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In recent years there has been a strong revival of interest in celestial
mechanics, but not much of it has been reflected in the offerings of mathe-
matics departments. The recent work of Kolmogoroff, Arnold, and J. Moser
shows that it is a field very much alive mathematically and deserves resto-
ration to the mathematics curriculum. The main purpose in writing this
book is to make available the basic mathematics underlying the subject, in
a manner suitable to this century. A secondary purpose is to lay the
groundwork for a sequel of a more advanced character.

The selection of material is based on several years of experience with
a one-term course offered to students with a background in vector analysis,
partial differentiation, and ordinary differential equations. I have found
that the first two chapters cover the major part of the term. The remainder
can be filled out by either Chapter 3 or Chapter 4, which have deliberately
been made independent of one another. Ideally, perturbation theory
should be combined with Hamilton-Jacobi theory, and their separation here
may be a just cause for complaint. But I believe that a thorough ground-
ing in each should precede their union.

1 wish to make these acknowledgements: to the Air Force Office of
Scientific Research, for a grant which enabled me to begin; to the Argonne
National Laboratory for a grant which enabled me to finish; to Miss Grace
M. Krause of the Argonne National Laboratory for her superb prepara-
tion of the manuscript; to Mr. Kerry M. Krafthefer of the Argonne Na-
tional Laboratory for his distinctive drawings and table.

HARRY POLLARD
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NOTE ON THE USE OF THIS BOOK

1. Vectors are printed in bold-face. Where possible the length of a vector is
indicated by the same letter in italic. For example the length of v is v, When
this cannot be done, the length is indicated by the customary absolute-value
symbol. Thus the length of ax b is jaxb].

2. Starred exercises are not necessarily ditficult. The star indicates an
important final result or a result to be used in the sequel. Therefore starred
exercises should not be omitted.

3. All references to formulas and exercises are to the same chapter where
they occur, unless otherwise stated.

4. The dependence of chapters is indicated by the following diagram.

3
1—->2<
4
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THZ CENTRAL FORCE PROBLEM

1. FORMULATION OF THE PROBLEM

Celestial mechanics begins with the central force problem: to describe the
motion of a particle of mass m which is attracted to a fixed center O by a
force mif(r) which is proportional to the mass and depends only on the
distance r between the particle and O. The function f will be called a /o of
attraction. It is assumed to be continuous for 0 < r < oo.

Mathematically, the problem is easy to formulate. Indicate the position
of the mass by the vector r directed from 0. According to Newton’s second
law, the motion of the particle is governed by the equation

mt = — mf(r)r’'r,

where r~'r is a unit vector directed to the position of the particle. If v denotes
the velocity vector ¥, the equation can be written as the pair

(1.1) P=v, v=—f(rr'r
Observe that the value of m is irrelevant to the equations of motion. The
problem is now this: to study the properties of pairs of vector-valued

functions r(¢), v(¢) which simultaneously satisfy the Egs. (1.1) over an

interval of time.
The special case when the law of attraction is Newton’s law of gravi-

tation is the most important. In this case f(r) = ur™?, where p is a positive
constant depending only on the units chosen and on the particular source
of attraction. The Egs. (1.1) become

1.2) f=v, V= — prr

1



2 THE CENIRAL YORUL PROULEM Chicar, 1

2. THE CONSERVATION OF ANGULAR MOMENTUM:
KEPLER'S SECOND LAW

1et us now assume that (1.1) is satisfied for some interval of time by the
pair of functions (z), ¥(r) which we write simply as r, v. From the secon
equation of the pair we conclude that

rxX v=—f(riri(xxr)=0,
since the cross-product of a vector with itself is zero. Therefore, the deriv-
ative of the vector r x v, which is r X v 4+ v X v, vanishes identically.
Hence,

r
t

[y

4) ) rxXv=c,

where ¢ is a constant vector. The vector me is called the moment of momen-
rupr and its length mc the angular momentum of the particle. We ignore
these refinements and refer to either ¢ or ¢ as the angular momentum. The
assertion (2.1) is known as the conservation of angular momentum.

An important consequence of the principle can be deduced immediately.
According to (2.1) we have c.r = 0. If ¢ £ 0, this means that r is always
perpendicular to the fixed vector ¢. Consequently, if ¢ # 0, all the motion
takes place in a fixed plane through the origin perpendicular to c.

If ¢ = 0, a little more subtlety is needed. Let u be a diiierentiabic vector
function of time and u its length. Since ¥’ = u-u, it follows that ui = u-u.
Therefore, if u 5= 0, we have

du _uid ui

Tt 2

dt u u

_(u-w)i — (u-d)u
=
u

du _(uxui)xXmnu
o

@2 dtu u ’
according to the vector formula
(a X b) X ¢ = (a-c)b — (b-c)a.
As an application of (2.2), let u = r. Then (2.2) becomes

d rXv)x exXr
@3) gr=fxxr_cxs

by (2.1). Therefore, if ¢ = 0, the vector r/r is a constant, and the motion
takes place along a fixed straight line through the origin.

In case ¢ % 0, another important consequence can be deduced from
(2.1). Introduce into the plane of motion a polar coordinate system centered
at O and forming a right-handed system with the vector c. (See Fig. 1.) Then

o ..

P
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r={rcosf, rsiné, 0} and ¢ = [0, 0, c]. A simple computation shows that
(2.1) yields r%¢ = c¢. According to the calculus, the rate at which area is
swept out by a radius vector from O is just }r*6. Therefore the particle
sweeps out area at the constant rate c/2. This fact is Kepler’s second law.

(r,8)

Figure 1

EXERCISE 2.1. Set up the equations of motion of a particle moving sub-
ject to two distinct centers of attraction, each with its own law of
attraction.

EXERCISE 2.2. Suppose that a particle subject to attraction by a fixed
center starts from rest, i. €., that at some instant # = 0 we have » =0.
Then by (2.1) ¢ = 0 and the motion is linear. Suppose, moreover, that
f(r) is positive for 0 < r < oo, Prove that the particle must collide
with the center of force in a finite length of time f,.

EXERCISE 2.3. In the preceding problem, can you tell where the particle
well be at each instant of time between O and #,? First try the case
f(r) = wr® (inverse cube law), then f(r) = pr? (inverse square law).

3. THE CONSERVATION OF ENERGY

So far we have found a vector ¢ which remains constant throughout a
particular motion. There is another constant of the motion which is of
major importance, this time a scalar quantity called the energy. To find it,
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start with the second of Egs. (1.1) and take the dot product of each side
with v. We obtain

Vev e — f(r)r '(r-v)
= —f(r)rir

= — 09
=—J0)L.
Integration of both sides yields
G.1 '=fi() + A,

where f,(r) is a function whose derivative is —/f(r) and A is a constant. The
function f,(r) is determined conventionally this way:

710 = [ fxyax

wherc? (i) a is chosen as + oo if the integral converges; (ii) a is chosen to
be 0 1{ 'the first choice leads to a divergent integral but the second does
not; (iii) a is chosen to be 1 if the first two choices fail. Thus, if f(r) is of
the form f(r) = wur=?, then @ = oo if p > Lia=0ifp<l;a=1ifp=1.
The most important case is that of Newton:
)y =pw A = pr

With the abpve convention the function — mf;(r) is known as the potential
energy and is denoted by the symbol —U. The quantity T = mv*/2 is

called the kinetic energy, and h, = mh the energy. The statement (3.1)
becomes )

3.2) T=UH+ h,
and is known as the principle of conservation of energy.

EXERCISE 31 Show_ that if f(r) = wur-?, where p > 1, then a particle
moving with negative energy cannot move indefinitely far from 0.

EXERCISE 3.2. Show that if f(r) = ur-?, then f,(r) = wp — De-rif
p1 andf,(r):,l,log:_ ifp=1.

*EXERCISE 3.3. Let a = r, b = v in the standard vector formula
(a-b)’ + (a x b)* = a?p2.
Conclude that
V=4 2

What is the physical meaning of the components 7 and ¢/rof v? Show
that the law of conservation of energy can be written

R At =27 fi(r) + h).

SEC. 4 THE INVERSE SQUARE LAW: KEPLER'S FIRST LAW
4. THE INVERSE SQUARE LAW: KEPLER'S FIRST LAW

In this section we shall assume that the particle is moving according to
Newton’s law of gravitation. The governing equations are then (2.1), which
we repeat here for convenience as
4.1) F=v, v=—prlr

It turns out that, in addition to the vector ¢, there is another important

vector which remains constant throughout the motion. It does not have a
name in astronomical literature. We shall call it the eccentric axis and denote

‘it by the symbol e. To derive it, start with the formula (2.3) and multiply

both sides by — u. Then

— ’Lgt; = ¢ X (—prrn).
According to the second of Egs. (4.1), this becomes
dr _ .
M a—t ‘;— =v X C.
Integratiop of both sides yields
r —
“4.2) ;L(e + —;—) =v X ¢,

where e is a constant of integration.

Since r-¢ = 0, it follows that e-c = 0. Hence, if ¢ 5= 0, the vectors e
and ¢ are perpendicular, so that e lics in the plane of motion. I ¢ = 0,
r/r = —e¢, so that ¢ lies along the line of motion; in this cuse the lengtl. ¢
of e is always 1. :

We shall now find the interpretation of e when ¢ - 0. Take the dot
product of both sides of (4.2) with ». Then

per+r)=r-vxe=rXve=cc
Consequently,
(4.3) cr+r=c"/u.

There are two cases. If e = 0, then r = ¢?/u, a constant. Therefore the
motion is circular. Moreover, according to the formula r*s® = F##* + ¢* of
Ex. 3.3, it follows that rv = ¢, v = u/c, so that the particle moves with
constant speed. By the law of conservation of energy, +*/2 = u/r + h.
Therefore h = — u*/2¢?, a negative number. Observe finally that 2T = U.

Suppose now that e = 0. In the plane of motion indicated by Fig. 1,
introduce the vector e as shown in Fig. 2. The fixed angle from the x-axis
to e will be denoted by w. If (r, §) represents a position Q of the particle,
the angle § — o will be denoted by f. The same position of the particle can
then be represented as (r, f) if e is used as the axis of coordinates. It follows
that e-r = er cos fand Eq. (4.3) becomes
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. In the special case f(r) = ur-?, we have found that each of the quanti-
ties ¢, e, h remains constant during the motion and is therefore determined
by its value at t = 0:

Cc = To X Vo,

e=pu"' vy X €) — ulry'r,,

h = vk + urgt.
Sinc? ¢, e, h constitute seven scalar quantities, it follows that there must be
relations among them. We have already seen that there is a relation between
c apd e, namely c-e = 0. Therefore at most six of the seven quantities can
be _mdependent. Actually there is still another relation among the seven
which reduces the number to five; it will be seen later that no further
reduction is possible.

To o‘btain the new relation, square both sides of Eg. (4.2). Since v is
perpendicular to ¢, we can replace (v x c)? by v*¢* to obtain

#2(3 + %)2 = ¢’
or
I-l«2<€2 + —f—e-r + 1> = p?c?

Replace 2 b . i
Thfn ce v* by 2h + (2u/r) and e-r by (c?/w) — r, according to Eq. (4.3).
(5.2) wi(e* — 1) = 2hc?,

Notice that this agrees with the earlier results that e = 1 if ¢ =0 and
h= —u’/2cif e =0,

Equation (5.2) has the following important consequences. If ¢ 5= 0, then
e<l,e=lore>1 according to whether the energy h is negative, zero,

or positive. If 4 0 and ¢ % 0 and « is the semi-major axis i
(see Ex, 4.1, thon ajor axis of the conic

¢3) a = ful.

From this and the energy formula #0' = (u/r) + h, we obtain these basic
formulas:

ifh>o0;

(5.4) ot = 2H ifh =

SEC. 6 ORBITS UNDER NON-NEWTONIAN ATTRACTION ]

These formulas still hold if ¢ = 0 provided we adopt (5.3) as the definition

of a; we shall do so.
EXERCISE 5.1. What can you say about the orbit if f(r) = —ur~? rather
than f(r) = pr~?? This corresponds to a repulsive force rather than

an attraction.

EXERCISE 5.2. Use (5.4) to prove that in the case of elliptical motion the
speed of the particle at each position Q is the speed it would acquire
in falling to Q from the circumference of a circle with center at O and
radius equal to the major axis of the ellipse.

*ExERCISE 5.3. The area of an ellipse is 7a*(1 — €*)'/%. We already know
that if ¢ %= 0 the particle sweeps out area at the rate c/2. Combine
these facts to show that if 0 < e < 1 the period p of a particle, that is,
the time it takes to sweep out the area once, is given by the formula
p = (2n/~/p)a** This is Kepler’s third law.

*EXERCISE 5.4. Define the moment of inertia 21 by the formula 21 = mr®.
Write r* = (r-r) and prove that

[=2T —U=T+ h =U+2h.
In the case of circular motion 7 is constant so that 2T = U, a result we
already know from Sec. 4.
EXERCISE 5.5. (Hard) Use the preceding exercise to prove that if ¢ £ 0,

h > 0, then r/|t| approaches ~/2h as |t| — oo, (The hypothesis ¢ 5= 0
rules out the possibility of a collision with the origin in a finite time.)

6. ORBITS UNDER NON-NEWTONIAN ATTRACTION

The elegant method used in Sec. 4 to obtain orbits is essentially due to
Laplace (who, however, did not have the vector concept available to him).
It is applicable specifically to Newton’s law of attraction. In the general
case another method must be used. We know that il ¢ == 0 the orbit is
linear, so we shall assume that ¢ = 0. Moreover, we assume that f(r) hus
a continuous derivative.

Let us first dispose of the case of circular motion r = r,. By the principle
of conservation of energy, v is also a constant v, so the motion is uniform,
The normal acceleration in the plane of motion is v3/r, and this must be
balanced by the attraction f(r,). Therefore, v3 = r, f(r,). Since the velocity
vector is perpendicular to the radius vector, it follows from r X v = ¢ that
rv = ¢. Hence, r,v, = c, so that ¢* = r} f(r,). On the other hand, according
to Ex. 3.3, the law of conservation of energy can be written

6.1) PR+ =2 fi(r) + H).
Since 7 = 0, we conclude that ¢? = 2r2[ fi(ro) + h]. Therefore, circular
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4.4) P Y A

( 1 4+ecosf

Consider the dotted line L in Fig. 2 drawn at a distance ¢*/pe from O,
perpendicular to e and on the side of O to which e is directed. Equation

2
(4.4), which can also be written r = e(;%é — rcosf), simply says that the

\
\\
y o(r,8) \
N\
PN\
- \L
e
£ 8
9 X
P ,
Figure 2

distance of the particle at @ from O is ¢ times its distance from L. Con-
wequently the particle moves on a conic section of eccentricity e with one focus
at Q. This is Kepler’s first law.

As (4.4) shows, the value of r is smallest when f = 0, since e > 0. There-
fore the vector e is of length equal to the eccentricity and points to the
position P at which the particle is closest to the focus.

There is some traditional terminology used by the astronomers that the
reader ought to know. The position P is called the pericenter, the angle f
the true anomaly. Various names are given to the pericenter, according to
the source of attraction at O. If the source is the sun, P is called perihelion;
if the earth, perigee; if a star, periastron. In the study of the solar system,
the x-axis of Fig. 1 is fixed by astronomical convention. In that case, o is
the amplitude of pericenter.

We return to the geometry. The word orbit will be used to describe the
set of positions occupied by the particle without any indication of the time
at which a particular position is occupied. From the theory of conics . it
follows that if 0 < e < 1 the orbit falls on an ellipse; if ¢ =1, on a

fm»mm

g
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parabola; and if e > 1, on a branch of hyperbola convex to the focus.
Remember that in each case ¢ > 0.

Since 726 = c and 6 = f, it follows that f > 0, so that the orbit is traced
out in the direction of increasing f. This is indicated by the arrows on the
curve in Fig. 2.

*EXERCHSE 4.1. Show that if 0 <<e <1 or ¢ > 1 the semi-major axis
of the corresponding conic has "ength a given by the formula

pale* - 1= .

EXERCISE 4.2, Use (4.2) to obtain the formula

pe = (v2 — ;i)r —(r-v)v.

5. RELATIONS AMONG THE CONSTANTS

We pause at this point to remind the reader of some basic facts about
differential equations. Let fi(z,,..., z,), i = 1,..., n represent n functions
with continuous first partial derivatives in some region of n-dimensional
space, and let ({,,...,&,) be a particular ‘point of this region. Then the
system of differential equations ‘

é.n 2, =fi(z, ..., 2a), i=1,...,n

will have a unique solution z,(r) defined in a neighborhood of t = 0, such
that z,(0)=¢&, i=1,...,n

Now consider the basic Egs. (1.1) with the additional assumption that
f has a continuous derivative. This includes the special cases f(r) = ur~>.
Each of the two Eqs. (1.1) stands in place of three scalar equations, so that
the pair constitutes a system of order six of the form (5.1). Specifically, let
X, y, z denote the components of r in a rectangular coordinate system and
let &, B, v denote the components of v. The equations become

X =
y=28
i=y
a = —f(ryr'x
B=—fr)ry
¥y = —f(r)r"z,

where * = x* 4+ »* 4 z2 It follows that there is a unique solution satisfy-
ing six prescribed values of x, y, z, @, B8, v at t = 0. In vector form this
says that the system (1.1) has a unique solution r(¢), v(¢) taking on prescribed
values r,, v, at time 1 = 0. These values can be prescribed arbitrarily.
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motion implies the two relations

{6.2) ¢ = r} f(ry), ¢t = 2ri[ fi(rs) + H].

Conversely, we shall show that if (6.2) holds for the value of r at some

instant of time, say ¢ = 0, then the particle moves uniformly in a circle 0°

radius r,. According to (6.1), the second of Egs. (6.2) implies that #, = 0.
We interrupt the argument at this point to obtain an important generai

formula. Starting with the equation r° ==r-r, we obtain r/ =r-v by

ditfferentiation. Another differentiation yields rF + # = (r-¥) 4 (v-v) =

{r-¥) + % But (see Ex. 3.3) v* = /* + c*r~%, 50 that rf = (r-¥) + c*r ™"

Since v = —f(r)r-'r, we have (r-¥) = —f(r)r~'r-r = —rf(r). Therefore
#F = —rf(r) 4 ¢*r*, or, finally,
{0.3) F—cr = —f(r).

We resume the argument. According to the first of Egs. (6.2), Eq. (6.3)
s the constant sotution r = r,. Morcover, since the values of rand 7 at
; == 0 are given, the uniqueness theorem described in Sec. 5 tells us that
this is the only possible solution. This completes the case of circular
motion.

In the general case it is customary to start with (6,3) and remove the

dependence on time by substitution from r20 = c. Specifically, let r = p~'.
Then # = —p~2p = —p~2p§ = —p~*p’cr* = —cp', where the prime (')

denotes differentiation with respect to 6. Hence 7 = —cp”'6 = —c*p''p".
Equation (6.3) becomes
1
" — a2 =2 1
(6.4) pl+p=2c"p f(p)-

In general, this cannot be solved for p in terms of § in any recognizable
form and we content ourselves with some special cases.
Suppose first that f(r) = pr~?, the Newtonian case. Then p"” + p = w/ct.
It follows that p has the form (u/c?) + A cosf + Bsin @ and its reciprocal
r has the form demanded by (4.4), since f= 0 — .
Another easy case is f(r) = pr~*. Then p"”" + p = pe~ip or p" + (1 —
ue=?)p = 0. The solutions of this are well known.
EXERCISE 6.1. Classify the solutions in the case f(r) = pur-? according
10 the sign of 1 — pc~% What if 1 — pc™* = 0?
EXERCISE 6.2. Show that for the direct first power law, f(r) = ur, the
orbits are ellipses with center (not focus) at the origin.
EXERCISE 6.3. If we write Eq. (6.3) in the form 7 — r6® = —f(r), what is
the physical meaning?

7. POSITION ON THE ORBIT: THE CASE h= 0

We return to the problem of motion under Newtonian attraction. It was
shown in Sec. 5 that a knowledge of initial values r,, v, determine the

SEC, 7 PUSIHHON ON THE ORBIT: THE CASE h=0 11

motion completely. In particular, these values give us ¢ and e, which by
Secs. 2 and 4 determine the orbit. But there is still something missing:
where is the particle located on its orbit at a prescribed time ¢,?

It would be desirable to answer this question by giving the position
r(¢) as some explicit recognizable function of time. This is difficult to do
directly. Instead, we adopt another procedure. We shall change from the
original time ¢ to a fictitious “time” u by a change of variable 7 = t(u). If
this change of variable is suitably chosen, it is easy to locate the particle
for a prescribed value u, of . In order to locate the particle at the real
time ¢,, it will be necessary to solve the equation #, = #(u,) for the corre-
sponding value of u,. With the choice of #(¥) made in this chapter, the
variable u is called by the astronomers the eccentric anomaly.

We start with Eq. (6.1), remembering that in the case of Newtonian
attraction the function f,(r) is u/r. Then

a.1n (rf) + ¢* = 2(ur + hr?).
It will be supposed that u is chosen in such a fashion that ri is a constant
k. Specifically, let

o {t dr
(1.2) u=k j S
where k and T will be selected later. It is remarkable that the change of

variable involves the still unknown function r(z), but this will take care of
itself, Since

rol,

.

I
S
e
I
T
kn

Eq. (7.1) becomes
(7.3) K (r') + ¢ = 2(ur + hr?),
where now the prime (') denotes differentiation with respect to w.

The treatment of this equation dépends on the sign of 4. In this section
we confine ourselves to the case # = 0. With the choice k¥’ = u, Eq. (7.3)
then reads

(1.4) 'y 07 =2

If we differentiate both sides, the result is #'r” = r'. Therefore, since '
cannot vanish over an interval (or r would be a constant!), it follows that
r"" = 1. Therefore r is a quadratic in u which we write r = }(u — u,)* + A.
Substitution into (7.4) shows that 4 = ¢*/2u. Moreover, since u is unspeci-
fied within an arbitrary constant by (7.2), we may choose u, = 0. Then

r=4(w+ —C/—:—)

According to (7.2), du/dt = k/r, or rdu = kdt. Moreover u =0 when '
t == T. Therefore
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1A "
det:L rdu
— 1 Yo ¢t
=4[ [+ 5 ),
or, because k* = u,
Ty i 4 O
NEE=T) =i + 5w

In summary,

«/u(t—T)=%;u'+§~u,
(7.5) ol
r= %(u2 + %)

Observe that, by the first equation of the pair, 7 is a strictly increasing
function of w. This means that this equation can be solved uniquely for u in
terrps of t. Call this solution u(s). Then r = L[(u(0))* + (c*/u)]. It is easily
verified that this satisfies the differential equation (7.1) when A = 0,

For the interpretation of T, it is best to separate the case ¢ % 0, and
c=0.If¢c:=0and # =0, then ¢ = 1. and we obtain for the orbit the
parabola

(1.6) po_Cln

I + cos f
Fhe smallest value of s o7 20 and s achiesed when O But the s
the \./aluf: of r when u = 0, or t == T, Therefore T is the time at which the
particle is closest to the origin; it is called the time of pericenter passage.
;t can occur either before or after the initial time ¢ = 0, but, since f> 0
it can occur only once. ,

If ¢ = 0, the equations read

(1.7 6w (t — Ty == u': Fo= bl

Therefore the time ¢t = T corresponds to collision with the origin. It
mus.t occur at some time. If T > 0, then it occurs after the initial time; the
motion after the time T is no longer governed by the original equati’ons
and we can talk about the motion only in the time interval — oo < ¢ <C T’
If T < 0, then the particle has been “emitted” from O at the time ¢ = T
and we can speak of the motion only in the interval T < t < oo,

To locate the position of the particle at time ¢, given r, and v,, we pro-
ceed as follows. By the second of Eqs. (7.5), F = uit = ukr~'. ’l"herefore
ri = (r-v) = ~/ wu. Then the value u, at t = 0 is given by ~/ 4y = (r,- Vo)
Now let t = 0, u = u, in the first of Eqs. (7.5). This determines 7. In grdner'
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to find r for a given value of ¢ we work backwards. Solve the first of Egs.

