and the LOV in
the y space do not correspond by S−1 to the weak direction and the LOV in
the x space. A special case is scaling, a transformation changing the units
along each axis, represented by a diagonal matrix S (see Section 6.4).

Coordinates to express initial conditions

A non-exhaustive list of coordinates used in orbit determination is:

• Cartesian heliocentric coordinates (position, velocity);
• cometary elements (q, e, I,Ω, ω, tp, with tp the time of perihelion passage);
• Keplerian elements (a, e, I,Ω, ω, �, with � the mean anomaly);
• equinoctial elements (a, h = e sin(�), k = e cos(�), p = tan(I/2) sin(Ω),

q = tan(I/2) cos(Ω), λ = � + �, with � = Ω + ω);
• attributable elements (α, δ, α̇, δ̇, ρ, ρ̇).

If the coordinate change is nonlinear, as it is for transformations between
any two of the five types of orbital elements listed above, the covariance is
transformed by the standard formula (5.5) with the Jacobian matrix

y = Φ(x), S(x) =
∂Φ
∂x

(x), Γy = S(x) Γx S(x)T

and the constrained differential correction Δy can be computed accordingly.
If the computations are actually performed in the x coordinates, once the

constrained differential correction Δy has been computed, we need to pull
it back to the coordinates x. If Δy is small, as is typically the case when
taking modest steps along the LOV, this can be done linearly:

x′ = x +
[
∂Φ
∂x

(x)
]−1

Δy.

When the constrained differential corrections are large, as is likely to be
when the initial point is not near the LOV, the corrections Δy must be
pulled back to x nonlinearly, that is x′ = Φ−1(y + Δy).

Table 10.1 shows possible scalings for the five coordinate systems above,
as proposed by Milani et al. (2005c). Cartesian position coordinates are
measured in astronomical units (AU), but they are scaled as relative changes.
Angle variables are measured in radians, but they are scaled in revolutions.
Velocities in Cartesian coordinates are expressed in AU/day and are scaled
as relative changes; angular velocities are scaled by the Earth mean motion
n⊕. The range rate is scaled by n⊕ to get a parameter with the dimension
of a length, thus commensurable to the range.
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Table 10.1. Units and LOV scalings for different elements. r and v are the
heliocentric distance and velocity. n⊕ � k is the Earth mean motion in rad/day;

Z = 2πq3/2n−1
⊕ (1 − e)−1/2 is a characteristic time for an orbit with large e.

Cartesian x y z vx vy vz

Units AU AU AU AU/d AU/d AU/d
Scaling r r r v v v

Cometary q e I Ω ω tp
Units AU – rad rad rad d
Scaling q 1 π 2π 2π Z

Keplerian a e I Ω ω �
Units AU – rad rad rad rad
Scaling a 1 π 2π 2π 2π

Equinoctial a h k p q λ
Units AU – – – – rad
Scaling a 1 1 1 1 2π

Attributable α δ α̇ δ̇ ρ ρ̇
Units rad rad rad/d rad/d AU AU/d
Scaling 2π π n⊕ n⊕ 1 n⊕

Comparison of different LOVs

With the list of coordinates in Table 10.1, each with and without scaling,
we can select 10 different LOVs. The question is to select the most effective
for a specific usage. This question is complex, but we can state two rules
of thumb. If the arc drawn on the celestial sphere by the apparent asteroid
position is small, e.g., ≤ 1◦, the orbit determination is less nonlinear in the
coordinate systems representing instantaneous initial conditions, such as the
Cartesian and the attributable elements. In the latter the angular variables
α, δ, α̇, δ̇ are well determined while ρ, ρ̇ are very poorly determined.

On the contrary, orbital elements solving exactly the two-body problem
perform better in orbit determination whenever the observed arc is com-
paratively wide, e.g., tens of degrees. The cometary elements avoid the
discontinuity at the e = 1 boundary, the equinoctial ones avoid the coordi-
nate singularity for e = 0 and for I = 0. The Keplerian elements are strongly
nonlinear, because of nearby coordinate singularities for e � 0, e � 1 and
I � 0, thus they are not always suitable for orbit determination. Equinoc-
tial elements modified by replacing a with n are especially suitable for orbit
identification (see Section 7.4).

Figure 10.6 shows a comparison of the LOVs computed with different
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Fig. 10.6. For the asteroid 2004 FU4 the computation of the LOV, by using only the first 17
observations, in different coordinates, without scaling on the left, with scaling on the right; the
label denotes the coordinate system used and whether the line represents either the ordinary LOV
or the second LOV. The Cartesian and attributable LOVs are indistinguishable on this plot and
so only the attributable LOV is depicted. Reprinted from Milani et al. (2005c) with permission
from Astronomy and Astrophysics.
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Fig. 10.7. For the asteroid 2002 NT7 the computation of the LOV, by using only the first 113
observations, in different coordinates, without scaling on the left, with scaling on the right. The
Cartesian and attributable LOVs are indistinguishable. Reprinted from Milani et al. (2005c) with
permission from Astronomy and Astrophysics.

coordinate systems, without and with the scaling defined in Table 10.1,
in the case of asteroid 2004 FU4, observed only over a time span of � 3
days, with an arc of only � 1◦. The data are projected on the (ρ, ρ̇) plane,
with ρ̇ scaled by n⊕. For each coordinate system we show both the LOV,
sampled with 41 VAs in the interval −1 ≤ σQ ≤ 1, and the second LOV,
defined as the LOV but with the second largest eigenvalue λ2 of the normal
matrix and the corresponding eigenvector v2. The dependence of the LOV
on the coordinates is very strong in this case. Note that the LOV of the
Cartesian and attributable coordinates is closer to the second LOV, rather
than to the first LOV, of the equinoctial coordinates. In such cases, with a
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very short observed arc, the confidence region has a two-dimensional spine,
and the selection of a LOV in the corresponding plane is quite arbitrary.
For example, in scaled Cartesian coordinates, the ratio of the two largest
semiaxes of the confidence ellipsoid is � 2.4. Then the best strategy to
sample the confidence region would be either to use a number of LOVs, like
in the figures, or to use a fully two-dimensional sampling, as in Section 8.2.

Figure 10.7 shows the comparison of the LOVs in the case of asteroid
2002 NT7 when the available observations spanned 15 days, forming an arc
almost 9◦ wide. In this case the ratio of the two largest semiaxes (in scaled
Cartesian) is � 7.3 and the LOVs computed with different coordinates are
very close. As the confidence region becomes smaller, but also narrower,
the long axis becomes less dependent upon the metric. Note that the at-
tributable and the Cartesian coordinates have LOVs quite close in all cases.
This can be understood knowing that the (ρ, ρ̇) plane of the attributable
coordinates corresponds exactly to a plane in Cartesian coordinates.

Uncertainty of curvature

Given the explicit formulae (9.2) and (9.3) we can compute the covariance
matrix of the quantities (κ, η̇) by propagation of the covariance matrix of
the angles and derivatives with the matrix of partial derivatives for κ, η̇

with respect to the 6-vector V = (α, δ, α̇, δ̇, α̈, δ̈)

Γ(κ,η̇) =
∂(κ, η̇)

∂V
ΓV

[
∂(κ, η̇)

∂V

]T

. (10.4)

The covariance matrix ΓV for the angles and their first and second deriva-
tives is obtained by the procedure of least squares in a fit to the individual
observations as a quadratic function of time. The partials of κ and η̇ are
given in (Milani et al. 2008, Section 5.1): we list just the last four of these
partials, the 2 × 2 matrix ∂(κ, η̇)/∂(α̈, δ̈), because they contribute to the
principal part of the covariance of (κ, η̇) for short arcs, as shown below.

∂κ

∂α̈
= − δ̇ cos δ

η3 ;
∂κ

∂δ̈
=

α̇ cos δ

η3 ;
∂η̇

∂α̈
=

α̇ cos2 δ

η
;

∂η̇

∂δ̈
=

δ̇

η
. (10.5)

We use a full computation of the covariance matrix to assess the signifi-
cance of curvature with the formula

χ2 =
[

κ

η̇

]T

Γ−1
(κ,η̇)

[
κ

η̇

]
(10.6)

and we assume that the curvature is significant if χ2 > χ2
min.
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The infinite distance limit

Low values of C, see eq. (9.30), can occur in two ways: near the zero circle
and for large values of both ρ and r. The size of the deviations from a great
circle will depend upon the length of the observed arc (both in time Δt and
in arc length ∼ η Δt). Thus for short observed arcs it may be the case that
the curvature is not significant, and the preliminary orbit algorithms will
yield orbits which may fail as starting guesses for differential corrections.

We will now focus on the case of distant objects. We would like to estimate
the magnitude of the uncertainty in the computed orbit with respect to the
small parameters ν, τ, b where ν is the astrometric accuracy of the individual
observations (in radians) and τ = n⊕Δt, b = q⊕/ρ are small for short
observed arcs and for distant objects, respectively. Note that the proper
motion η for b → 0 has principal part n⊕ b – the effect of the motion of
the Earth. The uncertainty in the angles (α, δ) and their derivatives can be
estimated as follows (Crawford et al. 1930, page 68):

RMS(α) � RMS(δ) = O(ν),

RMS(α̇) � RMS(δ̇) = O(ντ−1),

RMS(α̈) � RMS(δ̈) = O(ντ−2).

The uncertainty of the curvature components (κ, η̇) should be estimated by
the propagation formula (10.4) but it can be shown that the uncertainty of
(α, δ, α̇, δ̇) contributes with higher order terms. Thus we use the estimates
based upon the partials in (10.5)

∂(κ, η̇)
∂(α̈, δ̈)

=
[
O(b−2) n−2

⊕ O(b−2) n−2
⊕

O(1) O(1)

]

and obtain

Γ(κ,η̇) = ν

[
O(b−4τ−2) O(b−2τ−2)n2

⊕
O(b−2τ−2)n2

⊕ O(τ−2)n4
⊕

]
.

To propagate the covariance to the variables (ρ, ρ̇) we use the implicit
equation connecting C and ρ obtained by eliminating r from (9.4) and (9.30):

F (C, ρ) = C ρ

q
+

q3

(q2 + ρ2 + 2qρ cos ε)3/2 − 1 + Λn = 0. (10.7)

For b → 0 we have C b−1 → 1 − Λn; thus C → 0 and is of the same order
as b. Although C depends upon all the variables (α, δ, α̇, δ̇, α̈, δ̈), by the
approximation with the Laplace method (see Section 9.4) C � C. C is given
by eq. (9.27); it contains κη2 and has an uncertainty mostly depending upon
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the uncertainty of κ and, ultimately, upon the difficulty in estimating the
second derivatives of the angles. Thus we can use the derivatives of the
implicit function ρ(κ); assuming cos ε, η, n̂ to be constant and keeping only
the term of lowest order in q/ρ, we find

∂ρ

∂κ
= − η2 q4

μ q̂⊕ · n̂
ρ

q⊕ C
+ O

(
q3

ρ3

)
= q⊕ O(1).

In the same way from (9.28) we deduce η̇ = n2
⊕O(b) and obtain the estimates

∂ρ̇

∂κ
= n⊕ q⊕ O(1),

∂ρ̇

∂η̇
=

q⊕
n⊕

O(b−2).

For the covariance matrix,

Γ(ρ,ρ̇) =
∂(ρ, ρ̇)
∂(κ, η̇)

Γ(κ,η̇)

[
∂(ρ, ρ̇)
∂(κ, η̇)

]T

,

we compute the main terms of highest order in b−1, τ−1 as

Γ(ρ,ρ̇) = ν b−3 τ−2
[

q2
⊕ O(1) q2

⊕ n⊕ O(1)
q2
⊕ n⊕ O(1) q2

⊕ n2
⊕ O(1)

]
. (10.8)

In conclusion, if (ρ, ρ̇) are measured in the appropriate units (AU for ρ and
n⊕ AU for ρ̇) their uncertainties are of the same order: this confirms the
scaling of Table 10.1. In the scaled (ρ, ρ̇) plane the weak direction, thus the
LOV, can be in any direction, as can be seen from Figures 8.5 and 10.4.

10.4 Surface of variations

When the confidence region is not elongated in one direction much more
than in the others, as in the example of Figure 10.6, whatever LOV we select
may not be representative of the entire confidence region. If we use for a
short arc of observations the attributable elements (A, ρ, ρ̇), where A is the
attributable, the confidence region is a “thin” shell surrounding a subset of
the admissible region (see Section 8.4). We define as surface of variations
the set S of the points where the target function has a local minimum
with respect to changes of A, for each fixed (ρ, ρ̇), with minimum RMS of
the residuals below some control Σ. S is, generically, a two-dimensional
manifold. Under the conditions assumed in this chapter, that is when there
is little information beyond A, S is parameterized by (A(ρ, ρ̇), ρ, ρ̇), defined
on a subset B of the (ρ, ρ̇) plane; B is an open set, not necessarily connected.
Then the surface S can be computed point by point: for each (ρ0, ρ̇0) we can
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correct only A, i.e., perform “doubly constrained” differential corrections,
with normal equation

CA ΔA = DA, CA = BT
A BA, DA = −BT

A ξ, BA = ∂ξ/∂A. (10.9)

If these corrections converge to a point of minimum A(ρ0, ρ̇0), and if the
RMS of the residuals at this minimum is < Σ, the point (A(ρ0, ρ̇0), ρ0, ρ̇0)
belongs to the surface of variations, and (ρ0, ρ̇0) belongs to B.

Since the attributable elements are well defined also for hyperbolic orbits,
B does not need to be a subset of the admissible region D(A). Indeed
Figures 8.5 and 10.4 clearly show that B pokes out of the admissible region;
in the latter case it is clear that the LOV would extend much further, if it
was continued from the LOV points found by recursive attribution. Thus
the choice depends upon the purpose: if we are aiming at sampling as much
as possible the confidence region, even the hyperbolic orbits, a sampling of
B is more useful than a sampling of D(A). On the contrary, if the goal is to
discover the largest number of real objects, we can take into account that
the number density of objects being discovered with e � 1 is very small
(possibly zero, since none is known) and use a sampling of D(A)∩B, which
can be obtained by discarding the nodes of a triangulation of D(A) for which
the doubly constrained differential corrections give a residual RMS too high.

Thus to compute the surface of variations it is not required to compute the
admissible region: we can start from a set of points sampling the (ρ, ρ̇) plane
in any convenient way, e.g., a rectangular grid.5 This and closely related
methods are widely in use, e.g., (Chesley 2005, Tommei 2005). Another class
of methods selects sample points in a two-dimensional space at random: this
could be done in the space (ρ, ρ̇), but also in the space (ρ1, ρ2) of the distances
at two epochs t1, t2; then the sample orbits could be selected according
to some criteria, like discarding the hyperbolic ones but also preferentially
exploring some portion of the phase space (Virtanen et al. 2001).

10.5 The definition of discovery

The quality of the least squares orbits improves as new observations, ex-
tending the observed arc time span, are added. The problem is how to find
an algorithm to classify the observed arcs in quality classes with some pre-
dictive value on the information content of the orbit. This is connected with
the definition of discovery: how many observations are enough to consider
5 This method is described by Tholen and Whiteley in an unpublished paper. It is implemented

in the free software KNOBS, available from D. Tholen, IfA, University of Hawaii, with the
capability of sampling D(A) ∩ B by discarding grid points corresponding to e > 1.
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that a new Solar System object has been discovered? An obvious require-
ment would be to have enough information to be able to decide the nature
of the object, e.g., to discriminate between a near-Earth asteroid (NEA),
a main belt asteroid (MBA), a Jupiter trojan, a trans-neptunian object
(TNO), a long periodic comet, and so on. In the definition of discovery
there are a number of legal and science policy aspects, which are inter-
esting, but not to be discussed here: we shall only give the mathematical
background which should be used to build one such definition on rigorous
grounds.

In modern surveys, the observations of Solar System objects are singled
out among star images as moving objects: a number m of digital images of
the same portion of the sky is taken within a short interval, on the same
night,6 and they are “digitally blinked”, that is, computer programs remove
the images stationary with respect to the stellar reference frame and assem-
ble the transients into groups which could belong to a single moving object.
One such group is called a tracklet, containing astrometric observations
assembled without computing an orbit, by either a linear fit or a quadratic
one with upper limits on the curvature (Kubica et al. 2007). Since m ≥ 2,
from a tracklet it is always possible to compute an attributable, but in most
cases there is little, if any, curvature information.

We would like to capture in a definition an observed arc that does not allow
us to compute a useful least squares orbit. Unfortunately such a definition
would not be a clear-cut and operational one: the orbits computed from a
given observational data set depend upon the algorithms used. For example,
the complex procedure presented in Section 10.2 often succeeds in computing
some orbit from a very limited data set, but then it is often a LOV orbit,
or anyway with a very badly conditioned covariance matrix.

To provide a definition which is computable in all cases and is indepen-
dent of the methods used in the orbit determination, we define as too
short arc (TSA) an observed arc with no significant curvature, measured
by eq. (10.6). The main problems with such a definition are two: the choice
of the control value χ2

min, and the fact that some observed arcs may con-
tain enough information for a significant third derivative of the angles with
respect to time. If the latter is the case, the residuals of a quadratic fit
have a characteristic Z shape (Milani et al. 2007, Figure 1), which is signif-
icant if the standard deviation of the (normalized) residuals is larger than
some RMSmin. Such definitions depend upon the error model used, see Sec-
tion 5.8; the covariance matrix used in (10.6) contains the weights, and the
RMS of the residuals after a quadratic fit needs to be the normalized one.

6 Typical time intervals are between 15 min and 2 hours.
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Because tracklets are typically formed with observations within the same
night, most of them are also TSA. In some cases an observed arc may al-
ready be the result of the identification of ≥ 2 tracklets, and still be a TSA;
this is often the case for TNO.

We call an arc of type N an observed arc which can be split into exactly
N disjoint TSA, in such a way that each couple of TSA consecutive in time,
if joined, would show a significant curvature. To obtain in all cases a unique
value for the arc type it is necessary to specify the method by which observed
arcs with significant curvature are to be split. A recursive procedure to
compute the arc type is as follows: if the arc has significant curvature and/or
a significant Z shape, it is split into two arcs by selecting the largest time gap
between two observations. If the two subarcs have no significant curvature
and no significant Z shape, the arc type is 2. Otherwise, the same procedure
is applied to the two subarcs, and the arc type is the sum of the arc types of
the subarcs. The recursion terminates because the number of observations in
the subarcs decreases, and a subarc with < 3 observations can have neither
curvature nor Z shape.

This definition, with predictive value on the orbit quality for all orbital
classes of objects, should replace the currently used definition of M-nighter,
an arc with observations belonging to M distinct nights. For TNOs, two
nights of observations in most cases form an arc of type 1. For NEAs discov-
ered near the Earth a single night of observations often is an arc of type ≥ 2,
then an orbit with moderate uncertainty can be computed for a one-nighter.

Test of possible definitions

Milani et al. (2007) discusses the outcome of large-scale tests of possible
definitions of discovery based on the arc type. We have used all the pub-
lic asteroid astrometry available in March 2006: 9.2 million observations,
including 185 296 observed arcs with time span < 190 days (single oppo-
sition). The values χ2

min = 9 and RMSmin = 4 were used.7 The error
model for weighting the astrometry was based on (Carpino et al. 2003). A
summary of the results is presented graphically in Figure 10.8. Going from
type 2 to type 3 there is a sharp improvement in the quality of the orbit,
allowing us in almost all cases to discriminate between MBA and NEA. As
shown by Milani et al. (2007, Table IV), the arc type 3 does not correspond
to three-nighters, in particular for MBA three non-consecutive nights are
required.

A formal decision on the definition of discovery is not just mathematics;
however, the above results suggest the mathematical properties which should
7 Weaker definitions with lower controls gave less satisfactory results.
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Fig. 10.8. Distribution of the RMS of the perihelion (log10 RMS(q) in AU) for observed arcs
of different types. Top: type 1 (left), type 2 (right). Bottom: type 3 (left), type 4 (right).
Reproduced with permission of Springer from Milani et al. (2007).

be required from a data set to form a discovery. A discovery of a Solar
System object should include an arc of type N with N ≥ 3. Moreover,
the information supplied should contain a unique least squares orbit (full,
with six free parameters), fitting the data with residuals compatible with
the current error model. The data should also contain enough photometric
information to fit an absolute magnitude, constraining the size of the object.

The object also needs to be new, not yet discovered according to the
same definition, but this becomes complicated, both from the legal and
the mathematical point of view, if the same discovery contains data from
different observatories. Even the definition of arc type needs to be changed
in case two tracklets, from different observatories, are overlapping in time,
to take into account the topocentric corrections in a smooth way. One way
is to split the arc by tracklets, not by observations. Anyway it is necessary
to use information on the time when the data have been made public.
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SURVEYS

This chapter is devoted to population orbit determination, that is not just
computing the orbit for a single object, but compiling a catalog of or-
bits given a large number of observations. A survey is a project aim-
ing at collecting observations of the largest and most representative sam-
ple of objects possible. We deal here only with the case in which the
target population belongs to the Solar System; of course an astronom-
ical survey may target simultaneously extrasolar populations. We deal
with Earth satellites in Section 8.7. This chapter is based on our pa-
pers (Milani et al. 2005a, Milani et al. 2008, Milani et al. 2006) and ongo-
ing research, in particular that in preparation for Pan-STARRS, a next-
generation survey.

11.1 Operational constraints of Solar System surveys

The following three arguments should be taken into account in the definition
of an identification/orbit determination procedure for a modern sky survey.

First, Moore’s law tells us that the number of elements in an electronic
chip grows exponentially with time; the doubling time has been around 18
months for more than 30 years. There is no indication that this trend might
slow down; although in the last few years it has no longer been possible to
increase the clock frequency, the increase in the complexity of the chips is
now used to produce “multicore” CPUs. Assuming the multicores are used in
an efficient parallelization procedure, the practical performance of computers
continues to increase by a factor of 4 every three years. The CCD cameras
used to produce astronomical images have also increased their number of
pixels according to Moore’s law,1 thus the capability of surveys to produce
1 The last few years have seen the assemblage of many individual CCD chips into very large

arrays, with a reading time for the array comparable to that of the individual chips; this is
another form of parallel data processing.
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astrometric data is also growing exponentially with time. To exploit this
technology is more cost effective than increasing the telescope size.

Second, the surveys have interest in decreasing the signal-to-noise (S/N)
ratio at which the observations are considered, because state-of-the-art
CCDs have less noise and because a gain in the acceptable S/N gives an
increase in the limiting magnitude (at which objects can be considered de-
tected) without an increase in the telescope diameter. Then some false
observations are unavoidably accepted. The problem is that the false data
may propagate through the orbit determination procedure and degrade the
results.2

Third, the surveys have interest in scheduling their observations to get a
minimum number of observations for each Solar System object to be discov-
ered. This is due to the preference given to multidisciplinary surveys, trying
to obtain results for very different astronomical, astrophysical, and cosmo-
logical investigations with the same telescope and even the same images.
To obtain orbits for Solar System objects there is a requirement of multi-
ple observations at constrained time intervals. This can generate a conflict
of interest between the Solar System subtask and the requirement of other
investigations to be conducted simultaneously. This implies the need for a
more aggressive orbit determination, using less data for each object.

These three considerations lead to choices, in the design of a survey, which
cannot be reversed just because we would like orbit determination to be
easier. Thus we must not neglect the following implications.

First, it is essential to keep under control the computational complex-
ity of the procedure used for identification and orbit determination; if the
number of objects which could be discovered is N and the number of obser-
vations is M , the algorithms need to use a number of operations of order
smaller than quadratic, e.g. O(N log N), O(N log M), or O(M log M).
Any algorithm with a quadratic complexity O(N2), O(M2), or O(N M) be-
comes impossible to use when N � 107 and M � 109 (including false), as
it is planned for the surveys starting at the time this book is being written:
3 nanoseconds used in an N × M loop correspond to about a year of CPU
time. It is important to be aware that we cannot brush away this constraint
by waiting for more powerful computers of the next generation, because the
next generation surveys will produce more data with more or less the same
increase in performance: a quadratic algorithm would become more and
more inadequate as time goes by. Note that traditional procedures, e.g.,
computing Gauss preliminary orbits with all triples of observations from
2 False facts are highly injurious to the progress of science, for they often endure long..., C.

Darwin, The Origin of Man, 1871.
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different nights, an O(M3) algorithm, was adequate when it was invented,
but cannot be used for the current surveys.

Second, there is the problem of accuracy, that is the fraction of the pro-
posed identifications and orbits which are true. To keep the fraction of false
under control without decreasing the efficiency, that is the fraction of the
objects actually appearing in the images which can be declared discovered, is
the most difficult task of population orbit determination. Individual detec-
tions presumed to be moving objects could be false (noise, statistical flukes,
variable stars, etc.), each tracklet formed with them could be false (contain-
ing false detections and/or assembling detections from two different objects),
and the identifications proposed among the tracklets can also be false (con-
taining false tracklets and/or assembling tracklets from different objects).
The false detections increase sharply with lower S/N, the false tracklets and
false identifications grow quadratically (either O(M2) or O(N2), depending
upon the methods used). To avoid this cascade of false conclusions, it is
essential to use a very tight quality control on the final orbit; typically we
use a statistical quality control on the residuals of the least squares fit.
However, if the number of false tracks produced by the first stages of the
procedure is O(N2), this would be the complexity of the overall procedure.

Third, the orbit determination methods have to attempt to provide an
orbit with much less data than the traditional ones, e.g., observations
in only two nights, observations in two short arcs separated by more than
one orbital period, and some observations at a low S/N mixed with more
reliable ones. Some of the algorithms proposed in the previous chapters can
be used for this. Of course this increases the difficulty of the verification
procedure and of the statistical quality control to avoid false conclusions.

11.2 Identification and orbit determination procedure

The processing begins with the astrometric data,3 containing the detections
presumed to belong to moving objects above a given S/N threshold s. They
include false detections, but s has to be chosen such that the false are not
too many, e.g., the true/false ratio could be of the order of 1.

From detections to tracklets

The first step is to assemble each group of detections which could belong to
one and the same moving object into a tracklet. Without an orbit, this can
3 The work of image processing and astrometric reduction is also a critical segment of the pipeline,

but it is beyond the scope of this book.
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be done just by using spatial proximity between detections at different times.
For two detection tracklets the number of possible tracklets is O(M2), the
most likely belonging to moving objects need to be selected by a smaller com-
plexity algorithm, e.g. O(M log M), as in (Kubica et al. 2007). The control
values used to select the tracklets are the proper motion η and, if there are
three detections, the curvature components κ η2, η̇ introduced in Chapter 9.
Interesting objects passing close, mostly near-Earth asteroids, can have
rather long and curved tracklets, thus the controls must be loose. Hence
it is unavoidable to have a significant fraction of false tracklets. As we will
see in Section 11.4, this does not result in a cascade of false identifications.

From tracklets to tracks

The second step is to assemble tracklets into tracks, or proposed iden-
tifications. A track is a list of tracklets which could belong to one and
the same Solar System object. There are at least two different methods
to select the tracks. First, the recursive attribution methods, described in
Chapter 8 and Section 10.2. Second, the binary tree methods, described
by Kubica et al. (2007). A possible third method uses the integrals of the
Kepler problem, see Section 8.6, but this has not been fully tested yet, while
the two previous methods have been shown to be very efficient in simulation
tests. There are also other methods such as (Granvik et al. 2005).

The main difference is that binary trees are sophisticated algorithms
to control the computational complexity, which remains O(M log M) even
to align triples, quadruples, and so on, of tracklets, but the controls used to
select the tracks are just polynomial inequalities. No orbit is computed,
although the controls with quadratic polynomials can be done in such a way
to exploit the relationship between the distance ρ and η2κ to exclude only
objects nearer than those at the tiny object boundary (see Section 8.1).

On the contrary, in the recursive attribution methods the smooth function
with which the data are compared is always the path on the celestial sphere
computed by means of an orbit, maybe just a hypothetical one.

In this book we have discussed in detail the recursive attribution methods;
for the binary tree methods we suggest reading (Kubica et al. 2007). In
practice, the two classes of methods can be effectively used together in a
multistage procedure, see (Milani et al. 2008, Section 6).

From tracks to identifications

The process to confirm a track and generate from it a confirmed identifi-
cation can be conceptually decomposed into four steps:
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(i) Compute a preliminary orbit, by using some information from the ob-
servations of all the tracklets, e.g., either by selecting one observation
in each tracklet, or by using the attributable of each tracklet.

(ii) Use the preliminary orbit as first guess for a differential corrections
procedure, which might contain several steps as in Section 10.2.

(iii) If the differential corrections converge, apply a statistical quality con-
trol to the final residuals. If the values of the quality control pa-
rameters are satisfactory, the track is accepted as identification.

(iv) Apply identification management and tracklet management to the
global set of identifications and tracklets obtained, to remove duplica-
tions, contradictions, and incomplete identifications; see Section 11.4.

Only at the end of such a process is it possible to claim to have identified
the real Solar System objects which have been observed. Those with a well-
determined orbit could then be tested for the requirements of a definition of
discovery (Section 10.5). Even after this rigorous procedure, a small fraction
of false discoveries may remain, and special care needs to be taken to remove
them from the results, thanks to the successive accumulation of data.

11.3 Controlling the computational complexity

There are two problems to be solved to find an appropriate algorithm for
identification and orbit determination from the data of a large survey. First,
the tracks have to be found with a fast algorithm, e.g., with a computational
complexity O(M log M), and a very high efficiency, that is only a small
fraction of objects actually observed can be lost (a typical goal could be an
efficiency 0.95–0.99). Second, the accuracy of the tracks has to be controlled;
if the true tracks were just a fraction O(1/N) of the proposed ones, the
tracks to be tested would be O(N 2) and the computational cost would be
dominated by the confirmation procedure, mostly step (ii).

At first sight, these two requirements appear contradictory. The solu-
tion is to devise a somewhat more complex procedure, in which both effi-
ciency and accuracy are achieved by successive steps, in such a way that
the composite computational complexity of the pipeline is controlled. We
will present here two possible solutions, which should not be considered
alternative, but rather to be used together for best performance.

Binary tree method

If the binary tree method is used as the first step, to generate a list of tracks,
a high efficiency can be achieved in finding the true tracks corresponding
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to Solar System objects observed over at least three different nights. The
main problem is that they are mixed with many false tracks. Kubica
et al. (2007) and Milani et al. (2008) describe full-scale simulations of
a large survey with accuracies below 0.01 for the proposed tracks: this could
lead to a large computational overhead in the confirmation procedure.

A solution is to use step (i) of the confirmation procedure, the preliminary
orbit computation, as a filter to reduce the number of tracks to be submitted
to differential corrections (which are much more computationally intensive).
Since the binary tree method works with tracklets from three or more nights,
the preliminary orbit method should be Gauss. A track can be refused on the
basis of the preliminary orbit computation in two cases. The first one occurs
when the hypothesis (9.36) is contradicted: if the values of γ = γ2, C = C2, ε

obtained from the three observations selected among the ≥ 3 tracklets are
such that there is no solution of the intersection problem of Section 9.7,4

then the track should be false.
The second case of track rejection is when some preliminary two-body

orbit can be obtained, but when the residuals of the observations from all
tracklets are computed, they have a RMS value too large. The control value
for this kind of track rejection has to be selected with care. The preliminary
orbit is a two-body orbit, and even that is obtained with some truncation to
some order in Δt, thus the accuracy cannot be the same as requested for a
least squares solution with a full N -body model; e.g., in (Milani et al. 2008)
values around 10 arcsec have been shown to be a good choice.

By combining both tests, it is possible to reduce the number of proposed
tracks by an order of magnitude, thus the computational overhead of differ-
ential corrections, needed as the following step, becomes acceptable. More-
over, the procedure to confirm tracks is parallelizable by tracks, that is the
proposed tracks may be split among a number of processors/cores.5

Recursive attribution method

Another procedure to compose tracks is recursive attribution, that is a
(j +1)-track is formed by attribution to an orbit computed for a j-track, see
Section 10.2. For j = 1 the procedure starts from virtual asteroids obtained
by sampling the admissible region, as discussed in Sections 8.2 and 8.3. The
main problem is how to avoid performing complex computations inside an
O(M N) loop (the number of tracklets is O(M) and the number of orbits is
4 Apart from spurious solutions, with either ρ2 < 0 or ρ2 so small that the attraction from the

Earth cannot be neglected.
5 The procedure to propose tracks uses a global algorithm and is not easy to parallelize, but it

corresponds to a small fraction of the computational load.
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O(N)). From each tracklet an attributable is computed: however, each at-
tributable Ai has its own mean time ti. If we were to compute the predicted
attributable at times ti from each orbit Ek , the double loop with respect to
i, k would contain a computationally expensive orbit propagation.

This problem can be solved by selecting a fixed time step, e.g., one day,
and a discrete set of times, e.g., local midnight near where the telescopes are
located. Each orbit is propagated to the local midnight of the Nnig nights
in which there are observations to be attributed. Thus the number of orbit
propagations is still O(N). Each attributable is propagated from time ti to
the local midnight t0 by some simple formula, such as a linear extrapolation:

α(t0) = α(ti) + α̇(ti) (t0 − ti), δ(t0) = δ(ti) + δ̇(ti) (t0 − ti).

If this approximation is too poor, it is possible to propagate to the time of
each individual digital image (in modern asteroid surveys, a large number
of objects is detected in each frame).

The extrapolated values (α(t0), δ(t0)) can be compared with the predic-
tions for the same epoch from the orbit. This comparison is in a two-
dimensional space, and the selection of the candidates for attribution can
be done by using some simple two-dimensional metric K2, e.g., by using
either the confidence ellipse or the two-dimensional identification penalty.
The prediction needs to be in a linear regime to do this with simple compu-
tations. The test K2 < K2max can be used as a first filtering stage, with a
very limited number of operations to be repeated O(N M) times.

This loop can be replaced by a faster one with computational complexity
O(N log M) + O(M log M); we can sort the (αi(t0), δi(t0)) coordinates for
each night by the value of the right ascension. The sorting has complexity
O(M log M) and can be performed with classical algorithms (Knuth 1998).
Then for each of the N orbits we search the sorted list to find the attributable
with the αi nearest to the prediction and compare only those with neigh-
boring α. This can be done by the binary search method, with complexity
O(N log M). This algorithm is simpler and less efficient than the binary tree,
and other multidimensional sorting methods such as (Granvik et al. 2005),
but it is good enough to reduce the computational complexity. Moreover,
the procedure for attribution is parallelizable by orbits, that is the orbits
may be split among a number of processors/cores.

The orbit-attributable couples passing the first filter are submitted to a
second one, containing an orbit propagation to the exact time ti, a predic-
tion of an attributable at time ti (with covariance) resulting into a four-
dimensional vector of residuals (O-C), and the computation of the penalty
K4, see Section 8.4. If K4 < K4max, then the couple is proposed as an
attribution.
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Confirmation of a proposed attribution, the third filtering stage, is done
by selecting a preliminary orbit as in Section 8.5.6 This is used as first
guess for differential corrections. If convergence is achieved, and the quality
control of the residuals is satisfactory, the attribution is accepted, which is
not the same as saying that the identification is true, see the next section.

11.4 Identification management

The procedure of identification management has the purpose of compil-
ing a catalog of identifications, each with its orbit(s) and auxiliary informa-
tion (covariance, residuals, quality control metrics), removing all kinds of
duplications and contradictions.

Duplications may arise because the same identification may be obtained
through different sequences, e.g., ((A, B), C) and ((A, C), B), where A, B, C

are tracklets and the symbol (·, ·) denotes an identification. There are dif-
ferent kinds of contradiction: the most severe is of the form ((A, B), C)
and ((A, D), E), i.e., two discordant identifications with a tracklet in
common.

Both duplications and contradictions can be removed with a procedure of
identification normalization, with an arbitrary list of identifications as
input and as output a normalized list with only independent identifica-
tions, that is each observation belongs to only one of them.

The key issue is that normalization is a global procedure, which needs to
be applied to all the identifications available, or at least to all those formed
with a set of observations which may refer to the same objects. For example,
if the survey covers, in a given lunation, a region near the opposition and
one near quadrature (the so-called sweet spots, specially suited for detection
of near-Earth asteroids), then we can apply the normalization procedure
to the identifications formed with opposition data and, separately, to those
with quadrature data, because they can be assumed to be independent.

Normalization procedure

We define the following relationships between two identifications: let
List(id1), List(id2) be the lists of tracklets belonging to the identifications
id1, id2

• included(id1, id2) ⇐⇒ List(id1) � List(id2)
• contains(id1, id2) ⇐⇒ List(id2) � List(id1)
• independent(id1, id2) ⇐⇒ List(id1) ∩ List(id2) = ∅
6 If there are enough data, a Gauss preliminary orbit and even the previous least squares orbit

may be used.
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• same(id1, id2) ⇐⇒ List(id1) = List(id2)
• discordant(id1, id2) = List(id1) ∩ List(id2) = ∅, List(id1), List(id2).

These five properties are mutually exclusive and they cover all possible cases.
The goal of normalization is to select a subset with only independent iden-
tifications. Among non-independent identifications, the procedure needs to
select those with more information and more likely to be true.

Our normalization procedure is defined as follows. The input list of iden-
tifications is sorted according to an ordering relationship called better. The
definition we currently use is based upon the number nt of tracklets in the
identification, and upon the RMS σ of the least squares fit residuals (if
the identification has alternative orbit solutions, the lowest RMS value has
to be used). An identification is better if it includes more tracklets or, for
the same number of tracklets, if the residuals have a smaller RMS:

better(id1, id2) = (nt1 > nt2) OR (nt1 = nt2 AND σ1 < σ2).

Then the sorted list is scanned from the top: the “best” identification is
inserted in the normalized list. We proceed as follows: For the following
identifications idk in the input list:

• if for each idj in the normalized list independent(idk, idj), then idk is
inserted in the normalized list;

• if there is a normalized idj such that included(idk, idj), then idk is
dropped;

• if there is a normalized idj such that same(idk, idj), then the solutions of
idk are added to those of idj , and duplicate solutions (consistent within
the uncertainty given by the covariance matrices) are removed.

Note that contains(idk, idj) cannot occur: it would imply better(idk, idj),
while idj comes from higher up in the sorted list.

The steps defined above are enough to remove from the normalized list
all duplications and cases of included identifications: e.g., if ((A, B), C) is
in the input list, both (A, B) and ((A, C), B) are removed, without losing
track of possible double solutions with the same set of observations.

Discordant identifications

The critical step is how to handle a couple of discordant identifications.
There are three appropriate choices: to keep in the normalized list only one
if it is much better than the other, to discard both, or to try to “merge”
them into a single identification.

The choice of the much better ordering relationship is critical. It should
indicate that an identification is significantly more likely to be true than the
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other, as measured from the quality control metrics. To “merge” two iden-
tifications requires fitting an orbit to all the observations belonging to both,
then to apply quality control to the resulting residuals. If neither of these
two cases applies, the only way to complete the normalization, removing all
discordancies, is to discard both. In doing this, as the simulations discussed
below show, we often sacrifice one true identification to remove a false one,
that is we privilege accuracy with respect to efficiency.7

In the tests we have done so far, we use a definition of much better based
only on the two parameters nt and σ:

much better(id1, id2) ⇐⇒ (nt1 > nt2) OR (nt1 = nt2 AND σ1 + δσ < σ2),

with a control δσ > 0 (we have used δσ = 0.25). It would be possible to use
some of the other quality control parameters described in Section 11.5.

An example

To explain better the logic of the normalization procedure, let us use a
simple example. Let us assume that A, B, C, D, E, F are tracklets, and that
the output of the identification procedure is

2 ids 3 ids 4 ids

(A, B), ((A, B), C), (((A, B), C), D),
(F, C), ((E, F ), C),
(E, F ).

Let us assume the identification list, sorted by better, is

(1) (((A, B), C), D)
(2) ((A, B), C) included in (1)
(3) ((E, F ), C) discordant with (1) which is much better
(4) (A, B) included in (1)
(5) (F, C) discordant with (1) which is much better
(6) (E, F ) independent from (1).

Then the normalized list is

(((A, B), C), D), (E, F ).

This example can also be used to show that the normalization must be done
globally, on all the identifications in the same set of data, not by adding
sequentially the tracklets and the identifications when they are available. Let
7 An alternative would be to adopt a probabilistic approach: two discordant identifications with

comparable quality control metrics could each be given an estimated probability � 0.5 of being
true. They should be both kept in a weakly normalized list, without duplications but with
some discordancies. This approach has not been fully tested yet.
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us suppose the tracklet D has not been observed yet, and the normalization
is started using as list of identifications the one above without (1). Then (2)
and (3) are discordant: if none of the two is much better, both of them have
to be discarded; the same may occur with (5) and (6), and the normalized list
may be just (A, B). If D is added later, maybe ((A, B), D) is found, but the
much better identification (1) is not available and the object corresponding
to (E, F ) is lost.

Controlling the computational complexity

The normalization procedure as outlined above does work, and gives an
important contribution to increase the accuracy as discussed in Section 11.5.
However, if N is the number of objects being discovered, the computational
complexity of the normalization procedure as described is O(N2). Thus for
N large enough, the computational load of the normalization could exceed
the load for obtaining the identifications.

An algorithm for normalization of complexity O(N log N) is as follows.
Whenever an identification idj is added to the normalized list, all the track-
lets in List(idj) are endowed with a pointer to idj . Then, when another iden-
tification idk from the original list is analyzed, we can assemble all the point-
ers to normalized identifications of the tracklets in List(idk); they define the
subset of the normalized identifications idr for which independent(idk, idr)
is false. This list is used in the normalization procedure as outlined above.
The procedure for assembling the pointers has complexity O(N log N) if
binary search of the tracklets is used to access the pointers.

With this method, the computational load of the identification manage-
ment becomes negligible, with respect to that for finding and confirming the
identifications. The only caveat is that for large N a large random access
memory (RAM) is needed to run the procedure globally, because of the long
input list of identifications (possibly with duplications) and of the large set
of pointers. If this results in using virtual memory, i.e., much slower access
to disk, the performance could be severely impaired.8

Merging discordant identifications

We need to consider the possibility, in the case discordant(idk, idj), of
merging identifications, that is to look for an orbit which can fit all the
observations belonging to the tracklets of List(idj) ∪ List(idk), with resid-
uals passing the quality control. The track, hence the list of observations,
is given; however, in the list of observations it is necessary to remove the
duplications and check for contradictions (see under tracklet management).
8 However, the available RAM also grows according to Moore’s law.
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The first guess orbit for differential corrections could be selected among
the already known ones, an orbit of idj being preferred to that of idk because
better(idj , idk). Then differential corrections need to be applied: if they con-
verge and the residuals pass the quality control, then the new identification
idm with List(idm) = List(idj) ∪ List(idk) replaces idj in the normalized
list and idk is dropped.

