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In recent years there has been a strong revival of interest in celestial
mechanics, but not much of it has been reflected in the offerings of mathe­
matics departments. The recent work of Kolmogoroff, Arnold, and J. Moser
shows that it is a field very much alive mathematically and deserves resto­
ration to the mathematics curriculum. The main purpose in writing this
book is to make available the basic mathematics underlying the subject, in
a manner suitable to this century. A secondary purpose is to lay the
groundwork for a sequel of a more advanced character.

The selection of material is based on several years of experience with
a one-term course offered to students with a background in vector analysis,
partial differentiation, and ordinary differential equations. I have found
that the first two chapters cover the major part of the term. The remainder
can be filled out by either Chapter 3 or Chapter 4, which have deliberately
been made independent of one another. Ideally, perturbation theory
should be combined with Hamilton-Jacobi theory, and their separation here
may be a just cause for complaint. But I believe that a thorough ground­
ing in each should precede their union.

I wish to make these acknowledgements: to the Air Force Office of
Scientific. Research, for a grant which enabled me to begin; to the Argonne
National Laboratory for a grant which enabled me to finish; to Miss Grace
M. Krause of the Argonne National Laboratory for her superb prepara­
tion of the manuscript; to Mr. Kerry M. Krafthefer of the Argonne Na­
tional Laboratory for his distinctive drawings and table.

HARRY POLLARD
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NOTE ON THE USE OF THIS BOOK

1. Vectors are printed in bold-face. Where possible the length of a vector is
indicated by the same letter in italic. For example the length of v is "J. When
this cannot be done, the length is indicated by the customary absolute-value
symbol. Thus the length of a X b is Ia X b I.

2. Starred exercises are not necessarily difficult. The star indicates an
important final result or a result to be used in the sequel. Therefore starred
exercises should not be omitted.

3. All references to formulas and exercises are to the same chapter where
they occur, unless otherwise stated.

4. The dependence of chapters is indicated by the following diagram.

3
1-+2<4
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TH: CENTRAL FORCE PROBLEM

1. FORMULATION OF THE PROBLEM

Celestial mechanics begins with the central force problem: to describe the
motion of a p'Hticle of mass m which is attracted to a fixed center 0 by a
force /Ilf(r) which is proportional to the mass and depends only on the
distance r between the particle and O. The function fwill be called a /(/11' of
attraction. It is assumed to be continuous for 0 < , < 00.

Mathematically, the problem is easy to formulate. Indicate the position
of the mass by the vector r directed from O. According to Newton's second
law, the motion of the particle is governed by the equation

mr = - I11f(r),-l r,

where' -1 r is a unit vector directed to the position of the particle. If v denotes
the velocity vector t, the equation can be written as the pair

Observe that the value of m is irrelevant to the equations of motion. The
problem is now this: to study the properties of pairs of vector-valued
functions r(I), v(t) which simultaneously satisfy the Eqs. (1.1) over an
interval of time.

The special case when the la~v of attraction is Newton's law of gravi­
tation is the most important. In this case f(r) = j.Lr- z, where j.L is a positive
constant depending only on the units chosen and on the particular source
of attraction. The Eqs. (1.1) become

(1.1)

(1.2)

t = v,

t = v,

1

,.



2 Gll/·.r. 1 SEC. 3 THE CONSERVATION Of ENERGY 3

2. THE CONSERVATION OF ANGULAR MOMENTUM:
KEPLER'S SECOND LAW

Let us now assume that (Ll) is satisfied for some interval of time by the
pair of functions r(t). V(/) which we write simply as r, v. From the secon I
equation of the pair we conclude that

r x V = -l(r)r"(r x r) = 0,

since the cross-product of a vector with itself is zero. Therefore, the deriv­
alive of the vector r X v, which is r x v+ v x v, vanishes identically.
Hence, I

I

r = [r cos 0. r sin e, 0] and c = [0,0, c]. A simple computation shows that
(2.1) yields r2

{) = c. According to the calculus, the rate at which area is
swept out by a radius vector from 0 is just !r28. Therefore the particle
sweeps OUI area at the cOllstalll rate c12. This fact is Kepler's second law.

c

(2.1 ) r x v = c,

v. here c is a constant vector. The vector mc is called the moment of momen­
i:!t>1 and its length me the angular momentum of the particle. We ignore
thes..: refinements and refer to either c or c as the angular momentum. The
assertion (2.1) is known as the conservation of angular momentum.

/\ n im portant consequence of the principle can be deduced immediately.
I\ccording to (2.1) we have c·r = O. If c =1= 0, this means that r is always
perpendicular to the fixed vector c. Consequently, if c =1= 0, all the motion
takes place in a fixed plane through the origin perpendicular to c.

If c = 0, a little more subtlety is needed. Let u be a diJierentldbi~ vector
function of time and u its length. Since u2 = u· u, it follows that uli = u· U.
Therefore, if u =1= 0, we have

!,.

/k-------y

(r, e)
x

Figure 1

according to the vector formula

_ (u·u)o - (u·u)u
- u3 ,

d U uu uti
di Ii - u2 EXERCISE 2.1. Set up the equations of motion of a particle moving sub­

ject to two distinct center<; of attraction, each with its own law of
attraction.

EXERCISE 2.2. Suppose that a particle subject to attraction by a fixed
center starts from rest, i. e., that at some instant I = 0 we have v =0.
Then by (2.1) c = 0 and the motion is linear. Suppose, moreover, that
fer) is positive for 0 < r < <Xl. Prove that the particle must collide
with the center of force in a finite length of time to.

EXERCISE 2.3. In the preceding problem, can you tell where the particle
well be at each instant of time between 0 and to? First try the case
fer) = W'3 (inverse cube law), then f(r) = fIor-2 (inverse square law).

3. THE CONSERVATION OF ENERGY

So far we have found a vector c which remains constant throughout a
particular motion. There is another constant of the motion which is of
major importance, this time a scalar quantity called the energt To find it,

d u _ (II x Ii) x II
iii Ii - --'i?'--

or

(2.2)

(2.3)

(a x b) x c = (a·c)b - (b·c)a.

As an application of (2.2), let u = r. Then (2.2) becomes

d r _ (r x v) X r _ c x r
di,- r3 --r'

by (2.1). Therefore, if c = 0, the vector rIris a constant, and the motioll
takes place along a fixed straight line through the origin.

In case c::;t: 0, another important consequence can be deduced from
(2.1). Introduce into the plane of motion a polar coordinate system centered
at 0 and forming a right-handed system with the vector c. (See Fig. I.) Then
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start with the second of Eqs. (1.1) and take the dot product of each side
with v. We obtain

v· v -- f( r) r I (r· v)

= - f(r),-'rf

= -f(r)~.

Integration of both sides yields

(3.1)' tv'=j;(;)+h,

where j; (r) is a function whose derivatIve is - fer) and h is a constant. The
function j; (r) is determined conventionally this way:

j; (r) = s: f(x)dx

where (i) a is chosen as + 00 if the integral converges; (ii) a is chosen to
be 0 if the first choice leads to a divergent integral but the second does
not; (iii) a is chosen to be I if the first two choices fail. Thus, if fer) is of
the form fer) = W- P

, then a = 00 if p > I ; a = °if p < I; a = 1 if p = I.
The most important case is that of Newton:

fer) = Ii''-', j;(r) = w- I
•

With the above convention the function - mj;(r) is known as the potential
energy and is denoted by the symbol - U. The quantity T = mv'/2 is
called the kinetic energy, and h, = mh the energy. The statement (3.1)
becomes

(3.2) T = U + hi,

and is known as the principle of conservation of energy.

EXER~ISE ~.I. Sho~ that if fer) = ft,,-P, where p> I, then a particle
movmg With negative energy cannot move indefinitely far from O.

EXERCISE 3.2. Show that if fer) = W- P, then j;(r) = Ii'(p - 1)-l r1- P if

p *' I and f1 (r) = Ii' log l if p = I.
r

*EXERCISE 3.3. Let a = r, b = v in the standard vector formula

(a·by + (a x by = a2 b2•

Conclude that

v2 = f2 + c2 r- 2•

What is the physical meaning of the components f and clr of v? Show
that the law of conservation of energy can be written

r
2f' + c2 = 2r2 [j;(r) + h].

4. THE INVERSE SQUARE LAW: KEPLER'S FIRST LAW

In this section we shaH assume that the particle is moving according to
Newton's law of gravitation. The governing equations are then (2.1), which

we repeat here for convenience as

(4.1) t = v, v= -W-3r.

It turns out that, in addition to the vector e, there is another important
vector which remains constant throughout the motion. It does not have a
name in astronomical literature. We shall call it the eccentric axis and denote
it by the symbol e. To derive it, start with the formula (2.3) and multiply

both sides by - Ii" Then

d r (-3 r)
-Ii'dt,=e x -W .

According to the second of Eqs. (4.1), this becomes

dr.
Ii' dt r = v x e.

Integration of both sides yields

(4.2) Ii'(e + ~) = v X e,

where e is a constant of integration.
Since r·e ::.c: 0, it follows that e·e = O. Hence, if c::;t::. 0, the vectors c

and c are perpendicular, so ~hat e lies in the plane of motion. It' c ,.- 0,
r/r ,= --c, so that e lies .lIong the line of motion; in this case th~ lcngt~ ('
of e is always I.

We shall now find the interpretation of e when cic O. Take the dol

product of both sides of (4.2) with r. Then

Ii'(e· r + r) = r· v x e = r x v· e = e· c.

Consequently,

(4.3) c·r+r=c211i'.

There are two cases. If e = 0, then r = c'Iii', a constant. Therefore the
motion is circular. Moreover, according to the formula r2 v2 = r' f' + (:2 of
Ex. 3.3, it follows that rv = c, v = li'lc, so that the particle moves with
constant speed. By the law of conservation of energy, v'/2 = fLlr + h.
Therefore h = - 1i'2/2c', a negative number. Observe finally that 2T = U.

Suppose now that e -:1= O. In the plane of motion indicated by Fig. I,
introduce the vector e as shown in Fig. 2. The fixed angle from the x-axis
to e will be denoted by w. If (r, (J) represents a position Q of the particle,
the angle (J - w will be denoted by f. The same position of the particle can
then be represented as (r, f) if e is used as the axis of coordinates. It follows
that e'r = ercosfand Eq.(4.3) becomes
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or

C == fo X Yo,

6. ORBITS UNDER NON·NEWTONIAN ATTRACTION

These formulas still hold if c == 0 provided we adopt (5.3) as the definition

of a; we shall do so.

EXERCtSE 5.1. What can you say about the orbit if fer) == -l-£r-2 rather
than fer) == w-2? This corresponds to a repulsive force rather than

an attraction.

EXERCtSE 5.2. Use (5.4) to prove that in the case of elliptical motion the
speed of the particle at each position Q is the speed it would acquire
in falling to Q from the circumference of a circle with center at 0 and
radius equal to the major axis of the ellipse.

*EXERClSE 5.3. The area of an ellipse is 1ta2(1 - e2yn. We already know
that if c :# 0 the particle sweeps out area at the rate e12. Combine
these facts to show that if 0 < e < I the period p of a particle, that is,
the time it takes to sweep out the area once, is given by the formula
p == (21t/.J;)a'/2. This is Kepler's third law.

*EXERCISE 5.4. Define the moment of inertia 2lby the formula 2l == mr2
•

Write r2 == (r·r) and prove that

j == 2T - U = T + hi == U + 2h l •

In the case of circular motion I is constant so that 2T == U, a result we
already know from Sec. 4.

EXERCISE 5.5. (Hard.) Use the preceding exercise to prove that if e:# 0,
h > 0, then rl\t\ approaches ../'5J1 as Itl-+ 00. (The hypothesis c "* 0
rules out the possibility of a collision with the origin in a finite time.)

The elegant method used in Sec. 4 to obtain orbits is essentially due to
Laplace (who, however, did not have the vector concept available to him).
It is applicable specifically to Newton's law of attraction. In the general
case another method must be used. We know that if (" 0 the \lrbit is
linear, so we shall assume that c :j:; O. Moreover, we assume that fer) has
a continuous derivative.

Let us first dispose of the case of circular motion r == roo By the principle
of conservation of energy, v is also a constant vo so the motion is uniform.
The normal acceleration in the plane of motion is v~/ro and this must be
balanced by the attraction f(ro). Therefore, v~ = rof(ro). Since the velocity
vector is perpendicular to the radius vector, it follows from r x v = C that
rv = C. Hence, rovo == c, so that c2 == r~f(ro). On the other hand, according
to Ex. 3.3, the law of conservation of energy can be written

(6.1) r2;2 + c2 == 2r2Lj;,(r) + h).

Since; == 0, we conclude that c2 == 2r5[f1(ro) + h). Therefore, circular

we obtain these basic

if h > 0;

if h < O.

if Jz == 0;

e == j.L-I(VO x c) - j.L-1r;;l ro,

h == tv~ + MOl.

Since c, e, h constitute seven scalar quantities, it follows that there must be
relations among them. We have already seen that there is a relation between
C a?d e, namely c'e == O. Therefore at most six of the seven quantities can
be ~ndepelldent. Actually there is still another relation among the seven
whIch reduces the number to five; it will be seen later that no further
reduction is possible.

To o.btain the new relation, square both sides of Eq. (4.2). Since v is
perpendIcular to c, we can replace (v x C)2 by v2 c2 to obtain

. In the speci~l case fer) == 1-£,-2, we have found that.each of the quanti­
ties c, e, h remams constant during the motion and is therefore determined
by its value at t == 0:

(5.3)