(7.5) for u = () and substitute into the second.
There are now two cases. If ¢ = 0, then this knowledge of r determines

the position completely since the line ¢ containing the motion is known.
On the other hand, if ¢ # 0, it follows from (7.6) that there are two possi-
ble values of f for each value of r. It is clear that we must take f positive
ift > T, fnegative t < T alternatively, f>0 if >0, £ <0 if u<O.
The coordinates (r, f) then locate the particle completely.
ExERCISE 7.1. There is a standard formula from algebra for solving the
cubic in (7.5) for u = u(t). Write out the solution explicitly.
exERCISE 7.2. Excluding the cases of collision, show that if h = 0, then
rl - (§w)'? as i — oo Compare this with the corresponding
result in case & > 0. (See Ex. 5.5.)
EXERCISE 7.3. Show that u = (c/~/ n)tan f/2, thus relating the two
anomalies in the case ¢ = 0. Hint: equate r as given by (7.5) and by
(7.6).

8. POSITION ON THE ORBIT: THE CASE h+#0

If h = O, there are these possible motions: linear if ¢ =0, hyperbolic if
¢#0, h>0,and ellipticif c % 0, h < 0. We now tura to the problem of

lacation on the orbit at a prescribed time f.
Omice apa we st wath the B o/ O with the independent variable o

delined by (7.2). This time we choose LAY 21hl, vr according o (00
k' w/a. On division by &7, Fq. (7.3) becomes

'y + ‘15 = 2ar + o(h)r",
where o(h) = 1if h>0, o(h) = —1 if h<0. Add o(i)a’ to both sides
and use the Tact that & /a wle’ Dalh), as in (5.2). We obliin

(') + a’elo(h) = a(h)la + o(h)r}.
Now define a new function p(u) by
8.1) eap = a + o(h)r.
This converts the preceding equation for /' into .
(p'y — a(h)p* = —o(h).

It is easily verifiea that if we rule out the “singular” solutions p = 41 the
equation is satisfied by p = cosh (u + k,) if 1> 0 and p = cos(u + k.) if
h << 0. According to (7.2), where the choice of T is not yet specified we are

free to choose k, and k,. Let them be zero. Then, by (8.1), we obtain
- = alecoshu — 1) if h > 0 and r = a(1 — ecosu) if h < 0. According



14 THE CENTRAL FORCE PROBLEM CHAP. 1

to (7.2), we have kdt = rdu. Since u =0 when t =T, we can integrate
both sides to obtain k(t — T) = [ rdu. Substituting for r each of the func-

tions just obtained we get the parametric pairs

r=a(ecoshuy — 1)

(8.2) if h >0,
n(t — T)=esinhu—u
and
r=a(l — ecosu)
(82 if h < 0.

<
3

nt—T)=u—esinu

~he coefficient n is defined by n = k/a or
(R4) n=p"a?*
ard is called the mean motion. Observe that int
n = 2n/p, where p is the period (see Ex. 5.3), so t
{requency.

Observe that if u = 0, then ¢
equation of the orbit, namely

~ _ ae —1]
(8.5) Fr=1fecosf

rs
that if ¢ 70, T is a time of pericenter passage. On the other hand, if ¢ =0,
then e = 1, so that r = 0 and T is a time of collision with or emission

from the origin.
From this point
is done in Secs. 9 and 10.
EXERCKE 8.1, Show from the Egs. (8.2) that if /> 0, thenas |1} > o0
the ratio r/t approaches 2/, provided that the value r= 0 is not
reached at a finite value of 7. This gives and alternative solution of
Ex, 5.5.
EXERCISE 8.2. Show from the formula r

¢ == 0, the unit vector r/r approaches a
that e-1 = —1. Then, according to the formula

he case of elliptic motion
hat » is simply the

= T and r = ale — 1]. It follows from the

on it is well to separate the cases i1 > 0 and h < 0. This

+er=¢ n that if 1> 0,
limit vectorias t-— oo and

. exr
ule X €)= 'V — p—r—

easily derived from (4.2), the vector v also approaches a limit V. What
is the length of V?

*ExeRCISE 8.3. By matching each of Egs. (8.2) and (
wise, obtain these formulas connecting true and ecc

8.3) with (8.5) pair-
entric anomalies:

o o2 5,
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tani:(l‘*‘@)“?tanhl h>0

2 l—e 2’
tan % = (}—i—e>m tan —’“, h<O0.
—e 2
*EXERCISE 8.4. Show that for each value of ¢ each of the equations
n(t — T) = esinhu — u, e=1

0<e<1

has a unique solution u. They are known as Kepler's equations.

n(t — T) =u — esinuy,

9. POSITION ON THE ORBIT: THE CASE h > 0

We start with the Eqgs. (8.2), which we reproduce here as

9.1) r = a(e cosh u — 1)
and
(9.2) n(t — T)=esinhuy — u.

T .
]le ﬁISt Ste]) 1S [he dCtCI mination Of 7 flonl I aﬂd Vo Stalt w
0 0 lng lth

rv=rsrt=rr'u= Mep=t — — -
ri=rr'u = rr'krt = kr' = ~/uaesinh u,

we see that the value u, of v at t = 0 is given by (r,-v,) = ~/naesinh
Now let t = 0 in (9.2) and we find that T is given by — nT = e sinh y _“o~
Remember tha. if ¢ == 0, then time T corresponds to a collision or emi.:siouo:
hence (9.2) is valid only if ¢+ < T in the first case and ¢ > T in the seconlcll’
Now to determine the location at a time ¢, we must solve (9.2) for ,
and then substitute into (9.1) to obtain the corresponding valuc;, of r 11:'
¢ == 0 the motion is linear and the location is complete, If ¢ % 0 there.a
two possible values of f which satisfy *

, o ale’ = 1)
I +ecosf’

Clearly, we must choose f> 0if 1 > T and f<0if t < T.

' The qu.antity ! = n(t — T) is known as the mean anomaly. If ¢ is given
!is d-etermmed and the main problem in the preceding computation is thé
solution of / = e sinh v — u for «. A solution for the function u = u(/) in
some r'ecognizable form is lacking, and the problem is usually treated as a
num.erncal one. A simple procedure is this. For the given value of /, plot
the line y = / 4 u and the curve y = e sinh u. Then their intersection ;/ields
a value u, which, because of the roughness of method, will generally b
first approximation to the answer. , yoes

Improved approximations can be obtained by Newton’s method, as
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follows. Let y = I + u — esinhu. We seek the value of u for which y
vanishes, starting with the approximation = u,. Draw the tangent to the
curve at u, and find where this tangent hits the y-axis. This gives an
improved value u, and the method can be repeated. Analytically, if' u, is
the result of » successive uses of the method, then

[+ u, esinhu, ,

Unat = Uy |+ —
el T T Tecoshu, — 1

EXERCISE 9.1. Solve the equation
1.667 = 2sinhu — u

numerically.

10. POSITION ON THE ORBIT: THE CASE h< 0

The parametric equations in the case of negative energy read

(10.1) r = a(l — ecosu),
and
(10.2) l=u—esinu,

where / is the mean anomaly n(t — T).

The quantity « has an important geometric meaning if ¢ 7= 0. In fact,
in most treatments of the subject, u is introduced by its geometric inter-
pretation rather than as an analytical device. The motivation for following
the procedure we have adopted is the fact that in the three-body problem
to be discussed later an analogue of (7.2} has important significance,
whereas the geometric meaning of u will be lost.

To describe the geometry, vonsider the ellipse of Fig. 3, which corre-
sponds to an orbit. The center of attraction is O, Pis the pericenter, and
C is the center of the ellipse. The arrow indicates the direction of motion.
Let Q be a position of the particle when the true anomaly is f. Project Q
to that point S of the circle for which SQ is perpendicular to CP. Then
the angle PCS is u. The proof follows from (10.1) and is left to, the reader.

Observe that as Q moves around the ellipse, as indicated by the arrow,
u and feach change by 27 every time Q goes through pericenter, As in
the earlier cases, we must determine 7. Since the particle goes through P
periodically, T is not uniquely determined by r,, v,. We shall agree,
however, to choose T as follows if ¢ % 0. If at t = 0, f; > 0, that is, if the
particle is on the upper half of the ellipse, then T is the first time before
t = 0 that the particle went through P. On the other hand, if f; < 0, then

*Fpr more about this subject consult P. Herget. The Computation of Orbits, private-
ly printed, Cincinnati, Ohio, 1948.

e AR
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Figure 3

T is the first time after 7 = O that the particle will go through pericenter.
Analytically the computation goes this way. Since

; - ¢
rov o= sf o= o= or ke = J’; r

(10.3)

= A pae sinu,

it follows that y, must satisfy r,-v, = ~/paesin u,. In addition, 1 the
interval — 7 <* u =i m there are, in general, exactly two values of u, which
satisfy ro = a(l — e cos uy), each the negative of the other. But of thuse
only one can satisfy the preceding relation involving r,-v,. Choose that
one to be the value to be substituted into — a7 = uy — ¢ sin .

If ¢ = 0, precisely the same argument will yield a value of T, bui the
geometric interpretation is altered. Since ry-v, = FoFe, the choice makes
T>0iffp<0and T < 0if 74 > 0.

From now on the procedure is the same as in the cases k4 == 0. The main
problem is the solution of Kepler’s equation (10.2). That can be accom-
plished numerically as in the case of positive energy, but a simplification
should be observed. The equation is unchanged if we simultancously add
or subtract any multiple of 2z to both / and u. Therefore, when / is given,
add or subtract a multiple of 2x to bring it into the range — =l=n
Moreover, the equation is unchanged if / and u are simultaneously replaced
by — /and — u, respectively. This means that u is an odd function of /
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and it is enough to solve the equation when 0<<!<wm Whenl/=0,u=20
and when [ = =, u = z. Therefore, the problem is reduced. to the ranze
0 < 1 < x 1t is clear from the graph of / against u (see Fig. 4) that tie

values of  also lie in the range 0 < wu < 7.

{,0)

I

Figure 4

If the eccentricity is in the range 0 < e < 1, there exist analytic solu-
tions of the problem. We defer the discussion of Sec. 12.

*exgRCISE 10.1. Prove that if' 0 < e < 1, the function 1.4(1) dcﬁr}ed by
(10.2) has the property that (/) — / is periodic of perfod '27r in l, is
odd, vanishesat [ =0,l=m and has a continuous derivative. There-

fore, it may be expanded in a uniformly convergent Fourier series

u(l) — 1 = 3, un sin nl.

n=1

Prove that
=2 cos n(u — e sin u)du.

U, = —

nthJo

*exERCISE 10.2. Let Q,, Q1 be two positions on an elliptic orbit, and let
u,, u, be the corresponding eccentric anomalies. Assume u, > u,. Prove
that the distance 0, Q; is 2asin asin 3, where @ = }(u, — u,) and 8
is defined by cos 8 = e cos §(u, + U), 0 < B < . ’
EXERCISE 10,3, Prove Lambert’s theorem, which says tpgt for an elliptic
orbit the time occupied in moving from onc pn.snmn to ur‘m‘lhc‘r
depends only on the sum of the distances from O of the two positions,

cnr s
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and on the length of the chord joining the positions. (This will be
proved in Sec. 11, but try it now, using Ex. 10.2.)

11. DETERMINATION OF THE PATH OF A PARTICLE

In the preceding theory we have solved the problem of the determination
of the motion of a particle moving under the inverse square law f(r) = ur—?
on the assumption that r, and v, are known at some time ¢ = 0. In practice,
r, and v, cannot be determined directly, so the problem arises of the deter-
mination of the motion when other types of data are given. We shall be
content with one example, highly idealized for the sake of illustration. The
realistic problems are treated definitively in Herget’s book mentioned at
the end of Sec. 9.

Suppose the center of attraction is the center of the earth, regarded as
a point mass, and that the particle is an artificial satellite moving in elliptic
motion. Its positions r, and r, are observed in succession at times 7 units
apart, It will be assumed that the angle g swept out by the radius vector r
in moving from r, to r, is small enough so that the area caught between
the chord joining the observed positions and the orbit itself does not contain
0. It may, however, contain the “empty” focus F, that is, the focus which
is not the center of attraction. This is illustrated in Fig. 5 by the shaded
regions,

The plane of motion is determined by r, and r,. Let e be the (unknown)
eccentric axis and f the true anomaly measured from e. Then the conic has
the equation ’

p = all—e)

I 4 ecos f~

Suppose now that a has been found by some means. We shall show how
to find the remaining constants. Let f, be the true anomaly of the first
position. Then f, + g is the anomaly of the second. Hence, we have the
relations

a(l — )
I+ ecos(fo+g)
a(l — é%)
1 4+ ecos fy
From these, the unknowns e and f, can be determined. This locates the
eccentric axis, which is forward of r, by the angle — f, if f; < 0, and
back of it by f; if f, > 0. The orbit is now completely determined.

However, position on the orbit is not. For this we need to know v, the

velocity vector corresponding to r,. For then the problem becomes the

ry o=
(11.1)

ry =
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Figure 5

initial condition problem discussed in the earlier sections. Now the com-
ponents qf Vo are £, in the direction r,, and ¢/r, perpendicular to it inthe
direction of motion (see Ex. 3.3). So all we need are the values of 7, and c.
The latter can be found from ¢ = pa(l — e?), the former from

2, ( 2 1 )

F _— = = —

o + ’_g M o 2 .,
where 7, > 0if f, > Oand ¢, < 0if f, < 0.

There remains the determination of ¢ whose value was assumed to be

known in the preceding discussion. If the time + between observations were
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a period, then a could be found from Kepler’s third law. But 7 is less than
a period and another method must be found. The key is Lambert’s theorem
anticipated in Ex. 10.3. ‘

Let u,, u, be the eccentric anomalies at the two positions, where
—r<uyy<m, —n<wu=mn Then r =a(l —ecosu), ro = a(l —
e cos u,) and

ry + ro = 2afl — e cos $(u; — uo) €0s §(us + Ug)l.

Therefore, using the notation of Ex. 10.2, ry + r, = 2a(l — cos aco§ A).
Moreover, the distance p between the positions is given by p = 2asina
sin 8. Therefore
ro+ ro+ p = 2a[l — cos(a + B)] = 4asin 24(a + B),
r+ ro — p = 2a[l — cos(a — B)] = 4asin 24(a — B).
Since n(t — T) = u — esin u gives the eccentric anomaly at time ¢, it
follows that the elapsed time r between observations is given by

nr = (u; — u,) — e{sin u, — sin ;)
= (u; — up) — 2e sin F(u; — o) cos (u; + o)
=2« — 2sina cos 8.
Observe that p is known because ry, r, and the angle g between the
position vectors is known. In fact, by the cosine law pP=ri—2rrcosg +

#, Insummary, let e = a + B8, § = 8 — «, and replace »n by its value
p'*a~** Then we have three equations

4aSin2—§—=rl+ro+p,

4asin2—§—=r, +ro+ p,

w7 = a**[e — 8§ — (sin ¢ — sin )},

for the unknowns ¢, J, a. If e and & can be found from the first two, their
values can be substituted into the third, giving one equation for the deter-
mination of q. '

There is a difficulty here because the solutions for ¢ and & are not unique.
Since ~r <uyy=7m, — 7 <u <mand y, < u;, we know that 0 < o < .
Also, 0 < B8 < m by its definition. Therefore 0 < ¢ < 2x. Similarly,
— 7 < 8 < &, Hence, if (e, d,) is the smallest pair of positive angles
satisfying the equations for € and &, the remaining pairs are (2w — ¢, 81,
(e1, — 8,) and 2x — ¢;,, — §,). It turns out that the last two cases are
excluded by our assumption that the shaded areas of Fig. 5 do not contain
O. This is discussed by H. C. Plummer.*

* An Introductory Treatise on Dynamical Astronomy, New York: Dover Publications,
1960, pp. 51-52.
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He shows also that the proper choice of € is €, if the shaded area does
not contain F, otherwise it is 27 — €. Therefore the equation for a is

pMir = a*[e;, — 8, — (sine, — sin 81

in the first case, and
pir = a*2r — ¢ — & + (sine + sin 8,)]

in the second. .
1t follows, therefore, that under the given conditions, two orbits satisfy

the given data.
exercise 11.1. Show how Egs. (11.1) determine e and f.

12. EXPANSIONS IN ELLIPTIC MOTION

We have already seen in Ex. 10.1 that in case 0 < e < 1 Kepler’s equation
(12.1) =y — esinu

has a solution which permits expansion of u(/) —/ ina uniformly conver-
gent sine series

(12.2) u() = 1= 3 upsinnl
According to the standard formula for the coefficients of a sine series,

_ 2 e
y = = L [u(l) — 1]sin nldl

To evaluate the integral, write this as

e 2 (Tt —
ty = — = L [u(l) — I1d cos nl

and integrate by parts to obtain
= = | cos mldfu(h) — 1
TnJso

2 L8 . -g_ k4
=1 L cos nldu(l) — = L cos nldl

2
=1 _[: cos nldu(l).

Now let I = y — e sin u, according to (12.1). The limits of integration are
unchanged, so that
Uy = 2 % cos n(u — e sin u)du.
nnJo

The Bessel functions J,(x) are well-known in many parts of mathematics

o Pt A7 Vi St e s 4
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and can be defined in a variety of equivalent ways. For .our purpose this
one is best:

_1f ,
Ja(x) = =) cos (nu — » sinu)du.
It follows that u, = (2/n)J,(ne) and Lq. (12.2) takes the form
u=1+23 n"J,(ne) sinnl
so that by (12.1) once again,

esiny = 2 Zl » =V, (ne) sin nl.
n=

These expansions have many important consequences, including for-
mulas for the position of the particle. A rigorous treatment is given by A.
Wintner.*

Here we give only one formal consequence of the preceding theorem.

According to (12.1), dl/du = 1 — e cos u = r/a. Therefore, if we dif-
ferentiate the last series with respect to / we obtain

(ecosu) £ = 221 J,.(né) cos nl.
Since ecosu = 1 — (r/a),
£ = 1423 Ju(ne) cos
EXERCISE 12 1. Give a proof of the last formula starting with

(1 —ecosu)™ = % + i:c” cos nl,

where

_2 (" .
c,,—;Jlo(l e cos u)~' cos nldl!

= 2 J“ cos nldu.
T

0

13. ELEMENTS OF AN ORBIT

In the preceding treatment of the non-linear case ¢ % 0, the coordinate
system used is indeterminate in one respect. In the plane of motion perpendi-
cular to c (see Figs. 1 and 2), a system of axes x, y is installed to form a
right-handed coordinate system with respect to ¢. Since r*d = ¢, the motion
is in the direction of increasing . The orbit is completely determined by

* The Analytical Foundations of Celestial Mechanics, Princeton University Press,
1947, pp. 204-22.
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¢, e and position on it by T, time of pericenter passage. Alternatively, we
may say that once the x-axis is in place everything is determined by the
quantities

if e,
3.1 ,{a ¢

. }w,T.
cife=1,

Now suppose, as is the case in practice, that a prescribed coordinate
system X, Y, Z is given with its origin at O. The problem is now that of
describing the motion in the prescribed system. Such a system is illustrated
in Fig. 6, along with the position of the vector ¢. What must be done is to

Z

Figure 6

find a unique prescription for the x-axis. Then points in the x, v, ¢ coordi-
nate system can be described in the X, Y, Z system.

If c falls on the positive Z-axis, it is reasonable to choose the x-axis of
Fig. 2 to fall along X; and if ¢ falls on the negative Z-axis, it is reasonable
to choose the x-axis to fall along Y in order to preserve the right-handed
orientation.

Otherwise the plane of motion is determined by 7, the angle from Z to
¢, and by the line of intersection of that plane with the X Y-plane. The

e
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angle i is called the angle of inclination, or simply the inclination, and the
line, shown dotted in Fig. 6, the line of nodes.

It is now customary to choose the x-axis in the plane of motion as
follows. First exclude that rare case of non-elliptic motion in which the
dotted line falls along the axis of the conic. Then the orbit will cut twice
through the line of nodes, once on its way “up,” the other on the way down.
Let S be the point at which the particle cuts on its upward journey. S is
called the ascending node, and OS is chosen as the positive x-axis. The
angle XOS, measured counterclockwise as seen from the positive Z-axis,
is called the longitude of the ascending node. The angles i and Q accomplish
the purpose of fixing the plane of motion. Therefore they, in conjunction
wit 1 the numbers listed in (13.1), determine the motion completely. It is
customary to use in place of w the sum @ = Q + o, called the longitude of
pericenter. Except for the rare cases just excluded, the orbit and position
on it are then completely determined by the six numbers, called the elements
of the orbit: )
alfeil,}w; T

(13.2) Qe {c ife=1,
The first two determine the plane of motion, the next three the orbit in the
plane, the last the position of the mass particle on that orbit.
EXERCISE 13.1. Find formulas for changing the coordinates of the
particle in its plane of motion to coordinates in the X' YZ system.

14. THE TWO-BODY PROBLEM

Once the solution of the central force problem has been achieved, it is
possible to solve what appears at first sight to be a more complicated
problem: to describe the motion of a system of two mass particles moving
according to their mutual gravitational attraction. This is known as the
two-body problem, although the mune nwo~particle problem would be a more
accurate description.*

Let O represent a fixed point in the space of motion (see Fig. 7), let
my, m, denote the masses of the two particles, r,, r, their positions, and r
the distance between them. Clearly, r = |r, — 1, According to Newton’s
law of universal gravitation, the force of attraction between the particles
is Gmymyr~*, where G is a constant depending solely on the choice of units.
The differential equations are then

" Gmm.ty — 1
mr, = ‘-—‘ﬁ““l_ S LY
(14.1) T
' . Gmymr, —1
myt, = ._..Z__'..‘___z’

r r
*The two-body problem for finite bodies is unsolved.
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ny

Figure 7

and it is assumed that initial values of t,, ry, Ty, I, are given.

It is possible to reduce the problem to the central force problex.n.by the
following procedure, called the reduction to relative coordinates. Divide the
ficst of Egs. (14.1) by my, the second by m, and subtract the first from the
second. If r denotes r; — Iy we find that
(14.2) F= —prr, = G(m + ms).

Clearly, initial values of and v are known fr?m the corresponding values
for the original system (14.1). But(i4.2)is pre_cxsely the cgntral force problem
with a special choice of p, and all the preceding theory 1s applicable. Or')ce
r is determined, so is the right-hand side of each Eq. (_14.1), from wl_nc‘h
both r, and r; can be obtained. In summary, each particle moves as 1f' it
were a unit mass attracted to a fixed center located at the osher mass, with
u = G(my + ms). The orbit of each, as seen from the other, is called a ;ela-
tive orbit. Equation (14.2) is uncha;ng%d if T 11s replaced by — r. Therefore,
ive-orbits are geometrically identical. ‘ '
the .:erlx?)ttll:,:ro;?;?edureg, called the reduction to barycentric coordmate;, is
also important. First add Eqgs. (14.1) togethgr as they stand. Then m ¥ +
¥, = 0. This has an important interpretation. Let
- m ¥, + mpTs
¢ my + ms

the center of mass O’ of the two particles.

denote the position vector of = 0. It follows

Clearly it lies on the line joining them (see Fig. 7). Then f.
that
(14.3) r,=at+Db,

where a and b are constant vectors determined by the initial condltlonsg‘
This gives the principle of conservation of linear r.nomentum: the celr:elr 0

mass moves in a straight line with uniform vglocxty. The system (14.1) 1;
of order twelve (two vector equations make six sca.lar equations, and eac}:l

is of the second order). The vectors & and b provide six constants of the
motion, which leaves six more to be accounted for.
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To discover the other six, we move the origin of coordinates to the
center of mass. This means that in (14.1) we replace r, by r, — r, and r, by
r, — r,. Since ¥, = 0, the Eqgs. (14.1) remain unaltered by the change, and
we may suppose from this point on that the origin is fixed at O’, the center
of mass. O itself moves according to (14.3) and we are now studying the
motion of m; and m, relative to O’, which we now rename O. r, and r; are
positions relative to the center of mass.

We now proceed in this way. Let r, and r, denote the lengths of r, and
13, respectively. Then

(14.4) r=ry+ry

This enables us to rewrite (14.1) as a pair of equations which are formally
independent of one another, namely:

b= —(GmM-Hrin,
b = —(GmiM-Y)ry’r,.
Actually one of these suffices since m,r, + m,r, = 0. Since each is of the
form (1.1), with a special value of u, we have accounted for six more con-
stants, namely the elements of either orbit relative to the center of mass.
The conclusion is that the center of mass moves uniformly and each of
the particles moves with respect to that center of mass as if a fictitious force
of attraction were located there with p= GmiM~* for the first mass,
p = GmiM~* for the second.
In what follows, we suppose the origin fixed at the center of mass. The
potential energy of the system is defined to be — U*, where

myry = myr,, mr, = myTy =0,

(14.5)

(14.6) U* = Gmum,r,
and the kinetic energy T* is defned to be
(14.7) T* = § (mvi + myvi),

where v, = #, and v, = t,. Now let us examine each of the Eqgs. (14.5) as if
it corresponds to a central force problem. According to (3.1), each corre-
sponds to a constant total “energy” defined, respectively, by

hh=imv?— GmmiM*ri'=T,— U,
and

hy = L mpvt — GmemiM 2r;' =T, — U,
Using (14.4), we can conclude that

T*=T,+ T, *=U,+ U,

Moreover,

Therefore the various energies (kinetic, potential, total) are split between
the masses m, and m, in the ratio m,/m,.
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EXERCISE 14.1. The shape of an orbit in the central force problem is
determined by the sign of A Prove from this that in the two-body
problem the orbit of each mass, relative to the center of mass, is the
same kind of conic for each, although the eccentricities may differ.

