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A TRIBUTE TO VICTOR G. SZEBEHELY 

Victor G. Szebehely 
1921--1997 

It is with a heavy heart that I write these words. On September 13, 1997, 
my friend, colleague, and mentor, Professor Victor G. Szebehely, died at 
his home in Austin. I have to confess that it has been very hard for me to 
carry on with this book without him. He was the guiding spirit of the 
work. 

Victor and I had much in common. We were both refugees from 
Europe-he from Hungary and I from Austria-fleeing the twin scourges 
of Nazism and Communism. We both became Americans and we both 
worked on technical projects related to the national security. We both 
came to love The University of Texas. Finally, we both developed a strong 
interest in space exploration, and Victor made important contributions to 
the success of our journeys to the Moon. 

Where Victor was unique was in his deep understanding of celestial 
mechanics and his ability to apply this knowledge to the solution of prac- 
tical problems. Victor did not hesitate to tackle the toughest scientific 
problem in his field which is the subject of the final chapter in this work: 
The problem of three bodies. He had the intellectual courage to take on 
the hardest challenges and the intellectual horsepower to make critical 
contributions of lasting value. 

I would be remiss if I did not mention Victor’s personal qualities. In 
addition to being a man of intellect, Victor was also a man of good will 
who was honored and respected by all who knew him. Perhaps most im- 
portant for his friends was his impish sense of humor. We both had our 
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offices on the fourth floor of Woolrich Hall, the aerospace building on 
our campus. I was on one end of the floor and he was on the other. One 
morning I was complaining to him about something that had gone wrong 
with our research finding in the Congress. Suddenly, he proposed that we 
resurrect the Austro-Hungarian Empire on the fourth floor and raise the 
Imperial banner “with appropriate salutes” every morning. “Maybe,,’ he 
said, “that will solve your problem!” I laughed and promptly forgot what 
was upsetting me. 

Victor Szebehely was a great man whose influence was widespread. I 
was one of the people who came into his orbit and I am proud to have 
been his student. I mourn him and I miss him. Rest in peace, my friend, 
and go with God. 

September I99 7 HANS MARK 
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PREFACE 

This volume is the second edition of Adventures in Celestial Mechanics 
published by Victor G .  Szebehely in 1989 at the University of Texas 
Press. The subject of this edition is the same as the previous one which 
was to quote the earlier introduction “to study the motion of natural and 
artificial bodies in space.” The work is still intended as a textbook for a 
first course in orbital mechanics and spacecraft dynamics and we have at- 
tempted to produce a second edition that maintains the spirit of the first. 
This was also stated succinctly in the introduction of the first edition: 
“fundamental ideas will be emphasized and will not be cluttered up with 
details that are available in the immense literature of this field.” 

Having described the similarities between this book and the previous 
one, we should say a word about the changes. The principal difference be- 
tween the two editions is that we have added some material that strength- 
ens the treatment of the “artificial bodies in space.” A chapter on rocket 
propulsion has been added that describes what must be done to get things 
into space. We have included a chapter on elementary spacecraft dynam- 
ics so that we discuss not only trajectory maneuvers but also how space- 
craft are stabilized and oriented. Finally, we have included a chapter on 
the exploration of the solar system in which the “natural” and “artificial” 
bodies are treated together. This area is one of the genuine triumphs of 
modern science and engineering, and it constitutes the most important 
modern application of celestial mechanics. Therefore we felt that it was 
necessary to address it even in an elementary course. 

ix 
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In addition to these major changes, there are minor ones as well. In 
several instances (e.g., Lambert’s theorem and gravity-assist trajectories) 
we have included details that were not present in the first volume. We 
have also somewhat expanded the discussion of the three-body problem 
to include chaotic motion in nonlinear systems. 

For the most part, therefore, the second edition is similar to the first. 
Each of the chapters contains some numerical examples so that students 
will become familiar with how various calculations are performed. Prob- 
lems are also included at the end of each chapter. Finally, appropriate ref- 
erences are mentioned at the end of each chapter and also in the appen- 
dix. 

Many people helped us to write this book. We are grateful to these col- 
leagues in particular: Professor Roger Broucke for his help in developing 
the derivation of Lambert’s theorem, Professors Wallace Fowler and Bob 
E. Schutz for their help in writing and revising Chapter 9 (Elements of 
Spacecraft Dynamics), and Professor Raynor L. Duncombe for carefully 
reading and commenting on the manuscript. We owe a very special debt 
of gratitude to Ms. Maureen A. Salkin who did a superb job typing the 
entire manuscript. In addition, Ms. Salkin made important editorial sug- 
gestions that significantly improved the quality of the work. Finally, we 
would like to thank all of the students who were in our classes during the 
years that we have taught this course at The University of Texas at Austin. 
These young people provided us with continuing stimulation and inspira- 
tion which made it a great pleasure for both of us to work on this project. 

VICTOR G. SZEBEHELY 
HANS MARK 

Austin, Texas 
August 1997 



CHAPTER 1 

ON THE SHOULDERS OF GIANTS: 
AN HISTORICAL REVIEW 

People have looked at the stars since the dawn of history. The obvious 
“permanence” of the heavens and the regularity of the motions executed 
by the Sun, the Moon, and the planets soon led people to look for expla- 
nations. Each of the major civilizations produced a “cosmology” that was 
based on more or less crude observations and was melded with the myths 
of the civilization. These “theories” of the cosmos were important in that 
they were early attempts to understand how the universe works. While 
many of these had philosophical and perhaps literary value, they lacked 
what is essential in a modern scientific theory: predictive value. None of 
these theories were able to make really accurate predictions of phenome- 
na such as eclipses or were able to explain why the observed regularities 
in the planetary motions exist. 

During the fourth and third centuries before the birth of Christ, there 
was a great flowering of civilization in Greece. Philosophical schools 
were established by a number of people, and one of the major topics of 
interest was cosmology. Many theories were set forth, including at least 
one that put the Sun at the center of the solar system. Aristarchus of 
Samos (ca. 270 B.C.) developed some clever techniques for measuring 
both the sizes and the distances to the Moon and to the Sun. Although 
this methods were crude, and in the case of the Sun somewhat flawed, 
he did conclude from his observations that the Sun must be much larger 
than Earth. It was from this “measurement” that Aristarchus was the 
first to conclude that the Sun, rather than Earth, should be placed at the 
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2 ON THE SHOULDERS OF GIANTS: AN HISTORICAL REVlMl  

center of the solar system. At about the same time, Eratosthenes of 
Alexandria (ca. 276 B.C.) actually measured the radius of Earth by 
comparing the length of the shadow cast by similar vertically placed 
rods, one in Syene and the other at Alexandria, at high noon on the first 
day of summer. The value he calculated was within 20% of the ones 
obtained by modern measurements. 

However, by far the most influential natural philosopher of the period 
was Aristotle (384-322 B.c.). He taught that the only way to understand 
the world was by the application of pure reason. This approach led him to 
two conclusions that were to impede progress for more than 18 centuries. 
Aristotle argued that it was common sense to conclude that Earth is fixed 
in space and located at the center of the universe. Furthermore, he said 
that the gods lived in heaven, and thus all motion in the heavens had to be 
“perfect,” by which he meant uniform and circular. Unlike Aristarchus, 
most philosophers of the day did not attach much value to detailed obser- 
vations and measurements. Thus, Aristotle’s views prevailed because of 
his enormous influence; he was, after all, the teacher of Alexander the 
Great. 

The cosmology of Aristotle was developed in a systematic way by 
Claudius Ptolemaeus (ca. A.D. 140). Ptolemaeus was a Greek who lived in 
Alexandria, where he produced a monumental treatise called the Al- 
magest that included a detailed section on cosmology. He placed Earth at 
the center of the universe and said that the stars were fixed on a large 
sphere that rotated around the central Earth once every day. Since the 
Sun, the Moon, and the planets all moved relative to the stars, they were 
said to be attached to different spheres, all rotating in uniform motion 
around Earth. To explain the complex (and sometimes even retrograde) 
motion of some of the planets, smaller spheres were attached to the larger 
ones, and the planet was then located on the surface of the small sphere. 
This sphere also would rotate with uniform angular velocity, thus pre- 
serving the Aristotelian doctrine of uniform circular motion for this com- 
plex system of spheres upon spheres. Using what were called cycles and 
epicycles, this model turned out to be remarkably accurate given the state 
of astronomical instruments in the second century A.D. While the model 
of cycles and epicycles had descriptive value, it did not explain why the 
stars and planets moved the way they do. 

It took more than a thousand years to change this stage of affairs. In 
the thirteenth century, Roger Bacon, an English cleric, was the first to 
propose that hard knowledge (theories, if you will) must be based on ob- 
servation and that these observations must be rigorously controlled and 
objective; that is, they must be repeatable by any observer. What we now 
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call the “modern” science slowly evolved from Bacon’s ideas. In a very 
real sense, Bacon was the one who set the stage for the great scientific 
achievements of the renaissance period. 

It can be argued that the very first important and genuine application 
of the modern scientific method was the complete and detailed under- 
standing of how the solar system works. All of the hallmarks of how mod- 
ern science is done are there: the introduction of a new hypothesis, per- 
haps even for the wrong reason; the development of a reliable body of 
measurements; the rejection of the existing theory by showing that the 
measurements support the new hypothesis; and, finally, the demonstra- 
tion that the new theory can explain things that could not be understood 
previously. The first tentative steps were taken by Nicolaus Copernicus 
(1473-1543) (Mikolaj Kopernik in Polish), who introduced the hypothe- 
sis of a solar system with the Sun, rather than Earth, at the center. In the 
first instance, he did this for a practical reason, since it was an attempt to 
simplify the calculations necessary to maintain an accurate calendar. Us- 
ing the older, geocentric model of the solar system developed by 
Claudius Ptolemaeus (Ptolemy), calendar calculations had become very 
complicated as better measurements became available. Copernicus 
nursed the hope that, by placing the Sun at the center of the solar system, 
he could reduce the number of parameters necessary to make good pre- 
dictions of the celestial phenomena and events that determined the calen- 
dar. In this effort, Copernicus was only partially successful. However, 
what is important is that a “truth” dawned on him during the process of 
his work, which was that the Sun really is located at the center of the solar 
system. As a conservative clerical lawyer, Copernicus was shocked by his 
own hypothesis, and he never published anything that contained the ab- 
solute assertion that the Sun was at the center of the solar system during 
his lifetime. His major work, “De Revolutionibus Orbium Coelestium” 
was published only after his death. We thus have the accidental stumbling 
on a major “truth” that occurs so often in the modern scientific process. 

A second feature of scientific discovery is accurate and reliable exper- 
imentation. Tycho Brahe (1 546-1 60 1) was the most important exponent 
of this process of understanding the solar system. Tycho was a Danish 
aristocrat who received a cosmopolitan and international education. He 
took up observational astronomy as a hobby and, because of his great 
wealth, was able to build what was, for his time, the finest astronomical 
observatory in the world. It was called the Uranienborg (castle of the sky) 
and was located on the Island of Hven near Copenhagen. Tycho, for the 
first time, made accurate measurements of the positions of the Sun, the 
Moon, the planets, and the stars. What is more important is that he made 
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these observations systematically over more than 20 years. He was there- 
fore the first to produce accurate ephemeris tables, and as we shall see, 
these eventually turned out to be of decisive importance. Three years be- 
fore his death, Tycho was forced to leave Denmark. The Emperor Rudolf 
I1 then invited Tycho to become the Astronomer to the Imperial Court in 
Prague. It was there that he met Johannes Kepler, which led finally to the 
great breakthrough. 

Galileo Galilei (1 564-1 642) also made a most important “experimen- 
tal,” or observational, discovery by being the first person to turn the new- 
ly invented telescope toward the sky. By observing that the four large 
moons of Jupiter execute more or less circular orbits around the planet, 
he had discovered a small system that demonstrated clearly how the larg- 
er solar system works. It was this observational discovery that provided a 
convincing argument that the Copernican hypothesis regarding the posi- 
tion of the Sun at the center of the solar system was correct. The contribu- 
tions of both Tycho and Galileo were critical: Galileo’s was qualitative, 
but it gave others the courage to go ahead. Galileo was also an enthusias- 
tic and articulate controversialist and he was able to engage the educated 
public in the cosmological debate. It is interesting that the great work of 
Copernicus, “De Revolutionibus Orbium Coelestium” was put on the In- 
dex by the Vatican in 161 6 (70 years after publication), only after Galileo 
began his propaganda campaign for the Copernican system. Finally, it 
was Tycho Brahe who provided the trustworthy numbers. 

As important as these contributions were, the real intellectual break- 
through came from Johannes Kepler ( 157 1 - 1630). Kepler was the son of 
a German noncommissioned officer. His talents in mathematics were rec- 
ognized very early in his life, and he was educated by the local clerical 
authorities. Eventually, he was appointed Professor of Mathematics at the 
University of Graz in Austria, where he began his astronomical studies. 
He believed in the heliocentric hypothesis, and he made several attempts 
to develop a mathematical model of the solar system based on placing the 
Sun at the center. All of these models failed to fit the observations, and 
so, in 1599, he decided that he would go to work for the man who had the 
best observations, Tycho Brahe. Tycho had been exiled from his native 
Denmark in 1598 and had moved to Prague. Kepler applied for the post 
as Tycho’s assistant at the Imperial Court and his application was accept- 
ed. Unfortunately, Tycho died shortly after Kepler arrived in Prague, and 
Kepler was forced to fight a lengthy legal battle to get access to Tycho’s 
ephemeris tables. Eventually, he succeeded and this is when his great 
work began. 

Perhaps the single most difficult thing that must be done in the process 
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of scientific discovery is to abandon that which was previously taken to 
be the “truth.” Habits of thinking are hard to break, but this is exactly 
what Kepler did when he abandoned the old Greek idea enshrined by 
Aristotle that all heavenly bodies must execute perfect motion, meaning 
that their motion must be in circular orbits moving at uniform speed. In 
doing his calculations, Kepler could not explain Tycho Brahe’s observa- 
tions of the motion of Mars with the assumption that Mars was moving in 
a uniform circular orbit around the Sun. It was at this point that Kepler 
made his great breakthrough. He chose to abandon Aristotle and to be- 
lieve the observations of Tycho Brahe and turned the question around: 
Given the observations of Tycho, what kind of orbit does Mars execute? It 
was in answering this question that Kepler discovered his quantitative 
laws of planetary motion. A good argument can be made that Kepler’s 
step was actually the most difficult one in the entire process, because he 
had to do two things that involved great intellectual risks. First, he had to 
abandon the centuries-old idea of uniform circular motion and, second, he 
had to believe Tycho’s observations to derive his laws. It was the complete 
rejection of the old and the leap of faith in the new measurements that 
made Kepler’s achievement the most remarkable one in the entire story. 

Kepler’s laws of planetary motion may be stated as follows: 

1. Planets move around the Sun in elliptic orbits with the Sun located 
at one focus of the ellipse. 

2. As the planet moves in its orbit around the Sun, equal areas as mea- 
sured fiom the focus are swept out in equal times. (This law implies 
that the planet moves more rapidly when it is close to the Sun com- 
pared to when it is farther away.) 

3.  The square of the period of the orbit is proportional to the cube of 
the semimajor axis of the elliptic orbit. 

The final chapter in this history came when Isaac Newton realized that 
Kepler’s laws were the consequences of more basic principles, the law of 
universal gravitation and the so-called second law of motion, which re- 
lates the acceleration of an object with the force that is applied to move it. 
These two principles were sufficient to explain Kepler’s laws and much 
else as well. If Kepler was the one who broke with the past, it was New- 
ton who looked to the future. As Newton put it, “If I have been able to see 
a little farther, it is because I stood on the shoulders of giants.” 

Isaac Newton was born at Woolsthorpe in Lincolnshire on Christmas 
Day in 1642. He died almost 85 years later in 1727. He received his B.A. 
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degree in Cambridge in 1665. In 1669, when his professor Isaac Barrow 
resigned, he requested that Newton be given his professorship. Newton’s 
complete dedication to his work resulted in headaches, sleepless nights, 
irregular eating habits, and finally a nervous fatigue at 50 years of age. 
He mentions these problems in his notes on the computations of the mo- 
tion of the Moon. 

In 1687, before switching to administrative activities as the Warden 
and, in 1699, as the Master of the Mint, his book, entitled Philosophiae 
Naturalis Principia Mathernatica, was published by the Royal Society of 
London. It is interesting to see how dynamical problems can become 
complicated at Newton’s insistence that they be solved using geometry 
instead of calculus. This makes the Principia a hard book to read and 
leads to the question of why Newton, one of the inventors of calculus, did 
not use calculus in his book. Newton had used calculus to formulate and 
solve some of the problems presented in the Principia but, being afraid of 
criticism, described his work using geometry. 

Newton’s conflicts with Leibnitz concerning the discovery of calculus 
are well represented in the literature, and this may be another reason why 
geometry dominates the Principia. Their controversy regarding the deter- 
ministic nature of dynamics and celestial mechanics is less known. Today, 
Newtonian mechanics is sometimes erroneously associated with com- 
plete predictability in dynamics, which was Leibnitz’s dogma and was not 
accepted by Newton. At this point, Laplace’s demon enters the picture: 
knowing all initial conditions and all laws of nature and predicting the fu- 
ture. Laplace takes the side of Leibnitz. (See the list of bibliography at the 
end of this chapter.) 

In 1665, because of plague, Newton left Cambridge and went back to 
his birthplace, where he could work undisturbed. The unverified apple in- 
cident, which could have happened here, describes the importance of 
connecting seemingly unrelated phenomena; in this case, falling stones 
(or apples) on the one hand and planetary motion on the other. In fact, 
Newton describes the idea leading to artificial satellites with the follow- 
ing thought experiment: If stones are thrown from the top of a mountain 
with small horizontal velocities, they will hit the ground, but as the veloc- 
ity is increased, circular and elliptic orbits are obtained around Earth. It 
was here, amid conditions of creativity, concentration, and peace, that 
Newton arrived at the general theory of gravitation. 

Newton became the president of the Royal Society at the age of 60 and 
was knighted by Queen Anne in 1705. He died in 1727 and is buried at 
Westminster Abbey in London. 

Since, in this book, we wish to concentrate on dynamics and celestial 
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mechanics, for a description of Newton’s many other significant scientif- 
ic contributions (e.g., his Opticks, published in 1704), the reader is re- 
ferred to the literature. 

Since Newton’s laws of dynamics and his law of gravitation will be de- 
scribed here, a few general historical comments might be appropriate. 

Newton’s three laws of motion, forming the basis of dynamics, are as 
follows: 

1. Every body perseveres in its state of rest or uniform straight-line 
motion unless it is compelled by some impressed force to change 
that state. 

2. The change of motion is proportional to the motive force impressed 
and takes place in the same direction as the force. 

3. Action is always contrary and equal to reaction. 

There are many variations of these laws, some by Newton himself, 
who made changes and corrections. Also, differences exist in the litera- 
ture as the laws were translated from the original Latin text. Once again, 
the soundest language, mathematics, comes to our aid. Using the concept 
of linear momentum (which Newton called motion), we can express the 
first and second laws by the equation 

Note that Newton did not mention acceleration when giving his laws 
of motion. For a constant value of the mass, the above equation should 
read: m(dvldt) = F. Our textbooks use the concept of acceleration and 
give Newton’s law as ma = F. This is of less generality than Newton’s 
original formulation, which is applicable to variable mass and, therefore, 
for rocket propulsion. 

Newton’s law of gravitation, as discussed in his Principia, was men- 
tioned before. The gravitational force acting between two bodies of mass 
m and M is proportional to the product of the masses and inversely pro- 
portional to the square of the distance between them. In vector form 

GmM mM 
F = -  r=G--F 

iri3 rz 
where i is the unit vector pointing in the direction r and G is the gravita- 
tional constant that determines the “strength” of the gravitational field. 
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Probably nothing describes Newton better than one of his own state- 
ments: “I seem to have been only like a boy playing on the seashore and 
diverting myself now and then finding a smoother pebble or a prettier 
shell than ordinary, while the great ocean of truth lay all undiscovered be- 
fore me.” 

It is a common error to believe that the behavior of the solar system 
and the rules of orbital mechanics were completely understood as a result 
of the work of Isaac Newton. He took a giant step, but many critical ques- 
tions remained unanswered. Newton solved what we call the “problem of 
two bodies,” which means that he developed the means to predict the mo- 
tion of two bodies interacting through the gravitational field. For a sys- 
tem of more than two bodies, Newton’s equations cannot be solved. For- 
tunately, the solar system is dominated by the Sun, which accounts for 
more than 99.8% of its entire mass. Thus, to a very good approximation, 
the motion of each planet can be calculated as ifonly the Sun and that 
planet counted. Thus, Newton was able to deduce his laws. With the ad- 
vent of more accurate astronomical measurements in the eighteenth cen- 
tury, discrepancies appeared that could only be explained by taking into 
account the effects of the other planets in the solar system. 

Following Newton’s work, several brilliant astronomers and mathe- 
maticians used Newton’s laws and methods to attack a number of impor- 
tant problems. The first of these was Edmund Halley (1656-1742), who 
observed and calculated the orbit of the comet named after him using 
Newton’s laws of motion. Studying several cometary orbits, he estab- 
lished the facts that, contrary to planetary orbits, some comets had large 
angles of inclination and that some had periodic orbits. Halley’s contribu- 
tions were numerous and important to celestial mechanics, but his insis- 
tence on and support of the publication of Newton’s Principia probably 
represent his greatest influence on today’s celestial mechanics. 

The Swiss-born mathematician Leonhard Euler (1 707-1783) was a 
student of Johann Bernoulli. In 1727 Euler went to St. Petersburg in Rus- 
sia for 14 years and was associated there with the Imperial Academy. 
From there, at the invitation of Frederick the Great, he went to Berlin, 
where he remained for 25 years. He returned to St. Petersburg at the invi- 
tation of the czarina, Catherine the Great, in 1766. 

Euler’s work on the motion of the Moon was of considerable interest to 
Catherine the Great as his lunar tables and his second lunar theory, pub- 
lished in 1772 under the title Theoria Motuum Lunae in the Communica- 
tions of Petropolis, helped the navigation of ships in the Russian Navy. 
Before it appeared in its published form, his lunar theory was used by the 
Astronomer Royal, Nevi1 Maskelyne, in the British Nautical Almanac as 
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the basis for the lunar ephemeris. These tables were first published in 
1767 and were used by the British Navy for navigation. (These were 
probably the first, but certainly not the last, uses of celestial mechanics 
by the military.) 

Newton’s most important successors, who truly extended his methods, 
were two Frenchmen whose lives spanned the last years of the eighteenth 
century and the first years of the nineteenth: Joseph Louis Lagrange 
( I  736-1 81 3) and Pierre Simon de Laplace (1  749-1 827). Lagrange was 
born in Turin, Italy, where he was appointed professor of geometry at the 
artillery academy at the age of 19. In 1766, he went to Berlin, filling 
Euler’s vacated position at the invitation of Frederick the Great, where he 
spent 20 years. The next invitation came from Louis XVI to Paris, where 
he became professor at the Ecole Polytechnique in 1797. His apartment 
in Paris was in the Louvre; he was buried in the Pantheon. 

Lagrange’s announcement concerning the triangular libration points in 
the Sun-Jupiter system and his prediction of the possible existence of as- 
teroids in these regions date from 1772. Observational astronomers did 
not verifj the existence of these bodies for another 134 years. In this case, 
theory was certainly ahead of observation. His work on the solar system 
using the method of variation of parameters ( 1  782) is one of the funda- 
mental contributions in celestial mechanics. 

Lagrange’s celebrated Micanique Analytique was published in 1788. 
Laplace was born in Beaumont-en- Auge and became professor at the 

Ecole Militaire in Paris at the age of 18. One of his major contributions 
concerned the stability of the solar system ( 1773, 1784), for which he de- 
veloped the methods of perturbation theory to solve the many-body prob- 
lem. After a lengthy series of calculations, he concluded that the solar 
system was indeed stable and that Newton’s famous “clockwork uni- 
verse” really existed. As things turned out, Laplace was wrong, and the 
problem of “stability” is still unsolved. Laplace also introduced the con- 
cept of the potential function and what is known today as Laplace’s equa- 
tion (1785). His lunar theory, published in 1802, followed Euler’s. The 
five volumes of his Mecanique Cdeste were published between 1799 and 
1825. 

Although the perturbation methods introduced by Laplace did not 
yield an answer to the stability question, they were extremely useful in 
making more accurate calculations of the behavior of planets, comets, 
and asteroids. The most spectacular application of perturbation theory 
was the discovery of the eighth planet, Neptune, because of the small per- 
turbations the planet causes in the motion of the planet Uranus. John 
Couch Adams and U. J. J. Leverrier performed these calculations in 1845 
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and predicted the position of Neptune. In the next year, J. F. Encke and H. 
L. d’Arrest found Neptune essentially where it was supposed to be. In the 
early years of this century, Percival Lowell and William H. Pickering tried 
to do the same thing by looking at small perturbations in the orbit of Nep- 
tune. The theoretical work done by LoweU and Pickering between 19 10 
and 19 17 was detailed and extensive. Lowell died in 19 17, but Pickering 
continued to work on the problem. Eventually, another search for a trans- 
Neptune planet was initiated, and in 1930, the young astronomer Clyde 
W. Tombaugh discovered Pluto. The “predictions” of Lowell and Picker- 
ing could not have had anything to do with the discovery of Pluto since 
the planet turned out to be much too small to affect Neptune in the way 
Lowell and Pickering had calculated. In any event, these remarkable 
achievements effectively completed the inventory of planets in our solar 
system. They were stimulated by the development of perturbation theory. 

The most important contributor to celestial mechanics in the final 
years of the nineteenth century and the early years of the twentieth was 
another Frenchman, Henri Poincare (1 854-1 91 2). He was one of the most 
prolific writers in the field of mathematics and celestial mechanics, con- 
tributing more than 30 books and 500 memoirs. The three volumes of his 
Mkthodes Nouvelles de la Micanique Ckleste appeared in 1892, 1893, 
and 1899 and have been recently translated into English by NASA. This 
was followed by his Lkcons de Micanique Cileste in 1905-1910. Con- 
centrating on the problem of three bodies, Poincare established the con- 
cept of nonintegrable dynamical systems. His theorem seriously affected 
the results of workers who intended to show the stability of the solar sys- 
tem by representing the orbital elements of the planets in Fourier series. 
Since these series, in general, are conditionally convergent or divergent 
according to Poincark’s theorem, the “solutions” do not show stability. 
Thus Laplace’s conclusion of a century earlier was shown to be wrong. 
PoincarC’s work also provided the first instance of what is now called “de- 
terministic chaos.” The problem of three bodies is described by a com- 
plete set of deterministic equations. Yet, the behavior of the three-body 
system may become “chaotic,” which in this case means unpredictable, 
under certain conditions. It may very well be that this will turn out to be 
Poincare’s lasting legacy. 

In recent years, a most significant development has furthered the sci- 
ence and engineering of orbital operations and that is the advent of artifi- 
cial satellites and spacecraft. The demands of space navigation have 
clearly been a major factor in the recent progress of celestial mechanics. 
This effort has been greatly enhanced by the advent of high-performance 
digital computers, which make the approximation methods mentioned 
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earlier less necessary. The truly fabulous accuracy of spacecraft naviga- 
tion would not be possible without high-speed digital computers. For ex- 
ample, to put the Pioneer I 1  spacecraft into the correct trajectory around 
Jupiter so that it would fly past Saturn some years later required a naviga- 
tional accuracy of better than one part in 10 million. 

Finally, there are some very important scientific questions that are still 
open. Is the solar system ultimately stable? This question has not been an- 
swered in a rigorous mathematical sense. Once again, numerical methods 
are critical to research this question. Related to the question of stability is 
that of chaotic motion. Can the “Earth crossing” asteroids be explained 
using the principles of chaos theory? Thus, orbital and celestial mechan- 
ics, even though it is the oldest field in “modern science,” still presents 
problems that are at the very frontier of knowledge. 

What is clear is that celestial mechanics is a living field and more re- 
search is certain to reveal important and even startling new results. 

The reader interested in historical details will enjoy some of the books 
listed in the Appendix: Andrade (1 954); Bate, Mueller, and White (I97 1); 
Beer and Strand (1975); Koestler (1959); and Lerner (1973). In addition, 
Men OfMathematics, by E. T. Bell, Simon & Schuster, New York (1937); 
The Great Ideas Today, edited by R. M. Hutchins and M. J. Adler, Ency- 
clopaedia Britannica, Inc. (1973); From Galileo to Newton. by A. R. Hall, 
Dover, New York (1981); and The Space Station, by H. Mark, Duke Uni- 
versity Press, Durham, North Carolina (1 987), are recommended. Re- 
garding nondeterministic dynamics and uncertainties in celestial mechan- 
ics, see J. Lighthill’s “The Recently Recognized Failure of Predictability 
in Newtonian Dynamics,” Proceedings of the Royal Sociey, Vol. A407, 
pp. 35-50, 1986, and I. Prigogine’s (1980) book listed in the Appendix. 

For additional fascinating details of the early history, see “Copernicus 
and Tycho,” by 0. Gingerich, Scientijk American, Vol. 229, No. 6, pp. 
86-1 01, 1973. For Newton’s contributions to cosmology, see The First 
Three Minutes, by S .  Weinberg, Bantam Books, New York (1977). 

CHRONOLOGICAL LIST OF MAJOR CONTRIBUTORS 
TO CELESTIAL MECHANICS 

Aristotle, 384-322 B.C. 1. Newton 1642-1727 
C. Ptolemaeus 100-178 G. W. Leibnitz 1646-1 7 I6 
N. Copernicus 1473-1 543 E. Halley 1 656- 1 742 
T. Brahe 1546-1 60 1 L. Euler 1707-1 783 
G .  Galilei 1564-1642 A. C. Clairaut 17 13-1765 
J. Kepler 1571-1 630 J. D’Alembert 1 7 17-1 783 
R. Descartes 1596-1650 J. H. Lambert 1728-1 777 
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CHAPTER 2 

CIRCULAR ORBITS 

In the preceding chapter, in equations (1.1) and (1.2), we defined the laws 
of motion first developed by Isaac Newton and his universal law of grav- 
itation. It is the combining of these two laws that permits us to calculate 
the orbit of one body moving around another one under the influence of 
the gravitational interaction between the two bodies. A particularly sim- 
ple case to treat is that of circular orbits. We shall assume for the moment 
that circular orbits are both possible and stable in the gravitational field 
defined by equation (1.2). This proposition will be proven in subsequent 
chapters. 

The law of gravitation as shown in equation (1.2) is given as 

GMm 
F G z - 7  F 

where F G  is the force of gravity between the masses M and m. The unit 
vector? points in the direction of the line joining the masses, and r is the 
distance between the masses m and M. The situation is illustrated in Fig- 
ure 2.1. For the time being, we shall assume that the masses m and A4 are 
point masses. We shall show shortly that for spherically symmetric ob- 
jects the gravitational field external to the object acts as if the mass were 
concentrated at the geometric center of the object. The constant G is 
called the gravitational constant, and it determines the strength of the 
gravitational field. In Figure 2.1, we have assumed that the mass A4 is lo- 
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Y 

FIGURE 2.1 

cated at the origin 0 of the coordinate system and that it is fixed in space. 
(We shall soon show that this is equivalent to saying that M is very much 
larger than m.) Note that the first FG points toward the origin, where mass 
M is located. This happens because the gravitational force is always at- 
tractive. Note that the convention of polar coordinate systems requires 
that the unit vector F always points away from the origin. This accounts 
for the negative sign on the right side of equation (2. l), because FG and F 
always point in opposite directions. 

Figure 2.2 shows the circular orbit that we have assumed is possible in 
this case. 

We assume that the radius of the circular orbit is R and that the vector 

FIGURE 2.2 
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v is the velocity of the mass m as it moves around the mass m in the cir- 
cular orbit. There are two forces acting on the mass m: the gravitational 
force, which points toward the mass M, and the centrifugal force experi- 
enced by an object traveling in a circular orbit. If the masses M and m 
were connected by a string, then the tension in the string would replace 
the gravitational force and would also be balanced by the centrifugal 
force. 

The centrifugal force can now be calculated using equation (1.1) of the 
previous chapter: 

dv 
F, = m- 

dt 

We now need to evaluate the rate of change of the velocity (dvldt) that ap- 
pears in equation (2.2). To do that, we shall look at what happens to the 
orbital velocity vector. Since the gravitational force defined in equation 
(2.1) on the mass m is constant and since the radius of the circle, R, does 
not change as the mass m moves in its orbit, the magnitude of the vector 
v, Iv(, must also be constant. The rate of change of the velocity vector is 
therefore determined only by the change in direction as n? moves around 
the orbit, as shown in Figure 2.3. If we consider only small angles, 68, we 
can look at the way the vector v behaves by looking at Figure 2.2. The 
vector Av is the change in direction of the velocity vector v. Note that this 
vector, bv, always 
nate system. Thus, 

points toward the mass M at the origin of the coordi- 

dv do 
dt dt 

F, = m - = -rnlv(- i. 

the orlgln, 0. 

(2.3) 

FIGURE 2.3 
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where the differential change in velocity is given by 

The angular velocity o of the mass m is defined as d0ldt so that the cen- 
trifugal force can be rewritten as 

and simply writing u for IvJ and recognizing that for a circular orbit of ra- 
dius R the velocity v is 

we have, for the centrifugal force, 

mu2 
F , = - 7  i 

Equating (2.7) to (2,1), we have 

Mm mu2 
R2 R 

F,=F, G-=- 

(2.7) 

Equation (2.8) allows determination of the orbital speed u (which is the 
magnitude) of the velocity vector v as 

Note that the mass m appears on both sides of equation (2.8) so that the 
orbital speed is a fhnction only of the radius of the circle and the magni- 
tude of the mass M. Equation (2.9) can be rewritten in terms of the angu- 
lar velocity defined in equation (2.6): 

Ro-F (2.10) 

and so we have 

R3w2 = GM (2.1 1) 
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The angular velocity can be related to the period of the orbit, that is, the 
time it takes to execute one orbit, by returning to the definition of the an- 
gular velocity, 

d0 
o=- or o d t = d 0  

dt 
(2.12) 

and integrating around one orbit, 

we obtain 

w T =  2 n  (2.13) 

where T is defined as the orbital period. Substituting equation (2.13) into 
(2.1 1) yields 

(2.14) 

This statement is the third law of planetary motion as stated by Kepler 
(see Chapter 1) for the special case of circular orbits. It is obvious that the 
second law is also fblfilled for circular orbits since the orbital speed u is 
constant so that equal areas are swept out in equal time. In subsequent 
chapters, we shall show that these statements are valid for elliptic orbits 
as well. 

Equation (2.11) is a very good approximation to the exact relation 
when we consider the motion of a satellite around Earth in a circular or- 
bit. The approximate result assumes that the mass of the satellite can be 
neglected when compared to the mass of the central body. The derivation 
of the exact relation for circular motion utilizes Figure 2.4. 

The satellite and Earth are moving around the center of mass of the 
Earth-satellite system, Since the mass of Earth is always many orders of 
magnitude larger than the mass of the satellite, the center of mass of the 
system is at the center of Earth for all practical purposes. As another in- 
teresting example, consider a binary star or a binary asteroid where two 
stars or two asteroids with comparable masses are revolving around each 
other. The distances from the center of mass are r ,  and r2; the masses are 
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ME 

FIGURE 2.4 Motion of a satellite around the center of mass of the system. 

rn, and m2. In our original problem, mi  = ME and m2 = m9 The forces act- 
ing on the satellite are balanced if 

MEmS m,w2r2 = G-- 
r2 

(2.15) 

where r = rl + r2 since that is the total distance between the two interact- 
ing bodies. 

The corresponding equation for Earth is 

(2.16) 

In the first equation ms and in the second equation ME are canceled. 
Since the center of mass is fixed in the system, we have 

msr2 = MErl (2.17) 

Adding the two previous equations (2.16) and (2.17), we have 

MEmS (rl + r2)02 = G- P 

Equation (2.18) may be written as 

(2.18) 

w2rJ = G(ME + ms) (2.19) 
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This is the exact form of Kepler’s law for circular orbits. and we see 
that the previously obtained equation (2.1 1) needs a modification where- 
by instead of the mass of Earth we have the sum of the mass of Earth and 
the mass of the satellite on the right-hand side. Clearly, in satellite dy- 
namics this makes no difference, and consequently equation (2.1 1 )  is cor- 
rect. On the other hand, if we study bodies revolving around each other 
with comparable masses, equation (2.19) should be used. 

To evaluate the approximation, Kepler’s law may be written as 

(2.20) 

If the mass of the satellite is I ton, the ratio ms/ME becomes of the or- 
der of 1 0-22, which is the error made when the nzs/ME term is neglected. 

An Earth-orbiting satellite usually orbits at an altitude that is substan- 
tially smaller than the radius of Earth. This situation is illustrated in Fig- 
ure 2.5. For a typical space shuttle mission, for example, the orbital alti- 
tude h might be 480 km compared to Earth’s radius of 6370 km. Under 
these conditions, it is not obvious that the mass of Earth can be consid- 
ered as the point mass M that we have used to derive the properties of cir- 
cular orbits. What we must show is that for an approximately spherically 
symmetric body like Earth the mass of Earth can be considered as a point 
mass located at the center of Earth. 

To prove this theorem, we shall first introduce the concept of the po- 
tential function. The potential finction is related to the “potential energy” 
that an object has in a gravitational field. Consider the situation shown in 

FIGURE 2.5 
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Figure 2.6. What is the work required to move mass m from rl to rz? The 
definition of work is 

W = r F * d  r (2.21) 
‘1 

Now substituting equation (2.1) for the force of gravity yields 

(2.22) 

Note that the work is always negative when pulling away (increasing r )  
meaning that work must be done and positive when falling inward. From 
(2.22), it follows that one can associate with each point in the gravitation- 
al field a potential energy V; 

GmM 
r 

vg= - (2.23) 

so that the work done to move the mass m from rI to r2 is 

the difference between the potential functions evaluated at the points rl 
and r,. The potential function is extremely useful because it is a scalar 
rather than a vector, The gravitational force Fg (vector) is always the gra- 
dient of the potential function: 

Fg = grad Vg (2.24) 

‘1 

f 3 m Mee - 

‘2 

FIGURE 2.6 
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This relationship is very useful, and we will often see it in subsequent 
chapters. 