This algorithm has been shown by many tests to be very effective in as-
sembling much larger identifications (with more tracklets) from smaller ones,
but it may introduce serious problems in the overall procedure. First, the
average computational complexity of the merging algorithm is hard to com-
pute, but it is possible to generate fictitious examples showing that the worst
case complexity could be terrible.9 Second, the insertion of idm in place of
idj destroys the work already done in the normalization procedure, in that
idm may well be discordant, e.g., merging (A, B) with (A, C) may result in
discordancy with (C, D), which might have been already inserted into the
supposedly normalized list. A solution to both problems is to use recursive
attribution for as many steps as required to get to the identifications with M

tracklets, where M is such that objects observed with more than M tracklets
are exceptional cases, occurring for a small fraction of the population. For
example, if there is just one tracklet per night for each object in the great
majority of the cases, M could be the number of observing nights. Then
identification merging allows us to find the best orbit even for the few “over-
observed” objects. To obtain the normalized list, it is enough to run the
normalization procedure twice, the first with merging, the second without.

Orbit identification

Once the normalized list of identifications for a given time span (e.g., a lu-
nation) has been formed, it should be compared with those built previously.
Since each identification has some fitting orbit, this problem could be solved
with the methods of orbit identification of Chapter 7.

The tracklets observed in one lunation can also be attributed to the or-
bits computed for another lunation (be it the previous or the next): in this
approach, the combination between the two sets of results is just a continua-
tion of the recursive attribution procedure of Section 11.3, to be followed by
identification management (for all the identifications obtained with the data

9 Assume there are M tracklets all belonging to the same object and take all the possible
2-identifications in the input list. Depending upon the ordering by better, that is upon the
values of the RMS, in the output of identification management there could be either a single
merged identification growing to M tracklets in log2 M steps, or many merged identifications,
obtained with very redundant computations and discordant among them.
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of both lunations). When the gap in time between the two observation time
spans, in which the same objects might appear, is short, the attribution is a
more efficient method. If the gap in time is long, and the orbits obtained are
well determined (e.g., arc type ≥ 3, see Section 10.5), the orbit identification
algorithms are very efficient. There is one difficult case, when an object has
not been observed enough for a well-determined orbit, e.g., just two nights,
and then may have been re-observed after a long time (years). There is
currently no general solution for this case, but several methods are being
tested, see Sections 7.4 and 8.6, and also (Granvik and Muinonen 2008).

Tracklet management

The composition of tracklets can have two problems. First, there can be
incomplete tracklets, not including all the detections of an object in the same
night: if a, b, c, d are detections of the same object, there could be tracklets
((a, b), c) and ((b, c), d). Second, there can be false tracklets, including false
detections and/or detections of different objects. Thus there can also be
discordant tracklets, with some (but not all) detections in common.

The problems with incomplete tracklets may result from uneven perfor-
mance of the scheduler, the method used to select the sequence of telescope
pointings to collect observations. Optimal scheduling belongs to the class
of discrete optimization problems, known to be of non-polynomial complex-
ity; this in practice means the perfect scheduler cannot be available. Uneven
spacing between observations of the same area may result in several tracklets
of the same object in one night, increasing the complexity of the identifica-
tion procedure without increasing, in most cases, the quality of the orbits.
The orderings used in the identification management, better and much better,
may need to be redefined to compensate for this. Too long spacing between
detections may result in failure to assemble some of them into tracklets.

One advantage of the identification management procedure is that a sig-
nificant fraction of the problems with the tracklets can be solved a posteriori,
after finding the identification. If two tracklets belong to the same identi-
fication, it does not matter if there are common detections, provided the
duplicates are removed from the list of observations of the identification.10

If there are two discordant tracklets, of which one is identified and the other
is not, we can assume that the latter is false and discard it; this procedure
is called tracklet management.

An important output of the identification management is the list of
10 In case a track contains two detections on the same frame at different positions, the track itself

has to be discarded.
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leftover tracklets. It is obtained by removing from the input list the tracklets
belonging to confirmed identifications and those discordant with the iden-
tified ones. This allows us to build a list of unidentified tracklets which is
shorter and also contains fewer false tracklets.

To control the computational complexity of the method that finds the
tracklets discordant with the identified ones, a list of discordant tracklets
needs to be prepared with an O(M log M) algorithm (where M is the total
number of detections); this is possible by sorting the detections. After iden-
tification management this list is scanned, searching for identified tracklets.

11.5 Tests for accuracy

The best way to measure the efficiency and accuracy of an orbit determina-
tion method applied to a large survey is to run a full-scale simulation. Then
we have a ground truth, that is a list of synthetic objects used in data
simulation and their assumed orbits, with which the output of the procedure
can be directly compared. While processing real data we have no way of
knowing how many other identifications may be possible, and false identifi-
cations can be long lasting. The performance of the algorithms is strongly
dependent upon the number density of detections; the future surveys are
designed to achieve a much larger number density of detections than those of
the currently available data. The results of these simulations depend upon
so many assumptions, many of them implicit, that it is very hard to predict
the performance of a future survey. The point is to show that the main
limitation to the performance of the next-generation surveys, as far as Solar
System objects concerned, is not due to the orbit determination task.

The main purpose of large-scale orbit determination simulation is to mea-
sure the accuracy of the procedure. However, efficiency and accuracy are not
independent. The quality control parameters may be selected to favor ef-
ficiency, sacrificing accuracy. The identification management methods may
be effective in removing false identifications, because they are discordant
with one another, but in this way a true identification is often sacrificed
to remove a false one, decreasing efficiency. Simulations are needed to test
different sequences of algorithms, options, and control values to achieve the
best possible compromise between efficiency and accuracy.

Quality control metrics

Accuracy can be increased with a statistical quality control based upon more
than just one parameter, trying to capture information not only on the noise
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component (measured by the RMS) but also on systematic signals left in
the residuals. For the full-scale simulations of Milani et al. (2008) we have
used the following 10 metrics (control values in square brackets):

• normalized RMS of astrometric residuals (the assumed RMS of the obser-
vation errors was 0.1 arcsec) [1.0];

• RMS of photometric residuals in magnitudes [0.5];
• bias of the residuals in RA and in DEC [1.5];
• first derivatives of the residuals in RA and DEC [1.5];
• second derivatives of the residuals in RA and DEC [1.5];
• third derivatives of the residuals in RA and DEC [1.5].

To compute the bias and derivatives of the residuals we fit them to a poly-
nomial of degree 3 and divide the coefficients by their standard deviation as
obtained from the covariance matrix of the fit.11

There is a problem in comparing values of the above parameters with
fixed control values, because the statistically expected values depend upon
the number m of (scalar) observations and the number n of fit parameters,
which could be 6, 5, and even 4 (see Section 10.4). One standard way to
take this into account is to normalize the control parameters dividing by
the factor

√
m/(m − n) before comparing to a fixed control, independent

of m, n.

Simulation results

As an example we give the output of the simulation of Milani et al. (2008),
a full density simulation of a next-generation survey over an entire lunation,
with limiting magnitude 24 and a large Solar System model (with 11 million
objects). This simulation did not include false detections.

In a first iteration, the binary tree algorithm was used to form tracks,
which were submitted to differential corrections. Then the resulting list
of identifications was normalized. Table 11.1 summarizes the accuracy re-
sults, showing that identification management is necessary to reduce the
false identifications to the desired very low level, while before normaliza-
tion there were far too many. It also shows that the false tracklets are very
seldom included in identifications. The identification management was also
effective in removing false tracklets, e.g., at opposition the leftover tracklets
were reduced in number by a fraction 0.743, among them the false tracklets
were reduced by a fraction 0.794.
11 When these algorithms are used on real data additional metrics should assess the outcome of

outlier removal, see Section 5.8. For simulations this may not apply, depending upon the error
model used to add noise and false detections to the simulated astrometry.
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Table 11.1. Accuracy results, before (columns 2–4) and after (columns 5–7)
normalization. For each case, the number of false identifications passing quality
control, fraction of false, and number of true identifications with false tracklets.

Region All Identifications Normalized
False Fraction F.Tr. False Fraction F.Tr.

Opposition 7 093 0.043 4 80 0.0005 1
Sweet spots 1 869 0.013 10 29 0.0002 0

Table 11.2. Overall and NEA-only identifications. Column 2: number of objects
observed on three nights. Column 3: efficiency before normalization. Column 4:
efficiency after normalization. Column 5: fraction lost in the first iteration and

recovered in a second iteration. Column 6: combined efficiency from both
iterations. Column 7: fraction of false identifications after both iterations.

Total Eff. Eff. No. Recovered Eff. tot. False Id.

Opposition 161 146 0.973 0.959 0.754 0.990 0.0006
NEAs 353 0.904 0.904 0.853 0.971

Sweet spots 144 903 0.980 0.974 0.750 0.994 0.0002
NEAs 271 0.801 0.801 0.852 0.971

A second iteration based on the recursive attribution algorithm was ap-
plied to the list of leftover tracklets, followed by normalization. Table 11.2
shows that the overall efficiency was already high in the first iteration,
although the efficiency for the near-Earth asteroids was less so, especially
at the sweet spots. Most of the objects observed over three nights and lost
by the first iteration were recovered by the second one, especially among
NEAs. The recursive attribution method also provided orbits for a fraction
> 0.8 of the objects observed over two nights; these lower quality orbits may
be used to be identified with similar orbits from the previous/next lunation,
and also for recovery of low confidence detections, see the next section.

In conclusion, the algorithms described in Chapters 8, 9 and 10 and as-
sembled in an identification procedure are adequate for the next-generation
sky surveys, even with N � 300 000 objects discovered in each lunation.12

12 The large number of discovered objects in these simulations shows that effects sensitive to the
number N of objects, like the occurrence of false identifications, can be under control. They
are not meant to be an estimate of the discovery rate of any specific survey.
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11.6 Recovery of low confidence detections

There is one especially tricky case of attribution, the one in which the data to
be attributed are not yet organized into attributables, but are just individual
observations. This may occur in very deep surveys, in which the number
density of observations per unit area on the sky is extremely high, to the
point that pairing them to form tracklets is not easy. If this procedure is
pushed to low levels of signal-to-noise ratio, a large fraction of the supposed
observations may in fact be spurious. The question is how far down we can
push the minimum acceptable S/N to avoid a false identification catastrophe,
that is a sharp drop of the accuracy beyond a critical number density.

As a basic form of the problem, let us suppose we have an orbit and two
images, taken at two different times t1 and t2; on each image there are M

supposed observations, including the spurious ones. By computing from the
orbit two predictions (αi, δi) for the times ti, i = 1, 2, we can compare them
with the (supposed) observations in each image, computing a simple two-
dimensional metric K2. This allows us to select by the values of K2 a subset
of Mi � M observations from the frames at time ti, i = 1, 2.

If the numbers Mi are small, we can test each of the M1 × M2 pairs of
observations by forming an attributable (with covariance) and comparing it,
by the K4 metric, with the predicted attributable for time t̄ = (t1 + t2)/2.
This procedure may fail if |t2 − t1| is too large, because the actual path
of the object on the celestial sphere might have enough curvature, so that
the tangent vector (α̇(t̄), δ̇(t̄)) is significantly different from the velocity of
the straight line approximation.13 If M1 × M2 is too large, we may use the
sorting method to find an algorithm of complexity O(M1 log M2).

The couples of observations giving a satisfactory value of K4 can be sub-
mitted to differential corrections, trying to fit the data used to compute the
orbit and the two additional observations. The quality control metrics of
the fit with the additional observations should not be significantly worse
than those without them. When this is achieved, the two observations can
be attributed even if there was no way to know a priori that they belonged
to an object whatsoever (they could have been spurious).

The computational complexity of the procedure described above is difficult
to control. The main reason is that the first filter, based upon the two-
dimensional metric K2, must be applied searching frame by frame. The
second filter with the four-dimensional metric K4 has to be applied searching
by orbit, that is the detections selected by the first filter have to be sorted in

13 A better result could be obtained by comparing [δ(t2 )− δ(t1 )]/(t2 − t1 ) with the average of the
predictions [δ̇(t1 ) + δ̇(t2 )]/2 (similarly for α).
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an order different from that in which they have been computed. If all the
data passing the first filter, let Z be their number, can be kept in memory,
then binary sorting with computational complexity O(Z log Z) can be used
to sort by orbit. This results in an algorithm with considerable complexity.

Recovery simulations

The performance of the above algorithms to recover low confidence detec-
tions and promote them to tracklets attributed to available orbits has not
been fully tested yet; some simulations are available, but it is difficult to
model realistically the occurrence of false detections, which do not really
follow simple statistics, like Poisson. One such simulation, with uniform
probability density, indicates that the accuracy problem is the main one.

Including false detections with overall number density μ = 104 per square
degree, � 100 times the number density of the real detections, accuracy in
the attribution of a promoted low confidence tracklet in an additional night
turns out to be 0.99 when the orbit is based on ≥ 3 nights of observations
and 0.96 for orbits with just two nights of data. At this level the results
may be useful, especially for upgrading the weak two-night orbits to three-
night orbits, generally well determined, thus possibly complying with some
definition of discovery such as the one of Section 10.5.

If μ = 105 per square degree, � 1000 times the real detections, we obtain
0.90 for the accuracy, with ≥ 3 nights of observations and 0.68 with just two
nights of data. Such low reliability identifications cannot be used to claim
discovery, especially those which would be most useful, i.e., the two-nighters
promoted to three-nighters. They could provide candidate, or probabilistic,
discoveries to be confirmed by targeted follow up.

A limitation to the number density cannot be avoided; if μ is the num-
ber density and Γ(α,δ) is the covariance matrix of the predicted observations
α, δ, then the expected number of detections in the confidence ellipse ZL(σ)
is F = μ σ2 π

√
det Γ(α,δ), the number of tracklets formed with detections

selected in a couple of frames is of the order of F 2, and spurious tracklets
with accuracy of the order of 1/F in α̇ and δ̇ must often occur. The simula-
tions indicate that the false identification catastrophe does not need to occur
in the next-generation surveys, provided the required S/N is such that the
number of false detections is not much larger than that of true detections.
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IMPACT MONITORING

When an asteroid or a comet has just been discovered, its orbit is weakly
constrained by the available astrometric observations and it might be the
case that an impact on the Earth in the near future (within the next 100
years) cannot be excluded. If additional observations are obtained, the un-
certainty of the orbit decreases and the impact may become incompatible
with the available information. Thus, if we are aware that an impact is pos-
sible, it is enough to spread this information to the astronomers to convince
them to follow up the object. On the contrary if this piece of information
is not available, or is made available when the asteroid has been lost, the
impact risk will remain until the same asteroid is accidentally recovered.
This might occur too late for any mitigation action.

This problem can be solved if all the asteroids/comets, immediately after
being discovered and before they can be lost, are “scanned” for possible
impacts in the near future. If impacts are possible, this information has to
be broadcast to the astronomers. This is the goal of impact monitoring.

It is somewhat surprising that this was not really possible until late 1999,
when the first impact monitoring system, the CLOMON software robot of
the University of Pisa, became operational. For many years, even after the
risk of impacts of asteroids and comets on our planet had been identified
and its probability estimated, even while dedicated surveys were scanning
the sky to discover as many near-Earth asteroids (NEA) and comets as pos-
sible, the algorithms to scan a given, known object for possible impacts were
not effective enough. By using the linear theory of impact prediction (see
Section 12.1) it was possible to identify impact possibilities with compara-
tively high probability, of the order of 10−3–10−4. However, if the possible
event was the impact of an asteroid with diameter exceeding 1 km, which
would result in an explosion with a yield of more than 20 000 megatons,
even a probability of the order of 10−6–10−7 cannot be considered negligible,

237
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and to omit to follow up such a dangerous asteroid would be a serious mis-
take. On the contrary, unfounded announcements of possible impacts, such
as for asteroid 1997 XF11 in March 1998, can undermine the credibility of
the scientific community involved and thus make it more difficult to obtain
the resources necessary in a serious case.

In 1999 we were able for the first time to issue a warning of a possible
impact for asteroid 1999 AN10 (Milani et al. 1999). The impact probability
for the year 2039 was � 10−9, so small that it would not need to be cause
of concern for the public, but the mathematical problem had been solved.1

The new methods introduced for the 1999 AN10 case led to the impact
monitoring system CLOMON later in the same year.

In 2002 the impact monitoring system CLOMON was replaced by the
second generation CLOMON2 in Pisa (duplicated at the University of Val-
ladolid) and by SENTRY at the NASA Jet Propulsion Laboratory. These
two independent systems, whose output is carefully compared, now guaran-
tee that the potentially dangerous objects are identified very early (within
hours from the dissemination of the astrometric data) and followed up un-
til the observations succeed in contradicting the possibility of an impact.
During the time span over which these observations are obtained, the an-
nouncement that some asteroid has the possibility of impacting must be in
full view of the public, and in practice it is posted on the web.2 This is
essential to communicate the need of observations to the astronomers and
also reassures the public that no information on impact risk is withheld.

In case the impact possibility remains for a long time, as it is currently
the case for asteroids (99942) Apophis and (144898) 2004 VD17, which have
been on the risk pages of CLOMON2 and SENTRY for years, it is reasonable
to begin planning for the mitigation actions which may become necessary if
the later observations were to confirm, rather than contradict, the impact.
Although the impact probability is small for these cases, we need to have a
technologically feasible method to deflect such asteroids which can be used
if necessary, see Section 14.6. Otherwise, the practical utility of the surveys
and of the impact monitoring itself would be cast into doubt.

The purpose of this chapter is to outline the mathematical methods used
in impact monitoring. It is based on (Milani and Valsecchi 1999, Milani
et al. 1999, Milani et al. 2000b, Gronchi 2002, Gronchi 2005, Chesley et al.

1 The impact probability was later found to be higher for impacts in 2044 and 2046; a few months
later, the precovery of 1999 AN10 in plates taken in 1955 allowed us to contradict the possibility
of an impact in the twenty-first century.

2 http://newton.dm.unipi.it/neodys and http://unicorn.eis.uva.es/neodys for CLOMON2,
http://neo.jpl.nasa.gov for SENTRY.
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2002, Valsecchi et al. 2003, Milani et al. 2005b, Gronchi and Tommei 2006,
Gronchi et al. 2007).

12.1 Target planes

The geometry of the encounters with a planet can be described in terms of
a target plane, a plane in 3-D space through the center of the target planet,
e.g., the Earth, orthogonal to the direction of the relative velocity of the
approaching small body. In this context, an impact can be described as an
orbit containing a target plane point inside the planet cross-section.

There are two ways to define such a target plane. The simplest is the
modified target plane (MTP) (Milani and Valsecchi 1999): it is obtained
by considering the time t at which the small body orbit has a relative mini-
mum of the distance from the planet center of mass (CoM). Let d and v be
the planetocentric position and velocity vectors of the asteroid at the time
t: the distance being minimum, d ·v = 0. The MTP is the plane containing
0 (the CoM) and normal to v. On this plane the point d represents the
close approach trace on the MTP. A complete description of the close
approach is obtained by assigning two coordinates on the MTP, two angles
defining the orientation of the MTP, the size of the velocity v = |v|, and
the time t. The cross-section of the planet on the MTP is a disk centered
at 0 and with the radius R of the planet; if the minimum distance d = |d|
at time t is less than R there is an impact.3

The other definition, called in the literature either just the target plane
(TP) or b-plane, uses the same vectors d and v describing the state at
the closest approach time t to compute a planetocentric two-body approx-
imation of the orbit. If, as it is generally the case, such a two-body orbit
is hyperbolic, then the TP is the plane containing 0 and orthogonal to the
incoming asymptote of the hyperbola, corresponding to the limit vector u
for t → −∞ of the planetocentric velocity along the hyperbolic trajectory;
the size u = |u| is the velocity “at infinity” as used in astrodynamics. The
point b, representing the trace of the close approach, is the intersection
of the asymptote with the TP; its size b = |b| is the impact parameter,
larger than the minimum distance d by a factor

b

d
=

√
v2 d

v2 d − 2 GM

where GM is the gravitational constant multiplied by the planet mass. A
3 This assumes the planet surface is a sphere; the oblateness of the planet is generally irrelevant

for the possibility of an impact, although it may matter when predicting the point of impact.
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complete description of the close approaching orbit is obtained by assigning
two coordinates ξ, ζ on the TP, two angles θ, φ defining the orientation of the
TP, the size of the escape velocity u = |u|, and the time t (Greenberg et al.
1988). On the TP the impact cross-section is a disk of radius

B = R
√

1 + 2GM/R u2 (12.1)

larger than the radius R by a factor accounting for gravitational focusing.
The two planes are different, because the velocity v at the close approach

is rotated by an angle γ/2 around the axis of the planetocentric angular
momentum. The angle γ measures the total deflection from the incoming
to the outgoing asymptote and can be computed by

sin(γ/2) =
GM

v2 d − GM
.

The transformation of coordinates rotating and rescaling the MTP into the
TP is not canonical, thus it is impossible to use the Hamiltonian formalism
including coordinates on the TP (Tommei 2006a, Tommei 2006b). More-
over, the choice of the coordinates on the two planes can be done in different
ways, and this has also to be accounted for in the transformation.

From an abstract point of view, it does not matter how we select a repre-
sentative vector for a given close approach, provided it is a smooth function
of the orbit initial conditions: thus a smooth coordinate transformation is
acceptable. However, some coordinate systems are more equal than oth-
ers, because the propagation of the uncertainty is easy in a linear approx-
imation, by using the differential of the transformations, and a coordinate
change with large higher order derivatives introduces strong limitations in
the applicability of the linearization. Since gravitational focusing introduces
a deformation more nonlinear where gravity is stronger, that is near colli-
sions, there is advantage in using the TP with respect to the MTP.

Linear predictions on target planes

For a given asteroid, and a set of orbital elements x ∈ R6 at epoch t0
there is a unique orbit, which can be accurately propagated for some time
span.4 For each close approach to the Earth, occurring within this time
span, there is at least one point y ∈ R2 which is the trace of this orbit on
the target plane. To avoid useless geometric complications, we consider as
4 In the current impact monitoring systems, the orbits are generally propagated for 80–100 years.

Only for some orbits, determined in an especially accurate way, is it meaningful to propagate
for longer time spans; then non-gravitational perturbations, especially the Yarkovsky effect
(Section 14.2), have to be taken into account.
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close approach only an encounter with a distance from the planet CoM
not exceeding some value dmax; practical values for dmax range between 0.05
and 0.2 astronomical units (AU), thus the target planes are replaced by disks
with a finite radius.5

Let us suppose the orbit determination solves only for the initial conditions
x ∈ R6 of the asteroid at some epoch t0, and the differential corrections
converge to the nominal solution x∗, with normal and covariance matrices
C, Γ (see Chapter 5). As the nominal solution x∗ is surrounded by a six-
dimensional confidence region of acceptable solutions, the trace point y∗ =
g(x∗) determined by the propagated nominal orbit on the target plane of
some encounter is surrounded by a two-dimensional confidence region.

To compute an approximation, we use the differential of the map g(x)
providing the TP trace (Milani and Valsecchi 1999). The trace point is
reached at the time tc(x) of the target plane crossing for each orbit with
initial conditions x in a neighborhood of x∗. By using Cartesian geocen-
tric coordinates ξ, η, ζ such that η = 0 is the target plane, the equation
η(t,x) = 0 implicitly defines the crossing time tc(x) as a differentiable func-
tion, thus ξ(tc(x),x) and ζ(tc(x),x) are differentiable too. Using the differ-
ential Dg(x∗) = ∂(ξ, ζ)(x∗)/∂x we can compute the covariance and normal
matrix of the y prediction by the linear covariance propagation formula

Γy = Dg Γx (Dg)T , Cy = Γ−1
y

defining the confidence ellipse on the target plane

(y − y∗)T Cy (y − y∗) ≤ σ2 (12.2)

with the same confidence parameter σ used for the confidence ellipsoids.
This formalism is applicable because the trace function is differentiable, but
this does not imply that the quadratic approximation (12.2) is an accurate
description of the confidence region on the target plane. However, if it is
adequate, the possibility of an impact can be studied by looking for
intersections of the confidence ellipses with the impact cross-section. By us-
ing a Gaussian probabilistic formalism, from the normal probability density
N(x∗, Γ) we can define a probability density on the target plane. In the
linear approximation corresponding to the differential Dg(x∗), y is Gaus-
sian with density N(y∗, Γy). Then it is possible to estimate the impact
probability by computing a probability integral on the impact cross-section.

The formalism above is well known for applications to the navigation
of interplanetary spacecraft, a case in which the assumptions of small
5 It is possible for a close approach to have multiple local minima of the distance to the CoM,

thus multiple target plane trace points. Reducing dm ax can often eliminate such complications.
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confidence regions and therefore the applicability of linearization are well
founded, for the reasons given in Section 1.4. To estimate the probability of
impact of asteroids is much more difficult, due to nonlinearity.

12.2 Minimum orbital intersection distance

A convenient reference system Oξηζ for the geocentric position on the TP
is obtained by aligning the negative ζ axis with the projection of the he-
liocentric velocity v⊕ of the Earth, the positive η axis with the geocentric
asymptotic velocity u (i.e., normal to the TP), and the positive ξ axis in
such a way that the reference system is positively oriented. With this frame
of reference the TP coordinates (ξ, ζ) indicate the cross-track and along-
track miss distances, respectively. In other words, ζ is the distance by
which the asteroid is early or late for the minimum possible distance en-
counter. The associated “miss time” of the target plane crossing (η = 0) is
Δt = −ζ/(v⊕ sin θ), where θ is the angle between u and v⊕ and v⊕ = |v⊕|;
a positive ζ implies that the asteroid is “late” at the date with the Earth,
ζ < 0 means the asteroid is early.

On the b-plane the ξ coordinate is the minimum distance that can be
obtained by varying the timing of the encounter. This distance is closely
related to the orbit distance, known as the minimum orbital intersec-
tion distance (MOID) in the literature (Bowell and Muinonen 1994), that
is the minimum separation between the two osculating Keplerian orbits of
the asteroid and the Earth as curves in three-dimensional space, without
regard to the phase on each of the two. Note that the approximation of the
MOID with the ξ coordinate is valid only in the linear approximation and
can break down for distant encounters (e.g., beyond several lunar distances).

Stationary points of the Keplerian distance function

Two confocal Keplerian orbits can get close at more than a pair of points,
for example near both the mutual nodes, thus it is useful to compute all the
local minima of the Keplerian distance function d, the distance between
two points on the two orbits, not only the absolute minimum. We compute
these values as the stationary points of the function d2, squared to be smooth
also in case of orbit crossing, when the distance can be zero.

There are several papers in the literature on the computation of the min-
imum points of d, e.g. (Sitarski 1968, Hoots 1994). Recently some algebraic
methods to compute all the stationary points of d2 have been introduced,
using Gröbner bases (Kholshevnikov and Vassiliev 1999) and resultant
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theory (Gronchi 2002, Gronchi 2005). They are both based on a polyno-
mial formulation of the problem. The algebraic formulation of the problem
allows us to search for all the solutions using the efficient methods of modern
computational algebra and gives us a bound for the maximum number of
stationary points, as discussed below.

Mutual geometry of confocal Keplerian orbits

The stationary points of d2 have been proven to be ≤ 16 for the case of two
ellipses and at most 12 if one orbit is circular, except for very particular cases
with infinitely many stationary points (Gronchi 2002). From a large number
of numerical experiments we have found cases with at most 12 stationary
points of d2 and at most four local MOID, that is local minima of d2.

The statistics of the stationary and minimum points of the squared dis-
tance function d2 using the orbit of the Earth and those of the known NEAs
shows that most mutual orbit configurations give two local minima and one
maximum, among six stationary points: this is the most intuitive case, with
a simple geometry. There are also several cases with only one local mini-
mum. No real asteroid has been found so far with four minimum points.

When there is a crossing between the orbits (MOID = 0) and the mutual
inclination is not zero the minimum point of d corresponds to a mutual node.
It is not always the case that at least one local minimum point of d is close
to a mutual node: there are examples of real NEAs with two minima, both
far enough from the mutual nodes. Such cases arise from orbits with low
mutual inclination.

Uncertainty of the MOID

The role of the MOID in impact monitoring is to select, among the large
number (thousands, even tens of thousands) of close approaches possible for
a given asteroid, the ones which could be very close. If the TP coordinates
have a small value of ξ and a large value of ζ, then the encounter has not
been close, but another orbit with different orbital phase might get in time
to the date with the Earth at the local MOID point. If the value of ζ has
a large enough uncertainty, such a phase change could be compatible with
the available observations. In a linear approximation, applicable to very
close encounters, the confidence ellipse has a major axis almost parallel to
the ζ axis and a minor axis almost parallel to the ξ axis, that is expressing
the uncertainty of the local MOID value.

Let (e, v) be a set of orbital elements such that e = (e1, . . . , e5) describes
the geometric configuration of the orbit and v is a parameter along the
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trajectory, e.g., the true anomaly. The least squares solution gives us a
nominal orbit (e∗, v∗), together with its uncertainty represented by the 6×6
covariance matrix

Γ(e,v) =
(

Γee Γev

Γve Γvv

)
,

which is the inverse of a normal matrix C(e,v). The 5 × 5 submatrix Γee

gives the marginal covariance of the five elements e, independently from the
value of the sixth one v, and Cee = Γ−1

ee is the marginal normal matrix.

The minimal distance maps and their singularities

Let (e, v) be the orbital elements of the asteroid and (e⊕, v⊕) those of the
Earth, supposedly known with negligible errors. For each configuration
e we consider the minimum points (v, v⊕) = vh(e) of the Keplerian dis-
tance function (assuming e⊕ as fixed parameters) and we define the maps

dh(e) = d(e,vh(e)) local minimal distance,

dmin(e) = min
h

dh(e) orbit distance (MOID).

where h is an index with a finite number of values.
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Fig. 12.1. The singularities of the maps dh and dm in can occur in three forms, as described in
the text. Reproduced from Gronchi and Tommei (2006).

In Figure 12.1 we show the singularities of dh and of dmin, which belong
to three types. Left: dh and dmin are not differentiable where they vanish.
Center: in a neighborhood of an orbit configuration e∗, two local minima can
exchange their role as absolute minimum; then dmin can lose its regularity
even without vanishing. Right: when a bifurcation occurs the definition of
the maps dh may become ambiguous after the bifurcation point. Note that
this ambiguity can occur only where the 2 × 2 Hessian matrix of d2(e,v) is
degenerate and does not occur for the dmin map.
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Computation of the uncertainty of dh and dmin

The errors in the orbit also affect the computation of the local minima of d

and it is important to estimate the size of this effect. Let us consider the
orbit distance map dmin; the same method can be applied to the minimal
distance maps dh. For a given (e∗, e⊕), the nominal orbit configuration
e∗ being endowed with its covariance matrix Γee, we can compute the
covariance of dmin(e∗) by a linear propagation of the matrix Γee:

Γdm in (e∗) =
[
∂dmin

∂e
(e∗)

]
Γe(e∗)

[
∂dmin

∂e
(e∗)

]T

. (12.3)

The possibility of crossings between the orbits produces a singularity in this
computation because the partial derivatives ∂dmin/∂e do not exist at e∗

when dmin(e∗) = 0, e.g., when the two orbits in the configuration (e∗, e⊕)
intersect each other. Moreover the uncertainty of a non-zero but small orbit
distance may allow meaningless negative values of the distance. Note that
we are interested in knowing the uncertainty just when the orbit distance
can be small or vanishing, that is when a collision or a close approach is
possible. Thus the classical covariance propagation formula to compute the
uncertainty of the MOID is applicable only when it is not very useful.

Regularization of the minimal distance maps

We introduce a regularization of the maps dh, dmin, generalizing the ap-
proach by Wetherill (1967) and Bonanno (2000). Let us take into account
the map dmin, the same method can also be applied to dh. It is possible to
make dmin locally analytic even where its value is zero, simply by changing
its sign according to some properties of the orbit configuration.

The idea of the regularization can be illustrated by a simple example.
Let us consider the positive function, defined on the whole plane, f(x, y) =√

x2 + y2 and the function f̃ , defined on a smaller domain,

f̃(x, y) =
{

−f(x, y) for x > 0
f(x, y) for x < 0.

The directional derivative of f in (x, y) = (0, 0) does not exist for every
choice of the direction. The regularized function f̃ , extended by continuity
to the origin (0, 0), has all the directional derivatives in (x, y) = (0, 0). How
to extend such a method to the problem at hand is discussed below.

Geometric definition of the regularization

Let τ1, τ2 be the tangent vectors to the orbits at the minimum point and let
Δmin be the vector joining the two tangency points (|Δmin| = dmin). If τ1 is
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not parallel to τ2 we can define the non-zero vector τ3 = τ1×τ2. Due to the
stationary points properties, if Δmin = 0, Δmin is parallel to τ3. We define
the regularized map d̃min by setting |d̃min| = dmin and choosing the sign +

τ3

orbit 1

orbit 2

τ2

Δmin

τ1

Fig. 12.2. Geometry of the regularization: the orientation of the two parallel vectors Δm in ,
τ3 is the key to defining a regular map d̃m in by simply changing the sign of dm in on selected
configurations e. Reproduced from Gronchi and Tommei (2006).

for d̃min if Δmin and τ3 have the same orientation, the sign − otherwise.
This sign is well defined, with the only exception of the cases in which τ1

and τ2 are parallel. Then we extend the definition domain to most crossing
orbits setting d̃min = 0 if dmin = 0. The orbit configurations with parallel
tangent vectors to minimum points are also excluded from the definition
domain even if they are not crossing points. The resulting map e �→ d̃min(e)
is locally analytic almost everywhere, without excluding a neighborhood of
most orbit configurations e such that dmin(e) = 0. In particular the partial
derivatives can be computed as

∂d̃min

∂ek
(e∗) =

〈
τ3(e∗)
|τ3(e∗)| ,

∂Δ
∂Ek

(e∗,vmin(e∗))
〉

k = 1 . . . 5 (12.4)

where vmin(e∗) is the absolute minimum point and Δ(e,v) is the vector
joining the points corresponding to v and v⊕ on the orbit of the asteroid
and of the Earth respectively.

Thus it becomes possible to use for the smooth function d̃min(e) the stan-
dard covariance propagation formula, applicable only to differentiable func-
tions, including the interesting low MOID cases. For each nominal orbit
configuration e∗, with covariance matrix Γee, we can compute the variance
of d̃min(e∗) as

Γd̃m in
(e∗) =

[
∂d̃min

∂e
(e∗)

]
Γe(e∗)

[
∂d̃min

∂e
(e∗)

]T

(12.5)
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by using the smooth partial derivatives of eq. (12.4).
The above statement needs to be taken with some caution. It is necessary

to check that the singular case (τ1 parallel to τ2) does not occur at e∗ and
is not even within the confidence ellipsoid. We need to check the variance
of the determinant of the Hessian matrix to look for possible bifurcations of
the stationary points. Last but not least, the propagation of the covariance
by the linear formula of eq. (12.5) may be mathematically consistent, but
to assume d̃min(e) is a Gaussian random variable is a good approximation
only provided the function d̃min is quasi-linear, which does occur when the
uncertainty on e is small, see (Gronchi et al. 2007).

Potentially hazardous asteroids

Bowell and Muinonen (1994) define a potentially hazardous asteroid
(PHA) as an asteroid having MOID (= |d̃min|) ≤ 0.05 AU and absolute
magnitude H ≤ 22; these are the most relevant objects for impact monitor-
ing. However, this definition refers only to the nominal orbits and does not
take into account the uncertainty. To be complete, we should consider all
the virtual hazardous asteroids, that is asteroids that have a significant
probability of being a PHA, taking into account the joint probability den-
sity function of the variables (d̃min, H). The use of the regularized minimal
distances d̃h is essential for this purpose; for small nominal values of dh also
negative values > −0.05 have to be considered.

The probability that d̃h belongs to [−0.05 AU, 0.05 AU] is

P
(
|d̃h| ≤ 0.05 AU

)
=

1√
2π

∫ z2

z1

exp(−z2/2) dz (12.6)

with

zi =
xi − d̃h(e∗)

σd̃h
(e∗)

(i = 1, 2)

where x1 = −0.05, x2 = +0.05 and σd̃h
(e∗) is the standard deviation of d̃h,

defined by

σd̃h
(e∗) =

√
Γd̃h (e∗).

The variance ΓHH of the absolute magnitude depends both on the pho-
tometry and astrometry, because it is computed from the apparent magni-
tudes by a formula involving the topocentric distance of the object. Given
the variance Vphot of the photometry, assuming it is independent of the as-
trometry, we can decide if a celestial body is a virtual hazardous asteroid
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by looking at the 2 × 2 covariance matrix

Γ(d̃m in ,H )(e
∗) =

∂(d̃min, H)(e∗)
∂e

Γe(e∗)

[
∂(d̃min, H)(e∗)

∂e

]T

+
(

0 0
0 Vphot

)

computed at the nominal orbit configuration e∗.

12.3 Virtual asteroids

When an asteroid has been discovered only recently, or anyway has been
observed only for a short time span, the orbit of the real object may belong
to a large confidence region. Another way to describe our (lack of) knowledge
is by using a swarm of virtual asteroids (VA), with slightly different orbits
all compatible with the observations, that is belonging to the confidence
region. The reality of the asteroid is shared among the virtual ones, in the
sense that only one of them is real, but we do not know which one. Since
the confidence region contains a continuum of orbits, each VA is in turn
representative of a small region, i.e., its orbit is also uncertain, but to a
much smaller degree. This smaller uncertainty enables us to use for each
VA some local algorithms, which would not apply to the entire confidence
region. Note that the nominal orbit is just one of the VAs, and is not
extraordinary in this context.

The N-body problem not being integrable, there is no way to compute
globally the totality of orbits of the confidence region; only a finite set of
orbits can be numerically propagated. The reason for using a swarm of VAs
is that they are a finite set of orbits, which can be propagated one by one,
representing the totality of orbits compatible with the observations much
better than the nominal solution alone. Moreover, by propagating together
with the orbits the corresponding state transition matrices, we can use a
linear approximation in a neighborhood of each VA: it is not easy to decide
how many such points are needed to keep up with strong nonlinearities.

Thus the critical issue is how to sample the confidence region in an efficient
way, that is with few orbits6 but selected in such a way that they are as far
as possible representative of the different possible orbits. There are two
classes of sampling methods used in the selection of VA: the random, or
Monte Carlo (MC) methods, and the geometric sampling methods, in
which the sampling takes place on the intersection of a geometric object, a
differentiable manifold, with the confidence region.

The MC methods directly use the probabilistic interpretation of the least
6 In the impact monitoring practice with current computer hardware, this means between a few

thousands and a few tens of thousands of orbits for each asteroid.
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squares principle. Since the orbit determination process yields a probabilis-
tic distribution in the space of orbital elements, the distribution can be
randomly sampled to obtain a set of equally probable VAs. They will be
more dense near the nominal solution, where the probability density is max-
imum, and progressively less dense as the RMS of the residuals increases
(Chodas and Yeomans 1996). This can be implemented in different ways,
by using a random number generator to sample an assumed probability
density either in the space of the elements x, or in the space of all residuals
ξ, or in some appropriate combination of the two as in statistical ranging
(Virtanen et al. 2001).

When the computational resources are not an issue and the probabilistic
error models are reliable, the MC methods are more rigorous and complete,
thus they are often used for checking the results once a case of possible
impact has been identified. If by impact monitoring we mean checking all
newly discovered, or anyway re-observed, asteroids for the possibility of
a future impact, then computational complexity is the main concern and
the MC methods are too slow, thus the geometric sampling methods have
to be used. In this chapter we will concentrate on the one-dimensional
sampling methods, in which the geometric object is a smooth line sampled
by a regular sequence of intervals. More complex sampling methods, such
as two-dimensional ones using a surface of variations, have been proposed
(Tommei 2005) but are not yet being used in operational impact monitoring.

The line of variations as geometric sampling

As discussed in Sections 5.6 and 7.3, some years after the epoch of ini-
tial conditions the confidence region becomes stretched in the along-track
direction; for asteroids with low MOID, this effect is stronger because of
the chaotic orbit, with a typical Lyapounov time of the order of the average
time span between two close approaches to a major planet (Whipple 1995).
Since the goal of impact monitoring is to find possible impacts with a long
warning time (tens of years, longer than the Lyapounov time), the best way
to sample the confidence region is by defining a curve which intuitively can
be the “spine” of such an elongated confidence region.

The solution adopted by Milani et al. (1999) and used in the current
impact monitoring systems is to use a sampling of the line of variations
(LOV), see Section 10.1, as a set of virtual asteroids. The main advantage
of this approach is that the set of VA has a geometric structure, that is they
belong to a differentiable curve along which interpolation is possible. Thus
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the methods of impact monitoring are a version of manifold dynamics, in
which a smoothly parameterized set of orbits is implicitly propagated.

The problem with the LOV is that it is not independent of the choice of
coordinates in the space of initial conditions x (Section 10.3). Thus we have
to choose the coordinate system which makes the LOV most representative
of the set of orbits filling the confidence region, and this depends upon
the purpose of the sampling. For impact monitoring we are interested in
predictions for times much later than the initial conditions, then in most
cases the important changes in the orbit elements are those in the semimajor
axis, and the metric should be chosen accordingly.7

The LOV trace on the target planes

Once the LOV sampling has been computed, we have a set of VAs xi for
1 ≤ i ≤ 2k + 1; let us assume the LOV points have been computed with
a uniform spacing h in the LOV parameter σ, thus xi corresponds to the
value σi = (i − k − 1) · h. By propagating each of the VA orbits for a given
time span (80–100 years), we record for each VA all the close approaches to
the Earth within the distance dmax. Each close approach is represented by
at least one trace point y = (ξ, ζ) on the TP. Up to this point the procedure
is the same, whatever the sampling method.