*EXERCISE 14.2, Starting with Eq. (14.2) for the relative motion of two
particles, study the behavior of r at an instant of collision. Notice that
(7.1) applies with ¢ = 0, u = G(m, + m,), so that r/* = 2(u+ hr). Since
r— 0 at a collision we have ri*— 2u when 7 — ¢, the time of eollision.
This is independent of the sign o " 4. Conclude that |#|r'/? — /2y and
hence that rlt — 1,|7* —(9/2 p)! *as t — t.. :

15. THE SOLAR SYSTEM

The real solar system is very complicated. Mainly tor the purpose of
illustrating the preceding theory, we describe a simplified solar system. It
consists of ten particles, one of which, the sun, carries most of the total
mass. The other nine are planers. Since most of the mass is in the sun, it
will be supposed that each of the planets moves independently of the others
and is acted on only by the sun. The result is that we have nine inde-
pendent two-body systems each consisting of the sun and one planet.
Motion will be discussed relative to the sun, in accordapce with the first
part of Sec. 14. Then each planet is governed by Eq. (14.2), with
p = G(ms + m;), m, being the mass of the sun and m, that of the planet.
Consistent with this, each planet moves in an ellipse with the sun at one
focus. Let n, and a, denote the mean motion and the semi-major axis,
respectively. Then, according to Kepler’s third law (8.8) n2a} = G(m, + m,).
It follows that for two distinct planets p and g we have the law

15.1 mpay _ 1+ my/m,
( ) Nqedq 1+ m,/m,

Since m; is very large compared to m, and m,, the ratio on the right-hand
side is very close to 1. Therefore, n%a} is almost (but not quite) the same
for each of the planets. This is the original form of Kepler’s third law.

To describe the actual orbits of the planet, it is customary to list the
elements relative to the following coordinate system. (See Fig. 8, which is
a special example of Fig. 6.) The origin is taken as the sun, the plane of
the earth’s orbit is the X' Y-plane. This orbit is known as the ecliptic, the
XY-plane as the plane of the ecliptic. The X-axis is directed towards a point
among the stars known as the vernal equinox. A precise definition can be
found in the textbooks on astronomy. All that matters for our purpose is
that it is to be regarded as fixed. Each orbit is then defined by its elements
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Eorth
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Figure 8

i, ©, which give the plane of motion; a, e, @, which describe the conic in
that plane; ond position on the orbit can be found from T, the date of
perihelion passage.

We append a table of the elements of the nine major planets. In add.-
tion, we include the period p (measured in days) and the mass M (relative
to the earth, which is taken to be of mass 1), Distance is measured in
astronomical units, where one unit is the length of the semi-major axis of
the earth. Time of perihelion passage T is the first date of this event after
December 31,1899, Angles are given in degrees.

16. DISTURBED MOTION

We return to the problem of central attraction according to the inverse
square law. The governing differential equation is ¥ = —pur~°r. Suppose
that in addition to the central force, the moving particle is subjected to an
additioral force. This may be due to the attraction of some other body, to
air resistance, or any other cause. The equation becomes

(16.1) V=F=—w3r+F
We shall call the motion subject to the extra force disturbed, and the

motion with F = O undisturbed.
Suppose that the particle is moving subject to the disturbing force
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which at some instant ¢ is suddenly wiped out. Let r(), v(f) represent the
position and velocity at that instant. From then on the particle will move
according to the theory described earlier in the chapter. In particular, we
can define the vectors c, e and the time of pericenter passage T just as
before, regarding r(.) and v(z) as the initial data. But c and e are dependent
on the instant ¢ at which F is wiped out. They are, therefore, functions of ¢.

At each instant ¢ during the disturbed motion we can look at the particle
in two ways: it is moving on its real orbit, or it is about to move on its
undisturbed orbit, called the osculatiig orbit. With this as the clue, we are
going to study the real orbit by findi ig how the undisturbed orbit changes
with time. In other words, we shall sce how ¢, e and T change with time.
Since at each instant of time these quantities determine the elements of the
undisturbed orbit, this will enable 1s to find how the elements of the
undisturbed orbit change with time.

We shall start with the definition ¢ = r X v, where r and v are the
position and velocity on the disturbed orbit, so that ¢ depends on ¢. Then
é=r X ¥, or by (16.1),

(16.2) =rX(—urr+F)=rxF,

sincer X r=0.
We define the vector e by the equation

(16.3) ,L(; + e> =vxe
Since e is a function of time we can conclude that

/.L(g-t%+'é)=€'xc+v><é.

Now replace v according to (16.1), ¢ accord’ng to (16.2) and (d/df)(r/r)
according to (2.3). Then

(16.4) pe=Fxc+vx(rxF)

Let ¢ be an instant of time at which ¢ # 0 and ¢ = 0 and let f be the
angle from e to r. Then f is the true anomaly of the particle regarded as
being on its undisturbed orbit at that instant.

We introduce a coordinate system at the instant ¢ Its origin is O and
the axes are ¢, r and a where a is defined by a = ¢ x r. (See Fig. 9.)
Clearly

(16.5) a=¢c¢xr, re=rxa, dr=axe
The vector v lies in the plane perpendicular to ¢, so that
(16.6) = Ar + Ba.

We proceed to compute 4 and B. We havec =1 X v=r X (Ar + Ba) =
A(r x 1) 4+ B(r x &), so that, by (16.5), ¢ = Br’c or B = 1/r*. Also by
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C
a=¢xr
e !
r )
Figure 9

(16.6), r-v = Ar-r = Ar* since a-r = 0. To finish the calculation of 4 we
note thate-a = ea cos (£ + 90°). Also & = cr. Therefore e- o = —ecr sin f.
Since e-r = er cos f, it follows on taking the dot product of both sides of
(16.6) with e that e-v = Aer cos f — Becr sin . But according to (16.3),
r-v + r(e-v) = 0. Therefore,
Ar* =r1-v = —r(e-v)
= —Aer’ cos f + Becr®sin f.

But Br* = 1. Tt follows that Ar*(1 + e €os f) = ec sin f. Since, at the instant
Lr=(c*/p)(1 + ecos f)~!, we get A = per~'c~'sin f,

Substitute from (16.6) into (16.4) to get rid of v. Using the fact that
Br =1 and expanding the triple products, we find that
(16.7) #=F x ¢ — Ar’F + [AF-r} + r*(F-a)lr.

We interrupt with an exercise.

*E).(ERCISE 16.1. Write F in terms of its components F,, F,, F, in the
direction of the coordinate axes, that is, F= F.c™'¢+ F,r'r +
F.a'a. Show that the basic equations (16.2) and (16.7) become,
respectively,

(16.8) ¢=rc'Foe— ' Fa

and
(16.9) pé = 2cr'F,r — (r'F, + Arc ' F)a — Aric ' Fe,
where, as before, 4 = per-'c-! sin f.

D R A YK
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Dot multiply both sides of (16.8) by ¢ to obtain
(16.10) ¢ = rF,.

17. DISTURBED MOTION: VARIATION OF THE ELEMENTS

Now let X, Y, Z be a coordinate system, as described in Sec. 13. We wish
to determine how the disturbed motion looks in this coordinate system. At
each instant of time we shall regard the particle as being on its undisturbed
orhit with the associated constants /, 0, w e, ¢, T and ask how these vary
w th the time as the particle moves through its successive undisturbed

01 DIts,
We already know from (16.10) that
(17.1) ¢ =rF,.

Now let i, j, k denote unit vectors in the X, Y, Z directions (see Fig. 10}

Figure 10

and let the line of nodes be directed along m, where n =k X c. Clearly,
n=kesini = csini. Also, because & == ¢ X r we know that k-a = k-
(exr=kxXecr=nr=nrcos(o-+ f) = crsinicos(w + f).

We start again with ¢-k = ck cos i = ¢ cos i, 50 that, according to (17.1),
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. , .o.di
&k =rF,cosi— csmta—t.

From (16.8) and our computation of k-a, we get
¢k = re-'Foecosi — ¢ Foersinicos (o + f).
From the last two equations it follows that

(17.2) g{ = rc='F, cos (o + f).

We turn to the computation of é. According to Fig. 9, we knqw that
o-e == aecos (f+ 90°) = —rcesin f. Now dot multiply both sides of
(16.9) by e to obtain

peé = 2cr“Fa(cTi" - r) —~ (r'F, + Arc™' F)(— reesin f).

= ceF, sin f + ce(1 + ecos f)~' Fa(e + 2cos [+ ecos’ f),

or
peé = F,sinf + Fa(e + 2cosf+ecos’ f)(1 + ecos f)~ .
Now — j-¢ =1 x k-e =i-k X ¢ = i-nso that

(17.3) — jee = csinicos (.

Also, as the reader may demonstrate,
(17.4) a-j=rc[—sin(w + f)sin Q2 + cgs(w + ) cos Q cos i].
Therefore, if we take the dot product of both sides of (16.8) with j, the

result is
j-& = —rF,sinicos{)

+rF,sin(w + f)sin
—rF,cos (w + f)cos ) cos i,
which, according to (17.1) and (17.2), may also be written
— j-&=¢sinicos Q) — rF, sin (@ + f)sin Q2

, di
4+ ccosicos ) T

A direct differentiation of (17.3) shows agreement with the Inst equation,
provided that
cQsini = rF,sin (@ + f).
The computation of @ starts with the observation thatn X e = (k X ¢)
x e = (k-e)c, so that ne sin @ = (k-€)c, or
(17.5) k-e = e sin i sin .

In addition, we have the formula
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(17.6) k-r = rsin{ sin (0 + f),
easily obtained by substituting ¢ -*(a x ¢) for r, and the formula
(7.7 (k-a) = crsinicos (@ + f),

derived at the beginning of the section. The remaining steps are these.
Differentiate (17.5) and replace ¢, é, di/dt by their equivalents obtained in
this section and the preceding one. This yields an equation for & in terms
of (k-¢). Now dot multiply both sides of (16.9) with k, substituting from
(17.6) and (17.7). This gives us an evaluation of (k-é) which, on com-
parison with the preceding one, yields a formula for & given below.

There still remains the determination of 7. This we leave to the next
section. In summary, we have found these formulas:

é =rF,,
pclé =F, s'inf+'Fa(e + 2cosf+ ecos®f)(1 + ecos ),

(17.8) % =rc ' F,cos (@ + f),
Q) sini = rF, sin (o + f),
& = —cp~'e"'(cos f)F, — rc' cotisin (@ + f)F.
+ (pec)(c* + ru)(sin f) Fe.
EXERCISE 17.1. Prove (17.4) by consulting Fig. 10. Recall that a =
¢ Xr.

EXERCISE 17.2. Give a detailed proof of (17.6).
EXERCISE 17.3. Verify the formula for &.

18, DISTURBED MOTION: GEOMETRIC EFFECTS

To complete the calculation summarized by (17.8) we now suppose that
the undisturbed motion is elliptical. In that case, 0 < e <1 and ¢* = pa
(1 — €. Since ¢ and é have already been found, it is easy to. calculate 4
from this last equation. The result is

(18.1) g = 2atec”'(sin f)F, + 2a*cp~'r ' F,.

Since n = p'2q~%%, we know that » = —3na~'a.
Finally, we determine 7. At the instant ¢, let a, n, e be the customary
quantities associated with location on an elliptic orbit. Then

r=a(l — ecosu,
nit—T)=u—esinu

We know that r# == ~/pae sin u, by (10.3). If we use this fact, then differ-
entiation of the first equation of the pair yields



36 THE CENTRAL FORCE PROBLEM CHAP. 1

riapaesinu = 4(l — ecosu) + aled sinu — € cos u).
The second equation of the pair gives
At —T)+nl —T)= (1 — ecosu)u — ésinu.
If we (i) eliminate 4 between the last equations; (ii) replace n by — %)_m"d,
1 —ecosu by ra™’, sin u by r(1 — e*)'a~'sin f; (iii) solve for T, the
result is
(18.2) - Tuesinf= a '[rc — $pe(t — T)sin fla — ac(cos f)é.
It is important to observe which of the elements is affected by which
of the components F,, F,, F.. The results are tabulated below.

F, affects  é, 0,4, T,
di o .
F, affects A Q, o,

F, affects é é.o.a T.

The major applications of the formulas (17.8) and (18.2) will come in
our later study of perturbation theory. Here we shall be content to illustrate
their use with a simple example. Suppose a mass moving in an elliptic
orbit, 0 < e < 1, encounters a region of resistance, due, say, to atmosphere.
The force will sometimes be of the form F = —gv, where g is positive,
although not necessarily a constant. What is the effect on the elements of
the orbit? To solve the problem, observe that, according tb (16.6),

F = —gAr — gBa.
Therefore, F, = —qAr, F, = —qBa = —qBrc. Using the computed values
of 4 and B, we find that F, = —qpuec™'sin f, F, = —gr~'c. Clearly, F, = 0.

Substituting into (17.8) and (18.1), we get for the geometric elements of the
orbit

pé = —2qufe + cos f),
di _
dt
Qsini=.0,
& = —2ge "sin f,
d = —2ga’c™*(1 + 2ecos f+ e?).
The following conclusions are immediate. The eccentricity e increases if
e + cos f < 0 and increases if e + cos f > 0. (These correspond, respective-
ly, to the left and right half of the ellipse.) The inclination is unchanged.
The longitude of nodes ) is unchanged, provided i+ 0. (If i = 0, the
angle Q is, of course, undefined.) The amplitude of pericenter & decreases

in the upper half of the ellipse and increases in the lower half. The major
axis always decreases.

0,

iAot 8 g R
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pxERCISE 18.1. Verify that the formulas (17.8) and (18.1) are dimension:
ally correct. Use L for r and a, L T-% for p (why?), L* T"“ for ¢, LT
for components of force, while e and angles are ‘dimensionless.

EXERCISE 18.2. Find analogous formulas for the variation of the ele-
ments when the force F is decomposed in the directions ¢, v, ¢ X V.
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INTRODUCTION TO THE n-BODY PROBLEM

1. THE BASIC EQUATIONS: CONSERVATION OF LINEAR MOMENTUM

In the n-body problem (better, the n-particle problem) we are concerned
with the motion of » mass particles of masses m,, I = 1,... n respectively,
attracting one another in pairs with the force Gm,mrji where ry, is the
distance between the kth and jth particle. We suppose that n = 2.

Let O represent an origin fixed in space and let r,, v, denote the position
and velocity vectors of the ith particle. Then, by Newton’s second law, the

kth particle satisfies the equation

L Gmym, I, — T, _

(1.1 by = 3 MM LT p=1,...,n,
j=1 Tik Tix
juk

where the right-hand side represents the total force exerted on the kth
particle by the remaining (n — 1) particles. '

We take for granted an important existence theorem governing the
solutions of Eq. (1.1). The proof can be found in Sec. 409 of the book of
Wintner referred to in the footnote, p. 23. Let the vectors r,, v, be given at
some instant ¢ = 0 at which all the r,, are positive. These we call the initial
data. Let r(t) denote the smallest of the distances r,, at time 7. Then ttfere
exists a unique set of n vector functions r.(7) and a largest interval of time
—t, < t < t, containing the instant 7 = O such that

(1) r.(r) satisfies the differential Eq. (1.1) for —#, <1 <1y

(ii) r.(¢) and v (1) = t,(f) agree with the initial data when ¢ = 0. More-

over, .
(iii) if the interval —t, < t < 1, is not the interval — oo <t < oo, then
38
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r(t) — 0 as 1 — ¢, if 1, is finite and r{(r) — 0 as t — —1, if 1, is finite.

It must not be supposed in case (iii) that a collision occurs when r — 0.
It has never been proved (unless n# = 2 or n = 3) that the only obstruction
to the existence of the motion for all time is a collision of two or more
particles. To put it another way, the fact that the minimum spacing r(f)
between particles becomes zero in no way implies that a particular pair
collides.

The system (1.1) is of order 6n since there are n vector equations each
of order 2, or 3n scalar equations each of order 2. One should anticipate 6n.
constants associated with the motion, that is, 6a functions of the r,, v, and
t which remain constant during the riotion. These are known if n = 2 (see
Sec. 14, Chap. 1), but in the general :ase only ten are known.

Six of the constants are easy to derive simply by adding the equations
together. Clearly the double sum*

Gm' my ¢y — Iy
Bg, Bt
vanishes, since for each occurrence of a term r,, — r, the termr,, — r,, also
occurs to cancel it. Therefore 3, mf, = 0. Now let M equal 3, m,, the
total mass, and let r, denote the center of mass M~' ¥, m,r,. Then #, = 0.
Consequently r. = at + b, where a and b are constant vectors, computable
from the initial conditions. This last equation is the principle of conser-
vation of linear momentum: The center of mass moves uniformly in a
straight line. The vectors a and b provide six of the ten constants.

Since the motion of the center of mass is determined, the vital problem
becomes the determination of the motion relative to the center of mass. For
this purpose, it is convenient to move the origin to the center of mass by
replacing each r; by r; — r.. Because f, = 0, the Egs. (1.1) are unaltered by
the change. For this reason we shall simply assume from now on that the
center of mass of the system is fixed at the origin. In other words, the system
of Eqs. (1.1) carries with it the side condition

(1.2) Yemeli =0, —<t<t,
and hence also the condition
(1.3) Yiemeve =0, —h <t <ty

This provides six conditions to which the Egs. (1.1) are subject, so that the
system is of the order 6n — 6.

EXERCISE 1.1 Three equal masses start at rest from the vertices of an
equilateral triangle. Prove they will collide, and find out when.

. EXERCISE 1.2. Explain why the condition » — 0 does not imply a colli-
sion of two or more of the masses.

n
*Hereafter we use Y, to mean ),
k=1
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EXERCISE 1.3. Suppose the law of attraction is f(r) = wr rather than
the inverse square law, Show that, as above, the origin can be moved
to the center of mass, and that the resulting equations of motion
become independent and can be solved completely.

2, THE CONSERVATION OF ENERGY: THE LAGRANGE-JACOB! FORMULA

We return to the Egs. (1.1), assuming, henceforth, that the center of mass
is fixed at the origin. Define the function U, the negative of the potential
energy, by the equation

Gm;my
15)<ksn T
Since ry = |r, — 14|, the function U depends only on the positions r;,...,
r, of the particles. In any Cartesian coordinate system fixed at O, the
vector 1, will have components xy, y«, i, so that U can be regarded as a
function of xi, yi, 213 X4, Y2, 233 « <} Xy Ve Zny & total of 3n real variables.
By the gradient of U in the direction r,, we shall mean the vector having
components

2.1) U=

[3U oy oU ]
axk’ 3yk’ 8zk ) ]

It is convenient to denote this vector by aU/dr,. In general, if f(a,, a,, ...,
a,) is a function of n vectors, we denote by 2f/2a, the vector

of (2L 2f 2f )

oa; o0’ Ofi’ Oy

where «,, By, v, are the components of a, in a Cartesian coordinate system.
This seems more suggestive than the customary symbols 4, '/ or grad, U.

It is now readily verified that the Eqgs. (1.1) become

2 i, = —a——q
(2.2) mgrI, o,
It follows from this that
(2-3) kaki'k'i:k= Zk%(—i-—z—;k—

The right-hand side is clearly the total derivative of U with respect to ¢,
since it can also be written

> [Qﬂ dxe | 0U dye ?y_ﬁ’_@]
“|9x, dt oy dt 9z, dt |

Therefore, because v} == (k,-f), (2.3) can be written

4.1
dt 2

Sk b nvE = U.
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Denote by T the kinetic energy ¥ X mivk, Then T=Uor
2.4) T=U+h,

when h is a constant, the total energy. S
An extremely important form of this law is the Lagrange-Jacobi identity.

Define the moment of inertia 21 of the system by the formula
I=1% kakri =} Zk mk("k'l'x)-

Difderentiate the extreme members of this twice with respect to £. The
result is :

(25) i= kak(vk-vk) “+ Zk l‘k-m,,i"k,

or, by the Egs. (1.1),

I= T mark + Z‘i;;JZ; G’:lgjkmk [ryore) — ril

= 2T + 4 3 5, S [ — A — )
Therefore

7 . Gm;my . Gmgmk 2
I1-2T=4% 2}:;}2.1".—;‘3""‘") ¥ 2:‘121 R Tk

Gm;my
- % Z:”ZJ mrjk :
The first two terms on the right cancel one another, since they become
identical if in the first one j“and k are interchanged. The last term, by (2.1),
is simply — U. Therefore [ = 2T — U. By (2.4)

(2.6) I=T+ h=U+2h
EXERCISE 2.1. Write (2.5) as

F=2T + Sur- 2V

k 3!‘,;

using (2.2). Conclude that ¥, ri-2U/or, = — U. Show from this that
there is no arrangement of the n attracting particles so that they all
‘remain at rest.

EXERCISE 2.2. Assuming that the particles move for all time r> 0
without obstruction, show by (2.6) that if A > 0 then ] — oo as 1 — oo,
Conclude that at least one distance r, cannot remain bounded. This
does not say that some r, becomes infinite.

*EXERCISE 2.3. Define a function T, of n vectors p, ps ...,p, by
} 3. mi'pi. Prove that
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*EXERCISE 2.4. Define the function H(r,, ....1r,; p» ..., p,) by H =
T,— U. This is a function of 2n vectors or 6n scalars. Using the
preceding exercise, show that the equations of motion (2.2) can be
written in the (Hamilton-Jacobi) form

oH
[
[4 ]2
5, — —.oH
Pe = o,

EXERCISE 2.5. Prove from the preceding exercise that dH/dt = 0 for «
motion of the system. Derive (2.4) as a consequence.

*EXERCISE 2.6, Define r asin Sec. | of this chapter. Prove by (2.1) that

U =5 Ar-', where A is a constsnt depending only on the masses,
Conclude from the existence theorem of Sec. 1 that a solution of the
equations of motion exists for + > 0, provided U < oo for ¢ > 0.

3. THE CONSERVATION OF ANGULAR MOMENTUM

The constancy of the energy reduces to the system from order 6n — 6 to
61 — 7. We now make a further reduction of three, to order 6n — 10, by
introducing the angular momentum c. Cross multiply each side of (1.1) by
r, and sum on k. Since r; X r, = 0, we conclude that

Semulre x ) = T T, FHI @, x 1),
The right-hand side vanishes because, with each occurrence of a term
r. X I, the term r, X 1, also occurs to cancel it. Therefore, the left-hand
side is zero. Integration yields
3.1 c = X mre X vy,

when the constant ¢ is the angular momentum.
Recall thatif a,,...,a.: by, ..., b, are 2n real numbers, then the quan-

tities A, B, C, defined by
A = 3,ai, B = 3.bi, C = Yiarbs,

are related by Cauchy’s inequality* C* =< 4B. This has an important con-
sequence, Sundman’s inequality:
3.2) ‘ ct < 4Kl — h).

To prove (3.2) start with (3.1). This tells us that the length cof ¢
satisfies the inequality

€= Tk mulrr X Vi

= Zemenve = T (Vmer)(V mevi).
*Sce Ex:‘ 3.1
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Therefore, by Cauchy’s inequality,
= Zemeri Te mevd = 12T
According to (2.6), an immediate consequence is the inequality (3.2).

EXERCISE 3.1. Prove Cauchy’s inequality, starting with the obvious
inequality
2 (Bax — Ch)* = 0.
(The cases B = 0 and B # 0 must be treated separately.)

*EXERCISE 3.2. (For use in the next section.) Let f(x) be a twice-differen-
tiable function defined on an interval g = x = b. Assume that f> 0,
S > 0 on this interval and that S(b) = 0. Draw a graph to convince
yourself that ' < 0 and prove if.