J,l,2(e 2+ ; e·f + 1) == V 2C 2.

~~~~ace v
2

by 2h + (2j.L/r) and e·f by (c 2/j.L) - r, according to Eq. (4.3).

(5.2) j.L2(e2 - 1) == 2hc 2•

Notice that this agrees with the earlier results that e == I if c == 0 and
h == -1-£2/2c ife == O.

Equation (5.2) has the following important consequences. If c :# 0 then
e < 1,. e. == I or e > I according to whether the energy h is negative' zero
or posItIve. If h :# 0 and c :# 0 and a is the semi-major axis of the' coni~
(see Ex. 4.1), then

a == tl-£lhl- 1
•

From this and the energy formula tv2 == (j.L/r) + h,
formulas:

(5.4)

/
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(4.4) r = _~'1j!-_
I + e cosl'

Consider the dotted line L in Fig. 2 drawn at a distance c'/JLe from 0,
perpendicular to e and on the side of 0 to which e is directed. Equation

(4.4), which can also be written r = e(t~ - rcosf), simply says that the

distance of the particle at Q from 0 is c times its distance from L. Con­
~ccqll('ntly the particle moves on a conic section of eccentricity e with one focus
at O. This is Kepler's first law.

As (4.4) shows, the value of r is smallest when 1= 0, since e > O. There­
fore the vector e is of length equal to the eccentricity and points to the
position P at which the particle is closest to the focus.

There is some traditional terminology used by the astronomers that the
reader ought to know. The position P is called the pericenter, the angle I
the true anomaly. Various names are given to the pericenter, according to
the source of attraction at O. If the source is the sun, P is called perihelion;
if the earth, perigee; if a star, periastroll. In the study of the solar system,
the x-axis of Fig. I is fixed by astronomical convention. In that case, ro is
the amplitude ofpericenter.

We return to the geometry. The word orbit will be used to describe the
set of positions occupied by the particle without any indication of the time
at which a particular position is occupied. From the theory of conics it
follows that if 0 < e < I the orbit falls on an elli pse; jf e = I, on a

i = I, ... , n(5.1)

will have a unique solution z, (t) defined in a neighborhood of t = 0, such
that :t(O) = t" i = 1, ... ,n.

Now consider the basic Eqs. (Ll) with the additional assumption that
I has a continuous derivative. This includes the special cases I(r) = W- 1J

•

Each of the two Eqs. (Ll) stands in place of three scalar equations, so that
the pair constitutes a system of order six of the form (5.1). Specifically, let
x, y, z denote the components of r in a rectangular coordinate system and
let a, /3, 'Y denote the components of v. The equations become

.\:=a

y=/3

6. RELATIONS AMONG THE CONSTANTS

We pause at this point to remind the reader of some basic facts about
differential equations. Let It(Zh ... , zn), i = 1, ... ,n represent n functions
with continuous first partial derivatives in some region of n-dimensional
space, and let (th ... ,tn) be a particular 'point of this region. Then the
system of differential equations

parabola; and if e > I, on a branch of hyperbola convex to the focus.
Remember that in each case c > O.

Since r2&= c and &= j, it follows that j> 0, so that the orbit is traced
out in the direction of increasing f This is indicated by the arrows on the
curve in Fig. 2.

*EXERCISE 4.1. Show that if 0 < e < I or e> I the semi-major axis
of the corresponding conic has 'ength a given by the formula

fUlle2 - II = ct.

EXERCISE 4.2. Use (4.2) to obtain the formula

JLe = (v t
- .~)r - (r·v)v.

i='Y

a = - I(r)r- I x

(3 = -f(r)r-1y

ry = - f(r)r- I z,

where r 2 = x 2 + i + Z2. It follows that there is a unique solution satisfy­
ing six prescribed values of x, y, z, a, /3, 'Y at t = O. In vector form this
says that the system (I.l) has a unique solution r{t), v{t) taking on prescribed
values f,,, VI) at time t = O. These values can be prescribed arbitrarily.

\
\
\
\
\
\
\

'L

0(',81

Figure 2

y
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(7 Jt d-r
.2) u = k Tr(-r)'

where k and T will be selected later. It is remarkable that the change of
variable involves the still unknown function 'It), but this will take care of
itself. Since

Eq. (7.1) becomes

(7.3) k2(r' )2 + c2 = 2(W + hr~),

where now the prime (') denotes differentiation with respect to U.

The treatment of this equation depends on the sign of h. In this section
we confine ourselves to the case h = O. With the choice k 2 = J,L, Eq. (7.3)
then reads

If we differentiate both sides, the result is r'," = r'. Therefore, since r'
cannot vanish over an interval (or r would be a constant I), it follows that
r" = I. Therefore r is a quadratic in u which we write r = t(u - uo)2 + A.
Substitution into (7.4) shows that A = c2/2"". Moreover, since u is unspeci­
fied within an arbitrary constant by (7.2), we may choose Un = O. Then

, = t(u2 + ~).

According to (7.2), du/dt = k/r, or rdu = kdt. Moreover u = 0 when
t cc .• T. Therefore

2

(r')2 + !:-. = 2,.

""

motion completely. In particular. these values give us c and e, which by
Sees. 2 and 4 determine the orbit. But there is still something missing:
where is the particle located on its orbit at a prescribed time t l ?

It would be desirable to answer this question by giving the position
ret) as some explicit recognizable function of time. This is difficult to do
directly. Instead, we adopt another procedure. We shall change from the
original time t to a fictitious "time" u by a change of variable t = t(u). If
this change of variable is suitably chosen, it is easy to locate the particle
for a prescribed value u, of u. In order to locate the particle at the real
time tlo it will be necessary to solve the equation t, = t(u,) for the corre­
sponding value of U,. With the choice of t(u) made in this chapter, the
variable u is called by the astronomers the eccentric anomaly.

We start with Eq. (6.1), remembering that in the case of Newtonian
attraction the function fl(r)is p./r. Then

(7.1) (r;y + c2 = 2(W + h(2).

It will be supposed that u is chosen in such a fashion that rU is a constant
k. Specifically, let

(7.4)

7. POSITION ON THE ORBIT: THE CASE h = 0

motion implies the two relations

(6..~) c~ = '~f('o), c2 = 2rHfl (ro) + h].
Conversely, we shall show that if (6.2) holds for the value of , at SOnie
instant of time. say 1 "" 0, then the purtide moves uniformly in a circle 0 .

radius roo According to (6.1), the second of Eqs. (6.2) implies that ;0 = o.
We interrupt the argument at this point to obtain an important general

formula. Starting with the equation r" :C.'~ r·r, we obtain r; = r·v by
ditTerentiation. Another differentiation yields r; +;~ = (r'Y) + (v·v) =
(r.v) + 1"1. But (see Ex. 3.3) v2 =;2 + c~r-2, so that ,; = (r·t) + c~r-2.

Since v = - f(,)r-1r, we have (r· v) = - f(r)r-' r· r = -rf(r). Therefore
ri' = -rf(r) + C2

,2, or, finally,

«(d) ; - c~r-' =:c -fIr).

We resume the argument. According to the first of Eqs. (6.2), Eq. (6.3)
h;!$ I he constant solution r = roo Moreover, since the values of rand; at
: 0 are given, the uniqueness theorem described in Sec. 5 tells us that •
lhis is the only possible solution. This completes the case of circular

motIon.
In the general case it is customary to start with (6.3) and remove the

dependence on time by substitution from ,28 = c. Specifically, let r = p-I.
Then; = _p-2 p = _p-2 p'{j = _p-2 p' cr-2 = -Cp', where t.he pnme (')
denotes differentiation with respect to 8. Hence; = -Cp"O = _c2p"p2.
Equation (6.3) becomes

(6.4) p" + p = C-2p-2f(~).

In general, this cannot be solved for p in terms of 8 in any recognizable
form and we content ourselves with some special cases.

Suppose first that fIr) = W-t , the Newtonian case. Then pI! + p = J,L/c
2

•

It follows that (l has the form (p./c 2
) + A cos (j +B sin 8 and its reciprocal

, has the form demanded by (4.4), since f = 8 - 6>.

Another easy case is fer) = W- 3
• Then p" + p = p.c -2 p or p" + (1 -

J,LC- 2)p = O. The solutions of this are well known.

EXERCISE 6.1. Classify the solutions in the case fIr) = W- 3 according
to the sign of I - p.c- f

• What if I - J,LC- 2 = O?

EXERCISB 6.2. Show that f~r the direct first power law, fIr) = J,Lr, the
orbits are ellipses with center (not focus) at the origin.

EXERCISE 6.3. If we write Eq. (6.3) in the form; - r&~ = - f(r), what is
the physical meaning?

We return to the problem of motion under Newtonian attraction. It was
shown in Sec. 5 that a knowledge of initial valucs ru, Vu detcrmine thc
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rhl' SIII;I,lksl "dill' "I', IS " .'11 ;III" IS ,1,'llll'\"" \\h .. 11 I O. 1\111 Ihl." ,-'

the value of r when u = 0, or t T. Therefore T is the time at which the
particle is do~esl to the origin; it is l:allcd the lillie of /lain'lIla /la.~,\,(IX('.

~t can occur eIther before or after the initial time 1 = 0, but, since j> 0,
It can occur only once.

If c = 0, the equations read

O.bserve that, by the first equation of the pair, I is a strictly increasing
function of 1/. This means that this equation can be sl)lved uniquely for 1/ in
ter~s of I. Call. this ~olution u(l). Then r = t[(u(t))' + (e' / fL)]' It is easily
verIfied that thIS satIsfies the differential eq uation (7.1) when h = O.

For the interpretation of T, it is best to separate the case e * 0, and
c = O. If c f 0 and 11 .~ 0, then (' c I. and we obtain for lhe orbit the
parabola

Therefore the time. 1 = T corresponds to collision with the origin, It
mus~ occur at some time. If T > 0, then it occurs after the initial time' the
motion after the time T is no longer governed by the original equati'ons
and we can talk about the motion only in the time interval - = < t < T'
If T < 0, then the particle has been "emitted" from 0 at the time t = i
and we can speak of the motion only in the interval T < t < oo.

To locate the position of the particle at time t, given ro and vo, we pro­
ceed as follows. By the second of Eqs. (7.5), r = uu = ukr- I

• Therefore
rr = (r·v) = ..J/iu. T~en the value Uo at t = 0 is given by ",!Jiuo = (ro·vo).

Now let 1 = 0, u = Un 111 the first of Eqs. (7.5). This determines T. In order

8. POSITION ON THE ORBIT: THE CASE h ::;6 0

If h ::;6 0, there are these possible motions: linear if c = 0, hyperbolic if
e * 0, h > 0, and elliptic if e * 0, h < O. We now turn to the problem of
locatinn nn the orbit at a prescrihed time I.

(III,,' .q'.111l \\,' ',1.\11 \\llh Ih,' hI" (I Il wilh Ih .. i"""I"'IIIit'1l1 \':I,i;II,k /I

ddincd by (1.2). (Ill' Ilinc wc choosc ,,;' 21"1, or acc;<lIdlllg Iii I'.

k" II/II. On division hy k", Fl(. (7.1) hl'collles

(r')2 + ae" = 2ar + u(h)r2,
fL

where O'(h) = 1 if h > 0, O'(h) = -I if h < O. Add ()'(h) a' to both sidcs
and liS!; (he fad lhal (':'/n 11«(':' I ),,(//), as in (5.2). W" "blain

(r'r + a'e2u(h) = u(ll)[a + u(h)ry,

Now define a new function p(u) by

(8.1) eap = a + u(h)r.

This converts the preceding equation for r' into

(p'r - u(h)p' = -u(h).

It is easIly verifieo that if we rule out the "singular" solutions p = ± I the
equation is satisfied by p = cosh (u + k 1) if h > 0 and p = cos (u + k~) if
h < O. According to (7.2), where the choice of T is not yet specified we are
free to choose k 1 and k 2• Let them be zero. Then, by (8.1), we obtain
r = a(ecosh u - I) if h > 0 and r = a(1 - e cos u) if h < O. According

to lind r for a given value of t we work backwards. Solve the first of Eqs.

(7.5) for u = u(/) and substitute into the second.
There are now two cases. If C = 0, then this knowledge of r determines

the position completely since the line c containing the motion is kl1lmn.
On the other hand, if C * 0, it follows from (7.6) that there are two p0ssi­
ble values of I for each value of r. It is clear that we must take I positive
if I> T, I negative 1 < T; alternatively, I> 0 if u> 0, f < °if u < O.
The coordinates (r, I) then locate the particle completely.

EXERCISE 7.1. There is a standard formula from algebra for solving the
cubic in (7.5) for u = u(l). Write out the solution explicitly.

EXERCISE 7.2. Excluding the cases of collision, show that if h = 0, then
rl/l-~'3 _ (!,uy3 as 1/1- 00. Compare this with the corresponding

result in case h > O. (See Ex. 5.5.)

EXERCISE 7.3. Show that u = (e/""r;) tan 1/2, thus relating the two
anomalies in thc casc CF O. Hint; equate r as given by (7.5) and by

(7.6).

re.' Ju·.

r = c'/u
I + CClsl'"

k (dl = Lrdu

= lfU (U' + C')du,
(J' 11;

r- c'J.
'V fL (I - T) = J. /.< + -- u

o 2fL'

r = t(II' + ~).

6./ u (I - 1') = u';

In summary,

or, because k' = fL,

(7.5)

(7.7)

(7.6)



to (7.2), we have kdt = rdu. Since u = 0 when t = T, we can integrate
both sides to obtain k(t - T) = J~rdu. Substituting for r each of the func­

tions just obtained we get the parametric pairs

r = aCe cosh II - I)

(i~A) n = fL 1
,2 a -3

i
2,

.lnJ is called the mean motion. Observe that in the case of elliptic motion
n -c= 2n:/p, where p is the period (see Ex. 5.3), so that II is simply the

frequency.
Observe that if II = 0, then t = T and r = ale - 1\. It follows from the.

equation of the orbit, namely

_ ale2
- !.L

(8.5) r - 1 + e cos!,

that if c *0, T is a time of pericenter pas~ge.On the other hand, if Co =: 0,
then e = I, so that r = 0 and T is a time of collision with or emiSSIOn

from the origin. .
From this point on it is well to separate the cases h > 0 and h < O. ThIS

is done in Sees. 9 and 10.
EXERCISE 8.1. Show from the Eqs. (8.2) that if II > O. I hen as 1'\ 'c"-'

the ratio rit approaches 211, provided that the valu~ r = 0 ~s not
reached at a fmite value of t. This gives and alternative solution of

Ex. 5.5.
EXERCISE 8.2. Show from the formula r + c·r = C::,'i l that if II> O.
c =;1= O. the unit vector r/r approaches a limit vector I as t -> 00 and
that e.} = -1. Then, according to the formula

)
" c x r

JL(c X e = c v - J.L -,'

easily derived from (4.2), the vector v also approaches a limit V. What

is the length of V?
*EXERCISE 8.3. By matching each of Eqs. (8.2) and (8.3) \;ith (8.5) ~air­
wise, obtain these formulas connecting true and eccentflc anomalIes:

THE CENTRAL FORCE f'fWBLEM

We ~tart with the Eqs. (8.2), which we reproduce here as

(9.1) r = aCe cosh u - I)

and

(9.2) n{t - T) = e sinh u - u.

The first step is the determination of T from ro and Yo. Starting with
the formulas

15POSITION ON THE ORBIT: THE CASE h> 0

tan.1. = (I + e) 12 tanh~ h > 0
2 I-e 2'

tanL= (I +e)t;2tan~ h<O
2 l-e 2' .

*EXERCISE 8.4. Show that for each value of t each of the equations

net - T) = e sinh u - u, e > 1

n{t - T) = u - e si 11 u, 0 < e < 1

has a unique solution u. They ar~ known as Kepler's equations.

SEC. 9

9. POSITION ON THE ORBIT: THE CASE h > 0

r· v = rf = ,,'U = rr'kr- 1 = kr' = ,.,f"/i{ie sinh II,

we see that the value Uo of u at t = 0 is given by (ro' Yo) = ,.,f"/i{ie sinh uo.
Now let t = 0 in (9.2) and we find that T is given by - nT = e sinh Uo-Uo.
Remember th;h if c := 0, then time T correspvnds to a collision or emission'
hence (9.2) is valid only if t < T in the first case and t > T in the second:

Now to determine the location at a time t, we must solve (9.2) for u
and then substitute into (9.1) to obtain the corresponding value of r. If
c 0= °the nwtion is linear and the location is complete. If c * 0 there are
two possible values of f which satisfy

r = aCe' - I)
I + e cos!'

Clearly, we must choose f > 0 if t > T and f < 0 if t < T.
The quantity 1= l1(t - T) is known as the mean anomaly. If t is given,

I is iJetermined and the main problem in the preceding computation is the
solution of 1= e sinh II -- II for II. A solution for the function II = u(/) in
some recognizable form is lacking, and the problem is usually treated as a
numerical one. A simple procedure is this. For the given value of I, plot
the line y = I + u and the curve y = e sinh u. Then their intersection yields
a value Uo which, because of the roughness of method, will generally be a
first approximation to the answer.

Improved approximations can be obtained by Newton's method, as

CHAf'.l

if h < O.

if h > 0,

net - T) = e sinh u - II

14

r = a(l - e cos II)

11(/ - T) = u - e sin II

The: c:oelficicnt n is defined by n = k/a or

(8.2)

and
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follows. Let y = 1+ u - e sinh u. We seek the value of u for which y
vanishes, starting with the approximation U = Un' Draw the tangent to the
curve at Uo and find where this tangent hits the y-axis. This gives an
improved value Ul and the method can be repeated. Analytically, if Un is
the result of n successive uses of the method, then

_ + I + Un e si!lh Un *
U,,+l - U" hI'e cos U,,-

EXERCISE 9.1. Solve the equation

1.667 = 2 sinh u - U

numerically.

10. POSITION ON THE ORBIT: THE CASE h < 0

The parametric equations in the case of negative energy read

(10.1) r = a(1 - e cos u),

and Figure 3

where I is the mean anomaly net - T).
The quantity u has an important geometric meaning if c :;f::: 0. In fact,

in most treatments of the subject, u is introduced by its geometric iriter­
pretation rather than as an analytical device. The motivation for following
the procedure we have adopted is the fact that in the three-body problem
to be discussed later an analogue of (7.2) has important significance,
whereas the geometric meaning of u will be lost.

To describe the geometry, ~onsider the ellipse of Fig. 3, which corre­
sponds to an orbit. The center of attraction is 0, P is the pericenter, and
C is the center of the ellipse. The arrow indicates the direction of motion.
Let Q be a position of the particle when the true anomaly is f ,Project Q
to that point S of the circle for which SQ is perpendicular to' CP. Then
the angle pes is u. The proof follows from (10.1) and is left to, the reader.

Observe that as Q moves around the ellipse, as indicated by the arrow,
u and f each change by 27l' every time Q goes through pericenter. As in
the earlier cases, we must determine T. Since the particle goes through P
periodically, T is not uniquely determined by fa, Yo. We shall ngree,
however, to choose T as follows if c =F 0. If at t = 0, fa > 0, that is, if the
particle is on the upper half of the ellipse. then T is the first time before
t = °that the particle went through P. On the other hand, if .ro < 0, then

*For more about this subject consult P. Herget. The Computation of Orbits. private­
ly printed, Cincinnati, Ohio, 1948.

(10.2) 1= u - e sin li,
T is the first time ·after t =: 0 that the particle will go through periccnter.

Analytically the computation goes this way. Since

f· v 0'= ri = 1'1"(, =0 rr'kl'-l = J~. r'
(10.3)

''''' "/lLac sin II,

it follows that II" must satisfy f,,' VI' "CO ,.JJwe sin uo• In addition, in the
interval - 7l' < U :'" 7l' there are, in general, exactly t\'w values or Ii" \\lJich
satisfy ro = a(l -;'cos uo), each the negative of the other. But \.If [11..::.·.·
only one can satisfy the preceding relation involving fn ' 'i". ChO(ISC that
onc to bc the valuc to be substitutcd inlo- liT Un" (' sin II".

If c = 0, precisely the same argument will yield a value of T, btl! tile

geometric interpretation is altered. Since f,,'V o = r"io, the choice m~ikcs

T > 0 if i o < 0 and T < 0 if ;0 > O.
From now on the procedure is the same as in the cases h~ O. The main

problem is the solution of Kepler's equation (10.2). That can be accom­
plished numerically as in the case of positive energy, but a simplification
should be observed. The equation is unchanged if we simultaneously add
or subtract any multiple of 27l' to both I and u. Therefore, when I is given,
add or subtract a multiple of 2lT to bring it into the range - 7T ::: I ~'( IT.

Moreovef, the equation is unchanged if I and u are simultaneously replaced
by - I and - u, respectively. This means that u is an odd function of I
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(ILl)

and it is enough to solve the equation when 0 7t. When 1= 0, U = 0
and when / = '!t, U = '!t. Therefore, the problem is reduced to the ran ~e

0< 1<: '!t. H is clear from the graph of ! against u (see Fig. 4) that tie
values of u also lie in the range 0 < u <: '!t.

I

(O,7T)f-,-----------.

IC:~ ......L.;...:. u

Figure 4

If the eccentricity is in the range 0 < e < I, there exist analytic solu­
tions of the problem. We defer the discussion of Sec. 12.

*EXERCISE 10.1. Prove that if 0 < e < 1, the function u(/) defined by
(10.2) has the property that 11(1) - 1 is periodic of period 2'!t in I, is
odd vanishes at 1 = 0,1 = '!t and has a continuous derivative. There­
fore: it may be expanded in a uniformly convergent Fourier series

u(l) - 1= L: lin sin Ill.
7l=1

Prove that

2 J"u = - cos n(u - e sin u)du.
n '!tn 0

*EXERCISE 10.2. Let Qo, QI be two positions on an dliptic orbit, and let
uo, UI be the corresponding eccentric anomalies. Assume u, > Uo• Prove
that the distance Qo QI is 2a sin a sin (:3, where a = Hu, - uo) and (:3
is defined by cos f3 = e cos !-CUI + uo), 0 < (:3 < '!t.

EXERCISE 10.3. Prove Lambert's theorem, which says that for an elliptic
orbit the time occupied in moving from one position to another
depends only on the sum of the distances from () of the two positions,

t

I
/

and on the length of the chord joining the positions. (This will be
proved in Sec. II, but try it now, using Ex. 10.2.)

11. DETERMINATION OF THE PATH OF A PARTICLE

In the preceding theory we have solved the problem of the determination
of the motion ~f a particle moving under the inverse square law fer) = p,r-2
on the assumptlOn that ro anel Vo are known at some time t = O. In practice,
ro and Vo cannot be determined directly, so the problem arises of the deter­
mination of the motion when other types of data are given. We shall be
content with one example, highly idealized for the sake of illustration. The
realistic problems are treated definitively in Herget's book mentioned at
the end of Sec. 9.

Suppose the center of attraction is the center of the earth, regarded as
a ~i'1t mass, a~~ that the particle is an artificial satellite moving in elliptic
motIon. Its positIOns ro and r, are observed in succession at times T units
apart. It will be assumed that the angle g swept out by the radius vector r
in moving from ro to r l is small enough so that the area caught between
the chord joining the observed positions and the orbit itself does not contain
O. It may, however, contain the "empty" focus F, that is, the focus which
is not the center of attraction. This is illustrated in Fig. 5 by the shaded
regions.

The plane of motion is determined by ro and rio Let e be the (unknown)
eccentric axis and I the true anomaly measured from e. Then the conic has
the equation

r = a(l - e2
)

1 + ecos!,

Suppose now that a has been loulld by some means. We shall show how
to find the remaining constants. Let 10 be the true anomaly of the first
position. Then 10 + g is the anomaly of the second. Hence, we have the
relations

_ _:-=a~(l=----.-.,--e;-2!..-)-----,'1 --;-I + e cos (/0 + g)'

_ a~(,-I_---=-e....!.~)~'0 - ~1 + e cosio'

From these, the unknowns e and 10 can be determined. This locates the
eccentric axis, which is forward of ro by the angle - 10 if 10 < 0, and
back of it by 10 if 10 > O. The orbit is now completely determined.

However, position on the orhit is not. For this we need to know Yo, the
velocity vector corresponding to r". "or then the problem becomes the
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initial condition problem discussed in the earlier sections. Now the com­
ponents of Vo are ;0 in the direction r o, and cl,o perpendicular to it in the
direction of motion (see Ex. 3.3). So all we need are the values of ;0 and c.
The latter can be found from c2 = JU1(1 - e2), the former from

;g + c: = #(2 _ .!.),
'0 '0 a.

where;o> 0 if fo > 0 and;o < 0 if fo < O.
There remains the determination of a whose value was assumed to be

known in the preceding discussion. If the time l' between observations were

a period, then a could be found from Kepler's third law. But l' is less than
a period and another method must be found. The key is Lambert's theorem
anticipated in Ex. 10.3.

Let uo, UI be the eccentric anomalies at the two positions, where
- 'It < Uo < 'It, - 'It < Ut < 'It. Then 'I = a(l - e cos UI), '0 = a(l ­
e cos uo) and

'I + '0 = 2a[1 - e cos HUI :..... uo) cos HUI + uo)].

Therefore, using the notation of Ex. 10.2, 'I + '0 = 2a(l - cos a cos 13)·
Moreover, the distance p between the positions is given by p = 2a sin a
sin 13. Therefore

'I + '0 + p = 2a[1 - cos(a + 13)] = 4a sin' 2Ha + 13),
'I + '0 - p = 2a[1 - cos(a - 13)] = 4a sin 2Ha - 13)·

Since Il(t - T) = It - e sin II gives the eccentric anomaly at time t, it
follows that the elapsed time l' between observations is given by

nT = (UI - uo) - e(sin U I - sin uo)

;=; (Ul - uo) - 2e sin HUI - uo) cos HU1 + uo)

= 2a - 2 sin a cos 13.
