


Foreword

I am honored to have been asked to write a foreword for this new Elsevier Astrodynamics
Series. The word Astrodynamics is often attributed to R.M.L. Baker in the late 1950s. So
exactly what is Astrodynamics? An aerospace dictionary from the 1960s defines Astro-
dynamics as “The practical application of celestial mechanics, astroballistics, propulsion
theory and allied fields to the problem of planning and directing the trajectories of
space vehicles.” The aims and scopes of this series states that: Astrodynamics is a well-
recognized, stand-alone field of discipline comprising many auxiliary fields including
dynamical systems analysis, optimization, control, estimation, numerical analysis, pertur-
bation methods, Lagrangian and Hamiltonian dynamics, geometric mechanics and chaos.
The primary difference between these definitions is the list of the allied fields; the list
today is much more extensive, and even includes some that did not exist in 1960, such as
chaos. These new allied fields being applied to astrodynamics problems along with some
exciting new missions, some of the New Horizons missions and satellite formations, are
creating excitement in astrodynamics. With this new series we are trying to present to
the aerospace community new results and methods that will help fill the gap between the
state-of-the-art and existing books.

Let’s look at some of the new problems. The problem of swarms of small satellites
flying in precise formation and operating autonomously has probably created more excite-
ment than any problem in years. Hundreds of papers have been published and presented
at many conferences in different venues, and its interdisciplinary nature has drawn people
from numerous disciplines beyond the traditional dynamics, control and navigation. If
some of the discussed future NASA formation flying missions occur, there will be some
significant challenges for the astrodynamics community. The application of dynamical
systems theory to astrodynamics problems has resulted in the identification of new fuel-
efficient interplanetary trajectories and has probably enabled some new missions. The
GENESIS mission is an example. From this research we now have the Interplanetary
Super Highway (from Martin Lo). This is an exciting area with many new results still
to be discovered. New missions, small satellites and space control are resulting in new
demands in orbit determination. We have the precise orbit determination of a few satel-
lites, such as GRACE, and the maintenance of the space object catalog, which is the
less precise orbit determination of thousands of satellites with just a few observations
per day. The precise orbit determination is requiring more accurate dynamic models and
better estimation. A few years ago small space objects were debris; now they may be
micro- or pico-satellites. This, coupled with the need to protect the ISS from collision
with small objects, means we need to track objects at least as small as 5 cm in diameter,
if not 2 cm in diameter. This would increase the size of the space object catalog from its
current size of approximately 14,000 objects to 100,000–300,000 objects. While doing
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this we need to improve the accuracy of their orbits and provide an accurate covariance.
Here, again, the problem is multi-disciplinary. The solution will require improved esti-
mation methods, optimum utilization of sensors, improved atmospheric physics, etc. Here
I have tried to identify just some of the new problems creating an exciting challenge in
astrodynamics. Even though the demands on astrodynamics from NASA’s New Space
Exploration Initiative are not yet all clear, one thing is certain: There will be demands.
An obvious one is the need for real-time trajectory optimization. As with many fields
today, astrodynamics is becoming more interdisciplinary and I believe this is where many
of the future advances will be made.

Astrodynamics can be viewed from both an engineering and a mathematical-theoretical
standpoint. It is a multi-disciplinary science, drawing largely on systems research and
multi-disciplinary design, an area that does not fit very well with current journals, and
is not covered in any existing book series. With this new series we are presenting some
of the new cutting edge research in Astrodynamics. Topics in this first volume ‘Modern
Astrodynamics’ include orbital dynamics and perturbations, satellite formation flying,
dynamical systems theory, trajectory optimization and novel propulsion systems. Details
on the contents are provided in the Introduction.

Kyle T. Alfriend
Department of Aerospace Engineering
Texas A&M University
College Station, TX, USA



Introduction

In recent years, an unprecedented interest in novel and revolutionary space missions has
risen out of new NASA and ESA programs. Astrophysicists, astronomers, space systems
engineers, mathematicians, and scientists have been cooperating to develop and implement
novel, ground-breaking space missions. Recent progress in mathematical dynamics has
enabled development of low-energy spacecraft orbits; significant progress in the research
and development of electric and propellantless propulsion system promises revolution-
ary, energy-efficient spacecraft trajectories; and the idea of flying several spacecraft in
formation will break the boundaries of mass and size by creating virtual space-borne
platforms.

The growing interest in the astrodynamical sciences at large creates a sound need for
a new book series solely devoted to astrodynamics. The purpose of the Elsevier Astro-
dynamics Series is, therefore, to give scientists and engineers worldwide an opportunity
to publish their works utilizing the high professional and editorial standards of Elsevier
Science under the supervision and guidance of a superb editorial board comprised of
world-renowned scientists, engineers, and mathematicians.

The first volume in the series, Modern Astrodynamics, reviews emerging topics in
astrodynamics. The book is designed as a stepping stone for the exposition of modern
astrodynamics to students, researchers, engineers, and scientists, and covers the main
constituents of the astrodynamical sciences in a comprehensive and rigorous manner.

Modern Astrodynamics deals with the following key topics: Orbital dynamics and per-
turbations; low-energy orbits, chaos, and Hamiltonian methods; trajectory optimization;
novel propulsion systems and spacecraft formation flying.

This volume will be of value to research and graduate students, for its clear and
comprehensive portrayal of state-of-the-art astrodynamics; to aerospace and mechanical
engineers, for its discussion of advanced trajectory optimization and control techniques,
spacecraft formation flying and solar sail design; for mathematicians, for its discussion of
Hamiltonian dynamics, chaos and numerical methods; for astronomers, for its presentation
of perturbation methods and orbit determination schemes; and for astrophysicists, for
its discussion of deep-space and libration point orbits suitable for observational science
missions. It is also a must-read for commercial and economic policymakers, as it presents
the forefront of space technology from the broad perspective of astrodynamics.

Modern Astrodynamics is a multi-authored volume comprising invited technical con-
tributions written by some of the world’s leading researchers: David Vallado (Analytical
Graphics Inc., USA), Michael Efroimsky (United States Naval Observatory), Vincent
Guibout and Daniel Scheeres (University of Michigan, USA), Edward Belbruno (Princeton
University, USA), Oliver Junge and Michael Dellnitz (Paderborn University, Germany),
Michael Ross (Naval Postgraduate School, USA), Colin McInnes and Matthew Cartmell
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(University of Strathclyde, UK), and Louis Breger, Gokhan Inalhan, Michael Tillerson,
and Jonathan How (Massachusetts Institute of Technology, USA).

David Vallado opens this volume with an informative chapter on orbital dynamics and
perturbations, including the classical distinction between secular, short- and long-periodic
motions, Keplerian orbits, and the quantitative and qualitative effects of gravitational and
non-gravitational perturbations on satellite orbits.

Michael Efroimsky continues the discussion on orbital dynamics by presenting one of
the most remarkable recent discoveries of theoretical astrodynamics: Gauge freedom. If
the inertial Keplerian solution in a non-perturbed setting is expressed via time and some
six adjustable constants called elements, then under perturbations this expression is used
as ansatz and the ‘constants’ are endowed with time dependence. The perturbed velocity
will consist of a partial derivative with respect to time and a so-called convective term, one
that includes the time derivatives of the variable ‘constants’. Out of sheer convenience,
the so-called Lagrange constraint is often imposed. It nullifies the convective term and,
thereby, guarantees that the functional dependence of the velocity upon the time and
‘constants’ stays, under perturbation, the same as it used to be in the undisturbed setting.
The variable ‘constants’ obeying this condition are called osculating elements. Efroimsky
shows that it is sometimes convenient, however, to deliberately permit deviation from
osculation, by substituting the Lagrange constraint with an essentially arbitrary condition.
Moreover, each such condition will then give birth to an appropriate family of non-
osculating elements, and the freedom of choosing such conditions will be analogous to
the gauge freedom in electrodynamics.

Vincent Guibout and Daniel Scheeres embark on a quest for solving well-known math-
ematical problems, with important applications in astrodynamics: Two-point boundary
value problems. The Hamilton–Jacobi theory for dynamical systems predicts the existence
of functions that transform Hamiltonian systems to ones with trivial solutions. These func-
tions, called generating functions, have been widely used to solve a variety of problems in
fields ranging from geometric optics to dynamical systems. Guibout and Scheeres’ recent
work has applied generating functions to solve problems in astrodynamics, with applica-
tions to targeting, formation flight, and optimal control. Their chapter defines an algorithm
which solves the Hamilton–Jacobi equation for the generating functions associated with
the canonical transformation induced by the phase flow. A new algorithm for computing
the generating functions, specialized to two-point boundary value problems, is developed.

Ed Belbruno discusses, from the theoretical standpoint, the fascinating applications of
Chaos Theory in astrodynamics. Prior to 1985, the Hohmann transfer was viewed as the
only way to get a spacecraft from Earth to another planet of the solar system, e.g., the
Moon. Is there a better way? Belbruno shows that, indeed, the answer is positive: Have
the spacecraft arrive at the Moon with a lesser velocity than the Hohmann transfer, and
let the subtle interactions of the gravitational fields of the Earth and Moon gradually slow
it down with no fuel required. This theory is called weak stability boundary theory. It
estimates a region about the Moon where the motion of a spacecraft is chaotic in nature
and approximately feels the gravitational pulls of the Earth and Moon almost equally—so
that, like a surfer trying to ride a wave, the spacecraft can arrive at the Moon balancing
itself on the transition boundaries of the gravity fields of the Earth and the Moon. This
yields a capture of the spacecraft into lunar orbit requiring no fuel at all.
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Oliver Junge and Michael Dellnitz continue the study of chaos and low-energy orbits
by dwelling upon pertinent numerical aspects. They extend recent studies of energy-
efficient trajectories for space missions based on the circular restricted three-body problem
model. In their chapter, Junge and Dellnitz develop numerical methods for computing
approximations to invariant manifolds, which are important for the design of low-energy
trajectories. They show how to detect connecting orbits as well as pseudo-trajectories that
might serve as initial guesses for the solution of more complex optimal control problems.

Michael Ross continues the quest for energy-efficient orbits by considering spacecraft
trajectory optimization problems, or, stated differently, Ross is developing methods for
enabling new space missions by reducing the amount of consumed fuel. This problem,
as well as its concomitant mathematical modelling and solution, are of prime importance
to modern space missions. In particular, Ross provides a well-thought distinction among
several options for defining what is meant by “optimal” and “energy efficient”, and
concludes that these terms are dependent on the particular propulsion system in use.

Colin McInnes and Matthew Cartmell complete the discussion of efficient space travel
by a comprehensive study of propellantless mass systems, enabling the breaking of bound-
aries of currently conceived space missions. Conventional spacecraft are limited in their
ability to deliver high-energy missions by a fundamental reliance on reaction mass. How-
ever, this basic constraint can be overcome by a class of propulsion systems which either
extract momentum from the environment (solar sails), or balance momentum through pay-
load exchanges (tethers). This chapter provides an introduction to the physics of solar sail
and tether propulsion systems, along with a review of the recent development of the tech-
nologies. This chapter also suggests an outlook for future innovation, including some prac-
tical applications of highly non-Keplerian orbits for solar sails and performance optimiza-
tion for interplanetary tether transfers using motorized momentum exchange principles.

Louis Breger, Gokhan Inalhan, Michael Tillerson, and Jonathan How conclude this
volume by addressing an important emerging topic in space systems: Spacecraft formation
flying. Efficient execution of precise spacecraft formation flying relies on having accurate
descriptions of the fleet dynamics and accurate knowledge of the relative states. However,
there are numerous sources of error that exist in real-time as a result of perturbations and
differential disturbances. Breger, Inhalan, Tillerson and How analyze the impact of key
perturbations on formation flying control. The main point is that analyzing the closed-loop
system gives a common framework for comparing both navigation and modeling errors.

Finally, a few debts of gratitude. I would like to acknowledge the dedicated mem-
bers of the Editorial Board, who diligently and professionally reviewed the contributed
chapters for this volume. Special thanks to Professor Terry Alfriend, member of the
National Academy of Engineering, for his encouragement, endorsement and support.
Finally, great many thanks to Isabelle Kandler, who prepared the infrastructure for this
project, and Graham Hart and Jonathan Simpson, the Commissioning Editors, for their
professionalism, far-reaching vision and good will.

Pini Gurfil
Elsevier Astrodynamics Series Editor
Technion – Israel Institute of Technology
Haifa 32000, Israel
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1.1 Basic definitions

Perturbations are deviations from a normal, idealized, or undisturbed motion. The
actual motion will vary from an ideal undisturbed path (two-body) due to perturbations
caused by other bodies (such as the Sun and Moon) and additional forces not considered
in Keplerian motion (such as a non-spherical central body and drag).

It is important to know about gradients, accelerations (specific forces), and func-
tions. A gradient is really a directional derivative which gives the rate of change of a
scalar function in a particular direction (Kreyszig, [7]). It’s a vector quantity and the
del operator,� , designates the gradient process. The gradient gives an acceleration if
the scalar function is a potential function related to a specific potential energy, such as
the potential function of a central body’s gravity field. I distinguish a potential function as
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2 Modern astrodynamics

the negative of the potentil energy. Two conventions are “standard” in this area because
many schools of thought have evolved over the last few decades. Brouwer and Clemence
[3], Battin [2], Long et al. [10], and others express one of the two main approaches,
in which the acceleration is the negative gradient of the potential function. This implies
that positive work is done as the potential decreases. The other approach, used mainly
by the geophysical community, holds an acceleration to be the positive gradient of the
potential function [Lambeck [9], Kaula [6], Moritz and Mueller [13], Kaplan [5], Roy
[14], and others]. Of course, both methods use potential functions that differ only by a
minus sign; therefore, the results are identical! We’ll follow the second method and place
the sign change between the potential energy and the potential function. I’ll also refer to
the potential function instead of simply the potential, to avoid confusion with potential
energy.

The distinction between a specific force (often used interchangeably with acceleration)
and a potential is important because analysis of perturbations typically uses both concepts.
It’s common to analyze perturbations using a disturbing function and a disturbing force.
The disturbing force simply expresses (in some coordinate system) the specific force
(acceleration) that is perturbing the satellite’s orbit. Non-conservative forces, such as the
perturbing effects of drag and solar-radiation pressure, are usually modeled as a specific
force Disturbing functions are simply the difference between perturbed and unperturbed
potential functions. They model conservative forces that perturb the orbit, such as the
central body’s non-sphericity and third-body attractions.

A potential function is one way to mathematically characterize a conservative force,
such as the gravitational potentialof a spherical central body (U2-body =· �/r). Some people
distinguish a disturbing function from a disturbing potential by a minus sign. As mentioned
earlier, considering the two to be equal is just as correct, as long as we maintain the correct
sign convention. The potential function for an aspherical central body, U (sometimes
referred to as the anomalous potential) includes the spherical potential (U2-body� as the first
term. The term geopotential is often used for this aspherical potential when the central
body is the Earth.

Because we wish to examine the effect of perturbations on the orbital elements, we
must characterize how they vary over time. Perturbations on orbital motion result in
secular and periodic changes.

Secular changes in a particular element vary linearly over time, or in some cases,
proportionally to some power of time, such as a quadratic. Secular terms grow with
time, and errors in secular terms produce unbounded error growth. Secular terms are
the primary contributor to the degradation of analytical theories over long time inter-
vals. Although the dominant perturbing force for the Earth, J2, results in all three
types of effects, we can do a first-order approximation and approximate the main vari-
ations. We can also develop some higher-order solutions. Periodic changes are either
short- or long-periodic, depending on the length of time required for an effect to
repeat. Because so many definitions exist in the literature and in practice, I’ll define
each type.

Short-periodic effects typically repeat on the order of the satellite’s period or less.
Long-periodic effects have cycles considerably longer than one orbital period—typically
one or two orders of magnitude longer. These long-periodic effects are often seen in the
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motion of the node and perigee and can last from a few weeks to a month or more.
This means a short-periodic effect for a satellite at an altitude of 400 km could vary with
periods up to about 100 minutes, whereas a short-periodic effect for a geosynchronous
satellite would be up to about 24 hours. Also, short-periodic variations occur when a fast
variable (true anomaly, for instance) is present in the contributing perturbational effect.

We also distinguish certain orbital elements as either fast or slow variables, depending
on their relative rate of change. Fast variables change a lot during one orbital revolution,
even in the absence of perturbations. Examples are the mean, true, and eccentric anomalies,
which all change 360�, or the cartesian coordinates, which also change dramatically
in a single revolution. Slow variables (semimajor axis, eccentricity, inclination, node,
argument of perigee) change very little during one orbital revolution. Perturbations cause
these changes. Without perturbations, all the slow elements would remain constant. Fast
variables would continue to change.

We can describe the perturbed motion of a satellite by an ordered series of position and
velocity vectors. Consequently, at each point in time, we can use these vectors to find
the orbital elements using two-body techniques. The corresponding position and velocity
vectors define these osculating elements at any instant in time. “Osculate” comes from
a Latin word meaning “to kiss.” Thus, the osculating orbit kisses the trajectory at the
prescribed instant. We define an osculating ellipse as the two-body orbit the satellite
would follow if the perturbing forces were suddenly removed at that instant. Therefore,
each point on the trajectory has a corresponding set of osculating elements. Osculating
elements are the true time-varying orbital elements, and they include all periodic (long-
and short-periodic) and secular effects. They represent the high-precision trajectory and
are useful for highly accurate simulations, including real-time pointing and tracking
operations.

In contrast, mean elements are “averaged” over some selected time (or an appropriate
angle such as true anomaly), so they are relatively smoothly varying and do not chase
the short-periodic variations. Notice that mean elements depend on some unspecified
averaging interval of the time; the true, eccentric, or mean anomaly; or the longitude.
Because there are many kinds of mean elements, it is important to understand how they
are defined and used. Mean elements are most useful for long-range mission planning
because they approximate the satellite’s long-term behavior.

1.2 Forces

The accuracy of orbit determination largely depends on modeling of all physical forces
affecting the motion of the Earth satellite or spacecraft in its orbital path through space.
By far the largest effect is due to gravitation, usually followed by atmospheric drag, third
body perturbations, solar radiation pressure effects and a suite of smaller effect such
as tides, and several others. Vallado [16] shows the relative effect of various forces on
several satellites at two different satellite altitudes. Figure 1.1 shows these quantitative
effects of all physical forces in terms of positional differences for a 500 km altitude,
97�6� inclined satellite. Note that most of the effects like tides, third body forces and
relativity are very small, but need to be taken into account when high precision is of
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Fig. 1.1. Force Model Comparisons: This figure shows the positional difference over time (four days) when
using various force models on the same initial state.

importance. The satellite parameters were chosen to illustrate force model effects. The
coefficient of drag cD = 2�2, coefficient of solar radiation pressure cR = 1�2, and area
to mass ratio A/m = 0�04 m2/kg. The simulation time, January 4, 2003, was chosen
as the epoch to propagate as this was a moderate period of solar activity (solar flux
F10�7 ∼ 140).

1.3 Gravity

The general equation for the gravitational attraction uses a spherical harmonic poten-
tial equation in an Earth-centered, Earth-fixed reference frame of the form. The fun-
damental expression for Earth’s gravitational potential acting on a satellite is usually
given in the familiar form of Earth’s geopotential with the origin at Earth’s center
of mass:

V = �

r

[
1+

�∑
n=2

n∑
m=0

(
R⊕
r

)n

Pnm�sin �gcsat��Cnm cos m�sat +Snm sin m�sat�

]
(1.1)
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Where � = gravitational parameter, r is the satellite radius magnitude, �gcsat and �sat are
the geographic coordinates of the satellite, R⊕ is the Earth radius, and Cnm and Snm are
the gravitational coefficients. Notice the presence of Legendre polynomials.

Pnm

(
sin �gcsat

)= (
cos �gcsat

)m dm

dm�sin �gcsat�
Pn

(
sin �gcsat

)

Pn

(
sin �gcsat

)= 1
2n n!

dm

dm�sin �gcsat�

(
sin2 �gcsat −1

)n (1.2)

For computational purposes, this expression is often used in the normalized form. This
results from replacing Pnm	Cnm, and Snm with P̄nm	Cnm, and S̄nm where

P̄nm =
[

�2n+1�k�n−m�!
�n+m�!

] 1
2

Pnm	

and {
C̄nm

S̄nm

}
=
[

�n+m�!
�2n+1�k�n−m�!

] 1
2
{

Cnm

Snm

}
	 (1.3)

with k = 1 for m = 0	 and k = 2 for m �= 0�

A Legendre function (polynomial or associated function) is referred to as a zonal harmonic
when m = 0, sectorial harmonic when m = n, and tesseral harmonic when m �= n.

When normalized coefficients are used, they must be used with the corresponding
normalized associated Legendre function:

Pnm = P̄nm


nm

(1.4)

such that C̄nmP̄nm = CnmPnm and S̄nmP̄nm = SnmPnm and the standard model is preserved.
Computer software programs generally all use double precision values when converting
these coefficients.

1.3.1 Earth Gravitational Models

The first attempts to standardize models of the Earth’s gravitational field and the shape
of the Earth were begun in 1961. A series of gravitational constants in the form of
low degree and order spherical harmonic coefficients were published based on Sputnik,
Vanguard, Explorer, and Transit satellite tracking data by special investigators within their
respective sponsoring organizations. The first gravity models differed greatly primarily
due to observational and computational limitations. As satellite tracking has become more
commonplace and computing power has increased, there are still several gravitational
models, but their differences are minimal for most applications. Currently there are several
prevailing gravitational models being used within the scientific community for a variety
of purposes. These models were determined from a wide range of measurement types,



6 Modern astrodynamics

1960

1970

1980

1990

2000

SAO-66
1966, 8 x 8

SAO-70
1970, 16 x 16

2010

SAO-77
1977, 24 x 24

SAO-80
1980, 30 x 30

SAO APL European

1965

1975

1985

1995

DMA NSWC GSFC OSU UT/CSRJoint

JGM-2
1994, 70 x 70

JGM-3
1996, 70 x 70

APL-1.0
1963, 8 x 8

APL-3.5
1965, 12 x 12

APL-5.0
1972, 15 x 15

WGS-60
1960, 4 x 4

WGS-66
1966, 8 x 8

WGS-72
1972, 12 x 12

WGS-84
1986, 41 x 41
(180 x 180)

EGM-96
1997, 360 x 360

NWL-8D
1967, 19 x 19

NWL-10E
1972, 8 x 8

GEM-1
1972, 12 x 12

GEM-9
1979, 30 x 30

GEM-10B
1981, 36 x 36

GEM-T2
1990, 36 x 36

GEM-T3
1992, 50 x 50

OSU-86
1978, 180 x 180

OSU-89B
1990, 360 x 360

OSU-91A
1991, 360 x 360

TEG-1
1988, 50 x 50

TEG-2
1990, 50 x 50

TEG-3
1997, 70 x 70

GRIM-1
1976, 10 x 10

GRIM-3
1982, 36 x 36

GRIM-5
2000, 99 x 95TEG-4

2004, 180 X 180

Fig. 1.2. Gravitational models: The Joint Gravity Models (JGM) come from Goddard Space Flight Center
(GSFC), Ohio State University (OSU), University of Texas at Austin (UT), and the European communities. The
Earth Gravity Model (EGM) combines the JGM work with Defense Mapping Agencies efforts. The Goddard
Earth Models (GEM) were produced annually beginning with GEM-1 in 1972. Even numbered models contain
satellite and surface gravity data. Odd numbered models contain only satellite data. Standard Earth (SAO)
and Applied Physics Laboratory (APL) models were among the first models. The basic information is from

Vetter [18] and [19].

satellite inclinations and altitudes including surface gravity measurements and satellite
altimetry data (Figure 1.2). From Vallado [15],

Many computational applications choose to truncate the gravitational field. While the
rigorous approach requires the complete field, many applications use reduced gravity
field orders to speed computational processing. Historically, there was some interest to
truncate the gravity field for computational or program limitations. While this is often
overlooked, some operational systems (AFSPC) often use a blanket 24×24 (for example)
field for LEO orbits, rapidly truncating the gravity field as the orbits get higher. This may
not be the best approach to accurately determine the orbit. Barker et al. [1] suggested a
link in performance to the zonal truncation. Other studies have almost all examined the
average behavior of the gravity field on the satellite orbit ephemeris. This may not tell the
proper story for precise operations. Vallado [16] investigated the behavior of truncations
for several satellites. One example is shown here for Japanese Earth Resources Satellite
(JERS, about 500 km altitude circular orbit) (Figure 1.3).
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Fig. 1.3. Gravity field comparisons: Truncated gravity fields are compared to ephemeris runs for a com-
plete EGM-96 70 × 70 field for a satellite at about 500 km altitude. The left plot is for a square gravity
field. The right plot includes all the zonals in the truncations. The results do not always improve with a
larger field (the differences for 22×22 are greater than 18×18 on the left, but the 70×22 is smaller than the

70×18 on right), but the accuracy generally improves as the non-square truncation is reduced.

Table 1.1
Fundamental Defining Parameters—EGM-96

Earth Semi-major Axis a = r⊕ 6378136.3 m
Flattening of the Earth 1/f 1.0/298.257
Angular Velocity of the Earth �⊕ 7292115�8553×10−11 rad/s
Earth’s Gravitational Constant GM, ��� 3�986004415×105 km3/s2

Recognize that each time the gravity field is changed, the potential energy of the system
changes, and an Orbit Determination (OD) process would produce a different state vector
to reflect this change, based on the force models used during that evaluation. Although
the most precise way to evaluate each force model would be to perform an OD on each
individual case, the process would be unnecessarily long because we are only trying to
establish the relative trends for each perturbation, not specific values for an individual
case. As computers have become faster, the easiest approach is to simply use a complete
gravity field (Table 1.1).

Models for gravitational perturbations are spherical harmonic expansions of the aspher-
ical gravitational potential are in an Earth-centered, Earth-fixed reference frame.

1.4 Drag

The application of empirical atmospheric density models to astrodynamics in a real-
world environment has been examined extensively since the launch of the first artificial
satellites (Figure 1.4). Atmospheric density leads to significant drag effects for satellites
below about 1000 km altitude, but its effects can be observed at altitudes well above this
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Fig. 1.4. Atmosphere Models: Notice the variety of models. Flow of information among the three overall
categories is limited (Marcos, et al., 1993, 20). The main models in use today are the Standard Atmosphere,
USSA76; variations of the Jacchia–Roberts, J71, J77, and GRAM90; COSPAR International Reference Atmo-
sphere, CIRA90; Mass Spectrometer Incoherent Scatter, MSIS 00; Drag Temperature Model (DTM), Marshall

Engineering Thermosphere (MET), the Russian GOST and general circulation models.

threshold. It is useful to review the basic acceleration equation. From Vallado [16], the
following introduction and analysis is taken.

⇀
adrag= −1

2


cDA

m
v2

rel

⇀
vrel

�⇀vrel�
(1.5)

 The density usually depends on the atmospheric model, Extreme Ultraviolet
EUV, F10�7, and geomagnetic indices ap, prediction capability, atmospheric
composition, etc. There is wide variability here, and many parameters that
can cause significant changes. The popular parameters to examine today are
the density and the exospheric temperatures. This single parameter represents
the largest contribution to error in any orbit determination application.

cD The coefficient of drag is related to the shape, but ultimately a difficult
parameter to define. Gaposchkin [4] discusses that the cD is affected by
a complex interaction of reflection, molecular content, attitude, etc. It will
vary, but typically not very much as the satellite materials usually remain
constant.
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A The cross-sectional area changes constantly (unless there is precise attitude
control, or the satellite is a sphere). This variable can change by a factor of
10 or more depending on the specific satellite configuration. Macro models
are often used for modeling solar pressure accelerations, but seldom if ever,
for atmospheric drag.

m The mass is generally constant, but thrusting, ablation, etc., can change this
quantity.

⇀
vrel The velocity relative to the rotating atmosphere depends on the accuracy of

the a priori estimate, and the results of any differential correction processes.
Because it is generally large, and squared, it becomes a very important factor
in the calculation of the acceleration.

The ballistic coefficient (BC = m/cDA – a variation is the inverse of this in some
systems) is generally used to lump the mass, area, and coefficient of drag values
together. It will vary, sometimes by a large factor. Several initiatives are examining
the time-rate of change for this parameter, but not looking at the variable area, and
its effect in this combined factor. It is probably best not to model this parameter
because it includes several other time-varying parameters that are perhaps better modeled
separately.

There are numerous atmospheric drag models. Figure 1.4 lists some of the more popular
models.

The primary inputs in any program are the atmospheric density (handled via a spec-
ified model), and the BC. The mass and cross-sectional area are usually well known,
and an estimate of the drag coefficient permits reasonable approximations. The atmo-
spheric models also vary depending on several factors, including the satellite orbit,
intensity of the solar activity, and the geomagnetic activity. Vallado and Kelso [17] dis-
cuss the files needed to compile a seamless file for operations. They are available at
http://celestrak.com/SpaceData.

Unlike any other force model, atmospheric drag receives extensive analysis and near-
continual updates. The bottom line for drag (and to a lesser extent solar radiation pressure,
as we will see shortly) is to have as many options and choices as possible. While the
programming and certification tasks becomes more complicated, this non-conservative
force is often the most difficult to match in ephemeris comparisons and having these
options provides the user with a much greater ability to minimize differences with other
programs.

There are three general observations that are important—the difference between atmo-
spheric models, the variability that can result from treating the input data differently,
and the actual implementation of an approach. Vallado [16] conducted a series of tests
to determine the variability of different atmospheric models for a given satellite using
a single flight dynamics program, and the differences resulting from the diverse treat-
ment of the input solar weather data. The state vectors, epoch, BC, and solar radiation
pressure coefficient (m/cr Asun� were held constant for all runs. The baseline used the
Jacchia–Roberts atmospheric model. The simulations were run during a time of “average”
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Fig. 1.5. Sample Atmospheric Drag Sensitivity: Positional differences are shown for JERS, about 500 km
altitude and 97�6� inclination. Jacchia–Roberts drag is the baseline for all runs with 3-hourly interpolation. The
left-hand graph shows the variations by simply selecting different atmospheric models. The right-hand graph
shows the effect of various options for treating solar weather data. Specific options are discussed in the text.
Note that the scales are the same, the relative effect of different models and solar data options are about the

same, and any transient effects quickly disappear as the effect of drag overwhelms the contributions.

solar flux (January 4, 2003, F10�7 ∼ 140). Minimum solar flux periods (F10�7 ∼ 70) will
show little difference. Maximum periods (F10�7 ∼ 220) will show much larger excursions.
Figure 1.5 shows the results for the JERS satellite, at about 500 km altitude and 97�6�

inclination. Additional runs were performed with different satellites and as expected, the
results were larger for lower and more eccentric orbits.

Most models as implemented in computer code, do not follow the exact technical
derivation as defined in the literature. It is likely that none of the drag model imple-
mentations match the original technical definition. As a result, code contains numerous
short cuts, and many additional features that may be the result of internal studies and
information, but not the original work. This makes comparison of atmospheric models
especially difficult.

Because atmospheric drag has perhaps the largest number of different models, defining
an absolute standard is difficult to do, and would unnecessarily restrict research. There
have been numerous studies to evaluate how well the atmospheric models perform, yet, no
clear “winner” has ever emerged. Thus, we list models and present references that discuss
the various merits of many of the models. An additional comment is necessary. Most
models, as implemented in computer code, do not follow the exact technical derivation as
defined in the literature. Numerous short cuts, and many additional features are included
that may be the result of internal studies and information. This makes standardization of
atmospheric models especially difficult.

For most of the simulations, the MSIS-86 and MSIS-90 models were quite close,
as expected by the model descriptions. The Jacchia 1960 (J60) model appeared to be
significantly different in all cases from the other models and J70 seemed to differ most
from the J71 and JRob models. Because this chapter does not extensively examine
comparisons with Precision Orbit Ephemerides (POEs), it is most important to come away
with the overall level of variability within the different models. Essentially, if varying
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atmospheric models show differences that are significantly larger than differences between
flight dynamics programs using the “same” models, which is right? After examining
these data, we conclude that neither are right. Primarily, this is due to the results shown
on the right-hand side of Fig. 1.5 which are discussed next. Although each atmospheric
model is carefully designed, the treatment of solar weather data by each program adds
so much variability, coupled with the lack of independent references and availability
of observational data for comprehensive evaluation makes it highly unlikely that one
approach is definitive for all cases.

The following recommendations are set forth.
1. There should be an option to use either the last F10�7 81-day average, or the centered

81-day average. Atmospheric model descriptions generally cite a centered average,
but this is impractical for many operational systems, and a trailing 81-day average is
often used.

2. Using ap should be seamless, but there is the possibility of difficulties for certain
conversions of average values. There are discrete values for which ap and kp exist in the
daily data. Thus, a program needs to be careful not to input a derived value that does not
exist in the other scale. Inside a program, however, conversions may proceed without
restriction to value. Consistency should be maintained with the atmospheric model.

3. The cubic splines routine discussed in Vallado and Kelso [17] should be used to
interpolate geomagnetic indices.

4. The codes should treat all F10�7 measurements at the time the measurement is actually
taken. The offset (2000 UTC after May 31, 1991, 1700 UTC before) should be used
with all F10�7 and average F10�7 values. Any model specific “day before”, “6.7 hours
before”, etc., should be done with this offset in mind. There is not an established
approach, yet it is a big factor (sometimes km level) in the comparisons.

5. The options for using ap should be
a. daily—just the daily values are interpolated. All 3-hourly values are ignored.
b. 3-hourly—just the 3-hourly values are used. The daily values are ignored and there

is no interpolation. This will produce step function discontinuities, but that could
be useful in some programs.

c. 3-hourly interp.—this should use the cubic splines from Vallado and Kelso (2005). It
should produce the smoothest transitions from one time to the next while preserving
the discrete values. The measurements should reproduce exactly at the measurement
times (0000, 0300, 0600, etc. UTC), and be smooth in between.

6. The lag time for ap values is somewhat fixed to 6.7 hours, but others have been
proposed. Since it is a variable option, it would be prudent to have a means to change
it, without recompiling the entire program.

7. The drag coefficient, area, and mass need to be included in state vector transmissions
to permit increased accuracy in subsequent calculations.

Many sources state that the current atmospheric models introduce about a 15% error in the
determination of atmospheric drag effects on a satellite. In fact, this is a combination of
the inaccuracy of the predictions of the solar flux and geomagnetic indices, the imperfect
nature of the mathematical models, imprecise information about the molecular interaction
of the satellite and the atmospheric particles, and several others.
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1.5 3-Body

Third body effects include the perturbations induced by the gravitational influence of
the Sun, Moon, and the planets. These are also called n-body perturbations acting on
the satellite. The contributions are computed using a point-mass equation. However, the
Sun and Moon also include an indirect effect as an interaction between a point-mass
perturbing object and an oblate earth. Thus the third-body perturbation includes both
direct and indirect terms of point mass third-body perturbations.

The general form of the acceleration due to third-body forces is

⇀
a3-body= −G�mE +msat�

r3
Esat

⇀
rEsat +Gm3

⎛
⎝⇀

rsat3

⇀
r

3

sat3

−
⇀
rE3

⇀
r

3

E3

⎞
⎠ (1.6)

Analytical and numerically generated models dominate astrodynamic programs. Many
applications use the analytical approaches because they provide adequate accuracy. How-
ever, numerical routines often require the additional accuracy of the JPL models.

1.6 Solar radiation pressure

The force due to solar radiation pressure (SRP) rises when photons from the Sun
impinge on a satellite surface and are absorbed (or reflected-specular and diffuse) thus
transferring photon impulse to the satellite. In contrast to drag, the SRP force does not
vary with altitude and its main effect is a slight change in the eccentricity and longitude
of perigee. The effect of SRP is most notable for satellites with large solar panels like
communications satellites and GPS and depends on its mass and surface area. In cases
of geodetic precision orbits, complex modeling of the exposed satellite surfaces have to
modeled usually using finite-element computer codes. This is the case with GPS where
SRP represents an important force.

Vallado [16] provides a background for SRP and is included herein. Although not
studied as extensively in the literature, it poses many of the same challenges as atmospheric
drag, but has a significantly smaller effect than the other forces. Consider the basic
equation.

⇀
asrp= −SR

cRASun

m

⇀
r sat−Sun

�⇀rsat−Sun�
(1.7)

SR The incoming solar pressure depends on the time of year, and the intensity
of the solar output. It is derived from the incoming solar flux and values
of about 1358–1373 W/m2 are common.

cR The coefficient of reflectivity indicates the absorptive and reflective
properties of the material, and thus the susceptibility to incoming solar
radiation.
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ASun The cross-sectional area changes constantly (unless there is precise atti-
tude control, or it is spherical). This variable can change iby a factor of 10
or more depending on the specific satellite configuration. Macro models
are often used for geosynchronous satellites. This area is generally not
the same as the cross-sectional area for drag.

m The mass is generally constant, but thrusting, ablation, etc., can change
this quantity.

rsat−Sun The orientation of the force depends on the satellite–Sun vector—again
a difference with atmospheric drag.

Despite the simple expression, accurate modeling of solar radiation pressure is challenging
for several reasons. The major error sources are:
• Use of macro models/attitude—this is perhaps the largest difference between programs
• Use of differing shadow models (umbral/penumbral regions, cylindrical, none, etc.)
• Using a single value for the incoming solar luminosity, or equivalent flux at 1 AU
• Use of an effective Earth radius for shadow calculations (23 km additional altitude is

common)—this approximates the effect of attenuation from the atmosphere
• Using different methods to account for seasonal variations in the solar pressure
• Not integrating to the exact points of arrival and departure at the shadow boundary
• Use of simplified treatment for the light-time travel from the Sun to the satellite

(instantaneous (true), light delay to central body accounted for (app. to true), light delay
to satellite (default))

A series of runs were made to determine the impact of each of these items on the
results for a few selected satellites. Results are shown in Figure 1.6 for a nominal Global
Positioning Satellite (GPS satellite).

1.7 Tides

Earth tidal effects on satellites are due to pole tides, ocean tides, and solid earth, tides.
Most of the data that have resulted in a definitive model have come about within the
last several years from satellites such as TOPEX and GRACE. The basis of the models
for pole, solid earth, and ocean tide models can be found in IERS Conventions, with the
latest update in McCarthy and Petit [12]. Tidal models do not enjoy the variety of the
gravitational and atmospheric models yet, but there are several different approaches. These
various models can be a factor if precise comparisons are desired. At this point in time,
several models exist, and no clear “leader” has been recognized as the standard approach.

Pole tides define the rotational deformation of the pole due to an elastic earth. These
are modeled by the C21 and S21 coefficients in the earth’s potential.

Solid earth tidal contributions are computed as corrections to the spherical harmonics
coefficients.

There are a wide variety of ocean tide models in existence that have been used since
1980 starting with the Swiderski hydrodynamic model. One current models is from the
University of Texas, Center for Space Research (CSR) and are referred to by CSR4.0
which model the long wave-length characteristics. The early model was 1 degree by 1
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Fig. 1.6. Sample solar radiation pressure sensitivity. Positional differences are shown for a GPS satellite which
is in eclipse. The baseline is a dual-cone (umbra/penumbra) shadow model. Using no shadow model (none)
produces the largest differences. A simple cylindrical model introduces modest differences. Shadow boundary
mitigation (no boundary) and the effective Earth size (23) contribute noticeable differences. The treatment of
light travel time between the Sun and central body (app. to true) and instantaneous travel (true) produce smaller,

but still detectable results.

degree model and the later model are 0.5 × 0.5 degree in extent. The IERS conventions
describe another model. Most of these models have been developed since about 1995.
The models use highly precise measurements from satellites such as JASON and TOPEX.
Additional satellites such as GRACE and GOCE will contribute to a better future models.

1.8 Albedo

Albedo is the radiation pressure emitted from the Earth which causes a small perturbing
force on a satellite. Although the effect of SRP is far larger, the effects of Earth’s
albedo can be comparable for certain configurations of orbits (e.g. sun-synchronous).
The acceleration due to albedo is generally expressed in terms of a second degree zonal
spherical harmonic model, and contributions from various Earth sectors are summed to
determine the overall effect.

1.9 Other

As the accuracy of orbit determination and propagation increases, additional force
models are included in analyses. In particular, applications using GPS data often must
account for the [primarily] apsidal rotation caused by General Relativity. GPS signals
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msut also be corrected for General Relativity, as well as atomic clock corrections. The
effects of General Relativity are very small and only become important where high orbit
precision at the cm level is needed. Satellites, such as the Gravity Probe B, will try to
measure and quantify this effect in its verification and validation of Einstein’s theory of
General Relativity. Satellite thrusting can also be a significant perturbing force. Many
satellites use maneuvers for mission operation and for orbit maintenance. The forces
induced by these motor firings can be large and small. We do not describe these in any
detail, but introduce the forces as something needed to be considered in mission planning
and precision orbit determination modeling.

1.10 Propagating the orbit

There are several techniques to propagate an orbit. Generally, analytical, numerical, and
semianalytical techniques encompass the potential choices. However, a primary technique
to find analytical solutions, the variation of parameters, may be used in either analytical
or numerical applications. The fundamental distinction is the use of position and velocity
state vectors, or orbital elements as the elements of the state. Recalling the previous force
model discussion, one can find benefits with each approach.

Direct integration where possible. Analytical methods are accurate and yield a quick
solution; however, the series truncations may be difficult depending on the equations
of motion. The numerical method is very accurate with the correct step size, but this
determination may be tricky, and long propagations can still be time-consuming. The
semianalytical technique combines the analytical and numerical approaches.

1.11 Analytical

General perturbation techniques replace the original equations of motion with an
analytical approximation that captures the essential character of the motion over some
limited time interval and which also permits analytical integration. Such methods rely on
series expansions of the perturbing accelerations and are usually derived from variation
of parameter equations which will be addressed shortly. In practice, we truncate the
resulting expressions to allow simpler expressions in the theory. This trade-off speeds
up computation but decreases accuracy. Unlike numerical techniques, analytical methods
produce approximate, or “general” results that hold for some limited time interval and
accept any initial input conditions. The quality of the solution degrades over time, but
remember that the numerical solution also degrades—at different rates and for different
reasons. Analytical techniques are generally more difficult to develop than numerical
techniques, but they often lead to a better understanding of the perturbation source.

1.12 Numerical

Special perturbation techniques numerically integrate the equations of motion including
all necessary perturbing accelerations. Because numerical integration is involved, we can
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think of numerical formulations as producing a specific, or special, answer that is valid
only for the given data (initial conditions and force-model parameters). To numerically
integrate Cowell’s formulation, we must have mathematical models for each perturbing
force. The general form is usually taken as the following Albedo.

⇀
a= �r

r3

⇀
r + ⇀

anon-spherical + ⇀
adrag + ⇀

a3-body + ⇀
asrp + ⇀

atides + ⇀
aother (1.8)

Numerical integration may also be applied to the variation of parameter (VOP) equa-
tions, in which case a set of orbital elements is numerically integrated. To form an
ephemeris, one then needs to convert the osculating orbital elements into the appropriate
state vectors.

Although numerical methods can give very accurate results and often establish the
“truth” in analyses, they suffer from their specificity, which keeps us from using them
in a different problem. Thus, new data means new integration, which can add lengthy
computing times. NASA began the first complex numerical integrations during the late
1960s and early 1970s. Personal computers now compute sufficiently fast enough to
perform complex perturbation analyses using numerical techniques. However, numerical
methods suffer from errors that build up with truncation and round-off due to fixed
computer word-length. These errors can cause numerical solutions to degrade as the
propagation interval lengthens.

1.13 Semianalytical

Semianalytical techniques combine the best features of numerical and analytical meth-
ods to get the best mix of accuracy and efficiency. The result can be a very accurate,
relatively fast algorithm which applies to most situations. But semianalytical techniques
vary widely. We choose a semianalytical technique mainly for its ability to handle varying
orbital applications, its documentation, and the fidelity and the number of force models it
includes. Most semianalytical techniques have improved accuracy and computational effi-
ciency, but the availability of documentation (including very structured computer code)
and flexibility are often important discriminators. We consider a technique semianalytical
if it is not entirely analytical or numerical.

1.14 Variation of parameters

Most analytical, and some numerical solutions rely on the variation of parameters
(VOP) form of the equations of motion originally developed by Euler and improved
by Lagrange [8]. The overall process is called variation of parameters (VOP) because
the orbital elements (the constant parameters in the two-body equations) are changing.
Lagrange and Gauss both developed VOP methods to analyze perturbations—Lagrange’s
technique applies to conservative accelerations, whereas Gauss’s technique also works
for non-conservative accelerations. Depending on the orbital elements chosen, the form
will differ. I will show a form for the classical orbital elements.
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Using the VOP technique, we can analyze the effects of perturbations on specific orbital
elements. This is very useful in mission planning and analysis. We want any theory to
model as many perturbing forces as possible. Most operational analytical theories are
limited to central body and drag. Analytical expressions for third-body and solar-radiation
forces are far less common, mainly because their effects are much smaller for many
orbits. Also, whenever accuracy requires us to use effects of third bodies and solar-
radiation pressure, numerical integration is usually just as easy for all the perturbing
forces.

1.15 Lagrangian VOP—conservative forces

The VOP method is a formulation of the equations of motion that are well-suited
to perturbed, dynamical systems. The concept is based on the premise that we can
use the solution for the unperturbed system to represent the solution of the perturbed
system, provided that we can generalize the constants in the solution to be time-varying
parameters. The unperturbed system is the two-body system, and it represents a collection
of formulas that provide the position and velocity vectors at a desired time. Remember,
these formulas depend only on the six orbital elements and time. In principle, however,
we could use any set of constants of the unperturbed motion, including the initial position
and velocity vectors. Time is related to the equations of motion through the conversions
of mean, eccentric, and true anomaly.

The general theory for finding the rates of change of the osculating elements is known
as the Lagrange planetary equations of motion, or simply the Lagrangian VOP, and is
attributed to Lagrange because he was the first person to obtain these equations for all
six orbital elements. He was concerned with the small disturbances on planetary motion
about the Sun due to the gravitational attraction of the planets. He chose to model the
disturbing acceleration due to this conservative perturbation as the gradient of a potential
function. From Vallado [15],
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1.16 Gaussian VOP—nonconservative forces

For many applications, it is convenient to express the rates of change of the elements
explicitly in terms of the disturbing forces—actually acceleration (specific forces) to match
the units in the equations. Gauss’s form of VOP is advantageous for non-conservative
forces because it is expressed directly from the disturbing acceleration. But it works
equally well for conservative forces because the forces are simply gradients of the potential
functions. It is also easy to visualize this representation because we’re familiar with
the concept of a force. Gauss’s form of the VOP requires the partial derivatives of the
elements with respect to the velocity. We must determine these for particular element
sets. Gauss chose to develop the equations in the RSW system.1 Let the components of
the disturbing force (per unit mass) be along the radius vector, perpendicular to the Raxis
in the orbit plane in the direction of satellite motion, and normal to the orbit plane. The
disturbing (specific) force become

da

dt
= 2

n
√

1− e2

(
esin�v�FR + p

r
rFS

)
de

dt
=

√
1− e2

na

(
sin�v�FR +

(
cos�v�+ e+ cos�v�

1+ ecos�v�
r

)
FS

)
di

dt
= rcos�u�FW

na2
√

1− e2

d�

dt
= rsin�u�FW

na2
√

1− e2sin�i�

d�

dt
=

√
1− e2

na2sin�i�

{
−cos�v�FR + sin�v�

(
1+ r

p

)
FS

}
− rcot�i�sin�u�FW

h

dMo

dt
= 1

na2e
��pcos�v�−−2er�FR − �p+ r�sin�v�FS�

These VOP equations in classical orbital elements have some limitations. First, they
are limited to eccentricities less than 1.0 because of the presence of the eccentricity in the
denominator and in square roots. Also note that they suffer from the same singularities as
Lagrange’s form of the VOP equations because the singularities are due to the particular
element set, not how the disturbing forces are characterized. The rate of change of � has
sin�i� in the denominator. This causes the equation to be indeterminate for small inclina-
tions. A similar problem exists for � with small values of eccentricity. Thus, this particular
set of equations is not recommended for small values of eccentricity or inclination.

1 In the RSW system, the R axis is parallel to the position vector. Along-track displacements are normal to
the position vector (along the S axis), but not necessarily aligned with the velocity vector. The W axis points
in the instantaneous direction of the angular momentum vector.
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1.17 Effect on orbits

Given the numerous techniques to analyze and account for the effects of perturbations,
there are several different trends that can be noted for different satellite orbits. However,
be aware that the results are specific to individual orbits. Also note that the increasing
popularity of numerical methods has positive and negative effects. These techniques
include all effects from the perturbations, but they do not indicate the source of dominant
errors, and can thus be problematic for the satellite mission designer. We examine two
major areas here—a J2 secular perturbation, and the effects of combined forces resulting
from numerical simulations.

1.18 J2 Only

Due to its simplicity, studies are often conducted with only the secular effects of J2

included. While this is true for many systems, the modern computer renders many of
these analyses obsolete for precise studies. Still, the effects are illustrative of the effect
on satellite orbits. Consider the nodal regression (Figure 1.7) and the apsidal rotation
(Figure 1.8). These two effects are common for satellite mission planners, and they result
from the secular effect of J2.
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Fig. 1.7. Daily nodal regression. For the eccentric orbits, I used a perigee altitude of 100 km with the apogee
values as indicated. The 100 × 2000 km orbit shows that the perturbing effect for each of the eccentric orbits

would be smaller if the orbit were circular at that apogee altitude (2000×2000 km) [15].



20 Modern astrodynamics

–5

0

5

10

15

20

0 30 60 90 120 150 180

4000 × 4000 km, e = 0

100 × 100 km, e = 0

100 × 1000 km, e = 0.065

100 × 2000 km, e = 0.128
100 × 3000 km, e = 0.183

100 × 500 km, e = 0.030

100 × 4000 km, e = 0.231

Fig. 1.8. Daily Apsidal Regression. As with nodal regression, circular orbits at an altitude (say, 4000 ×
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(100×4000 km) [15].

1.19 Comparative force model effects

The effects of all physical forces affecting the motion of the earth satellite or spacecraft
can be complex, and is often best handled by numerical integration. By far the largest effect
is due to gravitation, usually followed by atmospheric drag, solar radiation pressure (SRP)
effects and several other effects such as tides, third body perturbations and others. Vallado
(2005) shows the relative effect of various forces on several satellites. Figure 1.9 repro-
duces these quantitative effects of all physical forces in terms of positional differences for
two satellites—one is in an 800 by 110 km altitude, 50� inclined orbit, while the other is
a geosynchronous satellite. Note that most of the effects like tides and third body forces
and relativity are very small, but need to be taken into account when precision is of impor-
tance. The satellite parameters were chosen to illustrate force model effects. Each spacecraft
parameter was held constant (coefficient of drag cD = 2�2, coefficient of solar radiation
pressure cR = 1�2, area to mass ratio A/m = 0�04 m2/kg). The simulation time, January 4,
2003, was chosen as the epoch to propagate as this was a moderate period of solar activity
(solar flux F10�7 ∼ 140). The baseline for comparison in all cases was a 12 × 12 EGM-96
gravity field (degree and order, 12 zonal harmonics plus 12 sectoral terms). Except for the
two-body (0×0) and 70×70 cases, all the other force model comparisons included a 12×12
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Fig. 1.9. Force model comparisons: This figure shows the positional difference over time (four days) when
using various force models on the same initial state for a geosynchronous satellite. Each comparison is made
with respect to a two-body ephemeris except for the gravity runs which compare to the nearest gravity case.
Thus, “12×12” is a comparison of a 12×12 WGS84/EGM96 gravity field to a WGS84/EGM96 2×10 gravity

field ephemeris, etc.

EGM-96 gravity field. Thus, for example, the “vs Drag JRob” case indicates a comparison
of 12×12 EGM-96 gravity and a 12×12 EGM-96 gravity with Jacchia–Roberts drag.

In general, gravity was the largest single perturbation source, so additional tests were
conducted to determine the sensitivity of this perturbation force. Atmospheric drag was
generally second for lower orbits, but third-body effects were much higher for higher
altitude satellites. Because the study results indicated the conservative forces could be
matched to cm-level, no additional studies were performed on third-body forces. Drag
was considered separately. It is important to note that these are prediction differences are
based on the propagation of identical state vectors with differing acceleration models. A
study of orbit determination accuracy using differing acceleration models would produce
a very different set of results.

1.20 Conclusions

There are numerous forces that affect a satellite in orbit. Proper treatment of these
forces is essential to proper mission planning and satellite operations. The selection of
the type of propagation scheme and consistency with the chosen technique are important.
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2.1 Introduction

2.1.1 What this chapter is about

Both orbital and attitude dynamics employ the method of variation of parameters.
In a non-perturbed setting, the coordinates (or the Euler angles) get expressed as func-
tions of the time and six adjustable constants called elements. Under disturbance, each
such expression becomes ansatz, the “constants” being endowed with time dependence.
The perturbed velocity (linear or angular) consists of a partial time derivative and a
convective term containing time derivatives of the “constants.” It can be shown that this
construction leaves one with a freedom to impose three arbitrary conditions upon the
“constants” and/or their derivatives. Out of convenience, the Lagrange constraint is often
imposed. It nullifies the convective term and thereby guarantees that under perturba-
tion the functional dependence of the velocity upon the time and “constants” stays the
same as in the undisturbed case. “Constants” obeying this condition are called osculating
elements.

The “constants” chosen to be canonical are called Delaunay elements, in the orbital
case, or Andoyer elements, in the spin case. (As some of the Andoyer elements are
time-dependent even in the free-spin case, the role of “constants” is played by these
elements’ initial values.) The Andoyer and Delaunay sets of elements share a fea-
ture not readily apparent: in certain cases the standard equations render these elements
non-osculating.

In orbital mechanics, elements calculated via the standard planetary equations come
out non-osculating when perturbations depend on velocities. To keep elements osculating
under such perturbations, the equations must be amended with extra terms that are not
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parts of the disturbing function [1, 2]. For the Kepler elements, this merely complicates the
equations. In the case of Delaunay parameterisation, these extra terms not only complicate
the equations, but also destroy their canonicity. So under velocity-dependent disturbances,
osculation and canonicity are incompatible.

Similarly, in spin dynamics the Andoyer elements come out non-osculating under
angular-velocity-dependent perturbation (a switch to a non-inertial frame being one such
case). Amendment of the dynamical equations only with extra terms in the Hamiltonian
makes the equations render non-osculating Andoyer elements. To make them osculating,
more terms must enter the equations (and the equations will no longer be canonical).

It is often convenient to deliberately deviate from osculation by substituting the
Lagrange constraint with an arbitrary condition that gives birth to a family of non-osculating
elements. The freedom in choosing this condition is analogous to the gauge freedom. Calcu-
lations in non-osculating variables are mathematically valid and sometimes highly advan-
tageous, but their physical interpretation is non-trivial. For example, non-osculating orbital
elements parameterise instantaneous conics not tangent to the orbit, so the non-osculating
inclination will be different from the real inclination of the physical orbit.

We present examples of situations in which ignoring of the gauge freedom (and of the
unwanted loss of osculation) leads to oversights.

2.1.2 Historical prelude

The orbital dynamics is based on the variation-of-parameters method, invention whereof
is attributed to Euler [3, 4] and Lagrange [5–9]. Though both greatly contributed to
this approach, its initial sketch was offered circa 1687 by Newton in his unpublished
Portsmouth Papers. Very succinctly, Newton brought up this issue also in Cor. 3 and 4
of Prop. 17 in the first book of his Principia.

Geometrically, the part and parcel of this method is representation of an orbit as a set of
points, each of which is contributed by a member of some chosen family of curves C���,
where � stands for a set of constants that number a particular curve within the family.
(For example, a set of three constants � = �a� b� c� defines one particular hyperbola
y = ax2 + bx + c out of many). This situation is depicted on Fig. 2.1. Point A of the
orbit coincides with some point 	1 on a curve C��1�. Point B of the orbit coincides with
point 	2 on some other curve C��2� of the same family, etc. This way, orbital motion
from A to B becomes a superposition of motion along C� from 	1 to 	2 and a gradual
distortion of the curve C� from the shape C��1� to the shape C��2�. In a loose language,
the motion along the orbit consists of steps along an instantaneous curve C��� which
itself is evolving while those steps are being made.

Normally, the family of curves C� is chosen to be that of ellipses or that of hyperbolae,
� being six orbital elements, and 	 being the time. However, if we disembody this idea
of its customary implementation, we shall see that it is of a far more general nature and
contains three aspects:
1. A trajectory may be assembled of points contributed by a family of curves of an

essentially arbitrary type, not just conics.
2. It is not necessary to choose the family of curves tangent to the orbit. As we shall see

below, it is often beneficial to choose those non-tangent. We shall also see examples
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when in orbital calculations this loss of tangentiality (loss of osculation) takes place
and goes unnoticed.

3. The approach is general and can be applied, for example, to Euler’s angles. A disturbed
rotation can be thought of as a series of steps (small turns) along different Eulerian
cones. An Eulerian cone is an orbit (on the Euler angles’ manifold) corresponding to an
unperturbed spin state. Just as a transition from one instantaneous Keplerian conic to
another is caused by disturbing forces, so a transition from one instantaneous Eulerian
cone to another is dictated by external torques or other perturbations. Thus, in the
attitude mechanics, the Eulerian cones play the same role as the Keplerian conics do
in the orbital dynamics. Most importantly, a perturbed rotation may be “assembled” of
the Eulerian cones in an osculating or in a non-osculating manner. An unwanted loss
of osculation in attitude mechanics happens in the same way as in the theory of orbits,
but is much harder to notice. On the other hand, a deliberate choice of non-osculating
rotational elements in attitude mechanics may sometimes be beneficial.

From the viewpoint of calculus, the concept of variation of parameters looks as fol-
lows. We have a system of differential equations to solve (“system in question”) and a
system of differential equations (“fiducial system”) whose solution is known and contains
arbitrary constants. We then use the known solution to the fiducial system as an ansatz
for solving the system in question. The constants entering this ansatz are endowed with
time dependence of their own, and the subsequent substitution of this known solution into
the system in question yields equations for the “constants.” The number of “constants”
often exceeds that of equations in the system to solve. In this case we impose, by hand,
arbitrary constraints upon the “constants.” For example, in the case of a reduced N -body
problem, we begin with 3�N − 1� unconstrained second-order equations for 3�N − 1�
Cartesian coordinates. After a change of variables from the Cartesian coordinates to
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the orbital parameters, we end up with 3�N − 1� differential equations for the 6�N −1�
orbital variables. Evidently, 3�N −1� constraints are necessary.1 To this end, the so-called
Lagrange constraint (the condition of the instantaneous conics being tangent to the phys-
ical orbit) is introduced almost by default, because it is regarded natural. Two things
should be mentioned in this regard:

First, what seems natural is not always optimal. The freedom of choice of the supple-
mentary condition (the gauge freedom) gives birth to an internal symmetry (the gauge
symmetry) of the problem. Most importantly, it can be exploited for simplifying the
equations of motion for the “constants.” On this issue we shall dwell in the current paper.

Second, the entire scheme may, in principle, be reversed and used to solve systems of
differential equations with constraints. Suppose we have N +M variables Cj�t� obeying a
system of N differential equations of the second order and M constraints expressed with
first-order differential equations or with algebraic expressions. One possible approach
to solving this system will be to assume that the variables Cj come about as constants
emerging in a solution to some fiducial system of differential equations. Then our N
second-order differential equations for Cj�t� will be interpreted as a result of substitution
of such an ansatz into the fiducial system with some perturbation, while our M constraints
will be interpreted as weeding out of the redundant degrees of freedom. This subject is
out of the scope of our paper and will not be developed here.

2.1.3 The simplest example of gauge freedom

Variation of constants first emerged in the non-linear context of celestial mechanics
and later became a universal tool. We begin with a simple example offered in Newman
and Efroimsky [10].

A harmonic oscillator disturbed by a force 
F�t� gives birth to the initial-condition
problem

ẍ+x = 
F�t�� with x�0� and ẋ�0� known� (2.1)

1 In a fixed Cartesian frame, any solution to the unperturbed reduced 2-body problem can be written as

xj = fj�t�C1� � � � �C6�� j = 1� 2� 3�

ẋj = gj�t�C1� � � � �C6�� gj ≡
(

�fj

�t

)
C

the adjustable constants C standing for orbital elements. Under disturbance, the solution is sought as

xj = fj�t�C1�t�� � � � �C6�t��� j = 1� 2� 3�

ẋj = gj�t�C1�t�� � � � �C6�t��+j�t�C1�t�� � � � �C6�t��� gj ≡
(

�fj

�t

)
C

� j ≡∑
r

�fj

�Cr

Ċr �

Insertion of xj = fj�t�C� into the perturbed gravity law yields three scalar equations for six functions Cr�t�.
This necessitates imposition of three conditions upon Cr and Ċr . Under the simplest choice j = 0� j = 1� 2� 3,
the perturbed physical velocity ẋj�t�C� has the same functional form as the unperturbed gj�t�C�. Therefore,
the instantaneous conics become tangent to the orbit (and the orbital elements Cr�t� are called osculating).
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whose solution may be sought using ansatz

x = C1�t� sin t +C2�t� cos t� (2.2)

This will lead us to

ẋ = [
Ċ1�t� sin t + Ċ2�t� cos t

]+C1�t� cos t −C2�t� sin t� (2.3)

It is common, at this point, to put the sum
[
Ċ1�t� sin t + Ċ2�t� cos t

]
equal to zero, in order

to remove the ambiguity stemming from the fact that we have only one equation for two
variables. Imposition of this constraint is convenient but not obligatory. A more general
way of fixing the ambiguity may be expressed as

Ċ1�t� sin t + Ċ2�t� cos t = ��t�� (2.4)

��t� being an arbitrary function of time. This entails:

ẍ = �̇+ Ċ1�t� cos t − Ċ2�t� sin t −C1�t� sin t −C2�t� cos t� (2.5)

summation whereof with Eq. (2.2) gives:

ẍ+x = �̇+ Ċ1�t� cos t − Ċ2�t� sin t� (2.6)

Substitution thereof into Eq. (2.1) yields the dynamical equation re-written in terms of
the “constants” C1�C2. This equation, together with identity (2.4), will constitute the
following system:

�̇+ Ċ1�t� cos t − Ċ2�t� sin t = 
F�t��

Ċ1�t� sin t + Ċ2�t� cos t = ��t��
(2.7)

This leads to

Ċ1 = 
F cos t − d
dt

�� cos t�

Ċ2 = −
F sin t + d
dt

�� sin t� �

(2.8)

the function ��t� still remaining arbitrary.2 Integration of Eq. (2.8) entails:

C1 =
∫ t


F cos t′dt′ −� cos t +a1

C2 = −
∫ t


F sin t′dt′ +� sin t +a2�

(2.9)

2 Function ��t� can afford being arbitrary, no matter what the initial conditions are to be. Indeed, for fixed
x�0� and ẋ�0�, the system C2�0� = x�0����0�+C1�0� = ẋ�0� solves for C1�0� and C2�0� for an arbitrary choice
of ��0�.
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Substitution of Eq. (2.9) into Eq. (2.2) leads to complete cancellation of the � terms:

x = C1 sin t +C2 cos t =− cos t
∫ t


F sin t′dt′ + sin t
∫ t


F cos t′dt′

+a1 sin t +a2 cos t (2.10)

Naturally, the physical trajectory x�t� remains invariant under the choice of gauge function
��t�, even though the mathematical description (2.9) of this motion in terms of the
parameters C is gauge dependent. It is, however, crucial that a numerical solution of the
system (2.8) will come out �-dependent, because the numerical error will be sensitive to
the choice of ��t�. This issue is now being studied by P. Gurfil and I. Klein [11], and
the results are to be published soon.

It remains to notice that (2.8) is a simple analogue to the Lagrange-type system of
planetary equations, system that, too, admits gauge freedom. (See subsection 2.2.2 below.)