4. SUNDMAN'S THEOREM OF TOTAL COLLAPSE

In this section we shall study the possibility that the system of particles
suffers total collapse. By this we mean that all the particles came together
at the same time, finite or infinite. We begin by writing the moment of
inertia 27 in a new form. Since

Zsmyt, — 0y =3, mrl — 2ree $,myr, + =, myri,
we conclude from (1.2) that
Zymy(ry; — 1) =21 — 0 + M7,

where M is the total mass. Multiply each side by m, and sum. Since o=
(r; — r)?, the result is

zk, 2; m,m,‘rﬁk = 2IM + M(2I) = 4IM.

On the left-hand side we can delete the term for which j = k, since then
r;x = 0. Therefore )
“.1) > mumeri = 2IM.

18i<ksSn
Since total collapse means that all r,, become zero simultaneously, it
follows from (4.1) that total collapse means that I — 0, or that all particles
simultaneously meet the origin.

First we show that if total collapse is to occur, it will not take forever to
happen. In other words, I — 0 as 1 — oo is impossible. To prove this, return
to (2.1). If all r;, — O as f — oo, then U — co. Therefore, by (2.6), [ - oo
because h is constant. This means that from some time on I=1, say for
t = t,. Integrate both sides and we get /= 41* + At + B, where 4 and B
are constants. Therefore, as 1 — oo, I — oo. This contradicts 7 — 0.

Now we prove the more profound theorem* of Sundman. Total collapse

*This was known to Weicrstrass, who never published a proof.

/
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cannot occur unless the angular momentum is zero. To prove this, suppose
that I — 0 as ¢ — 1,, where ¢, is fini'e. Just as before, U — co and J — oo
as t — f,. Therefore (we assume #, > 0 and let the reader modify the proof
if t, <0), I >0 for some interval of time 1, <t =< 4. Since /> 0, it
follows from Ex. 3.2 that —f = 0 for #, = ¢ = 1,. Now multiply both sides
of the inequality (3.2) by the positive number — //-!, Therefore,

S 1) { LSy ) gy ) §

Integrate both sides with respect to ¢, for r = t,. Then
c’log IV = bl — 4" + K< hl + K,
where K is a constant of integration, so that
' h + K
1,2 <7
© = logI-7"

Now let r—1¢,. Since I— 0, it follows that ¢? — 0. But ¢ is a constant.
Therefore ¢ = 0.

5. THE VIRIAL THEOREM

We now assume (see Ex. 2.6) that the system moves from the instant t = 0
so that U remains finite. There is a classical result, called the Virial
Theorem, which states that if 7 and T remain bounded for ¢+ > 0, then the
two limits

. 1t
7 = lim Tfo T(z) dr,

{-s00

= lim L[
0= 121_{2 TL U(r) dr

exist and 2T = 0. Since T = U + h, it follows that if one of the limits
§x1sts,'so does the other and T = { + h. Therefore the conclusion 27 = U
is equivalent to

5.1 P = —n

In this section we shall prove a sharper form of the theorem which
does not require boundedness.*

Theorem: The statement T = — 4 is true if and only if
(5.2) llim () = 0.

We start with the Lagrange-Jacobi formula [ = T + h. Integrate once and
divide by ¢. Then

. t
(5.3) = z-'f T(r)dr + h + 1-'k,
1]
where k is a constant. Now let r — co. From the definition of T, the

*H. Pollard, 4 Sharp Form of the Virial Theorem, Sulletin of the American Mathe-
matical Society, LXX, (1964), 703-5.

T
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assertion (5.1) means that the right-hand side of (5.3) approache's zero, and
hence the left-hand side also. Therefore (5.1) holds if and only if

(5.4) lim ~'J = 0.

L-ven

It remains to show that each of (5.2) and (5.4) implies the other.
First suppose that (5.4) is true. Then, for each e > 0, it follows that
I < et, provided ¢ is large. Integrate both sides of the inequality. Then,
I < e(ff/2) + At + B, where 4 and B are constants. Therefore 21 <
(¢/2) + t'A + r'B. The last two terms can be made less than e/2 by
taking ¢ sufficiently large. Hence 1721 < e for large ¢. This proves (5.2).
Now let (5.2) be true. There is a theorem of Landau* wh‘ic:h says that
(5.4) is an immediate consequence, provided it is true that J = — M for
some finite number M. But I = T + h. Since T =0, I = h, and the proof
is finished.
EXERCIS: 5.1. Show that in the case of two bodies, the relation (5.1)
holds if and only if 4 =X 0. Show also that, in that case, if # > 0 then
f=n0=0 )
EXERCISE 5.2. Prove that for a system of n bodies, the relation f=0
always implies h = 0, Suggestion: Since f=0+h=0, it follows
that s =< 0. Now us€® (5.3) to conclude that b, - +h, so
that A= 0.

6. GROWTH OF THE SYSTEM

We have seen in the case of the two-body problem that these cases occur:
if h < 0, the system is bounded, that is, the distance r between the masses
is bounded; if # = 0, the distance r grows like {¢{** as {7l -+ cc,and if A = 0,
r grows like || as {t] -» oo, The corresponding problems for three or more
bodies is very difficult and we shall only obtain some elementary conclu-
sions. 1t will be assumed that U remains finite.

First we reconsider the function

U=y Gm;my ,
[

where the sum is taken over the indices such that | < j < k < . Since
r =< ry, it follows that U << A/r, where 4 depends only on the masses.

Here is a simple consequence. Suppose h < 0. Then T = U — |A.
Since T = 0, we get U= |h|. Therefore A/r = |h|, or r < AW If the
energy is negative, the minimum distance is bounded. The converse is false.
In general, there is no simple relation between the growth of the system
and the sign of the energy.

*For a proof see D. V. Widder, The Laplace Transform, Princeton University Press,

1942, p. 143,
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On the other hand, let m, m’ be the two smallest masses. Then

!
vz z M Gmm' 3z L .
r,k ik

Now, at any particular instant, r is one of the r,, so the sum on the right
contains the term 1/r. Therefore U = Gmm'/r. In summary,

(6.1) B=rU< A4,

where 4 and B are positive constants depending only on the masses. This
says, roughly, that U-' is a measure of r, the minimum spacing between

particles.
We have shown that

1
I= 5 3 mmri.
2M 1sj<ksn J I

Now denote by R the maximum of the r;; at time t. Then I < A, R?, where
A, depends only on the masses. Arguing as in the preceding paragraph, let
m, n’ be the smallest masses. Then

Iz 537 T
Since R is one of the r;; at time ¢, I = (mm’' /2M)R*. Therefore
(6.2) B\R*< I < AR,
where A, and B, are positive constants determined by the masses. This

means, roughly, that ~/ I is a measure of R, the maximum spacing between

particles.

The question arises naturally of how rapidly a system can expand. We
prove this elementary result: If » = & > 0, then R =< M1, where § > 0 and
M = 0. This says that if the particles do not get too close together at any
time, then the maximum spacing cannot grow faster than the first power of t.
To prove it, we start once again with the formula I=U + h. Therefore
I<cA/r+ h or =< A/8 + h. Integrating twice this says that < Dr,
where D is a constant. Therefore, by (16.2), BiR* < D#*, or R< M1y,
where M = (DB7")'2,

As a final application of these ideas, we repeat an argument used before.
Since I = U + 2h, I = 2h. Suppose h > 0. Then I= Er*, where E is a
positive constant. Therefore 4, R* = E:°. Conclusion: if h > 0, then R grows
at least as fast as the first power of t.

EXERCISE 6.1, Use (6.2) to prove this form of the Virial Theorem: the
statement T = —#4 is true if and only if lim ¢~ R(z) = 0.

EXERCISE 6.2. Let p be the largest of the distances r,...,r, of the
masses from 0. Prove that .

mp* < I Mp?,
where m is the smallest mass. Conclude that R/p lies between two
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positive constants depending only on the masses. (Actually R/p never

exceeds two. Why?) Show that the assertions T = — A and lim ¢~ p(s)
[

= 0 are equivalent.

7. THE THREE-BODY PROBLEM: JACOBI COORDINATES

In the special case n = 3, the equations of Sec. 1 become

“ Gm,m X
mr = —(r, — r)+ _(G’:ay‘m‘ Iy —r)
13

’?2
. Gmym G
a.n Moy = iR (r — )+ My
12 Fas
. Gmym
myf, = r; Ly — 1) 4+ ij s (r, — r,).
13 | $1Y

Since m,r; + m.r, + myrs = 0, one of the r, can be eliminated. We prefer
to proceed in another way. We shall consider the motion of m, relative to
m, by use of the vector r = r, — r, and of m; relative to the center of mass
O’ of m, and m,. The location of this center is at (my + ma)~'(myx; + myry)
or —(my + my)~'myrs. The position p of mj relative to this center is then

T3+ (M + my)"'myrs or Mp~'r,, where p = m, 4 m, Therefore p=

Mup~'r,.
It is easily verified, since m,r, + mor; + myry = 0, that
n—rI,=r; fy— 1= p -+ myu'r; Iy —Te=p— mu'r
We return to (7.1). Divide the first equation by m, the second by m,
and subtract. The result is

(7.2) f= _-_%L"r - ij[p - 'r.nlE"ll‘ _ P + m2#-lr]'

23 - Tis
Now multiply the last equation of (7.2) by Mu~'m;". This time we get

__ MGmp! MGm,p!
ra3

. (Pt mapin) — (p — mip='r).

(73 §F=

The vectors r and p are called Jacobi coordinates.
We denote the relative velocity ¥ by v and pbyV.Letg, = mmypu,
g: = mypM ', It is readily verified that, in terms of the new coordinates

r and p, :
c=g(r X v)+g(p xV),
(7.4) 20 =gr* + gop?,. v
2T = gyv* + g’ ‘
As a simple application, suppose that ¢ = 0. Then r- p XV =0and

p-r X v=0. Therefore p-r X V=0andr-v x p=0. Nowletu = r x
p. Then
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uxﬁ=(r><p)x(rxV)—{—(rxp)x(v‘xp) '
=@rxVp—(prxVr+ (r-v x p)p—(pvxpr= 0.

Now according to the formula (2.2) of Chap. 1, it follows that (d/dt)(u/u)
— 0 when u 7 0. Therefore, as longasr X p 7 0, the vector perpendicular
tor and p is a constant. It follows that all the motion is in one plane. We
leave it to the reader to draw the same conclusion if r X p = 0 over an
interval of time (Ex. 7.1).

EXERCISE 7.1. Complete the proof of Weierstrass’ theorem: if n =3,

¢ = 0, all the motion takes place in a fixed plane. Conclude that if

n = 3 a triple collision (total collapse) cannot occur unless all the

motion takes place in a fixed plane. Suggestion: obtain a plane of

motion by using v or V together with r.

EXERCISE 7.2. Verify formulas (7.4).

EXERCISE 7.3. Let H be a function of four independent vector variables
p, P, r, p defined by

p_ Gmmy _ Gmym, Gmym,

g2 r Fag o .
Show that the Egs. (7.2) and (7.3) can be written in the Hamilton-
Jacobi form

2
H= P 1
%gl+7

oH _ .  OH _ _
ap ’ ax P
oH _ . oH _ ¢
=0 - "
Suggestion:
-a—"'es =—14 z_-g—*——aari‘

8. THE LAGRANGE SOLUTIONS

v We seek a very special set of solutions of the three-body problem, namely
those for which all three puiticles are moving uniformly in circles, in the
same plane, and with the same angular velocity.

‘Introduce at O a fixed coordinate system Xx, y, Z such that z = 0 is the
plane of motion. Let (x&, y:, 0) be the coordinates of the mass . Then
re = [X&, yx, 0] and the equations of motion (7.1) become

m;

)'5k=G2‘%—rt(x,-——xk),
@.D A

- m; o, —

Vi GJZ.;\_ "’3:; (y5 — yih

where k = 1,2, 3, and each sum con ains two terms.
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Let the angular velocity of the particles in their plane of motion be .
Introduce into that plane a coordinate system (£,7) which is rotating at
angular velocity . In this coordinate system the particles are at rest. We
transfer the Egs. (8.1) to the new coordinate system, starting with the
relations '

xp = £ COS 0f — 7 SiN L,

8.2
®2 yi = Ei sin of -+ 7 €08 wt.

We now differentiate each of these twice and substitute into (8.1). The
following equations can then be derived for &, 7e. When they have been
solved, then (8.2) can be used to find (xx, ye)-

g/«: - 20)7‘7/( - (D“é/.-, =G j;k %(&j - Ek),
(8.3) s

i 208 — o' = GX -~’~'.1i(17; — ),
Fik

ik
where k = 1,2, 3.

It is convenient to let zx = &, + ine, where i = ~/—1. Multiply the
second of Egs. (8.3) by i and add it to the first. We obtain

. . m
(8.4) i, + 2wit, — 0)221( =G 2 —TJ—(ZJ b Zk),
Jek ik
where, of course, ryx = |25 — Z&l-

Since the particles are at rest in the rolating system, each Z; is identically
zero. Therefore the positions z;, &s, 2y WC seek satisfy the equations

=AY iz~ ), k=123,

ik Fik
where A = Go™.
Let py = M3, pr = Arid, ps = M. The first and third eguations,
written out in full, are

(8.5) (I — myps — mzPﬁ)Zn + Mapaz: + Myp22: = 0,
~m‘p221 + Mepy 22 + (1 — myps — man)Zs = 0.

Since the center of mass is fixed at O, the missing equation can be replaced
by

mz, + myZy + MmgZy = 0.

There are two possibilities: (i) the points z;, Zs, 23 at some time ¢ are not
in a straight line; (ii) they are. In case (i) the coefficients of corresponding
-, in the preceding three equations are proportional. It follows immediately
that p, = po = ps = 1/ M, where M is the total mass m, + my + my. In
other words, the only possible solution of the form (i) puts the masses at
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the vertices of an equilateral triangle of side (GMwn™*)'?. It is important to
observe that this is independent of the size of the masses, so that the center
of mass and the center of the triangle need not coincide, This solution is
due to Lagrange. Case (ii) will be treated in the next section.
EXPRCISE 8.1. Prove in case (i) that the force on each mass passes
through the origin.
EXERCISE 8.2. In case (i) compute the quantities T, U, [, h. Answer
2T = U = —2h = 20*l, where U = g(mymy + mym; + mym,) anc
q = (Go)*m™"3,

9. EULER’'S SOLUTION

Suppose now that z,, 2,, 23 at some instant f lie on a line L. Since L must
contain the center of mass, it passes through O and we may as well suppose
it is the E-axis so that all 5, vanish. By renumbering the masses, we can
arrange that £, < & < Eysothatr, =& — E,rn= Ey— b ra =6 — &
The Eqs. (8.5) can be written .

—F = x[ G _”_’251)2 TG —"132‘?1)2 ]’

9.1) m e
b= &2+ &)

where

(9.2) mlél -+ mzfz + ms‘f: = 0.

Now let & — & = a, &, — & = ap, & — £ = a(1 + p). Equation 9.2)
can be written in either of the forms
mea + mya(l + p) = —ME,,
mya(l + p) + meap = ME;.
Obtain —&,/£, from each pair (9.1) and (9.3) by division. Equate the
results to obtain
9.4 my, + my(1 + p) - _.m + my(l + P)_2 .
@4 i F p) T mp Tl )T map

The order of events is this. Suppose that p can be de.termined fr‘om this
equation. Replace &, on the left-hand side of (9.1) from its value given by
(9.3). We find that

a’[m, + m;(l + P)] = RM[MQ + m,(l -+ p)'—!].

This determines a. Then (9.1) determines &, and 5;7 Finall_y3 £ =a+ &

This reduces the problem to the determination of positive values of p
which satisfy (9.4). It can be written

9.3

e vt
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(ms + my) + 2my + 3m3)P + (3ms + m:)P’
-~ (3m + m!!)P3 — (3m, + 2m2)P‘ - (m + mz)P!' = 0.

1f p = 0, the left-hand side is positive; as p— oo it approaches —oo,
Therefore it has a positive root. By Descartes’ rule of signs it has at most
one positive root. Hence there is a unique positive value of p which solves
the problem, It is clear that, by renumbering the masses, two other solu-
tions to the main problem can be obtained. These collinear solutions are
due to Euler.

EXERCISE 9.1. Solve the p}oblem explicitly if m; = m, = m;.

10. THE RESTRICTED THREE-BODY PROBLEM

The three-body problem described by Eqs. (7.2) and (7.3) is a system of
order twelve, Its equivalent formulation, given in Ex. 6.3, gives four vector
equations (equal to twelve scalar equations), each of the first order. By use
of Eq. (7.4) for the conservation of angular momentum and the conserva-
tion of energy, the system can be reduced by four, leaving eight. It is
possible to eliminate the time from the eight, leaving a system of order
seven, and finally, by a device due to Jacobi, it can be cut down to order
six. Moreover, if the motion is planar, we use only two of the three
dimensions of space and the order is reduced to four. This is the best that
is known. After all these reductions, the problem is still extremely com-
plicated and has kept mathematicians busy for over two hundred years.

~ We shall make an assumption which leads to a more tractable problem.
It will be supposed that the mass m; is so small that it does not influence
the motion of m, and m, (known as the primaries), but is affected by them
in the usual way. Clearly, this is a sensible approximation to reality only
if the path of m, does not come too close to m, or m, Mathematically
what we do is to set m; = 0, or what is equivalent, M = u. The center of
mass of the system is now the center of mass of the primaries. If we let
ris = p; and ry; = p,, the Egs. (7.2) and (7.3) become, respectively,

(10.1) f = Gur-sr
and
(10.2) g = —Gmpi*(p + mp"'r) — Gmypi*(p — mip~'r).

The first equation can be solved completely by the methods of Chap.
1 and so r can be taken as a known solution of the two-body problem.
Then the motion of m, is completely described by the single Eq. (10.2).
This is called the restricted three-body problem. Because of our physical

assumption on ms, the customary conservation laws do not hold and we
cannot use them to reduce the order of (10.2), which is six. We shall make
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the further assumption that all the motion occurs in one plane (the planar
restricted problem), which makes the order four. Finally, we shall suppose
that the primaries rotate uniformly around their center of mass (the circular
planar restricted problem).

The mean motion n for the primaies, according to Eq. (10.1), is given
by ~/Gur¥?, where r is the distance between the primaries. We may,
therefore, use the rotating coordincte system described in Sec. 8 and
illustrated in Fig. 11, with @ = n. Th: primaries are at rest in this coordi-

Y

(€n)

Figure 11

nate system and we shall place them on the £-axis. Equation (8.4) is
applicable with k = 3. If we write z for z,, p1 for ry;, pa for ry, it becomes
(10.3) 4+ 20iz — o’z = Gm,p7¥(z, — 2) + Gmap; ¥z, — 2).
Remember thaty, = 7, = 0, so that z, = &, z, = §,. Moreover, z = & + in.
It is convenient to choose the unit of mass so that m, + m, = 1, of
length so that r = 1 and of time so that G = 1. The lighter mass will be
denoted by u and placed at &, to the right of the origin. Clearly, u =< 1/2.

Since m & + mE, =0 and £ — & =1, it follows that & = —pu. & =
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1 — u. The mass m, is located at (—u, 0) and m, at (1 — g, 0). Finally,
observe that with all these choices of units, n = @ = 1. The equation of
motion in the rotating coordinate system has become
(104)  F42ii—r=-UZplip pe=ltp
P1 P2

The rest of this chapter will be devoted to a study of Eq. (10.4). As in
Sec. 1, we ask the reader to accept an existence theorem; the same reference
is applicable. Let initial values of z and # be given. Then there exists a
unique function z(z) and a largest interval of time —t, < t < t, containing
the instant 1 = 0, such that Eq. (10.4) is satisfied and the initial conditions
are met. Moreover, if either —1, or # is finite then either lim p, = 0 or
lim p, = 0; that is, collision with one of the primary masses occurs.

EXERCISE 10.1. Derive Eq. (10.3) directly from (10.2). Suggestion: since
the motion is planar, we can treat p and r as complex numbers. Let

tot

p=cze y=e¢
EXERCISE 10.2. Show that (10.3), with @ = 0, solves Ex. 2.1 of Chap. |
in the case of Newtonian attraction.

*EXERCISE 10.3 Let

U= Lf_/i -+ _E’_,
4 Pg
where ., = [z — z|. Show that Eq. (10.4) can be written
£ . oU
E--2p—§ = E
(10.5)

74 28 — g ==

11. THE CIRCULAR RESTRICTED PROBLEM: THE JACOB!I CONSTANT

It must not be supposed that the problem described in the last chapter is
an artificial one. Two examples will serve to make a rather convincing
argument that the problem is worth investigating,

Apart from the sun itself, the heaviest of all the planets is Jupiter,
which moves in an ellipse of small eccentricity; call it a circle for a first
approximetion. There is a group of tiny planets, the Trojan asteroids,
whose motion is controlled principally by the sun and Jupiter; a first
approximation to their motion is given by a solution of the restricted
problem with the sun and Jupiter as primaries.

As another example, consider the motion of the earth around the sun
to be circular. Then these two play the role of the primaries and the moon

is m;, the small mass.
We turn to the main problem of investigating Eqs. (10.5). They are
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i . _oU
_ou

where U(E, 9) = (1 — p/p) + (u/ps).
If we define a new “potential” & by

(1L1) PEN=4E + 7))+ U+ tp(l —p),
the equations read, more simply,

o0

SoMe=gE

(11.2) ) o0
74 2% = 377"

The constant {u(l — 1) appearing in the definition of @ is of no impor-

tance in these equations, but is convenient later.
We have already explained in Sec. 10 that the usual conservation laws

do not hold. But a substitute exists. Define the Jacobi integral as the ex-
pression 2 — £ — 5% Multiply the first of Eqs. (11.2) by &, the second

by % and add. The result is £ 4 #j = d®/dr. Therefore

(11.3) E4qt=20—C,

where C is a constant, the so-called Jacobi constant. Equation (11.3) says
that the Jacobi integral remains equal to C during the motion. 1t is clearly

determined by the initial values &, o, &, #,.
The system (11.2) can be written

E = a! 7.7 = B’

a =28 + &, B = —2a+ o,

which is of order four. Now divide the first two by the third to eliminate
time. We find that

(11.4)

¢ __a _ d_ B
do = 28 + ¥ da —2a+ &,

From (11.3) we know that a; -+ 8* = 2% — C. This can be solved for
B and the result substituted into the preceding pair to obtain equations of

the form

% - Fena

dn _
"d_"czi - G(Ea 779 d)o

a second order system. If the solution is given by £ = f(a), 9 = g(@), then
we proceed as follows. Since o = § = f"(a)d, we can, in theory, determine

a(t). Then § = &, + ﬁ a(r) dr, so that £(1) is determined. Also » = 8 =

R

WS-
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g'(@a = ag'(a)/f'(a). Therefore,

= ‘ag'(@)
7=t | Fa
wl}crc a(r) must be substituted for  under the integral sign. In practice,
this .n.lethod is of no use since S(@) and g() are impossible to determine
exphcxt'ly. Instead of pursuing this line of thought further, we shall seek
some simple explicit solutions, analogous to those found in Secs. 8 and 9
for the unrestricted problem.

EXERCISE 11.1. In the theoretical solution described above the equation
for B was never used. Why?

*EXERCISE 11.2. A more useful system than (11.4) can be obtained as
follows. Write (11.2) as :

de .. o
E(f —7n) =7+ %
di. o o 00
;17(77+E)_ "f""g‘;-
This suggests the substitution p = § — 5, P = % + €, so that
dp _ o
ar =P &+ &

dP _ b
a="Fontg

d
‘Tf=p+n

dy _
ﬁ—P-E

Now define H(&,7;p, P) = 4(p + 7)* + (P — &Y — O, 7) and
verify that the system can be written in the Hamilton-Jacobi form

ap’ p_ _a—é'"
7 aP! - ""a?.

The initial values are &, 7, p, = &, — 7o By = 70 + &,

~«..12. EQUILIBRIUM SOLUTIONS

We seek solutions of the restricted problem for which the small mass ms
remains at rest in the relative coordinate system. These are called equili-
brium solutions. Since £ and 7 are constant, the Eqs. (11.2) become simply

o _od_ o

(12.1 o = 92
) 3
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It is convenient to express P in terms of the so-calied 1:'_,».«
// 4nd s ol 1he o rv(/ 7) Since o rz . P e
7, we find that Fewy=10—u ,
the definition of U, we get

(12.2) @ = (1 — p)gpl + pi') + plEed + pi):

The relations (12.1) become
T
(= #)[Pl - '1‘]% t P — 7;;]-[)—2
First suppose that n % 0. Then

a-— #)[p: - —;—J% + #[Pe o

This means that the terms containing £ in the first of Eqs. (12.3) drop out.