Since the LOV sampling is not just a set of points, we can exploit the
facts that they sample a smooth line and the trace of the LOV on the TP is
also a smooth line. Let us suppose that two consecutive VAs, xi and xi+1,
have TP trace points yi and yi+1 straddling the Earth impact cross-section,
such that the trace point yi is “early”, that is ζi < 0, while yi+1 is “late”,
ζi+1 > 0. Then there is one point xi+δ on the LOV (as a continuous curve)
corresponding to the parameter σ = (i − k − 1 + δ)h, with 0 < δ < 1,
such that ζi+δ = 0; this must occur provided the trace of the LOV segment
between yi and yi+1 lies entirely within the distance dmax from the Earth
CoM. This is the first instance of the principle of the simplest geometry we
will further discuss in the next section: cases with strong nonlinearities, so
that the function ζ(σ) is not defined in the interval [σi, σi+1], are possible,
but this is less frequent than the simple case in which the segment joining
yi to yi+1 behaves like a straight line.

The point xi+δ on the LOV, which was not among the original set of VAs,
can be computed by using some iterative method such as regula falsi (see the

7 With well determined NEA orbits, such as those with radar observations, impact monitoring
can be extended to times > 100 years, and the most effective sampling is obtained by selecting
a weak direction essentially along the gradient of the semimajor axis.
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next section). If the TP trace yi+δ is inside the Earth impact cross-section,
then around xi+δ there is a virtual impactor (VI), that is a connected
set of initial conditions leading to an impact (at about the same date). If
the point yi+δ is outside the impact cross-section, but the width w of the
confidence ellipse computed by linearizing at yi+δ is large enough, there is
an intersection between the confidence ellipse and the impact cross-section
and there is anyway a VI, with initial conditions not belonging to the LOV.

By computing the probability density function with a suitable Gaussian
approximation centered at xi+δ it is possible to estimate the probability
integral on the impact cross-section, that is the impact probability (IP)
associated with the given VI. These computations are approximate, but
when the IP is low they are better than the estimates done with MC type
sampling; the MC estimates based upon the number of impacting VA suffer
from the uncertainties of small number statistic, e.g., a MC sampling is likely
not to provide any impacting VA if the number of VAs is less than 1/IP. On
the contrary, the geometric sampling methods described here can detect VIs
with IP of the order of 10−7–10−8 (and even less, as in the 1999 AN10 case)
starting from a few thousands of VAs on the LOV. The issue of completion
in the searches for VIs is more complex and needs to be discussed in the
context of the geometric theory of the next section.

12.4 Target plane trails

To understand the properties of the TP trace of the LOV we need to use
the finite sample formed by the trace points yi as markers of a geometric
structure. To do this, after computing all the close approaches to the Earth
for all the VAs xi, we sort them by the time of the closest approach. The
recorded close approaches cluster around a discrete set of encounter times,
associated to passages of the Earth through the point corresponding to the
(local) MOID while the asteroid is neither very late nor very early at its
(local) MOID point. Each of these clusters of close approaches forms a
shower, and a shower is represented as a set of trace points on the TP.

In some cases, corresponding to comparatively slow encounters, the situ-
ation can be somewhat more complicated, see (Milani et al. 2005b, Figure
6), but let us assume this decomposition of the set of close approaches into
showers has been obtained. Next we decompose each shower into contiguous
LOV segments; this is easily obtained by sorting the shower according to
the index i. A subset of a shower with contiguous indexes i is a trail. In
some cases a trail is a singleton, formed by just one of the selected VAs.
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Fig. 12.3. A single shower with five trails for the asteroid 1998 OX4 in January 2046. The
Earth is depicted by the “⊕”. The two diamonds that are connected by the dotted line actually
correspond to a trail with collision, emphasizing that care must be taken when interpolating
between solutions. Note the axes have different scales, thus the trails are very close to each other.
These trails have been computed by using only the observations obtained in 1998; the asteroid was
recovered in 2002 and the new observations have shown that there is no risk of impact. Reprinted
from Milani et al. (2000b) with permission from Elsevier.

Figure 12.3 shows the trace on the TP for a shower containing five trails,
including one singleton and a “pair” with just two TP points.

The principle of the simplest geometry

We can conjecture that a trail with h ≤ i ≤ k corresponds to a continuous
set, a segment of the LOV, with a corresponding curve segment of TP trace
points joining yh to yk . Because of the finite sampling, we cannot prove
that this must be the case. This hypothesis could be verified by densifying
the LOV sampling: if some of the new VAs miss the TP, that is do not have
a close approach (within dmax) around the same date, we cannot exploit
the differentiable structure of the LOV. However, if such a TP segment of a
differentiable curve exists, we can draw very important conclusions.

Let us take as an example the “doubleton” of Figure 12.3. To interpolate
linearly between the two extremes yi and yi+1 (dotted line in the figure)
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is obviously a very poor approximation; the trails with more TP points do
suggest a significant curvature of the TP trace curves. We can use additional
information: the map from the LOV to the TP is differentiable and we can
compute the tangent vector s(σ) = dy(σ)/dσ to the TP trace curve at the
point yi = y(σi); the length s = |s| is the stretching. Let s(σi) = si;
if the angle between si and the vector to the origin −ŷi is < π/2, then
the closest approach distance is decreasing for increasing values of the LOV
parameter σ at the value σi corresponding to xi. The same computation
can be done for xi+1, and if the angle between si+1 and −yi+1 is > π/2 the
closest approach distance increases with σ at the value σi+1. If the TP trace
segment joining continuously yi to yi+1 exists, then there is for some value of
σ in the interval (σi, σi+1) a local minimum of the closest approach distance.

In conclusion, if we make the assumption that the behavior of the TP
curve is simple, more exactly as simple as it is compatible with the existing
decomposition of the shower into trails, we expect to have at least one
local minimum of the closest approach distance for each trail. This is why
we adopt the principle of the simplest geometry, by which the curve
segment does not exit the TP disk of radius dmax; then there needs to
be at least one minimum of the closest approach distance. We can define
constructive algorithms for the determination of at least one minimum. Note
that it is also an assumption that such a minimum is unique for each trail.
In the case of the “doubleton” of Figure 12.3 the minimum is such that there
is a VI, but this cannot be confirmed by using a linear approximation.

In fact, the shape of the TP trace curve between two given VAs can be
much more complex than the simplest geometry, in which case the conver-
gence of the minimum-finding algorithms and/or the uniqueness of the local
minimum may fail. However, if the TP trace curve has extreme nonlinear-
ities over a very short segment of the LOV, that implies the stretching is
large and thus the IP is low. This is a robust qualitative argument, that
is the VIs we can find by using this method have larger IP than those we
can miss, but unfortunately we have not yet been able to transform it into
a quantitative argument, that is into an estimate of the maximum IP of the
missed VIs. Thus we do not yet have an analytical estimate of the maximum
IP for which we can guarantee completion in the search for VIs.

Returns to close approach

Another application of the principle of the simplest geometry can be ap-
preciated from the trail with 5 TP points near the bottom of Figure 12.3.
Also in this case the first and last TP point of the trail, yi and yi+4, corre-
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spond to decreasing and increasing closest approach distance, respectively.
Thus, if the TP trace curve segment joins yi and yi+4 without exceeding the
distance dmax, then it must have at least one point with minimum closest
approach distance. However, the behavior of the TP trace curve cannot be
approximated by a straight line and the map between the confidence re-
gion for the initial conditions x and the TP points y is strongly nonlinear,
because there is a fold line where the differential of the map x �→ y is de-
generate (Milani et al. 2005b). The closest approach distance decreases to
a minimum, then increases again, because the TP trace “turns back”.

A return is a trail with the additional condition that the VAs forming it
have experienced another close approach between the times of the available
observations and the times of the close approaches belonging to the trail.
Among the returns there are those such that the intermediate close approach
is to the same planet and has occurred near the same local MOID point of
the close approaches belonging to the return (e.g., both near the ascending
node for a high inclination orbit). That implies the Earth is near the same
value of the mean anomaly in the intermediate and in the return encounter,
i.e., the close approach occurs at about the same date in different years. Also
the asteroid needs to be near the same anomaly to be close to the MOID
point along its orbit. The time span Δt between the two encounters needs to
be close to an integer multiple of the Earth orbital period and to an integer
multiple of the asteroid period, thus the two orbits must be nearly resonant.
This is the motivation for the name resonant return (Milani et al. 1999).

We have developed an analytical theory, based upon the Öpik formal-
ism for planetary encounters, describing in a qualitative and approximately
quantitative way the shape of the TP trace curves associated to returns,
in particular for resonant returns (Valsecchi et al. 2003). This is possible
because there is a comparatively simple analytical formula approximating
the change in the asteroid semimajor axis resulting from the intermediate
encounter, as a function of the coordinates (u, θ, ξ, ζ). Without going into
long details, it is enough to point out that each intermediate encounter can
generate as many as four “turning back points” in the TP trace curves of
successive encounters. Non-resonant returns to the same planet (e.g., after
a close approach near the other node) and even encounters with another
planet can also generate reversals. Thus the behavior of the bottom trail of
Figure 12.3 is by no means exceptional, rather generic, and the principle of
the simplest geometry does not exclude it. We conclude that the algorithms
to find local minima of the close approach distance for each trail must be
able to cope with this case, thus they must not assume that the x �→ y map
is locally well approximated by a linear map.
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Algorithms for the minimum close approach distance

By assuming the principle of the simplest geometry, each value of the LOV
parameter σ belonging to a segment (σj, σk) corresponds to a point of the
TP trace differentiable curve y(σ) joining the TP points yj and yk . For
each of these values of σ we can compute the squared distance to the center
of the Earth on the TP, that is b2(σ) = y(σ) ·y(σ), and its derivative f(σ) =
db2/dσ = 2 s(σ) · y(σ) with respect to the LOV parameter σ. Then we can
search the set of TP points yi, j ≤ i ≤ k, to find the couples of consecutive
indexes i, i + 1 where the signs are discordant, f(σi) < 0 and f(σi+1) > 0,
then there is at least one value of σ∗ ∈ (σi, σi+1) such that f(σ∗) = 0. The
algorithm of regula falsi provides an approximate value of σ∗:

σ∗ � σi + δ = σi −
f(σi+1) − f(σi)

σi+1 − σi
.

A step of length δ is performed with the same formula x′ = xi + δ σ1v1 used
for the original VA sampling, then constrained differential corrections are
used to obtain a LOV point which is taken as xi+δ . If the corresponding TP
trace yi+δ is not the minimum distance point along the LOV trace, that is
f(σi + δ) is significantly = 0, the procedure is iterated on the interval with
extremes σi + δ and either σi or σi+1, in such a way that the signs of f at
these extremes are discordant. At convergence we obtain a LOV point of
(local) minimum of the close approach distance; if f is defined in the whole
interval [σi, σi+1], that is the TP trace is always within the disk of radius
dmax, this regula falsi iteration has guaranteed convergence.

The difference with the procedure of the previous section is that no as-
sumption needs to be done on the direction and curvature of the TP trace
curve. Indeed, in resonant returns the TP trace curve may never cross the
ζ = 0 line, because it “turns back” before crossing it. Thus the minimum
distance may be much larger than the local MOID, e.g., the two cases in
Figure 12.3 of the “doubleton” and of the resonant return can be handled
without problems. In other cases the curve may turn back after crossing the
ζ = 0 line, with a double minimum of the close approach distance. These dif-
ferent cases need to be handled with an adaptive algorithm, able to identify
the simplest geometry of the TP trace curve compatible with the available
sampling and to take the necessary action, that is selecting additional sam-
pling points to be used as initial conditions for iterative procedures to reach
multiple local minima. The case of a singleton TP trace yj has to be han-
dled with a different iterative procedure, which is a modification of Newton
method on the variable σ with bounded increment (Milani et al. 2005b).
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12.5 Reliability and completion of impact monitoring

Whenever one of the TP points y0 of local minimum (in the close approach
distance along the LOV) is within the Earth impact cross-section, we have
a virtual impactor representative, that is an explicitly computed set
of initial conditions x0 compatible with the observations and leading to
a collision at a given date. Whether the simpler algorithm, described in
Section 12.3, or the more robust algorithm of Section 12.4 has been used does
not matter: once found, the VI representative is a proof that the collision
can occur, and the problem is how to associate an IP to the VI. Linearization
at y0 of some Gaussian probability density is the only algorithm available
and efficient enough to be used in operational impact monitoring, although
targeted investigations with denser VA sampling and/or localized Monte
Carlo are possible and are used in difficult cases, when there is significant
nonlinearity in a neighborhood of the VI representative.

A delicate case is when y0 is outside the impact cross-section, but the TP
confidence ellipse computed by linearizing at x0 does contain collisions. In
this case an explicit representative of the VI is not available; the lineariza-
tion can be of questionable accuracy, especially when the second largest
eigenvalue of Γy is large, thus the width w of the TP confidence ellipse is
large. Both including and excluding these cases from the list of VIs can be
a mistake.

For the CLOMON2 impact monitoring system we have developed a
method to confirm possible VIs by an iterative procedure which has shown
the capability to converge to a VI representative, in most cases in which
such a VI exists. It is based on a modified Newton method, first proposed
by Milani et al. (2000c). If y0 is the point on the LOV TP trace with
minimum distance from the Earth, corresponding to the initial condition
x0, but |y0| > B, see equation (12.1), we select a point y′

1 on the TP with
|y′

1| = B, e.g., by moving radially. Then we find the point x1 in the con-
fidence region near x0 with the minimum penalty among those projecting
into y′

1 on the TP, using the differential of the x �→ y map at x0; this
is obtained by the same algorithm used in semilinear predictions (see Sec-
tion 7.5). Then the TP trace g(x1) = y1 is computed, and it is not y′

1
because of the nonlinearity, but by iterating this procedure the convergence
to a VI representative is possible. The difficult point is to define a criterion
to terminate the above iterative procedure when convergence is not achieved.
Such “divergence” should provide a good indication that the intersection of
the linear confidence ellipse and the impact cross-section was a “spurious”
VI, see (Milani et al. 2005b).
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Generic completion

How complete is the search for VIs? This is a difficult question to answer
rigorously, but it can be useful to understand how efficient a system could
be under idealized circumstances. Specifically, we can ask what is the high-
est impact probability of a VI which could possibly escape detection if the
associated trail on the TP is fully linear; we also assume that the width is
small with respect to the size of the Earth impact cross-section. This we
call the generic completion level of the system.

To obtain this maximum IP, we assume the VI is a very narrow strip
passing through the origin of the TP, with a length 2B⊕ > 2 R⊕, depending
upon the gravitational focusing. If a sufficient number of VAs intersects the
target plane disk of radius dmax, then the methods described in the previous
subsection will reveal the VI. Otherwise, the VI will be missed in the scan.

The generic completion level is given by

IP∗ =
δp 2 B⊕
ΔTP

where δp is the probability integral between TP trace points and ΔTP is
the maximal separation between TP trace points for which a VI detection
is assured; ΔTP � sΔσ, where s is the stretching and Δσ is the separation
of the consecutive VAs in terms of the LOV parameter σ.

For CLOMON2, dmax = 0.2 AU, and, under the linearity hypothesis,
only one point on the TP is required to detect a VI. Thus the spacing of
consecutive VAs on the target plane cannot be more than 0.4 AU � 9400R⊕.
By sampling 2400 VAs over the interval |σ| ≤ 3 on the LOV, these points
are separated by Δσ = 0.0025, and the maximum cumulative probability
over one interval is δp = Δσ/

√
2π � 0.001 (near the nominal, where the

Gaussian probability density is � 1/
√

2π). From this we can compute the
CLOMON2 generic completion,

IP∗ � 0.002 B⊕
9400 R⊕

� 2.1 × 10−7 B⊕
R⊕

.

Thus the generic completion level depends upon the amount of gravitational
focusing, and can be higher for asteroids with a low velocity at infinity,
u. A somewhat smaller value applies to SENTRY, currently not handling
singletons but using more VAs. VIs with IP well below IP∗ can be found, and
are indeed found very often, but their detection is probabilistic, depending
upon some VA crossing by chance the TP disk.
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12.6 The current monitoring systems

The impact monitoring software robots CLOMON2 and SENTRY have been
operational since early 2002. They handle on average about 100 cases per
year: each case begins with the impact monitoring, either by CLOMON2
or by SENTRY, finding at least one VI for either a newly discovered or a
re-observed asteroid. In most cases, these results are immediately posted on
the web. In the most serious cases8 the two impact monitoring systems cross-
check their results before announcing the existence of a VI: this procedure
takes typically just a few hours. Anyway, after the public announcement of a
risk case, the astronomical community takes action by performing follow up
observations until enough information is available to exclude the possibility
of impacts in this century. In a fraction of cases, the asteroids have been lost
while still having VIs; however, these are generally small asteroids (< 100
m diameter), indicating that the telescopes available for this targeted follow
up might not have been large enough. It is expected that this rate of VI
cases will further increase when the next generation asteroid surveys will be
operational and discover smaller asteroids.

One case has been a significant source of concern for the personnel of
the monitoring systems: (99942) Apophis has been on the “risk pages” of
CLOMON2 and SENTRY since December 2004, with a VI for 2029 with an
estimated IP peaking at 1/37 and then declining as new and more accurate
observations were received. Now the orbit is very well determined, also with
radar observations: the 2029 approach will be very close (the asteroid will
be visible to the human eye) but there is no possibility of impact for that
year. The estimated IP for the VI resulting from the 2036 resonant return
is low but it is difficult to contradict this impact possibility. This is because
the current optical observations are not accurate enough to improve the
orbit, and also because of the extreme sensitivity of the outcome in 2036
with respect to the exact conditions of the 2029 encounter, to the point that
non-gravitational perturbations cannot be neglected. This case has for the
first time raised the public issue of planning for mitigation action: knowing
there is some risk does not solve the problem, if the risk is not contradicted
by follow up observations. Thus a dedicated space mission, such as the one
discussed in Section 14.6, might be needed.

8 The priority is assigned to the most serious cases by using a numeric metric, the Palermo Scale,
taking into account the impact probability, the impact energy, and the time to the impact date
(Chesley et al. 2002).
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THE GRAVITY OF A PLANET

The equation of motion for a satellite is dominated by the gravity field of
the central body, be it the Earth or another major planet. This chapter
discusses the mathematical properties of the gravity field of an extended
body, how to parameterize it, and how to represent it as a function of both
Cartesian coordinates and orbital elements.

13.1 The gravity field

The equation of motion for artificial satellites has the monopole attraction
of the planet as the main term; the main perturbation is the effect of the
planet shape and internal mass distribution. Thus we need to discuss the
gravity field of an extended body and the way to parameterize it. Expressive
parameters are the coefficients of the spherical harmonic expansion, which
can be included in the fit parameters for satellite gravimetry.

Gravity of point masses

The gravity field of accelerations generated by a point mass with mass M

and located in p ∈ R3, computed at x, is

d2x
dt2

= v(x) =
GM

|x − p|3 (p − x) =
GM

r3 (p − x)

where r = |p − x| is the distance and G is the universal gravitational
constant, whose value depends only upon the system of units used; e.g.,
in the CGS system, G = 6.6726 × 10−8 cm3/s2 g. Note that in the orbit
determination problem the constant G always appears in the combination
GM and cannot be solved independently. The field v(x) is defined and
smooth at every point x = p; it is a conservative vector field, that is rot v =

261
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0 and it can be obtained from a gravitational potential

U(x) = GM/r, v(x) = grad U(x)

determined up to a constant, conventionally selected by imposing limr→+∞
U = 0. The vector field v(x) is divergence free: div v = 0, thus by the
divergence formula1 for every volume W ⊂ R3, with as boundary the
oriented surface S, the flow of v(x) across S (from the inside to the outside
of W ) can be computed as the volume integral of the divergence∫

S
v · n dS =

∫
W

div v(x) dx

where dx is the volume element in R3, dS the element of surface on S,
and n the unit vector normal to S pointing to the exterior of W . If the
attracting point mass is not in W the volume integral and the flow across
S are zero. If p ∈ W the divergence formula does not apply because of the
singularity at x = p. The flow of v(x) does not change under a deformation
of the surface S, if p remains inside; the flow can be computed by using the
sphere S(r) of radius r centered in P , with normal vector n = (x − p)/r:∫

S(r)
− GM

r3 (x − p) · n dS =
∫

S(r)
− GM

r2 dS = −4π r2 GM

r2 = −4π GM.

A simple generalization is the N -body gravity field: given a finite number
of point masses M1, M2, . . . , Mn located at p1,p2, . . . ,pn, by the superpo-
sition principle the gravity field and the potential are the sums

v(x) =
n∑

i=1

GMi

|x − pi|3
(pi − x), U(x) =

n∑
i=1

GMi

|x − pi|
.

The flow across a surface S is the sum of the flows, thus for every surface S

corresponding to the (oriented) boundary of some volume W ⊂ R3

∫
S
v · n dS = −4πG

∑
k

Mk

where the sum is extended to the point masses pk ∈ W , inside S. To
represent a solid body – a planet – as a swarm of point masses is possible,
but this is neither physically intuitive nor computationally efficient.

1 Also known as the Gauss divergence formula, but in this book there are so many results
due to Gauss.
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Mass and gravity of an extended body

To describe the gravity field of an extended body it is better to abandon
the unphysical mathematical model of point masses and to use a contin-
uous mass distribution, defined by a mass density function ρ(p) ≥ 0
which is positive only on a limited subset W ⊂ R3, the support of the mass
distribution. Then the total mass is given by the volume integral

M =
∫

W
ρ(p) dp, (13.1)

well defined under some regularity conditions; e.g., the total mass is well
defined if S is a smooth surface and ρ is continuous.2 The gravity field
generated by the mass density ρ is

v(x) =
∫

W

G ρ(p)
|x − p|3 (p − x) dp (13.2)

where the integral is over the points p ∈ W , with x fixed.
The extended body may well move, thus the mass density may also be

time dependent, satisfying a mass conservation equation. If we use the
Newtonian approximation, by which the gravity field acts instantaneously
(with infinite propagation speed), the gravity field can be computed at each
instant of time for every point x ∈ R3 with the same formula.

Also the gravitational potential of an extended body can be defined by a
volume integral:

U(x) =
∫

W

G ρ(p)
|x − p| dp. (13.3)

By exchanging the operations of integral over p and differentiation with
respect to the components of x, we can obtain eq. (13.2) by applying the
gradient operator to the integral above.3

The conventional definition of the (Riemann) integral used in eq. (13.1)
is obtained by partitioning the support W by parallelograms Wk defined
by intervals for each of the coordinates of p. The contribution for each k

to the sums approximating the integral is just the volume of Wk times the
value of ρ in some point p ∈ Wk . This corresponds to the intuitive idea
that the total mass of the extended body can be obtained by cutting it into
small bricks and by estimating the density of each brick, e.g., by weighing
it. However, this is certainly not an operational definition of the mass of a
planet.
2 Discontinuous jumps in the mass density are common in geophysical models, e.g., at the tran-

sition between core and mantle, but the volume integrals such as (13.1) are still well defined.
3 This is simpler when x is outside W , thus the points x and p are never the same. Equations

(13.2) and (13.3) hold also for x ∈ W , but this requires some results from integration theory.
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To obtain a more practical definition, we can use the divergence for-
mula. By exchanging derivatives and integrals, also for an extended body
div v(x) = 0 for all x outside W , where there is no mass. Inside the body
div v(x) = −4πGρ(x); the proof requires some non-trivial steps.

Let S be an oriented surface, containing the planet, that is the set W

where ρ(p) > 0, inside. Then the mass of the planet can be measured by
the flow of its gravity field across S

M =
∫

W
ρ(x) dx = − 1

4π G

∫
W

div v(x) dx = − 1
4π G

∫
S
v · n dS.

This formula suggests that the mass of the planet can be determined by
scanning some closed surface, either at the physical surface of the planet or
above it, with a gravimeter measuring the gravity field vector.

As an historical example, let us approximate a planet like our Earth by a
sphere of radius R⊕, with the gravity field at the surface everywhere normal
to the sphere and of constant size |v| = g; we are also neglecting the apparent
forces due to the rotation of the planet. In this approximation the mass

M = − 1
4πG

∫ ∫
S
−g dS =

1
4πG

g 4π R2
⊕ =

g R2
⊕

G

can be estimated if g and G are known.4

Harmonic functions

By combining the equations v(x) = grad U(x) and div v(x) = −4 π Gρ(x)
we obtain the Poisson equation

div (grad U(x)) = −4 π Gρ(x)

for the points x ∈ W where there is source mass density, and the Laplace
equation

div (grad U(x)) = 0

for x outside W , in empty space. The combined operator ΔU = div (grad U)
can be expressed by means of the second partial derivatives of the potential

Δ U = div (grad U) =
∂2U

∂x12 +
∂2U

∂x22 +
∂2U

∂x32 .

A function U(x) fulfilling the Laplace equation Δ U = 0 is a harmonic
function: the gravitational potential generated by an extended body with
support W is harmonic in R3 \ W .
4 This is why the first experiments to measure the gravitational constant G, performed by Newton

and Cavendish, were described as measures of the mass of the Earth.
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Harmonic functions have many important properties, including the fol-
lowing: they can have neither local maxima nor local minima (Evans 1998,
Section 2.2). A function with continuous second derivatives and harmonic
is smooth, that is it has continuous derivatives of whatever order. It is
also analytic, that is with convergent Taylor series in a neighborhood of
every point. This has an important implication in orbit determination, ac-
tually in all problems of celestial mechanics: the equation of motion and the
corresponding general solution are always smooth, even analytic, for each
body moving in empty space under the gravitational attraction of the other
bodies. Only for non-gravitational perturbations might regularity problems
occur (see Section 14.3).

Spherical symmetry

The simplest case in which the solutions of the Laplace equation can be
explicitly computed is when the gravitational potential has spherical sym-
metry around the origin in the x space, that is U(x) = R(r) (where r = |x|
and R is a smooth function). Then the Laplace operator Δ can be easily
computed from the partials

∂U

∂xj
=

dR

dr

∂r

∂xj
=

xj

r

dR

dr
,

∂2U

∂xj
2 =

1
r

dR

dr
+

x2
j

r

(
1
r

d2R

dr2 − 1
r2

dR

dr

)

and, by summing over j = 1, 3,

0 = Δ U = 2
1
r

dR

dr
+

d2R

dr2 =
1
r2

d

dr

[
r2 dR

dr

]
;

we conclude that r2dR/dr = −k, with k an arbitrary constant. This gives all
the possible spherically symmetric harmonic functions as R(r) = k

r + const.
By selecting the additive constant to be 0, we find that the solution coincides
with the gravitational potential of a point mass in p = 0 with mass M =
k/G.

This result has a very deep implication for all methods of gravimetry,
including satellite geodesy. Let the mass density function be spherically
symmetric, that is ρ(p) = ρ̃(|p|) for some function ρ̃. The support W has
necessarily spherical symmetry, and we say that the planet is spherically
symmetric. Then the gravitational potential U is a spherically symmetric
harmonic function in R3 \ W and there is a positive constant M such that
U = GM/r outside W . By the divergence formula it can be shown that
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M is indeed the mass as defined by eq. (13.1). Thus the gravity field of
two spherically symmetric planets with equal mass are exactly the same,
outside the support of both mass distributions; they are both the same as
the potential of a point mass with the same M .

This implies that there is no way to determine the internal mass distri-
bution of a planet, that is the mass density ρ(p), by measuring the grav-
itational field either on or outside its surface. This limitation applies also
to the methods of measurement using whatever consequence of the gravity
field, including the orbits of satellites. Satellite gravimetry cannot solve for
parameters describing the mass density function, unless such parameters
are chosen in such a way that the “concentration” of the mass near the cen-
ter depends upon the parameters to be measured by other means, e.g., by
measuring the rotational properties of the planet (see Chapter 17).

13.2 Spherical harmonics

The example of spherically symmetric harmonic functions shows the advan-
tage of using a system of coordinates adapted to the problem. To generalize
this we use a coordinate system adapted to bodies with an approximate
spherical shape, the spherical polar coordinates defined by

x1 = r cos θ cos λ , x2 = r cos θ sinλ , x3 = r sin θ, (13.4)

that is, r > 0 is the distance from the selected center, θ the latitude
(−π/2 ≤ θ ≤ π/2), and λ the longitude, an angle variable. On the Earth
a reference system with the x3 axis along the rotation axis and the (x1, x2)
plane containing the equator is normally used.5 Thus the gravitational po-
tential can be expressed in polar coordinates: U(x1, x2, x3) = Φ(r, θ, λ).

To compute the Laplace operator in spherical polar coordinates we use
the chain rule

∂U

∂xj
=

∂Φ
∂r

∂r

∂xj
+

∂Φ
∂θ

∂θ

∂xj
+

∂Φ
∂λ

∂λ

∂xj
,

and the derivatives of the inverse coordinate change (13.4)

∂U

∂x1
=

∂Φ
∂r

cos θ cos λ − ∂Φ
∂θ

1
r

sin θ cos λ − ∂Φ
∂λ

sin λ

r cos θ
.

The second partial derivatives can be obtained by iterating the same pro-
cedure on the first derivatives and by summing we obtain an expression for

5 The rotation axis of the Earth, as well as that of whatever planet, is not constant, thus the
definition of the reference system requires some additional care.



13.2 Spherical harmonics 267

ΔU containing only partial derivatives with respect to r, θ, λ:

r2 ΔU =
∂

∂r

(
r2 ∂Φ

∂r

)
+ ΔSU, (13.5)

where

ΔSU =
1

cos θ

∂

∂θ

(
cos θ

∂Φ
∂θ

)
+

1
cos2 θ

∂2Φ
∂λ2 (13.6)

is called the Laplace–Beltrami operator; it is independent of r and can
be applied to functions defined over a sphere S(r) with fixed r, that is
functions of (θ, λ) only.

Zonal spherical harmonics

We will first search for solutions of the Laplace equation ΔU = 0 with
axial symmetry, that is U(x, y, z) = Φ(r, θ) (independent of λ). Then the
Laplace operator in polar coordinates of (13.5) has the simpler expression

ΔU =
1
r2

∂

∂r

[
r2 ∂Φ

∂r

]
+

1
r2 cos θ

∂

∂θ

[
cos θ

∂Φ
∂θ

]
= 0.

We proceed to solve the partial differential equation above by separation
of variables, that is by looking for special solutions as the product of a
function of r and a function of θ: U = Φ(r, θ) = R(r)F (θ). Then

ΔU =
RF

r2

{
1
R

d

dr

[
r2 dR

dr

]
+

1
F cos θ

d

dθ

[
cos θ

dF

dθ

]}
= 0.

The expression inside the bracket is the sum of a function of r and a function
of θ. If the above equation is satisfied on an open set in the (r, θ) space,
these functions are both constant. Let this constant be � (� + 1); then

d

dr

[
r2 dR

dr

]
= �(� + 1)R,

d

dθ

[
cos θ

dF

dθ

]
= −�(� + 1)F cos θ

are two ordinary differential equations to be satisfied by the functions R(r)
and F (θ). The first one has solutions of the form R(r) = rγ , γ ∈ R,

d

dr

[
r2γrγ−1] = �(� + 1) rγ ⇐⇒ γ(γ + 1) rγ = �(� + 1) rγ

with two possible solutions for γ: either γ = � or γ = −�−1. By the standard
existence and uniqueness theorem, the second-order ordinary differential
equation for R(r) has solutions depending upon two arbitrary constants
A, B:

R(r) = A r� +
B

r�+1 .
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To solve the equation for F (θ) we change variable: μ = sin θ, F (θ) = f(μ)

1
cos θ

d

dθ

[
cos θ

dF

dθ

]
=

d

dμ

[
cos2 θ

df

dμ

]
=

d

dμ

[
(1 − μ2)

df

dμ

]
.

Thus the function f(μ) is a solution of a second-order linear equation, the
Legendre equation:

(1 − μ2)
d2f

dμ2 − 2μ
df

dμ
+ �(� + 1) f = 0. (13.7)

The solutions of the Legendre equation are found by the method of unde-
termined coefficients, that is by representing f(μ) as a power series

f(μ) =
+∞∑
k=0

ak μk, (13.8)

by substituting the series into (13.7) and by grouping terms according to
their degree in μ:

0 = (1 − μ2)
+∞∑
k=2

ak k(k − 1)μk−2 − 2μ
+∞∑
k=1

ak k μk−1 + �(� + 1)
+∞∑
k=0

ak μk

=
+∞∑
k=0

μk
[
ak+2 (k + 2)(k + 1) − ak k(k − 1) − 2 k ak + �(� + 1) ak

]
.

The Legendre equation needs to be satisfied identically, for whatever θ in
−π/2 ≤ θ ≤ π/2 , that is for −1 ≤ μ ≤ 1, thus the coefficients of the power
series above need to be all zero:

ak+2 (k + 2)(k + 1) − ak [k(k − 1) + 2k − �(� + 1)] = 0

for every non-negative integer k. This is a second-order recursion formula,
allowing us to solve for the unknown ak+2 provided ak is known

ak+2 =
k(k + 1) − �(� + 1)

(k + 2)(k + 1)
ak. (13.9)

This recursion formula gives zero for k = �: this implies that we can find
a solution with f(μ) polynomial in μ = sin θ provided � is a non-negative
integer.6 If � is even we set the initial conditions a0 = 0 and a1 = 0, and we
obtain f(μ), a polynomial with only even degree monomials. If � is odd we
use a0 = 0 and a1 = 0, we obtain for f(μ) an odd polynomial. For example,

� = 0 =⇒ f(μ) = a0

6 Polynomial solutions can also be obtained by selecting −� = k + 1, but they are the same.
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� = 1 =⇒ f(μ) = a1 μ = a1 sin θ

� = 2 =⇒ f(μ) = −3 a0 μ2 + a0 = a0
(
1 − 3 sin2 θ

)
.

By selecting for each integer � a suitable constant factor we define a set of
solutions of (13.7), the Legendre polynomials with argument sin θ:

P�(sin θ) =
L∑

j=0

T�j (sin θ)�−2j , (13.10)

where L is the integer part of �/2 and T�j is a coefficient solution of an equa-
tion equivalent to (13.9) going backward, that is the value of the coefficient
T�0 of the highest degree in sin θ is assigned first (Kaula 1966, Chapter 1)

T� j = − (� − 2j + 1)(� − 2j + 2)
2j (2� − 2j + 1)

T� j−1, T�0 =
(2�)!

(�!)2 2�
. (13.11)

The reason for this choice of T�0 will be explained later, by eq. (13.17). By
combining the solution for F (θ) with the solutions for R(r) we obtain two
linearly independent solutions of the Laplace equation for each integer � ≥ 0

P�(sin θ)
1

r�+1 , P�(sin θ) r�,

where those with r� are smooth at the origin and unlimited for r → +∞,
describing the gravity field inside a cavity surrounded by a mass distribution;
they are internal harmonics. Those with 1/r�+1 are of interest for satellite
orbits: they are singular for r = 0, and for r → +∞ they tend to 0, the
external harmonics. In this book we shall consider only the external
zonal spherical harmonic of degree �. The Legendre polynomials have
exactly � real roots in the interval −1 < sin θ < 1 (Hobson 1931, pp. 18–
19), that is the zonal spherical harmonics have as many zeros along each
meridian as the degree �. This can give an intuitive understanding of the
shape corresponding to each harmonic; e.g., � = 2 corresponds to an oblate
(or prolate) shape, with flattening along the x3 axis, � = 3 to a pear shape
giving different mass to the two hemispheres separated by the x3 = 0 plane.

Tesseral spherical harmonics

To remove the assumption of axial symmetry, we look for solutions of
the Laplace equation depending upon all the polar coordinates, by us-
ing again the separation of variables, that is assuming U = Φ(r, θ, λ) =
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R(r)F (θ)G(λ). By eq. (13.5)

r2 ΔΦ = F G
d

dr

[
r2 dR

dr

]
+ R ΔS(F G) = 0

and dividing by U = R F G we get an equation equivalent to Laplace:

r2

R F G
ΔΦ =

1
R

d

dr

[
r2 dR

dr

]
+

ΔS(F G)
F G

= 0.

The two terms in the equation being a function of r and a function of (θ, λ),
they have to be constant, thus defining an ordinary differential equation for
R(r), the same as the zonal case, and the partial differential equation

ΔS(F G) = −�(� + 1) F G,

that is, F (θ)G(λ) has to be an eigenfunction of the Laplace–Beltrami oper-
ator. The same argument can be applied to the two terms of

cos2 θ

F G
ΔS(F G) =

cos θ

F

d

dθ

[
cos θ

dF

dθ

]
+

1
G

d2G

dλ2 = −� (� + 1) cos2 θ.

By selecting a negative constant for the term containing λ

1
G

d2G

dλ2 = −m2,

the equation for G(λ) and its solutions are

d2G

dλ2 + m2 G = 0 ⇐⇒ G(λ) = C�m cos(mλ) + S�m sin(mλ),

pure trigonometric functions.7 Thus the equation for F (θ) is

1
F cos θ

d

dθ

[
cos θ

dF

dθ

]
− m2

cos2 θ
= −�(� + 1).

For m = 0 we obtain again eq. (13.7), that is the zonal harmonics. With
the same arguments used in the previous section we can select for R(r) only
the solution 1/r�+1, to get the external harmonics. The equation for F (θ)
is simplified by the change of variables μ = sin θ: if we set

F (θ) = (cos θ)m f(sin θ),

the function f(μ) is a solution of the linear second-order differential equation

(1 − μ2)
d2f

dμ2 − 2(m + 1)μ
df

dμ
+ (� − m)(� + m + 1) f = 0 . (13.12)

7 If the constant for the λ term in the Laplace equation is positive, the solutions are a combination
of exponentials; if m is not integer the trigonometric functions are not periodic of period 2π,
in both cases not providing a smooth function of λ, an angle variable.
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By using the series expansion (13.8) we obtain again a second-order recursion
formula

ak+2 =
k(k + 2m + 1) − (� − m)(� + m + 1)

(k + 2)(k + 1)
ak. (13.13)

Again, as in the case of eq. (13.9), we can obtain solutions with a finite
number of terms, a product of a polynomial in sin θ of degree kmax = �−m

with a power of cos θ can be obtained; the polynomial has only even powers if
�−m is even, odd powers if �−m is odd. Thus a solution of the differential
equation for F (θ) is the Legendre associated function of harmonic
degree � and harmonic order m

P�m(sin θ) = (1 − sin2 θ)m/2
L∑

j=0

T�mj(sin θ)�−m−2j ,

where L is the integer part of (�−m)/2, and the coefficients of the monomials
in sin θ are

T�mj = − (� − m − 2j + 1)(� − m − 2j + 2)
2j (2� − 2j + 1)

T� m j−1,

T�m0 = (2�)!/�! (� − m)! 2�. (13.14)

By combining together the three functions R(r), F (θ), and G(λ), we find
two spherical harmonic functions of degree � and order m

P�m(sin θ)
r�+1 cos(mλ),

P�m(sin θ)
r�+1 sin(mλ).

For m = 0 we obtain only one solution, which is a zonal spherical harmonic.
For m > 0 we obtain tesseral spherical harmonic functions. Some qual-
itative properties of the spherical harmonics: the harmonic of degree � and
order m has �−m zeros along each meridian and 2m zeros along each paral-
lel (and zeros at the two poles for m > 0). For �−m = 0 we have sectorial
spherical harmonic functions, independent of the latitude.

Expansion in spherical harmonics

The Laplace equation is linear, thus linear combinations of spherical har-
monics are still solutions:

U =
GM

r
+

GM

r

+∞∑
�=1

P�(sin θ)
R�

⊕
r�

C�0

+
GM

r

+∞∑
�=1

�∑
m=1

P�m(sin θ)
R�

⊕
r�

[C�m cos(mλ) + S�m sin(mλ)]



272 THE GRAVITY OF A PLANET

where the length R⊕, to be interpreted as the equatorial radius of the Earth
(or of the relevant planet), has been added to have adimensional coefficients
C�m , with 0 ≤ m ≤ �, and S�m with 0 < m ≤ �. M is the total mass of the
planet as defined by eq. (13.1). By using the conventions P� 0 = P�, P0 = 1
we can use the more compact formula

U =
GM

r

{
+∞∑
�=0

�∑
m=0

P�m(sin θ)
R�

⊕
r�

[C�m cos(mλ) + S�m sin(mλ)]

}
.

(13.15)
Another useful representation is by means of the set of harmonic functions
on the sphere r = R⊕, which can be considered as functions of (θ, λ) only:

Y�mi =P�m(sin θ) trig(mλ, i), trig(mλ, 1)=cos(mλ), trig(mλ, 0)=sin(mλ);

then the expansion (13.15) becomes

U =
+∞∑
�=0

GM R�
⊕

r�+1

�∑
m=0

[C�mY�m1 + S�mY�m0] . (13.16)

What we need is a relationship between the expansions in series of har-
monic functions, such as the one above, and the properties of the extended
mass generating the gravity field, that is of the mass density function ρ. For
this we need to restart from eq. (13.3) and to expand the kernel used to
generate the potential U from the density ρ:

1
|x − p| =

1
|x|

[
1 − 2

|p|
|x| cos ψ +

|p|2
|x|2

]−1/2

(13.17)

where ψ is the angle between x and p, that is cos ψ = x · p/|x| |p|. This
inverse distance can be expanded as

1
|x − p| =

+∞∑
�=0

|p|�
|x|�+1 P�(cos ψ) (13.18)

where P� are Legendre polynomials because 1/|x−p| is harmonic for x = p.
However, the Legendre polynomials contain an arbitrary factor, thus we
need to check that those appearing in eq. (13.18) have the coefficient we have
selected in eq. (13.11). To confirm this we have to compute the coefficient of
highest degree in cos ψ among the terms with factor |p|/|x| in the expansion
(13.17) and confirm it coincides with T�0:(−1/2

�

)
(−2)� =

(−1)�

�!

�∏
k=1

(2k − 1) =
(2�)!

(�!)2 2�
= T�0.
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By substituting the expansion in Legendre polynomials into eq. (13.3) we
get

U(x) =
∫

W

Gρ(p)
|x − p| dp =

+∞∑
�=0

G

|x|�+1

∫
W

ρ(p) |p|� P�(cos ψ) dp (13.19)

and comparing with (13.15), the part of U with factor G/r�+1, where r = |x|,
is∫

W
ρ(p) |p|� P�(cos ψ) dp = M

�∑
m=0

R�
⊕ [C�m Y�m1 + S�m Y�m0] . (13.20)

Total mass and center of mass

As an example, let � = 0; P� = 1 and the equation above reduces to

C0 0 =
1
M

∫
W

ρ(p) dp = 1.