Observe that p is known because 'it '0 and the angle g between the

position vectors is known. In fact, by the cosine law p2 = ': - 2'0'1 cos g +
,~. In summary, let £ = a + 13, 0 = 13 - a, and replace n by its value
#1/2 a -3/2. Then we have three equations

4 '2 £ +a sm "2 = 'I + '0 p,

4 . 2 0
a sm "2 = '1 + '0 + p,

#1/21' = a3
/

2 [£ - 0 - (sin £ - sin 0)],

for the unknowns e, 0, a. If f and 0 can be found from the first two, their
values can be substituted into the third, giving one equation for the deter­
mination of a.

There is a difficulty here because the solutions for € and 0 are not unique.
Since -'It < Uo < 'It, - 'It < UI < 'It and Uo < Ult we know that 0 < a <'It.

Also, 0 < 13 < 'It by its definition. Therefore 0 < € < 2'1t. Similarly,
- 'It < 0 < 'It. Hence, if (fit Ot) is the smallest pair of positive angles
satisfying the equations for f and 0, the remaining pairs are (2'1t - fit 01),

(fit - ot} and (2'1t - fit - 01), It turns out that the last two cases are
excluded by our assumption that the shaded areas of Fig. 5 do not contain
O. This is discussed by H. C. Plummer.·

• An Introductory Treatise on Dynamical Astronomy. New York: Dover Publications,
1960, pp, 51-52.

~
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He shows also that the proper choice of e is fl if the shaded area does
not contain F, otherwise it is 27t - fJ. Therefore the equation for a is

fLI/I T = a' /
2[el - 81 - (sin lOl - sin 8J)J

in the first case, and

p,l!!T = a3/2 [27t - £1 - 01 + (sin fl + sin oJ))

in the second.
It follows, therefore, that under the given conditions, two orbits satisfy

the given data.

EXERCISE ll.l. Show how Eqs. (11.I) determine e and /0.

so that by (12.1) once again,

and can be defined in a variety of equivalent ways. For .our purpose this
one is best:

~

e sin u = 2 L 1 -IJ" (ne) sin nl.
n=l

23ELEMENTS OF AN ORBITSEC. 13

~

u = 1+ 2 L n- 1In(ne) sin nl,
n-I

I fICIn(x) = - cos (nu - x sin u)du.
7t 0

It follows that Un = (2In)Jn(ne) and Lq. (12.2) takes the form

r,
I

CHAP. 1THE CENTRAL FORCE. PROBLE.M22

To evaluate the integral, write this as

2 fIrU = - -- [u(l) - l]d cos nl
n. 7tn 0

According to the standard formula for the s:oefficients of a sine series,

u = 1.- f~ [u(l) - l] sin nidi
n 7t 0

and integrate by parts to obtain

Un = ..! fIC cos nld[u(l) - l]
7tn 0

= 2- fIC cos nldu(l) - 1- fT cos nidi
7tn 0 ttn 0

12. EXPANSIONS IN ELLIPTIC MOTION

\Ve have already seen in Ex. 10.1 that in case 0 < e < I Kepler's equation

(12.1) l=u-esinu

has a solution which permits expansion of u(/) - I in a uniformly conver­

gent sine series

where

2 firCn = - (1 - e cos U)-I cos nidi
7t 0

2 fir= - cos nldu.
7t 0

These expansions have many important consequences, including for­
mulas for the position of the particle. A rigorous treatment is given by A.
Wintner.*

Here we give only one formal consequence of the preceding theorem.
According to (12.1), dlI du = 1 - e cos u = '1a. Therefore, if we dif­

ferentiate the last series with respect to I we obtain

a ~

(e cos u) - = 2 L In(ne) cos nl.
, n=1

Since e cos u = 1 - (ria),

a ~

- = 1 + 2 L In(ne)cosnl.
r n=1

EXERCISE 12 l. Give a pr<?of of the last formula starting with

(1 - e cos U)-I = ~o + ~ICn cos nl,

13. ELEMENTS OF AN ORBIT

u(l) - I = L Un sin nl.
n=1

(J 2.2)

= 1.. rw cos nldu(/).
7tn Jo

Now let 1= u - e sin u, according to (12.1). The limits of integration are

unchanged, so that
2 fIC .Un = - cos n(u - e sin u)du.

7tn 0

The Bessel functions In(x) are well-known in many parts of mathematics

In the preceding treatment of the non-linear case C :;cO, the coordinate
system used is indeterminate in one respect. In the plane of motion perpendi­
cular to c (see Figs. 1 and 2), a system of axes x, y is installed to form a
right-handed coordinate system with respect to c. Since ,21i = c, the motion
is in the direction of increasing e. The orbit is completely determined by

* The Analytical Foundations 0/ Celestial Mechanics, Princeton University Press,
1947, pp. 204-22.
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(13.1)

(14.1)

(13.2)

i' - Gm2m,fl - f2
m2 2 - ---,:r- --r-'

*The two-body problem for finite bodies is unsolved.

{
aife*-l,}

i, n; e,. m; T.
c If e = 1,

The first two determine the plane of motion, the next three the orbit in the
plane, the last the position of the mass particle on that orbit.

EXERCISE 13.1. Find formulas for changing the coordinates of the
particle in its plane of motion to coordinates in the XYZ system.

14. THE TWO-BODY PROBLEM

angle i is called the angle of inclination, or simply the inclination, and the
line, shown dotted in Fig. 6, the line of nodes.

It is now customary to choose the x-axis in the plane of motion as
follows. First exclude that rare case of non-elliptic motion in which the
dotted line falls along the axis of the conic. Then the orbit will cut twice
through the line of nodes, once on its way "up," the other on the way down.
Let S be the point at which the particle cuts on its upward journey. S is
called the ascending node, and OS is chosen as the positive x-axis. The
angle XOS, measured counterclockwise as seen from the positive Z-axis,
is called the longitude of the ascending node. The angles i and n accomplish
the purpose of fixing the plane of motion. Therefore they, in conjunction
wit 1 the numbers listed in (13.1), determine the motion completely. It is
customary to use in place of cu the sum lU = n + cu, caIled the longitude of
peri('ellter. Except for the rare cases just excluded, the orbit and position
on it are then completely determined by the six numbers, called the elements
of the orbit:

Once the solution of the central force problem has been achieved, it is
possible to solve what appears at first sight to be a more complic:l ted
problem: to describe the motion of a system of tlVO mass particles moving
according to their mutual gravitational attraction. This is known a~ the
two-body prohh:m. although the nal:)': IIfo'purticle problem would be a more
accurate description.*

Let 0 represent a fixed point in the space of motion (see Fig. 7), let
m" m2 denote the masses of the two particles. f" f2 their positions, and r
the distance between them. Clearly, r = If~ - fll. According to Newton's
law of universal gravitation, the force of attraction between the particles
is GlIl l m~r-2, where G is a constant depending solely on the choice of units.
The differential equations are then .

~ _ Gmlm~f2 - f l
ml f I - -----;:r- --r-'

z

Figure 6

x

c, e and position on it by T, time of pericenter passage. AlternativelY, we
may say that once the x-axis is in place everything is determined by the
quantities

c

i.
a if e *- I,}

e, cu, T.
c if e = 1,

Now suppose, as is the case in practice, that a prescribed coordinate
system X, Y, Z is given with its origin at O. The problem is now that of
describing the motion in the prescribed system. Such a system is illustrated
in Fig. 6, along with the position of the vector c. What must be done is to

find a unique prescription for the x-axis. Then points in the x l' c coordi-
nate system can be described in the X, Y, Z system. ' . ,

If c falls on the positive Z-axis, it is reasonable to choose the x-axis of
Fig. 2 to faIl along X; and if c falls on the negative Z-axis, it is reasonable
to.choo~e the x-axis to fall along Y in order to preserve the right-handed
onentatiOn.

Otherwise the plane of motion is determined by i, the angle from Z to
c, and by the line of intersection of that plane with the X Y-plane. The
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(14.5)
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Figure 7

and it is assumed that initial values of fj, fit flo fa are given.
It is possible to reduce the problem to the central force problem by the

following procedure, called the reduction to relative coordinates. Divide the
first of Eqs. (14.1) by mh the second by m2 and subtract the first from the

second. If f denotes fl - rl we find that

(14.2) i' = -p,,-'r, jL = G(ml + ml)'

Clearly, initial values of r and v are known from the corresponding values
for the original system (14.1). But (14.2) is precisely the central force problem
with a special choice of jL, and all the preceding theory is applicable. Once
r is determined, so is the right·hand side of 'each Eq. (14.1), from which
both rl and ra can be obtained. In summary, each particle moves as if it
were a unit mass attracted to a fixed centeJ' located at the other mass, with
jL = G(ml + ma). The orbit of each, as seen from the other, is called a rela­
tive orbit. Equation (14.2) is unchanged if f is replaced by - r. Therefore,
the relative orbits are geometrically identical.

Another procedure, called the reduction to barycentric coordinates, is
also important. First add Eqs. (14.1) to~ether as they stand. Then mlrl +
lI1a ra = O. This has an important interpretation. Let

mlf! + mlfa
fc = m, + ma

denote the position vector of the center of mass 0' of the two particles.
Clearly it lies on the line joining them tsee Fig. 7). Then i'c =O. It follows

that
(14.3) rc = at + b,

where a and b are constant vectors determined by the initial conditions,
This gives the principle of conservation of linear momentum: the center of
mass moves in a straight line with uniform velocity. The system (14.1) is
of order twelve (twO vector equations make six scalar equations, and each
is of the second order). The vectors a and b provide six constants of the
motion, which leaves six more to be accounted for.

To discover th~ other six, we move the origin of coordinates to the
center of.mass. ThiS means that in (14.I)we replace rl by rl - rc and ra by
ra- re. Smce Pc = 0, the .Eqs., (14.1) remain unaltered by the change, and
we may su~?"se from thiS POlOt on that the origin is fixed at 0', the center
of ~ass. 0 Itself moves according to (14.3) and we are now studying the
mO~I~n of m, ~nd ma relative to 0', which we now rename O. f l and fa are
posItIons relatIve to the center of mass.

We no~ proceed in this way. Let rl and ra denote the lengths of fl and
fa. respectIvely. Then

(14.4) r = rl + ra, mlrl = mara, mlrl = mafa = O.

!his enables us to rewrite (14.1) as a pair of equations which are formally
mdependent of one another, namely:

i't == -(Gm~M-a)r13rh

fa = -(Gm~M-I)r;'fl'

Actually one of these suffices since mlrl + mara = O. Since each is of the
form (1.1), with a special value of jL. we have accounted for six more con­
stants, namely the elements of either orbit relative to the center of mass

The conclusion is that the center of mass moves uniformly and each 'of
the particl~s moves with respect to that center of mass as if a fictitious force
of attractIon were located there with jL = Gm~M-a for the first mass
p. = Gm:M-a for the second. '

In ~hat follows, we suppose the origin fixed at the center of mass. The
potentzal energy of the system is defined to be - U*, where

(14.6) U* = Gmlmar-I,

and the kinetic energy T* is defned to be

(14.7) T* = Hmlv~ + mlvn,
~here VI = t l and V2 = t 2• Now let us examine each of the Eqs. (14.5) as if
It corresponds to a central force problem. According to (3.1), each corre­
sponds to a constant total "energy" defined, respectively, by

hi = tmlv~ - Gmlm~M-lrl1 =Tl - U\

and
h2= tmav~ - Gm2m~M-2r21 = T2- U2.

Using (14.4), we can conclude that

T* = T I + T2, U* = UI + U2

Moreover,
hi _ UI _ TI _ ma
h; - U

2
- T

2
- mi'

Therefore the various energies (kinetic, potential, total) are split between
the masses ml and m2 in the ratio m2/ml'
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(15.1)

EXERCISE 14.1. The shape of an orbit in the central force problem is
determined by the sign of h. Prove from this that in the two-hody
problem the orbit of each mass, relative to the center of mass, is the
same kind of conic for each, although the eccentricities may differ.

*EXERCISE 14.2. Starting with Eq. (14.2) for the relative motion of two
particles, study the behavior of r at an instant of collision. Notice that
(7.1) applies with c = 0, p, = G(ml + m2),so thatrf2 = 2(p,+hr). Since
r~°at a collision we have r;2 _. 2p, when t -> tlo the time ofeollision.
This is independent of the sign 0 . h. Conclude that Iflr 1

/
2

- -Jfii, and
hence that rlt - tl l- 2

/
3 -(9/2p,)1 3 as t-> t l •

15. THE SOLAR SYSTEM

The real solar system is very complicated. Mainly for the purpose of
illustrating the preceding theory, we describe a simplified solar system. It
consists of ten particles, one of which, the sun, carries most of the total
mass. The other nine are planets. Since most of the mass is in the sun, it
will be supposed that each of the planets moves independently of the others
and is acted on only by the sun. The result is that we have nine inde­
pendent two-body systems each consisting of the sun and one planet.
Motion will be discussed relative to the sun, in accordance with the first
part of Sec. 14. Then each planet is governed by Eq. (14.2), with
p, = G(m, + mp ), m, being the mass of the sun and mp that of the planet.
Consistent with this, each planet moves in an ellipse with the sun at one
focus. Let np and ap denote the mean motion and the semi-major axis,
respectively. Then, according to Kepler's third law (8.8) n~a~ = G(m, + mp ).

It follows that for two distinct planets p and q we have the law

n~af = 1 + mp/m,
nqaq 1 + mq/m;

S.inc~ m, is very large compared to mp and mq, the ratio on the right-hand
side IS very close to 1. Therefore, n~a~ is almost (but not quite) the same
for each of the planets. This is the original form of Kepler's third law.

To describe the actual orbits of the planet, it is customary to list the
elements relative to the following coordinate system. (See Fig. 8, which is
a special example of Fig. 6.) The origin is taken as the sun, the plane of
the earth's orbit is the XY-plane. This orbit is known as the ecliptic, the
XY-plane as the plane of the ecliptic. The X-axis is directed towards a point
among the stars known as the vernal equinox. A precise definition can be
foun~ i.n the textbooks on astronomy. All that matters for our purpose is
that It IS to be regarded as fixed. Each orbit is then defined by its elements

z

J--------y

'I

"
Figure 8

i, n, which give the plane of motion; a, e, UJ, which describe the conic in
that plane; pnd position on the orbit can be found from T. the dale of
perihelion passage.

We append a table of the elements of the nine major planets. In add:­
tion, we include the period p (measured in days) and the mass M (relative
to the earth, which is taken to be of mass 1). Distance is measured in
astronomical units, where one unit is the length of the semi-major axis uf
the earth. Time of perihelion passage T is the first date of this event after
December 31,1899. Angles are given in degrees.

16. DISTURBED MOTION

We return to the problem of central attraction according to the inverse
square law. The governing differential equation is f = - W-3r. Suppose
that in addition to the central force, the moving particle is subjected to an
acditioral 'orce. This may be due to the attraction of some other body, to
air resistance, or any other cause. The equation becomes

(16.1) v= r = -p,r-Jr + F.

We shall call the motion subject to the extra force disturbed, and the
motion with F = 0 undisturbed.

Suppose that the particle is moving subject to the disturbing force



The vector v lies in the plane perpendicular to c, so that

(16.6) v = Ar + Ba.

We proceed to compute A and B. We have c = r x v = r x (Ar + Ba) =
A(r x r) + B(r x a), so that, by (16.5), c = Br2c or B = l/r2

• Also by
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fL(f + e) = v x c.

a = ex r,

SEC. 1Q

(16.3)

which at some instant t is suddenly wiped out. Let r(t), v(t) represent the
position and velocity at that instant. From then on the particle will move
according to the theory described earlier in the chapter. In particular, we
can define the vectors c, e and the time of pericenter passage T just as
before, regarding r(,) and v(t) as the initial data. But c and e are dependent
on the instant t at which F is wiped out. They are, therefore, functions of t.

At each instant t during the disturbed modon we can look at the particle
in two ways: it is moving on its real orbit, or it is about to move on its
undisturbed orbit, called the osculatilg orbit. With this as the clue, we are
going to study the real orbit by findi Ig how the undisturbed orbit changes
with time. In other words, we shall see how c, e and T change with time.
Since at each instant of time these qu lntities determine the elements of the
undisturbed orbit, this will enable l s to find how the elements of the
undisturbed orbit change with time.

We shall start with the definition c = r x v, where r and v are the
position and velocity on the disturbed orbit, so that c depends on t. Then
c = r x t, or by (16.1),

(16.2) c = r x (- fLr-3r + F) = r x F,

since r x r = O.
We define the vector e by the equation

Since e is a function of time we can conclude that

fL(~f + ~) = t x c + v x C.

Now replace of .lccording to (16.1), C accord:ng to (16.2) and (d/dt)(r/r)
according to (2.3). Then

(16.4) ;.te = F x c + v x (r x F).

Let t be an instant of time at which c "* 0 and e "* 0 and let f be the
angle from e to r. Then f is the true anomaly of the particle regarded as
being on its undisturbed orbit at that instant.

We introduce a coordinate system at the instant t. Its origin is 0 and
the axes are c, r and a where a is defined by a = C x r. (See Fig. 9.)
Clearly

(16.,5)

t,
i

~

l
I
~

~ to 0 I"- ~to 0 0 0 N 10 r<1 mq IX! q 0 N ~ N
E: - a) 10 V ,..:

i<) en - -
I"- ID (0

C1! l"- N C1! ~
dCl I"- -i .0 (Q N ai r-: q:

00 N (Q 00 10 10 00 00 0
N 10 ID r<1. 1"-.

~ l"-
V 0 ci ci- ~ ID en

ID N
0 0 0 0 <;t- 10

ID V en
0 0 0 0 0 § 2:! 0 00
en

~
en en 01 N en- - 0 0 .0......

r<1
. . 00 - N N It')- - - ..:..: C ~ '" .0 >- Q. 0...: c: 0 :J0 Q. 0 ::J '" '"::E <l: .., ::E ..., LL ::E (/) <l:

0 10 N N N en 10 10

C1! -- "! N r-, q 0 ~ 00
0

<:>
0 • 0 2- 0 0 0

13 10 0 V N en en r<1 N
I"- r<1 10 - ID V N- - ,." - N

ID I"- 10 00 ID I"- en I"-
0 0 I"- en V 10 V 0 V

Cb
N 0 q q q q q 0 "!

I"- ~ 0 V r<1 ID
00 N 0 N 0 V 0 en

q 10 N to N 0 1010 I I"- aic::r - - Lri ai ai 0- 10 r<1

00 0 CO <;t C1l OJ 00 10
<;t- -:: l'-: <;t ID C1lI"- 0 "':

0 0 0 0 0 0 0
0 0

N r<1 0 00c; r- IO 0 00 C1l
I"- 0l"- V en ro<;t - -

0 en 0 10 - I"- 00 V
~ 10 I'-: l'-: -q It') q CO

~ ~
0 0 0 0.. 0 b ~ N 0 - !:::I"-

..
>- .. til C..

'"
C :J ; 0

:J III :: :n ... ..
C :;;:, :J Q.U .. '0.. ~.. C .. 0 '0 '" a::.. .. CI

::E :J (/) ::l Z:I > IJJ ..,

o
o
~
oil

1:
'"E
.!!
IJJ



32 THE CENTRAL FORCE PROBLEM CHAP. 1 SEC. 17 DISTURBED MOTION: VARIATION OF THE ELEMENTS 33

e

c

r

y

Figure 9

Cl=cxr

Dot multiply both sides of (16.8) by c to obtain

(16.10)

17. DISTURBED MOTION: VARIATION OF THE ELEMENTS

Now let X. Y, Z be a coordinate system, as described in Sec. 13. We wish
to determine how the disturbed motion looks in this coordinate system. At
each instant of time we shaH regar~ the particle as being on its undisturbed
or'Jit with the associated constants i, n, we, c, T and ask how these vary
\\' lh the time as the particle moves through its successive undisturbed
OJ oits.

We already know from (16.10) that

(17.1) ('=rF,..

Now let i, j, k denote unit vectors in the X, Y, Z directions (see Fig. 10)

(16.6), r·v = Ar·r = Ar', since a· r = O. To finish the calculation of A we
n?te that e· a = ea cos (f + 90·). Also a = cr. Therefore e· a = -eer si.n!
Smce e· r = er cos/. it foIlows on taking the dot product of both sides of
(16.6) with e that e·v = Aer cosf - Beer sin! But according to (16.3),
r·v + r(e·v) = O. Therefore,

Ar' = r·v = -r(e.v)

= -Aer' cosf + Beer' sin!

But Br' = 1. It foIlows that Ar'(I + e cosf) = ec sin! Since, at the instant
t, r = (c2/fL)(l + ecosf)-t, we get A = fLer-'c-1 sin!

Substitute from (16.6) into (16.4) to get rid of v. Using the fact that
Br

2
= I and expanding the triple products, we find that

(16.7) fLe = F x c - Ar'F + [A(F·r) + ,-'(F.a)]r.

We interrupt with an exercise.

*E~ERC~SE 16.1. Write F in terms of its components Fe, F
T

, Fa in the
directiOn of the coordinate axes, that is, F = Fec-Ic + Frr'r +
Faa-'o:. Show that the basic equations (16.2) and (16.7) become,
respectively,

(16.8)

and

(16.9) fLe = 2cr' Far - (,-' Fr + Arc- I Fa)a - Ar'c- I Fcc,

where, as before, A = fLer-Ic-1 sin!

~

!

I•I

k

c

•

n

Figure 10

and let the line of nodes be directed along D, where n = k x c. Clearly,
n = kc sin i = C sin i. Also, because a = c x r we know that k·a = k.
(c x r)=k x c·r=D·r=nrcos(w+f)=ersinicos(w+f).

We start again with c· k = ck cos i = c cos i, so that, according to (17.1),
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~\

. F . . .di
c· k = r '" COS I - C sm I ([(

From (16.8) and OUf computation of k·a, we get

c.k = rc- I F",ccos i - c- I Fccr sin i cos «(j) + f)·

From the last two equations it follows that

di -I F (..L f)(17.2) di = rc e cos (u. •

We turn to the computation of e. According to Fig. 9, we know that
a. c c=c ae cos (f + 90·) = -rce sinf. Now dot multiply both sides of
(16.9) bye to obtain

fLee = 2cr- ' F",( ~ - r) - (r-I Fr + Arc-I F",)(- rce sinf).

= ceFr sinf+ ce(1 + e cosf)-t F",(e + 2 cosf + e cos
2
f),

or
ltC-Ie = Fr sinf + F,.(e + 2 cosf + e cos2 n(1 + e cos f)-I.

Now - j·e = i x k·e = j·k x e = i·n so that

(17.3) - j·e = csinicosfi.

Also, as the reader may demonstrate,

(17.4) a· j = rc[ - sin (oo + f) sin fi + C~!l'{oo + f) cos n cos i].

Therefore, if we take the dot product of both sides of ,(I6.8) with j, the

result is

j.e = -rF" sin i cos n
+rFc sin (00 + f) sin fi

-rFe cos (00 + f) cos n cos i,

which, according to (17.1) and (17.2), may also be written

_ j.e = csin i cos n - rFe sin (oo + f) sin n
• n di+ e cos I cos a dr'

A direct differentiation of (I7.3) shows agreement with the hst equation,

provided that
cn sin i = rFe sin (00 + f).

The computation of 0> starts with the observation that n x e = (k x e)
x e = {k·e)e, so that ne sin 00 = (k·e)e, or

(I7.5) k·e = e sin i sin (i).

In addition, we have the formula

(17.6) k·r=rsini sin{oo + f),

easily obtained by substituting e- 2{a x e) for r, and the formula

(17.7) (k·a) = ersin icos (00 + f),

derived at the beginning of the section. The remaining steps are these.
Differentiate (17.5) and replace e, e, di/dt by their equivalents obtained in
this section and the preceding one. This yields an equation for 0> in terms
of (k·e). Now dot multiply both sides of (16.9) with k, substituting from
(17.6) and (17.7). This gives us an evaluation of (k·e) which, on com­
parison with the preceding one, yields a formula for 0> given below.

There still remains the determination of t. This we leave to the next
section. In summary, we have found these formulas:

p[' e= Fr sinf + F,.{e + 2 cosf + e cos2 f)(1 + e cosf)-t,

d
lJ!.t· = re- I Fe cos (00 + f),

(I7.8)

en sin i = rFe sin (oo + f),

0> = -ep,-le-l(cosf)Fr - re- I cot i sin {oo + f)Fe

+ (p,ee)-I(e2 + rp,)(sinf)F",.

EXERCISE 17.1. Prove (17.4) by consulting Fig. 10. Recall that a =
ex r.

EXERCISE 17.2. Give a detailed proof of (17.6).

EXERCISE 17.3. Verify the formula for ro.

18. DISTURBED MOTION: GEOMETRIC EFFECTS

To complete the calculation summarized by (17.8) we now suppose that
the undisturbed motion is elliptical. In that case, 0 < e < I and e2 = fUl
(I - e2). Since cand ehave already been found, it is easy to calculate ti
from this last equation. The result is

(18.1) ti = 2a2 ec- 1(sinf)Fr + 2a2ep,- lr- 1 F",.

Since n = p,1/2 a-3/2, we know that;' = - !na-1ti.
Finally, we determine t. At the instant t, let a, n, e be the customary

quantities associated with location on an elliptic orbit. Then

r = a(l - e cos u),

n(t - T) = u - e sin u.

We know that rr = ~e sin u, by (10.3). If we use this fact, then differ­
entiation of the first equation of the pair yields
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r-1.Jjia e sin u = a(l - e cos u) + a(eu sin u - e cos u).

The second equation of the pair gives

net - T) + n(l - t) = (I - e cos u)u - esin u.

If we (i) eliminate ubetween the last eqHations; (ii) replace nby - tna-1 a,
1 - e cos u by ra-\ sin u by r(l - e2

) -1/2 a -l sin/; (iii) solve for t, the
result is

(18.2) . tfLe sin! = a-1[rc - tfLe(t - T) sinf]a - ac(cosf)e.

It is important to observe which of the elements is affected by which
of the components Fro Fe, Fa. The results are tabulated below.

Fr affects e, 00, a, t,

EXERCISE 18.1. Verify that the formulas (17.8) and (18.1) are dimension­
ally correct. Use L for r and a, U T- 2 for fL (why?), £2 T- 1 for c, LT-

2

for components of force, while e and angles are ·dimensionless.

EXERCISE 18.2. Find analogous formulas for the variation of the ele­
ments when the force F is decomposed in the directions c, v, c x v.