T e -

(12.3)

In addition, a factor of u(1 — p) cancels and we are left with

o= A~ L= i
P P pe pil p2 ’ !

Ly

)

(1 ‘p,Q)g
Ly~

Ls
Figure 12

e
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The only simultancous solution of this equation and the preceding one ix
S *‘0 there are precisely two gthbuum

fore. 1
4 2! triangles based on the line ;omx ng

'\

o= o= L T'::"

e e ~‘: SRS

{—.. Urand ol . 0). These are the points L, and L, indicated in P
On the other hand if 5 = 0 the Egs. (12.3) reduce to the single one

(12.4) a—mpw~{5+“+4p—EF:ﬁiﬁ—o

E<'—I~“’

where p, =&+ pl, pe = 1€ — 1 + pl. There are three cases:

p<E<]—p, £ > 1 — u, in which we have, respecuvely,
(a) p=—E—p p=1—E—p p=1+p;
() p=E+p, pp=1—E—p, p=1—ps;
() pr =&+ p pp=E+p—1, pr=p— L.

We can rewrite (12.4) in each of the cases as follows.
(a) Let p, = p, p» = 1 + p. Then

(1 —pp pz] + /-‘[P + GFI
(b) Let p, = p, p» = 1 — p. Then

(1 — /L)lip?' - El)} = :“[l P

(¢) Let py = p, py = 1 + p. Then

=l

;JI-;h (l+)J+(1—M)[P"—;6]-'O

Each of these three equations has a single positive solution for ;.
cases () and (¢) this can be seen as follows. Each of the equations is of the

in

form

— PP = —
Foy=rrzpyn»™—°
where ¢ - 0. Tt is cas'ily verified that F'(/;) = 0, so that Fis strictly increas-
ing. Moreovcr, F(O-4) - ., F(1) Therefore /* assumes the value
—c at precisely one value of P bem een 0 and 1. The solutions are denoted
by L, in case (a) and by L. in case (¢), as indicated in Fig. 12.
The case (b) is similar. Now the equation is

Fp=Llme=on? 1ok,

p—r K
because u = &. The function Fi(p) is increasing in the interval $ =< p < L.
Moreover, Fi(4) = 1, Fi(1—) = oo, so that F, assumes the value | — u/p
precisely once in the mterval } = p < 1. This means that the cqulhbrmm
point lies closer to the lighter mass than to the other, unless p = §; it is

calted L, (see Fig. 12).
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The five points L; are called libration points. The first three are called
he Euler points and the last two the Lagrange points.
exereise 12.1. Calculate the position of the five libration points in the
case u = §, when the primaries have equal masses.

pxERCISE 12.2. On the assumption that the earth and the moon fulfill
approximately the requirements of the primaries in the restricted
three-body problem, what significance can be attached to the five L,?
Where are they located in this case? Assume p = .012.
EXERCISE 12.3. Show that the only solutions of the equation & = §
are the libration points L, and L;.
¢XERCISE 12.4. Show that both 2d/dp, and o®/dp, vanish at L, Ls,
but neither does at Ly, Ly, Ls.
+pxERCISE 12.5. Show that if the origin of coordinates is translated to
L,, the differential equations become

$—2p=x+40m+ 50

jr2e=y+ivT +50
where p* = 1 — 2 and
U=(1—m1+x+x+~Ty+y)"
+p(l—x+x’+v3y+y’)“.

13. THE CURVES OF ZERO VELOCITY

The equilibrium solutions are the only solutions of (11.2) that are known
explicitly. However, by use of the Jacobi integral it is possible to derive
some important general propertics of all solutions. According to the formula

(11.3), it is true that
(13.1) vt =20 — C,

where v is the relative velocity (&2 + #)"?, Cis the Jacobi constant of the

motion, and, in bipolar form,
(132) 20 = (1 — p)p} + 2p7") + plpk + 207").

We shall consider the level curves 2& = C, which, in accordance with
(13.1), are called the curves of zero velocity. It will now be proved that the
minimum value of 2® is 3, so that no level curve exists when C < 3. We
start with the assertion thatif 0= p <1, 4= 0, B = 0, then

(RS
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Ap + B(1 — p) = min (4, B).
For if A= B, then Ap + B(l — p) = By + B(l — p) = B = min (4, B)
and similarly if 4 < B. Therefore, by (13.2), 2® = min (p} + 2p;' ;;’ +
2p;"). But the minimum of the function x* + 2x"—is 3, achievecli ,w;'xen
x = 1. Hence, 2® = 3. Clearly, this minimum is achieved only when p, =
;gx=1;,3that is, at the Lagrange libration points. This, incidentally, solves
We sh.all begin with C = 3, when the level curve 2& = C consists only
of. the points L,, L;, and describe the shape of the curves as C increased. It
will be supposed that 0 < u < 4. It is clear from the definition of ® tl.xat
the curves are symmetric in the axis 5 = 0, so we have drawn only the
upper half of each. In the accompanying Fig. 13, the shaded region corre-

sponds to 2 < C. The drawings are schematic and do not pretend to any
accuracy.

(a) (b)

Ly
(c) (d)

(e) (f)

Figure 13
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When C exceeds 3 slightly, the locus appears as a pair of curves
surrounding L, and L, as in (a) of Fig. 13. As C increases, the left-hand
edges of the curves join together at L, asin (b). After a transitional stage,
as seen in (¢), the curves join at L,. Tkis is shown in (d). At the next stage
(e) there is a joining at Ly and the primaries are surrounded. At the final
stage the joining at L, disappears, end from this point on the general
appearance is displayed by (f) in which the primary masses are enclosed

by the inner curves.
The importance of the curves is this. Each locus 2& = C divides the

plane into the shaded region where 2® < C and the unshaded region,
where 2@ > C. In view of Eq. (13.1), motion is impossible if 2d < C, since
then »? < 0. Therefore, the shaded regions indicate for each value of the
Jacobian constant C the positions in the £-n coordinate system where
motion cannot take place.
EXERCISE 13.1. Show that if p = #, the curves are symmetric in the #-
axis also. Stage (¢) does not exist, and L, and L; are reached at the
same time.
EXERCISE 13.2. Use the formula (13.2) to explain the general shape of
the curves.
EXERCISE 13.3. Use the conclusions of Ex. 12.2 to determine the largest
value of C below which an earth-moon trip is possible. Hint: config-
uration (¢) makes such a trip impossible. Therefore: C must be such
that 2@ = C is satisfied by L,.

.1,
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INTRODUCTION TO HAMILTON-JACOBI THEORY

1. CANONICAL TRANSFORMATIONS

We begin by recalling some basic facts from advanced calculus. Let the
functions

(1.1) Ve =ye(X15. .oy Xn) k=1,....,m

denote a transformation of variables in an m-dimensional region. It will be
supposed that each of the partial derivatives y,/dx, exists and is contiru-
ous. The matrix .# with entries dy,/dx, (k = row index, ! = column index)
is known as the Jacobian matrix of the transformation; in more detail it is

(9ys Oy | o)

0x; 0x, OXom
(1.2) =

Oym Oy Oym

9x; 0Xs = OXm

The determinant of .#, written |.# |, is called the Jacobian of the transtor-
mation (1.1). It is known that if the transformation (1.1) carries a particular
point (x3, ..., x}) into the point (3%,..., y%) and if the Jacobian does not
vanish at (x{,..., x3), then the Egs. (1.1) allow a unique solution for the
xx in terms of the y, for all points y,, ..., y, sufficiently close to 3%, . . ., y5.
Write it

(1.3) Xk = Xe(P1s v s V) k=1,...,m
61



62 INTRODUCTION TO HAMILTON-JACOB! THEORY CHAP. 3

The partial derivatives 2x,/dy, are continuous in a neighborhood of y?,
.+, ¥me The matrix of the transformation (1.3) is the inverse* of the matrix

If n is an integer, the identity matrix [, is the n X n matrix consisting

of ones along the main diagonal and zeros elsewhere. By J or J,,, we shall
mean a certain matrix constructed in four blocks from I, namely,

; On lﬂ
(1.4) ho=dw={_1 o)
where O, is the n X n matrix whose entries are all zero. It is easily verified
that
(1.5) Jin = —ln, Jow = —J5.
Since UL} =, = [L = 1, it follows that |J,,] 5= 0.

Now let M,, (we write M for simplicity) denote a 2n X 2n matrix. It is
called symplectic if
(1.6) MM = J,
where M7 is the transpose of M. Since |M7|-{J|-|M| = {J| and |M"| = | M|,
then the non-vanishing of {J] implies that [M}’ = 1, M| = +1. Therefore
M has an inverse M-, and from (1.5) and (1.6) we obtain
(L7 M-t = M),

A transformation (1.1) is called canonicakif the corresponding Jacobian

matrix .4, defined by (1.2), is symplectic, Clearly, for such a transforma-
tion m must be even, m = 2n. In that case, it is customary to split the var-

iables into p’s and ¢’s and write (1.1) in the form

pkzpk(Ph"'9P"; Ql,-~-;Qn)9

(1.8) k=1,...,n

Gr = qk(Pls”"Pﬂ; Qn..., Q)
while the inverse transformation (1.3) takes the form
Pi=Pdpi,-..,Pnsqusevss @)
(1.9)
Qi = 0Py s Pns @rse v s Gn)
EXERCISE 1.1, Show that J is symplectic. Conclude that the transfor-
mation

Pe= Qk; g = —F, k=1,...,n
is canonical.

EXERCISE 1.2 Use (1.4) to verify (1.5).
*1t is assumed that the reader is familiar with the notions of inverse and transpose
of a matrix, and knows how to multiply matrices.
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EXERCISE 1.3. Give the details which establish (1.7).
*EXERCISE 1.4. Let & and B denote the n x 1 matrices

Show that

- (2

*EXERCISE 1.5. Show that the trar sformation
pr= Pycos Q, — Q7' sin Q,
p: = Py sin O, + P07 cos Q,
- g1 = Q, cos O,
g = Q, sin Q,

is canonical. Suggestion: Perform the multiplication .#7J.# in blocks
of four, using the fact that the transpose of

(e

AT CT
(BT DT)'
EXERCISE 1.6. Prove that if M is symplectic, so is M-!. If M, and M,,

each of order 2n x 2n, are symplectic, so is M, M,.
Conclusion: the symplectic matrices of a fixed size form a group.

is

EXERCISE 1.7. Interpret the preceding exercise when the matrices are
Jacobian matrices of transformations.

EXERCISE 1.8. (For matrix experts.) We know that if M is symplectic,
then {M| = +1. Prove that actually M| = +1.

*EXERCISE 1.9. Let M=M,, represent the matrix
A B
(c D)’
where each entry is an n x » matrix. Use the suggestion of Ex. 1.5 to

evaluate M”JM. Show from this that M is symplectic if and only if
(i) A"C, B"D are symmetric (that is, are their own transposes);
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(ii) DA — B"C = L
*eXERCISE 1.10 Apply the preceding exercise to the matrix .# of the
transformation (1.8). Conclude that it is symplectic and the transfor-
mation canonical if and only if
7 [ap,,; Om __ OPm 8qm} =0
m=1l Opr OP, oP, 0P,

[ OPm_ 24n __ OPn_ 24n ] ~0
Z[agk 30, ~ 90, 90;

m=1

for all £, / and

o[ Opm OGm _ OPw OGw | 5
0P, 60, 0Q, oP, | T "M

The symbol §;; means 1 when k =/, and 0 when k = /.

*EXERCISE 1.11. Let (1.8) be a given transformation.
Then

- agk a9
dg, = B[ Gh-dP + G50,

In the expression

Zp:.qu — P.dQ:

replace p, as given by (1.8) and dg, as just obtained. The result, after
rearrangement, is the differential form K, defined by

K = lz:l AldPL + BldQl’

where A4, and B, are functions only of P, and Q,. Prove, by use of
Ex. 1.10 that (1.8) defines a canonical transformation if and only if

there is a function w(P,..., P,; Qi,..., Q.) whose total differential
is K.
*EXERCISE 1.12. Show by the method described in Ex. 1.11 that the
transformation p, = P, p, = Q,, ¢, = Q., ¢ = — P, is canonical. Do

the same for the (Legendre) transformation described in Ex. 1.1 and
for the transformation of Ex. 1.5.

2. AN APPLICATION OF CANONICAL TRANSFORMATIONS

We have seen on several occasions that the equations of a system may be
put in the form

. oH . oH
@.1) qk=@%,pk=———_ k=1,....m,

where the function H, the Hamiltonian of the system, is a function of

SEC. 2 AN APPLICATION OF CANONICAL TRANSFORMATIONS 65

Pioeve s Pus Quave s qn. Let ,
Dx =.DA-(P1,---,Pm§ Qh--'sin)
G = @lPrve o P Qi Q)
represent a canonical transformation. With this replacement of the original
variables, H becomes a function of P, ..., P,; Oy, ..., Q.. We shall show
t} at the system (2.1) retains its original form under this transformation, that
is,

oH 5 oH

(23) Qk:?ﬁ:‘ P;;:—‘an, k=l,...,m

" For ease of writing, we adopt the notation p for the n X 1 matrix with
entries pi, Py, . . ., Pn, and similarly for ¢, P, Q. The functions of system
(2.2) have the derivatives

Prx = Z [2,1); P+ %P Qz]

3Q
m aqk
=& [ + 550
If. /7 is the Jacobian matrix of (2.2), this says that

= (3)
(o) =()

According to (1.7), this is the same as

(6)= 1)

because .4 is symplectic. By Ex. 1.4, this says that
P »
o) vl )
0 —p
Left-multiply each side by J. Since J2 = —1
() =)
P —p
oH

oy @)
(*P)_“” oH

oq

Therefore

By (2.1), this becomes
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Multiplication of the two matrices on the right-hand side shows that
[aH ap, oH dq, }

Fpe b T g 0P
_ o oH o, @H 29,

A [31’1 0« T oq, an]
Finally, the chain rule for differentiation shows that the right-hand sides
of (2.3) and (2.4) are identical. This completes the proof of the assertion
that the Hamilton-Jacobi form (2.1) is preserved under a contact transfor-
mation, with H undergoing the change of variables (2.2).

As an illustration, we turn to Ex. 11.2 of the preceding chapter, first
making a notational change. Write p, for p, p, for P, q, for &, g, for 5. The
function H becomes

Hp: + @) + Hpr — @) — P41, 92)
=3P} + pD) — (P2 — :21) + H@i + q2) — P(g, 92)-

. m
O = P
{=t

(2.4)

According to (11.1) of the preceding chapter, this is the same as

(2.5) WPt + pY) — (@ipe — 4:00) — Ulgy, @) — 3l — )

and the differential equations of the circular restricted problem take the

form (2.1) with m = 2 and H defined by (2.5).
We now apply the canonical transformation of Ex. 1.5, namely

py = P,cos Q. — P, Q7' sin Qs
ps = P sin @0, + P, Q' cos Q.
g = Q,¢08 O,
g2 = Q,8in Qa.
The Hamiltonian (2.5) becomes
26) P+ Pi0rt) — P — U(Qicos @, Qi sin Q) — 4p(l — )
and the equations are (2.3) with m = 2.
£XERCISE 2.1. By retracing all the variables back to the original (non-
rotating) system x-y, show that the terms of the Hamiltonian (2.6) of
the restricted circular problem have these interpretations:
P+ PO =o' = & +
P, = c = xy — yX.
The quantity v is the velocity of the particle in the original coordinate
system and c is its angular momentum. Observe also that Q,, Q, repre-
sent the polar coordinates of the particle in the (rotating) &-n system.
What do P,, P, mean?
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3. CANONICAL TRANSFORMATIONS GENERATED BY A FUNCTION

In this section the symbol ¥, means ZmJ

Let -
(3.1) pk=pk(Ph‘-~’Pm;Qh---an)
qk'::qk(Ph---va; QI,---,Qm),

k=1,...,m, denote a transformation. In the preceding section it was
;hown that the transformation is canonical if and only if the differential
orm

(3.2 2 pedqi — Pdek;

after (eplacement of pr and dq; from (3.1), is exact in the P, and Q. This
form is related to three others:

(3.3) P qidpy + Pdek,
34 > pidgy + QrdPy,
(3.5) S gedpe — QudPr.

If we denote each of the four forms by F,, i = 1, 2, 3, 4, respectively, it is
easy to verify that

F,=~F, + dEpqu,
Fl F;‘—dEPItQky
F, -F4+dZ(quk—Pka)~

It follows that if any one of the four differential forms after replacement
of p, Gr, dpi, dg,. from (3.1) is exact, that is, the differential of a function
of the P, and Q,, so is each of the others. Therefore the transformation
(3.1) is canonical if and only if any one of the forms is exact after the re-
placement.

A subtlety, often overlooked, must be mentioned here. We illustrate
with the form (3.3) and m = 2, although the comments apply in the other
cases. To say that (3.3) is exact after replacement of p, and dq, does not
mean that there is a function S(p,, p;; @1, Q) whose differential

oS oS N a8
= d 1 d —_—
dS apl p + ap2 de + an Ql + an ng

i

agrees with (3.3), namely,
qudp'l + qedpg + P1dQ1‘+ PZdQQ,
in the sense that the relations
A oS A
oS P, oS P,

36 = - G
GO = G =™ a0 T

20,
hold identically after the replacement. For example, let py = P, p, = Q,,
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a=0,9= —P,bea transformation; according to Ex. 1.11, it is canoni-
cal. The form (3.3), on replacement of ¢, and dqu, becomes

" QudP, — PydQ, + P dQ, + P.dQ.,

which is d(P; Q:) and exact. But there is no function S(p,, pes @u Q1) for
which (3.6) is satisfied. To show this, lcok at the second equation in (3,6).

It says
—g;’i—(pupz; 0., Qs) = 4>

or
—gi—(ﬂ, 0»: 0,,0:)=—Ps,

which is impossible since the left-hand side does not contain P,.

On the other hand, it may happen for some canonical transformation
that there is a function S(pi, ps; 0., Q.) for which (3.6) is satisfied. Con-
sider, for example, the canonical transformation of Ex. 1.5, namely,

py = Pycos @, — P, Q7' sin Q-

‘ = P, sin + P, Q7' cos @,

G.7) D2 1 o 2 Q1 Q
ql =5 Q) cOos QQ
qg = Q1 Sin Qg.

We ask whether there is a function S(pi, p2; 0., 0,) satisfying (3.6) iden-
tically. The first two equations of (3.6) read

'—g% == 1 COS Q2
—ngS';‘ = 1 Sin Qz.

It follows that an admissible S must be of the form p; @, cos @, + P2 Qs
sin Q; + T, where T is a function of Q; and Q, only. The last two equa-
tions of (3.6) then require that

P1C05Q2+P25inQ2+'g—]Qll—: P

_p‘Ql sin Q2 +sz1 CcOos Qg + —a—l— = P,
20

Substituting for p, and p; from (3.7), we obtain 8T /20, = 0,2T/2Q, = 0,50
that T is a constant. Since only the derivatives of S appear in (3.6), we can
drop the constant to conclude that S(pi, p2; @i, Q1) defined as Q,(p: cos Q.
+ p. sin @), accomplishes the desired purpose.

If a function S of the desired form does exist satisfying (3.6), we call
it a generating function for the contact transformation. We have concen-

e —— .

JUROUERR—
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trated on the form (3.3), but analogous results hold for the other forms.

EXERCISE 3.1. Show that the transformation p = Pcos 0,9 = Psin Q
(where m = 1) is not canonical, but that its modification p = 2P
cos Q, g = ~/2Psin Q is. Find a generating function S(g, Q).

EXERCISE 3.2. Discuss the two canonical transformations described in
this section by replacing (3.3) in turn by each of the other three forms
(3.2), (3.4), (3.5) and the Eqs. (3.6) in turn by the correct analogues.

Show, in particuiar, that the fi

rst transformation does not have a

generating function in any of the four arrangements. How about the

second transformation?

EXERCISE 3.3. Are there other generating functions for the transfor-

mation of Ex. 3.1?

4. GENERATING FUNCTIONS

Let

pk—_—pk(Ph-~-

“.1
) qk=qk(Ph---

denote a canonical transformation.
Then

(i) there is a function S(g, ...

is (3.2), that is, for which

28
oqx

4.2) = Pe,

or

(ii) there is a function S(p, . ..

is (3.3), that is, for which

2§

(43) —5;: == (lk’

or

(iii) there is a function S(gy,...

is (3.4), that is, for which

oS
aqk

4.4) = Pis

or

(iv) there is a function S(pi,...

is (4.5), that is, for which

s

(43) opx

- qky

aPm; Qh-'°an)
»Pm; Ql;---’Qm)

2 qm; @1y - -, On) Whose differen.ial

oS

an = —Pk;

Py Qryev vy @) whose differential

oS _ p.
aQ: = Py;

+qm3 Pi ..., Pn) whose differential

2S

5= = ks

oP,
s Pmi Pis s ooy Pn) whose differential

s _ .
ﬁ: - —_Qlu
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or
(v) none of (1), (ii), (iii), (iv) is true.
We have seen (Ex. 3.2) that case (v) can actually occur.
Now forget the transformation (4.1). Suppose we start with a function
S of one of the four forms described in (i }-(iv). For definiteness, let us
say S is of the form (iii). Let us define the variables pi, Qx by (4.4). The

second of these equations is
%%;(ql,"',qm;Ph"'st):Qk’ k—"—'l,...,m.

Suppose, moreover, that the Hessian |02S/6P, 8q,| does not vanish. Then
this system of m equations can be solved for the g, in terms of the Q, and
P, yiclding functions of the form (4.1). The first of the Egs. (4.4) can be
written
_os .
pe= 5o @i P P,

Replacing the g, by TG T A ¢ PR 4 ) yields for p, of the form
{4.1}. Clearly, the transformation (4.1) so obtained is generated by the

function S, and is, therefore, canonical.
The same argument can be applied to the three other forms of S. The

technique provides a method for obtaining canonical transformations,
starting with a function S. The implications are very important, as we now

show.
Suppose that we are given a system of differential equations

. oH . oH
4.6 =, = k=1,...,m
(4.6) qx 0, Dk Er
with Hamiltonian H(py, ... »Pm; Qu 4. - » Gn)- Then it retains its form under
a canonical transformation (4.1); that is, after the change of variables in

the Hamiltonian, the system becomes

s _0H 5 _ _CH
4.7) Qk——-ma P = 50y k=1,...,m

Now let us try to find a canonical transformation which reduces H to a
very simple form so that the system (4.7) is manageable. For example,

suppose it is possible to find a substitution (4.1) such that H reduces iden-
ticaily to @,. Then Egs. (4.7) become
0,=0, k=1,...,m
p=—1, Po=0, k=2,....m
Then
P=—t+a, P=a, k=2,...,m;

(4.8) kaﬁkQ k‘:la---,mo
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w‘here all the «,, B, are constants. Substitution for P,, Q, into (4.1) then
gives the solution of (4.6) in terms of ¢ and the “‘arbitrary” constants «,
ey @ Bty B ,
But how can one find a transformation (4.1) which does in fact reduce
H to 0,7 A procedure, due to Jacobi, is to search for a generating function
S that produces such a transformation. Specifically, let us try for a function
S of type (i). If the p, in H(py, ..., Pn; q1s - . . » gm) are replaced from (4.2),

we get
2S a2S '
H(Z2, . . 9. '
(aql’ ’ 3qm, ql’ L) qm)’

where S is of the form S(¢y,...,qn" Q1 ..., QOn) and we are asking that | :

49 s 85, =
( ) v (aqls-~~,aq"',ql,~--,qm>_Qh
irrespective of the values of Q,,.... Q.. This is the Jacobi (partial differen-

tial) equ‘ation. If we can find such an S and the Hessian |8°S/9q.2Q,| does
not vanish, then S generates a trans-ormation (4.1) which has the desired
properties. :

A fairly simple example may help to make all this clearer. Let m = 1
(so th.at we need no subscripts) and let H = }(p® + ¢%). The differential
equations are ¢ = oH/op = p,p = —0H/dq = —q. They are trivial to
so_lve, since f 4+ p=0,p= Acos(t — B),q = —p == Asin (r—B). But we
xynsh to solve them by the method outlined above, because direct integra-
tion of a system is seldom possible.

We seek S(gq, Q) so that (4.9), in this case

a9S\*
1 v 2| e
7[(aq) + q] - Qi
is satisfied. Then 8S/8qg = (2Q — ¢°)"* and

S = }[g(2Q — ¢°)'"* + 2Q arc sin ¢(2Q)~'"*].