Let � = 1; the spherical harmonics are

Y1 0 1 = P1 0 = x3/r, Y1 1 1 = P1 1 cos λ = x1/r, Y1 1 0 = P1 1 sin λ = x2/r,

and eq. (13.20) multiplied by r = |x| becomes

1
M

x ·
∫

W
ρ(p) p dp = R⊕ [C1 1 x1 + S1 1 x2 + C1 0 x3] ,

the harmonic coefficients for � = 1 are related to the center of mass

cM = (1/M)
∫

W
ρ(p) p dp ;

in fact

C1 1 = cM
1 /R⊕, S1 1 = cM

2 /R⊕, C1 0 = cM
3 /R⊕.

As a consequence, if the origin of the coordinate system coincides with the
planet center of mass, the coefficients of degree 1 are zero and the expansion
of U after the point mass term begins with degree 2:

U =
GM

r

{
1 +

+∞∑
�=2

�∑
m=0

P�m(sin θ)
(

R⊕
r

)�

[C�m cos(mλ) + S�m sin(mλ)]

}
,

that is, the point mass approximation is accurate to O(R2
⊕/r2).
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Moments of inertia

Let � = 2; the Legendre functions are

P2 0 =
3
2

sin2 θ − 1
2
, P2 1 = 3 sin θ cos θ, P2 2 = 3 cos2 θ

and the spherical harmonics are

Y2 0 1 = P2 0 = (3x2
3 − r2)/2 r2, Y2 0 0 = 0,

Y2 1 1 = P2 1 cos λ = 3 x3 x1/r2, Y2 1 0 = P2 1 sin λ = 3 x3 x2/r2,

Y2 2 1 = P2 2 cos(2 λ) = 3 (x2
1 − x2

2)/r2, Y2 2 0 = P2 2 sin(2λ) = 6 x1 x2/r2,

and eq. (13.20) for � = 2 multiplied by r2/(M R2
⊕) becomes

r2

M R2
⊕

∫
W

ρ(p) |p|2 3 cos2 ψ − 1
2

dp

=
C2 0

2
(2x2

3 − x2
1 − x2

2) + 3C2 1 x3 x1 + 3S2 1 x3 x2

+ 3C2 2 (x2
1 − x2

2) + 6S2 2 x1 x2.

The geophysical significance of the degree � = 2 coefficients can be under-
stood by expressing them in terms of the integrals

Aij =
1

M R2
⊕

∫
W

ρ(p) pi pj dp i, j = 1, 2, 3.

Taking into account that

|x|2 |p|2 P2(cos ψ) =
1
2
[
3 (x · p)2 − |x|2 |p|2

]
and expanding as functions of the coordinates (x1, x2, x3) and (p1, p2, p3)
we obtain the relationship between the integrals Aij and the coefficients of
harmonic degree � = 2

x2
1 (2A11 − A22 − A33) + x2

2 (2A22 − A11 − A33) + x2
3 (2A33 − A11 − A22)

+ 6 (x1x2 A12 + x2x3 A23 + x1x3 A13)

= C2 0 (2x2
3 − x2

1 − x2
2) + 6C2 1 x3 x1 + 6S2 1 x3 x2 + 6C2 2 (x2

1 − x2
2)

+ 12S2 2 x1 x2.

The coefficients of polynomial degree 2 in the xj variables provide a system
of six equations, which is linear in the six integrals Aij and in the five
geopotential coefficients, and can be solved for the latter

C2 0 = A33 −
A11 + A22

2
, C2 2 =

1
4

(A11 − A22),

C2 1 = A13, S2 1 = A23, S2 2 =
1
2

A12.

If the origin of the coordinates, corresponding to r = 0, is the center
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of mass, then the integrals Aij can be combined to provide the inertia
quadratic form of the planet, represented by a symmetric positive definite
3 × 3 matrix with diagonal coefficients

Ijj = M R2
⊕ (Aii + Akk) with i = j = k = i (13.21)

and off-diagonal

Iij = −M R2
⊕ Aij with i = j. (13.22)

Then the degree 2 harmonic coefficients of the gravity field of the planet can
be computed in terms of the inertia matrix

C2 0 =
1

M R2
⊕

[
I11 + I22

2
− I33

]
, C2 2 =

1
4 M R2

⊕
(I22 − I11),

C2 1 =
−1

M R2
⊕

I13, S2 1 =
−1

M R2
⊕

I23, S2 2 =
−1

2 M R2
⊕

I12. (13.23)

It is possible to select a reference system diagonalizing the inertia quadratic
form, that is such that Iij = 0 for i = j; then C2 1, S2 1, S2 2 would be zero.
The problem is that such a reference system is not known a priori: only
information on the rotational state of the planet can be used to determine
it. To solve for all the Ijj from the harmonic coefficients is not possible: some
scale factor, e.g., the concentration coefficient Imax/M R2

⊕ where Imax

is the largest eigenvalue of the inertia matrix, needs to be constrained by
the rotation state information. This is another case of the following general
property: the internal mass distribution cannot be determined by knowing
only the gravity field outside of the body (see Section 13.1 and Chapter 17).

Recursion formulae

In the computation of the spherical harmonic functions at a given point with
polar coordinates (r, θ, λ) it is not convenient to compute the coefficients
T�mj from eq. (13.14), but rather the values of the Legendre polynomials
and the associate functions could be computed by a recursion formula.
There are many possible such formulae, we give here just one example: for
the zonal harmonics (Hobson 1931, pp. 32–33)

� P�(μ) = (2 � − 1)μ P�−1(μ) − (� − 1)P�−2(μ) (13.24)

and for the tesseral harmonics (Hobson 1931, pp. 107–108)

(�−m) P�m(μ)− (2�− 1)μ P�−1m(μ) + (� + m− 1)P�−2m(μ) = 0. (13.25)
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Given the initial values

P0 0(μ) = 1, P1 0(μ) = μ, P1 1(μ) =
√

1 − μ2

it is possible to compute all the Legendre polynomials and associate func-
tions, up to a maximum degree �max, at some value of μ = sin θ by two-index
recursion. The trigonometric functions sin(mλ), cos(mλ) can also be com-
puted recursively for a fixed λ by the trigonometric addition formulae. In
this way it is possible to set up a very efficient algorithm to compute all the
spherical harmonic functions up to � = �max at a given point.

To compute the partial derivatives of the potential, the gravity field
components in the equation of motion and the second derivatives in the
variational equation, it is efficient to use formulae expressing the derivatives
of the spherical harmonics by means of combinations of Legendre polyno-
mials, Legendre associated functions and trigonometric functions of λ. The
derivatives with respect to r and λ are elementary; for those with respect to
θ it is convenient to use the relationships between the Legendre polynomials
and their derivatives (Hobson 1931, p. 32)

(μ2 − 1)
dP�(μ)

dμ
= � [μ P�(μ) − P�−1(μ)] (13.26)

and for the associated Legendre functions (Wagner and Velez 1972, chapters
5–6)

dP� m(sin θ)
dθ

= P� (m+1)(sin θ) − m tan θ P� m(sin θ) (13.27)

where the first term = 0 for m = � (we define P� m = 0 for m > �).

13.3 The Hilbert space of the harmonic functions

What is the rigorous meaning of the infinite summation in eq. (13.15)? Are
the harmonic coefficients C�m, S�m uniquely defined for a given harmonic
function U(x)? To solve these problems we need some additional properties
of the spherical harmonics, and this requires some functional analysis.8

Orthogonality

The spherical harmonics on the sphere Y�mi have the property, which has
been used in the procedure of separation of variables, of being eigenfunctions
of the Laplace–Beltrami operator: ΔSY�mi = −�(� + 1) Y�mi. This implies

8 Readers unfamiliar with functional analysis, such as Hilbert spaces, may skip this subsection
and take for granted that eq.(13.15) is a uniquely defined, convergent series expansion.
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that the functions Y�mi are orthogonal with respect to the scalar product
defined by the surface integral over S(1)

〈Y�mi, Y�′m′i′〉 =
∫

S(1)
Y�mi Y�′m′i′ dS = 0

unless � = �′, m = m′, i = i′. Indeed

−�(� + 1) 〈Y�mi, Y�′m′i′〉 = 〈ΔS Y�mi, Y�′m′i′〉 =
∫

S(1)
ΔS Y�mi, Y�′m′i′ dS

where the surface element in spherical polar coordinates is dS = cos θ d θ d λ∫
S(1)

ΔS Y�mi, Y�′m′i′ dS

=
∫ 2π

0
d λ

∫ π/2

−π/2
[Ym′�′i′ ΔS Y�mi] cos θ d θ (13.28)

= Iθ

∫ 2π

0
tr(m′λ, i′) tr(mλ, i) d λ = π δmm′ δii′ Iθ

where δjk = 0 for j = k, δjj = 1 and the integral Iθ over the variable θ can
be computed by parts:

Iθ =
∫ π/2

−π/2

[
− cos θ

∂P�m

∂θ

∂P�′m′

∂θ
− m2

cos θ
P�m P�′m′

]
d θ.

The last step in (13.28) is due to the usual orthogonality of the sine and
cosine functions over the interval [0, 2π].

Given that m = m′, otherwise the other factor is zero, the integral Iθ is
symmetric with respect to the exchange of (�′, m′, i′) with (�, m, i), that is
of the two spherical harmonics.9 Then

−�(� + 1) 〈Y�mi, Y�′m′i′〉
= 〈ΔS Y�mi, Y�′m′i′〉 = 〈Y�mi, ΔS Y�′m′i′〉 = −�′(�′ + 1) 〈Y�mi, Y�′m′i′〉

implying the scalar product is zero whenever (�, m, i) = (�′, m′, i′). Thus
the spherical harmonic functions {Y�mi} are an orthogonal set and the coef-
ficients C�m for i = 1, S�m for i = 0 define the corresponding components.

Normalization

The spherical harmonics {Y�mi} are not an orthonormal set, that is the
squared L2 norm on S(1) is10

〈Y�mi, Y�mi〉 =
∫ 2π

0
[trig(mλ, i)]2 dλ

∫ π/2

−π/2
cos θ [P�m(sin θ)]2 dθ

9 This symmetry applies to all functions on the sphere, that is the operator ΔS is self-adjoint.
10 For this computation, see (Hobson 1931, p. 37) for m = 0, (Hobson 1931, p. 147) for m > 0.
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(for m = 0, i = 1) = 2π

∫ 1

−1
[P�(μ)]2 dμ =

4 π

2� + 1
,

(for m > 0) = π

∫ 1

−1
[P�m(μ)]2 dμ =

2 π

2� + 1
(� + m)!
(� − m)!

.

Thus we can define the normalized harmonics and the normalized asso-
ciate Legendre functions with unit quadratic mean on the sphere

Y �mi = P�m(sin θ) trig(mλ, i)

=

√
(2� + 1)(2 − δ0m)

(� − m)!
(� + m)!

Y�mi = H�m Y�mi

(δ0m = 1 for m = 0, δ0m = 0 otherwise). If we use {Y �mi} as an orthonormal
function set on S(1) the expansion of the gravitational potential is

U =
GM

r

{
+∞∑
�=0

�∑
m=0

P�m(sin θ)
(

R⊕
r

)� [
C�m cos(mλ) + S�m sin(mλ)

]}
.

(13.29)
C�m, S�m are normalized harmonic coefficients of degree � and order m:

C�m =
C�m

H�m
, S�m =

S�m

H�m
.

The degree � = 1 terms do not appear if the reference system has the
center of mass as origin. For a given harmonic function U = Φ(r, θ, λ),
the normalized coefficients C�m, S�m are uniquely defined by the harmonic
function U , e.g., through the scalar products

〈Y �m1(θ, λ),Φ(R⊕, θ, λ)〉 = 4π
GM

R⊕
C�m

〈Y �m0(θ, λ),Φ(R⊕, θ, λ)〉 = 4π
GM

R⊕
S�m

〈Y � 01(θ),Φ(R⊕, θ, λ)〉 = 4π
GM

R⊕
C� 0.

For the computation of the normalized spherical harmonics Y �mi there are
recursion formulae replacing those of the previous section. The reason for
using them is that for � large and m also large the L2 norm of the un-
normalized harmonic Y�mi grows to enormous values, producing computer
overflows in the recursion formulae.11 Balmino et al. (1990) give an algo-
rithm in Cartesian coordinates (thus free from the singularities at the poles)
and using normalized harmonic functions and coefficients.
11 Long before overflow, the recursion is unstable and gives inaccurate results.
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Convergence

Is the expansion (13.15) convergent? The series expansion (13.18) is uni-
formly convergent on each sphere |x| = r for every r > |p|; this follows from
the properties of the Taylor series of the function (1 + z)−1/2 (holomorphic
for |z| < 1). The formula (13.18) is a power series in 1/|x|, the integral is a
continuous operator, thus it is convergent for |x| > R provided the support
W of the mass density ρ is contained in the open ball |x| < R.

A more subtle issue is what can be assumed about the convergence on the
sphere |x| = R⊕ if the support W touches it. If ρ(x) is continuous, it is zero
on the boundary of W , thus the potential is harmonic on |x| ≥ R⊕. How-
ever, a solid planet could be modeled with a mass density jumping discon-
tinuously to zero at the surface. The empirical Kaula rule was introduced
to somewhat model this behavior (Kaula 1966, Chap. 5):

RMS(C�m) = RMS(S�m) = K/�2 (13.30)

where the coefficients of degree � are taken to be random variables with
standard deviation proportional to a constant K � 10−5 for the Earth, with
other values for the other terrestrial planets (e.g., K � 10−4 for the Moon).
In this way the series of spherical harmonics is convergent on the sphere
|x| = R⊕ in the L2 norm, although only slowly, like the series

∑
1/�3.

Completeness

The set of functions {Y �mi(θ, λ)} is a complete orthonormal sequence
if it is a basis for the functional space of the harmonic functions on the
sphere (Hobson 1931, p. 40–41). This requires that a function g orthogonal
to every element of the sequence is identically zero on the sphere:

〈g, Y �mi〉 =
∫

S
g(θ, λ) Y �mi(θ, λ) dS = 0 =⇒ g(θ, λ) = 0 for all θ, λ.

For a proof see (Hobson 1931, pp. 146–147) and (Albertella 1993, pp. 89–
91).

The question arises of what is the place in this context of the solutions of
the Legendre equation (13.7), and of the similar equation (13.12), obtained
by allowing the power series expansion (13.8) to be infinite. It can be shown
(Hobson 1931, p. 12 and Chapter V) that these infinite series of powers of
μ = sin θ are not convergent for μ in the closed12 interval [−1, 1], thus their
sums are not harmonic functions on any complete sphere S(r).

A consequence of the convergence of the expansion and of the complete-
ness of the basis {Y �mi} is the solution of the exterior Dirichlet problem
12 Although some are not uniformly convergent for μ in the open interval ] − 1, 1[.
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with a spherical boundary: given assigned values on the sphere r = R, that
is Φ(R, θ, λ) = f(θ, λ), where f is continuous on the sphere, the function
Φ, harmonic outside of the sphere, exists and is uniquely determined. The
expansion of Φ in normalized spherical harmonics is uniquely determined
by the integrals on the sphere 〈Y �mk(θ, λ), f(θ, λ)〉, and then the sum of the
series expansion such as eq. (13.29) is harmonic outside the sphere. It is
unique because the difference of two such functions would have zero har-
monic coefficients.

13.4 The gravity field along the orbit

We have expressed the gravity field as an expansion in spherical harmonics,
functions of the satellite position x. We would like to find an expression for
the gravitational potential, and derived quantities such as the gravity field
and the gravity gradient experienced by the satellite as a function of time, as-
suming the satellite follows an unperturbed two-body orbit. To this purpose
we shall consider the gravitational potential U decomposed in harmonics

U =
GM

r
+

+∞∑
�=2

�∑
m=0

U�m,

where U�m is the component of degree � and order m.

Equatorial orbit

We give an example to show that the potential can be expanded as a function
of the orbital elements. Let us assume the satellite orbit is equatorial. The
orbital elements are only (a, e, �, l0), with � the angle between the inertial
x1 axis and the direction of the pericenter, l0 the mean anomaly l at epoch
t0. Moreover, let us assume the planet is rotating around the axis x3 with
constant angular velocity Ω⊕, with phase zero at t = t0, thus the rotation
phase is φ = Ω⊕ (t − t0). Then

l = n (t − t0) + l0, n =

√
GM

a3

λ = v(l) + � − φ, r = r(l)

where the functions v(l) (true anomaly) and r(l) have to be computed by
solving the Kepler equation. Since I = 0 the latitude θ = 0 and the harmonic
of the potential U�m of degree � and order m along the satellite orbit is

U�m =
GM R�

⊕
r�+1 P�m(0) [C�m cos(ψm) + S�m sin(ψm)] (13.31)



13.4 The gravity field along the orbit 281

where ψm = m(v + � − φ). If the orbit is also circular, then v = l, r = a,
ψm = m[� + (n−Ω⊕) (t− t0) + l0], and the only frequency in the signal as
a function of time is m (n − Ω⊕).

From this simple example we can already draw an interesting conclusion:
for an equatorial circular orbit all the cosine harmonics with the same order
m have the same dependence upon time, the same result holds for the sine
terms. Moreover, the C�m and the S�m terms have the same spectrum of
frequencies.

The observations do not directly measure the potential,13 but many ob-
servables are obtained by either partial derivatives or time integrals from
U , e.g., the gravity gradient can be measured by a gradiometer, and these
observables can also be represented as a sum of spherical harmonics.

If the orbit were to remain circular and planar, the simple model above
would imply that there is an exact rank deficiency such that only 2(�max−1)
harmonic coefficients could be determined among those of degree 2 ≤ � ≤
�max. For example, the sectorial spherical harmonic coefficients C� �, S� �

could be solved, while all the others should be left among the consider
parameters.

The orbit can remain neither circular nor planar because of the pertur-
bations by the gravitational potential. However, the effects of the orbit
perturbations on the perturbing potential are of second order in the small
parameters C�m, S�m and the above computations are correct to first order.
Thus this model problem shows two important features of satellite geodesy:
first, each spherical harmonic generates a signal in the observations with
a characteristic frequency spectrum; second, there are spherical harmonics
with different � and m giving highly correlated signals, resulting in either
exact or at least approximate rank deficiency.

Kaula expansion

For a general expansion of the gravitational potential as a Fourier series
containing the orbital elements, we need to consider that in a reference
system with the orbit plane as reference plane the expression of U�m is given
by eq. (13.31). Thus we only need to perform a rotation of coordinates, from
a reference system defined by the planet’s equatorial plane and by some
body-fixed direction in it to a reference system adapted to the Keplerian
orbit (defined by the osculating orbital elements). The rotation from the
(x, y, z) equatorial reference system to the (x′, y′, z′) reference system with
x′ axis along the direction of the pericenter and z′ axis along the angular
13 Apart from the measurements of the ocean surface, a good approximation of an equipotential

surface corresponding to the ocean mean potential, the geoid, by satellite altimetry.
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momentum direction ĉ is almost the same as used in Section 6.5, with the
difference that the first rotation around the z axis is by an angle α = Ω− φ⎡

⎣ x

y

z

⎤
⎦ = Rωĉ RIN̂ Rαẑ

⎡
⎣ x′

y′

z′

⎤
⎦ = R(α, I, ω)

⎡
⎣ x′

y′

z′

⎤
⎦

where N̂ is the current ascending node direction in the rotating equa-
torial plane; the angles (α, I, ω) play the role of Euler angles.14 Thus
the composite rotation R(Ω, I, ω), when applied to the scalar field U�m ,
transforms it into another function U ′

�m corresponding by value, that is
U�m(x, y, z) = U ′

�m(x′, y′, z′), which is equally harmonic because the Laplace
operator is rotation invariant. The rotation leaves the radius r invariant,
thus it also preserves the decomposition of the harmonic function U into ho-
mogeneous components of homogeneity degree −� − 1, that is of harmonic
degree �. Thus the transformed U ′

�m can be expanded in spherical harmonics
by using only spherical harmonics of degree � and any order k = 0, . . . , �.
We use the expansion in the form of eq (13.16)

U ′
�m =

GM R�
⊕

r�+1

�∑
k=0

[
C ′

�kY�k1(θ′, λ′) + S′
�kY�k0(θ′, λ′)

]

where the new coefficients C ′
�k, S

′
�k are linear combinations of the old ones.

In the simple case I = 0, ω = 0 we have θ = θ′ and λ = λ′ +α, thus the new
coefficients are obtained by[

C ′
�m

S′
�m

]
=
[

cos(mα) − sin(mα)
sin(mα) cos(mα)

] [
C�m

S�m

]

with C ′
�k = S′

�k = 0 for k = m. This results in an equation like (13.31).
The intermediate rotation around the ascending node axis has a more

complicated effect, mixing the spherical harmonics with the same order and
different degrees, thus it is expressed by a full (2� + 1) × (2� + 1) matrix
with coefficients function of I. There is a large literature on the compu-
tation of this matrix of conversion coefficients, with methods based either
on spherical trigonometry (Kaula 1966, Chap. 3) or on the theory of group
representations (Wigner 1959); they can be found in textbooks on quantum
mechanics such as (Edmonds 1957) as well as in papers about geophysics

14 There are different types of Euler angles: this particular set, used in celestial mechanics, is of
type 3-1-3 in that the sequence of rotations is along the current z axis, the current x axis, the
current z axis.
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(Sneeuw 1991, Jeffreys 1965). In the end, the component U ′
�m of the poten-

tial can be expanded with coefficients the inclination functions F�mp(I)

U�m =
GM R�

⊕
r�+1

�∑
p=0

F�mp(I) [C�m cos(ψ�mp) + S�m cos(ψ�mp)]

where the argument of the trigonometric function is

ψ�mp = (� − 2p)(ω + v) + m(Ω − φ) − π

2
[(� − m) mod 2], (13.32)

the last term indicating that C�m, S�m are replaced by −S�m, C�,m when
�−m is odd. The inclination functions can be expressed as a trigonometric
polynomial in sin I and cos I (Kaula 1966, eq. (3.62), p. 34)

F�mp(I) =
min(p,k)∑

t=0

(2� − 2t)!
t!(� − t)!(� − m − 2t)!22�−2t

sin�−m−2t I

×
m∑

s=0

(
m

s

)
coss I

∑
c

(
� − m − 2t + s

c

)(
m − s

p − t − c

)
(−1)c−k

(13.33)

where k is the integer part of (�−m)/2 and c is summed over values making
the binomial coefficients non-zero, that is with the lower index non-negative
and not larger than the upper one. The inclination functions F�mp(I) with
the indexes up to four are given by Kaula (1966, Table 1, pag. 34–35)15.

The formula above, called the Kaula expansion, can be practically used,
with some caution in the computation of the binomial coefficients, even for
comparatively large �, m. However, for near polar orbits, it is more conve-
nient to use a formula based upon modified Jacobi polynomials introduced
by Kinoshita et al. (1974); it contains only powers of cos I and therefore
can be truncated for an approximate expansion near I = 90◦. This formula
has been converted to Kaula notation by Milani and Knežević (1995). For
k = � − 2p > 0 the terms up to order 2 in cos I are

F�mp(I) =
min(�−m,�+k)∑
r=max(0,k−m)

(−1)t (2� − 2p − 1)!!(� + m)!(� − k)!
2�+pp!(m − k + r)!(� + k − r)!r!(� − m − r)!

×
{

1 + (� − m − 2r + k) cos I +
[
k(� − m − 2r) − r(� − m − r)

15 However, Milani and Knežević (1995, Section 2.5) have found that the expression for �mp = 420
should have a factor sin2 I instead of sin I as in the table, and the function for �mp = 422 should
have −(15/4) sin2 I instead of +(15/4) sin2 I .
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+
k2 − m + r(r − 1) + (� − m − r)(� − m − r − 1)

2

]
cos2 I

}
(13.34)

where t is the integer part of (� − m + 1 + 2r)/2. For � − 2p < 0 we set
k = 2p − � and use

Flmp(I) =
min(l−m,l+k)∑
r=max(0,k−m)

(−1)t (2l − 2p − 1)!!(l + m)!(l + k)!
2l+pp!(m − k + r)!(l + k − r)!r!(l − m − r)!

×
{

1 − (l − m − 2r + k) cos I +
[
k(l − m − 2r) − r(l − m − r)

+
k2 − m + r(r − 1) + (l − m − r)(l − m − r − 1)

2

]
cos2 I

}
(13.35)

where t is the integer part of (3l − 3m + 1 + 2r)/2.
When the expansions of the two-body problem are substituted in these

expressions (in particular the expansion in powers of the eccentricity e), the
dependence upon e is contained in eccentricity functions G�pq(e) and new
arguments appear:

U�m =
GM R�

⊕
a�+1

�∑
p=0

F�mp(I)
+∞∑

q=−∞
G�pq(e) [C�m cos(ψ�mpq) + S�m cos(ψ�mpq)]

where the argument of the trigonometric function

ψ�mpq = (� − 2p)ω + (� − 2p + q)l + m(Ω − φ) − π

2
mod(� − m, 2) (13.36)

contains the mean anomaly l rather than the true anomaly. The eccentricity
functions G�pq(e) are analytic in e and the lowest order term contains eq .
Their explicit computation is not simple; for the lowest order terms in the
eccentricity functions with �pq up to 442 see (Kaula 1966, Table 2, p. 38).

13.5 Frequency analysis, ground track, and resonance

The most immediate consequence of the Kaula expansions for the geopoten-
tial perturbing function of the previous section is the possibility of listing
all the frequencies which will appear in the first-order perturbations. By
taking the time derivative of eq. (13.36)

dψ�mpq

dt
= (� − 2p + q)n − m φ̇ +

[
(� − 2p) ω̇ + m Ω̇

]
= νlmpq (13.37)

where the dot stands for time derivative, and n is the mean motion. In a
two-body approximation this is just a combination with integer coefficients
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of two constant frequencies, n and Ω⊕. In a better approximation, the
slow frequencies of precession of the elements ω, Ω, resulting from the zonal
harmonics, also appear in the term between square brackets, thus in the
frequency spectrum. The Kaula expansion allows us to compute this effect
by averaging over the mean anomaly, that is by selecting the secular terms
not containing it, with �− 2p + q = 0. For the simple case e = 0, or anyway
to order zero in e: if � = 2p, that is for even order zonal harmonics,

1
2π

∫ 2π

0
U�0 dl =

G M R�
⊕

a�+1 F�0p(I) C�0.

The secular perturbation, that is the one generated by the secular terms,
can be computed by the Lagrange perturbative equations, providing
the perturbations in the elements to first-order in the small parameters,
such as C�0. For the longitude of the node the Lagrange equation is

dΩ
dt

=
1

n a2
√

1 − e2 sin I

∂R

∂I
,

where R is the perturbing function, i.e., the potential U without the
monopole term. The secular perturbations on Ω result into a uniform pre-
cession with frequency

dΩ
dt

= GM R�
⊕n a3 sin I

+∞∑
p=0

R�
⊕

a�
F ′

2p 0 p(I) C2p 0
[
1 + O(e2)

]
.

If we use this secular value as Ω̇ in eq. (13.37) with q = 0 (for very low
eccentricity), and also approximate ω̇ with a constant value (by a similar
computation of the secular perturbation), for q = 0 the frequencies in the
potential as a function of time, along the unperturbed two-body orbit, are

ν�mp0 = (� − 2p)(n + ω̇) + m(Ω̇ − Ω̇⊕), (13.38)

all integer combinations of two basic frequencies, although these are some-
what different from the two-body ones. The Lagrange equations contain only
partials of the perturbing potential, thus the first-order perturbations can
be obtained by the term-wise integration of a two-frequency Fourier series.

Resonance

Let us suppose the orbit of the satellite is exactly resonant with the rotation
of the Earth, that is there are two integers j, k such that

n + ω̇

j
=

Ω̇⊕ − Ω̇
k

= ν. (13.39)
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Fig. 13.1. The ground track of a circular orbit with I = 60◦ and in a resonance j/k = 14/1.

In the two-body approximation, the period of the satellite would be ex-
actly k/j sidereal days. Neglecting the q = 0 terms, the frequencies in the
time series are multiples of the basic frequency ν

ν�mp0 = [(� − 2p) j − mk] ν. (13.40)

Thus the signal from all harmonics is periodic of period 2π/ν and can be
described as a Fourier series with arguments a multiple of ν t. In a reference
frame rotating with the Earth, the orbit is periodic and the ground track,
the vertical projection of the orbit on a sphere of radius R⊕, returns on the
same curve with a repeat cycle of j days (Figure 13.1).

The geometric properties of the periodic orbits are reflected in the analyt-
ical form of the first-order perturbations: if in eq. (13.40) the integer inside
the square brackets is zero, there is a zero frequency in the perturbative
equations and thus enhanced perturbations on some of the elements. For
example, for the geosynchronous satellites j = k = 1, at order � = 2 there
are zero frequencies for p = 0, m = 2 with coefficients containing C22, S22

and for p = 1, m = 0 with C20. In such cases the first-order solution ob-
tained by simple quadrature is not a good approximation, and a different
method needs to be used to identify the first approximation to be used, in
the form of a pendulum-like equation (Kaula 1966, Section 3.6).
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NON-GRAVITATIONAL PERTURBATIONS

The non-gravitational perturbations arise because outer space is not empty.
First, planetary atmospheres extend to large altitudes, where they can be
thin enough to allow for a satellite orbit but still generate a significant
aerodynamic drag, given the high relative velocity of the spacecraft. As
will be discussed in Chapter 16, there is interest in satellites orbiting as
low as possible to determine high-order harmonics of the planetary gravity
field. This may require propulsion to compensate for orbital decay and/or
the use of on-board accelerometers to measure the amount of drag; that
is, non-gravitational perturbations are critical in the design phase of the
mission.

Second, outer space is pervaded by electromagnetic radiation: the light
arriving directly from the Sun, reflected by the Earth, and by the other
planets. The photons exchange momentum with spacecraft when they are
absorbed and reflected; spacecraft themselves emit infrared radiation and
electromagnetic waves carrying away some momentum. The resulting accel-
erations are small, but at the level of accuracy of current tracking systems
they are not negligible, hence the need to model and/or measure them. Even
small natural bodies, such as asteroids with diameters in the km range, have
orbits affected by non-gravitational perturbations in a measurable way.

This chapter cannot be a full revision of the textbook by Milani et al.
(1987), which should take into account all the new results accumulated in
more than 20 years since its publication. It is just an update on the issues
raised by non-gravitational perturbations in the orbit determination prob-
lem, taking into account state-of-the-art instrumentation. The conclusions,
which will result from the orders of magnitudes and from an understanding
of the complexity of the problem, will be the following: to model the non-
gravitational perturbations is possible but they are anyway the main limita-
tion to the accuracy of the orbit determination. For spacecraft, to measure

287
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non-gravitational accelerations directly with on-board instrumentation (see
Section 16.1) allows for a much higher performance. The orbits of espe-
cially well observed asteroids, including some targets of space missions, may
require special effort in non-gravitational force modeling.

14.1 Direct radiation pressure

Outer space is everywhere full of radiation, from different sources. We shall
consider for now radiation, mostly visible light, coming from a single source,
the Sun; we approximate the illumination from the Sun as if it were a point
source. The photons of light carry energy and linear momentum: if the
energy flux is measured by the intensity Φ�, the flux of momentum per unit
cross-sectional area is Φ�/c, with c the speed of light. The total transfer of
linear momentum upon impact of the photons from the Sun on the spacecraft
surface generates the direct radiation pressure.

Interaction of radiation with the surface

To model what happens to the momentum carried by the radiation impact-
ing the skin of the spacecraft, we can use a combination of three standard
physical models: absorption, in which the photons are gobbled up by the
spacecraft (acting as a black body), reflection, in which the photons bounce
on a smooth surface following the laws of mirror reflection, and diffusion in
which the photons are re-emitted with intensity following Lambert’s law,
that is proportionally to the cosine of the angle θ from the normal to the
surface. The mix of these three phenomena is controlled by three positive
constants α, ρ, δ (Milani et al. 1987, Chapter 4), with

α + ρ + δ = 1 (14.1)

expressing the fraction of the incident light that behaves according to the
absorption, reflection, and diffusion law, respectively.

Under these hypotheses, the force applied by radiation pressure on an
outer surface element dS of the spacecraft is directed in part along the
normal n̂ to the surface, in part along the direction to the Sun ŝ. The cross-
sectional area of the surface element with respect to the radiation flux is
cos β dS where cos β = ŝ · n̂. For the surface to be illuminated, cosβ > 0
is necessary; the same condition is also sufficient if the shape is convex,
otherwise there could be mutual shadowing between different parts.

The momentum of the absorbed photons is transferred to the spacecraft,
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thus the force acting on a surface element due to the absorption is

dFα = − Φ�
c

α cos β ŝ dS.

The reflected photons transfer to the spacecraft the momentum they had
upon arrival and the recoil momentum: the sum is directed along n̂

dFρ = − Φ�
c

2ρ cos2 β n̂ dS.

The photons of the fraction diffused are first absorbed, giving a force in the
−ŝ direction equal to that of the absorption. Then they are re-emitted in
different directions: for symmetry reasons, the resultant force is directed
opposite to the surface normal n̂, and its intensity contains the integrals∫ 2π

0 d λ
∫ π/2
0 cos2 θ sin θ d θ∫ 2π

0 d λ
∫ π/2
0 cos θ sin θ d θ

=
2
3
,

thus the total force is

dFδ = − Φ�
c

δ cos β

[
ŝ +

2
3
n̂
]

dS.

The effect on the spacecraft orbit is due to the resultant of the forces on all
the surface elements: if SI is the portion of the outer surface illuminated by
the Sun,

F = − Φ�
c

∫
SI

[
(1 − ρ) cos β ŝ +

(
2
3

δ + 2ρ cos β

)
cos β n̂

]
dS, (14.2)

where we have used (14.1), is the radiation pressure force acting on the
spacecraft. Note that, unless the shape has some special symmetry, it is
by no means guaranteed that the resultant force is applied at the center of
mass of the spacecraft, thus radiation pressure will also affect the spacecraft
rotation state, also called the attitude.

For some simple shapes the integral (14.2) can be computed analytically,
e.g., for a sphere with constant α, ρ, δ the radiation pressure force is

F = − Φ� A
c

ŝ (14.3)

where the effective cross-section A is (Milani et al. 1987, p. 74–75)

A =
(

α + ρ +
13
9

δ

)
π R2 =

(
1 +

4
9

δ

)
π R2,

that is the geometric cross-sectional area times a coefficient depending upon
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δ. For this the name “reflectivity coefficient” and the symbol CR are used,
but this is not logical, taking into account that this coefficient is always > 1.

The same formula (14.3) applies for a flat panel oriented orthogonally to
ŝ, such as an optimally oriented solar array. For example, for A = 16 m2 of
solar panels, with large α ≥ 0.8 (thus 1 + 4/9 δ � 1 and A � A) and a total
mass of the spacecraft M = 500 kg, the area-to-mass ratio is A/M = 0.32,
the radiation pressure acceleration at 1 AU from the Sun, where Φ� � 1.38
kW/m2, is directed along −ŝ with an intensity � 1.5 × 10−5 cm/s2. For a
spacecraft with a comparatively simple shape, say a box shaped bus with
� 4 m2 faces, the radiation pressure acceleration has a variable component
smaller in size by a factor of 3 or 4, depending upon the bus attitude and
surface properties.

For a realistic spacecraft model the radiation pressure force is a compli-
cated function of the illumination direction ŝ and of the spacecraft attitude.
To compute it explicitly we need to know the exact shape, the attitude
(including the state of the moving parts), and the three optical coefficients
α, ρ, δ for each portion of the surface. For a spacecraft with a complex shape
this can be difficult, unless special care is taken in the design phase in using
a simple shape, surfaces with well known properties, and a simple operation
mode. An additional difficulty is due to the fact that the optical coefficients
α, ρ, δ change with time, as an effect of degradation of the spacecraft surface
layers, damaged by charged particles from the Sun, and the magnetosphere
of the relevant planet. Within a few years a white paint becomes brown and
a mirror surface becomes irregular at a scale comparable to the wavelength
of visible light; thus δ and ρ decrease, α increases.

For a natural body such as an asteroid, the a priori knowledge of both
the optical properties and the shape of the surface is very poor (also the
mass is poorly known). On the other hand, given the known shape of some
real asteroids, to approximate their surface with a sphere in most cases is
not a good approximation. However, if the purpose is not real-time orbit
determination, but rather processing in batch at or near the end of an aster-
oid orbiter mission, the data from the entire mission can be used to build a
direct radiation pressure model for the asteroid which could have a relative
accuracy comparable to that of a spacecraft.

Secular perturbations

The relevance of radiation pressure as a source of perturbations on the orbit
of both spacecraft and asteroid depends upon the way it accumulates with
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time. We shall use a model problem to develop the tools to discuss the
orbital effects of small perturbations, such as the non-gravitational ones.

The model is just a two-body problem, with a satellite of mass M at �x

perturbed by a small force εF(t), where ε is a small parameter and r = |x|
is the distance from the central body of mass M⊕:

d2x
dt2

= −GM⊕
r3 x + εF/M.

In a mobile reference system defined by the orbit plane, orthogonal to the
angular momentum vector c = x × dx/dt, we have

r̂ =
x
r
, ŵ =

c
|c| , t̂ = ŵ × r̂

and the components of the non-gravitational acceleration are

R = εF · r̂/M, T = εF · t̂/M, W = εF · ŵ/M

for the radial, transversal, and out of plane component, respectively.
The total energy (per unit mass) E of the two-body approximation has a
time derivative equal to the power of the perturbing force

dE

dt
=

εF
M

· dx
dt

= R vR + T vT .

By the two-body formulae (similar to those of Section 4.2) the velocity
components vR and vT (along the r̂ and t̂ directions, respectively) are

vT =
dx
dt

· r̂ =
|c|
r

=
GM⊕
|c| (1 + e cos v), vR =

dx
dt

· t̂ =
GM⊕
|c| e sin v,

with |c| the scalar angular momentum. This allows us to conclude how the
orbital energy changes:

dE

dt
=

GM⊕
|c| [T + e (R sin v + T cos v)]

and, by the relationship between energy and semimajor axis,

dE

dt
=

GM⊕
2 a2

da

dt
=⇒ da

dt
=

2
n
√

1 − e2
[T + e (R sin v + T cos v)] .

The main term for a low eccentricity orbit is

da

dt
=

2
n

T + O(e) =⇒ dn

dt
= − 3

a
T + O(e). (14.4)

The main conceptual step in a perturbative approach is just to expand the
solution to the complete equation of motion in a Taylor series with respect
to the small parameter ε. For example, a(t) = a0(t) + ε a1(t) + ε2 a2(t) + · · ·
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and the same expansion applies to the other five orbital elements. Then
equations such as (14.4) can also be expanded in powers of ε and, by equating
the terms of the same order in ε on both sides, we get a0 constant and
ε da1/dt = 2T (0)/n0 + O(e), where T (0) is T evaluated on the unperturbed
orbit. That is, eq. (14.4) can be reinterpreted as a first perturbative order
equation, providing the O(ε) terms in the solution for a(t), when the right-
hand side is computed at the unperturbed orbit.

The corresponding along-track effect can be computed by using a set
of orbital elements non-singular for e = 0 (Milani et al. 1987, Section 3.3),
e.g., λ = ω + � for e > 0, where � is the mean anomaly, while for e = 0 the
element λ is just the angle on the circular orbit with origin at the ascending
node.1 Then the equations for the perturbed motion are

dλ

dt
= n + O(ε), a

d2λ

dt2
= −3 T + O(e) + P O(ε) + O(ε2) (14.5)

where P contains terms arising from the integration of dλ/dt − n. The
non-trivial part of the above computation is to show that P contains only
periodic terms with zero average. This implies that the effect of the R and W

components does not accumulate quadratically with time in the along-track
direction, at least not to order 1 in ε. A similar argument shows that there is
no orbital effect accumulating quadratically with time in the other directions
r̂, ŵ. Thus for a nearly circular orbit the acceleration along-track is, to a
good approximation, −3 times the perturbative transversal acceleration. If
the transversal component T , as a function of time, can be decomposed into
an average, or secular, part T and a short periodic part averaging out over
one two-body orbital period P = 2π/n, starting from t = t0,

T (t) = T + Tsp(t), T =
1
P

∫ t0 +P

t0

T (t) dt

then the perturbation in the semimajor axis also decomposes into a secular
perturbation, with linear growth in t, a short periodic perturbation
averaging out over one period, and terms of higher order in ε

a(t) = a0 +
2T

n0
t +

2
n0

∫ t

0
Tsp(s) ds + O(e) + O(ε2) (14.6)

where a0 = a(0) and n0 = n(a0). The accumulated along-track effect is
obtained by combining eqs. (14.5) and (14.6)

a(t) (λ(t) − λ0 + n0 t) = −3T

2
t2 + P1O(ε) + O(e) + O(ε2), (14.7)

1 The variable defined in this way can be shown to be differentiable even for e = 0.
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where P1, arising from the integral of P and the double integral of Tsp/ε,
contains only periodic terms. In conclusion, for an orbit which is initially
nearly circular, the only source of along-track effects quadratic in time is
the averaged transversal acceleration T , with the same coefficient −3 as the
instantaneous transversal acceleration (14.5).

The above result has deep implications on the relevance of non-
gravitational perturbations. For many sources of non-gravitational pertur-
bations it is indeed the case that T is zero; e.g., if the orbit is circular and F
is constant in time, T (λ), when the unperturbed λ = n0 t+λ0 is substituted,
is a trigonometric function of time, averaging to zero.

We have outlined the argument to order zero in eccentricity, but in fact
similar results can be proven to an arbitrary order. For example, let us
assume that the vector F is constant in time, or even dependent upon the
position s of the Sun, which in turn changes with time with frequencies much
slower than n, assuming that the satellite-to-Sun vector can be approximated
by the Earth-to-Sun vector. Then, as shown by Anselmo et al. (1983a) and
Milani et al. (1987, Section 4.2), there is no secular perturbation in the
semimajor axis, to first order in the ε and to all orders in e.

The same result applies also to many gravitational perturbations. For
example, the gravitational perturbations from the Sun and from the other
planets2 have a zero T , thus there is no secular perturbation in the semima-
jor axis to order one in the small parameters (which are those described in
Section 4.5). This is a straightforward generalization of a classical result, go-
ing back to Lagrange. A simple comparison of the perturbative accelerations
due to different causes (see Section 15.3) can be useful to discard from the dy-
namical model some exceedingly small effects. However, to decide which are
the main effects we need to compute the secular along-track acceleration T .