affects
di . .
(ft' n, w,

Fa affects c, e. oo. a, t.

The major applications of the formulas (17.8) and (18.2) will come in
our later study of perturbation theory. Here we shall be content to illustrate
their use with a simple example. Suppose a mass moving in an elliptic
orbit, 0 < e < I, encounters a region of resistance, due, say, to atmosphere.
The force will sometimes be of the form F = -qv, where q is positive,
although not necessarily a constant. What is the effect on tpe elements of
the orbit? To solve the problem, observe that, according to (16.6),

F = -qAr - qBa.

Therefore, Fr = -qAr, Fa = -qBa = -qBrc. Using the computed values
of A and B, we find that Fr = -qfLec-1 sinf, Fa = -qr-1c. Clearly, Fe = O.
SU.bstituting into (17.8) and (18.1), we get for the geometric elements of the
orbit

fLe = -2qfL(e + cos f),

~=O
dt '

il sin i =0,

00 = -2qe-1sinf,

a= -2qa2c- 2(1 + 2e cos! + e2
).

The following conclusions are immediate. The eccentricity e increases if
e + cos! < 0 and increases if e + cos!> O. (These correspond, respective­
ly, to the left and right half of the ellipse.) The inclination is unchanged.
The longitude of nodes fi is unchanged, provided i =F O. (If i = 0, the
angle.n is, of course, undefined.) The amplitude of pericenter w decreases
in the upper half of the ellipse and increases in the lower half. The major
axis always decreases.
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1. THE BASIC EQUATIONS: CONSERVATION OF LINEAR MOMENTUM

INTRODUCTION TO THE n-BODY PROBLEM

In the nobody problem (better, the n-particle problem) we are concerned
with the motion of n mass particles of masses mit i = 1, ... n respectively,
attracting one another in pairs with the force Gm)mkrjl where r)k is the
distance between the kth and jth particle. We suppose that n;::: 2.

Let 0 represent an origin fixed in space and let f l , v, denote the position
and velocity vectors of the ith pafticle. Then, by Newton's second law, the
kth particle satisfies the equation

r(r) -> 0 as t -> t, if t, is finite and r(f) -+ 0 as t -+ -t2 if 12 is finite.
It must not be supposed in case (iii) that a collision occurs when r -+ O.

It has never been proved (unless n = 2 or n = 3) that the only obstruction
to the existence of the motion for all time is a collision of two or more
particles. To put it another way, the fact that the minimum spacing ret)
between particles becomes zero in no way implies that a particular pair
collides.

The system (l.l) is of order 6n since there are n vector equations each
of order 2, or 3n scalar equations each of order 2. One should anticipate 6n
constants associated with the motion, that is, 6n functions of the fit VI and
t which remain constant during the notion. These are known if n = 2 (see
Sec. 14, Chap. I), but in the general ;ase only ten are known.

Six of the constants are easy to d,~rive simply by adding the equations
together. Clearly the double sum*

L L Gm mk f i - fk
/'..k) r;k rik

vanishes, since for each occurrence of a term fnt - f n the term fn - fnt also
occurs to cancel it. Therefore Lk mkPk = O. Now let M equal Lk mk, the
total mass, and let fe denote the center of mass M- I Lk mkfk' Then Pe = O.
Consequently f e = at + b, where a and b are constant vectors, computable
from the initial conditions. This last equation is the principle of conser­
vation of linear momentum: The center of mass moves uniformly in a
straight line. The vectors a and b provide six of the ten constants.

Since the motion of the center of mass is determined, the vital problem
becomes the determination of the motion relative to the center of mass. For
this purpose, it is convenient to move the origin to the center of mass by
feplacing each t l by f l - f e• Because i e = 0, the Eqs. (l.l) are unaltered by
the change. For this reason we shall simply assume from now on that the
cellter ofmass ofthe system is fixed at the origin. In other words, the system
of Eqs. (1.1) carries with it the side conditiOl.

(l.2) Lk mkfk = 0, -t2 < t <t lo

and hence also the condition

(l.3) Lkmkvk=O, -t2 <t<t1•

This provides six conditions to which the Eqs. (l.l) are subject, so that the
system is of the order 6n - 6.

EXERCISE l.l Three equal masses start at rest from the vertices of an
equilateral triangle. Prove they will collide, and find out when.

EXERCISE l.2. Explain why the condition r -+ 0 does not imply a colli­
sion of two or more of the masses.

*Hereafter we use 1:k to mean :i:.
k-I

?

I

k = 1, ... ,n,(1.1 )

where the right-hand side fepresents the total force exerted on the kth
particle by the remaining (n - I) particles. .

We take for granted an important existence theorem governmg the
solutions of Eq. (1.1). The proof can be found in Sec. 409 of the ~ook of
Wintner referred to in the footnote, p. 23. Let the vectors r" VI be giVen at
some instant t = 0 at which all the fik are positive. These we call the initial
data. Let ret) denote the smallest of the distances rik at time f. Then there
exists a unique set of n vector functions fl(t) and a largest interval of time
- f2 < t < t, containing the instant t = 0 such that

( i ) fl(t) satisfies the diffefential Eq. (1.1) for -t2 < t < t l ;

(ii) fl(t) and VI(t) = tl(t) agree with the initial data when t = O. More­
over,

(iii) if the interval -tt < t < t, is not the interval - 00 < t < 00, then
38
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We return to the Eqs. (1.1), assuming, henceforth, that the center of mass
is fixed at the origin. Define the function U, the negative of the potential
energy, by the equation

41THE CONSERVATION OF ENERGY: THE LAGRANGE·JACOBI FORMULASEC. 2

Denote by T the kinetic energy t :E" m"vt Then t = 0 or

(2.4) T = U + h,

when h is a constant, the total energy.
An extremely important form of this law is the Lagrange-Jacobi identity.

Define the moment of inertia 21 of the system by the formula

J = t :E"mkrt = t :E" mk(fl<"f,,).

Did"erentiate the extreme members of this twice with respect to t. The
result is

(2.5) i = :Ekmk(Vk,vk) + :Ek f,,·mkik,

or, by the Eqs. (1.1),

.. "" 2 "" "" GmJm" [( ) 2]J = ",,, m"vk + ..,k..,J 3 fJ'fk - r"
""'J r~k

'G ~.=2T + t :E,,:EJ m;»lk [rj - rt - rh]·
""'J rJk

Therefore

J- 2T t "" "" GmJmk 2 1. "" "" GmJmlt r2,- = "'k ..,J 3 rJ - "2' "'k"" S kk.., 'r,,, It"" r,lt

- t :Ek:EJ G'!!jml; .
""" rJk

The first two terms on the right cancel one another, since they become
identical if in the first one j and k are interchanged. The last term, by (2.1),
is simply - U. Therefore i = 2T - U. By (2.4)

(2.6) i = T + h = U + 2h.

EXERCISE 2.1. Write (2.5) as

i = 2T + :EI; fl<" ~U
uflt

using (2.2). Conclude that :Ek rl;' oU/Of" = - U. Show from this that
there is no arrangement of the n attracting particles so that they all

'remain at rest.

EXERCISE 2.2. Assuming that the particles move for all time t > 0
without obstruction, show by (2.6) that if h > 0 then J -+ 00 as t ...... 00.

Conclude that at least one distance rlt cannot remain bounded. This
does 1101 say that some rk becomes infinite.

*EXERCISE 2.3. Define a function T, of n vectors Ph P2' .•• , Pn by
t :E" m'k1p'fc, Prove that

:
l

I
I
I

CHAP. 2

respect to t,

U= :E
';:oJ<k;:on

INTRODUCTION TO THE n·BODY PROBLEM

EXERCISE 1.3. Suppose the law of attraction is fer) = J.L' rather than
the inverse square law. Show that, as above, the origin can be moved
to the center of mass, and that the resulting equations of motion
become independent and can be solved completely.

40

(2.1)

It follows from this that

(2.3)

Since rJk = IfJ - fkl, the function U depends only on the positions fh:-'-'-'

f n of the particles. In any Cartesian coordinate system fixed at 0: the
vector f" will have components Xk, y", Zko so that U can be regarded as a
function of Xh Yh Z,; Xh Yh Z2; ... ; X mYm Zn, a total of 3n real variables.
By the gradient of U in the direction fko we shall mean the vector having
components

[~~, ~~, ~~l
It is convenient to denote this vector by OUfork' In general, if f(ah a2, ... ,
an) is a function of n vectors, we denote by of/oak the vector

}L = [.£1- £L ll-Joa" oa,,' O{3k' Oryk '

where a k, {3k' ryk are the components of ak in a Cartesian coordinate system.
This seems more suggestive than the customary symbols Ak r! or grad" U.

It is now readily verified that the Eqs. (1.1) become

(2.2) mkrk = ~U.
Urk

"" ... "" OU dr"..,,,mkfk'f,, = ..,k-·-.
Ofk dt

The right-hand side is clearly the total derivative of U with
since it can also be written

:Ek[OU dXk + oU dYk + oU dzkJ
ox" dt 0Yk dt OZk dt .

Therefore, because vi = (r" 'rk), (2.3) can be written

~J...:Ek /'!kvi = O.
dt 2
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....1

"'EXERCISE 2.4. Define the function H(r" ...• r,,; PI. ... , Pn) by Ff =
T1 - U. This is a function of 2" vectors or 6" scalars. Using the
preceding exercise. show that the equations of motion (2.2) can be
written in the (Hamilton-Jacobi) form

._ oHr,; _.. -,-,-
apl'

. oH
Pk = -oar:;

EXERCISE 2.5. Prove from the preceding exercise that dH/dt = 0 for a
motion of the system. Derive (2.4) as a consequence.

~tXlRCISE 2.6. Define r as in Sec. I of this chapter. Prove by (2.1) that
U Ar- 1

, where A is a constant depending only on the masses.
Conclude from the existence theorem of Sec. I that a solution of the
equations of motion exists for t > 0, provided U < 00 for t > O.

3. THE CONSERVATION OF ANGULAR MOMENTUM

The constancy of the energy reduces to the system from order 6n - 6 to
6'2 - 7. We now make a further reduction of three. to order 6n - 10. by
introducing the angular momentum c. CrQSS multiply each side of (l.I) by
rk and sum on k. Since flo x flo = O. we conclude that

Lk mk(fk X flo) = Lk LJ am,mk (fJ X f t ).
j"'k rJt

The right-hand side vanishes because. with each occurrence of a term
rill x r•• the term r. x f .. also occurs to cancel it. Therefore. the left-hand
side is zero. Integration yields

(3.1) c= Lkn1!·(r!. x v,).

when the constant c is the angular momentum.
Recall that if ah •••• an;bh •••• bn are 2n real numbers. then the quan­

tities A. B. C. defined by

A = Lka~. B = 1:k bi. C = 1:, albk•

are related by Cauchy's inequality'" C2 < AB. This has an important con­
sequence, Sundman's inequality:

(3.2) c2
::;; 4I(i - h).

To prove (3.2) start with (3.1). This tells us that the l,mgth c of c
satisfies the inequality

C::;; Lk mklrk X Viol

:::;;; Lkmk'kvk = Lk (~rk)(~vk)'
*See Ex:- 3.1.

.'

Therefore, by Cauchy's inequality,

c2
~ 1:, mid: l:, mlvk = (2I)(2T).

According to (2.6), an immediate consequence is the inequality (3.2).

EXERCISE 3.1. Prove Cauchy's inequality, starting with the obvious
inequality

Lk (Bak - Cbk)2 > O.

(The cases B = 0 and B *- 0 must be treated separately.)

"'EXERCISE 3.2. (For use in the next section.) Let f(x) be a twice-differen­
tiable function defined on an interval a <x< b. Assume that f> 0,
f" > 0 on this interval and that feb) = O. Draw a graph to convince
yourself that f' < 0 and prove it.

4. SUNDMAN'S THEOREM OF TOTAL COLLAPSE

In this section we shall study the possibility that the system of particles
suffers total collapse. By this we mean that all the particles came together
at the same time, finite or infinite. We begin by writing the moment of
inertia 21 in a new form. Since

l:j mj(rj - r.·r = l:j mjrj - 2re l:J mjrj + l:j mjrI,

we conclude from (1.2) that

LJ m;(rJ - rd = 2/ - 0 + Mri,

where M is the total mass. Multiply each side by mk and sum. Since rJt =
(rJ - rkY, the result is

Lk LJ mJmkr~k = 21M + M(2/) = 4/M.

On the left-hand side we can delete the term for which j = k, since then
rjk = O. Therefore .

(4.1)

Since total collapse means that all rjk become zero simultaneously, it
follows from (4.1) that total collapse means that I ........ 0, or that all particles
simultaneously meet the origin.

First we show that if total collapse is to occur, it will not take forever to
happen. In other words, I ........ 0 as t ........ 00 is impossible. To prove this, return
to (2.1). If all rJk -> 0 as t -> 00, then U -> 00. Therefore, by (2.6), j ........ 00

because h is constant. This means that froth some time on j > 1, say for
t > t l • Integrate both sides and we get 1:2: tt2 + At + B, where A and B
are constants. Therefore, as t ........ 00, 1-> 00. This contradicts I ........ O.

Now we prove the more profound theorem'" of Sundman. Total collapse

"'This was known to Weierslrass, who never published a proof.

~I
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(5.4)

cannot occur unless the angular momentum is zero. To prove this, suppose
that 1-+0 as t -+ t 1, where t l is fini'e. Just as before, V -) 00 and j -+ 00

as t -+ t,. Therefore (we assume t, > () and let the reader modify the proof
if t1 < 0), j> 0 for some interval of time t2 :'S t ~ t,. Since I> 0, it
follows from Ex. 3.2 that -i:> 0 forf 2 ~ t < t l • Now multiply both sides
of the inequality (3.2) by the positive number -h-'. Therefore,

-tc2iI-' ~::; hi - iJ.
Integrate both sides with respect to t, f01: t :> t2• Then

-lc2 10g I-I < hI - ti2 + K < hI + K,

where K is a constant of integration, so that

12<hI+K
"i

C = log I ' .

Now let t -+ t l • Since 1-+0, it follows that c2
-, O. But c is a constant.

Therefore c = 0.

5. THE VIRIAL THEOREM

We now assume (see Ex. 2.6) that the system moves from the instant t = 0
so that V remains finite. There is a classical result, called the Virial
Theorem, which states that if I and T remain bounded (or t > 0, then the
two limits

,;.. . I JI I J'1 = hm - T(r) dr, 0 = lim - V(T) dr
I-~ t 0 I_~ t 0

exist and 21' = O. Since T = V + h, it follows that if one of the limits
exists, so does the other and l' = 0 + h. Therefore the conclusion 21' = 0
is equivalent to

(5.1)

In this section we shall prove a sharper form of the theorem which
does not require boundedness.*

Theorem: The statement l' = -h is true if and only if

(5.2) lim (-2I(t) = O.
t-~

We start with the Lagrange-Jacobi formula j = T + h. Integrate once and
divide by t. Then

( . ft
5.3) r 11= r 1

0 T(r) dr + h + r l k,

where k is a constant. Now let t -+ 00. From the definition of 1', the

*H. Pollard, A Sharp Form of the Viria/Theorem, Dulletin of the American Mathe­
matical Society, LXX, (1964), 703-5. I,

£

assertion (5.1) means that the right-hand side of (5.3) approaches zero, and
hence the left-hand side also. Therefore (5.1) holds if and only if

lim t- I j = o.

It remains to show that each of (5.2) and (5.4) implies the other.
First suppose that (5.4) is true. Then, for each e > 0, it follows that

j < ft, provided t is large. Integrate both sides of the inequality. Then,
1< f(t 2/2) + At + B, where A and B are constants. Therefore t-

2 1<
(e/2) + r l A + r 2 B. The last two terms can be made less than e/2 by
taking t sufficiently large. Hence r 2 1< e for large t. This proves (5.2).

Now let (5.2) be true. There is a theorem of Landau* whi':,h says that
(5.4) is an immediate consequence, provided it is true that I:> - M for
some finite number M. But j == T + h. Since T:> 0, j;;::: h, and the proof
is finished.

EXERCIS, 5.1. Show that in the case of two bodies, the relation (5.1)
holds if and only if II <.: O. Show also that, in that case, if II > 0 then
l' = h, 0= O.

EXERCISE 5.2. Prove that for a system of n bodies, the relation t = °
always implies h = 045 Suggestion: Since t = 0 t h ;;::: 0, it follows
that h < O. Now us~ (5.3) to conclude that t- 11-+ h, r 2 I ...... th, so
that h:> 0.

6. GROWTH OF THE SYSTEM

We have seen in the case of the two-body problem that these cases occur:
if h < 0, the system is bounded, that is, the distance r between the masses
is bounded; if h = 0, the distance r grows like \t1 2/3 as Iti .) u;. and if h 0,
r grows like ItIas Itl-~ 00. The corresponding problems for three or more
bodies is very difficult and we shall only obtain some elementary conclu­
sions. I t will be assumed that V remains finite.

First we reconsider the function

V=!: Gmjmk ,

rtk

where the sum is taken over the indices such that 1 <j < k < n. Since
r < rJh it follows that V < A/r, where A depends only on the masses.

Here is a simple consequence. Suppose h < 0. Then T = V - 1171.
Since T :> 0, ,we get U:> Ihl. Therefore Air:> Ihl, or r < Alhl- I

• If the
energy is negative, the minimum distance is bounded. The converse is false.
In general, there is no simple relation between the growth of the system
and the sign of the energy.

*For a proof see D. V. Widder, The Laplace Transform, Princeton University Press,
1942, p. 143.
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7. THE tHREE-BOOY PROBLEM: JACOBI COORDINATES

p:lSitive constants depending only on the masses. (Actually R/p never
exceeds two. Why?) Show that the assertions t = -h and lim rlp{t)
= 0 are equivalent. t_~

(7.2)

.. Gm3ml ( . ) Gm3ml (m3r3 = r3 f l - J 3 + 3 fl - f3).
13 r 23

Since mlfl + mlfl + m3r3 = 0, one of the r l can be eliminated. We prefer
to proceed in another way. We shall consider the motion of ml relative to
ml by Use of the vector r = rl - r l and of m3 relative to the center of mass
0' of ml and mI' The location of this center is at (ml + m2)-I{mlfl + m2f2)
or -{ml + m2)-1 m3f3' The position p of ma relative to this center is then

.fa + {ml + ml)-I m3f3 or Mp,-I fh where p, = ml + mI' Therefore p =
Mp,-l t3.

It is easily verified, since mlrl + m2fS + m3f3 = 0, that

r l - f l = r; f3 - f l = P + mlJ.£-l f ; r3 -f2 = P - mlJ.£-l r .

We return to (7.1). Divide the first equation by mh the second by ml
and subtract. The result is

Now multiply the last equation of (7.2) by Mp,-Im;l. This time we get

(7.3) p = MGn:IJ.£-1 (p + mlP,-l f ) - MGn;IP,-1 (p - mlp,-I r ).
r13 r23

The vectors rand p are called Jacobi coordinates.
We denote the relative velocity t by v and Ii by V. Let gl = mlm2P,-I,

gl = msp,M-l. It is readily verified that, in terms of the new coordinates
f and p,

(7.4)

c = gl(f X v) + gl(p x V),

2I = girl + glpl,. ~.

2T = gtVI + glvl .

As a simple application, suppose that c = O. Then f· p x V = 0 and
p·r x v = O. Therefore p·f x V = 0 and f·V x p = O. Now let u = f X
p. Then

On the other hand, let m, m' be the two smallest masses. Then

U 2: ~ Gmm' = Gmm' ~ _1_.
0t 0k

Now, at any particular instant, r is one of the rJt, so the sum on the right
contains the term l/r. Therefore V > Gmm'/r. In summary,

(6.1) D -=::. rV< A,

where A and D are positive constants depending only on the masses. This
says, roughly, that V-I is a measure of r, the minimum spacing between
particles.

We have shown that

Now denote by R the maximum of the rlk ~lt time t. Then 1;2; AI R2, where
A, depends only on the masses. Arguing as in the preceding paragraph, let
111, m' be the smallest masses. Then

mm'
1> --:nr ~ r~t.

Since R is one of the rJt at time t, I > (mm' /2M)R I
• Therefore

(6.2) DIR2 < I < AIR"

where AI and DI are positive constants determined by the masses. This
means, roughly, that v'7 is a measure of R: the maximum spacing between
particles.

The question arises naturally of how rapidly a system can expand. We
prove this elementary result: If r 2: 0 > 0, then R < Mt, where 0 > 0 and
M > O. This says that if the particles do not get too close together at any
time, thell the maximum spacing cal/I/ot groll' jtl.'it('r thall thi' jirst pOlrer of t.
To prove it, we start once again with the formula j = U + h. Therefore
j :?E A/r + h or j < A/o + h. Integrating twice this says that I < DtZ,
where D is a constant. Therefore, by (16.2), BIRI < Dt2

, or R < Mt,
where M = (DB,!)!/I.

As a final application of these ideas, we repeat an argument used before.
Since i = V + 2h, 1>2h. Suppose h > O. Then I > Et2

, where E is a
positive constant. Therefore A I R2 2: Et2

• Conclusion: if h > 0, then R grows
at least as fast as the first power of t.

EXERCISE 6.1. Use (6.2) to prove this form of the Virial Theorem: the
statement t = -h is true if and only if lim r l R(t) = O.

l_~

EXERCISE 6.2. Let p be the largest of the distances r' ... "n of the
masses from O. Prove that

mp2 ~ l~ Mpt,

where m is the smallest mass. Conclude that Rjp lies between two

.l



,/ We seek a very special set of solutions of the three-body problem, namely
those for which all three p...rticles are moving uniformly in circles, in the
same plane, and with the same angular velocity.

Introduce at 0 a fixed coordinate system x, y, Z such that Z = 0 is the
plane of motion. Let (Xk' Yk' 0) be the coordinates of the mass mk· Then
rk = [Xk' Yk, 0] and the equations of motion (7.1) become

.. G ~ mj ( )Xk = ~ -3- Xj - Xk ,
j"" rjk

49

k = 1,2,3,

THE LAGRANGE SOLUTIONS

(I - m2p3 - m3p2)z, + m2p3 z, + m3p2 z3 = 0,

'm,P2 z, + m2p,z2 + (l - mlpt - m2pl)z3 = O.

Since the center of mass is fixed at 0, the missing equation can be replaced

by

(8.5)

mlz, + m2Z2 + m3Z~ = O.

There are two possibilities: (i) the points z" Z20 z~ at some time t are not
in a straight line; (ii) they are. In case (i) the coefficients of corresponding
'::k in the preceding three equations are proportional. It follows immediately
that p, = P2 = P3 = 1/M, where M is the total mass ma + m2 + m3' In
other words, the only possible solution of the form (i) puts the masses at

where A = Gw- 2
•

Let PI = 11,1'2.3", P2 = 11,1'3''', P3 = N·;}. The first and third equations,

written out in full, are

(8.4)

where k = 1,2,3.
It is convenient to let Zk = 'k + i1}k' where i =~. Multiply the

second of Eqs. (8.3) by i and add it to the first. We obtain

where. of course, rj" = IZj - zkl·
Since the particles are at rest in the rotating system, each i k is identically

zero. Therefore the positions Zl' =" '::3 we seek satisfy the equations

(8.3)

Xk = 'k cos 6>t - 1}k sin 6>t,

Yk = 'k sin 6>t + 1}k cos 6>t.

We now differentiate each of these twice and substitute into (8.1). The
follvwing equations can then be derived for "',1}•.. When they have been

solved, then (8.2) can be used to find (x .. Yk)'

(8.2)

Let the angular velocity of the particles in their plane of motion be 6>.

Introduce into that plane a coordinate system (t'1]) which is rotating at
angular velocity 6>, In this coordinate system the particles are at rest. We
transfer the Eqs. (8.1) to the new coordinate system, starting with the

relations

SEC. 8CHAP. 2

8H .
-ar=-P'

8H .
8p = -Po

8H .
--=r8p ,

8H .
8P = p,

INTRODUCTION TO THE n·BODY PROBLEM

Suggestion:

Yk = G ~ '~j (Yj - Yk),
j"k rjk

where k = I, 2, 3, and each sum con ains two terms.

(8.l)

8. THE LAGRANGE SOLUTIONS
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u X ... = (r X p) X (r X V) + (r X p) X (vx p)

= (r.r X V)p - (p.r X V)r + (r·v X p)p - (p'v X p)r = O.

Now according to the formula (2.2) of Chap. I, it follows that (djdt)(uju)
= 0 when u =1= O. Therefore, as long as r X p =1= 0, the vector perpendicular
to rand p is a constant. It follows that all the motion is in one plane. We
leave it to the reader to draw the same conclusion if r X p = 0 over an

interva-l of time (Ex. 7.1).
EXERCISE 7.1. Complete the proof of Weierstrass' theorem: if II = 3,
c = 0, all the motion takes place in a fixed plane. Conclude Ihat if
n = 3 a triple collision (total collapse) cannot occur unless all the
motion takes place in a fixed plane. Suggestion: obtain a plane of
motion by using v or V together with r.

EXERCISE 7.2. Verify formulas (7.4).

EXERCISE 7.3. Let H be a function of four independent vector variables

p, P, r, p defined by

H = tL + t.L _ Gm,m2 _ Gm2m
3 _ Gm

3
m,.

g, g2 I' 1'23 1'3'

Show that the Eqs. (7.2) and (7.3) can be written in the Hamilton­

Jacobi form
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(9.3)

(9.1 )

~J

the vertices of an equilateral triangle of side (GAfM-2
)1/3. If is i01PQrtant to

observe that this is independent of the size of the masses, so that the center
of mass and the center of the triangle need not coincide. This solution is
due to Lagrange. Case (ii) will be treated in the next section.

EXERCISE 8.1. Prove in case (D that the force on each mass passes
through the origin.

EXERCISE 8.2. In case (i) compute the quantities T, U, 1, h. Answer
2T = U = -2h = 20021, where U = q(mlm2 + m2m3 + m3ml) ane
q = (Gool/ 3m- I

/
3

•

9. EULER'S SOLUTION

Suppose now that Zh Z" =3 at some instant ( lie on a line L. Since L must
contain the center of mass, it passes through 0 and we may as well suppose
it is the ~-axis so that all 'T/k vanish. By renumbering the masses, we can
arrange that ~l < ~2 < ~3 so that'I2 = ~2 - ~l' r23 = ~3- ~2' rl3 = ~3 - ~l'
The Eqs. (8.5) can be written

[
m. m3]

-~I = A. (E2 -' ~1)' + (!;--=1J2 '

~3 = A.[ (~s ~I ~IY + (~3 :2~2)2 ).

where

(9.2) ml~1 + ms~s + m3~3 = O.

Now let ~2 - ~I = a, ~3 - ~s = ap, '3 - ~1 = a(1 + pl· Equation (9.2)
can be written in either of the forms

m2a + m3a(l + p) = - M~h

mla(1 + p) + m2ap = M~3'