~

Therefore

P = 2= = arc sin g(20)~"/*

QO Dy
Q‘(ﬁ ?Qlta

=0 — )"

AccordiBg to (4.8), P= —t 4 «, Q = B. Therefore g = /28 sin (t — ),
p = ~/2B cos (t — @), which certainly provides a general solution of the
equation.

p:

ExErciSe 4.1. What is the Hessian in the example just worked?

Exerciss 4.2. In the general case can the reduction of H to Q, be ac-
complished by an S of one of the other three types? Suppose we had
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tried for a reduction to P,. What modifications are needed? Try out
your theory on the special example.
*ExeRcISE 4.3. Show that if S satisfies Eq. (4.9), then the solution py, g,
of (4.6) is given “implicitly” by .

—‘t+a1= —a’gﬁs—l(qh-~',qm;ﬁh---s6m)
ay = —%(q.,...,qm;/s,,...,ﬁm), k=2...,m,

oS ’
== coisGmy Bryo ooy Br)s =1...,m,
pk aqk(qh vq Bl B) k m

where the a0, ..., @n; B, ..., Bn are 2m arbitrary constants.

EXERCISE 4.4 What happens in the example of the text if we choose
8S/9q = — (2Q — ¢")'* instead of the positive square root?

5. APPLICATION TO THE CENTRAL FORCE AND RESTRICTED PROBLEMS

We have seen in Sec. 2 that the restricted three-body problem can be put
in the form

(5.1) go=2H 5 _ _2H

) s k == 1, 2,
op oqx

with

H = }(pl + pigi”) — p: — U(q: cos ¢, g, sin g5).
Observe that we have changed from capital letters to small; this is because
another canonical transformation is forthcoming. The constant 4 u(l — )
has been dropped from the Hamiltonian; no harm is don. since it does
not appear in the Egs. (5.1) anyhow.

Recall that, according to Ex. 2.1, the term 4 (p? + pigi?) is simply § 2,
where v is the velocity of the particle in the non-rorating system and that
D: = ¢, where ¢ is the angular momentum. The variables g1, q» are the
polar coordinates of the particle in the rotating coordinate system. In the
latter system, U is defined by

UEm =0 =+ w + 71"+ ulE + p— 1)+ 92177,
in accordance with the formula of Ex. 10.3 of Chap. 1. In the special case

w = 0, the function U(£, ) becomes simply (£* + 7°)~"2, which is the same
as g;'. This suggests rewriting the Hamiltonian as

5.2) H=H, + [¢7' — U],
where ’
(5.3) Ho=4$(pi+pi) — g7 — ps,

and where the term in brackets drops out when x = 0.
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What is the physical meaning of the problem if p = 0? The answer
is simple: the smaller primary mass disappears and the large one takes on the
total mass of unity at the origin. The problem is then that of a mass moving
in a fixed plane under the attraction of a central force. Since the mass at
O is unity, this is identical with the problem ¥ = —r~*r treated in Chap. 1.
In the current context, the problem takes the form (5.1), with H replaced
b H,. Therefore, the central force problem can be put in the form

. _oH, . _ _oH,
(5.4) g = FTR s Pr = 3qx

where H, is defined by (5.3). According to the second paragraph of this
section, H, can be written (§v* — r~') — ¢, where r = ¢,. The first term is
just the energy h of the moving particle. Therefore Hy; = h — ¢. This sug-
gests a new canonical transformation to simplify H,, and hence the Eqs.
(5.4). It is reasonable to let Q, = h, 0, = ¢, so that Hy = Q, — Q.. If we
can find such a transformation, the Egs. (5.4) will become

y —2H, p _ _0H, —
Qk—‘apk) Pk"" an, k"‘l’zs
so that
(5.5) g, =0, 0,=0, P=-—1, P=1,

which are easy to solve.
With this in mind, let

0, = ¥ (pi + pigi?) — gi!

Qs = ps.
But how are P, P, to be chosen so that the transformation is canonical?
Let us look for a generating function that will furnish the desired transfor-
mation. Since it is P,, P, that are missing, we shall try for a function of the
form S(qi, g2; @1, @), for then — P, = 3S/2Q,, according to (4.2). Since
P2 = 05/0gs, the second of Egs. (5.6) requires that 35/dg, = Q,. Therefore
S = ¢, Q. + F, where F cannot depend on ¢, and must be of the form
F(q:; @1, Qo). Since p, = 95/dq, = 2F/dq,, the first of Egs. (5.6) demands

that
2
)+ 0] -ar =,

Since any solution will serve our purpose, let

% = qu("Qg + 2¢, + 2Q:q¥)”’.

(5.6)

Therefore
T
F=["x7(=03 + 2x + 20,x")""dx,

where G depends only on Q, and Q,. As we shall see shortly, it is best to
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:hoose G so that the integrand vanishes when x = G; and because q, > 0,
t is best to choose G positive,

If O\ = h = 0, there is just one choice for G, namely @ = Q%/2 = ¢*/2.
f @ 0, we must choose between -

=1+ +20 07200

The term 1 4+ 20, Q5 is 1 + 2hc®. According to equation (5.2) of Chap. 1
with u as defined there equal to unity), this is the same as e’: Therefore
5= (=14 e) " If k> 0, we are forced to choose the 4 sign to make
5 positive. If h < 0, either sign makes G positive but we must choose the
‘zrger value to keep the integrand real for x > G. In either case, then, G
=2 {(—1 4 e)(2h)~'. In summary, we have chosen for S the function ¢, @, +

£ oer
5.7y S(q, q23 G, @2) = 204 +‘f:x‘l("‘Q§ + 2x 4 20, x%)*dx.

The “missing” variables P,, P, are then defined by —25/2Q, a.nd
—85,2Q,, respectively. What is their physical interpretation? W.e start with
P,. According to (5.7) and Leibniz'rule for differentiation of an integral,

~Py = g — Quf x7(— 0} + 2x + 20,x) " dx
(5.8)

i G—-0}
= ¢, + arc cos ‘q«l—é—— - arc cos —=
This step uses the fact that the integrand of (5.7) vanishes at x = G. Now
let g, = r = ¢*(1 + ecos f)~!, Qi = c*. The second term on the right-hand

side of (5.8) becomes arc cos (— cos f) = = — f. Therefore,
G — 2

~Po=(q—-f)+ (7r — arc cos -——(—;E—Q—")
By our choice of G, the last term vanishes. Therefore —},'g = g — f Reca}l
that g, is the angle made by the radius vector to the partlc_le with the posi-
tive E-axis. It follows that g, — fis the amplitude of perxcentc.ar, measured
from the E-axis. As a check, observe that at time ¢ ttfe E.axis forms an
angle of ¢ with the fixed x-axis, since the rotation rate is 1. Therefore 7 +
(g2 — f) is o, the (constant) amplitude of _pericenter . mc?,sured' from t.he
x-axis. We conclude that —P, = o — t, P, = 1, which is consistent with

.5 o
It remains to interpret P,, which is defined by

. AN d s I

(5.9) ~P =25 = Q.J’Zx(—g, + 2x + 20,x%)"dx

The interpretation is left to the exercises which follow.
*EXERCISE 5.1. Assume elliptic motion, that is, O, = h < 0. Carry out
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the integration in (5.9) to obtain
—P = (=200 ~ (~0i + 24, + 20,g)"
+ (—20,)""* arc cos ——1——2Q‘_e‘ + 1}.

*EXERCISE 5.2, In the preceding fofmula, let Oy =ha= —1/2p ¢ =

r=a(l —ecosu), @, = ¢, where u is the eccentric anomaly. Show
that

=P = &**(u — e sin u).
Finally, let n=a-%? and conclude that —P, = t — T, where T is time
of pericenter passage. Observe that Py = —1, again consistent with (5.5).

Exsnc.:xsn 5.3. By use of Egs. (7.5) of Chap. | (with u there set equal
to unity) verify that the interpretation —P, =1t — T is valid in case
=0,e=1,

EXERCISE 5.4. Show that —P, = ¢t — T is also valid when 2 > 0.

EXERCISE 5.5. Show that in terms of the “old” variables p,, py; q,, qs,
we have

e = (p1p2)* + (1 — pigi')?
and

2
—P, = ¢, — arc cos 22—,
qe

Show that ~ P, can also be expressed explicitly in terms of the “old™
variables, but do not write out the expression.

EXERCISE 5.6. Show that G is simply the distance of the mass from O
at pericenter passage.

*EXERCISE 5.7. Apply the transformation of this section to the original

Egs. (5.1). They become
_oH 5 _OH _ .
O = o Be= so; k=L2
where
H= Ql - Q2 + R!

R being the result of substituting the new variables into (g — Ul.
Reinterpret the restricted problem as a problem of central force
motion with a disturbance represented by the term R in the Hamil-
tonian. The constants ¢, 4, o, T now become functions of time. In
particular, since Q, = ¢, we get ¢ = OH/2P, = 2R /dP,. Prove that this
agrees with the the formula ¢ = rF, appearing in (17.8), Chap. 1.
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6. EQUILIBRIUM POINTS AND THEIR STABILITY

Let a system be governed by the equations

6.1) ‘?k=%f—f’ ﬁk=-§§f’ k=1....,m,

with Hamiltonian H(pi,...,Pm; q1,-..,qn). Suppose that pi, ..., pn;

@, ...,q% is a point at which all the first partial derivatives of H vanish; it

is called an equilibrium point. Then the set of constant functions p; = P

gr = g} satisfy the differential equations; it is called an equilibrium solution.
The major example for our purposes occurs in the restricted three-body

problem. Consider the problem in the form (6.1) with m = 2 and the Ham-

iltonian given by (2.5), namely,

(6.2) 3 (P} + P — (@p: — q:p) — Ulqu, 42) — $p(1 — p).
The four partial derivatives are

oH _ 8H _ _ _aU
63) 'a = p; + G, Er = —D: aql,

3p2 §4) q, 3 D 36]2'

Clearly, they all vanish at a point (p,, p:; ¢1, g2) if and oaly if p, = —q,,
P =g, ¢ + (8U/2q)) = 0, g, + (2U/dg.) = 0. Since g, = &, g, = 7, the last
two equations are identical with (12.1) of Chap. 2. Hence the equilibrium
points for this Hamiltonian system are the five points (—g3, ¢i; ¢, ¢2),
where (g%, ¢3) is any one of the five libration points.

We return to the general problem (6.1) and an equilibrium point
@3, ...,pm 4%, ..., gm). An important question concerning such a point is
this: will a ““small” disturbance in the coordinates of this point cause the
resulting solution of the system to depart considerably from the point? It
is customary to call the point stable if the following is true: if a solution
of (6.1) starts with initial conditions sufficiently “near” (p},...,pn: g% ...,
gm), it will remain near this position for all time. In the special problem of
the libration points we are asking: if a particle is placed near one of the
libration points with (relative) velocity near zero, will it remain near this
position for all time? Since § (£ + 7%) + ®(, ) is constant, this means
that the velocities must also remain small for all time.

The general question can be put in a more precise form in terms of the
concept of L-stability.* To explain what this means, let the distance be-
tween two points (py,...,Dmi G ..-.qm) and (pl,..., 00 qh ..., qm) be
measured by

[2 (px — pi)* + (qx — qi)']'*
Then a point of equilibrium is called L-stable if, for each positive number

*L for Liapounov.
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¢, there is a positive number & such that each solution of (6.1) which starts
with initial position within a distance 8§ of the point exists for all time
thereafter and never departs from this point to a distance exceeding e.
Clearly, if there is such a 8, it must satisfy § < e.

The problem of L-stability of the libration points is a very difficult one
and will be discussed in the sequel. Here we shall describe a simpler exam-
ple, due to T. Cherry. Let m = 2 and let H(py, p:; q:, ) be the Hamil-
tonian
6.4 ¥ (gi + p0) — (¢ + pd) + $(pip: — p2qGi — 2:9:p)).

Then the Egs. (6.1) become »

Pr= —q1 + p:q + qaps,

P = 2‘]2 + pqys

g1 =py + pp. — q192,

42 = —2ps + $pt — &qi.
Obviously the origin (0, 0; 0, 0) is an equilibrium point. Is it L-stable? To
answer the question, observe that for any fixed constant 7 the functions

(6.5)

p=nT sx?(i—; 'r)’ Py = smfg : )
(6.6)

=TT, s Ao )
satisfy the Eqgs. (6.5) for all ¢ 5= 7. If 7 5 0, the initial values of these solu-
tions can be obtained by letting ¢ = 0:

pl=~T L gyl

=TT, g Sk
The distance of this point from the origin is ~/37-". Therefore, by choos-
ing 7 as a sufficiently large positive number, we can find a solution (6.6)
which at time ¢ = 0 starts as close to the origin as we please. What hap-
pens to the solution as f increases? At any time 1,0 < t < T, its distance
from the origin is ~/ 3 ( — )™}, which becomes infinite as r — . We con-
clude that the origin is not L-stable.

EXERCISE 6.1. Verify that the Eqgs. (6.6) furnish a solution of the sys-
tem (6.5)

EXERCISE 6.2. For each of the following Hamiltonians, where m = 1,
the point p = 0, ¢ = 0 is an equilibrium point. Determine in each case
whether the point is L-stable. (a) $(p* + ¢%); (b) $(p* — q%); (o) +p* —
cos ¢. [In the last case, show that }p* + (I — cos ¢) remains constant,
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so that p* and (1 — cos g) must remain small if they are so initially.]

*pxERCISE 6.3. Show that H(py, ... ,Pm; G1i---» gn) remains constant
intime if prv... s Prs Qise s o2 4m is a solution of the system (6.1). Sug-

gestion : show that dH/dt = 0.

exERCISE 6.4. Use the conclusion of the preceding exercise to show
that the origin is always a point of L-stability for a Hamiltonian of

the form 3 cxpt + T dugh, €6 > 0,d >0,k = 1,...,m

EXERCISE 6.5. Show thatif ¢, >0,k =1,....m but d, < 0 for some
value of k, then the origin cannot be L-stable for the Hamiltonian of

the preceding exercise.

7. (NFINITESIMAL STABILITY

In 1964, Wintner,* writing about the concept of L-stability, said:

This definition of stability seems to be the natural one. Actually, it is not
natural at all. In fact everything that is known from Poincaré’s geometrical
theory of real differential equations and from the parallel, though more dif-
ficult, theory of surface transformations points in the direction that condi-
tion (ii)** cannot be satisfied except in highly exceptional cases. Even in
the restricted problem of three bodies, not a single solution is known to be
stable. .

Writing twenty-five years later, it is easy to be wise. Within the last
few vears, as a result of the work of Kolmogoroff and his school, it is now
established that some of the libration points are indeed L-stable. But their
methods are far beyond the scope of this book, and we turn aside to look

at an easier question.

Classically it was,
another concept of stability whi
is this. Consider once again

and remains, customary to substitute for L-stability
ch is much easier to handle. The basic idea
he system (6.1) and an equilibrium point
Py P G- o G LELPE = 25 + € gx = g + i represent a solution
of the system (6.1) which is “near” the equilibrium solution. Expand each
of the derivatives 2H/px, 2H/dq, through terms of the first order in ex
and 7, around the point pl,...,Pm; g%, .., qn Because the first partial
derivatives themselves vanish at the point, we obtain
oH n( OH oO°H
"a";'/;(Ph‘--st;qh‘--,‘Im) = E' (m)oez + (m)oﬂt
+ terms of higher order;

* The Analytical Foundatlons of Celestial Mechanics, Princeton University Press,

1941, p.98.
**This is the ¢-3 condition described in Sec. 6.

SEC. 7 INFINITESIMAL STABILITY 79

a m 2

——(pls--~spm.;qa--'1 m)= ii '—azH

aqk ! g l-zl (3q,,8p,)oel + (3qk8q,)om
+ terms of higher order;

the subscript O indicates that the second derivatives are to be evaluated at

the point. Now let
= ( dH )o’ by = ( afH)

D oprop: opoq1/ o
'H *H
et = (—a— = |5
kL (aqkap()o’ dkt - (3qk3q;)o'
Then the Egs. (6.1) become (we write the equations for p, first)
12 € = — g—:] Ckt € — E; dkl"]l

e = lg age + ,21 beim,

provided the te.m?s f’f higher order can safely be dropped. By this we mean
somefvhat optlmlstncally,. that a solution of the exact Egs. (6.1) which statt;
su?‘ic}cntly near 'the equilibrium point will mimic the behavior of that
.10) u(;ton of the linear sys?em (7.2) wtich starts in the same position relative
tc: ,.. .00; 0,... ,.0). With this in mind, we define the point (pi,..., ph;
{,, <.+, qm) to be tf:ﬁnitesimally stable for the system (6.1), if the origin i;
b;::::lsedfotx: the' hn;ar system (7.2). The infinitesimal stability of equili-
utions is what is studied in classical mechani
of “small” oscillations. chanics under the theory
" Is the optimism justified? Is a poi ich is infinitesi

? point which is infinitesimally stable also
i;sttable? We examine zlhcel system (6.5) for which the origin is not L-stable
Let pv = ex, g = n and drop the terms which are not li :
B = e T ot linear. The result-

(71.3) = &= —n, € = 2my, n = €, By = —2e,.
The solution of this is

e, = Acost— Csint,

e; = Bcos 2t + Dsin2t,

m = Ccost -+ Asint,

9, == D cos 2t — Bsin 2t,

where (4, B; C, D) are the initial values of (e, €2; 71, 72). it is easy to check
that {ef + e + 7t + 73)'* = (4° + B* + C* + D?)"2 It follows that if the
solgtlf)n starts within e of the origin, it remains within e of the origin
This is more than enough to guarantee L-stability for the linear system. .
i We have shown that a point yvhich is stable according to the classical

eory need not be stable according to the desirable criterion of L-stability.
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Nevertheless, the classical method has its uses and we shall discuss it at
length.
EXERCISE 7.1. Show that for the examples described in Exs. 6.2-6.5,
the two definitions of stability give consistent results.

8. THE CHARACTERISTIC ROOTS

We have seen that the problem of infinitesimal stability of-an equilib-
rium point leads to the study of linear systems (7.2). The traditional
method of solving such systems is to look first for solutions of the form
e; = AgeM, g = Bie*'. Substitution into Eqgs. (7.2) leads to the linear
system*

(= — NA, + b (—du)B = 0
Z aklAl + Z (bkl - 7\-)31 = 0

Denote by A4, B, C, D, respectively, the m X m matrices (@r), (bir)s (cer)s
(dx,) defined by (7.1) and let I denote the m X m identity matrix. The
matrix of coefficients is then '

8.1)

—C — Al —D )

“”=< A B2l

If the determinant of the coefficients is not zero, then the system (8.1) has
only the solution 4, = 0, By =0, k = {,:--,n A non-trivial solution can
be guaranteed if the determinant vanishes. This means that A must satisfy
the equation |.#| = 0. If we multiply each of the first m rows by (—1), we
get

8.2
(8.2) A B — Al
The left-hand side is a polynomial in A of degree 2m. Its roots are called
the characteristic roots of the system (7.2). We shall prove that for systems
(7.2) whose coefficients originate in a Hamiltonian, as indicated by (7.1),
the polynomial is even. This means that if A is a characteristic root, so is
—A

Observe first that, according to (7.1), the matrices B and C are trans-
poses of one another, so that (8.2) may be written

C+rN- D
A cr -l

C Al D ]’

(8.3) 0.

Since, by (7.1), A = AT, D = D", we may transpose the determinant on

m
*In this section 3, means 3, .
=1
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the left to obtain

CT+ A A
p c—a=Y
N w interchange the last m rows with the first to get
D C—M
crant A |72
Finally, interchange the last m columns with the first. We obtain
| c—M D
A cr | 0

This shows that if A satisfies (8.3), so does — X, and the proof is complete.
EXERCISE 8.1. Find the characteristic roots of the system (7.3).

EXERCISE 8.2. Show that 0 is a characteristic root if and only if the
Hessian of the Hamiltonian vanishes at the equilibrium point, that is,
if and only if

!A B

-
C D

9. CONDITIONS FOR STABILITY

Suppose we are testing an equilibrium point (p},...,ph; 4% ..., qn) for
stability. We start by looking at infinitesimal stability. To avoid compli-
cations which arise in the general case, but not in the problems we consider,
let it be supposed from now on that the 2m characteristic roots Ay, . .., As,
are distinct, This mcans, in particular, that none of them can be zero since
the associated polynomial is even; if one A were zero, two of them would
be.

It is now easy to prove: the origin is L-stable for the system (7.2) or,
what is equivalent, the point (p}, ..., Ph: 4% . .., qm) is infinitesimally siable
if and only if all the numbers A\ are pure imaginary.

First suppose that some A\, has a non-zero real part. Then one of the
numbers Ay, —A; has a positive real part. The general solution of (7.2)
contains terms of the form e*! e ™!, One of these becomes infinite in
magnitude as t — oo. Therefore the origin cannot be infinitesimally stable.

Conversely, if all the A, are pure imaginary, let Ay = iy, px be real.
The general solution of (7.2) is of the form

2m e %mn
€ = IZI A e, M= 2 B, e,
= =1

2m 2m
Therefore |exl < ¥ [4ul, [7:/ = X |Bui] for all time. If we choose the sums
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on the right to be small, then the solution remains small for all time. This
completes the proof of the theorem stated in the second paragraph.

How does this help with the problem of L-stability ? Only to this extent.
it was shown” by Liapounov that if the Hamiltonian has continuous partial
derivatives of the third order, then a point cannot be L-stable unless it is
infinitesimaily stable. The condition on the Hamiltonian will be met in our
problems. Therefore we can conclude that if any \. has a non-zero real
part, the point is not L-stable. On the other hand, if the system is infinites-
imally stable, that is, all the A, are pure imaginary, no conclusion about
L-stability can be drawn without further investigation. This is demonstrated

by the examples given in Sec. 7.
In the next section we shall investigate the stability of the five librat on

points. To avoid distracting digressions, we ask the reader to verify some
computations in the following exercises. The notation is that of Secs. 12 and
13 in Chap. 2. We let
s=(1 — wpi® + ppi?,
_ o i _ &
A —-—'W, B = 5’5‘3‘;}, C = 9—7?-.
*gxERCISE 9.1, Show that
A=1+4 25— 3[(1 — wpi® + ppi’l,
B = 39[(1 — p)& + nor* + p€ — 1 + wpi®),
C=1~—s+ 31 — ppi® + ppi’l.
*EXERCISE 9.2. Keeping in mind that » = O at the libration points L,
L., L; and that p; = p, = 1 at L, and L,, verify the following table of
the values of 4, B, C at the libration points:

4 B ¢
L, | 142 0 [ —s
L, | 1+2s 0 b—s
Ly | 1+2s 0 L—s
L, 3 23~ 2p) 2
L, | % —3v3(1 — 2p) %

*ExERCISE 9.3. With each of the libration points, we shall associate two
numbers x,, x; which are the roots of the quadratic x* + (4 — 4 —
C)x + (AC — B®). Prove that at L, and L, the numbers x, and x, are
both negative if and only if 27u(l — p) < L.

*eXERCISE 9.4, For the libration points Ly, L;, Ly, the quadratic of the
preceding problem becomes x* + (2 — s)x + (1 + 25)(1 — s). Prove
that if s > 1, not both roots can be negative at the sane time.

*See, for example, L. Cesari, Asymptotic Behavior and Stability Problem in Ordinary

Differential Equations, New York: Academic Press, Inc., 1963, p. 93.
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*EXFRCISE 9.5. At each libration point, ¢&/2& must vanish. Use this to

show that at each of L,L, L,
+
1

(I — Wi - pr*)§—~—~" + wlps — p;:‘)f—ﬂ‘—i—1 = 0.

P2
Show that at L, this can be written
pils — 1) = p(l — p;¥),
andatL, L,
pll = 5) = p(l — g%,
Since p, > 1 at Z, and p2 <1 at L, and Ly, conclude that s > 1.