The method for proving the theorem that for a uniform sphere the mass 
can be considered as located at the center is rather lengthy, so we shall 
only outline the procedure without performing the integrations. The situ- 
ation is illustrated in Figure 2.7. Earth has been divided into a large num- 
ber of thin spherical shells, each of which is very thin compared to the ra- 
dius of the shell. The contribution to the gravitational potential at the 
location of the mass m due to the mass element dM of the shell is 

Gm dM 
dV’= ~ 

rI 
(2.25) 

It is at this point that the usefulness of the potential function becomes ap- 
parent. Equation (2.25) is a scalar equation. Had we employed the force 
equation rather than the potential equation, we would have had to deal 
with a vector integration. In general, such operations are very much more 
complex than the scalar integration defined in equation (2.25). When this 
integration is performed, the result is 

GmM (shell) 
r 

V,(shell) = (2.26) 

The potential function of the shell, V,(shell), is therefore identical to 
what the hnction would be if the mass of the shell were concentrated at 
the point 0. Since the sphere consists of a concentric series of shells, the 

m 

FIGURE 2.7 
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final integration simply amounts to adding up the gravitational potentials 
contributed by each shell. Since each shell acts as if its mass is located at 
point 0, the whole sphere must act in the same way, so that 

GmM( sphere) 
r 

V,(sphere) = (2.27) 

which proves the theorem. 
Having defined the potential energy function, it is useful to use this 

concept to define the total energy of an object moving in a circular orbit. 
The kinetic energy is given as 

EK = ;mu2 (2.28) 

and this quantity is constant since the orbital speed is constant. The po- 
tential energy is defined in equation (2.23). If we start, for example, with 
a satellite on the surface of Earth and we want to place it in an orbit with 
a radius r measured from the center of Earth, then the work (energy) that 
must be expended to get the satellite of mass m to the point r is 

(2.29) 

where ME is the mass of Earth (5.98 x kgm) and RE is the radius of 
Earth (6371 km). Note that W is always positive. The total energy of the 
satellite is then the sum of the kinetic energy and the potential energy: 

(2.30) 

The second term on the right is a constant that represents the potential en- 
ergy of the object when it is located on the surface of Earth. Since the 
zero point of the energy scale is arbitrary, we can take it as being relative 
to the surface of Earth. Thus, the total energy can be rewritten as 

and, therefore, relative to the surface of Earth, 

(2.3 1 )  

(2.32) 
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This is a very general relationship that shall be shown to hold for all or- 
bits. For the circular orbits we have been considering, we can use equa- 
tion (2.9) for the orbital speed of the satellite at radius r: 

so that 

1 GmM, GmM, E = 
‘ 2  r r 

(2.33) 

(2.34) 

(2.35) 

Note that the total energy depends only on the radius I’ and that it is al- 
ways negative under the conditions described. We shall show in subse- 
quent chapters that equation (2.32) is a general relation valid for any orbit 
and that equation (2.35) also is valid for any orbit with some modifica- 
tion of the definition of the radius. 

It might be surprising to find that a number of practically important 
problems can be treated using the simple results of Chapter 2. Some of 
these are discussed in the following examples. 

Introductory chapters from Danby’s ( 1962), McCuskey’s (1 963), and 
Ryabov’s (1959) books are recommended (see references listed in the Ap- 
pendix). 

EXAMPLES 

2.1. Consider a satellite on a circular orbit at an altitude of 100 kin 
(=100,000 m = 328,100 ft = 62.137 statute miles). For the computa- 
tion of the circular speed of the satellite, the values of the constants 
are given in Appendix 2. Equation (2.10) gives 7.844 km/s, or 17,548 
mph, for the circular velocity. The satellite is moving approximately 
33 times as fast as a commercial jet aircraft. In this result, no drag ef- 
fects due to Earth’s atmosphere are included and Earth is assumed to 
be a homogeneous spherical body. The corrections caused by these 
effects are small for a few revolutions and will be discussed later. The 
“mean motion” using o = u,/r becomes 1.21 1 x rad/s = 4.163 
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deglmin, and the period T = 27~10 = 5188.43 s = 1 h 26 min 28.4 s. 
(Note that the angular velocity w is sometimes called the mean mo- 
tion in orbital mechanics. We will use this term on occasion.) 

If the altitude is 500 km, the above results change little. In fact, 
the circular speed u, = 7.61 3 km/s, the mean motion w = 1.107 x 

lod3 rad/s, and the period P = 1 h 34 min 34 s. 

2.2. The second example treats the problem of a 24-h (geostationary or 
geosynchronous) satellite: Equation (2.9) might be slightly modified 
by realizing that usually the altitude of a satellite above the surface 
of Earth is given, rather than its distance from the center of Earth. 
This relation is 

r = RE t- h (2.36) 

where RE is the radius of Earth and h is the altitude of the satellite 
above Earth. So equation (2.9) becomes 

(2.37) 

This satellite has a period of 24 h; consequently, if its orbital plane is 
in Earth's equatorial plane, then it will revolve around Earth so that 
it will always be above the same point of Earth. This satellite is used 
for communication purposes. From the above period, the mean mo- 
tion can be computed. From the mean motion, the circular speed as 
well as the height or the altitude of the satellite can be obtained. 
Since the period T = 24 h = 86,400 s, the mean motion becomes 

2 n  
T 

"= -=  7.27 x rad/s 

The period and the altitude are connected by 

from which the altitude becomes 

(2.38) 

h = ( &pGA4E)1 /3  - RE = 35,863 km 
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or 22,280 miles. The above equation follows from the definition of 
the period of the orbit and the relationship r = RE + h. 

Another approach is to use the relation between the mean motion 
and the altitude: 

&!(RE + h3) = GM, 

from which the altitude may be computed as 

which is identical to the previous result obtained above, The circular 
velocity of the satellite is given by v, = w(h + RE). This gives 3.072 
km/s = 1 1,058 M h ,  or 687 I mph. 

The triangles of Figure 2.8 show the relation between the circular 
velocity of the satellite, which will now be denoted by ucs, and the 
circular velocity of a point on the equator, vcE, as 

vcs h + RE h -=--- - + l  
ucE R E  RE 

The circular velocity of the equator is obtained from 

where TE=24h.Thisgives vcE= 1669km/h,or 1038 mph.Thisallows 
us an alternate way to compute the circular velocity of a synchronous 
satellite using the previously obtained value for the altitude: 

FIGURE 2.8 Geosynchronous satellite. 
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2.3. This example is related to the approximately circular lunar orbit. The 
period is approximately 27.32 days, from which the mean motion, 
the altitude above Earth, and the velocity might be computed. The 
mean motion is given by 

where T ,  is the lunar period. This gives w M  = 2.66 x 

1 3.1 8 deglday. 

Moon, r, is related to the mean motion by 

radk = 

The distance between the center of Earth and the center of the 

which gives r = 384,400 km. 
The circular speed of the Moon may be obtained from u, = wMr, 

which gives 3594 kmk, or 2233 mph. An easy-to-remember approx- 
imate value is 1 k d s .  

2.4. The fourth example will be the preparation of a plot showing the pe- 
riods ( T  in hours) of satellites in circular orbits around Earth versus 
their altitude h up to 1000 km. The basic relation is given by equa- 
tion (2.38). 

When the constants are substituted, we have 

T =  1.4O82(1 + 6378.12 h(km) 7 
Figure (2.9) shows the plot of the T(h) relation. This is approximate- 
ly a straight line, which suggests the next example. 

2.5. This example will show the derivation of a simple, approximately 
linear relation between the period and the altitude for Earth satellites 
in circular orbits. Note that the exact relation is given by equation 
(2.38), from which we may obtain 
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The factor in front of the parenthesis represents the period a satellite 
with zero altitude would have, To = 1.408 I5 h. The equation for the 
period might be written as 

The binomial expansion of the factor of To is 

Therefore, the linear relation between altitude and period becomes 

The error between the exact and the approximate equations is T - 

If  this error is to be less than 1 YO, we have 
TL, and the relative error is ( T  - TJT.  

T -  TL 
T 5 0.01 
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In this equation, T and T, depend on the ratio h/RE, which we 
shall denote by x. In this way we have 

(1 +x)3/2 - ( 1  + sX) 
(1 +x)3’2 

50.01 

This inequality leads to a cubic equation for x that may be written as 

x3 + 0.7043~~ - 0.0609~ - 0.0203 5 0.01 

The only positive root is xo = 0.1887, which means that if x = h/R, 
is less than the above value given for xo, the error of using the linear 
equation instead of the exact equation for the period will be less than 
1 %. The range of applicability of the linear solution is from h = 0 to 
h = 0. 1887RE, or 

O l h 5  1203km 

Note that this problem can be solved by either iteration of the in- 
equality 

0.99 (1 + x ) ~ / ~  5 1 + tx  

or by using the well-known formda for the solution of cubic equa- 
tions. 

2.6. Newton computed the ratio of Earth’s gravitational force and the 
centrifugal force at the equator and obtained “approximately 300.” 
This example is aimed at computing this ratio with the constants 
given in Appendix 2. 

The centrifugal force (per unit mass) is 

where RE is Earth’s equatorial radius and o is the angular velocity of 
Earth’s rotation. 

The gravitational force per unit mass is 
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The ratio is 

F GM,q &=--  - 288.3 
F, R2w2 

2.7. To compute the mean density of the planets and of the Sun, the val- 
ues given for their radii and masses in Appendix can be used. Substi- 
tuting into the formula for density, 

3M 
'= volume - 47rR3 

-- 
mass 

and remembering that the density of water is 1 g/cm3, the values 
computed will show the ratio of the density of the planets to that of 
water. The mean density of the Sun is 1.41 g/cm3. For the planets, 
the values are as follows: 

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto 

Density 5.13+ 4.97 5.52 3.94 1.33 0.69 1.56 2.27 4? 

Velociry 47.8 35 29.8 24.2 13.1 9.7 6.8 5.4 4.1? 
(g/cm3) 

W / S )  

2.8. The orbital speeds of the planets are computed from the formula 

where Ms and M p  are the masses of the Sun and the planet and af is 
the mean distance of the planet. The values are given in the table 
above. 

2.9. Compare the compactness of the solar system with that of the hydro- 
gen atom. The compactness or denseness can be measured by the ra- 
tio of the distance a of a planet (electron) from the Sun (nucleus) to 
the radius Rs of the Sun (nucleus). For the hydrogen atom, we have 
a/R = lo5 and for the Sun-Earth combination, we have aiRs = 200, 
which value for the Sun-Jupiter combination becomes 1000. The 
corresponding volume ratio is ( U / R ~ ) ~ .  This becomes 1015 for the 
atom and lo9 for the Sun-Jupiter combination. We can conclude, 
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therefore, that the solar system is more condensed than the atomic 
world by a factor of lo6. 

Comparing revolutions, the hydrogen atom in ground state per- 
forms lot6 reds, corresponding to 3 x redyear, while Earth 
makes I redyear and the corresponding value for Jupiter is 0.0843 
redyear. 

So the 1 O6 times denser solar system moves much slower, in fact 
by a factor of 3.57 x considering the number of revolutions 
performed by the two systems during the same time. Because of the 
popularity of supercolliders (i.e,, accelerators), their corresponding 
6 x 1 O ' O  redyear might also be mentioned. Considering the age of 
the solar system (about 1 O9 years), the corresponding running time 
for an accelerator is 6 days. Conclusions are left to the reader. 

2.10. This example uses the idea of the potential function to find the 
gravitational potential and the force acting on a point mass m by 
two equal masses (M) separated by a distance 2 0  as shown in Fig- 
ure 2.10. The gravitational force field of the two equal masses is 
best determined by using the potential function evaluated at the po- 
sition of the mass m: 

The force acting on m is the gradient of the potential, 

av, * 1 av, 
gradVg=P-+O--  ar r a0 

Y 
A 

m 

W X  
M M 

FIGURE 2.10 Gravitational force field of two equal masses. 
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where 6 is the unit vector normal to r in the xy plane. Once rl and 
r, are expressed as finctions of r and 8, we have 

1 1 + 
r 2 + D 2 - 2 r d c o s 0  d ? + D2 + 2rDcos 8 

V,=Gm 

If D/r << 1, the terms under the square roots can be approximated, 
and we have 

The corresponding force becomes 

1 sin 8 cos 8 

r4 
F,=grad Vg=-2Grn 

PROBLEMS 

2.1. Find the mean motion, altitude, and circular velocity of a geosyn- 
chronous satellite using the precise period of the sidereal day: 23 h, 
56 min, 4.1 s. 

2.2. Derive linear formulas showing the analytical dependence of the de- 
viations in w, h, and v,, on a small change in the period: Am = 

2.3. Compare the actual values of the semi-major axes of the planets as 
given in the table of constants of the planets in Appendix 2 with the 
values computed from Bode's law (actually announced by J. D. 
Titius in 1766), according to which 

S,(AT),  Ah =Sz(AT), and AVCS =h(A.r). 

a, = (4 f 3 x 2") x 0.1 

Here, a, is the distance of the nth planet in astronomical units from 
the Sun. Note that n = -m, 0, 1,2, 3, . . . , and the value n = 3 corre- 
sponds to the orbits of minor planets, such as Ceres, discovered in 
1801 with the help of the Titius-Bode law. Note: The astronomical 
unit is the distance from Earth to the Sun. 



CHAPTER 3 

THE GENERAL PROBLEM 
OF TWO BODIES 

In Chapter 2, we looked at the special case of circular orbits and derived 
some important practical applications. These are of interest because many 
orbits, both in celestial mechanics and in the motion of artificial satellites 
around Earth, are almost circular. In doing this, however, we made some 
assumptions that require more rigorous mathematical proof. It will turn 
out that circular orbits are indeed permitted and that these are a special 
case of the general class of orbits characteristic of bodies moving accord- 
ing to the law of gravitational attraction and Newton’s law of motion. In 
Chapter 1, we wrote down the law of gravitation [equation (1.2)] as de- 
rived by Newton: 

f 3.1) 

which is a vector equation that defines the force F acting between the 
two masses rn and M separated by the distance r. The equation says that 
the gravitational force is proportional to the product of the two mawes, 
that it is inversely proportional to the square of the distance betw en 
them, and that it points along the line joining the two masses, which is 
indicated by the unit vector i.. The proportionality constant G is called 
the gravitational constant, and is one of the “universal” constants of ‘la- 
ture. (The numerical value of G is 6.672 x lo-” m3kg s2.) The negative 
sign that appears in equation (3.1) is a mathematical convention we hi ve 
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added to indicate that the gravitational force between the two masses is 
always attractive. 

Newton’s laws of motion were also stated in Chapter 1. The most im- 
portant of these is the “second law,” which can be expressed as 

d(mv) dv 

dt dt 
F = -  = m- (3.2) 

and is identical to equation (1.1). This equation says that the change in 
the momentum, mv, of a body is proportional to the force imposed, F, 
multiplied by the time interval dt during which the force acts. The veloci- 
ty of the body, v ,  is also a vector, and it can be written as follows in terms 
of the position vector r of the body: 

dr 

dt 
v =  - 

Combining equations (3.2) and (3.3) leads to 

d 2r 
F = m  - 

dt2 

(3 .3)  

(3.4) 

which is the familiar statement of Newton’s second law of motion. The 
first law of motion, stated in Chapter I ,  is a consequence of equation 
(3.4) for the case F = 0. The third law of motion is a statement of the con- 
servation of momentum to which we will return shortly. 

By combining equations (3.1) and (3.4), we obtain the equation that 
governs the general motion of two bodies interacting through a gravita- 
tional force: 

d2r GmM 
m - = - -  i 

dt2 r2 (3.5) 

The coordinate system in which equation (3.5) is written is somewhat ob- 
scure. Actually, the three variables that define the motion of the two bodies 
are the magnitude of the vector r and the two angles that define the direc- 
tion of the unit vector i. These variables will be dealt with in more detail 
when the actual solutions of equation (3.5) are developed. In addition to 
being a vector equation, equation (3.5) is also nonlinear. Nonlinear differ- 
ential equations are often not solvable by analytic methods. By a great 
stroke of good fortune, it turns out that equation (3.5) is “integrable,” that 
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is, a way exists to obtain exact integrals of this equation that permit exact 
solutions. Were it not for that, Newton could not have established the the- 
ory of orbits in the seventeenth century. We would have had to wait until 
the advent of high-speed computers to obtain numerical solutions. 

In order to examine the nature of equation (3.5) in greater detail, it is 
worthwhile to look at the equation in terms of the variables shown in Fig- 
ure 3.1. The Cartesian coordinate system shown in Figure 3.1 is a refer- 
ence system that will be employed in subsequent chapters to write the 
equations of the orbits both in Cartesian and in polar coordinates. Figure 
3.1 is simply an extension of Figure 2.1 in that is uses an arbitrary origin 
for the coordinate system at the point 0 rather than at the center of mass 
of the system. While nothing other than equation (3.5) will actually result 
from the exercise of using an arbitrarily located origin in the case of two 
bodies, it is important to develop the formalism because it is indeed nec- 
essary to go through such an analysis when the motion of thret- or more 
bodies interacting through gravity is considered. (We will return to this 
point in Chapter 12.) 

Figure 3.1 shows two masses, rn, and m,, located at rl and r2 in the co- 
ordinate system with the origin at the point 0. Equation (3.5) can now be 
rewritten to define the force exerted on mass rn, by the mass ni2: 

d2r,  Gmlmz 

dt2 (r, - r2I3 (r, - r2) F l 2 = m I  - - -- 

2- 

FIGURE 3.1 
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The force on the mass m2 due to rnl will be equal and opposite to FI2: 

F,, =-F - m  d2r2 - G m ~ m 2  (rl - r2) 
12-  2-- d? Ir, - r2I3 

Adding equations (3.6) and (3.7) yields 

d2rl d2rz 

dt2 dt2 
ml- + m2- - 0  - 

Equation (3.8) can be integrated to give 

drt dr2 
m l y  + m 2 -  = P  

dt 

(3-7) 

(3.8) 

(3.9) 

where P is a constant having the dimensions of a momentum vector. This 
can be related to the velocity of the center of mass of the system of two 
masses, ml and m2, as follows: By the definition of the center of mass, we 
have 

where the vector p is the position of the center of mass as defined in Fig- 
ure 3.1. We can rewrite equation (3.9) as follows: 

d dP 
P = -(mlrl + m2r2) = (ml + m 2 ) z  dt 

where dpldt is the velocity of the center of mass, vCM: 

(3.1 1) 

(3.12) 

Note that this velocity is constant, This means that there are no external 
forces acting on the center of mass. Thus, we can understand the two- 
body problem by looking only at the relative motion of the two masses 
with respect to the center of mass. 

Having established the point that we are dealing only with the relative 
motion of the two masses, we can now rewrite the equation of motion in 
terms of the vector rl - r2, which is the variable that describes the mo- 
tion. Subtracting equation (3.7) from equation (3.6) yields 
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d2rl d2r2 -G(ml + m2) 
(rl - r2) -_ -=  

dt2 dt2 Irl - r213 

or 

(3.13) 

(3.14) 

Equation (3.14) is the fundamental equation that defines the motion of 
the masses m 1  and m2 with respect to each other under the influence of 
gravitational forces. It can be seen that equation (3.14) has the same form 
as equation (3.5) by referring to Figure 2.1 in the previous chapter. In this 
case, the vector p is equal to zero. It is also clear from Figure 2.1 that the 
magnitude of the vector r l  - r2 is r l  + r2, or 

The position of mass ml with respect to the coordinate system of Figure 
2.1 is r l .  Multiplying equation (3.14) by m l  and then using equation 
(3.15), we obtain 

(3.16) 

Note also that the vector rl - r2 can be rewritten as follows: 

(rl - r2) = (rl + r2)P (3.17) 

where i. is the unit vector that defines the direction in which the vector rI 
- r2 points. Thus, we can write 

d2rl GmIMR 
m1-=- dt2 PI 

r: 

From the definition of the center of mass in Figure 2.2, we have 

(3.18) 

(3.19) M1 

m2 
mlr l  = m2r2 or r2 = - rl 
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(Note: We have placed mE and m, in Figure 2.1 with mI and m2 to write 
this equation.) Substituting equation (3.19) in (3.18) yields 

This equation has precisely the same formation as equation (3.5) if the 
quantity M in that equation is defined as MR: 

(3.21) 

Equation (3.20) states that the mass m ,  moves around the center of mass 
of the system as if the mass MR defined in equation (3.21) were located at 
the center of mass. The quantity MR is called the “reduced mass” of the 
system if the motion of m 1  is considered. It is obvious that a similar argu- 
ment can be made to calculate the motion of mass m2, in which case the 
reduced mass is given as 

(3.22) 

Thus, we have the following result. The equation of motion for the mass 
m l  is 

d2r, GrnIMR(mass m,) i. 
m1- =- dt2 r :  

(3.23) 

and for mass m, 

d2r2 Gm2MR(mass m2) 
m2 - -- - r (3.24) 

dt2 r ;  

Note that the reduced mass MR is always smaller than m2 or m,, de- 
pending on which mass is being considered. If one of the masses is very 
much larger than the other, an important simplification results. If we as- 
sume that m2 >> m ], then the reduced mass of the system is 

MR = m2 (3.25) 
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The equation of motion for m l  then becomes 

d2rl Gm,m2 ~ 

r M I -  =----- dt2 i.: 
(3.26) 

which results when equation (3.25) is substituted into (3.20). Equation 
(3.26) is precisely the same as equation (3.5) with m = m l  and M = m2. 
The approximation that m2 >> ml assumes essentially that the center of 
mass is located at mass m2. This is a very useful approximation because it 
applies to many practical cases. Earth moving around the Sun, the Moon 
moving around Earth, and an artificial satellite moving around the Sun all 
fit the approximation that m2 >> m,. 

There are two other important results that follow from the equations of 
motion for ml or m2: (3.23) and (3.24). We will assume that the mass m l  
is the mass we consider to be moving so that the equation of motion is 

d2rl GmlMR 
i 

r: m 1 - $ -  = -  

or 

d2r, GmlMR 
m1- =---- rl dt2 1.7 

(3.27) 

This is a vector equation that can be integrated once by the following pro- 
cedure: Multiply both sides by the velocity vector dr,ldt: 

drl d2rl GmlMR dr, 
rl’- 

dt m,---*- =---- dt dt2 r :  
(3.28) 

This equation is a scalar equation that can be simplified by the following 
procedures: 

d drl dr, dr, -(rl-rl) = r , - T  + --rl = 2rl.-- 
dt dt dt 

and likewise, 

(3.29) 

(3.30) 
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Using equation (3.30), the left side of equation (3.28) becomes 

drl d2rl 1 d 
m l x ' x  = p z (3.3 1 )  

To rewrite the right side of equation (3.27), we need to look at the vari- 
able rI  and its derivatives. Specifically, 

1 drl 
dt ' ( ' )  r ,  r: dt 
- - =---  (3.32) 

We have to relate this to the vector r l  by writing 

r ,  = (r l -r l )1'2 (3.33) 

so that 

and 

dr, 1 drl 
- -rl'- dt r ,  dt 

-- 

(3.34) 

(3.35) 

Therefore, equation (3.32) can be rewritten as 

1 dr, 
(3.36) 

Substituting (3.36) into the right-hand side of (3.28), we obtain 

(3.37) 

The left-hand side of equation (3.37) can be rewritten using equation 
(3.3 l ) ,  which yields 

(3.38) 
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Equation (3.38) can be integrated to yield 

(3.39) 

where K is a constant of integration. The left side of equation (3.39) can 
be firther simplified by writing 

dr, 
VI = - 

dt 
(3.40) 

which is the velocity vector of the mass M I .  Substituting (3.40) into 
(3.39) yields 

(3.41) 

Equation (3.41) is called the energy equation, and the interpretation of 
the constant of integrating now becomes clear. In a system of two bodies 
such as the one being considered, the total energy is conserved since there 
is no dissipative mechanism that would change the total energy. Thus, K 
is related to the total energy as follows: 

ET=-K (3.42a) 

so that 

(3.42b) 

The first term on the right side of equation (3.42b) is the kinetic energy 
of the mass ml, and the second term is the potential energy, as in equation 
(2.21). This equation defines the potential energy between m l  and MR 
separated by a distance r , .  Note that the total energy ET that results from 
the initial conditions of the motion can be either positive or negative. It 
will be shown subsequently that the type of orbit executed by the mass in, 

depends upon the total energy E ,  as defined here. 
There is a second constant of the motion that is also important. This 

one can also be derived from equation (3.27). We start by forming the 
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vector product of both sides of that equation with the position vector rl of 
the mass m,: 

d2r l  GmlMR 
rl rl r l  x m , -  =-- 

dt2 r :  
(3.43) 

Because of the properties of the vector product, the right-hand side of 
equation (3.43) is zero. The left-hand side of the equation can be rewrit- 
ten by using the “chain rule” for vector products: 

drl drl  d2rl  
r x- = - x - + r l x -  z( I 2 )  dt dt dt 

d 
(3.44) 

Again, the first term on the right side is zero so that, using (3.43), we ob- 
tain 

d 
m l -  d t (  r x- : ) ) = O  

Integrating this equation yields 

dr I m l r l  x - = L 
dt 

(3.45) 

(3.46) 

where the constant of integration is the vector L. The same relationship as 
(3.46) holds for r2 and m2. 

The first point about the result expressed in equation (3.46) is that the 
vector L has both a constant magnitude and a constant direction. The latter 
defines aplane (perpendicular to the direction of L) in which the motion of 
the masses m l  and m2 takes place. Thus, the motion takes place in two 
rather than in three dimensions. Having established this point, it is useful 
to describe the motion of m I and the origin 0 in terms of polar coordinates. 
Note that the vector drlldt is the velocity of the mass m l  with respect to 0: 

dr I 

dt 
VI = - (3.47) 

Figure 3.2 defines the polar coordinate system in terms of the variables Y 

and 9. Equation (3.46) can now be rewritten as 

mlrl  x v1 = L  (3.48) 
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0 

FIGURE 3.2 

From Figure 3.2 and the definition of the vector product, we have, for the 
magnitude of the vector r l  x v I  , 

Ir, x vI1 = r,ulsin (Y (3.49) 

where OL is the angle between rl  and v , .  Furthermore, from the geometry 
of Figure 3.2, we have 

d0 
qsin (Y = rI - 

dt 
(3.50) 

where u1 = Iv,( and rl = (rl) .  Using equations (3.40) and (3.49), we can 
rewrite equation (3.46) as 

d0 .. 
L = rnIr:$ (3.51) 

The quantity mlr!  is the moment of inertia of a point of mass m l  moving 
around the origin and deldt is the angular velocity. Thus, L is the angular 
momentum vector and r" is the unit vector that defines the direction in 
which it points. This result states that the angular momentum, along with 
the total energy, is also a constant of the motion for a general system of 
two masses interacting through the force of gravity. The conservation of 
angular momentum is the result of the fact that the gravitational force 
points in the direction of the line joining the two masses. Thus, the gravi- 
tational force cannot exert any torque that could change the angular mo- 
mentum because the moment arm is always zero. 
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For fwther reading on the material in this chapter, the introductory 
chapters in the books of Danby (1 962) and Roy (1 978) are recommended. 
(See references listed in the Appendix.) 

EXAMPLES 

3.1. The solution of the problem of two bodies can be represented by a 
Taylor series. This solution is known in the literature as thefand g 
series. 

We write the solution as 

dr0 
d t g  

r(t) = ro f + 

where the functions f and g depend on the time and on the initial 
conditions and ro is the value of the vector at t = to. 

The Taylor series solution is 

1 d2ro 1 d3ro 
6 dt3 

( t  - to)2 + - -(t  - r(t) = ro + -(t  - to) + - - 
dt 2 dt2 

+ . . . dr0 

The initial conditions are represented by the position and velocity 
vectors at t = to, which are denoted by ro and drddt. All other coeffi- 
cients of the series can be expressed by these vectors, as shown by 
the following derivation. From the equation of motion, we have 

d2r G(ml + m2) - =- 

dt2 1r13 

corresponding to equation (3.14) with r = ( r ,  - r2). 
At t = to, the above equation becomes 

d2r, - G(ml + mz) 
r0 - _ -  

dt2 1 ~ 3  

In this way, the third term of the series is obtained. The fourth 
term requires the computation of the third derivative of r from the 
equation of motion: 

d3r Ir13(dr/dt) - r(dlr13/dt) - =-G(mI + m2) 
dt3 Id6 
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Here the derivative of lrI3 requires some attention, but its equiva- 
lent is not more difficult than the previously discussed evaluations 
of time derivatives. We have 

The third derivative becomes 

d3r 1 rI3( drldt) - r [ 3 r *( drldt) I r I] - = -G(ml+ m2) 
dP Id6 

or 

d3r 1 dr 
dt3 

-=-G(ml+m2)  

At t = to we have 

d3r0 1 dro 
dt3 [ (r0(3 dt ( 2))1:i5] -- --G(m, + m2) -- -3 ro-- ~ 

The Taylor series expansion becomes 

G h  +m,) ro 
2 lr0I3 
- ( t  - toy 

dr0 r(t) = ro + -(t - to) - 
dt 

G(m, + m2) 1 dr, 

6 --I lr013 dt 

x (t - + . . . 

The members of the f series have the factor ro and those of the g 
series are multiplied by dr,ldr: 

( t -  * . . . G(m1+ m 3  g = (t - to) - 
6r: 

where ro = Jro) is the length of the initial position vector. 
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Note that the second factor of the third term of thefseries can be 
written as 

where 

dr, dr, -&- = (zlcos ci 

is the initial value of the radial ve!ocity component (see Figure 3.2). 
This notation can be misleading since lrol = ro is the length of the 
initial radial position vector, but ldr,,/dtl # drddt as mentioned be- 
fore. 

With this notation, thefseries becomes 

G(m, + mz) ( t -  to)* + G(ml + mz) 1 dr, 
2 4 2 rd dt 

( t  - to)’ f I -- f= 1 -  

For short times, these series are the basic tools of orbit determina- 
tion. The convergence properties are discussed in Chapter 8 of Taff’s 
book (see Appendix). The first 35 terms of the series are given in A. 
Deprit’s “Fundamentals of Astrodynamics,” Mathematical Note No. 
556, Boeing Scientific Research Laboratories, Seattle, WA, 1968. 

PROBLEMS 

3.1. Find the approximate distances between the Sun and the centers of 
mass of the Sun-Jupiter, Sun-Saturn, and Sun-Earth systems. Find 
the approximate circular speed of the center of the Sun in these sys- 
tems. 

3.2. Find the approximate distances between Earth and the centers of 
mass of the Earth-Moon system, and find the approximate circular 
speed of the center of Earth in this system. 



CHAPTER 4 

ELLIPTIC ORBITS 

In this chapter, we shall show that two bodies moving around their com- 
mon center of mass execute elliptic orbits under certain conditions. As in 
Chapter 3, we will call the masses m, and m2, and we will start with equa- 
tion (3.26) of that chapter: 

d2r, -Gm,m,> 
m l -  = 

dt2 r: 
(4.1) 

where the quantity rl is defined in Figure 3.1 and the unit vector i. points 
in the direction defined by the line joining m, and m,. 

To find a solution of the vector equation (4.1), we will refer to the co- 
ordinate system defined in Figure 4.1. The mass m2 is considered to be at 
the origin of the coordinate system. This assumption simplifies the de- 
rivation, and we can either say that m2 represents the “reduced mass,” as 
defined in equation (3.21), of rn, and some other mass m2 or that m, << 
m2. In either case, the orbit to be determined will be executed around the 
origin of the coordinate system shown in Figure 4.1. To simplify things, 
we will drop the subscripts and call the test mass m and the mass at the 
origin, M. The equation to be solved is then 
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Y 

FIGURE 4.1 

Equation (4.2) defines the behavior of the vector r as a hnction of 
time. In order first to determine the shape of the orbit, we want to elimi- 
nate the time variable and rewrite the equation that describes the orbit in 
terms of the variables r and 8 described in the coordinate system of Fig- 
ure 4.1. In order to calculate the second derivative on the left - hand side 
of equation (4.2), we start with the identity 

where r is the magnitude of the vector r. The first derivative with respect 
to time is 

dr di. dr 
dt dt dt 
- = r- + i- (4.4) 

The second derivative is 

d2r d 2 i  dr d i  di. dr d2r 
dt2 dt2 dt dt dt dt dt2 - = r - - . + - - + - - + + -  (4.5) 

We must now look at the behavior of the unit vectors i. and 8 as functions 
of time. The magnitude of the unit vectors clearly remains constant so 
that we need to be concerned only about changes in direction of the unit 
vectors. Since both unit vectors are attached to the vector r,  as shown in 
Figure 4.1, they will rotate around the origin of the coordinate system 
with the angular velocity dWdt of the vector r. From Figure 4.1, it can be 
seen that the unit vector i. changes in the b direction with a rate equal to 
the angular velocity of r: 
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d? d8 
- 0- 

dt dt 
_ -  (4.6) 

The unit vector 6 will also change but will rotate in a direction so that it 
always points to the origin of the coordinate system: 

The negative sign in equation (4.7) reflects the fact that the change in the 
unit vector 8 always points toward the origin 0. The second derivative of 
the unit vector? from equation (4.6) is 

(4.8) -- --- 

Using equations (4.8) and (4.6) to rewrite equation ( 4 3 ,  we obtain 

de * + i j r - + 2 9 - - + + -  d20 dr d0 d2r g=* dt dt2 dt dt dt2 

= r - - r -  + 0  r---+2-- (4.9) -[ $; (Zr] A ( dt2 dt dt 

The entire equation of motion (4.2) can now be written using equation 
(4.9): 

dt dt 
d0 2 GmM 

r -[ m--mr 2; ( - d t )  

This equation still contains time as a variable, and it is, of course, still a 
vector equation since equation (4.2) from which this is derived is also a 
vector relationship. 

Equation (4.10) can now be simplified by using the fact that the angu- 
lar momentum vector L defined in equation (3.46) is a constant both in 
magnitude and in direction. The magnitude of the vector L is given in 
equation (3.51) as 

d0 
L = m r 2 -  

dt 
(4.1 1) 
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If we now take the time derivative of L, we obtain 

dL dr d0 d20 
- = 2 m r - - + m $ - = O  
dt dt dt dt2 

(4.12) 

The right side of equation (4.12) is equal to the second term in equation 
(4.10) so that the 8 component vanishes. Therefore, the i component must 
also vanish, which yields 

d2r d0 2 GmM 
dt2 r2 

m - - m r ( m )  +-- - 0  (4.13) 

Using the angular momentum equation (4. I 1 )  again, this can be rewritten 
as 

d2r L2 GmM 
dr2 mr3 r2 

m- -- +-=o (4.14) 

Equation (4.14) defines how the magnitude of the vector r behaves as a 
function of time. We have already said that, initially, we will be interested 
not in the dynamics but rather in the shape, or better still, in the geometry 
of the orbit of mass rn in the gravitational field of the mass M located at 
the point 0. To do this, we must look at the quantity r not as a function of 
time but as a hnction of the angle 0. Therefore, 

dr dr d0 L dr 
dt d0 dt mr2 d0 

(4.1 5) -=- - -  

where we have once again used the angular momentum relationship 
(4.1 1). The second derivative is 

d2r 2L dr dr L d2r d0 
dt2 my3 dt d0 m$ do2 dt 

(4.16) -=----+--- 

Using equations (4.1 1) and (4.15) to evaluate dOldt and drldt in terms of r 
and 8, we obtain 

d2r 2L2 dr 2 +  L2 d2r z=-x(z) m z y 4 s  (4.17) 
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Using the expression in equation (4.17) for d2r/dt2 in equation (4.13) and 
using the angular momentum equation (4.1 1) to evaluate deldt, we obtain 
an equation that expresses r as a function of 0: 

L2 d2r 2L2 ( d r y  
L2 + 

mr4 d0’ mr5 d0 mr3 r2 
= 0 (4.18) ----- -- 

This equation can be simplified by collecting the coefficients so that the 
ultimate result looks like this: 

(4.19) 

This is a nonlinear differential equation. As we have said in the previous 
chapter, nonlinear equations of this kind do not have general solutions 
that can be expressed as simple analytic functions. Fortunately, there is a 
simple transformation of variables that permits an exact analytic solution 
of equation (4.19): 

1 r = -  
U 

(4.20) 

The derivatives of r with respect to 0 can now be calculated it terms of u 
and 0 using equation (4.20): 

I du dr 
d0 u2 d0 

- 

and the second derivative is 

d2r 2 ( dti 1 d2u 
de2 u3 de2 u2 de2 
- = -  - -I- 

(4.2 1 ) 

(4.22) 

Using equations (4.22), (4.21), and (4.20) in (4.19), we have 

By further manipulation, equation (4.23) can be rewritten as follows: 

Gm2M 
- + u = -  
d2u 
de2 L2 

(4.24) 
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Equation (4.24) has the same form as the equation describing a simple 
harmonic oscillator. The solutions of equation (4.24) can therefore be ex- 
pressed as simple trigonometric hnctions. Specifically, the solution of 
(4.24) is 

(4.25) 

which can easily be verified by differentiating equation (4.25) twice. 

r and 0, we have 
In terms of the actual variables that describe the geometry of the orbit, 

(4.26) 

where A and 8, are the constants of integration that have been carried over 
from the solution, equation (4.25). We will show shortly that these con- 
stants have specific physical meanings. Equation (4.26) can be rewritten as 

I 
A cos(8 - e,) + Gm2M/L2 

r =  (4.27) 

and, in order to see clearly physical interpretation of the constants appear- 
ing in (4.27), we rewrite the equation as 

L21Gm2M 
(AL21Gm2M) cos(8 - 0,) + 1 

r =  (4.28) 

The usual form for this equation is 

P 
e cos(8 - 9,) + 1 

r =  

where the quantity p is defined as 

and e is given as 

(4.29) 

(4.30) 

AL2 
Gm2M 

e =  - - - AP (4.3 1) 
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The quantity p as defined by equation (4.30) is a constant determined by 
the two masses m and M, the gravitational constant G, and the value L of 
the angular momentum of the orbit. The quantity e depends on p but also 
on the constant of integration A ,  which defines the initial conditions of 
the motion of the mass m. The second constant of integration, O,, defines 
the orientation of the principal axis of the orbit with respect to an arbi- 
trary external axis. (It will be demonstrated that the orbit actually has a 
principal axis.) 