Obtain -'1/~3 from each pair (9.1) and (9.3) by division. Equate the

re:5ults to obtain

m2 + m3(1 + p) _ nl2 + m,(1 + e2.=:_
(9.4) ml(l + p) + ni;p - -m-;-O + p)-2 + m2P-2 .

The order of events is this. Suppose that p can be determined from this
equation. Replace ~1 on the left-hand side of (9.1) from its value given by

(9.3). We find that

as[m, + ms(l + p») = A.M[ms + ms(l + p)-S).

This determines a. Then (9.1) determines ~I and ~s. Finally, ~I = a + ~I'
This reduces the problem to the determination of positive values of p

which satisfy (9.4). It can be written

(m2 + m,) + (2ms + 3ms)p + (3m3 + mt)p2

- (3m, + m2)p3 - (3m, + 2m2)p· - (m, + ms)p3 = O.

If p = 0, the left-hand side is positive; as p -+ 00 it approaches -00.

Therefore it has a positive root. By Descartes' rule of signs it has at most
one positive root. Hence there is a unique positive value of p which solves
the problem. It is clear that, by renumbering the masses, two other solu­
tions to the main problem can be obtained. These collinear solutions are
due to Euler.

EXERCISE 9.1. Solve the problem explicitly if ml = ms = m3'

10. THE RESTRICTED THREE-BODY PROBLEM

The three-body problem described by Eqs. (7.2) and (7.3) is a system of
order twelve. Its equivalent formulation, given in Ex. 6.3, gives four vector
equations (equal to twelve scalar equations), each of the first order. By use
of Eq. (7.4) for the conservation of angular momentum and the conserva­
tion of energy, the system can be reduced by four, leaving eight. It is
possible to eliminate the time from the eight, leaving a system of order
seVen, and finally, by a device due to Jacobi, it can be cut down to order
six. Moreover, if the motion is planar, we use only two of the three
dimensions of space and the order is reduced to four. This is the best that
is known. After all these reductions, the problem is still extremely com­
plicated and has kept mathematicians busy for over two hundred years.

/ We shall make an assumption which leads to a more tractable problem.
It will be supposed that the mass m3 is so small that it does not influence
the motion of ml and m2 (known as the primaries), but is affected by them
in the usual way. Clearly, this is a sensible approximation to reality only
if the path of m3 does not come too close to ml or m2' Mathematically
what we do is to set ms = 0, or what is equivalent, M = p,. The center of
mass of the system is now the center of mass of the primaries. If we let
rl3 = PI and r23 = P2, the Eqs. (7.2) and (7.3) become, respectively,

(10.1) i = GW·3r

and

(10.2) Ii = -GmIPi'3(p + m2P,-l r ) - Gm2Pi: S(p - mlp,-lr).

The first equation can be solved completely by the methods of Chap.
I and 50 r can be taken as a known solution of the two-body problem.
Then the motion of m3 is completely described by the single Eq. (10.2).
This is called the restricted three-body problem. Because of our physical
assumption on mS, the customary conservat.ion laws do not hold and we
cannot use them to reduce the order of (10.2), which is six. We shall make
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y

(I - fJ')(z + f.L) _ ftCZ - I + ft)
pt p~'

z+ 2ii - z =

u = .~j!: + ..l!.-,
Pi P2

where 1)/ = Iz - zJ Show that Eq. (l0.4) can be written

.. au
t )~I t -- ......'" -- -,'- '" .--' a; ,

(10.5)

(lOA)

.. , ~t au
TJ '1- ..c\, - 1/ = &'1'} •

EXERCISE 10.2. Show that (l0.3), with w = 0, solves Ex. 2.1 of Chap. I
in the .:ase of Newtonian attraction.

*EXERCISE 10.3 Let

1- J./,. The mass ml is located at (-f.L, 0) and m2 at (I - f.L,0). Finally,
observe that with all these choices of units, n = w = 1. The equation of
motion in the rotating coordinate system has become

The rest of this chapter will be devoted to a study of Eq. (l0.4). As in
Sec. I, we ask the reader to accept an existence theorem; the same reference
is applicable. Let initial values of z and i be given. Then there exists a
unique function z(t) and a largest interval of time -12 < 1 < 11 containing
the instant ( = 0, such that Eq. (lOA) is satisfied and the initial conditions
are met. Moreover, if either -(2 or (I is finite then either lim Pi = 0 or
lim P2 = 0; that is, collision with one of the primary masses occurs.

EXERCISE 10.1. Derive Eq. (l0.3) directly from (10.2). Suggestion: since
the motion is planar, we can treat p and r as complex numbers. Let
p ='" ze '''', r = e'w'.

---------+-~:__---..I...-------x

the further assumption that all the motion occurs in one plane (the planar
restricted problem), which makes the order four. Finally, we shall suppose
that the primaries rotate uniformly around their center of mass (the circular
planar restricted problem).

The mean motion n for the primajes, according to Eq. (10.1), is given
by -./Gii., r- 3

/
2

, where r is the distance between the primaries. We may,
therefore, use the rotating coordinrte system described in Sec. 8 and
illustrated in Fig. 1t, with w = n. Th : primaries are at rest in this coordi-
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Figure 11

nate system and we shall place them on the ~-axis. Equation (8.4) is
applicable with k = 3. If'we write z for Z3' Pi for r 13, P2 for r23 , it becomes

(lO.3) Z + 2wii - w2z = Gm1P13(zl - z) + Gm2PZ3(Z2 - z).

Remember that 'TJ1 = 'TJ2 = 0, so that z, = ~h Z2 = '2. Moreover, Z = ~ + i'TJ.
It is convenient to choose the unit of mass so that ml + m2 = I, of

length so that r = 1 and of time so that G = 1. The lighter mass will be
denoted by J./, and placed at ;2, to the right of the origin. Clearly, f.L < 1/2.
Since nll;1 + ni,;, = 0 and /;, - 'I = 1, it follows that f, =~ -It. t, =

It must not be supposed that the problem described in the last chapter is
an artificial one. Two examples will serve to make a rather convincing
argument that the problem is worth investigating.

Apart from the sun itself, the heaviest of all the planets is Jupiter,
which moves in an ellipse of small eccentricity; call it a circle for a first
approx;m.. tion. ~here is a group of tiny planets, the Trojan asteroids,
whose motion is controlled principally by the sun and Jupiter; a first
approximation to their motion is given by a solution of the restricted
problem with the sun and Jupiter as primaries.

As another example, consider the motion of the earth around the sun
to be circular. Then these two play the role of the primaries and the moon
is m3' the small mass.

We turn to the main problem of investigating Eqs. (l0.5). They are



dE a ~.= /3
da = 2/3 + et>E' da -2a + cPn'

From (11.3) we know that a2+ f32 = 2!'f> - C. This can be solved for
f3 and the result substituted into the preceding pair to obtain equations of
the form

:~ = F(!;, 1], a)

~ = G(E, 1], a),

a second order system. If the solution is given by t= = f(a), 1] = g(a), then
we proceed as follows. Since a = e= f'(a)a, we can, in theory, determine

aCt). Then 1; = /;0 + f: a(7) tfr, so that 1;(t) is determined. Also 'iJ = f3 =

85EQUILIBRIUM SOLUTIONS
SEC. 12

d . . 0<1>
dt(~ - 'YJ) = 1] + ar
de' I::. • 0<1>
dt 1] + 'O) = -I; + 01] .

This suggests the substitution p = E- 'YJ, P = 7] + " so that

t!E. = p_, + 0<1>
dt 8f
dP 8<1>
dt = - P - 1] + 01]

dl;
dt =p + 'YJ

1!1 = P- ,.

,Now define H(1;, 'YJ; P, P) = t(p + 'YJ)2 + t(P - 1;)2 - <1>(1;, 'YJ) and
venfy that the system can be written in the Hamilton-Jacobi form

E- aH . oH
- op , p = -8l='

~

. _ 8H . oH
1] - oP' P = - 81] •

The initial values are 1;0' 'YJo, Po = Eo - 'YJo, Po = 7]0 + 1;0.

g'(a)a = ag'(a)/f'(a). Therefore,

- II ag'(a)
1] - 1]0 + 0 pea) d7,

w~ere a(7) m~st be substitu.ted for a under the integral sign. In practice,
thIS .~ethod IS of no use since f(a) and g(a) are impossible to determine
explIcItly. Instead of pursuing this line of thought further we shall s k
some simple e.xplicit solutions, analogous to those found in Secs. 8 an:

e
9

for the unrestncted problem.

EXERCISE 11.1. In the theoretical solution described above the equation
for (:3 was never used. Why?

*EXERCISE 11.2. A more useful sy:;tem than (11.4) can be obtained as
follows. Write 01.2) as

We seek' solutions of the restricted problem for which the small mass. . h m3
re~alns at. rest 1~ t e relative coordinate system. These are called equili-
brzum solutions. Smce , and 'YJ are constant, the Eqs. (I 1.2) become simply

(12.1) ?~ = 0<1> = 0
a~ 0'YJ •

-.'2. EQUILIBRIUM SOLUTIONS

•
"k

I
i
!
t

I
I
1
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.. 8U
, - 21] - , = 8, '

",I- oU
1j+~-1]=01]'

where U(" 1]) = (1 - p./PI) + (p./P2)'
If we define a new "potential" <I> by

(11.1) <1>(',1]) = H,I + 1]2) + U + t p.(l - p.),

the equations read, more simply,

(i 1.2)

(11.4)

.. 0<1>
1; - 27] = §f

ij + ~ = ~~).

The constant h~(1 - p.) appearing in the definition of <I> is of no impor­
tance in these equations, but is convenient later.

We have already explained in Sec. 10 that the usual conservation laws
do not hold. But a substitute exists. Define the Jacobi integral as the ex­
pression 2<1> - E2 - 1]2. Multiply the first of Eqs. (11.2) by ~, the second
by iJ and add. The result is E~ + ipj = d<t>/dt. Therefore

(11.3) EI + iJl = 2¢1 - C,

where C is a constant, the so-called Jacobi constant. Equation (11.3) says
that tlte Jacobi integral remains equal to C dunng the motion. It is clearly
determined by the initial values £=0' 1]0' Eo, 7]0'

The system (11.2) can be written

E= a, iJ = /3,
a = 2/3 + ¢If' (:3 = -2a + ¢lq•

which is of order four. Now divide the first two by the third to eliminate
time. We find that
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Th" e'!1I~ simuIt.ln.'e'u, S"!lllie'!1 e,f Ihi, ,:yu;Jli,'n ;Jlld Ih,' pr'·.....·ding. "Ill' is
.: = ,:. = 1. Ttere:·e1re. i:' .' = O. there ;lre prcei,.'ly 1I1l' cyuilibrilllll
:~:_:::r.': :::e ·.er::~=s .:::':.,,' =,,:.:::.::er.,1 triangles b,u",J elnlhclinej"ll1i:l~
1-,.. ('1':,,': \; - ... l)l. Th.:se .Hi.' th.: f",'inlS L, ~mJ L, illJi~'.lll·d in Fi~, I~.

On the other hand, if '7 = 0 the Eqs. (12.3) reduce to the singh: one

(12.4) (l-Jl.)[PI-~]~+Jl.+Jl.[pz-~J~-1+Jl.=O,
P, PI P2 pa

where PI = !~ + Jl.I, P2 = I~ - 1 + Jl.I· There are three. cases: ~ < -Jl.,
-Jl. < ~ < I - Jl., ~ > I - Jl., in which we have, respectively,

(a) Pi = -~ - Jl., pz = 1 - ~ - Jl., pz = 1 + PI;

H PI = ~ + Jl., P2 = I - ~ - Jl., pz = I - PI;

(, ) Pi = ~ + Jl., pz = ~ + Jl. - I, pz = PI - 1.

We can rewrite (12.4) in each of the cases as follows.

(a) Let PI = p, P2 = 1 + p. Then

(l - Jl.>!P - ~l + Jl.fP + I - ( ~ 1)2J = O.
... P ~ - P

(b) Let PI = p, P2 = 1 - p. Then

(I '-- /t)[p?' _l.,J = Jl.ll - P - 1 ~J.
_ P' l. (1 - p) .

(c) Let P2 = p, Pi = I + p. Then

Jl. [ I ..l-. I) ._l_--clJ' + (I - Jl.)[p - J..] = O.
L' (I + p)2 p',

Each of these three equations has a single positive solution for 1'- .ln,
cases (a) and (e) this can be seen as follows. Each of the equations is u!' the

form

F(p) = __ ~J!.=,E=z_. = - c
P + I - (p + 1)-2 '

whcre c/O. rt is easily verified that F'((1) > 0, so that Fis strictly inc'reus­
ing. Moreover, nOi,) '/', nl) ,0. Therefore F assumes the valu~

-c at precisely one value of P between 0 and 1. The solutions are denoted
by L t in case (a) and by L, in case (e), as indicated in Fig. 12.

The case (b) is similar. :'\ow the equation is

I - p - (I - p)-2 1 - Jl. •Fj(p) = _. .~.,_'--- = --.> 1,
P - P . Jl.

because fl ~ }. The function FI(p) is increasing in the interval t :::s:: P < I.
Moreover, FI(t) = I, Fj(l-) = 'Xl, so that FI assumes the value 1 - Jl./Jl.
precisely once in the interval t ;? P < I. This means that the equilibrium
point lies closer to the lighter mass than to the other, unless Jl. = t; it is
ca lied L, (see Fig. 12).

.:~. .:
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(12.3)

It is convenient to express 1> in terms 0:" t:Je so-cared I:>:».'::r c0orci".Hes

fI; and II;. ()ff.ht; f/):~' (~; 'Ij; S.;:;',/; ,~./ r::' .~;..

1, we fJnd that f -- ri~::= (1 - ,:J.)~~ - _.:-~ - _/~ -"~-'

the definition of U, we get

(12.2) <I> = (l - JJ.,)(~pi + pi') + Jl.(~p~ T pi ' ).

The relations (12.1) become

[
I J~ + Jl. [ I J~ - I + Jl. -

(l - Jl.) P, - pi --p;- + Jl. P2 - P~ (Jz - 0

(l - Jl.)[PI - ~J!L + Jl.[p2 - ~J!L = O.Pi P, P2 P2

First suppose that 'TJ *- O. Then

(I - Jl.)[PI - ~Jl- + Jl.[p2 - 12Jl- = o.
P, P, P2 P2

This means that the terms containing ~ in the first of Eqs. (12.3) drop out.
In addition, a factor of Jl.(l - Jl.) cancels and we are left with



The five points L
i

are called libration points. The first three are called
he Euler points and the last two the Lagrange points.

EXERCISE 12.1. Calculate the position of the five libration points in the
case ft = t, when the primaries have equal masses.

EXERCISE 12.2. On the assumption that the earth and the moon fulfill
approximately the requirements of the primaries in the restricted
three-body problem. what significance can be attached to the five L i ?
Where are they located in this case? Assume ft = .012.

EXERCISE 12.3. Show that the only solutions of the equation <P = t
are the libration points L. and L 5•

EXERCISE 12.4. Show that both a<l>jo(J1 and a<l>/ap2 vanish at Lit L s,

but neither does at L I , L 2, L 3•

'EXERCISE 12.5. Show that if the origin of coordinates is translated to
Lh the differential equations become

Ap. + B(I - 1£) > min (A, B).

For i: ~ ::: B,. then Aj1- + B(I - j1-) > Bp. + B(I - j1-) = B = min (A, B),
and similarly If A <B. Therefore, by (13.2) 2<1> > min (p2 + 2 -I 2 +
2 -I) B h " ,- I Pi ,P2

P2 • ut t e mlOimum of the function x2+ 2x- 1 is 3, achieved when
x ==- I. Henc~, 2<1> > 3. Clearly, t.his ~inimum is achieved only when PI =
P2 - I, that IS, at the Lagrange hbrauon points. This, incidentally, solves
Ex. 12.3.

We s~all begin with C = 3, when the level curve 2<1> = C consists only
o~ the POlOts L t , L s, and describe the shape of the curves as C increased. It
WIll be supposed that 0 < 1£ < t. It is clear from the definition of <I> that
the coJrves are symmetric. in the axis 'YJ = 0, so we have drawn only the
upper half of each. In the ac~ompanyingFig. 13, the shaded region corre­
sponds to 2<1> < C. The drawlOgS are schematic and do not pretend to any
accuracy.
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..

x - 2y = x + t P* + auax

where p* = I - 2ft and

U = (I - 1£)(1 + x + x2 +,vTy + y2)-1

+ 1£(1 - x + x2+ ,vTy + y2)-I.

(0) (b)

13. THE CURVES OF ZERO VELOCITY

(d)

Figure 13

(c)

i.

,.
~;

l
I
i
f

I

v2 = 2<1> - C,(13.1)

The equilibrium solutions are the only solutions of (11.2) that are known
explicitly. However. by use of the Jacobi integral it is possible to derive
some important general properties of all solutions. According to the formula

(11.3), it is true that

where v is the relative velocity (~2 + +/)1/2, C is the Jacobi constant of the

motion, and, in bipolar form,

(13.2)

We shall consider the level curves 2<p = C, which, in accordance with
(13.1), are called the curves of zero velocity. It will now be proved that the
minimum value of 2<1> is 3, so that no level curve exists when C < 3. We
start with the assertion that if 0 < 1£ < I, A > 0, B ;;:::: 0, then
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k = 1, ... ,m(1.1)

We begin by recalling some basic facts from advanCed calculus. Let the
functions

,

t
jEXERCISE 13.2. Use the formula (13.2) to explain the general shape of

the curves.

EXERCISE 13.3. Use the conclusions of Ex. 12.2 to determine the largest
value of C below Which an earth-moon trip is possible. Hint: config­
uration (e) makes such a trip impossible. Therefore' C must be such
that 2eI> = C is satisfied by L 2•

When C exceeds 3 slightly, the locus appears as a pair of curves
surrounding L 4 and L 5 as in (a) of Fig. 13. As C increases, the left-hand
edges of the curves join to!ether at L, as in (b). After a transitional stage,
as seen in (c), the curves join at L 2• TUs is shown in (d). At the next stage
(e) there is a joining at L 3 and the primaries are surrounded. At the final
stage the joining at L 3 disa'ppears, <nd from this point on the general
appearance is displayed by (f) in wh lch the primary masses are enclosed
by the inner curves.

The importance of the curves is this. Each locus 2eI> = C divides the
plane into the shaded region where 2eI> < C and the unshaded region,
where 2eI> > c. In view of Eq. (13.1), motion is impossible if 2eI> < C, since
then v2 < O. Therefore, the shaded regions indicate for each value of the
Jacobian constant C the positions in the ~-7] coordinate system where
motion cannot take place.

EXERCISE 13.1. Show that if fL = t, the curves are symmetric in the 7]­

axis also. Stage (c) does not exist, and L 1 and L 3 are reached at the
same time.

denote a transformation of variables in an m-dimensional region. It will be
supposed that each of the partial derivatives aYk/OXt exists and is contiru­
ous. The matrix Jlt with entries OYk/OXt (k = row index, I =column index)
is known as the Jacobian matrix of the transformation; in more detail it is

Oy", oy", oy",
OXI ox. '" OX'"

The determinant of vIt, written Ivltl, is called the Jacobian of the transfor­
mation (1.1). It is known that if the transformation (Ll) carries a particular
point (x~, ... , x~) into the point (y1, ... , Y::') and if the Jacobian does not
vanish at (x1, . .. , x::'), then the Eqs. (I.l) allow a unique solution for the
x" in terms of the y" for all points Yh ... , y", sufficiently close to y1, ... , y::,.
Write it

.'

~ .

I
\
f
I
f

(1.2) ..It =

(1.3) x" = X/C(Yh ..• , y",),
61

k = I, ... ,.'71.



qk = qk(PIt "" P,,; Q,•... , Q,,).

while the inverse transformation (1.3) takes the form

Pk = Pk(PIt . .. ,p,,; q" ... ,q,,).

The partial derivatives 8xd8Yl are continuous in a neighborhood of y?,
. . . •y~. The matrix of the transformation (1.3) is the inverse* of the matrix
Aft.

If n is an integer. the identity matrix I" is the II X n matrix consisting
of ones along the main diagonal and zeros elsewhere. By J or J2m we shall
mean a certain matrix constructed in four blocks from 1m namely.
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Show that

EXERCISE 1.3. Give the details which establish (1.7).

*EXERCISE 1.4. Let a and fJ denote the n x I matrices

*EXERCISE 1.5. Show that the tral sformation

PI = PI cos Q2 - P2Q,1 sin Q2

P2 = PI sin Q2 + P2Q,1 cos Q2

q, = Q, cos Q2

q2 = QI sin Q2

is canonical. Suggestion: Perform the multiplication.A T J.A in blocks
of four. using the fact that the transpose of

is

(AT CT).
BT DT

EXERCISE 1.6. Prove that if M is symplectic, so is M-I. If M
I

and M
h

each of order 2n x 2n, are symplectic, so is M
1
M

2
•

Conclusion: the symplectic matrices of a fixed size form a group.

EXERCISE 1. 7. Interpret the preceding exercise when the matrices are
Jacobian matrices of transformations.

EXERCISE 1.8. (For matrix experts.) We know that if M is symplectic,
then IMI = ± 1. Prove that actually IMI = +1.

*EXERCISE 1.9. Let M = M 211 represent the matrix

SEC. 1CHAP. 3

k = I, ... ,n,

k = 1, ...• n,

INTRODUCTION TO HAMILTON·JACOBI THEORY

Qk = Qk(P" ...• p,,; q" ...• qn)'

EXBRCISE 1.1. Show that J is symplectic. Conclude that the transfor­
mation

62

( 0" I,,)
0.4) J,,=J2,,= -1,,0,,'

where 0" is the n X n matrix whose entries are all zero. It is easily verified
that

(1.5) J~" = -12m J2" = -J2;:.

Since IJ;,,! = 1J,~lIi2 = 112,,1 = I. it follows that IJ2,,1 :f= O.
Now let M2" (we write M for simplicity) denote a 2n x 2n matrix. It is

ca lkd symplectic if

(1.6) MTJM = J.

where '\'fT is the transpose of M. Since IMTI'IJI'IMI = IJI and IMTI = IMI.
then the non-vanishing of IJI implies that IMl2 = I. IMI = ± 1. Therefore
M has an inverse M- I

, and from (1.5) and (1.6) we obtain

(1.7) M-I = -JM'!'].

A transformation (1.1) is called canonical if the corresponding Jacobian
matrix .,It. defined by (1.2), is symplectic. Clearly, for such a transforma­
tion m must be even. m = 2n. In that case, it is customary to split the var­
iables into p's and q's and write (1.1) in the form

Pk = Pk(PIt •••• P,,; Q, •. ..• Q,,).
(1.8)

0.9)

...

k = 1•...• n

is canonical.

EXERCISE 1.2 Use (1.4) to verify (1.5).

.. It is assumed that the reader is rami liar with the notions of inverse and transpose
of a matrix, and knows how to multiply matrices.

where each entry is an n X n matrix. Use the suggestion of Ex. 1.5 to
evaluate MTJM. Show from this that M is symplectic if and only if

( i) A"C, B'/'D are symmetric (that is, are their own transposes);
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k = 1, ... ,m.
, oH

Q.. = oP
k

'
(2.3)

p.. = Pk(Ph "" Pm; Q1o"" Qm)

1] .. = ([ .. (Ph' .. , Pili: Qh' ..• Qm)

represent a canonical transformation. With this replacement of the original
variables, H becomes a function of Ph . . , , Pm; Q1o"" Qm' We shall show
tl at the system (2.1) retains its original form under this transformation, that

(2.2)

Ph' .. ,Pili; tIh ... '([III' Lel

for all k, I and

(ii) DTA - BTe = I.

*EXERCISE 1.10 Apply the preceding exercise to the matrix .A of the
transformation (1.8). Conclude that it is symplectic and the transfor­
mation canonical if and only if

t [OPm' oqm OPm oqm J- 0
nt-I 0Pk OPt - OPl oPk -

t [OPm oqm oPm oqm J- 0
m=1 OQk oQ, - oQt OQk -

f [OPm oqm - oPm oq", ] - 0
m=1 oPk OQI 8Q, 8Pk - k,·

The symbol 0..1 means 1 when k = I, and 0 when k *- I.

*EXERCISE 1.11. Let (1.8) be a given transformation.

Then

n [~dP + 8q,. 1
dq .. = I~t 8P

I
I 8QI·dQ,.

In the expression

"L-p.. dq .. - PkdQ ..
"-'=1

replace Pk as given by (1.8) and dqk as just obtained. The result, after
rearrangement, is the differential form K, defined by

"K = L- A,dPt + B,dQt,
1=1

where At and B, are functions only of Pk and Qk' Prove, by use of
Ex. 1.10 that (1.8) defines a canonical transformation If and only if
there is a function w(Ph ••. , P,,; Qh ... , Qn) whose total differential
is K.

*EXERCISE 1.12. Show by the method described in Ex. 1.11 that the
transformation PI = Ph P2 = Q2' '11 = QI, '12 = - P2 is canonical. Do
the same for the (Legendre) transformation described in Ex. 1.1 and
for the transformation of Ex. 1.5.

For ease of writing, we adopt the notation p for the 11 x 1 matrix with
entries Ph P2,' .. , p", and similarly for q, P, Q. The functions of system
(2.2) have the derivatives

. - ~ [ op.. p' + op.. Q' ]p,. - ~ --, -- I
1=\ oPI OQl

. - ~ [ oqk P oqk 'Jqk - 14;:\ OPl l + 8Q, Ql .

If. /1 is the Jacobian matrix of (2.2), this says that

Therefore

According to (1.7), this is the same as

because Jt is symplectic. By Ex. lA, lhis S,lyS that

Left-multiply each side by J. Since j2 = - I

2. AN APPLICATION OF CANONICAL TRANSFORMATIONS

We have seen on several occasions that the equations of a system may be
put in the form

(2.1) qk = ~H, ilk = -41£, k = 1, ... , m,
up.. VII ..

where the function H, the Hamiltoni:m of the system, is a function of

By (2.1), this becomes
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(2.4)

(3.1)

Multiplication of the two matrices on the right-hand side shows that

Qk = f [}.H.~PJ;- +~~H _09pi-J1~1 apt '';, oq/ a ,

Pk = t~ [1£;' ~~t; +~~~ ~~;1
Finally, the chain rule for differentiation shows that the right-hand sides
of" (2.3) and (2.4) are identical. This completes the proof of the assertion
that the Hamilton-Jacobi form (2.1) is preserved under a contact transfor­
mation, with H undergoing the change of variables (2.2).

As an illustration, we turn to Ex. 11.2 of the preceding chapter, first
making a notational change. Write PI for P, P2 for P, q, for ~, q2 for ",. The
function H becomes

·HpJ + q2)2 + ·Hp2 - q,/ - <t>(qh q2)

=t(p; + pi) - (q,P2 - q2PI) + t(qi + qD - <P(q, q2)'

According to (11.1) of the preceding chapter, this is the same as

(2.5) Hpj + pi) - (qlPe - q2P,) - U(qh q2) - .}p,(l - p,),

and the differential equations of the circular restricted problem take the
form (2.1) with m = 2 and H defined by (2.5).

We now apply the canonical transformation of Ex. 1.5, namely

PI = PI cos Q2 - P2Qi' sin Q2

Pe = PI sin Q2 + PeQ"l 1 cos Qe

ql = Q,cos Q2

qe = QI sin Q2.

The Hamiltonian (2.5) becomes

(2.6) ~'(Pi + P~ Q"l2) - Pa - U(QI cos Q2' Q, sin Q2) - tP,(1 - p,)

and the equations are (2.3) with m = 2.

EXERCISE 2.1. By retracing all the variables back to the original (non­
rotating) system x-y, show that the terms of the Hamiltonian (2.6) of
the restricted circular problem have these interpretations:

Pi + PiQ"l2 = v2 = x2+ p,
P2 = C = xy - yx.

The quantity v is the velocity of the particle in the originfll coordinate
system and c is its angular momentum. Observe also that Qh Q2 repre­
sent the polar coordinates of the particle in the (rotating) ~-", system.

What do Ph P2 mean?

3. CANONICAL TRANSFORMATIONS GENERATED BY A FUNCTION

In this section the symbol 1: means :f.,=,
Let

Pk = Pk(Ph , Pm; Qh"" Qm)

qk = qk(Ph , Pm; Qh"" Qm),

k = 1, ... , m, denote a transformation. In the preceding section it was