*EXERCISE 9.6. Combine the preceding exercises to conclude that x? 4
4—4-C)x + (AC — B? cannot have two negative roots at L,, L,,
Ly AtL,and L, it has two negative roots if and only if 27p(1 — ®) <1,

10. THE STABILITY OF THE LIBRATION POINTS

Recall from Sec. 7 'that the equilibrium points of the restricted three-body
problem are five in number and have coordinates (—g3, g%; g%, g3) where

(4%, g3) are the coordinates of the corresponding libration points in the &9

coordinate system. In order to test these points for stability, we must
compute the coefficients defined by (7.1) and the determinant which occurs
in (8.3). If we start with the Hamiltonian in the form

Yol + b)) — (P2 —"qop) + Hg? + gB) — B(qy, g0),
it is easily verified that (8.3) becomes

A =1 1 —®, —d,

(10.1) LA —Pe 1y =0
1 0 -2 1 ’
0 1 —1 -

whc?re the subscripts indicate partial differentiation with respect to the
variables ¢, or ¢.. Since g, = £, q: = 7, evaluation of the determinant
yields

(10.2) x2+x(4-—A-C)+4AC—Bz=O,

where x = A*and A, B, C have the same meaning as in Exs. 9.1—9.6.

Nf)w 1f' the points are to be L-stable, it is necessary that all the A be
pure imaginary. Thereforc both roots x of (10.2) must be negative. Accord-
ing to Ex. 9.6, this is never possible for L, L, L;. Hence the points are
unstable. The same exercise shows that L,, L, are unstable when 27u(1 —

w =1
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Therefore the only possible cases of stability left are L, and L; when
27u(1 — p) < 1, that is, p < .03852. In the major examples of interest to
astronomers, this condition on g is satisfied and many years of observation
indicate that the points are L-stable. A theoretical proof of stability has

appeared only recently, thus settli1g an important question of long stand-
ing. The proof is due to the Russian mathematician Leontovich who used

advanced methods devised by Kolmogoroff and Arnold.*
ExERCISE 10.1. Verify the derivation of Egs. (10.1) and (10.2) from the
given Hamiltonian. Confirm that the four roots A are distinct and
pure imaginary when 27u(1 — p) < 1.
*See Russian Mathematical Surveys, XVII (1963), p. 13, Example 4.

{ harter Boor

PERTURBATION THEORY

1. THE VARIATION OF PARAMETERS

The general solution of the equation ¥ = x + ¢ is x = —1 — t + ce
where ¢ is an “arbitrary constant,” or parameter. This illustrates the fac
that, under the conditions usually met with in practice, a differential equ:
tion of the first order :
(1.1 x=f(x 0

will have for its solution a function x = x(c, #), where ¢ is a parameter, |
other words,

(12) 2 e =flx1).

Now suppose we wish to study a modification of the given Eq. (1.1
namely,
(1.3) x=f(x, 1)+ glx,1).
For this purpose it is sometimes useful to employ a technique known a:
the variation of parameters. The idea is this. We start with the solutior
x = x(c, 1) of the original Eq. (1.1), and try to make it fit (1.3) by permitt:
_x;lg the parameter ¢ to become a function of the independent variable .
hen '

so that (1.3) reads
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9X ¢ 4+ ‘3_: = f(x,1) + g(x, D).

By virtue of (1.2), the interior terms cancel, leaving us with a new
differential equation
(1.4) é = g(x, t)(ac) .
The variable x occurring in g(x, 1) is to be replaced by x(c, 1). This leaves
us with a new differential equation of the form
(1.5) é = hc, 1).

For example, suppose the equation of the opening sentence is modified

i

{1.6) X =x-+t+ ax’

where « is a constant. Since the original equation (with @ = 0) has the
solution x = —1 — ¢ + ce', it follows that 9x/dc = e'. Because g(x, 1) =ax’,
Lq. (1.4) becomes

{t.7) é=calce' — 1 —t)ye,

which is of the form (1.5).

At this point the reader can, and should, argue that Eq. (1.7) is at least
as difficult to solve as the original one (1.6), and that nothing has been
gained. In general he would be right; there are very few examples in which
the method reduces an equation to one which is easier to “solve.” But, as
we shall see in the sequel, there are important uses for the technique, and
for the present we wish only to give the student some practice in it.

What has been said for a single equation applies equally well to systems
of equations. Consider the system

(18) X =fk(x‘,...,x,,;t), k=1,..,n
and its modification
(1.9) i'k:ﬁ(x,,...,x,,;t)+g‘-(.\'l,...,x,,;t), k=1,...,n

The system (1.8), again under suitable restrictions, will have a solution of
the form

(1.10) X = XpC1y oo s Cui t), k=1,.... ,n,

where ¢y, ..., ¢, are parameters. According to (1.8),

(l-ll) %xf(ch-'-’cn;t)=ﬁ‘(xh---vx";[)’ k= l""n'

We shall try to make the functions (1.10) fit the Eqgs. (1.9) by permitting
the ¢, to be functions of r. Since

. & 0xk s L Ok

X =2 'a—a é + 5t

Y
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n

oxy .
::‘E%C‘ + filxry, . oo, Xn3 0),

according to (1.11), it follows by comparison with (1.9) that

n

OXy .
(1.12) El-a-c—t"c, = gx(X15. .., X0 1), k=1,...,n

It is understood that e?ach X1, ..., X, appearing on the right-hand side is
to b.e replaced acccrding to (1.10). If the determinant |dx,/dc,] does not
vanish, the Egs. (1.12) may be solved for the “unknowns” ¢, to yield a
system

(1.13) ék:hk(cl,...,c,,;!), k=l,...,n.

As an example, consider the syst 'm

Xp = —x
(1.14) ' ”

Xy = Xy,
and a modification

X; = —X,,

(1.15)
X, = x, + asect,

where « is a constant. The system (1.14) has the solution
(1.16) Xy =1¢c08¢t 4 ¢ysint,

Xy, = ¢, sint — ¢, cOS ¢,

where ¢, and ¢, are parameters. We now interpret ¢, and ¢, as functions
of 7 and try to fit the functions (1.16) to the Eqs. (1.15). Then

¢, COst 4 ¢ysinf — ¢;sint + ¢, o8t = —¢;sint + ¢, cos ¢,
ér8int — é,€Cost + ¢,¢081 + ¢,sint = ¢, cost + ¢, sin ¢ + a sec t.

After an obvious cancellation, the equations can be solved for ¢, and é,.
It turns out that

é, = atant, ¢y = —d.
Untlike the earlier example, it happens that these can be solved simply.
The final result is

c, = —alogicos t| + ki,

¢y = —at + ks,
where k, and k. are constants. With these choices for ¢;, ¢,, the Egs. (1.16)
give the solution of (1.15).

- *exeRcist 1.1. Show that the original Kepler problem of Chap. 1 can
be interpreted as a system of the form (1.8), and a disturbed system,
as described in Sec. 16 of that chapter, as a modified system (1.9).
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Explain why Egs. (17.8) and (18.2) of Chap. 1 correspond to (1.13)
here.

2. THE PERIHELION OF MERCURY

In Sec. 15 of Chap. 1, a very simplified picture of the solar system was
presented. The actual motions are considerably more complicated because,
for one thing, we do not have nine independent two-body problems. Each
planet is disturbed from its elliptic course by attractions from the other
planets. _

There is one important disturbance from elliptic motion which we shall
discuss here. It was found that the disturbed motion of Mercury could not
be explained entirely by attractions of the other planets. In particular, it
was found that the change in @ deduced in this way was less than the
observed amount by about 43"/ per century. No explanation was found until
the theory of general relativity was produced by Einstein. .

To understand his explanation of the phenomenon, we g0 back to Sec.
6 of Chap. 1. It is shown there that the determination of a motion under
the central force f(r) can be reduced to the equation

" 2,2 1
@1 Pl p=cTp f(—;),
where p = p(6) and 6 is an angular variable. Now if f(ry = pr™ according
to Newton’s law, the equation takes the form
2.2) o'+ p=cp
But it happens that, if we accept the theory of relativity, the particle
behaves as if the law of attraction is actually f(r) = wurt - ec’r, where

e is “small.” Actually e = 3pV ", where V is the velocity of light. With
this substitution for Newton’s law in (2.1), Eq. (2.2) must be revised as

p/! +p=c‘2;b+e()2.

This can be written as the system
(2.3) p=s5 S=c’p—ptep

We study the effect of the disturbing term or “relativistic correction”
ep® by first supposing that e = 0 and solving the undisturbed system
24 P =5, s'=cp—p
Observe that the independent variable is 6, not ¢, but this does not affect
the applicability of the method of variation of parameters described in

Sec. 1. The system (2.4) is equivalent to (2.2), and we know that the solution
of (2.2) is

2.5) p=cull 4 ecos (A — w)],
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where e is the eccentricity of the undisturbed orbit and o is the amplitude
of perihelion. Since p’ = s, we have

2.6) s = —c " pesin ( — o).
Therefore (2.5) and (2.6) together give the solution of the undisturbed
system.

We study the system (2.3) by writing its solution in the form (2.5),
(2 6); but now the “constants” e and o are regarded as functions of 4. So
ditferentiate each of (2.5) and (2.6) with respect to 6 and substitute the
resulting formulas for p’ and s into (2.3). If we abbreviate § — by f, the
following formulas are found:

e cos f+ ew' sinf=0
— e’ sin f+ ew cos f = ec *u(l + ecos f),

Therefore

(2.7) Ce = —ectpu(sin fY1 4 ecos f)
and

2.8) o' = ec”?pe~t(cos fX1 + ecos f).

This system is no easier to “solve” than the original one (2.3). But this
is not our purpose, We are trying to explain a change in o of 43" per
century, and for this purpose rough methods will serve. Due to the presence
of the small number e on the right-hand side of (2.7) and (2.8), we expect
that e and o change very slowly. Since we are talking aboul a century aad
the period of Mercury is only about eighty-eight days, we argue that it is
probably safe to take ¢ and » as constant on the right-hand side of the
equations for a period 0 =< ¢ =< 2=. Then, according to (2.8),

2

o(27) — (0) = ec™* pe~! cos(d — )1 + e cos (6 — w))'dé

= 2mwec *p,

which is the approximate change in w in one period due to the relativistic
correction, If we multiply by the number of periods in a century it turns
out that the numerical result is the 43" which needs explaining. Observe
that the result is a positive number, which explains the familiar reference
to the “advance in the perihelion of Mercury.”

EXERCISE 2.1. Equations (2.7) can be derived directly from (17.8) of
Cﬁap. 1 by setting F, =0, F. = 0, F, = ec*r~* and eliminating the
time by use of r’¢ = ¢. Carry out the details.

3. FIRST ORDER PERTURBATION THEORY

The ropgh'method used in the preceding section to study the motion of
the perihelion of Mercury has a very general formulation. To explain it we
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return to the problem studied in Sec. 1. Suppose the system (1.9) to be of
the special form :

(3.1) X = fildXy, .oy Xai ) A eFu(Xyy ooy X3 1),
where & = 1,...,nand e is a parameter. Then (1.12) becomes

3xk N
= C ::eF.X,...,x,,;
);:, 7e, ¢ e 7

and (1.13) takes the form

{3.2) ér = €Gi(Cyy o5 Cas t)

We shall refer to the systems (3.1) or (3.2) as undisturbed if ¢ =0 aid
disturbed if € 55 0.

As we observed earlier, the system (3.2) obtained from (3.1) by the
variation of parameters may be no easier to “solve” than (3.1). But, for
sufficiently small values of ¢, it is frequently possible to get a good approxi-
mation to the solution over intervals of time that are not “too” long. The
main idea is this. Suppose the values of ¢,...,c, are known at some
instant fo; call them ¢, ..., ch Then the solution of the undisturbed sys-
tem, (3.2) with e = 0, is simply ¢; = ¢%. The form of (3.2) suggests that if
¢ is small enough, then ¢, cannot change rapidly; in other words, for a
length of time not too far from #, the solution of (3.2) cannot vary much
from ¢%, k = 1,...,n With this in mind, we suppose that a good approxi-
mate solution can be obtained in the form

3.3) cx(®) = ¢ + ene(8), k=1,...,n
where the conditions at ¢, are met by supposing that
(3.4) ne(te) = 0.

Substitution of (3.3) into (3.2) yields these equations for 7!
e = Gelc3 + ey, €5 €3 D).
If we suppose further that G, is a sufficiently smooth function, then the
right-hand side is well approximated for small ¢ by letting e =0. We
arrive at the approximate equation

J

7’7’( = Gk(c(l)5 ] C‘h; 1)9
so that, by virtue of (3.4),
{
cr=2cltep =ct +e J.[ Go(cS ..., )T,

This is the same result produced by integrating (3.2) directly, while supposing
that ¢,,...,cn On the right-hand side remain constant. Observe that the
method is precisely that used in Sec. 2, where, however, the variable is ¢
rather than z. Because only the first power of ¢ appears in (3.3), the term
enx is called a first order perturbation.

sndtiing
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' The? example of Sec. 2 furnishes a simple example of how the method

is applied. We shall now present a more elaborate example. Consider the

system

(3.5) B
Xy = k*x, + e(x3 + g cos lf),

where k, ¢, g, ! are constants. We shall begin with the undisturbed system
X = — Xy X, = Kk'x,

and .apply the method of variation of parameters. The solution of the

undisturbed system is

3.6) Xx; = ¢, cos kt + ¢, sin k¢,
x, = ¢k sin kt — ¢,k cos kt.

Substitute thesef into (3.5), regarding both ¢, and ¢, as functions of ¢. Then
solve the resulting equations for ¢, and é,. We obtain

¢, = esin kt[k’(é, sin kt — ¢, cos kt)* + L cos lt]
3.7 k
é = —ecos kt[k’(cl sin kt — ¢, cos ki)' + L cos 1:].

According to (3.6), the values of ¢, and ¢. at each instant can be found
from the values of x, and x, at the instant. In discussing (3.7), we may
therqfore suppose ¢, and ¢, known at some time, which we take to be zero
for simplicity; let their values be ¢{ and cj, respectively. According to the
rough method described above, we can get a first approximation to the
solution of (3.7) from

t
co=cl+e jo sin k'r[k’(c? sin k7 — c3 cos k7)* + % cos Iv]d'r,

12
c;=1c)—e€ Jo cos k'r[k*(c? coskt — cycos kt)® + —;—i— cos l'r:| dr.
The precise evaluation of the integrals is of no importance here. What
matters is that each integral is of the form
A 4+ Bt + (C cos 2kt + D sin 2kt) + (E cos 4kt 4+ Fsin 4k?)
4+ Gceos(k + Dt + Hsin(k + It

if k = /1, and there are two additional terms

sin (I — k)t I — cos (I — k)t
ey e

ifk =1
There is a traditional classification of the terms which occur in the sum
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above. In addition to the constant terry, there are terms in the sine and
cosine of dkt, 2kt and (if k == 1) of (k + [)t, (k — {}1. These are called the
periodic terms. The term in ¢ is called secular. In some problems, terms of
the form ¢ cos pt or tsin pt will occur; these are mixed or Poisson terms.
The intended distinction between the periodic and secular terms is clear:
the periodic terms indicate a bounded disturbance which recurs regularly;
the secular term indicates a steadily increasing disturbance. However, the
distinction has little justification rigorously and may be due entirely to the
method by which the approximate solution has been obtained. For example,
the first term in the power series expansion of

sin (/ — k)t
(3.8) J R By
is simply Jt. If an approximation method is used which happens to give J
rather than (3.8), it will look like a secular term when it may, in fact, be
an approximation for small 7 to a periodic term. There is still another
difficulty: the approximation to the solution may be valid for such a short
interval of time that the periodic terms do not have time to complete even
one period before the approximation fails.

Because of these doubts, we may view with a certain amount of skepti-
cism another distinction that is made. A term of the form sin 2k has a
period 7 /k; one of the form sin (! — k)¢ has the period 2z/({ — k). If 1 is
very close to k, the latter period will be large compared to the former.
Thus we have a distinction between short-period and long-period terms.
There is some evidence in the problems of celestial mechanics that secular
terms may be approximations to long-period terms, but to date there is
only one real justification for the distinctions among terms: it works in
practice for the numerical cases familiar to the astronomer or engineer.

EXERCISE 3.1. Give a physical interpretation of the problem (3.5) and
of the three kinds of terms (secular, short-period, long-period) which
occur in the approximate solution.

4. THE ERROR IN FIRST ORDER THEORY

In the last section we used some very rough reasoning to conclude that a
good first approximation to the solution of

(4.1) ék=eGk(c,,...,c,,; t)
with values ¢} at ¢t = ¢, is
t
(4.2) () =& + efl Gelcl, . .., %) dr,

where k = 1,..., n. We use the small “a” to indicate “approximate” solu-
tion because we shall reserve the symbol ¢, (¢) for the true solution.
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It is our purpose now to examine the meaning of a “good first approxi-

mation.”
We content ourselves with the case n = 1, which is typical of the
general case. If we drop the subscripts, then (4.1) becomes

(4.3) ¢ = eGle, 1)
and (4.3) becomes

(4.4) o= +ef G,
According to (4.3), the true solution must satisfy the equation
4.5) ) =c+e [, et

We ask: how large is the difference |c*(f) — c(#)| and for how long an
interval of t‘me |t — ¢,|? For simplicity, we shall suppose that G(c, 1) is
continuous and bounded for all ¢ and 1, and that 3G /dc exists for all ¢ and
has the same properties as G. Then

Geni=4,  |E =8
ac
where 4 and B are constants. According to the mean-value theorem,
G(e*,m) = Gletr), 1) = (¢ = ) G2 &, ),

where 7 is fixed and £ lies between ¢® and c(r). Since B bounds the deriva-
tive 2G/dc, we conclude that

4.6) |G(c®, 7) — G(c(7), 7)| < Blc® — c(*r)l.
Now, according to (4.5),

P —clr)=c¢ f: G(e(r), T)dr.
Therefore

Ief — ()= e

[ 166, e}
Since 4 bounds the function G(c, ?),

e —e(m)=<e

f: Ad'r} = Aejr — t,|.

From (4.6), we conclude that
4.7 |G(c®, 7) — G(c(7), 7)| = ABelr — ¢,|.
If we subtract Eq. (4.5) from Eq. (4.4), the result is

() — c(t) = ef: [G(c® 7) — G(e(T), 7)]dT,
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so that, by (4.7),
le*(t) — e(t)] <ABe*

| : r — to)d"r‘.

We conclude that

(4.8) it (t) — e(D)) =< K%' (r — 1,)%, K® =} AB.

It follows that if [z — t,] = K~'e~*3, then {c*(#) — c(£)} < €%*. This means
that ¢* and ¢ agree within a term of order ¢¥/* over a length of time of the
order of e~¥*; the smaller the ¢, the better the approximation and the longer
the time over which the approximation is valid.

In practice, these estimates are of little use. First, the equations which
actually occur are considerably more complicated, so that the constants
fike 4 and B which occur in the practical problems are impossible to
determine. Secondly, ¢ is fixed by the problem and there is no choice in
how small it may be taken, Nevertheless, it is satisfactory to have a theore-
tical justification of the procedure.

EXERCISE 4.1. Check the estimates directly for the equation ¢ = esin ¢
where ¢ = ¢, when t = t,. This means that ¢® and c are to be computed
explicitly and then {c* — ¢] is to be estimated.

EXERCISE 4.2. Find an estimate corresponding to (4.8) in the case »n is
larger than 1.

5. THE EQUATIONS OF DISTURBED ELLIPTIC MOTION

In Secs. 16-18 of Chap. 1 the method of variation of parameters, in a
somewhat disguised form, was applied to obtain equations for the variation
of the elements of a disturbed elliptic motion

= —purir + F
in terms of the components F,, F,, F, of F. To make cross-reference unnec-
essary, we reproduce the equations here in a rearranged form.

(5.1) 4 = 2a%ec™'(sin )F, + 2a%cp~'r'F,,
(5.2) ¢é=cu '(sin f)F, + ep~'(e + 2cos [+ e cos’ f)(} + ecos f)' Fo,

(5.3) % = r¢~' F,cos (0 + f),

(5.4) & = —cu~le”'F,cos f + (uec) ' (¢! + ru)Fysin f
— re~'F,cotisin(w + f),

(5.5) Q) = re'F, cscisin (o + f),

(5.6) T = (ueasin f)=*[rc — % ue(t — T)sin f1a — ac(ue)™'é cot f.
In addition, we found equations for related variables, as follows:
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G.7) A= —3}na'q,
(5.8) é =rF,.

Moreover, because @ = w + 0, we can add Egs. (5.4) and (5.5) together
to obtain

(5.9 O = —cu~'e"' F,cos f+ (pec)'(c* + rp)F, sin f
+ re='F, tan .;_sin @ + /).

The basic set of equations is formed by (5.1)-(5.6), but it is clear that
(5.9) may be substituted for either (5.4) or (5.5). Also, because ¢ =
pa(l — ¢€°), Eq. (5.8) may be substituted for (5.1) or (5.2). Many other
combinations are permitted, provided the basic set can be obtained from
them. Thus (5.1) may be replaced by an equation for %, where h = —pu/2a.
If (5.2) is replaced by (5.8), we may also replace (5.3} by an equation for
H, where H = c cos i. Each of these choices occurs in practice, depending
on the nature of the force F causing the disturbance.

But whichever choice is made, i turns out that (5.6) is a serious source
of trouble because of the presence of the term in 7. One way out is to
replace (5.6) by an equation for the mean anomaly /. Since ! = n(t — T)
and [ = n(1 — T) + A(t — T), it follows from (5.6) and (5.7) that ’

(5.10) f=n— n(peasin ) 'rea + nac(pe)='é cot f,

in which ¢ no longer appears explicitly. An alternative which is sometimes
used is o, defined by

t
6.1 o=1—p  p =f n(+)dr.
From (5.10) we get the equation
5.12) ¢ = —n{ueasin ) 'rca + nac(ue)='é cot f.

Two other variables are also used. First is the quantity e. defined by
e = o — nT and known by the impressive title the mean longitude at the
epoch. 1t suffers from the same defect as T itself, namely, the presence of ¢
in the equation for é. This is circumvented by choosing in place of ¢ a
quantity e, defined by e, = nt + ¢ —p, or, what is equivalent, ¢, = @w +
I — p.

Whatever six variables are chosen, it is clear that for an analytical
study of the differential equations, the quantities F,, F,, F, must be replaced
by suitable functions of these variables. The same is true of r and f, which
do not occur on the left-hand side of our equations. How the replacement
is done will be the object of the next section.

EXERCISE 5.1. Other difficulties occur if e or i is small because of the
presence of e~' or csc i in some of the formulas. To avoid these, another
choice of variables can be made. In the former case, the equations for
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e and © can be replaced by equations for the variables esin® and
e cos w. If it is the inclination i that is small, replace the equations for
iand @ by equations for sinisin () and sinicos {2. Write out one
complete set of six equations in each of these cases.

6. THE PERTURBATION EQUATIONS IN ANALYTIC FORM

If a particle is moving in disturbed elliptic motion, then at each instant ¢
the elements of the osculating ellipse are determined by the values of r and
v. Conversely, it follows that the position and velocity at the instant can
be determined from the values of the six elements of the osculating ellipse.
As we saw in the preceding section, some of these elements can be replaced
by other quantities such as g, / or ¢, provided the totality of them determine
the six elements. Whatever choice is made, let us denote the quantities by
Q1.+ qs, or, generically, simply by ¢. Then r=1r(q,,...,46 1), and
similarly for v.

It is important for us to compute the derivatives dr/dq and to find their
components in the directions of r, a, ¢ described in Sec. 16 of Chap. |. For
definiteness, we choose the quantities to be the standard elements a, e, i,
o,  and the mean anomaly /. The symbol dr/8q denotes the partial deri-
vative with respect to each one of these six quantities, the other five and
the time being held fixed.

As in Fig. 10, p. 33, let x, y, z denote a fixed cooriinate system
centered at O and let n denote a unit vector in the direction of the line of
nodes. By £, &, &, we mean the unit vectors r~'r, @~'a, ¢ 'c. Therefore

6.1) F=F,t + F,& + F.&

By ft we mean the unit vector & x fi; it lies in the orbital plane of the -

osculating ellipse at time ¢ and is perpendicular to n. Then
(6.2) r =rcos(w+ f)fi + rsin (o + f)i.

It is clear that fi is determined by  alone and # by both Q and /. We
may therefore differentiate r, as given by (6.2), with respect to any of the
four remaining quantities g, e, w, / by differentiating the coefficients of #
and i, and not fi and f themselves. Therefore, provided q is one of these
four quantities,

a .
50 = galoos @ + P + sit (@ + /)]
+ ré%[— sin (@ + /)i + cos (& + f)d].