We shall now show that the orbit defined by the equation (4.29) de- 
fines an ellipse in the polar coordinates r and 8. The quantity e is called 
the eccentricity of the ellipse. In the case that the eccentricity is zero, 
equation (4.29) reduces to 

r = p  (4.32) 

which is the equation of a circle with the radiusp. Now, we can use equa- 
tion (4.30) to write 

L 2  
r = p = =  (4.33) 

The angular momentum L of a mass in a moving circular orbit with radius 
r is 

L = mvr (4.34) 

where u is the velocity of the mass in the orbit. Combining (4.34) and 
(4.33), we can calculate the velocity of the mass m moving in a circular 
orbit of radius r around the mass M as 

or 

(4.35) 

This is precisely the same expression that was derived in Chapter 2 for cir- 
cular orbits [see equation (2.5)]. The quantityp is called the semilatus rec- 
tum of the ellipse in the case when the eccentricity of the orbit is not zero. 

It is now important to relate the physical quantities G, m, and M to the 
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parameters that define the elliptic orbit. In order to do this, we will refer to 
Figure 4.2. In this drawing, we have chosen the major axis of the ellipse to 
lie along thex axis. This means that we have set the integration constant O0 
equal to zero. (We shall return to this point shortly when we define the 
“true anomaly.”) The mass M is located at one focus, F, of the ellipse and 
the test mass m executes the orbit. The origin of the coordinate system used 
to describe the motion is also at the focus F at which the mass M is locat- 
ed. The length 1 is the distance from the focus to the center of the ellipse, 
the length a is called the semimajor axis, and b is the semiminor axis. 

From Figure 4.2 it is now possible to derive the following relationships 
using equation (4.29) with €lo equal to zero: 

(4.36) P a - / = -  P a + i = -  
1 - e  1 + e  

Combining these equations yields 

or (4.37) 

i 

FIGURE 4.2 
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Also, by subtracting equations (4.36), we get 

(4.38) 

Combining this result with equation (4.37) yields: 

1 =ae (4.39) 

These are both useful relationships. 
We shall now show that the equation of the ellipse in polar coordinates 

(4.29) is identical to the familiar equation for the ellipse in Cartesian co- 
ordinates when the appropriate transformation is made: 

x = r c o s 0  y = r s i n 0  (4.39a) 

Substituting (4.39a) into equation (4.29), with €lo = 0, would result in the 
equation of an ellipse in a coordinate system with the origin at the right- 
hand focus of the ellipse: 

p = r + er cos 0 (4.40) 

or, using (4.39), 

p = v 2 q i + e x  (4.4 1 )  

Rewriting this equation yields 

and squaring both sides gives 

x2 + y2 = p 2  - 2pex + e2x2 (4.42) 

or 

x2( 1 - e2) + y 2  + 2pex = p2  (4.43) 

Completing the square on the left side of this equation and then doing 
some algebra yield 

(4.44) 
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We must now move the origin of the coordinate system to the center of 
the ellipse, which is accomplished by the transformation 

(4.45) Pe x ’ = x + l = x + a e = x +  - 
1 -e2 

Substituting (4.45) into (4.44) yields 

Y2 - P2 x’2 + - - 
1 -e2  (1 -e2)2 

(4.46) 

and manipulating this equation to make it identical to the form of the 
equation of the ellipse in Cartesian coordinates yields 

= 1  XI2 Y2 + 
p2/( 1 - e2)2 p2/( 1 - e2) 

which is the same as the standard form of the Cartesian equation: 

XI2 3 
- + - = 1  
u2 b2 

By comparing equations (4.47) and (4.48), we see that 

P or a=- 
(1  - e2)2 1 -e2 

a2 = P 2  

(4.47) 

(4.48) 

(4.49) 

This is identical to the relationship (4.37) that was derived from the geo- 
metric properties of the ellipse. Also, by comparing (4.48) and (4.47), we 
have 

(4.50) 
P 

vc2 or b =  P 2  62  = - 
1 -e2 

The relationship between a and b is therefore 

(4.51) 

We have now made the connection between the geometric properties of 
the ellipse and the physical quantities that define the orbit. 



ELLIPTIC ORBITS 57 

By proving that the orbit of a mass m moving around a fixed mass M is 
an ellipse, we have proved Kepler’s first law of planetary motion (see 
Chapter 1). We have also shown that the other two laws are valid for cir- 
cular orbits (see Chapter 2). We must now show that Kepler’s laws hold 
for the general elliptic orbits that we have developed in this chapter. In or- 
der to do that, we must look not only at the geometric properties of the el- 
lipse but also at the dynamics of the object moving in the elliptic orbit. 
This means that we have to reintroduce the time variable into the equa- 
tions. 

Kepler’s second law, the “law of areas,” follows from Figure 4.3. The 
area A4 of the segment identified in Figure 4.3 is defined as 

or in the notation of differential calculus. this becomes 

dA = t ( r 2  d0) 

Now dividing each side by dt, we have 

dA 1 d0 - = -y2-  
dt 2 dt 

Y 

(4.52) 

(4.53) 

FIGURE 4.3 
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The term 9 d0ldt on the right side, when multiplied by m, is the angular 
momentum that we have defined as the constant L: 

dA 1 L 
dt 2 m = const - - - -- (4.54) 

From (4.54) it can be seen that dA is always proportional to dt so that 
equal areas are swept out in equal times. 

The third law of Kepler follows from a comparison of the geometric 
properties of the ellipse and the dynamics of the motion of the orbiting 
object. The area of an ellipse can be expressed as follows in terms of the 
semimajor and semiminor axes: 

A = nab (4.55) 

Integrating equation (4.53) results in 

where T is the time that it takes the particle to go around the ellipse: 

L 
2nab = -T 

m 

From equation (4.5 l ) ,  we have 

so that 

(4.56) 

(4.57) 

We now have to eliminate 
for any ellipse. Squaring both sides of (4.57) gives 

because the relationship must be true 

L2 

M2 
4n2a4(1 - e2) = -Tz  (4.58) 
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Now, 

(4.59) 

and the quantity p is defined as 

Therefore, 

and using (4.6 1) in equation (4.58) yields 

L2 
- T2 

aGm2M m2 
-- L2 

4n2a4 

or, by rearranging, 

(4.60) 

(4.61) 

(4.62) 

This is Kepler’s third law. Note that this equation has exactly the same 
form as equation (2.14), which is the third law derived for circular orbits. 
The only difference is that the radius R of the circle is replaced by the 
semimajor axis of the ellipse. 

There is one final point that needs to be emphasized. In complex or- 
bital situations, it sometimes happens that the coordinate system in which 
the ellipse has been defined is nct the same as the coordinate system in 
which the entire problem is treated. In that case, 0, is not zero and there is 
a convention that is used to describe the situation, which is illustrated in 
Figure 4.4. The origin of the coordinate system is at the right-hand focus. 
The axis x is the axis coincident with the major axis of the ellipse. The 
angle 0, is the angle between x and x’. Since x‘ is the coordinate system 
in which the problem is to be solved, the variable 0 is measured from the 
axis x’. The angle between the x axis and the vector r is calledf, the fiae 
unomaly. It is obvious from Figure 4.4 that 

f = O - O O  (4.63) 
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Y 

4 

X'  

I 
FIGURE 4.4 

In such a situation, the true anomaly is the variable in the equation for the 
ellipse: 

P 
1 +ecosf 

r =  (4.64) 

This will be useful when we study complex motions of satellites in orbit 
around Earth (see Chapter 11). 

For further reading on the material in this chapter, the introductory 
chapters in the books of Danby (1962), McCuskey (1963) and Roy 
(1978) are recommended. (See references listed in the Appendix.) 

EXAMPLES 

4.1. Derive the radial (dr/dt) and normal to radial [r(de/dt)] velocity 
components on elliptic orbits as functions of GM, a, e, and 9, with O0 
= 0. Using 

d0 L 
dt M 

P and ?-=-=- r =  
1 + e cos 0 
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where p is the semilatus rectum p = a( 1 - e2),  the radial velocity be- 
comes 

dr dr d0 
dt a( 1 - e2)  ( 1  +ecos0)-=-- dt d0 dt 

Note that for a circular orbit e = 0 and the radial velocity becomes 
zero, as expected. The normal velocity component is 

For a circular orbit, the normal velocity component becomes the cir- 
cular velocity, 

The total speed u on elliptic orbits is defined as the magnitude of the 
vector velocity: 

(1 + e2 + 2e cos 0)”2 

which again becomes the circular velocity for e = 0. The same result 
can be obtained from the integral of energy, 

4.2. The period, apogee height, and perigee height of satellite Explorer 7 
were 1.684 h, 664 miles, and 346 miles. Find the semimajor axis, 
semiminor axis, and semilatus rectum in kilometers, the perigee and 
apogee velocities in kilometers per second, and the eccentricity of 
the orbit. 

Twice the value of the semimajor axis is the sum of the perigee 



62 ELLIPTIC ORBITS 

and apogee distances, measured from the center of Earth. The corre- 
sponding formula is 

2a = 2RE + h, + ha 

where hp = 556.834 km, ha = 1068.606 km and RE = 6378.14 km. 
The semimajor axis becomes a = 7190.86 km. 

The eccentricity can be computed from the formula 

ha - h, 
2a 

e =  

This equation can be obtained using the definitions of the perigee 
and apogee distances, 

r p = h p + R , = a ( l - e )  r = h a + R E = a ( l  + e )  

and computing 

h,-h,=a(l + e ) - a ( l  - e ) = 2 a e  

The eccentricity becomes e = 0.03558. 
The semiminor axis and the semilatus rectum are given by 

b = a m  and p = a ( l - e 2 )  

The values are b = 7 186.306 km and p = 7 18 1.757 km. The perigee 
and apogee velocities can be calculated using the conservation of 
momentum: 

L = mvaa = mv,b 

so that when the velocities are evaluated, we have 

4.3. Show that for elliptic orbits the semimajor axis (a)  is larger than the 
semiminor axis (b), which in turn is larger than the semilatus rectum 
(p), which finally is larger than the distance between the focus and 
the pericenter (rJ. 
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The series of inequalities stated above can be written as 

Here b = af i> ,p  = a(l -e2), rp = a(1 - e) ,  and 0 I e 5 1. The 
inequalities become 

The first inequality, after a is canceled, becomes 

1 2 1 - e 2  or O 2 -e2 

This last inequality becomes an equality for e = 0. The second in- 
equality becomes 

after cancellation by a m  and squaring. This again becomes an 
inequality when e = 0. The third inequality becomes 

l + e ? l  or e r O  

We conclude that the inequalities described are correct for elliptic 
orbits and become equalities for circular orbits. For straight-line or 
rectilinear orbits ( e  = l), we have b = p  = r,, = 0. 

PROBLEMS 

4.1. The perigee and apogee altitudes of an artificial Earth satellite are 
200 and 500 km. Find the values of a, b, p ,  e, up, and v,. 

4.2. Show that the maximum value of drldt for an elliptic orbit occurs at 
the intersection of the latus rectum with the orbit and find this maxi- 
mum value. 



CHAPTER 5 

ROCKETS 

The rocket is an ancient device that is mentioned in the literature for the 
first time around A.D. 1220 in a Chinese chronicle, The Chinese used in- 
cendiary rockets in several battles (Pien-king, Kai-fung-h, and others) to 
defend themselves against the Mongol invasions of China in the thir- 
teenth century. It is likely that rockets were actually developed much ear- 
lier, when the Chinese accidentally discovered gunpowder while trying to 
repeat some Greek experiments on combustibles. They substituted potas- 
sium nitrate for ordinary sait and created the world’s first explosive. No 
one knows exactly when this happened, but it is known that the ancient 
Greeks did experiment with combustible mixtures before the birth of 
Christ. 

The first serious military rockets were developed by the British military 
engineer Sir William Congreve. What he did was to substitute metal cas- 
ings for the wood and cardboard ones used by the Chinese and thus creat- 
ed a much more robust and effective military weapon. Congreve’s rockets 
were used for the first time in 1806, when the British bombarded the 
French port city of Boulogne during the Napoleonic wars. Probably the 
most famous incident involving the use of Congreve rockets was the bom- 
bardment of Fort McHenry in Baltimore Harbor by a British fleet in 18 14. 
This engagement was observed by Francis Scott Key, who described the 
scene as “the rocket’s red glare” providing the light by which the star-span- 
gled banner would be seen through the night of bombardment. His poem 
was later used as the text for the American national anthem. 
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The first person to make a quantitative calculation of the performance 
of rockets was a Russian mathematics professor, Konstantin 
Edouardovitch Tsiolkovsky. In 1903, he published the first derivation of 
what we now call the “rocket equation” in a Russian scientific journal, 
Nautschnoje Ubuzrenve. Unfortunately, no one in the West picked this up 
at the time. In 1919, Robert H. Goddard in a paper entitled, “A Method 
for Reaching High Altitudes,” published by the Smithsonian Institution of 
Washington, repeated Tsiolkovsky’s calculations, being unaware of Tsi- 
olkovsky’s work at the time. Four years later, the German professor Her- 
mann Oberth drew public attention to rocketry in his famous book, Die 
Rakete zu dem Planetenraum, in which he discussed the use of rocket ve- 
hicles for interplanetary travel. It was this work that first stimulated gen- 
uine public interest in the possibility of space travel. In 1946, a group of 
engineers at the Douglas Aircraft Company made the first detailed calcu- 
lations of what would have to be done to put an artificial satellite in Earth 
orbit. A little more than a decade later, the Russians achieved this objec- 
tive by using a converted military rocket (the SS-6) to launch the world’s 
first man-made satellite on October 4, 1957. Thus, the dreams of Tsi- 
olkovsky, Oberth, and Robert Goddard were fulfilled. 

The rocket is a reaction motor that generates thrust (or a force) that 
can propel the rocket by the principle stated in Newton’s third law of 
motion (see Chapter 1). Figure 5.1 shows a schematic diagram of a 
rocket. It consists of a fuel tank, an oxidizer tank, a rocket engine or re- 
action motor, and, of course, a payload. The oxidizer is necessary be- 
cause the rocket is designed to fly outside Earth’s atmosphere, where it 
is not possible to use atmospheric oxygen to burn the fuel. The rocket 
motor consists of a combustion chamber in which the fuel is burned and 
a nozzle that creates a stream of high-speed gas that provides the thrust 
to move the rocket. 

The “rocket equation” can now be derived by looking at the conserva- 
tion of linear momentum in the coordinate system of a rocket moving in 
free space: 

In equation (5 .  l), MR(t) is the mass of the rocket. It will be a function of 
time because the fuel is being consumed as the rocket moves so that its 
mass will be decreasing until the fuel is exhausted, and dV, is the corre- 
sponding velocity change of the rocket. The left side of equation (5.1) is 
the change in momentum of the rocket, or the “action” in Newton’s law. 
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Payload 

s Fuel and oxidizer tanks 

Engine compartment 
(pumps, valves, and 
control systems) 

Rocket nozzle 

FIGURE 5.1 Schematic of a single-stage rocket. The major components are 
payload, the fuel and oxidizer tanks, and the rocket engine. 

the 

The right-hand side of equation (5.1) is the “reaction.” It represents the 
decrement in mass of the rocket (hence, the negative sign) as the fuel is 
burned and vE the exhaust velocity of the gas as it leaves the nozzle mea- 
sured relative to the rocket. 

Equation (5.1) is a simple differential equation that can be rewritten as 
follows: 



68 ROCKETS 

Integrating this equation yields 

and performing the indicated operations yields 

Equation (5.4) can be evaluated by making some assumptions. Let the 
initial velocity of the rocket, uR, be equal to zero so that the right-hand 
term of (5.4) is equal to -VRh,. The initial and final masses of the rocket 
on the left side of the equation can be written as 

MR(initial) = MAfueVoxidizer) + MR(dry) + Mf (5.5) 

and 

MR(final) = MR(dry) + Mf (5.6) 

where in equations (5 .5 )  and (5.6) M p  is the mass of the payload carried 
by the rocket. Here, MR(dry) is the weight of the rocket and the empty 
fuel tanks. Therefore, the final velocity of the rocket under the conditions 
outlined is 

Equation (5.7) is the basic rocket equation. The principal point of interest 
is that when the argument of the logarithm on the right side is equal to e 
(approximately 2.71 8), the velocity of the rocket is equal to the exhaust 
velocity vE Obviously, if enough fuel and oxidizer are on board the rock- 
et, the argument can be larger than e, and therefore, the velocity of the 
rocket can exceed the exhaust velocity of the propellant gases. The argu- 
ment of the logarithmic term is usually called the mass mtio, and the ve- 
locity of the rocket can go as high as the mass ratio permits. This is the 
essential reason why rockets are good for space travel, and this is the 
point that Tsiolkovsky first recognized in 1903. 

Rockets intended to put satellites in Earth orbit or to launch spacecraft 
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to other bodies in the solar system are launched from the surface of Earth. 
In that case, the basic differential equation (5 .  I )  has to be modified. One 
factor that must be included is the effect of gravity and the second is the 
drag on the rocket vehicle caused by the atmosphere. Calculating the at- 
mospheric resistance is complicated because it depends on the details of 
the shape and design of the rocket. However, the effect of gravity can be 
calculated easily, and from a practical viewpoint, it is actually more im- 
portant. Once again, we use Newton’s third law of motion, but we now 
have to include the action caused by Earth’s gravity in the equation. The 
“action variable” is defined as the change in momentum of the object, but 
by Newton’s second law, this can also be expressed as the force acting on 
the object multiplied by the time interval over which it acts. Therefore, 
equation ( 5 .  I )  can be rewritten as 

where the new term on the right contains the gravitational constant g that 
determines the force of gravity on the rocket. This equation is consider- 
ably more complicated than (5.1) if the gravitational constant g is accu- 
rately represented as a function of altitude. However, it is useful to treat g 
as a constant, which is a reasonable approximation as long as the rocket is 
close to the ground. 

Equation (5.8) can be rewritten as a simple differential equation: 

(5.9) 

At the beginning of the flight of the rocket, it can be seen that before the 
rocket starts lifting off the ground, the first term on the right side of the 
equation must be larger than the second. The important parameter that 
determines what happens is the constant givE that appears in the second 
term on the right side. This constant is usually inverted, and it is called the 
specific impulse of the rocket engine: 

(5.10) 

The specific impulse has the dimension of time, and it depends only 
on the exhaust velocity of the rocket. The exhaust velocity in turn de- 
pends on thermodynamic considerations that characterize what happens 
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in the combustion chamber of the rocket and the design of the rocket 
nozzle. In terms of the thermodynamics, the molecular velocity inside 
the rocket chamber operating at the temperature T is given as 

(5.1 1) 

where k is Boltzmann’s constant and m is the molecular weight of the 
combustion products. The expression (5.1 1) defines approximately the 
velocity of sound inside the combustion chamber as well. At room tem- 
perature, approximately 300 K, the sound velocity is about 0.3 km/s. In a 
good combustion chamber, the temperature is something like 4000 K so 
that the sound velocity is about 1000 m / s .  If the rocket works at a rela- 
tively low exit pressure, then in terms of exhaust velocity there is an in- 
crease of another factor of m, where the quantity y is the ratio 
of the specific heat of the gas at constant pressure to that at constant vol- 
ume, that must be considered. If the rocket nozzle is well - designed, then 
the exhaust velocity is multiplied by the factor - 1). For the gas 
in the combustion chamber, the quantity y is approximately 1.3. Thus, a 
good estimate of the exhaust velocity of a well-designed rocket is 

where a molecular weight of the order of 30 has been assumed. This 
translates into a specific impulse of about 

3000 
10 

rs = - = 300 s (5.12) 

The use of liquid hydrogen as a fuel and li uid oxygen as the oxidizer im- 

of the exhaust gas (steam) is 18 rather than 30. Thus, the specific impulse 
that can be reached is 

proves things by about a factor of the + 1.67 since the molecular weight 

T~ = 390 s (5.13) 

It is, of course, this point that makes it so advantageous to use liquid hy- 
drogen as a rocket fuel in spite of the difficulties encountered in handling 
the material. 

In order to see what happens at the end of the rocket’s flight trajectory, 
it is necessary to integrate equation (5.9): 
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In this equation, the quantity T~ is the burnout lime of the rocket, which is 
how long it takes the engine to burn up all the fuel. Performing the indi- 
cated operation on equation (5.14) yields 

[MR + M f  + MF(hel/oxidizer)] T~ (5.15) - -  VR(final) 
= log 

VE LMR -I- M f l  7s 

This equation does not have a "closed" solution and so an iterative 
process is necessary to understand what it says. 

To reach Earth orbit, the final velocity of the rocket must be about 
27,750 km/h. If we assume that the specific impulse of the rocket is about 
300 s, then the exhaust velocity vE is about 3 km/s so that the ratio of the 
two velocities is 

VR(final) 27,750 
= 2.57 - - 

VE 3 x 3600 

For a single-stage rocket moving a payload to Earth orbit, the burnout 
time of the fuel would be approximately 10 min, or 600 s, so that 

78 
- = 2.00 
7 5  

(5.16) 

Using these results, the logarithmic term in equation (5.15) becomes 

[MR + Mp + M,(fbel/oxidizer)] 

[MR + MPl 
= 4.57 (5.17) 1% 

Inverting the logarithm yields 

M,(fuelloxidizer) 
1 +  = 96.6 

f M R  + MPI 

so that we have approximately 

M,(hel/oxidizer) 
= 95.6 

I M R  MPI 

(5.18) 

(5.19) 
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since unity is smal1 compared to the ratio of the masses in the equation. 
The conclusion of the calculation, therefore, is that it takes about 96 
kgm of fuel to place 1 kgm of stuff-in this case the mass of the rock- 
et plus the payload mass-in Earth orbit, This ratio is actually somewhat 
larger than that which is typically encountered. The take-off weight of 
the Saturn V rocket was about 3.2 million kgm, and it was capable of 
putting about 100,000 kgm in Earth orbit. Thus, in the case of the 
Saturn Y it took about 32 kgm of fuel to put 1 kgm of material in Earth 
orbit. 

The reason why the Saturn rocket was more effective than the hypo- 
thetical rocket described by equation (5.19) is that it was a staged rocket. 
In order to reach Earth orbit, the Saturn used two separate stages, the Sat- 
urn I, a gasoline-liquid oxygen fueled first stage, and the Saturn I K ,  a 
liquid hydrogen-liquid oxygen fueled rocket. To understand why “stag- 
ing” a rocket helps, one needs only to consider the point that in a staged 
rocket the empty fuel tanks are discarded so that more mass becomes 
available to be placed in Earth orbit. The most transparent way to see how 
this works is to look at the mathematics of a staged rocket. Let us start by 
looking at equation (5.17). The left side of the equation is often called the 
mass ratio, which in our case is the ratio of the mass placed in Earth orbit 
and the lift-off mass of the rocket: 

[MR + M f  + M,(!%el/oxidizer)] 
= A  

LMR Mfl  
(5.20) 

To develop the equation that governs an “ideal” multistage rocket, let us 
assume that we have a two-stage vehicle where the mass ratio of the first 
stage is hl and the mass ratio of the second is hZ. Also, let us assume that 
the burnout time of the first stage is T~ (stage 1 )  and for the second stage, 
it is 78 (stage 2). We can then write the following equations by looking at 
equation (5.15): 

(5.2 I ) 
V,(final - stage 1) TB(sbge 1) =logX, - 

VE T S  

and 

V,(final - stage 2) VR(final - stage 1) TB(stage 2) 
+ log A2 - (5.22) - - 

VE VE TS 
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In equation (5.22), we have made the assumption that the exhaust veloci- 
ty vE and therefore the specific impulse T , ~  are the same for each stage. We 
will also assume for the sake of simplicity that 

h,  = x* (5.23) 

which is normally not a very good assumption. Also, we will assume, 
again for the sake of simplicity, that the burnout time of the first stage is 
equal to that of the second: 

.rB(stage 1) = .rB(stage 2) (5.24) 

Therefore, combining equations (5.2 1 )-(5.24), we have 

VR(final - stage 2) T B  
= 2 log x - 2- 

VE 7s 
(5.25) 

The only difference between equation (5.25) and equation (5.15) is the 
factor of 2 on the right-hand side. Solving for the logarithmic term yields 

MR + M p  + Mdfbel/oxidizer) 
log A = log 

MR + MP 
VR(final - stage 2) 78 

2 VE 7, 
+ -  - - 

(5.26) 

The second term in equation (5.26) is identical to that in equation (5.15). 
The first term is smaller by a factor of 2. Thus, we have, for the logarithm 
of the mass ratio, 

log X = 3.32 (5.27) 

Inverting the logarithm and following the same procedures that were used 
to obtain equation (5.19), we get 

M,(fuelloxidizer) 
= 28 (5.28) 

r M R  4- MP1 

which is not much different from the capability of the first two stages of 
the Saturn V vehicle. What it says is that with a two-stage rocket cotisid- 
ered here, it takes about 28 kgm of fuel to lift 1 kgm of things into Earth 
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orbit with a two-stage rocket. This calculation illustrates that, even with 
the very restrictive assumptions that have been made, there is an enor- 
mous advantage achieved by staging. 

So far, we have restricted all of our arguments to reaching Earth orbit. 
It is instructive to conclude this chapter with a short description of how 
the trip to the Moon was made by the Apollo astronauts. Figure 5.2 shows 
a photograph of the Apollo Saturn V launch vehicle. There are actually 
four separate stages illustrated that were used to propel the Apollo space- 
craft first to the Moon and then back to Earth. The first two stages, Sat- 
urn Z and Saturn IZC, were used to place a large (1 00,000-kgm) payload 
in Earth orbit, consisting of the Saturn ZVB, the lunar landing module, the 
service module, and the command module. Once in Earth orbit, the Sat- 
urn ZVCpropulsion unit was employed to place the lunar landing module, 
the service module, and the command module on a trajectory going to the 
Moon. Doing this required an additional velocity increment, usually 
called Av, over that which was required to place the original spacecraft in 
Earth orbit. This velocity increment is approximately equal to the differ- 
ence between the velocity that must be imparted to a spacecraft to put it 
into Earth orbit and to escape from Earth altogether. Referring back to 
equation (2.9) in Chapter 2, we have, for the orbital velocity, 

v(orbita1) = /? (5.29) 

for a vehicle moving in an orbit with a radius r, where r is the sum of the 
Earth radius R E  and the altitude of the satellite, h, above the surface of 
Earth. The escape velocity can be calculated from the total energy equa- 
tion (2.32) in Chapter 2: 

(5.30) 

For a vehicle to “escape” from the orbit with radius r, we need to move 
the vehicle away from Earth orbit to a point infinitely far away from 
Earth. At that point, the velocity of the vehicle should be zero to mini- 
mize the energy necessary to escape to infinity. Thus, the total energy at 
that point should be zero so that 

I 2( p )=- GME 
I~ esca e 

r 
(5.3 1) 
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FIGURE 5.2 Saturn V moon rocket on launch pad. Two stages, the Saturri I and 
the Saritrn IIC. are necessary to place the “moonship” into a trajectory going to 
the Moon. The moonship consists of the lunar module, which i s  designed to land 
on the Moon; the service module, which contains the power supply and the rock- 
et engine that provides the propulsion for the return trip; and finally, the com- 
mand module, in which the three crew members ride. (Photograph courtesy of 
NASA.) 
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or 

v(escape)= - F (5.32) 

The escape velocity from the orbit is thus a factor of fi larger than the 
orbital velocity, or 39,239 km/h. The Moon is far enough away from 
Earth so that it is not a bad approximation to use the escape velocity to 
calculate the required velocity increment to leave Earth orbit and travel to 
the Moon: 

A~=39,239-27 ,750= 11,489km/h . 

This velocity increment is provided by the third stage of the Saturn V the 
Saturn I VB. 

When the Saturn IVB burn is completed, the lunar module, the service 
module, and the command module are on their way to the Moon. When 
this spacecraft arrives at the Moon, the engine in the service module exe- 
cutes a retroburn, which puts the spacecraft in orbit around the Moon. 
The lunar excursion module is then separated, and it descends to the lunar 
surface. When the operations on the lunar surface are complete, the as- 
cent module leaves the Moon and returns to lunar orbit to unite with the 
command and the service modules. After crew transfer, the ascent mod- 
ule is jettisoned. The motor on the service module is then used to propel 
the spacecraft on a trajectory back to Earth. Finally, the service module is 
jettisoned, and the command module returns to Earth. The entire Apollo 
mission profile is shown in Figure 5.3. The mission profile is defined in 
terms of the velocity increments that the various rocket motors produce. 
,This is quite natural since the rocket equations derived in this chapter 
yield velocities and velocity increments. We will return to this subject 
when we consider orbital transfers in detail in Chapter 10. 

A number of good books and articles are available for further reading 
on the subject of rocket propulsion. Robert H. Goddard’s “A Method of 
Reaching High Altitudes,” which was published in 1919 by the Smithson- 
ian Institution, is a seminal work in the field. Subsequently in 1920, God- 
dard submitted another paper on the same subject, in which he first men- 
tions going into space. Unlike the work of Tsiolkovsky, Goddard’s papers 
describe extensive experimental work that he performed with solid and 
liquid fieled rockets. Goddard later implemented the work described in 
these papers by flying the first successful liquid fueled rocket in March 
1926 and the first successfil gyrostabilized rocket in 1935. The first 
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FIGURE 5.3 Mission profile used in the Apollo missions to put people on the 
Moon. It is called the lunar orbit rendezvous method because it involves sending 
the lunar landing module to the surface of the Moon from the service module 
and the command module in lunar orbit. 

book to draw public attention to the possibility of using rockets to make 
trips to the planets in the solar system was Hermann Oberth’s Die Rakete 
zu dem Planetenmum (The Rocket to Interplanetary Space). It was first 
published in I923 with an expanded edition following in 1929. In 1936, I? 
E. Cleator published a comprehensive description of rocket research in 
the 15 years following 1920, titled Rockets through Space. A good history 
of rocket developments from World War I1 to the Apollo program in the 
1960s is provided in The Rocket Team by Frederick I. Ordway and 
Mitchell R. Sharpe. For an elementary treatment of the technical aspects 
of rocket propulsion, see Eric Burgess’ book Rocket Propulsion published 
in 1954. A more modern technical work is Rocket Propulsion Elements: 
An Introduction to the Engineering of Rockets by George P. Sutton, the 
sixth edition having been published in 1992. 

EXAMPLES 

5.1. An interesting variation of the principles of rocket propulsion devel- 
oped in this chapter is the ion rocket. Instead of using thermal ener- 
gy to produce the gas stream that propels the rocket, an ion rocket 
uses charged ions that have been accelerated by an electric field in 
the rocket motor. The ions are then ejected from the rocket, and they 
impart a momentum to the vehicle in exactly the same way as de- 
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scribed by equation (5.1) There are two principal differences be- 
tween ion rockets and conventional ones: 

1. The exhaust velocity is much higher in an ion rocket; therefore, 
the specific impulse as defined in equation (5.10) is much larger 
than for a conventional rocket. 

2. The mass ejected by an ion rocket per unit time is much smaller 
than in the case of a conventional rocket. This happens because it 
is impossible to achieve the high particle densities (i.e., pressure) 
in an electrostatic accelerator that is characteristic of the combus- 
tion chamber of a conventional rocket. 

From these points, it follows that an ion rocket is more “efficient” 
than a conventional rocket in the sense that it takes a much smaller 
ejected mass to achieve a given momentum transfer to the vehicle. 
At the same time, the thrust (i.e., force) developed by an ion rocket 
is very small because of the low particle density in an ion rocket ex- 
haust stream compared to one in a conventional rocket. The low par- 
ticle density is caused by the fact that ions are charged particles that 
repel each other, unlike the neutral atoms in an ordinary gas. This re- 
pulsive force between the particles makes it impossible to achieve 
high particle densities. 

It is of interest to quantify the statements that have been made. 
During the 1970s several orbital flight tests of ion propulsion sys- 
tems were made, the last one being the SERT I1 flights from 1979 to 
198 I .  Thus, actual flight data are available on which these calcula- 
tions can be based. Typically, the ion rocket uses argon as a “work- 
ing fluid,” and the rocket has an electrostatic accelerating system 
that operates at about 5 kV A reasonable solar power supply could 
deliver something like 100 kW to operate the ion-accelerating sys- 
tem, which means that an electric current of about 20 A (as an upper 
limit) could be produced in the particle beam. [Note: Power (watts) 
equals voltage (volts) times current (amperes).] From these assump- 
tions, it is possible to calculate both the specific impulse of the ion 
rocket and the thrust that it can develop. The velocity of an argon ion 
that has been accelerated through a potential difference of 5 kV is 
given by the equation 

1/2mv2 = eV 
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where m is the mass of the argon ion, e the charge on the ion (we 
shall assume that the ion is singly charged), and V the potential dif- 
ference through which the ion passes. Thus, 

and, to evaluate the velocity of the ion, we shall use 1.60 x C 
for the charge e, and the mass of the argon atom is approximately 
40 times the mass of a hydrogen atom, or 6.68 x kgm. 
Therefore, 

The specific impulse of this ion rocket is therefore 

1.55 x 105m/s 
10 m/s2 

7 =  = 15,500 s 

This is a factor of 43 better than what can be achieved by the very 
best 1 iqui d- hydrogen oxygen rockets . 

In the case of the Saturn V vehicle that is discussed in the text, the 
vehicle weighs about 3.5 x lo6 kg. The rate at which mass is ejected 
varies from stage to stage. The first stage, the Saturn I, which is used 
at lift-off, weighs about 3.0 x lo6 kgm, and almost all of that weight 
is fuel. The burnout time for the Saturn I stage was about 5 min, or 
300 s. Thus, about 1 1,700 k g d s  (1 1.7 tons/s) of mass are ejected by 
the five F- 1 engines of the Saturn I stage. 

In the case of the ion rocket, the rate at which mass is ejected 
is calculated by considering the current of the ion beam. Based 
on available power, we estimated earlier an ion beam current of 20 
A. Actually, this is much too high, because we have assumed that 
the electrical conversion system is 100% efficient. A better esti- 
mate for the current would be about 2 A, which assumes an overall 
conversion efficiency of about 10%. We can now use the fact that 
each ion carries a charge of 1.60 x C and the relationship 
that 

1 A = 1 C/s 
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Using these, we can calculate the number of argon ions that are 
ejected per second: 

20 
= 1.25 x 1020 

1.60 x 
N =  

Since each argon ion weighs 6.68 x 

the ion rocket is approximately 
kgm, the mass ejected by 

-- - 8.36 x lod k g d s  Alu 
At 

Note that this quantity is more than one billion times smaller than 
the mass ejected by the Saturn I vehicle. The ratio of the thrusts of 
the Saturn I and the ion rocket can now be estimated by using the re- 
lationship 

AP AM 
At 

Thrust = - = VE 

where AP is the momentum imparted to the vehicle by the exhaust 
stream. Thus 

v,(Saturn) &(Saturn) 
vdion rocket) AM(ion rocket) 

= 2.7 x lo6 - - Thrust( Saturn) 
Thrust(ion rocket) 

The Saturn rocket, therefore, has nearly three million times the 
thrust of the ion rocket. From these considerations, it can be con- 
cluded that ion rockets are not suited to be launch vehicles for which 
high thrust is essential. Ion rockets are important if not much thrust 
is required but if a very high propulsive efficiency is necessary. Ex- 
amples of this might be long-term station keeping for satellites in 
Earth orbit or journeys to other planets for which a low-thrust rocket 
that operates for a long period of time is required. 

5.2. Ion rockets are a working proposition, and there is good reason to 
believe that they will find applications in the not-too-distant future. 
Another rocket concept that has received considerable attention is 
the nuclear rocket. In this case, a nuclear reactor is used as the ener- 
gy source and is operated roughly as shown in Figure 5.4. The work- 
ing fluid for the rocket would be hydrogen, which would be heated 
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FIGURE 5.4 

by passing through a series of channels in a nuclear reactor. Once 
the hot gas leaves the reactor, it would be passed through an efficient 
aerodynamic expansion nozzle and ejected. The principal advantage 
of a nuclear rocket is not that it could operate at higher temperatures 
but rather that the molecular weight of the ejected material is as 
small as it can get. With respect to temperature, all rockets are limit- 
ed to about 4000°C because that is all that materials can stand. How- 
ever, the specific impulse varies inversely as the square root of the 
molecular weight [see equations (5.10) and (5.1 l)], and since hydro- 
gen, which has a molecular weight of 2 rather than 18 for water, can 
be used as a working fluid, nuclear rockets should be able to achieve 
specific impulses of the order of 1000 s. Another positive point is 
that nuclear rockets do not suffer from the severe thrust limitations 
of ion rockets. Since the particles in the working fluid are not 
charged high densities and large mass flows can be maintained. 

Much experimental work has been performed with nuclear rock- 
ets. A full-scale nuclear rocket (the NOVA) was built at the Los 
Alamos National Laboratory, and it was operated a number of times 
successfully during the 1970s. There is no doubt that a technically 
successful nuclear rocket can be built. The trouble is that there are 
many safety problems to solve and political problems to overcome 
before such a system could be flown. At the present time, work on 
nuclear rockets has been suspended. 

5.3. Several other much more exotic rocket concepts have been consid- 
ered. One would be to use electrons rather than ions as a working 
fluid in a rocket. The principle would be the same as the ion rocket 
that has been described. The electron is 1830 times lighter than a 
proton and 73,200 times lighter than the argon atoms used in the 
first example. Thus a significant advantage in specific impulse 
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would be gained. The principal problem is that electron beams 
would be much harder to maintain and to keep properly focused than 
ion beams at the same energy. 