2.1.4 Gauge freedom under a variation of the Lagrangian

The above example permits an evident extension [12, 13]. Suppose some mechanical
system obeys the equation

r̈ = F�t� r� ṙ�� (2.11)

whose solution is known and has a functional form

r = f �t�C1� � � � �C6�� (2.12)

Cj being adjustable constants to vary only under disturbance.
When a perturbation 
F gets switched on, the system becomes:

r̈ = F�t� r� ṙ�+
F�t� r� ṙ�� (2.13)

and its solution will be sought in the form of

r = f �t�C1�t�� � � � �C6�t��� (2.14)

Evidently,

ṙ = �f

�t
+�� � ≡

6∑
j=1

�f

�Cj

Ċj� (2.15)

In defiance of what the textbooks advise, we do not put � nil. Instead, we proceed
further to

r̈ = �2f

�t2
+

6∑
j=1

�2f

�t �Cj

Ċj + �̇� (2.16)
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dot standing for a full time derivative. If we now insert the latter into the perturbed
equation of motion (2.13) and if we recall that, according to (2.11),3 �2f/�t2 = F , then
we shall obtain the equation of motion for the new variables Cj�t�:

6∑
j=1

�2f

�t �Cj

Ċj + �̇ = 
F (2.17)

where

� ≡
6∑

j=1

�f

�Cj

Ċj (2.18)

so far is merely an identity. It will become a constraint after we choose a particular
functional form � �t�C1� � � � �C6� for the gauge function �, i.e., if we choose that the

sum
∑ �f

�Cj
Ċj be equal to some arbitrarily fixed function ��t�C1� � � � �C6� of the time

and of the variable “constants.” This arbitrariness exactly parallels the gauge invariance in
electrodynamics: on the one hand, the choice of the functional form of ��t�C1� � � � �C6�
will never4 influence the eventual solution for the physical variable r; on the other hand,
though, a qualified choice may considerably simplify the process of finding the solution.
To illustrate this, let us denote by g�t�C1� � � � �C6� the functional dependence of the
unperturbed velocity on the time and adjustable constants:

g�t�C1� � � � �C6� ≡ �

�t
f �t�C1� � � � �C6�� (2.19)

and rewrite the above system as

∑
j

�g
�Cj

Ċj = −�̇+
F (2.20)

∑
j

�f

�Cj

Ċj = �� (2.21)

If we now dot-multiply the first equation with �f/�Ci and the second one with �g/�Ci,
and then take the difference of the outcomes, we shall arrive at

∑
j

[
CnCj

]
Ċj = �
F − �̇� · �f

�Cn

−� · �g
�Cn

� (2.22)

3 We remind that in Eq. (2.11) there was no difference between a partial and a full time derivative, because
at that point the integration “constants” Ci were indeed constant. Later, they acquired time dependence, and
therefore the full time derivative implied in Eqs. (2.15–2.16) became different from the partial one implied in
Eq. (2.11).

4 Our usage of words “arbitrary” and “never” should be limited to the situations where the chosen gauge
(2.21) does not contradict the equations of motion (2.20). This restriction, too, parallels a similar one present
in field theories. Below we shall encounter a situation where this restriction becomes crucial.
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the Lagrange brackets being defined in a gauge-invariant (i.e., �-independent) fashion.5

If we agree that � is a function of both the time and the parameters Cn, but not of their
derivatives,6 then the right-hand side of Eq. (2.22) will implicitly contain the first time
derivatives of Cn. It will then be reasonable to move these to the left-hand side. Hence,
Eq. (2.22) will be reshaped into

∑
j

(
�CnCj�+

�f

�Cn

· ��

�Cj

)
dCj

dt
= �f

�Cn

·
F − �f
�Cn

· ��

�t
− �g

�Cn

·�� (2.23)

This is the general form of the gauge-invariant perturbation equations, that follows from
the variation-of-parameters method applied to problem (2.13), for an arbitrary perturbation
F�r� ṙ� t� and under the simplifying assumption that the arbitrary gauge function � is
chosen to depend on the time and the parameters Cn, but not on their derivatives.7 Assume
that our problem (2.13) is not simply mathematical but is an equation of motion for
some physical setting, so that F is a physical force corresponding to some undisturbed
Lagrangian �o, and 
F is a force perturbation generated by a Lagrangian variation

�. If, for example, we begin with �o�r� ṙ� t� = ṙ2/2 −U�r� t�, momentum p = ṙ, and
Hamiltonian �o�r� p� t� = p2/2+U�r� t�, then their disturbed counterparts will read:

��r� ṙ� t� = ṙ2

2
−U�r�+
��r� ṙ� t�� (2.24)

p = ṙ + �
�

�ṙ
� (2.25)

� = pṙ −� = p2

2
+U +
� � (2.26)


� ≡ −
�− 1
2

(
�
�

�ṙ

)2

� (2.27)

5 The Lagrange-bracket matrix is defined in a gauge-invariant way:

∑
j

[
Cn Cj

]≡ �f

�Cn

· �g
�Cj

− ��g
�Cn

· �f

�Cj

�

and so is its inverse, the matrix composed of the Poisson brackets

{
Cn Cj

}≡ �Cn

�f
· �Cj

�g
− �Cn

�g
· �Cj

�f
�

Evidently, Eq. (2.22) yields

Ċn =∑
j

{
Cn Cj

}[ �f

�Cj

· �
F − �̇�−� · �g
�Cj

]
�

6 The necessity to fix a functional form of ��t�C1� � � � �C6�, i.e., to impose three arbitrary conditions upon
the “constants” Cj , evidently follows from the fact that, on the one hand, in the ansatz (2.14) we have six
variables Cn�t� and, on the other hand, the number of scalar equations of motion (i.e., Cartesian projections
of the perturbed vector equation (2.13)) is only three. This necessity will become even more mathematically
transparent after we cast the perturbed equation (2.13) into the normal form of Cauchy. (see Appendix1)

7 We may also impart the gauge function with dependence upon the parameters’ time derivatives of all orders.
This will yield higher-than-first-order derivatives in Eq. (2.23). In order to close this system, one will then have
to impose additional initial conditions, beyond those on r and ṙ.
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The Euler–Lagrange equation written for the perturbed Lagrangian (2.24) is:

r̈ = −�U

�r
+
F � (2.28)

where the disturbing force is given by


F ≡ �
�

�r
− d

dt

(
�
�

�ṙ

)
� (2.29)

Its substitution in Eq. (2.23) yields the generic form of the equations in terms of the
Lagrangian disturbance [2]:

∑
j

(
�CnCj�+

�f

�Cn

· �

�Cj

(
�
�

�ṙ
+�

))
dCj

dt
= �

�Cn

[

�+ 1

2

(
�
�

�ṙ

)2
]

−
(

�g
�Cn

+ �f

�Cn

�

�t
+ �
�

�ṙ

�

�Cn

)
·
(

�+ �
�

�ṙ

)
� (2.30)

This equation not only reveals the convenience of the special gauge

� = −�
�

�ṙ
� (2.31)

(which reduces to � = 0 in the case of velocity-independent perturbations), but also
explicitly demonstrates how the Hamiltonian variation comes into play: it is easy to notice
that, according to Eq. (2.27), the sum in square brackets on the right-hand side of Eq. (2.30)
is equal to −
� , so the above equation takes the form

∑
j�Cn Cj�Ċj = −�
�/�Cn. All

in all, it becomes clear that the trivial gauge, � = 0, leads to the maximal simplification
of the variation-of-parameters equations expressed through the disturbing force: it follows
from Eq. (2.22) that

∑
j

[
Cn Cj

]
Ċj = 
F · �f

�Cn

� provided we have chosen � = 0� (2.32)

However, the choice of the special gauge (2.31) entails the maximal simplification of
the variation-of-parameters equations when they are formulated via a variation of the
Hamiltonian:

∑
j

�Cn Cj�
dCj

dt
= −�
�

�Cn

� provided we have chosen � = −�
�

�ṙ
� (2.33)

It remains to spell out the already obvious fact that, in case the unperturbed force F
is given by the Newton gravity law (i.e., when the undisturbed setting is the reduced
two-body problem), then the variable “constants” Cn are merely the orbital elements
parameterising a sequence of instantaneous conics out of which we “assemble” the
perturbed trajectory through Eq. (2.14). When the conics’ parameterisation is chosen to be
via the Kepler or the Delaunay variables, then Eq. (2.30) yields the gauge-invariant version
of the Lagrange-type or the Delaunay-type planetary equations, accordingly. Similarly,
Eq. (2.22) implements the gauge-invariant generalisation of the planetary equations in the
Euler–Gauss form.
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From Eq. (2.22) we see that the Euler–Gauss-type planetary equations will always
assume their simplest form (2.32) under the gauge choice � = 0. In astronomy this
choice is called “the Lagrange constraint.” It makes the orbital elements osculating, i.e.,
guarantees that the instantaneous conics, parameterised by these elements, are tangent to
the perturbed orbit.

From Eq. (2.33) one can easily notice that the Lagrange- and Delaunay-type planetary
equations simplify maximally under the condition (2.31). This condition coincides with
the Lagrange constraint � = 0 when the perturbation depends only upon positions (not
upon velocities or momenta). Otherwise, condition (2.31) deviates from that of Lagrange,
and the orbital elements rendered by Eq. (2.33) are no longer osculating (so that the
corresponding instantaneous conics are no longer tangent to the physical trajectory).

Of an even greater importance will be the following observation. If we have a velocity-
dependent perturbing force, we can always find the appropriate Lagrangian variation
and, therefrom, the corresponding variation of the Hamiltonian. If now we simply add
the negative of this Hamiltonian variation to the disturbing function, then the resulting
Eq. (2.33) will render not the osculating elements but orbital elements of a different
type, ones satisfying the non-Lagrange constraint (2.31). Since the instantaneous conics,
parameterised by such non-osculating elements, will not be tangent to the orbit, then
physical interpretation of such elements may be non-trivial. Besides, they will return a
velocity different from the physical one.8 This pitfall is well-camouflaged and is easy to
fall in.

These and other celestial-mechanics applications of the gauge freedom will be consid-
ered in detail in Section 2.2 below.

2.1.5 Canonicity versus osculation

One more relevant development will come from the theory of canonical perturbations.
Suppose that in the absence of disturbances we start out with a system

q̇ = �� �o�

�p
� ṗ = −�� �o�

�q
� (2.34)

q and p being the Cartesian or polar coordinates and their conjugated momenta, in the
orbital case, or the Euler angles and their momenta, in the rotation case. Then we switch,
via a canonical transformation

q = f�Q�P� t�� p = ��Q�P� t� (2.35)

to

Q̇ = �� ∗

�P
= 0� Ṗ = −�� ∗

�Q
= 0� � ∗ = 0� (2.36)

8 We mean that substitution of the values of these elements in g�t�C1�t�� � � � �C6�t�� will not give the right
velocity. The correct physical velocity will be given by ṙ = g +�.
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where Q and P denote the set of Delaunay elements, in the orbital case, or the initial
values of the Andoyer variables, in the case of rigid-body rotation.

This scheme relies on the fact that, for an unperturbed motion (i.e., for an unperturbed
Keplerian conic, in an orbital case; or for an undisturbed Eulerian cone, in the spin case)
a six-constant parameterisation may be chosen so that:
1. the parameters are constants and, at the same time, are canonical variables �Q�P� with

a zero Hamiltonian � ∗�Q�P� = 0;
2. for constant Q and P, the transformation equations (2.35) are mathematically equivalent

to the dynamical equations (2.34).
Under perturbation, the “constants” Q�P begin to evolve so that, after their substitu-
tion into

q = f �Q�t��P�t�� t� � p = ��Q�t��P�t�� t�� (2.37)

(f�� being the same functions as in (2.35)), the resulting motion obeys the disturbed
equations

q̇ = ��� �o� +
� �

�p
� ṗ = −��� �o� +
� �

�q
� (2.38)

We also want our “constants” Q and P to remain canonical and to obey

Q̇ = � �� ∗ +
� ∗�
�P

� Ṗ = −� �� ∗ +
� ∗�
�Q

(2.39)

where

� ∗ = 0 and 
� ∗�Q�P� t� = 
� �q�Q�P� t��p�Q�P� t�� t� � (2.40)

Above all, we wish the perturbed “constants” C = Q�P (the Delaunay elements, in the
orbital case; or the initial values of the Andoyer elements, in the spin case) to osculate.
This means that we want the perturbed velocity to be expressed by the same function of
Cj�t� and t as the unperturbed velocity. Let us check when this is possible. The perturbed
velocity is

q̇ = g +� (2.41)

where

g�C�t�� t� ≡ �q�C�t�� t�

�t
(2.42)

is the functional expression for the unperturbed velocity, while

�C�t�� t� ≡
6∑

j=1

�q�C�t�� t�

�Cj

Ċj�t� (2.43)

is the convective term. Since we chose the “constants” Cj to make canonical pairs �Q�P�
obeying Eq. (2.39–2.40), then insertion of Eq. (2.39) into Eq. (2.43) will result in

 =
3∑

n=1

�q

�Qn

Q̇n�t�+
3∑

n=1

�q

�Pn

Ṗn�t� = �
� �q�p�

�p
� (2.44)
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So canonicity is incompatible with osculation when 
� depends on p. Our desire to keep
the perturbed equations (2.39) canonical makes the orbital elements Q�P non-osculating
in a particular manner prescribed by Eq. (2.44). This breaking of gauge invariance reveals
that the canonical description is marked with “gauge stiffness” (term suggested by Peter
Goldreich).

We see that, under a momentum-dependent perturbation, we still can use the ansatz
(2.37) for calculation of the coordinates and momenta, but can no longer use q̇ = �q/�t for
calculating the velocities. Instead, we must use q̇ = �q/�t + �
�/�p, and the elements
Cj will no longer be osculating. In the case of orbital motion (when Cj are the non-
osculating Delaunay elements), this will mean that the instantaneous ellipses or hyperbolae
parameterised by these elements will not be tangent to the orbit [1]. In the case of spin, the
situation will be similar, except that, instead of instantaneous Keplerian conics, one will
be dealing with instantaneous Eulerian cones—a set of trajectories on the Euler-angles
manifold, each of which corresponds to some non-perturbed spin state [14].

The main conclusion to be derived from this example is the following: whenever we
encounter a disturbance that depends not only upon positions but also upon velocities
or momenta, implementation of the afore described canonical-perturbation method nec-
essarily yields equations that render non-osculating canonical elements. It is possible to
keep the elements osculating, but only at the cost of sacrificing canonicity. For example,
under velocity-dependent orbital perturbations (like inertial forces, or atmospheric drag,
or relativistic correction) the equations for osculating Delaunay elements will no longer
be Hamiltonian [12, 13].

Above in this subsection we discussed the disturbed velocity q̇. How about the disturbed
momentum? For sufficiently simple unperturbed Hamiltonians, it can be written down
very easily. For example, for � = �o +
� = p2/2m+U�q�+
� we get:

p = q̇ + �
�

�q̇
= g ++ �
�

�q̇
= g +

(
− �
�

�q̇

)
= g� (2.45)

In this case, the perturbed momentum p coincides with the unperturbed one, g. In
application to the orbital motion, this means that contact elements (i.e., the non-osculating
orbital elements obeying Eq. (2.31)), when substituted in g�t�C1� � � � �C6�, furnish not
the correct perturbed velocity but the correct perturbed momentum, i.e., they osculate
the orbit in phase space. That such elements must exist was pointed out long ago
by Goldreich [15] and Brumberg et al. [16], though these authors did not study their
properties in detail.

2.2 Gauge freedom in the theory of orbits

2.2.1 Geometrical meaning of the arbitrary gauge function �

As explained above, the content of subsection 2.1.4 becomes merely a formulation
of the Lagrange theory of orbits, provided F stands for the Newton gravity force, so
that the undisturbed setting is the two-body problem. Then Eq. (2.22) expresses the
gauge-invariant (i.e., taken with an arbitrary gauge ��t�C1� � � � �C6�) planetary equations
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in the Euler–Gauss form. These equations render orbital elements that are, generally,
not osculating. Equation (2.32) stands for the customary Euler–Gauss-type system for
osculating (i.e., obeying � = 0) orbital elements.

Similarly, Eq. (2.30) stands for the gauge-invariant Lagrange-type or Delaunay-type
(dependent upon whether Ci stand for the Kepler or Delaunay variables) equations.
Such equations yield elements, which, generally, are not osculating. In those equations,
one could fix the gauge by putting � = 0, thus making the resulting orbital elements
osculating. However, this would be advantageous only in the case of velocity-independent

�. Otherwise, a maximal simplification is achieved through a deliberate refusal from
osculation: by choosing the gauge as in Eq. (2.31) one ends up with simple equations
(2.33). Thus, gauge (2.31) simplifies the planetary equations. (See Eqs. (2.46–2.57)
below.) Besides, in the case when the Delaunay parameterisation is employed, this gauge
makes the equations for the Delaunay variables canonical for reasons explained above in
subsection 2.1.4.

The geometrical meaning of the convective term � becomes evident if we recall that a
perturbed orbit is assembled of points, each of which is donated by one representative of
a sequence of conics, as on Fig. 2.2 and Fig. 2.3 where the “walk” over the instantaneous
conics may be undertaken either in a non-osculating manner or in the osculating manner.
The physical velocity ṙ is always tangent to the perturbed orbit, while the unperturbed
Keplerian velocity g ≡ �f/�t is tangent to the instantaneous conic. Their difference is

Φ
→

→g

→
r

Fig. 2.2. The orbit is a set of points, each of which is donated by one of the confocal instantaneous
ellipses that are not supposed to be tangent or even coplanar to the orbit. As a result, the physical
velocity ṙ (tangent to the orbit) differs from the unperturbed Keplerian velocity g (tangent to the ellipse).
To parameterise the depicted sequence of non-osculating ellipses, and to single it out of the other
sequences, it is suitable to employ the difference between ṙ and g, expressed as a function of time and
six (non-osculating) orbital elements: ��t�C1� � � � �C6� = ṙ�t�C1� � � � �C6� − g�t�C1� � � � �C6�� Evidently,

ṙ = �r

�t
+

6∑
j=1

�Cj

�t
Ċj = g +��

where the unperturbed Keplerian velocity is �g ≡ �r/�t. The convective term, which emerges under per-
turbation, is � ≡ ∑

��r/�Cj�Ċj . When a particular functional dependence of � on time and the elements
is fixed, this function, ��t�C1� � � � �C6�, is called gauge function or gauge velocity or, simply, gauge.
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Fig. 2.3. The orbit is represented by a sequence of confocal instantaneous ellipses that are tangent
to the orbit, i.e., osculating. Now, the physical velocity ṙ (tangent to the orbit) coincides with the
unperturbed Keplerian velocity �g (tangent to the ellipse), so that their difference � vanishes everywhere:

��t�C1� � � � �C6� ≡ ṙ�t�C1� � � � �C6�−g�t�C1� � � � �C6� =
6∑

j=1

�Cj

�t
Ċj = 0�

This equality, called Lagrange constraint or Lagrange gauge, is the necessary and sufficient condition of
osculation.

the convective term �. So if we use non-osculating orbital elements, then insertion of
their values in f �t�C1� � � � �C6� will yield a correct position of the body. However, their
insertion in g�t�C1� � � � �C6� will not give the right velocity. To get the correct velocity,
one will have to add �. (See Appendix 1 for a more formal mathematical treatment in
the normal form of Cauchy.)

When using non-osculating orbital elements, we must always be careful about their
physical interpretation. On Fig. 2.2, the instantaneous conics are not supposed to be
tangent to the orbit, nor are they supposed to be even coplanar thereto. (They may be even
perpendicular to the orbit!—why not?) This means that, for example, the non-osculating
element i may considerably differ from the real, physical inclination of the orbit.

We would add that the arbitrariness of choice of the function ��t�C1�t�� � � � �C6�t�� had
been long known but never used in astronomy until a recent effort undertaken by several
authors [1, 2, 10, 12, 13, 17, 18, 24] (Efroimsky 2005c). Substitution of the Lagrange
constraint � = 0 with alternative choices does not influence the physical motion, but
alters its mathematical description (i.e., renders different values of the orbital parameters
Ci�t�). Such invariance of a physical picture under a change of parameterisation goes
under the name of gauge freedom. It is a part and parcel of electrodynamics and other
field theories. In mathematics, it is described in terms of fiber bundles. A clever choice
of gauge often simplifies solution of the equations of motion. On the other hand, the
gauge invariance may have implications upon numerical procedures. We mean the so-
called “gauge drift,” i.e., unwanted displacement in the gauge function �, caused by
accumulation of numerical errors in the constants.
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2.2.2 Gauge-invariant planetary equations of the Lagrange and Delaunay types

We present the gauge-invariant Lagrange-type equations, following Efroimsky and
Goldreich [1]. These equations follow from (2.30) if we take into account the gauge-
invariance (i.e., the �-independence) of the Lagrange-bracket matrix �Ci Cj�.

da
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= 2

na
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− �
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�ṙ

)]
− �1− e2�1/2

na2e

[
� �−
� �

��
− �
�

�ṙ
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�ṙ

)]
� (2.47)

d�

dt
= − cos i

na2�1− e2�1/2 sin i

[
� �−
� �

�i
− �
�

�ṙ
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Similarly, the gauge-invariant Delaunay-type system can be written down as:
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�G
+ �
�

�ṙ

�

�G

(
�+ �
�

�ṙ

)
+
(

�+ �
�

�ṙ

)
�g
�G

+ �r

�G

d
dt

(
�+ �
�

�ṙ

)
� (2.55)

dH

dt
= � �−
� �

��
− �
�

�ṙ

�

��

(
�+ �
�

�ṙ

)
−
(

�+ �
�

�ṙ

)
�g
��

− �f

��

d
dt

(
�+ �
�

�ṙ

)
� (2.56)

d�

dt
= −� �−
� �

�H
+ �
�

�ṙ

�

�H

(
�+ �
�

�ṙ

)
+
(

�+ �
�

�ṙ

)
�g
�H

+ �r

�H

d
dt

(
�+ �
�

�ṙ

)
� (2.57)
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where � stands for the reduced mass, while

L ≡ �1/2a1/2� G ≡ �1/2a1/2
(
1− e2

)1/2
� H ≡ �1/2a1/2

(
1− e2

)1/2
cos i� (2.58)

The symbols ��f � g now denote the functional dependencies of the gauge, position, and
velocity upon the Delaunay, not Keplerian elements, and therefore these are functions
different from ��f � g used in Eqs. (2.46–2.51) where they stood for the dependencies
upon the Kepler elements. (In Efroimsky [12, 13] the dependencies ��f � g upon the
Delaunay variables were equipped with tilde, to distinguish them from the dependencies
upon the Kepler coordinates.)

To employ the gauge-invariant equations in analytical calculations is a delicate task:
one should always keep in mind that, in case � is chosen to depend not only upon
time but also upon the “constants” (but not upon their derivatives), the right-hand
sides of these equations will implicitly contain the first derivatives dCi/dt, and one
will have to move them to the left-hand sides (like in the transition from Eq. (2.22)
to (2.23)). The choices � = 0 and � = −�
�/�ṙ are exceptions. (The most general
exceptional gauge reads as � = −�
�/�ṙ +��t�, where ��t� is an arbitrary function of
time.)

As was expected from (2.30), both the Lagrange and Delaunay systems simplify
in the gauge (2.31). Since for orbital motions we have ��/�p = −�
�/�ṙ, then
(2.31) coincides with Eq. (2.44). Hence, the Hamiltonian analysis (2.34–2.44) explains
why it is exactly in the gauge (2.31) that the Delaunay system becomes symplec-
tic. In physicists’ parlance, the canonicity condition breaks the gauge symmetry by
stiffly fixing the gauge (2.44), gauge that is equivalent, in the orbital case, to (2.31)—
phenomenon called “gauge stiffness.” The phenomenon may be looked upon also from
a different angle. Above we emphasized that the gauge freedom implies essential
arbitrariness in our choice of the functional form of ��t�C1� � � � �C6�, provided the
choice does not come into a contradiction with the equations of motion—an impor-
tant clause that shows its relevance in the Delaunay-type Eqs. (2.52–2.57): we see that,
for example, the Lagrange choice � = 0 (as well as any other choice different from
Eq. (2.31)) is incompatible with the canonical structure of the equations of motion for the
elements.

2.3 A practical example on gauges: a satellite orbiting a precessing
oblate planet

Above we presented the Lagrange- and Delaunay-type planetary equations in the gauge-
invariant form (i.e., for an arbitrary choice of the gauge function ��t�C1� � � � �C6�) and
for a generic perturbation 
� that may depend not only upon positions but also upon
velocities and the time. We saw that the disturbing function is the negative Hamiltonian
variation (which differs from the Lagrangian variation when the perturbation depends on
velocities). Below, we shall also see that the functional dependence of 
� upon the
orbital elements is gauge-dependent.
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2.3.1 The gauge freedom and the freedom of frame choice

In the most compressed form, implementation of the variation-of-constants method
in orbital mechanics looks like this. A generic solution to the two-body problem is
expressed with

r = f �C� t� � (2.59)(
�f
�t

)
C

= g �C� t� � (2.60)

(
�g
�t

)
C

= − �

f 2

f
f

(2.61)

and is used as an ansatz to describe the perturbed motion:

r = f �C�t�� t�� (2.62)

ṙ = �f

�t
+ �f

�Ci

dCi

dt
= g +�� (2.63)

r̈ = �g
�t

+ �g
�Ci

dCi

dt
+ d�

dt
= − �

f 2

f

f
+ �g

�Ci

dCi

dt
+ d�

dt
� (2.64)

As can be seen from Eq. (2.63), our choice of a particular gauge is equivalent to a
particular way of decomposition of the physical motion into a movement with velocity g
along the instantaneous conic, and a movement caused by the conic’s deformation at the
rate �. Beside the fact that we decouple the physical velocity ṙ in a certain proportion
between these two movements, g and �, it also matters what physical velocity (i.e.,
velocity relative to what frame) is decoupled in this proportion. Thus, the choice of gauge
does not exhaust all freedom: one can still choose in what frame to write ansatz (2.62)—
one can write it in inertial axes or in some accelerated or/and rotating ones. For example,
in the case of a satellite orbiting a precessing oblate primary it is most convenient to write
the ansatz in a frame co-precessing (but not corotating with the planet’s equator.

The kinematic formulae (2.62–2.64) do not yet contain information about our choice of
the reference system wherein to employ variation of constants. This information shows up
only when (2.62) and (2.64) get inserted into the equation of motion r̈ + ��r/r3� = 
F
to render

�g
�Ci

dCi

dt
+ d�

dt
= 
f = �
�

�r
− d

dt

(
�
�

�ṙ

)
� (2.65)

Information about the reference frame, where we employ the method and define the
elements Ci, is contained in the expression for the perturbing force 
F . If the operation
is carried out in an inertial system, 
F contains only physical forces. If we work in a
frame moving with a linear acceleration �a, then 
F also contains the inertial force −�a.
In case this coordinate frame also rotates relative to inertial ones at a rate �, then 
F
also includes the inertial contributions −2�× ṙ − �̇× r −�× ��× ṙ�. When studying
orbits about an oblate precessing planet, it is most convenient (though not obligatory) to
apply the variation-of-parameters method in axes coprecessing with the planet’s equator
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of date: it is in this coordinate system that one should write ansatz (2.62) and decompose
ṙ into g and �. This convenient choice of coordinate system will still leave one with the
freedom of gauge nomination: in the said coordinate system, one will still have to decide
what function � to insert in (2.63).

2.3.2 The disturbing function in a frame co-precessing with the equator of date

The equation of motion in the inertial frame is

r ′′ = −�U

�r
� (2.66)

where U is the total gravitational potential, and time derivatives in the inertial axes are
denoted by primes. In a coordinate system precessing at angular rate ��t�, Eq. (2.66)
becomes:

r̈ = −�U

�r
−2�× ṙ − �̇× r −�× ��× r�

= −�Uo

�r
− �
U

�r
−2�× ṙ − �̇× r −�× ��× r�� (2.67)

dots standing for time derivatives in the co-precessing frame, and � being the coordinate
system’s angular velocity relative to an inertial frame. Formula (2.125) in the Appendix
gives the expression for � in terms of the longitude of the node and the inclination of the
equator of date relative to that of epoch. The physical (i.e., not associated with inertial
forces) potential U�r� consists of the (reduced) two-body part Uo�r� ≡ −GMr/r3 and a
term 
U�r� caused by the planet’s oblateness (or, generally, by its triaxiality).

To implement variation of the orbital elements defined in this frame, we note that
the disturbing force on the right-hand side of Eq. (2.67) is generated, according to
Eq. (2.65), by


� �r� ṙ� t� = −
U�r�+ ṙ·��× r�+ 1
2

��× r�·��× r�� (2.68)

Since

�
�

�ṙ
= �× r� (2.69)

then

p = ṙ + �
�

�ṙ
= ṙ +�× r (2.70)

and, therefore, the corresponding Hamiltonian perturbation reads:


� = −
[


�+ 1
2

(
�
�

�ṙ

)2
]

= − �−
U +p · ��× r��

= − �−
U + �r ×p� ·�� = 
U −J ·�� (2.71)
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with vector J ≡ r ×p being the satellite’s orbital angular momentum in the inertial frame.
According to (2.63) and (2.70), the momentum can be written as

p = g +�+�×f � (2.72)

whence the Hamiltonian perturbation becomes


� = −
[


�+ 1
2

(
�
�

�ṙ

)2
]

=− �−
U + �f ×g� ·�

+ ��+�×f � · ��×f �� � (2.73)

This is what one is supposed to plug in (2.30) or, the same, in (2.46–2.57).

2.3.3 Planetary equations in a precessing frame, written in terms of contact elements

In the subsection 2.3.2 we fixed our choice of the frame wherein to describe the orbit.
By writing the Lagrangian and Hamiltonian variations as (2.68) and (2.73), we stated that
our elements would be defined in the frame coprecessing with the equator. The frame
being fixed, we are still left with the freedom of gauge choice. As evident from (2.33) or
(2.46–2.57), the special gauge (2.31) ideally simplifies the planetary equations. Indeed,
(2.31) and (2.69) together yield

� = −�
�

�ṙ
= −�× r ≡ −�×f � (2.74)

wherefrom the Hamiltonian (2.73) becomes


� �cont� = − �−
U�f �+� · �f ×g�� � (2.75)

while the planetary equations (2.30) get the shape

�CrCi�
dCi

dt
= �

(−
� �cont�
)

�Cr

� (2.76)

or, the same,

�Cr Ci�
dCi

dt
= �

�Cr

�−
U�f �+� · �f ×g�� � (2.77)

where f and g stand for the undisturbed (two-body) functional expressions (2.59) and
(2.60) of the position and velocity via the time and the chosen set of orbital elements.
Planetary equations (2.76) were obtained with aid of (2.74), and therefore they render
non-osculating orbital elements that are called contact elements. This is why we equipped
the Hamiltonian (2.75) with superscript “(cont).” In distinction from the osculating ele-
ments, the contact ones osculate in phase space: (2.72) and (2.74) entail that p = g. As
already mentioned in the end of section 2.1, existence of such elements was pointed out
by Goldreich [15] and Brumberg et al. [16] long before the concept of gauge freedom
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was introduced in celestial mechanics. Brumberg et al. [16] simply defined these ele-
ments by the condition that their insertion in g�t�C1� � � � �C6� returns not the perturbed
velocity, but the perturbed momentum. Goldreich [15] defined these elements (without
calling them “contact”) differently. Having in mind inertial forces (2.67), he wrote down
the corresponding Hamiltonian equation (2.71) and added its negative to the disturbing
function of the standard planetary equations (without enriching the equations with any
other terms). Then he noticed that those equations furnished non-osculating elements.
Now we can easily see that both Goldreich’s and Brumberg’s definitions correspond to
the gauge choice (2.31).

When one chooses the Keplerian parameterisation, then Eq. (2.77) becomes:

da

dt
= 2

na

�
(−
� �cont�

)
�Mo

� (2.78)

de

dt
= 1− e2

na2e

�
(−
� �cont�

)
�Mo

− �1− e2�1/2

na2e

�
(−
� �cont�

)
��

� (2.79)

d�

dt
= − cos i

na2�1− e2�1/2 sin i

�
(−
� �cont�

)
�i

+ �1− e2�1/2

na2e

�
(−
� �cont�

)
�e

(2.80)

di

dt
= cos i

na2�1− e2�1/2 sin i

�
(−
� �cont�

)
��

− 1
na2�1− e2�1/2 sin i

�
(−
� �cont�

)
��

� (2.81)

d�

dt
= 1

na2�1− e2�1/2 sin i

�
(−
� �cont�

)
�i

� (2.82)

dMo

dt
= −1− e2

na2e

�
(−
� �cont�

)
�e

− 2
na

�
(−
� �cont�

)
�a

� (2.83)

The above equations implement an interesting pitfall. When describing orbital motion
relative to a frame coprecessing with the equator of date, it is tempting to derive the
Hamiltonian variation caused by the inertial forces, and to simply plug it, with a nega-
tive sign, into the disturbing function. This would entail equations (2.76–2.83) which, as
demonstrated above, belong to the non-Lagrange gauge (2.31). The elements furnished
by these equations are non-osculating, so that the conics parameterised by these elements
are not tangent to the perturbed trajectory. For example, i gives the inclination of the
instantaneous non-tangent conic, but differs from the real, physical physical (i.e., oscu-
lating), inclination of the orbit. This approach—when an inertial term is simply added
to the disturbing function—was employed by Goldreich [15], Brumberg et al. [16], and
Kinoshita [19], and many others. Goldreich and Brumberg noticed that this destroyed the
osculation.
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Goldreich [15] studied how the equinoctial precession of Mars influences the long-term
evolution of Phobos’ and Deimos’ orbit inclinations. Goldreich assumed that the elements
a and e stay constant; he also substituted the Hamiltonian variation (2.75) with its orbital
average, which made his planetary equations render the secular parts of the elements. He
assumed that the averaged physical term �
U� is only due to the primary’s oblateness:

�
U� = −n2J2

4
�2 3 cos2 i−1

�1− e2�3/2 � (2.84)

� being the mean radius of the planet,9 and n being the satellite’s mean motion. To
simplify the inertial term, Goldreich employed the well known formula

r ×g =√
Gma�1− e2�w� (2.85)

where

w = x̂1 sin i sin �− x̂2 sin i cos �+ x̂3 cos i (2.86)

is a unit vector normal to the instantaneous ellipse, expressed through unit vectors
x̂1� x̂2� x̂3 associated with the co-precessing frame x1� x2� x3 (axes x1 and x2 lying in the
planet’s equatorial plane of date, and x1 pointing along the fiducial line wherefrom the
longitude of the ascending node of the satellite orbit, �, is measured). This resulted in

�
� �cont�� = − �−�
U�+�� · �f ×g��� = −GmJ2

4
�2

e

a3

3 cos2 i−1

�1− e2�3/2 −√Gma�1− e2�

��1 sin i sin �−�2 sin i cos �+�3 cos i� � (2.87)

all letters now standing not for the appropriate variables but for their orbital averages. Sub-
stitution of this averaged Hamiltonian in (2.81–2.82) lead Goldreich, in assumption that
both ��̇�/ (n2J2 sin i

)
and ���/ �nJ2 sin i� are much less than unity, to the following

system:

d�

dt
≈ −3

2
nJ2

(�e

a

)2 cos i

�1− e2�2 � (2.88)

di

dt
≈ −�1 cos �−�2 sin �� (2.89)

whose solution,

i = −�1

�
cos �−� �t − to�+�o�+

�2

�
sin �−� �t − to�+�o�+ io�

� = −� �t − to�+�o where � ≡ 3
2

nJ2

(�e

a

)2 cos i

�1− e2�2 � (2.90)

9 Goldreich used the non-sphericity parameter J ≡ �3/2� ��e/��2 J2, where �e is the mean equatorial radius.
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tells us that in the course of equinoctial precession the satellite inclination oscillates
about io.

Goldreich [15] noticed that his i and the other elements were not osculating, but he
assumed that their secular parts would differ from those of the osculating ones only in
the orders higher than O�����. Below we shall probe the applicability limits for this
assumption. (See the end of subsection 2.3.5.)

2.3.4 Planetary equations in a precessing frame, in terms of osculating elements

When one introduces elements in the precessing frame and also demands that they
osculate in this frame (i.e., obey the Lagrange constraint � = 0), the Hamiltonian variation
reads:10


� �osc� = − �−
U +� · �f ×g�+ ��×f � · ��×f �� � (2.91)

while Eq. (2.30) becomes:

�CnCi�
dCi

dt
=− �
� �osc�

�Cn

+� ·
(

�f

�Cn

×g −f × �g
�Cn

)
− �̇ ·

(
f × �f

�Cn

)

− ��×f �
�

�Cn

��×f � � (2.92)

To ease the comparison of this equation with (2.77), it is convenient to split the expression
(2.91) for 
� �osc� into two parts:


� �cont� = − �Roblate�f � t�+� · �f ×g�� (2.93)

and

−��×f � · ��×f �� (2.94)

and then to group the latter part with the last term on the right-hand side of (2.35):

�CnCi�
dCi

dt
=− �
� �cont�

�Cn

+� ·
(

�f

�Cn

×g −f × �g
�Cn

)
− �̇ ·

(
f × �f

�Cn

)

+ ��×f �
�

�Cn

��×f � � (2.95)

Comparison of this analytical theory with a straightforward numerical integration11 has
confirmed that the O����2� term in (2.95) may be neglected over time scales of, at

10 Both 
� �cont� and 
� �osc� are equal to − �−
U�f � t�+� ·J� = − �−
U�f � t�+� · �f ×p��. However,
the canonical momentum now is different from g and reads as: p = g + ��×f �. Hence, the functional forms
of 
� �osc��f �p� and 
� �can��f �p� are different, though their values coincide.

11 Credit for this comparison goes to Pini Gurfil and Valery Lainey.
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least, hundreds of millions of years. In this approximation there is no difference between

� �cont� and 
� �osc�, so we shall write down the equations as:

�Cn Ci�
dCi

dt
= −�
� �cont�

�Cn

+� ·
(

�f

�Cn

×g −f × ��g
�Cn

)
− �̇ ·

(
f × �f

�Cn

)
� (2.96)

For Ci chosen as the Kepler elements, inversion of the Lagrange brackets in (2.90) will
yield the following Lagrange-type system:

da

dt
= 2

na

[
�
(−
� �cont�

)
�Mo

− �̇ ·
(

f × �f

�Mo

)]
� (2.97)

de

dt
= 1− e2

na2e

[
�
(−
� �cont�

)
�Mo

− �̇ ·
(

f × �f

�Mo

)]
− �1− e2�1/2

na2e

×
[

�
(−
� �cont�

)
��

+� ·
(

�f

��
×g −f × �g

��

)
− �̇ ·

(
f × �f

��

)]
� (2.98)

d�

dt
= − cos i

na2�1− e2�1/2 sin i
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�
(−
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)
�i

+� ·
(

�f

�i
×g −f × �g

�i

)
− �̇ ·

(
f × �f

�i

)]

+ �1− e2�1/2

na2e

[
�
(−
� �cont�

)
�e

+� ·
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�f

�e
×g −f × �g

�e

)
− �̇ ·

(
f × �f

�e

)]
�

(2.99)

di

dt
= cos i

na2�1− e2�1/2 sin i
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+� ·
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×g −f × �g
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)
− �̇ ·

(
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na2�1− e2�1/2 sin i
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+� ·
(

�f

��
×g −f × �g
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f × �f
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(2.100)

d�
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= 1

na2�1− e2�1/2 sin i
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)
�i

+� ·
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�f

�i
×g −f × �g

�i

)

− �̇ ·
(

f × �f

�i

)]
� (2.101)
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dMo

dt
=− 1− e2

na2e

[
�
(−
� �cont�

)
�e

+� ·
(

�f

�e
×g −f × �g

�e

)
− �̇ ·

(
f × �f

�e

)]

− 2
na

[
�
(−
� �cont�

)
�a

+� ·
(

�f

�a
×g −f × �g

�a

)
− �̇ ·

(
f × �f

�a

)]
�

(2.102)

terms � · ���f/�Mo�×g − ��g/�Mo�×f � being omitted in (2.97–2.98), because these
terms vanish identically (see the Appendix to Efroimsky [14]).

2.3.5 Comparison of calculations performed in the two above gauges

Simply from looking at Eqs. (2.76–2.83) and (2.96–2.102) we notice that the difference
in orbit descriptions performed in the two gauges emerges already in the first order of
the precession rate � and in the first order of �̇.

Calculation of the �- and �̇-dependent terms emerging in Eqs. (2.97–2.102) takes
more than 20 pages of algebra. The resulting expressions are published in Efroimsky
[20], their detailed derivation being available in web-archive preprint Efroimsky [20]. As
an illustration, we present a couple of expressions:

−�̇ ·
(

f × �f

�i

)
=a2

(
1− e2

)2

�1+ e cos ��2 ��̇1 �− cos � sin��+��

− sin � cos��+�� cos i� sin��+��+ �̇2 �− sin � sin��+��

+ cos � cos��+�� cos i� sin��+��

+�̇3 sin��+�� cos��+�� sin i� � (2.103)

� ·
(

�f

�e
×g −f × ��g

�e

)
= −�⊥

na2
(
3e+2 cos � + e2 cos �

)
�1+ e cos ��

√
1− e2

� (2.104)

� denoting the true anomaly. The fact that almost none of these terms vanish reveals that
Eqs. (2.76–2.83) and (2.96–2.102) may yield very different results, i.e., that the contact
elements may differ from their osculating counterparts already in the first order of �.

Luckily, in the practical situations we need not the elements per se but their secular
parts. To calculate these, one can substitute both the Hamiltonian variation and the �- and
�̇-dependent terms with their orbital averages12 calculated through

�� � � � ≡
(
1− e2

)3/2

2�

∫ 2�

0
� � �

d�

�1+ e cos ��2 · (2.105)

12 Mathematically, this procedure is, to say the least, not rigorous. In practical calculations it works well, at
least over not too long time scales.
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The situation might simplify very considerably if we could also assume that the precession
rate � stays constant. Then in equations (2.97–2.102), we would assume � = constant
and proceed with averaging the expressions ���f/�Cj�× g −f × ��g/�Cj�� only (while
all the terms with �̇ will now vanish).

Averaging of the said terms is lengthy and is presented in the Appendix to Efroimsky
[14]. All in all, we get, for constant �:

� ·
〈(

�f

�a
× �g −f × �g

�a

)〉
= � ·

(
�f

�a
× �g −f × �g

�a

)
= 3

2
�⊥

√
Gm�1− e2�

a
� (2.106)

� ·
〈(

�f

�Cj

×g −f × �g
�Cj

)〉
= 0� Cj = e����� i�Mo� (2.107)

Since the orbital averages (2.107) vanish, then e will, along with a, stay constant for
as long as our approximation remains valid. Besides, no trace of � will be left in the
equations for � and i. This means that, in the assumed approximation and under the extra
assumption of constant �, the afore quoted analysis (2.84–2.90), offered by Goldreich
[15], will remain valid at time scales which are not tool long.

In the realistic case of time-dependent precession, the averages of terms containing �
and �̇ do not vanish (except for � · ���f/�Mo�×g −f × ��g/�Mo��, which is identically
nil). These terms show up in all equations (except in that for a) and influence the
motion. Integration that includes these terms gives results very close to the Goldreich
approximation (approximation (2.90) that neglects the said terms and approximates the
secular parts of the non-osculating elements with those of their osculating counterparts).
However, this agreement takes place only at time scales of order millions to dozens of
millions of years. At larger time scales, differences begin to accumulate [21].

In real life, the equinoctial-precession rate of the planet, �, is not constant. Since
the equinoctial precession is caused by the solar torque acting on the oblate planet, this
precession is regulated by the relative location and orientation of the Sun and the planetary
equator. This is why � of a planet depends upon this planet’s orbit precession caused
by the pull from the other planets. This dependence is described by a simple model
developed by Colombo [22].

2.4 Conclusions: how we benefit from the gauge freedom

In this chapter we gave a review of the gauge concept in orbital and attitude dynamics.
Essentially, this is the freedom of choosing non-osculating orbital (or rotational) elements,
i.e., the freedom of making them deviate from osculation in a known, prescribed, manner.

The advantage of elements introduced in a non-trivial gauge is that in certain situations
the choice of such elements considerably simplifies the mathematical description of orbital
and attitude problems. One example of such simplification is the Goldreich [15] approx-
imation (2.90) for satellite orbiting a precessing oblate planet. Although performed in
terms of non-osculating elements, Goldreich’s calculation has the advantage of mathemat-
ical simplicity. Most importantly, later studies [20, 23] have confirmed that Goldreich’s
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results, obtained for non-osculating elements, serves as a very good approximation for the
osculating elements. To be more exact, the secular parts of these non-osculating elements
coincide, in the first order over the precession-caused perturbation, with those of their
osculating counterparts, the difference accumulating only at very long time scales—see
the end of Section 2.3 above. A comprehensive investigation into this topic, with the
relevant numerics, will be presented in Lainey et al. [21].

On the other hand, neglect of the gauge freedom may sometimes produce camouflaged
pitfalls caused by the fact that non-osculating elements lack evident physical meaning.
For example, the non-osculating “inclination” does not coincide with the real, physi-
cal inclination of the orbit. This happens because non-osculating elements parameterise
instantaneous conics non-tangent to the orbit. Similar difficulties emerge in the theory of
rigid-body rotation, when non-osculating Andoyer variables are employed.

Appendix 1. Mathematical formalities: Orbital dynamics in the normal form
of Cauchy

Let us cast the perturbed equation

r̈ = F +
f = − �

r2

r

r
+
f (2.108)

into the normal form of Cauchy:

ṙ = v� (2.109)

v̇ = − �

r2

r

r
+
f �r�t�C1� � � � �C6�� v�t�C1� � � � �C6�� t� � (2.110)

Insertion of our ansatz

r = f �t�C1�t�� � � � �C6�t�� � (2.111)

will make (2.109) equivalent to

v = �f

�t
+∑

i

�f

�Ci

Ċi� (2.112)

The function f is, by definition, the generic solution to the unperturbed equation

r̈ = F = − �

r2

r

r
· (2.113)

This circumstance, along with (2.112), will transform (2.109) into

∑
i

�g
�Ci

Ċi + �̇ = 
F �f �t�C1� � � � �C6�� g�t�C1� � � � �C6�+�� (2.114)

where

� ≡∑
i

�f

�Cj

Ċj (2.115)
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is an identity, f �t�C1� � � � �C6� and g�t�C1� � � � �C6� ≡ �f/�t being known functions.
Now (2.114–2.115) make an incomplete system of six first-order equations for nine
variables �C1� � � � �C6� 1� � � � �3�. So one has to impose three arbitrary conditions on
C�, for example as

� = ��t�C1� � � � �C6�� (2.116)

This will result in a closed system of six equations for six variables Cj:

∑
i

�g
�Ci

Ċi = 
F �f �t�C1� � � � �C6�� g�t�C1� � � � �C6�+��− �̇ (2.117)

∑
i

�f
�Ci

dCi

dt
= �� (2.118)

� = ��t�C1� � � � �C6� now being some fixed function (gauge).13 A trivial choice is
��t�C1� � � � �C6� = 0, and this is what is normally taken by default. This choice is only
one out of infinitely many, and often is not optimal. Under an arbitrary, non-zero, choice
of the function ��t�C1� � � � �C6�, the system (2.117–2.118) will have some different
solution Cj�t�. To get the appropriate solution for the Cartesian components of the position
and velocity, one will have to use formulae

r = f �t�C1� � � � �C6�� (2.119)

ṙ ≡ v = g�t�C1� � � � �C6�+��t�C1� � � � �C6�� (2.120)

Appendix 2. Precession of the equator of date relative to the equator of epoch

The afore introduced vector � is the precession rate of the equator of date relative to
the equator of epoch. Let the inertial axes �X�Y�Z� and the corresponding unit vectors
�X̂� Ŷ� Ẑ� be fixed in space so that X and Y belong to the equator of epoch. A rotation
within the equator-of-epoch plane by longitude hp, from axis X, will define the line of
nodes, x. A rotation about this line by an inclination angle Ip will give us the planetary
equator of date. The line of nodes x, along with axis y naturally chosen within the equator-
of-date plane, and with axis z orthogonal to this plane, will constitute the precessing
coordinate system, with the appropriate basis denoted by �x̂� ŷ� ẑ�.

In the inertial basis �X̂� Ŷ� Ẑ�, the direction to the North Pole of date is given by

ẑ = (
sin Ip sin hp�− sin Ip cos hp� cos Ip

)T

(2.121)

while the total angular velocity reads:

�
�inertial�
total = ẑ �z +��inertial�� (2.122)

13 Generally, � may depend also upon the variables’ time derivatives of all orders: ��t�Ci� Ċi� C̈i� � � � �.
This will give birth to higher time derivatives of C in subsequent developments and will require additional
initial conditions, beyond those on r and ṙ, to be fixed to close the system. So it is practical to accept (2.116).
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the first term denoting the rotation about the precessing axis ẑ, and the second term being
the precession rate of ẑ relative to the inertial frame �X̂� Ŷ� Ẑ�. This precession rate is
given by

��inertial� =
(
İp cos hp� İp sin hp� ḣp

)T

� (2.123)

because this expression satisfies ��inertial� × ẑ = ˙̂z.
In a frame co-precessing with the equator of date, the precession rate will be represented

by vector

� = R̂i→p ��inertial�� (2.124)

where the matrix of rotation from the equator of epoch to that of date (i.e., from the
inertial frame to the precessing one) is given by

R̂i→p =
⎡
⎣ cos hp sin hp 0

− cos Ip sin hp cos Ip sin hp sin Ip

sin Ip sin hp − sin Ip sin hp cos Ip

⎤
⎦

From here we get the components of the precession rate, as seen in the co-precessing
coordinate frame �x� y� z�:

� = ��1��2��3�
T =

(
İp� ḣp sin Ip� ḣp cos Ip

)T

� (2.125)
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3.1 Introduction

Two-point boundary value problems have a central place in the field of astrodynamics.
In general, most of the hard problems in this field revolve around solving such problems.
Examples include the targeting problem for mission design, the computation of periodic
orbits for the analysis of systems, and the solution of optimal control problems.

In this chapter, a new methodology for solving two-point boundary value problems
in phase space for Hamiltonian systems is presented. Using the Hamilton–Jacobi theory
in conjunction with the canonical transformation induced by the phase flow, we show
that the generating functions for this transformation solve any two-point boundary value
problem in phase space. Properties of the generating functions are exposed, we especially
emphasize multiple solutions, singularities, relations with the state transition matrix and
symmetries. Next, we show that using Hamilton’s principal function we are also able to
solve two-point boundary value problems, nevertheless both methodologies have funda-
mental differences that we explore. Then we present and study an algorithm to compute
the generating functions specialized to such two-point boundary value problems. This
algorithm is able to compute the generating functions for a large class of practical two-
point boundary value problems. Specifically, the algorithm naturally avoids singularities
and allows one to specify the initial conditions as a function of a parameter. Finally, we
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present applications of this method to two difficult problems of astrodynamics to show
its generality, computation of periodic orbits and solution of an optimal control problem.

One of the most famous two-point boundary value problems in astrodynamics is
Lambert’s problem, which consists of finding a trajectory in the two-body problem which
goes through two given points in a given lapse of time. Even though the two-body problem
is integrable, no explicit solution to this problem exists. Many other two-point boundary
value problems in astrodynamics can also be couched within a Hamiltonian formalism.
These include all problems of orbital motion, excepting the effect of atmospheric drag
on an orbiter, and also include all instances of optimal control problems. It is important
to note that optimal control problems can all be recast into Hamiltonian systems via the
necessary conditions. Thus, even non-conservative dynamical systems can be treated using
the formalism we develop here when dealing with their optimal control. In the following,
we do not make a distinction between whether a Hamiltonian dynamical system arises
out of mechanics or out of optimal control, as the basic results of the Hamilton–Jacobi
theory that we use apply to both.

For a general Hamiltonian dynamical system, a two-point boundary value problem is
generally solved using iterative techniques such as shooting and relaxation methods. The
shooting method [5, 29] consists of choosing values for all of the dependent variables
at one boundary. These values must be consistent with any boundary conditions for
that boundary, but otherwise are initially guessed “randomly”. After integration of the
differential equations, we in general find discrepancies between the desired boundary
values at the other boundary. Then, we adjust the initial guess to reduce these discrepancies
and reiterate this procedure again. The method provides a systematic approach to solving
boundary value problems, but suffers several inherent limitations. As summarized by
Bryson and Ho ([7] p. 214),

The main difficulty with this method is getting started; i.e., finding a first estimate
of the unspecified conditions at one end that produces a solution reasonably close to
the specified conditions at the other end. The reason for this peculiar difficulty is that
the extremal solutions are often very sensitive to small changes in the unspecified
boundary conditions.

To get rid of the sensitivity to small changes in initial guesses, techniques such as the
multiple shooting method [21] were developed. They consist of breaking the time domain
into segments and solving a boundary value problem on each of these segments. In this
manner, non-linear effects are limited over each segment, but on the other hand the size of
the problem is increased considerably. However, the choice of the initial conditions still
remains as the main hurdle to successfully apply shooting methods to general problems.

Relaxation methods [30] use a different approach. The differential equations are
replaced by finite-difference equations on a mesh of points that covers the range of the
integration. A trial solution consists of values for the dependent variables at each mesh
point, not satisfying the desired finite-difference equations, nor necessarily even satisfying
the required boundary conditions. The iteration, now called relaxation, consists of adjust-
ing all the values on the mesh so as to bring them into successively closer agreement with
the finite-difference equations and simultaneously with the boundary conditions. In gen-
eral, relaxation works better than shooting when the boundary conditions are especially
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delicate or subtle. However, if the solution is highly oscillatory then many grid points
are required for accurate representation. Also, the number and positions of the required
mesh points are not known a priori and must be adjusted manually for each problem. In
addition, if solutions to the differential equations develop singularities, attempts to refine
the mesh to improve accuracy may fail.

With the advent of computers, these two methods are able to solve most of the two-
point boundary value problems. They may require substantial time to find an appropriate
initial guess and/or computer memory to refine the mesh, but they generally succeed.
However, there are problems for which these methods reach their limits. For instance, the
design of space missions involving several spacecraft in formation requires one to solve
a large number of boundary value problems for which the boundary conditions may in
turn depend on parameters. Most research in this area to date has focused on the solution
of such boundary value problems for linearized motion. Extension of these techniques
to non-linear dynamics is much more difficult, with most progress being limited to non-
linear expansions of the two-body problem with minimal perturbations added, if any
[2, 24]. However, for precise control of formations over long periods of time or over
large distances, it is crucial that non-linear solutions to these problems be available. For
example, to reconfigure a formation of N spacecraft, there are N ! possibilities in general,
i.e., N ! boundary value problems need to be solved [31]. Similarly, suppose that we plan to
reconfigure a spacecraft formation to achieve a specific goal, such as for an interferometry
mission where they may be required to be equally spaced on a circle perpendicular to the
line of sight they observe. In that case, the final positions are specified in terms of the
angle that indicates the position of the spacecraft on the circle. In order to find the value of
the angle that minimizes fuel expenditure, infinitely many boundary value problems may
need to be solved, if evaluated in a formal sense. As a result, the algorithms mentioned
above are no longer appropriate as they require excessive computation and time for
modeling non-linear situations. To address these complex problems arising in spacecraft
formation design, Guibout and Scheeres [16–18] developed a novel approach for solving
boundary value problems which outperforms traditional methods for spacecraft formation
design. In the present contribution we generalize their method and study its properties.
We first prove that it allows us to formally solve a non-linear two-point boundary value
problem at a cost of a single function evaluation once generating functions are known.

In addition, properties of the generating functions are studied. In particular, for linear
systems we show that generating functions and state transition matrices are closely
related. The state transition matrix allows one to predict singularities of the generating
functions whereas the generating functions provide information on the structure of the
state transition matrix. This relationship also allows us to recover and extend some results
on the perturbation matrices introduced by Battin in Ref. [4]. For non-linear systems,
generating functions may also develop singularities (called caustics). Using the Legendre
transformation, we propose a technique to study the geometry of these caustics. We
illustrate our method with the study of the singularities of the F1 generating function
in the Hill three-body problem and relate the existence of singularities to the presence
of multiple solutions to boundary value problems. Furthermore, we discuss Hamilton’s
principal function, a function similar to the generating functions that also solves two-point
boundary value problems. We highlight the differences between Hamilton’s function and
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generating functions and justify our choice of focusing on generating functions. Next
we outline and evaluate a method for constructing solutions for the generating functions.
Finally, we present direct applications of this theory that have been identified in previous
papers. These applications are presented to illustrate the application of our method to
different problems in astrodynamics. We only present the main ideas and refer to previous
papers for details.

3.2 Solving two-point boundary value problems

In this section, we review the principle of least action for Hamiltonian systems and
derive the Hamilton–Jacobi equation. Local existence of generating functions is proved,
but we underline that we do not study global properties. In general, we do not know a
priori if the generating functions will be defined for all time, and in most of the cases we
found that they develop singularities. We refer the reader to Refs. [1, 3, 9, 11, 14, 22, 23]
for more details on local Hamilton–Jacobi theory, Refs. [1, 3, 23] for global theory and
Refs. [1, 3, 8] and Section 3.2.4 of this chapter for the study of singularities.

3.2.1 The Hamilton–Jacobi theory

Let �����XH� be a Hamiltonian system with n degrees of freedom, and H� � ×
� → � the Hamiltonian function. We consider the symplectic charts whose existence is
guaranteed by Darboux’s theorem [6]. We denote the component functions (also called
canonical coordinates) by �qi� pi� so that, in the symplectic chart, � is locally written as:

� =
n∑

i=1

dqi ∧dpi �

In the extended phase space � ×�, we consider an integral curve of the vector field XH

connecting the points �q0� p0� t0� and �q1� p1� t1�. The principle of least action [23] reads:

Theorem 3.2.1. (The principle of least action in phase space) Critical points of∫ 1
0 pdq −Hdt in the class of curves � whose ends lie in the n-dimensional subspaces

�t = t0� q = q0� and �t = t1� q = q1� correspond to trajectories of the Hamiltonian system
whose ends are q0 at t0 and q1 at t1.

Proof. We proceed to the computation of the variation.

	
∫

�
�pq̇ −H�dt =

∫
�

(
q̇	p+p	q̇ − 
H


q
	q − 
H


p
	p

)
dt

= �p	q�1
0 +
∫

�

[(
q̇ − 
H


p

)
	p−

(
ṗ+ 
H


q

)
	q

]
dt (3.1)

Therefore, since the variation vanishes at the end points, the integral curves of the
Hamiltonian vector field are the only extrema. �

Now let ��1��1� and ��2��2� be symplectic manifolds,
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Definition 3.2.1. A smooth map f� �1 ×� → �2 ×� is a canonical transformation from
�q�p� t� to �Q�P�T� if and only if:
1. f is a diffeomorphism,
2. f preserves the time, i.e., there exists a function gt such that f�x� t� = �gt�x�� t� (from

here we assume that t = T ),
3. Critical points of

∫ t1

t0
��P� Q̇�−K�Q�P� t��dt correspond to trajectories of the Hamilto-

nian system, where K�Q�P� t� = H�q�Q�P� t��p�Q�P� t�� t� is the Hamiltonian func-
tion expressed in the new set of coordinates.

Consider a canonical transformation between two sets of coordinates in the phase space
f� �qi� pi� t� �→ �Qi�Pi� t� and let H�q�p� t� and K�Q�P� t� be the Hamiltonian functions
of the same system expressed in different sets of coordinates. From Def. 3.2.1, trajectories
correspond to critical points of

∫ t1

t0
��P� Q̇�−K�Q�P� t��dt. Therefore, they are integral of:⎧⎪⎨

⎪⎩
Q̇i = 
K


Pi

�

Ṗi = − 
K


Qi

�
(3.2)

i.e., f preserves the canonical form of Hamilton’s equations.
Conversely, suppose that f is a coordinate transformation that preserves the canon-

ical form of Hamilton’s equations and leaves the time invariant. Let K�Q�P� t� be the
Hamiltonian in the new set of coordinates, then from the modified Hamilton principle
(Thm. 3.2.1), critical points of∫ t1

t0

(�P� Q̇�−K�Q�P� t�
)

dt

correspond to trajectories of the system. Thus, f is a canonical map. These last two
remarks are summarized in the following lemma:

Lemma 3.2.2. The third item in Def. 3.2.1 is equivalent to:
(4)—f preserves the canonical form of Hamilton’s equations and the new Hamiltonian

function is K�Q�P� t�.

Remark 3.2.1. The definition we give is different from the one given in many textbooks
but in agreement with Arnold [3], Abraham and Marsden [1], and Marsden and Ratiu
[23]. Often the third item reduces to:

(5)—f preserves the canonical form of Hamilton’s equations.

We consider again a canonical transformation f� �qi� pi� t� �→ �Qi�Pi� t� and a Hamil-
tonian system defined by H . Along trajectories, we have by definition:

	
∫ t1

t0

( n∑
i=1

piq̇i −H�q�p� t�

)
dt = 0� (3.3)

	
∫ t1

t0

( n∑
i=1

PiQ̇i −K�Q�P� t�

)
dt = 0 � (3.4)
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From Eqs. 3.3 to 3.4, we conclude that the integrands of the two integrals differ at
most by a total time derivative of an arbitrary function F :

n∑
i=1

pidqi −Hdt =
n∑

j=1

PjdQj −Kdt +dF� (3.5)

Such a function is called a generating function for the canonical transformation f . It
is, a priori, a function of both the old and the new variables and time. The two sets of
coordinates being connected by the 2n equations, namely, f�q�p� t� = �Q�P� t�, F can
be reduced to a function of 2n+1 variables among the 4n+1. Hence, we can define 4n

generating functions that have n variables in �1 and n in �2. Among these are the four
kinds defined by Goldstein [9]:

F1�q1�    � qn�Q1�    �Qn� t�� F2�q1�    � qn�P1�    �Pn� t��
F3�p1�    � pn�Q1�    �Qn� t�� F4�p1�    � pn�P1�    �Pn� t� �

Let us first consider the generating function F1�q�Q� t�. The total time derivative of
F1 reads:

dF1�q�Q� t� =
n∑

i=1


F1


qi

dqi +
n∑

j=1


F1


Qi

dQi +

F1


t
dt� (3.6)

Hence Eq. (3.5) yields:

n∑
i=1

(
pi −


F1


qi

)
dqi −Hdt =

n∑
j=1

(
Pj + 
F1


Qj

)
dQj −Kdt + 
F1


t
dt� (3.7)

Assume that �q�Q� t� is a set of independent variables. Then Eq. (3.7) is equivalent to:

pi = 
F1


qi

�q�Q� t�� (3.8)

Pi = − 
F1


Qi

�q�Q� t�� (3.9)

K

(
Q�−
F1


Q
� t

)
= H

(
q�


F1


q
� t

)
+ 
F1


t
� (3.10)

If �q�Q� is not a set of independent variables, we say that F1 is singular.
Let us consider more general generating functions. Let �i1�    � is��is+1�    � in� and

�k1�    � kr� �kr+1�    � kn� be two partitions of the set �1�    � n� into two non-intersecting
parts such that i1 < · · · < is, is+1 < · · · < in, k1 < · · · < kr , and kr+1 < · · · < kn and
define Is = �i1�    � is�, Īs = �is+1�    � in�, Kr = �k1�    � kr�, and K̄r = �kr+1�    � kn�. If

�qIs
� pĪs

�QKr
�PK̄r

� = �qi1
�    � qis

� pis+1
�    � pin

�Qk1
�    �Qkr

�Pkr+1
�    �Pkn

�

are independent variables, then we can define the generating function FIs�Kr
:

FIs�Kr
�qIs

� pĪs
�QKr

�PK̄r
� t� =F�qi1

�    � qis
� pis+1

�    � pin
�

Qk1
�    �Qkr

�Pkr+1
�    �Pkn

� t� � (3.11)
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Expanding dFIs�Kr
yields:

dFIs�Kr
=

p∑
a=1


FIs�Kr


qia

dqia
+

n∑
a=p+1


FIs�Kr


pia

dpia
+

r∑
a=1


FIs�Kr


Qka

dQka

+
n∑

a=r+1


FIs�Kr


Pka

dPka
+ 
FIs�Kr


t
dt (3.12)

and rewriting Eq. (3.5) as a function of the linearly independent variables leads to:

p∑
a=1

pia
dqia

−
n∑

a=p+1

qia
dpia

−Hdt =
r∑

a=1

Pka
dQka

−
n∑

a=r+1

Qka
dPka

−Kdt +dFIs�Kr
�

(3.13)

where

FIs�Kr
= F1 +

n∑
a=r+1

Qka
Pka

−
n∑

a=p+1

qia
pia

� (3.14)

Eq. (3.14) is often referred to as the Legendre transformation, it allows one to transform
one generating function into another.