shown that the transformation is canonical if and only if the differential
form

(3.2) 1: P,dqk - PdQk.'

after replacement of PA- and dqk from (3.1), is exact in the Pk and Qk' This
form is related to three others:

(3.3) 1: qkdpk + PkdQk'

(3.4) 1: Pkdqk + QkdPk,

(3.5) 1: qkdpk - QkdPk'

If we denote each of the four forms by Ff, i = 1,2,3,4, respectively, it is
easy to verify that

F1 = -F2+ d 1: Pkqk,

F, = F3 - d 1: Pk Qk'

F, = -F, + d 1: (PkQk - PkQk)'

It follows that if anyone of the four differential forms after replacement
of Pk. qk, dPk, dqk from (3.1) is exact, that is, the differential of a function
of the Pk and Qk' so is each of the others. Therefore the transformation
(3.1) is canonical if and only if anyone of the forms is exact after the re­
placement.

A subtlety, often overlooked, must be mentioned here. We illustrate
with the form (3.3) and m = 2, although the comments apply in the other
cases. To say that (3.3) is exact after replacement of Pk and dqk does not
mean that t,here is a function S(PhP2; Qh Q2) whose differential

as as as as
dS = -a-dp, + -O-dP2 + "'Q dQI + "'Q dQ2

'PI 'P2 f./ I f./ 2

agrees with (3.3), namely,

qldp~ + q2dp2 + PldQI + P2dQ2'

in the sense that the relations

oS _ as as oS
(3.6) ap, - q" op, = q,. 8Q": = Ph aQ2 = P2

hold identically after the replacement. For example, let Pf = P" P2 = Q2'



or

a, = Q" q2 = -P
2

be a transformation; according to Ex. 1.11, it is canoni­

~a1. The form (3.3), on replacement of Jk and dqk, becomes

. QldP1 - P2dQ2 + P,dQ, + P2dQ"

which is d(P, Qd and exact. But there j, no function S(P"P2; Q" Q2) for
which (3.6) is satisfied. To show this, leak at the second equation in (3,6).

It says

trated on the form (3.3), but analogous results hold for the other forms.

EXERCISE 3.1. Show that the transformation P = Pcos Q, q = Psin Q
(where m :::-~ I) is not canonical, but that its modification p == -.liP
cos Q, q = msin Q is. Find a generating function Seq, Q).

EXERCISE 3.2. Discuss the two canonical transformations described in
this section by replacing (3.3) in turn by each of the other three forms
(3.2), (3.4), (3.5) and the Eqs. (3.6) in turn by the correct analogues.
Show, in particular, that the first transformation does not have a
generating function in any of the four arrangements. How about the

second transformation?
EXERCISE 3.3. Are there· (>ther generating functions for the transfor­

mation of Ex. 3.1?
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(3.7)

Let

(ii) there is a function S(p" ... ,Pm; Qh'.·. Qm) whose differential
is (3.3), that is, for which

(iii) there is a function S(qh"" qm; Ph' .. ,p...) whose differential
is (3.4), that is, for which

oS
Oqk = Ph

(iv) there is a function S(Ph'" ,pm; Ph'" • Pm) whose differential
is (4.5), that is, for which

oS oS
0Pk = qk, OP

k
== -Qk;

or

(4.4)

(4.3)

or

(4.2)

or

(4.5)

(4.1)
Pk = Pk(Ph ••• , Pm; Qh.·" Qm)

qk == qk(Ph •• ·, Pm; Qh"" Q...)

denote a canonical transformation.
Then

( i) there is a function S(qh ... ,qm; Qh' .. , Qm) whose differen,ial
is (3.2), that is, for which

oS
Oqk = pk,

4. GENERATING FUNCTIONS

I
j

which is impossible since the left-hand side does not contain P2'
On the other hand, it may happen for some canonical transformation

that there is a function S(P"P2; Q" Q2) for which (3.6) is satisfied. Con­
sider, for example, the canonical transformation of Ex. 1.5, namely,

PI = PI cos Q2 - P2QII sin Q2

P2 = P, sin Q2 + P2QII cos Q2

q, = QI cos Q2

q2 = Q, sin Q2'

We ask whether there is a function S(p" P2; Qh Q2) satisfying (3.6) iden­
tically. The first two equations of (3.6) read

oS = Q, cos Q2
op,

oS Q' Q-.,- = I Sin 2·
<JP2

It follows that an admissible S must be of the form p, QI cos Q2 + P2 Q,
sin Q2 + T, where T is a function of Q, and Q2 only. The last two equa-

tions of (3.6) then require that.

PI cos Q2 + P2 sin Q2 + ~~I = PI

-PI QI sin Q2 + P2 Q, cos Q2 + ~~2 = P2.

Substituting for PI andp2 from (3.7), we obtain aT/OQI = 0, aT/OQ2 = 0, so
that T is a constant. Since only the derivatives of S appear in (3.6), we can
drop the constant to conclude that S(Ph P2; Qh Q2), defined as QI(PI cos Q2
+ P2 sin Q2), accomplishes the desired purpose.

If a function S of the desired form does exist satisfying (3.6), we call
it a generating function for the contact transformation. We have concen-
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Then

(v) none of ( i ), (ii), (iii), (iv) is true.
We have seen (Ex, 3.2) that case (v) can actually occur.

Now forget the transformation (4.1). Suppose we start with a function
S of one of the four forms described in (i )-(iv). For definiteness, let us
,ay S is of the form (iii). Let us define the variables pk, Qk by (4.4). The
:;econd of these equations is

oS-;C--p (qt, ... , qm; p..... , Pm) = Qk> k = I, ... , m.
() k

Suppose, moreover, that the Hessian !02SjoPk oqt I does not vanish. Then
this system of m equations can be solved for the qk in terms of the Qk and
P

k
yidding functions of the form (4.1). The first of the Eqs. (4.4) can be

written

where all the a h 11k are constants. Substitution for PkJ Qk into (4.1) then
gives the solution of (4.6) in terms of t and the "arbitrary" constants a"
. .. , am; f3h.'" 13m.

But how can one find a transformation (4.1) which does in fact reduce
H to Qt? A procedure, due to Jacobi, is to search for a generating function
S that produces such a transformation. Specifically, let us try for a function
S of type ( i ). If the Pk in H(Ph ... ,Pm; q.. ... ,qm) are replaced from (4.2),
we get

H(;S, ... ,~~; q.. ... ,qm),
ql Clqm

where S is of the form S(q ,qm' Q " ,Qm) and we are asking that

(4.9) H(~-~, ,t~.s ;q ,qm) = Q..
ql uq"

irrespective of the values of Q20 .... Qm' This is the Jacobi (partial differen­
tial) equation. If we can find such an S and the Hessian 102SjOqkOQt! does
not vanish, then S generates a trans,'ormation (4.1) which has the desired
properties.

A fairly simple example may help to make all this clearer. Let m = I
(so that we need no subscripts) and let H = Hp2+ q2). The differential
equations are q = oHjop = p, jJ = -oHjoq = -q. They are trivial to
solve, since jJ + P = O,p = A cos (t - B), q = -jJ = A sin (t-B). But we
wish to solve them by the method outlined above, because direct integra­
tion of a system is seldom possible.

We seek Seq, Q) so that (4.9), in this case

t[ (~~r + q2J = Q,

is satisfied. Then oSjoq = (2Q - q2)1/2 and

S = t (q(2Q - q2)1/2 + 2Q arc sin q(2Q)-1/2].

Therefore

_p = oS = arc sin q(2Q)-1/2
oQ

oSP = _ = (2Q _ q2)112
oq

According to (4.8), P = - t -+- a, Q = fl. Therefore q = ../2l3 sin (t - a),
p = .-/273 cos (t - a), which certainly provides a general solution of the
equation.

EXERCISE 4,1. What is the Hessian in the example just worked?

EXERCISE 4.2. In the general case can the reduction of H to QI be ac­
complished by an S of one of the other three types? Suppose we had

k = 2, ... ,m;

k = 1, ... ,m.

k = I, ... ,m,(4.8)

or

(4.7)

Pk = oS (q" ... , qm; Pt , ••• ,Pm)'
Oqk

Replacing the qk by q,(Ph ••• , Pm; Q" ... , Q,,,) yields for p" of the form
l4.i). Clearly, the transformation (4.1) so obtained is generated by the
function S, and is, therefore, canonical.

The same argument can be applied to the three other forms of S. The
technique provides a method for obtaining canonical transformations,
slarting with a function S. The implications are very important, as we now

show.
Suppose that we are given a system of ditl'erential equations

. oH. oH k I
(4.6) qk = OPk' Pk = - Oqk ' = ,.,., m

with Hamiltonian H(p", .. ,Pm; q" ".. , qm)' Then it retains its form under
a canonical transformation (4.1); that is, after the change of variables in
the Hamiltonian, the system becomes

, oH' oH
Qk = <:Ip' Pk = -"Q--'

CI k 0 k

Now let us try to find a canonical transformation which reduces H to a
vcry simple form so that the system (4.7) is manageable. For exa,?ple,
~\lppose it is possible to find a substitution (4.1) such that H reduces Iden­
tically to QI' Then Eqs. (4.7) become

Qk = 0, k = I, ... , m;

p. = -I, Pk = 0, k = 2, .. " m.
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which are easy to solve.
With this in mind, let

QI = t (pi + pgqi 2
) - qi'

Q, = P2'
(5.6)

But how are Ph P2 to be chosen so that the transformation is canonic'al?
Let us look for a generating function that will furnish the desired transfor­
mation. Since it is Ph P2 that are missing, we shall try for a function of the
form S(ql, q2; Qh Q2)' for then -Pic = as/OQIc, according to (4.2). Since
p, = 8S/aq.. the second of Eqs. (5.6) requires that as/oq, = Q2' Therefore
S = q2 Q2 + F, where F cannot depend on q2 and must be of the form
F(ql; Q" Q,). Since PI = as/oql = 8F/aql, the first of Eqs. (5.6) demands
that

so that

(5.5)

What is the physical meaning of the problem if p, = O? The answer
is simple: the smaller primary mass disappears and the large one takes on the
total mass of unity at the origin. The problem is then that of a mass moving
in a fixed plane under the attraction of a central force. Since the mass at
o is unity, this is identical with the problem f = _r-3 r treated in Chap. 1.
In the current context, the problem takes the form (5.1), with H replaced
b: Ho• Therefore, the central force problem can be put in the form

(5 4) . aHo . oHo
. qlc = 0Plc ' Pic = - aqlc

where Ho is defined by (5.3). According to the second paragraph of this
section, Hocan be written (tv2 - ,-1) - c, where r = ql' The first term is
just the energy h of the moving particle. Therefore Ho = h - c. This sug­
gests a new canonical transformation to simplify Ho, and hence the Eqs.
(5.4). It is reasonable to let Ql = h, Q, = c, so that Ho = QI - Q,. If we
can find such a transformation, the Eqs. (5.4) will become

Q. oHo p' oHo
Ic = oPIc' Ic = -8QIc' k = 1,2,

Since any solution will serve our purpose, let

:: = qil(-Qi + 2ql + 2QlqD1
/.

Therefore

F = f:'x- I
( - m+ 2x + 2QIX')'/'dx,

where G depends only on Ql and Q2' As we shall see shortly, it is best to

k = 1,2,
. aH

Pic = - oqlc'

tried for a reduction to PI. What modifications are needed? Tryout
your theory on the special example.

*EXERCISE 4.3. Show that if S satisfies Eq. (4.9), then the solution Pic, qlc
of (4.6) is given "implicitly" by .

-t+at = - :~ (qh ... ,qm;!3h ... ,f3m)

as
alc = - a!3lc (qh ... , qm; !3h ... ,13m), k = 2, ... , m,

asPic =~ (qh" . , qm; (31, .•• ,(3m), k = 1, ... , m,
uqlc

where theah... , am; !3h ... , (3m are 2m arbitrary constants.

EXERCISE 4.4 What happens in the example of the text if we choose
as/aq = - (2Q - q')t/' instead of the positive square root?

with

(5.1)

We have seen in Sec. 2 that the restricted three-body problem can be put
in the form

6. APPLICATION TO THE CENTRAL FORCE AND RESTRICTED PROBLEMS

H = t (pi + p~qi') - p, - U( qt cos q" ql sin q,).

Observe that we have changed from capital letters to small; this is because
another canonical transformation is forthcoming. The constant t /-,(l - /-,)
has been dropped from the Hamiltonian; no harm is don..: since it does
not appear in the Eqs. (5.1) anyhow.

Recall that, according to Ex. 2.1, the term Hp~ + P~qi') is simply tv',
where v is the velocity of the particle in the non-rotating system and that
P, = c, where c is the angular momentum. The variables qh q, are the
polar coordinates of the particle in the rotating coordinate system. In the
latter system, U is defined by

U(" "I) = (1 - JL)[(, + /-')2 + "12]-1 /2+ JL[(, + JL - 1)2 + "12]-1/2,

in accordance with the formula of Ex. 10.3 of Chap. 1. In the special case
JL = 0, the function U(t "I) becomes simply W + "1')-1/2, which is the same
as qi l

. This suggests rewriting the Hamiltonian as

(5.2) H = Ho + [qi 1
- UJ,

where

(5.3) Ho = ! (pi + prlD - qi l
- p"

and where the term in brackets drops out when JL = O.
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where

and

-P, = a3
/
2(u - e sin u).

Finallr, let n=a-
S

/
2 and conclude t~at -P, = t - T, where T is time

of pertcenter passage. Observe that P, = -1, again consistent with (5.5).

EXliR71SB 5.3 .. By use of Eqs. (7.5) of Chap. 1 (with J.£ there set equal
to uOlty) venfy that the interpretation -P, = t - T is valid in case h
= 0, e = 1.

EXBRCISE 5.4. Show that - P, = t - T is also valid when h > 0.

EXliRCISB 5.5. Show that in terms of the "old" . blvana es P"P2; q" qt,we have

the integration in (5.9) to obtain

-PI = (-2Q,)-,[ - (-Qi + 2q1 + 2Q,qD'/2

+ (- 2Q,)-1/2 arc cos 2Ql~ + 1J
·EXBRCISE 5.2. In the preceding formula, let QI = h, a = -1/2h, ql =
r = a(l - e cos u), Q2 = C, where u is the eccentric anomaly. Show
that

H = Q, '- Q2 + R,

R being the result of substituting the new variables into [q.J - UJ.
Reinterpret the restricted problem as a problem of central force

motion with a disturbance represented by the term R in the Hamil­
tonian. The constants c, h, Ctl, T now become functions of time. In
particular, since Q2 = C, we get c= 8H/BP2 = aR/ap2• Prove that this
agrees with the the formula c = rFa appearing in (17.8), Chap. 1.

2

- P2= q2 - arc cos l!l:::::..!h.
qle

Show that -P, can also be expressed explicitly in terms of the "old"
variables, but do not write out the expression.

EXBRCISli 5.6. Show that G is simply the distance of the mass from 0
at pericenter passage.

·EXBRCISli 5.7. Apply the transformation of this section to the original
Eqs. (5.1). They become

Ok = ~~, Pk= -:~, k=I,2,

$E.c. 5IINTRODUCTION TO HAMIL TON·JACOBI THEORY74

~s. 7) S(q" q2; Q" Q2) = qiQt +S:'x- 1
( - Qi + 2x + 2Q,x2)l/2dx.

The "missing" variables Ph P2 are then defined by -8S/8Q, and
-BS/BQZo respectively. What is their physical interpretation? We start with
P2• According to (5.7) and Leibniz'rule for differentiation of an integral,

-Pi = qt - Q,S:X-I(-Qi + 2x + 2QIX2)-I/ldx

Qt G Q2
= q2 + arc cos ~-:__.J. - arc cos -G I.

q,e e

(5.8)

This step uses the fact that the integrand of (5.7) vanishes at x = G. Now
let ql = r = c'(l + e cos/)-\ Q~ = c2

• The second term on the right-hand
side of (5.8) becomes arc cos (- cos/) = 1C - f Therefore,

-P2= (q, - f) + (1C - arc cos G Ge Q~).

By our choice of G. the last term vanishes. Therefore -P2 = qt - f. Recall
that q2 is the angle made by the radius vector to the particle with the posi­
tive ~-axis. It follows that q, - lis the amplitude of pericenter, measured
from the ~-axis. As a check, observe that at time t the ~-axis forms an
angle of t with the fixed x-axis, since the rotation rate is 1. Therefore t +
(q2 - f) is Ctl, the (constant) amplitude of pericenter. me~sured. from t.he
x-axis. We conclude that -P, = Ctl - t, P, = 1, whIch IS consIstent wIth
(5.5)

It remains to interpret Ph which is defined by

(j.9) -PI =!!. = Ql'x(-Qi + 2x + 2QIX2)-1/2dx.
OQ, JI)

The interpretation is left to the exercises which follow.

·EXBR.CISB 5.1. Assume elliptic motion, that is, QI = h < O. Carry out

:hoose G SO that the integrand vanishes when x = G; and because q\ > 0,
t is best to choose G positive.

If Q, = h = 0, there is just one choice for G, namely Q = QU2 = c2/2.
f Ql * 0, we must choose between

[-1 ± (1 + 2Q, QDt i 2)(2QI)-I.

fhc term 1 + 2Q, Q~ is 1 + 2hct . According to equation (5.2) of Chap. 1
.with JL as defined there equal to unity), this is the same as e2

• Therefore
:; '7. (-I ± e)(2h)-I. If h > 0, we are forced to choose the + sign to make
:; positive. If h < 0, either sign makes G positive but we must choose the
;>,rgcr value to keep the integrand real for x > G. In either case, then, G
""' (--1 + e)(2h)-'. In summary, we have chosen for S the function q2 Qt +
r, or
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[L (Pk - p~r + (qk - q~nl/'

Then a point of equilibrium is called L-stable if, for each positive number
*L for Liapounov.

\..

P' - sin 2T.,---,
T

q~ = _ cos 2T.
T

,_ v'2 sin 7'
PI- -r'

(6.5)

(6.6)

PI = -ql + P2ql + q2P"

P2 = 2q2 + Plq"

'.11 = PI + PIP2 - qlq2,

'.12 = -2p2 + tpr - h~·

Obviously the origin (0,0; 0,0) is an equilibrium point. Is it L-stable? To
answer the question, observe that for any fixed constant T the functions

_ v'2 sinet - T) _ s::;in:.:..22(,:.,1_-_T:..!)
PI - t ,P2 - 1-T -T

q, = -v'2 cos~- 7'), q2 = cos 2(t - T)
1-7' I-T

satisfy the Eqs. (6.5) for all I *- T. If T *- 0, the initial values of these solu­
tions can be obtained by letting t = 0:

e, there is a positive number 0 such that each solution of (6.1) which starts
with initial position within a distance 0 of the point exists for all time
thereafter and never departs from this point to a distance exceeding e.
Clearly, if there is such a 0, it must satisfy 0~ e.

The problem of L-stability of the libration points is a very difficult one
and will be discussed in the sequel. Here we shall describe a simpler exam­
ple, due to :. Cherry. Let m = 2 and let H(p" P,; q" q2) be the Hamil­
tonian

(6.4) ~. (qi + pi) - (qJ + pD + i- (pip, - P2qr - 2qlq2PI)'

Then the Eqs. (6.1) become

!he distance of this point from the origin is ../37-1. Therefore, by cho\)s­
mg. T as a ~Ufficiently large positive number, we can find a solution (6.6)
which at time 1 = 0 starts as close to the origin as we please. What hap­
pens to the solution as 1 increases? At any time 1,0 < 1 < T its distance
from the origin is ..v3(T - I)-I, which becomes infinite as t -: 7'. We con­
clude that the origin is not L-stable.

EXERCISE 6.1. Verify that the Eqs. (6.6) furnish a solution of the sys­
tem (6.5)

EXERCISE 6.2. For each of the following Hamiltonians where m = I
the point P = 0, q = 0 is an equilibrium point. Determ:ine in each cas~
whether the point is L-stable. (a) t(p2+ q2); (b) t(p2 _ q'); (c) tP' _
cos q. [In the last case. show that lp' + (l - cos q) remains constant,

k = I .... ,III,

Let a system be governed by the equations

6. EQUILIBRIUM POIN1S AND THEIR STABILITY

(6.1)

(6.3)

. 8H. 8H
qk =,,-. Pl' = - ,,-.UPk Uqk

with Hamiltonian H(PI,." ,Pm; q" . .. ,qm). Suppose that p~, ... , P?n;
qt . .. , q'/n is a point at which all the first partial derivatives of H vanish; it
is called an equilibrium point. Then the set of constant functions Pk = pt
qk = q~ satisfy the differential equations; it is called an equilibrium sohitioll.

The major example for our purposes occurs in the restricted three-body
problem. Consider the problem in the form (6.1) with m = 2 and the Ham­
iltonian given by (2.5), namely,

(6.2) t (p~ + pD - (q1P2 - q2PI) - U(q" q2) - }tL(l - tL)·

The four partial derivatives are

8H 8H 8U
8pI = PI + q" 8ql = -p, - oql'

8H . 8H 8U
- = p, - q" - = PI - -.8p, 8q, oq,

Clearly, they all vanish at a point (PI,P,; q" q,) if and only if PI = -q"
P2 = qh ql + (OUjoql) = 0, q2 + (OUjOq2) = O. Since ql == ~, q2 = "/' the last
two equations are identical with (12.1) of Chap. 2. Hence the equilibrium
points for this Hamiltonian system are the five points (-qg: q~; qt qg),
where (q~, qg) is anyone of the five libration points.

We return to the general problem (6.1) and an equilibrium point
(p~, ... , p~; q~, ... , q~). An important question concerning such a point is
this: will a "small" disturbance in the coordinates of this point cause the
resulting solution of the system to depart considerably from the point? It
is customary to call the point stable if the following is true: if a solution
of (6.1) starts with initial conditions sufficiently "near" (p~, ... ,p;:'; q~, ... ,
q~), it will remain near this position for all time. In the special problem of
the libration points we are asking: if a particle is placed near one of the
libration points with (relative) velocity near zero, will it remain near this
position for all time? Since teE2+ 1]2) + <I>(t, ",) is constant, this means
that the velocities must also remain small for all time.

The general question can be put in a more precise form in terms of the
concept of L-stability.* To explain what this means, let the distance be­
tween two points (Ph'" ,pm; q" . .. ,qm) and (p~, ... , P"n; q;, . .. ,q:") be
measured by



7. INFINITESIMAL STABILITY

aH nl ( o~H ) ( o!H )
ep;.(p" ... ,p".; qh ••• ,qm) = I~I 0PkOPI 0€l + 0PkOq, 0"7

1

+ terms of higher order;

.. T"~ Analytical Foundations of Celestial MechaniCS, Princeton University Press,

1941,1'.98.
....This is the cob condition described in Sec. 6.
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(7.1)

_ ( oW) ( 02H
akl - 0PkOPI 0' blt, = oPltoqJ 0'

(
o!H) 2Ctl = __ - oH

OqkOPI 0' dkl - (OqkOq) 0'

Then the Eqs. (6.1) become (we write the equations for Pk first)

(7.2)

?/!-<Ph ..• 'P"'; qh"" q",) = ~ ( o!H) + ( o!H)
It I_I oqtOPI °€I oqltoql 0*

+ terms of higher order;

t
thhe su?script 0 indicates that the second derivatives are to be evaluated at

e pomt. Now let

€l = A cos t - C sin I,

€! = B cos 2t + D s;n 2/,

"71 = C cos t -I:' A sin I,

"72 = D cos 2t - B sin 2t,

where !(A, B!; C, ~) are the initial values of (€" €2; "710 'IJ!). it is easy to check
that ~€I + €2 + "71.+ .'lJD'/2 = (A! + B! + C! + D2

)1/!. It follows that if the
sol~tl~n starts Within € of the origin, it remains within € of the ori in
ThiS IS more than enough to .guara~tee L-stability for the linear syste:' .

We have shown that a POInt ~hlCh is stable according to the classical
theory need not be stable accordmg to the desirable criterion of L-stability.

ek = - £ Ckl€I - '£ dkl'IJl
Id 1=1

ilk = ~ akl€l + ~ bkl "71'
I-I '.1

~rOVfded the t~r~s ~f higher order con safely be dropped. By this we mean
omewhat OptimIstIcally, that a solution of the exact Eqs (61) h' h 'suffici tl h ... . . W lC starts
I .en y near.t e eqUlhbnum point will mimic the behavior of that:0 u~10n of the Imear system (7.2) wtich starts in the same position relative

o ( , ... 0; 0, ... , 0). With this in mind, we define the point ( ° °.
q

o qO) to be . ,./;' . II p" •.. ,p".,
10 ••• , ". lnJ,mteslma y stable for the system (6 1) I'f th ...

L-stabl ~ th r . , . e ongIn IS
b . e I o~ e. mear .system (7.2). The infinitesimal stabiiity of equili-

of
n~m SIOI,~tlO~lslls.what IS studied in classical mechanics under the theory

sma OSCI atiOns.
L Isb~h~ ~timism justified? Is a point which is infinitesimally stable also
L-~ta:: e e~mine the system (6.5) for which the origin is not L-stable.
. e Pk - €k~ qk. - "7k and drop the terms which are not linear. The result­
Ing system IS Simply

(7.3) it = -"710

The solution of this is

CHAP. 3
INTRODUCTION TO HAMILTON-JACOBI THEORY

SO that p! and (1 - cos q) must remain small if they are so initially.]

*BXBRCISE 6.3. Show that H(Ph'" 'P"'; qh"" qm) remains constant
in time if Ph' .. ,P... ; qh' .. ,q". is a solution of the system (6.1). Sug-

gestion: show that dH/dt = 0.

EXERCISE 6.4. Use the conclusion of the preceding exercise to show
that the origin is always a point of L-stability for a Hamiltonian of
the form ~ ckpi + ~ dltq'lc, Cit > 0, dlt > 0, k = 1, ... ,m.

EXERCISE 6.5. Show that if Ck > 0, k = 1, ... , m but dk < 0 for some
value of k, then the origin cannot be L-stable for the Hamiltonian of

the preceding exercise.

In 1964, Wintner,* writing about the concept of L-stability, said:

This definition of stability seems to be the natural one. Actually, it is not
natural at all. In fact everything that is known from Poincare's geometrical
theory of real differential equations and from the parallel, though more dif­
ficult, theory of surface transformations points in the direction that condi­
tion (in** cannot be satisfied except in highly exceptional cases. Even in
the restricted problem of three bodies, not a single solution is known to be

stable.
Writing twenty-five years later, it is easy to be wise. Within the last

few years, as a result of the work of Kolmogoroff and his school, it is now
established that some of the libration points are indeed L-stable. But their
methods are far beyond the scope of this book, and we turn aside to look

at an easier question.
Classically it was, and remains, customary to substitute for L-stability

another concept of stability which is much easier to handle. The basic idea
is this. Consider once again the system (6.1) and an equilibrium point
PY, ... ,p~,; qi, . .. ,q':,.. Let Pk = p~ + €b qk = q~ + "7k represent a solution
of the system (6.1) which is "near" the equilibrium solution. Expand each
of the derivatives oH/opk> OH/Oqk through terms of the first order in €k

and "7k around the point p~, •.. ,P~,; q7,.··, q~. Because the first partial
derivatives themselves vanish at the point, we obtain

78
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(8.1)

Nevertheless, the classical method has its uses and we shall discuss it at

length.
EXERCISE 7.1. Show that for the examples described in Exs.6.2-6.5,
the two definitions of stability give consistent results.

8. THE CHARACTERISTIC ROOTS

We have seen that the problem of infinitesimal stability of· an e~~i1ib­
rium point leads to the study of linear systems (7.2~. The tradItlonal