The above discussion assumes that the radiation pressure has a constant
direction and intensity, or at least varying with a period much longer than
the orbital period, e.g., a period of one year for an Earth satellite. If the
area-to-mass ratio and the optical properties are not changing with time, this
is enough to avoid quadratic accumulations with time of the perturbation
on the orbit. On the contrary, if the radiation pressure acceleration under-
goes changes with frequency equal to the orbital period, this does result in
quadratic effects. Two examples of this are as follows: an Earth satellite
with a constant attitude and an Earth pointing antenna may experience sec-
ular perturbations in the semimajor axis due to the antenna, not to the body
(Anselmo et al. 1983a); an asteroid orbiting the Sun with a rotation axis not
2 The same applies to the perturbations from the Moon on an Earth satellite, provided there is

no low-order resonance between the orbital periods.
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orthogonal to the orbit plane experiences a secular perturbation in the semi-
major axis if the two hemispheres “north” and “south” have either a different
shape or different optical properties (Vokrouhlický and Milani 2000).

The orbital elements e, ω can experience secular perturbations due to radi-
ation pressure (Milani et al. 1987, Section 4.3): they appear as long periodic
perturbations, with periods ≥ 1 year for an Earth satellite. For the elements
I,Ω, if the radiation pressure F is constant the first-order secular effects are
zero for e = 0. Anyway the perturbations on the elements e, ω, I,Ω result in
changes in the spacecraft position with the orbital period. In conclusion, if
T = 0, the effects on the spacecraft position do not accumulate quadratically
with time, thus they are in general a minor problem for the accurate orbit
determination used both in satellite geodesy and in the control of active
spacecraft. However, for large A/M space debris a long-term growth of ec-
centricity and inclination takes place: e, I can reach high values and this is a
major problem, because it may result in a large relative velocity with respect
to active satellites in the same region, especially in the geosynchronous belt
(Valk et al. 2007).

14.2 Thermal emission

A passive celestial body exposed to solar radiation Φ� A, where A is the
cross-sectional area, transforms the absorbed fraction α Φ� A into heat and
reaches some thermal state. The surface temperature is not uniform and
changes with time as a result of both the rotation and the orbital motion.
Thus the entire surface re-emits thermal radiation anisotropically, carrying
away some net linear momentum. This phenomenon of thermal emission
results in a perturbative acceleration, affecting the orbit.

For each surface element dS the energy output due to thermal radiation is
ε σ T 4 dS, where T is the surface temperature, σ = 5.67× 10−5 erg/cm2 s K
is the Stephan–Boltzmann constant, and ε is the emissivity coefficient (ε = 1
for a black body). The thermal radiation is diffused according to Lambert’s
law, thus the flow of linear momentum results in a force

dFε = − 2 ε σ T 4

3 c
n̂ dS. (14.8)

To model the surface temperature distribution and to compute the integral
of dFε is not simple: a full analytical solution exists only under very simple
conditions. We shall briefly outline one such analytical solution, under the
hypothesis that the surface is spherical, with radius R, and that the body
rotates uniformly around a constant axis, which we use as the ẑ axis of
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the reference frame; let (r, θ, λ) be polar coordinates in that frame. We
further assume that the vector to the Sun s is constant (an approxima-
tion applicable over a time span short with respect to the period of the
heliocentric motion) and that the surface temperature differences are small
with respect to the average temperature, allowing us to linearize the heat
equation (Milani et al. 1987, Section 5.2).

The heat equation for a stationary state reduces to the Laplace equation
ΔT = 0. Thus, assuming that the rotation is fast enough to average out
the temperature as a function of λ, the temperature T of the body should
reach an equilibrium state expressed by zonal spherical harmonics

T (r, θ) = T0 +
+∞∑
i=1

Ti

( r

R

)i
Pi(sin θ),

with T0 the average surface temperature, Ti constants, and Pi the Legen-
dre polynomials of (13.10). As a boundary condition, we have the balance
between the outward heat flow caused by thermal conduction −χ ∂T /∂r

(where χ is the thermal conductivity of the body, assumed to be constant)
and the net emission at the surface (the difference between the external
irradiation from the Sun and the emission)

ε σ T 4 − α n̂ · ŝΦ� = −χ
∂T
∂r

(14.9)

where the over-line indicates the average over λ

n̂ · ŝ =
1
2π

∫ 2π

0
g(n̂ · ŝ) dλ = s(θ)

with the function g equal to its argument if it is positive, zero otherwise
(thus restricting the integral to the illuminated hemisphere). The function
s(θ) can be computed analytically: if the latitude and longitude of the Sun
are (ξ, π/2) we get three formulae for the three latitude zones, the midnight
Sun, the dark noon, and the sunrise–sunset zones, respectively

s(θ) =

⎧⎪⎪⎨
⎪⎪⎩

sin ξ sin θ for π
2 − ξ ≤ θ

0 for θ ≤ ξ − π
2

1
2π [2 cos ξ cos θ cos λ1 + (sin ξ sin θ) (π − 2λ1)]

for ξ − π
2 ≤ θ ≤ π

2 − ξ

where λ1 solves the terminator plane equation n̂ · ŝ = 0, that is cosλ1 =
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tan θ tan ξ. With s(θ) expanded in Legendre polynomials

s(θ) = s0 +
+∞∑
i=1

si Pi(sin θ)

equation (14.9), linearizing in the temperature harmonic coefficients Ti

(assumed � T0), gives a separate equation for each zonal harmonic
coefficient

ε σ T 4
0 = α s0 Φ�, Ti =

α si Φ�
4ε σ T 3

0 + iχ/R
, (14.10)

with the solutions of lowest degree: s0 = 1/4 and s1 = sin ξ/2. By substi-
tuting in eq. (14.8) and integrating over the sphere, we get the net thermal
emission force directed along the ẑ axis

Fε = −ẑ
2εσ

3c

∫
S

sin θ [T 4
0 + 4T 3

0 T1 P1(sin θ)] dS

= −ẑ
4πεσR2

3c

∫ +π/2

−π/2
sin θ cos θ (T 4

0 + 4T 3
0 T1 sin θ) dθ

where terms of higher degree have been neglected.3 The average temperature
gives an isotropic emission, and the degree 1 harmonic gives a net force

Fε = −ẑ
4 π α Φ� R2 sin ξ

9 c β
(14.11)

where the reduction factor β = 1 + χ T0/α R Φ� plays an important role.
With A = π R2 the cross-section, the acceleration is

Fε

M
= −ẑ

A Φ�
M c

4 α sin ξ

9 β
.

If we assume ε = α, and the distance from the Sun 1 AU, the average
temperature is T0 � 280 K. The assumption Ti � T0 used in the linearization
of the equations implies β � 1, i.e., high conductivity. As an example we use
the LAGEOS class satellites (see Section 15.2), whose body is an aluminum
sphere with a radius of 30 cm and a mass of 400 kg. Then

Fε

M
= −ẑ

5.8 × 10−8

β
sin ξ cm/s2.

If it is modeled as a homogeneous body, given the conductivity of aluminum
χ = 2.1 × 107 erg cm−1 s−1 K−1, we have β = 471. If a modification of the
above computation is used to take into account an insulating core of radius
25 cm and an outer aluminum shell, β = 155. In any case the thermal
3 The degree 2 harmonic gives no contribution to the integral, Ti is assumed negligible for i > 2.
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emission is one of the main sources of uncertainty in the dynamical model
for spacecraft of the LAGEOS class (see Section 15.3).

For more complex shaped spacecraft, the explicit computation of a sur-
face temperature model is a challenge, and the spherical approximation is
too poor. The above computation can be used to give an order of magni-
tude, provided some estimate for the surface temperature excursion ΔT is
available (to be used in place of the T1).

Similar computations can be done for natural bodies, such as asteroids.
The conductivity is expected to be much lower, and anyway it is essentially
unknown: a reasonable guess would be for a range between 10 and 1000
erg/cm s K, depending upon the texture of the surface (e.g., regolith is a
very good insulation, solid rock is more conductive). Moreover, neither the
shape is close to spherical nor the conductivity is expected to be constant,
given the very uneven distribution of regolith found in the few asteroids for
which we have very close images (Eros, Itokawa). Thus to build a realistic
thermal model of an asteroid is a challenge, and the thermal emission effects
on the orbit cannot be accurately predicted.

The Yarkovsky effect

The same argument used in Section 14.1 applies to thermal emission: what
matters is the fraction of the perturbing acceleration contributing to the
secular change in the semimajor axis. For example, if the attitude in an
inertial reference system and the thermal state were constant, at least on
average, the acceleration induced by thermal emission would be a constant
vector and its contribution to T would be zero. This is the case for an axially
symmetric body rapidly spinning around a fixed axis ẑ orthogonal to the
plane of a circular heliocentric orbit. The same applies to a planetocentric
orbit, even an eccentric one, if we can assume that the surface temperature is
not significantly affected by the thermal emission from the planet and there
are no eclipses (Anselmo et al. 1983a). However, unlike direct radiation
pressure, thermal emission can have secular effects in the semimajor axis for
a heliocentric orbit, even for a spherical shape; this is called the Yarkovsky
effect. A similar effect occurs for geocentric orbits, due to the uneven
heating resulting from radiation emitted by both the Sun and the Earth.

It is important to realize that there is no Yarkovsky force, but just thermal
emission forces, which under suitable circumstances have a comparatively
small, but significant, mean transversal component T . We shall discuss here
the heliocentric case, in which there are two contributions to the Yarkovsky
effect: the seasonal and the diurnal one.
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Seasonal Yarkovsky effect

If a body with a fixed rotation axis were in a constant thermal state as
it orbits around the Sun, then the thermal emission force of eq. (14.11)
would be of constant size and direction, thus T = 0. This condition can be
violated for two reasons.4 The first is when the obliquity ε, that is the angle
between the spin axis and the orbital angular momentum, is not 0. Then
the latitude ξ of the Sun in the body equatorial frame is not constant, and
eq. (14.11) gives a thermal emission force changing with time, essentially
with the frequency of the mean motion n. The second reason is that the
illumination Φ� is a function of the distance from the Sun, thus it changes
for an eccentric orbit, mostly with the frequency n.

In both cases, the thermal emission force has an intensity which changes
with a period equal to the orbital period (in a two-body approximation), and
the same resonance effect mentioned for radiation pressure on asymmetric
bodies can apply. This is called a seasonal effect because it depends on
the fact that the heliocentric body has temperature variations depending
upon the equatorial obliquity and upon the orbital eccentricity, similarly to
the major planets. An explicit computation of the size of this effect is not
simple, even for a spherical body (Vokrouhlický et al. 2000), and becomes
very complicated for complex shaped bodies. Qualitatively, the secular drift
is always towards the lower semimajor axis and its magnitude can be up to
15 m/y for asteroids with diameter in the 300–500 m range.

Diurnal Yarkovsky effect

The Yarkovsky diurnal effect arises because thermal inertia of the illumi-
nated body results in a temperature maximum lagging some time after the
maximum of illumination. This effect depends upon the conductivity χ, by
no means linearly: for χ → 0 the thermal time lag goes to zero; for χ → +∞
the surface temperature excursion goes to zero; for some intermediate value
of χ there is a maximum effect, see (Vokrouhlický et al. 2000, Figure 1). In-
terestingly, in the realistic range of values of χ for a small asteroid, in many
cases the dependence upon χ is not very strong, the effect changing by less
than a factor of 2. Thus this effect is always of the same order of magnitude,
once the mass is known; of course it depends upon the obliquity ε, with the
semimajor axis secularly increasing for prograde rotation (ε < 90◦) and de-
creasing for retrograde (ε > 90◦). The magnitude of this effect can be larger
than that of the seasonal effect, up to several tens of m/y.
4 There is a third possible reason: the rotation axis could be changing with time, for an asteroid

not in a simple rotation state but tumbling, either regularly or chaotically as for (4179) Toutatis.
This case is too complicated to be discussed here.
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When is the Yarkovsky effect relevant?

The Yarkovsky effect is very important as a source of secular perturbations
to model the dynamical evolution of asteroids, e.g., it is relevant for the
transport of meteorites and asteroids to the near-Earth region: 15 m/y
� 10−4 AU/My accumulates to a large change over the age of the asteroids.
From the point of view of orbit determination, there are only a few and so
far exceptional cases where effects of this class are relevant to fit an orbit
of an asteroid. This is because the secular perturbations are typically a few
percent of the instantaneous thermal emission accelerations. Thus for an
orbit determination with a data span shorter that an orbital period they are
very small, and anyway less relevant than the short period perturbations
due to both direct radiation pressure and thermal emission.

The exceptional cases are asteroids with a very long observed arc; very
accurate observations may also be needed. As an example, the first asteroid
for which the Yarkovsky effect has been measured by orbit determination
is (6489) Golevka, which has been observed by radar during three sepa-
rate close approaches to the Earth; the second case was (152563) 1992 BF,
an asteroid with an exceptionally long arc due to attribution of precovery
observations (Chesley et al. 2003, Chesley et al. 2008). With the accumu-
lation of more data and also with the expected improvements in astrometric
accuracies, such cases will become much more frequent.

14.3 Indirect radiation pressure

The case of a satellite orbiting around a planet (and the Moon) is more com-
plicated because the planet is an additional source of radiation, ultimately
coming from the Sun but either reflected, or diffused, or absorbed and re-
emitted as infrared. Moreover, the planet casts a shadow which cuts off
direct radiation pressure from the Sun and also results in thermal transient
states of the spacecraft. This is a very complicated subject and our intent
is not to explain in detail how to model the corresponding non-gravitational
perturbation on the orbit, but just to list the different physical effects and
give an idea of their relative importance for an accurate orbit determination.

Reflected radiation pressure

A planet illuminated by the Sun also shows a linear combination of
absorption, reflection, and diffusion, with optical coefficients (14.1) which
may change significantly with the position on the surface. For example, on
the Earth the planetary albedo 1−α⊕ can be ∼ 0.8 for glaciers, fresh snow
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and clouds, ∼ 0.2 for the ocean and intermediate for a continental area with
clear sky, depending also on the vegetation cover. The ratio ρ/δ depends
also upon the texture of the surface, with a smooth lake mirror reflecting
more than a rough sea; there are phenomena intermediate between mirror
reflection and diffusion, resulting in a concentration of reflected light near
the perfect reflection direction, like in the sword of the Sun which can be
observed at sunset from the seashore and from an airplane over the sea.

Visible light

To accurately model the radiation pressure on a spacecraft from the visible
light reflected/diffused by a planet we would need a map of the optical
coefficients α, ρ, δ values on the entire surface, in the case with an atmosphere
with variable weather (as on the Earth and on Mars) including a full weather
map giving at least the average cloud cover with good spatial and time
resolution. Then the effect could be computed for each surface element,
and some numerical approximation of a surface integral over the portion
of surface visible from the spacecraft should be used. In practice, this has
never been done, and although it may become technologically feasible in the
future we have to question whether this would be useful.

To compute the orders of magnitude of the relevant effects, let us select
the case of the geodetic satellite LAGEOS. Radiation reflected/diffused from
the Earth has an instantaneous value of the order of 3 × 10−8 cm/s2 (see
Table 15.1 for comparison with other perturbations). The orbit of LAGEOS
was found to be affected by a mystery drag, that is an unexpected secular
decrease of the semimajor axis, corresponding to an average transversal
deceleration T ≈ −3 × 10−10 cm/s2; superimposed on this secular effect,
there were long periodic terms corresponding to values of T of the order of
10−10 cm/s2 and with periods up to three years. The secular term cannot
be explained by radiation pressure (possibly by the Yarkovsky effect and/or
drag), but the long period ones could be: this implies that a “brute force”
model of the radiation pressure of the Earth would need to have a relative
accuracy < 0.003 to roughly account for the long periodic terms of the
mystery drag.

Anselmo et al. (1983b) have shown that the radiation from the Earth
could well account for the long periodic perturbations to the semimajor axis
of LAGEOS by a semiquantitative argument, in which what matters is the
angle between the orbital plane of LAGEOS and the terminator plane
through the Earth’s center of mass and orthogonal to the Sun’s direction.
Neglecting topography, the intersection of the terminator plane with the
Earth’s surface is the line along which either sunrise or sunset takes place.

When the satellite orbit is crossing the terminator plane, e.g., with a
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ground track crossing from day to night, the radiation pressure from the
illuminated portion of the Earth is pushing from behind the spacecraft and
increasing the semimajor axis. After the true anomaly of the satellite has
increased by � π, there is another terminator plane crossing, this time with
the ground track crossing from night to day, thus a push from the front
and a decrease of the semimajor axis. If these two spikes of T were exactly
equal and opposite, there would be no contribution to T . However, one of
the two terminator crossings is in the Northern hemisphere, the other in the
Southern one with a much larger proportion of low albedo ocean area; if one
of the two is with the ground track on a region experiencing summer, the
other is in winter, with increased cloud cover. Thus there is unbalance and
a long periodic perturbation, having as the main angular arguments the Sun
mean longitude λ� and LAGEOS longitude of the node Ω, thus the main
effects have periods between 156 and 1050 days, in qualitative agreement
with the frequency spectrum of the mystery drag.

Infrared radiation

The thermal emission from the planet is regulated by the same heat equa-
tion (14.9), thus a solution for the thermal emission can be computed in the
spherical surface approximation. However, unlike the asteroid case of Sec-
tion 14.2, it is not possible to average over a revolution of the planet, because
this period can be longer than the orbital period of the spacecraft; also the
lag in the temperature maximum after the time of maximum illumination
can be comparable to the satellite orbital period.

The average temperature T0 results in isotropic emission which has the
same effect of a change in the mass of the planet. The main contribution to
the infrared radiation pressure perturbations arise from the first harmonic
T1; note that T1 � T is a reasonable approximation for a planet such as
the Earth, but fails for the Moon and even more for Mercury. For an ac-
curate model, the absorption α cannot be assumed to be constant; even
on dark bodies like the Moon and Mercury there are comparatively bright
surface features. Again the total effect of infrared radiation pressure needs
to be computed as an integral over the portion of surface visible from the
spacecraft.

The conclusion is that infrared radiation pressure can be modeled some-
what more easily than visible radiation pressure from the planet, because
the surface behavior is less sharply variable, but still this can be a suitable
model to simulate the effect, not an accurate model.
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Eclipses

A planet, or anyway a large body, prevents sunlight from reaching a shadow
cone: when the spacecraft is in the full shadow, it experiences an eclipse
of the Sun, during which there is no direct radiation pressure from sunlight
(Milani et al. 1987, Section 5.4). This effect is important because the av-
erage transversal component T of the direct radiation pressure force is not
zero when the orbit plane is such that eclipses occur and the orbital eccen-
tricity is not zero. It is possible to compute semianalytically the effect on
the semimajor axis (Aksnes 1976).

The full shadow is surrounded by a region of penumbra; e.g., the diameter
of the Sun is 2◦ as seen from Mercury, and a Mercury orbiter with an orbital
period of a few hours experiences penumbra for a few tens of seconds just
before and after the full shadow.

For orbits undergoing eclipses, the assumption of Section 1.1 that the
right-hand side of the equations of motion is differentiable may fail. In
practice, the direct radiation pressure acceleration may go from its full value
to zero (and vice versa) in a very short time span, that of the penumbra
phase. Since this time span for abrupt change can be shorter than, or
comparable to, the step size of the numerical integrator used to propagate
the orbit, numerical instabilities may occur. Indeed, they have been detected
in numerical experiments with space debris.

For large A/M , of the kind which can occur in small space debris, the
overall effect of eclipses, combined with other perturbations, can accumu-
late to very large values; the consequence is a very significant increase
of the risk of impact on active satellites by high relative velocity debris
(Valk and Lemaitre 2007).

14.4 Drag

Drag is caused by the direct interaction of the spacecraft with matter, as-
sumed to be neutral (molecules). It is a resistive force, opposite in direction
to the spacecraft velocity with respect to the average atmosphere

Fv = −1
2

CD A ρ |v|v (14.12)

with ρ the density of the atmosphere, A the cross-sectional area orthogonal
to v, the velocity relative to the atmosphere, and CD the adimensional drag
coefficient (or aerodynamic coefficient), which is in general of the order
of unity (Milani et al. 1987, Chapter 6).

It is already clear from eq. (14.12) that very accurate modeling of drag is
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not possible. The main unknown parameter is the density ρ, changing both
in space and in time. The dependence upon the distance from the geocenter
r can be described with moderate accuracy by an exponential model:

ρ(r) = ρ0 exp
(

r0 − r

H

)
,

where ρ0 = r(r0) and H is the scale height over which the density decreases
by 1/ exp(1). This equation gives the solution for an isothermal column of
gas in equilibrium with its own weight (Boltzmann law), and is a valid
approximation when the temperature undergoes little change with height,
as it happens in some high atmospheric layers (above 250 km). In practice,
the scale height changes with height, and ρ0 can experience variations by an
order of magnitude or more as a result of solar and geomagnetic activity, on
top of the changes driven by the solar illumination.

The computation of CD is very complicated; when electromagnetic effects
come into play, as a result of the charged particles in the ionosphere, the
negative charging of the spacecraft surface may result in a coefficient CD

larger by one order of magnitude than the values typical of the neutral
atmosphere (Milani et al. 1987, Section 6.3).

The atmosphere rotates with the Earth, more or less rigidly, thus the
velocity v does not coincide with the inertial velocity but is closer to the
velocity in a body fixed reference frame. Even the assumption, contained in
eq. (14.12), that the drag force is along the direction v̂ is a simplification,
because for some spacecraft shapes there could be a significant lift effect,
e.g., for large panels oriented at an angle = π

2 with respect to v̂.
In conclusion, although drag forces have been the first non-gravitational

ones to be included in models of satellite orbits (King-Hele 1964), in state-of-
the-art satellite geodesy it is necessary to assume they are either measured by
some on-board instrumentation (accelerometer), or compensated (drag free
probe), or removed from the problem by using satellite navigation systems;
see Chapter 16. They have to be taken into account when solving for the
rapid orbital decay of low satellites and space debris, and in the planning of
satellite geodesy missions whose lifetime is limited by orbital decay.

14.5 Active spacecraft effects

In an active spacecraft the energy from the Sun absorbed by the outer
surface is processed in several ways before being re-emitted in different forms.
Moreover, the internal temperature distribution is actively controlled by
heaters, coolers, radiators, and by the dissipation of heat resulting from
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energy consumption. The thermal conditions (both the stationary states
and the transients between them) are typically predicted with finite element
algorithms, measured by on-board thermometers, and controlled by heat
pipes and feedback loops activating heaters and variable surface radiators.
All the clever methods used by aerospace engineers to maintain the on-
board devices within their operational temperature range result in a more
and more difficult task to model the thermal emission acceleration.

In practice, a model of the external surface temperatures with the required
accuracy is never available.5 This is even more the case when the external
conditions are extreme, e.g., in the cold of the outer Solar System exploration
probes and in the heat of the interior planet orbiters (see Chapter 17).

Radio wave beams

An active spacecraft needs to transmit to a ground station, by generating
a directional radio wave beam; another possibility is a radio wave beam for
radar, thus pointed to the planetary surface. Thus a fraction of the power
α Φ� A absorbed through the surface is converted into electrical power, a
fraction of which is used to generate radio waves. Both conversions having an
efficiency less than unity, the power actually emitted as radio waves is a small
fraction of the absorbed power, a few per cent. Nevertheless, the emitted
beam has a direction different from the Sun and may contribute significantly
to the secular along-track effect T (Milani et al. 1987, Section 5.3).

Possible solutions

If the accuracy of the orbit determination requires to take into account ther-
mal emission and other subtle effects depending upon the spacecraft struc-
ture and activity, there are only two solutions. Either the non-gravitational
perturbations are not modeled, but measured by accelerometers (see Chap-
ter 16), or they are described by a set of empirical parameters to be solved
with the orbit. The accelerometers are more suitable for the large and
rapidly variable non-gravitational perturbations of the Mercury orbiters (see
Chapter 17). In the cold and slowly variable conditions of the outer Solar
System cruise phases, few parameters can describe the non-gravitational
perturbations over a long arc. Two examples of the latter approach follow.

In (Bertotti et al. 2003a) the interplanetary orbit of the Cassini mission
had to be modeled very accurately during a time span of a few weeks, during
a superior conjunction, to determine the post-Newtonian parameter γ (see
5 Engineers care much less about the surface temperature, provided the most extreme heat is

avoided, especially in the solar cells.
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Sections 6.6 and 17.5). The spacecraft was in a stationary state during the
interplanetary cruise, with constant attitude and thermal state. Thus the
non-gravitational acceleration (including both direct radiation pressure and
thermal emission) over the observation arc time span used in the experiment
could be modeled by a constant vector. The experiment was very successful
(with an estimated RMS(γ) � 2 × 10−5) because of the extremely accurate
tracking and of the simple operations mode of the spacecraft.

In (Olsen 2007) the orbit of the Pioneer spacecraft, while navigating be-
yond Saturn in an orbit escaping from the Solar System, has been solved
assuming a constant perturbing acceleration directed towards the Sun. The
interpretation of this “Pioneer anomaly” has been the subject of some con-
troversy, but Olsen convincingly argues that a minor anisotropy (� 0.03 of
the isotropic term) in the thermal emission from the radioisotope power gen-
erator can account for the estimated 8× 10−8 cm/s2 acceleration. The time
span of the data is not enough to discriminate between a constant acceler-
ation and one decaying exponentially with the radioactive material (with a
known half life of 87 years), but some indications of decay have been found.

The only way to prove that the effect is indeed due to non-gravitational
perturbations, rather than to “anomalous gravity” of whatever origin, is
to test the orbits of celestial objects with very different area-to-mass ratio
and orbiting in the same region. Wallin et al. (2007) solved for the orbits
of the best observed trans-neptunian objects adding a parameter to model
the “Pioneer anomaly”: if it were due to gravitational perturbations, by the
equivalence principle it should also affect bodies of diameter > 100 km. They
found a value for the unexplained radial acceleration an order of magnitude
smaller than the Pioneer value, consistent with zero at the 1 RMS level, and
inconsistent with the Pioneer value at the 5 RMS level. Thus the “Pioneer
anomaly” is non-gravitational, and it should be due to thermal emission.

Maneuvers and leakages

It must not be forgotten that accurate orbit determination cannot be done
on a spacecraft performing maneuvers, not only orbit control maneuvers,
but also attitude control ones. Even when the attitude controlling torques
are applied by using two thrusters acting in parallel and opposite direc-
tions, the amount of impulse from them cannot be balanced with very good
accuracy; for the order of magnitude of this effect, see (Milani et al. 1987,
Section 7.2). There are only two methods to control the degradation of orbit
determination due to maneuvers, and they have to be chosen before, at the
mission planning stage.
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One method is to estimate, during the mission analysis study, how often
the maneuvers have to be performed, and how much they affect the or-
bit. This is comparatively easy for the orbit maneuvers (Milani et al. 1987,
Section 7.1), but it is not trivial for the attitude maneuvers. A space mis-
sion with a requirement for a very accurate orbit determination needs to
use methods different from thruster activation to control attitude, such
as reaction wheels, and the time span after which thruster activation is
required for the unloading of the reaction wheels needs to be carefully
predicted.

The second method is to agree, in the mission design phase, on a constraint
on the time interval between maneuvers, and then use a multi-arc approach
(see Chapter 15), with the arcs beginning and ending at the maneuver times.
Still there is a requirement that the times are known.

Another similar problem is due to gas leaks from the thrusters. Even when
the valves controlling the activation of the propulsion system are nominally
shut, small leaks are difficult to avoid. The problem is that such leaks might
be so small that the spacecraft designers do not worry about them, and still
the impact on the orbit determination accuracy is significant. For example,
a gas leak of hydrazine by an amount of 100 g per year might not be a
problem from the point of view of fuel consumption, nevertheless with the
gas at a temperature of 200 K on a spacecraft with mass M = 500 kg it
would result in an acceleration of 4 × 10−7 cm/s2.

14.6 Case study: asteroid orbiter

The main conclusion which should be drawn from the discussion of the
intricacies of non-gravitational perturbations modeling is a simple advice: do
not do it. If possible, a mission requiring very accurate orbit determination
should be designed in such a way that its performance does not depend upon
the accuracy, reliability, and stability with time of the non-gravitational
perturbation model. However, there is a class of space missions for which
this advice cannot be followed: the asteroid orbiters, whose purpose includes
an extremely accurate orbit determination of the asteroid.

To understand why there could be the need to do this, please refer to
Chapter 12. The basic idea is that we may need to deflect the orbit of
an asteroid, which is predicted to impact our planet at some time in the
foreseeable future, a few tens of years from now. Alternatively, we may
wish to demonstrate that the technology to take such a defensive action is
available, to be used if and when it may become necessary; this was the main
goal of the space mission study Don Quixote, first performed on behalf
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of the European Space Agency (ESA) in 2002, and later updated both by
internal ESA and industrial studies.6

Don Quixote was intended as a two-spacecraft mission, with one compo-
nent, Sancho, orbiting around the target asteroid with the necessary comple-
ment of instruments to allow for an extremely accurate orbit determination,
of both the spacecraft asteroid-centric orbit and the asteroid heliocentric
orbit. The second component, Hidalgo, would arrive later and impact the
asteroid at the largest possible relative velocity, thus transferring a signif-
icant amount of linear momentum and changing the heliocentric orbit by
an amount which could be measured by Sancho. The purpose was to test
this simple kinetic method of deflection and learn how effective is the
transfer of linear momentum.7

Photo-gravitational symmetry

The Don Quixote method of deflection is attractive because it appears to
be simple, not requiring new technologies (unlike other methods which have
been proposed). However, there is a technology which needs to be demon-
strated: non-gravitational perturbation modeling and/or determination. To
understand this, we need to appreciate the orders of magnitude. Let us
assume the target asteroid has a roughly spherical shape, with diameter
2 R = 300 m and density 1.3 g/cm3, thus a mass m � 18 × 106 tons. If
Sancho has a roughly circular orbit at a distance r = 10 R, the acceleration
due to gravity from the asteroid is g � 5.4 × 10−5 cm/s2, while the direct
radiation pressure from the Sun is f � 1.8 × 10−5 cm/s2 (we are assum-
ing A = 20 m2 and M = 500 kg), thus the perturbation approach used in
Section 14.1 is a rough approximation. To use an analytical formula as a
tool to find the appropriate orders of magnitude, we need to find an exact
solution to the photo-gravitational problem as a function of both f and g;
we are neglecting the differential attraction from the Sun.

We assume that the spacecraft motion takes place in a plane orthogonal
to the direction ŝ to the Sun, that is parallel to the asteroid terminator
plane. Let us assume only three accelerations are acting on the spacecraft
in a rotating reference system: the gravitational monopole attraction g,
the radiation pressure acceleration f , and the centrifugal acceleration ω2r,
where ω is the angular rate around an axis parallel to ŝ passing from the
6 The Don Quixote project is not yet an approved mission, with a firm budget, thus it may or

may not be implemented in the next decade.
7 Because of the linear momentum carried away by the ejecta from the crater excavated by

Hidalgo, the linear momentum transferred to the rest of the asteroid should be more than that
carried by the impactor, but to estimate a priori how much more is very difficult.
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ω2

g = 5.4 e−5 cm/s2

f = 1.8 e−5 cm/s2
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r = 1500 m

1580 m
h = 500 m
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r

Fig. 14.1. For an asteroid with 300 m diameter, the simple two-body model of the photo-
gravitational symmetry results in a very large displacement of the orbit plane with respect to the
asteroid center of mass. The orbit plane does not even touch the asteroid!

asteroid center of mass, and r is the vector orthogonal to this axis pointing
to the position of the spacecraft. Let h be the vector parallel to ŝ between
the asteroid center of mass and the plane in which the spacecraft asteroid-
centric orbit lies. We look for a relative equilibrium solution, stationary in
the frame rotating with angular velocity −ω ŝ, such that ω2 r + g + f = 0.
The components of the gravitational acceleration g along r and along h
have to be balanced by centrifugal and radiation pressure accelerations (see
Figure 14.1)

g = − G m

(r2 + h2)3/2 (r + h), −ω2 r = − Gm

(r2 + h2)3/2 r, f =
Gm

(r2 + h2)3/2 h.

These equations have an exact solution for every h provided f, m change as

f(h) = ω2 h; m(h) = m(0)
(
1 + h2/r2)−3/2

,

where m(0) is the mass corresponding to h = f = 0.
In this simplified model, the circular solution of relative photo-

gravitational equilibrium is valid for every value of r. In reality this so-
lution does not exist for r smaller than the asteroid radius R because of the
shadow, and becomes a poor approximation when r becomes comparable to
the radius of the asteroid sphere of influence; then the differential gravita-
tional attraction from the Sun becomes important.8 For intermediate values
of r, e.g., in the range 3 R ≤ r ≤ 20 R, it is a useful first approximation.

The geometry of the orbit and its velocity are unchanged, since r and
ω2 = G m(0)/r3 are independent of h. Thus the value of h is not observable
by measuring the range and range-rate from Earth; the asteroid center of
8 The photo-gravitational equilibrium point exists, as analytical continuation of the Euler

collinear equilibrium in the restricted three-body problem (Simmons et al. 1985). The circular
orbits above are very close to the Lyapounov periodic orbits around this equilibrium.
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mass position (CoM), which is not observable directly, is shifted by −h. The
implication is that, in this approximation, if the list of parameters to be
solved includes the asteroid CoM position, the quantity f , and the asteroid
mass m, then the normal matrix is degenerate. These parameters cannot
be solved at once, whatever the set of range and range-rate observations,
and this is independent of the measurement accuracy. This exact symmetry
is called the photo-gravitational symmetry. The only solution is to
assign a priori constraints to f or h: either f is determined from a radiation
pressure model, or h is measured by some local observation of the asteroid,
e.g., from images of the asteroid taken from the spacecraft.

The implications for Don Quixote are apparent from a simple order of
magnitude computation. For the nominal asteroid and spacecraft discussed
before, h = f/ω2 � 500 m. A relative error of 0.1 in the model for radiation
pressure on the spacecraft would imply an error in estimating the position
of the asteroid CoM of � 50 m. Estimation of the position of the CoM of
the asteroid from the images should give a smaller error, taking into account
that such a small asteroid is expected to have a rather uniform density. Still
an error of the order of R/10 � 15 m would be unavoidable. What matters
is that such an error would be much larger than the error in determining
the position of Sancho with state-of-the-art tracking from the Earth, which
could have submeter accuracy in range.

The above discussion is strongly simplified with respect to a realistic case,
in which the shape of the asteroid is irregular, thus its gravity field contains
significant low degree spherical harmonics, and the asteroid is in a helio-
centric elliptic orbit, thus f is not constant. In reality the task of finding,
from images of the asteroid, where the CoM is, would be far from trivial,
but would need to be included in a complex orbit determination problem,
in which the orbit of the asteroid, the orbit of Sancho, the rotation state
of the asteroid, and some harmonics of its gravity field would appear as fit
parameters. Nevertheless, the order of magnitude estimate is applicable,
and there is indeed a limit at a few tens of meters in the possibility of de-
termining accurately the asteroid-centric orbit, thus also the asteroid orbit
from tracking of the Sancho orbiter.

Deflection by impact and its measure

Let us suppose the impactor Hidalgo has a mass of 400 kg and a relative
velocity (with respect to the target asteroid) of 10 km/s. Then, even assum-
ing that the linear momentum is transfered to the asteroid without gain due
to ejecta, the asteroid changes its velocity by 0.02 cm/s. For an asteroid
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with semimajor axis a = 0.9 AU this implies a change in a, depending upon
the angle θ between the direction of the velocity change and the heliocentric
velocity, of � 1.8 cos θ km. This results in a change in the mean motion,
accumulating an along-track drift of −56 cos θ m/day. Thus the inaccuracy
in the determination of the asteroid position, due to radiation pressure on
Sancho, does not prevent a measurement with good relative accuracy, say
0.01 or better, of the deflection by continuing the tracking for weeks after
the Hidalgo impact.

However, there is another element in the problem, namely non-
gravitational perturbations on the orbit of the asteroid. The assumed as-
teroid has an area-to-mass ratio A/M � 4 × 10−5, thus β � 2.7 × 10−9 (see
Section 4.6) and radiation pressure acceleration � 6 × 10−10 cm s−2. As a
result, its semimajor axis changes by � 4 cos θ′ m/day, where θ′ is the angle
between the direction ŝ and the heliocentric velocity. Thermal emission is
somewhat smaller, but more difficult to be modeled. Thus the main term
of the error budget of the deflection measurement is neither the range mea-
surement error nor the error in modeling/measuring the radiation pressure
on Sancho, but the error in modeling the non-gravitational perturbations on
the orbit of the asteroid. For the best performance of a Don Quixote class
mission, to model accurately direct radiation pressure and thermal emission
effects on the asteroid is a requirement.

The above is not necessarily an argument against the Don Quixote style
deflection experiments. As shown by Chesley (2006), in the real case of
the asteroid (99942) Apophis which could impact the Earth in 2036 (see
Section 12.6), it might be possible neither to exclude, nor to predict with
certainty that impact unless a much better model of the Yarkovsky effect is
available for that asteroid. As pointed out above, there is no way to measure
the Yarkovsky effect in a short time span; what is required is to follow an as-
teroid with a very accurate tracking, allowing us to fit the non-gravitational
acceleration, represented as a time series (possibly as polynomial interpo-
lations), for an entire orbital period of the asteroid, to directly determine
the average along-track acceleration. This could be done with a Sancho-class
spacecraft orbiting around Apophis for an orbital period of the asteroid. The
conclusion of this phase of the mission could allow us to predict without un-
certainty either the occurrence or the impossibility of an impact, allowing
for a Hidalgo spacecraft to perform the deflection if necessary.
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MULTI-ARC STRATEGY

One of the main assumptions used in Chapter 1 is that the dynamical model
is deterministic. This assumption can be too optimistic for celestial bodies
small enough to be significantly affected by complex non-gravitational in-
teractions. Both drag and radiation pressure can be so poorly known that
the errors in the dynamical model can affect the predictions by amounts
exceeding, by orders of magnitude, the measurement accuracy.

When this is the case, there are three possible ways out, including the
multi-arc strategy presented in this chapter. The others are the use of
on-board accelerometers, see Chapters 16, 17, and the empirical parameter-
ization of the unknown effects, see Section 14.5.

The multi-arc approach gives up the attempt to model the orbit of the
spacecraft, over the entire time span of the observations, in a deterministic
way with a single set of initial conditions. The time span of the observations
is decomposed into shorter intervals and the set of observations belonging
to each interval is called an observed arc, or just an arc. Each arc has its
own set of initial conditions, as if there were a new spacecraft for each one
of them. This results in over-parameterization, with the additional initial
conditions absorbing the dynamical model uncertainties. Other parameters,
e.g., in the dynamic model, can also be local to a single arc.

15.1 Local–global decomposition

The mathematics of the multi-arc method is a generalization of that of the
marginal uncertainties discussed in Section 5.4. We use the notation [a;b]
to indicate the stacking of the two column vectors a and b to form a longer
vector. The vector of all fit parameters x = [g;h] is split into a vector g
of global fit parameters and a vector h of local fit parameters. The
observations and the corresponding residuals are partitioned into n arcs by

311
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some criterion, usually by time, in such a way that ξ = [ξ1; ξ2; . . . ; ξn]. The
vector h is also split into vectors hj , one for each arc. Each subvector hj is
associated to the arc with the same index, in such a way that the residuals
from one arc do not depend upon the local parameters of another arc

B
(j)
g =

∂ξj

∂g
, B

(j)
hi

=
∂ξj

∂hi
= 0 for i = j. (15.1)

As a result the contributions of each arc to the overall normal equation are

Chihj =(B(i)
hi

)T B
(j)
hj

= CT
hj hi

= 0 for i = j

Cghi =(B(i)
g )T B

(i)
hi

= CT
hig , Cgg =

n∑
i=1

(B(i)
g )T B

(i)
g = CT

gg

giving to the normal matrix C an arrow-like structure (here we show the
simplest case with two arcs only):

C =
(

Cgg Cgh

Chg Chh

)
=

⎛
⎝ Cgg Cgh1 Cgh2

Ch1g Ch1h1 0
Ch2g 0 Ch2h2

⎞
⎠ .

The contributions to the right-hand side D of the normal equation are

D = [Dg ; Dh] = [Dg ; Dh1 ; Dh2 ; . . . ; Dhn ],

with Dg = −
n∑

i=1

(B(i)
g )T ξi, Dhi = −(B(i)

hi
)T ξi.

Then the normal equation can be written as a system of two vector equa-
tions: {

CggΔg + CghΔh = Dg

ChgΔg + ChhΔh = Dh

which can be solved as discussed in Section 5.4, by first solving for Δh in
the second equation; the matrix Chh is block diagonal, thus it is possible to
invert each diagonal block Chj hj separately

Δhj = C−1
hj hj

[
Dhj − Chj g Δg

]
, (15.2)

implying that the corrections to the local parameters hj are not the same
as would be obtained by ignoring the interaction with the global parame-
ters, expressed by the submatrix Chj g . These expressions for Δhj can be
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substituted into the first equation

[Cgg −
n∑

j=1

Cghj C
−1
hj hj

Chj g ] Δg = Cgg Δg = Dg −
n∑

j=1

Cghj C
−1
hj hj

Dhj

(15.3)
giving the solution for the global parameters

Δg = Γgg [Dg −
n∑

j=1

Cghj C
−1
hj hj

Dhj ], Γgg = [Cgg ]−1 . (15.4)

The corrections Δg and the covariance Γgg are in general not the same
as in a separate global-only correction (that is, Cgg = Cgg and Γgg = C−1

gg ).
The corrections to the local parameters are found by substituting Δg from

(15.4) into (15.2):

Δhj = C−1
hj hj

[
Dhj − Chj g Γgg Dg + Chj g Γgg

n∑
k=1

Cghk
C−1

hk hk
Dhk

]
.

(15.5)
Their covariance can be deduced by comparing with the formula giving the
correction by means of the full covariance matrix

Δhj = Γhj hj Dhj + Γhj g Dg +
∑
k �=j

Γhj hk
Dhk

,

thus the covariance matrix of the local parameters hj is

Γhj hj = C−1
hj hj

+ C−1
hj hj

Chj g Γgg Cghj C−1
hj hj

and the marginal uncertainty for hj is larger than in a separate local solution.
There are correlations between the local and the global parameters:

Γhj g = −C−1
hj hj

Chj gΓgg .