A second concept is laser propulsion: In this case, a laser beam 
would be focused on a working fluid tank located at the bottom of 
the rocket. The energy in the beam would heat the fluid, and the flu- 
id would then be ejected through an appropriate nozzle to provide 
thrust. As the rocket rises through the atmosphere, the laser beam 
would continue to follow the vehicle and would continue to heat the 
working fluid tank. The putative advantage of this scheme is that the 
energy source for the rocket would stay on the ground so that the 
weight devoted to carrying the energy source would be saved. No 
practical work has been done on this concept. 

Finally, there is the “Orion” concept attributed to Freeman Dyson. 
This idea involves nuclear explosives used to drive an appropriately 
designed space ship. The ship would be fitted with a shock-absorb- 
ing plate at one end against which the nuclear blast would work. 
Very high speeds on long voyages could be achieved by releasing 
successive explosive devices and detonating them behind the shock- 
absorbing pIate. No practical work has been done on this concept. 

PROBLEMS 

5.1. Alpha Centauri is 4 light years away from Earth. An ion rocket has 
been built to reach the star. The velocity of the ions emitted by the 
ion rocket is one-tenth of the speed of light. The ratio of the initial 
mass of the rocket vehicle to the final mass of the rocket vehicle is 
3, and it takes about 100 h to exhaust all of the working fluid of the 
ion rocket. How long does it take the vehicle to reach Alpha Centau- 
ri? Neglect effects of relativity since the ion velocity is small enough 
compared to the velocity of light. 

5.2. An ion rocket is designed so that the exhaust velocity is one-tenth 
the velocity of light. We want to compare its performance to a con- 
ventional rocket with an exhaust velocity of 1.86 miles per second. 
For the ion rocket, 1 pound of fuel accelerates 1 pound of payload to 
a final velocity v. What is the mass of fuel necessary to accelerate 
the same payload to the same final velocity with the conventional 
rocket? Neglect the dry vehicle weight in each case compared to the 
payload weight. 
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5.3. Rockets A and B both carry a payload of mass rn. The fuel mass of 
each rocket is MF and the empty mass of each rocket is MR. The total 
mass of each is M. Rocket A has one stage and rocket B has two 
stages each with half the fuel and half the empty weight of rocket A 
(see Figure 5.5).  The exhaust velocity of all the rocket engines is vE. 
Both rockets are at rest in free space when the engine is started. 

(a) Derive the formula for the final velocity of the payload for rock- 

(b) Derive the formula for the final velocity of the payload for rock- 

(c) Discuss the significance of the results of parts 1 and 2. 

et A. 

et B. 

5.4. Sounding rockets are designed to explore the upper atmosphere and 
therefore do not possess the ability to reach Earth orbit. A solid fu- 
eled sounding rocket weighing I000 pounds is launched vertically 
from the ground. The payload carried is 10 pounds and the weights 
of the rocket casing and the nozzle are so small that they can be ne- 

Payload 

Stage 2 

Rocket 

Stage 1 

Rocket A Rocket B 

FIGURE 5.5 
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glected compared to the weight of the payload. The exhaust velocity 
of the rocket, uE, is 4000 Ws, and the drag of the air and the rotation 
of Earth can both be neglected. The solid fuel of the rocket burns out 
after 100 s. 

(a) What is the final velocity of the rocket at burnout? 
(b) At what altitude does the rocket burn out? Assume that the rock- 

et fuel burns at constant rate and that the ratio of the payload 
mass to the initial fuel mass can be set equal to zero in your cal- 
culations. 

(c) What is the highest altitude reached by the rocket? Assume that 
Earth’s force of gravity is constant, since the sounding rocket is 
always close to Earth. 

(d) What is the velocity of the payload when it returns to the 
ground? 



CHAPTER 6 

ENERGY RELATIONSHIPS: 
HYPERBOLIC AND 
PARABOLIC ORBITS 

In the preceding chapters, we examined the behavior of two masses mov- 
ing around each other under the influence of the gravitational force be- 
tween them. In Chapter 4, we discussed the behavior of elliptic orbits in 
some detail. We looked at the geometric properties of the ellipse and then 
proved Kepler’s three laws of planetary motion by also treating the dy- 
namics of objects moving in elliptic orbits. Finally, we derived the rela- 
tionship between the kinetic and the potential energy of an object moving 
in a circular orbit. The purpose of this chapter is to extend all of these 
considerations to other types of two-body orbits permitted by the equa- 
tions of motion and the law of gravity. These orbits are the parabola and 
the hyperbola. 

We shall start by looking at the energy relationships in an elliptic orbit. 
We have already shown that the total energy of two objects moving under 
the influence of gravity is constant; see equation (3.42) in Chapter 3.  We 
have also shown that in the case of circular orbits the kinetic energy and 
the potential energy are both constants because the orbital speed and the 
radius are both constant. Using the expression for the orbital speed in a 
circular orbit (2.9), it was possible to write the total energy of a mass m 
moving around a mass M at a radius R as 

GmM 
2R 

E 
T -  
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We shall now extend these considerations to elliptic orbits and calcu- 
late the total energy of the mass m moving around the mass A4 in an orbit, 
such as the one shown in Figure 6.1. The total energy of the mass m can 
be written, according to equation (3.42), as 

GmM 
r 

E - L  T- 2 mu2 - - 

In this case, the kinetic energy and the potential energy are no longer con- 
stant; they change as the mass moves around the orbit. In order to calcu- 
late the total energy of the particle in the orbit, we use the conservation of 
angular momentum in the orbit. To do this, we remember that the angular 
momentum is given by equation (3.47): 

When the vectors r and v are perpendicular to each other, the magnitude 
of the angular momentum vector L is given as 

L = ILI = mru (6.4) 

Y 

t 

FIGURE 6.1 
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There are only two places along the elliptic orbit where v and r are per- 
pendicular, at perigee and at apogee. At apogee, we have 

L = mvA(a + ae) = mvAa( 1 + e )  (6 .5 )  

Since 

P 
1 -e2 

a=- 

we have 

P L = mu,- 
1 - e  

(6.6) 

The angular momentum is related to the semilatus rectum p of the ellipse 
as follows: 

L2 
p = m  

From the relationships (6.6)-(64, we can calculate u,, the velocity at 
apogee: 

L2 (l-e)* GM(1 -e)’ GM 1 - e  

m2 p2 P a l + e  (6.9) v ’ j = - - -  - - 

Using equation (6.2), we can write, for the total energy at apogee, 

GmM 1 GmM 1-e GmM 1 
2 rA 2 n 1 + e  a(1 + e )  

- (6.10) E T =  --mu; - __ = ___- 

where the relationship rA = a( 1 + e )  has been employed. When equation 
(6.10) is simplified, we obtain 

Gm M E 
T -  2a 

(6.1 1) 

The total energy of the particle, m, moving along the elliptic orbit is a 
constant that depends only on the semimajor axis of the ellipse. The total 
energy is always negative, and it has exactly the same functional form as 
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equation (2.35), the total energy of a particle moving in a circular orbit, 
except that r, the radius of the circle, is replaced by a, the semimajor axis. 

The equation of an ellipse in polar coordinates was derived in Chapter 
4 [see equation (4.64)], and it looks like this: 

where we have assumed that the angle 0, defined in Chapter 4 is zero. If 
the eccentricity e of the orbit is greater than zero but less than unity, then 
r remains finite, no matter what the value of the angle 0. Such orbits are 
called “bounded” since they can only occupy a finite space. The fact that 
the total energy for bounded orbits (ellipses and circles) turns out to be 
always negative is not surprising. If the body in orbit (mass m) were to be 
moved from its orbit to a point infinitely far away from M, and with no 
kinetic energy, work would have to be done on the body. This work pre- 
cisely equals the total energy of the body (m) in its orbit, and it would be 
added to that energy so that, in the end state, the total energy of the body 
is zero; that is, the kinetic energy vanishes because u, is zero, and the po- 
tential energy also vanishes because the distance to the force center be- 
comes infinite. 

In case e = 0, then equation (6.12) becomes 

r = p  (6.13) 

and the orbit is a circle, and it is the simplest of orbits. We have now ful- 
filled the promise made in Chapter 2, and we have shown that a circle is 
indeed a permitted orbit. 

What if e = l ?  In this case, the equation of the orbit is 

P r =  
1 -+ cos e (6.14) 

When the angle 8 is equal to zero, we have 

r =  fp (6.15) 

On the other hand, if the angle 8 is equal to IT (1 80°), then r tends to in- 
finity. Finally, when 8 = {IT, we have 

r = p  (6.16) 
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Figure 6.2 shows the kind of orbit that is implied by these considerations. 
To see what this orbit would look like, we look at the transformation in- 
troduced in Chapter 4 [equation (4.39)]: 

x = r c o s O  y = r s i n 8  

Substituting these equations into (6.14) gives 

r + r c o s e = p  

or 

(6.17) 

(6.18) 

where we used equations (6.5).  Squaring bot,, sides gives 

x2 + y2 = p2 - z r p  + x2 (6.19) 

which when simplified becomes 

y2 =p2 - 2xp (6.20) 

If we make the transformation, 

= x - fp (6.21) 

Y 

FIGURE 6.2 
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we obtain 

u2 x’ = - 
2P 

(6.22) 

This is the equation of the parabola shown in Figure 6.2. 
Now, we should look at what is implied by an eccentricity equal to uni- 

ty. One way of looking at this is to say that the parabola we have drawn in 
Figure 6.1 is the extreme case of an ellipse. Referring back to Figure 4.2 
in Chapter 4, we can compare this to the parabola shown in Figure 6.2. 
We see first that the origin of the Cartesian coordinate system that de- 
scribes the parabola in equation (6.9) is at what would be the focus of the 
ellipse in Figure 4.2. Furthermore, from the equations that relate the 
quantities a and b for the ellipse, we have 

P 
vi-2 and b =  

P 
1 -e2  

a=- (6.23) 

It is clear from these equations that both a and b become infinite if e = 1 .  
Referring back to Figure 6.2, it is as if the ellipse shown in Figure 6.2 
were “stretched” so that both the semimajor axis a and the semiminor 
axis 6 move infinitely far to the left. Also, both a and b become infinitely 
long. Finally, the “center” of the ellipse, point 0, moves infinitely to the 
left. Since the semimajor axis goes to infinity, the total energy of a body 
moving in parabolic orbit is zero, according to equation (6.11). If the 
mass m moves in a parabolic orbit, the dynamic condition that describes 
the motion is that the potential energy of the mass is always precisely 
equal to the kinetic energy: 

(6.24) 

Because of the exact nature of the condition in (6.24), it is very difficult 
to achieve orbits that precisely fit a parabola. 

We now turn to a study of the cases in which the eccentricity is greater 
than unity (e > 1). If we look at equation (6.12), the first and most obvi- 
ous point is that there is an angle 6 for which r becomes infinite. If we 
look at equation (6.12), then there is an angle 6 = a for which r goes to 
infinity when this condition is fulfilled: 

1 

e 
I + e c o s a = O  c o s a = - -  (6.25) 
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Note that the implication of equation (6.25) is that 

a >  ; I T  (6.26) 

because it is only when this condition is fulfilled that the cosine of the an- 
gle is negative. Also, when 0 = 0, we have 

P 
1 + e  

r =  - 

and when 0 = tn, we have 

? - = p  

(6.27) 

(6.28) 

Conditions (6.27) and (6.28) along with (6.1 2) now permit us to construct 
a picture of the orbit (Figure 6.3). This picture shows that there can be no 
angles larger than a, for which solutions to (6.12) exist. The straight line 
that makes the angle a with the x axis comes closer and closer to the orbit 
as r becomes larger and larger. Such a line is called an asymptote, and in 
the case of the parabola, there is no asymptote. 

Now, let us look at the energy equation 

E - !  T -  ,mu2 
GMm 

r 

Y 

(6.29) 

FIGURE 6.3 
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Note here that the total energy is equal to the kinetic energy when the Val- 
ue of Y goes to infinity. In order to determine what the total energy is in 
this case as given by equation (6.1 1) for the ellipse, we will again trans- 
form the polar coordinates to Cartesian coordinates using 

and 

From this we can write 

(6.30) 

Simplifying (6.30) leads to 

(Gq + ex) = p  (6.3 la) 

G q = p - t ? x  (6.3 1 b) 

Squaring both sides of equation (6.3 1) yields 

xz +3 = p 2  - 2pex + e2 x2 (6.32) 

In order to rewrite equation (6.32) in terms of x2 and only, a transfor- 
mation of coordinates is necessary. Let us look at Figures 6.1 and 6.3 and 
see which quantity in the case of the orbit in Figure 6.1 is the analog of 
the semimajor axis of the ellipse. In the case of the ellipse, it is the dis- 
tance from the center of the ellipse, 0, to the point P. There is no natural 
center of the orbit in Figure 6.3 since the orbit is not closed. A “natural” 
choice would be to see if the point at which the asymptote crosses the x 
axis is an appropriate origin. 

Look at equation (6.32) again and see what can be done: 

(1  - e2)x2 + y 2  = p 2  - 2pex (6.33) 
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and this can be restated as 

Now, remembering that for the hyperbola e > 1 we have 

(6.34) 

Now we need to make a transformation of the x coordinate to eliminate 
the linear term. This can be done by completing the square in (6.34), 
which leads to the following final form: 

(6.35) 

From equation (6.35), it is clear what the required transformation should 
look like: 

So that the equation of the hyperbola is 

or in the format 

XI2 y2  - 1  
a2 b2 

We have 

= I  X’2 - Y 2  
p2/(e2 - p2/(e2 - 1) 

(6.36) 

(6.37) 

(6.38) 

(6.39) 

Therefore, we have the relationships for the quantities a2 and b2 in the 
standard equation for the hyperbola: 
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P or a = * -  
(e2 - e2- 1 

P2 a2 = - 

b2= - P2 or b=*<-  P 
e2-1 e2- 1 

(6.40) 

Note that these relations are similar to those derived for the ellipse, equa- 
tion (6.23). Therefore, the functional form of the energy relationship for 
hyperbolic orbits is the same as that for the ellipse. There is, however, one 
critical difference: Unlike elliptic orbits, hyperbolic orbits are “unbound- 
ed,” that is, the body (mass rn) in orbit can move infinitely far away from 
the force center (mass M), and it can even have a residual velocity at in- 
finity, v,. Because the potential energy vanishes as r approaches infinity, 
the total energy at infinity is therefore 

This quantity is always positive, and since energy is conserved, the total 
energy of the mass m moving in the hyperbolic orbit is always positive. 
We have already established that the functional form of the total energy 
for the hyperbola is the same as for the ellipse. To obtain a positive ener- 
gy means, mathematically, using the negative rather than the positive 
square root in equation (6.40) to determine the quantity a. Thus, we have, 
for the hyperbola, 

GmM 
ET= - 

2a 
(6.42) 

Finally, it is instructive to look at what happens as the eccentricity e of 
the hyperbola varies from unity to infinity, which is the range of values it 
can take on. For values of e tending toward unity (e cannot equal unity 
since we then have a parabola), we obtain approximately 

so that 01 - IT. This means that the hyperbola degenerates into a straight 
line along the x axis of the Cartesian coordinate system. Also, a tends to- 
ward negative infinity, which means that the total energy tends to zero. 
Thus, the figure becomes a degenerate parabola. For values of e tending 
toward infinity, we have 

coscy=o 
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Y 

Circle 

Ellipse 
Y 

( b )  

FIGURE 6.4a-b 
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Parabola 

t X  
Origin 
P 

( d )  

FIGURE 6.4~-d 
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which means that a = f 7 ~ .  Also, in this case, a tends toward zero so that 
the total energy becomes very large, tending toward infinity. Thus, the or- 
bit tends toward a straight line coincident with they axis of the Cartesian 
coordinate system. 

We now have established all of the relationships outlined in the first 
paragraph of this chapter. 

It might be useful to summarize all of the relationships derived in this 
chapter with some drawings. It is clear that the circle and parabola are 
very special cases for which e = 0 and e = 1, respectively. Ellipses have 0 
< e < 1 and hyperbolas have e > 1. Figure 6.4 a-d illustrate these points. 

For an excellent treatment of the mathematics of conic sections, the 
curves that are treated in this chapter, see Calculus by Tom M. Apostol. 

PROBLEMS 

6.1. A comet starts from a point at rest that is 10 light years away from 
the Sun and begins falling in a straight line toward the Sun. How fast 
is the comet moving when it passes the orbit of Earth? Earth is 8 
light minutes away from the Sun. Assume that one year is 365 days 
and that the speed of light is about 300,000 M s .  

6.2. Halley’s comet has a period of 76 years. Its closest approach to the 
Sun is 0.6 a.u. (An astronomical unit is about 150,000,000 km, the 
distance from Earth to the Sun.) How far away from the Sun does its 
orbit extend? 

6.3. A comet is observed to be approaching the Sun on a trajectory deter- 
mined to have a total energy of zero, The cornet crosses Earth’s or- 
bit, swings around the Sun, and recrosses Earth’s orbit at a point pre- 
cisely on the opposite side of Earth’s orbit from the initial crossing. 

(a) What is the closest distance of approach of the comet to the 
Sun? 

(b) How much time does the comet spend inside Earth’s orbit? The 
methods developed in Chapter 7 must be used to calculate the 
answer. 



CHAPTER 7 

KEPLER’S EQUATION AND 
LAMBERT’S THEOREM 

Up to this point, we have been concerned with the problem of determin- 
ing the geometric properties of the orbits of bodies moving with respect 
to each other under the influence of mutual gravitational attraction. We 
have shown that circles, ellipses, parabolas, and hyperbolas are all per- 
mitted orbital trajectories. We have also touched upon dynamics, that is, 
the behavior of the two-body system when the time variable is introduced, 
and shown that both the angular momentum and the total energy of the 
two-body system are constants of the motion. Finally, we have shown that 
Kepler’s laws of planetary motion (see Chapter 1) follow from the law of 
gravity and Newton’s laws of motion. Having developed these results, we 
can now consider the more difficult and more important problem of de- 
termining what kind of orbit is executed by a body moving under the in- 
fluence of gravity around another one from direct measurements of the 
position of the body at various times. This is, of course, the problem Ke- 
pler first solved in 1609 when, using excruciatingly tedious hand calcula- 
tions and Tycho Brahe’s superb measurements, he established his famous 
laws. 

The problem we want to solve can be stated as follows: Given mea- 
surements of the position of a body moving in the gravitational field of 
another one at various times, how can one determine the orbit? We shall 
show that if the position of the body, r l ,  with respect to some coordinate 
system is measured at time t ,  and again at rz at time tZ, then it is possible 
to uniquely determine the orbit that the body executes. This is essentially 
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the same as the problem originally solved by Kepler. However, we have 
much more powerful and elegant techniques today to do so. Remember, 
Kepler did his work almost 80 years before the invention of differential 
calculus. There are two relationships that are useful for determining or- 
bits using measurements of the position of an object in orbit at various 
times. One of these is called Kepler’s equation, and the other is a theorem 
developed in 176 1 by J. H. Lambert. The only difference between the two 
equations that result is essentially the choice of origin of the coordinate 
system in which the measurements to determine the orbits are made. In 
both cases, two quantities are to be determined from the measurements. 
The eccentricity of the elliptic orbit, e, and the semimajor axis a. We shall 
consider both elliptic and hyperbolic orbits, and we will derive the rela- 
tionships for both types. Indeed, the methods to be described here were 
first worked out to find out whether the orbits of various comets that pass 
close to the Sun were elliptic (closed or bounded) or hyperbolic (un- 
bounded). 

7.1 DERIVATION OF KEPLER’S EQUATION 

The essential idea behind Kepler’s equation is an extension of Kepler’s 
third law, which states that the square of the orbital period of a body mov- 
ing in an elliptic orbit is proportional to the cube of the semimajor axis 
(a) of the ellipse. This relationship was derived by integrating the angular 
momentum equation around the entire elliptic orbit (see Chapter 4). If we 
are interested in determining what kind of orbit a body executes from 
measurements that are made, then the angular momentum equations ex- 
pressed in terms of the orbital parameters are integrated only over aJinite 
segment of the orbit. In this way, the desired relationships between the 
times at which the measurements are made and the position of the body 
in the orbit can be derived. 

In order to accomplish the objective outlined in the previous para- 
graph, it is usefid to look at Figure 7.1. This illustrates another way of 
constructing an ellipse by enclosing it between two circles, one with a ra- 
dius a, the semimajor axis, and the other with a radius 6, the semiminor 
axis. The ellipse is then generated by tracing point Q in such a way that 
the relationship 

a CD 
b OD 
- = -  
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A P 
I 

I I 

FIGURE 7.1 

is always preserved. It is clear from this condition that the line segment 
BQ is always parallel to the line segment OD. There are two angles that 
are important in defining the problem being considered. One is the angle 
0, which defines the angle that the line segment r makes with the x axis. 
If the major axis of the ellipse is not colinear with the x axis of the coor- 
dinate system, then we must use the relationship defined in Chapter 4, 
equation (4.63) 

in defining the equation of the ellipse. Here, e0 is the angle between the 
major axis of the ellipse and the x axis of the coordinate system, and the 
anglefis called the true anomaly. The angle E in Figure 7.1 is called the 
eccentric anomaly, and it is the angle between the line OC and the ma.jor 
axis of the ellipse. It turns out that the integration of the angular momen- 
tum equation part way around the elliptic orbit yields a particularly sim- 
ple relationship between the time variable t and the eccentric anomaly E, 
and it is this relationship that we shall now derive. 

We shall start with the equation describing an ellipse in polar coordi- 
nates: 

(7.3) 
- P - P 

1 + e cos(0 - 0,) 
r =  

1 + e cosf 
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given in equation (4.64) in Chapter 4. In this chapter, we shall use the true 
anomalyfinstead of the polar angle 8 in order to preserve the possibility 
that the major axis of the elliptic orbit may not be colinear with the x axis 
of the coordinate system used to describe the problem. From the geome- 
try in Figure 7. I ,  we can write 

9 = ( Q Q 2  + (FD)2 (7.4) 

Also, from Figure 7.1, we have 

a cos E = ae + FD 

or 

and 

FD = a  cos E - ae (7.5) 

QD = b sin E (7.6) 

Substituting equations (7.5) and (7.6) into equation (7.4) and performing 
some algebraic manipulation yields 

9 = b2sin2E + a2cos2E - 2a2e cos E + a2e2 

= b2sin2E + (a  cos E - ae)2 (7.7) 

and then, using the relationship 

b = a m  

yields, after some more algebraic manipulation, 

? = a2( 1 - e cos E)* 

or 

r = a ( l - e c o s E )  (7.9) 

This equation represents the equation of the ellipse shown in Figure 7.1 in 
terms of the eccentric anomaly E. 

We are now ready to establish the relationship between the time vari- 
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able t and the eccentric anomaly E by using the angular momentum rela- 
tionship defined in equations (4.1 1) and (4.63): 

df m G - = L  
dt 

(7.10) 

where L is the angular momentum, which is a constant of the motion. Re- 
call that when this equation was integrated around the entire orbit of the 
ellipse ( E  or 0 or f going from 0 to 2 ~ ) ,  the resulting relationship was Ke- 
pler's third law of planetary motion. What we will now do is to integrate 
equation (7.10) only part of the way around the orbit in order to derive the 
desired relationship. Using equation (4.61) of Chapter 4, we will start 
with the relationship 

r 2  
L 

GMu( 1 - e2) - =  
m2 

(7.11) 

where the masses m and Mare located at the points Q and F,  respectively, 
in Figure 7.1. Rewriting equation (7. I 1) using (7. lo), we obtain 

df G- = d G M u (  1 - e2) 
dt 

(7.12) 

Rewriting equation (7.12) in terms of the eccentric anomaly E and using 
equation (7.9) give 

df dE 
d ( 1 -  e cos E ) ~ - -  = V' GMu( 1 - e2) 

dE dt 
(7.13) 

The integral that needs to be evaluated can now be written as follows: 

I, EO a2(l - e  cosa2-dE= dY- $V'GMu(l -e2)dt (7.14) 
dE 

As we have already stated, the integrals here are not evaluated around the 
entire orbit but only to the eccentric anomaly (angle) E,,, which corre- 
sponds to the position of the body of mass M at the time to. In order to 
evaluate the integral on the left side of equation (7.14), an expression for 
dfrdE must be obtained. By comparing the equations for the elliptic orbit 
in terms of the anglef[equation (7.3)] and the angle E [equation (7.9)], 
the following relationship can be derived: 
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e-cosE 
ecosE- 1 

cos f = (7.15) 

It is a complicated but straightforward procedure to calculate the desired 
derivative (d!dE) equation (7.15), and the result is 

df _ -  - 
dE ecosE- I  

(7.16) 

Substituting equation (7.16) into the integral (7.14) yields 

r a2(e cos E - 1 ) G d E  = c v G M a (  1 - ti?) dt  (7.17) 

where the limits of integration are such that the eccentric anomaly is zero 
at t = 0 and Eo when t = to. Rearranging the terms and evaluating the inte- 
gral yields the equation 

Eo-esinEo= Fto (7.18) 

Using equation (4.62), which is the statement of Kepler's third law of 
planetary motion, we can write 

(7.19) 

where T is the period of the mass m in executing the elliptic orbit shown 
in Figure 7.1. Therefore, 

T 
2Tr 

to = -(Eo - e sin Eo) (7.20) 

This is called Kepler's equation. If the initial condition is not as chosen, 
but rather that the time interval for the angle E to change from E ,  to E2 is 
tz - t , ,  then equation (7.20) can be rewritten as 

T 
27r 

t2 - t ,  = -[(Ez - E,) - e(sin E2 - sin E l ) ]  (7.21) 



DERIVATION OF KEPLER’S EQUATION 105 

This equation says that the parameters that describe an elliptic orbit, the 
eccentricity e, and the semimajor axis a can be uniquely determined by 
making two measurements. The first is a measurement of the orbital peri- 
od T, which determines the semimajor axis a. The second is a measure- 
ment of the time interval t2 - tl that it takes the object in the orbit to move 
through the angle E2 - E, .  This measurement determines e,  the eccentric- 
ity of the ellipse. 

Kepler’s equation is transcendental, and therefore, it has no algebraic 
solution. To get some physical insight into how the equation works, we 
will look at the approximation in which the angle Eo as measured from 
the major axis of the ellipse shown in Figure 7.1 is very small. In that 
case, we can use the approximation that 

and, therefore, we have, from Kepler’s equation (7.20), that 

2nto 
Eo 

T(l - e )  
(7.22) 

This equation illustrates the point that (again, for small angles, Eo) given 
a measured time interval to, the angle Eo will be larger for large values of 
the eccentricity e. This leads to the correct conclusion that the larger the 
eccentricity of an elliptic orbit, the larger the velocity of the orbiting ob- 
ject at the perigee of the orbit. 

The part of Kepler’s equation that contains the angle Eo is often called 
the mean anomaly: 

2TtO 
- = Eo - e sin Eo = 1 T (7.23) 

Together with the two other angles,fand E, that have been previously de- 
fined as “anomalies,” the three anomalies are shown in Table 7.1. 

We have seen that in the case of elliptic orbits Kepler’s equation is de- 
rived starting with the conservation of angular momentum. Angular mo- 
mentum is also conserved in the case of hyperbolic orbits, so that a ver- 
sion of Kepler’s equation for such orbits can also be developed. The 
geometry is illustrated in Figure 7.2. The left branch of the hyperbola rep- 
resents the orbit governed by a mass A4 located at F. The center of the hy- 
perbola is at 0 and the pericenter at P .  The distance between the center 



106 KEPLER’S EQUATION AND LAMBERT’S THEOREM 

TABLE 7.1 

Symbol Terminology Description Radial Distance 

f True anomaly Angle at focus of a( 1 - e2)/( 1 + e cosf) 

E Eccentric anomaly Angle at center of a( 1 - e cos E) 

the ellipse 

the ellipse 

1 Mean anomaly (2.rr/T)(t* - tl) 

and the pericenter is a, which is the semimajor axis. Note the analogy 
with elliptic orbits as shown in Figures 4.1 and 7.1. The semimajor axis a 
= PO, and the distance OF = ae for both kinds of orbits. The pericenter 
distance for a hyperbola is 
The semiminor axis is b = 

ellipse. Note that for an ellipse the sum of the distances from the foci is 
201, and for a hyperbola, the difference between those distances is 2a. For 
instance, the distance is F’P is ae + a = a(e + I) ,  and the distance FP is 
a(e - 1). The difference is 2a. Similarly, the length of the semilatus rec- 

- I), but for an 

FIGURE 7.2 
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tum is FQ = p .  The distance of the point Q from F' is (IJ' = g p 2  + ( 2 ~ e ) ~ .  
In order to verify the previously given formula for p ,  we write 

Q F ' - Q F = 2 a  

or 

from which p = a(e2 - 1). 

from the equation 1 + e c o s h  = 0, since this corresponds to Y 
solution is 

The angle of the asymptotes may be obtained from finding the ang1e.h 
m. The 

f~ = arccos( +) 
and therefore, 01 = 7~ -fo or a = arccos(l/e). Note that this angle may also 
be obtained as a = arctan(b/a) = arctan m. 

A quantity analogous to the eccentric anomaly E must now be defined 
in order to derive Kepler's equation for hyperbolic orbits. In order to do 
this, we need to introduce the concept of hyperbolic sines and cosines. In 
the case of elliptic orbits, the equation of the orbit in Cartesian coordi- 
nates is given by 

x2 y2 - + - = I  
a2 b2 

( 7 . 2 4 )  

Using the geometry shown in Figure 7.1 , we c m  write a parametric form 
of equation (7.24) in terms of E: 

x = a c o s E  y = b s i n E  (7 .25 )  

The expressions for sin E and cos E can be rewritten in terms of exponen- 
tial functions: 

cos E = f (cia + e-'") 

and 

eiE - e-iE 

sin E = 
2i 

(7.26) 



108 KEPLEA’S EQUATION AND MMBERT’S THEOREM 

It can be shown that the complex functions defined in equations (7.26) 
obey the exact relationships that define the trigonometric functions. 

The hyperbolic sines and cosines (called sinh and cosh) can be defined 
by analogy using the equation for a hyperbola in Cartesian coordinates: 

(7.27) 

with 

x = a cosh F y = b sinh F (7.28) 

where F is the hyperbolic eccentric anomaly. The hyperbolic sines and 
cosines can also be expressed in terms of exponential hnctions: 

and 

s inhF= f ( 8 - e - 3  (7.29) 

The relation between the hyperbolic eccentric anomaly F and the true 
anomalyf[corresponding to equation (7.9)] is given by 

a(e2 - 1) 
1 +ecosf  

r =  = a(e cosh F- 1) (7.30) 

which may be obtained when the projections of the point on the hyperbo- 
la on the x and y axes are evaluated using 

r cosf= a(e - a cosh F) 

and 

r sinf= a m  sinh F 

Another form of the relation betweenfand F is 

(7.31) 

showing similarity to the corresponding relation applicable to elliptic or- 
bits. 
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As expected, the eccentric anomaly for hyperbolas is related to an area, 
just as in the case of elliptic motion, it is an angle or arc. Consider the 
areas formed by the lines OP and OS and by the curve representing the 
hyperbola between P and S. Then the eccentric anomaly is given by 

Area( POS) 
a2 

F = 2  

Kepler’s equation can now be derived for hyperbolic orbits in a manner 
similar to that used for the elliptic orbits. We start with equations (7.10) 
and (7.1 l),  and then, using (7.30) in the same manner as for the ellipse 
and integrating part way along the path of the hyperbola, we obtain 

T 
2 n  

(t2 - t l )  = -[e(sinh F, - sinh F , )  - (F2 - F,)]  (7.32) 

The parameter T is given by 2 7  m, which is still valid even though 
a body moving in a hyperbolic orbit has no “period” in the usual sense. 

A particularly interesting case is the parabolic orbit for which the ec- 
centricity is precisely equal to 1 .  The polar equation of the parabola is 

where we have assumed that fl0 = 0. Once again, the conservation of an- 
gular momentum permits the derivation of an equation analogous to Ke- 
pler’s equation. The point P in Figure 6.2 is called the “pericenter” of the 
parabola. At that point, the angular momentum is given as 

do 
I!, = mv,r, = mr2- 

dt 
(7.34) 

where up is the velocity of the mass m at the pericenter. From Figure 6.2, 
we have rp = ip. The velocity at the pericenter, up, can be calculated using 
the fact that the total energy of the mass m in the orbit is always zero so 
that the kinetic energy is always precisely equal to the potential energy. At 
the pericenter 

(7.35) 



11 0 KEPLER’S EQUATION AND LAMBERT’S THEOREM 

Therefore, 

and so the angular momentum is 

d0 
L = m w = m + - -  

dt 
(7.36) 

and rewriting this equation so that it can be integrated part way around 
the orbit gives 

integrating equation (7.37) yields 

(7.37) 

(7.38) 

where t = to and 8 = 0 correspond to pericenter passage. The integral on 
the right side may be evaluated considering that ( I + cos fl)2 = 4 cos4( SO) 
and that 

from which 

dx 
j tan3x + tan x 

Consequently, the elapsed time on parabolic orbits becomes 

(7.39) 

Note the similarity between the expression for the mean anomaly for el- 
liptic orbits I = 2v(t  - to) and equation (7.39). For elliptic orbits, 2 d T  = 
V?%%?, and now the semilatus rectum takes over the role of the semi- 
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major axis. Since the solution of cubic equations is known in explicit 
form, the time dependence of the true anomaly, and consequently the 
functional dependence of the radial distance on time, can be given in 
closed form. Equation (7.39) is known as Barker’s equation and was pub- 
lished by Euler in 1743. 

Equation (7.39) shows that, as 0 + IT, t + 03. Furthermore, thep = 21.p 
relation for an ellipse is satisfied when a( 1 - e2) = 2 4  1 - e)  or when 1 - 
e2 = 0, which gives e = 1 as expected. The same limit process applies to 
hyperbolic orbits. 

Note that the term tan( f 9) can also be used to express the radial dis- 
tance, and equation (7.33) may be written as 

r = !p [  1 + tan2( f e)] (7.40) 

This derivation is concluded with a remark concerning the limit e --+ 1 
for conic sections. Parabolic orbits, besides the e = 1 condition, must also 
satisfy the a + m requirement. If the length of the semimajor axis is fi- 
nite and e = 1, we have flat (straight-line) elliptic and hyperbolic orbits as 
mentioned before, since the length of the semiminor axis and the length 
of the semilatus rectum become zero. 

Another note of considerable interest is that parabolic orbits display a 
singular property. By this we mean that all those orbits for which the total 
energy is negative ( E ,  < 0) are ellipses, and all those orbits for which the 
energy is positive (ET > 0) are hyperbolas, but only one special value of 
the energy ( E ,  = 0) results in parabolic orbits. This fact has some interest- 
ing practical and theoretical consequences. Since the initial conditions 
are usually not known exactly in practical problems, it seldom happens 
that the energy constant is exactly zero. The same applies to the case 
when the nature of the orbit is established by observations, which hrnish 
only approximations for the energy. In other words, instead of having ex- 
actly zero, we might have small positive or small negative values for the 
energy of the actual two-body orbit. The situation becomes even more 
complicated when the values of the physical constants that enter the ener- 
gy equation are considered. Since the values of the constants of gravity 
and of the central mass are known only approximately (within error lim- 
its), the computed total energy will also be an approximation. We con- 
clude that for practically important cases the constant of energy is deter- 
mined only approximately. When this value is close to zero, the actual 
orbit might be an ellipse, a parabola, or a hyperbola. In order to find the 
nature of the orbit, several more observations are required, but even then 
the orbit often remains undetermined. 



11 2 KEPLER’S EQUATION AND LAMBERT’S THEOREM 

Besides these practical aspects, the theoretical implications might be 
mentioned briefly. We speak about instability when slight changes in the 
initial conditions result in greatly different orbits. This is the case of or- 
bits for which the constant of energy is close to zero, since a small in- 
crease in speed will result in an escaping (hyperbolic) orbit and a small 
speed reduction gives an elliptic orbit. Such a case might lead us to the 
problem of nonpredictability of orbits. The situation is significantly com- 
plicated if some other forces enter the system besides those considered in 
the problem of two bodies, such as drag (which will slow down the orbit), 
propulsion (which might change the energy to positive or to negative val- 
ues), perturbations due to other bodies, and so on. 

For these theoretical reasons, parabolic orbits are of special interest, 
because they represent examples of nonpredictable orbits. Their practical 
significance is limited since they exist for only a highly special value of 
the energy. 

These remarks concerning the examples of the limits of predictability 
should be compared to the notes appearing in the section on physical con- 
stants in Appendix 2. 

The basic ideas are discussed by Gauss (1809) and Herget (1948). 
Many examples and additional geometric presentations are given in 
McCuskey’s (1 963) and Thornson’s (1 96 1) books. The special case of 
straight-line motion (e = 1, b = 0)  is discussed systematically and in detail 
by Roy (1 978). 

Kepler’s equation (7.20) is written in terms of the variable E, the ec- 
centric anomaly, which is an angle measured from the geometric center of 
the ellipse shown in Figure 7.1. Sometimes, there are better variables that 
can be used for the practical determination of orbits, and the technique of 
developing the transformations from one of these variables to another is 
called “regularization.” The objective of these transformations is often to 
eliminate the singularities from the equations of motion. The appearance 
of singularities is usually due to the fact that the gravitational force law 
introduces inverse square terms in the equations of motion. When the dis- 
tances become small, these terms dominate and the accuracy of the com- 
putation might become questionable. 

The credit for introducing regularizing variables usually is given to 
Sundman (1912), who introduced regularization in order to show the ex- 
istence of solutions of the differential equations of motion. It is interest- 
ing to note that such pure mathematical exercises led to everyday practi- 
cal techniques used today in our applied orbit mechanics. The 
combination of a mathematical existence proof and increased accuracy of 
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numerical integration of the orbits of space probes represents an impor- 
tant message to promote the cooperation of engineers and mathemati- 
cians. 