method of solving such systems is to look first for solutIOns of the ~orm

A l.t - B eAt Substitution into Eqs. (7.2) leads to the hnear€k = ,.e ,7]k - k .

system*
~ (-CA'l - ~)Al + ~ (-du)B I = 0

~ aktAt + ~ (bA'l - ~)Bt = O.

Denote by A, B, C, D, respectively, the m x m mat.rices .(akl), (bk;), (Ckl),
(dkl ) defined by (7.1) and let I denote the m x m identity matrix. The
matrix of coefficients is then

_(-C - ~I -D)
vi! - A B - ~I .

If the determinant of the coefficients is not zero, then the system (8.1) has
only the solution A k = 0, B k = 0, k = 1,···, n. A non-trivial solution ~an

be guaranteed if the deterrr.inant vanishes. This means that ~ must satisfy
the equation 1"'/1 = O. If we multiply each of the first m rows by (-I), we

get

I
c + ~I D 1_

(8.2) A B _ ~I - O.

The left-hand side is a polynomial in ~ of degree 2m. Its roots are called
the characteristic roots of the system (7.2). We shall prove that for systems
(7.2) whose coefficients originate in a Hamiltonian, as indicated by (7.1),
the polynomial is even. This means that if ~ is a characteristic root, so is

-~.

Observe first that, according to (7.1), the matrices Band C are trans-
poses of one another, so that (8.2) may be written

I
c + ~I D 1=0.

(8.3) A C T - ~I

Since, by (7.1), A = AT, D = DT, we may transpose the determinant on

"'*In this section 1: means 1: .
1=1

the left to obtain

J

CT + ~I A 1_
-0.

D C-~I

N, w interchange the last m rows with the first to get

I D C-MI
CT + M A = O.

Finally, interchange the last m columns with the first. We obtain

I
c - ~l D I

A C T + ~I = O.

This shows that if Ie satisfies (8.3), so does - Ie, and the proof is complete.

EXERCISE 8.1. Find the characteristic roots of the system (7.3).

EXERCISE 8.2. Show that 0 is a characteristic root if and only if the
Hessian of the Hamiltonian vanishes at the equilibrium point, that is,
if and only if

I~ ~I=o.

9. CONDITIONS FOR STABILITY

Suppose we are testing an equilibrium point (p~, ••• ,P::'; q~, ... ,q?nl for
stability. We start by looking at infinitesimal stability. To avoid compli­
cations which arise in the general case, but not in the problems we consider,
let it be supposed from now on that the 2m characteristic roots leI>' .. , A""

are distinct. This means, in particular, that none of them can be zero ~ince

the associated polynomial is even; if one Ie were zero, two or them would
be.

It is now easy to prove: the origin is L-stable for the system (7.2) or.
what is equivalent, the point (p~, . . , ,p~:,; q~, .•• , q::') is infinitesimally siablc
if and only if all the numbers ~k are pure imaginary.

First suppose that some ~k has a non-zero real part. Then one of the
numbers ~k> -~k has a positive real part. The general solution of (7.2)
contains terms of the form el.,l, e-l.,I. One of these becomes infinite in
magnitude as t --+ =. Therefore the origin cannot be infinitesimally stable.

Conversely, if all the ~k are pure imaginary, let ~k = if£k' f£k be real.
The general solution of (7.2) is of the form

2m

€k = ~ Aktel/"I,
1=1

2m 2m

Therefore I€kl < ~ IAkll, l1Jkl < ~ IRktl for all time. If we choose the sums
1=1 1=\

l

\
~



L1 I + 2s 0 I - S

L 2 1+2$ 0 I-s
L3 1 + 2s 0 I - s
L, f %v/T(l - 2ft) t
L 5 f -l../T(l - 2ft} t

*EXERCISE 9.3. With each of the libration points, we shall associate two
numbers XIt XI which are the roots of the quadratic Xl + (4 - A ­
C)x + (AC - B' ). Prove that at L, and L 5 the numbers XI and X2 are
both negative if and only if 27/-,( I - p,) < I.

*BXERCISE 9.4. For the libration points L I , L to Lh the quadratic of the
preceding problem becomes x' + (2 - s)x + (l + 2s)(1 - s). Prove
that if $ > I, not both roots can be negative at the sa"Tle time.

.See, for example, L. Cesari, Asymptotic Behavior and Stability Problem in Ordinary
Differential Equations, New York: Academic Press, Inc., 1%3, p. 93.
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*F,XFRCISE 9.5. At each Jibralion point, 8cI>/a~ must vanish. Use this to
show that at each of L" L 2, L 3

(l - fl)(P, - PI~)~ p+ fl + ft(P2 - P23)~ + P, - I = O.
, P2

Show that at L 1 this can be written

PI(S - 1) = ft(1 - pi 3),

PI(1 - s) = p,(1 - P2"3).

Since p, > 1 at L 1 and P2 < I at L, and L3, conclude that S > 1.

·EXERCISE 9.6. Combine the preceding exercises to conclUde that x2 +
(4 - A - C)x + (AC - B') cannot have two negative roots at L L
L3• At L4 and L. ithas two negative roots if and only if 27p,(1 - fJ-) ~ ;~

10. THE STABILITY OF THE L1BRATION POINTS

Recall from Sec. 7 .that the equilibrium points of the restricted three-body
proob:em are five I~ number and have coordinates (-qt q~; q~, q~) where
(q" q2? are the coordlOates of the corresponding libration points in the ~_"
coordlllate system.. In order to test these points for stability, we must
compute the coeffiCients defined by (7.1) and the determinant which occurs
in (8.3). If we start with the Hamiltonian in the form

Hp; + pg) - (qlP, - -q,p,) + Hq; + qD - cI>(q" q2),

it is easily verified that (8.3) becomes

Ii\. -I I - <1>11 -cI>12

(10.1)
I i\. -<1>I~ 1 - cI>'2
1 0 -i\.

=0,

0 1 -1 -i\.

where the subscripts indicate partial differentiation with respect to the
variables ql or q~. Since q, = t q2 = "1, evaluation of the determinant
yields

(10.2) x' + x(4 - A - C) + 4AC - B' = 0,

where x = i\.' and A, B, C have the same meaning as in Exs. 9.1-9.6.
Now if the points are to be L-stable, it is necessary that all the i\. be

pure imaginary. Therefore both roots x of(10.2) must be negative. Accord­
ing to Ex. 9.6, this is never possible for Lt, L 2, L 3• Hence the points are
unstable. The same exercise shows that Lh L 5 are unstable when 27p,(1 _
ft) "i.'; I.
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on the right to be small, then the solution remains small for all time. This
completes the proof of the theorem stated in the second paragraph.

How does this help with the problem of L-stability? Only to this extent.
It was shown* by Liapounov that if the Hamiltonian has continuous partial
derivatives of the third order, then a point cannot be L-s-table unless it is
infinitesimally stable. The condition on the Hamiltonian will be met in our
problems. Therefore we can conclude that if any i\.k has a nOr/otero real
part, the point is not L-stable. On the other hand, if the system is infinites­
imally stable, that is, all the i\.k are pure imaginary, no conclusion about
L-stability can be drawn without further investigation. This is demonstrated
by the examples given in Sec. 7.

111 the next section we shall investigate the stability of the five librat on
points. To avoid distracting digressions, we ask the reader to verify some
computations in the following exercises. The notation is that of Sees. 12 and
13 in Chap. 2. We let

s = (1 - p,)p,3 + P,PZ 3,

a2cI> a2cI>
A =.8F' B = a~f)7J'

"EXERCISE 9.1. Show that

A = 1 + 2s - 3'12[(1 - p.)p,5 + P,P2" 5J,
B = 3,,(1 - p,)(~ + ,,)p,5 + p.(' - 1 + p,)P2"5],

C = 1 - $ + 3,,2((1 - p.)pj5 + p.Pi"5].

"EXERCISE 9.2. Keeping in mind that "l = 0 at the libration points Lit
Lto L3 and that PI = P, = I at L, and L5, verify the following table of
the values of A. B. C at the libration points:

ABC

•\
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Therefore the only possible cases of stability left are L4 and L s when
27fL(1 - !1-) < I, that is, !1- < .03852. In the major examples of interest to
astronomers, this condition on fL is 5atisfied and many years of observation
indicate that the points are L-sta ble. A theoretical proof of stability has
appeared only recently, thus settli 19 an important question of long stand­
ing. The proof is due to the Russian mathematician Leontovich who used
advanced methods devised by Kolmogoroff and Arnold.*

EXERCISE 10.1. Verify the derivation of Eqs. (101) and (10.2) from the
given Hamiltonian. Confirm that the four roots A, are distinct and
pure imaginary when 27!1-(1 - !1-) < 1.

*See Russian Mathematical Surveys, XVII (1963), p. 13, Example 4.

PERTURBATION THEORY

1. THE VARIATION OF PARAMETERS

The general solution of the equation x = x + t is x = -I - t + ce
where c is an "arbitrary constant," or parameter. This illustrates the fal
that, under the conditions usually met with in practice, a differential equ<
tion of the first order

,..

(l.l) x = f(x, t)

will have for its solution a function x = x(c, t), where c is a parameter.
other words,

(1.2)
axat (c, t) = f(x, t).

Now suppose we wish to study a modification of the given Eq. (I.!'
namely,

(1.3) x = f(x, t) + g(x, t).

For this purpose it is sometimes useful to employ a technique known a:
the variation ofparameters. The idea is this. We start with the solutior
x = x(c, t) of the original Eq. (1.1), and try to make it fit (1.3) by permitt
ing the parameter c to become a function of the independent variable t.
Then .

. 8x. + ax
x = oc c at'

so rha[ (J .3) reads
85
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according to (1.11), it foHows by comparison with (1.9) that

It is understood that each Xh' .. ,Xn appearing on the right-hand side is
to be replaced acccrding to (1.10). If the determinant laxdoCl1 does not
vanish, the Eqs. (1.12) may be solved for the "unknowns" Ck to yield a
system

k = I, ... ,no

k = I, ... ,n.

(1.12)

(1.13)

~c +?~ = lex, t) + g(x, t).
oe at

By virtue of (1.2), the interior terms cancel, leaving us "lith a new
differential equation

(1.4) C = g(x, t)(1~rt.

The variable x occurring in g(x, t) is to be replaced by x(e, t). This leaves
us with a new differential equation of the form

(1.5) c= h(c, t).

For example, suppose the equation of the opening sentence is modified

I..

1', = a tan t,

As an example, consider the systm

and i\ modification

(1.15)

(1.14)

x, = x, + a sec t,

where a is a constant. The system (1.14) has the solution

Ct cos t + C, sin t - c, sin t + c, cos t = -c, sin t + c, cos t,

C, sin t - C, cos t + c, cos t + c, sin t = c, cos t + c, sin t + a sec t.

After an obvious cancellation, the equations can be solved for c't and c,.
It turns out thdt

(1.16)
x, = c, cos t + c',sin t,

x, = c, sin t - c, cos t,

where c, and c, are parameters. We now interpret c, and c, as functions
of t and try to fit the functions (1.16) to the Eqs. (1.15). Then

Unlike the earlier example, it happens that these can be solved simply.
The final result is

c, = -a log Icos tl + k i ,

C, = -at + k"

where k l and k, are constants. With these choices for Cit c" the Eqs. (1.16)
give the solution of (1.15).

. *EXERCISE 1.1. Show that the original Kepler problem of Chap. I can
be interpreted as a system of the form (1.8), and a disturbed system,
as described in Sec. 16 of that chapter, as a modified system (1.9).

(16) x = x + t + ax2,

where a is a constant. Since the original equation (with a = 0) has the
solution x = -I - t + cet, it follows that ax/oc = e l

• Becauseg(x, t)=ax',
Eq. (1.4) becomes

(1.7) c= a(ce l
- I - t)'e-t,

which is of the form (1.5).
At this ooint the reader can, and should, argue that Eq. (1.7) is at least

as difficult to solve as the original one (1.6), and that nothing ~as b~en
gained. In general he would be right; there are very few examples 10 whIch
the method reduces an equation to one wh,ich is easier to "solve.:' But, as
we shall see in the sequel, there are important uses for the techmque, and
for the present we wish only to give the student some practice in it.

What has been said for a single equation applies equally well to systems

of equations. Consider the system

(1.8) Xk = !k(Xh"" X n ; t), k = I, .. , n

and its modification

(1.9) X" = !,.(Xlt ••• , x,,; t) + gJx" ... , x,,; t), k = I, ... ,n.

The svstem (1.8), again under suitable restrictions, will have a solution of

the form

(1.10) Xk = Xk(c','" ,c,,; t), k = I ..... , n,

where c" •.. , e" are parameters. According to (1.8),

(1.11) a;; (c" ••• , Cn; t) = h(xl•... ,x,,; t), k = I, .. , n.

We shall try to make the functions (1.1 0) fit the Eqs. (1.9) by permitting
the Ck to be functions of t. Since

. ~ ax,. . + ax,.
Xk = ~ -Ct "t_IOCt vt



2. THE PERIHELION OF MERCURY

In Sec. 15 of Chap. I, a very simplified picture of the solar system was
presented. The actual motions are considerably more complicated because,
for one thing, we do not have nine independent two-body problems. Each
planet is disturbed from its elliptic course by attractions from the other

planets.
There is one important disturbance from elliptic motion which we shall

discuss here. It was found that the disturbed motion of Mercury could not
be explained entirely by attractions of the other planets. In particular, it
was found that the change in w deduced in this way was less than the
observed amount by about 43': per century. No explanation was found until
the theory of general relativity was produced by Einstein.

To understand his l:xplanation of the phenomenon, we go back to Sec.
6 of Chap. I. It is shown there that the determination of a motion under
the central force fer) can be reduced to the equation

(2.1) P"+p=C-2p-2f(~),

where p = p(O) and 0 is an angular variable. Now ifr(r) = W-
2

according
to Newton's law, the equation takes the form

(2.2) p" + P = c- 2
fL·

But it happens that, if we accept the theory of relativity, the particle
behaves as if the law of attraction is actually fer) = w-2

" ec
2
,-" where

e is "small." Actually e = 3fLV-2, where V is the velocity of light. With
this substitution for Newton's law in (2.1), Eq. (2.2) must be revised as

p" + p = c- 2 fL + €(J2.

This can be written as the system

(2.3) p' = s, s' = c-2 fL _ P + ep2.

We study the effect of the disturbing term or "relativistic correction"
ep2 by first supposing that e = 0 and solving the undisturbed system

(2.4) p' = s, s' = c-~ fL - p.

Observe that the independent variable is 0, not t, but this does not affect
the applicability of the method of variation of parameters described in
Sec. I. The system (2.4) is equivalentto (2.2), and we know that th,;: solution
of (2.2) is

(2.5) p = c- 2 fL[1 -+ e cos «(1 - w)],

Explain why Eqs. (17.8) and (18.2) of Chap. I correspond to (1.13)

here.

3. FIRST ORDER PERTURBATION THEORY
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where e is the eccentricity of the undisturbed orbit and w is the amplitude
of perihelion. Since p' = s, we have

(2.6) s = _c- 2 fl-e sin (0 - w).

Therefore (2.5) and (2.6) together give the solution of the undisturbed
system.

We study the system (2.3) by writing its solution in the form (2.5),
(26); but now the "constants" e and ware regarded as functions of fJ. So
ditferentiate each of (2.5) and (2.6) with respect to 0 and substitute the
resulting formulas for p' and s' into (2.3). If we abbreviate 0 - w by f, the
following formulas are found: '

e' cosf + ew' sinf= 0

- e' sin f + ew' cos f = ec-2 fL(l + e cos f)2.

Therefore
(2.7) e' = -ec-2 fL(sinf)(1 + ecosf)2

and
(2.8) w' = ec- 2 jJ£-1(cosf)(1 + e cosf)2.

. This system is no easier to "solve" than the original one (2.3). But this
IS not our purpose. ,We are trying to explain a change in w of 43" per
century, and for thiS purpose rough methods will serve. Due to the presence
of the small number e on the right-hand side of (2.7) and (2.8), we expect
that e a.nd w change ver~ slowly. Since we are talking about a century :Jnd
the peflod of Mercury IS only about eighty-eight days, we argue tlHlI it i,
proba.bly safe to take e and (l) as constant on the right-hand side of the
equatIons for a period 0 ~ 0 < 271:. Then, according to (2.8),

w(271:) - w(O) = ec- 2
jJ£-1 J:" cos(O - w)[1 + e cos (0 - w)J2 de

= 271:£c- 2 fL,

which ~s the approximate change in (,) in one period due to the rcl:ttivilotk
correctIOn. If we m~ltiply by the number 01' periods in a century it tums
out that the numencal result is the 43" which needs explaining 0"'''
that th It . . . . ~erve.7 resu IS. a posItive number, which explains the familiar reference
to the advance 10 the perihelion of Mercury."

EXERCISE 2.1. Eq.uations (2.7) can be derived directly from (17.8) of
~hap. I by sett"ng Fa = 0, Fe =--' O. F, = €C

2
,-' and eliminating the

time by use of r{i = c. Carry out the details.

The ro~gh.method used in the preceding section to study the motion of
the penhclJon of Mercury has a very general formulation. To explain it we

CHAP. 4
PERTURBATION THEORY88
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return to the problem studied in Sec. l. Suppose the system (1.9) to be of

the special form

(3.1)

. Th~ example of Sec. 2 furnishes a simple example of how the method
IS applIed. We shall now present a more elaborate example. Consider the
system

(3.7)

(3.6)

(3.5)
Xl = k2XI + lO(x~ + q cos It),

Where k, lO, q, I are constants. We shall begin with the undisturbed s'ystem

XI = -X2, x2 = k2xI

and apply the method of variation of parameters. The solution of the
undisturbed system is

Jsin (/ - k)t + K I - cos (/ - k)t
l-k l-k

XI = CI cos kt + C2 sin kt,

X2 = C, k sin kt - C2k cos kt.

Substitute these into (3.5), regarding both CI and C2 as functions of t. Then
solve the resulting equations for CI and C2' We obtain .

CI = € sin kr[k2(~1 sin kt - C2 cos kt)3 + kcos It]

C2 = - lO cos kr[k2(cI sin kt - C2 cos kt)3 + t cos It}

According to (3.6), the values of Cl and C2 at each instant can be found
from the values of XI and X2 at the instant. In discussing (3.7), we may
therefore suppose CI and C2 known at some time, which we take to be zero
for simplicity; let their values be c~ and cg, respectively. According to the
rough method described above, we can get a first approximation to the
solution of (3.7) from

CI = c~ + € S: sin kT[k2 (c? sin kT - c~ cos kT)3 + k cos ITJdT,

C2 = cg - € s: COSkT[k2(dcoskT - C~COSkT)3 + kCOSITJdT.

The precise evaluation of the integrals is of no importance here. What
matters is that each integral is of the form

A + Bt + (C cos 2kt + D sin 2kt) + (E cos 4kt + Fsin 4kt)

+ G cos (k + l)t + H sin (k + i)t

if k = i, and there are two additional terms

if k '* I.
There is a traditional classification of the terms which occur in the sum

This is the same result produced by integrating (3.2) directly, while supposing
that c" ... , C

n
on the right·hand side remain constant. Observe that the

method is precisely that used in Sec. 2, where, however, the variable is (j

rather than t. Because only the first power of lO appears in (3.3), the term
l?'YJk is called a first order perturbation.

where k = I, ... ,11 and lO is a parameter. Then (1.l2) becomes

2: ~~ Cl ~"" fFk(xJ, ••• , XII; t)
I UCI

so that, by virtue of (3.4),

Ck = c1 + €'YJk = c1, + € Sf G.,(c~•... , (';,; T)dT.
I.

and (1.13) takes the form

(3.2) Ck = €Gk(c" ... , Cn; t).

\\'c shall refer to the systems (3.1) or (3.2) as undisturbed if lO = 0 al d

.Ji;i!lrhed if € ee/:. O.
/\$ we observed earlier, the system (3.2) obtained from (3.1) by the

\;Hiatio!\ of parameters may be no easier to "solve" than (3.1). But, for
sufficiently small values of lO, it is frequently possible to get a good approxi­
mation to the solution over intervals of time that are not "too" long. The
main idea is this. Suppose the values of C1o"" Cn are known at some
instant t~; call them c~, ... , c~. Then the solution of the undisturbed sys­
tem, (3.2) with lO == 0, is simply Ck = d. The form of (3.2) suggests that if
f is small enough. then Ck cannot change rapidly; in other words, for a
length of time not too far from to. the solution of (3.2) cannot vary much
from c~, k = I, ... , n. With this in mind, we suppose that a good approxi­
mate solution can be obtained in the form

(3.3) Ck(t) = c~ + lO1]k(t), k = 1, ... , n,

where the conditions at to are met by supposing that

(3.4) 1]k(tO) = O.

Substitution of (3.3) into (3.2) yields these equations for 1]k:

ilk = Gk(C~ + lO'YJ1o ••• , C~ + lO'YJn; t).

If we suppose further that Gk is a sufficiently smooth function, then the
right-hand side is well approximated for small f by letting lO = O. We
arrive at the approximate equation

I
~

'-,
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above. In addition to the constant ten 1, there are terms in the sine and
cosine of 4kt, 2kt and (if k *- /) of (k + /)t, (k -- l)t. These are called the
periodic terms. The term in t is called secular. In some problems, terms of
the form t cos pt or t sin pt will occur; these are mixed or Poisson terms.
The intended distinction between the periodic and secular terms is clear:
the periodic terms indicate a bounded disturbance which recurs regularly;
the secular term indicates a steadily increasing disturbance. However, the
distinction has little justification rigorously and may be due entirely to the
method by which the approximate solution has been obtained. For example,
the first term in the power series expansion of

(3.8) Jsin(l-k)t
1- k

is simply Jt. If an approximation method is used which happens to give Jt
rather than (3.8), it will look like a secular term when it may, in fact, be
an approximation for small t to a periodic term. There is still another
difficulty: the approximation to the solution may be valid for such a short
interval of time that the periodic terms do not have time to complete even
one period before the approximation fails.

Because of these doubts, we may view with a certain amount of skepti­
cism another distinction that is made. A term of the fQrm sin 2kt has a
period 1t/k; one of the form sin (1- k)t has the period 21t/(/ - k). If I is
very close to k, the latter period will be large compared to the former.
Thus we have ,a distinction between short-period and long-period terms.
There is some evidence in the problems of celestial mechanics that secular
term!\ may be approximations to long-period terms, but to date there is
only one real justification for the distinctions among terms: it works in
practice for the numerical cases familiar to the astronomer or engineer.

EXERCISE 3.1. Give a physical interpretation of the problem (3.5) and
of the three kinds of terms (secular, short-period, long-period) which
occur in the approximate solution.

4. THE ERROR IN FIRST ORDER THEORY

In the last section we used some very rough reasoning to conclude that a
good first approximation to the solution of

(4.1)

with values cZ at t = to is

(4.2) c~(t) = cZ + e fl Gk(C~, ... , C~f; T)dT,
t,

where k = 1, ... ,n. We use the small "a" to indicate "approximate" solu­
tion because we shall reserve the symbol c, (I) for the true solution.

It is our purpose now to examine the meaning of a "good first approxi­
mation."

We content ourselves with the case n = I, which is typical of the
general case. If we drop the subscripts, then (4.1) becomes

(4.3) c = eG(c, t)

and (4.3) becomes

(4.4) c"(t) = CO + € ft G(CO, T)dT.
t,

According to (4.3), the true solution must satisfy the equation

(4.5) c(t) = CO + € ft G(C(T), T)dT.
t,

We ask: how large is the difference \c"(t) - c(t)1 and for how long an
interval of t:me It - tol? For simplicity, we shall suppose that G(e, t) is
continuous and bounded for all c and t, and that 8Gj8c exists for all c and
has the same properties as G. Then

IG(c, t)\ ~ A,

where A and B are constants. According to the mean-value theorem,

. 8G
G(CO, T) - G(C(T), T) = (CO - C(T)) OC (~, T),

where T is fixed and ~ lies between CO and C(T). Since B bounds the deriva­
tive 8Gjoc, we conclude that

(4.6) IG(cO, T) - G(C(T), T)I < Blco - c(T)I.

Now, according to (4.5),

CO - C(T) = e JT G(C(T), T)dT.
t,

Therefore

IcO - C(T)\ < € 1(IG(c(T), T)\drl.

Since A bounds the function G(c, t),

\co - c(T)1 < € If. AdTI = AelT - tol.

From (4.6), we conclude that

(4.7) IG(cO, T) - G(C(T), T)I < ABeIT - tol.

If we subtract Eq. (4.5) from Eq. (4.4), the result is

c"(t) - c(t) = €r[G(c°, T) - G(C(T), T)]dT,
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From (5.10) we get the equation

(5.12) 0- = -n(J./,easinf)-lrcd + nac(/../,e)-Iecotf

Two other variables are also used. First is the quantity e. defined by
e = UJ - /IT and known by the impressive title the mean longitude at the
epoch. It suffers from the same defect as T itself, namely, the presence of t
in the equation for f. This is circumvented by choosing in place of e a
quantity flo defined by el = /It + e -p, or, what is equivalent, el = co +
1- p.

Whatever six variables are chosen, it is clear that for an analytical
study of the differential equations, the quantities Fro Fa' Fc must be replaced
by suitable functions of these variables. The same is true of rand f, which
do not occur on the left-hand side of our equations. How the replacement
is done will be the object of the next section.

EXERCISE 5.1. Other difficulties occur if e or i is small because of the
presence of e- I or csc i in some of the formulas. To avoid these, another
choice of variables can be made. In the former case, the equations for