We then substitute Eq. (3.12) into Eq. (3.13):

r∑
a=1

(
Pka

+ 
FIs�Kr


Qka

)
dQka

+
n∑

a=r+1

(

FIs�Kr


Pka

−Qka

)
dPka

−Kdt + 
FIs�Kr


t
dt

=
p∑

a=1

(
pia

− 
FIs�Kr


qia

)
dqia

−
n∑

a=p+1

(
qia

+ 
FIs�Kr


pia

)
dpia

−Hdt� (3.15)

and obtain the set of equations that characterizes FIs�Kr
:

pIs
= 
FIs�Kr


qIs

�qIp
� pĪp

�QKr�PK̄r
� t�� (3.16)

qĪs
= −
FIs�Kr


qĪs

�qIp
� pĪp

�QKr�PK̄r
� t�� (3.17)

PKr
= −
FIs�Kr


QKr

�qIp
� pĪp

�QKr�PK̄r
� t�� (3.18)

QK̄r
= 
FIs�Kr


PK̄r

�qIp
� pĪp

�QKr�PK̄r
� t�� (3.19)

K

(
QKr

�

FIs�Kr


PK̄r

�−
FIs�Kr

QKr

�PK̄r
� t

)
= H

(
qIs

�−
FIs�Kr


pĪs

�

FIs�Kr


qIs

� pĪs
� t

)
+ 
FIs�Kr


t
�

(3.20)
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For a generating function to be well-defined, we need to make the assumption that
its variables are linearly independent. Later we see that this hypothesis is often not
satisfied. The following property grants us that at least one of the generating function is
well-defined at every instant (the proof of this result is given by Arnold [3]).

Proposition 3.2.3. Let f � �1 ×� → �2 ×� be a canonical transformation. Using the
above notations, there exist at least two partitions Is and Kr such that �qIp

� pĪp
�QKr�PK̄r

� t�
are linearly independent.

3.2.2 The phase flow and its generating functions

The Hamilton–Jacobi theory has found many applications over the years but was first
used to integrate the equations of motion of integrable Hamiltonian systems [10, 11]. This
approach consists of finding a canonical map that transforms the system into an easily
integrable one. Once the system is reduced to a trivial one, integration of the equations of
motion are easily carried out. However, the search for such a map remains difficult and
this aspect limits the use of the Hamilton–Jacobi theory in practice. Instead, in the present
research we focus on a single transformation, the one induced by the phase flow that maps
the system to its initial state. Under this transformation, the system is in equilibrium,
every point in phase space is an equilibrium point. In general, we cannot compute this
transformation (if we were able to find this transformation, it would mean that we could
integrate the equations of motion) and so we focus on the generating functions that
generate this transformation. In particular, we prove that they solve two-point boundary
value problems.

Consider a Hamiltonian system and let �t be its flow:

�t � P → P

�q0� p0� �→ ��1
t �q0� p0� = q�q0� p0� t���2

t �q0� p0� = p�q0� p0� t�� � (3.21)

�t induces a transformation � on � ×� as follows:

� � �q0� p0� t� �→ ��t�q0� p0�� t� � (3.22)

�−1 transforms the state of the system at time t to its state at the initial time while preserv-
ing the time. Let us now prove that �, and a fortiori �−1, are canonical transformations.

Proposition 3.2.4. The transformation � induced by the phase flow is canonical.

Proof. From the theory of differential equations1, � is an isomorphism. Moreover, the
solution � is by definition a diffeomorphism mapping from a symplectic space to a
symplectic space, preserving the time, and trivially preserving the Hamiltonian. Thus, by
Def. 3.2.1, � is canonical. �

1 Uniqueness of solutions of ordinary differential equations.
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The inverse solution �−1 maps the Hamiltonian system to equilibrium, i.e., its condi-
tions at an initial epoch which are constant for all time along that trajectory. Therefore, the
associated generating functions, FIs�Kr

, verify the Hamilton–Jacobi equation (Eq. (3.20)).
In addition, they must also verify Eqs. (3.16)–(3.19), where �Q�P� now denotes the initial
state �q0� p0� and K is a constant that can be chosen to be 0:

pIs
= 
FIs�Kr


qIs

�qIp
� pĪp

� q0Kr
� p0K̄r

� t�� (3.23)

qĪs
= −
FIs�Kr


pĪs

�qIp
� pĪp

� q0Kr
� p0K̄r

� t�� (3.24)

p0Kr
= −
FIs�Kr


q0Kr

�qIp
� pĪp

� q0Kr
� p0K̄r

� t�� (3.25)

q0K̄r
= 
FIs�Kr


p0K̄r

�qIp
� pĪp

� q0Kr
� p0K̄r

� t�� (3.26)

0 = H

(
qIs

�−
FIs�Kr


pĪs

�

FIs�Kr


qIs

� pĪs
� t

)
+ 
FIs�Kr


t
� (3.27)

The last equation is often referred to as the Hamilton–Jacobi equation. For the case
where the partitions are �1�    � n��� and �1�    � n��� (i.e., s = n and r = n), we recover
the generating function F1, which now verifies the following equations (note that the
subscripts are suppressed in the following):

p = 
F1


q
�q� q0� t�� (3.28)

p0 = −
F1


p0

�q� q0� t�� (3.29)

0 = H

(
q�


F1


q
� t

)
+ 
F1


t
� (3.30)

The case s = n and r = 0 corresponds to the generating function of the second kind:

p = 
F2


q
�q�p0� t�� (3.31)

q0 = 
F2


p0

�q�p0� t�� (3.32)

0 = H

(
q�


F2


q
� t

)
+ 
F2


t
� (3.33)
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If s = 0 and r = n, we recover the generating function of the third kind, F3:

q = −
F3


p
�p�q0� t�� (3.34)

p0 = −
F3


q0

�p� q0� t�� (3.35)

0 = H

(
−
F3


p
�p� t

)
+ 
F3


t
� (3.36)

Finally, if s = 0 and r = 0, we obtain F4:

q = 
F4


p
�p�p0� t�� (3.37)

q0 = −
F4


p0

�p�p0� t�� (3.38)

0 = H

(

F4


p
�p� t

)
+ 
F4


t
� (3.39)

To compute the generating functions, one needs boundary conditions to solve the
Hamilton–Jacobi equation. At the initial time, the flow induces the identity transformation,
and thus the generating functions should also do so. In other words, at the initial time,

q�t0� = q0� p�t0� = p0� (3.40)

that is, �q�t0��p0� and �p�t0�� q0� are the only sets of independent variables that contain n
initial conditions and n components of the state vector at the initial time. As a consequence,
all the generating functions save F2 and F3 are singular at the initial time, i.e., they are
not defined as functions (they do not map a point into a single point). We will give deeper
insight into this notion later, and we will especially show that singularities corresponds
to multiple solutions from Eqs. (3.23) to (3.27).

Example 3.2.5. Let us look, for example, at the generating function of the first kind,
F1�q� q0� t�. At the initial time, q is equal to q0 whatever values the associated momenta
p and p0 take. We conclude that F1 is singular.

We now focus on the boundary conditions for the F2 and F3 generating functions. At
the initial time we must have:{

p0 = 
F2

q

�q = q0� p0� t0��

q0 = 
F2

p0

�q = q0� p0� t0��

{
q0 = − 
F3


p
�p = p0� q0� t0��

p0 = − 
F3

q0

�p = p0� q0� t0� �

Due to the non-commutativity of the derivative operator and the operator that assigns
the value t0 at t, solutions to these equations are not unique. As a result, the boundary
conditions verified by F2 and F3 may not be uniquely defined as well. For instance, they
may be chosen to be:

F2�q�p0� t� = �q�p0�� F3�p� q0� t� = −�p�q0�� (3.41)
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or

F2�q�p0� t� = 1
t − t0

e�t−t0��q�p0�� F3�p� q0� t� = − 1
t − t0

e�t−t0��p�q0�� (3.42)

where �� � is the inner product. One can readily verify that Eqs. (3.41) and (3.42) generate
the identity transformation (3.40) at the initial time t = t0.

The singularity at the initial time of all but two generating functions is a major issue:
it prevents us from initializing the integration, i.e., from solving the Hamilton–Jacobi
equation for most generating functions. The algorithm we use circumvents this problem
by specifying boundary value conditions for every generating functions at a later time
(see Section 3.4).

Lemma 3.2.6. Generating functions solve two-point boundary value problems.

Consider two points in phase space, X0 = �q0� p0� and X1 = �q�p�, and two par-
titions of �1�    � n� into two non-intersecting parts, �i1�    � is��is+1�    � in� and
�k1�    � kr��kr+1�    � kn�. A two-point boundary value problem is formulated as
follows:

Given 2n coordinates �qi1
�    � qis

� pis+1
�    � pin

� and �q0k1
�    � q0kr

�

p0kr+1
�    � p0kn

�, find the remaining 2n variables such that a particle starting at X0 will
reach X1 in T units of time.

From the relationship defined by Eqs. (3.23–3.26), we see that the generating function
FIs�Kr

solves this problem. This remark is of prime importance since it provides us with
a very general technique to solve any Hamiltonian boundary value problems.

Example 3.2.7. Lambert’s problem is a particular case of boundary value problem
where the partitions of �1�    � n� are �1�    � n��� and �1�    � n���. Though, given two
positions qf and q0 and a transfer time T , the corresponding momentum vectors are found
from Eqs (3.23) to (3.26)

pi = 
F1


qi

�q� q0� T��

p0i
= − 
F1


q0i

�q� q0� T� �

(3.43)

3.2.3 Linear systems theory

In this section, we particularize the theory developed above to linear systems. Specifi-
cally, we reduce the Hamilton–Jacobi equation to a set of four matrix ordinary differential
equations. Then, we relate the state transition matrix and generating functions. We show
that properties of one may be deduced from properties of the other. The theory we present
has implications in the study of relative motion and in optimal control theory for instance
[12, 26–28].
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3.2.3.1 Hamilton–Jacobi equation
To study the relative motion of two particles, one often linearizes the dynamics about

the trajectory (called the reference trajectory) of one of the particles. Then one uses this
linear approximation to study the motion of the other particle relative to the reference
trajectory (perturbed trajectory). Thus, the dynamics of relative motion reduces at first
order to a time-dependent linear Hamiltonian system, i.e., a system with a quadratic
Hamiltonian function without any linear terms:

Hh = 1
2

XhT

(
Hqq�t� Hqp�t�

Hpq�t� Hpp�t�

)
Xh� (3.44)

where Xh = ( �q
�p

)
is the relative state vector.

Lemma 3.2.8. The generating functions associated with the phase flow transformation
of the system defined by Eq. (3.44) are quadratic without linear terms.

The proof of this lemma is trivial once we understand the link between the generating
functions and the state transition matrix (see later in the section). From a heuristic
perspective, we note that a linear term in the generating function would correspond to a
non-homogenous term in the solution to the linear equation, which must equal zero for
the dynamical system considered above.

From the above lemma, a general form for F2 is:

F2 = 1
2

YT

(
F 2

11�t� F 2
12�t�

F 2
21�t� F 2

22�t�

)
Y� (3.45)

where Y =
(

�q
�p0

)
and
(

�q0
�p0

)
is the relative state vector at the initial time. We point

out that both matrices defining Hh and F2 are symmetric by definition. Then Eq. (3.31)
reads:

�p = 
F2


�q

= (F 2
11�t� F 2

12�t�
)

Y�

Substituting into Eq. (3.33) yields:

YT

{(
Ḟ 2

11�t� Ḟ 2
12�t�

Ḟ 2
12�t�

T Ḟ 2
22�t�

)
+
(

I F 2
11�t�

T

0 F 2
12�t�

T

)(
Hqq�t� Hqp�t�

Hpq�t� Hpp�t�

)(
I 0

F 2
11�t� F 2

12�t�

)}
Y = 0 �

(3.46)
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Though the above equation has been derived using F2, it is also valid for F1 (replacing
Y =

(
�q
�p0

)
by Y =

(
�q
�q0

)
) since F1 and F2 solve the same Hamilton–Jacobi equa-

tion (Eqs. (3.30) and (3.33)). Eq. (3.46) is equivalent to the following four matrix
equations:

Ḟ 1�2
11 �t�+Hqq�t�+Hqp�t�F

1�2
11 �t�+F 1�2

11 �t�Hpq�t�+F 1�2
11 �t�Hpp�t�F

1�2
11 �t� = 0�

Ḟ 1�2
12 �t�+Hqp�t�F

1�2
12 �t�+F 1�2

11 �t�Hpp�t�F
1�2
12 �t� = 0�

Ḟ 1�2
21 �t�+F 1�2

21 �t�Hpq�t�+F 1�2
21 �t�Hpp�t�F

1�2
11 �t� = 0�

Ḟ 1�2
22 �t�+F 1�2

21 �t�Hpp�t�F
1�2
12 �t� = 0�

(3.47)

where we replaced F 2
ij by F 1�2

ij to signify that these equations are valid for both F1 and

F2. We also recall that F 1�2
21 = F 1�2

12
T
. A similar set of equations can be derived for any

generating function FIs�Kr
. However, in this section we only give the equations verified

by F3 and F4:

Ḟ 3�4
11 �t�+Hpp�t�−Hpq�t�F

3�4
11 �t�−F 3�4

11 �t�Hqp�t�+F 3�4
11 �t�Hqq�t�F

3�4
11 �t� = 0�

Ḟ 3�4
12 �t�−Hpq�t�F

3�4
12 �t�+F 3�4

11 �t�Hqq�t�F
3�4
12 �t� = 0�

Ḟ 3�4
21 �t�−F 3�4

21 �t�Hqp�t�+F 3�4
21 �t�Hqq�t�F

3�4
11 �t� = 0�

Ḟ 3�4
22 �t�+F 3�4

21 �t�Hqq�t�F
3�4
12 �t� = 0�

(3.48)

The first equations of Eqs. (3.47) and (3.48) are Riccati equations. The second and
third are non-homogeneous, time varying, linear equations once the Riccati equations are
solved and are equivalent to each other (i.e., transform into each other under transpose).
The last are just a quadrature once the previous equations are solved.

3.2.3.2 Initial conditions
Although F1 and F2 (or more generally FIs�Kr

and FIs�Kr′ for all r and r ′) verify the same
Hamilton–Jacobi partial differential equation, these generating functions are different. We
noticed earlier that this difference is characterized by the boundary conditions. At the
initial time, the flow induces the identity transformation, thus the generating functions
should also do so. In other words, at the initial time,

�q�t0� = �q0� �p�t0� = �p0 �

In terms of generating functions this translates for F2 to:


F2


�q
��q0��p0� t0� = �p0�


F2


�p0

��q0��p0� t0� = �q0�

i.e.,

F 2
11�q +F 2

12�p0 = �p0� F 2
21�q +F 2

22�p0 = �q0�
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or equivalently:

F 2
11 = F 2

22 = 0� F 2
12 = F 2

21 = Identity �

On the other hand, F1 is ill-defined at the initial time. Indeed, at the initial time Eqs. (3.28)
and (3.29) read:

F 1
11�q +F 1

12�q0 = �p0� F 1
21�q +F 1

22�q0 = �p0 �

These equations do not have any solutions. This was expected since we saw earlier that
��q��q0� are not independent variables at the initial time (�q = �q0).

3.2.3.3 Perturbation matrices
Another approach to the study of relative motion at linear order relies on the state

transition matrix. This method was developed by Battin in Ref. [4] for the case of a
spacecraft moving in a point mass gravity field. Let � be the state transition matrix which
describes the relative motion:(

�q
�p

)
= �

(
�q0

�p0

)
�

where � =
(

�qq �qp

�pq �pp

)
. Battin [4] defines the fundamental perturbation matrices C and

C̃ as:

C̃ = �pq�
−1
qq �

C = �pp�
−1
qp �

That is, given �p0 = 0, C̃�q = �p and given �q0 = 0, C�q = �p. He shows that for the
relative motion of a spacecraft about a circular trajectory in a point mass gravity field
the perturbation matrices verify a Riccati equation and are therefore symmetric. Using
the generating functions for the canonical transformation induced by the phase flow,
we immediately recover these properties. We also generalize these results to any linear
Hamiltonian system.

Using the notations of Eq. (3.45), Eqs. (3.31) and (3.32) read:

�p = 
F2


�q

= F 2
11�q +F 2

12�p0�

�q0 = 
F2


�p0

= F 2
21�q +F 2

22�p0 �

We solve for ��q��p�:

�q = F 2
21

−1
�q0 −F 2

21
−1

F 2
22�p0�

�p = F 2
11F

2
21

−1
�q0 + �F 2

12 −F 2
11F

2
21

−1
F 2

22��p0�
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and identify the right-hand side with the state transition matrix:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�qp = −F 2
21

−1
F 2

22�

�qq = F 2
21

−1
�

�pp = F 2
12 −F 2

11F
2
21

−1
F 2

22�

�pq = F 2
11F

2
21

−1
�

We conclude that

C̃ = �pq�
−1
qq = F 2

11 � (3.49)

In the same manner, but using F1, we can show that:

C = �pp�
−1
qp = F 1

11 � (3.50)

Thus, C and C̃ are symmetric by nature (as F 1�2
11 is symmetric by definition) and they

verify the Riccati equation given in Eq. (3.47).

3.2.3.4 Singularities of generating functions and their relation to the state transition
matrix

In the first part of this paper, we studied the local existence of generating func-
tions. We proved that at least one of the generating functions is well-defined at every
instant (Prop. 3.2.3). In general we can notice that each of them can become singular
at some point, even for simple systems. As an example let us look at the harmonic
oscillator.

Example 3.2.9. The Hamiltonian for the harmonic oscillator is given by:

H�q�p� = 1
2m

p2 + k

2
q2�

The F1 generating function for the phase flow canonical transformation can be found
to be:

F1�q� q0� t� = 1
2

√
km csc��t�

[−2qq0 + �q2 +q2
0� cos��t�

]
�

where � =
√

k
m

. One can readily verify that F1 is a solution of the Hamilton–Jacobi
equation (Eq. (3.30)). Although it is well-defined most of the time, at T = m�/�,
m ∈ �, F1 becomes singular in that the values of the coefficients of the q’s and q0’s
increase without bound. To understand these singularities, recall the general solution to
the equations of motion:

q�t� = q0 cos��t�+p0/� sin��t��

p�t� = −q0� sin��t�+p0 cos��t� �

At t = T , q�T� = q0, that is q and q0 are not independent variables. Therefore the
generating function F1 is undefined at this instant. We say that it is singular at t = T .
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However, F1 may be defined in the limit: at t = T , q = q0, and thus F1 behaves as m�q−q0�2

2�t−T�

as t �→ T . Finally, at t = T , q = q0 any values of p and p0 are possible, i.e., singularities
correspond to multiple solutions to the boundary value problem that consists of going
from q0 to q = q0 in T = 0 unit of time.

The harmonic oscillator is a useful example. Since the flow is known analytically,
we are able to explicitly illustrate the relationship between the generating functions and
the flow �. We can go a step further by noticing that both the state transition matrix
and the generating functions generate the flow. Therefore, singularities of the generating
functions should be related to properties of the state transition matrix:

�p = 
F2


�p

= F 2
11�q +F 2

12�p0�

but we also have

�p = �pq�
−1
qq �q + ��pp −�pq�

−1
qq �qp��p0 �

Similarly, (3.51)

�q0 = 
F2


�p0

= F 2
21�q +F 2

22�p0�

but we also have

�q0 = �−1
qq �q −�−1

qq �qp�p0 � (3.52)

A direct identification yields:

F 2
11 = �pq�

−1
qq � (3.53)

F 2
12 = �pp −�pq�

−1
qq �qp� (3.54)

F 2
21 = �−1

qq � (3.55)

F 2
22 = �−1

qq �qp � (3.56)

Thus, F2 is singular when and only when �qq is not invertible. This relation between
singularities of F2 and invertibility of a sub-matrix of the state transition matrix readily
generalizes to other kind of generating functions. For such linear systems in particular,
we can show that
• F1 is singular when �qp is singular,
• F2 is singular when �qq is singular,
• F3 is singular when �pp is singular,
• F4 is singular when �pq is singular.
To extend these results to other generating functions, we must consider other block
decompositions of the state transition matrix. Every n × n block of the state transition
matrix is associated with a different generating function. Since the determinant of the
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state transition matrix is 1, there exists at least one n × n sub-matrix that must have a
non-zero determinant. The generating function associated with this block is non-singular,
and we recover Prop. 3.2.3 for linear systems.

3.2.4 Non-linear systems theory

We have shown the local existence of generating functions and mentioned that they
may not be globally defined. Using linear systems theory we are also able to predict where
the singularities are and to interpret their meaning as multiple solutions to the two-point
boundary value problem. In this section we generalize these results to singularities of
non-linear systems.

The following proposition relates singularities of the generating functions to the invert-
ibility of sub-matrices of the Jacobi matrix of the canonical transformation.

Proposition 3.2.10. The generating function FIs�Kr
for the canonical transformation �

is singular at time t if and only if

det
(


�i


zj

)
i∈I�j∈J

= 0� (3.57)

where I = �i ∈ Is�
⋃

�n+ i� i ∈ Īs�, J = �j ∈ K̄r�
⋃

�n+ j� j ∈ Kr�, and z = �q0� p0� is the
state vector at the initial time.

Proof. For the sake of clarity, let us prove this property for F1. In that case, I = �1� n�
and J = �n+1� 2n�. First we remark that

(

�i


zj

)
i∈I�j∈J

=
(


qi


p0j

)
�

Thus, from the inversion theorem, if det
(


�i


zj

)
i∈I�j∈J

= 0, there is no open set in which

we can solve p0 as a function of q and q0.
On the other hand, suppose that F1 is non-singular. Then, from Eq. (3.29), we have:

p0 = −
F1


q0

�q� q0� t�� (3.58)

that is, we can express p0 as a function of �q� q0�. This is in contradiction with the result
obtained from the local inversion theorem. Therefore, F1 is singular. �

Example 3.2.11. From the above proposition, we conclude that the F1 generating func-
tion associated with the phase flow of the harmonic oscillator is singular if and only if:

det
(


�i


zj

)
i∈I�j∈J

= 0 � (3.59)
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In this example, I = 1, J = 2, and � = �q0 cos��t� + p0/� sin��t��−q0� sin��t� +
p0 cos��t��. Therefore F1 is singular if and only if sin��t� = 0, i.e., t = 2�/�+2k�. We
recover previous results obtained by direct computation of F1.

Prop. 3.2.10 generalizes to non-linear systems the relation between singularities and
non-uniqueness of the solutions to boundary value problems. Indeed, FIs�Kr

is singular if
and only if zJ �→ �I�t� z� is not an isomorphism. In other words, singularities arise when
there exist multiple solutions to the boundary value problem.

To study the singularities of non-linear systems, we need to introduce the concept
of Lagrangian submanifolds. The theory of Lagrangian submanifolds goes far beyond
the results we present in this section: “Some believe that the Lagrangian submanifold
approach will give deeper insight into quantum theories than does the Poisson algebra
approach. In any case, it gives deeper insight into classical mechanics and classical field
theories” (Abraham and Marsden [1]). We refer to Abraham and Marsden [1], Marsden
[23] and Weinstein [32] and references given therein for further information on these
subjects.

3.2.4.1 Lagrangian submanifolds and the study of caustics
Consider an arbitrary generating function FIs�Kr

. Then the graph of dFIs�Kr
defines

a 2n-dimensional submanifold called a canonical relation [32] of the 4n-dimensional
symplectic space ��1 ×�2�� = �∗

1 �1 − �∗
2 �2�. On the other hand, since the variables

�q0� p0� do not appear in the Hamilton–Jacobi equation (Eq. (3.27)), we may consider
them as parameters. In that case the graph of �qIs

� pĪs
� �→ dFIs�Kr

defines an n-dimensional
submanifold of the symplectic space ��1��1� called a Lagrangian submanifold [32]. The
study of singularities can be achieved using either canonical relations [1] or Lagrangian
submanifolds [3, 23]. In the following we assumed t fixed.

Theorem 3.2.12. The generating function FIs�Kr
is singular if and only if the local pro-

jection of the canonical relation � defined by the graph of dFIs�Kr
onto �qIs

� pĪs
� q0Kr

� p0K̄r
�

is not a local diffeomorphism.

Definition 3.2.2. The projection of a singular point FIs�Kr
onto �qIs

� pĪs
� q0Kr

� p0K̄r
� is

called a caustic.

If one works with Lagrangian submanifolds then the previous theorem becomes:

Theorem 3.2.13. The generating function2 FIs�Kr
is singular if the local projection of

the Lagrangian submanifold defined by the graph of �qIs
� pĪs

� �→ dFIs�Kr
onto �qIs

� pĪs
� is

not a local diffeomorphism.

These theorems are the geometric formulation of Prop. 3.2.10. If the projection of
the canonical relation defined by the graph of dFIs�Kr

onto �qIs
� pĪs

� q0Kr
� p0K̄r

� is not

2 We consider here that the generating function is a function of n variables only, and has n parameters.
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a local diffeomorphism, then there exists multiple solutions to the problem of find-
ing �q0� p0� q�p� knowing �qIs

� pĪs
� q0Kr

� p0K̄r
�. From the local inversion theorem, this is

equivalent to Prop. 3.2.10.
In the light of these theorems, we can give a geometrical interpretation to Thm. 3.2.3

on the existence of generating functions. Given a canonical relation � (or a Lagrangian
submanifold) defined by a canonical transformation, there exists a 2n-dimensional (or
n-dimensional) submanifold � of �1 ×�2 (or �1) such that the local projection of �
onto � is a local diffeomorphism.

To study caustics two approaches, at least, are possible depending on the problem. A
good understanding of the physics may provide information very easily. For instance,
consider the two-body problem in two dimensions, and the problem of going from a
point A to a point B, symmetrically placed on a single line on either side of the body,
in a certain lapse of time, T . For certain values of T , the trajectory that links A to B

is an ellipse whose perigee and apogee are A and B. Therefore, there are two solutions
to this problem depending upon which way the particle is going. In terms of generating
functions, we deduce that F3 is non-singular (there is a unique solution once the final
momentum is given) but F1 is singular (existence of two solutions).

Another method for studying caustics consists of using a known non-singular generating
function to define the Lagrangian submanifold � and then study its projection. A very
illustrative example is given by Ehlers and Newman [8]. Using the Hamilton–Jacobi
equation they treat the evolution of an ensemble of free particles whose initial momentum
distribution is p = �1/�1 + q2��. They identify a time t1 at which F1 is singular. Then,
using a closed-form expression of F3, they find the equations defining the Lagrangian
submanifold at t1. Its projection can be studied and they eventually find that the caustic
is two folds. Nevertheless, such an analysis is not always possible as solutions to the
Hamilton–Jacobi equation are usually found numerically, not analytically. To illustrate
this method, let us consider the following example.

Example 3.2.14. (Motion about the Libration point L2 in the Hill three-body problem.)
Consider a spacecraft moving about and staying close to the Libration point L2 in the
normalized Hill three-body problem (see Appendix B for a description of the Hill three-
body problem). The algorithm we develop in Section 3.4 computes the generating function
for relative motion with respect to L2 as a Taylor series expansion, of order N , of the
exact generating function about L2. For instance, F2 reads:

F2�qx� qy�p0x
� p0y

� t� =f 2
11�t�q

2
x +f 2

12�t�qxqy +f 2
13�t�qxp0x

+f 2
14�t�qxp0y

+f 2
22�t�q

2
y

+f 2
23�t�qyp0x

�t�+f 2
24�t�qyp0y

+f 2
33�t�p

2
0x

+f 2
34�t�p0x

p0y

+f 2
44�t�p

2
0y

+ r�qx� qy�p0x
� p0y

� t��

where �q�p� q0� p0� are relative position and momenta of the spacecraft with respect to
L2 at t and t0, the initial time, and r is a polynomial of degree N in its spatial variables
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with time-dependent coefficients and without any quadratic terms. At T = 1�6822, F1 is
singular but F2 is not. Eqs. (3.31) and (3.32) reads:

px = 2f 2
11�T�qx +f 2

12�T�qy +f 2
13�T�p0x

+f 2
14�T�p0y

+D1r�qx� qy�p0x
� p0y

� T�� (3.60)

py = f 2
12�T�qx +2f 2

22�T�qy +f 2
23�T�p0x

+f 2
24�T�p0y

+D2r�qx� qy�p0x
� p0y

� T�� (3.61)

q0x
= f 2

13�T�qx +f 2
23�T�qy +2f 2

33�T�p0x
+f 2

34�T�p0y
+D3r�qx� qy�p0x

� p0y
� T�� (3.62)

q0y
= f 2

14�T�qx +f 2
24�T�qy +f 2

34�T�p0x
+2f 2

44�T�p0y
+D4r�qx� qy�p0x

� p0y
� T�� (3.63)

where Dir represents the derivative of r with respect to its ith variable. Eqs. (3.60)–(3.63)
define a canonical relation �. By assumption F1 is singular, therefore the projection of
� onto �q� q0� is not a local diffeomorphism and there exists a caustic.

Let us now study this caustic. Eqs. (3.60)–(3.63) provide p and q0 as a function of
�q�p0�, but to characterize the caustic we need to study the projection of the Lagrangian
manifold on3 �q� q0�. Hence, we must express p and p0 as a function of �q� q0�. F1 being
singular, there are multiple solutions to the problem of finding p and p0 as a function of
�q� q0�, and one valuable piece of information is the number k of such solutions. To find
p and p0 as a function of �q� q0� we first invert Eqs. (3.62) and (3.63) to express p0 as a
function of �q� q0�. Then we substitute this relation into Eqs. (3.60) and (3.61). The first
step requires a series inversion that can be carried out using the technique developed by
Moulton [25]. Let us rewrite Eqs. (3.62) and (3.63):

2f 2
33�T�p0x

+f 2
34�T�p0y

= q0x
−f 2

13�T�qx −f 2
23�T�qy −D3r�qx� qy�p0x

� p0y
� T��

(3.64)

f 2
34�T�p0x

+2f 2
44�T�p0y

= q0y
−f 2

14�T�qx −f 2
24�T�qy −D4r�qx� qy�p0x

� p0y
� T� �

(3.65)

The determinant of the coefficients of the linear terms on the left-hand side is zero
(otherwise there is a unique solution to the series inversion) but each of the coef-
ficients is non-zero, i.e., we can solve for p0x

as a function of �p0y
� q0x

� q0y
� using

Eq. (3.64). Then we substitute this solution into Eq. (3.65) and we obtain an equation of
the form

R�p0y
� q0x

� q0y
� = 0� (3.66)

that contains no terms in p0y
alone of the first degree. In addition, R contains a non-zero

term of the form �p2
0y

, where � is a real number. In this case, Weierstrass proved that
there exist two solutions, p1

0y
and p2

0y
, to Eq. (3.66).

3 Since F1 is a function of �q� q0�.
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In the same way, we can study the singularity of F1 at the initial time. At t = 0,
F2 generates the identity transformation, hence f 2

33�0� = f 2
34�0� = f 2

43 �0� = f 2
44�0� = 0.

This time there is no non-zero first minor, and we find that there exists infinitely
many solutions to the series inversion. Another way to see this is to use the Legendre
transformation:

F1�q� q0� t� = F2�q�p0� t�−q0p0�

As t tends toward 0, �q�p� goes to �q0� p0� and F2 converges toward the identity trans-
formation lim

t→0
F2�q�p0� t� = qp0 −−→

t→0
q0p0. Therefore, as t goes to 0, F1 also goes to 0,

i.e., the projection of � onto �q� q0� reduces to a point.
The use of series inversion to quantify the number of solutions to the boundary

value problem is a very efficient technique for systems with polynomial generating
functions. From the series inversion theory we know that the uniqueness of the inversion
is determined by the linear terms whereas the number of solutions (if many) depends
on properties of non-linear terms (we illustrated this property in the above example). In
addition, this technique allows us to study the projection of the canonical relation at the
cost of a single matrix inversion only.

In the case where generating functions are (or can be approximated by a) polynomial, we
can recover the phase flow (or its approximation) as a polynomial too. For instance, from

p0 = 
F1


q0

�q� q0� t��

we can find q�q0� p0� at the cost of a series inversion. Then, q�q0� p0� together with
p = 
F1


q
�q� q0� t� define the flow (or its polynomial approximation). On the other hand,

generating functions are well-defined if and only if the transformation from the flow to
the generating function has a unique solution (Prop. 3.2.10). From series inversion theory,
we conclude that generating functions are well-defined if and only if the inversion of the
linear approximation of the flow has a unique solution. Therefore, we have the following
property:

Proposition 3.2.15. Singularities of polynomial generating functions correspond to
degeneracy of sub-matrices of the state transition matrix as in the linear case. In other
words, using our previous notation,
• F1 is singular when det��qp� = 0,
• F2 is singular when det��qq� = 0,
• F3 is singular when det��pp� = 0,
• F4 is singular when det��pq� = 0.

Using other block decompositions of the state transition matrix, these results can be
extended to the generating function FIs�Kr

.

Example 3.2.16. (Singularities of the generating functions in the Hill three-body prob-
lem.) To illustrate Prop. 3.2.11, let us determine the singularities of F1 and F2 in the
normalized Hill three-body problem linearized about L2.
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Fig. 3.1. Determinants of �qq and �qp.

The state transition matrix for this problem satisfies (Appendix B, Eq. (B.8)):

�̇�t� =

⎛
⎜⎜⎜⎝

−8 0 0 −1

0 4 1 0

0 1 1 0

−1 0 0 1

⎞
⎟⎟⎟⎠��t�� ��0� = Identity �

We use the Mathematica© built in function DSolve to compute a symbolic expression
of the state transition matrix. We plot in Figure 3.1 the determinant of �qq and �qp

as a function of time. As noticed before F1 is singular at the initial time and at t =
�1�6821� 3�1938� 4�710� and F2 is singular at t = �0�809� 2�3443� 3�86�. The singularity
at t = 1�6821 was studied above.

3.3 Hamilton’s principal function

Though generating functions are used in the present research to solve boundary value
problems, they were introduced by Jacobi, and mostly used thereafter, as fundamental
functions which can solve the equations of motion by simple differentiations and elimi-
nations, without integration. Nevertheless, it was Hamilton who first hit upon the idea of
finding such a fundamental function. He first proved its existence in geometrical optics
(i.e., for time-independent Hamiltonian systems) in 1834 and called it the characteristic
function [19]. One year later he published a second essay [20] on systems of attracting
and repelling points in which he showed that the evolution of dynamical systems is
characterized by a single function called Hamilton’s principal function:

The former Essay contained a general method for reducing all the most important
problems of dynamics to the study of one characteristic function, one central or radical
relation. It was remarked at the close of that Essay, that many eliminations required
by this method in its first conception, might be avoided by a general transformation,
introducing the time explicitly into a part S of the whole characteristic function V; and
it is now proposed to fix the attention chiefly on this part S, and to call it the Principal
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Function. (William R. Hamilton, in the introductory remarks of “Second essay on a
General Method in Dynamics” [20]).

Although Hamilton’s principal function has been introduced to derive solutions to the
equations of motion, it may also be used to solve boundary value problems, similar to
the generating functions. Therefore, in the next section we introduce Hamilton’s principal
function and prove that it solves two-point boundary value problems. Then we discuss
how it compares to the generating functions.

3.3.1 Existence of the Hamilton principal function

Similarly to the generating functions, Hamilton’s principal function may be derived
using the calculus of variations. Consider the extended action integral:

A =
∫ �1

�0

�pq′ +ptt
′�d�� (3.67)

under the auxiliary condition K�q� t�p�pt� = 0, where q′ = dq/d�, pt is the momentum
associated with the generalized coordinates t and K = pt +H .

Define a line element4 d� for the extended configuration space �q� t� by

d� = Ldt = Lt′d��

where L is the Lagrangian. Then, we can connect two points �q0� t0� and �q1� t1� of the
extended configuration space by a shortest line � and measure its length from:

A =
∫

�
d� =

∫
�
Lt′d��

The distance we obtain is a function of the coordinates of the end-points and, by definition,
is given by the Hamilton principal function: W�q0� t0� q1� t1�.

From the calculus of variations (see e.g., Lanczos [22]) we know that the variation of
the action A can be expressed as a function of the boundary terms if we vary the limits
of the integral:

	A = p1	q1 +pt1
	t1 −p0	q0 −pt0

	t0 �

On the other hand, we have:

	A = 	W�q0� t0� q1� t1� = 
W


q0

	q0 + 
W


t0

	t0 + 
W


q1

	q1 + 
W


t1

	t1�

i.e.,

p0 = −
W


q0

�q0� t0� q1� t1�� (3.68)

p1 = 
W


q1

�q0� t0� q1� t1�� (3.69)

4 The geometry established by this line element is not Riemannian [22].
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and

−
W


t0

�q0� t0� q1� t1�+H

(
q0�−


W


q0

� t0

)
= 0� (3.70)


W


t1

�q0� t0� q1� t1�+H

(
q1�


W


q1

� t1

)
= 0� (3.71)

where K has been replaced by pt + H . As with generating functions of the first kind,
Hamilton’s principal function solves boundary value problems of Lambert’s type through
Eqs. (3.68–3.69). To find W , however, we need to solve a system of two partial differential
equations (Eqs. (3.70) and (3.71)).

3.3.2 Hamilton’s principal function and generating functions

In this section, we highlight the main differences between generating functions asso-
ciated with the phase flow and Hamilton’s principal function. For sake of simplicity we
compare F1�q� q0� t� and W�q� t� q0� t0�.

3.3.2.1 Calculus of variations
Even if both functions are derived from the calculus of variations, there are fundamental

differences between them. To derive generating functions the time t is considered as an
independent variable in the variational principle. In contrast, we increase the dimensional-
ity of the system by adding the time t to the generalized coordinates to derive Hamilton’s
principal function. As a consequence, generating functions generate a transformation
between two points in the phase space, i.e., they act without passage of time. On the other
hand, Hamilton’s principal function generates a transformation between two points in the
extended phase space, i.e., between two points in the phase space with different times.
This difference may be viewed as follows: Generating functions allow us to characterize
the phase flow given an initial time, t0 (i.e., to characterize all trajectories whose initial
conditions are specified at t0), whereas Hamilton’s principal function does not impose
any constraint on the initial time. The counterpart being that Hamilton’s principal func-
tion must satisfy two partial differential equations (Eq. (3.70) defines W as a function
of t0 and Eq. (3.71) defines W as a function of t1) whereas generating functions satisfy
only one.

Moreover, to derive the generating functions fixed endpoints are imposed, i.e., we
impose the trajectory in both sets of variables to verify the principle of least action.
On the other hand, the variation used to derive Hamilton’s principal function involves
moving endpoints and an energy constraint. This difference may be interpreted as fol-
lows: Hamilton’s principal function generates a transformation which maps a point of
a given energy surface to another point on the same energy surface and is not defined
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for points that do not lie on this surface. As a consequence of the energy constraint,
we have [22]:

∣∣∣∣ 
2W


q0
q1

∣∣∣∣= 0 � (3.72)

As noticed by Lanczos [22], “this is a characteristic property of the W -function which has
no equivalent in Jacobi’s theory”. On the other hand, generating functions map any point
of the phase space into another one, the only constraint is imposed through the variational
principle (or equivalently by the definition of canonical transformation): we impose the
system in both sets of coordinates to be Hamiltonian with Hamiltonian functions H and
K, respectively.

3.3.2.2 Fixed initial time
In the derivation of Hamilton’s principal function dt0 may be chosen to be zero, i.e.,

the initial time is imposed. Then Hamilton’s principal function loses its dependence with
respect to t0. Eq. (3.70) is trivially verified and Eq. (3.72) does not hold anymore, meaning
that W and F1 become equivalent.

Finally, in Ref. [20] Hamilton also derives another principal function Q�p0� t0� p1� t1�
which compares to W as F4 compares to F1. The derivation being the same we will not
go through it.

To conclude, Hamilton’s principal function appears to be more general than the gener-
ating functions for the canonical transformation induced by the phase flow. On the other
hand, the initial and final times are usually specified when solving two-point bound-
ary problems and therefore, any of these functions will identically solve the problem.
However, to find Hamilton’s principal function we need to solve two partial differential
equations whereas only one needs to be solved to find the generating functions. For these
reasons, generating functions are more appropriate to address the problem of solving
two-point boundary value problems.

3.4 Local solutions of the Hamilton–Jacobi equation

In this section, we provide a detailed discussion of a method we use to solve for the
generating functions of the solution flow. This method only applies for systems with
polynomial generating functions. This case obviously includes systems with polynomial
Hamiltonian such as the double well potential. It also includes systems describing the
relative motion of two particles moving in a Hamiltonian vector field and more generally,
the motion of a particle in the vicinity of an equilibrium point or of a known trajectory.
In the following we focus our discussion on the problem of relative motion between
particles.
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3.4.1 Direct solution for the generating function

Suppose we are interested in the relative motion of a particle whose coordinates are
�q�p� with respect to another one on a known reference trajectory whose coordinates are
�q0� p0�, both moving in an Hamiltonian field. If both particles stay “close” to each other,
we can expand �q�p� as a Taylor series about the reference trajectory. The dynamics of
the relative motion is described by the Hamiltonian function Hh [16]:

Hh�Xh� t� =
�∑

p=2

p∑
i1�    �i2n=0�
i1+···+i2n=p

1
i1! · · · i2n!


pH


q
i1
1 · · · 
qin

n 
p
in+1
1 · · · 
pi2n

n

�q0� p0� t�Xh
1

i1 � � �Xh
2n

i2n �

(3.73)

where Xh =
(

q
p

)
is the relative state vector. Since Hh has infinitely many terms, we

are usually not able to solve the Hamilton–Jacobi equation but we can approximate
the dynamics by truncating the series Hh in order to only keep finitely many terms.
Suppose N terms are kept, then we say that we describe the relative motion using an
approximation of order N . Clearly, the greater N is, the better our approximation is to
the non-linear motion of a particle about the reference trajectory. When an approximation
of order N is used, we look for a generating function FIs�Kr

as a polynomial of order N
in its spatial variables with time-dependent coefficients. It is important to note that even
for a Hamiltonian with a finite expansion, the generating functions for that Hamiltonian
will in general be analytic functions with infinite series expansions. Thus, truncation
of a generating function at order N is not equivalent to a solution of the generating
function of the order N Hamiltonian system, but is always only an approximation to it.
Substituting the expansions into the Hamilton–Jacobi equation, it is reduced to a set of
ordinary differential equations that can be integrated numerically. Once FIs�Kr

is known,
we find the other generating functions from the Legendre transformation, at the cost of a
series inversion. If a generating function is singular, the inversion does not have a unique
solution and the number of solutions characterizes the caustic.

Recall the Hamilton–Jacobi equation (Eq. (3.27)):

H

(
qIs

�−
FIs�Kr


pĪs

�

FIs�Kr


qIs

� pĪs
� t

)
+ 
FIs�Kr


t
= 0 � (3.74)

Since H is a Taylor series in its spatial variables, we look for a solution of the same
form, that is, we assume that generating functions are Taylor series as well:

FIs�Kr
�y� t� =

�∑
q=0

q∑
i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n

f
p�r
q�i1�    �i2n

�t�y
i1
1 · · ·yi2n

2n � (3.75)

where y = �qIs
� pĪs

� q0Kr
� p0K̄r

�. We substitute this expression into Eq. (3.74). The resulting
equation is an ordinary differential equation that has the following structure:

P
(
y� f

p�r
q�i1�    �i2n

�t�� ḟ
p�r
q�i1�    �i2n

�t�
)

= 0� (3.76)
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where P is a series in y with time-dependent coefficients. An explicit expression of P
up to order 3 is given in Appendix A. Equation (3.76) holds for all y if and only if
all the coefficients of P are zero. In this manner, we transform the ordinary differential
equation (Eq. (3.76)) into a set of ordinary differential equations whose solutions are the
coefficients of the generating function FIs�Kr

.
Now it remains to specify initial conditions for the integration. We have seen before

that only F2 and F3 can generate the identity transformation, the other generating functions
being singular. Let us look more closely at F2 and F3, and especially at the coefficients5

f 2
q�i1�    �i2n

�t0� and f 3
q�i1�    �i2n

�t0�. At the initial time we have:

p0 = p

= 
F2


q
�

and

q = q0

= 
F2


p0

�

Within the radius of convergence, the Taylor series defining the generating functions
(Eq. (3.75)) converge normally. Therefore, we can invert the summation and the derivative
operator. We obtain a unique set of initial conditions:

f 2
q�i1�    �i2n

�t0� =
{

1 if q = 2� ik = ik+n = 1� il �=�k�k+n� = 0� ∀�k� l� ∈ �1� n�× �1� 2n��

0 otherwise�

Similarly, we obtain for F3:

f 3
q�i1�    �i2n

�t0� =
{

−1 if q = 2� ik = ik+n = 1� il �=�k�k+n� = 0� ∀�k� l� ∈ �1� n�× �1� 2n��

0 otherwise�

These initial conditions allow one to integrate two generating functions among the 4n,
but what about the other ones? This issue on singular initial conditions is similar to the
one on singularity avoidance during the integration. In the next section we propose a
technique to handle these problems based on the Legendre transformation. But before
going further, one remark needs to be made. After we proceed with the integration, one
must always verify that the series converge and that they describe the true dynamics6

in some open set. If these two conditions are verified we can identify the generating
functions with their Taylor series.

5 We change our notation for convenience: f 2 stands for fn�0, i.e., represents the coefficients of the Taylor
series of F2. We do the same for all four kinds of generating functions F1, F2, F3 and F4.

6 Remember that even if a function is C� and has a converging Taylor series, it may not equal its Taylor
series. As an example take f�x� = exp �1/x2� if x �= 0, f�0� = 0, it is C� and its Taylor series at x = 0 is 0,
and therefore converges. However, f is not identically zero.
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3.4.1.1 Singularity avoidance
We have seen that most of the generating functions are singular at the initial time.

Moreover solutions to the Hamilton–Jacobi equations often develop caustics. These two
issues prevent numerical integration. The goal of this section is to introduce a technique
to overcome this difficulty.

We first need to recall the Legendre transformation, which allows one to derive one
generating function from another (Eq. (3.14)). Suppose F2 is known, then we can find
F1 from:

F1�q� q0� t� = F2�q�p0� t�−�q0� p0�� (3.77)

where p0 is viewed as a function of �q� q0�. Obviously, the difficulty in proceeding with
a Legendre transformation lies in finding p0 as a function of �q� q0�. To find such an
expression we use Eq. (3.32):

q0 = 
F2


p0

�q�p0� t�� (3.78)

and then solve for p0�q� q0�.
For the class of problems we consider, F2 is a Taylor series. Therefore we need to

perform a series inversion to eventually find p0 as a Taylor series of �q� q0�. Series
inversion is a classical problem, we adopt the procedure developed by Moulton [25]. We
first suppose that there exists a series expansion of p0 as a function of q and q0. Then we
insert this expression into Eq. (3.78) and balance terms of the same order. We obtain a
set of linear equations, whose solution is found at the cost of a n×n matrix inversion (we
recall that n is the dimension of the configuration space, it is small in general). If its rank
is n−p, Weierstrass proved that the series inversion has p+1 solutions (for instance, if
p = 1, there are two solutions to the problem). This is the linear version of Prop. 3.2.10
for the F1 generating function.

Let us return to the problem of singularity avoidance. So far, we were able to integrate
generating functions of the second and third kinds since they have well-defined initial
conditions. To integrate other generating functions, say FIs�Kr

, we need to specify boundary
conditions. Using the Legendre transformation, we can find the value of FIs�Kr

at t1 > 0
from the value of F2 or F3. This value can in turn be used to initialize the integration of
the Hamilton–Jacobi equation for FIs�Kr

which can be continued forward or backward in
time until it encounters a singularity.

Now suppose F2 is singular at t2. Let us see how we can take advantage of the Legendre
transformation to integrate F2 for t > t2. Proposition 3.2.3 tells us that at least one of the
generating functions is non-singular at t2. Without loss of generality, we assume that F1 is
non-singular at t2. At t1 < t2 we carry out a Legendre transformation to find F1 from F2,
then we integrate F1 over �t1� t3 > t2� and carry out another Legendre transformation to
recover F2 at t3. Once the value of F2 is found at t3, the integration of the Hamilton–Jacobi
equation can be continued. Finally, we recall from Proposition 3.2.15 that we can predict
the locus of the singularities using the state transition matrix.

We have described an algorithm to solve the Hamilton–Jacobi equation and devel-
oped techniques to continue the integration despite singularities. In the next section, we
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introduce an indirect approach to compute the generating functions based on the initial
value problem. This approach naturally avoids singularities but requires more computa-
tions (see Section 3.4.3).

3.4.2 An indirect approach

By definition, generating functions implicitly define the canonical transformation they
are associated with. Hence, we may compute the generating functions from the canonical
transformation, i.e., compute the generating functions associated with the flow from
knowledge of the flow. In this section, we develop an algorithm based on these remarks.

Recall Hamilton’s equations of motion:(
q
p

)
= J�H�q�p� t� � (3.79)

Suppose that q�q0� p0� t� and p�q0� p0� t� can be expressed as series in the initial conditions
�q0� p0� with time-dependent coefficients, truncate the series to order N and substitute
these into Eq. (3.79). Hamilton’s equations reduce to an ordinary differential equation
of a form that is polynomial in �q0� p0�. As before, we balance terms of the same order
and transform Hamilton’s equations into a set of ordinary differential equations whose
variables are the time-dependent coefficients defining q and p as series of q0 and p0.
Using q�q0� p0� t0� = q0 and p�q0� p0� t0� = p0 as initial conditions for the integration, we
are able to compute an approximation of order N of the phase flow. Once the flow is
known, we recover the generating functions by performing a series inversion.

Example 3.4.1. Suppose we want to compute F1 at t = T . From q = q�q0� p0� T� we
carry out a series inversion to eventually find p0 = p0�q� q0� T�. Then p0 = p0�q� q0� T�
together with p = p�q0� p0� T� defines the gradient of F1:


F1


q
�q� q0� T� = p

= p�q0� p0�q� q0� T��� (3.80)


F1


q0

�q� q0� T� = −p0

= −p0�q� q0� T�� (3.81)

We recover F1 from its gradient by performing two quadratures over the polynomial
terms. If one uses traditional numerical integrators to integrate the phase flow, Eqs. (3.80)
and (3.81) are not integrable due to numerical round off(


p�q0� p0�q� q0� T��


q0

�= −
p0�q� q0� T�


q

)
�

Using symplectic algorithms to compute the approximate phase flow, we preserve the
Hamiltonian structure of the flow and thus are assured that Eqs. (3.80) and (3.81) are
integrable [13].



82 Modern astrodynamics

3.4.3 A comparison of the direct and indirect approach

We have introduced two algorithms that compute the generating functions associated
with the phase flow. In this section, we highlight the advantages and drawbacks of each
method. In addition, we show that by combining them we obtain a robust and powerful
algorithm.

3.4.3.1 Method specifications

The direct approach
The direct approach provides us with a closed form approximation of the generating

functions over a given time interval. However, there are inherent difficulties as generating
functions may develop singularities which prevent the integration from going further in
time. The technique we developed to bypass this problem results in additional compu-
tations. It requires us to first identify the times at which generating functions become
singular, and then to find a non-singular generating function at each of these times. Over
a long time simulation, this method reaches its limits as many singularities may need to
be avoided.

The indirect approach
The main advantage of the indirect method is that it never encounters singularities, as

the flow is always non-singular. On the other hand, this method requires us to solve many
more equations than the direct approach (see below). Furthermore, a major drawback
of the indirect approach is that it computes an expression for the generating functions
at a given time only, the time at which the series inversion is performed. To generate
solutions to a two-point boundary value problem over a range of times then requires that
a series inversion be performed at each point in time.

The curse of dimensionality
In this paragraph, we point out a difficulty inherent to both methods, namely the

“curse of dimensionality”. As we solve the generating functions to higher and higher
orders, the number of variables grows dramatically. This problem is the limiting factor
for computation: typically on a 2GHz Linux computer with 1G RAM, we have trouble
solving the generating functions to order 7 and up for a 6-dimensional Hamiltonian
system.

Computation of the generating functions using the direct approach requires us to
find all the coefficients of a 2n-dimensional series with no linear terms. At order N , a
2n-dimensional Taylor series has x terms, where

x =
(

2n−1+N
N

)
= �2n−1+N�!

N !�2n−1�! �

In the indirect approach we express the 2n-dimensional state vector as Taylor series with
respect to the 2n initial conditions. Therefore, we need to compute the coefficients of 2n
2n-dimensional Taylor series.
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Fig. 3.2. Number of variables in the indirect (dashed) and direct (solid) methods.

To summarize, an approximation of order N of the generating functions is found by
solving:

•
N∑

k=2

�2n−1+k�!
k!�2n−1�! ordinary differential equations using the direct approach,

• 2n
N−1∑
k=1

�2n−1+k�!
k!�2n−1�! ordinary differential equations using the indirect approach7.

In Figure 3.2, the solid line and dotted line indicate the numbers of equations that
needs to be solved with the direct and indirect methods for a 6-dimensional Hamiltonian
system.

3.4.3.2 A combined algorithm
In practice, to solve boundary value problems over a long time span it is most conve-

nient to combine both methods. Typically, we first solve the initial value problem (indirect
method) up to a time of interest, say T . Then we solve the Hamilton–Jacobi equation
(direct approach) about T , with initial conditions equal to the values of the generating func-
tions at T found using the indirect approach. This approach has been applied in [17, 18] to
solve two-point boundary value problems over week-long time spans in low Earth orbit.

3.4.4 Convergence and existence of solutions

We now study the convergence properties of our algorithm. In particular, we provide a
criterion to evaluate the domain in which the approximation of order N of the generating
functions is valid. An example to illustrate this criterion is given.

7 The summation goes from 1 to N −1 because the indirect approach computes the gradient of the generating
functions.
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3.4.4.1 Theoretical considerations
Recall the general form of a generating function (Eq. (3.75)):

FIs�Kr
�qIp

� pĪp
� q0Kr

� p0K̄r
� t� =

�∑
q=0

q∑
i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n!

f
p�r
q�i1�    �i2n!�t�y

i1
1 · · ·yi2n

2n �

Definition 3.4.1. (Radius of convergence.) The radius of convergence of the multi-
variable series defining FIs�Kr

at t is the real number Rt such that the sum:

�∑
q=0

⎛
⎜⎝ q∑

i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n!

f
p�r
q�i1�    �i2n

�t�

⎞
⎟⎠�q

converges absolutely ∀�� 0 < � < Rt and diverges ∀� > Rt.

The following proposition, whose proof can be found in many textbooks, concerns
the normal convergence of the series. Earlier, we used this result for finding the initial
conditions to integrate the Hamilton–Jacobi equation.

Proposition 3.4.1. Let Rt be the radius of convergence of the multi-variable series
defining FIs�Kr

at the time t. Then for all � < Rt the series converges normally in
�y ∈ �2n � �y� ≤ �� at t.

The radius of convergence is not appropriate for studying series of functions as it is a
function of time. To remove the time dependency, we define the domain of convergence,
a domain � in �×�2n in which the series converge uniformly.

Definition 3.4.2. (Domain of convergence.) The domain of convergence � is a region
in �×�2n in which the series

�∑
q=0

q∑
i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n!

f
p�r
q�i1�    �i2n

�t�y
i1
1 · · ·yi2n

2n

converges uniformly.

In contrast with the radius of convergence, the domain of convergence is not uniquely
defined. The spatial domain depends on the time interval and vice versa. For instance,∑

n tnyn converges if and only if ty < 1. � = ��t� y� ∈ �0� 2�× �0� 0�5�� and � = ��t� y� ∈
�0� 0�5�× �0� 2�� are two well-defined domains of convergence.
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In Def. 3.4.2, the uniform convergence of the series is of prime importance. It allows
one to bound the error between the true series and its truncation. Indeed, by definition
we have:

∀� > 0� ∃N > 0� ∀�t� y� ∈ ��

FIs�Kr
�qIp

� pĪp
� q0Kr

� p0K̄r
� t�−

N∑
q=0

q∑
i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n

f
p�r
q�i1�    �i2n!�t�y

i1
1 · · ·yi2n

2n < � �

(3.82)

In other words, given a domain of convergence and a precision goal �, there exists a
positive integer N such that the truncated Taylor series of order N approximates the true
function within � in the domain.

3.4.4.2 Practical considerations
In practice, for most of the problems we are interested in, we are only able to compute

finitely many terms in the series. As a result, it is impossible to estimate a domain of
convergence. Worse, we cannot theoretically guarantee that the generating functions can
be expressed as Taylor series. In fact, we have seen earlier that even if the Taylor series
of FIs�Kr

converges on some open set and FIs�Kr
is smooth, then FIs�Kr

may not be equal
to its Taylor series. One can readily verify that the function f�x� = exp�1/x2� if x �= 0,
f�0� = 0 is smooth and has a converging Taylor series at 0. However, f is not equal to
its Taylor series. In the following we make two realistic assumptions in order to develop
a practical tool for estimating a domain of convergence.

We first assume that the flow may be expressed as a Taylor series in some open set.
This is a very common assumption when studying dynamical systems. For example, we
make this hypothesis when we approximate the flow by the state transition matrix at
linear order. We noticed in the indirect approach that the generating functions may be
computed from the flow at the cost of a series inversion. From the series inversion theory
(see e.g., Moulton [25]), we conclude that the generating functions can also be expressed
as Taylor series (when they are not singular). Thus, for almost every t, there exists a
non-zero radius of convergence. In addition, the concept of domain of convergence is
well-defined.

The second assumption we make is also reasonable. We assume that there exists a
domain in which the first-order terms of the series defining FIs�Kr

are dominant. In other
words, we assume that there exists a domain in which the linear order is the largest,
followed by the second order, third order, etc. This is again a very common assumption
for dynamical systems. When approximating the flow with the state transition matrix, we
implicitly assume that the linear term is dominant. However, in the present case, there
is a subtlety due to the presence of singularities. We observe that this assumption no
longer holds as we get closer to a singularity. Let us look at an example to illustrate this
phenomenon.
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Example 3.4.2. The Taylor series in x of f�x� t� = �1− t�x for t ∈ �0� 1� is

�∑
r=0

anx
n� where an = log�1− t�n

n! �

Its radius of convergence is Rt = � for all t ∈ �0� 1� and it is singular at t = 1. In
Figure 3.3, we plot the four first terms of the series as a function of x for different
times. Clearly, as t gets closer to 1, the first-order terms are less and less dominant.
Equivalently, the x-interval in which the first-order terms are dominant shrinks as t goes
to 1. In Figure 3.4, we plot �1− t�x −∑3

r=0
log�1−t�n

n! xn. One can readily verify that given
a prescribed error margin, the domain in which the order 4 approximates f within this
margin shrinks as t gets closer to 1. This is a very common behavior that motivates the
need for a new criterion.

Suppose that the fourth-order approximation of f is to be used for solving a given
problem where the time evolves from 0 to 0�6. We know that such an approximation is
relevant if the first-order terms are dominant, i.e., a0 > a1 > a2 > a3. From Figure 3.3,
we infer that this condition is satisfied if and only if �x� ≤ 1. We call the domain
�u = ��0� 1�� �0� 0�6�� the domain of use.

Let us formalize the concept of domain of use.
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Fig. 3.3. Contribution of the first four terms in the Taylor series of �1− t�x.
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Definition 3.4.3. (Domain of use.) The domain of use �u is a domain in �×�2n in
which⎛
⎜⎝ q∑

i1�    �i2n=0
i1+···+i2n=q

1
i1! · · · i2n

f
p�r
q�i1�    �i2n

�t�y
i1
1 · · ·yi2n

2n

⎞
⎟⎠

q

is a decreasing sequence.

This definition is very conservative but very easy to work with. For a given problem,
we identify a time interval (or a spatial domain) in which we want to use the generating
functions. Then we compute the spatial domain (or the time interval) in which our solution
is valid. Once we have identified the domain of use, one can safely work with the solution
within this domain. Let us illustrate the use of the above tool with an example.

3.4.5 Examples

We consider the following fictional space mission: A formation of spacecraft is flying
about the Libration point L2 in the Hill three-body problem and we wish to use F1 to
solve the position to position boundary value problem in order to design a reconfiguration.



88 Modern astrodynamics
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Fig. 3.5. Domain of use.

The mission specifications impose the spacecraft to stay within 0�05 units of length from
the equilibrium point L2 (i.e., 107 500 km in the Earth–Sun system). The normalized
Hamiltonian describing the Hill’s dynamics is (Appendix B):

H�q�p� = 1
2

�p2
x +p2

y�+ �qypx −qxpy�− 1√
q2

x +q2
y

+ 1
2

�q2
y −2q2

x�� (3.83)

where qx = x, qy = y, px = ẋ − y, and py = ẏ + x. Using this coordinate system, L2 is
an equilibrium point with coordinates �qx� qy� = �3−1/3� 0�. To use the above algorithm,
H must be expressed as a Taylor series in the spatial variables. Hence, since we want
to study the dynamics about L2, we linearize H about L2. Then, we use the algorithm
to solve F1 up to order 5 in the time interval �0� 3�5�. Using the direct approach, this
is equivalent to solving 121 ordinary differential equations. We encounter a number of
singularities for F1 at t = 0, t = 1�68, and t = 3�19. In Figure 3.5, we plot the maximum
value of �y� so that the first five terms are in decreasing order8. We notice that as we
get closer to the singularity, the maximum value of �y� goes to 0. To find the domain of
use, we only need to intersect this plot with �y� = 0�05.

3.4.5.1 Error in the approximation
We can verify a posteriori that the Taylor series expansion found for the generating

function F1 approximates the true dynamics within this domain. To do so, we again use
the example from before and set q�T� = q1 and q0, and find p�T� = p1 and p0 from
Eqs. (3.28) to (3.29). Then we integrate the trajectory whose initial condition is �q0� p0�
to find �q�T��p�T�� = �q2� p2�. The error in the approximation is defined as the norm of

8 Some terms may change sign and therefore may be very small. In that case we ignore these terms so that
the decreasing condition can be satisfied (For instance if the order 2 term goes to 0, it will be smaller than any
other terms and therefore must be ignored).
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Fig. 3.6. Difference between the true and the approximate dynamics.

�q2 −q1� p2 −p1�. In Figure 3.6 we plot this error for q0 = 0 and q1 that takes values on
the circle centered at L2 of radius 0�05 for different values of t. The solution is checked
at points along the circle, generating the error curves in the figures. We observe that the
truncated series provide a good approximation of the true dynamics.

We also point out that since the series is converging and the magnitude of each order
decreases in the domain of use, the accuracy must always increase if an additional order
is taken into account. In Figure 3.7, we observe that the order two solution provides a
poor approximation to the initial momentum because the error ranges up to 4�5 × 10−3

units of length (i.e., 9615 km in the Earth–Sun system). Order three and four give order
of magnitude improvements, the error is less than 2�2 × 10−4 units of length (480 km)
for order three and less than 3�5×10−5 units of length (77 km) for order four, over two
orders of magnitude better than the order two solution.
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Fig. 3.7. Error in the normalized final position for t = 0�9.

3.5 Applications

We now illustrate the use of our novel approach to solving two-point boundary value
problems. We consider the normalized Hill three-body problem (see Appendix B). Using
our algorithm outlined previously we compute the Taylor series expansion of the gen-
erating function F1 about the Libration point L2 up to order N (N is determined by the
accuracy we wish to achieve). In other words, F1 can be expressed as a polynomial of
order N with time-dependent coefficients whose values are known. The gradient of F1 is
then a polynomial of order N −1. Hence, solutions to any position to position boundary
value problem (i.e., Lambert’s type of boundary value problem) is solved by evaluating
a polynomial of order N − 1. Once F1 is known, we can solve many problems. In this
section, we choose to focus on the study of periodic orbits and on optimal control prob-
lems. The study of periodic orbits has been presented in Ref. [15] and the optimal control
problems can be found in Ref. [12]. The method has also been applied to the formation
flight of spacecraft, we refer the interested reader to Refs. [16–18].
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3.5.1 The search for periodic orbits

3.5.1.1 Methodology
To find periodic orbits using the theory we developed above, we need to characterize

them as solutions to two-point boundary value problems.
Periodic orbits in a 2n-dimensional Hamiltonian dynamical system are characterized

by the following equations:

q�T� = q0� (3.84)

p�T� = p0� (3.85)

where T is the period of the orbit, �q0� p0� are the initial conditions at time t0 = 0 and
�q�t��p�t�� verifies Hamilton’s equations:

q̇ = 
H


p
�q�p� t�� ṗ− 
H


q
�q�p� t� � (3.86)

In the most general case, the search for periodic orbits consists of solving the 2n
equations (3.84) and (3.85) for the 2n + 1 unknowns �q0� p0� T�. Simple methods that
solve this problem take a set of initial conditions �q0� p0�, and integrate Hamilton’s
equations. If there exists a time t = T such that Eqs. (3.84) and (3.85) are verified, then a
periodic orbit is found. Else, other initial conditions need to be guessed. In the approach
we propose in this chapter, instead of looking at the initial conditions and the period as the
only variables of the problem, we suppose that the period, n initial conditions as well as
n components of the state vector at time T are unknowns. Then the search for periodic
orbits reduces to solving the 2n equations (3.84) and (3.85) for these 2n+1 unknowns.