In orbit mechanics, of course, the distances never become zero, since 
collision (or impact) occurs before r = 0, due to the finite size of the bod- 
ies involved; nevertheless, the accuracy of the computation is reduced at 
close approaches, even when the numerical integration process allows the 
use of smaller time steps. The introduction of properly selected new vari- 
ables regularizes the equations of motion, and accuracy can be main- 
tained at the price of using transformations. Both the true and eccentric 
anomalies are such regularizing variables, and the transformation that in- 
troduce them are expressed as 

L dt 
m r 2  

df=-- 

and 

 IT dt 
d E = a - -  

T r  

(7.41) 

(7.42) 

The first relation, as we have seen, is identical to the conservation of 
the angular momentum (7.34), and the second follows from Kepler’s 
equation using (7.21). 

Considering the above equations, which introduce the true and eccen- 
tric anomalies as new independent variables, the origin of regularization 
could be contributed to Kepler. He certainly had no idea of regularization, 
especially since, to him, calculus and differential equations were not 
known. Furthermore, Kepler’s interest in the dynamics of the solar sys- 
tem excluded close approaches. Nevertheless, the use of the eccentric 
anomaly introduced in his equation allows us to increase the accuracy of 
our numerical integrations. We might consider this a demonstration of a 
true genius, or once again, we might celebrate the power of combination 
of two fields, that of Kepler’s work to describe planetary motions and our 
efforts to compute accurate Earth-to-Moon trajectories. Ever since Ke- 
pler’s work, the subject of regularization has been popular. Euler used it 
to study the straight-line motions in the problem of two bodies. Levi- 
Civita regularized the restricted problem of three bodies in 1903. Stumpff 
(1949) and Herrick (1965) used basically the same idea when they intro- 
duced the concept of universal variables. 
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The above transformations of the independent variable may be gener- 
alized to 

dt 
d s = A -  

P 

or 

dt 

Ar) 
ds = - 

(7.43) 

(7.44) 

where A and rn are constants. 
A recently introduced anomaly is known as the intermediate anomaly, 

which is given by m = t. Note that m = 1 gives the eccentric anomaly and 
m = 2 the true anomaly, with proper selection of the constant A.  In gener- 
al, the above transformations of the time introduce new independent vari- 
ables that are often denoted by s. When the integration of the differential 
equations of motion is performed using s as the independent variable, the 
method is often called s-integration. 

The above transformations, from a numerical point of view, might be 
considered analytic step regulations since as the distance r decreases and 
close approaches or collisions occur, the time step is to be reduced. Con- 
sidering the above transformation equations, this means that the integra- 
tion step using r will be reduced but the step size using s might be kept 
constant. The transformation regulates automatically and analytically the 
step size. 

When transformations of the independent variable are combined with 
the proper transformations of the dependent variables and the conserva- 
tion principles (energy and momentum) are used, the result is not only a 
regularized but also a linearized system of equations describing the grav- 
itational problem of two bodies. As we have seen in Chapter 4, when the 
true anomaly is introduced as the new independent variable and Ilr = u is 
used as the new dependent variable, the differential equation of motion 
became a second-order linear differential equation representing a har- 
monic oscillator [equations (4.25) and (4.64)]. Because of the practical 
numerical importance of such “smoothing transformations,” there are a 
large number of contributions in the literature of modern celestial me- 
chanics dedicated to this subject. 

The use of regularization in space dynamics becomes mandatory at 
close approaches occurring at departures, arrivals, and gravity-assist orbit 
maneuvers (which will be discussed in Chapter 8) and, in general, when or- 
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bit computations with high accuracy are required. In celestial mechanics, 
the accurate computation of cometary orbits also calls for regularization. 

A modern comprehensive treatment of regularization and of the asso- 
ciated linearization is given in the book by Stiefel and Scheifele ( 197 1 ). 

7.2 DERIVATION OF LAMBERT’S THEOREM 

In 176 1 ,  J. H. Lambert developed another formula that can be used to es- 
tablish the parameters or orbits from certain measurements made from 
Earth. The original motivation was to determine the orbits of comets, and 
it is now known as LarnbertS theorem. More recently, Lambert’s theorem 
has been used to calculate the orbits of various spacecraft, including the 
Voyager interplanetary missions, which required very accurate determi- 
nation of orbital parameters for the spacecraft to execute fly-bys of the 
outer planets. Remember that Neptune is almost 40 times as far away 
from the Sun as Earth. The Apollo spacecraft were also guided to their 
landing sites on the Moon using the Lambert Guidance Program. 

Lambert’s theorem can be derived from Kepler’s equation (7.21), and it 
is generically the same kind of relationship. In the case of Kepler’s equa- 
tion, a time interval between two positions of a body in an orbit is mea- 
sured, as well as the value of the eccentric anomaly at these two times. 
The eccentric anomaly is an angle measured from the geometric center of 
the orbit. The use of this coordinate system is sometimes inconvenient, 
and the virtue of Lambert’s theorem is that the measurements that must 
be made to determine the orbital parameters can be performed from the 
focus of the elliptic orbit, which is more convenient for certain applica- 
tions. Figure 7.3 shows the geometric situation. The body in orbit moves 
from point PI to point P2 in the time interval t2 - t , .  Larnbert’s theorem 
states that the time interval depends on two parameters, the sum rl -t r2 
and the chord length C, as defined in Figure 7 . 3 .  In turn, r l  + r2 and C can 
be related to the eccentricity e and the semimajor axis a of the ellipse. We 
will start the derivation of Lambert’s theorem from Kepler’s equation. At 
the points PI and P2, Kepler’s equation takes the form 

I 
t ,  = - ( E l  - e sin E , )  (7.45) 

2n 

and 

I 
t2 = - (E2 - e sin E,) 

2 n  
(7.46) 
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i 
(t,-t,)= time 

for mass, 
m, to  move from 

/ ' P, to P* 

FIGURE 7.3 

The time difference t2 - t ,  is one of the measured quantities. Equations 
(7.45) and (7.46) represent the dynamics of the motion. 

Turning to the geometry of the orbit shown in Figure 7.3, we can write 
the following equations for r l ,  r,, and C: 

rl = a( 1 - e cos El)  (7.47) 

r2=  a(1-ecosE2) (7.48) 

C2 = a2(cos E, - cos + a2(1 - e2)(sin E2 - sin E J 2  (7.49) 

Equation (7.49) can be derived by referring to Figure 7.1. In terms of the 
x and y axes of the coordinate system, we can write 

x =  ae + FD = a cos E y =  QD sin E = b sin E (7.50) 

because from Figure 7.1 it can be seen that QD = BM. In terms of the co- 
ordinate system at the focus of the ellipse, 

x = FD = a cos E - ae = a(cos E - e) (7.51) 
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The chord length we want can be derived by looking at Figure 7.3: 

c2 = (XI - x2)2 + (yI -y2)2 (7.52) 

Using (7.50) and ( 7 . 9 ,  we have, from (7.52), 

C2 = a2(cos E2 - cos + b2(sin E2 - sin (7.53) 

and, since b = a m ,  we can write 

C2 = a2(cos E2 - cos El)2 + a2( 1 - e2)(sin E2 - sin (7.54) 

which is identical to (7.49). 
Having done this, we can now proceed with the remainder of the de- 

rivation by defining Y ,  and r2 in terms of the angles El and E2. Using 
equations (7.47) and (7.48), we have 

rl + r 2 = a ( l  - e c o s E l ) + a ( l  -ecosE2) 

or 

r I  + r2 = 2 4  1 - ie(cos E2 + cos El)] (7.55) 

Using the familiar half-angle formulas for trigonometric functions, we 
can write 

cos E2 + cos El = 2 cos [ f(E2 + El)] cos -El)] (7.56) 

so that 

rl  + r2 = 2a { 1 - e cos [ f(E2 + E,)] cos [ i(E2 - E l ) ] }  (7.57) 

This equation along with the expression for the chord length C, equation 
(7.54), results from an analysis of the geometry of the elliptic orbit. 

We will now return to dynamic (that is, time-dependent) relationships 
for the remainder of the derivation. From the Kepler equations at P I  
(7.45) and P ,  (7.46), we can write 

T 
(t2 - t i )  = %[(E2 - El)  - e(sin E2 - sin E , ) ]  (7.58) 
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and using the half-angle formula 

(sin E2 - sin E , )  = 2 cos [ f(E2 + E,O} sin [f(E2 - E l ) ]  (7.59) 

we can rewrite Kepler's equation as follows: 

T 
(t, - t ,) = 2 1 ~  ((E2 - E l )  - 2e sin [+(E2 + E l ) ]  cos [ f (E, - E , ) ] }  (7.60) 

Equation (7.60) represents the measured quantity from the dynamics of 
the system, that is, the moving asteroid, comet, or spacecraft. The mea- 
sured quantities from the geometry of the ellipse are equation (7.40) for 
the sum of r ,  and r2 and equation (7.54) for the chord length C. The latter 
can also be rewritten using the half-angle formulas 

C2 = 4a2sin2 [ i (E2  + E l ) ]  { 1 - e2cos2[ f(E2 - E l ) ] }  (7.61) 

Equations (7.61), (7.60), and (7.57) can now be solved to yield Lambert's 
theorem. What we will want to do is to eliminate the eccentric anomalies 
E ,  and E2 because these are constructs. The objective is to write the mea- 
sured time difference t, - t, in terms of the measured quantities r , ,  r,, and 
C. 

To simplify the expressions, we make the following change of vari- 
ables: 

x = e c o s [ + ( E 2 + E , ) ]  y =  f (E2-E,)  (7.62) 

Using these, we can rewrite equations (7.60), (7.57), and (7.61) as fol- 
lows: 

T 
21T 

t2 - t ,  = -(2y - 2x sin y) (7.63) 

rl + r, = 2 4 1  --x cosy) (7.64) 

C2 = 4a2sin2y( 1 - x2)  (7.65) 

We now need to eliminate the quantities x and y from the above equa- 
tions. From (7.64) and (7.65), we can write 
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r l +  r2 + C =  2 4 1  - -x  cosy + v'TG? siny) (7.66) 

rl  + r 2 - ~ = 2 a ( l  - x c o s y - V T S s i n y )  (7.67) 

A new variable change permits a solution 

x = cos [+(a + p)] y = f(a - p) (7.68) 

so that we can rewrite equations (7.66) and (7.67) as follows: 

r - 1  + r, + c= 2a { 1 -cos[f(a + p)] cos[i(a - p)] 

+ sin[ f(a + p)] sin[! (a - p)]} (7.69) 

r - l +  r2- c= 2a { 1 -cos[ :(a + p)] cos[ i(a - p)] 

- sin[ +(a + p)] sin[ +(a - p)] 1 (7.70) 

We now apply the following half-angle formulas: 

cos[ {(a + p)] cos[f(a - p)] = fcosa + tcosp (7.7 1) 

and 

sin[f(a + p)] sin[f(a - p)] = fcosp + icosa (7.72) 

Using these formulas in equations (7.69) and (7.70), we obtain 

rI + r2 + C =  2 4 1  - cos a) = 4a sin2(ia) (7.73) 

and 

rl + r2 - C =  2a( 1 - cos p) = 4a sin2( i p) (7.74) 

Rewriting equation (7.63) in terms of the variables CY and p defined in 
equations (7.68), we have 

T 
27r 

t2  - ti = -{(a - p) - 2 cos[i(a + p)] sin[f(a - p)]} (7.75) 
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and applying the half-angle formula, 

2cos[t(a+P)] sin[+(cw-p)]=sinol-sinP (7.76) 

so that we can write 

T 
2.rr 

t2 - t ,  = -[(a - p) - (sin a - sin p)] (7.77) 

where in equation (7.77) the parameters a and p are defined as follows 
from equations (7.73) and (7.74): 

01 1 rI + r2 + C 112 
sin-=-(  2 2  a ) 

and 

(7.78) 

(7.79) 

From the relationships that have been derived here, it can be seen that 
the time interval t2 - I, depends on a, rl + r2, and C. Equation (7.77) is 
called Lambert’s theorem along with the definitions of a and P in equa- 
tions (7.78) and (7.79). Just as in the case for Kepler’s equation, Lam- 
bert’s theorem is a transcendental equation. Therefore, iterative tech- 
niques must be applied to solve for the parameters of the orbit in the 
general case. 

A simple application of Lambert’s theorem is when we assume that at 
PI in Figure 7.3 the true anomalyfi is zero and at P2 it is in. In that 
case 

rl =a(l -e) (7.80) 

and 

r2=a( l  - e 2 ) = p  (7.8 1) 

and the chord length C is given as 

(7.82) 
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From these equations, we can evaluate a and f3 for substitution into Lam- 
bert's theorem (7.77). When this manipulation is performed, we have, for 
the time interval, 

T 
27F 

t2 - ti  = -(arc cos e - e m >  (7.83) 

Thus we have two equations, (7.82) and (7.83), from which we can deter- 
mine the orbital parameters. Once again, these must be solved numerical- 
ly because (7.83) is a transcendental equation. 

A similar formulation may be derived for hyperbolic orbits. The start- 
ing parameters are the sum of the radial distances, the length of the chord, 
and the semimajor axis of the hyperbola. The radial distances from equa- 
tion (7.3) are 

rl = a(e cosh F ,  - 1) (7.84) 

and 

r, = u(e cosh F2 - 1) (7.85) 

The terms sin(d2) and sin(p/2) used for the elliptic problem now be- 
come the corresponding hyperbolic functions: 

sinh - = - 
2 2  

and 

Kepler's equation for hyperbolic orbits [equation (7.5)] becomes 

27F 
-(t2 - t i )  = e(sinh F2 - sinh F , )  - (F2 - F , )  T 

(7.86) 

(7.87) 

(7.88) 

and the length of the chord may now be written as 

C = a[(cosh F2 - cosh F, )2  + (e2 - l)(sinh F2 - sinh F1)2]'/2 (7.89) 
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Lambert’s theorem for hyperbolic orbits becomes 

2T 
y(t2 - t l )  = sinh y - sinh 6 - (y - 6) (7.90) 

Lambert’s theorem for parabolic orbits was given by Newton and by 
Euler. The derivation is straightforward, and it makes use of the fact that a 
parabola may be considered as a “stretched” ellipse for which the semi- 
major axis a becomes infinite. It is therefore possible to use small-angle 
approximations for a and p, which eliminates the transcendental terms in 
equation (7.77). 

Equations (7.78) and (7.79) can now be written as 

and 

(7.91) 

(7.92) 

Equations (7.91) and (7.92) can now be used to evaluate the expression for 
Lambert’s theorem, (7.77). To do this, it is necessary to use the next term 
in the expansions of sin (Y and sin p; otherwise a null result is obtained: 

sin 01 = a - $a3 (7.93) 

and 

sin p = p - ip3  (7.94) 

Substituting the expressions (7.93) and (7.94) in equation (7.77) yields 

(7.95) 
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or, by rearranging terms and using expressions (7.9 1) and (7.92), 

Finally, since a parabolic orbit has an “infinite” period T and an infinite 
semimajor axis a, we can use Kepler’s third law to arrive at the final re- 
sult, recognizing that the ratio 

(7.97) 

remains constant no matter how stretched the ellipse becomes. Thus, the 
time difference in equation (7.97) becomes 

t 2  - 
1 

6 c M  
c ,  = - [ ( r ,  + rz + C)3’2 - (rl + r2 - 

The sign of the second term becomes positive if the angle between r1 and 
r2 is larger than 1 80°, and it is negative, as given in equation (7.9 1 ), when 

In conclusion, we note that Lambert’s theorem can also be used to de- 
termine the radius of curvature of the orbit and in this way to find 
whether a planet is superior or inferior, that is, whether Earth or the plan- 
et is nearer to the Sun. 

One of the outstanding, detailed treatments of Lambert’s theorem is 
given in Plummer’s book (19 18). For applications to orbit determination 
techniques, see Bate, Mueller, and White (1971), where Lambert’s prob- 
lem is referred to as Gauss’ problem. (Note that the year Gauss was born, 
Lambert died-1 777.) Several practically useful modifications of the 
original formulation are offered in this reference, such as rendezvous, in- 
tercept, and so on. Special attention is directed to the astrodynamics ap- 
plications of thefand g series (see Chapter 3, Example 3.1), in connec- 
tion with the Lambert-Gauss problem. Important and recent applications 
can be found in Battin’s 1964 book (Chapters 3 and 5 )  and in his 1987 
book (Chapter 6) ,  mentioned in Appendix 111. 

f i  - f i  < 180”. 

EXAMPLES 

7.1. Compute the semimajor axis of Mars’s orbit in astronomical units 
and kilometers using 1.9 years for its orbital period. 
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From Kepler's third law, we have 

Ti  a: 
Ti a$ 
-- - -  

which, when applied to Earth and Mars, results in 

where aE = 1, TE = 1 year, and T M  = 1.9 years. This gives aM = 1 .92'3 
= 1.534 a.u. = 229.6 x 1 O6 km. 

7.2. If the semimajor axis of a planet from the Sun is 2870 x lo6 km, 
what is its orbital period in years? First we find the semimajor axis 
in astronomical units so that, with the help of the table of physical 
constants given in Appendix 2, we can identify the planet: 

u=2870x 106km=1.496x 1082870x lo6= 19.18a.u. 

This number corresponds to the planet Uranus. Its orbital period be- 
comes 

Tu = ( 1  9.1 8)312 = 84 years 

7.3. Using the basic data for the Explorer 7 satellite, compute the mass 
of Earth in kilograms. The relation between the period and the semi- 
major axis is 

where the symbol a in our case stands for the semimajor axis of the 
satellite a = 7 190.86 km and T = 1 A84 h. From the above equation, 
we have 

h 2 a 3  
GP ME = - = 5.986 x loz4 kg 

This result shows that the determination of planetary masses is not a 
simple matter, and it is strongly influenced by the observational ac- 
curacy. 
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7.4. Show that the average value of the distance between the focus and 
the ellipse is the semimajor axis, provided the averaging is per- 
formed with respect to the eccentric anomaly. Averaging with re- 
spect to the eccentric anomaly, we have 

The relation between Y and E is 

r = a ( l  -ecosE) 

After substitution and integration, we have 

If we average with respect to the true anomaly, we have 

This integral becomes 

or using 

we have 

It is of interest to find that the time average, or the average with 
respect to the mean anomaly of r, is neither a nor b but 
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7.5. 

This result may be obtained by differentiating Kepler’s equation, 

dt 
dt= 

and using r = a( 1 - e cos E )  under the integral sign. 
As a conclusion, we observe that the mean distance between the 

focus and elliptic orbit, in general, is not the length of the semimajor 
axis. For detailed discussion, see R. A. Serafin’s article in Celestial 
Mechanics, Vol. 2 1 p. 35 1, 1980, and Taff’s (1985) book (see Ap- 
pendix). 

The following example shows how the orbital elements of the hyper- 
bolic orbit are established and how time computations are performed. 

Consider the perigee velocity up = 12 km/s at an altitude h = 1000 
km. First the orbit must be classified by using the energy equation 

After substituting u = up and r = rp = h + RE, we obtain, for the con- 
stant of energy k, defined as 2Edm or GMIa, 

35.95 km2/s2 
2GM 

k = $ -  ~ h +RE = 

Note that the total energy of the probe per unit mass is fk since the 
energy is 

GMm 
ET= :mu;- - 

h + R E  

Since energy is positive, the orbit is a hyperbola. The perigee dis- 
tance is 

h + R E = a ( e - i )  

and the semimajor axis is 
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From these equations, we have a = 1 1,087.62 km and e = 1.66544. 
The semiminor axis and the semilatus rectum are 

b = a m  and p = a ( e 2 -  1) 

o r b  = 14,755.48 km andp = 19,665.98 km. 
The angle of the asymptotes is a = a r c t a n s  = 53'5'5". Note 

that, by means of the energy equation, the velocity may be computed 
at any point of the hyperbola: 

For instance, the velocity at infinity is obtained by the limit process 
r -+ m. We have 

v,= - =5.995 km/s (".")"' 
The circular velocity at the given altitude is 

vc = (?)'I2 = 7.350 kmls 

which is, of course, smaller than the perigee velocity. 
The escape velocity at the altitude of h = 1000 km is 

v, = (?)''2 = 10.39 kmls 

which is smaller than the given perigee velocity. This is another way 
to establish the fact that the orbit is a hyperbola. 

The velocity at the point where the semilatus rectum intersects 
the hyperbola (r = p andf= ! IT) is 

ve = [ GM(% + : ) ] ' I 2  = 8.746 km/s 

The computed velocities in this case might be ordered as 
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but note that, depending on the value of the eccentricity, these in- 
equalities might change their order. 

To evaluate the time of travel on a hyperbolic orbit, equation 
(7.32) is used. For instance, from perigee P to point Q, we have 

T 
2?r 

t =  -[e(sinhF)-F] 

where T is obtained from the relation, T = 2n-, and the val- 
ues of the hyperbolic eccentric anomaly Fare  computed from equa- 
tion (7.3 l). At point Q, the true anomaly is 90" orJ= i l ~  and F is to 
be computed from 

or 

F = log ( z: z) = log(e + -= 1.0976918 

The value of F may also be obtained using equation (7.30). The left 
side of this equation forf= f?r gives u(e2 - l), which is the length of 
the semilatus rectum. From equation (7.30), we have 

e 2 - l = e c o s h F - 1  or c o s h F = e  

and consequently, F = log(e + m), which is the same result as 
obtained above. The hyperbolic mean motion becomes n = 1.94677 
rad/h, and equation (7.32) gives t = 0.575487 h = 34 min 3 1.75 s. 

Note that when e uation (7.32) is used, the term sinh F becomes, 

quick approximate computation of the travel time uses the average 
velocity as the perigee and at point Q: 

in our case, + e2 - 1 since cosh2F - sinh2F = 1 and cosh F = e. A 

u,,, = f(uQ + up) = 10.37 km/s 

The distance between points P and Q is 

PQ = + (FQ)2]1'2 
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which after substitutions for FP = a(e - 1) and for FQ = a(e2 - I ) be- 
comes PQ = r p d l  + (e + = 21,004.5 km. The time to travel this 
distance with the above average velocity is t’ = PQIv,,, = 0.5425 h. 
Note that the error t - t’ amounts to 2.3%, which supports the idea of 
approximation, especially considering the fact that no hyperbolic 
functions were used to obtain the approximate result. 

Another question we might ask in connection with our example is 
related to the design of lunar trajectories. Our probe moving in a hy- 
perbolic orbit will be influenced mostly by Earth’s gravitational 
field unless it approaches another celestial body such as the Moon. 
If the departure time is properly selected, the probe will approach 
the Moon, and the Moon’s gravitational field will control part of the 
trajectory. In orbit mechanics, we refer to this formulation as the re- 
stricted problem of three bodies: Earth, the Moon, and the probe. 
The “restriction” comes from the fact that the probe, because of its 
small mass, does not influence the motion of Earth and of the Moon, 
but Earth and the Moon control the motion of the third body, which 
is the probe. In Chapter 13, this problem will be discussed in detail, 
but at this time, we will neglect the Moon’s gravitational influence 
on the probe, and we will establish the time it takes to reach the dis- 
tance of the Moon using our hyperbolic orbit. This transfer time will 
be compared to the time it takes to reach the lunar orbit on an elliptic 
Hohmann transfer orbit. 

For the Earth-Moon distance, we will use the semimajor axis of 
the lunar orbit around Earth, R E M  = 384,000 km, which is only an 
approximation since the eccentricity of the lunar orbit is 0.0549. 

Computation of the hyperbolic transfer time requires the values 
of a,  e, and REM Using the same hyperbolic orbit as before, we have 
to compute the value of F from R E h l =  a(e cosh F - 1) and then the 
transfer time from the hyperbolic Kepler equation. In this way, we 
obtain 

cosh F = R E M + a  =21.41735 
ae 

and F = 3.7568. Using the same value as before for 2niTwe obtain, 
for the transfer time, 16.3725 h. Note that the actual transfer time 
will be shorter since the Moon’s gravitational effect will assist the 
trajectory. (The above computed time corresponds to the time reach- 
ing the lunar distance.) 
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It is of considerable interest to compare this time to an elliptic 
transfer time using a Hohmann orbit with a circular parking orbit at 
altitude h = 1000 km as before. The departure velocity will be deter- 
mined so that the transfer orbit will be an ellipse with perigee alti- 
tude RE + h and apogee height R,. The semimajor axis of the trans- 
fer ellipse is 

a = f (REM + RE + h)  = 195,889 km 

and the transfer time becomes 

a3 
T = IT( = ) I t 2  = 1 19.84 h 

which is approximately 5 days. (Note that the hyperbolic transfer 
time was about 0.7 day.) 

The arrival velocity at the Moon (once again neglecting the lunar 
gravitational effect) is 

and the elliptic perigee velocity is 

1 12 1 
$Jh ) ~ R E M  4- RE -I- h 

up=  2GM- = 10.296 km/s ( 
The hyperbolic departure velocity is 12 W s ,  and the arrival ve- 

locity is vA = 6.1664 km/s, which is obtained from the equation of 
energy, using r = RE,,. The circular velocity at h = 1000 km is 
7.3501 h / s ,  and the required velocity boost for the elliptic orbit at 
the perigee is up - u, = 2.946 km/s. The circular velocity of the 
Moon is 

GM 1/2 v c M = ( 7 i ; ; ; )  =1.018km/s 

therefore, the vehicle arriving on an elliptic orbit would require a ve- 
locity boost of ucM- uA = 0.8207 k d s  to keep up with the Moon. The 
probe arriving on a hyperbolic orbit has a higher velocity than the 
lunar velocity. The velocity vector of the probe arriving on the ellip- 
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tic transfer orbit is tangential to the Moon's orbit, but this is not the 
case for the hyperbolic transfer orbit. 

Some details of the intersection of the hyperbolic transfer orbit 
and the Moon's orbit are shown in Figure 7.4. The two components 
of the arrival velocity of the probe are the radial drldt and the nor- 
mal r(dfldt) components. The normal component of the arrival ve- 
locity may be obtained from the momentum conservation, Lini = 

v2(dfrdt) as r(dfldt) = Llmr, where Llm = uprp and r = REM, In this 
way, we have r(dfldt) = 0.23033 km/s. The direction of the arrival 
velocity ( u A )  is given by the angle between v, and dddt: 

dpdt 
A = arcsin r- = 2.1406' 

vll 

F 
FIGURE 7.4 Arrival at the Moon on a hyperbolic trajectory. 
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The angle between the Moon's velocity vCM (which is normal to r) 
and the probe's velocity, which is tangential to the hyperbola, is 90" 

The hyperbolic orbit will intersect the lunar orbit when F = 

3.7568 at point M, as shown before. From this, the true anomaly be- 
comesf= 124.731', which may be obtained from equation (7.31) or 
(7.3) by computingffiom 

- A. 

The angle between the asymptote and the radial direction is I80 - (a 
+f) = 2.1706'. 

7.6. The perigee velocities of elliptic and hyperbolic orbits having the 
same semimajor axes are related by 

where (vJP and (u& are the perigee velocities of elliptic and hyper- 
bolic orbits and ee and eh are the corresponding eccentricities. To 
show the above relation, consider the principle of energy conserva- 
tion, which gives, for elliptic orbits, 

and for hyperbolic orbits 

The perigee distances are 

re = a=( 1 - e,) and r,, = ah(e,, - 1) 

The perigee velocities become 
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and 

7.7. 

If a h  = a,, the required result is obtained from the last two equa- 
tions. If the eccentricities are related by 

e,= 1 - x  e h =  1 + x  

where 0 I x 5 1, then the inequality v, < vh is satisfied. The physical 
meaning of this is that if the eccentricity of the elliptic orbit is less 
than 1 by the quantity x, and the eccentricity of the hyperbolic orbit 
is larger than 1 by the same amount, then the hyperbolic perigee ve- 
locity is larger than the corresponding elliptic perigee velocity, as 
expected. For instance, if x = 0.5 and e, = 0.5, eh = 1.5, we have, for 
U h  = a,, that 

The proof of the above result is obtained by substituting e, = I - x 
and eh = t + x into the equation given for (u,)J(Uh)p. In this way, we 
obtain 

which quantity is always less than 1. 
Note that if the eccentricities are close to 1, that is, x is much less 

than 1, the velocity ratio becomes approximately 1 - fx. 

In case the reader is interested in additional numerical examples, the 
following results are offered without details. 

If the circular parking orbit has a period of 2 h, then the altitude is 
1681 km, and the circular velocity is 7.033 km/s. The escape veloci- 
ty at this altitude is 9.946 h / s .  To obtain a hyperbolic transfer orbit 
to the Moon, let us use a velocity that is 10% higher than the escape 
velocity (i.e., 10.941 km/s). 

To establish the transfer hyperbola, we now use the above altitude 
of 1681 km and the velocity of 10.941 W s ,  which is tangential to 
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the parking orbit at the time of departure. The semimajor axis of the 
hyperbolic orbit is 19,177.6 km, its eccentricity e = 1.42, its semimi- 
nor axis is 19,340.4 km, and the velocity at infinite distance be- 
comes 4.56 h / s .  The transfer time is 20 h, 34 min, 29 s. The angle 
of the asymptotes CY = 45.233'. 

7.8. The reader who likes to manipulate equations will enjoy the follow- 
ing exercise. 

For a probe near Earth, we have a tangential velocity up (normal 
to the radius vector from the center of Earth) at an altitude hp. First 
we establish the ranges of the up values that result in elliptic, para- 
bolic, and hyperbolic orbits. Using rp = hp + RE for the distance 
from the center of Earth to the probe, the energy conservation gives 

where m is the mass of the probe and M is the mass of Earth. Elliptic 
orbits correspond to ET < 0, parabolic orbits to ET = 0, and hyperbol- 
ic orbits to ET > 0. Consequently, for elliptic orbits, 

o r u p <  ( 2- :y2 
for parabolic orbits, 

and for hyperbolic orbits, 

As a second part of this exercise, we establish the semimajor 
axes, eccentricities, and semilatus rectums (recta, if the reader is a 
Latinist) as functions of up, GM, and rp  for the elliptic, parabolic, 
and hyperbolic orbits. For the elliptic orbits, 



and 

The first result follows fiom the energy conservation equation: 

the second from using rp  = a( 1 - e) and the third from p = a( 1 - e’). 
For parabolic orbits, a = 03, e = 1, p = 2rp For hyperbolic orbits, 

MGr, 
rpv$ - 2MG 

a =  

and 

As the third part of this exercise, we find the velocities for the 
three cases at point Q (see Figures 4.1 and 7.1). Note that point Q is 
located at the intersection of the semilatus rectum with the orbit. 

The velocity at Q is obtained from the energy conservation equa- 
tion, which for elliptic orbits becomes 

The result for elliptic orbits is 

which is the same for hyperbolic orbits. For parabolic orbits, we have 
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The last part of this exercise is the computation of the elapsed times 
between perigee passage and arrival at point Q. For elliptic orbits, 
Kepler’s equation gives 

2.rr 
-t = E- e sin E 

T 

where the mean motion is given by 2nlT = e. The eccentric 
anomaly E at perigee is zero and at point Q is obtained from the val- 
ue of the true anomaly cf= fn) using equation (7.9). In this way, we 
have, at point Q, 

E = arcsin 

and the transfer time becomes 

In this result, CI and e are to be expressed as functions of GM, r,, and 
vp as obtained in the second part of this exercise. For parabolic or- 
bits, the required result is given by equation (7.8): 

Once again, at perigeef= 0 and t = 0, and at point Q,f= f IT;  therefore, 

T=-(-)  8 2r; 112 

3 GM 

The case of hyperbolic orbits is similar to the one discussed in con- 
nection with elliptic orbits, but now Kepler’s equation becomes 

2 n  
--t = e(sinh F) - F T 

where the mean motion is still w, and the hyperbolic eccen- 
tric anomaly F is related to the true anomaly by equation (7.3): 

= a(e cosh F- I )  
I +ecosf 
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At the perigeef= 0, and from equation (7.3), we have cosh F = 1, or 
F = 0. At point QJ= f 7 ~  and cosh F = e, or sinh F = m. Using 
the inverse hyperbolic cosine function, we have 

In this result, a and e are still to be expressed as functions of rP, up ,  
and GM. These relations were found in the second part of this exer- 
cise. 

7.9. As a simple exercise, the previously computed time of travel on a 
hyperbolic orbit shown in Figure 7.2 between points P and Q may be 
computed using Lambed’s formulation. The radial distances in the 
case of a hyperbolic orbit with perigee altitude h = I000 km and ve- 
locity vp = 12 km/s are 

r ,  = r, = h + RE = 7378.14 km 

and 

r2 = p  = a(e2 - 1 )  = 19,666 km 

The previously obtained values for the semimajor axis and eccen- 
tricity were a = 11,087.62 km and e = 1.66544. The length of the 
chord is 

C = = 21,004.5 km 

and sinh( f y) = 1.0409, sinh( f y) = 0.3690. The corresponding values 
for y and 6 may be obtained using the previously given logarithmic 
formulas: y = 1.8199 and 6 = 0.7223. Substitution in equation (7.2), 
using T =  3.226 h, as before, gives t ,  - t ,  = 0.575 h. 

PROBLEMS 

7.1. Compute the average value of the orbital velocity for elliptic motion. 
Perform the averaging with respect to the eccentric anomaly, true 
anomaly, and mean anomaly. 
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7.2. Show that for small values of eccentricity, when 3 and higher pow- 
ers can be neglected, the solution of Kepler’s equation becomes 

E = 1 + e( 1 + e cos Osin 1 

7.3. Find the values of the eccentric and true anomalies when I = :IT, +IT, 

h, IT for an elliptic orbit with eccentricity e = 0.2. 

7.4. Show that dydt = Ilmv2, dEldt = 2malTr, and dlldt = 2 d T  on elliptic 
orbits. 

7.5. Derive formulas for the radial (drldt) and normal [r(deldt)] velocity 
components as function of GM, the semimajor axis, eccentricity, and 
true anomaly for elliptic and hyperbolic orbits. 

7.6. Derive the formula for the velocity 

also as a function of GM, a, e, and +, and compare the result ob- 
tained from the equation of energy, once again for elliptic and hyper- 
bolic orbits. 

7.7. Derive formulas for drldf; drldE, and drldl for elliptic and hyperbol- 
ic motions and compute their values at the pericenter. 

7.8. A space probe is launched vertically up, from the surface of Earth, 
with speed u. Neglecting drag, compute its height, when its velocity 
becomes zero, as a hnction of u. When the probe reaches this 
height, it is given a transverse velocity u. Find the nature and the pa- 
rameters of the orbit and show how these depend on u and v. 



CHAPTER 8 

ORBITAL MANEUVERING 
OF SPACECRAFT 

Since spaceflight began with the launching of Sputnik I by the Soviets on 
October 4, 1957, thousands of spacecraft have been launched. Complex 
maneuvers such as the docking of two spacecraft have been performed 
both in Earth orbit and in lunar orbit. Spacecraft in Earth orbit have been 
moved from one orbit to another in order to achieve certain objectives. Fi- 
nally, spacecraft have been sent to all of the planets of the solar system 
except Pluto. All of these operations require a detailed understanding of 
how spacecraft behave when orbital changes are made. We will see that 
the important quantity is the velocity change needed to make the desired 
change. This is normally called Av (delta vee), and it is the purpose of this 
chapter to show how Av calculations are performed for various orbital 
changes. 

The first example we shall consider is the calculation of the velocity 
change required to change the orbital plane of an Earth-orbiting satellite. 
The situation is illustrated in Figure 8. I .  Let the angle between the planes 
be 8, and let us assume that both orbits are circular with radius R .  

From Figure 8.1, it is clear that the velocity vector addition that needs 
to be performed to change the orbital plane is shown in Figure 8.2. Since 
the orbital velocity depends only on the radius of the circular orbit, 
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N -Inclined 

ia I 

S 

FIGURE 8.1 

where ME is the mass of Earth, the magnitude of the velocity does not 
change. 

The direction change in the vector can be calculated from Figure 8.1 : 

To illustrate what is required, let us look at the case when 8 = +IT, that is, 
when we want to change an equatorial to a polar orbit. In that case, equa- 
tion (8.2) becomes 

Thus, the velocity increment necessary to execute this change is larger 
than the orbital velocity. Since the energy required is proportional to the 

- 
V 

FIGURE 8.2 
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square of the velocity, the energy necessary to change a circular equatori- 
al orbit to a polar orbit is twice that required to place the satellite into 
Earth orbit (with radius R )  in the first place. 

Another useful approximation to consider is the case when the angle 8 
is small. In that case, 

Thus, we have 

which says that the magnitude of the velocity increment is proportional 
to the angle 0 measured in radians. Therefore, an orbital plane change of 
10” (approximately 0.17 rad) requires a velocity change of 17% of the 
orbital velocity, or an energy change of about 34% of the orbital kinetic 
energy. From these considerations, it is clear that orbital plane changes 
are difficult to achieve since they require large velocity (and therefore 
energy) changes. This is a consequence of the fact that orbital velocities 
are large. 

We will now turn to the case in which the satellite moves from one 
orbit to another in the same plane. A common maneuver is to “circular- 
ize” the orbit of an Earth-orbiting satellite that has been launched into 
an elliptic orbit. This situation is illustrated in Figure 8.3. The satellite is 
originally in an elliptic orbit with a semimajor axis a and an eccentrici- 
ty e. Using equation (6.1 1) in Chapter 6, we have, for the total energy 
of the orbit, 

Assume that Earth is located at the right-hand focus of the ellipse; we can 
therefore write, for the total energy at perigee, rp, 

From Figure 8.3, we have 
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Circularization a t  apogee  Circularization 

FIGURE 8.3 

5 
at perigee 

and using this relationship in equation (8.7), we can solve for the velocity: 

A similar calculation yields, for the velocity at apogee, v,, 

GME 1 - e  v2,=- - 
a [ , + e l  

(8.10) 

Circularization of the orbit at perigee means that we change the velocity 
at that point so that the object (mass rn) executes a circular orbit with a ra- 
dius rp. The velocity in the circular orbit would be 

GME GME 
v;(circular) = - = - 

rp a(1 - e )  

from which it is clear that 

(8.1 1) 

up > vJcircular) (8.12) 
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Therefore, the spacecraft must be slowed down if the orbit is circularized 
at perigee. 