One advantage of the multi-arc decomposition is that the normal matrix
has large portions of zeros, thus it is not necessary to store the full matrix
in memory. However, the covariance matrix is in fact full, that is

Γhj hk
= C−1

hj hj
Chj g Γgg Cghk

C−1
hk hk

for all j = k, is in general not zero (unless either Chj g or Cghk
is zero). In

practice it may not be necessary to compute the correlations between the
local parameters of different arcs, and anyway the full covariance matrix
does not need to be stored.1

1 Given the rapid increase in the RAM size, reducing memory usage is important only for very
large problems; e.g., with 2008 technology, full matrices 20 000× 20 000 can be stored in RAM.
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Selection of the arc decomposition

Although the formalism of the previous section could be applied to an arbi-
trary decomposition of the observations into arcs, it is most useful when the
decomposition is suggested by the distribution of the observations in time.

A satellite of the Earth is observable by each ground station only when it
is above the local horizon (actually with an elevation > 15−20◦ above the
horizon, to avoid an increased error in the tropospheric correction). The time
span over which this happens is called a pass. For an interplanetary probe,
the rotation of the Earth controls the pass duration (see Section 17.2). If only
a few stations can be used, the observational data are naturally concentrated
in the time spans of the passes, with significant gaps in between.

Let us assume that the time span of a pass is of order dt, while the time
span between two passes is on average Δt. If the uncertainty in the dynamic
model is ΔF and T is its along-track component (see Section 14.1), we use
either eq. (14.5) or (14.7), depending upon the relationship between dt,
Δt, and the orbital period P . Anyway the spacecraft position uncertainty is
� 3/2 (dt/2)2 T over one pass (assuming initial conditions at the center of the
arc) and accumulates to � 3/2 (Δt)2 T during the gap between observations.
If Δt � dt it may well be the case that the orbit can be modeled in a
deterministic way during one pass, but not over an arc encompassing two or
more passes. In this case the multi-arc approach can be effective.

15.2 Case study: satellite laser ranging

An important example of orbit determination where the local–global decom-
position provides an effective strategy is satellite laser ranging (SLR).
There are satellites, such as those of the LAGEOS class, including LA-
GEOS I (launched 1976) and LAGEOS II (1992), on high orbits well above
the neutral atmosphere. These are passive spacecraft (without power) and
covered with corner cubes to reflect back the laser pulses from the ground
stations (see Figure 15.1).

The observations consist of ranges between some ground station, equipped
with laser and timing equipment, and the satellite. The range is measured
by the two-way light travel time divided by twice the speed of light c. It is
corrected for the average distance between the reflecting corner cubes and
the center of mass of the satellite, for the change in speed of light in the
troposphere and for the finite time spans between transmission of the pulse,
reflection, and reception at the ground station. The last correction is simpler
than the one used for interplanetary tracking, see Section 17.2, because of
the much shorter light times, allowing us to use just low-order corrections.
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Fig. 15.1. The LAser GEOdynamics Satellite LAGEOS II, launched by a NASA/ASI collabo-
ration from the Space Shuttle in 1992. It has 426 retroreflectors, each 3.8 cm in diameter.

A satellite on a high orbit, like the LAGEOS ones, has two to six passes per
day on each station.2 Modern SLR ground stations can generate thousands
of pulses per pass (at a frequency � 10 Hz or more), out of which a good
fraction can result in a range measurement. The accuracy in range has been
at the few cm level since the 1980s. The total data set collected over one
year contains of the order of m � 105 or more observations per station, with
few tens of worldwide operational stations. Thus the accumulated data set
is huge, and the ranges have a relative accuracy of the order of 1 part in 109.

With such a dataset it is possible to solve for a large set of parameters,
including dynamical parameters (to be selected taking into account the or-
ders of magnitude discussed in the next section), the initial conditions, and
kinematical parameters. The latter include at least the station coordinates,
but also their time derivatives, the Earth rotation parameters, and more. It
is possible to solve for all the parameters at once, but such a fit would be
subject to rank deficiency and to the effects of systematic errors.

15.3 Perturbation model

The LAGEOS class satellites were designed with a very low area-to-mass
ratio A/M = 0.007 cm2 g−1 and launched in a very high orbit (� 6000 km
above the Earth’s surface), thus at the time of the launch of LAGEOS I
2 Also depending on whether the station can operate in full daylight, or just at night.
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it was believed that the non-gravitational perturbations would be a minor
issue in the orbit determination. However, thanks to the extreme accuracy
of the laser tracking, it was soon discovered that the first LAGEOS was
experiencing a mystery drag, that is an empirical acceleration solved
to allow a good fit to the data, with an average transversal component
T � −3 × 10−10 cm/s2. The cause of this deceleration is now interpreted
as a combination of the Yarkovsky effect, charged particle drag, Earth’s
reflected radiation pressure, and eclipse effects (Bertotti and Iess 1991).

A useful exercise is to list the perturbations acting on the spacecraft
orbit, in order of decreasing acceleration. For the LAGEOS class satel-
lites, Table 15.1 lists the main perturbations down to � 1 × 10−10 cm/s2,
from (Milani et al. 1987, Section 2.2) and (Bertotti et al. 2003b, Section
18.3). The non-gravitational perturbations contain the small quantity
AΦ�/(Mc) = FP R, those due to the shape of the Earth contain the coeffi-

cients J�m =
√

C
2
�m + S

2
�m . The tidal terms contain the mass of the Moon

M�, the Sun M�, and the planets, the dynamic Love coefficient k2, and the
distances. Radiation pressure and drag have specific coefficients CR and CD .

Table 15.1. Accelerations in cm/s2 acting on a LAGEOS class spacecraft.

Cause Formula Parameter Uncertainty Value

Earth monopole GM⊕/r2 = F0 GM⊕ 2 · 10−9 2.8 · 102

Earth oblateness 3F0 J20 R2
⊕/r2 J20 7 · 10−8 1.0 · 10−1

Earth triaxiality 3F0 J22 R2
⊕/r2 J22 2 · 10−5 6.0 · 10−4

Moon tide 2GM�r/r3� GM� 1 · 10−7 2.1 · 10−4

Sun tide 2GM� r/r3
� GM� 4 · 10−10 9.6 · 10−5

Harmonic (6,6) F0 7J66 R6
⊕/r6 J66 5 · 10−4 8.8 · 10−6

Solid tide 3k2 GM�R5
⊕/(r3�r4) k2 2 · 10−3 3.7 · 10−6

Radiation pressure CR FP R CR 2 · 10−2 3.2 · 10−7

Relativistic Earth F0 GM⊕/(c2 r) GM⊕ 2 · 10−9 9.5 · 10−8

Earth albedo CR FP R (1 − α⊕)R2
⊕/r2 α⊕, CR 0.2 3.4 · 10−8

Venus tide 2F0 GM♀ r/r3♀ GM♀ 3 · 10−7 1.3 · 10−8

Indirect oblation 3J20 GM� R2
⊕/r4� GM� 1 · 10−7 1.4 · 10−9

Thermal emission 4/9FP R α ΔT/T α, ΔT 0.5 4 · 10−10

Atmospheric drag CD Aρ v2/(2M) CD , ρ 1 1 · 10−10

The list is long and contains exotic effects, like the main relativistic cor-
rection due to the mass of the Earth, and indirect oblation, the perturba-
tion of the vector from the Earth–Moon center of mass to the center of the
Earth, with respect to its two-body value, due to the oblateness of the Earth
affecting the orbit of the Moon. However, what really matters is not the
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size of the accelerations (last column in the table), but the product of the
acceleration size and its relative uncertainty (the column before the last). In
this way we find that there are no significant uncertainties3 down to a level
of the order of ΔF ≤ 10−8 cm/s2. Below that level there is an accumulation
of uncertain accelerations around a level of order 10−9 cm/s2.

The analysis should focus on the perturbing accelerations with secular ef-
fects on the semimajor axis. The acceleration of the mystery drag appears as
comparatively small fractions of thermal emission and Earth-reflected radi-
ation pressure, and also as significant asymmetries of the thermal emission.
An even smaller fraction of radiation pressure from the Sun may have effects
along-track quadratic in time, but this requires either subtle properties of
the eclipses or asymmetries in the optical properties of the two hemispheres
of LAGEOS. A full discussion of the solution to the mystery drag prob-
lem is beyond the scope of this book: we shall just assume that there is a
“modeling barrier” for the values of T of the order of ΔT � 10−10 cm/s2.

Thus, over the time span of a pass (dt � 2 × 103 s) the errors in orbit
propagations are ≤ 3/2 (dt/2)2 ΔF � 0.015 cm, while over the average
interval between passes, say Δt � 2 × 105 s, the propagation error can
be estimated by 3/2 Δt2 ΔT � 6 cm. In practice, the propagation error
is negligible with respect to the measurement error over one pass, and is
always significant over the time span between two passes, not to speak of
the effect over a longer arc. This suggests that the orbit of LAGEOS is a
very suitable case for a multi-arc orbit determination.

15.4 Local geodesy

The simplest application of the multi-arc method to LAGEOS is obtained
by assuming that the goal is to solve for the station positions (and possibly
motions due, e.g., to continental drift). If the arcs are shorter than the
orbital period (� 3 + 1/2 hours) and the measurement accuracy is of the
order of 1 cm, there is no need to solve for any dynamical parameter.

Thus the only global parameters g are kinematical, namely the coordi-
nates of the vector positions si, i = 1, y, of the y stations contributing ranges
to the satellite. These coordinates are in a body-fixed frame, rotating with
the Earth in a rigid body approximation.4 This is appropriate for an orbit

3 The uncertainty in the zero degree coefficient G M⊕ is mostly a problem of scale definition; the
uncertainty within a consistent solution is much less.

4 The deformations of the Earth due to tides have to be accounted for, with the Love coefficients
h2 and l2 describing the elastic response of the Earth and the lag angle due to tidal dissipation.
An even more complicated effect is the oceanic loading, inducing displacements (mostly
vertical) due to the oceanic tide for stations located near some oceanic shore.
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determination using only data from a limited time span, such as one year
or less. For a solution based on data from a longer time span, the station
velocities vi need to be added to the global parameters, accounting for both
local motions and continental drift effects.

The only local parameters hj , with j = 1, n, to be solved for each of the n

arcs, are the initial conditions vectors zj , of dimension 6, containing some set
of orbital elements; we shall assume Cartesian coordinates are used, that is
hj = [pj(tj); ṗj(tj)] consists of three position and three velocity coordinates
at some epoch tj (chosen at the center of the time span of the j-th arc).

Selection of the passes and data preparation

To reduce the observed arcs to a short time span, we need to use a local
network of SLR stations. Milani et al. (1995) present an experiment based
on the European SLR stations ranging to LAGEOS I. The European stations
are so close that an arc containing all the passes included in the same orbit
lasts only about half an hour. When the arc contains only 1−2 passes,
the information is not enough to solve for the initial conditions; the matrix
Chj hj is not invertible, or is very badly conditioned.

Thus we select as arcs only the intervals spanning passes over three Eu-
ropean stations in the same orbit, but there are still enough data: � 1000
arcs with 4.3 million ranges from seven European stations to LAGEOS I in
1985–1991. In these arcs with ≥ 3 passes the network of ground stations
behaves like a rigid body, providing a reference system for the orbit.

When the observations are closely spaced in time, the outliers can be iden-
tified by fitting all the data to smooth functions of time, such as polynomials
with a degree selected to capture the useful information. The outliers can be
identified by the size of the residuals, without the need for corrections (see
Figure 5.4). After a number of outlier removals, the value of the kurtosis
can be used as control; outlier removal should stop when the kurtosis is ≤ 3.
A reliable procedure for a large data set can be found in (Milani et al. 1995,
Section 4); the fraction of outliers was 2.4%.

After achieving a satisfactory polynomial fit, it is expedient to compress
the data by generating normal points. They are predictions based on the
polynomial model, at times selected to represent the useful information. For
example, if the raw data points are uniformly spaced at equal intervals of
time of size Δt, the normal points can be computed by a new sampling at
intervals k Δt, with the k such that ν = 2π/k Δt is less than the highest
frequency contained in the signal generated by the parameters being solved.
If the sampling of the raw data is non-uniform, the distribution of the times
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of the normal points needs to account for the data gaps. Thus the obser-
vations were compressed in � 46 000 normal points, which have to be used
as observables, but they are correlated, that is they have a full covariance
matrix. Following Section 5.3, the normal matrix of the normal points has
to be computed as the inverse of the covariance and to be used as weight
matrix W . It is often necessary to add a component to account for the errors
which are systematic, or at least with much lower frequencies.

15.5 Symmetries and rank deficiencies

A difficulty in this approach is rank deficiency. We shall use the method of
Chapter 6: we find an exact symmetry in an approximate problem, then we
show that an approximate symmetry remains in the full problem. We will
also use a different approach looking directly for approximate symmetries.

To find an exact symmetry, we use as approximate equation of motion the
geocentric two-body dynamics for LAGEOS; it has the group of symmetry
SO(3) of the rotations around the Earth’s center of mass. That is, for
each initial conditions hj = [pj(tj); ṗj(tj)] and each matrix R ∈ SO(3) the
solution [p′

j(t); ṗ
′
j(t)] with initial conditions h′

j = [Rpj(tj);R ṗj(tj)] can be
obtained by rotating the original solution, that is considering [p′

j(t); ṗ
′
j(t)] =

[R pj(t);R ṗj(t)]. However, when the observation equation is included, the
SO(3) symmetry is broken. The observables are the distances ri between the
satellite and the i-th station on the rotating Earth; if S(t) is the rotation
matrix between the reference system body fixed with the Earth and the
inertial system in which the orbit of the satellite is computed, then ri(t) =
|pj(t) − S(t) si|. If all the stations are also rotated by R, that is s′i = R si,
then the distance

ri(t) = |pj(t) − S(t) si| = |R pj(t) − S(t) R si|

is exactly invariant if and only if S(t)R = R S(t).
Let us assume that the rotation of the Earth is uniform and with a fixed

axis: S(t) = RΩ⊕t, where the angular velocity Ω⊕ is a constant angular
velocity. Then R commutes with S(t), for every t, if and only if R is a
rotation around the same axis Ω̂⊕. Note that this exact symmetry applies
also to an Earth with non-spherical shape, provided it is axially symmetric
(zonal harmonics only) with respect to the rotation axis. By inspecting
Table 15.1 we find that this symmetry is very accurate even in a realistic case,
the largest perturbation (due to the Earth’s equatorial ellipticity) having a
relative size of a few parts in 10−6 of the monopole. Moreover, by rotating
the orbit by an angle ε in longitude (λ → λ + ε) the C22, S22 perturbations
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change only by a fraction 2ε, thus the orbit difference with respect to the
exact symmetry is much smaller than 1 cm, even for rotation angles affecting
the station positions by a length εR⊕ of hundreds of meters.5

We conclude that at least one constraint needs to be applied to avoid an
approximate rank deficiency: it can be obtained by fixing the longitude of
one station, or better the longitude of the barycenter of the local network. In
fact, numerical experiments on short-arc orbit determination with distances
only (Milani and Melchioni 1989) show that there is an approximate rank
deficiency of order four, that is three more than what is explained by the
symmetry discussed above.

There is no way to find other exact symmetries, in particular to recover
the SO(3) symmetry group, unless we assume not only a spherical Earth
but also that the Earth-fixed network of stations is non-rotating (S(t) is
constant in time). However, this is by no means an approximation, since
the distances have relative changes of order unity with respect to the real-
istic case. Nevertheless the rotation of the Earth, although it affects the
observables ri(t), has a reduced effect over one arc which is short enough.
This occurs because the time span over which the orbit has to be propagated
within a single arc (dt/2 � 1 000 s) is short with respect to one day, that is
the Earth rotation angle over the time dt/2 is just η = 0.073 radians.

We look at the orbit determination problem in a body-fixed reference
system,6 in which the ground stations are not moving (besides the tidal and
continental drift effects). Then the equation of motion contains the apparent
Coriolis and centrifugal accelerations (see Section 16.1):

Fapp(pj(t), ṗj(t)) = −2Ω⊕(t) × ṗj(t) − Ω⊕(t) × [Ω⊕(t) × pj(t)] .

Let R be a small rotation, that is R = I + Z + · · ·, where Z is the infinitesi-
mal rotation by small angles O(ε), represented by an antisymmetric matrix
(ZT = −Z), and the dots stand for O(ε2) terms. In the spherical Earth
approximation, the equation of motion changes only by

Fapp(Rpj(t), R ṗj(t)) − Fapp(pj(t), ṗj(t))

= −2Ω⊕(t) × Z ṗj(t) − Ω⊕(t) × [Ω⊕(t) × Z pj(t)] + O(ε2).

The main centrifugal term can have a significant along-track component.
It can be estimated in size as ≤ Ω2

⊕ pj ε, thus its orbital effect over dt/2 is

5 There are other perturbations due to the non-uniform rotation of the Earth, but they can be
shown to be even smaller, see (Milani et al. 1987, Table 2.4).

6 There is an alternative argument, by computing explicitly the commutators RS − SR of the
rotations group, but the following approach is simpler.
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estimated by ≤ 3/2 a η2 ε, where a is the semimajor axis of LAGEOS, to be
compared with station displacements ε R⊕. With a � 2 R⊕ we find that the
ratio (orbit change)/(stations displacement) is estimated as ≤ 3 η2 � 0.015.
For example, for ε � 10−7 the stations are displaced by 60 cm and still the
rotated orbit is distorted by no more than 1 cm.

The Coriolis term for a circular orbit has zero along-track component,
thus it affects much less the orbit of LAGEOS; it can be estimated as ≤
2 Ω⊕ ṗj ε, and the orbital effect over dt/2 cannot exceed 3 e η n dt/2 ε a, with
e, n the eccentricity and mean motion of LAGEOS, which is even smaller
than for the centrifugal term. Another acceleration breaking the symmetry
for rotations displacing the pole is due to the Earth’s oblateness. It changes
by a relative amount ≤ 2 ε, thus for ε = 10−7 the acceleration difference is
� 2×10−8 cm/s2, again not important over 1000 s. Thus we have identified
approximate symmetries, although the corresponding exact symmetries (for
η = 0) are not an approximation of a realistic problem.

The last approximate symmetry is well known to specialists of geodesy
(both satellite and ground based): the geodetic network formed by the SLR
stations can experience a lift, i.e., a translation away from the center of the
Earth, by an amount d, provided the initial positions pj(t0) of the satellite
are also translated in the same direction (for all j). Then the change in the
two-body acceleration on the satellite is � 2 (G M⊕/a2) (d/a). For example,
for a 1 m lift, d/a � 10−7 implies |ΔF0| � 4 × 10−5 cm/s2. Taking into
account that the monopole gives a small contribution to the along-track
perturbation T , the change in the orbit over 1000 s is much less than 1 cm.

Constraints and rigidity of the network

The four constraints required to avoid approximate rank deficiencies could
be described as fixing to their initial value the three coordinates of the
barycenter of the stations network, and inhibiting the rotations around the
geocenter–barycenter axis.7 They can be obtained with the a priori obser-
vation formalism of Section 6.1. Let s(0)

i , i = 1, y, be the initial values of
the station coordinates; the barycenter coordinates are observed with un-
certainty σ

y∑
i=1

si − s(0)
i

y
= N(0, σ2I),

that is, the probability density of the deviations from this a priori constraint
is a Gaussian distribution with zero mean and covariance matrix σ2I (I is
7 In ground based geodesy, where the full SO(3) symmetry applies, a traditional method is to

fix two coordinates of one station and the longitude of another one.
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a 3 × 3 identity matrix). The corresponding normal equation (6.3)
y∑

i=1

si

y σ2 =
y∑

i=1

s(0)
i

y σ2

is added to the normal equation from the real observations. To inhibit
rotations around the barycenter b =

∑
s(0)
i /y we use an a priori constraint

1
K

y∑
i=1

b × (s(0)
i − b) · (si − b) = 0

with RMS = σ and K =
∑y

i=1 |b × (s(0)
i − b)|; the normal equation is

1
K

y∑
i=1

b × (s(0)
i − b) · si =

1
K

y∑
i=1

b × (s(0)
i − b) · b.

To impose a tight constraint, a small value of σ is used, e.g., σ = 0.1 for
coordinates expressed in cm, thus the constraints have to be satisfied at the
mm level. To assess the relevance of the approximate rank deficiency, the
constraint is weakened to the meter level, with σ = 100.

Stability test

In (Milani et al. 1995) the stability of the solution is tested by splitting the
data set (ranges from seven stations during one year) into two halves, formed
by the odd and even arcs, numbered in order of time. With σ = 0.1, the RMS
of the differences between the station coordinates in the two “half” solutions
is 1.63 cm. The component of rigid motion contained in the differences has
RMS = 0.39 cm; this is due to the two remaining degrees of freedom in the
group of rigid motions, the tilt along axes passing from the barycenter b.
The instabilities which are deformations of the network have RMS = 1.58
cm, thus the constraints are effective. If the constraints are relaxed with
σ = 100, the RMS of the coordinate differences grows to 72.5 cm.

The accuracy of such a local geodetic network, obtained many years ago,
was such that in a solution with seven years of data (1985–1991) the same
“two halves” stability test gave a RMS of the station position differences of
0.58 cm, with only 0.19 of RMS tilt. The differences in the stations’ velocities
had RMS = 0.32 cm/year, of which only 0.06 of tilt. In a solution including
station velocities as global parameters, the number of constraints has to be
increased to eight, inhibiting a translation velocity of the barycenter and a
uniform rotation around the geocenter–barycenter axis.
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SATELLITE GRAVIMETRY

In this chapter we deal with the problem of solving for the gravity field of
a planet without degradation of the results due to non-gravitational pertur-
bations. This problem is severe for low orbits around a planet with an at-
mosphere, like the Earth, because atmospheric drag sharply increases when
the orbit altitude decreases. Even around planets without atmosphere, like
Mercury, low orbits are much more affected by reflected and infrared radia-
tion pressure from the planet’s surface (see Section 17.3). Thus we need to
estimate how low the spacecraft needs to orbit, to be sensitive to the portion
of the gravity field we wish to measure. Let us suppose the spacecraft is in
a nearly circular orbit at an altitude h above the surface of a planet with
equatorial radius R. The potential due to a spherical harmonic of degree �

and order m is

GM

r

(
R

r

)�

Y �mi

times the coefficient C�m for i = 1, S�m for i = 0 (see Chapter 13). Since
r = R + h, if we assume that h coincides with the spatial scale of the
harmonic, that is half of the smallest spatial wavelength, from the Kaula
expansion (13.32) we have h = πR/� and(

R

r

)�

=
(

1 +
h

R

)�

=
(
1 +

π

�

)−�
, lim

�→+∞

(
1 +

π

�

)−�
=

1
exp(π)

� 1
23.14

,

that is, for h equal to the spatial scale, the ratio of the monopole potential to
the harmonics with high degree � is essentially independent of � and is close
to the irrational number exp(π). For higher orbits, say h = k πR/�, the
ratio becomes exp(π)k and the gravity signal sharply decreases as k grows.

If we assume the gravity field is measured from the potential, good sen-
sitivity can be obtained by keeping the altitude of the order of the spatial
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scale. One way to increase sensitivity is to measure derivatives of the poten-
tial: for the second radial derivative the sensitivity is increased by a factor
(� + 1)(� + 2)/2; however, for � = 100 this only corresponds to k � 2.7.

In conclusion, if a gravimetry mission targets a short spatial scale, just a
few times the scale height of the atmosphere, drag is a critical problem. For
example, for the Earth � � 200 (scale � 100 km) can be reached only with
equipment to neutralize the effect of drag. Such equipment is described,
from the point of view of its impact on the orbit determination, in the next
section.

16.1 On-board instrumentation

We list the instruments which could be used to neutralize the effect of non-
gravitational perturbations, with their advantages and problems.

Navigation systems

On the surface of the Earth, navigation instruments provide accurate posi-
tioning, in the reference system defined by a satellite constellation, such as
GPS, GLONASS, Galileo. The versions used on satellites in low Earth orbit
provide information equivalent to a position every few seconds.

The position of the low satellite is not measured instantaneously: the
phases received from the navigation satellites can be fitted to a reduced
dynamics orbit, the solution of a simplified equation of motion, contain-
ing as free parameters initial conditions and some empirical acceleration, to
absorb both the non-gravitational effects and the inaccuracies in the gravity
field model. That is, spacecraft positioning is an orbit determination prob-
lem with an overwhelming amount of data, such that very short arcs (a few
minutes) can be used and still tightly constrain the orbit. In practice, with
state-of-the-art space-borne GPS navigators,1 we can assume that the orbit
of a low satellite is known to a few centimeters at all times.

There are different ways to include the navigation data in the orbit deter-
mination. One way is a brute force method: a least squares fit with all the
observables from navigation and the other instruments, and the equation of
motion containing all the parameters (geopotential coefficients, initial condi-
tions, and more). This can be used, but the same accuracy may be achieved
by using methods with lower computational complexity, see Section 16.3.

More efficient is a kinematic method, in which the orbit determination
1 The European navigation system Galileo should be even more accurate, but is not yet opera-

tional.
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is split into two steps. In the first step, the precision orbit determina-
tion (POD), the time series of spacecraft positions is determined by using
the navigation data only. Since the non-gravitational perturbations are ab-
sorbed by the empirical accelerations, in the POD there is no need to use the
data from on-board accelerometers. In the second step the other parameters
are determined by using as observables the spacecraft positions and/or the
measurements of the other instruments.2 The uncertainty of the positions
from the POD has to be taken into account, but this is not the main source
of error. Anyway, it is possible to iterate, by using the improved gravity
field and the calibrated accelerometer data (see below) from the second step
for the POD, replacing the empirical accelerations.

Accelerometers

An accelerometer measures the relative acceleration of a sensitive element
with respect to the instrument rigid frame. The sensitive element position
needs to be controlled by a feedback loop, in such a way that it does not un-
dergo any large-scale motion with respect to the frame; the amount of these
corrections, actuated by electrostatic forces, is the actual measurement.

Two technologies are currently used for accelerometers. In the electro-
static accelerometer the sensitive element is a conductive mass levitating
inside a cavity of capacitors. One sensitive element is enough to measure
a vector acceleration. The main limitation is that the levitation is hard to
be maintained with the same equipment on the ground and in space, thus
testing on the ground is limited and expensive space-borne tests are needed.3

The alternative is a spring accelerometer, in which the sensitive element
is free to move only along an axis, with a spring as restoring force and
electrostatic forces as controls. Three separate units, with orthogonal axes,
measure an acceleration vector, but this complexity is somewhat compen-
sated by the ease of testing on the ground: each unit can be tested in a
micro-gravity environment by orienting it normal to the local gravity field.

In fact, there are two main limitations to the use of accelerometers in a
very accurate orbit determination. First, an accelerometer anyway provides
only a relative measurement; the electrical quantities corresponding to a zero
acceleration are simply not known, and ground tests would provide values

2 It could be argued that the second step is not orbit determination, since it solves for everything
but the orbit, still it complies with the definition of the problem as given in Chapter 1.

3 For example, CHAMP, the first scientific mission with a promising electrostatic accelerometer,
was plagued by a partial failure.
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different from those applicable in space.4 Thus accelerometers measure only
changes, over limited time spans, of the accelerations. Second, there is no
way to build an accelerometer which does not act also as a thermometer,
that is the reading is a function of both acceleration and temperature.

In conclusion, spring accelerometers are robust and reliable, but they do
not reach the same accuracy as the electrostatic ones because they are gener-
ally more temperature sensitive. Thus at present the electrostatic accelerom-
eters are used for the top accuracy satellite gravimetry missions around the
Earth, while the spring ones are used for the gravimetry of other planets.

Apparent accelerations

The purpose of orbit determination for satellite gravimetry is not to deter-
mine the position of any specific point on the spacecraft, but to locate some
point for which we can write an equation of motion, containing the dynamic
parameters: the equation for the spacecraft center of mass (CoM) x is

ẍ = ∇U(x) + ang, (16.1)

where U is the gravitational potential and ang the non-gravitational ac-
celeration. The non-gravitational forces act on the external surface of the
spacecraft, and assuming the accelerometer frame is attached to a rigid
spacecraft structure including the surface, the accelerometer cage is accel-
erated by ang , the sensitive element does not feel this acceleration, and the
instrument measures the apparent acceleration −ang .

However, the accelerometer cannot be placed exactly at x, but at some
position displaced by the vector Y from the CoM in a spacecraft fixed refer-
ence system; let y = RY be the same displacement in the inertial system,
with R a time-dependent rotation. The accelerometer velocity in an inertial
frame is

ẏ = Ṙ RT y + R Ẏ = ω × y + R Ẏ

with ω the angular velocity (Arnold 1976). The inertial acceleration is

ÿ = [ω × (ω × y) + ω̇ × y] + 2ω × R Ẏ + R Ÿ = arot + aY (16.2)

where the part inside square brackets is the rotation acceleration arot

of the accelerometer, and aY is the acceleration due to a possible drift
of the CoM in the spacecraft frame, due to either movable parts or fuel
consumption. Both are applied by solid state forces on the accelerometer
cage.
4 An accelerometer is not an inertial guidance system; it can also act as inertial guidance, but

only with errors larger by orders of magnitude.
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Moreover, the accelerometer sensitive element is accelerated by the grav-
ity field ∇U(x + y), while the cage is accelerated by the gravity field at the
CoM: thus the accelerometer also measures a gravity gradient acceler-
ation. This acceleration can be computed, neglecting O(|y|2) terms, from
the matrix of second derivatives of the gravitational potential U :

agg(y) =
∂2U

∂x2 (x) y.

Thus there are differential accelerations, functions of y, while ang does not
depend upon y, and the accelerometer measures the combination

aacc(y) = −ang − arot(y) − aY + agg(y) (16.3)

where the minus sign applies to accelerations acting on the cage, plus when
acting on the sensing element directly. The equation of motion of the CoM
using the accelerometer is obtained by substituting (16.3) into (16.1):

ẍ = ∇U(x) − aacc − arot(y) − aY + agg(y). (16.4)

It is possible to compute the equation of motion for the accelerometer
x + y by adding eq. (16.4) to (16.2), with cancellation of arot,aY

ẍ + ÿ = ∇U(x) − aacc + ∇ (∇U)(x) y = ∇U(x + y) − aacc (16.5)

with the surprising result that, when using the data from the accelerom-
eter as a term in the equation of motion, the equations of motion for the
accelerometer are simpler than those for the CoM.5

The above presentation is somewhat simplified: care needs to be taken of
three points. First, the tracking instruments are neither in x nor in x+y, but
have some other reference point (e.g., the antenna phase center) displaced
by a vector Z in spacecraft axes from the CoM. If the tracking data are
spacecraft positions, they refer to x + z (where z = RZ) and have to be
corrected by subtracting z − y; on the other hand, Z − Y is better known
than Z, since the position of the CoM inside the spacecraft structure may
depend upon the poorly known content of fuel in the tanks. If the tracking
data are range and/or range-rate, corrections containing z − y and ż − ẏ,
respectively, have to be applied, and the requirements on the knowledge
of Z − Y and Ż − Ẏ are severe for state-of-the-art tracking systems (see
Chapter 17).

Second, for an electrostatic accelerometer there is really a single sensitive
reference point, the CoM of the levitating mass. For a spring accelerom-
eter, there are three separate sensitive points Yi, i = 1, 2, 3, with mutual
5 This method was suggested by H.-R. Schulte of EADS-Astrium in 2007.



328 SATELLITE GRAVIMETRY

distances of several cm which cannot be ignored. The solution is to select a
conventional reference point Y in the accelerometer structure, then correct
the readings of the three channels for the displacements R (Yi − Y), with
Yi − Y well known (and presumably constant).

Third, this discussion assumes that the rotation state, not just R but also
ω and ω̇, are well known. In reality there will be a contribution from the
knowledge of these quantities in the error budget. Experience shows that
the corresponding requirements on the attitude control subsystem need to
be clearly specified at an early stage in the design of the space mission.

Calibration

The relationship between the measured electrical quantity q and the actual
acceleration aacc for each accelerometer sensitive element is of the form

aacc = a q + b T + c + · · · (16.6)

where a is the scale calibration, T the local temperature, b the thermal
sensitivity, c the absolute calibration, and the dots stand for the nonlin-
ear effects, typically negligible provided the accelerometer dynamic range is
not exceeded. The above formula is for an instrument with a single sensitive
axis; for a three-axis accelerometer there are three such formulae.6

The scale calibration can be measured by a known acceleration: inter-
nal calibration with an ad hoc electrostatic force and external calibration
with, e.g., the planet monopole gravity gradient, or the apparent force from
spacecraft rotation. The thermal sensitivity can be measured on the ground.

The most critical calibration is the absolute one, for which a dedicated
calibration device and/or procedure would be very difficult. Thus one key
issue of this chapter will be the a posteriori calibration, that is the de-
termination of the values of c as part of the orbit determination problem.
The only information we have on c is that it changes slowly with time, but
how slowly we do not know yet: every ground based laboratory is affected
by too much acceleration noise, thus tests in space are the only possibility.7

We conclude that c needs to be determined as three constants for each ob-
served arc, possibly even as coefficients of interpolation models for each arc,
depending upon the arc time span, see Section 17.6 and 16.3, respectively.

6 In this discussion we are neglecting the problem of the alignment of the sensitive axes of the
accelerometer; this error source has to be taken into account in a complete error budget.

7 At the time this book is being written, these space-borne tests have not been completed yet.
However, the Fourier analysis of long-term ground tests on spring accelerometers indicates that
the stability time-scales could exceed one day.
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Drag free missions

A drag free spacecraft uses an accelerometer coupled to the orbit control
subsystem with a feedback loop, such that the measured accelerations aacc

are controlled to zero by thrusting. Ideally, the sensitive element of an
electrostatic accelerometer should follow a purely gravitational orbit. The
discussions above, on the measurements not being at the CoM and about
calibration, make clear that this ideal condition can be realized only roughly.
In particular it is difficult to obtain the absolute calibration in real time.

Nevertheless, an approximate drag free system may be necessary. A high
spatial resolution gravimetry mission around the Earth needs to orbit where
drag is significant, and two problems arise. The first is the mission duration,
which could be cut short by orbital decay unless the drag is compensated by
thrust: a solution is to have an orbit which is drag free, but only on average,
e.g., impulsive thrust used when necessary.

The second problem is the accelerometer saturation: to ensure linearity
of the calibration (16.6), the acceleration measured needs to be controlled,
and this is a requirement applicable at all time, implying a drag free system
with continuous thrust. The measured aacc does not need to be controlled
to the accelerometer sensitivity, but below the saturation level, at least 103

times larger. For a low satellite experiencing significant drag, an effective
strategy is to have continuous thrust along a single direction, opposite to
the velocity, controlling the low-frequency portion of the deceleration. Lift
and radiation pressure accelerations (acting in different directions) do not
need to be controlled, and the motion of the accelerometer reference point
follows eq. (16.5), with aacc including the apparent force due to thrust.

Gradiometers

A very powerful instrument for gravimetry missions is a gradiometer, di-
rectly measuring some second derivatives of the potential. It contains a
number of accelerometers, electrically coupled in such a way that the differ-
ences of the accelerations are directly measured. A gradiometer is particu-
larly effective when coupled to a navigation system; then the orbit can be
considered known, and the differences in acceleration are linearly related to
the gravity gradient matrix ∂2U/∂x2, e.g.,

d2U

dr2 =
∂U
∂r (x + d/2 r) − ∂U

∂r (x − d/2 r)
d

+ O(d/r), (16.7)

where the O(d/r) term is typically below the instrument sensitivity.
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The calibration of gradiometers is not very different from that of ac-
celerometers, with one equation (16.6) for each differential measurement,
where the temperature T is replaced by the difference in temperature be-
tween the two units. Thus the temperature needs to be controlled only in
a relative sense: if all the accelerometers are contained in a well-insulated
container, the thermal correction can be much smaller. The gradiometers
are used to increase sensitivity to short spatial scales; the time-scale over
which the signal changes can be short, e.g., for � � 200 the shortest period
is < 30 s, but the longest period from the � − 2p = 2 term is > 2700 s, see
(13.38). Thus the critical issue is the a posteriori calibration, discussed in
Section 16.3.

Apparent accelerations

The question is how many accelerometers, and how many independent mea-
surements of components of ∂2U/∂x2, are to be used. The apparent accel-
eration arot is linear in the positions yi of the accelerometers, and so is agg .
Thus no matter where the CoM is, the differential apparent accelerations
can be computed by using the relative positions yi − yj . If the gravimeter
can be considered as a rigid body, there is no Coriolis term. The centrifugal
apparent acceleration can be obtained from a potential W :

−ω × [ω × (yi − yj)] = ∇
[
1
2
|ω|2 |Π(yi − yj)|2

]
= ∇W

where Π is the projection on the plane orthogonal to the angular velocity
ω. Then the matrix of second derivatives measured by the gradiometer is
in fact ∂2(U + W )/∂x2. U satisfies the Laplace equation, thus

Δ(U + W ) = ΔW = 2|ω|2. (16.8)

If the knowledge of the rotation state (from the attitude control subsys-
tem) is good enough, each differential measurement can be corrected for the
centrifugal term.8 However, the gradiometer could be better in measuring
rotation than the attitude control; then the accuracy would be limited by
the errors in the centrifugal term. A solution is to measure all three diagonal
components of ∂2(U + W )/∂x2 and compute |ω|2 from the formula above:
this requires two accelerometers along each of the three orthogonal axes,
and leaves only two diagonal components independently measured.

8 There is also a term −ω̇ × (yi − yj ), requiring knowledge of the angular acceleration.
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16.2 Accelerometer missions

An accelerometer mission for gravimetry could have just two instruments:
an accelerometer and a navigation system. The orbit determination can be
decomposed into two steps. The first is the POD, using the phases from the
navigation satellites and solving for the satellite positions (with empirical
accelerations absorbing the dynamic model errors).

There are several ways to define the second step. We shall use as an exam-
ple the method used in a simulation of one such mission, the Italian Space
Agency project SAGE (Albertella and Migliaccio 1998). In this approach,
the second step uses as observables the three coordinates of the satellite, and
has to solve for a large set of parameters, including the harmonic coefficients
and the initial conditions for each arc. The latter are also determined by the
navigation, but with an accuracy insufficient to solve for the gravity field.

A simple formula to estimate the maximum arc time span uses the
assumption that the accelerometer measurements only contain noise, with
known constant spectral density ΔA. If xT is the coordinate of the satellite
position x in the transverse direction at the extremes of an arc time span P

RMS(xT ) = 2 ΔA (P/2)3/2 .

For example, if ΔA = 3 × 10−6 cm s−2 Hz1/2 and the positions from
navigation have an RMS > 1 cm, the random error due to accelerometer
noise is less, even for arcs covering an orbital period (5560 s for h = 400 km).
This is an optimistic estimate of the orbit errors due to the accelerometer
(calibration errors have a larger effect), giving just an upper bound for the
arc time span. Still, this estimate has severe implications; e.g., for a six
months simulation, with arcs of 1/2 orbital period, there are � 5500 arcs,
thus � 33 000 initial conditions. If the target is to solve for the 8281 coef-
ficients up to degree and order 90, the dimension of the normal/covariance
matrix is � 41 300. This strongly suggests the decomposition of the normal
equation.

Local–global decomposition

The local–global decomposition of Section 15.1 can be used as a solution to
the problem of a too large normal matrix. If we can neglect the a priori
correlation between initial conditions of different arcs, this method allows
us to invert � 5500 matrices Chihj which are just 6 × 6 matrices if the lo-
cal parameters are just the initial conditions, somewhat larger, e.g., 9 × 9,
if accelerometer calibration parameters are also estimated for each arc. Then
the solution for the harmonic coefficients g are obtained by inverting a
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matrix 8281 × 8281, by using eq. (15.4). Also the equations for g can be
decomposed by resonant decomposition, see Section 13.5.
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Fig. 16.1. A simulation of the SAGE gravimetry mission. The smooth curves plotted as RMS
values (log10 scale) for each harmonic degree �, from top to bottom on the left, are: the expected
values of the coefficients according to the Kaula rule; the formal RMS of the results taking into
account local–global correlations; the same RMS neglecting them. The jagged curve is the actual
error with local–global correlations, the dotted one the actual error neglecting them.

The SAGE simulations provided a numerical experiment on the quanti-
tative aspects of the local–global decomposition. The covariance matrix of
the global parameters Γgg is not the inverse of the normal matrix Cgg , but
of another matrix Cgg defined by eq. (15.3), which is obtained by subtract-
ing from Cgg a matrix with non-negative eigenvalues. This implies that
Cgg < Cgg , by which we mean that for each vector Δg

Δg · Cgg Δg ≤ Δg · Cgg Δg.

Now Δg ·Cgg Δg = σ2 is a confidence ellipsoid for the global parameters g,
and the above inequality implies that the confidence ellipsoids with matrix
Cgg would be smaller (for the same σ). Ignoring the local–global correla-
tions, and replacing the marginal covariance matrix of g (for whatever local
parameters h) with the conditional covariance matrix of g (for h kept fixed)
gives an optimistic assessment of the accuracy of the results (see Section 5.4).
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Figure 16.1 shows the results of a simulation, for a six-month mission,
with and without the local–global terms Chj g . The difference between the
two cases is dramatic: neglecting the local–global terms gives an illusory
accuracy estimate, by more than two orders of magnitude in the RMS val-
ues. In this example, using the conditional covariance of g would give the
impression that the coefficients up to degree and order 90 can be estimated
with a S/N ratio > 10, while in fact S/N > 1 is possible only up to degree
� 60. Moreover, the actual error (difference between the ground truth value
used in the simulation and the obtained solution) is larger.

The SAGE simulations were simplified (the initial conditions were the
only local parameters), but the conclusions on the need of a full solution for
all parameters still stand. With more local parameters (for accelerometer
calibration) the local–global terms would have an even bigger impact.

16.3 Gradiometer missions

A gradiometer mission could have just two instruments, a navigation sys-
tem and a gradiometer, but the latter is large and complex; as shown in
Section 16.1, six accelerometers are required. Since at present electrostatic
three-axis accelerometers are used (ESA 1999), there are 18 accelerometer
channels, and the measurement procedure has a complexity which we are not
going to discuss. To allow for a self-contained discussion of the gravity field
solution with a gradiometer we use two simplifying assumptions. First, the
spacecraft position is determined by the navigation, in a POD independent
from the accelerometer data. Second, we assume that the differential mea-
surements from the accelerometer channels are summarized in independent
measurements of two out of three diagonal terms of ∂2U/∂x2, the effect of
apparent accelerations having been removed by pre-processing (the errors in
this procedure contribute to the error model). The gradiometer calibrations
are summarized as two slowly varying functions of time.