For instance, if �q�T�� q0� T� are taken to be the 2n+1 unknowns, then the search for
periodic orbits consists of solving the 2n equations (3.84) and (3.85) for �q�T�� q0� T�.
Let us now find all periodic orbits of a given period. In other words, T is given and
we need to find �q�T�� q0� such that q�T� = q0 and p�T� = p0. This is a boundary value
problem with constraints that can be solved with the generating function F1. Combining
Eqs. (3.28) and (3.29) and Eqs. (3.84) and (3.85) we obtain:

p�T� = 
F1


q
�q� q0� T�� q�T� = q0�

p0 = −
F1


q0

�q� q0� T�� p�T� = p0�
(3.87)

i.e.,


F1


q
�q = q0� q0� T�+ 
F1


q0

�q = q0� q0� T� = 0� (3.88)

p = p0 = 
F1


q
�q = q0� q0� T� � (3.89)

Eqs. (3.88) and (3.89) define necessary and sufficient conditions for the existence of
periodic orbits. Therefore, the search for all periodic orbits of a given period is reduced to
solving n equations (3.88) for n variables, the q0’s, and then evaluate n equations (3.89)
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to compute the corresponding momenta. Most importantly, once F1 is known, solutions of
these conditions are computed using algebraic manipulations, no integration is required.

Similarly, if we want to find all periodic orbits going through a given point in the
position space, we set q0 in Eq. (3.88) and solve for T . However, instead of solving
the n equations defined by Eq. (3.88) for one variable, T , we may combine them in the
following way:∥∥∥∥
F1


q
�q = q0� q0� T�+ 
F1


q0

�q = q0� q0� T�

∥∥∥∥= 0� (3.90)

where � ·� is a norm. This equation can be easily solved numerically or even graphically.

3.5.1.2 Examples
In the following we use a truncated Taylor series of F1 of order N = 5 to study periodic

orbits about the Libration point L2.
First, let us find all periodic orbits going through q0 = �0�01� 0�. To solve this problem,

we use the necessary and sufficient condition defined by Eq. (3.90). In Figure 3.8 we plot
the left-hand side of Eq. (3.90) as a function of the normalized time. We observe that the
norm vanishes only at t = T = 3�03353. Therefore, there exists only one periodic orbit
going through q0, and its period is T (there may be additional periodic orbits of period
T > 3�2, but we cannot see them in this figure). Again, these results are in agreement with
known results on periodic orbits about L2. One can show that any point in the vicinity of
L2 belongs to a periodic orbit. The periods of these orbits increase as their distances from
L2 increase. In the limit, as the distance between periodic orbits and L2 goes to zero, the
period goes to T = Tlinear = 3�033019.

Another problem is to find all periodic orbits of a given period T = 3�0345. To solve
this problem, we use Eq. (3.88) which defines two equations with two unknowns that can
be solved graphically. In Figure 3.9, we plot the solutions to each of these two equations
and then superimpose them to find their intersection. The intersection corresponds to

0.1

0.08

0.06

0.04

0.02

0.5 1 1.5 2 2.5 3 t

Fig. 3.8. Plot of � 
F1

q

�q = q0� q0� T�+ 
F1

q0

�q = q0� q0� T�� where q0 = �0�01� 0��
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Fig. 3.9. Periodic orbits for the non-linear motion about a Libration point.

solutions to Eq. (3.90), i.e., to the set of points that belongs to periodic orbits of period T .
We observe that the intersection is composed of a circle and two points whose coordinates
are �qx� qy� = �−0�0603795�±0�187281�. The circle is obviously a periodic orbit but
the two points are not equilibrium points, and rather correspond to out-of-plane periodic
orbits9.

9 In the Hill three-body problem these out-of-plane orbits do not exist. At that distance of L2, our approxima-
tion of the dynamics of order 5 is no more valid, therefore these two points do not have any physical meaning.
In practice, we can evaluate a domain in which an approximation of order N of the dynamics is valid. We refer
to Section 3.4.4 and Ref. [12] for more details.
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Fig. 3.10. Periodic orbits for the non-linear motion about a Libration point.

By plotting the intersection for different periods T , we generate a family of periodic
orbits around the Libration point. In Figure 3.10 we represent the solutions to Eq. (3.88)
for t = 3�033 + 0�0005n� n ∈ �1 · · ·10�. For t = 3�033 (which is less that the periodic
orbit period of the linearized system), the intersection only contains the origin, which
is why there are only 9 periodic orbits shown around the origin. We note that at larger
values of x2 + y2 the curves do not overlay precisely, indicating that higher order terms
are needed.

The method we propose allows us to search for periodic orbits anywhere in the phase
space or in the time domain without requiring any initial guess or knowledge of a periodic
orbit that belongs to the family. This is a major advantage compared to traditional methods.
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Most important, we reduce the search for periodic orbits to solving a non-linear system
of equations. Once the generating functions are known, no integration is required to find
periodic orbits of different periods and/or going through different points in the phase
space. This is a fundamental property of the generating functions; once the generating
functions are known, any two-point boundary value problem can be solved at the cost of
a single function evaluation.

3.5.2 Optimal control and mission planning

To illustrate the use of the generating functions to solve non-linear optimal control
problems we now consider a targeting problem in the two-dimensional Hill three-body
problem (Appendix B). We consider a spacecraft away from the Libration point L2 and
want to find the control sequence that moves the spacecraft at the equilibrium point
L2 while minimizing the fuel consumption. Specifically, this optimal control problem
formulates as follows:

We want to minimize the cost function J = 1
2

∫ t=tf
t=0

(
u2

x +u2
y

)
dt subject to the constraints⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ẋ1 = x3�
ẋ2 = x4�
ẋ3 = 2x4 − x1

�x2
1+x2

2�3/2 +3x1 +ux�

ẋ4 = −2x3 − x2

�x2
1+x2

2�3/2 +uy�

(3.91)

and the boundary conditions:

X�t = 0� = X0� X�t = tf � = XL2
= �3−1/3� 0� 0� 0�� (3.92)

where r2 = x2 +y2 and X = �x1� x2� x3� x4� = �x� y� ẋ� ẏ�. Define the Hamiltonian:

H�X�P�U� =p1x3 +p2x4 +p3

(
2x4 − x1

�x2
1 +x2

2�
3/2

+3x1 +ux

)

+p4

(
−2x3 − x2

�x2
1 +x2

2�
3/2

+uy

)
+ 1

2
u2

x + 1
2

u2
y�

where P = �p1� p2� p3� p4� and U = �ux� uy�. Then, from 
H

U

= 0, we find the optimal
control feedback law:

ux = −p3� uy = −p4 �

Substituting U = �ux� uy� into H yields:

H̄�X�P� =p1x1 +p2x2 +p3

(
2x4 − x1

�x2
1 +x2�3/2

+3x1 −p3

)

+p4

(
−2x3 − x2

�x2
1 +x2�3/2

−p4

)
+ 1

2
p2

3 + 1
2

p2
4 � (3.93)
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We deduce the necessary conditions for optimality:

Ẋ = 
H̄


P
� (3.94)

Ṗ = −
H̄


X
� (3.95)

X�t = 0� = X0� X�t = tf � = �0� 0� 0� 0��

This is a position to position boundary value problem that can be solved using F1. In this
example, we compute F1 at order 4 and use this approximation together with Eqs. (3.28)
and (3.29) to find the value of the co-state P at the initial and final times. Then, the
optimal trajectory is found by integrating Hamilton’s equations (Eqs. (3.94) and (3.95)).

In Figure 3.11, we plot the trajectories for different final times. As tf increases, the
trajectory tends to wrap around the Libration point so that the spacecraft takes advantage
of the geometry of the Libration point (Appendix B). On the other hand, if the transfer
time is small, the trajectory is almost a straight line, it completely ignores the dynamics.
In Figure 3.12 the associated control laws are represented. As expected, the longer the
transfer time is, the smaller the magnitude of the control. We emphasize that we only
need to evaluate the gradient of F1 (which is a polynomial of order 3) seven times and
integrate Eqs. (3.94) and (3.95) seven times to obtain the seven curves in Figure 3.11.
Similarly, in Figure 3.13, at the cost of sixteen evaluations of the gradient of F1, we are
able to represent the optimal trajectories of spacecraft starting at X0 = �r cos���� r sin����
where r = 10 700 km and � = k�/8, and ending at L2 in 145 days. In Figure 3.14 the
corresponding optimal control law is represented.

Further, if different types of boundary conditions are imposed (for instance, the terminal
state is not fully specified) then we need to perform a Legendre transform to find the
generating function that solves this new boundary value problem. There is no need
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Fig. 3.11. Optimal trajectories of the spacecraft for different transfer times.
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to resolve the optimal control problem. This is an intrinsic property of the generating
functions that opens the doors to truly reconfigurable optimal control. In [27, 28] the
application of generating functions to solve optimal control problems is studied in detail,
and a number of strong results are discovered for the necessary and sufficient conditions
for optimal control.

Finally, we point out that this method is very efficient for mission planning. By varying
the transfer time for instance, we can find times for which the optimal transfer requires
less fuel expenditure. For more details on this topic we refer to Ref. [16]. Another major
application of the theory presented in this chapter is spacecraft formation design. We
noticed in the introduction that the reconfiguration of a formation of N spacecraft requires
us to solve N ! boundary value problems. Using the generating functions this task can
be achieved at the cost of N ! function evaluations. This problem and others relating to
formation flight are solved in Refs. [17, 18].

3.6 Conclusions

The method we develop in this chapter is based on the Hamilton–Jacobi theory.
We have observed that the generating functions associated with the phase flow readily
solve any Hamiltonian two-point boundary value problems. This observation has many
consequences that we now re-state. Above all, it provides a very general methodology for
solving boundary value problems for Hamiltonian systems. Whereas traditional methods
solve boundary value problems about an initial guess only, our approach gives a “full
picture”. In particular, traditional methods completely ignore the number of solutions to
the boundary value problem. Our approach, however, indicates the presence of multiple
solutions as singularities of generating functions. In turn, we proved and illustrated that
these singularities can be studied and the number of solutions may be determined.

In linear systems theory, it is well-known that perturbation matrices solve boundary
value problems. These matrices have distinctive properties that are studied in the literature.



Chapter 3. Two-point boundary value problems 99

Using generating functions we have recovered and extended some of these properties.
Most importantly, we have proved that they correspond to coefficients of the generating
functions. As a result, our approach naturally contains the theory of perturbation matrices.
The relation between perturbation matrices and generating functions may also be investi-
gated using the state transition matrix. In this respect, we have shown that state transition
matrix and generating functions are closely related. One of the main consequences, is that
we can predict singularities of the generating functions using the state transition matrix.
This result broadens to some extent to non-linear systems.

In non-linear systems theory, there is no equivalent of the perturbation matrices. Thus,
the approach we have proposed is the first to define functions, namely the generating
functions, that directly relate boundary conditions. Obviously, no results as general as the
ones derived for linear systems may be gleaned in this case. However, for polynomial
generating functions we have established that singularities of the generating functions may
still be predicted from the state transition matrix. As a result, the existence of multiple
solutions to two-point boundary value problems is fully predicted by the linear dynamics.
The number of solutions, however, depends on the non-linear dynamics.

The solution of the Hamilton–Jacobi equation for a generating function is extremely
difficult in general. Thus, to make our observations and theory realizable it is essential that
we be able to construct solutions for some general class of problems. In this chapter we
detail an explicit set of algorithms that allows us to do so, found by performing a Taylor
series expansion of the generating function and the Hamiltonian function about a nominal
solution to the dynamical system. This provides a solution for the generating function
which is analytic in its spatial variables, and can incorporate high-order non-linearities,
where the coefficients of the expansion are found from numerically integrating a series of
ordinary differential equations in time. Through some specific examples we demonstrate
some of the convergence properties of this algorithm and establish that it provides an
accurate representation of the generating function in the neighborhood of a solution.

Finally, the approach we have presented to solve two-point boundary value problems
applies to any Hamiltonian systems. It is therefore not surprising that it has implications
in several fields. In particular, it allows us to develop new methods to study the phase
space structure, solve optimal control problems and design spacecraft formations.

Appendix A. The Hamilton–Jacobi equation at higher orders

In this appendix, we give an explicit expression of P as defined by Eq. (3.76). We
assume a 2n-dimensional Hamiltonian system with polynomial Hamiltonian function
and polynomial generating functions. We have seen that the Hamilton–Jacobi partial
differential equation reduces to an ordinary differential equation of the form

P�y� f
p�r
i1�    �i2n

�t�� ḟ
p�r
i1�    �i2n

�t�� = 0� (A.1)

In the following we use tensor notation in order to derive an explicit expression of P. In
tensor notation, a Taylor series expansion writes as:

f�x� t� = f 0�t�+f 1�t� · �x+ �f 2�t� · �x� · �x+ ��f 3�t� · �x� · �x� · �x+· · · � (A.2)
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Applying this formula to H��x� t� and F2 = F��y� t� yields:

H��x� = hi�j�t�xixj +hi�j�k�t�xixjxk +· · · � (A.3)

F��y� = fi�j�t�yiyj +fi�j�k�t�yiyjyk +· · · � (A.4)

where we assume the summation convention. Let us now express �x = ��q��p� as a
function of �y = ��q��p0� (we drop the time dependence in the notation, i.e., we shall
write hi�j instead of hi�j�t�). For all a ≤ n and j = n+a

xa = ya� (A.5)

xj = 
F


ya

(A.6)

= fa�kyk +fk�ayk +fa�k�lykyl +fk�a�lykyl +fk�l�aykyl +· · · � (A.7)

where n is the dimension of the configuration space. The Hamilton–Jacobi equation
becomes:

ḟi�jyiyj + ḟi�j�kyiyjyk +· · ·+hi�jxixj +hi�j�kxixjxk +· · · = 0 � (A.8)

Replacing �x by �y in Eq. (A.8) using Eq. (A.7), and keeping only terms of order less
than 3 yields:

0 = ḟi�jyiyj + ḟi�j�kyiyjyk +ha�byayb +ha�b�cyaybyc

+ �ha�n+b +hn+b�a�ya�fb�kyk +fk�byk +fb�k�lykyl +fl�b�kykyl +fk�l�bykyl�

+hn+a�n+b�fa�kyk +fk�ayk +fa�k�lykyl +fl�a�kykyl +fk�l�aykyl�

× �fb�mym +fm�bym +fb�m�pymyp +fp�b�mymyp +fm�p�bymyp�

+ �hn+a�b�c +hc�n+a�b +hb�c�n+a�ybyc�fa�kyk +fk�ayk�

+ �hn+a�n+b�c +hn+b�c�n+a +hc�n+a�n+b�yc�fa�kyk +fk�ayk��fb�lyl +fl�byl�

+hn+a�n+b�n+c�fa�kyk +fk�ayk��fb�lyl +fl�byl��fc�mym +fm�cym�� (A.9)

Eq. (A.9) is the expression of P up to order 3 as defined by Eq. (3.76). It is a polynomial
equation in the yi variables with time-dependent coefficients and holds if every coefficient
is zero. The equations of order 3 reads:

ḟi�j�kyiyjyk + �Ai�j�k +Bi�j�k +Ci�j�k�yiyjyk + �Da�i�j +Ea�i�j�yayiyj

+Ga�b�iyaybyi +ha�b�cyaybyc = 0� (A.10)

where

Ai�j�k = hn+a�n+b�n+c�fa�i +fi�a��fb�j +fj�b��fc�k +fk�c��

Bi�j�k = hn+a�n+b�fa�i +fi�a��fb�j�k +fj�k�b +fk�b�j��

Ci�j�k = hn+a�n+b�fb�i +fi�b��fa�j�k +fj�k�a +fk�a�j��
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Da�i�j = �ha�n+b�n+c +hn+c�a�n+b +hn+b�n+c�a��fb�i +fi�b��fc�j +fj�c��

Ea�i�j = �ha�n+b +hn+b�a��fb�i�j +fj�b�i +fi�j�b��

Ga�b�i = �ha�b�n+c +hb�n+c�a +hn+c�a�b��fc�i +fi�c� � (A.11)

We deduce the coefficients of yiyjyk:
• Coefficients of y3

i≤n

Ai�i�i +Bi�i�i +Ci�i�i +Di�i�i +Ei�i�i + ḟi�i�i +Gi�i�i +hi�i�i = 0 � (A.12)

• Coefficients of y3
i>n

Ai�i�i +Bi�i�i +Ci�i�i + ḟi�i�i = 0 � (A.13)

• Coefficients of y2
i≤nyj≤n

�A+B+C +D+E + ḟ +G+h���i�i�j� = 0 � (A.14)

where ��i� j� k� represents all the distinct permutations of �i� j� k�, that is

A��i�j�k��l = Ai�j�k�l +Ai�k�j�l +Ak�i�j�l +Ak�j�i�l +Aj�k�i�l +Aj�i�k�l

but

A��i�i�j��l = Ai�i�j�l +Ai�j�i�l +Aj�i�i�l �

• Coefficients of y2
i≤nyj>n

�A+B+C + ḟ ���i�i�j� + �D+E�i���i�j� +Gi�i�j = 0 � (A.15)

• Coefficients of yi≤nyj≤nyk≤n:

�A+B+C +D+E + ḟ +G+h���i�j�k� = 0 � (A.16)

• Coefficients of yi≤nyj≤nyk>n

�A+B+C + ḟ ���i�j�k� + �D+E�i���j�k� + �D+E�j���i�k� +G��i�j��k = 0 � (A.17)

• Coefficients of y2
i>nyj≤n

�A+B+C + ḟ ���i�i�j� + �E +D�j�i�i = 0 � (A.18)

• Coefficients of y2
i>nyj>n

�A+B+C + ḟ ���i�i�j� = 0 � (A.19)

• Coefficients of yi≤nyj>nyk>n

�A+B+C + ḟ ���i�j�k� + �D+E�i���j�k� = 0 � (A.20)

• Coefficients of yi>nyj>nyk>n

�A+B+C + ḟ ���i�j�k� = 0 � (A.21)
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Eqs. (A.12)–(A.21) allow us to solve for F2 (and F1 since they both verify the same
Hamilton-Jacobi equation, only the initial conditions being different). The process of
deriving equations for the generating functions can be continued to arbitrarily high order
using a symbolic manipulation program (we have implemented and solved the expansion
to order 8 using Mathematica©).

Appendix B: The Hill three-body problem

The three-body problem describes the motion of three-point mass particles under
their mutual gravitational interactions. This is a classical problem that covers a large
range of situations in astrodynamics. An instance of such situations is the motion of the
Moon about the Earth under the influence of the Sun. However, this problem does not
have a general solution and thus we usually consider simplified formulations justified
by physical reasoning. In this chapter, we consider three simplifications. We assume
that:
1. One of the three bodies has negligible mass compared to the other two bodies (for

instance a spacecraft under the influence of the Sun and the Earth).
2. One of the two massive bodies is in circular orbit about the other one.
3. One of the two massive bodies has larger mass than the other one (the Sun compared

to the Earth for instance).
Under these three assumptions, the Hamiltonian for this system reads:

H�q�p� = 1
2

�p2
x +p2

y�+ �qypx −qxpy�− 1√
q2

x +q2
y

+ 1
2

�q2
y −2q2

x�� (B.1)

and the equations of motion become:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

q̇x = px +qy�
q̇y = py −qx�
ṗx = py +2qx − qx

�q2
x+q2

y �3/2 �

ṗy = −px −qy − qy

�q2
x+q2

y �3/2 �

(B.2)

where qx = x, qy = y, px = ẋ−y and py = ẏ +x.
This problem has two equilibrium points, L1 and L2 whose coordinates are

L1

(
−
(

1
3

)1/3

� 0

)
and L2

((
1
3

)1/3

� 0

)
�

Using linear systems theory, one can prove that the libration points have a stable, an
unstable and two center manifolds (Figure 3.15).

To study the relative motion of a spacecraft about L2, we use Eq. (3.73) to compute
Hh, the Hamiltonian function describing the relative motion dynamics.

Hh = 1
2

XhT

(
Hqq�t� Hqp�t�

Hpq�t� Hpp�t�

)
Xh +· · · � (B.3)
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Fig. 3.15. The Libration points in the Hill three-body problem.

where Xh =
(

q −q0

p−p0

)
=
(

�qx
�qy

�px
�py

)
, �q0� p0� =

((
1
3

)1/3
� 0� 0�

(
1
3

)1/3
)

refers to the state at the

equilibrium point L2 and,

Hqq�t� =
⎛
⎝ 1

�q2
0x+q2

0y�3/2 − 3q2
0x

�q2
0x+q2

0y�5/2 −2 − 3q0xq0y

�q2
0x+q2

0y�5/2

− 3q0xq0y

�q2
0x+q2

0y�5/2
1

�q2
0x+q2

0y�3/2 − 3q2
0y

�q2
0x+q2

0y�5/2 +1

⎞
⎠ � (B.4)

Hqp�t� =
(

0 −1
1 0

)
� (B.5)

Hpq�t� =
(

0 1
−1 0

)
� (B.6)

Hpp�t� =
(

1 0
0 1

)
� (B.7)

Substituting �q0� p0� by its value yields the expression of Hh at second order:

Hh = 1
2

(
�qx �qy �px �py

)
⎛
⎜⎜⎝

−8 0 0 −1
0 4 1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

�qx

�qy

�px

�py

⎞
⎟⎟⎠� (B.8)

At higher order, we find:

Hh = 1
2

(
�qx �qy �px �py

)
⎛
⎜⎜⎝

−8 0 0 −1
0 4 1 0
0 1 1 0

−1 0 0 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

�qx

�qy

�px

�py

⎞
⎟⎟⎠

+34/3�q3
x − 37/3

2
�qx�q2

y −35/3�q4
x +38/3�q2

x�q2
y − 38/3

8
�q4

y · · · (B.9)

We point out that Hh is time-independent.
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Finally, we give in the following table the values of the normalized variables for the
Earth–Sun system.

Normalized units Earth–Sun system

0�01 unit of length ←→ 21�500 km

1 unit of time ←→ 58 days 2 hours

1 unit of velocity ←→ 428 m/s

1 unit of acceleration ←→ 1�38 ·10−5 m/s2

References

1. Abraham Ralph, and Marsden, Jerrold E. (1978). Foundations of Mechanics (W.A. Benjamin, ed.) 2nd
edition, 1978.

2. Alfriend, K.T., Yan, Hui and Valadi, S.R. (2002). Nonlinear considerations in satellite formation flying. In
Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. AIAA.

3. Arnold, Vladimir I. (1988). Mathematical Methods of Classical Mechanics. Springer-Verlag, 2nd edition.
4. Battin, Richard H. (1999). An Introduction to the Mathematics and Methods of Astrodynamics. American

Institute of Aeronautics and Astronautics, revised edition.
5. Betts, John T. (1998). Survey of numerical methods for trajectory optimization. Journal of Control,

Guidance, and Dynamics, 21(2), pp. 193–207.
6. Bloch, A.M., Baillieul, J., Crouch, P.E. and Marsden, J.E. (2003). Nonholonomic Mechanics and Control.

Springer.
7. Bryson, Arthur E. and Ho, Yu-Chi (1975). Applied Optimal Control: Optimization, estimation, and control.

Halsted Press, revised edition.
8. Ehlers, Juergen and Newman, Ezra T. (2000). The theory of caustics and wavefront singularities with

physical applications. Journal of Mathematical Physics A, 41(6), pp. 3344–3378.
9. Goldstein, Herbert (1965). Classical Mechanics. Addison-Wesley.

10. Goldstein, Herbert (1980). Classical Mechanics. Addison-Wesley, 2nd edition.
11. Greenwood, Donald T. (1977). Classical Dynamics. Prentice-Hall.
12. Guibout, Vincent M. (2004). The Hamilton–Jacobi theory for solving two-point boundary value problems:

Theory and Numerics with application to spacecraft formation flight, optimal control and the study of phase
space structure. PhD thesis, University of Michigan.

13. Guibout, Vincent M. and Bloch, Anthony M. (2004). Discrete variational principles and Hamilton-Jacobi
theory for mechanical systems and optimal control problems. Physica D, submitted.

14. Guibout, Vincent M. and Scheeres, Daniel J. (2002). Formation flight with generating functions: Solving
the relative boundary value problem. In Proceedings of the AIAA/AAS Astrodynamics Specialist Conference
and Exhibit, Monterey, California. Paper AIAA 2002-4639. AIAA.

15. Guibout, Vincent M. and Scheeres, Daniel J. (2003). Periodic orbits from generating functions. In Pro-
ceedings of the AAS/AIAA Astrodynamics Specialist Conference and Exhibit, Big Sky, Montana. Paper AAS
03-566. AAS.

16. Guibout, Vincent M. and Scheeres, Daniel J. (2003). Solving relative two-point boundary value problems:
Spacecraft formation flight transfers application. AIAA, Journal of Control, Guidance and Dynamics, 27(4),
693–704.

17. Guibout, Vincent M. and Scheeres, Daniel J. (2004). Spacecraft formation dynamics and design. In Pro-
ceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Providence, Rhode Island.

18. Guibout, V.M. and Scheeres, D.J. (2006). Spacecraft formation dynamics and design. Journal of Guidance,
Control, and Dynamics, 29(1), 121–133.



Chapter 3. Two-point boundary value problems 105

19. Hamilton, William Rowan (1834). On a general method in dynamics. Philosophical Transactions of the
Royal Society, Part II, pp. 247–308.

20. Hamilton, William Rowan (1835). Second essay on a general method in dynamics. Philosophical Trans-
actions of the Royal Society, Part I, pp. 95–144.

21. Keller, H.B. (1968). Numerical Methods for Two-point Boundary Value Problems. Blaisdell.
22. Lanczos, Cornelius (1977). The variational principles of mechanics. University of Toronto Press, 4th edition.
23. Marsden, Jerrold E. and Ratiu, Tudor S. (1998). Introduction to Mechanics and Symmetry: A basic

exposition of classical mechanical systems. Springer-Verlag, 2nd edition.
24. Melton, Robert G. (2000). Time-explicit representation of relative motion between elliptical orbits. Journal

of Guidance, Control, and Dynamics, 23, 604–610.
25. Moulton, Forest R. (1930). Differential equations. The Macmillan company.
26. Park, Chandeok, Guibout, Vincent M. and Scheeres, Daniel J. (2006). Solving optimal continuous thrust

rendezvous problems with generating functions. Journal of Guidance, Control, and Dynamics, 29(2),
321–331.

27. Park, Chandeok and Scheeres, Daniel J. (2003). Indirect solutions of the optimal feedback control using
Hamiltonian dynamics and generating functions. In Proceedings of the 2003 IEEE conference on Decision
and Control, 2003. Maui, Hawaii. IEEE.

28. Park, Chandeok and Scheeres, Daniel J. (2004). Solutions of optimal feedback control problems with
general boundary conditions using Hamiltonian dynamics and generating functions. In Proceedings of the
American Control Conference, Boston, Massachusetts, June 2004. Paper WeM02.1.

29. Powers, David L. (1987). Boundary Value Problems. San Diego, Harcourt Brace Jovanovich.
30. Press, William H., Teukolsky, Saul A., Vetterling, William T. and Flannery, Brian P. (1992). Numerical

Recipes in C, the Art of Scientific Computing. Cambridge University Press, 2nd edition.
31. Wang, P.K.C. and Hadaegh, F.Y. (1999). Minimum-fuel formation reconfiguration of multiple free-flying

spacecraft. The Journal of the Astronautical Sciences, 47(1–2), 77–102.
32. Weinstein, Alain (1977). Lectures on symplectic manifolds. Regional Conference Series in Mathematics, 29.



4 Low-Energy Transfers and
Applications

Edward Belbruno

Department of Astrophysical Sciences, Princeton University;
N.J. 08544-1000, U.S.A.

Contents

4.1 Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 107
4.2 Capture problem, models, and transfer types � � � � � � � � � � � � � � � � � 108
4.3 Ballistic capture regions and transfers � � � � � � � � � � � � � � � � � � � � � 112
4.4 Chaos and weak capture � � � � � � � � � � � � � � � � � � � � � � � � � � � � 120
4.5 Origin of the Moon � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 123

References � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 125

4.1 Introduction

The application of methods of dynamical systems theory to the field of astrodynamics
has uncovered new types of low-energy trajectories that have many important applications.
In particular, for the purpose of finding transfer trajectories from the Earth to lunar
orbit. The mechanism used to obtain a transfer that is ‘low energy’ is called ‘ballistic
capture’. This is a process where a spacecraft is captured into lunar orbit without the
use of rocket engines to slow down. The resulting transfer to the Moon is called a
‘ballistic capture transfer’. Their property of being captured automatically into lunar orbit
is completely different than that of the standard Hohmann transfer where substantial fuel
must be used. This offers many advantages to the Hohmann transfer. In particular, they
are substantially lower cost to use and operationally safer. The dynamical properties of the
ballistic capture transfer are much more complicated than that of the Hohmann transfer,
utilizing Newtonian four-body dynamics, as opposed to Newtonian two-body dynamics
of the Hohmann transfer. The ballistic capture process itself is dynamically sensitive, but
can be stabilized with a negligible maneuver.

A ballistic capture transfer was first operationally demonstrated in 1991 by the rescue of
the Japanese spacecraft Hiten [2]. More recently, another type of ballistic capture transfer
was used by ESAs spacecraft SMART-1 [16, 17]. Their properties from the perspective
of dynamical systems theory was investigated in 1994 [4], then by Marsden et al. [13].
Since then, a rigorous proof has been given showing that the ballistic process, in general,
is chaotic in nature [4].

The use of low-energy trajectories has an interesting application on the origin of our
own Moon. In a theory recently published by Belbruno and Gott [5], a class of low-energy
transfers has shed light on the origin of the hypothetical Mars-sized object that slammed
into the Earth 4 billion years ago to create the Moon. This is very briefly described in
Section 4.5. For details, the reader should consult [5] (See also [10]).

107
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Some popular survey articles on this material are cited in the bibliography. In the subject
of astrodynamics, they are Refs. [8, 14, 16], and in the area of dynamical astronomy,
Ref. [9]. Reference [4] provides a rigorous theoretical treatment of low-energy transfers.
A more popular intuitive approach to the subject of chaos and low-energy transfers is
given in [6].

4.2 Capture problem, models, and transfer types

In order to study transfers of spacecraft to the Moon, and other bodies, we define the
capture problem to facilitate this.

A special four-body problem is generally defined between the spacecraft and three
other planetary bodies. We will assume that the only forces acting on the spacecraft
are the gravitational forces of the three bodies. We first consider a ‘planar elliptic
restricted three-body problem’ between the particles P1�P2�P3. That is, we assume that
the spacecraft, labeled P3, moves in the same plane as two planetary bodies P1�P2. The
two planetary bodies move in prescribed mutually uniform elliptical Kelperian orbits
about their common center of mass of eccentricity e12 ≈ 0. We assume that P1�P2�P3

move in a coordinate system Q1�Q2 which is inertial and centered at P1 at the origin.
The mass of P1 is m1 > 0; the mass of P2 is m2 > 0, where m2 � m1; and the mass of
P3 = 0. This latter assumption makes sense since P1�P2 are planetary sized bodies, and
the mass of a spacecraft relative to them will be negligibly small.

A fourth mass point P4, of mass m4 > 0, is introduced. It is assumed to move about
the center of mass point Pcm between P1�P2 in a uniform Keplerian ellipse of eccentricity
e124 ≈ 0. Since m2 � m1, then Pcm ≈ �0� 0� and P4 approximately moves about P1. We
assume that the distance of P4 from the center of mass of P1�P2 is much larger than the
distance between P1 and P2, and that m1 � m4. The zero mass particle P3 moves in the
gravitational field generated by the assumed elliptic motions of P1�P2�P4.

We refer to this model as a planar elliptic restricted four-body problem. It is shown in
Figure 4.1. It could also be referred to as the co-elliptic restricted four-body problem. An
example of this type of problem is where P1 = Earth�P2 = Moon�P3 = spacecraft�P4 =
Sun. We will assume this labeling for the remainder of this chapter, although it should
be noted that the results are not just limited to this choice of bodies.

If e12 = e124 = 0, then we refer to this as a co-circular restricted four-body problem.
When e12 = 0 and we turn off the gravitational influence of P4 by setting m4 = 0, then this
problem reduces to the planar circular restricted three-body problem between P1�P2�P3.
When m4 > 0, and we turn off the gravitational influence of P2 by setting m2 = 0, then
the circular restricted problem is obtained between P1�P3�P4.

We define transfers from P1 to P2. In Figure 4.2 we just show P1�P2, which shows the
conditions required for a transfer of P3 from P1 to P2. P4 is not shown.

Referring to Figure 4.2, the following assumptions are made:
• A1: The spacecraft, P3, initially moves in a circular orbit about the Earth, P1, of radius

r13 as measured from the center of P1.
• A2: A velocity increment magnitude �V0 at the location Q0 at time t0 on the circular

orbit is added to the circular velocity �Gm1r
−1
13 �

1
2 so P3 can transfer to the location QF

near the Moon, P2. Note that the vectors Q0� QF are in the coordinate system Q1�Q2,
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Fig. 4.1. Co-elliptic restricted four-body problem.
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Fig. 4.2. The capture problem in inertial coordinates centered at P1.

centered at the origin, P1. G is the Newtonian gravitational constant, and r13 is the
distance between P1 and P3.

• A3: A velocity increment magnitude �V1 is applied at a time t1� t0 < t1 < tF � tF is the
arrival time at QF .

• A4: A velocity increment magnitude �VC is applied at QF in order that the two-body
Keplerian energy E2 between P2�P3 is negative or zero at QF so that at t = tF an
oscillating ellipse of given eccentricity 0 ≤ e2 ≤ 1 is obtained of periapsis distance r23.
This defines an instantaneous capture at QF at time t = tF > t0 into an ellipse or
parabola. We regard a parabola as an ellipse of infinite semimajor axis. QF represents
the periapsis of the oscillating ellipse with respect to P2 at distance r23.
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4.2.1 Remarks

Remark 1. The velocity increments �V0��V1��VC are provided by firing the rocket
engines of the spacecraft to impart a thrust, and hence a change in velocity. These incre-
ments are called �V ’s or maneuvers. In practice they cannot be achieved instantaneously,
as we are assuming here, and depend on the magnitude of the �V . The engines may need
to fire for a duration of a few seconds or several minutes. In general, modeling the �V ’s
in an instantaneous or impulsive manner yields accurate modeling.

Remark 2. The term instantaneous capture in A4 also implies that for t > tF E2 may
become positive again. That is, P3 is ejected right after being captured. It is generally the
case that the ellipse shown in Figure 4.2 about the Moon may just exist when t = tF . If
�VC is sufficiently large, then the capture ellipses can be stabilized for long times after
t = tF . In general, if it is desired to place a spacecraft several hundred kilometers from
the surface of the Moon in a circular orbit after applying �VC , then the orbit remains
approximately circular for several months. Frequent �V ’s need to be applied by the
spacecraft to maintain an orbit about the Moon; in general these are not stable due to
nonuniformities of the mass distribution of the Moon and gravitational perturbations due
to the Earth and Sun.

Remark 3. The term osculating ellipse in A4 means that the elliptical state at t = tF at
QF may be unstable.

The capture problem is defined by the problem

min��V0 +�V1 +�VC	� (4.1)

where the minimization is taken over all transfers from Q0 to QF and for assumptions
A1–A4.

A solution of the capture problem for simplified assumptions with �V = 0 is given
by the Hohmann transfer.

4.2.2 Hohmann transfers

It is instructive to consider a typical Hohmann transfer between the Earth (P1) and
Moon(P2). They have the property that at QF , �VC � 0, or equivalently E2 � 0, i.e.,
they are substantially hyperbolic with respect to the Moon at QF . As we will see later,
this is substantially different than ballistic capture transfers where �VC = 0 at QF and
E2 ≤ 0. We only describe Hohmann transfers briefly here. They are described in detail
throughout the astrodynamics literature.

The Hohmann transfer was developed by W. Hohmann in the early 1900s. Although
his assumptions are oversimplifying in nature, they nevertheless lead to transfers from
Q0 to QF which are very useful in practice, not just for the case P1 = Earth, P2 = Moon,
P4 = Sun, but for transfers from the Earth to the other planets of our solar system.

Here, we discuss the Hohmann transfer that is relevant to Figure 4.2 for the Earth–Moon
system. We assume that P1�P2 are in mutually circular orbits, i.e. e12 = 0.
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The basic assumptions are the following: First, m4 = 0 so that P4 is not considered.
Second, as P3 transfers from Q0 to QF , i.e., for t0 ≤ t ≤ tF , the gravity of P2 is ignored,
i.e., m2 = 0. This yields a simple two-body problem between P3�P1, where then the two-
body energy is then minimized. This gives one-half of a Kepler ellipse with periapsis at
Q0 and apoapsis at QF . This is the Hohmann transfer from Q0 to QF . This ellipse arc has
an eccentricity e1. Upon arrival at QF , the gravity of m1 is ignored, m1 = 0. m2 is now
assumed to be nonzero, and �VC is computed relative to a two-body problem between
P3�P2. QF is assumed to be on the far side of P2 on the P1–P2 line. Breaking up a
four-body problem into two disjoint two-body problems is an enormous simplification to
the capture problem and dynamically is not correct. Nevertheless, these transfers change
little when they are applied with full solar system modeling in many useful cases. This
is because of the high energy associated with them. Their derivation is elegantly simple,
and their usefulness is remarkable. They have paved the way for both human and robotic
exploration of our solar system.

Of particular interest for applications considered later in this book is when r13� r23 are
relatively small numbers. Let km = kilometer, s = second. For example, r13 = rE +200 km,
r23 = rM +100 km are typical radial distances used in applications of P3 from P1, P2 at the
locations Q0, QF, respectively, and at times t = t0� tF , respectively. The rE and rM represent
the radii of the Earth and Moon, respectively. We will assume these values of r13� r23

for the remainder of this paper for convenience. It is verified that �V0 = 3�142 km/s,
�V1 = 0. �VC = 0�200 km/s� 0�648 km/s for e2 = 0�95� 0, respectively. Also, tF − t0 = 5
days. The transfer itself is nearly parabolic where e1 = 0�97. Visually it would appear to
be nearly linear. For Hohmann transfers in general, E2 � 0 at QF. These values of r13� r23

are the values that we desire for a solution of the capture problem.
It is verified that E2 > 0 at QF for P3, and this causes a large value of �VC to occur.

This property of E2 > 0 is satisfied by Hohmann transfers. The reason E2 > 0 follows
from the fact that the magnitude VF of the velocity vector at QF of P3 on the transfer at
lunar periapsis, where the direction is in the same direction as the Moons orbit about the
Earth, has the property that VF � VM , where VM is the magnitude of the velocity of the
Moon about the Earth. It turns out that under the given assumptions, VF = 0�176 km/s and
VM = 1�019 km/s. This implies that E2 = 0�843 km2/s2. It is the discrepancy between VF

and VM that yields a large value of �VC of several hundred meters per second, depending
on the value of e2. The calculation of E2 for a Hohmann transfer is estimated by noting
that relative to P2, the transfer is hyperbolic, with a hyperbolic periapsis at QF. The
corresponding velocity at r2 = �, called the hyperbolic excess velocity and labeled V�,
is estimated by V� = VM −VF = 0�843 km/s yielding E2 = �1/2�V 2

�. The calculation of
�VC follows from a functional relationship it has with V�, or equivalently E2.

4.2.3 Ballistic capture transfers

A ballistic capture transfer is defined to be a solution of the capture problem where
�VC = 0 at QF for t = tF . It will arrive at periapsis at QF where E2 is negative, and
therefore it will have no V�. This enables capture where �VC = 0. Eliminating the V�
is the motivation for the construction of ballistic capture transfers. From our discussion
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of the Hohmann transfer, this means that a ballistic capture transfer has to arrive at QF

where the spacecraft’s velocity approximately matches the velocity of the Moon about
the Earth. We will see that a ballistic capture transfer going from Q0 to QF can be
constructed with approximately the same value of �V0 for a Hohmann transfer and also
with �V1 = 0. We refer to a Hohmann transfer as high energy since V� is significantly
high, and a ballistic capture transfer is called low energy since the V� is eliminated.

The basic idea behind finding ballistic capture transfers to the Moon, or any body, is
to find a region about the Moon, in position-velocity space (i.e., phase space), where an
object can be ballistically captured. When such a region is found, then one can try to
find trajectories from the Earth that go to that region. Ballistic capture enables capture
to occur in an natural way, where a spacecraft need not slow down using its engines.
A spacecraft moving in this region about the Moon lies in the transition between capture
and escape from the Moon. Its motion in this region is very sensitive—being both chaotic
and unstable.

In the next section we study in more detail how to determine where ballistic capture
can occur about the Moon.

4.3 Ballistic capture regions and transfers

To better understand the process of ballistic capture, and the transfers themselves, it
is instructive to consider the planar circular restricted three-body problem between the
spacecraft, Earth, and Moon.

This defines the motion of P3 in the gravitational field generated by the uniform circular
motion of P1�P2 in an inertial coordinate system. P3 moves in the same plane of motion
as P1�P2. The constant frequency 
 of motion of P1�P2 about their common center of
mass at the origin is normalized to 1. It is assumed that m3 = 0, and m1 +m2 = 1. We set
m1 = 1 −��m2 = �� � = m2/�m1 +m2�� In a rotating coordinate system x1� x2 which
rotates with the same frequency 
, both P1�P2 are fixed. We normalize the distance
between P1�P2 to be 1. Without loss of generality we place P1 at ��� 0� and P2 at
�−1 + �� 0�. We assume here that m2 � m1, or equivalently � � 1. With P1 =Earth,
P2 =Moon, � = 0�0123.

The differential equations of motion for P3 are given by

ẍ1 −2ẋ2 = x1 +�x1

ẍ2 +2ẋ1 = x2 +�x2
�

(4.2)

where ˙≡ d
dt

��x ≡ �

x
,

� = 1−�

r1

+ �

r2

�

r1 = distance of P3 to P1 = ��x1 −��2 +x2
2�

1
2 , and r2 = distance of P3 to P2 = ��x1 +1−

��2 + x2
2�

1
2 , see Figure 4.3. The right-hand side of Eq. (4.3) represents the sum of the

radially directed centrifugal force FC = �x� y� and the sum FG of the gravitational forces
due to P1 and P2.
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Fig. 4.3. Rotating coordinate system and locations of the Lagrange points.

The x1 and x2 are called barycentric rotating coordinates. If the coordinate systems
were not rotating, then that defines a barycentric inertial coordinate system Q1�Q2. The
transformation between x1� x2 and Q1�Q2 is given by a rotation matrix of rotational
frequency 1. For notation we set x = �x1� x2� and Q = �Q1�Q2�. x�Q are understood to
be vectors.

An integral of motion for Eq. (4.2) is the Jacobi energy given by

J = −�ẋ�2 +�x�2 +��1−��+2�� (4.3)

Thus

J−1�C� = ��x� ẋ� ∈ �4 � J = C� C ∈ �	

is a three-dimensional manifold in phase space for which the solutions of Eq. (4.2) which
start on J−1�C� remain on it for all time. C is called the Jacobi constant. The additive
term ��1−�� occurring in Eq. (4.3) is present so that the values of C are normalized.

The manifold J−1�C� projected onto the physical �x1� x2�-plane form the Hill regions

� �C� = �x ∈ �2 �2�̃−C ≥ 0	�

where

�̃ = �+ 1
2
�x�2 + 1

2
��1−���

The particle P3 is constrained to move in � �C�, see Ref. [4]. The boundary of � �C� is
given by the curves

��C� = �x ∈ �2 �2�̃−C = 0	�

which are called zero velocity curves, because the velocity of P3 vanishes there. The
qualitative appearance of the Hill regions � �C� for different values of C are shown in
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Fig. 4.4. Basic Hill’s regions: Starting from the top three figures, left to right, C has the respective values,
C > C2�C1 < C < C2, C � C1, and then the bottom two figures, left to right, C3 < C < C1� 3 < C < C3.

Figure 4.4. The particle P3 cannot move in the hatched areas. The five values Ci are
obtained by evaluating the function J at the five Lagrangian equilibrium points Li of
(4.2). The relative positions of the Lagrange equilibria are shown in Figure 4.3. The ones
of interest in this paper are L1 and L2, which are unstable saddle center points [4]. The
values Ci satisfy

C4 = C5 = 3 < C3 < C1 < C2�

For C < 3, the Hill’s region becomes the entire x1� x2-plane. Thus P3 can move throughout
the entire plane. When C � C2, P3 can pass between P1 and P2. For C ≥ C1 the Hill’s
region has two components. One is bounded, and the other is unbounded. When C � C1,
P3 can move between the inner and outer Hill regions. C2 represents the minimal energy
for which P3 can pass from P1 to P2. C1 represents the minimal energy for which P3 can
pass between the bounded and unbounded components of the Hills regions.

It is noted that an approximation for C1 and C2 valid to three digits when � ≤ 0�01, or
four digits when � ≤ 0�001, is

C1 ≈ 3+9
(�

3

)2/3 −11
(�

3

)
� C2 ≈ 3+9

(�

3

)2/3 −7
(�

3

)
� (4.4)

In inertial coordinates Eqs. (4.2) and (4.3), respectively, become,

Q̈ = �Q� (4.5)

J̃ = −�Q̇�2 +2�Q1Q̇2 −Q2Q̇1�+2�+��1−��� (4.6)

where

r1�t� =√
�Q1 +�c�2 + �Q2 +�s�2�

r2�t� =√
�Q1 − �1−��c�2 + �Q2 − �1−��s�2�



Chapter 4. Low-energy transfers and applications 115

where c ≡ cos�t�� s ≡ sin�t�. In these coordinates there is an explicit time dependence
which is not the case in rotating coordinates.

Let ��t� = �Q�t�� Q̇�t�� be a solution of Eq. (4.5) for P3. We assume at time t = t0 it
starts at some distance r1 from P1 and at time t1 it is at a distance r2 from P2, t1 > t0.
We are viewing ��t� in the four-dimensional phase space. In position space it is given
by Q�t�. As P3 moves, J̃ ���t�� = C. We assume that no collision takes place so that
r1 > 0� r2 > 0 along ��t�. Let X = �X1�X2� be P2-centered inertial coordinates.

Definition 4.3.1. The two-body Kepler energy of P3 with respect to P2 in P2- centered
inertial coordinates is given by

E2�X� Ẋ� = 1
2
�Ẋ�2 − �

r2

(4.7)

where r2 = �X�.

Definition 4.3.2. P3 is ballistically captured at P2 at time t = t1 if

E2���t1�� ≤ 0� (4.8)

��t� is called a ballistic capture transfer from t = t0 to t = t1. If E2 � 0 at t = t1 then P3

is pseudo-ballistically captured at P2.

It is noted that the notation a� b means that a > b and a−b = � � 1.
When P3 is ballistically captured with respect to P2 the capture may lead to ballistic

capture for all future time t ≥ t1, or this capture may be temporary where at a finite time
t = t3 > t2, E2 > 0. When this occurs then we say that P3 has ballistically escaped P2 for
t = t3. In this case the ballistic capture is temporary.

Ballistic capture can be stable or unstable whether it is temporary or not. By stability
we mean orbital stability. That is, if the orbital elements of the motion change to a
significant degree with very small changes in the initial conditions. If infinitesimally
small changes in the initial conditions lead to predictably small changes in all the orbital
elements for arbitrarily long time, then the motion is called stable, otherwise it is called
unstable.

Temporary ballistic capture can be stable, so that although the Kepler energy is changing
from negative to positive values, the orbital elements change in a small predictable way
for all time. Likewise, ballistic capture for all time need not be stable. Thus whether or
not the capture is temporary or not is not a good measure to describe the motion.

The key quantity to measure is the orbital stability. When ballistic capture is unstable
we refer to it as weak ballistic capture or weak capture for brevity. A set where this occurs
numerically can be estimated and is described in [4]. It can be analytically approximated
by looking at the values of C of the Jacobi integral where the motion of � has sufficiently
high energy, where C < C1. Also, we consider those points where ṙ2 = 0. This defines a
set W on the Jacobi integral surface J−1�C� in the coordinates x� ẋ,
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Definition 4.3.3.

W = ��x� ẋ� ∈ �4�J = C�C < C1�E2 ≤ 0� ṙ2 = 0	�

W is referred to as the weak stability boundary.

As is proven in [4] W on the three-dimensional surface J−1�C� is equivalent to a
two-dimensional annular set about P2. It is described by an explicit functional relationship

r2 = f��2� e2�

where �2 is the polar angle about P2 in a P2-centered rotating coordinate system, where
f is periodic of period 2� in �2, and 0 ≤ e2 ≤ 1. This relationship can be conveniently
written explicitly as

r2 ≈ �1− e2��
1
3

3
5
3 − 2

3 �
1
3

under the conditions that C � C1 and r2 � 0.
We slightly extend the definition of W for the case of pseudo-ballistic capture and

where we need not require ṙ2 = 0. This set is labeled WH , and is given by

WH = ��x� ẋ� ∈ �4�J = C�C < C1�E2 � 0 �i�e� e2 � 1�	�

The set

W̃ = W ∪WH

is called the extended weak stability boundary. WH represents points with respect to P2

which are slightly hyperbolic and have C < C1.
Numerical simulations indicate that the motion of trajectories with initial conditions

on W̃ are generally unstable. In Theorem B in the next section shows that this is indeed
the case due to the existence of a chaotic motion associated with W̃ . W is referred to as
the weak stability boundary, and W̃ is a hyperbolic extension of that set.

4.3.1 Method of determining ballistic capture transfers, and their properties

A method for finding ballistic capture transfers is to assume that your spacecraft is
already at the extended weak stability boundary of the Moon at the desired capture
distance r23 at the point QF. This will give precise values of the velocity the spacecraft
will have when it arrives at the Moon. Then one can employ a ‘backwards integration
method’, where the trajectory is integrated backwards in time. Since the capture state at
the Moon is unstable, tiny variations in the ballistic capture state can be used to target
the trajectory in backwards time to have a periapsis with respect to the Earth at the point
Q0. In another method, one can perform a ‘forward algorithm’, and start at the Earth at
periapsis at Q0, and by varying specific control variables, target to the desired ballistic
capture state at QF. The details of this are described in [4].
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The first numerical demonstration of the construction of a ballistic capture transfer
was in 1986. This was for the Lunar Get Away Special (LGAS) mission study [1]. The
numerical simulation was done for a low thrust spacecraft that was designed to be released
from low Earth orbit from a Get Away Special cannister in the cargo bay of the space
shuttle. After slowly spiraling out of Earth orbit with the solar electric ion engines for 1.5
years (using 3000 spirals), it reached a sufficiently large distance from the Earth where it
shut off its engines, and moved on a ballistic capture transfer to the Moon over the north
lunar pole, where it arrived in ballistic capture. It then turned its engines back on and
took several months to gradually spiral down to the desired altitude at low lunar orbit at
100 km altitude.

The first operational demonstration of a ballistic capture transfer occurred a few years
later. In 1991, a special ballistic capture transfer was used by E. Belbruno and J. Miller
to resurrect a failed Japanese lunar mission, and get their spacecraft Hiten to the Moon
since it had almost no fuel [2, 4, 16]. It took three months to reach the Moon instead of
the 3 days a Hohmann transfer takes. The spacecraft first goes out about 1.5 million km
from the Earth, then falls back to the Moon for ballistic capture. The transfer Hiten used
is shown in Figure 4.5. The small elliptic orbit shown in the lower third quadrant is just
a phasing orbit, and the transfer starts from near the Earth at the end of the phasing orbit.

Another name for a general ballistic capture transfer is a ‘weak stability boundary
(WSB) transfer’. Hiten is using an ‘exterior’ WSB transfer since it travels outside the
orbit of the Moon. If a WSB transfer stays inside the Moon’s orbit, it is called an
‘interior’ WSB transfer. LGAS used an interior transfer. ESAs SMART-1 mission was
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Fig. 4.5. The exterior ballistic capture transfer used by Hiten.
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Fig. 4.6. Representation of complete transfer to low circular lunar orbit.

inspired by that design, and their spacecraft arrived at the Moon in November 2004.
An illustration, not done accurately to scale, is shown in Figure 4.6. The trajectory lies
within a three-dimensional Hills region about the Earth and Moon. The interior transfer
itself in Figure 4.6 starts about 100000 from the Earth after the spiraling has stopped
and the engines have been shut off. It ends when the transfer arrives at ballistic capture
at approximately 30000 km over the north lunar pole. Over a period of a few months,
using its engines, it slowly spirals down to low lunar orbit. The interior transfer has the
disadvantage that it cannot start closer than approximately 60000 km from the Earth. The
exterior transfer solves that problem.

The exterior WSB transfer is particularly important since it can be designed from any
altitude from the Earth and go to any altitude at the Moon, and saves substantial fuel
as compared to a Hohmann transfer. It promises to have important applications to future
lunar missions due to its cost savings in bringing payloads into lunar orbit. The exterior
WSB transfer’s dynamics is complicated and is described in detail in Ref. [4]. We discuss
a few of its properties here because of its interesting dynamics.

The exterior transfer at first appears to resemble a standard Hohmann bi-elliptic transfer.
However, the looks are deceiving. Such a transfer, which is analogous to the one Hiten
used, can leave the Earth at any altitude. If it leaves at low Earth orbit at an altitude of
say 200 km, it will need approximately the same �V as a Hohmann transfer. But that is
where the similarity stops. It takes about 1.5 months to reach the apoapsis at about 1.5
million km. While moving in this region, the gravitational forces of the Earth and Sun
approximately balance as the spacecraft moves. It is actually moving in a weak stability
boundary region about the Earth with the Sun in this case as the larger perturbing body.
As the spacecraft arcs around and falls back towards the Moon, no maneuver is required
to fall back towards the Moon. This is completely different than the bi-elliptic transfer
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which requires a 0.250 km/s maneuver to do this. As the spacecraft falls back towards
the Moon, the Sun is positioned in such a way so as to slow down the spacecraft as it
approaches the Moon. In this way it can arrive with a velocity that approximately matches
the Moons about the Earth. It will approach the Moon from outside the Moon’s orbit. If
the Jacobi constant C is just slightly less than C1, the Hill’s region opens slightly near the
L1 location, and the trajectory can pass though, passing close to the invariant manifolds
associated with the Lyapunov orbit about the L1 location. This is seen in Figure 4.7. It
then passes into the Hill’s region about the Moon and to low lunar orbit to weak capture.
As is described in [4], and described below, the structure of the phase space where weak
capture occurs is very complicated, and consists of an infinite set of intersecting invariant
manifolds. It is important to point out that C need not be just be slightly less than C1. This
condition poses a large constraint that the trajectory needs to approach the Moon via the
tiny opening near L1. This condition also generally gives rise to transfers with times of
flight on the order of 120 days. If we allow more generally that C could be substantially
less than C1, say C < 3, then the spacecraft can move anywhere in the physical space
near the Moon, and is not constrained to pass near the location of L1. This is because the
Hill’s region becomes the entire physical space and the zero velocity curves bounding
the motion, no longer exist. Then the trajectory can be ballistically captured near the
Moon by approaching the Moon, in general, from any direction. The time of flight also
decreases to approximately 90 days.

Since ballistic capture transfers arrive at P2 where E2 < 0, they save substantial �V
required to place P3 into a capture orbit about P2 relative to a Hohmann transfer. For
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Fig. 4.7. Capture dynamics with C � C1.
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example, in the case of going into circular orbit of 100 km altitude, they save approx-
imately 25% in �V , and to achieve an elliptic lunar orbit with a 100 km altitude, they
require zero �V , where the osculating eccentricity is approximately 0.95 at the time of
capture. It is remarked that the savings of 25% in �V is very significant, and can double
the payload that one can place into low circular lunar orbit. At a cost of approximately
1 million dollars per pound to bring anything into lunar orbit, this savings is significant.
Another advantage of WSB transfers is that their capture at the Moon is gradual, and
not as risky as the Hohmann transfer which must perform a large capture maneuver in a
short time span. A WSB transfer just gradually drifts into capture in a slow fashion and
is much less risky.

It is instructive to consider other types of capture and see how ballistic capture may
be related to them. A type of capture which is defined in a completely different way
than ballistic capture is called permanent capture. This is topologically defined whereas
ballistic capture is locally defined analytically.

Definition 4.3.4. P3 is permanently captured in forward time with respect to both P1�P2 if

lim
t→−� �Q�t�� = �

and

�Q�t�� < a < �
as t → � where a is a finite constant. An analogous definition is given for permanent
capture in backwards time.

Thus, for permanent capture, the particle P3 comes in from infinity and remains bound
to P2 for all time. Permanent capture does not imply ballistic capture since while P3 is
bound to P2, E2 need not be negative. Permanent capture is an unstable process.

From this we can define another type of capture where a particle comes in from
infinity, remains bounded for a finite period of time, then goes out to infinity as time goes
to infinity. Thus the motion of P3 is bounded for only a finite period of time. We call
this temporary capture which is different from ‘temporary ballistic capture’ we defined
previously.

Permanent capture has been studied from a mathematical perspective, and it can be
proven to occur only for a set of measure zero in the phase space, and thus it is very
unlikely.

It turns out that points exist on W̃ that also lead to permanent capture. Moreover,
there exists a region on W̃ whose points lead more generally to chaotic motion of which
permanent capture is of one type. This is described in the next section.

4.4 Chaos and weak capture

Consider a solution Q�t� to (4.5) for P3. Q�t�. It can be proven that under special
conditions Q�t� will perform chaotic motion. This chaotic motion occurs on a special set
in phase space called a hyperbolic invariant set. We describe briefly the types of motions
that can occur.
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The orbits are near parabolic orbits, and lie between bounded and unbounded motion
with respect to P1 or P2. Thus, they are in the transition between capture and escape from
the P1�P2-system. For � = 0, they are Keplerian parabolic trajectories of P3 about P1,
with Jacobi energy �C� = 2

√
2. A positive value of C represents direct motion about P1,

and a negative value of C represents retrograde motion.
The orbits start at a reference time t = 0 transversal to the Q1-axis, slightly beyond

the Moon, P2, where r2 � 0 and move out to near infinity. For � � 1 the orbits appear
nearly parabolic in appearance. They will in general fall back to the Q1-axis crossing
it again for r2 � 0 and then move out to infinity again. Then P3 will fall by P2 again
passing slightly beyond the Moon, etc. This motion can repeat forever. It is also possible
that while this oscillatory motion is occurring it is periodic in nature, or it can eventually
escape and never return to the Q1-axis. Or it can start from infinitely far from P2 and
then keep passing slightly beyond P2 as it crosses the Q1 axis while repeatably passing
out to near infinity at a bounded distance, for all future time. This would correspond to
permanent capture. In general many other types of motions can occur that pass slightly
beyond the Moon.

The dynamics of this motion can be observed most easily by cutting the near parabolic
oscillatory motion by a two-dimensional section �t in phase space, at a given times t,
where �t is on the Q1-axis, where r2 � 0, and for � � 1. A given orbit � will cut the
axis at a sequence of times tk� k = 1� � � � , where

tk < tk+1�

where Q2�tk� = 0. Set

sk =
[ tk+1 − tk

2�

]
� (4.9)

where �a� is the largest integer k ≤ a, for a ∈ �. Thus, sk gives a measure of the number
of complete revolutions the primaries P1�P2 make (since they have period 2�) in the time
it takes P3 to make two passes through Q1 = 0. The sk can be used to define bi-infinite
sequences

s = �� � � s−2� s−1� s0� s1� s2� � � � ��

Let S define the space of all such sequences.
The eventual general pattern of intersection points on �tk

from all such orbits � takes on
the appearance of that shown in Figure 4.8. This is called a hyperbolic network associated
with a transverse homoclinic point r. The intersection of the invariant manifolds W s�W u

associated to a hyperbolic equilibrium point p of the return map on �t eventually forms
a dense set of points, forming a Cantor set. Each of these points has a direction where the
motion moves away from the point under iteration and another where it moves towards
the point under iteration. This is analogous to a saddle point, except that the points of a
hyperbolic network need not be equilibrium points. Thus the motion is very unstable. This
Cantor set is called a hyperbolic network we label �. A motion defined on a hyperbolic
network is called chaotic. This network is also called a hyperbolic invariant set [4].
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Fig. 4.8. Transverse homoclinic point r and hyperbolic network.

The existence of this type of dynamics near parabolic motion in another version of the
three-body problem is proven to exist by Moser [15]. The case described above for the
restricted problem was proven by Xia [19].

In order to describe the dynamics on �, the sequences of S can be used. It is remarkable
that it can be proven that prescribing any sequence s ∈ S, a motion will exist for the
restricted problem passing near to the Moon, where �C�−2

√
2� 0, � � 1. The condition

on C means that the motion is near to parabolic for � � 1.

Theorem A. For �C�− 2
√

2 � 0, � � 1� r2 � 1, there exists an integer m = m���C�
such that for any sequence s ∈ S with sk ≥ m there corresponds a solution of (4.5).

The sequences keep track of the itinerary of the motion of P3 as it repeatably passes
through the points of �.

Thus, to every bi-infinite sequence there corresponds an actual solution of the planar
circular restricted three-body problem, which is near parabolic and oscillates in a chaotic
fashion, repeatably passing very near to P2 at a distance r2. This gives an infinite variety
of possible motions. Let’s see what different sequences say. If the sequence is unbounded,
then successive tk become unbounded. This implies the solution takes so long to come
back to Q2 = 0, it in fact is becoming unbounded, but it has infinitely many zeros. This
is an unbounded oscillatory solution. A periodic orbit would give rise to a repeating
sequence, e.g., s = �� � � � 1� 2� 1� 2� 1� 2� � � � 	

A permanent capture orbit which comes in from � corresponds to a sequence termi-
nating on the left with �, and then performs infinitely many bounded oscillations for all
future time,

s = ��� � � � sk� sk+1� � � � ��
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where sk are bounded. Temporary capture is defined by sequences which begin and end
with �.

Theorem A can be applied to the problem of weak capture. It is very interesting that
this is the case, and it is proven [4] that a subset of � exists on W̃ .

Theorem B. A subset of the hyperbolic network � exists on the set WH of the extended
weak stability boundary W̃ , which gives rise to the same chaotic motions in the bi-infinite
sequence space S as described in Theorem A.

Thus weak capture is chaotic, and can lead to infinitely many possible motions includ-
ing permanent capture. This fact as interesting applications to the possible construction
of permanent capture transfers for spacecraft and also for the permanent capture of small
bodies such as comets, asteroids or Kuiper belt objects about the Sun or a planet.

It is remarked that the chaos proven to exist in the weak capture process in Theorem B
is associated to near parabolic motion which moves far from P2. This is done by utilizing
the transverse intersection of invariant manifolds associated with parabolic motion. Weak
capture can also to studied by studying the possible transverse intersection of the invariant
manifolds associated with the Lyapunov orbits about L1�L2. This is not yet analytically
proven in a general manner; however, there exists an interesting numerically assisted proof
of the transverse intersection of these invariant manifolds for some selected parameter
values of � and for C � C1 [12].

4.5 Origin of the Moon

An outstanding question in astronomy is to understand where the Moon came from.
One of the first theories to try to answer this is called the ‘sister planet theory’. It proposed
that the Moon formed together with the Earth as sister planets, in the solar nebula of
gas and dust from which all the planets formed about 4 billion years ago. However,
there are some inconsistencies with this. One is the fact that a large iron core is absent
in the Moon, and present in the Earth, giving the Earth and Moon different densities,
which are 5�5 grams/cm3 and 3�3 grams/cm3, respectively. Another theory is that the
Moon was formed from beyond the Earth’s orbit, and was captured into orbit about the
Earth. If this were the case then the Earth and Moon would have different abundances of
oxygen isotopes. This is inconsistent with the fact that the Earth and Moon have identical
abundances.

A generally accepted theory which explains the differences in iron and the oxygen
isotope abundances among other things is called the “impactor theory”. It was formulated
by W. Hartmann and D. Davis [11], and A. Cameron and W. Ward [7]. It proposes
that after the Earth had already formed 4 billion years ago, a giant Mars-sized object
smashed into the Earth. When it hit, it formed the Moon from iron poor mantel material
debris primarily from the impactor, and also from the Earth, both of which already had
iron cores. The Moon coalesced from this material. The iron core of the impactor was
deposited into the iron core of the Earth. This explains the iron deficiency of the Moon.
This theory also proposes that the impactor formed at the same 1 AU distance that the
Earth is from the Sun. This explains the identical oxygen isotope abundances.
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Numerical simulations from this theory show conditions of impact that an object the
size of Mars would have to have to form the Moon from the resulting debris. They show
that this object would have to approach the Earth with a relatively slow velocity—nearly
parabolic with respect to the Earth, with velocities only a few hundred meters per second.