Normally, orbit circularization for Earth-orbiting spacecraft is carried 
out at apogee, in which case the spacecraft must be speeded up. At 
apogee, the velocity in the elliptic orbit is 

GM,( 1 - e) 
a(1 + e )  

v;  = 

and the velocity in a circular orbit with radius a( 1 + e)  is 

GME u;(circular) = 
a( l  + e )  

(8.13) 

(8.14) 

so that 

v,(circular) > v, (8.15) 

The velocity increment that must be supplied to circularize the orbit at 
apogee is 

Av, = v,(circular) - u, 

(8.16) 

A useful approximation can be developed if the eccentricity e is small. In 
that case, we assume that 1/m and can both be replaced by 1 
- fe. Thus 

(8.17) 

Thus, the velocity increment is proportional to the eccentricity of the 
original orbit into which the spacecraft was placed. The smaller the ec- 
centricity, the smaller the velocity increment necessary for circulariza- 
tion. 
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Another important calculation is to determine the velocity increments 
that are necessary for escape from Earth orbit. These are necessary for 
spacecraft that are intended to fly to the Moon or to other planets, be- 
cause for all practical purposes these must reach escape velocity to exe- 
cute their missions. In this case, also, the procedure will be to add tangen- 
tial velocity increments either at apogee or at perigee. We will now show 
that for all values of the eccentricity e of the orbit the velocity increment 
to escape from perigee is smaller than that necessary to escape from 
apogee. Thus, the most advantageous place from which to leave Earth is 
actually the point in the elliptic orbit that is closest to Earth. 

To show this result, we will start by calculating the escape velocities at 
apogee and at perigee by using the fact that for an escape trajectory the 
total energy of the orbit is zero. Therefore, we have 

GME + rnvxescape) = 
a(l + e) 

and 

GME 
a(1 - e )  

frnvj(escape) = 

(8.18) 

(8.19) 

Therefore, we have, for the velocity increments at apogee and at perigee, 

Av, = v,(escape) - v, 

and 

Avp = vp(escape) - up 

(8.20) 

(8.21) 

From these relationships, it follows that for any value of e between 0 and 
1, that is, for any bound orbit, 

Avp < Av, (8.22) 
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Therefore, it is easier to escape from an elliptic orbit at perigee than at 
apogee. Quantitatively, it is once again useful to see how the escape ve- 
locities behave if the value of the eccentricity e of the orbit is smaI1. In 
this case 

Ignoring the term in e2, we have 

Av, = JF[(fi- 1) + e( 75-11 fl- 1 

(8.24) 

Likewise, for perigee we have 

Again, dropping the term in e2, we obtain 

(8.26) 

From equations (8.26) and (8.24), we can write the following expression 
for the difference between the velocity increments at perigee and apogee 

where uesCape and Uo,bital are the escape and orbital velocities for a circular 
orbit with radius a. As would be expected, the greater the eccentricity of 
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the orbit from which the escape is to be performed, the larger difference 
between the escape delta-vee at perigee (An,) and apogee (Au,). 

We will now look at the problem of making a transfer from one approx- 
imately circular orbit to another. This is a very common maneuver. In the 
case of Earth-orbiting spacecraft, an orbital transfer maneuver is most of- 
ten executed when a spacecraft is placed in a geosynchronous orbit. In this 
case, the spacecraft starts from a near-circular orbit close to Earth’s sur- 
face. [This is often called a low earth orbit (LEO).] The spacecraft, along 
with an appropriate propulsion stage, is placed in Earth orbit, usually about 
200 miies above Earth’s surface, by an appropriate booster rocket. Once 
this orbit is achieved, the propulsion stage, called the transfer stage, is 
fired, and the spacecraft is placed into an elliptic orbit designed to reach an 
altitude appropriate for the geosynchronous orbit. Once the spacecraft is at 
the correct altitude, the transfer stage is fired again to circularize the orbit 
at an altitude and inclination so that it is geosynchronous. 

Orbital transfers of this kind are also used for spacecraft intended to 
fly to other planets in the solar system. In this case, the first step is also to 
place the spacecraft in a LEO with an appropriate booster rocket. The 
next step is to reach a transfer orbit that will take the spacecraft to the tar- 
get planet. In this case, the transfer orbit must be an orbit around the Sun, 
rather than Earth, which puts much greater demands on the transfer stage. 
If the spacecraft is being sent to a planet that is farther away from the Sun 
than Earth, then the velocity of the spacecraft must be increased to reach 
the planet. The velocity of the spacecraft in this case must actually be 
larger than the velocity of Earth in its orbit around the Sun. If the target 
planet is closer to the Sun than to Earth, then the final velocity of the 
spacecraft will be smaller than the velocity of Earth in its orbit. The 
spacecraft thus “falls” toward the Sun, and it intersects the orbit of the 
target planet on its new trajectory. 

The general situation is illustrated in Figure 8.4. What we want to do is 
to move the spacecraft from a circular orbit with radius R, to another cir- 
cular orbit with a radius RZ. It turns out that the most efficient way, that is, 
the way that requires the least energy, is to add a velocity increment at point 
A that puts the satellite in an elliptic orbit that is tangential to the new cir- 
cular orbit with radius R, at the point B. From Figure 8.4, it is clear that we 
need to put the spacecraft in an elliptic orbit with a semimajor axis equal to 
a to execute the maneuver from point A to point B. The velocity of the 
spacecraft in a circular orbit of radius R, moving around the mass M is 

GM 
Vz(R1) = - 

R1 
(8.28) 
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FIGURE 8.4 

From equation (8.9), the velocity at perigee is 

(8.29) 

where e is the eccentricity of the ellipse, a is the semimajor axis, and the 
mass M is located at the focus of the ellipse. From Figure 8.4, the follow- 
ing relationships can be derived: 

R , = a + a e  R , = a - a e  (8.30) 

Therefore, we have 

R , + R 2 = 2 a  

and we can solve for the quantities 1 + e and 1 - e as follows: 

R2 Ri 
l + e = -  and 1 - e = -  

a a 

(8.3 1)  

(8.32) 
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Substituting equations (8.3 1) and (8.32) for the velocity at perigee gives 

u p -  - ”(“) R, +R2 R, (8.33) 

The velocity increment required to move the spacecraft from point A to 
point B is therefore 

Av(A-+B) = - v(R,) 

which when the algebra is done becomes 

(8.34) 

An interesting case to examine is to look at the velocity increment re- 
quired for a spacecraft to travel from Earth to Jupiter using equation 
(8.34) and neglecting the mass of Jupiter. In this case, Earth is located at 
point A and Jupiter is at point B. Jupiter is 5.2 miles as far away from the 
Sun as Earth. The factor in the bracket on the right side of equation (8.34) 
is therefore 

The orbital velocity of Earth around the Sun, which is defined as v(R,) 
here, is about 107,229 km/h. Therefore, the velocity increment required 
for this maneuver is 

Av(Earth + Jupiter) = 3 1,096 km/h 

We shall return to this point in more detail in the next chapter. 
A second case that we should discuss is the placement of a spacecraft 

in geosynchronous orbit. Referring back to Chapter 2, we will take 6371 
km as the radius of Earth and 42,639 km as the radius of the geosyn- 
chronous orbit as measured from the center of Earth. The velocity in- 
crement at point A can be calculated using equation (8.34). In this case, 
we have 
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R ,  = 6371 + 322 = 6693 km 
R2 = 42,639 km (8.36) 

u(R,) = 27,750 km 

where we have assumed that the starting LEO is at an altitude of 322 km. 
Thus, 

49.3 
Av(A+B) = 27,750 

= 27,750 x 0.31 = 8,603 km/h (8.37) 

This, however, is not enough. The spacecraft has reached point B with 
this velocity increment, but now the orbit needs to be circularized at the 
radius R2. The velocity increment required to circularize the orbit at R, 
(42,639 km) is given by equation (8.16). This can be rewritten as follows 
in the notation of Figure 8.4: 

= 27,750 [0.39( 1 - 0.74)] = 2,813 k d h  (8.38) 

Therefore, this velocity increment must be added to the one shown in 
equation (8.37) to get the entire velocity increment for the transfer: 

Av(tota1) = Av(A-+B) + AuJcircularize) = 11,416 km/h (8.39) 

Note that this velocity increment is quite substantial, about 40% of that 
required to place a payload into Earth orbit. Finally, the general expres- 
sion for the velocity change required to change from one circular orbit, 
R,,  to another one of radius R2 is 

Av(tota1) = /F[ (/= - I )  + fir( 1 - R ,  + R 2  (8.40) 
R ,  + R *  

The periods of the orbits involved in the transfers we have discussed 
can be determined using Kepler’s third law of planetary motion. Refer- 
ring back to Figure 8.4, the period of the transfer orbit is 

R3 GM 
T 2  4n2 
_ -  -- (8.41) 
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In the case of the transfer orbit, we equate R to the semimajor axis of 
the ellipse shown in Figure 8.4. To write this in terms of R, and R,, we 
use equation (8.3 l) ,  and substituting into (8.40), we have 

(R,  +R2)3 GM 
23 ~2 4n2 

=- 

The period of the orbit can now be expressed as follows: 

* 4 2GM 

(8.42) 

(8.43) 

This equation can be evaluated for both the trip to Jupiter and the transfer 
to geosynchronous orbit. Since only half the orbit needs to be executed to 
make the transfer, the trip time to Jupiter is about 30 months and the time 
to reach geosynchronous orbit is about 12 h. 

The transfer orbit described in Figure 8.4 was first suggested by W. 
Hohmann in 1925. It can be shown by a simple argument that the Hohmann 
transfer orbit, for most cases of practical interest, is the one that minimizes 
the energy necessary to make the transfer. This can easily be seen by refer- 
ring to Figure 8.5. By definition, the Hohmann orbit is tangent to the circle 
with radius R2 at point B.  The total energy of the Hohmann orbit is given as 

GM 
E,(Hohmann) = -- 

2a 
(8.44) 

Let us now look at an orbit that is slightly displaced from the Hohmann 
orbit, which also reaches the orbit or radius R2 but crosses it before the 
point B (see the dashed curve in Figure 8.5). This orbit can also transfer a 
spacecraft to the orbit with radius R,, but its total energy will be different 
because the semimajor axis of the new orbit will be somewhat larger. We 
define the length of the line BB' as Aa. Since the point A is fixed, the cen- 
ter of the ellipse, point 0, also moves by approximately Ad2 so that the 
total energy of the new orbit is approximately 

GM 
2a + hat2 

&(new orbit) = - (8.45) 

The total energy of this orbit is larger than that for the Hohmann transfer 
orbit because it is less negative when equation (8.45) is compared to 
(8.44). If the spacecraft does not leave the inside circle (with radius R l ) ,  
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FIGURE 8.5 

with a tangential orbit, then similar arguments can be made to show that 
the total energy is also larger. Obviously, for smaller total energies (that 
is, smaller values of a), the spacecraft will never reach the point B. Of 
course, these arguments are valid only if the gravitational attractions of 
other bodies in the neighborhood can be neglected. 

W. Hohmann’s original work was published in his book, Die Erreich- 
barkeir der Himmelkorpel; Oldenburg Publ., Munich ( 1925) (English 
translation published by NASA, Washington, D.C., 1960). Note that the 
exact proof of Hohmann’s result appeared only in 196 1, showing that the 
optimum condition is limited by the requirement that R21R, < 1 1.94. See 
Ehricke’s Vol. 2, Chapter 6 (1962) and Battin’s Sections 9.2 and 1 1.3 
( 1  987), mentioned in the Appendix. An easy-to-read report with engi- 
neering orientation is by J. B. Eades, “Orbital Transfer,” Bulletin of’ the 
Virginia Polytechnic Institute, Blacksburg, VA, 1965. 

EXAMPLES 

8.1. What velocity increment would be needed to have Earth escape from 
the Sun? The average velocity of Earth around the Sun is given by 
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The escape velocity is 

The required velocity increment is 

8.2. If the eccentricity of Earth’s orbit is e = 0.0167, what is the ratio of 
the perihelion and aphelion velocities? Using equations (8.9) and 
(8. lo), we have 

UP 1.0167 -=-- - 1.03397 
v, 0.9833 

Using the approximate formula, 

we have 1.0334. The difference between the two velocities is ob- 
tained from equations (8.9) and (8.10): 

or 

The numerical value is 0.0334 x 29.8 = 0.995 W s .  Note that an ap- 
proximate equation for the velocity difference valid for small values 
of the eccentricity is 

which in our case gives the same result, that is, Av = 0.995 Ms. 
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8.3. The escape velocity from a planet is computed from equation (5.3 I ) :  

ve = (?)I/’ 

where r is the distance from the center of the planet to the escap- 
ing body. The escape velocities from the surfaces of planets be- 
come 

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto 

Escape 4.25 10.36 11.18 5.024 59.57 35.56 21.33 23.76 1.16 
velocity 
( k d s )  

Note that planetary atmospheres will influence the above-computed 
escape velocities. The escape velocity from the surface of the Sun 
is 617.53 Ms and from the Moon is 2.375 h / s .  The escape ve- 
locity from the surface of Earth is 1 1.18 h / s .  A stone thrown at a 
velocity of 1.118 km/s will not escape unless we are on a planet 
that is smaller than Earth. The formula for the velocity of escape 
is 

where pp is the density of the planet. This new formula is obtained 
by writing (4d3)R$pP for the mass of the planet. Since the mean 
density of Earth is 5.52 g/cm3, the radius of a planet (with Earth’s 
density) should be RP = RE/10 = 637.8 km to have 1.1 18 km/s as the 
escape velocity from the surface. Note that the escape velocity is 
proportional to the planetary radius as long as the density and the 
gravitational constant are not altered. 

8.4. In this example, a Hohmann transfer orbit is established from a cir- 
cular parking orbit to a geosynchronous orbit. 

I f  the velocity is increased tangentially on the circular parking or- 
bit, the point where this occurs will be the perigee of the transfer 
orbit. The circular velocity of a satellite at elevation h = 300 km 
is 

v, = - = 7.726 k m / ~  ( R y J ’  
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The elliptic orbit's apogee distance from Earth's center is d = 
42240.14 km, and the semimajor axis of the transfer orbit is 

The eccentricity of the transfer orbit is 

which follows from the expression for the perigee distance, 

rp  = u(1- e) 

where rp = h + Re and a = f (h  + Re + d). The perigee and apogee ve- 
locities are 

) I f 2  = 10.153 km/s 
2GMd 

and 

( GM)i/2( 1 - e )I/' - - ( 2GM(RE + h))If2 = 1.605 kmis 

d(d + RE + h) 
VA = - 

U I + e  

The radial distance of the original circular parking orbit from the 
center of Earth is Re + h = 6678.14 km, and the original circular ve- 
locity is v, = 7.726 km/s. The velocity increment at perigee is Avp = 
vf - v, = 2.427 h / s .  The circular velocity at apogee distance is vd = 

= 3.072 h / s ,  but the velocity on the elliptic orbit at apogee 
is smaller than this. Therefore, if a circular orbit is to be obtained at 
apogee, we need a velocity increment of Av, = v, - V,  = 1.467 h i s .  
The total velocity change is Avr = Avp + A v A  = 3.894 Ms. The trans- 
fer time is half of the period of the elliptic orbit: 

I /2 
ii"=~(-&) =5h17min14.6s  

8.5. The idea of the elliptic Hohmann transfer orbit can be used to estab- 
lish a lunar trajectory. Note that the following equations offer only 
approximations since the Moon's effect on the trajectory is neglect- 
ed. The parking orbit is at elevation h, so the circular velocity is 
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v, = ( % ) I i 2  

The semimajor axis of the transfer orbit is 

where d E M  is the distance between the centers of Earth and the 
Moon. The eccentricity of the transfer orbit is 

d E M -  h - R e  
e =  

dEM + h + R, 

The perigee velocity is 

2 GhfdEM 
" = ( (h  + R,)(h + R, + d,,,) 

and the velocity increment on the parking orbit becomes 

All, = up - v, 

The arrival velocity at the Moon (neglecting in the first approxima- 
tion the gravitational effect of the Moon) is the apogee velocity of 
the elliptic transfer orbit, 

which equation utilizes the conservation of the angular momentum. 
Since h + Re < d E M ,  vA < v,, as expected. The circular velocity at 
apogee is the lunar velocity, which is higher than the arrival velocity; 
therefore, a new boost is required: 

where vM is the Moon's (approximate) circular velocity. The transfer 
time is once again half the period of the transfer ellipse: 

f T =  ,,,( ( h  + RE -k d E M ) 3 ) " 2  
8GM 
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8.6. This example inverts the usual problem of orbit changes and intends 
to establish the new orbit when a certain velocity change occurs. If 
the velocity increases from circular velocity (v,) to v, then the change 
is Av = v - v,, or v = v,( 1 + huh,). The dimensionless velocity change 
is x = Av/v,, which, when multiplied by 100, represents the percent- 
age change of the velocity. If the circular velocity is increased, it be- 
comes the perigee velocity, or 

Up' v,(l + x )  

The circular velocity at perigee distance was 

and the increased perigee velocity is 

After substitution of the expressions for v, and v, into the relation 
v, = v,( 1 + x),  we have 

vTG= 1 + x  

or 

e =x(2 +x) =r 2x 

where the approximation is valid for small x and small e values. A 
10% velocity increase on the circular orbit results in an elliptic orbit 
with eccentricity e = 0.1(2 + 0.1) = 0.2 1. The percentage velocity in- 
crease required for escape can be obtained when the relation 
= 1 + x is used with e = 1. The result is x = fi - 1, that is, 41.42% 
increase (or more) of the circular velocity is required for escape. The 
orbital parameters of the elliptic orbit (when x < 0.4142) can be ex- 
pressed as functions of x. For instance, if the altitude of the original 
circular orbit is h, the semimajor axis of the elliptic orbit becomes 

h + R ,  
1 - 2 X - x Z  

a =  
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For a 10% velocity increase, the semimajor axis becomes a = 

1.266(h + Re). The apogee velocity becomes 

or 

1 -x(2 +x) 

(1  +x)* 
VA = 

or 

For a 10% velocity increase, the apogee velocity becomes 0.7 1822~. 

8.7. The orbit ofthe artificial satellite Explorer 6, known as 1959 F2, has 
a perigee distance of rp = 6622.6 km and an apogee distance of r,I = 

48201 km. (Note that these are not heights but distances from the 
center of Earth to a point on the orbit.) The semimajor axis is 

a = f(rp + rA) = 2741 1.8 km 

The eccentricity is computed by using the equations for the perigee 
and apogee distances: 

r p  = a( 1 - e) and rA = a( 1 + e) 

From these we have 

= 0.758 rA - rP e =  ___ 

rA + rP 

The semiminor axis and the semilatus rectum are 

b = a m  = 17,879 km 

and 

p = a ( l  -e2)= 11,662km 
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The mean motion n is computed from Kepler's law: 

From this we have n = 1.4 x lo4 rads = 12.1 radday. The orbital 
period of the satellite is 

21T 
T =  - = 12.5 h 

n 

The perigee and apogee velocities are 

and 

Note that once the perigee velocity is known, the apogee velocity 
can be computed by 

The advantage of using this method is the simplicity of the formula. 
The disadvantage is that if the computed value of up is in error, vA 
also will be in error. If this satellite is at perigee when we start ob- 
serving time (i.e., at t = 0, f = 1 = E = 0; see the table of anomalies 
given in Chapter 7), its location at t = 62.5 min as it moves counter- 
clockwise can be established as follows. The mean anomaly at this 
time is 1 = nt = 0.526 rad = 30". The eccentric anomaly can be com- 
puted from 

I = E - e sin E 

by iteration, starting with Eo = 30". The solution is E - 71.27'. The 
true anomaly is computed from 
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giving f = 125.27 1 ’. The distance from the center of Earth can be 
computed either from r = a/( 1 - e cos E )  or from i’ = p/( 1 + e cosf). 
The results are 20739.75 and 20739.93 km, showing an error of 
0.177 km or less than 0.001%. This error is due to the error of the 
approximate solution obtained by solving Kepler’s transcendental 
equation by iteration. In order to circularize the orbit at apogee, a ve- 
locity boost is required. This circular velocity is 

= 2.876 km/s 

and the velocity increment is 

( u A ) ~  = 2.876 - 1.42 = 1.456 k m / ~  

To circularize at perigee, the satellite will have to slow down. The 
circular velocity at perigee altitude is 

GM 112 GM 112 1 
(up) ,  = ( F)  = (a) = 7.75 km/s 

and the velocity change is 

(up),= 10.28 - 7.75 = 2.53 M S  

As expected, the required velocity change is larger at perigee than at 
apogee; therefore, circularization is to be performed at apogee. To 
escape at apogee, the velocity must be 

(uA), = * ( u A ) ,  = 4.07 k d s  

The increase of velocity is 

( A u A ) ~  = 4.07 - 1.42 = 2.65 k d s  

The escape velocity at perigee is 

(up),  = 2(v& = 10.96 km/s 



160 ORBITAL MANEUVERING OF SPACECRAFT 

The increase of velocity is 

= 10.96 - 10.28 = 0.68 WS 

Note that (AuJe > (A+),, and therefore it is more efficient to exe- 
cute the escape maneuver at perigee than at apogee. 

PROBLEMS 

8.1. A space vehicle approaching a planet on a hyperbolic orbit (relative 
to the planet) wishes to be captured. Find the change (reduction) of 
the (hyperbolic) velocity at the pericenter in order to obtain an ellip- 
tic orbit with eccentricity e. The hyperbolic excess velocity of the 
probe is u, and the distance of the pericenter is rp 

8.2. A space probe is orbiting a planet on an elliptic orbit with apocenter 
rA and pericenter r,. Find the change of the pericenter if the velocity 
at the apocenter is increased by AvA. 



CHAPTER 9 

ELEMENTS OF 
SPACECRAFT DYNAMICS 

We have examined how spacecraft can be maneuvered from one orbit to 
another in the previous chapter. Before we can actually navigate a space- 
craft, we must also understand how to orient the spacecraft with respect 
to a fixed point in space and how to control the orientation so that the ve- 
hicle can be stabilized with respect to a defined coordinate system. Con- 
trol of spacecraft orientation is vital to assure that the propulsion system 
points in the right direction when it is activated to move the spacecraft 
from one orbit to another. Every time the space shuttle is maneuvered to 
initiate the procedures to return from orbit, the attitude of the vehicle 
must be accurately fixed so that when the orbital maneuvering engines 
are fired, it assumes the proper return trajectory. In addition, stabilization 
is essential if spacecraft are to carry out the functions for which they are 
designed. Accurate pointing is required for spacecraft such as Landsat, 
which is designed to take high-resolution pictures of the ground. The 
Hubble Space Telescope requires accurate pointing to do astronomy and 
the Voyager spacecraft also had to have accurate pointing capability in or- 
der to take high-resolution pictures of the outer planets. 

In order to understand how spacecraft can be controlled, we will devel- 
op some of the basic relationships governing the dynamics of rigid bod- 
ies. This is not meant to be a comprehensive treatment of the subject, but 
it will be enough so that the spacecraft maneuvers we will deal with in the 
remaining chapters can be understood, Essentially, what we will do is to 
develop transformations between a coordinate system that is fixed in the 
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spacecraft (the rigid body in this case), which we will call the ‘,s” system 
and an inertial coordinate system “i” fixed in space. To describe the mo- 
tion of the spacecraft in inertial space (the i system) in response to the 
control system mounted on the spacecraft (the s system), we will have to 
derive the transformation equations between the two coordinate systems. 
Once these relationships are established, we will then apply them to un- 
derstand the behavior of several simple spacecraft control systems. 

We will start by analyzing the problem in two dimensions and then ex- 
tend it to three. Figure 9.1 shows the i system and the s system with the 
appropriate unit vectors. The vector r is a position vector that defines a 
point in the spacecraft making an angle a with the unit vector il .  The 
components of the r vector in the s system are therefore 

r = i ? , ~  cos a + i2r sin 01 (9.1) 

where Y is the magnitude of the vector r. The most common situation we 
must deal with is when the spacecraft is rotating in inertial space. Thus, 
we will assume that the s system is rotating with respect to the i system 
with a constant angular velocity o(s, i) defined by 

o(s, i) = w(s, i) 93 (9.2) 

where i3 is the unit vector in the s system perpendicular to il and i2. 

‘1 

FIGURE 9.1 
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We now want to calculate the velocity vector in the s system and in the 
i system. For the s system we have 

dr da  da  
-(s) = -ilr sin a- + ?2r cos a- 
dt dt dt (9.3) 

where we have assumed that the magnitude of the vector r is constant and 
that we adopt the following convention: 

d 
-(s) = time derivative in s system 
dt 

d 
-(i) =time derivative in i system 
dt 

(9.4) 

We will need to write the velocity vector in the inertial system i rather 
than the spacecraft system. In this case, we have to include how the unit 
vectors S1 and i2 behave as a function of time. Thus 

dr dr di diz 
v(i) = -(i) = -(s) + -Y cos a + -Y sin a (9 .5 )  dt dt dt dt 

The derivatives of the unit vectors can be evaluated by looking at Figure 
9.1, By inspection, we can see that 

= &(s, i) dt (9.6) 

The velocity vector in the i system is therefore 

dr dr 
dt dt 

v(i) = -(i) = -(s) - 3,o(s, i)r sin a + i2w(s, i)r- cos 01 (9.8) 

We now introduce the vector relationships in three dimensions in order to 
rewrite equation (9.8) in the most general form. The vector products of 
any system of three unit vectors are defined as follows: 
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and 

i, x i2 = i, 

g, x g, = -;, 
i2 x i3 = it 

g, x .sz = -;, 
i, x 5, =i2 

;* x g, = -g2 
(9.10) 

We can now apply the relationships (9.10) to rewrite equation (9.8) as fol- 
lows: 

o(s, i) x r = o(s, i)i3 x (i,r cos a + i,r sin a) 

i2w(s, i)r cos cx -i Iw(s, i)r sin cx (9.1 1) 

Therefore, the velocity vector in the inertial system is 

dr dr 
dt dt 

v(i) = -(i) = -(s) + o(s, i )  x r (9.12) 

Expression (9.12) is quite general and applies to any vector in the i sys- 
tem. When the acceleration is calculated by taking the time derivative of 
the velocity, the second term in (9.12) yields the centripetal and the Cori- 
olis accelerations. 

We are now ready to rewrite Newton’s second law of motion so that it 
can be used to describe the motion of the spacecraft when external forces 
are applied. The second law of motion is a universal relation between the 
applied force and the momentum: 

(9.13) 

where P is the linear momentum and m is the mass of the object to which 
the force is applied. In the case of the point masses that we considered in 
Chapter 2, the angular momentum was defined as 

L = r x P  (9.14) 

There is a relationship between the angular momentum and the vector 
product of the vector r and the force F, called the torque, which has the 
same form as equation (9.13): 

dP dv 
dt dt 

T = r  x F = r  x - = r  X m- (9.15) 
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In Chapter 2, when we were discussing circular orbits of point masses, 
the angular velocity o of the mass around the fc.  ,e center was defined as 

U o = -  
r 

(9.16) 

where all quantities are scalars. Actually, all of the quantities in equation 
(9.16) are vectors, but in the special case of the circular orbits we consid- 
ered, the three vectors r, v,  and w are mutually perpendicular. The gener- 
al relationship between the linear velocity and the angular velocity is 

v = o x r  (9.17) 

Equation (9.17) can be used to rewrite the second law of motion (9.1 5) as 
follows: 

dP d(r x P) dL T = r x F = r x - =  - -  
dt dt dt 

- (9.18) 

which can be done because for a rigid body the vector r is constant. Thus, 
the relationship between the force and the linear momentum (9.13) has 
the same form as the relationship between the torque and the angular mo- 
mentum shown in equation (9.18). The angular momentum is defined in 
equation (9.14) which, using equation (9.17), can be rewritten as 

L = r x P = m ( r  x v ) = m r  x ( w x  r) (9.19) 

It is possible to simplify this relationship by defining the moment of iner- 
tia I, which permits us to write the angular momentum as a function of 
the angular velocity in analogy with the relationship between the linear 
velocity and the linear momentum: 

P = m v  (9.20) 

For the’angular momentum and the angular velocity we have 

L = I w  (9.2 1) 

where I is the moment of inertia, 
There is a very important difference between equation (9.20) and 

(9.21). In the case of equation (9.20), the linear momentum vector and 
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the velocity vector v always point in the same direction because the mass 
is a scalar quantity, The same is not true in the case of the angular mo- 
mentum and the angular velocity. The angular momentum and the angu- 
lar velocity need not point in the same direction, as can be seen by look- 
ing at equation (9.19). In the special case of the point mass moving in a 
circular orbit that we have already mentioned, the vectors r, v, and o are 
mutually perpendicular, and we have 

L = mrZo (9.22) 

where, by using equation (9.2 I), the moment of inertia becomes 

I=mrZ (9.23) 

This is the familiar moment of inertia of a point mass m moving on a mo- 
ment arm r. For objects that are more complex than a point mass, there 
are special cases where the angular momentum and the angular velocity 
are always colinear. For example, L and o always point in the same direc- 
tion for spherically symmetric objects. For objects that are not spherically 
symmetric, L and o are colinear if the object rotates around one of the 
“principal axes.” It is beyond the scope of this work to develop a general 
theory of the motion of rigid bodies to describe what happens in the gen- 
eral case. Almost all spacecraft are designed to be axially symmetric so 
that a general theory is not required. 

Mathematically, the situation just described means that the moment of 
inertia is not a scalar but a tensor. A tensor that defines the relationship 
between two three-component vectors as indicated in (9.21) has nine 
components. The rules of matrix multiplication apply, and using these, 
equation (9.21) can be rewritten as follows: 

(9.24) 

It is obvious from (9.24) that the vectors L and o need not point in the 
same direction when the matrix multiplication is performed. There is an- 
other point that is also important. Unlike the mass in equation (9.20), 
which is always a constant, the value of the components of the moment of 
inertia may change depending on the choice of coordinate system. 

Both of the mathematical difficulties we have just described can be 
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dealt with more easily because the s coordinate system located in the 
spacecraft moves along with the spacecraft, and this means that the 
components of the moment-of-inertia tensor are constants. A further 
simplification results if the axes of the spacecraft coordinate system are 
colinear with the principal axes of the vehicle. In that case, the moment- 
of-inertia tensor has only three components. The nondiagonal elements 
of the moment-of-inertia tensor vanish in this case so that equation 
(9.24) becomes 

(9.25) 

which can be rewritten as an ordinary vector equation in t,,e spacecraft 
centered s coordinate system: 

We are now ready to derive the Euler equations, which are the equa- 
tions of motion of a rigid body. They are, of course, based on Newton’s 
second law of motion relating the applied torque to the time rate of 
change of the angular momentum: 

dL dL 
dt T = -(i) = -(s) dt + o(s, i) x L (9.27) 

In order to obtain equation (9.27), we used the general relationship be- 
tween the time derivative of a vector in the inertial system i and in the 
spacecraft system s defined in equation (9.12). Remembering the rela- 
tionship between the angular momentum and the angular velocity (9.21), 
we can write 

df w dl o 
dt dt T = -  (i) = -(3) + o(s, i) x 1 0  (9.28) 

Since the s system is centered on the spacecraft, the angular velocity w of 
the spacecraft is equal to the angular velocity of the s coordinate system 
with respect to the i system, w(s, i). We can therefore write 

w(s, i) = 0 = w l i l  + 0 2 3 2  + 0 3 i 3  (9.29) 



168 ELEMENTS OF SPACECRAFT DYNAMICS 

and therefore the torque is 

dI o dI w 
dt dt 

T = -  (i) = -(s) + w + I 0  (9.30) 

The first term on the right side of equation (9.30) can be written as fol- 
lows: 

0 dI o 
dt 

(3.31) 

since the components of the moment of inertia are constant in the s sys- 
tem. 

The second term is a vector product of w and Iw, which can be evaluat- 
ed as follows: 

where the relationships (9.9) and (9.10) have been applied. We now have 
the following expressions for the components of the torque vector: 
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(9.32) 

(9.33) 

(9.34) 

The relationships (9.32), (9.33), and (9.34) are called the Eu..x equations, 
and these relate the components of the torque vector in the i system to the 
components of the moment of inertia in the s system and the angular ve- 
locities. Thus, the Euler equations can be used to calculate the motion of 
the spacecraft when the torques are known. 

The conventional parameters that relate the inertial coordinate system i 
to the spacecraft system s are called the Euler angles. They are illustrated 
in Figure 9.2. The best way to see how the Euler angles can be construct- 
ed is to start with Figure 9.1 and to use the following procedures: 

1. Reorient the two-dimensional coordinate system of Figure 9.1 in 
such a way that i3 axis is vertical, as shown in Figure 9.2. This is 
achieved by first rotating the system clockwise around the i, axis to 
90" and, once the system is in that orientation, rotating it clockwise 
through 90" around the i3 axis. Once this is accomplished, the iner- 
tial i system is oriented as shown in Figure 9.2. 

2. Rotate the spacecraft s system around the i3 axis through the angle 
cp- 

3. Rotate the spacecraft s system around the axis li by the angle 8. The 
unit vector 2 is perpendicular to the plane defined by r and i,. 

4. Rotate the spacecraft s system around the i3 axis through the angle 
*. 

These angles conventionally define the orientation of a rigid body in 
space. If we consider a spinning top, then rotation around i3 determines 
the spin of the top with an angular velocity of d$ldt, rotation around the 
i3 axis determines the precession of the top with an angular velocity 
dqldt, and rotation around the h axis, which changes the angle 0, is d0ldt 
and is called nutation. 

The result of these operations yields the picture shown in Figure 9.2. 
What we want to do now is to solve the Euler equations for a spacecraft 
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FIGURE 9.2 

that has no external forces acting upon it. We will then show how the 
spacecraft responds to various external torques. 

In order to do this, we first have to rewrite the Euler equations in terms 
of the Euler angles defined in Figure 9.2. The angular velocity of the 
spacecraft is defined by the angular velocity of the s system with respect 
to the inertial i system. These are defined in equation (9.29). We can also 
write the angular velocity of the spacecraft in terms of the rates of change 
of the Euler angles: 

d q  d0 dt) 
dt dt dt 

fJ)= - i3 + - ;+ -i3 (9.35) 

In order to solve the Euler equations in terms of the Euler angles, we need 
to make a transformation of the unit vector basis set of equation (9.35) to 
the basis set ;,, i2, and i3. The unit vector ri has components along 2, and 

as follows: 

ri = i,cos $ + Q i n  + (9.36) 
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In the case of the angular velocity component around the ;3 axis, the pre- 
cession, we can write in terms of components along the i3 axis and the r 
vector as follows: 

$ d(.P d9 d q  =8,- cos 0 + r- sin 0 
l 3  2- dt dt 

(9.37) 

The vector r has the following components along iI and i2: 

r =;,sin t) + i,cos $ (9.38) 

We can now write down the components of the vector o along iI, :2: and 
i, by comparing equations (9.38), (9.37), (9.36), and (9.35) with equation 
(9.29). The result is 

d(.P d0 
o1 = - sin 0 sin 4 + - cos IJJ 

dt dt 

d9 de 
02= -sinOcos\Ir--sin+ 

dt dt 
(9.39) 

These equations are called the Euler rate equations, and we can use them 
to get solutions of the Euler equations for cases for practical interest. 

The first case we shall consider is that of the spin-stabilized spacecraft. 
Spin stabilization is most commonly used for communications satellites 
placed in geosynchronous orbit. Spin stabilization is desirable in this case 
because the satellites are required to have long lifetimes. This means that 
the use of small jets or rockets to control the spacecraft needs to be mini- 
mized to save fuel or working fluids. Furthermore, communications satel- 
lites do not generally require large orientation changes so that the meth- 
ods for changing spin orientation that will be developed are adequate. 
Communications satellites are cylindrical in shape and have their spin 
axis perpendicular to Earth’s equatorial plane. Thus, it is advantageous to 
place the solar cells that provide electrical power on the cylindrical sur- 
face of the spacecraft. This arrangement has the advantage that is pro- 
vides a constant power level for the operation of the spacecraft. The an- 
tenna on the spacecraft must always be pointed toward the same spot on 
the surface of Earth. Therefore, the antenna cannot rotate and must be 
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mounted on what is called a “despun” platform attached to a bearing with 
a shaf? that remains stationary while the spacecraft rotates. A picture of a 
typical communications satellite that operates on these principles, the IN- 
TELSAT IVA, is shown in Figure 9.3. 

Another important class of spin-stabilized spacecraft is comprised of 
those designed to fly to the outer reaches of the solar system. An example 
of this is the Pioneer I0 spacecraft shown in Figure 10.13. Pioneer I0 
achieved a number of “firsts,” including the flyby of Jupiter. In 1990, Pi- 
oneer I0 passed beyond the orbit of Pluto and therefore became the first 
man-made object to leave the solar system. The design of the Pioneer I0 

FIGURE 9.3 This is a picture of INTELSATIV-A, a spin-stabilized geosynchro- 
nous communications satellite. The body of the satellite spins and the antenna is 
mounted on a “despun” platform so that it always points at the same spot on the 
surface of the Earth. 
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is dominated by the high-gain dish antenna necessary for communication 
over long distances. Spacecraft designed to reach the outer planets cannot 
use solar power because the Sun is too weak. Pioneer 10 was powered by 
two radioisotope thermal power supplies mounted on booms, as shown in 
Figure 10.13. A third boom carried a magnetometer to balance the two 
power supplies when the spacecraft rotates around its principal axis. This 
axis runs through the center of the disk antenna and is perpendicular to 
the plane of the dish. In operation, the spin axis of Pioneer 10 lies in the 
plane of the ecliptic. The spinning spacecraft is then maneuvered in such 
a way that the principal axis, and hence the antenna, always points toward 
the Earth. 