(5.7) n=-!na-11i,

(5.8) c= rF".

Moreover, because co = w + .0, we can add Eqs. (5.4) and (5.5) together
to obtain

(5.9) m= -cp.-Irl Fr cosf+ (p.ec)-I(c2 + rp.)F" sinl

+ rc- I Fc tan ~ sin (w + f).

The basic set of equations is formed by (5.1)-(5.6), but it is clear that
(5.9) may be substituted for either (5.4) or (5.5). Also, because c2 =
p.aO - e2

), Eq. (5.8) may be substituted for (5.1) or (5.2). Many other
combinations are permitted, provided the basic set can be obtained from
them. Thus (5.1) may be replaced by an equation for h, where h = - p./2a.
I~ (5.2) is replaced by (5.8), we may also replace (5.3) by an equation for
H, where H = c cos i. Each of these choices occurs in practice, depending
on the nature of the force F causing the disturbance.

But whichever choice is made, i turns out that (5.6) is a serious source
of trouble because of the presence of the term in t. One way out is to
replace (5.6) by an equation for the mean anomaly I. Since 1= net - T)
and I = n(l - t) + n(t - T), it follows from (5.6) and (5.7) that .

(5.10) I = n - n(p.ea sinf)-Ircd + nac(p.e)-I e cotf,

in which t no longer appears explicitly. An alternative which is sometimes
used is a, defined by

so that, by (4.7),

We conclude that

(4.8) ic"(t) - c(t)!::: K 2e2 (t - toY, K 2 = tAB.

It follows that if It - tol ~ K-1e-'/\ then Ie tt (r) - c(t)i ~ e~/·'. This means
that ctt and c agree within a term of order 1'2/3 over a length of time of the
order of 10- 2/ 3; the smaller the 10, the better the approximation and the longer
the time oVer which the approximation is valid.

In practice, these estimates are of little use. First, the equations which
actually occur are considerably more complicated, so that the constants
like A and B which occur in the practical problems are impossible to
determine. Secondly, e is fixed by the problem and there is no choice in
how small it may be taken. Nevertheless, it is satisfactory to have a theore­
tical justification of the procedure.

EXERCISE 4.1. Check the estimates directly for the equation c= e sin c
where c = Co when t = to. This means that ca and c are to be computed
explicitly and then Ica - cl is to be estimated.

EXERCISE 4.2. Find an estimate corresponding to (4.8) in the case n is
larger than 1.

5. :rHE EQUATIONS OF DISTURBED ELLIPTIC MOTION

In Sees. 16-18 of Chap. I the method of variation of parameters, in a
somewhat disguised form, was applied to obtain equations for the variation
of the elements of a disturbed elliptic motion

f = -W-3r + F

in terms of the components Fr , F", Fc of F. To make cross-reference unnec­
essary, we reproduce the equations here in a rearranged form.

(5.1) Ii = 2a2ec- l (sinf)Fr + 2a2 Cfl,-I r- IF",

(5.2) e= cJ./,-I(sinf)Fr + cp.-I(e + 2cosf+ ecos2 f)(t + ecosf)-IF",

(5.3) ~ = rc- I Fc cos (w + f),

(5.4) cO = -cp.-Ie-I Fr cosf + (p.ec)-I(c 2 + rJ./,)F" sinf

- rc- I Fc cot j sin (w + f),

(5.5) n = rc- I Fc csc j sin (w + f),

(5.6) t = (J./,easinf)-I[rc - !J./,e(t - T)sinJ]1i - ac(p.e)-Iecotf

In addition, we found equations for related variables, as follows:

(5.1 t) a = 1- p. p = rn(T)dT.



96 PERTURBATION THEORY CHAP. 4 SEC. 6 THE PERTURBATION EQUATIONS IN ANALYTIC FORM 97

e and cu can be replaced by equations for the variables e sin cu and
e cos cu. If it is the inclination i that is small, replace the equations for
i and n by equations for sin i sin n and sin i cos n. Write out one
complete set of six equations in each of these cases.

6. THE PERTURBATION EQUATIONS IN ANALYTIC FORM

If a particle is moving in disturbed elliptic motion, then at each instant t
the elements of the osculating ellipse are determined by the values of rand
v. Conversely, it follows that the position and velocity at the instant can
be determined from the values of the six elements of the osculating ellipse.
As we saw in the preceding section, some of these elements can be replaced
by other quantities such as (7', lor c, provided the totality of them determine
the six elements. Whatever choice is made, let us denote the quantities by
q" ... ,q6' or, generically, simply by q. Then r = r(q" ... , q6; t), and
similarly for v.

It is important for us to compute the derivatives or/oq and to find their
components in the directions of r, a, e described in Sec. 16 of Chap. I. For
definiteness, we choose the quantities to be the standard elements a, e, i,
w, n and die mean anomaly I. The symbol or/oq denotes the partial deri­
vative with respect to each one of these six quantities, the other five and
the time being held fixed.

As in Fig. 10, p. 33, let x, y, :: denote a fixed cooriinate system
centered at 0 and let n denote a unit vector in the direction of the line of
nodes. By f, a, e, we mean the unit vectors r-Ir, a-la, c-Ie. Therefore

(6.1) F = FTf + F"a + Fee.

By ail we mean the unit vector e x 6; it lies in the orbital plane of the .
osculating ellipse at time t and is perpendicular to n. Then

(6.2) r = r cos (w + f)6 + r sin (w + f)ail.

It is clear that 6 is determined by n alone and ail by both nand i. We
may therefore differentiate r, as given by (6.2), with respect to any of the
four remaining quantities a, e, w, I by differentiating the coefficients of 6
and ail, and not il and ail themselves. Therefore, provided q is one of these
four quantities,

or or .
oq = oq [cos (w + f)il + SIr: (w + f)ail]

+ r o(wo; f) [- sin (w + f)fi + cos (w + f)ail].

According to (6.2), the first expressior in square brackets is simply r-Ir
or f. The second lies in the orbital pia Ie and forms a right-handed system
with f; it is clearly a. It follows that

(6.3) or = or f + r(OW + o/)a Ioq oq oq oq , q = a, e, w, .

Since u can be eliminated between the equations

(6.4) r = a(l - e cos u), 1= u - esinu,

the quantity r depends only on a, e, I; it is independent of w, i, n. More­
over,

(6.5) 1 + e cos / = a(l - e2)r-1,

so that / depends at most on a, e, I.
In particular, or/ow = 0, of/ow = 0. Therefore Eq. (6.3) for q = w

becomes simply or/ow = ra. Hence, by (6.1), F'or/ow = rF". This enables
us to rewrite (5.8) as

(6.6) c = F . ~:.

We turn to the case q = I. According to (6.4),

or . au ou r ou
ar=aesInuat, I=(l-ecosu) oJ =(iat'

Since sin u = /.I,,'12 a -1/2 c -1 r sinf, we conclude that

~; = eJ.L112a3/2c-1 sin!

From (6.5) we get - e sin/(o//o/) = -a(l - e2)r2(or/ol), so that

r ~{ = cr- I j.L-1/2a
3/2•

Since ow/ol= 0, Eq. (6.3) becomes

M= eJ.L1/2 a 3/2 c- I sin /f + cr- I j.L -1/2 a 3/2a.

According to (6.1) once again

F· ~ = ej.L112 a 3/2 c '·1 sin/FT + er-1j.L-1/2 a 3/2F".

Clearly, this permits us to write (5.1) as

(I)

Since c
2 = j.La(l - e

2
), we can compute e from a, as just found, and c,

as given by (6.6). Then

(II) e= (aj.L)-1/2 e-l(l - e2)1/2{(l - e2)1/2F • M- F· ~:}.

If q = a, we get from (6.4) that

I"

\.
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7. ALTERNATIVE FORMS OF THE EQUATIONS

From this we can derive (see Ex. 6.1)

(6.10) :~ = r[cos i a - sin i cos (Ii) + !)~].

Therefore,

In the major applications of perturbation theory, the disturbing force F
orignates from a disturbing function R(r, t), as described in Ex. 6.2, through
the relation F = grad R = oR/or. The most important example is this.
We are interested in the motion of a mass m2 with respect to mass ml when
this motion is disturbed by a mass m3 whose motion with respect to ml is
known. Some special cases are these: ml = earth, m2 = moon, m3 = sun;
ml = sun, m2 = minor planet, m3 = Jupiter.

To obtain the equations of motion we return to Eqs. (7.1) of Chap. 2.

F' :~ = r[cos i Fa. - sin i cos (w + !)Fc]

and (5.3) becomes

(VI) ~ = [tta(l - e2)]-1 cot iF· :~ - [p,a(l -e 2)]-1 csc iF. :~.

EXERCtsE 6.1. Verify that (6.10) is actually a consequence of (6.9) by
use of these formulas:

~ = (sin n sin i)i - (cos n sin i)j + cos i k,

8 = cos n i + sin n j,

fit = c x 8,

a = -sin (w + f)8 + cos (w +!)fit.

The vectors i, j, k are those described in Sec. 17 of Chap. I.

"'EXERCISE 6.2. Suppose that the disturbing force F is derivable from a
function R(r, t) by F = grad R = oR/or. (See Sec. 2 of Chap. 2 for
the notation.) Then if q is one of the quantities a, e, i, Ii), n, I we have

F. or = oR
aq oq'

Explain why, and rewrite formulas (I)-(VI) in terms of the derivatives
oR/oq.
EXERCISE 6.3. What changes must be made in formulas (I)-(VI) if the
quantities q are selected to be a, e, i, Ii), n, T?

or 0&. 08
0!J. = r cos (w + f) oD + r Sin (Ii) + f) oD'(6.9)

).

or . CU CUoa = (1 - e cos u) + ae sm u aa' 0 = (1 - e cos u) 'ba'

Therd'ore au/Da = 0 and or/oa = ria. Also, by (6.5),

. vf' ')- . ,'" or- oc SJnj",·, "":c (l ,- c')r" ._. a( I -- e),.-" :.co 0.
oa . oa

(01\) F.~:=-aCOSjFr+asinj[l+(lr ,,)JFa..
Of a - e'

This formula and (6.7) enable us to rewrite (5.10) as

(Ul) i = n - (1 - e2)(tt-a)-I/!e- 1F. ~~ - 2al/2 tt-- 1/2 F . ~~.

We have exhausted the cases when (6.3) is applicable. To treat q = i.
we turn back to (6.2). Of all the quantities o,yhich appear on the right-hand
side. only fit depends on i. If n is held fixed and i is changed by amount
!1.i. this has the effect of rotating m by the amount .li in the plane of fit
4l nd c. Since this plane is perpendicular to ft, it remains fixed. Hence,
eni/ai =~. Therefore, by (6.2), we have or/oi = r sin (w + f)(&'&/oi) =
r si'n (w + f)c. From (6.1) we obtain

F . ~ = r sin (w + f)Fc•

This enables us to write (5.5) as

(IV) n = [tt-a(l - e2W I csc iF· ~,

and with the help of (6.8) it converts (5.4) into

(V) cO = -[tt-a(l - e2)]-1 cot iF· ~

+ ( )-1'2(1 2)1/2 -IF orp,a' - e e . lfe'

To obtain or/aD, the last on our list, we start with (6.2), according to

which

Hence Nloa 7= O. Since o(lI/fJa 0::: 0, the formula (6.3) says simply that
i r,Ga =.: (,./a)£. According to (6.1),

or r
1,6.7) F· 8a"cc a Fr.

The procedures applied when q =c= lor a works just as well when q = e,
.dlhough the computation is a little longer. The result is

Dr = -acosjr + asinf' [I + a(l ~ ?}Ja

\

I

'.



)

100 PERTURBATION THEORY CHAP, 4
SEC, 7 ALTERNATIVE FORMS OF THE EQUATIONS 101

Divide the first by mlo the second by m2, and subtract the lirst from the
second. We get

(II') . o,?l
e = oCr>'

Equation (II) is discarded because e is not present in the new list of
variables. But in its place we recall [see (6.6)] that c = oR/oCr>. But oR/oCr>
= ofA/0Cr>. Therefore

"j

. of
1= -BL'

. BF
Cr> = -Be'

. ofA
1= n - oL"

. of
L = aT'

. of
e = oCr>'

. BF
H=au'

(III')

Now i occurs in:?J only through H. Therefore

oR ofA oH . .0fAar = oHm = -esIn'oH'

and

(7.3) oR = ofA Be + ~fA oH
oe oe oe BH oe .

If we compute the partial derivatives with respect to a and e and sub­
stitute into (III), we get

As to (III), we observe first that a is implicitly contained in fA through
the variables L, e and H, and e through the variables c and H. Therefore

oR = ofAoL + ofAoc + ofAoH
oa oL oa oe oa oH oa

EXERCISE 7.3. If a planet has a satellite, we can obtain the mass of the
planet by observing the length of a satellite period and using Kepler's
third law. Give the details.

But if the planet has no satellite, as for example Venus, the mass
can be determined by comparing the observed and theoretical distur-

and (IV) becomes

(IV')

If we use this computation (If (1!? iii. and 8R/ik as COllllHlled frorn ('/ \)
1;'1 (V l I~ l'''Il\'<'Ill'd 1111"

(V')

If we start with H =0: c cos i, then (II') and (VI) together yield

V ' . (}iJf
( I) H = Dl['

EXERCISE 7.1. Verify (I')-(VI') by supplying all missing computations.

*EXERCISE 7.2. Let F = +fl'2L' + ;?f' and show that Eqs. (l')-(Vi ') la k"
the form

i

I
f

I
!

(
' I ,flU

.:s.: I iJi '

.. -3 G [5 - r S Jr = -fl" r + m3~ -- .1''' ,
23

w== _·c J cot i~~ I ('(IWC) I~:,

di I .OR -1 .OR
di = e- cot 'oCr> -e csc 'aD:

(7.1)

(III)

(IV)

(VI)

(V)

(II)

where r = r2 - rlo s = r3 - r l, fl' = G(ml + mz), S = 151. The vector s is
known as a function of t and is independent of r. Define the functiC'n R by

(7.2) R(r, t) = Gml'23' - S-3 s · r ).

The gradient oR/or can be calculated by using ~he suggestion to Ex. 7.~ of
Chap. 2. As a result, we find that the differentIal Eq. (7.1) becomes r =
- fl',-3 r + F, with F = oR/or. .

Under the circumstance that F is of the form descrIbed, we have
oR/oq = F· or/oq for each of the quantities q selected in Sec. 6. Then Eqs.
(I)-(VI) of that section take the form

(I) . 201/ 2 _l/2 0R
a= fL aT'

It should be remembered that n is an abbreviation for fl'1/2 a-3/2 and e for
[j.LQ(1 - e2)]1/2.

A simpler set of equations can be obtained from these by using a
somewhat different set of quantities, introduced by Delaunay. Let L =
(j.LQ)1/2, H = e cos i. Then his six quantities are L, e, H, I, Cr>, n. To transfer
the preceding perturbation equations to the new variables, let R denote the
disturbing function expressed in terms of the original variables and f1l the
same function in terms of the new variables.

Clearly, oR/ol = ofA/ol. Because L = (fl'a)I/2 Eq. (I) becomes

. ofA
(I') L = aT'

\



8. AN INTRODUCTION TO LUNAR THEORY

The most highly developed part of celestial mecha?ics is the ~~e~~~
of our own moon regarded as a satellite of the earth, With the sun

bances it produces on some other planet, say the earth. Devise.a
method for determining such a mass by use of the formulas of this

section.
d · Sec. 8.)' From the following approxi­

*EXERCISE 7.4. (To be use In

mations, y 3

ll(e) ='= -;-(1 - ~2), J2(2e) ='= te2, J3(3e) ='= I~'

and the expansions obtained in Sec. 12 of Chap. 1, obtain the follow­
ing formulas, valid through terms of order e

2
:

sin u ='= (I - ~) sin I + te sin 21 + je
2

sin 3/,

~ cos u ='= (I - {~) cos I + cos 21 + ~,el cos 3/,

.E- ='= I + e cos I + e2 cos 2/,
r

!- ='= I - e cos I - e2cos 21 + e
2

cos
2

I,

:os u == -te + (I - je2) cos I + te cos 21 + le
2

cos ~/.
From these and from the relations rcosf=: a(:05 U - e), rsmf=
a(I - eZ)'!2 sin u ='= a sin u, obtain the approxlmatlOns

r f--'- _3, +(I_il.P2)cosl+tecos21+le2cos3/,-_. cos -' 'l!e ".
a

• 3 2 • 31
.!- sin f == (l - leI) sin I + te sm 21 + '8'e sm .
a

Use the last two formulas to show that

(!-) 2 cos 21 == !e! - 3e cos I

a + (1 _ !e2) cos 21 + e cos 31 + e2cos 4/,

(~_)2sin2f='= -3esin/+(I- ~e2)sin21+esin31+e2sin41.

Finally, obtain for an arbitrary angle f3 the formula

(2:-) \3 cos (2f + fJ) + 1] ='= (l + te2) - 2e cos I - t'e
2

cos 21

a+He2 cos fJ _ ge cos (fJ + I) + 3(1 - te2) cos (f3 + 21)

+ ;e cos (fJ + 3/) + 3e! cos (f3 + 4/).

disturbing mass. The modern theory is beyond the weapons available in
this book and we shall describe a very simplified approximation to the
problem. The reader is warned that the approximate problem cannot be
trusted. to give good results concerning the actual motion of the moon. The
main purpose is to provide some experience in the techniques we have
developed so far in order to draw a few qualitative conclusions.

The mathematical setting is that described at the beginning of the
preceding section with ml = earth, m2 = moon, m3 = sun. It will be sup­
posed that all motion takes place in the plane of the ecliptic, so that equa­
tions involing nand i become irrelevant. Since we are talking about the
motion of the moon relative to the earth, we fix a coordinate system in
this plane with origin at the earth. Angles will be measured from the x­
axis, positive in the direction of the moon's motion around the earth. It
will be supposed that the motion of the sun around the earth is circular and
uniform, and that the origin of time is fixed at an instant when the sun
crosses the positive x-axis. Then at the instant t the vector s from the earth
to the sun forms an angle of n't with the positive x-axis, where n' is the
mean motion of the sun. The length s of s is a constant. The angle from
the x-axis to the vector r joining the earth to the moon is 00 + f, as usual,
and the angle "0/ between rand s is (j + f - n't. Since r23 is the distance
from the moon to the sun, the cosiO( law gives

r~3 = r2 + S2 - 2rs cos ""~ = s2(1 - 2p cos "0/ + p2),

where p = rls. It will be supposed Hat p is so small that powers ofp above
the first can be ignored in the sequel,

According to Kepler's third law (see Sec. 15 of Chap. I), we have (n')2
S3 = G(m3 + ml == Gm3' Therefore the disturbing function, as given by
(7.2), becomes, d'll neglecting the mass of the earth,

R = (n's)2[(1 - 2p cos 'I/;' + p2)-1/2 - pcos'l/;'].

If we expand the first term in brackets in powers of p and drop all powers
above the second, we find that

R = (n'snl - t p2(l - 3 cos2 "0/)]

= (n's)2[1 + tp2(3 cos 2'1/;' + I»).

The first term (n's)2 of R is a constant; we drop it out since only derivatives
of R occur in the perturbation equations. Therefore

R = Hn's)2p2(3 cos 2"0/ + 1)

= tn'2 a2 (: )"[3 cos (2f + (3) + I],

where f3 = 200 - 2n't. Finally, by the concluding formula of Ex. 7.4, we
obtain the (very) approximate disturbing function

.
,)
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10!THE PERIODIC TERMS IN LUNAR THEORYSEC. 9

ci> = %(-~1~)2 11 + periodic terms.

Let k denote the constant 1 - Hn' /ii)2; it is close to 1. Then

(9.3) ci> = (I - k)ii + periodic terms.

If we replace (9.2) by

(9.4) i + (0 = ii + periodic terms,

then

Therefore.

(9.2) i + ci> = n[ I - (~') 2J + periodic terms.

The average value of the right-hand side of (9.2) obtained over a long time
interval is denoted by ii and is called the mean sidereal motion. Consisten
with Ex. 8.3, the number 27C/ii is the mean sidereal period. It is the
number .075 (years) introduced at the end of Sec. 8, and what we did then
amounts to replacing (9.1) by the further approximation

According to the calculation made in Sec. 8 of the effect on w of the secula
term R" we have approximately

(
') 2(9.1) ci> = % 71 n + periodic terms.

The corresponding calculation for the mean anomaly (see Ex. 8.2) yields

i = nr I - *( 7:)] + periodic terms.

9. THE PERIODIC TERMS IN LUNAR THEORY

cycle. Give a geometric interpretation of this time. Can you estimate
it from the present theory?

i = kii + periodic terms.

Now let 10 , Wo be the values of I and w at the instant to at which we
wish to start the integration of the perturbation equations. Define

i = 10 + kn(t - to), w= Wo + (1 - k)n(t ~ to).

These are the "main" parts of I and w due to the secular part of Rand
allowing for a general average of the periodic parts.

Recall that in the first-order perturbation theory described in the earlier
sections of this chapter, we treat the parameters (or elements) which occur
on the right-hand side of the perturbation equations as constants during
the integration. In the lunar theory we are now describing, the elements in
question are a, e, w, I. It turns out to be of advantage in integrating the

CHAP. 4
PERTURBATION THEORY104

R = t(n'a)2[(1 + te2) - 2e cos 1- t e2 cos 21

+ !ie2cos f3 - ge cos (f3 + I) + 3(1 - i e2 ) cos (f3 + 2/)

+ 3e cos (f3 + 3/) + 3e2cos (f3 + 4/»).

If this expression for R is substituted into the. p~~turbation equations
of Sec. 7, we obtain the equations governing our pnmItlve lunar theory..But
remember that the conclusions are unreliable because so many assumptlons
and approximations have been introduced. Fo: example, ~qs. (IV) and (VI)
disappear on the assumption of plane motIon. In particular, .we .cannot
obtain the well-known fact that the line of nodes regresses (that IS, n < 0).

There is another familiar phenomenon, however, that can be partly ex­
plained on the basis of (8.1). Let us consider the constant part of R alone,

namely,
R, = -l-(n'a)'(l + }(2

)

and its effect on w. According to (V) of the preceding sec:tion.

ci> = C(fL ae)-I Hr'a)2 3e + non-constant periodi~ terms.

To compute the size of the constant term, we write c = fL'!2 a '!2(l - e
2
)"2

== (fLa)'/2 so that the term becomes -Hn'2/n).

If we use the fact that the period of the sun is I year and of the moon
.075 years, we get n' = 27C, n = 27Cj.075. The constant is therefore about

.353.
Then, according to our theory, the term contributes a pos~tive rotation ~f
.353 radians per year to the major axis of the moon's orbIt. Actually thIS
is only about half of the observed motion, which requires a more elaborate

theory to explain it.

"'EXERCISE 8.1. The term R, is called the secular term and its effect on
the elements the secular effects. According to the present theory, which
elements besides ware affected by R j ?

"'EXERCISE 8.2. Ignoring all of t;le disturbing function R except the sec­
ular part, find approximatel~' the time it takes for I to increase by
27C. Show that this period, known as the anomalistic month, is the time
from one perigee passage to tf e next.

"'EXERCISE 8.3. The length of ti ne from a perigee passage to complete
a revolution of 27C is called the sidereal month. Since the major axis
rotates positively, this time is shorter than the anomalistic month.
Ignoring all terms but R, in R, estimate the difference in the two
months. Hint: compute the time it takes I + w to increase by 27C. (In
a more accurate theory, according to which n also changes, I + w

must be replaced by 1+ w + n.)

"'EXERCISE 8.4. The synodic month is the time it takes t to complete a

(8.1)



equations to replace (u and I, not by ('J", f" but by (~), 7 in .:->rder to Uke
account of the secular effect, On the other hand, a and e are ~till treated
as constants. Observe that the same effect is achieved by replacing W by
() .+ (l .. - k)fi(t ._. tal and I by I + kll(t-· tn) in the disturbing function R
I~ec (8.1 ll, a nd then treating all four clements as constants during the
integra tion.

So far we have considered only secular effecls. In order to illustrate
the dIeet of periodic terms in R, we turn our attention to a phenomenon
known as the evection. If the motion of the moon were undisturbed, 'then
rhe polar coordinate () = f -+ (JJ would increase by 27t during a period.
Another way of saying this is that f + «) - nt returns to its original value
\" hc;n ! == 27t/1I. It is reasonable to ask what happens in the case of dis­
t"d):d motion. The question takes the form: what change does f + w­
:;/ '..ndcrgo during the motion of the moon; is this change periodic?

111 order to answer the question, we start with the approximation f =
.., 2c sin I, justified in Ex. 9.1. Then if we write t; = f + w - fit, we find

:",,"t

~ 00:= (I + 2e cos I)(i + (~) - II + 2e sin I - 2e(~ cos I.

Now define WI = W - w. Since dcii/dt = (I - k)fi, we can rewrite this a~

~ = [I - 2e cos l](i + (~) - fill + 2e(l - k) cos I]

+ 2i sin / - 2eO>I cos /.

We make some further approximations which can be justified only vaguely
here. Because e and I - k are small, replace the brackets on the right by
1. The first line on the right-hand side becomes i + 0> - fi. It can be shown
that the effect of this term is small compared to what remains. So, finally,
we get the approximation

(9.5) E= 2e sin 1- 2eO>I cos I.

According to (9.3) and the definition of Wit we know that 0>1 = terms
of the periodic part of R effecting 0>. The periodic part is R - RI. There­
fore, by Eq. (V) of Sec. 7 and the approximation c = JiUi, we get

0>1 = (fUl)-1/2e-I~(R - RI).

Similarly, since R I does not involve ro, Eq. (II) gives u:.

• _ ( )-1/2 -I [8 (R R ) 8RJe - - JU1 e 8w - I - ar .
It can be shown that of all the periodic terms in R, the one that makes the
major contribution to the present problem is the evection term R2 =
~~(n'a(')2 cos {3. By definition, /3 = 2w - 2n't. Moreover, by the principle
stated earlier, we may replace w by ro + (I - k)fz(t - to) in order to treat
all the elements as constants during the integration. Therefore, we replace

'106 '.-liM, ·t
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~ - R, by .I;5(nr~er cos 2r/: where r/ = (<) - (l - k)fito + [(1 - k)fi _ n']t.
From the precedIng equatIons for WI and e, it is found that

(
n')2eWl = 145 n ne cos 2"1

and

e = J!( ~'fne sin 2"1.

These and the replacement of ~ convert (9.5) into

; (f + w - fit) = - 125 ( ~') 2 en cos (2"1 + I).

~rom this, the. desire~ change in f + w - fit can be computed by integra­
tIOn. Geome~r.lcally, It represents a displacement of position in longitude
from the positIOn ~he moon would have under ordinary Kepler motion.
T~e phenomenon IS the evection mentioned above. It was discovered by
HIpparchus, a Greek astronomer.

EXERCISE 9.1. Start with the equation

I - e cos u = (1 - e2)(l + e cos f)-I

for ~lliptic orbits and show that if e is small, we obtain the approxi­
mation f = u + e sin u. Combine this with the formula 1= u - e sin u
to justify the apprOXimation f = I + 2e sin I.

E~ERCISE 9.2. Find the period of the evection and compare its length
WIth the months described in Exs. 8.2-8.4.

EXERCISE 9.3. The term ~{n'a/ cos (/3 + 2/) occurring in the formula
(8.1) for R is known as the variation. Study its effect on ~.

\
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