A fundamental question to ask is—Where did this Mars-sized impactor come from?
In 2001, Richard Gott described his theory to me to explain where the impactor may

have come from. He proposed that at the time of the solar nebula from which the Earth
was formed, there was so much debris flying around the Sun that it could have settled
near the stable equilateral Lagrange points L4�L5 with respect to the Earth and Sun.
Since these locations are stable, debris arriving there with a small relative velocity could
remain trapped there. As more and more debris arrives, it could start to coalesce and a
massive body could start to grow. Given several million years a large Mars-sized body
could result.

However, here was a problem with his theory. How could it be demonstrated that the
impactor could leave the L4 (or L5) neighborhood and impact the Earth? Back of the
envelope calculations showed that collision would be unlikely since the impactor would
likely fly by the Earth at high relative velocities of several kilometers per second, and
easily miss the Earth.

The solution was found by calculating a WSB region about L4 (or L5) where a small
massive object would first move captured in neighborhoods about these points and move
in a horseshoe orbit—i.e., moving in an Earth-like orbit and oscillating back and forth,
between counterclockwise and clockwise motions (without moving 360 degrees about the
Sun), and not moving past the Earth. They would very gradually gain energy, and hence
velocity with respect to the Sun, by the resulting interactions with the small planetesimals
in the solar nebula at the time. Eventually, the impactor would grow in size, and move
beyond the Earth, and the motion would bifurcate from the oscillating horseshoe motion
to a non-oscillating cycling motion, repeatably flying closely by the Earth. This cycling
motion is called ‘breakout’, and it is chaotic in nature. This is determined in the restricted
problem by fixing a direction of motion at L4 (or L5) and gradually increasing the velocity
until breakout occurs. This gives a parametric set of critical velocities about L4 (or L5)
depending on direction, yielding a WSB about L4 (or L5). This is seen in Figure 4.9. It is
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Fig. 4.9. Critical velocity magnitudes as a function of direction at L4 giving rise to escape, or, equivalently,
‘breakout’ from L4. (A velocity value of 1 corresponds to the velocity of the Earth about the Sun.)
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Fig. 4.10. A near parabolic creeping collision orbit emanating from L4 in the third quadrant, and colliding
with the Earth 57.32 years later near −1 on the x-axis. It first moves downward towards the Earth in a
counterclockwise direction, then reverses its direction and moves nearly 360 degrees in a clockwise direction

about the Sun at the origin, where it collides with the Earth.

shown in Ref. [5] that the likelihood of collision was very high, and that this process
is preserved with more accurate modeling of the solar system. An actual collision orbit
is shown in Figure 4.10.

The description presented here is very brief. The detailed exposition of this theory is
given in Ref. [5]. Also, see Ref. [10]. The theory for the formation of the Mars impactor
at L4/L5 as presented in Ref. [5] is currently being applied to the formation of some of
the moons of Saturn, and to Saturn’s rings in a collaboration with Gott, Vanderbei, and
Belbruno [10, 18].
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5.1 Introduction

New techniques for the design of energy efficient trajectories for space missions have
been proposed which are based on the circular restricted three-body problem as the
underlying mathematical model. These techniques exploit the structure and geometry
of certain invariant sets and associated invariant manifolds in phase space in order to
systematically construct efficient flight paths.

In this chapter we present numerical methods that enable an implementation of this
approach. Using a set oriented framework we show how to compute approximations to
invariant sets and invariant manifolds and how to detect connecting orbits that might
serve as initial guesses for the solution of a more detailed model. We also show how to
extend the approach in order to account for a continuously applied control force on the
spacecraft as realized by certain low thrust propulsion systems.

All techniques described in this chapter have been implemented within the software
package “Global Analysis of Invariant Objects” (GAIO) which is available from the
authors.

5.2 Dynamical systems and mission design

A new paradigm for the construction of energy efficient trajectories for spacecraft is
currently emerging. It heavily bases on concepts and techniques from the theory and
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numerical treatment of dynamical systems. The basic strategy is the following: Instead
of a two-body problem, as in more classical approaches, one considers a restricted
three-body problem as the mathematical model for the motion of the spacecraft. This
enables one to exploit the intricate structure and geometry of certain invariant sets
and their stable and unstable manifolds in phase space—which are not present in two-
body problems—as candidate regions for energy efficient trajectories. For example, this
approach has recently been used in the design of the trajectory for the Genesis discovery
mission1 [29].

Building on this basic concept, techniques have been proposed that synthesize partial
orbits from different three-body problems into a single one, yielding energy efficient
trajectories with eventually very complicated itineraries [26, 27]. In Ref. [27], a petit grand
tour among the moons of Jupiter has been constructed by this approach. The idea of the
technique is as follows: One computes the intersection of parts of the stable resp. unstable
manifold of two specific periodic orbits in the vicinity of two moons, respectively, with
a suitably chosen surface. After a transformation of these two curves into a common
coordinate system one identifies points on them that lie close to each other—ideally one
searches for intersection points. Typically, however, these two curves will not intersect in
the chosen surface, so a certain (impulsive) maneuver of the spacecraft will be necessary
in order to transit from the part of the trajectory on the unstable manifold to the one on
the stable manifold. In a final step this “patched 3-body approximation” to a trajectory is
used as an initial guess for standard local solvers using the full n-body dynamics of the
solar system as the underlying model (as, e.g., the differential corrector implemented in
the JPL-tool LTool [32]).

5.2.1 The circular restricted three-body problem

Let us briefly recall the basics of the (planar) circular restricted three body problem
(PCR3BP)—for a more detailed exposition and a description of the full spatial model
see Refs. [2, 31, 38]. The PCR3BP models the motion of a particle of very small mass
within the gravitational field of two heavy bodies (e.g., The Sun and The Earth). Those
two primaries move in a plane counterclockwise on circles about their common center
of mass with the same constant angular velocity. One assumes that the third body does
not influence the motion of the primaries while it is only influenced by the gravitational
forces of the primaries.

In a normalized rotating coordinate system the origin is the center of mass and the
two primaries are fixed on the x-axis at �−�� 0� and �1 − �� 0�, respectively, where
� = m1/�m1 + m2� and m1 and m2 are the masses of the primaries. The equations of
motion for the spacecraft with position �x1� x2� in rotating coordinates are given by

ẍ1 −2ẋ2 = �x1
�x1� x2�� ẍ2 +2ẋ1 = �x2

�x1� x2� (5.1)

1 http://genesismission.jpl.nasa.gov.
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with

��x1� x2� = x2
1 +x2

2

2
+ 1−�

r1

+ �

r2

+ ��1−��

2

and

r1 =
√

�x1 +��2 +x2
2� r2 =

√
�x1 −1+��2 +x2

2�

The system posesses five equilibrium points (the Lagrange points): the collinear points
L1�L2 and L3 on the x-axis and the equilateral points L4 and L5. The equations (5.1)
have a first integral, the Jacobi integral, given by

C�x1� x2� ẋ1� ẋ2� = −�ẋ2
1 + ẋ2

2�+2��x1� x2�� (5.2)

The three-dimensional manifolds of constant C-values are invariant under the flow
of (5.1), their projection onto position-space, the Hill’s region, determines the allowed
region for the motion of the spacecraft (Figure 5.1(a)).

5.2.2 Patching three-body problems

The idea of constructing energy efficient trajectories via coupling three-body problems
essentially relies on two key observations:
1. For suitable energy values (i.e., values of the Jacobi integral (5.2)) there exist periodic

solutions, the Lyapunov orbits (Figure 5.1(a)), of (5.1) in the vicinity of the equilibrium
points L1 and L2 that are unstable in both time directions. Their unstable resp. stable

L1

planet
region

L2

Lyapunov
orbits

Sun

interior region

forbidden region
exterior
region

(a)

Sun

planet 2

planet 1

intersection
plane

stable manifold of a
Lyapunov orbit
around L2 of planet 2

unstable manifold
of a Lyapunov orbit
around L1 of planet 1

(b)

Fig. 5.1. Left: Projection of an energy surface onto position-space (schematic) for a value of the Jacobi integral
for which the spacecraft is able to transit between the exterior and the interior region. Right: Sketch of the
“patched 3-body approach” [26, 27]. The idea is to travel within certain invariant manifold “tubes”, with

possibly an impulsive correction maneuver at the intersection plane.
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manifolds are cylinders that partition the three dimensional energy surface into two
sets: (1) transit orbits, that locally pass between the interior region and the planet
region in the case of an L1-Lyapunov orbit or between the exterior region and the
planet region in the case of L2, and (2) non-transit orbits that stay in the exterior or
interior region [30].

2. By “embedding” one PCR3BP into a second one, parts of the stable manifold of a
Lyapunov orbit in one system may come close to the unstable manifold of a Lyapunov
orbit in the other system (where, for a moment, it may help to imagine that the two
systems do not move relative to each other), (Figure 5.1(b)). It may thus be possible
for a spacecraft to “bridge the gap” between two pieces of trajectories in the vicinity
of these manifolds by exerting an impulsive maneuver [26, 27].

One way to detect a close approach of two such invariant manifolds is to reduce the
dimensionality of the problem. One computes the intersection of the two manifolds with a
suitable intersection plane (Figure 5.1(b)) and determines points of close approach in this
surface—for example by inspecting projections onto 2D-coordinate planes. This approach
has in fact been used for a systematic construction of trajectories that follow prescribed
itineraries around and between the Jovian moons [27]. In Section 5.6 of this chapter we
go one step further and consider controlled problems via the incorporation of low thrust
propulsion.

5.3 Set oriented numerics

Over the last decade set oriented numerical methods have been developed for the
analysis of the global behavior of dynamical systems [6–10]. These numerical tools can,
e.g., be used to approximate different types of invariant sets or invariant manifolds.
They also allow to extract statistical information via the computation of natural invariant
measures or almost invariant sets. In contrast to other numerical techniques these methods
do not rely on the computation of single long term simulations but rather agglomerate
the information obtained from several short term trajectories.

The methods are based on a multilevel subdivision procedure for the computation
of certain invariant sets. This multilevel approach allows one to cover the object of
interest—e.g., an invariant manifold or the support of an invariant measure—by several
small subsets of state space. Since outer approximations are produced and long term
simulations are avoided these methods are typically quite robust.

The numerical methods presented here are similar in spirit to the so-called cell mapping
approach [22, 28]. However, there is a significant difference: the cell mapping approach
relies on a partition of the entire phase space and thus the numerical effort depends
crucially on its dimension. In contrast, in our set oriented apporach only a covering of the
set of interest (e.g., the attractor) is constructed and so the computational effort essentially
depends on the complexity of the underlying dynamics.

We would also like to mention that by now there exist several relevant extensions and
adaptations of the set oriented approach as described here: the methods have been, e.g.,
combined with branch and bound techniques and methods from evolutionary optimization
in order to solve global (multi-objective) optimization problems [13, 14, 33–35]. They
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also have been combined with shortest path algorithms from graph theory in order to
compute the optimal value function of optimal control problems as well as globally
stabilizing feedback laws [19, 25].

5.3.1 The multilevel subdivision algorithm

We now describe the multilevel subdivision algorithm for the computation of invariant
sets which forms the basis for all methods described in this chapter. We consider a
discrete time dynamical system

xj+1 = f�xj�� j = 0� 1� 2� � � � � (5.3)

where f 	 �n → �n is a diffeomorphism which may, e.g., be given by the time-T -map of
some underlying vector field.

A subset A ⊂ �n is called invariant if

f�A� = A�

Moreover, an invariant set A is an attracting set with fundamental neighborhood U if for
every open set V ⊃ A there is an N ∈ � such that f j�U� ⊂ V for all j ≥ N . Observe that
if A is invariant then the closure of A is invariant as well. Hence we restrict our attention
to closed invariant sets A, and in this case we obtain

A = ⋂
j∈�

f j�U��

By definition all the points in the fundamental neighborhood U are attracted by A. For
this reason the open set ∪j∈�f−j�U� is called the basin of attraction of A. If the basin of
attraction of A is the entire �n then A is called the global attractor. Note that the global
attractor contains all invariant sets of the given dynamical system.

Definition 5.3.1. Let Q ⊂ �n be a compact set. We define the global attractor relative
to Q by

AQ = ⋂
j≥0

f j�Q�� (5.4)

The definition of AQ implies that AQ ⊂ Q and that f−1�AQ� ⊂ AQ, but not necessarily
that f�AQ� ⊂ AQ. Furthermore, AQ is compact since Q is compact. Finally, AQ is a subset
of the global attractor A, however, in general AQ �= A∩Q.

5.3.1.1 Subdivision algorithm
The following algorithm provides a method for the approximation of relative global

attractors. It generates a sequence �0��1� � � � of finite collections of compact subsets of
�n such that the diameter diam��k� = maxB∈�k

diam�B� converges to zero for k → 
.
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Given an initial collection �0, we inductively obtain �k from �k−1 for k = 1� 2� � � � in
two steps:
1. Subdivision: Construct a new collection �̂k such that

⋃
B∈�̂k

B = ⋃
B∈�k−1

B (5.5)

and

diam��̂k� ≤ 
k diam��k−1�� (5.6)

where 0 < 
min ≤ 
k ≤ 
max < 1.
2. Selection: Define the new collection �k by

�k =
{
B ∈ �̂k 	 ∃B̂ ∈ �̂k such that f−1�B�∩ B̂ �= ∅

}
� (5.7)

Note that by construction diam��k� ≤ 
k
max diam��0� → 0 for k → 
.

Example 5.3.1. We consider f 	 � → �,

f�x� = �x�

where � ∈ �0� 1
2 � is a constant. Then the global attractor A = �0 of f is a stable fixed

point. We begin the subdivision procedure with �0 = ��−1� 1� and construct �̂k by
bisection. In the first subdivision step we obtain

�1 = �̂1 = ��−1� 0�� �0� 1� �

No interval is removed in the selection step, since each of them is mapped into itself.
Now subdivision leads to

�̂2 =
{[

−1�−1
2

]
�

[
−1

2
� 0
]

�

[
0�

1
2

]
�

[
1
2

� 1
]}

�

Applying the selection rule (5.7), the two boundary intervals are removed, i.e.

�2 =
{[

−1
2

� 0
]

�

[
0�

1
2

]}
�

Proceeding this way, we obtain after k subdivision steps

�k =
{[

− 1
2k−1

� 0
]

�

[
0�

1
2k−1

]}
�

We see that the union
⋃

B∈�k
B is indeed approaching the global attractor A = �0 for

k → 
. The speed of convergence obviously depends on the contraction rate of the global
attractor.
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5.3.1.2 Convergence
The sequence of collections generated by the subdivision algorithm converges to the

global attractor AQ relative to Q. In addition to the following result one can also derive
a statement about the speed of convergence in the case that the relative global attractor
possesses a hyperbolic structure [8].

Proposition 5.3.1. Let AQ be the global attractor relative to the compact set Q, let
�0 be a finite collection of closed subsets with Q = ⋃

B∈�0
B and let Qk = ⋃

B∈�k
B,

k = 0� 1� 2� � � � . Then

lim
k→


h
(
AQ�Qk

)= 0�

where h�B�C� denotes the usual Hausdorff distance between two compact subsets
B�C ⊂ �n [8].

5.3.1.3 Implementation
We realize the closed subsets constituting the collections using generalized rectangles

(“boxes”) of the form

B�c� r� = �y ∈ �n 	 �yi − ci� ≤ ri for i = 1� � � � � n �

where c� r ∈ �n, ri > 0 for i = 1� � � � � n, are the center and the radius, respectively. In
the k-th subdivision step we subdivide each rectangle B�c� r� of the current collection by
bisection with respect to the j-th coordinate, where j is varied cyclically, i.e., j = ��k−1�
mod n�+1. This division leads to two rectangles B−�c−� r̂� and B+�c+� r̂�, where

r̂i =
{

ri for i �= j
ri/2 for i = j

� c±
i =

{
ci for i �= j

ci ± ri/2 for i = j
�

Starting with a single initial rectangle we perform the subdivision until a prescribed size
� of the diameter relative to the initial rectangle is reached.

The collections constructed in this way can easily be stored in a binary tree. In
Figure 5.2 we show the representation of three subdivision steps in three dimensions
(n = 3) together with the corresponding sets Qk, k = 0� 1� 2� 3. Note that each collection
and the corresponding covering Qk are completely determined by the tree structure and
the initial rectangle B�c� r�.

5.3.1.4 Realization of the intersection test
In the subdivision algorithm we have to decide whether for a given collection �k the

image of a set B ∈ �k has a non-zero intersection with another set B′ ∈ �k, i.e., whether
f�B�∩B′ = ∅. In simple model problems such as our trivial Example 5.3.1 this decision
can be made analytically. For more complex problems we have to use some kind of
discretization. Motivated by similar approaches in the context of cell-mapping techniques
[22], we choose a finite set T of test points (on a grid or distributed randomly) in each
set B ∈ �k and replace the condition f�B�∩B′ = ∅ by f�T�∩B′ = ∅.
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Fig. 5.2. Storage scheme for the collections and the corresponding coverings Qk, k = 0� 1� 2� 3.

Example 5.3.2. Consider the Hénon map

f�x� =
(

1−ax2
1 +bx2

x1

)
� (5.8)

for b = 0�2 and a = 1�2. Starting with the square Q = �−2� 2�2, we display in Figure 5.3
the coverings of the global attractor relative to Q obtained by the algorithm after 8 and
12 subdivision steps.

The figures have been generated by the following GAIO script:

addpath(strcat(getenv(’GAIODIR’),’/matlab’))
henon = Model(’ohenon’);
map = Integrator(’Map’);
map.model = henon;
henon.a = 1.2;
henon.b = 0.2;
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Fig. 5.3. Coverings of the global Hénon attractor after 8 (left) and 12 (right) subdivision steps.
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Fig. 5.4. (a) Approximation of the relative global attractor for the Hénon mapping after 18 subdivision steps;
(b) attractor of the Hénon mapping computed by direct simulation.

edges = Points(’Edges’, 2, 100);
center = Points(’Center’, 2, 1);
tree = Tree([0 0], [2 2]);
tree.integrator = map;
tree.domain_points = edges;
tree.image_points = center;
rga(tree,8);
plotb(tree);
rga(tree,4);
clf; plotb(tree);

In Figure 5.4(a) we show the rectangles covering the relative global attractor after
18 subdivision steps. Note that a direct simulation would not yield a similar result. In
Figure 5.4(b) we illustrate this fact by showing a trajectory, neglecting the transient behav-
ior. This difference is due to the fact that the subdivision algorithm covers all invariant
sets in Q, together with their unstable manifolds. In particular, the one-dimensional unsta-
ble manifolds of the two fixed points are approximated—but those cannot be computed
by direct simulation.

5.4 Computing invariant manifolds

We now present a set oriented method for the computation of invariant manifolds.
Although the method can in principle be applied to manifolds of arbitrary hyperbolic
invariant sets we will restrict, for simplicity, to the case of a hyperbolic fixed point p.

We fix a (large) compact set Q ⊂ �n containing p, in which we want to approximate
part of the global unstable manifold W u�p� of p. To combine the subdivision algorithm
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with a continuation method, we realize the subdivision process using a nested sequence
��, � ∈ �, of successively finer finite partitions of Q, i.e., for all B ∈ ��+1 there exist
B′ ∈ �� such that B ⊂ B′ and diam�B� ≤ 
 diam�B′� for some 0 < 
 < 1.

Let C ∈ �� be a neighborhood of the hyperbolic fixed point p such that the global
attractor relative to C satisfies

AC = W u
loc�p�∩C�

Applying k steps of the subdivision algorithm to �0 = �C, we obtain a covering �k ⊂��+k

of the local unstable manifold W u
loc�p�∩C. By Proposition 3.1, this covering converges

to W u
loc�p� ∩ C for k → 
. The following algorithm grows this initial covering until it

covers a certain subset of the global unstable manifold of p.

5.4.1 Continuation algorithm

For a fixed k we define a sequence � �k�
0 �� �k�

1 � � � � of subsets � �k�
j ⊂ ��+k by

1. Initialization:

� �k�
0 = �k�

2. Continuation: For j = 0� 1� 2� � � � define

� �k�
j+1 =

{
B ∈ ��+k 	 B∩f�B′� �= ∅ for some B′ ∈ � �k�

j

}
�

Observe that the sets C
�k�
j =⋃

B∈��k�
j

B form nested sequences in k, i.e., C
�0�
j ⊃ C

�1�
j ⊃ � � �

for j = 0� 1� 2� � � � .

5.4.2 Convergence result and error estimate

Set W0 = W u
loc�p�∩C and define inductively for j = 0� 1� 2� � � �

Wj+1 = f�Wj�∩Q�

Proposition 5.4.1. [7]. The sets C
�k�
j are coverings of Wj for all j� k = 0� 1� � � � . More-

over, for fixed j, C
�k�
j converges to Wj in Hausdorff distance if the number k of subdivision

steps in the initialization goes to infinity.

It can in general not be guaranteed that the continuation method leads to an approx-
imation of the entire set W u�p� ∩ Q. The reason is that the unstable manifold of the
hyperbolic fixed point p may “leave” Q but may as well “wind back” into it.

If we additionally assume the existence of a hyperbolic structure along the unstable
manifold then we can establish results on the convergence behavior of the continuation
method in a completely analogous way as in Ref. [8]. To this end assume that p is an
element of an attractive hyperbolic set A. Then the unstable manifold of p is contained
in A. We choose Q =⋃

x∈A W s
��x� for some sufficiently small � > 0, such that A = AQ.
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Let � ≥ 1 be a constant such that for every compact neighborhood Q̃ ⊂ Q of AQ we have
h�AQ� Q̃� ≤ � ⇒ Q̃ ⊂ U���AQ�.

Proposition 5.4.2. [23]. Assume that in the initialization step of the continuation method
we have

h�W0�C
�k�
0 � ≤ � diam� �k�

0

for some constant � > 0. If C
�k�
j ⊂ W s

��Wj� for j = 0� 1� 2� � � � � J , then

h�Wj�C
�k�
j � ≤ diam� �k�

j max
(
�� 1+�+�2 +· · ·+�j�

)
(5.9)

for j = 1� 2� � � � � J . Here � = C�� and C and � are the characteristic constants of the
hyperbolic set A.

The estimate (5.9) points up the fact that for a given initial level k and � near
1—corresponding to a weak contraction transversal to the unstable manifold—the approx-
imation error may increase dramatically with an increasing number of continuations steps
(i.e., increasing j).

Example 5.4.1. As a numerical example we consider the (spatial) circular restricted
three-body problem (Section 5.2) with � = 3�040423398444176×10−6 for the Sun/Earth
system.

Motivated by the requirements of the mission design for the NASA Genesis discovery
mission we aim for the computation of the unstable manifold of a certain unstable
periodic orbit (a so-called halo orbit) in the vicinity of the L1 Lagrange point. In light
of Proposition 5.4.2, a naive application of the continuation method would—due to
the Hamiltonian nature of the system—not lead to satisfactory results in this case. We
therefore apply a modified version of this method [23]. Roughly speaking the idea is
not to continue the current covering by considering one application of the map at each
continuation step, but instead to perform only one continuation step while computing
several iterates of the map.

More formally, we replace the second step in the continuation method by:

(ii) Continuation: For some J > 0 define

� �k�
J =

{
B ∈ ��+k 	 ∃ 0 ≤ j ≤ J 	 B∩f j�B′� �= ∅ for some B′ ∈ � �k�

0

}
�

The convergence statement in Proposition 5.4.1 is adapted to this method in a straight-
forward manner. One can also show that—as intended—the Hausdorff-distance between
compact parts of the unstable manifold and the computed covering is of the order of the
diameter of the partition, see Ref. [23] for details. However, and this is the price one has
to pay, one no longer considers short term trajectories here and therefore accumulates
methodological and round-off errors when computing the iterates f j .

A second advantage of the modified continuation method is that whenever the given
dynamical system stems from a flow �t one can get rid of the necessity to consider a
time-T -map and instead replace the continuation step by
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(ii) Continuation: For some T > 0 define

� �k�
T =

{
B ∈ ��+k 	 ∃ 0 ≤ t ≤ T 	 B∩�t�B′� �= ∅ for some B′ ∈ � �k�

0

}
�

This facilitates the usage of integrators with adaptive step-size control and finally made
the computations feasible for this example. Figure 5.5 shows the result of the computation,
where we set T = 7 and used an embedded Runge-Kutta scheme of order 8 as implemented
in the code DOPRI8532 [21] with error tolerances set to 10−9. See again [23] for more
details on this computation. A movie illustrating a flight along this manifold is available
at http://www-math.upb.de/~agdellnitz/Software/halo.html.

Fig. 5.5. Covering of part of the global unstable manifold of an unstable periodic orbit in the circular restricted
three-body problem (projection onto configuration space). The blue body depicts the Earth, the black trajectory
is a sample orbit which leaves the periodic orbit in the direction of the Earth. The coloring indicates the temporal

distance from the periodic orbit. (see Color plate 1)

2 http://www.unige.ch/~hairer/software.html.
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5.5 Detecting connecting orbits

One of the key ideas in applying dynamical systems techniques in space mission
design is to use connecting orbits between different invariant sets (e.g., periodic orbits or
invariant tori) as energy efficient trajectories for the spacecraft.

In this section we show how the set oriented continuation algorithm for the computation
of invariant manifolds described in the previous section can be used in order to detect
connecting orbits. For simplicity, we restrict our considerations to the situation where
connecting orbits between different steady state solutions have to be detected. We consider
a parameter dependent ordinary differential equation

ẋ = f�x���� (5.10)

where f : �d ×� → �d is a smooth vector field and � ⊂ � is an interval. Denote by
x� and y�, � ∈ �, two one-parameter families of hyperbolic steady state solutions of
(5.10)—allowing that x� = y�. We are interested in the detection of a connecting orbit
between two steady states x�̄, y�̄ while the system parameter � is varied. In order to
ensure that, in principle, connecting orbits can generically occur we assume that

dim�W u�x���+dim�W s�y��� = d for all � ∈ ��

Here W u�x�� and W s�y�� denote the unstable resp. the stable manifold of the correspond-
ing steady states.

We do not just aim for a rough guess of the parameter value �̄ but also for a guess of
the connecting orbit itself. Using these data as initial values one may employ standard
techniques on the computation of hetero-/homoclinic orbits [3, 17].

The discrete dynamical system which we are considering is the time-� map of the flow
of (5.10). We approximate this map using an explicit numerical integration scheme and
denote by ��k�

j ��� and ��k�
j ��� the covering of the unstable resp. the stable manifold of

x� resp. y� obtained by the continuation algorithm (Section 5.4) after k subdivision and
j continuation steps. Let

	 �k�
j ��� = ��k�

j ���∩��k�
j ����

The idea of the following algorithm is to find intersections of the box coverings ��k�
j ���

and ��k�
j ��� for different values of � and k. Using the hierarchical data structure introduced

in Section 5.3 these intersections can efficiently be computed. In fact, both coverings are
stored within the same tree and boxes belonging to different coverings are marked by
different flags. The boxes which belong to both coverings are then easily identified as
those that are marked by both flags.

Roughly speaking we are going to use the fact that if there exists a connecting orbit
for � = �̄, then the smaller the distance �� − �̄� the bigger we can choose the number
of subdivisions k while still finding a non-empty intersection 	 �k�

j ���. That is, if we plot
the maximal k for which a non-empty intersection is found versus �, we expect to see a
schematic picture as illustrated in Figure 5.6.
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λλ̄

k

Fig. 5.6. Maximal number of subdivisions k for which an intersection of the coverings ��k�
j ��� and ��k�

j ��� has
been found versus the parameter � (schematic).

5.5.1 The hat algorithm

Let �̃ ⊂ � be a finite set of parameter values—e.g., a set of equidistant values of �
inside �. Taking �̃, kmax ∈ � and jmax ∈ � as inputs the following algorithm computes a
function m 	 �̃ → � such that local maximizers of m are close to parameter values �̄ for
which there may exist a connecting orbit between x�̄ and y�̄.

m = hat(�̃, kmax, jmax)
for all � ∈ �̃

k:=0
do

j:=0
do

compute ��k�
j ��� and ��k�

j ���
j:=j+1

while 	 �k�
j ��� = ∅ and k<jmax

k:=k+1
while 	 �k�

j ��� �= ∅ and k<jmax

m��� =k
end

In the case where x� = y� one obviously has a non-empty intersection of ��k�
j ��� and

��k�
j ��� for all � ∈ �. In this case one needs to modify the intersection test accordingly.

In practice this is done by excluding parts of the box coverings which are inside some
neighborhood of the steady state solution x�.

We now show that the hat algorithm can indeed be used for the detection of non-
degenerate heteroclinic co-dimension one bifurcations [20]. Let �t denote the flow of the
system (5.10). Then we define for an equilibrium p and T ≥ 0

W u
T �p� = ⋃

0≤t≤T

�t�W u
loc�p��� W s

T �p� = ⋃
−T≤t≤0

�t�W s
loc�p���
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where W u�s
loc �p� are local (un)stable manifolds of p. If there exists an orbit connecting x�

and y� for � = �̄ then there is a T ≥ 0 such that

W u
T �x�̄�∩W s

T �y�̄� �= ∅�

(In practice, the minimal T with this property is unknown and this is the reason why
one should choose a rather large value for the parameter jmax in the input of the hat
algorithm.) Accordingly the intersection 	 �k�

j ��̄� will be non-empty for all box coverings
��k�

j ��̄� and ��k�
j ��̄� satisfying

W u
T �x�̄� ⊂ ⋃

B∈��k�
j ��̄�

B and W s
T �x�̄� ⊂ ⋃

B∈��k�
j ��̄�

B�

In fact since there exists a connecting orbit for � = �̄, 	 �k�
j ��̄� will be non-empty for all

k if j is big enough. But also the converse is true:

Proposition 5.5.1. [12]. If for some �̄ ∈ �̃ and j ∈ � the intersection 	 �k�
j ��̄� is non-

empty for all k, then there exists an orbit of (5.10) connecting x�̄ and y�̄.
For the statement of the following result it is convenient to introduce a specific choice

for the set �̃. If � = �a� b� then we define for n ∈ �

h = b−a

n
and �̃h = �a+ ih 	 i = 0� 1� � � � � n�

Proposition 5.5.2. Suppose that for some �̄ ∈ � the system (5.10) undergoes a non-
degenerate heteroclinic co-dimension one bifurcation with respect to the steady state
solutions x� and y�. Then for each integer kmax > 0 there are h > 0 and jmax > 0 such
that those �̃ ∈ �̃h for which ��̃− �̄� is minimal satisfy m��̃� = kmax. These values are in
particular local maximizers of m 	 �̃ → �. (Here m denotes the function computed by
the hat algorithm.)

Proof. Suppose that jmax is chosen in such a way that 	 �k�
j ��̄� is non-empty for all

k and j = jmax − 1. Then, by construction of the hat algorithm, m��̄� = kmax. Since
W u

T �x�� and W s
T �y�� depend continuously on � we can conclude that there is an � > 0

such that m��� = kmax for all � ∈ ��̄ − �� �̄ + ��. Now choose h > 0 so small that
�̃h ∩ ��̄−�� �̄+�� �= ∅. �

5.5.2 Numerical examples

Consider the system [4]

ẋ = y

ẏ = −�y +x3 +x2 −3 x+1�
(5.11)

Our aim is to detect an orbit within the region �−3� 2� × �−3� 3� which connects the
equilibrium x� = �−1−√

2� 0� to the equilibrium y� = �1� 0�. We use the time-0�2-map of
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Fig. 5.7. The function m for system (5.11).

the corresponding flow and choose �̃ = �0�2� 0�4� 0�6� � � � � 2�8, 3�0, as well as kmax = 26
and jmax = 20 as inputs for the hat algorithm. Figure 5.7 shows the graph of the resulting
function m. It indicates that for � ≈ 1�6 there indeed exists a connecting orbit.

In order to illustrate the behavior of the hat algorithm we additionally show the box
coverings obtained (a) for a fixed parameter value � = 1�6 and for different numbers
of subdivisions k (Figure 5.8) and (b) for a fixed depth k = 14 and different parameter
values � (Figure 5.9).
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Fig. 5.8. The coverings ��k��1�6� and ��k��1�6� for different k. The two equilibria are marked by dots.
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Fig. 5.9. The coverings ��14���� and ��14���� in dependence on �.

5.5.3 The Lorenz system

As a second example we consider the Lorenz system

ẋ = ��y −x�

ẏ = �x−y −xz

ż = xy −�z

with parameter values � = 10 and � = 8
3 . It is well known that there exists a homoclinic

orbit for the origin near � = 13�93 [36]. We consider the time-T map of the corresponding
flow with T = 0�2 and apply the hat algorithm with �̃ = �7� 8� 9� � � � � 19� 20, kmax = 30
and jmax = 8. Figure 5.10 shows the result of this computation as well as the number of
boxes in the intersection of ��27���� and ��27���� for � ∈ �13� 13�5� 14� 14�5� 15. Again
we illustrate the computations by plotting several computed coverings, see Figures 5.11
and 5.12.
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Fig. 5.10. Results for the Lorenz system. Left: The function m. Right: The number of boxes in 	 �27���� as a
function of �.
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(a) ρ = 10 (b) ρ = 14

(c) ρ = 17

Fig. 5.12. Lorenz system: The coverings ��21���� (blue) and ��21���� (yellow) in dependence of �.
(see Color plate 3)

5.6 Extension to controlled systems

The “patched 3-body approach” for the construction of energy efficient trajectories as
sketched in Section 5.2 is tailored for spacecraft with impulsive thrusters. In this section,
we propose an extension of this approach to the case of continuously controlled spacecraft
(as realized by certain low thrust propulsion systems). Roughly speaking, the stable and
unstable manifold tubes are replaced by certain (forward and backward) reachable sets
in phase space. Using set oriented numerical tools it is possible to efficiently compute
coverings of these sets as well as of the intersection of them with suitably chosen cross
sections. We illustrate the approach by considering a low thrust mission to Venus.

5.6.1 A controlled three-body problem

In current mission concepts, like for the ESA interplanetary mission BepiColombo to
Mercury or the Smart I mission, ion propulsion systems are being used that continuously
exert a small force on the spacecraft (“low-thrust propulsion”). In order to model the
motion of these spacecraft, we amend the planar circular restricted three-body problem
(5.1) by a suitably defined control term. We restrict our considerations to the special case
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of a control force whose direction is defined by the spacecraft’s velocity such that the
control term is parametrized by a single real value u, determining the magnitude of the
control acceleration. We do not take into account here that the mass of the spacecraft
changes during its flight.

The velocity vector of the spacecraft has to be viewed with respect to the inertial
coordinate system and not the rotating one. In view of this, one is lead to the following
control system (Figure 5.13):

ẍ+2ẋ⊥ = ���x�+u
ẋ+�x⊥

�ẋ+�x⊥� � (5.12)

Here, u = u�t� ∈ �umin� umax� ⊂� denotes the magnitude of the control force, x = �x1� x2�,
x⊥ = �−x2� x1� and � is the common angular velocity of the primaries.

In a mission to Venus the spacecraft will get closer to the Sun, meaning that part of
its potential energy with respect to the Sun will be transformed into kinetic energy. As a
consequence, the spacecraft’s velocity will have to be reduced during its flight such that
it matches the one of Venus. Thus, in our concrete application the control values u will
actually be negative.

5.6.2 Coupling controlled three-body problems

Obviously, every solution of (5.1) is also a solution of (5.12) for the control function
u ≡ 0. We are going to exploit this fact in order to generalize the patched three-body
approach as described in Section 5.2.2 to the case of controlled three-body problems. We
are still going to use the L1- and L2-Lyapunov orbits as “gateways” for the transition
between the interior, the planet, and the exterior regions. However, instead of computing
the relevant invariant manifolds of these periodic orbits, we compute certain reachable
sets [5], i.e., sets in phase space that can be accessed by the spacecraft when employing
a certain control function.

5.6.2.1 Reachable sets
We denote by ��t� z�u� the solution of the control system (5.12) for a given initial

point z = �x� ẋ� in phase space and a given admissible control function u ∈� = �u 	 �→

x2

x1
ω

x
x

ωx

P1

P2

Fig. 5.13. The velocity of the spacecraft with respect to the inertial frame is given by ẋ+�x⊥.
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�umin� umax�� u admissible. The set of admissible control functions will be determined by
the design of the thrusters. For example, it could consist of piecewise constant functions,
where the minimal length of an interval on which the function is constant is determined
by how fast the magnitude of the accelerating force can be changed within the thrusters.

For a set S in phase space and a given function � 	 S ×� → �, we call 
�S� �� =
�����x�u�� x�u� � u ∈ �� x ∈ S the set which is (�-) reachable from S.

5.6.2.2 Patched controlled three-body systems
We now extend the patched three-body approach to the context of a controlled system.
Roughly speaking, the extension can be summarized as follows: For two suitable subsets

�1 and �2 in phase space (typically two sets in the vicinity of an L1–Lyapunov orbit of
the outer planet and an L2–Lyapunov orbit of the inner one, respectively) one computes
associated reachable sets 
1 ⊂ �1 and 
2 ⊂ �2 within suitably chosen intersection planes
�1 and �2 in each system. After a transformation of one of these reachable sets into the
other rotating system, one determines their intersection. By construction, points in this
intersection define trajectories that link the two “gateway sets” �1 and �2.

More precisely, the procedure is as follows:
1. Identify suitable sets �1 and �2 in the phase space of the two three-body problems,

respectively. They should be chosen such that all points in �1 belong to trajectories
that transit from the planet region into the interior region (of the outer planet) and
those in �2 transit from the exterior region to the planet region (of the inner planet).
Furthermore, in each of the two three-body problems, choose an intersection plane
�i = �
 = 
i, i = 1� 2, (where �r� 
� are polar coordinates for the position of the
spacecraft and 
i is a suitable angle, see also step 3). Typically the sets �1 and �2 will
lie close to certain Lyapunov orbits.

2. For points x1 ∈ �1 and x2 ∈ �2 and an admissible control function u, let

�1�x1� u� = inf�t > 0 � ��t� x1� u� ∈ �1 and

�2�x2� u� = sup�t < 0 � ��t� x2� u� ∈ �2�

For i = 1� 2, compute


��i� �i� = ����i�x�u�� x�u� � x ∈ �i� u ∈ � ⊂ �i� (5.13)

3. In order to transform one of the reachable sets 
��1� �1� or 
��2� �2� into the other
rotating frame, let 
�t� be the phase angle between the two planets as seen in the rotating
frame of the inner planet. Choose a time t0 such that 
�t0� = 
1 − 
2. (Alternatively,
based on a prescribed time t0, one could choose the section angles 
1 and 
2 in step 1
such that 
�t0� = 
1 −
2.) Using t0, transform 
��1� �1� into the rotating frame of the
inner planet, yielding the set 
̂��1� �1� ⊂ �2. Note that here we exploit the fact that
both systems are autonomous.

4. Compute the intersection (see below)


̂��1� �1�∩
��2� �2� ⊂ �2� (5.14)

By construction, for each point x ∈ 
̂��1� �1�∩
��2� �2�, there exist admissible control
functions u1 and u2 and times t1 = −��x̃� u1�, t2 = −��x̄� u2�, such that ��t1� x̃� u1� ∈�1
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and ��t2� x�u2� ∈�2, where x̃ are the coordinates of x with respect to the rotating frame
of the outer planet at the phase angle 
�t0� between the two planets. By construction
of the sets �1 and �2 we have thus found a controlled trajectory that transits from the
outer planet region into the inner planet region.

5.6.2.3 Implementation
Let � be a finite partition of some relevant bounded part of �2. We compute coverings

�1��2 ⊂ � of 
̂��1� �1� and 
��2� �2� by integrating a finite set of test points in �1 and
�2, respectively. In the example computations, we restrict ourselves to constant control
functions with values in a grid in �umin� umax�. For each of these values and each test point,
we numerically integrate the control system (5.12) by an embedded Runge-Kutta scheme
with adaptive stepsize control as implemented in the code DOP853 by Hairer and Wanner
[21]. After each integration step, we check whether the computed trajectory has crossed
the intersection plane �1 resp. �2 and, if this is the case, start Newton’s method in order
to obtain a point in the intersection plane. In the case of 
̂��1� �1�, we transform this
point into the other system and, in both cases, add the corresponding partition element to
the collection �1 resp. �2.

Analogously to the approach in Section 5.5, we then extract all partition elements
P from � which belong to both coverings. In each element, we furthermore store the
minimal �v that is necessary to reach this set from either �1 or �2. Whenever the
intersection �1 ∩�2 consists of more than one partition element, this enables us to choose
trajectories with a minimal �v (with respect to the chosen parameters).

5.6.2.4 Application for a mission to venus
We now apply the approach described in the previous paragraphs to the design of a

mission to Venus. In 2005, the European Space Agency has launched VenusExpress3, a
mission to Venus that sends a MarsExpress-like spacecraft into an elliptical orbit around
Venus via a Hohmann transfer. Transfer time from Earth is around 150 days, while the
required �v amounts to roughly 1500 m/s [1, 18]. The interplanetary low-thrust orbit that
we are going to construct now corresponds to a flight time of roughly 1�4 years, applying
a �v of approximately 3300 m/s. Since typical low-thrust propulsion systems (as in the
ESA mission Smart I and the planned cornerstone mission BepiColombo for example)
have a specific impulse which is approximately an order of magnitude larger than the
one of chemical engines, these figures amount to a dramatic decrease in the amount of
on-board fuel: at the expense of roughly the threefold flight time the weight of the fuel
can be reduced to at least 1/3 of what is used for VenusExpress.

5.6.2.5 Computational details
We are now going to comment on the specific details of the computation for

the Earth–Venus transfer trajectory. We are considering the two three-body systems

3 http://sci.esa.int/science-e/www/area/index.cfm?fareaid=64



Chapter 5. Set oriented numerical methods 149

Sun–Earth–Spacecraft and Sun–Venus–Spacecraft with �-values of �SE =
3�04041307864×10−6 and �SV = 2�44770642702×10−6, respectively.

1. For the construction of the ‘gateway set’ �1 we consider the L1-Lyapunov orbit
�1 associated with the value C1 = 3�0005 of the Jacobi integral in the Sun–Earth
system. This value results from experimenting with several different values and
eventually bears further optimzation potential. We compute the intersection A1 of
its interior local unstable manifold (i.e., the piece of its local unstable manifold
that extends into the interior region) with the section � = �x1 = 0�98 in the given
energy surface �C = C1. Let Ā1 denote the points that are enclosed by the closed
curve A1 in this two-dimensional surface. We set

�1 = �1 ∪ �Ā1\A1��

Analogoulsy, we compute A2� Ā2 and �2 in the Sun–Venus system, using again
a value of C2 = 3�0005 for the Jacobi integral. As intersection planes we choose
�1 = �2 = �
 = �

4 , since this turned out to yield the good compromise between
transfer time and �v.

2. We have been using constant control functions only, employing 800 mN as an upper
bound for the maximal thrust. This bound is in accordance with the capabilities
of the thrusters that are planned to be used in connection with the BepiColombo
mission. Here we assumed a mass of 4000 kg for the spacecraft.

3./4. Figure 5.14 shows coverings of the sets 
̂��1� �1� (red) and 
��2� �2� (blue), as
well as a covering of their intersection (yellow), projected onto the �x1� ẋ1�-plane.
The associated optimal trajectory (i.e., the one with a minimal combined �v for both
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Fig. 5.15. Approximate interplanetary trajectory, joining the gateway sets �1 (near the Sun–Earth L1) and �2
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pieces of the trajectory) is shown in Figure 5.15 as seen in the inertial frame as well
as in both rotating frames. It requires a (constant) control force of u1 = −651 mN
in the first phase (i.e., while travelling from �1 to �1) and of u2 = −96 mN in
the second phase. The corresponding flight times are ��1� = 0�51 and ��2� = 0�92
years, amounting to a total �v of approximately 3300 m/s. We note that there still
exists a discontinuity in the computed trajectory when switching from the first to
the second phase. This is due to the fact that the two pieces of the trajectory are only
forced to end in the same box in the intersection plane. However, the radii of the
boxes are rather small, namely roughly 10 000 km in position space and ≈35 m/s
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in the velocity coordinates. This is why we expect the computed trajectory to be a
very good initial guess for a standard local solver (e.g., a collocation or multiple
shooting approach, see Refs.[15, 16, 37, 39]) for a suitably formulated optimal
control problem. In fact, we used the computed trajectory as an initial guess for the
solution of a four-body model by a recently developed variational approach to the
computation of optimal open loop controls [24].

5.6.2.6 The complete journey
In Ref. [11] we complement the above example computation by computing transfer

trajectories between the gateway sets �1��2 and the corresponding planets. We end up
with a flight time of roughly 1�8 years and a corresponding �v of slightly less than
4000 m/s for the complete journey from Earth to Venus.

5.7 Conclusion

Set oriented methods provide a robust framework for the numerical solution of problems
in space mission design. Due to the fact that outer approximations of the objects of
interest are computed, these methods in particular enable a reliable detection of certain
energy efficient trajectories like connecting orbits under the gravitational dynamics or
in the low-thrust setting. A particular inherent advantage of this approach is the ability
to systematically take into account the propagation of errors as well as the effects of
uncertainty—a feature which only has been touched upon in current work and which will
be explored in future investigations.

As mentioned above, the numerical effort of our approach crucially depends on the
dimension of the object that is being approximated (rather than on the dimension of
the underlying phase space). Correspondingly, while it is rather straightforward to treat
the case of the full three-dimensional configuration space in Section 5.6, it will be a
challenging task to incorporate a fully actuated (i.e., 3D) control, since the dimension of
the reachable sets which are being computed will typically be increased.
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Color plate 1. Covering of part of the global unstable manifold of an unstable periodic orbit in the circular
restricted three-body problem (projection onto configuration space). The blue body depicts the Earth, the black
trajectory is a sample orbit which leaves the periodic orbit in the direction of the Earth. The coloring indicates

the temporal distance from the periodic orbit. (see Fig. 5.5)



−30
−20

−10
0

10
20

30 −30

−20

−10

0

10

20

30

−15

−10

−5

0

5

10

15

20

25

y

x

z

(b) k = 21

(c) k = 27

(c) k = 15

Color plate 2. Lorenz system: The coverings ��k�(14) (blue) and ��k�(14) (yellow) for different k. (see Fig. 5.11)
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Color plate 3. Lorenz system: The coverings ��21���� (blue) and ��21���� (yellow) in dependence of �.
(see Fig. 5.12)
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6.1 Introduction

The engineering feasibility of a space mission is overwhelmingly dictated by the
amount of propellant required to accomplish it. This requirement stems from the simple
notion that if propellant consumption was not a prime driver, then amazing things are
possible such as geostationary spacecraft in low-Earth, non-Keplerian orbits. The need
for lowering the fuel consumption is so great for a space mission that optimal open-loop
guidance is flown during the critical endo-atmospheric segment of launch (even for the
manned Space-Shuttle) in preference to non-optimal feedback guidance. In fact, the Holy
Grail of ascent guidance can be simply described as fuel-optimal feedback control �1�.

The cost of fuel in space is exponentially larger than its terrestrial cost because space
economics is currently driven by space transportation costs rather than the chemical
composition of fuel. Recently, this simple point became more mundane when the U.S.
Government was charged more than twice the peace-time market-value of gasoline due
to the increased cost of transportation in a war zone �2�. That is, the cost of fuel is not
just intrinsic; it is also driven by a routine of operations or the lack of it thereof. Given
that space operations (access to space) are not yet routine, fuel in space continues to be
extraordinarily expensive thereby dictating the feasibility of any proposed architecture.

It is worth noting that since current launch costs continue to be high, the economics
of refueling an aging spacecraft need to be offset by the possibility of launching a

155
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cheaper, advanced spacecraft. As a result of this economic fact, multiple spacecraft of
undetermined number need to be refueled simply to break even �3�. Thus, in the absence
of an economically viable strategy for refueling, minimum-fuel maneuvers will continue
to dominate the design, guidance, control, and operations of a space system.

In principle, formulating the problem of designing minimum fuel trajectories is quite
simple: the rocket equation provides the necessary physics, and the problem can be formu-
lated either as a Mayer problem (maximizing the final mass) or as an equivalent Lagrange
problem �4�. In these well-documented formulations, the mass-flow-rate equation is part
of the dynamical system and one needs to explicitly account for the type of fuel used in
terms of the specific impulse of the propellant. Including the coupling of the propulsion
system with the mechanical system makes such a problem formulation undesirable during
a preliminary phase of mission analysis as it is difficult to independently evaluate the
merits of a trajectory or guidance algorithm that is intimately connected to a particular
engine or propellant characteristic. Thus, mission analysts frequently use the normalizing
concept of the characteristic velocity [4] that is sometimes simply referred to as the
total “delta-V” requirement even when impulsive maneuvers are not employed. The most
obvious way to compute these delta-Vs is to take Euclidean norms. In this chapter, we
show that these Euclidean norms are part of a class of L1 cost functions and not the
popular quadratic costs. As noted in Ref. [5], this point is frequently misunderstood in
the literature resulting in the design of poor guidance and control algorithms that incur
fuel penalties as high as 50%. On the other hand, L1 cost functions based on absolute
values have been widely considered going back as far as the 1960s; see, for example,
Ref. [6]. In the language introduced in this chapter, these early L1 cost functions can be
described as l1-variants of the L1 norm while the correct Euclidean-based cost functions
are the l2-variants of the L1 norm.

In an effort to clarify the above points, this chapter begins with first principles. By
considering various thruster configurations and the physics of the propulsion system, we
motivate a definition of lp-variants of the L1 norm. That is, by considering the way
the engines are mounted onto the spacecraft body we naturally arrive at lp versions of
the L1 norm of the thrust. These class of L1 norms of the thrust directly measure fuel
consumption. By extending this definition to thrust acceleration, the resulting mathematics
shows a proper way to decouple the propulsion system’s performance from that of the
trajectory so that a correct analysis can be carried out. Although these physics-based
formulations are somewhat formal, it creates apparent problems in theory and computation
because the cost function is nonsmooth (i.e., the integrand is non-differentiable). Rather
than employ formal nonsmooth analysis, �7� 8� we develop an alternative approach that
transforms the nonsmooth problems to problems with smooth functions while maintaining
the nonsmooth geometric structure. The price we pay for this approach is an increase in
the number of variables and constraints. Such transformation techniques are quite rampant
in analysis; that is, the exchange of an undesirable effect to a desirable one by paying
an affordable price. A well-known example of this barter in spacecraft dynamics is the
parameterization of SO�3�: a 4-vector “quaternion” in S3 is frequently preferred over a
singularity-prone employment of three Eulerian angles.

In order to demonstrate the merits of solving the apparently more difficult nonsmooth
L1 optimal control problem, we use a double-integrator example to highlight the issues,



Chapter 6. Space trajectory optimization 157

and motivate the practical importance of a Sobolev space perspective for optimal control.
Case studies for the nonlinear problem of orbit transfer demonstrate the theory and
computation of solving practical problems. Lest it be misconstrued that practical problems
are essentially smooth, or that the nonsmooth effects can be smoothed, we briefly digress
to illustrate points to the contrary. To this end, consider a modern electric-propulsion
system. When the electric power to the engine, Pe, is zero, the thrust force, T , is zero.
Thus, �Pe�T � = �0� 0� is a feasible point in the power-thrust space; see Figure 6.1. As
Pe is continuously increased, T remains zero until Pe achieves a threshold value, Pe�0. At
Pe = Pe�0, the engine generates a thrust of T = T0 > 0 as shown in Figure 6.1. This is the
minimum non-zero value of thrust the engine can generate. Thus, the feasible values of
thrust for a practical electric engine is given by the union of two disjoint sets,

T ∈ �T0� Tmax�Pmax��∪ �0	 � (6.1)

where Tmax�Pmax� is the power-dependent maximum available thrust, and Pmax is the
maximum available power which may be less than the engine power capacity, Pe�max,
due to housekeeping power requirements, available solar energy and a host of other
real-world factors. Note that Tmax�Pmax� ≤ Tsup where Tsup is the maximum possible thrust.
Thus, the practical control variable for such engines is electrical power and not thrust.
In this case, the thrust force becomes part of the controlled vector field in the dynamical
equations governing the spacecraft motion. Consequently, the real-world problem data is
truly nonsmooth. Smoothing the data (e.g., by curve fitting) generates infeasible values of
thrust [10] at worst and non-optimal controls at best—both of which are truly undesirable
as already noted. Clearly, in accounting for the stringent fuel requirements of practical
space missions, nonsmooth phenomena are inescapable. Thus, contrary to conventional
wisdom, the more practical the problem, the more the required mathematics.

Throughout this chapter, we use the words propellant and fuel interchangeably since
the differences between them are relatively irrelevant for the discussions that follow.

Pe,0 

0.5 kW

T0 

19 mN

(0, 0)

Tsup 

92 mN

Pe,max 

2.3 kW

Pmax

T

Pe

Tmax (Pmax)

Fig. 6.1. Feasible region for a practical electric powered space propulsion system; indicated numerical values
are for the NSTAR engine [9].
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6.2 Geometry and the mass flow equations

Suppose that we have a single thruster that steers the spacecraft by gimbaling (see
Figure 6.2 (a)). Let �x� y� z� be orthogonal body-fixed axes and T = �Tx�Ty�Tz� ∈ �3 be
the thrust force acting on a spacecraft. Then, the rocket equation is given by,

ṁ = −
√

T 2
x +T 2

y +T 2
z

ve

= −�T�2

ve

(6.2)

where ve is the exhaust speed, ṁ is the mass-flow rate, and

�T�p 
= ��Tx�p + ∣∣Ty

∣∣p +�Tz�p�1/p

is the lp-norm �11� of the thrust vector. If thrusting is achieved by six (ungimbaled)
identical engines (see Figure 6.2 (b)) rigidly mounted to the body axes, then we have,

ṁ = −�Tx�+
∣∣Ty

∣∣+�Tz�
ve

= −�T�1

ve

� (6.3)

If we have one main engine to perform the guidance while vernier engines are used to
steer the thrust vector (as in launch vehicles, for example; see also Figure 6.2 (c)), we
can write,

ṁ � −�T��
ve

� (6.4)

where the approximation implies that we are ignoring the fuel consumption arising from
the use of the vernier engines. Thus, the rocket equation can be unified as,

ṁ = −�T�p

ve

p = 1� 2 or �� (6.5)

where we have ignored the fact that this equation is an approximation for p = �. Note that
p is now a design option (i.e., gimbaled single engine or multiple ungimbaled engines).

The unified rocket equation holds in other situations as well. For example, in cases
when it is inconvenient to use spacecraft body axes, Eq. (6.2) can be used if �Tx�Ty�Tz�
are any orthogonal components of T. In such cases, steering must be interpreted to be

(a) (b) (c)

x

y

x

y

x

y

Fig. 6.2. Space vehicle thruster configurations: (a) l2, (b) l1, and (c) l� mass flow rates; additional thrusters
not shown.
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provided by attitude control (with a transfer function of unity). Similarly, Eq. (6.3) can
be used even when the axes are neither orthogonal nor body-fixed. The versatility of
such formulations has been used quite extensively elsewhere �10� 12–15�. Finally, note
that Eq. (6.5) applies whether or not the thrust region is continuous, discrete (e.g., on-off
thrusters), or even disjoint as in Eq. (6.1).

In regarding T as control variable, we note that physics bounds its control authority;
hence, we have T ∈ � ⊂ �3 where � is the control space, a compact set. Suppose
that T can be varied continuously (i.e., � is a continuous set). In the l2 mass-flow-rate
configuration, a bound on the thrust implies a bound on the l2 norm; hence the control
space for this configuration is a Euclidean ball, indicated as �2 in Figure 6.3. On the
other hand, in the l1 mass-flow-rate configuration, bounds on the thrust generated by each
thruster implies a bound on the l�-norm of T. Thus, for identical engines, the control
space for the l1-configuration is the “l� ball,” a solid cube, denoted as �1, in Figure 6.3
(cutaway view).

It is instructive to look at the mass-flow rate as a region in �3 by associating to �ṁ�
the same direction as the net thrust force. Thus the set,

�p 
= {
Fp ∈ �3 
 Fp = �T�p �T/�T�2� � T ∈ �p

}
(6.6)
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Fig. 6.3. Cutaway views of the geometries of the control space and their corresponding mass-flow rates.
(see Color plate 5)
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Gimbal Limits

Thrust

Gimbal 
Angle (0, 0) Zero Power

Max Power

Pe,0

Fig. 6.4. A two-dimensional illustration of a practical control space, �, in low-thrust trajectory optimization.

associates every net thrust firing, T, a vector Fp whose Euclidean norm is the absolute
value of the mass-flow-rate scaled by −1/ve (Eq. (6.5)). Clearly, we have, �2 = �2. On
the other hand, �1 
=�1. A cutaway view of the space �1 is the petal-shaped region shown
in Figure 6.3. The mismatch between the geometries of the mass-flow-rate and the control
space can generate some apparently peculiar control programs and fuel consumptions.
Although not articulated in terms of geometric mismatches, it was Bilimoria and Wie �16�
who first showed that a mismatch between the inertia ellipsoid (a sphere in their example),
and the control space (an l� ball) generates counter-intuitive time-optimal maneuvers in
the sense that the rigid-body rotations are almost always not about the eigenaxis. This
phenomenon was re-discovered in Ref. [17].

In practical applications, the control space, �, can be quite different from the sets
discussed above, and these characteristics can lead to quite interesting controllers. For
example, in the l2 mass-flow-rate configuration (see Figure 6.2 (a)), if the engine gimbals
are limited and the propulsion is electric, then � is a non-convex disjoint set as illustrated
in Figure 6.4 (see also Eq. (6.1)). Thus, solving practical problems requires a more careful
modeling of the control space, and quite often, � has a complex geometric structure
arising from systems’ engineering considerations such as the placement of the thrusters,
cant angles, and so on. Our intent here is not to document these issues but to simply
note that as a result of the structure of �, practical optimal trajectories �10� 15� can differ
substantially from textbook cases �4� 18�.

Although our focus here is largely thrusting space vehicles, we note that all of the
preceding notions apply to air vehicles as well. This is because, for air vehicles, the
mass-flow equations are the same except that one uses c = 1/ve as the thrust-specific fuel
consumption parameter.

6.3 Cost functions and Lebesgue norms

Propellant consumption is simply the change in mass of the spacecraft. If ve is a
constant, then from Eq. (6.5) we have

m�t0�−m�tf � = −
∫ tf

t0

ṁ dt = 1
ve

∫ tf

t0

�T�t��p dt� (6.7)
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where T�·� 
 �t0� tf � → T ∈ �3 is the thrust vector function of time. Thus, we can say
that the L1-norm of the scalar function, �t0� tf � �→ �T�p ∈ �, is a measure of the fuel
consumption, and is, in fact, equal to the propellant consumption with a proportionality
factor, 1/ve. If ve is not a constant, then of course 1/ve must be inside the integral in
Eq. (6.7) and takes the role of a weight function. Thus, in performing minimum-fuel
analysis independent of the propulsion system, it is obvious from Eq. (6.7), that the proper
family of cost functions is indexed by p and can be defined as,

J�T�·�� 
=
∫ tf

t0

�T�t��p dt� (6.8)

where J is the functional, T�·� �→ �. In solving optimal control problems, it is useful
to be cognizant of the space, �, of admissible controls so that the problem formulation
can be changed to search for controls in a more desirable space should the solution in a
particular formulation turn out to be less than desirable. As Pontryagin et al. �19� note,
� is frequently taken to be the (incomplete) space of piecewise continuous bounded
functions for engineering applications but expanded to the space of measurable bounded
functions for rigorous mathematical proofs. Deferring the implications of this observation,
we simply note that T�·� ∈ �, so that the functional J in Eq. (6.8) is understood to mean,
J 
 � → �. In subsequent sections, we will evaluate J from a larger space, � ×�×�n,
where � is the function space corresponding to the state variable so that the functional
J is understood to mean, J 
 � ×�×�n → �. It will be apparent later that the proper
space for � (and �) is a Sobolev space �20�, as it forms the most natural space for both
theoretical �21� and computational considerations �22�.

6.3.1 Quadratic cost is not p = 2

By a minor abuse of notation, we denote by J2 the cost function for p = 2; thus, by
setting p = 2 in Eq. (6.8) we have,

�J2�
2 =

(∫ tf

t0

�T�t��2 dt

)2

� (6.9)

Similarly, let JQ denote the standard quadratic cost function; then, we have,

JQ 
=
∫ tf

t0

�T 2
x �t�+T 2

y �t�+T 2
z �t�� dt

=
∫ tf

t0

�T�t��2
2 dt


=
(∫ tf

t0

�T�t��2 dt

)2

�

Thus,

�J2�
2 
= JQ�
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The importance of this observation is that integration does not commute with the operation
of taking powers. Thus, the oft-used argument that minimizing a quantity is the same as
minimizing its square applies to J 2

2 , which measures fuel consumption, but minimizing
J2 is not the same as minimizing JQ. In physical terms, this is equivalent to noting that
v2

e

(
m�t0�−m�tf �

)2 
= JQ; see Eq. (6.7).

6.3.2 Fuel expenditures are measured by L1 norms

For a scalar-valued function, f 
�⊇ � →�, the Lp-norm of f , denoted by �f�Lp �< ��
is defined by [11],

�f�Lp 
=
(∫

�
�f�t��p dt

)1/p

� (6.10)

where �·� denotes the absolute value. For vector-valued functions, f 
 � ⊇ � → �n, n > 1,
the Lp-norm, �f�Lp is frequently defined to be derived from Eq. (6.10) with �·� replaced
by the Euclidean norm in �n. Thus, for example, if n = 2 so that f�t� = �f1�t�� f2�t��,
then, by this definition of a norm, �f�Lp is given by,

�f�Lp 
=
(∫

�

(√
f 2

1 �t�+f 2
2 �t�

)p

dt

)1/p

�

Applying this definition for the function, T�·�, we get,

�T�·��L1 =
∫ tf

t0

√
T 2

x �t�+T 2
y �t�+T 2

z �t�dt

�T�·��2
L2 =

∫ tf

t0

�T 2
x �t�+T 2

y �t�+T 2
z �t��dt�

Clearly, JQ = �T�·��2
L2 , the L2-norm of T�·� and as shown in the previous subsection does

not measure fuel. On the other hand, �T�·��L1 , does indeed measure fuel consumption
and follows from Eq. (6.8) with p = 2.

Since finite-dimensional norms are equivalent, we can also define the Lp-norm of a
vector-valued function, f , in Eq. (6.10) with �·� replaced by the l1 norm in �n. Thus, for
f�t� = �f1�t�� f2�t��, we can define, �f�Lp , as

�f�Lp 
=
(∫

�

( �f1�t��+ �f2�t��
)p

dt

)1/p

�

Using this definition, we get,

�T�·��L1 =
∫ tf

t0

(�Tx�t��+ �Ty�t��+ �Tz�t��
)
dt

�T�·��2
L2 =

∫ tf

t0

(�Tx�t��+ �Ty�t��+ �Tz�t��
)2

dt�

From Eq. (6.8), by substituting p = 1, it follows that �T�·��L1 is indeed a measure of the
fuel consumption while �T�·��L2 once again fails the test.
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6.3.3 L1 cost and lp geometry

In addition to performing minimum-fuel analysis independent of the the propulsion
system, one sometimes prefers to ignore the change in mass, particularly if the burn time
is small and/or the specific impulse is high. In this case, the control may be taken as
the thrust acceleration, u = T/m. By using the same arguments leading to Eq. (6.8), we
can now state a fundamental result: the cost functions for minimum fuel control are a
family of L1-norms of the control function, t �→ u. Specifically, the minimum fuel cost
(see Eq. (6.8)) is the L1-norm of the lp-norm function �t0� tf � �→ �u�p ∈ �

J�u�·�� =
∫ tf

t0

�u�t��p dt� (6.11)

where we may use u to be either the thrust or the acceleration with the latter form of
the control accompanied by the caveat mentioned above. Among others, one possible
reason why this “lp-variant” of the L1-norm is not used as a cost function is that the
running cost, i.e., the integrand in Eq. (6.11), is not differentiable with respect to the
parameter u. Deferring the details of the implications of this non-differentiability, we
note that the Pontryagin version [19] of the Minimum (Maximum) Principle does not
require differentiability of the integrand with respect to the control parameter; only
differentiability with respect to the states is required. Nonetheless, it is worth noting that
new versions of the Minimum Principle �8� 21� 23� do not even require differentiability
with respect to the states: thanks to the era of nonsmooth analysis pioneered by Clarke,
Sussmann and others �8� 23–25�.

6.3.4 Penalty for not using the L1 cost

The penalty in propellant consumption for designing trajectories not based on the
proper family of L1 cost functions can be summarized by the following fundamental fact.