Having described the properties of spin-stabilized spacecraft, we are 
now ready to develop the mathematics that governs their control. All 
spin-stabilized spacecraft are designed to be axially symmetric. This 
means that they have one prinicpal axis around which they rotate and two 
other axes that have equal moments of inertia. Thus, if the prinicipal axis 
is ;,, with a principal moment of inertia, Z33, we can write: 

/ I  1 = I22 (9.40) 

We can now write the Euler equations for the axi symmetric spacecraft 
with no external forces acting on it: 

Equation (9.43) can be easily solved because: 

(9.41) 

(9.42) 

(9.43) 

(9.44) 

(9.45) 

therefore 

o3 = R = constant 
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which says that the spin rate of the satellite around the principal axis i3 is 
equal to the constant 0. This result is to be expected because there are no 
external torques. The other two Euler equations are 

and 

(9.46) 

(9.47) 

these are two coupled first-order differential equations that can be 
solved by reformulating them into a single second-order equation by 
differentiating equation (9.46) with respect to time and then using equa- 
tion (9.47): 

Bo, = -do, 
dt2 

where 

R I33  - 1, I 

111 
a =  

(9.48) 

(9.49) 

The solution of equation (9.48) is the same as that of a simple harmonic 
oscillator: 

ol(t) = oosin a(t - to) (9.50) 

o*(t) = --wocos a(t - to )  (9.51) 

Now, we will use the Euler rate equations to find the expressions for the 
spin rate CNrldt and the precession rate dqddt. We can arbitrarily assume 
that the angle 8 is constant, and we will shortly understand the role that 8 
plays in the motion of the spacecraft. Using the Euler rate equations and 
the solutions (9.50) and (9.5 l ) ,  we have 

d(P 
wl(t) = oosin at = - sin 0 sin + 

dt 
(9.52) 
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(9.53) 
d(P 

oz(t) = --wocos at = - sin 8 cos \cI 
dt 

0 3 ( t )  = R = d$\dt + - d(P cos 8 (9.54) 
dt 

Squaring and adding equations (9.52) and (9.53) yield 

and taking the square root gives 

d9 
coo = - sin 8 

dt 

Comparing equation (9.53) with equation (9.56) yields 

-cos at = cos + 
or 

-at = $I 

Solving equation (9.54) for dqldt yields 

_ -  dq R-d$Ildt 
dt cos 0 

- 

solving the expression in equation (9.49) for C! gives 

a 11 1 

I33  - It  1 
n =  

and from equation (9.58) we have 

(9 .55)  

(9.56) 

(9.57) 

(9.58) 

(9.59) 

(9.60) 

=-a 
d* - 
dt 

(9.6 1) 
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so that we can write 

(9.62) 

which, when substituted into equation (9.59) and performing some alge- 
braic manipulation, yields the following result: 

4 - _ -  dT - 133 

dt (Ill - I,,)cos 8 dr 
(9.63) 

Equation (9.63) relates the spin rate of the satellite &/dt to the precession 
rate dqldt as a function of the moments of inertia and the angle 8. It is 
this formula that permits us, under certain restricted conditions, to calcu- 
late quantitatively how the spin-stabilized spacecraft behaves when out- 
side torques are applied. 

We are now ready to solve the problem of changing the orientation of a 
spin-stabilized spacecraft. To do this, refer to Figure 9.4, which illustrates 
the precession of a disk-shaped spacecraft with a radius R. The thrusters 
are located on the rim of the disk. They each supply a thrust F as shown. 
In order to move the angular momentum vector through the angle 8, a 
torque must be applied so that an angular momentum change AL is added 
to the initial angular momentum L,. In Figure 9.4, the disk represents the 
spacecraft, and there are two small jets mounted on the rim of the disk 
that supply the torque. If the radius of the spacecraft is R and the thrust of 
the jet is F, then the torque vector is 

T = 2(R x F) (9.64) 

The vector product defined in equation (9.64) provides a change in the 
initial angular momentum vector LI by AL, which is a vector perpendicu- 
lar to LI,  as shown in Figure 9.4. The angular momentum change is 

AL=TAT (9.65) 

where AT is the time interval over which the torque is applied. This equa- 
tion is derived from equation (9.15). The new angular momentum vector 
of the spacecraft points in the direction indicated that makes an angle 8/2 
defined by the relationship 

(9.66) 
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\ 

FIGURE 9.4 

The vector L1, in addition, precesses around the direction of the new an- 
gular momentum vector L. It is very important to recognize that the state 
of affairs described here only works if the angular momentum change 
vector AL is small compared to the vector L I .  If this condition is not hl- 
filled, then motion around the vector f i ,  that is, the angular velocity com- 
ponent dOldt, is no longer zero and the whole analysis presented here 
breaks down. From Figure 9.4, it can be seen that if the spacecraft is per- 
mitted to precess through an angle of 180" (n), and if the same torque 
that initiated the precession is now applied in the indicated direction, the 
precession will stop and the spacecraft will then spin around an axis that 
makes an angle 0 with the original spin axis. The new angular momentum 
L2 will have the same magnitude as the original angular momentum L, 
subject to the condition on lALl with respect to ILI) that has already been 
mentioned. 

A relationship can now be developed that will yield the thrust of the 
steering jet, F, necessary to move the spin vector of the spacecraft 
through an angle 8 in terms of the moments of inertia and the spin rate of 
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the spacecraft. Using equation (9.63), we first require that the angle dcp 
be 

d q = r  (9.67) 

The time interval over which the force must be applied is 

N h  -133) 0 
cos - 

2 
d t = A r =  

I3Q 
(9.68) 

The magnitude of the thrust F that must be supplied by the jet is then giv- 
en by the relationship that can be recognized by looking at Figure 9.4: 

0 
2RIFI AT = IAL( = lLll tan (9.69) 

so that 

0 
tan - 

2R r(II I - 133) cos(W2) 2 
ILII I3Q JFI = - (9.70) 

We have already mentioned the fact that AL must be small compared 
to L, in order for equation (9.70) to work. This means, of course, that 
only small changes in 9 can be accurately represented by equation (9.70). 
In fact, if we tried to apply this formula to making a change in orientation 
of the spacecraft by 1 80", a complete reversal of the direction of the an- 
gular momentum vector, an infinite thrust would be required. This is ob- 
viously not reasonable and reflects the nature of the approximation that 
we have discussed. In practice, large changes in the orientation of spin- 
stabilized spacecraft are executed by making a successive number of 
small changes, as illustrated in Figure 9.5. In the figure, the orientation of 
the spacecraft spin vector is changed by an angle of 90" by making five 
successive changes of 18", each of which can be achieved by a relatively 
small application of thrust. 

The second method of stabilizing spacecraft that is in common use is 
called three-axis stabilization. Spin-stabilized spacecraft rely on the gyro- 
scopic eflect, which means that the angular momentum vector of a rotat- 
ing body maintains its direction in space unless some outside torque is 
applied. If that angular momentum has a large enough magnitude, then it 
is also hard to change the angular momentum, and hence the spacecraft is 
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FIGURE 9.5 

“stabilized.” Three axis stabilization depends on equipping a spacecraft 
with the means for orienting the spacecraft accurately with respect to a 
fixed external axis that is usually determined by some kind of a star sen- 
sor. This means of stabilization does not depend on inertial effects but 
rather on an active control system that maintains the direction in space 
accurately by a feedback control system locked to the axis defined by the 
star sensor. Three-axis stabilization is essential if accuracy of pointing is 
required. For example, the Hubble Space Telescope has a very sophisti- 
cated three-axis pointing system because accuracy is most important for 
astronomy. The two Voyager spacecraft that conducted the historic mis- 
sions to all of the outer planets except Pluto had a three-axis stabilization 
system that permitted the Voyager spacecraft to produce spectacular high- 
resolution pictures of Jupiter and its satellites, Saturn, Titan, and the 
rings, and the Uranus and Neptune systems. Landsat and many of the 
classified Earth observation systems have three-axis stabilization in order 
to obtain high-resolution pictures of Earth’s surface. Finally, the effort to 
put landers on the planet Mars during the Viking program also required 
three-axis stabilization. 

The simplest way to achieve three-axis stabilization is shown in Figure 
9.6. A highly redundant set of thruster pairs mounted on each edge, as 
shown on the notional satellite in Figure 9.6, supply the force couples, or 
torques, necessary to rotate the spacecraft. This is a very simple system, 
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pair 

and it is easy to see that any orientation can be achieved by the appropri- 
ate application of torques. The forces required to move the spacecraft are 
relatively small even for a large spacecraft. In many instances, small com- 
pressed gas jets rather than rockets can be used. The best example of 
three-axis stabilization using this method is the space shuttle. The attitude 
of the space shuttle when it is in Earth orbit is controlled by several sets 
of small rockets using hypergolic hels (hydrazine and nitrous oxide in 
this case). These thrusters are part of what is called the Reaction Control 
System (RCS). There is one forward module with 14 primary thrusters 
each with 870 lb thrust and two vernier thrusters of 25 lb each. There are 
two aft RCS pods, each containing 12 primary thrusters (870 Ib) and two 
vernier thrusters (25 ib). All of these rockets can be turned on and off at 
will. It is remarkable that these relatively low thrust devices can accurate- 
ly control the attitude of a vehicle that weighs 200,000 lb (90,910 kgm). 
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The principal drawback of using rockets or jets to achieve three-axis sta- 
bilization is that they require fuel or compressed gas to operate. There- 
fore, the system has a limited lifetime because it will not work when the 
fuel of the rocket or the working fluid of the jet is exhausted. 

An alternate way of changing the orientation of a spacecraft is to use a 
momentum wheel or a gyroscope to rotate the vehicle and to reorient it. 
The principal advantage of momentum wheels or gyroscopes is that they 
work as long as electric power is available to keep the wheels turning. A 
simple example of a momentum wheel is shown in Figure 9.7. The axis of 
the momentum wheel is fixed in the spacecraft and it is spun by a small 
electric motor that is powered by electricity obtained from solar panels 
mounted on the spacecraft. In the case shown, the momentum wheel is 
mounted parallel to the 22 axis. A simple maneuver is to rotate the space- 
craft. The total angular momentum is always zero at the beginning of the 
procedure, and the angular momentum of the wheel is L,. When the gyro- 
scope is started, there is a transfer of angular momentum to the spacecraft 
given by the following relationships: 

L, = Lg + L, = 0 (9.7 1) 

and for each of the angular momenta we have 

Lg = Igog (9.72) 

and 
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L, = Ism, (9.73) 

Since all of the vectors in the above equations are assumed to be colinear, 
we can use their scalar values: 

Ig(Og - 0,) - I p s  = 0 (9.74) 

so that the finaf angular velocity of the spacecraft is 

(9.75) 

where o , ~  is the angular velocity of the spacecraft after the gyroscope is 
spun up to an angular velocity of og and I, and I, are the respective mo- 
ments of inertia of the spacecraft and the momentum wheel. 

If “momentum wheels” are mounted on the spacecraft along the three 
principal axes of the vehicle, then they can be used to produce rotations 
of the spacecraft around the other two axes of the spacecraft by a similar 
method. Thus, the spacecraft can be moved to point along an arbitrary 
axis by techniques similar to those described for the spin-stabilized 
spacecraft. A difficulty with the use of momentum wheels to point space- 
craft is that the moment of inertia of the spacecraft is usually much larger 
than that of the momentum wheel (I, >> I,). Thus, successive pointing 
maneuvers may sometimes require that the momentum wheels be spun to 
very high angular velocities. Eventually, this requires that the spacecraft 
at certain times be stabilized with jets or rockets and that the momentum 
wheels be stopped. This maneuver is called a “momentum dump.” 

Another way of controlling the orientation of a spacecraft is to use mo- 
mentum wheels but mounted on gimbals rather than on a fixed axis in the 
spacecraft. In this configuration, the system is called a control moment 
gyroscope. Control moment gyros are used to point the Hubble Space 
Telescope, Skylab, and certain Earth observation satellites. All of these 
spacecraft have to be rapidly and accurately pointed on a demanding 
schedule. Figure 9.8 illustrates the operation of a control moment gyro- 
scope. An angular momentum can be imposed on the spacecraft by apply- 
ing a torque along the gimbal axis of other gyroscope, changing its angu- 
lar momentum by ALr Since no external torque is applied, there will be 
an equal and opposite reaction of the spacecraft. Therefore 

ALg = -AL, (9.76) 
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The spacecraft will not acquire an angular velocity of o, around the i3 
axis: 

(9.77) 

The spacecraft rotation can be stopped by the application of an equal 
but opposite torque. This illustrates how a gyroscope can be used to 
change the orientation of the spacecraft. The principle described can be 
expanded to provide any arbitrary orientation of the spacecraft by 
mounting three gyroscopes on the spacecraft pointing along the three 
mutually perpendicular axes i , ,  i2, and i3 of the spacecraft-based coor- 
dinate system. 

A number of good books are available that provide further reading on 
the general subject of the mechanics of solid bodies and spacecraft con- 
trol systems. An excellent general treatment of solid-body dynamics at 
the undergraduate level is Mechanics by Keith R. Symon. There are sev- 
eral excellent books on spacecraft dynamics and maneuvering systems. 
Among these are Spaceflight Dynamics by William E. Wiesel, Modern 
Spacecraft Dynamics and Contml by Marshall H. Kaplan and 
Spacecraft Attitude Determination and Control, edited by James R. 
Wertz. All of these works are recommended to the reader for further 
study. 
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PROBLEMS 

9.1. A communications satellite is designed as a right circular cylinder 
with moments of inertia II I = I,* and 133, the last mentioned being 
the moment of inertia around the axis of symmetry. Also, I ,  I = I,, = 

10 133. The satellite is equipped with thrusters designed to supply an 
angular momentum vector AL perpendicular to the angular momen- 
tum L3 of the satellite as it rotates around the axis of symmetry 
where IL31 = lOOIAL(. The satellite is spin stabilized by rotation 
around the axis of symmetry at the rate of 6 revolutions per minute. 
A maneuver that rotates the satellite's spin axis (the axis of symme- 
try) through 90" is initiated using the thrusters in a series of steps 
that requires precessing the axis of the satellite through a series of 
small angles defined by equation (9.66) in the text. 

(a) How many steps are necessary to execute the maneuver? 
(b) How long does the maneuver take to execute? 

9.2. The Pioneer Venus orbiter spacecraft was a right circular solid cylin- 
der of mass M and radius R. The orbiter was designed to be spin sta- 
bilized by rotation around the axis of symmetry. The orbiter's rota- 
tion around this axis is initiated by a momentum wheel mounted on 
the axis of symmetry. The momentum wheel has a mass, m, and a ra- 
dius, r,  and it is designed so that its mass is concentrated on the rim 
with spokes of negligible weight compared to the rim. The following 
were the relationships between the masses and the radii: 

M =  loom 

R =  l o r  

The spin rate required to stabilize the Pioneer Venus orbiter was 
10 revolutions per minute. What spin rate was necessary for the mo- 
mentum wheel to achieve the spin rate required for the orbiter? 

9.3. The attitude of the Hubble Space Telescope is determined by a con- 
trol moment gyroscope. (This is essentially a momentum wheel 
mounted on a gimbal.) The gyroscope has a mass, m, a radius, r, and 
an angular velocity we It is designed in the same way as the momen- 
tum wheel in the previous problem. The gyroscope is mounted on 
the principal axis of the telescope. The original angular momentum 
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of the system is equal to m&,. The angular momentum of the gyro- 
scope pointing along the principal axis of the telescope. It is now de- 
sired to reorient the telescope using the control moment gyroscope. 
To do this, a torque is applied to the gimbal of the gyroscope around 
an axis perpendicular to the gyroscope spin axis. The added angular 
momentum rotates the angular momentum vector of the gyroscope 
through an angle 8 which is compensated by a rotation of the whole 
spacecraft along an axis perpendicular both to the principal axis of 
the telescope and to the gimbal axis of the gyroscope. This happens 
because the angular momentum of the entire spacecraft cannot 
change. 

(a) What is the angular velocity of the space telescope if the angle 8 
is 5.7% (1110 of a radian), the ratio of the moment of inertia of 
the gyroscope to that of the space telescope around the rotation 
axis is and the angular velocity of the gyroscope is 1000 
revolutions per minute? 

(b) At what time after the initial torque is applied to the gyroscope 
gimbal must an equal and opposite torque be applied so that the 
principal axis of the telescope is rotated through 90°? 



CHAPTER 10 

PLANETARY EXPLORATION 

The solar system consists of the Sun, the planets and their satellite or ring 
systems, the asteroids, and the comets. The Sun is at the center of the so- 
lar system and the nine planets, in the order Mercury, Venus, Earth, Mars, 
Jupiter, Saturn, Uranus, Neptune, and Pluto, move in orbits around the 
Sun. The Sun contains about 99.86% of the mass of the solar system, 
which permits treatment of the motion of each planet in the solar system 
as a two-body problem to a first approximation. The orbits of the planets 
(with the exception of Pluto) lie very nearly in the same plane, which is 
called the ecliptic plane. 

The planets can be divided into two distinct classes, the inner (or “ter- 
restrial”) planets, that is, Mercury, Venus, Earth, and Mars, and the outer 
(or “giant”) planets, Jupiter, Saturn, Uranus, and Neptune. The terrestrial 
planets are small, a few thousand kilometers in diameter, and have a 
mean density of about 5 g/cm3, which is the same as silicate rock. Earth is 
the largest of the terrestrial planets. The outer planets are large, having 
masses between 15 and 300 times that of Earth and diameters between 4 
and 1 1 times that of Earth. The mean density of the outer planets is about 
1.4 g/cm3, which is about 40% larger than that of water. The ninth planet, 
Pluto, is a special case, since it does not belong to either class. Pluto is 
smaller than Mercury and probably has roughly the same density as the 
terrestrial planets. Pluto’s orbit is both the most eccentric of all planetary 
orbits, and it also lies in a plane which makes the largest angle with the 
ecliptic plane. The properties of the solar system are shown in Table 10.1. 
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The asteroids are small bodies, usually with diameters less than 100 
kilometers, that lie essentially between the orbits of Mars and Jupiter. 
Their densities tend to be in the range of the terrestrial planets. Most as- 
teroids move in relatively circular orbits, but some are in highly eccentric 
orbits that actually cross the orbit of Earth. We will return to the problem 
of understanding why such “Earth-crossing” asteroids exist in Chapter 
13. Asteroids are thought to be the remnants of a planet that once existed 
between the orbits of Mars and Jupiter. ‘This planet apparently disintegrat- 
ed for some unknown reason, giving rise to the asteroids. A typical large 
asteroid, Ceres, has a diameter of about 770 km. It moves in a roughly cir- 
cular orbit with a diameter of about 2.7 times that of Earth, and the orbital 
plane has a relatively high inclination (10.4’) to the ecliptic plane. An 
Earth-crossing asteroid might be typified by Eros, which has a diameter 
of about 20 km, and its orbit has a large eccentricity (0.22) and also an 
angle of inclination to the ecliptic of about 10.4’. 

The material from which comets originated is located in the outer 
reaches of the solar system, called the Oort cloud, after the Dutch as- 
tronomer J. H. Oort, who first identified it. Comets are formed by the ac- 
cretion of ice particles in a region beyond the orbit of Pluto. As is the case 
with asteroids, most of these bodies move in roughly circular orbits. 
However, sometimes these ice bodies can be deflected into orbits that are 
highly eccentric by the same mechanisms that operate on the asteroids. 
The “ice bodies” that assume such orbits become “comets” as we observe 
them periodically. Some comets that have been observed are actually in 
orbits that have positive energies and will therefore never return. 

Most of the planets in the solar system have satellites. By far the 
largest satellite in the solar system relative to its planet is the Moon, 
which has about 1.2% of the mass of Earth. Some have even called the 
Earth-Moon system a “double planet.” Jupiter and Saturn both have 
satellites that are larger than Earth’s Moon but are very much smaller 
than Jupiter and Saturn. Jupiter has four large satellites, 10, Europa, 
Ganymede, and Callisto, which were discovered in 1610 by Galileo, 
when he first looked at Jupiter through his telescope. Hence, these are 
called the “Galilean” satellites. Jupiter also has a large number of smaller 
satellites. The largest satellite in the solar system is Titan, which revolves 
around Saturn. Titan is about the same size as the planet Mercury, or 
about 5% of the mass of Earth. Saturn and all of the outer planets except 
Pluto have ring systems, which we shall discuss later in this chapter. 

The solar system probably originated when a rotating gas cloud col- 
lapsed because of the mutual gravitational attraction of the molecules in 
the cloud. As the rotating cloud collapses, the temperature of the gas, 
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which is mostly hydrogen, rises. Eventually, the gas at the center gets hot 
enough so that nuclear reactions can occur, and the center becomes a star, 
or a “sun” in the case of the solar system. The rotating motion of the gas 
cloud while this process occurs is turbulent because as the cloud collaps- 
es and the angular velocity increases, the average Reynolds number be- 
comes larger and eventually exceeds the critical value at which laminar 
flow is possible. Thus, we can imagine a situation, such as the one shown 
in Figure 10.1 , in which a large number of turbulent eddies have devel- 
oped in the gas cloud. It is thought that these eddies are the “protoplan- 
ets” from which the planets of the solar system have evolved. Such gas 
clouds in which protoplanets develop have now been observed by the 
Hubble Space Telescope in the great nebula that is located in the constel- 
lation Orion. 

In addition to the formation of turbulent eddies, the rotating gas cloud 
also ultimately collapses into a rotating disk, as shown in Figure 10.2. 
This collapse into a disk occurs because the motion of the cloud is dissi- 
pative so that energy is lost. However, no torques from the outside of the 
system exist so that the cloud tries to maximize the angular momentum 
with respect to the energy contained in the rotation. Since both the mass 
of the cloud and the angular momentum stay roughly constant during the 

FIGURE 10.1 
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A X I S  of 'ratatton 

FIGURE 10.2 

collapse, the only way to accomplish this is to maximize the moment of 
inertia of the system. For a given mass, the moment of inertia of a disk is 
always larger than the amount of inertia of a sphere: 

/(sphere) = +Mu2 /(disk) = fMb2 (10.1) 

where the mass of the system is constant as the gas collapses from a 
sphere with radius Q to a disk of radius b. It is clear from this considera- 
tion that b > a, so that 

/(disk) > !(sphere) ( 10.2) 

for any process of this kind. 
All of this describes a very complex process that can be simulated on 

a high-speed computer. This has actually been done, and the model de- 
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scribed here when implemented on a computer leads to a planetary sys- 
tem similar to that which exists in the solar system. In fact, some of 
these calculations even predict the occurrence of terrestrial and giant 
planets that are observed in the solar system. The collapsing gas cloud 
model of the solar system’s origin was first proposed by Immanuel Kant 
in the eighteenth century and worked out during the 1940s by C. F. Von 
Weizsacker and G .  P. Kuiper. It should be stressed, however, that the 
model described here can predict only qualitatively what happens and 
that the detailed placement of the planets by the mechanisms proposed 
here is a matter of chance and not one of deterministic and predictable 
physics. 

One of the more amusing episodes in the history of the development 
of celestial mechanics is that in the late eighteenth century it was 
thought, for a time, that there was a deterministic mathematical way of 
establishing the distances of the planets from the Sun. Johannes Kepler 
tried to do this almost two hundred years earlier with his famous model 
of planetary orbits inscribed within the five “regular” polyhedra. This 
did not work in the end. However, during the 1770s, Johann Elert Bode 
and Johann Daniel Titius proposed an empirical “law” that gave the fol- 
lowing relationship between the number of the planet and its distance 
from the Sun: 

0, = [(4 + 3 x 2”) x 0.11 x DE (1  0.3) 

where D, stands for the distance of the nth planet from the Sun and D, is 
the distance from Earth to the Sun. The distance DE is usually called an 
astronomical unit and is roughly equal to 150 x lo6 km. In order for the 
Bode-Titius law to work, some liberty must be taken with the definition 
of the exponent n in the sense that the value of n for Mercury must be set 
at minus infinity and for Venus at zero. 

It should be mentioned that recently, Archie Roy has established a the- 
oretical justification for the Bode-Titius law. The comparisons are shown 
in Table 10.2. The law is reasonably accurate out to the orbit of the planet 
Uranus. It misses the prediction for Neptune by 25% and for Pluto by a 
factor of 2. Most interesting of all is the fact that the Bode-Titius law pre- 
dicts the existence of a planet at approximately the position where the as- 
teroids are now found. The best guess today is that there was once such a 
planet but that it disintegrated because of the gravitational influence of 
Jupiter. 

The 25 years from 1965 to 1990 can be called a “golden age” of plane- 
tary exploration. It was during this period that NASA executed a bold and 
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TABLE 10.2. Distance in Astronomical Units 

Planet n Distance from Sun Bode-Titius Prediction 
-~ 

Mercury 
Venus 
Earth 
Mars 
Asteroids 
Jupiter 
Saturn 
Uranus 
Neptune 
Pluto 

--03 

0 
1 
2 
3 
4 
5 
6 
7 
8 

0.387 1 
0.7233 
1 .o 
1 S237 

-3.0 
5.2026 
9.5549 

19.2 184 
30.1 104 
39.5447 

0.4 
0.7 
1 .o 
1.6 
2.8 
5.2 

10.0 
19.6 
38.8 
77.2 

imaginative strategy to explore the entire solar system using robotic 
spacecraft. The strategy was clearly laid out in three phases: 

1. Spacecraft would be sent to fly past each planet in the solar system. 
By 1990, this part of the strategy was almost completed because ro- 
bot spacecraft had visited every planet except Pluto. These close 
fly-bys have yielded a wealth of important scientific data, and, per- 
haps equally important, they provided the data used for the plan- 
ning of more sophisticated missions. 

2. Spacecraft would be sent to orbit selected planets of special inter- 
est. Orbiters have been sent around Venus, Mars, and Jupiter. Com- 
plete maps of the planets Venus and Mars have been made as a re- 
sult of these missions. An orbiter has recently (1995) been placed 
around Jupiter with the object of producing good maps of the four 
Galilean satellites. 

3. Spacecraft would probe the atmospheres of selected planets and 
would also land on the surface of the planets whenever possible. At- 
mospheric probes have successfully examined the atmospheres of 
Venus, Mars, and Jupiter. Successful landings have been made on 
Mars and Venus, and in each case, pictures of the surface have been 
obtained. 

The golden age of planetary exploration coincided with the height of 
the “cold war” between the United States and the Soviet Union. There- 
fore, a spirited competition in planetary exploration developed between 
the United States and the Soviet Union. The Soviet Union elected to con- 
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centrate efforts on Venus and Mars, leaving exploration of the outer solar 
system to the United States. The Soviet Venus exploration effort was ex- 
tremely successhl with both the first atmospheric entry into another 
planet and the first landing. On the other hand, their Mars program was 
essentially a failure. The United States adopted a more comprehensive 
strategy that called for an eventual visit to every planet in the solar sys- 
tem. 

To execute these missions, four classes of spacecraft have been devel- 
oped by the United States: the Mariners, the Pioneers, the Voyagers, and 
the Vikings. The first generation of the Mariner spacecraft was designed 
to explore the inner planets, Mars, Venus, and Mercury. Mariner 2 flew 
past Mars in 1962 and returned the first high-resolution photo of another 
planet. Perhaps the most interesting Mariner mission conducted by the 
first generation of these spacecraft was the fly-by of Venus and Mercury 
by Mariner 10 in 1973, in which a gravity-assist trajectory was used for 
the first time to permit the spacecraft to fly past both Venus and Mercury. 
A picture of the Mariner 10 spacecraft that performed this mission is 
shown in Figure 10.3. All of the Mariners were three-axis, stabilized plat- 
forms using solar panels to provide the electric power. The scientific in- 

FIGURE 10.3 Mariner 10 spacecraft is shown in this picture. Mariner 10 flew 
past both Venus and Mercury in 1974 and 1975 using a gravity-assist trajectory. 
Mariner 10 is an example of a three-axis stabilized spacecraft used for the explo- 
ration of the inner planets. 
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strument packages consisted of a camera and various magnetic field de- 
tectors and charged particle counters. A picture of the planet Mercury 
made of a composite of the Mariner I0 fly-by pictures is shown in Figure 
10.4. Mariner 10 made three fly-bys of Mercury, in March 1974, Septem- 
ber 1974. and March 1975. 

The second generation of Mariner spacecraft was more sophisticated. 
They were heavier (over 1000 kgm vs. 20WOO kgm) and were also 
three-axis stabilized. By far, the most important mission was by Mariner 
9, the first spacecrafi ever put in orbit around another planet. Mariner 9 
took thousands of high-resolution pictures of the Martian surface, which 
provided the information necessary to select the landing site for Viking. 

The Viking spacecraft was definitely the most sophisticated produced 
up to 1975. It consisted of an orbiter and a lander that were put on a tra- 
jectory to Mars as a single unit. This spacecraft was placed in an orbit 
around Mars. At the appropriate time, the lander was separated from the 
spacecraft and then descended to the surface of the planet Mars. The or- 
biter continued to remain in Mars orbit to take pictures to augment and 
extend what was done with Mariner 9. The Viking landers were placed 
on the planet in 1976, and they were the first to make “in situ” analyses 
of the soil and the atmosphere of another planet. The Viking landers 

FIGURE 10.4 Composite picture of Mercury taken by Mariner 10 on March 
29, 1974. The spacecraft approached to within 43 1 miles of the planet’s surface. 
(Courtesy of the Planetary Society.) 
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also took spectacular pictures on the surface of Mars. A sample is 
shown in Figure 10.5, and a picture of the Viking lander is shown in 
Figure 10.6. An important part of the Viking lander mission was to look 
for biological activity on the surface of the planet. No evidence of bio- 
logical activity was found. Figure 10.7 shows a composite picture of a 
Mercator projection of the surface of Mars taken by Mariner 9 and the 
Viking orbiters. 

In the field of planetary exploration during the 1970s and the 1980s, 
the Soviet Union concentrated on the planet Venus. About two dozen Ven- 
era spacecraft were launched by the Soviet Union starting in 1961. The 
most spectacular was Venera 9, which carried a probe that reached the 
surface of the planet in June 1975. A picture of the surface ofVenus taken 
by Venera 9 is shown in Figure 10.8. Venera 9 was the first spacecraft to 
return a picture taken on the surface of another planet. 

The United States also carried out an active program to explore the 
planet Venus. Pioneer Venus consisted of two spacecraft, an orbiter and a 
“multiprobe” spacecraft. A picture of the “multiprobe” spacecraft is 
shown in Figure 10.9. The multiprobe spacecraft had a spin-stabilized bus 
that carried four probes that were released simultaneously into the Venus 
atmosphere to measure wind patterns by determining the differential mo- 

FIGURE 10.5 Picture of the Martian surface as taken by the Viking 2 lander. 
This view looks out over Utopia Plain on the northern hemisphere of Mars. It is 
probably a typical example of Martian flatlands. (Courtesy of NASA.) 
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FIGURE 10.6 Viking Lander. This was one of the most sophisticated spacecraft 
ever built. The instrumentation on board included imaging, soil analysis, meteo- 
rological, and seismological equipment. In addition, there was an experiment de- 
signed to look for evidence of biological activity on Mars. (Courtesy of NASA.) 

tion of the probes. A picture of Venus showing the dense cloud cover and 
the pattern of atmospheric motion is shown in Figure 10.10. (This picture 
was taken by Pioneer Venus in 1980.) High surface winds with speeds 
well over 161 km/h were measured by the multiprobe. 

The Pioneer Venus orbiter carried a radar altimeter, which, along with 
a precise determination of the orbital ephemeris, led to the creation of the 
first good map of the planet Venus. The orbiter, like the multiprobe bus, 
was a small, relatively simple spin-stabilized spacecraft. The radar was 
necessary because, unlike visible light, radar can penetrate the thick 
cloud cover of the planet Venus. Figure 10.1 1 shows a globe of Venus 
constructed using the radar altimeter compared with what a globe of 
Earth would look like using the same instrumentation. The most signifi- 
cam finding of the Pioneer Venus orbiter was to confirm that the surface 
of Venus shows features that are very similar to those on Earth. There are 
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FIGURE 10.8 Picture of the surface of Venus taken with a camera mounted on 
Veneru 13. (Courtesy of NASA.) 

FIGURE 10.9 Picture of the Pioneer Venus multiprobe spacecraft. Four atmos- 
pheric entry probes are shown mounted on the spacecraft. The spacecraft is spin 
stabilized, and this allowed almost simultaneous deployment of the probes before 
the spacecraft reached Venus. All four probes survived atmospheric entry and re- 
turned valuable information about the dynamics of the Venus atmosphere. One 
of the probes survived the landing and continued to broadcast for about an hour. 
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FIGURE 10.10 Picture of Venus taken by the Pioneer Venus Orbiter spacecraft. 
I t  is not possible to see the surface of the planet using visible light. Shows weath- 
er patterns in the Venus atmosphere typical of the upper layers of the atmosphere. 
(Courtesy of NASA.) 

continents, mountain ranges, and rift valleys, and there is evidence that 
there are volcanic mountains. 

The final chapter of the exploration of Venus was written by the Mag- 
ellan spacecraft, which was launched in May 1989. Magellan was a large 
three-axis stabilized spacecraft, which was essentially an advanced 
Manner design. The Magellan carried a high-resolution imaging radar 
that was able to take pictures of features on the surface with dimensions 
of the order of 10 m, which is 100 times better than the radar altimeter on 
the Pioneer Venus orbiter. Figure 10.12 shows a computer reconstruction 
of images taken by Magellan that illustrates what the surface of Venus 
would look like from a low-flying airplane. This spectacular picture is an 
excellent demonstration of what can actually be done with robotic space- 
craft. 

Planning for the exploration of the outer planets of the solar system 
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FlGURE 10.1 1 A globe of the planet Venus made from the radar altimeter data 
taken by the Pioneer Venus Orbiter compared with a globe of the Earth if i t  were 
made by a similar instrument. (Courtesy of NASA.) 

(Jupiter, Saturn, Uranus, Neptune, and Pluto) began in the mid-1960s 
when it was recognized that in the late 1970s and early 1980s, the config- 
uration of the outer planets would be peculiarly favorable, so that a single 
spacecraft might, with the use of gravity-assist procedures, fly past all of 
the outer planets. Thus, the concept of the “Grand Tour” was born. As 
things turned out, schedule delays made it impossible to execute the 
Grand Tour. However, by 1989, Voyager 2. which was essentially the fol- 
low-up to the Grand Tour, had flown past the planet Neptune, leaving Plu- 
to the only planet in the solar system not visited by a robotic spacecraft. 
The Grand Tour using a Saturn launch vehicle was eventually abandoned. 
As a substitute, the Voyager program was initiated, which called for a 
very sophisticated spacecraft with three-axis stabilization, high-resolu- 
tion cameras, and an array of other instruments intended to measure 
charged particle fluxes, plasmas, and magnetic fields. 

Since the Voyager spacecraft would be very expensive-ultimately, the 
Voyager program would cost almost two billion dollars-it was decided 
in 1969 to initiate another outer planet exploration program called Pio- 
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neer. The intent was to send two small and inexpensive spacecraft to the 
outer planets to answer two questions: 

1. Could a spacecraft survive passing through the asteroid belt? In the 
1960s, our knowledge of the mass distribution of particles in the as- 
teroid belt was nonexistent, and it would be necessary to find out 
whether it would be safe to pass through. 

2. What is the distribution and the flux of energetic charged particles 
trapped in Jupiter’s magnetic field? Are the radiation levels high 
enough so that the spacecraft would be damaged or destroyed? It 
was known that Jupiter had a strong magnetic field, but the precise 
radiation levels created by the charged particles trapped in the field 
were not known. 

The Pioneer spacecraft were designed to answer these questions. The 
Pioneer Outer Planet program was approved early in 1969, and it called 
for the development of two small spacecraft (250 kgm) that would be spin 
stabilized and that could be launched to reach Jupiter by a relatively, inex- 
pensive launch vehicle, the Atlas-Centaur. The total program cost for Pio- 
neer was capped at $100 million for two spacecraft to be called Pioneer 
10 and Pioneer 11. 

Pioneer 10 was launched on March 3, 1972, and flew past Jupiter in 
December 1974. Because the spacecraft was on a gravity-assist trajecto- 
ry, during which the velocity of the spacecraft was increased beyond the 
escape velocity out of the solar system in the encounter with Jupiter, Pio- 
neer I0 became the first man-made object to leave the solar system. 

Figure 10.13 shows a picture of the Pioneer 10 spacecraft. It is sub- 
stantially different from the Mariners that were designed to look at the 
inner planets. The dominant feature of Pioneer 10 and any outer planet 
spacecraft is the high-gain antenna necessary to send signals back from 
the vast distances that the outer planet spacecraft must reach. The sec- 
ond feature is that there are no solar cell panels on these spacecraft. The 
Sun is simply too far away beyond the orbit of Mars to power the space- 
craft, and therefore nuclear power supplies, called radioisotope thermal 
generators (RTGs), must be used. These power supplies use the radioac- 
tive isotope, plutonium-238, as a heat source, and they can last a long 
time. The second Pioneer, Pioneer 11, was launched on April 6, 1973, 
and flew past Jupiter in December 1975. It was then put on a trajectory 
to fly past Saturn and became the first spacecraft to reach Saturn in 
September 1979 and to take close-up pictures of the planet’s spectacular 
ring system. 
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FIGURE 10.13 Picture shows a line drawing of the identical Pioneer 10 and Pi- 
oneer ll spacecraft. Pioneer I0 was the first spacecraft to fly past the orbit of 
Mars, fly through the asteroid belt, conduct a close fly-by of Jupiter, and then be 
put on a trajectory to leave the solar system. Pioneer I I was the first spacecraft 
to conduct close fly-bys of both Jupiter and Saturn. The Pioneer spacecraft were 
spin stabilized and used a radioisotope-fueled (plutonium-238) power supply. Pi- 
oneer 10 is now (1996) a little less than 5 billion miles (50 a.u.) from Earth and 
is still in contact with the ground controllers. (From Pioneer Odyssey, by R. 0. 
Fimmel, W. Swindell, and E. Burgess, NASA SP-396, 1977.) 