According to (6.2), the first expressior in square brackets is simply r~'r
or f. The second lies in the orbital plaie and forms a right-handed system
with £; it is clearly &. It follows that
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ar _ or g
(6.3) = ( + q) :

Since u can be eliminated between the equations

qg=aen,l

6.4) r=a(l — ecosu), | =u—esinuy,
the quantity r depends only on q, ¢, /; it is independent of w, i, 3. More-
over,
(6.5) I +ecos f=a(l —e)r,
so that f depends at most on q, e, /.

In particular,. &r/8w = 0, 9f/0w = 0. Therefore Eq. (6.3) for g = o
becomes simply dr/dw = r&. Hence, by (6.1), F-0r/dw = rF,. This enables
us to rewrite (5.8) as

(6.6) =F. 3co

We turn to the case ¢ = /. According to (6.4),

or - =1 ou
—é—l—-—aesmua—l, I=(— ecosu)——a 3l
Since sinw = p'?a~"*¢'rsin f, we conclude that
or _ 1/2 ,3/2 o1
5] = ew'"al’e sin f.
From (6.5) we get — e sin f(3f/0l) = —a(l — €*)r~*(dr/al), so that
,__l__: er-tpt12gYe,

Since dw/8l = 0, Eq. (6.3) becomes

ar _
5= eu*a* e~ sin f# + cr-'u V2 a? 4.

According to (6.1) once again
F - 3_;‘ — e#‘l/za:s/o -1 Sian,- + cr—l#—llzaS/z Fm
Clearly, this permits us to write (5.1) as
I o 12, =12 . QS
{ G = 2a'?u\*F T

Since ¢® = pa(l — e?), we can compute ¢ from 4, as just found, and ¢,

as given by (6.6). Then
I 5 -1/2 -1 . p2\1/2 2y1/2 . .ai
an ¢=(aw) e (1 — e {(1 — &) - at —-F o).

If ¢ = a, we get from (6.4) that
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ar u T 2u
3a = (1 —ecosu) + ae smué—- 0= ecos;z)aa

Therefore du/da = 0 and or/da = r/a. Also, by (6.5),

Y A S TN S SR RS |
— e smf»gd = {1 -~ e} «{b — ") a 0.

Hence &f78a = 0. Since dw/8a == 0, the formula (6.3) says simply that
ir,Za = (r/a)f. According to (6.1),
67 ar 1.
(6.7) Fda aFr'

The procedures applied when g = / or a works just as well when g = ¢,
sltheugh the computation is a little longer. The result is

(,/‘r ' - oy r A
‘= cos ft + asinf !,:1 + E(T“:e?)]a

s that

. er_
(6.3) F'éé‘ acos f F, +asmf[1+a—-————(l__e)]ﬂ.
This formula and (6.7) enable us to rewrite (5.10) as

; 9 - - . 3 - al"
([u) | =n— (1 — e-)(ua) Y2,-1F . 52 ___zal/!u LS 55.

We have exhausted the cases when (6.3) is applicable. To treat g =i,
we turn back to (6.2). Of all the quantities which appear on the right-hand
side. only f depends on i. If Q is held fixed and i is changed by amount
Ai. this has the effect of rotating m by the amount A/ in the plane of M
and &. Since this plane is perpendicular to fi, it remains fixed. Hence,
émjei = 8. Therefore, by (6.2), we have ar/oi = rsin (o + f)(of/3]) =
rsin (@ + f)c. From (6.1) we obtain

F. 3’ rsin (@ + f)F..

This enables us to write (5.5) as

, b
av) Q =[ua(l —e)] 'csciF- 5%,
and with the help of (6.8) it converts (5.4) into
) & = —[ua(l — )]~ cot i F - g{

+ (a1 — e F -

To obtain or/2, the last on our list, we start with (6.2), according to
which
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or
6.9) m~rcos(m+/)aﬂ+rsm(m+f)
From this we can derive (see Ex. 6.1)

(6.10) = r[cos i & — sinicos (o + f)E].

aﬂ
Therefore,

F- 3(), = r[cos i F, — sin i cos (o + f)F,]

and (5.3) becomes

(VD) Z’ [ua(l — )]~ coti F - a——[p,a(l e tesciF -

EXERCISE 6.1. Verify that (6.10) is actually a consequence of (6.9) by
use of these formulas:

€& = (sin 2 sin i)i — (cos 2 sin i)j + cos ik,
fi =cosi+sinfdj,
m==¢& x fi,
& = —sin (o + i + cos (0 + ).
The vectors i, j, k are those described in Sec. 17 of Chap. 1.

*EXERCISE 6.2. Suppose that the disturbing force F is derivable from a
function R(r,?) by F = grad R = @R/or. (See Sec. 2 of Chap. 2 for
the notation.) Then if ¢ is one of the quantities a, e, i, ©, 2, / we have

a0k
= %
Explain why, and rewrite formulas (I)-(VI) in terms of the derivatives
2R /oq.
EXERCISE 6.3. What changes must be made in formulas (I)-(VI) if the
quantities g are selected to be a, ¢, i, ®, Q, T?

7. ALTERNATIVE FORMS OF THE EQUATIONS

In the major applications of perturbation theory, the disturbing force F
orignates from a disturbing function R(r, ?), as described in Ex. 6.2, through
the relation F = grad R = 8R/or. The most important example is this.
We are interested in the motion of a mass m, with respect to mass m; when
this motion is disturbed by a mass m, whose motion with respect to m, is
known. Some special cases are these: m; = earth, m, = moon, m; = sun;
m, = sun, m, = minor planet, m, = Jupiter.

To obtain the equations of motion we return to Eqgs. (7.1) of Chap. 2.
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Divide the first by my, the second by m;,, and subtract the first from the
second. We get

rss §

(71) P= —/‘"-xr + Gmsts‘_‘_"_l: - ﬁﬁJ’

where r =1, — 1, s =1y — 1, p = G(m, + m,), s =s|. The vector s is
known as a function of ¢ and is independent of r. Define the function R by
(1.2) R(r, 1) = Gmy(rsy — s7°'s-1).
The gradient 9R/ar can be calculated by using the suggestion to Ex. 7.3 of
Chap. 2. As a result, we find that the differential Eqg. (7.1) becomes f =
—pur=*r + F, with F = 9R/ar.

Under the circumstance that F is of the form described, we have
dR/dq = F-0r/dq for each of the quantities ¢ selected in Sec. 6. Then Eqs.
(I)-(VI) of that section take the form

) =20k

an ¢ = c(a,u,e)-‘[(l - ef)‘/’2%§ - gﬂ,

(11D f=n—(Q— ez)(/,m)“/’e"% _ 2a;/m-”2g§,
av) Qe tose ,‘)‘I"

V) @ == —¢ ' cot IS,R 4 (pae) 'gf,

vI) g; = ¢~ cot i% —c 'ese lg%

It should be remembered that » is an abbreviation for p'?a7** and ¢ for
[pa( — ],

A simpler set of equations can be obtained from these by using a
somewhat different set of quantities, introduced by Delaunay. Let L =
(ua)'’?, H = ccos i. Then his six quantities are L, ¢, H,/, 0, Q. To transfer
the preceding perturbation equations to the new variables, let R denote the
disturbing function expressed in terms of the original variables and # the
same function in terms of the new variables.

Clearly, 8R/0l = 04 /al. Because L = (ua)'’® Eq. (I) becomes

! i OR
Equation (II) is discarded because e is not present in the new list of
variables. But in its place we recall [see (6.6)] that ¢ = 2R/9w. But 0R /0w

= 0 /dw. Therefore

(e,
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, ._OR
11 =92
ar) €=7=
As to (IHI), we observe first that a is implicitly contained in # through
the variables L, ¢ and H, and e through the variables ¢ and H. Therefore
OR _ 0ROL , 0Roc  oROH
da " OL 0a " 9c 8a ' 3H da
and
(13) oR _ 9 0c  oROH
de dc de OHOoe’
If we compute the partial derivatives with respect to a and e and sub-
stitute into (III), we get

+

I’ = — 92
(111 l=n 3

Now { occurs in Z only through H. Therefore

- dR _ 0ROH _ . .0

o ~eHai | “SMiam

and (I1V) becomes

INZ Y= 92
av) Q 3H

If we use this computation of "R 7, and AR /de as computed from (7 1)
l"q (V)as converted mio

oA

(V) o = — 2,
e

If we start with H = ¢ cos i, then (I1') and (VI) together yield

(VI) ;= 9A
=%

EXERCISE 7.1. Verify (I')-(VI') by supplying all missing computations.
*EXERCISE 7.2, Let F = Lu°L"* + # and show that Eqgs. (1I)~(Vi"y take

the form
A
=% =R

EXERCISE 7.3. If a planet has a satellite, we can obtain the mass of the
pl?.net by observing the length of a satellite period and using Kepler’s
third law. Give the details.

But if the planet has no satellite, as for example Venus, the mass
can be determined by comparing the observed and theoretical distur-
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other planet, say the earth. Devise a

bances it produces on some :
a mass by use of the formulas of this

method for determining such

section. ‘ ‘
*pxERCISE 7.4. (To be used in Sec. §8.) From the following approxi-

mations, )
. e

o= 5(-5)

and the expansions obtained in Sec. 12 of Chap. 1, obtain the follow-

ing formulas, valid through terms of order e’

2 . .
sin u = (1 — -g-) sinl + jesin 2/ + ge’sin 3,

cos u = (1 - —gj) cos | + cos 2 + 3¢ cos 31,

. Yel
JQe) =3¢, TG =5

= ] 4+ ecos! + e cos 2],

= — ecos | — e*cos 2l + €’ cos’ I,

aly “|n ~=»

cosu = —pe + (1 — ge*) cos ! + fecos 21 + e cos 3l.

From these and from the relations rcos f = a(c;os u—e), rsinf=
a(l — €)' sinu=a sin u, obtain the approximations

Icosf= —3e+ (1 — ge?) cos ! + e cos 2! + %e®cos 3,
a

I osinf= (1 — §e)sinl + fesin 2/ + ge*sin 3l
a
Use the last two formulas to show that
(—r«)g cos 2f = §e' — 3ecos!
‘ + (1 — §e*) cos 2/ + e cos 3l + e?cos 4,
(5)sin2f = —3esinl + (1 — 3&)sin 20 4 esin 31 + ¢t sin 4L,
a

Finally, obtain for an arbitrary angle 8 the formula

(—’-—)2[3 cos2f +B) +11= (1 + 3€*) — 2e cos | — }e* cos 21
’ — ge?)cos (B + 20)
+12e* cos B — Je cos B+ 1D+ 31— ge)co
+ 3ecos (8 + 3) + 3e? cos (8 + 4.

8. AN INTRODUCTION TO LUNAR THEORY

of celestial mechanics is the theory

i loped part
The most BB et oc o s llite of the earth, with the sun as the

of our own moon regarded as a sate
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disturbing mass. The modern theory is beyond the weapons available in
this book and we shall describe a very simplified approximation to the
problem. The reader is warned that the approximate problem cannot be
trusted to give good results concerning the actual motion of the moon. The
main purpose is to provide some experience in the techniques we have
developed so far in order to draw a few qualitative conclusions.

The mathematical setting is that described at the beginning of the
preceding section with m, = earth, m, = moon, m; = sun. It will be sup-
posed that all motion takes place in the plane of the ecliptic, so that equa-
tions involing () and i become irrelevant, Since we are talking about the
motion of the moon relative to the earth, we fix a coordinate system in
this plane with origin at the earth. Angles will be measured from the x-
axis, positive in the direction of the moon’s motion around the earth. It
will be supposed that the motion of the sun around the earth is circular and
uniform, and that the origin of time is fixed at an instant when the sun
crosses the positive x-axis. Then at the instant ¢ the vector s from the earth
to the sun forms an angle of »’t with the positive x-axis, where n’ is the
mean motion of the sun. The length s of s is a constant. The angle from
the x-axis to the vector r joining the earth to the moon is w + f, as usual,
and the angle yr between r and s is « + f— n't. Since ry; is the distance
from the moon to the sun, the cosine law gives

rhy = 1" + 5" — 2rscos - = s*(1 — 2p cos yr + p?),

where p = r/s. It will be supposed tt at p is so small that powers of p above
the first can be ignored in the sequel,
According to Kepler's third law (see Sec. 15 of Chap. 1), we have (»')
s = G(m; + m, = Gms;. Therefore the disturbing function, as given by
(7.2), becomes, on neglecting the mass of the earth, A
R = (n's)*[(1 — 2pcosr + p*)~'* — p cos ).

If we expand the first term in brackets in powers of p and drop all powers
above the second, we find that

R = (n's)*[1 — 3p*(1 — 3 cos’ )]
= (n's)*[1 4+ 1p*(3 cos 2y + 1)].

The first term (n's)* of R is a constant; we drop it out since only derivatives
of R occur in the perturbation equations. Therefore

= 3 (n's)’p*(3cos 2¢r -+ 1)
= ing? (%)2[3 cos 2f + B) + 1],

where 8 = 2w — 2n't. Finally, by the concluding formula of Ex. 7.4, we
obtain the (very) approximate disturbing function
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R =31('a)’l(1 + 3e?) — 2ecos! — te?cos 21
+ Pe*cos B — 9ecos B+ 1y+ 31— se*)cos (B + 20)

+ 3ecos (B + 31) + 3e’ cos (B + 4h).

If this expression for R is substituted into the perturbation equations
of Sec. 7, we obtain the equations governing our primitive lunar theory. 'But
remember that the conclusions are unreliable because so many assumptions
and approximations have been introduced. For example, Egs. (IV)and (VD
disappear on the assumption of plane motion. In particular,.we cannot
obtain the well-known fact that the line of nodes regresses (that is, £ < 0).

There is another familiar phenomenon, however, that can be partly ex-
plained on the basis of (8.1). Let us consider the constant part of R alone,

8.1)

namely,
R, = 1('a*(l + 3¢9

and its effect on . According to (V) of the preceding section.

» = c(u ae)~' +(+'a)’ 3e + non-constant periodic terms.

To compute the size of the constant term, we write ¢ = p'?a?(1 — &'

= (ua)"? so that the term becomes 3(n"*/n).

If we use the fact that the period of the sun is | year and of the moon

.075 years, we get n’ = 2z, n = 27/.075. The constant is therefore about

.353.
Then, according to our theory, the term contributes a positive rotation of
.353 radians per year to the major axis of the moon’s orbit. Actually this
is only about half of the observed motion, which requires a more elaborate
theory to explain it.
*ExeRCISE 8.1. The term R, is called the secular term and its effect on
the elements the secular effects. According to the present theory, which
elements besides o are affected by R,?

*Exercise 8.2. Ignoring all of the disturbing function R except the sec-
ular part, find approximately the time it takes for ! to increase by
2z. Show that this period, known as the anomalistic month, is the time

from one perigee passage to the next.

*ExERCISE 8.3. The length of ti ne from a perigee passage to complete
a revolution of 27z is called ihe sidereal month. Since the major axis
rotates positively, this time is shorter than the anomalistic month.
Ignoring all terms but R, in R, estimate the difference in the two
months. Hint: compute the time it takes / + o to increase by 2. (In
a more accurate theory, according to which  also changes, / + o
must be replaced by / + o -+ (2.)

*EXERCISE 8.4. The synodic month is the time it takes y to complete a
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cycle. Give a geometric interpretation of this time. Can you estimat
it from the present theory?

9. THE PERIODIC TERMS IN LUNAR THEORY

According to the calculation made in Sec. 8 of the effect on » of the secula
term R,, we have approximately

n\? T
9.nH » = —}(——) n + periodic terms.
n
The corresponding calculation for the mean anomaly (see Ex. 8.2) yields
P g _,i z . g
I = n[l z( ; )' + periodic terms.
Therefore,
9.2) I+ o= r{l — (—%—) ] + periodic terms.

The average value of the right-hand side of (9.2) obtained over a long time
interval is denoted by 7 and is called the mean sidereal motion. Consisten
with Ex. 8.3, the number 2x/n is the mean sidereal period. It is the
number .075 (years) introduced at the end of Sec. 8, and what we did there
amounts to replacing (9.1) by the further approximation

1y 2
("n,-{) i + periodic terms.

wlw

w =

Let k denote the constant 1 — 3(n'/A)?%; it is close to 1. Then

9.3) & = (1 — k)i + periodic terms.
If we replace (9.2) by

9.4) [+6=n- periodic terms,
then

[ = ki + periodic terms.

. Now let /,, @, be the values of / and « at the instant f, at which we
wish to start the integration of the perturbation equations. Define

T=l+ kit — 1), &=+ (1 =kt~ t).

These are the “main” parts of / and » due to the secular part of R and
allowing for a general average of the periodic parts.

Recall that in the first-order perturbation theory described in the earlier
sections of this chapter, we treat the parameters (or elements) which occur
on tbe right-hand side of the perturbation equations as constants during
the 1qtegration. In the lunar theory we are now describing, the elements in
question are a, ¢, o, /. It turns out to be of advantage in integrating the
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equations to replace w and [, not by «w,, /. but by @, | in arder to take
account of the secular effect. On the other hand, a and e are still treated
as constants. Observe that the same effect is achieved by replacing o by
e~k (V= k}ii(t - tg) and / by [ 4 ka(t ~ 1) in the disturhing function R
Jsee (8.1)], and then treating all four elements as constants during the
integration,.

So far we have considered only secular cffects. In order to illustrate
the effect of periodic terms in R, we turn our attention to a phenomenon
known as the evection. If the motion of the moon were undisturbed, then
the polar coordinate # = f4- » would increase by 2x during a period.
Arnother way of saying this is that f 4+ o — nt returns to its original value
when = 2x/n, It is reasonable to ask what happens in the case of dis-
wod motion. The question takes the form: what change does f + o —
cidergo during the motion of the moon; is this change periodic?

in ovder to answer the question, we start with the approximation f =
[ =~ 2esind, justified in Ex. 9.1. Then if we write £ = f 4 o — 7, we find

E=(1 + 2ecos )i + &) — /i + 2¢sin] — 2ea cos .
Now define w, = w — @&. Since di/dt = (1 — k)A, we can rewrite this as
E=1[1—2ecosll(l + &) — A[l + 2e(1 — k) cos []
+ 2¢sin ] — 2ea, cos I.
We make some further approximations which can be justified only vaguely
here. Because e and 1 — k are small, replace the brackets on the right by

1. The first line on the right-hand side becomes / + & — 7. It can be shown
that the effect of this term is small compared to what remains. So, finally,

we get the approximation
(9.5) £ = 26sinl — 2ed, cos .

According to (9.3) and the definition of w,, we know that &, = terms
of the periodic part of R effecting ©. The periodic part is R — R,. There-
fore, by Eq. (V) of Sec. 7 and the approximation ¢ = ~/ua, we get

o = (ua) e Z(R — Ry,

Similarly, since R, does not involve w, Eq. (II) gives us
2 oR
S -1/2,~1} @ _ i
¢ =~y e [2 (R - R = OF].
It can be shown that of all the periodic terms in R, the one that makes the
major contribution to the present problem is the evection term R, =
18(n'ae)’ cos 8. By definition, 8 = 2w — 2n't. Moreover, by the principle
stated earlier, we may replace o by w + (1 — k)A(t — 1,) in order to treat
all the elements as constants during the integration. Therefore, we replace
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R — R. by L5(n'ae)’ cos 2y, where v = @ — (1 — k)ft, + [( — ks — n'}e.
From the preceding equations for @, and é, it is found that
. nl 2
ew, = L}(;) ne cos 2vy
and
nl 2
= p(E)
i\ ) nesin 2.
These and the replacement of £ convert (9.5) into
d i n 2
E(f+ w — fit) = —-—12—5(%) encos (2y + ).

I?rom this, the desired change in [+ @ — 7t can be computed by integra-
tion. Geometrically, it represents a displacement of position in longitude
from the position the moon would have under ordinary Kepler motion.
The phenomenon is the evection mentioned above. It was discovered by
Hipparchus, a Greek astronomer.

EXERCISE 9.1. Start with the equation
I —ecosu=(1— el + ecosf)!

for talliptic orbits and show that if e is small, we obtain the approxi-
manoq /= u + esinu. Combine this with the formula/ = y — e sinu
to justify the approximation f =/ 4+ 2esin .

EXERCISE 9.2. Find the period of the evection and compare its length
with the months described in Exs. 8.2-8.4.

EXERCISE 93 The term 3(n'a)® cos (8 + 2I) occurring in the formula
(8.1) for R is known as the variation. Study its effect on E.
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Advance of perihelion of Mercury, 88
Amplitude of pericenter, 6
Angular momentum, 2, 42
Anomalistic month, 104 (Ex. 8.2)
Anomaly:

eccentric, 11

mean, 15

true, 6
Area, Kepler's law on, 3
Arnold, V., vii
Asteroids, Trojan, 53
Attraction, law of, 1

B: rycentric coordinates, 26

Canonical transformations, 61
generating function of, 68

Center of mass, uniform motion of,

39

Central force, 1

Characteristic roots, 80

Collapse, total, 43

Collision, 12

Coordinates:
barycentric, 26

Coordinates (cont.):
Jacobi, 47
relative, 26

Curves of zero velocity, 58

Disturbed motion, 29, 94
Disturbed system of equations, 90

Eccentric anomaly, 11
Eccentric axis, §
Eccentricity, 6
Ecliptic, plane of, 28
Einstein’s theory of relativity, 88
Elements of orbit, 23
table, 30
Elliptic orbit, 7
position on, 16
Energy, 3, 40
kinetic, 4, 41
potential, 4, 40
Equations of motion, 1, 38, 94
Error in first order perturbation theory,
92
Euler, L., 50, 58
Evection, 106~7
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Existence theorems, 38, 53
Expansions in elliptic motion, 22-23

Force, central, 1
Fourier series, 18 (Ex. 10.2), 22-23

¢, the gravitational constant, 25
Generating function, 68
Gravitation, Newton’s law of, 1
Crravitational constant; 25

Hannlton-Jacobi theory (chap. 3), 61—
81

Hleveot B0 LG (Hoainote)

Phil curves (zzocurves ol zero veloe-
ity), 38

Hipparchus, 107

Hyperbaolic orbit, 7

position on, 15

ldentity of Lagrange-Jacobi, 41
Inertia, moment of, 41

Jacobi constant, 53

Jacobi, Hamilton-, theory of, 61
Jacobi, Lagrange-, identity of, 41
Jupiter, 53

Kepler's equations, 15 (Ex. 8.4)
Kepler's laws:

first, S

second, 3

third, 9, 28
Kilroy, W. H., 59
Kinetic energy, 4, 41
Kolmogoroff, A., vii, 78

Lagrange-Jacobi identity, 41
Lagrange, J. L., 48, 58
Liapounov stability, 76-77

Libration points, 58
Line of nodes, 25
Longitude:
of ascending node, 25
of pericenter, 25
Loung period terms, 92
Lunar theory, 102~7

Matrix, symplectic, 62

Mean anomaly, 15

Mecan motion, 14

Momentum, angular, conservation of,
2,40

Moon, 53,102/

Moser, 1., vii

SMotion aelative o venter o maee,
Ju

n-body problem (chap. 2), 38
Newtonian gravitation, 1
Nodes, line of, 25

Orbit:
definition, 6
elliptic, 7, 16
hyperbolic, 7, 15
under non-Newtonian attraction, 9
osculating, 31
parabolic, 7, 11
types of, 7
Osculating orbit, 31

Parabolic orbit, 7, 11
Pericenter, 6
Perihelion, 6

of Mercury, 88
Periodic terms, 92

in lunar theory, 105
Perturbation:

first order, 90

secular, 92
Perturbation theory (chap. 4), 85

error in first order, 92

e s <5
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° Planets, 28

table, 30
Plummer, H. C., 21 (footnote)
Points of libration, 58
Pollard, H., 44 (footnote)
Potential energy, 4, 40
Problem:

of n bodies (chap. 2), 38

of three bodies, 47

of two bodies, 25

Relativity, general, theory of, 88
Restricted three-body problem, 51-53

Satelhite, 1O (Ui 7Y

Sccatlar terms, 92

Self-potential (= negative of potential
<4 energy), 40

Short peripd terms, 92

Solar system, 28

Sun, 28

Sundman, K., 43
Symplectic matrix, 62

Theorem:
existence, 38, 53
Sundman’s, 43
Virial, 44, 46 (Ex. 6.1)
Theory of general relativity, 88
Three-body problem, 47
Transformation, canonical, 62
Trojan asteroids, 53
True anomaly, 6
Two-body problem, 25

Vadiation of parameters, 85 88
Virial theorem, 44, 46 (Ex. 6.1)

Weierstrass, K., 43 (footnote)
Widder, D. V., 45 (footnote)
Winter, A., 23 (footnote)
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