Proposition 6.3.1. Given two optimal control problems, F and G, that only differ in the
optimality criteria, the F -cost of the G-optimal solution can never improve the F -cost of
the F -optimal solution. For minimization problems, we have,

JF �xF �·�� uF �·�� ≤ JF �xG�·�� uG�·���
The proof of this proposition is elementary; see Ref. [5].

If we now let the functional JF be the L1 cost and JG be any other cost functional
(such as a quadratic cost), it is clear that the system trajectory for Problem G cannot yield
better fuel performance than the L1 cost.

In addition to penalties in fuel consumption, additional penalties may arise in the
design of the control system itself. For example, the thrust force (or acceleration) appears
linearly in a Newtonian dynamical system: this is a direct consequence of Newton’s
Laws of motion and not a simplification from linearization. In minimizing such control-
affine systems, barring the possibility of singular arcs, the L1-optimal controller has a
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bang-off-bang structure. On the other hand, quadratic-cost-optimal controllers are contin-
uous controllers. Continuous thrusting is frequently not desirable for spacecraft guidance
and control since these controllers typically create undesirable effects on the payload.
For example, thrusting increases the microgravity environment on the space station or
induces undesirable effects on precision pointing payloads. Hence it is preferable to do
much of the science during the “off periods”. Thus, it is important to be cognizant of not
creating new systems-engineering problems that were non-existent prior to active control
considerations. The double integrator example in the next section illustrates all the main
points including a quantification of the fuel penalty incurred in not using the L1 cost.

6.3.5 A note on global optimality

Obviously, zero propellant is the absolute lowest possible cost. This fact can be mathe-
matically stated as,

inf
u�·�∈�

(∫ tf

t0

�u�t��p dt

)
= 0�

where p = 1� 2 or � as before. Thus, if the L1 cost is zero, it is apparent that we have
a globally fuel-optimal solution. In other words, there is no need to prove necessary or
sufficient conditions for global optimality if the L1 cost is zero. Such globally optimal
solutions are extremely useful in the design of spacecraft formations, and are further
discussed in Refs. [12–14]. An interesting consequence of the existence of such solutions
is that there may be several global minima. A simple approach to finding these solutions
is to design cost functionals, JG�x�·�� u�·��, that are not necessarily the L1 cost, but are
such that∫ tf

t0

�u∗
G�t��p dt = 0�

where u∗
G is the control solution to some Problem G. The advantage of such problem

formulations from both a theoretical and computational perspective is that the optimal
system trajectories can be different from one problem formulation to another while
yielding the same zero fuel cost. Thus, for example, if we were to solve a quadratic cost
problem (as Problem G) and the system trajectory generated a solution such that the
control was zero, then it is also a zero propellant solution. Since there is no guarantee that
the state trajectory converges (theoretically and computationally) to the same trajectory as
the L1 solution, this seemingly undesirable property can be exploited to seek alternative
global minimums. Such a strategy is used in Refs. [12–14] to design various spacecraft
formations.

6.4 Double integrator example

The second-order control system, ẍ = u, is widely studied [26] due to the simple
reason that it is a quintessential Newtonian system: any information gleaned from a study
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of double-integrators has broad implications. In this spirit, we formulate an L1 optimal
control problem as,

xT 
= �x� v� u 
= �u� � 
= �u 
 �u� ≤ 6	

�L1P�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize J1�x�·�� u�·�� =
∫ 1

0
�u�t�� dt

Subject to ẋ = v
v̇ = u

�x0� v0� = �0� 0�
�xf � vf � = �1� 0�

Although the absolute value function, u �→ �u�, is not differentiable, the Pontryagin version
of the Minimum Principle is still applicable as noted earlier. It is straightforward to show
that the solution to Problem L1P is given by,

u1�t� =
⎧⎨
⎩

6 t ∈ �1

0 t ∈ �2

−6 t ∈ �3

x1�t� =
⎧⎨
⎩

3t2 t ∈ �1

3��2t −�� t ∈ �2

6�t +�−�2�−3�1+ t2� t ∈ �3

v1�t� =
⎧⎨
⎩

6t t ∈ �1

6� t ∈ �2

6�1− t� t ∈ �3

x1
�t� = 2

2�−1

v1
�t� = 1−2t

2�−1
�

where �i� i = 1� 2� 3 are three subintervals of �0� 1� defined by,

�1 = �0���� �2 = ��� 1−��� �3 = �1−�� 1�

and

� = 1
2

−
√

1
12

� 0�211�

In addition, we have,

J1�x1�·�� u1�·�� =
∫ 1

0
�u1�t�� dt = 12� � 2�536� (6.12)
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Now suppose that we change the cost function in Problem L1P to a quadratic cost
while keeping everything else identical; then, we can write,

�LQP�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Minimize JQ�x�·�� u�·�� =
∫ 1

0
u2�t� dt

Subject to ẋ = v
v̇ = u

�x0� v0� = �0� 0�
�xf � vf � = �1� 0�

The optimal solution is given by,

uQ�t� = 6−12t

xQ�t� = t2�3−2t�

vQ�t� = 6t�1− t�

xQ
�t� = −12

vQ
�t� = 12t −6

and

JQ�xQ�·�� uQ�·�� =
∫ 1

0
u2

Q�t� dt = 12 (6.13)

That maxt∈�0�1� �uQ�t�� = 6 explains why the control space in Problem L1P was bounded
accordingly.

6.4.1 LQP v/s L1P

In comparing the performance of the two controllers, it is quite a simple matter to
evaluate the L1-cost of the quadratic control as,

J1�xQ�·�� uQ�·�� =
∫ 1

0

∣∣uQ�t�
∣∣ dt = 3�0 (6.14)

Comparing this result with Eq. (6.12), we find that the quadratic controller is 18�3%
more expensive (in fuel) than the L1-optimal controller; obviously, a substantial margin.
Further differences between the controllers are more evident in Figure 6.5. In comparing
the two controllers, it is quite obvious that the L1-controller is more desirable than the
quadratic controller due to all the reasons outlined in Section 6.3.4. Quantitatively we
note that we have a preferred zero-control action for approximately 58% of the time
interval.

Despite the large differences between the two optimal controls, Figure 6.6 appears to
indicate that there is little difference between the state trajectories. This apparently small
difference comes about because plots such as Figure 6.6 do not adequately capture the
true distance between two functions in the correct topology. The proper space to view
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Fig. 6.5. Control plots for the quadratic and L1-optimal control problems.
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Fig. 6.6. Position plots for the quadratic and L1-optimal control problems.

functions in control theory is a Sobolev space �20–22�. This space, denoted as, W m�p,
consists of all functions, f 
 � ⊇ � → � whose jth-derivative is in Lp (see Eq. (6.10))
for all 0 ≤ j ≤ m. The Sobolev norm of f is defined as,

�f�Wm�p 
=
m∑

j=0

∥∥f �j�
∥∥

Lp � (6.15)
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Thus, in observing the plots in Figure 6.6 as being close to one another, we are implicitly
viewing them in some Lp-norm. For example,∥∥x1�·�−xQ�·�∥∥

L� 
= ess sup
t∈�0�1�

∣∣x1�t�−xQ�t�
∣∣= max

t∈�0�1�

∣∣x1�t�−xQ�t�
∣∣� 0�03�

When we observe the same functions in a Sobolev norm, say, W 1��, then we have,∥∥x1�·�−xQ�·�∥∥
W 1�� = max

t∈�0�1�

∣∣x1�t�−xQ�t�
∣∣+ max

t∈�0�1�

∣∣ẋ1�t�− ẋQ�t�
∣∣� 0�30�

where we have replaced ess sup by max as before. Thus, the functions plotted in Figure 6.6
are ten times further apart in the Sobolev norm when compared to the corresponding
Lebesgue norm. Since ẋ = v, the velocity plot shown in Figure 6.7 is more representative
of the distance between the position functions.

The above arguments are essentially primal in flavor. A dual space perspective provides
a more complete picture as covector spaces are fundamental to optimization. In this
perspective �27�, the position plot (Figure 6.8) must be jointly considered with the position
costates. This view is quite justified by the large separation between the costates as
evident in Figure 6.8. Thus, costates serve very important purposes in computational
optimal control theory and are further illustrated in Section 6.7.

It is worth noting that if the control space, � = �u 
 �u� ≤ 6	, is changed to � = �, the
solution to Problem LQP remains unaltered while a solution to Problem L1P does not
exist. In order to contemplate a solution to Problem L1P for � =�, the space of admissible
controls must be expanded from Lebesgue measurable functions (the assumption in the
Pontryagin version of the Minimum Principle) to the space of generalized functions �28�.
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Fig. 6.7. Velocity plots for the quadratic and L1-optimal control problems.
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Circumventing these technicalities by using a continuation method of Lawden �29�, it is
straightforward to show �5� that the optimal control is given by

u��t� = ��t�−��1− t�

where � is the Dirac delta function. The states are then given by,

x��t� = t

v��t� =
⎧⎨
⎩

�0� 1� t = 0
1 t ∈ �0� 1��

�0� 1� t = 1

where v��t� is expressed in a set-valued form consistent with nonsmooth calculus; [8]
see also Ref. [30] for a practical demonstration of nonsmooth concepts. In this spirit, the
L1-cost of impulse control is given by,

J1�x��·�� u��·�� = 2 (6.16)

Thus, the quadratic controller (see Eq. (6.14)) is 50% more expensive than the impulse
controller. Note however that the impulse cost is only a mathematical phenomenon
whereas the cost obtained by solving the L1P is indeed the true cost of fuel. Furthermore,
these differences in cost have nothing to do with “gravity-” or “drag-loss,” terminology
that is quite common in orbital mechanics to describe other phenomena.
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6.5 Issues in solving nonlinear L1-optimal control problems

While the previous sections illuminated the core principles in formulating the
nonsmooth L1 problems and the penalties incurred in solving “simpler” smooth prob-
lems, the approach used in Section 6.4 is not portable to solving astrodynamical systems
because closed-form solutions to even simple optimal control problems are unknown. In
order to frame the key issues in computing L1-optimal controls for general dynamical
systems, we summarize the problem statement as,

�B�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize J�x�·�� u�·�� t0� tf � =
∫ tf

t0

�u�t��p dt

Subject to ẋ�t� = f�x�t�� u�t��
u�t� ∈ �
�x0� xf � t0� tf � ∈ �

�

where � ⊂ �Nx ×�Nx ×�×� is some given endpoint set and � is a compact set as
before. State constraints of the form, x�t� ∈ � can also be added to the problem, but we
focus on Problem B as formulated above to only limit the scope of the discussion; the
ideas extend to these situations as well. The functional J is the map, �×�×�×� �→�.
As indicated earlier, although we typically take � = W 1�1 for theoretical purposes, we
limit � to the space W 1�� for computation. Summarizing the result of Section 6.3.5,
we have,

Proposition 6.5.2. Any tuple, �x∗�·�� u∗�·�� t∗
0� t∗

f �, for which J�x∗�·�� u∗�·�� t∗
0� t∗

f � = 0 is
a globally optimal solution to Problem B.

There are essentially three methods for solving optimal control problems �31�, all of
which require a careful analysis of the Hamiltonian Minimization Condition �23� (HMC).

6.5.1 The Hamiltonian minimization condition

At each instant of time, t, the HMC is a nonsmooth static optimization problem,

�HMC�

{
Minimize

u
H��� x� u� = �u�p +�T f�x� u�

Subject to u ∈ �
�

where H is the control Hamiltonian �23�. In the framework of the Minimum Principle,
� ∈ �Nx is the costate where t �→ � satisfies the adjoint equation while in Bellman’s
dynamic programming framework, � = ��/�x where, � 
�×�Nx →�, is a function that
satisfies the Hamilton–Jacobi–Bellman (HJB) partial differential equation �8�,

	 ��x�t� x�� x�+�t�t� x� = 0� (6.17)



Chapter 6. Space trajectory optimization 171

where 	 
 �Nx ×�Nx → � is the lower Hamiltonian [8] defined as,

	 ��� x� 
= min
u∈�

H��� x� u�� (6.18)

In recognizing that Problem HMC is fundamental to solving optimal control problems,
we discuss some key issues pertaining to this problem.

6.5.2 Issues in solving Problem HMC

In Section 6.4, the control variable was one-dimensional (Nu = 1). This facilitated
solving Problem HMC simply by inspection without resorting to nonsmooth calculus �8�.
To solve problems in higher dimensional spaces, we need a more systematic procedure.
Rather than resort to formal nonsmooth analysis, a procedure that is tenable to both
analysis and computation is to convert the nonsmooth HMC to an equivalent problem
where the functions describing the objective function and the constraint set are smooth.
Such conversion techniques, well-known in nonlinear programming, can be achieved
by exchanging the complication of nonsmoothness in a lower dimensional space to a
simpler problem in higher dimensions. As noted in Section 6.1, similar trades are rampant
in engineering analysis. In order to focus our attention to the conversion issue, we
demonstrate this procedure for the HMC by limiting the scope of the problem to the
case when f is differentiable with respect to u, and � is given in terms of inequalities as
follows,

� 
= {
u ∈ �Nu 
 hL ≤ h�u� ≤ hU

}
�

where h 
 �Nu → �Nh is a differentiable function and hL� hU ∈ �Nh are the lower and
upper bounds on the values of the function h respectively. Much of the analysis to follow
easily extends to more complex situations (see for example, Section 6.8 of this chapter and
Ref. [32]), but our intent here is not an enumeration of these situations but to demonstrate
a methodology. Hence, we choose to illustrate the concepts for one of the most prevalent
cases in engineering applications.

As noted previously, the function, u �→ H��� x� u�, is nonsmooth because �u�p is
nonsmooth. For example, when p = 2 and Nu = 3,

�u�2 =
√

u2
1 +u2

2 +u2
3�

The function, u �→ �u�2, is not differentiable at the origin �0� 0� 0�. This is illustrated in
Figure 6.9 for u ∈�2. As Betts [33, 34] notes, this single point can cause major problems
in computation. The singular point cannot be ignored even in a theoretical framework
as it is the most desirable point: as evident in Section 6.4, it occurs for about 58% of
the time interval in the solution to Problem L1P. That is, one point in the solution to
Problem HMC can easily get smeared over a substantial time interval. In mathematical
terms, this is simply an effect of the chain rule in evaluating the derivative of t �→ �u�2

by way of the gradient of u �→ �u�2. Noting that the function u �→ �u�2
2 is differentiable,
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Fig. 6.9. Illustrating the nonsmooth structure of u �→ �u�2. (see Color plate 6)

the nonsmooth HMC for p = 2 can be converted to a smooth one by introducing a
pseudo-control variable u4 
= �u�2. That is, Problem HMC for p = 2 (and Nu = 3) can be
transformed to a smooth nonlinear programming (Nl2P) problem in an augmented control
variable, ua ∈ �Nu+1, as,

uT
a 
= �uT � u4� ≡ �u1� u2� u3� u4�

�Nl2P�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize
ua

H��� x� ua� = u4 +�T f�x� u�

Subject to u ∈ �
�u�2

2 −u2
4 = 0

u4 ≥ 0

�

where we have retained the use of the symbol H for the new Hamiltonian by a minor
abuse of notation. Since the original problem was nonsmooth, the inequality, u4 ≥ 0,
essentially retains the nonsmooth geometric structure of the problem although the function
used in the inequality is now differentiable. Thus, the standard Karush–Kuhn–Tucker
(KKT) conditions for Problem Nl2P can be applied. The minimum-fuel orbit transfer
example discussed in Section 6.7 further discusses the KKT conditions in conjunction
with the larger problem of actually solving the optimal control problem.

The situation for p = 1 is similar, except that it requires the introduction of many more
control variables. This is because the function,

u �→ �u�1 = �u1�+ �u2�+ �u3�
is non-differentiable at the origin, �0� 0� 0�, as well as all other points where ui = 0�
i = 1� 2� 3 (see Figure 6.10). By introducing variables, vi ≥ 0� wi ≥ 0� i = 1� 2� 3, the
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Fig. 6.10. Illustrating the nonsmooth structure of u �→ �u�1. (see Color plate 7)

nonsmooth HMC problem for p = 1 can be transformed to a smooth nonlinear program-
ming (Nl1P) problem in an augmented control variable, ua ∈ �2Nu , as,

ua 
= �v� w�

�Nl1P�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Minimize
ua

H��� x� ua� = 1T ua +�T f̃�x� ua�

Subject to h̃L ≤ h̃�ua� ≤ h̃U

v ≥ 0
w ≥ 0

�

where 1 is an �2Nu -vector of ones and tildes over the symbols implies transformed
functions and variables when u is transformed to ua. For example, when f is control-affine,

f�x� u� = a�x�+B�x�u�

where a 
 �Nx → �Nx and B 
 �Nx → �Nx×Nu , then f̃ is given by,

f̃�x� �v� w�� = a�x�+B�x��v −w��

Once Problem HMC is converted to an NLP with smooth functions, the KKT conditions
then describe the necessary conditions for a putative optimal controller.

6.5.3 HMC on HJB

A cursory examination of Problems Nl1P and Nl2P reveal that it may be quite difficult to
obtain a closed-form solution. An examination of the KKT conditions for these problems
strengthen this observation which has far-reaching consequences.
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In the absence of a closed-form solution to Problem HMC, an explicit expression
for the map, ��� x� �→ u, cannot be obtained. This means that the lower Hamiltonian
(Eq. (6.18)) cannot be constructed explicitly. That is, it would be impossible to even
write down explicitly the HJB partial differential equation. This elementary observation
almost immediately eliminates the HJB as a practical means for solving problems beyond
academic ones.

In cases where the controls can be eliminated, the HJB suffers from at least two
additional well-known problems �8� 21� 26� that merit recounting. As is the case for a
large number of problems, a differentiable solution to the HJB does not exist for the
L1-optimal control problem; however, if the notion of differentiability is expanded along
the lines of nonsmooth analysis, then, according to the celebrated result of Crandall and
Lions �8� 21�, the Bellman value function is a unique viscosity solution to the HJB.
This theoretical breakthrough has not yet translated to practical problem solving, as even
smooth partial differential equations continue to be challenging problems.

The third problem associated with Eq. (6.17) is the absence of good computational
techniques for solving partial differential equations involving more than three independent
variables. Even for a coplanar orbit transfer problem (discussed further in Section 6.7),
Nx = 4. For practical three-dimensional space models, Nx = 6; hence, the number of
independent variables in � is seven. Given that the vast majority of computational
techniques for solving partial differential equations is limited to two independent variables,
it is clear that solving the HJB for a practical problem is far from feasible.

It is worth noting at this stage that even if the HJB can be solved numerically, it loses
one of its major attractions: the ability to generate feedback solutions in closed form.
This is simply because, a numerical solution to the HJB implies a table lookup data for
feedback control or an approximation at best for a closed-form solution by way of a
surface fit for Bellman’s value function. Thus, although the Hamilton–Jacobi framework
is quite elegant, the absence of a viable methodology that overcomes the major technical
hurdles to solve a generic problem limits its utility to low dimensional academic problems;
hence, we eliminate this approach from further consideration.

6.5.4 HMC on the Minimum Principle

Unlike the HJB framework, the Minimum Principle does not require an explicit solu-
tion to Problem HMC. This first step immediately trumps the HJB from a solvability
perspective; however, an application of the Minimum Principle results in a nonlinear,
differential-algebraic boundary value problem (BVP). Given that even linear differential
BVPs do not have closed-form solutions, finding analytical solutions to optimal controls
does appear to be quite daunting. This task is quite formidable even from a numerical per-
spective as the Hamiltonian BVP has a fundamental sensitivity problem that results from
its symplectic structure �26�. As discussed by Bryson and Ho �26�, when a shooting-type
method is applied to solve the Hamiltonian BVP, the sensitivity of the initial conditions
with respect to the final conditions is so large that the values of the intervening variables
often exceeds the numerical range of a computer. While multiple-shooting algorithms
alleviate this particular issue, the vast number of other problems associated with shooting
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methods as detailed by Betts [33, 34] makes them fundamentally unsuitable for computing
optimal controls.

From a modern perspective [22, 46], a BVP is essentially a problem of solving a
generalized equation of the form, 0 ∈
 �x�, where 
 is a set-valued map. By resisting the
temptation to use shooting methods, generalized equations can be solved more robustly
by a combination of operator methods that retain the structure of 
 and nonlinear
programming techniques �24�. Details of this approach are well documented by Betts �34�
and Hager �22�.

6.6 Solving nonlinear L1-optimal control problems

As a result of the observations of the preceding paragraphs, solving optimal control
problems, L1 or otherwise, are widely perceived as difficult problems. Over the last
decade, as a result of major advancements in approximation theory and optimization
techniques, solving optimal control problems, particularly smooth problems, are no longer
considered to be difficult. This is evident by the broad class of complex optimal control
problems that have been solved with relative ease �1� 12–14� 30� 33–36�. This approach
is essentially a modification and modernization of Euler’s abandoned idea in solving
calculus-of-variations problems combined with Lagrange’s multiplier theory �37�. An
early version of this approach is due to Bernoulli. This neo-Bernoulli–Euler–Lagrange
approach, is encapsulated as the Covector Mapping Principle (CMP) and represents a
triad of ideas for solving optimal problems �22� 31� 37�. When infused with modern
computational power, the CMP facilitates real-time computation of optimal controls
�38–40� thus enabling a neo-classical approach to feedback guidance and control.

6.6.1 A brief history of the covector mapping principle

According to Mordukhovich �25�, Euler discovered the Euler–Lagrange equations by
discretizing the fundamental problem of the calculus of variations, and then passing to
the limit. Upon receiving Lagrange’s letter containing “� � � a beautiful and revolutionary
idea � � � Euler dropped his own method, espoused that of Lagrange, and renamed the
subject the calculus of variations” �41�. Thus, the invention of direct methods �42� of
the 1960s are, conceptually, Euler’s abandoned idea before the limiting process �31�. Of
course, modern direct methods �33� 34� typically discretize the problem using higher-
order methods although Eulerian approximations continue to be widely used. A key point
in modernizing Euler’s original idea is the absence of the limiting process by solving
the problem on a digital computer for a sufficiently fine grid, much the same way as we
solve initial value problems by a Runge-Kutta method for some non-zero step size. We
therefore expect the discrete solution to satisfy point wise the Euler–Lagrange equations.
That this expectation does not necessarily bear fruit is one of the many reasons why
indirect methods were popular (until the early 1990s) despite their well-known problems
in solving symplectic (Hamiltonian) boundary-value problems �26� 31� 34�.

Unlike the Euler-Lagrange approach with its distinct primal “flavor,” had Euler com-
bined his discretization approach with Lagrange’s multiplier theory, the history of the
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calculus of variations might have taken on an early dual flavor. This combination did not
take place until 200 years later, after the discovery of Minimum Principle �25�. What is
remarkable about this combination is that the discrete problem does not generally satisfy
the discrete Minimum Principle without an additional assumption of convexity. Since
no convexity assumptions are required for the validity of the continuous-time Minimum
Principle, discrete solutions are viewed with great suspicion. Significant fodder for this
suspicion is provided by higher-order methods. That is, rather than improve the quality
of the solution, a higher-order discretization can lead to a completely disastrous solution
�22� 35� 43�. These experiments of the late 1990s paved a way for a deeper understanding
of optimal control theory by connecting the first principles to approximation theory and
computation in Sobolev spaces �22� 35�. In other words, convergence of the approximation
takes center stage for both theory and practice �25� 35�.

6.6.2 Convergence and the covector mapping principle

The emerging issues in the neo-Bernoulli–Euler–Lagrange approach can be effectively
visualized by the diagram shown in Figure 6.11. Here, Problem B is not necessarily
limited to the problem discussed in Section 6.5 although our major focus continues to be
the L1-optimal control problem. The bottom of Figure 6.11 represents a generalization
of Euler’s initial idea of discretizing Problem B to Problem BN where N denotes the
number of discrete points. These are the classical direct methods. If convergence can
be proved, then passing to the limit, N → �, solves the original continuous problem in
the limit (see the bottom convergence arrow in Figure 6.11). A convergence theorem is
also a practical necessity since it ensures us that we can obtain solutions to an arbitrary
precision (within the limits of digital precision). Note that Euler assumed convergence
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Fig. 6.11. The Covector Mapping Principle.
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which can be shown to be valid for the simplest problem (general problem during Euler’s
days) of the calculus of variations (for Euler discretizations) but are generally invalid in
the context of the Minimum Principle as indicated earlier.

When Problem B is a modern optimal control problem, Problem BN is a nonlinear
programming (NLP) problem if � is a continuous set; in general, it is a mixed-variable
programming problem �22� 32�. Hence, Problem BN refers to the set of necessary condi-
tions obtained by applying the Karush–Kuhn–Tucker (KKT) theorem. On the other hand,
Problem BN refers to the discretization of the continuous differential-algebraic BVP
obtained by applying the Minimum Principle. As indicated earlier, Problems BN and BN

do not necessarily generate the same solution. That is, dualization and discretization are
not commutative operations. Recent research by Hager �35� and Betts et al. �44� provide
additional fodder to this concept. While Hager has shown that convergent Runge-Kutta
methods fail to converge Betts et al. have shown that non-convergent methods converge.
What has become clear is that a new theoretical framework is quite essential to understand
seemingly contradictory results.

6.6.3 Linking theory, practice and computation

For the solution of the approximate problem (BN ) to be indistinguishable in a practical
sense from some unknown exact theoretical solution to Problem B, we need to solve Prob-
lem BN for a “sufficiently large grid”. Thanks to the exponential convergence property of
pseudospectral methods �45�, these grids can be remarkably small. When combined with
sparse efficient methods for solving NLPs, solutions to Problem BN can be rendered vir-
tually indistinguishable from theoretical solutions to Problem B if convergent methods (in
the sense of discretization �46�) are adopted. Convergence of the discretization is sharply
distinguished from the convergence of the NLP. A proper design of a computational
method requires convergence analysis. The new ideas on convergence require set-valued
analysis �22� and connections to the symplectic structure of Hamiltonian systems �31�.
The absence of these connections lead to difficult problems or disastrous results even
with convergent NLPs �35� 43�. Exploiting the global convergence properties of modern
NLP algorithms �47� with relaxation techniques in discretization �31� implies that optimal
control problems can be solved routinely.

The statements of the preceding paragraph are deeply theoretical since modern com-
putational methods facilitate a practical demonstration of “epsilons, deltas, limits and
sequences,” the hallmark of functional analysis. Thus the practice of optimal control
today is more firmly rooted and integrated with theory than ever before. This point is
better understood by way of Figure 6.11; here, Problem B is the Hamiltonian BVP dis-
cussed earlier and Problem BN represents the approximation (recall that any numerical
method requiring a digital computer is an approximation). The reason certain well-known
discretization methods (like a class of Runge-Kutta methods �35� 43�) fail for optimal
control problems is that dualization and discretization are non-commutative operations
indicated by the commutation gap shown in Figure 6.11. A zero gap does not guaran-
tee convergence while convergence does not guarantee zero gap (except in the limit).
In principle, this gap can be closed for finite N if there exist an order-preserving map



178 Modern astrodynamics

between the duals �35� 46� 48�. Such maps have been obtained (i.e., Covector Mapping
Theorems) for a special class of symplectic Runge-Kutta �35� methods and modifications
�48� to pseudospectral methods �49�. Thus the Covector Mapping Principle essentially
encapsulates the approximation issues that started with the work of Bernoulli, Euler and
Lagrange �37�. It is thus apparent that the oft mentioned difficulties in solving optimal
control problems can be completely circumvented today by modernizing and extending
Euler’s original ideas as depicted in Figure 6.11. This essentially implies that a robust
general procedure that is tenable for solving practical problems is a practical combination
of functional analysis with approximation theory. Indeed, in recent years, a broad class of
complex optimal control problems have been solved under this framework with relative
ease �1� 12–14� 30� 33–35� 48� 49�. Additional details on these ensemble of topics along
with extensive references are discussed in Refs. [31] and [37].

6.6.4 Feedback guidance and control

Suppose that Problem B can be solved in real time. This means that for any �t0� x0�,
we can solve the optimal control problem in negligible time. Then, replacing the initial
conditions by current conditions, �t� x�, it is apparent that we have a feedback map,
�t� x� �→ u. In other words, real-time computation implies feedback control. Theoretically,
real-time computation implies zero computation time; in practice, the real issue is the
measurable effect, if any, of a non-zero computation time. Stated differently, a key
issue in feedback control is the required minimum computational speed for feedback
implementation rather than the imposition of the theoretical real-time computation of
optimal controls. If we had perfect models and a deterministic system, feedback would
be unnecessary provided the perfect model was used in the computation of the control.
In other words, the higher the fidelity of the models used in the computation of control,
the less the demand on real-time computation. Further, the need for computational speed
is less if the time constant of the system is larger. Thus, if the system time constant
is large and reasonably high fidelity models are chosen for the computation of control,
implementing feedback controls by way of online optimization is not a difficult problem.
These are precisely the conditions for orbit control: the time constant of a low Earth
orbit (LEO) is the orbital period of about 90 minutes and nonlinear models of relatively
high accuracy are available. Hence, if recomputed optimal thrusting programs were to be
available every minute for LEO spacecraft, then it is possible to implement a sampled-
data feedback control with 90 samples per orbit. As demonstrated in the next section and
elsewhere �5� 10� 15�, minimum-fuel orbit transfer problems can be solved on Pentium 4
computers in under 30 seconds (thus implying the possibility of 180 samples for LEO).
Faster computational speeds are easily possible �38� with optimized code and/or by
removing the overhead associated with the operating system (Windows) and the problem
solving environment (MATLAB). For example, in Ref. �38�, the optimal solution to a
flexible robot arm was obtained in 0.03 seconds (thus making avail the possibility of a
30 Hz sampling frequency). Applications of such feedback solutions to other problems
are extensively discussed elsewhere �38–40�. Thus, optimal feedback orbit control via
real-time optimization is a clear modern-day reality.
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6.7 L1-Formulation of the minimum-fuel orbit transfer problem

We will now illustrate some of the ideas described in Sections 6.5 and 6.6 by solving
a new formulation of the minimum-fuel orbit transfer problem. As noted earlier, the
minimum-fuel orbit transfer problem is a central problem in orbit control. This problem
can be easily formulated by posing it as a problem of maximizing the final mass; however,
in this formulation, the astrodynamics of the problem is coupled to the propulsion system
of the spacecraft by way of the specific impulse of the propellant (Eq. (6.7)). As noted
in Section 6.1, it is frequently desirable to decouple the propulsion system performance
from the astrodynamics of the problem by comparing the cost of a maneuver in terms
of the characteristic velocity, i.e., the velocity change attributable to a generic propulsion
system. This translates to using the l2-variant of the L1-cost. The following coplanar orbit
transfer problem defines this formulation:

xT 
= �r� �� vr� vt� uT 
= �ur� ut� u ∈ �

� 
= {
u ∈ �2 
 �u�2 ≤ umax

}
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describe the initial and final manifolds in Problem O in terms of the initial and final
orbits respectively, where �a0� e0��0� and �af � ef ��f � are the standard orbital elements.
Except for its resemblance to the dynamical model, this problem formulation is different
in every respect when compared to the continuous-thrust problem posed by Moyer and
Pinkham �50� and discussed in the texts by Bryson and Ho �26� and Bryson �18�.
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Let �T 
= �r���vr
� vt

� and uT
a 
= �ur� ut� u�, where u = �u�2; then, the Hamiltonian

Minimization Condition (see Problem Nl2P discussed earlier), simplifies to,

Minimize
ua

H��� x� ua� = u+vr
ur +vt

ut +H0��� x�

Subject to u2
r +u2

t −u2 = 0

0 ≤ u ≤ umax

where H0��� x� denotes terms in the Hamiltonian that do not depend upon the controls.
Note that the control space is a nonconvex cone in �3 (see Figure 6.9). The KKT condi-
tions for this problem can be obtained by forming the Lagrangian of the Hamiltonian (H),

H����� x� ua� = u+vr
ur +vt

ut +H0��� x�+�1u+�2�u
2
r +u2

t −u2��

where �1 and �2 are the KKT (Lagrange) multipliers associated with the control con-
straints with �1 satisfying the complementarity condition,

u = 0 �1 ≤ 0
0 < u < umax ⇔ �1 = 0

u = umax �1 ≥ 0�
(6.19)

while �2 is unrestricted in sign. Thus, the function, t �→ �1, supplies the switching
information. The vanishing of the gradient of the Lagrangian of the Hamiltonian, �H/�ua,
provides three additional necessary conditions,

vr
+2�2ur = 0 (6.20)

vt
+2�2ut = 0 (6.21)

1+�1 −2�2u = 0� (6.22)

From Eqs. (6.19) and (6.22) it follows that

u = 0 ⇒ �1 = −1�

This result is quite interesting. If the optimal control program is not identically equal to
zero (i.e., zero cost), the function t �→ �1 must jump at the points where t �→ u = �u�2 goes
from zero to some non-zero value either via singular (i.e., u ∈ int�) or bang-bang (i.e.,
u ∈ bdry�) thrusting. That this phenomenon does indeed occur is shown in Figure 6.12
for a sample solution corresponding to the following case:

a0 = 1� af = 2� e0 = 0�1� ef = 0�2� �0 = 1� �f = 2� umax = 0�05�

The plot shown in Figure 6.12 was not obtained by solving the “difficult” Hamiltonian
BVP (i.e., an “indirect method” indicated in Figure 6.11), rather, it was obtained quite
readily by an application of the CMP to the Legendre pseudospectral method �48�. In
fact, Problem O was easily solved by way of the software package DIDO �51�. DIDO is a
minimalist’s approach to solving optimal control problems: only the problem formulation
is required, and in a form that is almost identical to writing it on a piece of paper and
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Fig. 6.12. Demonstrating the Hamiltonian Minimization Condition for Problem O; note the singular control
and the vanishing of the switching function.

pencil. The latter is facilitated by the use of object-oriented programming readily available
within the MATLAB problem solving environment.

A number of features are noteworthy in Figure 6.12. Observe the excellent correlation
between the switching function, t �→ �1, and the control trajectory, t �→ u, in confor-
mance with the equations resulting from the Hamiltonian Minimization Condition (i.e.,
Eq. (6.19)). The last burn appears to be a singular arc (with u taking values near 0.02) as
evident by �1 = 0 (within numerical precision). The second burn appears to be a touch
point case with �1 near zero but its slight uptick drives u towards its maximum value
of 0.05.

The optimal trajectory along with the vectoring program is shown in Figure 6.13.
Strictly speaking we do not know if the computed trajectory is optimal; however, we can
conclude that it is at least an extremal by verifying the necessary conditions for optimality.
Thus, one of the indicators of optimality is the agreement of the switching function with
the control program shown in Figure 6.12. Many other indicators of optimality can be
derived by an application of the Minimum Principle. For the purposes of brevity, we
do not discuss them here; extensive examples of such ideas are presented elsewhere
�13–15� 31� 36� 48� 51�.

6.8 A simple extension to distributed space systems

A distributed space system (DSS) is a multi-agent control system that has long been
recognized �52� 53� as a key technology area to enhance the scope of both military �52�
and civilian �53� space applications. While much of the challenges are in distributing
the functionality of a remote sensing problem, the difficulties in the design, control and
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Fig. 6.13. A benchmark optimal low-thrust orbit transfer.

operations of the DSS arises chiefly as a result of managing the complexity of multiple
agents. From the perspective of examining each agent separately, the problem is indeed
quite formidable; however, a systems’ approach to a DSS dramatically reduces some
of the major problems in multi-agent control in much the same way as matrix analysis
simplifies solving a system of linear equations by taking the view that a collection of linear
equations is essentially one matrix equation. In order to appreciate how this perspective
dramatically simplifies multi-agent control, consider a collection of Ns ∈ � spacecraft
that constitute a DSS. Let xi�t� ∈ �Nxi � ui�t� ∈ �Nui denote the state and control vectors
of the ith spacecraft at time t. Then, the fuel consumption for any one spacecraft, i, is
given by,

Js�x
i�·�� ui�·�� t0� tf � =

∫ tf

t0

∥∥ui�t�
∥∥

p
dt (6.23)

By defining the system state and control variables for the DSS as,

x = �x1� � � � � xNs � (6.24)

u = �u1� � � � � uNs � (6.25)

the total fuel consumption is quite simply given by,

J�x�·�� u�·�� t0� tf � =
Ns∑
i=1

Js�x
i�·�� ui�·�� t0� tf �� (6.26)

Note that Eq. (6.26) is not an lp variant of the L1 norm of u�·� except in the special case of
its l1 version. This is one of the many reasons why solving multi-agent problems becomes
difficult when compared to agent-specific techniques. On the other hand, when viewed
through the prism of an optimal control problem, Eq. (6.26) is yet another nonsmooth
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cost functional. In certain applications, it may be necessary to require that each spacecraft
in the DSS consume the same amount of propellant. This requirement can be stipulated
by the constraints,

Js�x
i�·�� ui�·�� t0� tf � = Js�x

k�·�� uk�·�� t0� tf � ∀ i� k� (6.27)

In generalizing Eq. (6.27) we write,

JL
ik ≤ Js�x

i�·�� ui�·�� t0� tf �− Js�x
k�·�� uk�·�� t0� tf � ≤ JU

ik � (6.28)

where JL
ik� JU

ik ∈ � are part of the DSS requirements; for example, JL
ik and JU

ik may be
non-zero numbers that facilitate a formulation of soft requirements on equal-fuel or
rough numbers that facilitate budget allocation to the individual spacecraft. In any case,
Eq. (6.28) is essentially a special case of a more general “mixed” state-control path
constraint defined by,

hL ≤ h�x�t�� u�t�� p� ≤ hU � (6.29)

where h 
 �Nx ×�Nu ×�Np → �Nh and hL� hU �∈ �Nh . The components of h� hL and hU

are given by Eq. (6.28) while the components of p are just t0 and tf . Such constraints are
discussed in more detail in Refs. [12, 15] and [32]. It is clear that pure control constraints
are naturally included in Eq. (6.29). Additional components of h come from topological
considerations. For example, by using a generic metric (not necessarily Euclidean) to
define distances between two spacecraft, the requirement that no two spacecraft collide
can be written as,

d�xi�t�� xj�t�� ≥ bi�j > 0 ∀ t and i 
= j

where d�xi� xj� ∈ �+ is the distance metric. Clearly, collision constraints fall within the
framework of the construction of the function, h (and its lower and upper bounds). Many
other DSS requirements can be included as components of h; for example, a broad class
of formations can be defined by the inequality,

c
i�j
l ≤ d�xi�t�� xj�t�� ≤ ci�j

u ∀ t� i� j� (6.30)

where c
i�j
l and ci�j

u are formation design parameters that are specific to a given space
mission �12� 14�.

The construction of the system dynamics for a DSS is quite simple. Suppose that
the dynamics of each spacecraft of the DSS is given by (see for example, Problem O
discussed in Section 6.7),

ẋi�t� = f i�xi�t�� ui�t�� pi� i = 1� � � Ns� (6.31)

where f i 
 �Nxi ×�Nui ×�Npi → �Nxi is a given function, ui ∈ � i ⊆ �Nui and pi ∈ �Npi is
a vector of (constant) design parameters. By using Eqs. (6.24) and (6.25), the dynamics
of the DSS may be represented quite succinctly as,

ẋ�t� = f�x�t�� u�t�� p� u ∈ �� (6.32)
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where � = �1 ×· · ·×�Ns . Typically, the functions f i are all the same so that f is simply
Ns copies of f1. This fact can be exploited for real-time computation �38�.

The optimal control system framework also facilitates a simplification of DSS man-
agement (design and operations) by exploiting the couplings between the dynamics, path
constraints and the endpoint set, � (see Section 6.5). To observe this, consider a simple
requirement of the form,

xi�tf � ∈ �i ⊂ �� ∀ i� (6.33)

In the framework of Problem B, it is sufficient to stipulate all the constraints of Eq. (6.33)
as a single constraint,

xi�tf � ∈ �i ⊂ �� for i = 1 (6.34)

or any other index, i. This is because, the path constraints (Eq. (6.29)) will automatically
enforce the remainder of the constraints in Eq. (6.33). As a matter of fact, if Eq. (6.33)
is chosen over Eq. (6.34), the feasible set may be empty as a result of over-specification.
Consequently, we may want to use Eq. (6.33) during design considerations to explore
possible over-specifications but use Eq. (6.34) during flight operations. In the latter
context, we may designate i = 1 as the leader, but it essentially reduces to semantics
rather than a leader-follower architecture. In other words, in this framework, there is no
leader or follower; rather a true system of multiple spacecraft, or a DSS. Note however
that if there was a mission requirement to designate a particular spacecraft as a leader
and the others as followers, it can be easily accomplished by picking out the particular
index, i, representing the leader. Then, when the leader moves along some trajectory,
t �→ xi, the distance constraints along with any additional path constraints, Eq. (6.29),
dictate how the remainder of the spacecraft must follow certain trajectories to meet the
configuration constraints. Thus, if any one spacecraft had an additional configuration
constraint, it would automatically transfer in some fashion to the remainder of DSS by
way of the couplings between the various equations.

Certain formation-type DSS missions are vaguely defined in terms of periodicity simply
because the engineering requirements are vague �52�. A natural way to account for these
requirements is to adapt Bohr’s notion of almost periodic functions �54� 55�. That is,
rather than impose strict periodicity, we specify,

�i
l ≤ xi�t0�−xi�tf � ≤ �i

u ∀ i or for i = 1� (6.35)

where �i
l and �i

u are formation design parameters representing almost periodicity and
Eq. (6.35) is to be taken within the context of Eqs. (6.33) and (6.34). Note that Eq. (6.35)
is not the same as specifying standard boundary conditions because the values of
xi�t0� and xi�tf � are unknown. In the same spirit, we can define relative periodicity by
writing xi�t0�− xj�t0� = xi�tf �− xj�tf � or relax the equality for almost relative period-
icity. That is, the DSS collective can have an aperiodic configuration if its constituents
have almost relative periodicity. This is one of the reasons why the proper way to view
Eq. (6.35) is in terms of the endpoint map, �.

What is clear from the preceding discussions is that by treating the DSS as yet another
system in an optimal control framework, the design and control of a DSS can be fully
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Fig. 6.14. A two-agent optimal space trajectory; from Ref. [15]. (see Color plate 8)

accounted for under the structure of Problem B discussed in Section 6.5. The missing
details in Section 6.5 vis-à-vis the parameter p or the state constraints does not change
the substance of the discussions as already alluded to earlier. Thus, by taking a systems’
approach to the DSS formation problem, the mathematical problem can be framed under
the constructs of Problem B. An application of this framework for formation design
and control is discussed in Refs. [12, 13] and [14]. The same framework is used for
configuration problems in Ref. [15]. A sample solution to a re-configuration problem
is shown in Fig. 6.14. This plot �15� was obtained by casting the dynamics using the
equinoctial element set for the state variables.

6.9 Conclusions

The L1-optimal control problem forms a natural framework for formulating space tra-
jectory optimization problems. Based on thruster configurations and the physics of the
mass expulsion, several lp variants of the L1 norm of the thrust force can be articu-
lated. Quadratic cost functions are inappropriate performance indices for space trajectory
optimization problems. Nonsmooth issues dominate both theory and practice; in fact,
practical problems are more likely to have non-convex, nonsmooth geometric structures.
Transformation techniques can be applied to efficiently solve these problems. Real-time
computation of the controls facilitates optimal feedback guidance and control. The same
optimal control framework can be applied to design, control, and operate a distributed
space system. These new possibilities are chiefly due to a confluence of two major tipping
points that occurred in the late 1990s. The first advancement—and the most obvious
one—was the widespread availability of extraordinary computing capabilities on ordinary
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computers. The second advancement was in the first-principles integration of optimal
control theory with approximation theory under the unifying perspective of computation
in Sobolev spaces. This perspective obviates the sensitivity issues arising from the sym-
plectic structure of Hamiltonian systems. In addition, while requiring differentiability was
once a reflection on the inadequacy of the available tools for analysis, it is no longer a
major problem in either theory or computation.
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Color plate 5. Cutaway views of the geometries of the control space and their corresponding mass-flow rates.
(see Fig. 6.3)



Color plate 6. Illustrating the nonsmooth structure of u �→ �u�2. (see Fig. 6.9)



Color plate 7. Illustrating the nonsmooth structure of u �→ �u�1. (see Fig. 6.10)



Color plate 8. A two-agent optimal space trajectory; from Ref. [15]. (see Fig. 6.14)
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7.1 Introduction

Conventional spacecraft are limited in their ability to deliver high-energy missions by
a fundamental reliance on reaction mass. However, this constraint can in principle be
overcome by a class of propellantless propulsion systems which either extract momentum
from the environment (solar sails) or balance momentum through payload exchanges
(tethers). This chapter provides a brief introduction to the physics of solar sail and tether
propulsion systems, an analysis of some novel aspects of their orbital mechanics and a
review of potential applications.

The classical rocket equation starkly illustrates the limitations of reaction propulsion,
through an exponential scaling of initial mass m1 with mission �V for some delivered
mass m2, such that m1 = m2 exp��V/goIsp�, where Isp is the specific impulse of the
propulsion system (go = 9�81 ms−2). Attempts to overcome this scaling law rely on
improved propulsion technologies (higher specific impulse) or reducing payload mass
through miniaturisation. While such approaches have been successful, as evidenced by
recent flight tests of solar electric propulsion, the envelope of possible missions is still
constrained by the reliance on a finite mass of propellant.

Solar sailing could overcome the limitations of the rocket equation by extracting
momentum from the flux of photons which is continually emitted by the Sun. A large
articulated reflector is used to reflect photons, changing their momentum, and so exerting
a reaction force on the sail. For an ideal solar sail, the net force exerted by incident
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and reflected photons is normal to the sail surface. Therefore, by rotating the sail, the
thrust vector can be directed in a hemisphere about the Sun-sail line. However, due to the
reduction in projected sail area and the reduction in the component of photon momentum
transferred normal to the sail, the magnitude of the thrust decreases rapidly as the sail
normal is pitched away from the Sun-sail line. It can be shown that the thrust magnitude
scales as �r̂�n�

2, where r̂ is the unit vector directed along the Sun-sail line and n is the
unit vector normal to the sail surface. By rotating the sail, the solar sail can either gain
or lose orbital angular momentum and so can spiral inwards towards the Sun or outwards
away from the Sun. In addition, by pitching the sail such that a component of the thrust
is directed out of the orbit plane, the solar sail orbit inclination can be ‘cranked’ up
or down, allowing a rendezvous with any target body in the solar system. While solar
sailing appears to enable new high-energy missions and exotic highly non-Keplerian
orbits, challenges are posed to engineer a sail assembly with a low areal density which
can be reliably deployed in-orbit.

Tethers also attempt to overcome the limitations of the rocket equation, by balancing
the flow of momentum through the tether system. While future concepts for orbital towers
offer the possibility of truly low cost access to space, nearer term concepts for momentum
exchange tethers can enable the transfer of large payloads to and from low Earth orbit,
without the use of propellant. In particular, staged tethers can allow the transfer of mass
from low Earth orbit to a rotating tether orbiting the moon, which delivers the payload to
the lunar surface. If mass is also transferred from the lunar surface back to low Earth orbit,
then in principle the flow of momentum is balanced, allowing the tether transportation
system to operate without the use of reaction mass.

In summary, both solar sails and momentum exhange tethers can, in principle, overcome
the fundamental limitations imposed by reaction propulsion. For solar sails, new high-
energy mission concepts are enabled, along with families of exotic highly non-Keplerian
orbits described in this chapter. For momentum exchange tethers, large payloads can be
transported at low cost by balancing the flow of momentum through the system, again
described in this chapter. By stepping beyond the limitations of the rocket equation,
propellantless propulsion has the potential to enable new and exciting possibilities for the
future which are currently impossible for conventional reaction propulsion devices.

7.2 Solar sailing

7.2.1 Introduction

The concept of solar sailing can be traced to various authors, including the Russian
pioneers Tsiolkovsky [1] and Tsander [2]. However, serious development had to wait
until a major NASA/JPL study during the mid-1970s for a proposed rendezvous mission
to comet Halley [3]. Although being finally approved for flight, the study sparked interna-
tional interest in solar sailing for future mission applications. It is only in recent years that
sustained efforts have been made to develop the component technologies (reflective thin
films and deployable booms) and to integrate these into a practical solar sail assembly.
Development programmes are underway at both NASA and ESA to develop solar sail
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Fig. 7.1. NASA ground test of a 20×20 m solar sail (NASA/ATK).

technology through to flight status using ground testing and ultimately in-orbit demonstra-
tion missions (Figure 7.1). Should such demonstration missions prove successful, there
are a wide range of potential mission applications which will then be enabled. The key
missions on such a development roadmap are the Geosail mission, which uses a small
solar sail to artificially precess a long elliptical orbit to maintain a space physics pay-
load within the Earth’s geomagnetic tail [4]; Geostorm, a space weather mission located
sunward of the classical Sun–Earth L1 point [5]; Polar Observer, a mission to station an
imaging payload at an artificial equilibrium point high above L1 [6]; Solar Polar Orbiter
(SPO), a solar physics payload delivered to a close polar orbit about the Sun [7]; Inter-
stellar Heliopause Probe (IHP), a small payload delivered to the heliopause at 200 AU in
25 years using a high performance solar sail [8]. In addition, solar sailing appears ideally
suited to high-energy and/or long duration missions such as Mercury sample return [9],
comet nucleus sample return and multiple small body rendezvous missions [10], as well
as more exotic mission applications [11].

7.2.2 Solar sail sizing

The fundamental measure of performance of a solar sail is its characteristic acceleration,
defined as the light pressure-induced acceleration experienced by the solar sail while
oriented normal to the Sun at a heliocentric distance of 1 AU [12]. The characteristic
acceleration is a function of both the efficiency of the solar sail design and the mass
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of the payload. At a distance of 1 AU the magnitude of the solar radiation pressure P
exerted on a perfectly absorbing surface is 4�56×10−6 Nm−2. Therefore, allowing for the
reflection of photons (factor of 2) and the finite efficiency of the sail �, the characteristic
acceleration ao is defined by

ao = 2�P

�
� �T = mT

A
� (7.1)

where �T is the total solar sail loading, with mT the total mass of the solar sail and its
payload and A the sail area. The sail efficiency � (typically ∼0�85) is a function of both
the optical properties of the sail film and the sail shape due to billowing and wrinkling.
The total mass of the solar sail will now be partitioned into two components, the sail film
and structural mass mS and the payload mass mP . Therefore, the characteristic acceleration
of the solar sail may now be written as

ao = 2�P

�S + �mP/A�
� �S = mS

A
� (7.2)

where �S is the mass per unit area of the sail assembly. This so-called sail assembly
loading is a key technology parameter and is a measure of the thickness of the sail film
and the efficiency of the solar sail structural and mechanical design. Low performance
solar sail concepts center on the use of commercially available 7�5 	m Kapton film with
a projected a sail assembly loading of order 30 gm−2, which is adequate for near term
technology demonstration missions. Other development work to fabricate ultra-thin sail
films with a thickness of order 2 	m, and high stiffness, low mass booms is leading
to a sail assembly loading of order 5 gm−2 [13], or even as low as 1–2 gm−2 for high
performance spinning disk sails [14].

Now that the key solar sail design parameters have been defined, the process of sizing
a solar sail will be considered. From Eq. (7.2) it can be seen that the solar sail payload
mass may be written as

mp =
[

2�P

ao

−�S

]
A� (7.3)

Similarly, from Eq. (7.1) the total mass of the solar sail may be written as

mT = 2�PA

ao

(7.4)

For a required characteristic acceleration, Eqs. (7.3) and (7.4) may now be used to size
a solar sail while imposing constraints on the total mass of the solar sail to satisfy the
capacity of the launch vehicle. A typical design space is shown in Figure 7.2 for a char-
acteristic acceleration of 0�25 mms−2, which is representative of the level of performance
required for science missions such as a Mercury sample return. Both the payload mass
and the total launch mass are shown. It is clear that for a payload of order 500 kg and
a sail assembly loading of order 5 gm−2, a large sail is required with a sail side longer
than 100 m. This requirement clearly poses challenges for the reliable mechanical deploy-
ment of large, low mass structures and the fabrication, packing and deployment of thin
reflective films.
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Fig. 7.2. Solar sail design space (solid line: payload mass, dashed line: total mass).

In addition to the design parameters discussed above, an additional parameter of interest
can be defined. The payload mass fraction 
, defined by mp/mT can be obtained from
Eqs. (7.3) and (7.4) as


 = 1− ao�S

2�P
(7.5)

This is clearly another key parameter and is a measure of the efficiency of use of the
solar sail. For a sail with a characteristic acceleration of 0�25 mms−2, which is again
representative of the level of performance required for initial science missions, and a sail
assembly loading of order 5 gm−2, the resulting payload mass fraction for the solar sail is
0.84, assuming an efficiency � of 0.85. It can be seen that improvements in sail assembly
loading can either be used to increase the sail characteristic acceleration, and so reduce
trip times, or can be used to improve the sail payload mass fraction, allowing a larger
payload to be delivered for a fixed launch mass.

7.2.3 Solar sail performance

Since solar sails do not expel reaction mass, the conventional definition of specific
impulse is inappropriate. This conventional definition relates the change in momentum of
the spacecraft to the weight of propellant expelled. Since solar sails do not expel propellant
they have, in principle, infinite specific impulse. However, for a finite mission duration,
only a finite total impulse will be delivered by the solar sail. Infinite specific impulse is
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only available for infinite mission duration. In order to circumvent this difficulty with
the conventional definition of specific impulse, an effective specific impulse [15] will be
defined as the total impulse delivered per unit weight of propulsion system

Isp = 1
W

T∫
0

Fdt� (7.6)

where F is the thrust delivered for mission duration T and W is the weight of the
propulsion system. For a solar sail of total mass mT and characteristic acceleration ao at
solar distance R (AU), the sail thrust is given by

F = mT ao cos2 �
1
R2

� (7.7)

where � is the pitch angle of the sail normal relative to the Sun-sail line. The weight of
the propulsion system will now be defined as the weight of the sail assembly so that for
a sail assembly of mass mS

W = msgo� (7.8)

The weight of the sail assembly can be then written in a more useful form as

mS = mT �1−
�� (7.9)

where 
 is the payload mass fraction of the solar sail, defined by Eq. (7.5). Therefore,
the effective specific impulse of the solar sail can now be written as

Isp = 1
1−


ao

go

T

〈
cos2 a

R2

〉
� (7.10)

where <> indicates the mean value over mission duration T . It can be seen that the
effective specific impulse of the solar sail increases linearly with mission duration and
as the inverse square of mean solar distance. In addition, Isp → � as 
 → 1 since the
weight of the propulsion system vanishes in this limit.

For a solar sail to be effective it can be seen that it must have a large payload mass
fraction, and be used for a long duration. Missions such as high-energy comet sample
returns will therefore make significantly better use of solar sails than, for example, payload
delivery to the Moon or Mars where the effective �V is low (unless multiple trips are
considered). In addition, inner solar system missions where R is small, such as Mercury
sample return, will also make effective use of solar sailing. Deep space missions can also
be effective, but a close pass to the Sun is required. This can be seen from Eq. (7.10) and
is also evident from trajectory optimisation studies where the sail passes close to the Sun
before being accelerated to some cruise speed for deep space payload delivery [8]. Earth
escape also makes efficient use of solar sailing, although escape times can be long [16].

The effective specific impulse for a range of solar sails is shown in Figure 7.3, where
it is assumed that the mean pitch angle � is 35� to maximise the transverse thrust, and
the payload mass fraction 
 is 2/3. It is clear that even if the sail has a low characteristic
acceleration, it can deliver an extremely large effective specific impulse if the mission
duration is long. This is exactly the relationship which makes the mission applications of
the artificial Lagrange points discussed later in Sections 7.4 and 7.5 so attractive.
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Fig. 7.3. Effective solar sail specific impulse.

7.3 Solar sail orbital mechanics

7.3.1 Introduction

The ratio of the solar radiation pressure force to the solar gravitational force exerted
on the sail is defined by the sail lightness number �. Since both solar radiation pressure
and solar gravity have an inverse square variation with solar distance, the sail lightness
number is a constant for a given sail mass and area. It can be shown by considering the
ratio of radiation pressure to gravitational forces that the sail lightness number is related
to the total solar sail loading by �T �gm−2� = 1�53/�, [12]. A high performance solar sail
with a lightness number of 1 (�T = 1�53 gm−2) corresponds to a characteristic acceleration
of 5�96 mms−2. Such an advanced solar sail could exactly balance solar gravity, although
near term solar sails are likely to have a characteristic acceleration of order 0�25 mms−2,
as noted earlier.

An ideal, plane solar sail will now be considered moving relative to an inertial frame
of reference with origin at the Sun. The vector equation of motion of the solar sail is then
defined by

d2r
dt2

+ 

r2
r̂ = �



r2
�r̂�n�

2 n� (7.11)

where r is the position vector of the spacecraft with respect to the Sun, with r̂ the
associated unit vector. The product of the gravitational constant and the mass of the Sun
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is defined by . For an ideal sail, the thrust vector is aligned along the sail unit normal
n, with the sail pitch angle �, defined as the angle between the sail normal and the radius
vector such that cos � = r̂�n.

7.3.2 Conic section orbits

When the sail normal is directed along the Sun-line, such that n = r̂, families of conic
section orbits are obtained with a modified gravitational parameter, ̃ = �1−��, since
again solar gravity and solar radiation pressure both vary as the inverse square of the
solar distance. For a lightness number � = 0, a circular Keplerian orbit will be assumed.
Then, with � �= 0 such an orbit becomes elliptical for 0 ≺ � ≺ 1/2. With a lightness
number � = 1/2 there is a transition from an elliptical orbit to a hyperbolic orbit through
a parabolic orbit, which defines the lightness number necessary for direct escape. When
the lightness number increases such that 1/2 ≺ � ≺ 1, a hyperbolic orbit is obtained. Then,
when the lightness number is exactly unity, there is the interesting situation where solar
gravity is exactly balanced by solar radiation pressure. This could enable rectilinear orbits
or could allow the solar sail to levitate, stationary relative to the Sun. With extremely
high performance solar sails exhibiting lightness numbers of greater than unity, the Sun
now becomes placed at the opposite focus of an (inverted) hyperbolic orbit since the solar
radiation pressure force exceeds the solar gravitational force acting on the solar sail [17].

7.3.3 Logarithmic spiral trajectories

When the solar sail thrust is orientated at a fixed, non-zero pitch angle to the Sun-sail
line it can be shown that the solar sail can follow a logarithmic spiral trajectory [18–20].
The radial component of the sail thrust reduces the effective gravitational force on the sail,
however the component of thrust in the transverse direction acts to increase (or decrease)
the orbital angular momentum of the solar sail. For a logarithmic spiral trajectory, the
local solar sail speed is always less than the local circular orbit speed. This means that
coplanar transfer by logarithmic spiral, between two circular orbits, cannot be achieved
without hyperbolic excess at launch to place the solar sail onto the logarithmic spiral,
and then an impulse to circularise the orbit on arrival at the final circular orbit. These
discontinuities in the boundary conditions pose problems in the practical application of
logarithmic spirals to orbit transfers.

7.3.4 Minimum-time trajectories

For practical mission analysis purposes, optimization is required to minimize the trans-
fer time between any two orbits. Since the sail attitude will be time varying, the boundary
conditions required for the transfer may be met without the use of initial and final
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impulses, as required for the logarithmic spiral trajectory. First, the vector equation of
motion will be re-cast as two, first order equations as

ṙ = v (7.12a)

v̇ = − 

r2
r̂ +�



r2
�r̂�n�

2 n (7.12b)

with boundary conditions imposed on the solar sail trajectory such that the solar sail state
is defined by �ro� vo� at initial time to and

(
rf � vf

)
at final time tf , where tf = to + T .

The goal is now to minimize the transfer time T subject to the constraints imposed by the
boundary conditions of the transfer. To proceed with the optimization process the control
Hamiltonian function for the problem is formed. To ensure optimization, the Hamiltonian
must be maximized at all points along the trajectory through an appropriate choice of sail
attitude n. The control Hamiltonian H is defined as

H = pr �v − 

r2
p��r̂ +�



r2
�r̂�n�

2 p��n� (7.13)

where pr and p� are the co-states for position and velocity [21]. The velocity co-state is
also referred to as the primer vector and defines the direction along which the solar sail
thrust should be maximized. Note that unlike other low thrust transfer problems there is
no co-state for the solar sail mass since it is clearly constant. The rate of change of the
co-states is then obtained from the control Hamiltonian as

ṗr = −�H

�r
(7.14a)

ṗ� = −�H

�v
(7.14b)

so that

ṗr = 

r3
p� − 3

r5
�pr �r� r +2�



r3
�r̂�n� �p��n� �n +2 �r̂�n� r̂� (7.15a)

ṗ� = −pr � (7.15b)

The sail attitude n which maximises the Hamiltonian can then be found from Eq. (7.13) as
a function of the co-states pr and p�. The equations of motion must therefore be integrated
along with the co-state equations, and an iterative numerical algorithm used to determine
the initial co-states that provide a minimum-time trajectory that satisfies the boundary
conditions of the transfer. An example minimum-time trajectory from Earth to Mercury is
shown in Figure 7.4. As an alternative to the indirect approach of optimal control theory,
direct methods can be used [10]. These algorithms discretize the sail attitude time history
and minimize the transfer time using methods such as sequential quadratic programming.
While direct methods are not as accurate as indirect methods, due to the discretization
of the sail attitude, they can be more robust and flexible. Novel evolutionary algorithms
have also been recently applied to the solar sail trajectory optimization problem [22], as
have minimum-time transfers to 1 year Earth synchronous circular orbits [23].
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Fig. 7.4. Minimum-time spiral from Earth to Mercury (ao = 0�25 mms−2).

7.4 Artificial three-body equilibria for solar sails

7.4.1 Non-Keplerian orbits

Due to the continually available thrust from solar radiation pressure, solar sails are
capable of exotic, highly non-Keplerian orbits. Although some of these orbits require
advanced, high performance solar sails, others are possible using relatively modest solar
sails. The solar sail performance required for these orbits is a function of the local
gravitational acceleration. Therefore, to displace an orbit high above the plane of the
solar system requires an extremely high characteristic acceleration, while to generate an
artificial Lagrange point near the Earth may only require a near-term solar sail. While
these highly non-Keplerian orbits are not, in principle, forbidden for other forms of low-
thrust propulsion, they can only be achieved for a limited duration, fixed by the propellant
mass fraction of the spacecraft. However, a solar sail stationed at an artificial Lagrange
point and requiring a low-characteristic acceleration can still deliver an extremely high
effective specific impulse if the sail film is long-lived and so used for an extended
duration, as discussed in Section 7.2.2.

Using an advanced solar sail it would be possible to choose its characteristic acceleration
so that the solar radiation pressure force exactly balances the local solar gravitational force,
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corresponding to a lightness number � of 1. This is possible since, again, both of these
forces have an inverse square variation with solar distance. The required characteristic
acceleration for such a force balance is of order 6 mms−2, corresponding to a mass per
unit area of only 1�5 gm−2, as discussed in Section 7.3.1. Such a high performance solar
sail would enable solar physics missions which levitate above the solar poles, providing
continuous observations, or indeed hover at any particular location in the solar system.
Such a solar sail could also be used to displace circular Sun-centred orbits high above the
plane of the solar system, with the orbit period chosen to be synchronous with the Earth
or some other solar system body. Possible applications include stationing an infra-red
telescope above the obscuring zodiacal dust within the ecliptic plane.

Using a more modest solar sail, the location of the Sun–Earth Lagrange points can
be artificially displaced. For example, the interior L1 point, 1.5 million km sunward of
the Earth, is a favored location for solar physics missions. Since the solar sail adds an
extra force to the dynamics of the problem the location of the L1 point can be artificially
displaced, closer to the Sun or even above the ecliptic plane. Since the local gravitational
acceleration in the vicinity of L1 is small (since centripetal force, solar and Earth gravity
almost balance), only modest solar sails are required to provide a significant displacement
of the classical L1 point. For example, a solar sail with a characteristic acceleration of
0�25 mms−2 can double the distance of the L1 point form the Earth. Such a new sunward
equilibrium location appears useful for providing early warning of disruptive solar plasma
storms before they reach Earth, an indeed formed the basis for the Geostorm mission
concept, discussed later in Section 7.5.1. A solar sail with double the performance can be
permanently stationed high above (or below) the classical L1 point so that it appears above
the Arctic (or Antarctic) regions of the Earth, again to be discussed later in Section 7.5.2.

7.4.2 Artificial three-body equilibria: ideal solar sail

This section will investigate the possibility of artificial Lagrange points for near-term,
low performance solar sails [24–27]. Equilibrium solutions will be obtained for an ideal
solar sail and then the problem will be re-visited with a more realistic partially reflecting
solar sail. Apart from reducing the magnitude of the radiation pressure force exerted on
the solar sail, the finite absorption of a realistic sail means that the radiation pressure
force vector is no longer directed normal to the sail surface. Due to this effect, it will
be shown that the volume of space available for artificial Lagrange points is extremely
sensitive to the solar sail reflectivity.