A basic choice is the organization of the gravimetry observations in one of
three possible ways. In a spacewise method the data points are ordered
by their position in space, in a reference frame rotating with the Earth; this
is a sampling of gravity around a geocentric sphere (a thin shell if the orbit
is almost circular). The advantage is that most of the gravitational signal to
be determined is also organized spatially, although there are time-dependent
signals due to tides and other deformations. In a timewise method the
data points are considered as a discretized time series. This is a less natural
way of looking at the static gravity: indeed, each spherical harmonic appears
as a sum of signals with different frequencies, by eq. (13.36). The advantage
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of the timewise methods is in the treatment of the gradiometer calibrations.
In a frequencywise method the time series of the gradiometer data are
Fourier transformed into the frequency domain: the effect of each spherical
harmonic is represented by a Fourier polynomial and the fit can be directly
performed in the frequency space. If each harmonic is solved independently,
the computational cost is low: this method is used in the mission design
phase, to convert requirements in the error spectrum of the gradiometer
into an error spectrum of the recovered gravity. However, the correlations
between the harmonics have to be taken into account sooner or later, see
Section 16.5.

These three approaches are equivalent for a perfect distribution of data.
With a spatial distribution uniform on a sphere and a time distribution
uniform over an unlimited time span there is a well conditioned one-to-one
correspondence between spherical harmonics, a linear subspace of the signal
as function of time, and its discrete spectra. However, such uniformities
are impossible in real missions, and there are superpositions between the
frequencies of the gravitational signal and the one of the calibrations.

We will thus follow the timewise approach for a second step of orbit de-
termination, in which the positions are assumed as given, that is with a
kinematic method. A significant advantage is that it is not necessary to
consider the positions from the navigation as observables, and is not neces-
sary to solve for the initial conditions, that is to recompute a more refined
orbit (as in the accelerometer mission case). The gradiometer measures di-
rectly the gravity potential, through some of its second derivatives, without
the intermediary of the orbit. The position time series is needed only to
assign the measurement taken at some time to a specific point in space.

The accuracy requirements for this positioning can be assessed by esti-
mating the third derivative of the potential; e.g., for the radial derivatives
and the monopole term, with a radial displacement by Δr � −10 cm

∂3U0

∂r3 = −3
r

∂2U0

∂r2 =⇒ Δ
∂2U0

∂r2 � ∂3U0

∂r3 Δr = −3
Δr

r

∂2U0

∂r2 � 5 × 10−8 ∂2U0

∂r2 ,

for an orbit at altitude h = 250 km. With a monopole gradient � 7 × 10−7

s−2, the change in the radial gradient is � 3 × 10−14 s−2, or 3 × 10−5 E
(in Eötvös unit: 1 E = 10−9 s−2). This is well below the sensitivity of the
current gradiometers, implying that, in the context of gradiometer missions,
the positioning provided by state-of-the-art navigation systems is accurate
enough to be used neglecting entirely its uncertainty.
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Gradiometer error models

To decide how to model the calibration functions, we need to follow three
principles of good practice. First, calibration models should be based on
some understanding of the measurement physics. Second, the error models
used in the simulations must contain non-random terms, to describe the un-
avoidable systematics. Third, the solutions should try to compensate for the
systematic errors, without using information on the specific functional ex-
pression of the systematics introduced in the simulation. We shall elaborate
on these three principles, by using a case study, the European Space Agency
mission GOCE, to be launched very soon,9 with the goal of determining the
Earth’s gravity field up to very high harmonic degree (ESA 1999).

The performance of gradiometers (also of accelerometers and satellite-to-
satellite tracking systems) is generally represented as a noise spectral density
S, a function of the frequency f . The measurement band is a frequency
interval [fm, fs] in which the noise spectral density S is minimum, e.g., for
GOCE fs = 1/10 Hz and fm = 1/200 Hz, with a requirement S ≤ 4×10−3 E
Hz−1/2 in the measurement band. The noise increases for frequencies > fs,
that is for short integration time; typically, the observations are taken with
sampling interval dt of the order of 1/fs. The Nyquist frequency fN =
1/(2 dt) needs to be ≤ fs to avoid aliasing from noise at higher frequencies.
S(f) increases again for frequencies < fm : a typical assumption is that the
increase is like 1/f . Thus the shape of S(f) is trapezoidal in a log-log plot.

However, this is a model for noise, and the most important error terms
are not noise. For example, the thermal signals are low frequency (the ac-
celerometers are thermally insulated) and have as forcing frequencies integer
combinations of the orbit mean motion n and of the Earth’s rotation fre-
quency Ω⊕. Unfortunately some of these appear also in the gravitational
signal, see eq. (13.32). An active thermal control might change the dom-
inating frequencies, but might also introduce some systematic signal with
another frequency.

Another source of systematics is the attitude control system: errors in
the estimation of R, ω, ω̇ appear as spurious signals in the measured gravity
gradient. Since the torques acting on the spacecraft attitude contain sig-
nals with frequencies n and n⊕, the rotation matrix R contains the same
frequencies, and some of these would alias with the gravity signal. The ac-
tive attitude control might suppress some of these frequencies, and again
introduce new ones, which should be included in the error model.

We use as example the simulation published by Milani et al. (2005d). The
random error component was simulated as uncorrelated Gaussian noise with

9 Added in proofs: launched on 17 March 2009.
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RMS = 0.004 E (Eötvös units, 10−9 s−2). This noise term was used to define
the formal covariance, that is the gravity gradient residuals are weighted
dividing by 0.004 E. The data simulation did include some systematic errors,
represented by a finite number of harmonics, with an amplitude growing as
1/f : a daily term (with amplitude of 1.73 E), “once per rev” and “twice per
rev” terms (with amplitude of 0.1 and 0.055 E), supposedly accounting for
thermal changes. A very long term drift (supposedly due to seasonal thermal
effects) had a period of one year and an amplitude of 18.6 E, decreased, with
respect to the f−1 law, by a factor 0.03 (supposedly an a priori calibration
by means of a temperature measurement accurate to � 2 × 10−3 kelvin).
Moreover, a term with period 1000 s and amplitude of 0.02 E, five times
the RMS of the noise component, was added to investigate the effects of
systematic errors due to other causes, such as the attitude control.

A posteriori gradiometer calibration

The simulation of Milani et al. (2005d) adopted a kinematic timewise
method, that is only the gravity harmonic coefficients g (e.g., 2012 − 4
coefficients for �max = 200) and the gradiometer a posteriori calibration
parameters h were fit to the gradiometer observations. The main issue is
the dimension of h: e.g., if two calibration parameters had to be solved for
each interval of � 200 s, then for a nominal eight month mission h is a
vector with ≈ 2 × 105 components. Note that, if the parameters h appear
linearly in the calibrations as functions of time, the least squares problem is
linear, although a very large one. To solve for > 100 000 parameters would
be a problem, not only for the computational load, but also for the bad
conditioning of the normal matrix.

The challenge was how to neutralize the systematics (by absorbing them in
the calibrations) with acceptable computational load and numerical stability,
and this without cheating; e.g., to solve for a finite number of sinusoids would
mean using the information on the systematics introduced in the simulation.
This would produce illusory results, not reproducible with real data, where
the systematic errors cannot have such a simple spectrum.

The time-dependent absolute calibration of the gradiometer, for each com-
ponent, can be represented as a linear combination of N suitable base func-
tions c(t) =

∑
ci bi(t). This is applicable only to the time span Δt of an

arc, which cannot be too long, both to keep low the number N of base func-
tions solved at once (to avoid computational complexity and instability) and
not to impose one specific functional representation of the absolute calibra-
tion. On the other hand, Δt cannot be too short: the calibration to be
removed has to be the low-frequency component, with frequencies below a
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calibration band upper limit fc well separated from fm . As an example,
the tests of Milani et al. (2005d) have used a calibration band with frequen-
cies below fc = 1/2000 Hz. Thus Δt, N , and the base functions bi have
to be selected to model an arbitrary signal in the calibration band f < fc;
spurious signals in the intermediate band with fc < f < fm are not removed.

The base functions bi must be such that the normal equation for the
calibration parameters hi of each arc i is well conditioned. After testing
different choices, including Fourier expansions and Chebichev polynomials,
Milani et al. (2005d, Section 2.3) concluded that a good choice was a base
containing a constant, a linear function of time, sine and cosine terms with
periods Δt/k for k = 1, . . . , K. To limit the removal of signal to the calibra-
tion band, K � Δt · fc. For example, Δt = 10 000 s, K = 5 are acceptable
choices. The total number of local parameters h for a simulation over eight
months, with Narc = 2000 arcs, was 2 (2K + 2) × Narc = 48 000.

Local–global correlations

Given the number of parameters to be solved, e.g., 40 397 global and 48 000
local, some decomposition of the normal equation is necessary. The first one
is the local–global decomposition of Section 15.1. The impact of the local–
global correlations on the results and their estimated uncertainty, discussed
in Section 16.2, also occurs in gradiometer missions. Only some of the global
coefficients, with low degree and order �, m, are severely affected.

The uncertainty estimated without the local–global terms is significantly
smaller than in the complete computation, especially for � = 2, 3, 6, 7, 8;
the difference is not significant for � ≥ 25 (Milani et al. 2005d, Figure 1).
For the Fourier component with k = 4 (frequency 1/2500 Hz) and the C20

harmonic (main frequency 1/2680 Hz), the local–global correlations (from
Γ�g) are � 0.2 (a significant effect does not require a very high correlation).
The actual error is consistent with the higher formal uncertainty, not with
the lower one.

The spherical harmonics with � < 25 generate gradiometer signals with
frequencies outside the measurement band, thus GOCE should not be used
to solve for them. The simplest solution is to include in g only the coefficients
of degree � ≥ 25. In this way the formal RMS is somewhat underestimated,
due to the correlations between the harmonics with � ≥ 25 and those with
2 ≤ � ≤ 24; this becomes negligible for � > 75. A better solution is to
use a collocation method, e.g., by adding a priori observations of the
harmonics with 2 ≤ l ≤ 24 weighted with the inverse of their covariance
matrix, as resulting from previous gravimetry missions.
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16.4 Resonant decomposition

To obtain the scientifically interesting results g, we need to compute Γgg =
(Cgg)−1, see eq. (15.4). To solve for coefficients up to a large degree, e.g., � =
200, the matrix is still very large. Thus we want to decompose the problem
into smaller ones; the solution of the normal equation (15.3) has to be found
as the limit of a sequence of independent differential corrections for subsets
of the g parameters. The simplest solution is solving for each coefficient
independently of the others, that is approximating Cgg with a diagonal
matrix: this would work if the observations were uniformly distributed on a
sphere, so that the different harmonics would be orthogonal, see Section 13.3.
This is not the case for any possible satellite orbit, as it is already clear
from Figure 13.1: if the orbit has an inclination I < 90◦ with respect to the
equator, the polar caps with latitude > I and < −I are never overflown.10

It can be shown that indeed the spherical harmonics are not orthogonal over
a latitude band (Albertella et al. 1999, Pail et al. 2001).

Colombo (1989) proposed that the normal matrix should be decomposed
by the value of the harmonic order m: the harmonics with the same m

share the same frequencies (13.37), thus they are more correlated. This
could work, but something better is possible, by using the Kaula expansion
of the geopotential perturbing function (Section 13.4) as a function of orbital
elements. Let us suppose that the orbit of the gravimetric satellite is exactly
resonant, in the sense of eq. (13.39), and that e is small, thus we can neglect
the q = 0 terms. Then the only frequencies in U�m , as a function of time
along the orbit, are: ν�mp0 = [(� − 2p) j − m k] μ. The same frequencies ap-
pear in all the partial derivatives of the potential, including the gradiometer
observables; this follows from (13.24) and (13.25). Two harmonics (�, m)
and (�′, m′) share some frequencies if and only if

k m′ = ±k m (mod j), (16.9)

a significant constraint, since for a low satellite j is larger than k by a
factor > 10. The signals from two harmonics with disjoint sets of frequen-
cies are orthogonal over an infinite time span. Thus we can define a res-
onant decomposition: the harmonics are reordered by remainder class
r = ±k m (mod j), with 0 ≤ r ≤ j/2, and the linear system (15.3) is

(M − N) Δg = Dg (16.10)

where M is the block diagonal part of Cgg , with off-diagonal terms only
10 For retrograde orbits with I > 90◦, the polar caps include latitudes > 180◦− I and < I −180◦.

Even for an exactly polar circular orbit, the sampling would not be uniform, and anyway other
rank deficiencies would occur, see Section 16.6.
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when row and column correspond to harmonics in the same remainder class.
The blocks are larger than in the decomposition by m, and still M−1 can
be computed block by block with acceptable computational load. In the
assumptions (13.39), e = 0, and an infinite observation time span, N = 0.
In practice, N is not zero, because none of these assumptions applies exactly
to a realistic case. If N is smaller than M , to solve the linear system (16.10)
we can transform it into a fixed point problem (Bini et al. 1988, Section 5.2)

M Δg = N Δg + Dg ⇔ Δg = M−1 N Δg + M−1Dg = P Δg + Qg

which can be solved by iteration

Δ(1)g = P Δ(0)g + Qg , Δ(2)g = P Δ(1)g + Qg , . . .

starting from an arbitrary initial guess Δ(0)g; if, in some matrix norm,
||P || < 1, the sequence Δ(k)g converges to Δ∗g solving the complete normal
equation. For an initial guess Δ(0)g = 0, Δ(1)g = Qg = M−1 Dg is the
solution with approximate inversion, the first step of a convergent iteration.

For GOCE, the exact value of the semimajor axis was not yet known at
the time of the simulation (ESA 1999, Section 6.2.4); it has been decided
later, by selecting an optimal ground track repeat period > 60 days, thus a
different resonant decomposition would be better. Anyway, a decomposition
corresponding to a resonance not too close to the nominal one, that is j =
31, k = 2, has been used to test the robustness of the method. The upper
part of Figure 16.2 shows the results for the gravity coefficients, and their
covariance, for the remainder class r = 1, which includes m = 15, 16, . . ..

The norm of P is small because the off-block correlations are small,
but there is no quantitative estimate, thus we cannot predict how
many iterations would be necessary for satisfactory convergence. In
(Milani et al. 2005d) there is a numerical test of the second iteration Δ(2)g:
this is possible only after a complete first iteration, 16 separate differential
corrections with r = 0, 1, . . . , 15, by performing a second iteration for some
remainder class. The upper plot of Figure 16.2 shows both the result of the
first and the second iteration, and the two curves are so close that most
points are superimposed. Albertella and Migliaccio (1998, Section 3.5.2)
report another numerical test computing explicitly, for the accelerometer
mission case, the off-block correlations and showing that they are < 0.01.

16.5 Polar gaps

In a solution for the geopotential coefficients up to a large degree �max, af-
ter controlling the local–global correlations (with an appropriate minimum
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Fig. 16.2. We plot as a function of the degree �: the gravity field signal (Lemoine et al. 1998),
the approximating Kaula rule, the formal uncertainty, and the actual error (estimate minus “true”
value used in the data simulation). Above: for the remainder class r = 1; the actual error is shown
for the first and the second iteration; the two curves are almost superimposed. Below: for the
r = 0 class, including the zonals, there is a large bulge such that both the formal and the actual
errors exceed the signal for degree � > 100. Reproduced with permission of Springer from Milani
et al. (2005d).
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degree �min), and after decomposing the normal matrix of the global pa-
rameters Cgg (see the previous section), some diagonal blocks are still very
badly conditioned. As an example, in Figure 16.2, lower panel, we show
the results for the remainder class r = 0 in a solution for 25 ≤ � ≤ 200.
The bulge in both the formal uncertainty, and in the actual error corre-
sponds to very high correlations among the zonal spherical harmonics. The
error/signal ratio reaches � 1 around � = 100, unlike the r = 1 case of the
upper plot. The analogous figure for �max = 90 would show a much lower
bulge.

Large RMS (and actual errors) occur in this remainder class only for
the zonals with m = 0; the other harmonics, with m = 31, 62, . . ., are
determined with error/signal ratio well below 1 for all �. The correlations
are significant only among the zonals, e.g., the � = 150 zonal has significant
correlations with all the even zonals, correlation 0.9999 with the � = 148,
and the � = 152 one. This is clear from the frequency analysis: for m = 0,
low e, νl0p0 = (� − 2p) (n + ω̇), hence the highly correlated zonals share the
same frequencies, consecutive even (or odd) � have only one frequency not
in common; in any case zonal harmonics with the same parity have some
frequencies in common, and are correlated.

Similar results are obtained for the remainder classes containing harmon-
ics with low m: e.g., for r = 2, that is for m = 1, 29, 33, . . . the error-to-
signal ratio reaches 1 around � = 90. For m = 7 the formal and actual error
curves still show the bulge at intermediate degrees, but the error-to-signal
ratio is below 1. These difficulties with the low m coefficients in GOCE were
known, by the designers of the mission (Aguirre-Martinez and Sneeuw 2003,
Figure 4), to be due to the polar gaps; the non-polar orbit of GOCE has
ground tracks with latitude neither above � 83.5◦ nor below −83.5◦.

Principal components analysis

Given the covariance matrix Γgg , or at least one of the blocks Γr
gg of the

resonant decomposition, we can perform a principal components analysis.
Let λ1 > λ2 > · · · > λs be the square roots of the eigenvalues of Γr

gg .
The corresponding unit eigenvectors Vj, j = 1, . . . , s, contain harmonic

coefficients and can be interpreted as gravity anomalies. For the r = 0 block
λ1, λ2 are not very different and significantly larger than λ3; in V1, V2

the components corresponding to harmonics with m = 0 are very small
(< 10−4), thus the harmonic functions with coefficients λ1 V1 and λ2 V2 are
essentially zonal harmonics, functions of latitude, e.g., in Figure 16.3 they
are represented as anomalies of the geoid. The anomalies are concentrated
on the two polar caps: λ1 V1 more pronounced on the South pole, λ2 V2 on
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Fig. 16.3. The gravity anomalies corresponding to the two principal axes of the confidence
ellipsoid (for σ = 1) represented by the corresponding geoid anomalies, as a function of latitude.
The vertical lines bound the latitude band covered by GOCE, the horizontal line is at 1 cm.
Reproduced with permission of Springer from Milani et al. (2005d).

the North pole. The size of the anomalies is huge with respect to the target
accuracy of GOCE, up to � 20 m on the poles; to understand this, it is
enough to compute one of the GOCE observables, e.g., the radial compo-
nent of the gravity gradient, for the anomalies λ1 V1 and λ2 V2. Although
the undetermined anomalies are not only on the polar caps, the signal for
latitudes between −83.5◦ and +83.5◦ is well below the noise of the GOCE
measurements.

Symmetry and degeneration

Why are the undetermined anomalies as large as shown in Figure 16.3, and
why does the situation become worse as the solution is pushed to higher �?

Typically, the origin of an approximate rank deficiency is due to a
“nearby” exact rank deficiency, in turn connected to a number of exact
symmetries, see Section 6.3. When the symmetries are broken, approximate
symmetries remain, and they result in an approximate rank deficiency.

The case of a gradiometer mission is somewhat more complicated, be-
cause the symmetry group is an infinite dimensional subspace of harmonic
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functions. Its existence can be proven by selecting, on the sphere of radius
R⊕ + h, an arbitrary smooth (C∞) function Φ with support in the polar
caps (e.g., the function is exactly zero for −83.5◦ < latitude < 83.5◦). By
the solution of the exterior Dirichlet problem given in Section 13.3, there is
a harmonic function for geocenter distance > R⊕ +h and coinciding with Φ
on the sphere of radius R⊕ +h. Such a function may not exist on the sphere
of radius R⊕ because the downward continuation may well be divergent;
that is, it does not need to be a “realistic” gravity anomaly.

If we take the approximation that the satellite flies at an exactly constant
altitude, then the gradiometer is measuring the second derivatives where Φ
is zero. In this approximation there would be an exact symmetry. This sym-
metry is broken for two reasons: first, the altitude is not constant, although
the eccentricity is small (e < 0.0045 for GOCE). Second, the harmonic func-
tion we are trying to fit to the gradiometer data is the sum of only a finite
number of harmonics, with limited degree � ≤ �max. The cap function Φ
cannot have a finite spherical harmonic expansion, because it is not an ana-
lytic function. If Φ is expanded in a series of spherical harmonics, the series
is convergent on the sphere. When this series is truncated to degree �max,
the remainder is small on the latitude band where Φ is zero, with maximum
→ 0 for �max → +∞. This is what is shown in Figure 16.3: the observable
signal is not zero but very small. Thus as �max increases the observable sig-
nal becomes smaller and smaller, and the bulge becomes more pronounced.
At the limit for �max → +∞ the undetermined geoid anomaly on the sphere
of radius R⊕ might be arbitrarily large.

Outside the polar caps

On a block of harmonics not including low m ones the polar gaps have
little effect: e.g., for r = 1, Figure 16.2, above. The actual error is larger
than the formal one, but the ratio does not exceed 4 (and is ≤ 2 for most
orders �). Both the formal and actual error are well below the signal up to
�max = 200, and it is possible to solve harmonics with signal-to-ratio ≥ 1
up to �max = 220–230. Figure 16.3 suggests a positive interpretation of
the polar gaps effects: the undetermined gravity anomalies are concentrated
on the polar caps, e.g., the geoid anomalies are at the mm level in the
“overflown region”, the latitude band of the ground tracks. The harmonics
up to �max = 220 cannot all be determined, but the gravity in the overflown
region can be determined down to a spatial scale of π R⊕/220 � 91 km.

Even in the overflown region the solution is reliable only provided there is
no aliasing between spurious signals and the gravity signal. To detect such an
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Fig. 16.4. For the r = 7 remainder class the formal and actual errors are compared with the sig-
nal. The harmonics with � > 160 cannot be determined with a signal/error ratio > 1. Reproduced
with permission of Springer from Milani et al. (2005d).

aliasing, we analyze the specific harmonics where the largest actual/formal
error ratio holds. For example, for the remainder class r = 7 (Figure 16.4)
the actual error grows significantly for � > 160. Among the harmonics in
this block, those with m = 167 show a particularly high actual error. The
spurious signal with frequency f = 1/1000 Hz introduced in the simulation,
and not removed by the calibration fit because f > fc, is responsible for
this behavior. Looking for gravity field signals with similar frequencies, we
find, e.g., that for l − 2p = −5, m = 167 the frequency νlmp0 corresponds to
a period of 990 s; for l − 2p = −19, m = 167 the frequency is negative, with
a period of 957 s.

Limitations of gravimetry missions

The main general conclusion we can draw from this case study is that each
gravimetry mission has some limitations, due to the performance of the
instruments and to the orbit: in the case of GOCE, these limitations could
be summarized as follows. First, if the orbit does not cover the entire surface
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with the ground track, then it is not possible to accurately solve for all the
spherical harmonics up to some high degree. Nevertheless, in the overflown
region the results can be accurate down to a short spatial scale.

Second, given the noise model, the formal error deduced from the covari-
ance matrix Γgg sets an upper bound for the degree � to be determined,
where it exceeds the signal: for GOCE this occurs for � � 230. Since this
value is obtained in the optimistic assumption that the systematic errors
are zero, this upper bound does not depend upon the orbit determination
method used, but only on the specifications for the measurement noise.

Third, if in the intermediate frequency band there are spurious system-
atic signals, they can alias with gravity signals. The period 1000 s for the
spurious signal is arbitrary, but any period in that band would affect some
harmonics. Sometimes a numerical simulation has to be used to convince the
skeptics, even though a back of the envelope computation could be enough.
The frequencies ν�mp0 for � ≤ 200 are � 40 000; to invent some spurious
signal without frequencies close to some harmonic would be a difficult task.
Thus each spurious signal generates a wrong value for some harmonics, with
an actual error significantly larger than the formal one, an illusory result
limited to a few coefficients.

16.6 Satellite-to-satellite tracking

A satellite-to-satellite tracking mission uses two spacecraft, in low Earth
orbits, and relative tracking data between the two, such as range and/or
range-rate. The main choice in mission design is to decide the distance
d between the two, and how tightly to control it. For a target minimum
spatial scale L = π R⊕/�max, at short distances d � L the measurement has
the same information content as a gradiometer (16.7), although the data
processing is somewhat more complex (see below). The short distance allows
us to use a relative tracking method sensitive to distance and insensitive to
the atmospheric propagation disturbances, but requires a drag free system.

If d � L the orbit control requirement is weaker: this has been the choice of
the NASA mission GRACE (Tapley et al. 2005), launched in 2002. The two
spacecraft are allowed to decay because of drag, sporadic orbit maneuvers
controlling the distance between � 120 and � 270 km. The difficulty is to
model with the required accuracy the propagation of radio waves: GRACE
has a complex multifrequency link between the two spacecraft.

In any case, for an Earth gravimetry mission, an accelerometer is required
on both spacecraft: apparent forces and calibration are a problem as they
are for an accelerometer mission. Around the Moon this is not necessarily
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the case. The MORO lunar mission study of the European Space Agency
(Coradini et al. 1996) proposed to measure the range-rate to a simple lunar
subsatellite released from the main polar orbiter (Milani et al. 1996). The
sensitivity to the lunar gravity field can be good, down to a scale � 100
km, with orbital height h � 100 km, which can be maintained even with-
out propulsion (Knežević and Milani, 1998). The problem of the sectorial
weakness (see below) was discussed in the MORO study. The Japanese lunar
mission KAGUYA, launched in 2007, has implemented another version of
the subsatellite concept, using VLBI differential measurements from Earth.

Laser Doppler interferometry for gravimetry

We shall use as an example of satellite-to-satellite tracking the LDIM
study commissioned by the European Space Agency to Thales Alenia
Spazio, for a long-duration Earth gravimetry mission (Cesare et al. 2005,
Cesare et al. 2006). This study selects laser interferometry to generate ex-
tremely accurate measurements of changes in the distance between refer-
ence points on the two spacecraft, at a distance d � 10 km. This distance
gives good sensitivity to harmonics with degree up to �max � 200, because
d/L � 1/10, where L � 100 km is the spatial scale. An accelerometer with a
measurement band between 1/1000 Hz and 1/100 Hz and noise spectral den-
sity S(f) comparable to the units on GOCE is assumed; for the accelerom-
eter and interferometers performances in measuring differences of accelera-
tions see (Cesare et al. 2006, Figure 2). The selected altitude h = 325 km
is maintained with an ion thruster, providing drag free control and relative
distance control. The two spacecraft maintain a constant attitude in the
(r̂, t̂, ŵ) orbit frame of Section 14.1, and are separated in the t̂ direction.

Given the preliminary nature of such a study, only a simplified orbit de-
termination simulation was included,11 for a six month mission segment, to
assess how small changes in the geopotential, with periods ≥ 1 year, can be
measured. The observations were simulated as gradiometer measurements,
an approximation with small parameter d/r � 1.5 × 10−3.

The orbit inclination was constrained by the requirement of a Sun syn-
chronous orbit (with period of the node equal to one year, to simplify the
thermal control) to I = 96.8◦. As a consequence the polar gaps effects were
comparable to those found for GOCE and discussed in Section 16.5: see
(Cesare et al. 2005, Figures 4.2–5, 4.2–6). To summarize the results as a
function of degree � we have separated the harmonics with m ≤ 15, for
11 Gravity field solutions obtained by the uncorrelated frequencywise method were used to perform

a trade-off, e.g, to select the value of h.
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Fig. 16.5. Signal and different estimates of the error as a function of the harmonic degree �.
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which there was a significant bulge, in Figure 16.5, which looks like the su-
perposition of the two plots of Figure 16.2. This was the LDIM goal, to
achieve results comparable to GOCE from a higher orbit, with two smaller
spacecraft, which could avoid orbit decay for more than five years.

However, there is an interesting difference. If we show the results for each
individual harmonic coefficient C�m, S�m in a representation with the low
m near the axes and low � − m near the diagonal as in Figure 16.6, the
two “ears” on the sides show the effects of the polar gaps, the ridge in the
middle indicates the presence of another weakness of the solution, although
not quite a rank deficiency; the increase in the noise for the sectorial spherical
harmonics, with � = m, is just by a factor � 10.

Still it is possible to find a nearby exact symmetry, because the only
component of ∂2U/∂x2 which can be measured is the one in the direction t̂.
If the orbits were exactly polar, all the derivatives of the sectorial harmonics
with respect to the latitude would be zero: P�� = const. Since π/2−I � 1/10
rad, the weakness is not important in the results. It is important to remind
us that there is no ideal orbit allowing a perfect gravity field solution; if the
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orbit was closer to polar, the polar gap would be smaller and the bulge less
pronounced, but the sectorial weakness could become a problem.

The numerical precision requirements

There is a specific additional problem in the satellite-to-satellite tracking
missions, not fully addressed by the first LDIM study, namely the numeri-
cal precision of the orbit. With laser interferometry, the sensitivity Δd to
changes in the distance d between the two spacecraft could be as small as
10−7 cm. With r � 6.7 × 108 cm, we have Δd/r � 1.5 × 10−16. If the two
orbits computed separately are x1 and x2, in computing d = |x1 − x2| the
components of the difference vector are differences between two large num-
bers. This implies that rounding off is a problem with current computers,
supporting in hardware only a mantissa of 53 bits, thus with relative round-
ing off error 2−52 = 2.2×10−16. Extended precision is supported in software,
but this significantly increases the computational load. There are ways to
use extended precision only for some of the computations, not including the
spherical harmonic expansion of the gravity fields and its derivatives.
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ORBITERS AROUND OTHER PLANETS

BepiColombo is a European Space Agency mission to be launched in 2014,
with the goal of an in depth exploration of the planet Mercury. This
chapter contains a case study: the orbit determination for this mission,
including the techniques to be used for both the simulations and the real
data processing. Some tools not yet described in this book will be devel-
oped, such as the light time and range-rate implicit equations, the equations
for the rotation of the planet, etc. This chapter is based on our papers
(Milani et al. 2001b, Milani et al. 2002) and on ongoing research.

17.1 Science goals for an orbiter around Mercury

In a first exploration of a planet, every piece of information which can be
gathered is valuable, starting from the first close up images. Mercury was
visited by the NASA Mariner 10 probe, with three flybys1 in 1974–1975.
With these short visits, the orbit determination of Mariner 10 provided
estimates of the harmonic coefficients C20 � −2.68×10−5, C22 � 1.55×10−5

(Anderson et al. 1987) and gave evidence of a bipolar magnetic field.
Further exploration of a planet needs to follow a very different logic. Sci-

entists would like to define a set of science goals and then obtain from the
space agencies the resources to achieve them, but this is not really possi-
ble. The science goals have to be limited to what is affordable, taking into
account how expensive are the resources, such as the mass, the power, the
data rate and the thermal control, when deployed around another planet.
The experiments are limited by the available technology, also taking into
account the need for extreme miniaturization.
1 The technique used to obtain three close approaches to the planet without consuming much

fuel was invented by Giuseppe (Bepi) Colombo: it is a resonant, multiple gravity assist, which
is strictly related to the resonant return described in Section 12.4.

349
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A window of opportunity was opened for the BepiColombo mission with
the proposal (Iess and Boscagli 2001) of including a two-frequency radio sys-
tem, with transponders for both the X and the Ka band. With a five-way
link between the spacecraft and the ground antenna it is possible to elim-
inate almost completely the uncertainty on the speed of the radio waves,
which is lower than the speed of light because of the plasma content along
their path. This is possible even for radio wave paths passing comparatively
close to the Sun, down to a few Sun radii.

Then the question has to be reversed: which scientific goals can be
achieved with such good quality of tracking data, and which are the ad-
ditional requirements to fully exploit the extraordinary accuracy possible in
the measurements of both range and range-rate to a Mercury orbiter. The
possible fields of scientific interest are two. First, geophysics, with the study
of the internal structure of the planet, including the core, the mantle, and
the source of the bipolar magnetic field. Second, the theory of gravitation,
since Mercury is a probe going into the gravity potential well of the Sun
deeper than any other body large enough not to be affected significantly by
non-gravitational perturbations (see Section 4.6).

Geophysics of Mercury

It is possible to determine the gravity field of Mercury from the orbit deter-
mination of a satellite of that planet; the question is how far we can go with
the degree and order of the spherical harmonics. The problem, as discussed
in Section 13.2, is that the gravity field outside a planet, as represented
in (exterior) spherical harmonics, does not uniquely constrain the internal
mass distribution. In particular the degree 2 harmonics are five, and there
is a linear relationship with the six coefficients of the inertia quadratic form,
resulting in one free parameter which may be expressed as the concentra-
tion coefficient C/(MR2), where C is the maximum moment of inertia. This
makes it difficult to constrain the size of the core of Mercury by gravimetry.

Moreover, the static gravity field alone does not constrain the physical
state of the interior layers, such as the outer core. On the Earth, the outer
core is liquid (as established with seismic wave analysis) and it is believed to
be the source of the Earth’s bipolar magnetic field, through a dynamo effect.
If Mercury had no liquid layer the dynamo theory could be challenged.

Both the presence of a liquid layer and the size of the core can be in-
vestigated by constraining the rotation state of the planet. Also the time-
dependent part of the gravity field of Mercury, that is the response of the
planet’s gravity to the tides raised by the Sun, can be used as a constraint.
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The rotation state of the planet can be measured by comparing images of the
same area on the planet taken at different times, see Section 17.4. The ques-
tion is how accurately it is possible to measure the harmonic coefficients (as
a function of the degree �), the tidal response of the planet, and the rotation
state, given the technology practically available around Mercury.

Theory of gravitation

The parametric post-Newtonian approach, outlined in Section 6.6, allows
us to describe a number of theoretically interesting violations of the current
theory of gravitation, namely general relativity, and other interesting as-
trophysical phenomena by a set of parameters such as γ, β, η, α1, α2, ζ, J2�.
Of course these parameters can be determined only within an orbit deter-
mination procedure solving also for the initial conditions of Mercury and
of the Earth. The question is how accurate can the solution be for the
post-Newtonian parameters, given the accuracy and time distribution of the
tracking data. If the constraints on the possible violations of general rela-
tivity can be significantly improved with respect to all the other available
experimental constraints, this will become a very important experiment.2

17.2 Interplanetary tracking

The observables are the distance r between the ground antenna and the
spacecraft, and its time derivative ṙ. They can be computed from solutions
for the motion of five different state vectors

r = |(xsat + xM ) − (xEM + xE + xant)| + S(γ) (17.1)

where xsat is the Mercury-centric position of the orbiter, xM is the Solar
System barycentric position of the center of mass of Mercury, xEM is the
position of the Earth–Moon center of mass in the same reference system, xE

is the vector from the Earth–Moon barycenter to the center of mass of the
Earth, and xant is the position of the ground antenna center of phase with
respect to the center of mass of the Earth.

S(γ) is the Shapiro effect, the difference between distance in a flat
space and the geodesic length in curved space-time, depending upon the
post-Newtonian parameter γ. Thus the distinction between dynamical and
kinematical parameters, introduced in Chapter 1, is not sharp, because
2 The results would appear more interesting if they were to prove a violation rather than just

confirming general relativity to a better accuracy, but the effort done in the experiment and in
particular in the orbit determination is exactly the same in the two cases.
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γ appears in the observation equation (17.1) and also in the relativistic
dynamics, see Section 6.6. If the distance is measured by light-time, the
flat-space distance of two heliocentric vectors r1, r2 has to be corrected by
(Moyer 2003)

S(γ) =
(1 + γ)G m0

c2 log
[
r1 + r2 + r12

r1 + r2 − r12

]
,

where the vectors r1 and r2 correspond to the vectors xEM +xE +xant and
xsat + xM , but they have to be converted to a heliocentric frame, which
is moving with the velocity ẋ� of the Sun, thus a relativistic coordinate
transformation needs to be applied. The length r12 is similarly converted
from the r of eq. (17.1). This conversion introduces a number of small terms
of post-Newtonian order > 1 which may be observable, given the very high
signal-to-noise in the range. Other terms relevant for the level of accuracy
of this experiment appear in the denominator inside the logarithm: when
the radio waves are passing near the Sun, at just a few solar radii, even
corrections of the order of G M�/c2 � 1.5 km have to be computed, although
they introduce a correction to S(γ) which is of post-Newtonian order 2.

The five vectors of (17.1) have to be computed at the epoch of different
events, e.g., xant, xEM , and xE are to be considered at both the antenna
transmit time tt and the receive time tr of the signal. xM and xsat are
computed at the bounce time tb, when the signal has arrived at the orbiter
and is sent back, with corrections for the delay of the transponder. Thus
there are two different light-times, the up-leg Δtup = tb − tt for the signal
from the antenna to the orbiter, and the down-leg Δtdo = tr − tb for the
return signal. Given the down-leg and up-leg distances

rdo(tr) = xsat(tb) + xM (tb) − xEM (tr) − xE(tr) − xant(tr)

rdo(tr) = |rdo(tr)| + Sdo(γ) (17.2)

rup(tr) = xsat(tb) + xM (tb) − xEM (tt) − xE(tt) − xant(tt)

rup(tr) = |rup(tr)| + Sup(γ) (17.3)

with somewhat different Shapiro effects Sdo, Sup; by definition of distance in
a relativistic space-time the light-times are Δtdo = rdo/c and Δtup = rup/c

respectively. If the measurement is labeled with the receive time tr , the
iterative procedure needs to start from eq. (17.2) by computing the states
xEM , xE , and xant at epoch tr , then selecting a rough guess t0b for the bounce
time.3 Then the states xsat and xM are computed at t0b and a first guess

3 In fact, t0b = tr is good enough, although it is possible to do better.
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r0
do is given by (17.2). This allows a better estimate t1b = tr − r0

do/c. This is
repeated computing r1

do, and so on until convergence, that is, until rk
do−rk−1

do

is smaller than the required accuracy.
After accepting the last value of tb and rdo we start with the states xsat and

xM at tb and with a rough guess t0t for the transmit time.4 Then xEM , xE ,
and xant are computed at epoch t0t and r0

up is given by eq. (17.3); then
t1t = tb − r0

up/c and the same procedure is iterated to convergence, that is to
achieve a small enough rk

up − rk−1
up . Then the two-way range is just rup + rdo;

a one-way range can be conventionally defined as r(tr) = (rup + rdo)/2.
The iterative procedure above is also used for planetary radar to a

natural body, such as an asteroid (Yeomans et al. 1992), in which case state-
of-the-art accuracies can be � 50 m in range and � 4 mm/s in range-rate.
With an active transponder, and using higher frequencies, the accuracies
can now be > 100 times better, and this implies that also post-Newtonian
corrections of order 1 need to be taken into account. Thus we need to add
to (17.2) and (17.3) relativistic corrective terms Δdo, Δup accounting for the
different time coordinates; see an example in the next section.

The instantaneous range-rate is computed with the unit vectors r̂up and
r̂do, e.g. down-leg

ṙdo(tr) = r̂do · ṙdo + Ṡdo(γ). (17.4)

The problem is the computation of ṙdo. A first approximation can use the
velocities for each of the five position vectors, at the same times tr and tb, tt
obtained at convergence of the two light-time iterations

ṙdo = (ẋsat + ẋM ) − (ẋEM + ẋE + ẋant).

However, this neglects the fact that tb, tt depend on tr also through rdo, rup

dtb
dtr

= 1 − ṙdo

c
+

dΔdo

dtb
,

dtt
dtr

= 1 − ṙdo

c
− ṙup

c
+

dΔdo

dtb
+

dΔup

dtb

and the corresponding corrections to ṙdo

ṙdo = (ẋsat + ẋM ) (1 − ṙdo

c
+

dΔdo

dtb
) − (ẋEM + ẋE + ẋant) (17.5)

are large with respect to the Doppler measurement accuracy, the first term
being O(ṙ/c); the one due to Δdo(tc) is smaller, but still significant. Thus
the improved value of ṙdo has to be inserted in eq. (17.4), the correction
(17.5) recomputed, and so on until convergence of the value ṙdo. Similarly,
an iteration loop is necessary for ṙup(tr). Note that also the computation of
Ṡdo(γ), Ṡup(γ) requires corrections O(ṙ/c).
4 t0t = tb − (tr − tb ) is good enough.
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Conventionally, ṙ(tr) = (ṙup(tr) + ṙdo(tr))/2 is the instantaneous value.
However, the measurement is not instantaneous: an accurate measure of
the Doppler effect requires us to fit the difference in phase between carrier
waves, the one generated at the station and the one returned from space,
accumulated over some integration time Δ, typically between 10 and 1000
s. Thus the observable ṙ is really obtained from a difference of ranges

r(tb + Δ/2) − r(tb − Δ/2)
Δ

=
1
Δ

∫ tb +Δ/2

tb−Δ/2
ṙ(s) ds (17.6)

or, equivalently, an averaged value of range-rate over the integration interval,
which can be computed with a quadrature formula (see Appendix B).

The computation of the observables, as presented in this section, is al-
ready complex, but still the list of subtle technicalities is not complete. To
understand the computational difficulty we need to take into account also
the orders of magnitude. For state-of-the-art tracking systems, such as those
using a multifrequency link in the X and Ka bands, the accuracy of the range
measurements can be � 10 cm and that of the range-rate 3×10−4 cm/s (over
an integration time of 1000 s). Let us take an integration time Δ = 30 s,
which is adequate for measuring the gravity field of Mercury.5

The accuracy over 30 s of the range-rate measurement can be, by Gaus-
sian statistics, � 3 × 10−4

√
1000/30 � 17 × 10−4 cm/s, and the required

accuracy in the computation of the difference r(tb + Δ/2) − r(tb − Δ/2) is
� 0.05 cm. The distances can be as large as � 2 × 1013 cm, thus the rel-
ative accuracy in the difference needs to be 2.5 × 10−15. This implies that
rounding off is a problem with current computers, with relative rounding off
error of ε = 2−52 = 2.2×10−16; extended precision is supported in software,
but it has many limitations. The practical consequences are that the com-
puter program processing the tracking observables, at this level of precision
and over interplanetary distances, needs to be a mixture of ordinary and ex-
tended precision variables. Any imperfection may result in “banding”, that
is residuals showing a discrete set of values, implying that some information
corresponding to the real accuracy of the measurements has been lost in the
digital processing. As an alternative, the use of a quadrature formula for the
integral in eq. (17.6) can provide a numerically more stable result, because
the S/N of the range-rate measurement is � 1/ε.