Equilibrium solutions for an idealized, perfectly reflecting solar sail will now be
derived. The ideal sail will be considered in a frame of reference co-rotating with two
primary masses m1 (Sun) and m2 (Earth) at constant angular velocity �, as shown in
Figure 7.5. The sail attitude is again defined by a unit vector n normal to the sail surface,
fixed in the rotating frame of reference. The units of the problem will be chosen such that
the gravitational constant, the distance between the two primary masses and their sum
are all taken to be unity.
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Fig. 7.5. Sun–Earth restricted three-body problem with a partially reflecting solar sail.

The vector equation of motion for a solar sail in this rotating frame of reference may
then be written as

d2r
dt2

+2�× dr
dt

+�U = a (7.16)

with the three-body gravitational potential U and the solar radiation pressure acceleration
a defined by

U = −
[

1
2

�x2 +y2�+ 1−

r1

+ 

r2

]
� (7.17a)

a = �
1−

r2
1

�r̂1�n�
2 n� (7.17b)

where  = m1/ �m1 +m2� is the mass ratio of the system and the sail position vectors are
defined as r1 = �x+�y� z� and r2 = �x− �1−�� y� z�.

Equilibrium solutions are now required in the rotating frame of reference so that the
first two terms of Eq. (7.16) vanish. The five classical Lagrange points are then obtained
as the solutions to �U = 0 with r̂1�n = 0 and so a = 0. However, for r̂1�n � 0 there is
an additional acceleration a which is a function of the lightness number � and the sail
attitude n so that new artificial equilibrium solutions may be generated. Since the vector
a is oriented in direction n, taking the vector product of n with Eq. (7.16) it follows that

�U ×n = 0 ⇒ n = ��U� (7.18)

where � is an arbitrary scalar multiplier. Using the normalization condition 
n
 = 1�� is
identified as 
�U 
−1 so that the required sail attitude is defined by

n = �U


�U 
 (7.19)
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which can be used to obtain the sail pitch angle �, since cos � = r̂�n. The required sail
lightness number may also be obtained by taking a scalar product of Eq. (7.16) with n.
Again requiring an equilibrium solution it is found that

� = r2
1

�1−�

�U�n

�r̂1�n�
2 (7.20)

Since the sail lightness number and attitude can be selected, the set of five classical
Lagrange points will be replaced by an infinite set of artificially generated equilibrium
solutions. These solutions form enclosed, nested surfaces, parameterized by the sail
lightness number �.

The regions in which these new solutions may exist are defined by the constraint
r̂1��U ≥ 0 with a boundary surface defined by an equality. This constraint may be
understood physically since the solar radiation pressure acceleration vector a, and so
the sail attitude vector n, can never be directed sunward. The boundary surface has two
topologically disconnected surfaces S1 and S2 which define the region of existence of
equilibrium solutions near m2, as shown in Figure 7.6. The classical equilibrium solutions
lie on either S1 or S2 since they are the solutions to �U = 0. Surfaces of constant sail
lightness number generated from Eq. (7.20) for the Earth–Sun system are also shown
in Figure 7.6. In general, the surfaces of constant sail lightness number approach these
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boundaries asymptotically with � → � when r̂1��U → 0, as is clear from Eq. (7.20).
It can be seen that as the sail lightness number increases larger volumes of space are
accessible for artificial equilibrium points. In particular, a solar sail of a given lightness
number can be in equilibrium sunward or above/below the classical L1 and L2 points. In
addition, in the limit  → 0, displaced two-body orbits are obtained whose orbit period
can be selected by an appropriate choice of sail lightness number and sail pitch angle [17].

7.4.3 Artificial three-body equilibria: realistic solar sail

A realistic solar sail force model which includes absorption will now be considered.
To allow a closed-form solution, the solar sail will be assumed to have perfect specular
reflectivity and no thermal re-emission but will still have an overall reflectivity � less
than unity. Then, the radiation pressure acceleration will act in direction m and may be
written as the sum of components normal n and transverse t to the sail surface such that

am = 1
2

�
1−

r2
1

�1+�� �r̂1�n�
2 n + 1

2
�

1−

r2
1

�1−�� �r̂1�n� �r̂1�t� t� (7.21)

It can be seen that the main effect of the non-perfect reflectivity of the sail is to reduce
the acceleration magnitude and to introduce an off-set in the direction of the radiation
pressure acceleration. The acceleration a now acts in direction m rather than normal to
the sail surface in direction n. This off-set is defined by the centre-line angle �, with the
actual radiation pressure force direction defined by a cone angle �, as shown in Figure 7.5.

The analysis presented in the previous Section will be repeated using the sail force
model defined by Eq. (7.21) so that the equation of motion may now be written as

d2r
dt2

+2�× dr
dt

+�U = am� (7.22)

For an equilibrium solution the first two terms of Eq. (7.22) will again vanish so that the
sail attitude must be chosen as

m = �U


�U 
 � (7.23)

The unit vector m can now be defined by the cone angle � between the radial direction
r̂1 and m as

tan � = 
r̂1 ×�U 

r̂1��U

� (7.24)

In addition, using Eq. (7.21) the centre-line angle can be obtained from the ratio of the
transverse and normal accelerations as

tan � = 1−�

1+�
tan �� (7.25)
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where the sail pitch angle � = � +�. Noting that n�t = 0 and taking a scalar product of
Eq. (7.22) with the unit vector n gives the required sail lightness number as

� = 2r2
1

1−

�U�n

�1+�� �r̂1�n�
2 (7.26)

The center-line angle may be obtained explicitly by again noting that � = � +�. Then,
after some reduction, Eq. (7.25) yields the center-line angle directly from the cone
angle as

tan � = �

�1+�� tan �

[
1−

[
1− 1−�2

�2
tan2 �

]1/2
]

(7.27)

Lastly, using Eq. (7.26) it is found that the required sail lightness number may be obtained
in terms of the lightness number for an ideal solar sail �̃ as

� = 2
�1+��

√
1+ tan2 �

�1− tan � tan ��2 �̃ (7.28)

where �̃ is defined by Eq. (7.20). Therefore, using Eqs. (7.24), (7.27) and (7.20) the sail
orientation and sail lightness number required for an artificial equilibrium solution can
be obtained.

The effect of a non-ideal solar sail is shown in Figure 7.7 for a reflectivity of 0.9, typical
of a flat aluminized sail film. First, it can be seen that the volume of space available for
equilibrium solutions about L2 is significantly reduced. This is due to the center-line angle
which limits the direction in which the radiation pressure force vector can be oriented.
For solutions near L1 the main effect of the non-ideal sail is to displace the equilibrium
solutions towards the Earth. This is due to the reduction in the magnitude of the radiation
pressure force, rather than the center-line angle. In general then, equilibrium solutions
sunward of L1 are not greatly affected by a realistic sail while equilibrium solutions about
L2 are severely restricted.

7.5 Mission applications

7.5.1 Geostorm mission

Currently, warnings of geomagnetic storms are made using terrestrial data and real-time
solar wind data obtained from the Advanced Composition Explorer (ACE) spacecraft,
stationed on a halo orbit [28] about the L1 Lagrange point some 1.5 million km (0.01 AU)
sunward of the Earth, as shown in Figure 7.8. Since the spacecraft is located sunward of
the Earth, coronal mass ejections (CME) sensed by the suite of instruments on-board the
ACE spacecraft can be used to provide early warning of impending geomagnetic storms.
Typically, a prediction of 30–60 minutes can be made from the L1 point, enhancing the
quality of forecasts and alerts to operational user groups. These groups include civil and
military satellite operators, electricity utility companies and airlines.
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To enhance this warning time would require a spacecraft to be stationed at an artificial
Lagrange point, sunward of the classical L1 point, as discussed in Section 7.4. While this
would require an unrealistic �V budget for a conventional spacecraft (of order 9 kms−1

per year of operation), a relatively small solar sail can be used to station a spacecraft
approximately 3 million km (0.02 AU) from the Earth, again shown in Figure 7.8. This
new artificial Lagrange point will double the warning time of impending geomagnetic
storms [5]. The artificial Lagrange point must also be displaced away from the Sun–Earth
line so that from the Earth, the spacecraft is viewed away from the solar radio disk to
avoid interference with telemetry down-link. The volume of space accessible near L1 in
the ecliptic plane is shown in Figure 7.9, along with the Geostorm mission sub-L1 design
point. The Geostorm mission makes excellent use of solar sailing by only requiring a
modest solar sail characteristic acceleration, but delivering an extremely high effective
specific impulse for a multi-year mission duration, as discussed in Section 7.2.3. The
solar sail can be transferred to the artificial Lagrange point by chemical kick-stages (and
deployed on-station), or the solar sail can perform the transfer.
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7.5.2 Polar observer mission

It has been seen in Section 7.4 that solar sails may be used to generate artificial
equilibrium solutions in the Sun–Earth three-body system. While in-plane equilibria have
applications for missions such as Geostorm, out-of-plane equilibria may be utilised for
continual, low-resolution imaging of the high latitude regions of the Earth. In fact, if the
artificial Lagrange point is located high enough above or below the ecliptic plane, the
solar sail may be stationed directly over the north pole, or indeed the south pole, during
the summer solstice [24, 6]. The solar sail can be stationed directly over the north pole
at the summer solstice, as shown in Figure 7.10, but will not remain over the pole during
the entire year due to the tilt of the polar axis. From this unique vantage point a constant
daylight view of the north pole is available at the summer solstice, however six months
later at the winter solstice the polar regions are in permanent darkness. The volume of
space accessible above L1 is shown in Figure 7.11, along with the optimum Polar Observer
mission design point. It is found that the required solar sail performance can be minimized
by an appropriate selection of polar altitude. It can be shown that an equilibrium location
some 3.8 million km (596 Earth radii) above the north pole will minimize demands on the
solar sail performance. Closer equilibrium locations are possible using larger, or higher
performance solar sails, or indeed selecting a less demanding viewing geometry.

Although the distance of the solar sail from the Earth is large for imaging purposes,
there are potential applications for real-time, low-resolution images for continuous views
of large scale polar weather systems along with Arctic ice and cloud coverage for
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global climate studies. Although such images can be acquired by assembling a mosaic
of instrument swaths from a conventional polar orbiting satellite, many high latitude
passes are required to form a complete image. High resolution is then possible, but the
completed image is not acquired in real-time and so dynamic phenomena cannot be
captured.

For a 30 cm aperture instrument stationed 3.8 million km from the Earth and operating
at optical wavelengths, a minimum ground resolution of order 10 km is possible, which
is suitable for synoptic imaging. In practice though, the actual resolution obtained will be
degraded due to factors such as the pointing stability of the camera. Higher resolution is
possible if an equilibrium location closer to the pole is selected, at the expense of increased
demands on the solar sail performance. Other applications of these orbits include line-of-
sight, low-bandwidth communications to high-latitude users, such as Arctic or Antarctic
stations. Applications for continuous data links to Mars polar landers and surface rovers
have also been explored for a solar sail stationed high above the poles of Mars. Again, the
Polar Observer mission makes excellent use of solar sailing by delivering an extremely
high effective specific impulse for a multi-year mission duration.
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7.6 Tethers in space

7.6.1 Introduction

The development of tether technology has had a strong international effort, with its
origins over a century ago, and so only a limited selection of the many interesting concepts
that have been proposed can be given here. The first serious reference to tether-like
systems is usually attributed to Tsiolkovsky for proposals going back to 1895 [29] for a
space tower linking a celestial castle, located at geostationary altitude and connected to
a point on the surface of the Earth. The idea was based on an equatorial attachment point
for the lower end of the tower which would be used for payload transfer into orbit and
back to the Earth’s surface. Now, as then, the construction of a tower tens of thousands
of kilometres in length is beset with practical difficulties, despite major advances in
modern materials science research. However the idea persisted and was taken up next by
Artsutanov [30], who proposed the lowering of a cable from a geosynchronous satellite,
with a suitable counterweight to be extended from the satellite into space to maintain
tension in the system, and electric payload propulsion along the cable. The key problem
of identifying commercially available material in realistic, and affordable quantities for
the very high strength lightweight cable continued to be unsolved.

Roughly in parallel with this, Isaaks et al. [31] established the Sky-hook scenario in
1966, intended for the launch of payloads into space using the space elevator principle.
The proposal was for an elevator to be deployed from the geostationary point in the
form of two cables directed both towards the Earth and away from it. The cable design
involved a taper in order to limit mass and to enhance strength as far as possible. The idea
was based on harnessing the acceleration along the cable in order to generate payload
lift from Earth, and so provide a purely mechanical launch capability for satellites and
payloads into orbit. Identification of an appropriate material for the tapered cable still
posed many challenges.

Applications of cables for payload movement received additional impetus in 1975
in the form of Grossi’s original patented idea for a shuttle-borne orbiting tether [32]
exploiting momentum exchange. Further work by Colombo, Grossi, and colleagues at
the Smithsonian Astrophysical Laboratory has since been responsible for many major
contributions to tether analysis and flights, several of which are summarized in the
authoritative Tethers in Space Handbook [33]. Moravec [34] conceptualized the intriguing
Lunavator tether proposal for surface payload collection and deposition on the Moon and
other airless planets. This was based on a more generalized rotovator idea which enabled
Moravec to show that limitations on current and future material strength, that would
otherwise lead to an impractically high tether/payload mass for Earth surface contacts,
would not necessarily impose the same restrictions for touch-downs on the Moon. The
Lunavator concept has since been built into many tether mission concepts involving
the Moon.

Although primary access to space using mechanical tethers is as practically challenging
and potentially infeasible as it ever was, interest in tether systems has continued by
moving towards rather less demanding, medium-term tether applications based on multi-
strand polymeric tethers with small cable diameters and significant built-in redundancy.
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The patented HoytetherTM is a well known example of such a design [35]. Typical
applications are momentum exchange tethers for propellant-less de-orbiting of satellites,
and sample return or waste disposal using re-entry vehicles deployed from space platforms.
In addition to momentum exchange the electrodynamic effects of a gravity gradient
stabilised conductive tether system can also be applied, either for the generation of
electrical power, or as means for orbit raising and lowering. Carroll proposed a simple
deployment-only tether known as the Small Expendable Deployer System (SEDS) in
1983 and then published a generic and very useful guidebook for the analysis of the wide
range of tether applications studied up to that time [36].

In the mid to late 1990s Cartmell [37] showed independently that dumb-bell tether
models could benefit from additional energy injected by a centrally located drive motor.
This proposal enhanced the potential performance of spinning momentum exchange
tethers as long as a suitable counter-inertia could be contrived for the motor to work
against. Symmetry can be exploited in the form of two identical payloads and for such
a system orbiting about Earth it has been shown that the outer payload can be boosted,
potentially for Lunar Transfer, whilst the inner payload is de-boosted for return to the
Earth’s surface [38–41]. Staged Motorised Momentum Exchange Tethers (MMETs) are
theoretically capable of generating �Vs of up to 2 km/s, or more using conventional
materials, although considerable research remains to be done on practically feasible orbital
mechanics and mission logistics [42].

Tether flight experiments commenced in the mid 1960s with the manned Gemini
11/Agena mission in which the Gemini vehicle was linked to the Agena target vehicle by
means of a 30 m tether. The first attempts to use a long deployed tether in space were the
Tethered Satellite System (TSS) missions in which gravity gradient stabilized conductive
tether systems, emanating from the Shuttle and deploying a satellite, were to be used
for investigations in space physics and plasma-electrodynamics [33]. TSS-1 was the first
of these, in July 1992, and was intended to explore the use of a retrievable tether. The
tether was a 20 km Kevlar/Nomex conductive tether containing ten strands of 34 AWG
copper wire (34 AWG is slightly less than 0.25 mm) but due to a protruding bolt the
tether only actually deployed to about 256 m. However, it still verified some fundamental
dynamics issues concerned with short deployment and gravity gradient stabilization, with
implications for longer deployments. This led on to TSS-1R in February 1996, which
successfully deployed to 19.7 km, just slightly short of the 20.7 km that had been planned.
Plasma phenomena were observed with the conductive tether used and showed that
currents significantly in excess of numerical predictions could be collected [33].

The Small Expendable Deployer missions, SEDS-1 and SEDS-2, were flown in March
1993 and 1994 showing that a small test payload of 25 kg could be de-orbited from
LEO, and also that a closed loop controller could be used to deploy a tethered payload
along a limited angle with respect to the local vertical. The SEDS-2 mission deployed
to 19.7 km, and utilized a friction multiplier brake during deployment, an interesting
concept which is currently being incorporated in the form of a barberpole design within
the forthcoming YES2 mission [43] and which was theoretically and experimentally
investigated by Lennert and Cartmell [44]. This work, along with other theoretical and
experimental studies [43], showed that the friction characteristics between practical tethers
wrapped in a spiral around a metallic cylindrical surface can generate useful braking forces
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involving significant speed-dependencies. There are some phenomenological analogies
with literature observations in automotive disk-pad brake systems [45].

Dynamic analysis was one of the goals of the OEDIPUS-C flight in November 1995
in which two fore and aft payloads were used to implement and demonstrate spin stabi-
lization by means of the so-called Tether Dynamics Experiment (TDE). The dynamics
of spinning tethered two-body dumb-bell systems have received considerable literature
attention and this experiment provided valuable in-service tether force data and pay-
load nutation responses within the time domain. Another notable mission was the Tether
Physics and Survivability Experiment (TiPS) in 1996 based on two end-bodies known
as Ralph and Norton (after Ralph Kramden and Ed Norton, who starred in the 1950s
comedy show The Honeymooners). Ralph and Norton were connected together by a
4 km insulating tether. Norton, at 10.8 kg, was mounted closest to the host vehicle and
contained no electronics whereas Ralph, at 37.7 kg and at the other end, contained the
electronics, instrumentation, and the tether deployer, as shown in Figure 7.12. The TiPS
system was ejected from the host spacecraft in June 1996 and the objectives were to
investigate long-term orbit and attitude dynamics and survivability. This successful flight
provided data which suggested that reasonable long-term survivability could be expected
and that predicted stabilizations of small angle libration are practically achievable [33].
Subsequent tether missions have been subject to various delays and cancellations (ATEx,
ProSEDS, TSE, STEP-AirSEDS, and ASTOR, are notable examples), but at the time of
writing the Young Engineers’ Satellite 2 (YES2) sample return mission from the ISS
is still under active technology development [43]. A major tether project which is also
currently under intensive development is NASA’s Momentum Exchange Electrodynamic
Reboost (MXER) concept in which momentum exchange is to be used to transfer payloads
from LEO to geosynchronous transfer orbit and beyond, after which electricity from solar
panels fitted to the system would be used to drive current through the tether in order
to re-boost the tether by means of an interaction against the geomagnetic field, thereby
restoring the energy that was transferred to the payload [46].

7.6.2 Hanging, swinging, and spinning tethers

7.6.2.1 Hanging tethers
One of the fundamentals of space tether applications is that two tethered masses orbiting

a source of gravity in space must possess the same orbital angular velocity as the overall
centre of mass (CoM) [38]. Figure 7.13 shows the case of a hanging dumb-bell tether in
which the upper payload (UP) is released from a hanging tether and then onto an elliptical
orbit. This is because the upper payload carries more velocity than required for that orbit,
but not enough to escape the influence of the Earth. The payload’s release point is then
the perigee of that elliptical orbit. On release of the upper payload the lower payload
(LP) and the tether do not have enough velocity to stay on the original orbit so they also
go into an elliptical orbit, but with the release point at the apogee. Half an orbit later the
UP reaches its apogee, and so it is further away from the Earth than it was when it was
released. Similarly the LP and the tether reach their perigee and are therefore closer to
the Earth than they were when the UP was released. This means that the upper and lower
payloads of a hanging tether are, respectively, raised and lowered.
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Fig. 7.12. Artist’s rendition of TiPS tether in orbit configuration (Naval Research Laboratory).
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Fig. 7.13. Upper and lower payload separations and definition of �r� [38, 39].

7.6.2.2 Adding swinging or spin motion
A prograde swing or spin will add velocity to the upper payload and will subtract

velocity from the lower payload. Conversely a retrograde swing or spin will subtract
velocity from the UP and add velocity to the LP. So, retrograde swing or spin could
be used to maintain the original orbit of the UP on release, for example. For maximum
apogee altitude gain of the UP, and perigee altitude loss of the LP, the most desirable
tether motion has to be either a prograde swing or spin. It appears that the optimum
payload release point for a swinging or spinning tether is when it is aligned along the
local gravity vector and when the motion is coplanar with the orbital plane [38]. The
radial separation, �r� , between a payload half an orbit after release, and the tether CoM’s
circular orbital radius at release, is usually defined as being greater than the sub-span
length l for orbit raising and less than l for orbit lowering (where the end-to-end length
equals twice the sub-span, i.e., L = 2l).

7.6.2.3 Literature applications and proposals
The first well-known proposal for payload orbit raising or lowering using momentum

exchange tethers was made by Colombo et al. [47]. Soon after that a system based on
a hanging tether in a circular orbit was proposed by Bekey and Penzo [48], for payload
transfer from LEO to Geostationary orbit. This also raised the problem of unwanted
lowering (effectively de-orbiting) of the mass at the other end (in this case the shuttle)
and also potential problems with excessive tether tension. Kelly [49] suggested that the
shuttle could be tethered to its external fuel tank at separation in order to raise the shuttle’s
orbit and to de-orbit the tank. Lorenzini et al. [50] suggested propelling a payload from
LEO to GEO using a two-stage tether system, with transfer times that were found to be
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potentially comparable to those for a conventional chemically propelled upper stage. The
tethers were shown to be better in terms of mass reduction.

7.6.2.4 Literature analyses and results
The commonly quoted literature result for an UP released from a hanging tether is that

it rises approximately seven times its sub-span length half an orbit later, therefore,

�r� ≈ 7l� (7.29)

In the case of swinging and spinning tethers, respectively, it has been shown that,

�r� < 14l (7.30)

�r� > 14l (7.31)

[33, 48, 50–52]. Bekey [53], also claimed that Eq. (7.31) could be extended as far as,

�r� > 25l� (7.32)

It was shown by Cosmo and Lorenzini [33] that the swing angle of a swinging tether
could be incorporated into such expressions and they went on to show that a swinging
tether could generate a �r� of,

�r� ≈ �7+√
48 sin �max�l� (7.33)

where �max was defined as the maximum swing angle attainable and considered to be
positive for prograde motion and negative for retrograde motion. This analysis assumed
that the tether and LP remained on their original circular orbit. According to Cosmo
and Lorenzini [33] the equations above only hold for �r� � rc. Finally, in this short
summary, we note another expression, this time due to Kumar et al. [54] which holds for
both swinging and spinning systems on the assumption that l � rc, where here �̇ and �̇
are the angular orbital and pitch velocities, both in rad/s,

�r� ≈
(

7+4
�̇

�̇

)
l� (7.34)

One can readily see from this that although Eq. (7.33) is independent of both the orbital
radius of the facility (central system) and the payload mass these quantities will clearly
affect the momentum of the payload in practice. Similarly, although Eq. (7.34) takes the
angular pitch and orbital velocities into account it does not incorporate orbital radius,
which is also obviously relevant. In order to address these issues the problem was
reconsidered by Ziegler and Cartmell [summarised in Ref. [38] from work originally
carried out by Ziegler and subsequently reported in full in Ref. [39]], with the overall
geometry given in Figure 7.14(a). The general equation for the radius r on an elliptical
orbit is given by,

r = p

1+ e cos �
(7.35)
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Fig. 7.14. (a) Payload release geometry [39]. (b) Perigees for ideal and non-ideal payload release [39].
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[55] from which the semilatus rectum, p, is given by the following,

p = a�1− e2� = b2

a
= rp�1+ e� = ra�1− e�� (7.36)

where a is the semi-major axis, b is the semi-minor axis, e is the orbital eccentricity, �
is the true anomaly, ra is the apogee radius, and rp is the perigee radius (or apoapsis and
periapsis in a non-Earth centred system). The total release velocity, VTot, for the payload
can be obtained in terms of the distance from the Earth’s centre, E, to the payload, rE , the
semi-major axis of the orbit, a, and  (where  = GMEarth�, from the vis-visa equation,

VTot =
√



(
2
rE

− 1
a

)
� (7.37)

This can be rearranged to obtain a for later use,

a = rE

2−V 2
TotrE

� (7.38)

The distance from the centre of the Earth, E, to the payload, M1 is directly obtained from
the geometry of Figure 7.14(a),

rE =
√

r2
c +L2

1 +2rcL1 cos �� (7.39)

noting that rc is the circular orbit radius from E to the CoM and that L1 is not necessarily
equal to L2. The total payload velocity comprises the following components,

VTot =
√

V 2
R +V 2

N (7.40)

where VR and VN are the radial and normal components, respectively. The radial velocity
(pointing inwards to E� is given by,

VR = VCoM sin � (7.41)

The normal velocity component is the sum of the payload’s orbital velocity, VE , and a
component of the tangential payload velocity relative to the CoM, VCoM, and this acts in
the direction of VE . Therefore we obtain,

VN = VE +VCoM cos � (7.42)

and the velocities VE and VCoM are given by,

VE = rE�̇ and (7.43)

VCoM = L1�̇ � (7.44)

Since �̇ =√
/r3

c [55] this can be substituted into Eq. (7.43). The angle, �, between VCoM

and VE is obtained from the sine rule, as, rE

sin��−��
= rc

sin �
, therefore,

� = sin−1

( 
rc


rE
 sin �

)
� (7.45)
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Now, substituting (7.43–7.45) into (7.41), the equation for VR, and then into (7.42), the
equation for VN , those two velocities emerge as follows, after dropping the moduli for
brevity,

VR = L1rc

rE

�̇ sin � (7.46)

VN = rE

√


r3
c

+L1�̇ cos
[

sin−1

(
rc

rE

sin �

)]
(7.47)

From Eq. (7.36) we can obtain e directly,

e =
√

1− p

a
(7.48)

Also, the semilatus rectum, p, can be defined from standard analysis in terms of specific
angular momentum, H , [55] thus,

p = H2


= �VN rE�2


(7.49)

noting that H is the magnitude of the specific angular momentum given by H = r2
E�̇ [55].

It has already been stated that the optimum release for a payload is when the tether is
aligned along the local gravity vector, and therefore for the UP at the perigee (periapsis)
of the released payload’s elliptical orbit. This is along the ECoMx0 line in Figure 7.14(b).
The dotted line shows an alternative, non-ideal release orientation when the payload, M1

lies on that line. Clearly, � −� = �0 +�, so we rearrange to get,

� = � −�−�0� (7.50)

The apogee (or, more generally, the apoapsis) of an orbit-raised payload represents the
location between an incoming payload and possibly the catching end of another tether. In
order to obtain the orbital radius of a non-optimally released payload at the location of the
required ideal apogee (apoapsis) the orbit’s true anomaly defining this position will be,

����apo = � −�� (7.51)

7.6.2.5 Hanging tether
The optimum release position for a hanging tether is when the system is aligned

along the local gravity gradient and because it is not librating or spinning, � = �̇ = 0.
Calculating r� from Eq. (7.35) allows us to obtain,

�r� = r� − rc� (7.52)

where

r� = rapo� (7.53)
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After some algebra (inserting Eq. (7.36), Eqs. (7.38–7.40), and Eqs. (7.46–7.49) into
Eq. (7.35)) the altitude gain for the upper payload for the hanging tether is given by,

�r� = �rc +L�4

2r3
c − �rc +L�3

− rc� (7.54)

The altitude loss for the lower payload for the hanging tether is,

�r� = �rc −L�4

2r3
c − �rc −L�3

− rc� (7.55)

For the case when the tether is swinging or spinning (both prograde), i.e., when �̇ �= 0,
and when it is instantaneously coincident with the local gravity vector, then the altitude
gain and loss, respectively, are given by,

�r� = �rc +L�2 ��rc +L� �̇ +L�̇�2

2− �rc +L� ��rc +L� �̇ +L�̇�2
− rc (7.56)

�r� = �rc −L�2 ��rc −L� �̇ −L�̇�2

2− �rc −L� ��rc −L� �̇ −L�̇�2
− rc (7.57)

We continue to assume that L << rc, so if � = L
rc

then � << 1, and applying a binomial
expansion to Eqs. (7.54–7.57) can lead to simplified results identical to the literature
results quoted in Eqs. (7.29) and (7.34); refer to Ziegler [39] for full details and to Ziegler
and Cartmell for a summary [38]. From this it becomes clear that the best payload raising
performance for a hanging tether is when it is closest to the Earth and as long as possible.
Conversely the best payload de-boosting performance for a hanging tether is when it
is as far as possible from the Earth and the tether is very long. The best performance
obtainable from a prograde librating tether used for payload raising is for the largest
possible libration angle and tether length, and for the system located as close to the Earth
as possible. De-boost is optimized for the same system but located as far as possible from
the Earth. In the case of a spinning (possibly motorized) tether then the situation is more
complex, with various possibilities arising. The most important general conclusion is that
an UP could be propelled from circular LEO to GEO using a long motorized system [39].

7.7 Tethers in orbit

7.7.1 Strength & materials

7.7.1.1 Terrestrially located hanging tether
We start off by considering a simple hanging tether located on Earth. Full weight is

experienced at the support and zero weight at the free end below, so, the tether tension
is given by T = (

m
l

)
zg, where 0 ≤ z ≤ l, and m/l equals mass per unit length, which is
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constant for a chosen material. The tension varies linearly along the length of the tether,
and if we write m

l
as �̂, then,

T = �̂lg� (7.58)

This implies that there must be a critical value of length beyond which the tether will
break due to its own weight. This is known as the break-length, l∗. Using this allows us
to re-write Eq. (7.58) as,

T∗ = �̂l∗ g� (7.59)

where T∗ is the break tension. These quantities were formally introduced by Beletsky and
Levin in their seminal text [56]. So, re-arranging Eq. (7.59) leads to an expression for
break-length,

l∗ = T∗
�̂g

(7.60)

and if we also introduce the specific strength, �∗,

�∗ = T∗
A

� (7.61)

where A is the cross-sectional area of the tether, then we get the following,

l∗ = �∗(
�̂

A

)
g

� (7.62)

where � = �̂

A
� (7.63)

So� l∗ = �∗
�g

(7.64)

The specific strength, �∗, has units of N/m2 or Pa, and � is the material density in
kg/m3. Therefore, l∗, the break length, is a function of specific strength and density,
and is effectively a strength-to-density ratio. We have assumed that stress is distributed
uniformly over the tether cross-section but this depends on the homogeneity of the
material and the design although it is a generally accepted assumption. Note also that the
mechanics of the preceding analysis are purely terrestrial, therefore l∗ is the break length
on Earth.

7.7.1.2 Hanging tether in space
The next stage in the development is to consider a massive satellite in a circular orbit

deploying a tether whose other end is free and orientated ‘downwards’ towards the Earth.
For an orbital angular velocity of �, Beletsky and Levin [56] give the tension at the
attachment point as,

T = 3
2

�̂�2l2 = 3
2

m

l
l2�2 = 3

2
ml�2 (7.65)
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with l = 2lsubspan, where lsubspan is half the total length of the tether, so this could also be
expressed as, T = 3mlsubspan�

2, to which we return at the end of Section 7.1.2. Adopting
the same approach as before leads to an orbital break tension given by,

T∗ = 3
2

�̂�2L2
∗ (7.66)

reverting to Beletsky and Levin’s notation [56].
Rearranging this gives the orbital break length,

L∗ = 1
�

√
2T∗
3�̂

� (7.67)

So if we re-use Eq. (7.61) we get,

L∗ = 1
�

√
2�∗A

3�̂
= 1

�

√√√√ 2�∗

3
(

�̂

A

) = 1
�

√
2�∗
3�

� (7.68)

Clearly, L∗ > l∗, and in geostationary orbit it is even bigger and defined as L∗�geo�, where
� = �geo.

Geostationary orbit is of interest for the Space Elevator application (a tether from the
surface of the Earth to geostationary orbit). Table 7.1 is adapted from data given by
Beletsky and Levin [56] and shows increasing break-lengths in descending order for four
selected materials.

Note that a tether longer than L∗, for some chosen material, cannot even carry its
own weight, let alone any cargo or payload. A relatively new material which can now
be produced in quantity is Spectra 2000, which has a lower density than any of the
above (970 kg/m3) and a specific strength of about 3.5 GPa. For geostationary orbit,
where the orbital rate, �geo, is 0.0000727 rad/s, the orbital break length of Spectra 2000
is 21461 km. This is approximately half-way back from geostationary orbit to Earth,
which compares to only a third of the way back for Kevlar. In fact there are no mass
produced materials yet capable of supporting the Space Elevator. Carbon nanotubes are
of considerable speculative interest, but economical mass production technologies have
yet to be developed.

Table 7.1
Potential tether material properties.

Material � [kg/m3] �∗ [GPa] E [GPa] l∗ [km] L∗ [km] L∗�geo� [km]

Tungsten 19300 4�0 410 21 320 5100
HP steel 7900 4�0 210 52 502 8000
Kevlar 1450 2�8 130 197 981 15700
Graphite 2200 20 690 928 2129 34100
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7.7.1.3 Mass considerations
The breaking mass M∗ can be defined as an upper limit for an application, therefore

MT ≤ M∗. The mass of the tether can be defined by,

MT = �kaAl (7.69)

for which Beletsky and Levin [56] define the constant ka as,

ka = d2
T

d2
f n

(7.70)

noting that dT and df are the diameters of the overall tether and the individual fibers,
respectively, and n is the number of fibers that make up the multi-line tether. Equa-
tion (7.69) can be slightly revised to define the breaking-mass, M∗ = �kaAL∗, which
rearranges to M∗

A
= �L∗ if ka = 1 (for the conceptually simple single line tether case). The

previous table allows us to calculate this ratio of break-mass to tether cross-sectional area
based on the values given for the density, �, and break-length, L∗ for selected materials.
Assuming a 1000 kg break-mass for an installation using Kevlar, we get a commensurate
cross-sectional area of 0�7 mm2 for the tether (dT = 0�944 mm). Preserving this area, and
looking at high performance steel and graphite, their associated break-masses for the
same cross-section can be evaluated, M∗�highperfsteel� = 2776 kg and M∗�graphite� = 3278 kg.
Clearly Spectra 2000 scores highly in comparison, with a break-length between Kevlar
and graphite, but a density considerably lower than Kevlar.

7.7.2 Gravity gradient stabilisation for hanging tethers

An object of mass m, and radial position r from the centre of the Earth, and orbiting
the Earth, is subjected to a gravitational force,

FG = −m

r2
ur � with scalar form� FG = −m

r2
� (7.71)

where the unit vector -ur refers to the fact that the gravity force is directed radially
inwards. The inward acting centripetal force on the body is,

FC = −mr�2ur � with scalar form� FC = −mr�2� (7.72)

A hanging tethered dumb-bell in a circular orbit travels along the orbital path with all
points on the tether moving with the same velocity. The Centre of Mass (COM) of
the tether will experience exactly enough gravitational pull to provide the centripetal
force necessary for that radial position, therefore the gravitational force from Eq. (7.71)
produces the centripetal acceleration. For a dumb-bell the outer end-mass is at a higher
altitude and will therefore not feel sufficient gravity to provide the centripetal force
consistent with the orbital velocity (which is the same as that of the COM due to the
tether). Therefore FG < FC and the outer end-mass will try to move outwards, generating
a tension in the outer sub-span of the tether. The inner end-mass, however, feels too
much gravity for the centripetal force required at that point, so FG > FC , and the inner
end-mass tends to try to move further inwards. This generates a tension in the inner
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sub-span. Therefore, at the COM (r = r0� we can equate the scalar forms of Eqs. (7.71)
and (7.72) to get,

−m

r2
o

= −mr0�
2� and rearrangement gives�  = �2r3

0 � (7.73)

Taking two cases either side of the COM for the dumb-bell, starting first with the outer
case, for which, in general, 
FG
 < 
FC 
 and r = r0 + z.

∴ −m

r2
= −mr�2 +FZout� (7.74)

where m is the mass at r. Substituting for r and  (from Eq. (7.73)) leads to,

FZout = m�2

(
�r0 + zout�− r3

0

�r0 + zout�
2

)
(7.75)

and z = zout, which is a point along the tether on the outer side of the COM. This
resultant force is FZout. The quantities in the brackets in Eq. (7.75) can be expanded,
and as r0 + zout = r then the expansion becomes, zout + r0zout�r0+r�

r2 . If r → r0, implying a
relatively short tether, then the bracketed term becomes, zout + rzout�2r�

r2 . This is equal to
3zout. The net tensile force FZout is outwards acting and so Eq. (7.75) reduces to,

FZout = 3mzout�
2� in the limit r → r0 (i.e., for short tethers)� (7.76)

For the inner case we have, 
FG
 > 
FC 
 and r = r0 − z, but as we are using the COM
as the datum for zout and zin we can put −z = zin, since zin is measured inwards, so
r = r0 + zin.

∴ −m

r2
= −mr�2 −FZin� (7.77)

Substituting for r and  (from Eq. (7.73)) leads to,

FZin = m�2

(
r3

0

�r0 + zin�2
− �r0 + zin�

)
� (7.78)

The quantities in the brackets can be expanded by using r0 + zin = r, and then letting
r → r0, so that the expansion simplifies to −3zin. This means that the net tensile force
given in Eq. (7.78) can be reduced to,

FZin = −3mzin�2� in the limit r → r0 (i.e., for short tethers) (7.79)

Note that these are approximations which assume ‘short’ tethers and are commonly
used in the tether literature [51, 56]. These gravity gradient forces, FZout = 3mzout�

2

and FZin = −3mzin�2 define the tensile forces in each sub-span from 0 ≤ 
zout
 ≤ l and
0 ≤ 
zin
 ≤ l. Therefore, for a symmetrical system, at any point equidistant from the COM
on either side, 
FZout
 = 
FZin
, and so the tensions are the same in each sub-span. Note
here that total (payload-to-payload) tether length L = 2l, which is directly analogous to
l = 2lsubspanwhen referring to Beletsky and Levin’s analysis [56] (see Section 7.7.1).



222 Modern astrodynamics

y0
x0

rc

Y

E X
θ

Mp1

I

I

Mp2

Ψ

CoM

Fig. 7.15. Planar tether co-ordinate system.

7.7.3 Fundamental dynamical models for dumb-bell tethers

7.7.3.1 Planar tether on a circular orbit
Figure 7.15 shows a planar dumb-bell tether in the orbital plane. EXY is an Earth

centered frame which is assumed to be inertial for this analysis, and CoMx0y0 is a rotating
frame whose origin is at the geometrical center, assumed coincident with the CoM. The
tether sub-span lengths are equal and defined by l. The payload masses are equal such
that MP1 = MP2 = MP . The distance from the centre of the Earth E to the tether CoM
is defined by the position vector, of magnitude rc and true anomaly �. The planar spin
angle, or pitch-angle, is � . This system is sufficient to construct a basic equation of
motion for a passive planar dumb-bell tether, but by means of a relatively small extension
to the modelling it is also possible to introduce an active motor drive to the tether by
means of a conceptualized motor, gearbox, and counter inertia. On that basis the mass of
a central facility containing the motor drive, gearboxes, power supplies, control systems,
etc., needs to be defined and MM is introduced for this. However, the counter-inertia
does not need to be considered explicitly here, as long as it is appreciated that it would
be necessary for any motor driven tether, and that it could take the form shown in the
outriggers of Figure 7.16. Irrespective of whether or not the passive or motorized tether
is pursued, the equation of motion for spin about the CoM can readily be obtained by
deriving the system energies and then applying Lagrange’s Equation.

The Cartesian positions of the principal components with respect to E are given as
follows, assuming that the tether mass is located at l

2 on each side of the CoM,

xP1 = rc cos � + l cos�� +��� yP1 = rc sin � + l sin�� +���

xP2 = rc cos � − l cos�� +��� yP2 = rc sin � − l sin�� +���

xM = rc cos �� yM = rc sin �� xT1 = rc cos � + l

2
cos�� +��� (7.80)
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Fig. 7.16. Plan schematic of contra-rotating motorised tether components.

yT1 = rc sin � + l

2
sin�� +��� xT2 = rc cos � − l

2
cos�� +���

yT2 = rc sin � − l

2
sin�� +���

where subscripts T1 and T2 refer to positions halfway along the tether from the COM
on each side and P1 and P2 denote payloads 1 and 2, respectively.

The system kinetic energy is easily constructed,

T =1
2

MP�ẋ2
P1 + ẏ2

P1�+ 1
2

MP�ẋ2
P2 + ẏ2

P2�+ 1
2

MM�ẋ2
M + ẏ2

M�+ 1
2

�Al�ẋ2
T1 + ẏ2

T1�

+ 1
2

�Al�ẋ2
T2 + ẏ2

T2�+ 1
2

�2IP +2IT + IM���̇ + �̇ �2� (7.81)

where the mass moments of inertia about the local z-axes (component z-axes normal to
the orbital plane of the system) are given by,

IP = 1
2

MPr2
P� (7.82)

IT = 1
12

�Al�3r2
T + l2�� (7.83)

IM = 1
2

MMr2
M (7.84)
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noting that IT is the standard result for a solid circular section tether with axis normal to
the orbital plane at l

2 . Differentiating Eqs. (7.80) with respect to time and then substituting
these velocities, and also Eqs. (7.82)–(7.84), as appropriate, into Eq. (7.81) leads to,

T =
(

MP +�Al+ MM

2

)
�ṙ2

c + r2
c �̇2�

+
(

MP

[
l2 + r2

p

2

]
+ MMr2

M

4
+ �Al

12
�4L2 +3r2

T �

)
��̇ + �̇ �2 (7.85)

Note that for a circular orbit the quantities rc and �̇ represent a constant orbital radius and
angular velocity, so these are not generalized coordinates in the Lagrangian sense and
therefore rc = C1� ṙc = 0� �̇ = C2, where C1 and C2 are constants, with C2 disappearing
from the analysis from hereon. C1 is retained as rc. The potential energy is based on the
local position vectors from E to MP1 and MP2, the position vector, rc, between E and the
CoM, and an appropriate integration along the sub-span lengths of the tether, thus,

UP1 = − MP√
r2

c + l2 +2rcl cos �
� (7.86)

UP2 = − MP√
r2

c + l2 −2rcl cos �
(7.87)

UM = −MM

rc

(7.88)

UT1 = −�A

l∫
0

�r2
c + z2 +2rcz cos ��1/2dz (7.89)

UT2 = −�A

l∫
0

�r2
c + z2 −2rcz cos ��1/2dz� (7.90)

where z is distance along each sub-span from the CoM outwards. Performing the inte-
grations in Eqs. (7.89) and (7.90) leads to analytical forms for the potential energy
contributions of the tether sub-spans, as follows,

UT1 = �A ln
rc�1+ cos ��

l+ rc cos � +√r2
c + l2 +2rcl cos �

(7.91)

UT2 = �A ln
rc�1− cos ��

l− rc cos � +√r2
c + l2 −2rcl cos �

(7.92)
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Differentiating the energy functions for use with Lagrange’s equation generates the equa-
tion of motion. Lagrange’s equation is applied in the form,

d
dt

(
�T

�q̇

)
− �T

�q
+ �U

�q
= Qq� (7.93)

where Qq is the generalized force associated with coordinate q, which in this case is
q ≡ � . Note that at this level of modelling if we require to incorporate the motor drive
then the generalized force term is given simply by,

Q� = � (7.94)

where � is the applied torque in Nm. Therefore, applying Eq. (7.93) leads to the equation
of motion for the motor driven system,(

Mmr2
m

2
+Mp�2l2 + r2

p�+ �Al�4l2 +3r2
T �

6

)
�̈

+ Mprcl sin �

�r2
c + l2 −2rcl cos ��3/2 − Mprcl sin �

�r2
c + l2 +2rcl cos ��3/2

−�A
r2

c + l2 − rcl�1− cos ��+ �l− rc�
√

r2
c + l2 +2rcl cos �

r2
c + l2 +2rcl cos � + �l+ rc cos ��

√
r2

c + l2 +2rcl cos �
tan
(

�

2

)

+�A
r2

c + l2 − rcl�1+ cos ��+ �l− rc�
√

r2
c + l2 −2rcl cos �

r2
c + l2 −2rcl cos � + �l− rc cos ��

√
r2

c + l2 −2rcl cos �
cot

(
�

2

)

= � (7.95)

This is a non-linear ordinary differential equation, with the non-linearities coming in
from the potential terms. The inertia term, although algebraically complicated, is in fact
linear in this model. This equation can be solved by numerical integration and this can
be readily demonstrated using the TetherSim animated simulation [57]. In TetherSim the
tether cross-section is assumed to be tubular (and not solid as defined above), so there is
an inner radius, rTi, and an outer radius, rTo, within the expression for IT in Eq. (7.83),
so �r2

T0 + r2
Ti� replaces r2

T . TetherSim is based on a set of user-definable data with defaults
given by the following,  = 3�9877848∗1014 m3s−2�Mp = 1000 kg�MM = 5000 kg� rM =
rp = 0�5 m� l = 50 km� rc = 6870 km� rTo = 0�006 m� rTi = 0�004 m�A = 62�83 mm2�

� = 970 kg/m3 (Spectra 2000), � = 3�25 GPa (Spectra 2000), and a safety factor of 2 for
the allowable tether strength. The initial conditions that are used are taken from Ziegler
and Cartmell [38],

��0� = −0�9 rad� �̇ �0� = 0 rad/s� (7.96)

It should be noted that the TetherSim graphics may occasionally run slowly, dependent
on the connection to the server. The interested user is recommended to start with the
default data, for which the motorized tether will librate, and then to change one parameter
at a time in order to explore other aspects of the dynamics. Clearly the easiest way of
getting monotonic spin-up for a chosen set of design data is to merely increase the motor
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torque, but this may not always be the most desirable approach and in such situations a
multi-variable optimization of the design may well be preferable.

7.7.3.2 Non-planar dumb-bell model
Having discussed the planar model on a circular orbit in Section 7.7.3.1, a non-planar

model can be proposed next, once again using the geocentric co-ordinate system, as
shown in Figure 7.17, and the governing equations of motion for a dumb-bell tether
capable of operating out of the orbital plane can be derived. This is summarized from
original work by Ziegler, first published within work by Cartmell et al. [58] and then
in full by the originator [39]. In this section, R is used to represent the radius vector to
the centre of mass of the orbiting tether system, and rP , can be used to define the radius
vector to the perigee of the orbit. The representation of Figure 7.17 is sufficient to define
completely the system based on the Earth centre location, E, representing the origin of
the X�Y�Z system, and the origin of the relative rotating x0� y0� z0 co-ordinate system
located at the centre of mass of the tether system, as in section 7.7.3.1. The X�Y plane
and the x0� y0 plane lie on the orbital plane and the Z and z0 axes are perpendicular to
this. The X axis is directed to the orbit perigee and x0 rotates in axial alignment with
R. The in-plane angle, previously defined as the planar spin, or pitch angle, �, is now
re-defined as the angle from the x0 axis to the projection of the tether onto the orbital
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L1

L2
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x0

y0

X
Perigee

Y

Z

R

Normal to
Orbit Plane

Normal to
Orbit Plane

E 
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θ

α

α

ψ

ψ

Fig. 7.17. Non-planar tether co-ordinate system [39, 58].
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plane. In addition to this an out-of-plane angle, �, goes from the tether to its projection
onto the orbital plane, and is always normal to the orbital plane.

The equations of motion are once again obtained by means of the Lagrangian approach.
The system consists of two end masses, M1 and M2, connected by a tether with sub-span
lengths denoted by L1 and L2. The Earth’s gravitational field is assumed to be spherical,
and there are negligible environmental perturbations, rigid tethers with constant cross-
sectional area and negligible mass compared to that of the payloads (for simplicity). As
in Section 7.7.3.1 the Cartesian positions are obtained, this time in the following forms,

x1 = R cos � +L1 cos � cos �� +��

y1 = R sin � +L1 cos � sin �� +��

z1 = L1 sin �

x2 = R cos � −L2 cos � cos �� +��

y2 = R sin � −L2 cos � sin �� +��

z2 = −L2 sin �� (7.97)

In this case R, �, �, � are regarded as the generalized co-ordinates, and the positions of
the payloads with respect to the centre of the Earth are given by,

R1 =
√

x2
1 +y2

1 + z2
1 =

√
L2

1 +R2 +2L1R cos � cos � (7.98)

R2 =
√

x2
2 +y2

2 + z2
2 =

√
L2

2 +R2 −2L2R cos � cos �� (7.99)

The kinetic energy of the system in terms of the payloads and neglecting the tether can
be expressed by translational point-mass payload components,

T = 1
2

M1

(
ẋ2

1 + ẏ2
1 + ż2

1

)+ 1
2

M2

(
ẋ2

2 + ẏ2
2 + ż2

2

)
� (7.100)

where the dot once again denotes differentiation with respect to time. Differentiating
equations (7.97) with respect to time and substitution, as appropriate, into Eq. (7.100)
gives the following, assuming moment equilibrium M1L1 = M2L2,

T = 1
2

�M1 +M2��Ṙ
2 +R2�̇2�+ 1

2
�M1L

2
1 +M2L

2
2�× � �̇2 + cos2 � ��̇ + �̇�2� (7.101)

Neglecting the tether mass, the potential energy of the payloads is given by,

U = −M1

R1

− M2

R2

� (7.102)

Substituting (7.98) and (7.99) into Eq. (7.102) gives the system’s potential energy,

U = − M1√
L2

1 +R2 +2L1R cos � cos �
− M2√

L2
2 +R2 −2L2R cos � cos �

� (7.103)
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Given that the length of a typical tether is likely to be two to three orders of magnitude
less than the orbital radius then its potential energy can be expanded with �1 = L1

R
and

�2 = L2
R

, where �1 � 1 and �2 � 1. On the assumption that M1L1 = M2L2, expansion up
to O��3

1� and O��3
2� leads to,

U =− �M1 +M2�

R
+ 

(
M1L

2
1 +M2L

2
2

) (
1−3 cos2 � cos2 �

)
2R3

− 
(
M1L

3
1 −M2L

3
2

) (
3 cos � cos � −5 cos3 � cos3 �

)
2R4

(7.104)

The kinetic and potential energies in Eqs. (7.101) and (7.104) are substituted into
Lagrange’s equation in the required multi-degree of freedom form,

d
dt

(
�T

�q̇i

)
− �T

�qi

+ �U

�qi

= Qqi
i = 1� 2�    �N� (7.105)

where, in this case, the generalized forces Qqi
are zero because no external forces or

torques are assumed here (such as were provided by the motor drive in Section 7.7.3.1).
Applying Eq. (7.105) leads to four equations of motion governing motion through the in
and out-of-plane angles defined for the tether, the true anomaly, and the radial distance
from the focus of the elliptical orbit to the center of mass of the tether. Alternatively,
standard orbital mechanics relationships [55] can be used to transform the equations from
the time domain to the true anomaly domain, thereby simplifying them algebraically, and
also reducing the number of equations down from four to two by assuming a circular
orbit, for which e = 0, resulting in,

�′′ −2�′ tan ���′ +1�+ 3
2

sin �2��+ 3 �L1 +L2� sin � sec �

2rC

× (1−5 cos2 � cos2 �
)= 0� (7.106)

�′′ + 1
2

sin �2��
[
��′ +1�

2 +3 cos2 �
]
+ 3 �L1 −L2�

2rC

cos � sin �

× (1−5 cos2 � cos2 �
)= 0� (7.107)

It is important to note that the prime represents differentiation with respect to the true
anomaly and the dot denotes differentiation with respect to time, and that this is opposite
to the convention used in Cartmell et al. [58]. Equations (7.106) and (7.107) could be
solved numerically, however Ziegler offers approximate analytical solutions (within the
review by Cartmell et al. [58] and in full within Ref. [39]) by means of the multiple
scales perturbation scheme applied up to third-order perturbation accuracy and also by
expanding the trigonometrical functions by means of the Taylor series and retaining the
first two terms. The multiple scales solution is uniformly valid close to � = � = 0. In the
case of numerical integration solutions the simplifying expansion of the potential energy
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expression is not required and so Eq. (7.103) can be used instead to lead to alternative
forms for the two governing equations, as follows,

�′′ −2 tan ��′ ��′ +1�+ r4
C

L1 +L2

sin � sec �
[(

r2
C +L2

2 −2rCL2 cos � cos �
)−3/2

− (r2
C +L2

1 +2rCL1 cos � cos �
)−3/2

]
= 0 (7.108)

�′′ + 1
2

sin �2�� ��′ +1�
2 + r4

C

L1 +L2

cos � sin �
[(

r2
C +L2

2 −2rCL2 cos � cos �
)−3/2

− (r2
C +L2

1 +2rCL1 cos � cos �
)−3/2

]
= 0� (7.109)

Equations (7.108) and (7.109) can be numerically integrated and their solutions compared
with the approximate analytical solutions to Eqs. (7.106) and (7.107) (which are not given
here but discussed in full by Ziegler [39] and partly reproduced by Cartmell et al. [58]).
The approximate solution to third-order perturbation must be differentiated with respect to
the true anomaly to evaluate the constants of integration at � = 0 for zero initial velocity
conditions for each angle [39, 58]. The value chosen for the low Earth orbit radius, rC , is
taken to be 7000 km, and very short tether lengths are used, L1 = L2 = 500 m, thereby
ensuring that the potential energy expansion conditions are properly satisfied. Figures 7.18
and 7.19 illustrate the response obtained between the fourth and fifth orbit in an attempt
to magnify the discrepancies between the solutions. It can be seen that these are relatively
marginal and that for the data used the third-order multiple scales solutions approximate
the numerical integrations results quite well. Further work on non-planar models using
non-equatorial elliptical orbits has shown the potential for extremely complex three-
dimensional motions [40] in which there is scope for very considerable inter-coordinate
coupling and highly non-linear dynamical behavior. The circular restricted three-body
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Fig. 7.18. Response of angle � as a function of true anomaly �, solid line—numerical solution, dashed
line—second-order multiple scales solution, chain dashed line—third-order multiple scales solution [39, 58].
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Fig. 7.19. Response of angle � as a function of true anomaly �, solid line—numerical solution, dashed
line—second-order multiple scales solution, chain dashed line—third-order multiple scales solution [39, 58].

problem can be used (the third body is the Sun), in order to permit a weak stability
boundary transfer via Lagrange point L1 and this in conjunction with a non-equatorial
orbit for a pair of staged passive tethers is shown to be potentially capable of Earth–Moon
payload transfer for realistic tethers and significant payload masses (typically 500 kg
each). The work reported in [40] is based on pragmatically sized tethers working in a
staged configuration at the Earth end (see next section for a discussion on staging) and a
long Moravec Lunavator tether depositing and retrieving payloads to and from the lunar
surface.

7.7.4 Payload exchange concepts

Hoyt and Forward [59] first suggested that doubled-up, staged, tethers could be used
from SEO to LTO for transfers of payloads between the Earth and the Moon by using
mass balance to ensure conservation of momentum throughout. The method links the
Sub-Earth-orbit to LEO method of Carroll [60] to the EEO to LTO proposal of Stern
[61]. Cartmell & Ziegler [42] applied this to the motorized momentum exchange concept
and then Cartmell et al. [40] presented some preliminary calculations for a lunar transfer
through L1 on the basis of non-equatorial tether orbits around Earth in order to obviate the
need for a plane change at the Moon end. On reaching the Moon payloads are captured
by a Moravec Lunavator [34], which brings the payload round from LLO and down to
the Lunar surface. The reverse is also possible in principle. Clearly the appropriate orbital
elements must be calculated to make payload handovers occur when there is instantaneous
zero relative velocity at the points where the payload is to be transferred during its journey.
Initially, the payload is boosted up to SEO by means of chemical propulsion to rendezvous
with the LEO tether in a slightly elliptical orbit, after which tether propulsion takes over,
first by means of the staged tether rendezvous and boost through to LTO, passage through
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Fig. 7.20. Staged tethers shown at alignment [42].

L1, with sufficient energy to continue to the Moon and capture by a Moravec Lunavator.
Effects of gravitational perturbations on the tethers due to other bodies, and the Earth’s
oblateness, have both been neglected in analyses to date. Figure 7.20 shows the instant
when the two staged tethers are in alignment. The inner tether is on LEO and the outer
tether is on EEO. There are two emergency payload capture orbits, PEO, and PEO1

(not shown). In principle this approach could be used with passive momentum exchange
tethers, but the control and logistics required, and the maximizing of available energy
levels for optimal performance, suggest that motorized tethers would be the best solution.
The concept is based on the continual and synchronized arrival and departure of payloads
of identical mass flowing in and out of the system, thereby ensuring that each tether is
alternately either fully laden with two payloads, or completely unladen on both sides.
It also assumes that suitable technologies will be in place for payload handovers, major
orbital maintenance in the event of missed handovers (and therefore asymmetrically laden
tethers and unattached payloads moving along their rescue orbits), solar electric power
supplies, control and logistics, and of course an appropriate manufacturing or habitation
infrastructure which requires to exploit two-way mass movement between the planets.
Figure 7.20 shows the instant at which the payload labelled 5 has just been delivered
from SEO to the right-hand end of the LEO tether (looking down onto the system) under
conditions of zero relative velocity at that point. At this precise moment the EEO tether
passes payload 1 inwards to the left-hand side of the LEO tether, so that the LEO tether is
simultaneously loaded at each end. At that same moment the EEO tether releases payload
3 into LTO. This means that the EEO tether is unladen at both ends at exactly the same
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time that the LEO tether is fully laden at both ends. The step changes in mass moment
of inertia of the two tethers will have a potential de-orbiting effect and work is in hand
to quantify this at the time of writing. The orbit periods are harmonic, and this and the
facility spin rate determines when the necessary handover conditions can occur. If the
handover fails another attempt may be possible the next time they come round. This
potential problem arises for transfers from SEO to LEO, and vice versa, and also from
LEO to EEO, and vice versa. In the next stage payload 1 comes to rendezvous with the
Earth transfer vehicle on a return SEO. Meanwhile payload 5 is handed over from the
LEO tether to the EEO tether to collect payload 6 (not shown in Figure 7.20). Payload
6 could have been in PEO1 instead, perhaps due to a missed capture first time round.
Assuming handovers occur as planned the LEO tether becomes empty as the EEO tether
becomes full. The SEO booster brings payload 7 (also not shown in Figure 7.20) up to
the LEO tether and the EEO tether hands over payload 6. The EEO tether also releases
payload 5 into LTO. Thus, the EEO tether empties and the LEO tether fills. This all
charts the progress of payload 5 from SEO to LTO, and the logical process can continue
indefinitely as long as payloads continue to arrive at the right time and place. The above
shows that flows of payload can be arranged into and out of the staged tether system
so that neither of the two tethers is ever asymmetrically laden. A full analysis of this is
given by Cartmell and Ziegler [42] and Cartmell et al. [40] in which it is shown that this
concept, when used with pragmatic data can readily generate Earth escape velocities for
reasonable tether geometries and mass characteristics.

7.8 Conclusions

Solar sailing and space tethers both offer exciting new possibilities for the future
by either extracting momentum from the environment, or balancing momentum through
payload exchanges. These novel propulsion technologies offer many interesting new
avenues of research in orbital dynamics, some of which have been discussed here. For
solar sailing, the continuous thrust generated by the sail allows exotic new families
of highly non-Keplerian orbits, while staged tether systems allow intriguing means of
transferring payloads at essentially no cost. While some of these possibilities have been
discussed here, it is clear that there are many unexplored opportunities which await
investigation in the future. In particular, future technology developments may allow solar
sails to be fabricated with a sail lightness number of order one. This would provide a
continuous thrust of the same order as the local solar gravitational acceleration, surely
enabling interesting new families of orbit. Similarly, developments in carbon nanotubes
may provide tethers with remarkable mechanical properties, allowing extremely large
loads to be transferred to high energy orbits.

Lastly, it is surely through the novel features of the orbital mechanics of these pro-
pellantless propulsion systems that further compelling practical applications will arise,
which will in turn unlock the resources to meet the engineering challenges they present.
While the underlying orbital mechanics may be interesting and exciting, implementation
is the key to the future.
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8.1 Introduction

Formation flying of multiple spacecraft is an enabling technology for many future space
science missions including enhanced stellar optical interferometers and virtual platforms
for Earth observations [1, 2]. Controlling a formation will require several considerations
beyond those of a single spacecraft. Key among these is the increased emphasis on fuel
savings for a fleet of vehicles because the spacecraft must typically be kept in an accurate
formation for periods on the order of hours or days [3–5], and the performance of the
formation should degrade gracefully as one or more of the spacecraft runs out of fuel [6].
This chapter presents a model predictive controller that is particularly well-suited to
formation flying spacecraft because it explicitly minimizes fuel use, exploits the well-
known orbital dynamics environment, and naturally incorporates constraints (e.g., thrust
limits, error boxes). This controller is implemented using Linear Programming (LP)
optimization, which can be solved very rapidly and has always-feasible formulations. The
resulting algorithms can be solved in real-time to optimize fuel use and are sufficiently
robust that they can be embedded within an autonomous control system.

Efficient execution of precise formation flying relies on both accurate descriptions of
the fleet dynamics and accurate knowledge of the relative states. Navigational errors [7, 8]
and inaccurate physical models (such as ignored non-linearities, thruster misalignments,
and differential disturbances such as J2 and drag) can be significant sources of error [9].
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Even though an open-loop analysis can model and numerically predict the impact of
navigation and modeling errors on the fuel usage, there still remains the challenge of
designing a control systems to produce fuel efficient and robust command inputs when
subject to these errors. This chapter focuses on techniques to robustify the formation
flying control system to handle these types of errors.

Our treatment of the control system design begins with the development of dynamic
models in Section 8.2. In this section, starting from the general nonlinear model, we
present the linearized dynamics for relative motion around a circular and eccentric orbit.
In addition, a survey of dynamics used in formation flight literature, extensions to cases
with disturbances and the new directions such as Gauss Variational Equations (GVEs) are
reviewed. Section 8.3 provides a survey of recent control techniques used in formation
flying; a more extensive survey on the state-of-art in formation flying is provided in
Refs. [10, 11]. The last part of Section 8.3 covers the basics of the model predictive
controller (MPC) developed in our previous work [12], and provides the mathematical
basis for the formation flying control algorithms for multiple spacecraft. This mathe-
matical formulation provides the flexibility of enabling state constraints, disturbance and
sensor noise models, and actuator limitations. In addition, the formulation is directly
applicable to a variety of linearized discrete dynamics matrices, such as the ones obtained
via approximation methods [13], direct integration [14], and closed-form solutions [15].
In this work, the controller proposed in Ref. [12] is used as a baseline design and is
modified to address formation-wide cooperation and robust formation keeping aspects of
fuel critical missions.

With these goals in mind, the fourth section presents a new coordination method,
virtual center which enables the model predictive controllers on each satellite to cooperate
to achieve formation wide fuel savings [16]. The virtual center represents the weighted
average motion of the fleet, including an average of the predicted disturbances. Since the
formation tracking through the virtual center results in each spacecraft using its control
effort against the disturbances relative to the fleet average, the weights in the average
can be updated to balance the fuel usage across the fleet. This approach is compared
to the widely used leader–follower coordination mechanism, and the results demonstrate
formation-wide fuel savings. However, even though fleet coordination provides a balanced
mission execution, the accuracy of this execution relies on path planning that is robust
to disturbances and sensor noise. Thus, it is crucial to devise robust planning methods
within the cooperation structure to enable formation flight for extended periods of time
under realistic disturbances and sensor noise.

The final two sections provide two complementary approaches to achieve this objec-
tive: open-loop control objective selection and closed-loop robust planning. Section 8.5
examines the effect of changing the terminal condition of the formation keeping opti-
mization to include both the original robust error-box constraint and also a requirement
that the spacecraft nominally enter a closed orbit inside the error box. This method, called
the control objective selection approach [17], is shown to be effective at reducing the
frequency of replanning required by the controller. The last section presents an alternate
form of robustness that guarantees that the spacecraft will remain inside an error box,
and explicitly accounts for the possibility of future feedback. This closed-loop robustness
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approach [17], is shown to be less conservative than requiring that the initial planned
trajectory robustly remain inside the error box without replanning.

Finally, the three major developments are combined to create a hierarchical fleet-
optimal control system that uses periodic terminal conditions, closed-loop robustness, and
virtual-center coordination. The performance of this system is demonstrated in a fully
non-linear formation flying simulation.

8.2 Dynamics of formation flight

The performance of any controller design depends on the fidelity of the embedded
system dynamics model. This section presents the dynamics for the relative motion of a
satellite with respect to a reference satellite (or a reference point) on an eccentric orbit.
Even though these orbital dynamics are well known, its highly non-linear form complicate
the development of precise control laws and online optimization algorithms. To simplify
the dynamics for analysis and control, it is common to linearize with respect to the sepa-
ration distance between satellites in the formation. A common set of linearized dynamics
for circular orbits is Hill’s Equations of Motion [18]. For elliptical orbits, linearizations
are typically parameter-varying [19–21], where the parameter is the reference orbit true
anomaly. This transition to linearized dynamics in case of short baseline separations for
circular and eccentric Keplerian reference orbits is especially useful in modeling multiple
spacecraft control and coordination problems. In the last part of this section, we summa-
rize various extensions to these equations in order to account for disturbances. Our brief
but precise development of the formation flight equations of motion follows Ref. [21],
and the full details are available from classical texts such as Refs. [19, 22, 23].

The location of each spacecraft within a formation can be given by

�Rj = �Rfc + ��j (8.1)

where �Rfc and ��j correspond to the location of the formation center and the relative
position of the jth spacecraft with respect to that point. The choice of formation center
is rather arbitrary and can either be fixed to an orbiting satellite, or just be chosen as
a local point that provides a convenient reference for linearization and development of
linear control laws. The reference orbit in the Earth Centered Inertial (ECI) reference
frame is represented by the standard orbital elements �a� e� i������	, which correspond
to the semi-major axis, eccentricity, inclination, right ascension of the ascending node,
argument of periapsis and true anomaly.

With the assumption that
∣∣��j

∣∣� ��Rfc�, the equations of motion of the jth spacecraft
under the gravitational attraction of a main body

i
�̈Rj = − 


� �Rj�
3
�Rj + �fj (8.2)

can be linearized around the formation center to give

i �̈�j = − 


� �Rfc�
3

(
��j − 3�Rfc · ��j

� �Rfc�
2

�Rfc

)
+ �fj� (8.3)
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where the accelerations associated with other attraction fields, disturbances or control
inputs are included in �fj . The derivatives in the ECI reference frame are identified
by the preceding subscript i. A natural basis for inertial measurements and scientific
observations is the orbiting (non-inertial) reference frame �c, fixed to the formation
center (see Figure 8.1). Using kinematics, the relative acceleration observed in the inertial
reference frame i �̈�j can be related to the measurements in the orbiting reference frame

i �̈�j = c �̈�j +2i
�̇�× c �̇�j + i

�̇�× �i
�̇�× ��j	+ �i

�̈�× ��j	� (8.4)

where i
�̇� and i

�̈� correspond to the angular velocity and acceleration of this orbiting

reference frame. The fundamental vectors ���j� �Rfc� �̇
i�	 in Eqs. (8.3) and (8.4) can be

expressed in �c as

��j = xjk̂x +yjk̂y + zjk̂z (8.5)

�Rfc = Rfck̂x (8.6)

i �̇� = �̇k̂z� (8.7)

where the unit vector k̂x points radially outward from Earth’s center (anti-nadir pointing)
and k̂y is in the in-track direction along increasing true anomaly. This right-handed
reference frame is completed with k̂z, pointing in the cross-track direction. All of the
proceeding vectors and their time rate of changes are expressed in the orbiting reference
frame �c.

Combining Eqs. (8.3) and (8.4) to obtain an expression for c �̈�j , and using Eqs.
(8.5)–(8.7), it is clear that the linearized relative dynamics with respect to an eccentric
orbit can be expressed via a unique set of elements and their time rate of change. This
set consists of the relative states xj� yj� zj� of each satellite, the radius Rfc and the angu-
lar velocity �̇ of the formation center. Using fundamental orbital mechanics describing
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planetary motion [24, 25], the radius and angular velocity of the formation center can be
written as

� �Rfc� = a�1− e2	

1+ e cos �
� and �̇ = n�1+ e cos �	2

�1− e2	3/2
� (8.8)

where n =√

/a3 is the natural frequency of the reference orbit. These expressions can

be substituted into the equation for c �̈�j to obtain the relative motion of the jth satellite
in the orbiting formation reference frame. The first correct formulation of the below
equations in its original form is attributed to Lawden [19].

d
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The terms on the right-hand side of this equation correspond to the Coriolis acceleration,
centripetal acceleration, accelerating rotation of the reference frame, and the virtual gravity
gradient terms with respect to the formation reference. The right-hand side also includes
the combination of other external and control accelerations in �fj . These terms can be
explicitly presented for each spacecraft as⎡

⎣ fx

fy
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+
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where u = ux�t	 uy�t	 uz�t	�
T � � → �3 represents the control inputs and

w = wx�t	 wy�t	 wz�t	�
T � � → �3

represents the combination of other external accelerations, such as disturbances. Note that
care must be taken when interpreting and using the equations of motion and the relative
states in a non-linear analysis. The difficulty results from the linearization process, which
maps the curvilinear space to a rectangular one via a small curvature approximation. In
this case, a relative separation in the in-track direction in the linearized equations actually
corresponds to an incremental phase difference in true anomaly, �.

For a circular reference orbit, e = 0, substituting �̇ = no� �̈ = 0, and the well known
Clohessy–Wiltshire or Hill’s equations are

d
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Numerical experience have shown that the applicability of Hill’s equations to various
formation flying maneuvers is limited to strictly circular orbits and short baseline sep-
arations on the order of 1 m to 1 km. However, transforming in-track separations to
relative anomaly angles (rectangular map of curvilinear space), allows for larger baseline
formation initialization and formation-keeping maneuvers.

8.2.1 Extensions to formation flight dynamic representations

Linearized relative orbital dynamics equations of motion of the type discussed in this
chapter typically rely on several key assumptions: small vehicle separations (�/R � 1)
and Keplerian motion. They ignore the non-Keplerian effects of drag and J2

1 and some
(e.g., Hill’s equations) also assume no reference orbit eccentricity. In recent years, a
number of new dynamics models have been published that capture the effects of these
disturbances. Table 8.1 summarizes the dynamics models that have been commonly used
for formation-flight control.

The inherent inability of Hill’s equations to account for the eccentricity of the Keplerian
reference orbit provides a dominant source of error, even for typical STS mission eccen-
tricities such as e = 0�005. In comparison, Lawden’s equations [19, 21] provide the
flexibility to account for reference orbit eccentricities up to e = 0�8. Similar to Hill’s
equations, the applicability of these equations is also limited by the non-linearity intro-
duced with large vehicle separations. The addition of second and third order non-linearity
effects [27, 29, 31] provides better approximations for larger vehicle separations. These
non-linearity corrections are, however, limited to circular reference orbits and degrade
rapidly with larger eccentricity. The Ref. [26] modifies Hill’s equations to include differ-
ential J2 effects.

Differential orbital elements [22, 30] and Gauss’ Variational Equations (GVE) [15, 23,
32, 33] can be used to simultaneously account for large baselines, reference eccentricity,
and J2 effects [28, 33]. The linearized GVE approach in Ref. [33] uses slowly changing
differential orbital elements that are linearized about the desired orbit of each spacecraft
in the spacecraft formation. Linearization error then grows with the state error of each

Table 8.1
The matrix of formation-flight dynamics used for control and the corrections introduced by the corresponding
authors.

e = 0 0 < e < 1 e = 0 0 < e < 1
no J2 no J2 with J2 with J2

Linearized Hill’s [18] Lawden [19] Schweighart [26]
dynamics Inalhan [21]

Long baseline Karlgrad [27] GVEs [23] Gim [28] Gim [28]
capable Mitchell [29] Alfriend [30] Breger [33]

Alfriend [31]

1 J2 is the major correction term to uniform gravitational attraction because of Earth’s oblateness.
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spacecraft rather than the overall size of the formation. As in the case of Lawden’s
equations, the linearized GVEs in Ref. [33] are linear parameter-varying (LPV), making
them particularly well-suited to use within the model predictive control presented in this
chapter.

The next section reviews the techniques available for formation flight control and
develops a model predictive controller using one of the linearized dynamics presented in
this section.

8.3 Formation flight control and the model predictive control formulation

The goal of formation flying control is for several vehicles to create and maintain
a desired formation utilizing the limited resources available on each spacecraft while
acting as a single system. In this context, we can divide this specific control task into
two distinct parts. First is the formation initialization and keeping which initializes the
desired formation to a passive aperture2 and maintains it against disturbances. Second
is the formation planning which creates trajectories for the formation to follow during
maneuvers such as reshaping or retargeting of the formation. The primary focus of the
formation flying control research to date has been to develop fuel efficient methods of
performing these two distinct tasks. For formation planning and keeping, many formation
control approaches have been suggested in recent years spanning a large range of con-
trol techniques, including PD, LQR, LMI, nonlinear, Lyapunov, impulsive, and model
predictive control [12, 34–41].

For formation initialization and keeping, typically it is assumed that a formation is
initialized to a passive aperture and deviations caused by disturbances such as differential
drag and/or differential J2 is corrected through feedback laws. Passive apertures, created
through slight differences in eccentricity, inclination, and argument of latitude, provide
a natural structure for formation initialization. These apertures inherently take advantage
of the orbital dynamics of the spacecraft in the absence of disturbance forces to create a
periodic relative motion through establishing no-drift conditions which set zero differential
energy across the fleet [21, 42, 43]. The size, shape and the relative initial conditions for
these passive apertures is designed by using the closed-form solutions for the non-linear
or the linearized orbital equations. This idea can be further extended to mitigate the effects
of the disturbances, such as J2, by establishing initial conditions [43] which results in zero
average relative drifts in special orbits. However, when such special orbit selection is not
available, it is necessary to develop control laws for keeping spacecraft in formation.

Control law approaches, such as Lyapunov and PD controllers [37], require that control
be applied continuously, a strategy both prone to high fuel use and difficult to implement
when thrusting requires attitude adjustment. Other approaches, such as the impulsive
thrusting scheme introduced in Ref. [44], require spacecraft to thrust at previously spec-
ified times and directions in the orbit, ensuring that some of the maneuvers will not be
fuel-optimal. Many of the non-linear feedback control schemes available in literature [10]

2 Passive apertures are typically short baseline periodic formation configurations that provide good, distributed,
Earth imaging and reduce the tendency of the vehicles to drift apart.
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utilize feedback linearization, wherein control commands are used to cancel the non-
linear dynamics and replace them with linear dynamics that are typically not the natural
dynamics of an orbiting satellite. The linearized relative dynamics discussed in the previ-
ous section also provide many avenues for control development. For example, numerous
linear quadratic regulators have been developed that force a vehicle to track a desired
state [45–47]. However, these feedback control schemes require almost constant control
effort which leads to high fuel costs over the length of a mission. In order to reduce fuel
costs, recent research has focused on developing methods to generate fuel-time optimal
control sequences over a period of time rather than just one step.

This section presents a method of determining fuel/time optimal control inputs and
trajectories using linear programming (LP), which was first introduced in Ref. [12].
This LP formulation is the base of the control work presented in this chapter. Linear
programming solves for the minimum fuel maneuver explicitly by minimizing a sum of the
control inputs for the solution over a given planning horizon. The general formulation can
include any form of linearized dynamics and disturbance models. The LP formulation also
provides a general framework for including various types of state and actuator constraints.
LP can be used for different types of maneuvers: formation maneuvers, individual station-
keeping, formation-keeping, or general trajectory planning. Note that this type of control
system, in addition to providing an optimal planning algorithm, replaces a reactive control
system when used as a feedback controller. In literature, this technique is known as model
predictive control (MPC) [48]. Figure 8.2 shows the MPC algorithm that each spacecraft
in the formation implements.

To develop a model predictive controller for formation flight3, we consider the general
set of linear time-varying (LTV) continuous equations of motion

ẋ�t	 = A�t	x�t	+B�t	u�t	+Bd�t	w�t	� (8.12)

which can be used to describe the relative dynamics of each satellite with respect to a
reference Keplerian orbit. Here x�t	 ∈ �n are the states, u�t	 ∈ �m are control inputs,
w�t	 ∈ �p are differential disturbances. Note that, in what follows, the dynamics could

Optimize over 
planning horizon

Receive state
estimate

u

eCalculate state 
error

Implement first
part of plan

âx

Fig. 8.2. Algorithm followed by each spacecraft in the formation.

3 The technique developed in this section is independent of different techniques that can be used for dis-
cretization of system dynamics.
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have be written as a linear parameter-varying (LPV) model, where the parameter is the
true anomaly of the reference orbit, as is the case for Lawden’s equations [19, 12], by
using Kepler’s equation to determine the true anomaly as a function of time [23]. There
are a number of ways to develop discrete dynamics for optimization: approximation
methods [13], direct integration [14] or closed-form solutions [15]. A straightforward, yet
computationally intensive approach, is to numerically integrate the A and B matrices to
obtain the discrete dynamics [49] using the following identify

d
dt

��t� t0	 = A�t	��t� t0	 ∀t� ��t0� t0	 = I� (8.13)

where ��t� t0	 is the state transition matrix from a time t0 to time t. In some cases, �
can be found by solving the equations of motion directly, or by using the fundamental
solution matrix [15, 50], which corresponds to the homogenous solution to Eq. (8.13).
This matrix is represented by Fk for a specific time interval

Fk = ���k+1	Ts� kTs	� (8.14)

where Ts is the duration of a time step and k corresponds to the kth step in the discretization.
The discrete input matrix Gk is given by

Gk =
∫ �k+1	Ts

kTs

���k+1	Ts� �	B��	d� (8.15)

using a zero-order hold (ZOH) assumption on the input. The ZOH assumption is appro-
priate for periods of thrusting that are significant relative to the duration of a time step.
Equation (8.15) can be accurately computed using direct integration, but this is typically
computationally expensive for online implementation. If the equations of motion are lin-
ear time invariant (LTI), or if the time step is sufficiently short that the parameter can be
considered constant between discretization points, then Fk and Gk take the form [51]

Fk = eAkTs � Gk =
∫ �k+1	Ts

kTs

eAk�d�Bk� (8.16)

where Ak and Bk are the constant state transition and input matrices for the interval
��k+1	Ts� kTs	. The approximate forms of Fk and Gk in Eq. (8.16) are significantly less
expensive to compute than the direct integration in Eq. (8.15), but any integration errors
must be carefully monitored to determine their effect on the closed-loop performance.
Note that if, instead, the thrusting occurs quickly relative to the duration of a time step,
then the input can be assumed to be impulsive, and Gk = B�kTs	 [51]. A similar analysis
must also be performed for the disturbance input matrix, Mk, which is calculated using
the disturbance input matrix Bdk.

Using any of these discretization options, the discrete dynamics take the following
form

x�k+1	 = Fkx�k	+Gku�k	+Mkw�k	� t = kTs� (8.17)

For any given kth time step, the variables of interest z�k	 ∈ �l can be extracted from the
states x�k	 and input variables u�k	 as

z�k	 = Hkx�k	+ Jku�k	� t = kTs� (8.18)
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where Hk and Jk correspond to output matrices for the optimization. The result z�k	 can
be explicitly written as a function of the input variables u�1	� � � � � u�k−1	 up to the kth

step, initial state x�0	, and the discrete system dynamics using the convolution sum [49]

z�k	 = HkF
�k�k	x�0	+Jku�k	+

k−1∑
i=0

HkF
�k−i−1�k	 Giu�i	+Miw�i	� k ≥ 1� (8.19)

where F�j�k	 corresponds to

F�j�k	 =
⎧⎨
⎩

F�k−1	� � � F�k−j+1	F�k−j	 2 ≤ j ≤ k
F�k−1	 j = 1
I j = 0

� (8.20)

Further, Eq. (8.19) can be structured into a compact matrix representation

z�k	 = ��k	Uk +h�k	� (8.21)

where

��k	 = [
HkF

�k−1�k	G0 HkF
�k−2�k	G1 � � �HkF

�0�k	Gk−1 Jk

]
(8.22)

and

h�k	 = [
HkF

�k−1�k	M0 HkF
�k−2�k	M1 � � �HkF

�0�k	Mk−1

]
⎡
⎢⎢⎢⎣

w�0	
w�1	

���
w�k−1	

⎤
⎥⎥⎥⎦+HkF

�k�k	x�0	

(8.23)

and the input vector is

Uk =  u�0	T u�1	T � � � � � � u�k−1	T u�k	T �T (8.24)

The disturbance inputs w�k	 are used to account for known dynamics that are not modeled
in the Ak matrices. For example, Hill’s dynamics do not model aerodynamic drag,
however equations describing these effects are readily found in the literature [52]. By
calculating the effects of drag on each satellite at each time step a priori, these effects can
be included in the optimization. By including known disturbances on the dynamics, the
controller is better able to prevent constraint violations and conserve fuel in cases where
the disturbance acts as required input would have.

This affine plant description is the basis of the formation keeping control problem. The
objective of each vehicle in this problem is to minimize fuel use

J = min
Un

m∑
j=1

cj
u�j	
1� (8.25)

where cj terms are scalar weights. Note that the 1-norm is used as the fuel use metric,
because it correctly identifies the velocity change costs (�V ) for spacecraft with axial
thrusters. The vehicles are constrained to maintain their state to within some tolerance of
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Fig. 8.3. Error boxes and desired states for a formation in a relative frame centered around a reference orbit.

a specified desired set of coordinates at each time-step k. These state constraints create
an “error-box” around the desired state of the spacecraft (see Figure 8.3). Using an error
box has advantages over tracking a desired point: it is more fuel efficient, better captures
the mission constraints, and allows “breathing room” for the controller to account for
modeling errors. The performance specification at each step k is

a�zj�k	− zjdes
�k	� ≤ ztolj� ztolj ≥ 0 (8.26)

⇒ − ztolj ≤ zj�k	− zjdes
�k	 ≤ ztolj ∀ j = 1� � � � � l (8.27)

where ztolj is the error bound associated with each coordinate zj . The vector zdes�k	 is the
desired state at step k and has the same dimensions as z. The resulting MPC optimization
uses the cost function from Eq. (8.25) and the constraints from Eq. (8.27).

The one-norm cost function used in the linear program (LP) is formulated by splitting
the input matrix into positive, U+

n , and negative, U−
n , parts that are recombined after

optimization

Un = U+
n −U−

n � U+
n ≥ 0� U−

n ≥ 0 (8.28)

which gives the cost function

J ∗ = min
U+

n �U−
n

[
CT CT

][ U+
n

U−
n

]
� (8.29)
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where CT = c0�…,cn�. Constraints on the maximum input can be imposed using

[
I 0
0 I

][
U+

n

U−
n

]
≤
[

umax

umax

]
� (8.30)

where umax is the maximum thruster input. A variety of additional practical constraints
are described in Ref. [12]. The constraints on spacecraft state at each step k are then
written[

��k	 −��k	
−��k	 ��k	

][
U+

k

U−
k

]
≤
[

zdes�k	−h�k	+ ztol

−zdes�k	+h�k	+ ztol

]
∀ k ∈ �1� � � n� (8.31)

[ −I 0
0 −I

][
U+

n

U−
n

]
≤
[

0
0

]
(8.32)

in order to ensure that the spacecraft remains inside an error box centered on a desired state
(Eq. (8.31)) and that elements of U+

n and U−
n are optimized to be positive (Eq. (8.32)).

Note that the constraint matrices and vectors here can be compiled in a single large set
of constraints

AÛ ≤ b� (8.33)

where Û is the concatenation of U+
k and U−

k , and A and b capture the constraints at all
steps k considered in the optimization.

Remark 8.3.1. One method to achieve robustness to unmodeled disturbance and noise
terms is to identify the worst-case disturbance sequence that would force the spacecraft
out of the desired error boxes. One way of approximating this is to find the disturbance
sequence, w∗

um, that would result in total maximum variation in the spacecraft states of
interest. Assuming that the unmodeled terms are set bounded (such as �w�k	� ≤ wmax�k	,
for convenient LP formulation), this problem can be formulated using the convolution
step in Eq. (8.22)

w∗
um = arg max

w�0	� � � � �w�m−1	�

m−1∑
k=0

zum�k	 (8.34)

subject to zum�k	 = [
HkF

�k−1�k	M0 HkF
�k−2�k	M1 � � � HkF

�0�k	Mk−1

]
⎡
⎢⎢⎢⎣

w�0	
w�1	

���
w�k−1	

⎤
⎥⎥⎥⎦

zum�k	 ≥ 0

�w�k	� ≤ wmax�k	� ∀k = 0� � � � �m−1�

Define z∗
um as the value of zum�k	 for w∗

um, then the error box tolerance constraints in the
original LP formulation (i.e., Eq. (8.27)) can be modified through znew

tol �k	 = zold
tol −z∗

um�k	.
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Thus, at any time step, the constraints are contracted to account for the unmodeled worst-
case disturbance sequence that could force them out of the errors boxes in a given time
horizon, m. If the LP formulation is used as an open-loop feedback loop using replanning,
then distinct parts of the time horizon can be emphasized by introducing weights to states
in the cost function:

∑m−1
k=0 cum�k	zum�k	.

Remark 8.3.2. Error box constraints sometimes arise from the requirement that space-
craft achieve their desired states to within 10% of the formation separation [53]. Also,
some missions would require that the error box be enforced at all times to achieve con-
tinuous observations [53], and others would only impose the constraint for brief periods
during each orbit [54]. The constraints in Eq. (8.32) easily handle these cases through
the addition or subtraction of steps k to the optimization, thereby enforcing the error box
constraints at all times or only specific times.

Remark 8.3.3. This optimization problem is readily formulated as a linear program.
Linear programming is a very fast optimization method that uses a linear, convex cost
function and linear, convex constraints [55]. Linear programming was used for the sim-
ulation examples in this chapter, and in all cases required no more than a small fraction
of a second to solve on a 3 GHz computer. Likewise, formulating the dynamics matri-
ces used in the linear programs never required more than 10 seconds of computation
time.

The center of each error box is referenced to the formation center, which could be a set
of reference orbital elements or another spacecraft. The choices of the formation center
are discussed in detail in the following section.

8.4 Distributed coordination through virtual center

Section 8.3 presented a model predictive controller that minimizes the fuel use and
guarantees that the spacecraft will remain within an error box. However, a typical for-
mation has multiple spacecraft that must all be constrained not to drift, and for some
missions, form or maintain a particular shape. Thus the relative state requirements for
the entire formation must be specified with respect to some reference point. This section
investigates the effect of three different methods of specifying this reference point. The
first is a point on a reference orbit that is propagated with the fleet. The second is a tradi-
tional leader–follower, where a leader is the formation reference point. The third approach
involves a new method, called the virtual center [16, 56], which uses measurements taken
by the spacecraft to calculate the location of the center. The virtual center approach is
similar to the formation feedback method presented in Ref. [35], but is applied to space-
craft formation flying in low Earth orbit and explicitly uses a fuel weighting in the center
calculation to equalize fuel use across the fleet. Another distinction is that the calculation
of the virtual center is based on measurements available from the relative navigation
estimator developed for this application [57, 58]. Using the virtual center extends the
previous formation-keeping control in Section 8.3 to formation flying control by enabling
extensive cooperation between the vehicles. At the end of this section, we compare these
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three approaches through simulation and show that the virtual center method results in
fleet-wide fuel savings and fuel balance across the formation.

Remark 8.4.1. Desired states relative to the reference point are specified using passive
apertures designed with the closed-form solutions to various linearized equations of
relative motion [21, 42, 43]. Passive apertures are designed to result in drift-free motion,
but disturbances such as differential drag cause the formation to disperse, necessitating
feedback control. Our approach uses a control algorithm based on linear programming
(LP) to minimize fuel cost (see Section 8.3).

8.4.1 Reference point coordination

One of the first steps in applying the LP technique for a spacecraft control system is
to determine the desired state, which is the current state in the desired trajectory for the
spacecraft. An error box is fixed to the desired state to provide a position tolerance for the
satellite. A key point in this section is that the error box is specified relative to a desired
point for the spacecraft. This section investigates various techniques for specifying the
desired points for the formation, and demonstrates how any error in the spacecraft location
relative to the current desired point can be estimated using the onboard carrier-phase
differential GPS (CDGPS) measurements [58].

The formation-keeping LP algorithm in Section 8.3 is formulated to control a single
spacecraft to maintain a desired state to within some tolerance specified by an error
box. The formation-keeping algorithm is applied independently to each spacecraft, which
enables the required computation to be distributed across the fleet. The desired state for
each spacecraft is specified relative to a reference point, which can be chosen to enable
cooperation between the spacecraft in the fleet, thereby enabling true formation flying.

Figure 8.4 depicts a typical scenario for a formation of three spacecraft, in which the
desired trajectories of the spacecraft have been designed to create a projected ellipse
in a relative frame [59]. This type of formation is known as a passive aperture and
has a size determined by the formation radius. The formation angle is measured from
maximum positive radial displacement. The initial conditions and closed-form solutions
to the relative dynamics are used (with the drift-free constraints imposed [21]) to find
the desired states at future times. The desired state is specified relative to the formation
center, which is determined relative to a formation reference point. Three methods for
determining the reference point are discussed in the following subsections. Each method is
evaluated for its complexity and the amount of information flow required for its execution.

8.4.1.1 Reference orbit
A simple method of specifying the reference point is using the reference orbit. The

reference orbit is a point in space that is propagated using a model that describes the
average fleet orbit. The formation center is attached to the reference orbit and is used
to specify the desired spacecraft states. The reference point is described by the non-
linear orbit equations, requiring little communication between vehicles. Also note that the
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reference point is not specified using measurements, so there is no uncertainty in the state
due to sensor noise. A disadvantage of this approach is that the reference point does not
naturally experience the fleet disturbances. Instead, a disturbance model must be included
in the propagation. If the model is inaccurate, the fleet will track a reference orbit that
does not describe the fleet motion. Instead of using control effort to maintain the fleet,
effort would be wasted “chasing” a mathematical point in space that does not move with
the fleet.

8.4.1.2 Leader–follower
Another common method of specifying the reference point is to let a vehicle be

the leader and fix the reference point to the leader spacecraft. The advantage is that
the reference point is on a spacecraft, which eliminates the need to propagate the
motion and it naturally captures the absolute disturbances. The leader–follower method
requires little information flow, because the reference state is just the state of the leader
spacecraft.
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One leader–follower configuration places the leader at the aperture center, but this
makes it prohibitively expensive to change leaders in the formation. Alternately, the leader
spacecraft could be one of the vehicles on the passive aperture. The desired state for each
follower spacecraft then becomes the desired state for the follower relative to the aperture
center minus the desired state of the leader from the aperture center. This simplifies the
transition between leaders, because no maneuvers are required. However, instantaneously
switching leaders could cause a jump in the desired state of each spacecraft and must be
done with care.

A disadvantage of this method is that the leader does not represent the average fleet
motion, forcing some followers to overcome larger disturbances than others. Also, the
leader spacecraft will use minimal fuel, because its state never experiences error. To
equalize control effort across the fleet, the leader spacecraft can be alternated based on
the fuel usage/status within the fleet.

8.4.1.3 Virtual center
An alternative approach to reference orbit and leader–follower tracking is to use a

“virtual center” as the reference point. The reference state in this case is estimated using
measurements between the spacecraft in the fleet. An advantage of the virtual center
is that it represents the weighted average motion of the fleet, including an average of
the actual disturbances. The weighted average enables cooperation within the fleet. The
virtual center method presented here is similar to the formation feedback method for
multiple vehicle control presented in Ref. [35], but our approach differs, because we show
how the virtual center can be implemented using sensors planned for formation flying
missions [57, 58]. The navigation algorithm presented in Ref. [57] uses decentralized
estimators to filter the CDGPS measurements, precisely determining the location of each
spacecraft relative to a reference vehicle. The following discussion assumes that the
reference vehicle is the leader, but that is not necessary in general. Given the estimated
states relative to the leader, it is possible to precisely determine the formation center.

Figure 8.5 shows a formation of three spacecraft. The thick solid lines are known
or measurable distances. The thin solid lines represent the true distances to the virtual
center, which are compared to the specified desired state relative to the virtual center
(dashed lines). To calculate the relative position and velocity of the center, a measurement
reference state must be specified. In the figure, the reference frame is attached to spacecraft
#1, which will be referred to as the reference spacecraft. Inter-spacecraft states, �x1i, are
measured relative to the reference spacecraft and are represented by the solid lines in
Figure 8.5. The virtual center state, �xc, is also specified relative to the reference spacecraft.
Each spacecraft state relative to the virtual center is

�xci = �x1i − �xc� (8.35)

The error states are the difference between the state of each spacecraft relative to the
center, xci, and the desired state for that spacecraft, which is also specified relative to
the center. Error states in the figure are the differences between the ♦ and  for each
spacecraft.

�xci − �xi�des = �ei� (8.36)
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Substituting Eq. (8.35) for xci yields the following expression for the vehicle error in
terms of known quantities and the unknown virtual center, �xc,

�x1i − �xc − �xi�des = �ei� (8.37)

The error equation for each spacecraft becomes⎡
⎢⎢⎢⎣

�x11 − �x1�des

�x12 − �x2�des

���
�x1N − �xN�des

⎤
⎥⎥⎥⎦−

⎡
⎢⎢⎢⎣

I
I
���
I

⎤
⎥⎥⎥⎦
[�xc

]=

⎡
⎢⎢⎢⎣

�e1

�e2
���

�eN

⎤
⎥⎥⎥⎦≡ �e (8.38)

which can be compactly rewritten as

bc −Acx = �e� (8.39)

The virtual center location �xc, is chosen to minimize the sum of the errors, 
�e
2 = �bc −
Acx	T �bc −Acx	. A weighting matrix, W , can be included to increase the importance of a
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vehicle or state, giving the weighted least-squares problem min�bc −Acx	T W�bc −Acx	,
with solution

x̂c = (
AT

c WAc

)−1
AT

c Wbc� (8.40)

Note that using the normalized current fuel consumption in the weighting matrix allows
fuel use across the fleet to be equalized over time.

Remark 8.4.2. Given the special form of bc and Ac the calculation of the virtual center
can be decentralized using the following algorithm

x̂c1
= b1� (8.41)

x̂ci
= x̂ci−1

+ wi

w̄i−1 +wi

�bi − x̂ci−1
	� (8.42)

where bi = �x1i − �xi�des, wi is the weight of the ith estimate, and w̄i = ∑i
j=1 wj . In this

formulation, spacecraft i passes its current state estimate, x̂ci
and the scalar w̄i to spacecraft

i + 1 to update the estimate of the optimal center position. The error-minimizing fuel-
weighted virtual center can be computed in one cycle around a formation. The final
estimate can then be shared with the rest of the fleet.

Using the virtual center method, updates can be made to the virtual center state every
time step or periodically with a propagation of the virtual state between updates. A key
advantage of this method is that the disturbances affecting each spacecraft become differ-
ential disturbances relative to the fleet average, which will lower fuel costs. Measuring
spacecraft error relative to a regularly updating virtual center makes the absolute motion
of the fleet unobservable to individual spacecraft. Thus, absolute motion will not enter
into the LP, ensuring control effort is only utilized for relative geometry maintenance.
A disadvantage is that the virtual center calculation must be centralized, since the current
and desired states of all spacecraft must be collected in one place to find the virtual center,
requiring an increase in communication throughout the fleet. Also, noise and uncertainty
in measurements will lead to uncertainty in the virtual center state.

A further issue with this approach is that the virtual center is a function of the states of
all the vehicles in the fleet, so any control effort by one vehicle will influence all of the
other vehicles. When a vehicle uses a control input to correct an error, the control input
assumes the virtual center is fixed over the plan horizon. However, the location of the
center will change over time as each vehicle moves. The control inputs from the other
vehicles can be included in this decentralized control algorithm by having all vehicles
“publish” a list of planned control actions and then having each vehicle include the inputs
of the other vehicles as disturbance inputs into their dynamics. The control inputs get
scaled to give the motion for the virtual center in the near future. Unfortunately, there is
no guarantee the published plans will get fully implemented, which may cause errors in
the trajectory design.

Another way to predict the effect of external control inputs on the virtual center is
to form a centralized LP to solve for all vehicles’ control inputs simultaneously. The
virtual center state at each time step is described in terms of the vehicle states, as in
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the formation.

Eq. (8.40), capturing the center motion due to all control inputs. Control input solutions
and trajectories would then have to be sent to each vehicle, increasing the communication
load, thereby making this approach intractable for larger fleets. Figure 8.6 shows an
updated version of the MPC algorithm (see Figure 8.2) that includes the virtual center
calculation.

8.4.2 Simulations results

Several simulations were performed to demonstrate the effectiveness of the new coor-
dination method. FreeFlyerTM [60] orbit simulation software is used as the nonlinear
propagator for each satellite while MATLABTM mathematical software is used to imple-
ment the controller. The entire control system is executed without human intervention.

The simulation consists of three vehicles, each modeled as a 45 kg Orion spacecraft [57]
with different drag coefficients (2.36, 2.20, and 2.12). Other disturbances, such as gravity
perturbations, solar radiation pressure, atmospheric lift, and third body effects are activated
in the FreeFlyerTM propagator. Sensor noise is included in the simulation as a white
noise component added to the true relative state. The magnitude of the sensor noise is
bounded by 2 cm for position and 0.5 mm/s for velocity, based on expected CDGPS
sensor noise [57]. Spacecraft thrusters provide a maximum acceleration of 0.003 m/s2,
which corresponds to continuous thrusting for a full time-step. The formation is initialized
on a reference orbit (semi-major axis 6900 km, eccentricity of 0.005) similar to a space
shuttle orbit. The reference orbit inclination is 35, introducing significant differential
gravity disturbances for spacecraft with inclination differences. See Ref. [56] for the full
details on the simulation parameters.

When using the virtual center procedure, the reference point is updated at every time-
step. The relative dynamics are discretized on a 10.8 second time interval to match
the propagation step-size. Formation flying problems are planned over a half-orbit time
horizon. The LP formation flying formulation restricts control inputs and applies position
constraints to every sixth time-step [61], which reduces LP solution times to about 1–3
seconds. The robust LP approach in Ref. [7] is used to account for sensor noise and
the always feasible approach in Ref. [61] is also used. The error box size for position
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tolerance is 10 m in-track, 5 m radial, and 5 m cross-track, which meets the tolerance
requirement of 10% of the baseline for all formations in the simulation.

The simulation contains three formation maneuvers with formation flying at each
configuration. The spacecraft paths during maneuvers are shown with respect to the
virtual reference point in Figure 8.7. The formation begins and ends in similar in-track
separations. Two passive aperture formations are maintained for approximately seven
days each to observe any long- and short-term effects of the disturbances, particularly
the gravity perturbation effects. The first aperture projects a 400 × 200 m ellipse in the
in-track–radial plane and a circle with a 100 m radius in the radial–cross-track plane. The
second aperture projects a 600 × 300 m ellipse in the in-track–radial plane and a 300 m
radius circle in the in-track–cross-track plane. Aperture position assignment is coordinated
through the procedure described in Section 8.3 with a plan horizon of one orbit.

8.4.2.1 Analysis of controller performance
Full simulation fuel costs for the leader–follower and fuel-weighted virtual center

methods are shown in Figures 8.8 and 8.9. The fuel cost figures show three reconfiguration
maneuvers, each of which uses a significant amount of fuel over a short period of
time. The longer, constant slope segments correspond to the periods of formation-flying.
Comparing the two figures, it is clear that the Leader–Follower method has a higher fuel
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Fig. 8.8. �V’s for each vehicle, using Leader–Follower—sharp rises indicate formation maneuvers and constant
slope parts correspond to formation flying.

cost than the virtual center method throughout the mission. In the leader–follower figure,
a spacecraft exerting no control (the flat lines) is presently the leader of the formation and,
consequently, has no state error. When the total control effort exerted by one spacecraft
significantly exceeds that of the other spacecraft, the leader is switched to balance overall
fuel use. In comparison, the fuel-weighted virtual center method spreads the error out
among all of the spacecraft, with the objective of placing the virtual center in such a way
as to minimize global control effort across the formation. As a result, there is a non-zero
fuel cost for all three spacecraft during the formation-flying mode.

The simulations using a virtual center reference point were performed for three dif-
ferent levels of fleet cooperation. The first simulation calculates the virtual center in
the formation with equal weights on each vehicle in the fleet. The second simula-
tion includes the control actions of other spacecraft in the control determination. The
third simulation includes the external control inputs, as in the second simulation, and
also adjusts the weighting of the vehicles based on fuel use. All three methods suc-
cessfully achieve and maintain the specified configurations during the simulation. In
the formation-flying mode, the vehicles are maintained approximately within the speci-
fied position tolerance due to the always-feasible formulation. The maximum deviation
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from the desired state for any simulation was less than 11 m in-track, 5 m radial, and
7 m cross-track. The total fuel cost data for each of the simulations is contained in
Table 8.2.

8.4.2.2 Formation flying analysis—FM
The results in Table 8.2 show that there is no appreciable difference in fuel cost

between the three different controllers for the formation maneuvers; however, this is
not unexpected. The difference between the first two simulations is the inclusion of the
control inputs of other vehicles in the low-level controller for formation-flying. Therefore,
there is no expected improvement in the formation maneuvers from this change. The
last simulation adds fuel weighting to the calculation of the formation center. The fuel
weighting is only updated once every two orbits, whereas the formation maneuvers occur
over a single orbit. Some benefit can be expected, because the fuel weighting will reduce
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Table 8.2
Table of �V use for the virtual center simulations. Simulation number corresponds to level of coordination used.
Spacecraft are indicated by number. The maneuver types are followed by the number of orbits the maneuver
was performed for. FF indicates formation flying and FM represents formation maneuvers.

Sim 1 Sim 2 Sim 3

Maneuver type SC 1 SC 2 SC 3 SC 1 SC 2 SC 3 SC 1 SC 2 SC 3

FF #1 (4) mm/s/orbit 0.509 0 0.523 0.652 0 0.112 0.542 0 0.341
FM #1 (1) mm/s 163 150 171 160 148 168 169 157 165
FF #2 (101) mm/s/orbit 3.07 2.82 2.43 2.70 2.54 2.26 2.39 2.48 2.51
FM #2 (1) mm/s 315 291 315 339 291 320 275 306 314
FF #3 (90) mm/s/orbit 8.14 6.90 6.18 7.42 6.57 6.59 6.59 6.73 6.82
FM #3 (1) mm/s 415 440 391 408 410 374 404 392 393
FF #4 (14) mm/s/orbit 2.64 4.69 2.30 1.71 0.696 1.45 3.90 2.25 0.541

FM Total (3) mm/s 893 881 877 907 849 862 848 855 872
FF Total (209) mm/s 1141 1040 899 1019 920 931 979 1004 964
Total Fuel (212) mm/s 2034 1921 1776 1926 1769 1793 1827 1859 1836

the differential disturbances of vehicles that have used large amounts of fuel, however,
this change will be minimal over the course of one orbit.

8.4.2.3 Formation flying analysis—FF
For the two passive aperture formation flying maneuvers, the rate at which fuel is

expended for each vehicle is heavily dependent on the cross-track disturbance. The in-
track and radial control efforts are approximately equal for each vehicle in the formation,
regardless of the spacecraft location in the aperture; however, the cross-track fuel use
varies significantly for each vehicle. The cross-track disturbance results in a secular
increase in the amplitude of the cross-track oscillatory motion, and the magnitude of
this increase depends on the cross-track phasing. With a three vehicle formation, it is
impossible to eliminate the disturbance completely for every vehicle, therefore, at least
two vehicles will experience a cross-track disturbance and will expend more control effort
than the other in response to the cross-track disturbance. Altering the phasing over time
can equalize the average cross-track disturbance for all vehicles [45]. This method could
be included in the control system in Section 8.3, but note that the coordinated virtual
center equalizes the fuel cost due to the cross-track disturbance through the calculation
of the fuel-weighted virtual center.

8.4.2.4 Total fuel cost analysis
The controllers can be compared by the total fuel cost for the mission. If a formation

flying mission requires the entire fleet to perform the science observations, then the
mission life will be limited by the vehicle with the greatest fuel use. The fuel expenditure
for each vehicle during the mission is summarized in the last row of Table 8.2. The results
show that the maximum fuel cost is reduced from 2.03 m/s for the first simulation to
1.93 m/s for the second simulation. However, the fuel cost for one vehicle is much larger
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than for the other two vehicles in both simulations. The third simulation utilizes the fuel
weighting method to reduce the maximum fuel use by shifting control effort to the lower
fuel cost vehicles. The result is a reduction in the maximum fuel cost to 1.86 m/s.

8.4.3 Summary

This section addresses the three main issues of the formation flying coordination prob-
lem: the reference point for the formation, the specification of the desired state, and the
control to achieve or maintain the desired state across the whole formation. The new
virtual center method presents a procedure for calculating the reference point for the fleet
from which the desired states for each spacecraft can be readily calculated. Note that the
calculation of this virtual center is closely tied to the planned formation flying sensor
(CDGPS in LEO). The selection of the location of the center also includes a weighting
on fuel use across the fleet, which facilitates increased coordination and cooperation
within the distributed model predictive control system. The result is an efficient real-time
control system using the benefits of a fuel-optimal controller to plan control actions
and coordination between the fleet to further reduce fuel effort. The simulation results
indicate that this control system can adequately maintain a formation at a fuel cost of
2–8 mm/s per orbit. The simulations also clearly show that the virtual center approach
required significantly less fuel than the leader–follower technique. In the next two sec-
tions, two distinct approaches to achieve disturbance and sensor noise robustness are
presented.

8.5 Open-loop robust control and replan frequency

The model predictive control system described in Section 8.3 has many tunable parame-
ters, such as error box size, planning horizon length, replan frequency, terminal condition,
and robustness level. The closed-loop behavior of the control system and its perfor-
mance level can be significantly altered by posing the optimization problem in different
ways. However, since the control inputs are determined using online optimization, the
best choice of these parameters is typically not obvious. The Ref. [62] analyzes forma-
tion flying model predictive control (MPC) mission parameters when a particular form
of closed-loop robustness is used. Here, robustness refers to the ability of a controller
to operate in the presence of navigation error and can be closed-loop, where feedback
effects are exploited, or open-loop, where full trajectories can be implemented with-
out additional feedback. In the case of the open-loop robustness method in Ref. [12],
another approach to choosing control parameters is required. This section examines
the effect of terminal conditions on replan frequency of the controller described in
Section 8.3.

Section 8.3 presents an MPC approach where the implementation horizon was made
variable and replanning was triggered by the vehicle approaching the edge of the error
box. Using a variable implementation horizon with a problem that has disturbances and
noise will result in a control system with an uncertain replan rate. An investigation of
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this controller showed that a replan was occurring at the end of each planning horizon.
Figure 8.10 shows this phenomenon, where the actual control implemented (in thruster
firings) is plotted along the x-axis and the plan being implemented at any given time
is shown using floating axes in the lower half of the figure. Times when floating axes
overlap indicate that a plan has been abandoned in favor of a new plan (i.e., a replan
occurred). In this control formulation, the only event that can trigger a replan is a deadband
violation. The figure shows that the majority of replans occur soon after previous plans
have completed (as opposed to replanning before a plan has completed, or after a long
period of drifting).

In a typical error-box problem with fixed terminal time, the optimal solution is known
to be a “bang-off-bang,” which applies control for a set period, then allows the system
to evolve unperturbed, and then applies control for another set period. The solution
of the online optimization problem should reproduce this optimal solution. However, a
model predictive controller (MPC) that has solved for a single plan does not necessarily
implement that entire plan. Instead, the controller implements only the first part of the
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plan (the implementation horizon) and then computes a new plan (re-planning). With no
disturbances and no sensing noise, only one plan needs to be computed. However, when
process and sensing noise is included, frequent re-planning may be required.

The cause of the specific replan rate is the noise robustness formulation. The noise
robustness formulation used in Ref. [12] guarantees that a plan will be feasible (i.e.,
remain inside the error box) for a range of possible initial conditions hi. Here, nic initial
conditions are chosen to capture the bounds of expected initial condition error and each
is used to evaluate a different set of vectors hi�k	 ∀ k ∈ �1� � � n�. This formulation uses
the constraint[

��k	 −��k	
−��k	 ��k	

][
U+

k

U−
k

]
≤
[

zdes�k	−hi�k	+ ztol

−zdes�k	+hi�k	+ ztol

]
∀ k ∈ �1� � � n�

i ∈ �1� � � nic�
(8.43)

[ −I 0
0 −I

][
U+

n

U−
n

]
≤
[

0
0

]
� (8.44)

Ref. [12] presents a method of solving an identical optimization using fewer constraints.
This robustness technique tends to keep the spacecraft inside the deadband for the duration
of the planning horizon, thus eliminating the need for the plan to be interrupted. However,
at the end of the plan, the spacecraft is often left near the edge of an error box (allowing
drift as far as possible tends to minimize fuel use) and therefore requires almost immediate
replanning (see Figure 8.11).

Although the motion shown in Figure 8.11 is the optimal solution to the problem
that was posed, it results in very regular (several times an orbit) low level thrusting to
return the spacecraft to the deadband. This is not desirable for several reasons: incorrect
thrusting (not modeled here) introduces error into the state estimate and it requires regular
GN&C computation and communication. A preferable system would achieve similar or
better fuel use, while allowing for long periods of drifting inside the deadband. Two
approaches were identified to alter the replan rate.
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1. The first imposes a fixed replan rate on the problem that is significantly shorter than
the actual plan length. This is more typical of MPC algorithms than the variable replan
length. Using this approach, replanning still forces the end of the planned trajectory
to always be near the edge of the deadband. However, the high frequency of the
replanning means that only the first few steps of a plan are ever implemented, so the
spacecraft rarely reaches the edge of the box. This approach has the added advantage
that it does not require as high a level of robustness, because the high feedback rate
mitigates the effects of sensor noise.

2. A second approach retains the variable replan rate, but alters the terminal condition
of the optimization. In the original problem, the terminal condition stated that the
spacecraft should be guaranteed to finish the path inside the deadband. The new
terminal condition specifies that the spacecraft should be guaranteed to end inside the
deadband, but also that the nominal trajectory (i.e., the projected motion based on the
nominal state estimate) should stay inside the error box for a full additional orbit,
and that the terminal and initial states of that nominal motion must match. This new
terminal condition is more restrictive than the original, but it can result in trajectories
that drift for many (i.e., 5–12) orbits inside the deadband.

The second approach uses an alternate terminal condition and replaces the constraints in
Eq. (8.44) with[

��k	 −��k	
−��k	 ��k	
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U+

k

U−
k

]
≤
[

zdes�k	−hi�k	+ ztol

−zdes�k	+hi�k	+ ztol

]
∀ k ∈ �1� � � � � n�
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i ∈ �1� � � � � nic�

(8.45)

and

[
��̄�n	−��q		 ���q	− �̄�n		

][ U+
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]
(8.47)

where hnom is the vector based on the nominal initial conditions (i.e., the current best state
estimate), �̄�n	 is  ��n	T 01×q �T , and q is the number of time steps beyond the end of
the plan that the spacecraft is required to drift inside the error box. For the altered terminal
conditions, q is set to the number of time steps in an orbit, to ensure the spacecraft
remains in the error box without thrusting for a full orbit beyond the end of the thrusting
plan. Because relative orbital dynamics (e.g., Hill’s equations) are typically cyclic over
the period of an orbit, an elliptical relative trajectory that remains inside the error box and
begins and terminates at the same state is a nominal invariant terminal set [63]. Attaining
this ideal terminal trajectory would preclude all future error box violations. However,
no single state can be attained robustly in the presence of sensing noise and hence, the
objective is made to nominally achieve the invariant trajectory while robustly satisfying
the actual error box constraints.
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thrusting sequence at time matching the far left side of each floating axis.

Figures 8.12 and 8.13 show the effect of changing the terminal condition. Both the
frequent replan and altered terminal condition methods have similar fuel use rates.
Interestingly, both tend to use slightly more fuel than the original problem in Ref. [59],
which is likely a result of the more restrictive terminal conditions. However, when the
terminal conditions were altered to create a closed-ellipse, the resulting spacecraft tra-
jectories remained inside the error box without replanning, and consequently without
control inputs, for much longer periods of time. This is a desirable condition, because
the trajectory in Figure 8.13 now fills more of the error box and the spacecraft spends
longer periods of time drifting. This both mitigates error introduced through thrusting and
allows missions that can only collect science while drifting to utilize longer observation
periods.

This section has examined the effects of terminal condition on the closed-loop behav-
ior of a spacecraft formation with sensing noise. Ref. [12] showed that incorporating
open-loop robustness into a formulation improved overall performance. Here, we demon-
strated that the addition of a nominal terminal invariant set condition (i.e., the closed
ellipse trajectory constraint) reduced the frequency with which replanning was required.
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Fig. 8.13. Trajectory using closed ellipse terminal conditions.

Section 8.6, examines the comparative benefits of closed-loop robustness using a fixed
replan rate and examines the application of the nominal closed ellipse condition in that
formulation.

8.6 Using closed-loop robust MPC

Sensor noise in a spacecraft formation flying mission using carrier-phase differential
GPS (CDGPS) will be a dominant disturbance [7]. Section 8.5 presents an approach
to mitigating the effects of sensor noise on a model predictive control algorithm. This
robustness was achieved by designing trajectories that would meet performance criteria
for a set of possible initial conditions. The size of this set was determined by the expected
sensor noise. The approach taken in that paper is characterized as “open-loop,” because
it generates a trajectory which is feasible for all initial conditions, without requiring
replanning. An alternate approach is to design a thrusting plan which will be guaranteed
to produce a feasible state and a new feasible plan at the next time step. This approach is
considered “closed-loop,” because each plan explicitly considers future feedback action
in response to as-yet unknown information [64]. In contrast to the open-loop approach
in Section 8.5, here it is desirable to use a fixed replanning rate, because the closed-loop
approach exploits newly available information and must explicitly account for when that
information will be available.

To demonstrate the feasibility of the robust model predictive control for actual space-
craft formation flight, a non-linear simulation with a realistic disturbance model is
performed for multiple spacecraft over an extended period of time. We develop a formu-
lation that simultaneously incorporates bounds on state error, process noise, sensor noise,
and thrust availability. Simulations demonstrate the effectiveness of both the bounded
models and of the closed-loop robustness technique applied to a realistic spacecraft for-
mation control problem. The terminal conditions presented in [62] and others suggested
in Section 8.5 are also examined.
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8.6.1 Overview of robust MPC

For the spacecraft formation flying problem with sensor noise, robust feasibility guar-
antees that, provided the initial optimization is feasible and the noise is bounded, all
subsequent optimizations are feasible and constraints are satisfied, e.g., the spacecraft
remains inside the specified error box. This guarantee holds despite the plans being based
on inaccurate information. References [17, 65] prove that the formulation reviewed in
this section guarantees both robust feasibility and constraint satisfaction. Reference [63]
describes an approach to transform the dynamics of the true state x to those of the esti-
mated state x̂. This section assumes that an estimate of the true state is available and is
equivalent to a linear combination of a bounded noise added to the true state. Robust
feasibility depends on the estimate, since that is the initial condition parameter of the
optimization. The dynamics of the true state are

x�k+1	 = Fx�k	+Gu�k	 (8.48)

and the estimation error is an additive term, applied at each time step

x̂�k	 = x�k	+n�k	 (8.49)

x̂�k+1	 = x�k+1	+n�k+1	� (8.50)

where n�k	 is the navigation error at time k, which is assumed to lie in a bounded set � .
Substituting Eqs. (8.49) and (8.50) into Eq. (8.48) gives the dynamics of the estimate

x̂�k+1	 = Fx̂�k	+Gu�k	+n�k+1	−Fn�k	

= Fx̂�k	+Gu�k	+ [ −F I
]( n�k	

n�k+1	

)
� (8.51)

With the dynamics now involving an affine disturbance, the formulation of [63] can be
employed to synthesize a robustly feasible MPC algorithm. The disturbance vector is
bounded using

w�k	 = [ −F I
]( n�k	

n�k+1	

)
∈ � ∀k� (8.52)

If � is polyhedral, the set � is polyhedral and can therefore be generated using a
polyhedral mapping routine of the form in Ref. [66]. Output constraints take the form

y�k	 = Hx̂�k	+Ju�k	 ∈ � ∀k� (8.53)

where � is a bounded set which can incorporate error box and thrust constraints.
The MPC optimization is performed over a horizon of N steps and uses an arbitrary

nilpotent linear control law u�j	 = KNPx�j	 j ∈ �0� � � N − 1�. Define L�j	 as the state
transition matrix for the closed-loop system under this control law

L�0	 = I (8.54)

L�j +1	 = �F+GKNP	 L�j	 ∀j ∈ �0� � � N�� (8.55)
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Then the nilpotency requirement for KNP implies

L�N	 = 0� (8.56)

Define the MPC optimization problem P�x̂�k		

J ∗�x̂�k		 = min
u�x�y

N∑
j=0

� �u�k+ j�k	� x�k+ j�k		 � (8.57)

subject to

∀j ∈ �0� � � N�

x�k+ j +1�k	 = Fx�k+ j�k	+Gu�k+ j�k	 (8.58)

y�k+ j�k	 = Hx�k+ j�k	+Ju�k+ j�k	 (8.59)

x�k�k	 = x̂�k	 (8.60)

x�k+N +1�k	 ∈ �F (8.61)

y�k+ j�k	 ∈ ��j	 (8.62)

where the double subscript notation �k+ j�k	 denotes the prediction made at time k of a
value at time k+ j. The constraint sets are chosen according to the recursion

��0	 = � (8.63)

��j +1	 = ��j	 ∼ �H +JKNP	 L�j	� ∀j ∈ �0� � � N� (8.64)

where ∼ denotes the Pontryagin difference operation [67], defined by

� ∼ �
�= �z � z+y ∈ � ∀y ∈ �� (8.65)

and the matrix mapping of a set is defined such that

A�
�= �z � ∃x ∈ � � z = Ax� (8.66)

A MATLAB toolbox for performing these operations on polyhedral sets is available in
Ref. [66, 68]. The choice of the terminal constraint �F is typically very problem-specific.
It must be a control invariant admissible set [68], i.e., there exists a control law ��x	
satisfying the following

∀x ∈ �F

Fx +G��x	 ∈ �F � (8.67)

Hx +J��x	 ∈ ��N	� (8.68)

The origin �F = �0� is a straightforward choice of terminal set for a linear system.
However, any nominally invariant set is valid for �F . Note that it is demonstrated in
Subsection 8.6.3 that the origin can be an overly restrictive terminal condition for this
control application.
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8.6.2 Bounding the process noise

Section 8.5 describes an open-loop approach to accounting for disturbances in a model
predictive control algorithm. This approach uses analytic models of J2 and drag to predict
time-varying disturbances which are then added to the LP formulation in Eq. 8.32.
The closed-loop approach in Refs. [62, 63, 65] uses constant dynamics and a bounded
disturbance model. The method for computing this model develops polytopic bounds on
the disturbance set by simulating two spacecraft in close proximity to one another and
propagating both using the high fidelity nonlinear integration-based propagator (NLP)
and Hill’s equations. The NLP used for the bounding process includes the perturbations
due to J2, drag, third body effects, and solar pressure. At each time step in the simulation
propagates the previous state of the NLP forward using both a Hill’s propagator and
the NLP. The bounding method stores the magnitude of the difference between the two
different states for both the position and the velocity states. The simulations use different
initial starting states of the second satellite within an error box (5×10×5 m in the radial,
in-track, and cross-track directions, respectively) centered about the first satellite. The
maximum perturbations for position and velocity are found by calculating the absolute
value of the differences between the nonlinear and linear propagated states from all of
the simulations.

For a low Earth orbit (LEO) reference orbit (n = 0�001 rad/s), the disturbance sets for
a 100 second propagation time step were found to be

⎛
⎝ px

py

pz

⎞
⎠≤

⎛
⎝ 85�5

30�3
0�0168

⎞
⎠

⎛
⎝ vx

vy

vz

⎞
⎠≤

⎛
⎝ 0�635

0�323
0�00334

⎞
⎠ (8.69)

in units of centimeters and millimeters per second, respectively. These numbers are
roughly on the same order of magnitude as the sensing noise, which is expected, given
the large integration time step and the presence of many dynamic effects not modeled by
Hill’s equations. Another approach to developing a disturbance model of this type would
be to use analytical models of the effects of J2, drag, and nonlinearities to due separation
distance and eccentricity. For a given reference orbit, the maximum perturbation predicted
by each model would be combined to give the largest possible unmodeled disturbance on
Hill’s equations.

8.6.3 Controller implementation

To use the model predictive control formulation reviewed in Section 8.6.1, the system
described in Eq. (8.48) is augmented with an additive disturbance, q�k	, which will be
used to represent process noise. The system in Eq. (8.48) then becomes

x�k+1	 = Fx�k	+Gu�k	+q�k	 (8.70)
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where q�k	 in a vector belonging to a bounded polyhedral set �. Likewise, the estimated
state with sensing noise in Eq. (8.51) becomes

x̂�k+1	 = Fx̂�k	+Gu�k	+  −F I I �

⎛
⎝ n�k	

n�k+1	
q�k	

⎞
⎠ (8.71)

This altered formulation yields the new bounded disturbance set �

w�k	 =  −F I I �

⎛
⎝ n�k	

n�k+1	
q�k	

⎞
⎠ ∈ � ∀k� (8.72)

The robust formulation in Section 8.6.1 can accommodate a disturbance set of this form,
but its implementation is complicated by the high dimensionality of the uncertainty set
and constraints. In particular, the calculation of the Pontryagin difference is the subject
of on-going work. Therefore, an approximation is used, whereby two scalar noise inputs
capture the dominant sensing uncertainty. This approximation is extended to represent
sensing noise uncertainty in all states and a term is added to the to represent the process
noise. The bounds on a single sensor noise n�k	 are ±eN̄ . This constraint is unchanged
if a new vector, esn is defined as

esn = N̄e (8.73)

and n̄�k	 is now distributed over the bounded set

−1 ≤ n̄�k	 ≤ 1� (8.74)

For the examples in this section, esn is defined to be the expected noise on relative
spacecraft states in a CDGPS system: 0.02 meters for position sensing and 0.0005 m/s
for velocity sensing.

A vector, epn, describing the maximum process noise magnitude on each state (taken
directly from Eq. (8.69)) is introduced to form an approximation for the total possible
state perturbation due to noise at any step k. The disturbance vector w�k	 is now defined
to be

w�k	 = [
�epn −Fesn	 esn

]( n̄�k	
n̄�k+1	

)
∈ � ∀ k� (8.75)

The new set � attempts to capture the uncertainty present in the formation flying demon-
strations conducted in this section. Current research is investigating computationally
efficient methods of accurately bounding the actual � .

8.6.4 Demonstration results

The demonstration of closed-loop robustness in this section incorporates the error box
concept from Section 8.3 and the virtual center concept for coordination from Section 8.4.
In addition, the effect of the nominal closed-ellipse constraint from Section 8.5 is also
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examined. The demonstration is done using a nonlinear orbit propagator [60] with realistic
disturbance and sensor noise models.

In this demonstration, the output constraints on each spacecraft will be both on the
spacecraft state and on the input magnitude. The spacecraft state will be constrained to
error box of dimensions (in meters) of 5×10 ×5 in the radial, in-track, and cross-track
directions, respectively, of an LVLH frame. In addition, the spacecraft will be constrained
to have a maximum acceleration in each direction of 0.003 m/s2. The cost function will
be the one-norm of the thrust inputs over the planning horizon. The controller’s cost
function and constraints are both linear, so the controller optimizations are formulated
as linear programs. A two week simulation of four spacecraft on an equally spaced
passive aperture formation is shown in Figure 8.14. The passive aperture formation is a
drift-free in-track–cross-track projected circle with a 100 meter radius and in-track–radial
400 × 200 m ellipse. The “tube” of spacecraft trajectories is essentially the error boxes
in Figure 8.3 moving around the relative trajectory of the formation. The fuel-weighted
virtual center method described in Section 8.4, is used to minimize state error and equalize
fuel use across the formation. Spacecraft error box motion throughout the duration of the
simulation is shown in Figure 8.17. It can be observed from the figures that no spacecraft
exceeds its state constraints at any time in the simulation. However, the trajectories of
the spacecraft remained close to the center of their respective error boxes, likely a result
of the requirement that the each spacecraft arrive at the origin at the end of its plan.
On average over the course of the simulation, each spacecraft used 14.5 mm/s of fuel
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per orbit, significantly more than 2.46 mm/s per orbit, the value reported for a similar
simulation in Ref. [16].

These fuel expenditures can be reduced using the closed-ellipse constraint from
Section 8.5 that restrict the spacecraft to terminate their plans on a closed ellipse in the
LVLH frame. This requirement is enforced through two conditions:
1. The spacecraft must remain inside the error box at every time step for a full orbit after

the plan ends.
2. The spacecraft state at the end of the plan is restricted to be the same as the state a

full orbit after the end of the plan.
The origin terminal condition is a subset of the closed form ellipse terminal condition,
because Hill’s equations state that a spacecraft at the origin of an LVLH frame (i.e., zero
position and zero velocity) will remain motionless in that frame. This motionless trajectory
is a closed form ellipse with major and minor radii of zero meters. The difference between
the terminal conditions is illustrated in Figure 8.16.

Figure 8.18 shows error box motion during a two week simulation using the closed
ellipse terminal conditions. It is clear that the spacecraft motion occupies a much larger
region of the error box and appears to take on the shape of an ellipse in the in-track–
radial plane. As expected, the less restrictive terminal conditions led to significantly



272 Modern astrodynamics

Error Box

Planned Trajectory

Start

End

Origin

(a) Origin (b) Closed Ellipse

Error Box

Planned Trajectory

Start

End

Terminal
Ellipse

Fig. 8.16. Terminal conditions examined for closed loop MPC.

–15 –10 –5 0 5 10 15
–6

–4

–2

0

2

4

6

–6

–4

–2

0

2

4

6

Intrack (m)

(a) Radial–In-track Error Box (b) Cross-track–In-track

R
ad

ia
l (

m
)

Error Box Motion
SC1
SC2
SC3
SC4

–15 –10 –5 0 5 10 15
Intrack (m)

C
ro

ss
tr

ac
k 

(m
)

Error Box Motion

Fig. 8.17. Error box motion using Origin terminal constraint.

lower average fuel usage: 2.22 mm/s per orbit, which is a slight improvement over the
results in Ref. [16]. Figure 8.15 compares the fuel use rates of a four spacecraft formation
over a two week period. In contrast to the approach used in Section 8.5, the closed-loop
robust method replans at all times, effectively guaranteeing that the spacecraft never
drifts out of the error box. Furthermore, the spacecraft never enters an area of the error
box that would be costly, from a fuel-use perspective, to prevent a constraint violation.
The tradeoff for using the closed-loop method is that known time-varying disturbances
must now be modeled as bounded polytopes, which does not allow the controller to fully
exploit the well-known orbital dynamics. It is likely that performance can be further
improved by using the LTV relative dynamics used for planning in Ref. [56] (excluding
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cross disturbances) to capture J2 effects and creating a new bounded process noise
model. By including some of the effects of J2 in the state transition matrix, the system
should be better able to exploit natural dynamics and be capable of operating with less
conservative process noise bounds. Both of these improvements should reduce overall
fuel use.

Spacecraft formation flying simulations using the closed loop MPC controller were
conducted in a realistic environment using realistic constraints. These simulations incor-
porated cooperation through the virtual center technique and a nominal terminal invariant
set through the closed-ellipse technique. Results of these simulations show that the tech-
niques can be used to control spacecraft for long periods of time reliably (i.e., no constraint
violations) and with low fuel use.

8.7 Conclusions

This chapter developed three modifications to a basic formation flying model pre-
dictive control system to improve practical implementation. First, the virtual center
method enabled cooperation between satellites by using a weighted optimization to
find the optimal formation reference point. The addition of an feasible ellipse termi-
nal constraint to an open-loop robust MPC formulation was demonstrated to reduce the
frequency of required replanning, a desirable characteristic in an open-loop planning
scheme. An alternate closed-loop robustness approach using fixed-rate replanning was
extended to the formation flying control problem and was shown to be fuel efficient
and capable of using virtual center fleet cooperation and the closed-ellipse terminal
condition robustly. Several high-fidelity nonlinear simulations demonstrated all three
modifications in use simultaneously to robustly and efficiently control a three satellite
formation over a two week period in the presence of realistic disturbances and sensor
noise.
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8.8 Nomenclature

CDGPS—Carrier-Phase Differential GPS
GN&C—Guidance, Navigation, and Control
GPS—Global Positioning System
GVEs—Gauss’ Variational Equations
LEO—Low Earth Orbit
LP—Linear Program
LPV—Linear Parameter-Varying
LTI—Linear Time Invariant
MPC—Model Predictive Control
NLP—Nonlinear Propagator
SMA—Semimajor Axis
ZOH—Zero Order Hold
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