5 If the orbital period is � 8000 s, the harmonics of order m = 26 have periods as short as � 150
s, see Section 13.5.
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Time-scales and science goals

Of the five state vectors used in eq. (17.1), xant and xE can be assumed
known, that is their current knowledge (at the cm level) cannot be improved
by ranging to a Mercury orbiter. To observe the orbit of the Moon it is more
effective to measure the range to a point on the surface of the Moon, as it
is done with lunar laser ranging. Both tracking navigation satellites and
using very long baseline interferometry give, by far, more information on
the position of the antenna and on the rotation of the Earth.

On the contrary, xsat contains information on the gravity field of Mer-
cury, xM , xEM , and S(γ) on the orbits of the planets and on the theory
of gravitation. Of the underlying dynamics, that of xsat has orbital periods
of � 8000 s, the planetary orbits have periods starting at � 7 × 106 s for
xM . The Shapiro effect S(γ) during superior conjunction, when the Sun
is close to the path of radio waves from the Earth to the spacecraft, changes
over an intermediate time-scale of � 3 × 105 s.

The distribution in time of the observations is tightly constrained by vis-
ibility conditions, e.g., Mercury has to be well above the horizon of the
ground station, thus a pass observable by a given station lasts about eight
hours, with seasonal variations (longer in summer, shorter in winter). The
spacecraft must not be behind Mercury, thus for some relative orientations
of the Mercury-centric orbit plane and the direction to the Earth the passes
are interrupted by occultations. The radio waves must not meet the Sun
in their path to the spacecraft, including not just the photosphere (the vis-
ible Sun) but also the inner solar corona, where the radio waves are too
much disturbed by plasma turbulence. Overall, for a Mercury polar orbiter,
tracking from a single station is possible only about 1/4 of the time.

For the state-of-the-art tracking systems discussed above, the accuracy of
the range-rate measurements is better than that of the range, when inte-
grated over a time span < 33 000 s; the one in range is more accurate over
longer times. It follows that over one pass the measurements of ṙ provide
the most accurate constraints on xsat. On the contrary, the constraints to
the planetary orbits xM and xEM are essentially from r measurements. The
determination of γ from the Shapiro effect is possible by using ṙ to constrain
Ṡ(γ) during a superior conjunction experiment (Bertotti et al. 2003a). Still,
if r measurements are available, they constrain the value of γ even during
a superior conjunction with an accuracy improved by about an order of
magnitude with respect to the ṙ measurements alone.

Thus it is possible to separate conceptually (although not in the data
processing) a gravimetry experiment and a relativity experiment.
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17.3 The gravimetry experiment

The orbit xsat(t) depends upon the gravity field of Mercury and is a function
of the mass of Mercury, of the harmonic coefficients C�m, S�m of its static
field (in a frame rotating with Mercury), and of the coefficients of the tidal
deformations affecting the potential (mostly the Love number k2).

The orbit also depends upon the coefficients describing the rotation of
Mercury, including the obliquity ε1 and the amplitude of the libration in
longitude ε2 (see the next section). However, the response of the orbit
xsat(t) to ε1 contains the coefficient C20 and the response to ε2 contains
C22 (Cicalò 2007), of course there would be no effect of the rotation on the
gravity field if the planet were spherically symmetric. Thus the sensitivity
to ε1, ε2 is too weak for a robust orbit determination based on the orbit only.

Table 17.1. Accelerations acting on a spacecraft in orbit around Mercury, in a
planetocentric reference frame, with a = 3000 km, A/M = 0.05 cm2/g.

Cause Formula Parameters Value cm/s2

Mercury monopole GM�/r2 = F0 GM� 2.4 · 102

Mercury oblateness 3F0 C20 R2�/r2 C20 1.3 · 10−2

Mercury triaxiality 3F0 C22 R2�/r2 C22 7.8 · 10−3

Radiation pressure CR FP R CR 6.8 · 10−5

Thermal emission 4/9FP R α� ΔT/T α�,ΔT 3 · 10−5

Sun tide 2GM� r/r3
� GM� 2.3 · 10−5

Effect of ε1 (9/2) ε1 F0 C20 R2�/r2 ε1 C20 1.9 · 10−5

Effect of ε2 (9/2) ε2 F0 C22 R2�/r2 ε2 C22 3.3 · 10−6

Solid tide 3k2 GM� R5�/r3
� r4 k2 2.8 · 10−6

Mercury albedo CR FP R (1 − α�)R2�/(2 r2) α�, CR 2.7 · 10−6

Venus tide 2GM♀ r/r3�♀ GM♀ 4 · 10−8

Relativistic Mercury F0 GM�/(c2 r) GM� 1.9 · 10−8

A list of the perturbations acting on the orbit xsat(t) with their orders of
magnitude (Table 17.1) easily shows that non-gravitational perturbations,
in the fiery radiation environment around Mercury, are large enough to mask
the effect of Mercury’s gravity field, besides the lowest degree harmonics, and
even these could not be determined with the needed accuracy. The direct
radiation pressure from the Sun generates a perturbing acceleration of the
order of 0.01 times the C22 effect; note that the thermal emission from the
planet is of the same order, also because the planetary albedo of Mercury
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1 − α� is low. Thus the requirement for an accelerometer: it is in fact
available on BepiColombo as the ISA instrument, a spring accelerometer
(Iafolla and Nozzoli 2001, Lucchesi and Iafolla 2006).

Accelerometer observables

As discussed in Section 16.1, an accelerometer directly measures the accel-
eration resulting from non-gravitational perturbations acting on the outer
surface of the spacecraft, with a minus sign, see eq. (16.3). Apparent forces
due to the displacement of the sensing heads with respect to the spacecraft
center of mass (CoM) are also included in the measurement, but this does
not introduce an error in the acceleration measurements if the reference
point, for which an orbit is computed, is rigidly attached to the accelerom-
eter rather than being the CoM, see eq. (16.5).

A more serious problem is the thermal perturbations on the accelerome-
ter, resulting in time-variable accelerometer calibration parameters; if these
variations were slow enough, the determination of constant calibration pa-
rameters separately for each observed arc would solve the problem, but if
the temperature variations are large this fails. For an accelerometer without
active thermal control the temperature changes are large. For example, over
a time span of 22 days (1/4 of Mercury orbit) the temperature could change
by � 10◦, and the resulting spurious signal would degrade the solution.

Full size simulations of the BepiColombo gravimetry experiment have been
performed (Milani et al. 2001b, Milani et al. 2003) to assess the feasible ac-
curacy in the determination of the Mercury gravity coefficients, static and
tidal, and to define the requirements on the accelerometer a priori calibra-
tion. The results are summarized in Figure 17.1, showing the effects of
temperature changes on the accelerometer body, assuming the temperature
changes are either uncontrolled or reduced to 10% or to 1% of the value
applicable to the spacecraft frame. In all cases the true error, the difference
between the ground truth value used in the simulation and the nominal so-
lution, is significantly larger than the formal accuracy as deduced from the
covariance matrix. However, with temperature control reducing by 1–2 or-
ders of magnitude the changes occurring along an orbit of Mercury around
the Sun, the gravitational signal is still well above the error up to order and
degree 25. This resulted in the definition of a requirement for the accelerom-
eter unit, which was adopted in the design of the instrument.6

6 Note that it does not matter whether this temperature calibration is obtained by control
rather than by measurement of the temperature, provided the thermal sensitivity coefficient b
of eq. (16.6) is well known.
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Fig. 17.1. Signal and error for three simulations with 100%, 10%, and 1% of spurious accelerom-
eter signals resulting from thermal sensitivity. For each degree � the results are expressed in terms
of the gravity anomalies at the surface, in milliGal (10−3 cm/s2 ). The errors for each degree are
accumulated as the RMS sum of the errors for all the degrees up to �. The top curves are the
simulated signal and Kaula rule, the bottom one is the formal uncertainty from the covariance
matrix.

The best simulation, with temperature control at the 1% level, allowed us
to solve for the Love number k2, giving the elastic response of Mercury’s
gravity to the degree 2 tidal potential of the Sun, with a true error of 0.004,
the formal accuracy being one order of magnitude less.

Relativity in Mercury-centric orbit

The Mercury-centric orbit of the spacecraft is coupled to the orbit of the
planet, mostly through the difference between the acceleration from the Sun
on the probe and that on the planet (the Sun’s tidal term). This coupling is
weak because the Sun’s tide is just 10−7 of the monopole acceleration from
Mercury. The relativistic perturbations containing the mass of Mercury are
small, as shown in the table, to the point that they are not measurable, being
easily absorbed by the much larger accelerometer calibrations. Should we
conclude that general relativity does not matter in the computation of the
Mercury-centric orbit? The answer is negative, but the main relativistic
effect does not appear in the equation of motion for xsat.

In the equations for the range-rate observable (17.5) the term dΔdo/dtb
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accounts for the difference in time coordinates. In fact, there are three
different time coordinates to be considered. The dynamics of the planets,
as described by the Lagrangian (6.18), is the solution of differential equa-
tions with as independent variable a time belonging to a space-time refer-
ence frame with origin in the Solar System barycenter (6.16). There can
be different realizations of such a time coordinate; the currently published
planetary ephemerides are provided in a time called TDB (for dynamic
barycentric time).7 The observations are based on averages of clocks and
frequency scales located on the Earth’s surface; this corresponds to another
time coordinate called TT (for terrestrial time). Thus for each obser-
vation the times tt, tr need to be converted from TT to TDB to find the
corresponding positions of the planets, e.g., the Earth and the Moon, by
combining information from the precomputed ephemerides and the output
of the numerical integration for Mercury and the Earth–Moon barycenter.
This time conversion step is necessary for the accurate processing of each set
of interplanetary tracking data; the main term in the TT-TDB difference is
periodic, with period 1 year and amplitude � 1.6 × 10−3 s, while there is
essentially no linear trend, as a result of a suitable definition of the TDB.

The equation of motion of a Mercury-centric satellite can be approxi-
mated, to the required level of accuracy, by a Newtonian equation of motion
provided the independent variable of the spacecraft equation of motion is
the proper time of Mercury. Thus, for the BepiColombo radioscience ex-
periment, it is necessary to define a new time coordinate TDM (dynamic
Mercury time) containing terms of post-Newtonian order 1 depending
mostly upon the distance from the Sun r10 and velocity v1 of Mercury. The
relationship with the TDB scale, truncated to post-Newtonian order 1, is
given by the differential equation

dtT DM

dtT DB
= 1 − v2

1
2 c2 −

∑
k �=1

Gmk

c2 r1k

which can be solved by a quadrature formula (see Appendix B) once the
orbits of Mercury, the Sun, and the other planets are known. Figure 17.2
plots the output of such a computation, showing a drift due to the non-zero
average of the post-Newtonian term. The periodic term, with the period of
Mercury’s orbit, is almost an order of magnitude larger than the difference
TT-TDB. The time derivative of the periodic correction is � 10−8; in (17.5)
it is multiplied by the velocity of Mercury � 50 km/s, resulting in a change in
7 They are available from NASA Jet Propulsion Laboratory, Pasadena, California. Different time

coordinates have been proposed and should be adopted in the near future for the computation
of planetary ephemerides, see Appendix C.
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range-rate by up to 0.05 cm/s, � 30 times larger than the accuracy of the
range-rate with an integration time of 30 s. The linear drift is relevant,
although it could be removed by a change of scale, see Section 4.1, of the
dynamic time and of the mass of Mercury. Caution must be used also in
the space portion of the space-time coordinate change, used to refer the
spacecraft orbit to the center of Mercury, see Appendix C.

17.4 The rotation experiment

The rotation experiment will use correlation of images from the high-
resolution camera of BepiColombo to directly constrain the rotation state of
the planet. The theory of the rotation of Mercury was established based on
the early planetary radar data, which allowed us to measure the planet rota-
tion frequency ν � 3/2 n1, where n1 is the mean motion of the orbit of Mer-
cury. Because of the significant eccentricity e1 � 0.2 of the orbit, the torque
applied by the Sun’s tidal attraction on the long axis of the equator of Mer-
cury forces a periodic perturbation of the uniform rotation. In a simplified
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model with Mercury in a Keplerian orbit and the rotation axis orthogonal to
the orbit plane, coincident with the axis of maximum moment of inertia, the
equation of motion for the rotation phase φ is (Colombo and Shapiro 1966)

C
d2φ

dt2
=

3
2

G M� (B − A)
r3 sin(v1 − φ) (17.7)

where A, B, C are the principal moments of inertia (eigenvalues of the inertia
quadratic form), r is the distance to the Sun, and v1 the true anomaly of
Mercury. From this equation it is possible to derive a first approximation
solution

φ =
3
2
l1 +

3
2

B − A

C
sin l1 + · · · , (17.8)

where l1 is the mean anomaly of Mercury, showing a libration of the rota-
tion angle around the uniform rotation rate ν = 3/2 n1. The phase of this
libration in longitude is 0 for v1 = 0, that is with Mercury at perihe-
lion. However, if we assume that Mercury has a liquid layer separating a
rigid outer shell from an inner core, the moment of inertia C appearing in
eqs. (17.7) and (17.8) should be replaced by Cm , the moment of inertia of
the outer shell (Peale 1972). Then the amplitude of the libration in longi-
tude would be larger by a factor C/Cm , which could be as large as � 2. The
first goal of the rotation experiment is to estimate the amplitude ε2 of this
libration, thus constraining (B − A)/Cm .

A complete theory of the rotation of Mercury, taking into account the sec-
ular perturbations to the orbit, should also take into account the Cassini
laws, by which the rotation axis belongs to the plane spanned by the normal
to the orbit plane and the axis of the orbital plane precession of Mercury
(Colombo 1966). The obliquity, the angle ε1 between the normal to the
orbit plane and the rotation axis, is proportional to the concentration coeffi-
cient C/(MR2) where R is the mean radius of Mercury. Then (Peale 1988)

Cm

C
=

Cm

B − A

M R2

C

B − A

M R2 , (17.9)

where the first two factors are measured by ε1, ε2 and the third by the
harmonic coefficient C22, see eq. (13.23). Thus it is possible, by measuring
the rotation state of Mercury, in particular the parameters ε1, ε2, and the
gravity field, in particular C22, to draw some conclusions about both the
physical state and the size of the core of Mercury.

A more complete model of the rotation of Mercury would include plan-
etary short periodic perturbations on the orbit, indirectly affecting the ro-
tation state (Dufey et al. 2008). The main terms introduced in this way
in the longitude libration (17.8) contain the anomalies of the planets, thus
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have periods of a few years. The largest term is due to Jupiter: it has
period 11.86 y and amplitude � 13 arcsec. This implies that the phase of
the complete libration in longitude is not 0 at perihelion. If the duration
of the mission in orbit around Mercury is small compared to the periods
of the main planetary perturbation terms, the latter are approximately a
constant shift in the rotation phase at perihelion. We assume that the
expansion in spherical harmonics is done with spherical polar coordinates
(r, θ, λ) with the origin of longitudes at the meridian of Mercury facing the
Sun at some perihelion. Then the presence of a non-zero rotation phase
implies that the axis of minimum inertia is at some angle δ22 from the ref-
erence meridian. Then there is a non-zero S22 coefficient, which can be
solved in the orbit determination and used to compute δ22 by the equation
C22 cos(2λ) + S22 sin(2λ) = J22 cos(2λ + 2 δ22). In conclusion the plane-
tary perturbations generate effects which should be observable by the Bepi-
Colombo radioscience experiment.

The observing conditions

The peculiar rotation of Mercury in a 3/2 resonance with the orbital motion
results in sharp constraints on the possibility of observing multiple times the
same portion of the surface from an orbiting spacecraft. A Mercury solar
day is a time span (� 176 Earth days) in which the planet completes three
sidereal rotations (the rotation phase φ is the curve F in Figure 17.3) and
the Sun as seen from Mercury’s orbit revolves twice in the sky (the mean
anomaly l1 of Mercury is the curve M). Thus the Sun, as seen from a point
on the surface, makes a full revolution on the celestial sphere in one Mercury
solar day. The solar time on Mercury is given by φ − v1 (curve T); for a
given meridian on Mercury’s surface the times in which there is sunlight are
the continuous part of the curve, the dotted part corresponds to darkness.
The phase of the torque from the solar tide acting on the C22 harmonic is
2φ − 2v1 = 3 l1 − 2v1 + O(ε1) (curve C), thus the forced libration in the
longitudinal main term has the period of the orbit of Mercury, see (17.8).

For a polar orbit there are only six times per Mercury solar day when
the spacecraft ground track passes in a given area (of the size of a high-
resolution image), as shown in Figure 17.3 by the intersections of the hor-
izontal lines and the rotation phase, and three of these are in darkness, on
average. Moreover, the illumination conditions and the spacecraft altitude
are bound to be different in the two images to be compared. If the mission
lasts one Earth year, the same cycle of observing conditions repeats twice,
but the same longitude is observed again at the same value of the anomaly of
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Mercury, thus the libration in longitude also has the same phase. As a result
of these observational constraints, it is essential to take all the opportunities
to record images of the same area, including times when the spacecraft is
not being tracked by a ground station. It has been shown by the gravimetry
experiment simulations that, with reduction to 1% of the accelerometer bias,
the orbit xsat(t) is accurate enough to perform the rotation experiment by
comparing images taken at arbitrary times during the mission. However,
this implies constraints on the maneuvers, even attitude ones, performed
between two tracking passes.

The measurements are direction angles to reference points on the surface,
as seen from the spacecraft and referred to an inertial reference frame by
using the knowledge of the attitude (from star mappers) and of the alignment
of the camera with respect to the spacecraft-fixed reference frame. Thus the
error budget for these measurements includes the spacecraft orbit error,
the attitude error, the thermo-mechanical stability of the camera and star
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mapper alignments, and the error in correlating two images to find the
relative displacement (Milani et al. 2001b).

17.5 The relativity experiment

To test the theory of gravitation, the orbit of Mercury has to be determined
with unprecedented accuracy; some improvement is necessary also for the or-
bit of the Earth–Moon barycenter. The requirement is for a fully relativistic
equation of motion, including the terms expressing the violations of general
relativity with the post-Newtonian parameters, such as γ, β, ζ, J2�, η, α1, α2.
Moreover, the mass of the Sun and possibly of some of the planets has to
be improved. With 12 initial conditions for Mercury and the Earth–Moon
barycenter, there are � 20 parameters to be solved.

If it is possible to separate this portion of the problem from the determi-
nation of the Mercury-centric orbit, then it is a comparatively small compu-
tation, suitable for running a large number of tests exploring the combined
effect of random and systematic errors (Milani et al. 2002). The observa-
tions can be introduced as two normal points, representing the range and
range-rate data, for each pass of Mercury above the horizon. This simpli-
fied approach is useful in simulations, to identify the main problems and to
assess the possible performances, see below; this does not imply that such a
partitioning of the problem should be used in the operational processing of
the real data. Five main problems have been identified with this approach.

(i) The determination of the two planetary orbits and of the mass of the
Sun results in an approximate rank deficiency of order 4.

(ii) There is a strong correlation, in the covariance matrix of the solution,
between β and J2�, degrading the marginal accuracy in the solution
of both parameters.

(iii) The parameter γ appears also in the Shapiro effect, strongly depen-
dent upon the minimum distance of the radio beam from the Sun.
During a close superior conjunction, γ generates a Shapiro signal
larger than that on the orbit of Mercury.

(iv) The parameter ζ describing d(GM�)/dt is very sensitive to the pres-
ence of a time-dependent systematic effect in the range measurement.

(v) The orbit of the Earth–Moon barycenter has to be determined with
such an accuracy that perturbations from asteroids are relevant.

The origin of these problems, and some possible solutions, are as follows.

(i) After eliminating the Sun’s coordinates as dynamical variables by the use
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of barycentric planetary positions, eq. (6.17), there are still three exact sym-
metries obtained by rotation of all the planets, as discussed in Section 6.6.
Even if the orbits of the other planets are not solved, but taken from the ex-
isting planetary ephemerides, because of the weak coupling with the orbits
of Mercury and the Earth there is still an approximate symmetry. Moreover,
a scale change is an approximate symmetry, provided the mass of the Sun is
simultaneously changed according to eq. (4.7). Thus it is necessary to add
four constraints, with the technique discussed in Section 6.1.

(ii) The main orbital effect of β is a precession of the argument of perihelion,
that is a displacement taking place in the plane of the orbit of Mercury;
J2� affects the precession of the longitude of the node, that is generates a
displacement in the plane of the solar equator. The angle between these
two planes is only ε = 3.3◦ and cos ε = 0.998, thus it is easy to understand
how the correlation between β and J2� can be 0.997. Short of using another
test body, with an orbit plane much more inclined than that of Mercury,
this correlation cannot be avoided. One possible way to mitigate this effect
is to use the equation derived by Nordtvedt (1970) for a generic theory of
gravitation under the assumption that it is a metric theory:

η = 4 β − γ − 3 − α1 −
2
3

α2. (17.10)

When the values of γ, η and also of the preferred frame parameters (if in-
cluded in the solution) are well determined, this equation acts essentially as
a strong constraint on the value of β, and as a result the variance of both β

and J2� is sharply reduced, see (Milani et al. 2002, Figure 6).

(iii) Because of the different time-scale, a superior conjunction experiment
with the specific purpose of strongly constraining the value of γ cannot be
simulated in the same way as the determination of the other post-Newtonian
parameters: a combined solution for the Mercury-centric orbit, for a local
correction to the orbit of Mercury and for γ has to be used. The quality of the
results, however, depends strongly on the assumptions. In every year there
are three superior conjunctions of Mercury as seen from the Earth, but each
individual superior conjunction produces a Shapiro S/N depending upon
the circumstances: in some cases Mercury is occulted by the Sun, in others
the radio waves are passing much farther from the Sun, thus the γ signal
contained in the Shapiro effect is much weaker. In (Milani et al. 2002) the
assumption used for the simulations was that for a comparatively short time
span (20 days) around the superior conjunction three ground stations were
available, distributed in longitude in such a way as to provide continuous
tracking; moreover, a conjunction in which Mercury was actually occulted by
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the Sun was used. In the real mission, these assumptions may not be satis-
fied. A possible alternative is to perform a superior conjunction experiment
during the interplanetary cruise phase, as in (Bertotti et al. 2003a). As dis-
cussed in Section 14.5, the handling of the non-gravitational perturbations
is easier, the accelerometer is not really needed (the same experiment can be
used as long-term calibration of the accelerometer). An experiment under
conditions comparable to the Cassini one, but with the BepiColombo instru-
ment (capable of very accurate range measurements, not just range-rate)
could give results on γ more accurate by an order of magnitude. However,
the conditions in the inner Solar System are more difficult for several reasons,
including stronger radiation pressure and the need for a longer duration of
the experiment.

(iv) The main effect of a change of either the universal gravitational constant
G or the mass of the Sun M� by a fraction 10−13 in one year is a quadratic
perturbation along-track, growing to � 15 cm after one year for Mercury.
If the range measurements contain a time-dependent bias with a quadratic
signature, this results in a systematic error in the nominal solution for ζ.
This argument was used to upgrade the requirements for the instrument to
be used in the BepiColombo radioscience experiment, which now includes
an internal calibration loop to measure the transponder delay. The mass
of the Sun changes by a fraction � 7 × 10−14 per year because of the mass
shed as photons, and this contribution to ζ can be predicted with some
accuracy. Less easy is to estimate accurately the mass shed by the Sun as
charged particles, also because a large fraction of this phenomenon might
occur near the poles of the Sun. Thus the determination of ζ from the orbit
of Mercury is not a null experiment, but one in which there is a predicted
value, although not a very accurate one. For estimated values of ζ of the
order of a few parts in 10−13, to discriminate between a change in G and
the known change in M� might be difficult.

(v) The perturbations by the asteroid Ceres on the orbit of the Earth can be
estimated from the Roy–Walker parameters of Table 4.1: the short periodic
perturbations on the Earth’s orbit should be � 2.2× 10−11 AU � 3 m. Not
to degrade the accuracy of the results obtained with ranging from Earth
accurate to � 10 cm, the mass of Ceres needs to be known with a relative
error of the order of 0.01, and this appears to be feasible by using the
deflections of the orbits of other asteroids passing near Ceres. The problem
is that there are > 20 asteroids with mass at least 1/100 of that of Ceres,
� 150 with mass at least 1/1000, and for many of them the mass is largely
unknown. The combined effect of these poorly known perturbations could
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degrade the orbital determination for the Earth; the effect on Mercury is one
order of magnitude smaller. This problem is connected to that of observation
weighting discussed in Section 5.8, because the accurate orbit determination
of closely approaching asteroids is strongly affected by the astrometric data
quality (Baer et al. 2008). A solution of the problem could come from future
asteroid mass determinations, obtained with higher accuracy astrometric
surveys either from the ground or from space.8

Table 17.2. The standard deviations and full errors (including systematic effects)
in two simulations of the Relativity Experiment with BepiColombo. Experiments
A and B differ only in that B uses the Nordtvedt equation (17.10) as a constraint.

[0.5ex] Exp A (non-metric) Exp B (metric)

Parameter RMS True error RMS True error

β − 1 6.7 × 10−5 2.2 × 10−4 7.5 × 10−7 2.0 × 10−6

η 4.4 × 10−6 1.5 × 10−5 3.0 × 10−6 7.9 × 10−6

ζ 4.0 × 10−14 5.2 × 10−13 3.9 × 10−14 5.3 × 10−13

ΔJ2 7.9 × 10−9 2.8 × 10−8 2.4 × 10−10 2.1 × 10−9

ΔM�/M� 1.9 × 10−12 5.9 × 10−12 3.3 × 10−13 1.0 × 10−12

The results of two simulations performed by Milani et al. (2002) were
as described in Table 17.2. The parameter γ was considered to be known
at the 2 × 10−6 level as a result of a superior conjunction experiment. The
systematic effects included in the error model of the data simulation included
a time-dependent bias with a nonlinear growth to 50 cm in one year, and this
affected all the parameters, as shown by the significant difference between
the formal error, computed from the covariance matrix, and the true error,
obtained as the difference with the values actually used in the simulation.
For ζ the ratio true error/formal RMS is particularly large, as expected.
For β, J2� the marginal uncertainty is degraded by a factor � 100 in the
non-metric case A, with respect to the metric case B, in which eq. (17.10)
is used as constraint. This is made possible by the good determination of γ

and η, and also of α1, α2 as shown by other simulations including also these
parameters. In conclusion, the results of these simplified simulations are
encouraging, which does not mean that all the problems have been solved.

17.6 Global data processing

We have described, in the previous three sections, three aspects of the Bepi-
Colombo radioscience experiment: the gravimetry, rotation, and relativity
8 The determination of many asteroid masses is one of the science goals of another ESA mission,

the hyper-accurate astrometric survey Gaia, to be launched in 2012.
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experiments. However, the main challenge of the BepiColombo orbit deter-
mination is to assemble all the observations and solve for all the relevant
parameters, in a complete and self-consistent way. This results in a compar-
atively large least squares fit, although not as large as some of the examples
in Chapter 16. With state-of-the-art computer hardware, neither the mem-
ory size nor the computational load are a problem. The difficult task is
to ensure that all the equations, representing physically heterogeneous phe-
nomena, are accurate and consistent at the required level. In this last section
we discuss how this global data processing could be done.

The local–global decomposition

The range and range-rate observations are naturally decomposed into arcs,
one for each pass of Mercury above the horizon of the ground station(s). If
there is only one ground station, this means one arc per day. Additionally,
there are separate arcs of angular observations of the geodetic reference
points, taken with the high-resolution camera.

The Mercury-centric orbit cannot be propagated in an accurate way for
a very long time span, because of the poorly modeled non-gravitational
perturbations during the interval between two passes, and also because of the
possible attitude maneuvers. During a pass, the accelerometer calibration
parameters are obtained from the fit of the observations (mostly the range-
rate). A rough order of magnitude estimate could be as follows: over 1000 s
with a measurement of range-rate accurate to 3 × 10−4 cm/s, a constant
acceleration of � 3×10−7 can be determined. With only one ground station,
in the interval of 14–16 hours between two passes the accelerometer will
record uncalibrated accelerations. In the simulations (Milani et al. 2003),
even assuming a priori calibration with 1% accuracy of the thermal signal
(the best case considered in Section 17.3), the mean error in the spacecraft
position propagated by one day was 3.8 m, a very substantial growth with
respect to the mean error in the initial conditions, which was < 10 cm.

That is, any attempt to propagate in a deterministic way the orbit while
it is not tracked results in an error which is far larger than the measurement
accuracy. Thus to the Mercury-centric orbit determination we can apply the
same argument used for the geocentric orbit of LAGEOS in Section 15.3, and
a good choice could be to use a multi-arc strategy, in which an independent
set of six initial conditions is solved for each arc.

Then we can find out which parameters are local to one arc, in the sense
of eq. (15.1), and which ones are global. The arc initial conditions and three
constant calibrations (one for each accelerometer sensitive axis) are local
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parameters, for a total of � 9 × 365 for a nominal one-year mission. The
geodetic coordinates of the reference points used to find the shift between
images are local to an arc containing only the camera observations.

The harmonic coefficients (312−4 for degree and order up to 30), the plan-
etary initial conditions with some masses and post-Newtonian parameters,
the global range calibrations, the tidal coefficients, and Mercury’s rotation
parameters are global parameters.

Following the algorithm described in Section 15.1, the problem can be
solved by steps. First the local normal matrix is inverted arc by arc, see
eq. (15.2), then the global variables are corrected, eq. (15.4), last the local
variables are corrected by eq. (15.5). The problem in this approach appears
in the first step: the local-only normal matrix has an approximate rank
deficiency of order 1.

Line of sight symmetry

The symmetry responsible for the weakness of the local only normal matrix
is an approximate version of the exact symmetry found for extrasolar planets
in Section 6.5. If the Mercury-centric orbit is rotated around an axis ρ̂ in the
direction from the Earth to the center of Mercury, then there would be an
exact symmetry in the range and range-rate observations if ρ̂ were constant.
Given that ρ̂ changes with time, the small parameter in the approximate
symmetry is the angle by which ρ̂ rotates (in an inertial reference system)
during the arc time span (Bonanno and Milani 2002).

Different solutions can be adopted to stabilize the solution for the local
parameters. A set of a priori observations weakly constraining the initial
conditions (with an uncertainty of 3 m in position and 3 m/day in veloc-
ity) would be enough to stabilize the solution (Milani et al. 2001b). This is
a simplified method used in a simulation; under operational conditions we
would need to compute a lower accuracy long arc solution which does not
contain the approximate symmetry (because the time span is comparable
with the synodic period of Mercury and the Earth), and use it to weakly con-
strain the local initial conditions for a short arc. As an alternative approach,
the initial conditions for two consecutive arcs could be weakly constrained
together, by using a covariance matrix for the prediction at the next day
enlarged9 with respect to the deterministic covariance propagation of Sec-
tion 5.5. A final choice among the different options has not yet been done,
but will be dictated by the results of new rounds of full-scale simulations.

9 This approach is closely related to the Kalman filter class of algorithms.



370 ORBITERS AROUND OTHER PLANETS

A complex experiment

We would like to conclude this discussion of the BepiColombo radioscience
experiment with a few words on the context. Because of the expected ex-
treme quality of the data, the BepiColombo tracking will contain an enor-
mous amount of information, which could generate very interesting results
on both the structure of Mercury and the theory of gravitation. However,
we need to be well aware of what could go wrong, also because this is the
only way to safeguard against this possibility.

As a matter of principle, unless there is available absolute a priori knowl-
edge, with errors too small to significantly affect the measurements, all the
parameters affecting the observations should be included in a global least
squares fit. This avoids the risk of confusion between marginal and condi-
tional uncertainty for correlated parameters of interest.

In practice some decomposition of the problem is unavoidable, in partic-
ular the one resulting from the fact that some data are acquired by other
teams and transmitted with a not too complicated interface. For example,
the ground station calibration parameters, the ground antenna motion, the
spacecraft antenna position and motion, the tropospheric corrections, the
spacecraft attitude, and the camera alignment will be measured by other
teams. For most of these measurements the requirements for keeping up
with the target accuracy of the BepiColombo data set are challenging.

In other words, the BepiColombo radioscience experiment is a system
experiment, involving the performance of many spacecraft subsystems and
of the ground station. The work of hundreds of specialists needs to be kept
at a high level of quality. This chapter has given a short account of the work
we have to do, but we need to be aware of the need to rely on the work of
many others.

Conclusions

We conclude this book with some words of caution: as already anticipated
in the preface, we never had the intention of writing a complete reference for
all methods which could be used in orbit determination problems. The goal
was to present to the readers something new which they may use, mostly
from the research we have conducted ourselves with many coworkers and in
many years. Please let us know if we have succeeded in this.
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Vokrouhlický, D, Milani, A. and Chesley, S. R. (2000). Yarkovsky effect on small
Near Earth asteroids: mathematical formulation and examples, Icarus 148,
118–138.

Wagner, W. E. and Velez, C. E. (eds) (1972). Goddard Trajectory Determination
Subsystem Mathematical Specifications (Goddard Space Flight Center, Green-
belt, MD).

Walker, I.W., Gordon Emslie, A. and Roy, A.E. (1980). Stability criteria in many-
body systems I, CMDA 22, 371–402.

Wallin, J.F., Dixon, D.S. and Page, G.L. (2007). Testing gravity in the outer solar
system: results from transneptunian objects, ApJ 666, 1296–1302.

Wetherill, G. W. (1967). Collisions in the asteroid belt, J. Geophys. Res. 72, 2429–
2444.

Whipple, A.L. (1995). Lyapunov times of the inner asteroids, Icarus 115, 347–353.
Wigner, E.P. (1959). Group Theory and its Applications to the Quantum Mechanics

of Atomic Spectra (Academic Press, New York).
Will, C.M. (1981). Theory and Experiment in Gravitational Physics (Cambridge

University Press).
Winslow, A.M. (1964). An irregular triangle mesh generator, Report UCXRL-7880,

National Technical Information Service, Springfield, VA.
Yeomans, D.K., Chodas, P.W., Keesey, M.S., Ostro, S.J., Chandler, J.F. and

Shapiro, I.I. (1992). Asteroid and comets orbits using radar data, Icarus 103,
303–317.



Index

a posteriori calibration, 328, 330, 336
a priori

constraints, 90, 105, 321
observations, 89, 101, 337, 369
scaling, 97

aberration, 148, 153, 161
absolute calibration, 328
absolute magnitude, 11, 143, 148, 218, 247
absorption, 288, 299
accelerometer, 303, 311, 325, 331, 357, 366,

368
accuracy, 124, 221, 223, 228, 232
admissible region, 144, 148, 151, 163, 205,

214, 224
aerodynamic coefficient, 302
aliasing, 97, 335, 343
along-track

acceleration, 172, 310
effect, 292, 304

angle variable, 76, 91
angular velocity, 326
apparent acceleration, 326
apparition, 113, 124
approximate rank deficiency, 93, 197, 342,

364, 369
approximate symmetry, 94, 342, 365, 369
arc, 311, 336, 368

length parameter, 172
of type N , 217

area-to-mass ratio, 55, 290
argument of pericenter, 39
asteroid, 113, 137, 171
astrometric observation, 130
astronomical unit, 96, 105
attitude, 289, 293
attributable, 134, 137, 163, 205, 214, 216, 223

orbital elements, 148, 175, 209
attribution, 114, 133, 165, 206, 224

penalty, 135, 156, 206
axial symmetry, 267
axial vector, 198

b-plane, 239

badly conditioned matrix, 64, 71
barycentric coordinate, 40, 105
BepiColombo, 9, 349
bias, 80, 84
bounce time, 352

calibration band, 336
Cassini

laws, 361
mission, 304

center of mass, 35, 107, 239, 273, 309, 326, 357
centrifugal, 320
change of scale, 36, 105, 360
Charlier theory, 185
Cholewsky algorithm, 64, 67
close approach, 142, 241

trace, 239
collaborative orbit determination, 8
collocation method, 337
companion matrix, 150
complete orthonormal sequence, 279
compromise solution, 118, 129, 136
computational complexity, 220
concentration coefficient, 275, 350, 361
conditional

confidence ellipsoid, 69, 72
covariance matrix, 30, 150, 332
density function, 26, 78, 119
identification penalty, 129
normal matrix, 30, 149

conditioning number, 64, 74, 97, 153, 197
confidence

ellipse, 76, 130, 155, 241, 251, 256
ellipsoid, 69, 73, 79, 85, 151, 152, 154, 198,

332
parameter, 6, 154, 241
prediction region, 130, 132
region, 6, 75, 151, 152, 154, 156, 248

confirmed identification, 222
consider parameters, 5, 69
constrained triangulation, 145
continuous random variable, 23
Coriolis, 320

379



380 Index

correlation, 25, 61, 85, 163, 365
matrix, 85, 97

covariance, 25, 61
matrix, 25, 60, 64, 87, 93, 116, 313, 321
propagation, 31, 73, 131, 153, 241, 369

crossing, 243
cycle slip, 129

Delaunay triangulation, 145, 206
descoping, 88
design matrix, 60, 62, 78, 83, 151
differential corrections, 63, 114, 157, 203
diffusion, 288
direct perturbations, 42
direct radiation pressure, 288
discordant

identifications, 226
tracklets, 231

discovery, 218
distribution function, 23
diurnal effect, 298
divergence formula, 262
Don Quixote, 306
double binary hierarchy, 47
drag coefficient, 302, 316
drag free, 329
dynamic

barycentric time, 359
Mercury time, 359

dynamical equation, 174, 176, 179
dynamical parameters, 3, 15, 351

eccentricity, 39
functions, 284

effective cross-section, 289
efficiency, 221, 223, 228, 232
eigenvalues algorithm, 64, 67
empirical acceleration, 316, 324
ephemerides, 203
equinoctial elements, 121
equivalence principle, 109, 365, 367
exact symmetry, 91, 309, 365, 369
exterior Dirichlet problem, 279, 343
external harmonics, 269
extrasolar

planetary system, 98, 103
planets, 13, 98

f and g series, 175
first guess, 63, 114
first integral, 34
fit parameters, 59, 62
fold, 254
frequencywise method, 334, 346

Gaia, 183, 367
Gauss

divergence formula, 262
map, 177
method, 175, 177, 193

Gaussian, 27, 29, 77, 85

general relativity, 106, 351, 358
generic completion, 257
geodesic curvature, 172
geoid, 281, 341
geometric equation, 174, 176
geometric sampling, 248
Gibbs formula, 176
global fit parameters, 311, 368
gradiometer, 281, 329, 333
gravimeter, 264
gravitational potential, 262
gravity gradient acceleration, 327
ground track, 286, 301, 345
ground truth, 232, 357
group of symmetries, 34, 91

harmonic
coefficients, 276, 331, 336, 356
degree, 271, 332, 335, 347
function, 17, 264, 343
order, 271, 338

heliocentric coordinates, 41, 52
hierarchy, 50
hyperbolic orbits, 90, 142, 206, 239

identification, 10, 113, 163
management, 223, 226
normalization, 226
penalty, 117

impact, 237, 239
cross-section, 240
monitoring, 12, 14, 202, 237
parameter, 239
probability, 238, 251

inclination functions, 283
independent

identifications, 226
random variables, 26, 118

indirect oblation, 316
indirect perturbations, 42, 52
inertia quadratic form, 275, 350, 361
initial conditions, 3, 15
integral flow, 4, 16
integration time, 354
internal harmonics, 269
intersection problem, 160, 184
isometry, 34

Jacobian coordinates, 43, 44, 47, 54
joint probability density function, 24

Kaula
expansion, 283, 323, 338
rule, 279, 332, 340, 348, 358

Kepler problem, 38
Keplerian distance function, 242
kinematic method, 324, 334
kinematical parameters, 4, 351
kinetic method of deflection, 307
kurtosis, 24, 84, 318

LAGEOS, 296, 300, 314



Index 381

Lagrange
equation, 33, 37, 43, 110
function, 33, 37, 47
perturbative equations, 285

Lagrangian, 33, 107, 109, 359
Lambert law, 288
Laplace

equation, 264, 267
method, 174, 179, 188, 193

Laplace–Beltrami operator, 267, 270
Laplace–Lenz vector, 38
Laplacian smoothing, 147
least squares, 6, 59, 62, 90, 114, 149, 243, 324,

336, 368, 370
Legendre

associated function, 271
equation, 268
polynomials, 49, 269, 272

libration in longitude, 356, 361
Lie groups, 92
limiting curve, 187, 194
line of variations, 158, 200, 249
linear momentum, 35, 107, 110
linkage, 115, 156, 205
local fit parameters, 311, 368
local MOID, 243
lost asteroid, 113
Love number, 356, 358
lunar laser ranging, 8, 355
Lyapounov

exponent, 20, 74
time, 20, 249

maneuvers, 305, 363
manifold dynamics, 250
marginal

confidence ellipsoid, 70
covariance matrix, 30, 121, 153, 332
density function, 26
normal matrix, 154

Mariner, 349
mass density function, 263
matrix exponential, 22
mean, 24, 25, 61
mean anomaly, 102, 284
measurement band, 335
Mercury, 349

orbiter, 106, 350
solar day, 362

merging identifications, 229
minimum orbital intersection distance,

242
minimum principle, 6
mission analysis, 9
modified target plane, 239
Monte Carlo, 248
Moore’s law, 219
moving object, 10, 134, 216, 221
multiple solutions, 202
mystery drag, 300, 316, 317

n-th moment, 24

near-Earth asteroids, 11, 182, 216, 222, 237
Newton’s method, 63, 75, 255
Noether’s theorem, 34, 107, 110
nominal solution, 6
normal

equation, 60, 89, 117, 199, 322, 331
matrix, 25, 60, 63, 117, 197

normal points, 11, 318, 364
normalization of the residuals, 67
normalized harmonics, 278
normally distributed, 27, 29
number density, 232
Nyquist frequency, 335

obliquity, 356, 361
observation function, 4, 153
oceanic loading, 318
optimization interpretation, 6
orbit distance, 242
orbit identification, 114, 230
outliers, 80

Pan-STARRS, 219
parametric post-Newtonian, 12, 107, 304, 351,

364
pass, 163, 314, 355, 364, 368
penalty, 68, 116
perturbing function, 48, 285
photo-gravitational symmetry, 309
Pioneer, 305
planetary

albedo, 299, 356
ephemerides, 106, 359, 365
hierarchy, 46
radar, 11, 353
systems, 12
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