In addition to the scientific results that were obtained, the Pioneer 
spacecraft also answered the questions that are listed on page 204. It 
was demonstrated both that it is safe to fly a spacecraft through the as- 
teroid belt and that a properly designed spacecraft can fly past Jupiter 
without suffering unacceptable damage. Thus, the Voyager program was 
given the go-ahead. As in the case of Pioneer, there were two spacecraft, 
Voyager I and hyager 2. Voyager I was launched on September 5 ,  
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1977, and it produced some of the most spectacular pictures yet taken of 
Jupiter and Saturn and their satellites. Voyuger 2 executed the most com- 
prehensive space voyage ever performed by an exploratory vehicle. 
Launched on August 20, 1977, the spacecraft flew past Jupiter (on July 
9, 19791, Saturn (on August 25, 1981), Uranus (on January 4, 1986), 
and Neptune (on August 15, 1989). Voyager 2 is now also on a trajecto- 
ry that will take it out of the solar system. Two samples of the kind of 
results that were obtained are shown in Figure 10.12 and 10.13. In 
Figure 10.14, we show a volcanic eruption on the surface of Jupiter’s 
satellite, 10. Figure 10.15 shows a spectacular picture of the Saturn ring 
system that reveals its enormously complex structure. Voyager 2 is def- 
initely one of the most successhl space exploration programs ever exe- 
cuted. 

We are now ready to do some calculations. The purpose of the previ- 
ous sections has been to describe the exploration of the solar system that 

FIGURE 10.14 Picture shows a volcanic eruption on the Jovian satellite, 10. 
The plume extends 100 miles above the surface of the satellite. (Courtesy of 
NASA.) 
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FIGURE 10.15 This picture of Saturn’s ring system illustrates its great com- 
plexity. It was taken by Voyager 2. (Courtesy of NASA.) 

has been performed in general terms. Some of the maneuvers that space- 
craft must execute to perform these missions will be described in some 
detail. We shall first determine the “escape” velocity from the solar sys- 
tem starting from Earth. Second, we will examine the trajectories of 
spacecraft as they fly from one planet to another and particularly the time 
that it takes to make interplanetary trips. Finally, we will examine how 
spacecraft can pick up or lose speed in encounters with planets moving in 
their orbits. This is the so-called slingshot effect. 

Let us start by looking at some numbers. The first problem is to esti- 
mate the influence of the Sun. In dealing with Earth-orbiting spacecraft, 
we have the following number: 

iiE = /? = 7905 k d s  = 28,458 km/h (1  0.4) 
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where ME is the mass of Earth and R E  is the radius of Earth. This is a 
known number, and it is the velocity that an object must have in order to 
sustain a circular orbit if the object could move at the radius RE. The 
“gravitational influence” of Earth might be defined as 

= 28,458 a (1 0.5) 

and RE = 637 1 km, so that we can write for this constant 

= 28,458 x 79.8 2: 2.27 x lo6 (10.6) 

where this constant is measured in the “metric” units that we have been 
using. 

We can use the motion of Earth around the Sun to calculate the same 
constant for the Sun, or what we might call the gravitational influence of 
the Sun. In this case, 

(10.7) 

where vo is the velocity of Earth in orbit, R, the radius of Earth’s orbit 
around the Sun, and Ms the mass of the Sun. The assumption in equation 
(10.7) is that the orbit of Earth is approximately circular. The numbers 
can now be evaluated as follows: 

(10.8) 

and we have also, for the period of Earth’s orbit, To, around the Sun, 

2lTRo 
-= To = 1 year 

VO 
(1 0.9) 

Now the radius of Earth’s orbit is 

Ro = 1.496 x lo8 km ( 1 0.1 0) 

and the period is 

To = 1 year = 365 x 24 = 8.76 x lo3 h (10.1 1) 
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Thus we have 

2nR0 
v o =  - 

TO 

= 107,200 km/h ( 10.1 2) 

which is almost four times larger than the orbital velocity of a spacecraft 
moving around Earth in a low altitude orbit. 

The gravitational influence of the Sun can now be estimated in the 
same way that was done for the case of Earth in equation (1 0.5): 

= 107,200 x 12.2 x l o3=  1.31 x lo9 (10.13) 

Thus the gravitational influence of the Sun is about 577 times as great as 
that of Earth. 

From equations (10.6) and (10.13), it is possible to estimate the ratio of 
the Sun’s mass to that of Earth: 

M,= (577)2M, 

= (333,OOO)M, (10.14) 

This is approximately the same as the correct ratio. 
The escape velocity of a spacecraft can now be estimated, where by 

“escape” we mean escape fiom the solar system. This calculation must 
be performed assuming that the spacecraft already has Earth orbital ve- 
locity of 107,200 kmh. What we need to do then is to calculate the ve- 
locity that the spacecraft needs to acquire to escape completely from the 
solar system. To do that, we will refer to Figure 10.16. Earth’s orbit will 
be assumed to be approximately circular with a radius Ro of about 149.6 
x lo6 km. We will assume that the spacecraft is in a near-Earth equato- 
rial orbit around Earth. The question is then what additional velocity in- 
crement must the spacecraft acquire in order to get into an escape orbit 
from the Sun. From Figure 10.16, it is obvious that the total velocity of 
the spacecraft at the point in the spacecraft orbit where the two veloci- 
ties add is 

v(spacecraft) = 107,266 + 27,750 = 135,016 km/h (10.15) 
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FIGURE 10.16 

To escape from the solar system, the lowest energy orbit that permits es- 
cape is aparabolic orbit, which would have a closest distance of approach 
to the Sun equal to the radius of Earth. We must now determine the veloc- 
ity of an object in such an orbit, and then the velocity increment required 
is the difference between that velocity and the velocity that the spacecraft 
already has as a result of its own motion around Earth and the motion of 
Earth around the Sun [see equation (10. I5)]. 

The total energy of a parabolic orbit is zero, as we have shown in 
Chapter 6, so that we can equate the potential and kinetic energy at any 
point in the orbit: 

GM,m 
fmv2(escape) = ~ 

Ro 

and so 

Therefore the velocity increment required for escape is 

(10.16) 

Au = u(escape) - (uo + uE) 

= 151,674 - 135,016 = 16,658 kmlh 
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This is a substantial velocity increment that is necessary to get out of the 
solar system. It is not easy to get away from the Sun! 

The final topic that we wish to discuss has to do with the so-called 
slingshot effect. This is the phenomenon that occurs when a spacecraft 
encounters a planet and gains or loses velocity that permits it to perform 
the next portion of the mission. The slingshot effect was first used by the 
Pioneer 10 spacecraft during the Jupiter encounter on December 4, 1973, 
to permit the spacecraft to achieve a velocity high enough to get out of 
the solar system. Subsequently on February 5 ,  1974 Mariner 10 also used 
the slingshot effect to get from the orbit of Venus to the orbit of Mercury. 
In this case also, the trajectory of the spacecraft had to be adjusted to gain 
velocity. The detailed calculation is complex because of the nature of the 
orbit, but the principle can be described quite easily. In the case of Pio- 
neer 10, the problem was to fly by Jupiter to gain velocity. The velocity 
gain comes about because of the conservation of momentum. Since the 
planet is much larger than the spacecraft, its recoil can be essentially ig- 
nored. We will first look at a very specific case of the spacecraft’s en- 
counter with Jupiter to explain the principle. 

We start by looking at Figure 10.17, The first step is to put the space- 

ohmann 
orbit 

FIGURE: 10.17 
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craft into a Hohmann transfer orbit as shown. The orbital velocity of 
Jupiter, v,, can be calculated from the data on Jupiter in Table 10.1 : 

Now, the radius Rj of the orbit of Jupiter is given as 

R j  = 5.2 x 149,637 

= 778,000 x lo6 km 

( 10.17) 

( 1  0.18) 

The velocity of Jupiter in orbit is therefore 

1.31 x lo9 1.31 
d 7 7 8  x lo6 27.9 

x lo6 - -- UJ = 

= 46,953 km/h ( 1 0.1 9) 

As expected, the velocity of Jupiter is smaller than the velocity of Earth 
in its orbit. 

As we saw in Chapter 8, the velocity of the spacecraft when it reaches 
Jupiter in the Hohmann transfer orbit is smaller than the velocity of an 
object in a circular orbit at the radius corresponding to apogee. From 
equation (8.29), we have, by a simple manipulation to transform from 
perigee to apogee, 

( I  0.20) 

where e is the eccentricity of the Hohmann transfer orbit. Now, the eccen- 
tricity of the transfer orbit can be worked out from Figure 8.4. The semi- 
major axis of the ellipse corresponding to the Hohmann transfer orbit is 

2a(Jupiter transfer) = 778 + 150 = 928 x 1 O6 km 

= 464 x lo6 km (10.21) 

From Figure 10.17, it can be seen that we can calculate the eccentricity as 
follows: 

a(Jupiter transfer)e + Ro = a(Jupiter transfer) (10.22) 
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and substituting the numbers yields 

150 
a(Jupiter transfer) 464 

=- RO 
1 - e =  

150 
464 

e = l - - =  1 - 0.323 = 0.677 (1 0.23) 

Thus, the velocity at apogee is 

uA(transfer orbit) = v, 

= 20,612 km/h (10.24) 

The velocity at apogee is therefore substantially smaller than the velocity 
of Jupiter in its orbit. 

Before we look at the slingshot effect, there are two other points about 
the trip to Jupiter that need to be considered. One is how often the oppor- 
tunity occurs to go to Jupiter. The answer is approximately once a year 
since the period of Jupiter's orbit is 11.9 years. Thus, Earth moves much 
more rapidly in its orbit than Jupiter so that for all practical purposes 
Jupiter stands still. Actually, it turns out that the opportunity arises once 
every 13 months, as we can see from Figure 10.18. 

The second question that we should answer is how long it takes the 
spacecraft to get from Earth to Jupiter. The period of the elliptic 
Hohmann transfer orbit can be calculated from Kepler's law using the fact 
that the period depends only on the semimajor axis. Thus, we can com- 
pare the period of the transfer orbit to the period of Earth in its orbit, To, 
using the following relationship: 

T2(transfer orbit) a3(trarsfer orbit) - -- (10.25) GI R: 

which reduces to 

qtransfer orbit) = To [ ___ ;;:;;: 1"' 
= 5.44 years (10.26) 
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FIGURE 10.18 

Now, since the spacecraft executes only haifthe transfer orbit, the time it 
takes to get to Jupiter is 

T = 2.72 years (10.27) 

The last point now is to deal with the slingshot effect, This is quite 
complicated since the gravitational field of Jupiter complicates the situ- 
ation, as shown in Figure 10.19. Jupiter is moving faster than the space- 

Influence of Jupiter's 

transfer orbit 

, . Influence of Jupiter's 

\ transfer orbit 

FIGURE 10.19 
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craft [see equations (10.19) and (10.24)], so that the problem is to place 
the spacecraft in front of the planet and to let the planet catch up. The 
mechanism is then to let Jupiter transfer momentum to the spacecraft. 
The actual rigorous calculation of this effect is rather complex since it 
will involve the detailed calculation of the orbit of the spacecraft around 
the planet Jupiter. We will simplify the situation by assuming that 
Jupiter is a hard sphere and that the momentum transfer calculation can 
be made by assuming an elastic collision with the hard sphere. We will 
also assume that the gravitational field within the planet’s “influence” 
will pull the spacecraft toward the planet. This velocity component is 
not important in the case when the spacecraft must be speeded up, but 
we will see that it is necessary in the case when we want to slow the 
spacecraft down. 

Figure 10.20 illustrates the situation described in the previous para- 
graph. It is obvious that the velocity of the spacecraft relative to Jupiter is 
such that the spacecraft is moving toward Jupiter. Let us transform to a 
coordinate system in which Jupiter is at rest. The relative velocity of the 
spacecraft is 

v(spacecraft-relative initial) = -vJ + v(spacecraft) ( 10.28) 

Now, if the spacecraft makes an elastic collision with Jupiter, the velocity 
is reversed so that the final velocity of the spacecraft after the collision is 

v(spacecrafi-relative final) = +(Jupiter +  spacecr craft)] (10.29) 

Spacecraft  Jupiter - 
v (spacecraft )  

\ 
FIGURE 10.20 
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Now, transforming back to the coordinate system in which Jupiter is mov- 
ing, we have, for the final velocity of the spacecraft in the original coordi- 
nate system, 

v(spacecraft-final) = 271, - v(spacecraft) (1 0.30) 

During the collision, therefore, the spacecraft picks up twice the velocity 
of Jupiter. Thus, the final velocity of the spacecraft is 

v(spacecraft final) = 93,906 - 20,612 = 73,294 km/h (10.3 1) 

The question is whether this velocity is large enough to escape from the 
solar system. What we need to do is to calculate the escape velocity from 
the orbit of Jupiter. Equation (10.16) says that 

where Rw is the radius of Jupiter’s orbit. Thus 

$escape) = 66,392 km/h (10.32) 

From this calculation, it can be seen that the velocity of the spacecraft af- 
ter the collision exceeds the escape velocity. This is how Pioneer 10 be- 
came the first man-made object to leave the solar system. The actual tra- 
jectories of Pioneer I0 and Pioneer I1 are shown in Figure 10.21. The 
gravity-assist trajectories of both spacecraft are clearly shown as they 
pass by each planet. Both spacecraft passed the orbit of Pluto in 1990. Pi- 
oneer 10 is now a little less than five billion miles from Earth (about 50 
a.u.), and until March 31, 1997, it was in contact with the spacecraft’s 
controllers at the NASA-Ames Research Center. Contact with the space- 
craft was terminated not because the spacecraft failed but because of 
higher priority missions requiring more of the limited resources of the 
deep space communication network. 

A similar calculation can be performed to show how a spacecraft can 
lose speed in a collision. In this case, the spacecraft approaches the plan- 
et from the right rather than the left. Thus, the influence of gravity is im- 
portant because without the velocity increment provided by gravity the 
spacecraft will never reach the planet. It is, of course, this point that 
makes the calculation of the velocity decrement more complex than that 
for the velocity increment. 
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By now many good works on planetary exploration are available that 
would be appropriate for further reading. At the risk of being somewhat 
arbitrary, the following books are recommended. A classic in the field is 
Nobel Laureate Harold Urey’s The Planets: Their Origin and Develop- 
ment published in 1952. This book is an excellent description of the state 
of knowledge before the era of planetary exploration with space probes 
began. A good place to start learning about the detailed technical results 
of some of the early planetary spacecraft flights is in the Evolution ofthe 
Solar System edited by Hannes Alfven and Gustav Arrhenius. In addition, 
separate books on each planet, that has been investigated in more detail, 
are also available. 

Mars is, of course, a special case because we have sent three orbiters 
(Mariner 9 in 197 1 and Viking Orbiters I and N in 1976) and have landed 
robotic spacecraft on the surface of the planet three times (Vikings I and 
II in 1976 and Mars Pathfinder in 1997). Two comprehensive works are 
On Mars: Exploration of the Red Planet 1958-1978 by Edward C .  Ezel! 
and Linda N. Ezell and “Scientific Results of the Viking Project” pub- 
lished by the American Geophysical Union in 1977 which is a collection 
of papers on the subject of Viking that appeared in The Journal of Geo- 
physical Research in 1977. There are some excellent compilations of pic- 
tures taken of the Martian surface by Mariner 9 and the Viking Landers. 
The best of these are The Martian Landscape by the Viking Lander Imag- 
ing Team and The Channels of Mars by Victor R. Baker. In addition to the 
technical literature, there are good popular works about Mars that make 
worthwhile reading. These include Mars Beckons by John Noble Wilford 
and The PIanet Mars: A History of Observation and Discovery by 
William Sheehan. No list of books about Mars would be complete with- 
out mentioning Percival Lowell’s Mars and Its Canals published in 1906 
in which the author describes his observations and then extrapolates in an 
imaginative but unfortunately unwarranted manner to suggest that Mars 
is inhabited by intelligent beings. 

The literature on Venus is also extensive but less oriented toward the 
general public because Venus is not as exciting as Mars in terms of ulti- 
mately sending people to the planet. A good early description of the ex- 
ploration of Venus using spacecraft is The Venus Atmosphere edited by 
Robert Jastrow and S. I. Rasool published in 1969. Subsequent results of 
the Pioneer Venus flights are described in “Pioneer Venus,” a collection of 
papers from The Journal of Geophysical Research published in 1980 and 
Pioneer Venus by Richard 0. Fimmel, Lawrence Colin and Eric Burgess. 
The Magellan results are presented in Venus: The Geological Story by Pe- 
ter Cattermole, The Johns Hopkins University Press (Baltimore), 1994. 
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With respect to the outer planets, there are a number of books that are 
worth examining. A comprehensive early work is Jupiter edited by Tom 
Gehrels. In addition, NASA has published some excellent books on the 
Pioneer and the Voyager missions to the outer planets. These include, 
Pioneer Odyssey by Richard 0. Fimmel, William Swindell and Eric 
.Burgess; Pioneer: First to Jupiter, Saturn, and Beyond by Richard 0. 
Fimmel, James A. Van Allen and Eric Burgess; Voyage to Jtcpiter ( 1  980) 
and Voyage to Saturn (1982) both by David Morrison. A complete col- 
lection of papers published in The Journal of Geophysical Research as a 
result of the Pioneer I 1  fly-by of Saturn was published in 1980 by the 
American Geophysical Union. An excellent recent work on Jupiter is 
The Giant Planet Jupiter published in 1995 by John H .  Rogers. Gary 
Hunt and Patrick Moore published an excellent illustrated study of the 
ringed-planet called Saturn in 1982. There are several good books on 
Uranus and Neptune. Among these are Uranus: The Planet, Rings and 
Satellites by Ellis D. Miner published in 1990; The Planet Neptune by 
Patrick Moore published in 1988; and Uranus and Neptune: The Distant 
Giants (1988) and Far Encounter: The Neptune System (1991) both by 
Eric Burgess. 

PROBLEMS 

10.1. The semimajor axis of the orbit of Neptune is 30 a.u. and that of 
Pluto is 39.5 a.u. The eccentricity of Neptune’s orbit is 0.01 and 
that of Pluto is 0.25. 

(a) Show that a portion of Pluto’s orbit is located inside the orbit of 
Neptune. 

(b) What fraction of Pluto’s orbital period is spent inside the orbit 
of Neptune? (Assume that the orbit of Neptune is circular for 
the purpose of this calculation.) 

10.2. The influence of the Sun dominates the motion of the planets in the 
solar system. However, the planets also influence each other 
through the gravitational forces that they exert on each other. The 
maximum force that a planet can exert is when the planet is in the 
position shown in the accompanying diagram. The closest ap- 
proach is the distance RP - RE. Earth is most heavily influenced by 
four planets, Venus, Mars, Jupiter, and Saturn. 
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Closest approach 
i s  the  distance 

(R p-RE) 

(a) Which of these planets exerts the largest maximum force on 

(b) Which of the planets exerts the smallest maximum force on 
Earth? 

Earth? 

10.3. An asteroid that has one-tenth of the mass of the Moon strikes the 
Moon, as shown in the accompanying diagram. The moon is mov- 
ing with a velocity vM with respect to Earth, and the asteroid is 
moving toward the Moon along the line joining the centers of the 
two bodies with a velocity v,,, which is equal in magnitude to the 
velocity of the Moon but in the opposite direction. In the collision, 
the entire momentum of the asteroid is transferred to the Moon. 
(Another way of saying this is that the collision is completely “in- 
elastic.”) Assume that initially the Moon is a circular orbit around 
the Earth with a radius of about 384,000 km. 

(a) What is the velocity of the Moon before and after the impact of 
the asteroid on the Moon? 

(b) After the collision, the Moon will be in an elliptic orbit around 
Earth. Determine the semimajor axis of the new orbit and also 
the eccentricity. 



CHAPTER 11 

GENERAL PERTURBATION 
THEORY AND A SPECIFIC 
APPLICATION TO THE MOTION 
OF THE PLANET MERCURY 

In prior chapters, we have always made the assumption that we are deal- 
ing only with two bodies interacting with each other through a gravita- 
tional field. In reality, this situation never occurs, and we have used the 
two-body approximation first to illustrate basic principles and then to de- 
velop and illustrate some of the methods used for the determination of or- 
bits (Kepler’s equation and Lambert’s theorem). Now we have to look at 
real situations and to determine how best to include the effects that we 
have so far ignored. 

In the next two chapters, we will consider two important cases, the so- 
lar system and the behavior of Earth-orbiting artificial satellites. In each 
of these problems, the approximations we have made in the past break 
down. The solar system consists of more than two bodies, and in develop- 
ing more accurate orbits for the planets, it is necessary to consider not 
only the influence of the Sun but also that which the other planets orbit- 
ing the Sun exert on the planet whose orbit we are trying to determine. 
Not unexpectedly, we shall learn that the largest planet in the solar sys- 
tem, Jupiter, is the most important and that Jupiter exerts measurable in- 
fluence on the orbits of the other planets in the solar system. This influ- 
ence is still relatively small because the Sun contains 99.86% of the mass 
of the solar system and Jupiter only about 0.1%. Nevertheless, the accu- 
racy of modern astronomical techniques makes it possible to make signif- 
icant measurements of even very small deviations from the two-body re- 
sults. 
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Somewhat similar considerations apply to Earth-orbiting satellites. In 
this case, Earth is the dominant source of the gravitational field that de- 
termines the behavior of the satellite. However, both the Moon and the 
Sun are large enough to exert enough influence on the motion of the 
satellite so that it can be measured. Once again, the fact is that we are not 
dealing with a pure two-body situation. An even more important effect re- 
sults from the fact that Earth is not a perfect sphere, nor is it perfectly ho- 
mogeneous. We showed in Chapter 2 that the source of Earth’s gravita- 
tional field can be considered as located at the center of the sphere. 
Because of the centrifugal forces that result from Earth’s rotation on its 
axis, Earth is an oblate spheroid rather than a sphere. This means that the 
diameter of Earth measured in the equatorial plane is somewhat larger 
than the diameter measured along the axis of rotation that joins the north 
and the south pole (the difference is about 21 km). Another important 
factor that affects the orbits of Earth satellites is that Earth’s mass is not 
distributed homogeneously. There is, of course, a radial dependence of 
the mass as measured from Earth’s center with the largest density at the 
center of Earth and decreasing as we move out from the center. If this 
were all, then there would be no effect since the mass of Earth could still 
be considered located at Earth’s center. (This can easily be seen by look- 
ing at the derivation in Chapter 2.) However, Earth’s mass distribution 
also depends on the latitude and the longitude, that is, on the azimuthal 
angle (0) and on the polar angle (+). This means that Earth’s center of 
mass is no longer located at the geometric center of the oblate spheroid so 
that the behavior of satellite orbits is more complicated than the two-body 
result , 

In the case of the nonspherical and nonhomogeneous Earth, we are 
again fortunate in the sense that the deviations from perfect, uniform 
sphericity are small. Once again, our ability to make very accurate deter- 
minations of satellite orbits makes it possible to use satellite orbital mea- 
surements to learn about the structure of Earth even though the deviations 
from orbits for a perfectly spherical Earth are small. We shall now de- 
scribe mathematical techniques to calculate the orbits of planets and 
satellites when small deviations from the “perfect” two-body problem ex- 
ist. These techniques are described by the general term perturbation theo- 
ry. 

The fimdamental idea of perturbation theory can be described as fol- 
lows: If a given problem can be approximated by a two-body problem, 
then it is possible to use the exact solution of the two-body problem to de- 
rive equations that have as a solution the difference between the two-body 
solution and that produced by the small perturbation. In this way, it is 
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No 
sliding 
friction 

possible to determine the changes in the orbit that the perturbation pro- 
duces. To illustrate this procedure, we shall start by looking at an example 
that makes the principle of perturbation theory transparent: the simple 
harmonic oscillator. 

The simple harmonic oscillator is the one-dimensional mechanical sys- 
tem illustrated in Figure 1 1.1. It consists of a mass m attached to a spring 
with a spring constant k. When the spring is neither extended nor corn- 
pressed, the mass m is located at the point x = 0. If the mass is set in motion 
and then released, the spring will exert a force on the mass that is propor- 
tional to the displacement of the mass from the equilibrium point x = 0. 
Throughout the motion, the force exerted by the spring will always be ex- 
actly equal and opposite in direction to the inertial force (the time rate of 
change of the momentum) of the mass. If there are no dissipative forces 
(frictional forces as the mass slides along the plane or energy dissipation as 
the spring extends and compresses), then the equation of motion is 

k m I  

I 
I 

I I 

d 'x d 2x 

dt2 dt2 
m---=-kx or m - - - + k x = O  (11.1) 

The general solution of this equation is 

x = a sin ot + b cos ot (11.2) 

in which the amplitudes Q and b are appropriate constants of integration. 
Equation (1 1.2) says that the mass oscillates around the point x = 0 with 
an amplitude A and a phase angle O0 defined by the equation 

x = A sin(ot + 0,) (1 1.3) 
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where the amplitude A and the phase angle go can be related to the con- 
stants of integration a and b: 

a = A  cos 8,, and b = A  sin €lo (11.4) 

The motion described by equation (1 1.3) is a simple oscillation of the 
mass with a frequency defined by o. Substituting equation ( I  1.3) into 
equation (1 1.1) yields the following expression for the frequency: 

(1 1.5) 

The relationships we have developed are valid if there are no forces 
other than the spring acting on the oscillating mass. If we introduce a 
time-dependent external forceJt), then the equation of motion is 

d'x 

dt2 
m- + kx = f(t) (11.6) 

For the purpose of developing a usefbl perturbation theory, it is conve- 
nient to rewrite the equation of motion (1 1.6) as two coupled, first-order 
equations, rather than as one second-order equation. Let 

dx Y'X 

then we have, by substituting (1 1.7) into (1 1.6), 

dY m- + kx =f(t) 
dt 

(1 1.7) 

(1 1.8) 

Equations (1 1.8) and (1 1.7) constitute the set of coupled equations we 
need. Using equation (1 1 3, we can rewrite equation (1 1 -8) as 

- dY + & x =  At) - =g(t)  
dt m 

(1 1.9) 

where g(t) is the time-dependent acceleration produced by the forceflt). 
If the external force is zero, then the solutions of the coupled equations 
are, from equation (1 1.2), 

x = a sin ot+ b cos ot (11.10) 
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and 

y = ao cos ot  - b o  sin ot (1 1.1 1) 

We are now ready to apply the principle of perturbation theory that we 
have stated previously. What we will assume is that when the time-depen- 
dent force is applied to the oscillator, then the form of the solution will 
not change much from that of equation (1 1.10). The solution will still 
look like this: 

x = a(t)sin wt + b(t)cos o t  ( I  1.12) 

but now, a(t) and b(t) are no longer “constants.” They must be treated as 
functions of time. However, if the solution (1 1.12) is to retain the same 
form as the solution to equation (1 1.1 ), that is, when no force is present, 
then a(t) and b(t) must be slowly varying functions of time. If this condi- 
tion is not fulfilled, then the assumption that the same form can be used 
for the solution as in the case whenAc) = 0 breaks down. 

The final step is to derive differential equations for a(t) and b(t). To do 
that, we will substitute the solution (1 1.12) in equations (1 I .7) and (1 1.8) 
and retain the assumption that x(t )  and y(z) retain their functional forms. 
Thus 

dx da(t) 

dt dt 
y(t)  = a(t)w cos ot - b(t)osin wt = - = - sin or 

cos wc - b( t )o  sin ot (1 1 . 1  3)  db(t) + a(t)o cos o t  + - 
dt 

or 

(11.14) 

Using equation (1  1.13), we can write, for the time derivative of y(t), 

o sin wt - b(t)w2cos of d m  -- 
dt 

(11.15) 
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Using equations (1 1.15) and (1 1.12) in equation (1 1.9), we obtain 

o sin of - b(t)w2cos ol 
a t )  o cos ot - a(t)02sin o t  - - 

dt dt 

+ 02a(t)sin o t  + w2b(t)cos o t  = g(t) (11.16) 

Simplifying yields 

o sin ot = g(t)  o c o s o t -  - db(t) da(t) 
dt dt 

(11.17) 

If we now multiply equation (1 1.17) by cos o t  and equation (1 1.14) by 
o sin wt and add the equations, we have 

W )  da(t) 
w-(sin2wt + cos20r) = w- = g(t)cos ot (1 1.18) 

dt dt 

Likewise, multiplying (1 1-17) by sin wt and ( I  1.14) by o cos of, we ob- 
tain 

db(t) o- = -g(t)sin wt 
dt 

(11.19) 

Rewriting these yields two differential equations for the time-dependent 
coefficients a(t) and b(t): 

and 

(1 1.20) 

(1 1.21) 

It is worthwhile to repeat here that implicit in this procedure is the as- 
sumption that the form of the solution remains the same when the exter- 
nal force is applied. This means that the external force must be small 
compared to the force exerted on the mass by the spring. 

We are now ready to use this formulation to calculate what happens 
when different kinds of perturbing forces are applied. The simplest as- 
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surnption is that the applied external force is constant, that is, not a func- 
tion of time. In that case 

At) = mg( t )  = my ( 1  1.22) 

where y is the small acceleration produced by the external force. Since the 
perturbation is small, we will assume that a(t) and b(t) can be written as 

a(t) = a  + a(t) (1  1.23) 

and 

b(t) = b + P(t)  ( I  1.24) 

where a and b are the amplitudes of the unperturbed motion [ that is,flt) = 

01, and the hnctions a(t) and P(t) ,  which describe the time dependence im- 
posed by the external force, are always small compared to a and b. Using 
equations (1 1.23) and (1 1.24) in equations (1 1-19) and (1 1.20), we have 

and 

( 1  1.25) 

(1 1.26) sin ot -- _ _ -  dPtQ 
dt o 

Integrating these equations yields, for a(t) and P(t), 

(1  1.27) Y 
63 0 2  

a(t) = - I cos ot d(ot) = - sin ot 

and 

(1 1.28) Y 
0 2  

p(t) = 3 j’ -sin wt d(wt) = -cos ot 

There fore 

Y 
o2 

a(r) = a + -sin wt (1 I .29) 
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and 

(11.30) Y 
0 2  

b(t) = b + -cos ot 

Finally, substituting (1 1.20) and (1 1.29) into the solution of the perturbed 
equation yields 

Y Y 
o2 o2 

x( t )  = a sin wt + -sin2wt + 6 cos wt + -cos2ot 

and therefore 

(11.31) Y 
x(t )  = a sin ot + b cos ot + - 

0 2  

The motion of the perturbed harmonic oscillator is therefore represented 
by the sum of two terms, the first term on the right side, which is the so- 
lution of the unperturbed oscillator, and another term that describes the 
change due to the perturbation. If xo(t) is the solution of the unperturbed 
oscillator, then we can write, for (1 1.30), 

I) 
1 

x( t )  = xo(t) + - o2 (1  1.32) 

or more generally, 

x(t)  = xo(t) + Sx(t) (11.33) 

where the second term on the right side, &(t), is the change induced 
by the perturbation. The knction xo(t) is the unperturbed solution for 
the harmonic oscillator. Therefore, by following the procedures outlined, 
we have done what we have said about the form of perturbation solu- 
tions. 

Let us return to the problem we have been considering, a perturbation 
represented by the addition of the small constant force my. We can see 
from equation (1 1.3 1) that this perturbation has only one effect and that is 
to displace the equilibrium point of the oscillator by the distance ?lo2. 
This is physically reasonable since this displacement is exactly what 
would be expected if a small constant force my were applied to the mass 
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m when it is at rest. In that case, the displacement from equilibrium of the 
mass is 

( 1  1.34) 

when the equation for the frequency of the oscillator (1 1.5) is used. 

same frequency as that of the oscillator itself: 
A second common perturbation is one that varies sinusoidally with the 

f i t )  = ma(t)  = my cos wt 

so that 

g(t) = y cos wt ( 1  1.35) 

where y is a small constant acceleration. Using the methods developed in 
the previous case, we can write the differential equations for the quanti- 
ties a(i) and p(t) from equations (1  1.23) and ( I  1.24) as follows: 

d 4 t )  Y 
-= -cos2 wt 

dt w 

and 

dPW Y -- - --sin wt cos wt 
dt 0 

(1 1.36) 

( 1  1.37) 

Equations (1 1.35) and (1 1.36) can be integrated to yield 

and 

Y 
p(t) = -- I sin wt cos(wt) d(ot) = I sin ot d(sinwt) 

0 2  0 2  

(1  1.39) 
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The coefficients a(t) and b(t) that result from this perturbation can now 
be written as follows: 

( I  1.40) 
Y 

262 
a(t) = a + ---[cot + sin ot cos ot] 

and 

b(t) = b + ---pin2 Y ot 
2 0  

(1 1.41) 

Thus, the perturbed solution is 

Y 
x( t )  = a sin ot + b cos wt + -[of + sin2 ot + sin of cos ot] (1 1.42) 

262 

Once again, the perturbed solution has the proper form, the sum of the 
unperturbed solution for the oscillator plus a term caused by the perturba- 
tion. In this case, we see that the perturbation has three terms, the first in- 
creasing linearly with time and the other two varying periodically with 
time. Thus, as time increases, the first term begins to dominate, and we 
therefore have approximately 

Y t  
x(t) = xo(t) + - 

2 0  
(1 1.43) 

where xo(t) = a sin wt + b cos ot is the unperturbed solution. In this case, 
what happens is that the displacement of the harmonic oscillator increas- 
es linearly with time at a rate determined by the constant y/2w. This be- 
havior is quite common in both astronomical applications and in the be- 
havior of Earth-orbiting satellites. Linear growth with time such as this is 
called a “secular” variation. 

Finally, let us consider the case in which the perturbing force varies si- 
nusoidally with a frequency different from the natural frequency of the 
oscillator. The perturbing force is now 

f(t) = my sin o’t (1  1.44) 
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The differential equations for a ( t )  and P ( t )  now become 

d 4 t )  Y -- - - cos wt sin w’ t  
dt w 

and 

- d’(t) - _ _ -  sin wt sin w’ i  
dt w 

(1 1.45) 

(1  1.46) 

To integrate these equations, we use the half-angle formulas to evaluate 
the trigonometric functions: 

sin w’t cos wt = f sin(w + w’ ) t  + fsin(w - w’)t  

sin w’t sin o t  = icos(w - o ’ ) t  + fcos(o + o’) 
(1  1.47) 

Now let 

o l = w + w ’  and w 2 = 0 - w ’  

Therefore, the differential equations become 

Wt) Y 
-= -(sin w l t  + sin w2t) 

dt 2 0  

and 

dP(0 Y -- - -(cos o,t- cos w l t )  
dt 2 0  

Integrating these equations yields 

and 

(1 1.48) 

(1 1.49) 

(1  1 SO) 

(11.51) 

(1  1.52) 
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Therefore, the final solution for the perturbed oscillator in this case be- 
comes 

x(t) = aosin ot + bocos of 

) (11.53) 

The frequencies wI and o2 are called “beat” frequencies. 
An interesting case results when the frequency of the perturbing force, 

of ,  is close to that of the natural frequency of the oscillator. This means 
that 

01 >> 0 2  (1 1.54) 

and so the dominant terms in equation (1 1.52) are those where the de- 
nominator is small. Therefore, we can say that, approximately, 

x(r)  - x&) + - (sin w2t - cos w2t) (1 1.55) 
2002 

where the terms with wI as the denominator have been deleted. This per- 
turbation, therefore, leads to a change with a magnitude dominated by the 
magnitude of o2 and a time variation with the lower of the two beat fre- 
quencies (again 02) as the dominant term. 

We shall now apply the ideas we have developed to an important prob- 
lem in the dynamics of the solar system, the precession of the perihelion 
of Mercury. The phenomenon we are discussing is illustrated in Figure 
11.2. The picture shows the orbit of Mercury with the Sun at the focus. 
The perihelion is the point of closest approach of the planet to the Sun, 
and the aphelion is the point where the planet is farthest away from the 
Sun. (A word about nomenclature: In the case of satellite orbits around 
Earth, the closest approach of the satellite is called the perigee-from 
gem for earth-and the most distant is the apogee. In the case of plane- 
tary orbits around the Sun, the corresponding names are perihelion and 
aphelion-from helius for the Sun.) From Figure 11.2, we can see what 
precession of the perihelion means: The elliptic orbit of the planet is 
fixed in the (x’, y’) coordinate system, where the orbit is defined by the 
variables r andf, the true anomaly. There is another coordinate system 
(x, y) that is used to define how the ellipse behaves. The precession of the 
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Y' 

FIGURE 11.2 

perihelion of the orbit, or the axis of the ellipse, is defined by the behav- 
ior of the angle o. What is observed is that the angle o changes slowly as 
time goes on at a constant rate, doldt. We, therefore, have a secular varia- 
tion of o as we have defined it earlier in this chapter. 

We will begin by developing an understanding of why the orbit of 
Mercury slowly precesses around the Sun. Referring to the Table in Ap- 
pendix 11, the eccentricity of the orbit of Mercury is 

e = 0.2056 

(Only Pluto has a more eccentric orbit than Mercury.) The orbit of Mer- 
cury precesses around the Sun because of the influence of other planets 
of the solar system, and we will develop a qualitative description of the 
effect. Referring to Figure 1 1.3, we will look at the effects of two planets, 
Venus and Jupiter. Venus has influence because it is closest to Mercury 
and Jupiter's influence is due to its great mass. On the average, the dis- 
tance of Venus from Mercury is about 0.65 a.u., the maximum distance 
between the planets being a little more than one a.u., as shown in Figure 
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FIGURE 11.3 

1 1.3. The figure of merit of the influence of Venus on Mercury might be 
estimated as 

Mass of Venus 0.97 
=s - % 2.29 

(Average distance fiom Venus to Mercury)2 (0.65)2 

Similarly, the same estimate for Jupiter would yield 

Mass of Jupiter 318 - % 11.8 
(Average distance fiom Jupiter to Mercury)2 (5.2)2 

In making these estimates, we have used the numbers given in Table 10.1. 
It can be seen that Jupiter has about five times the gravitational influence 
of Venus on the orbit of Mercury. The effects of the other planets are all 
substantially smaller than Venus, and so it is a good first approximation 
to consider only Venus and Jupiter as the cause of the effect. 

The first question that must be answered is why the motion of these 
planets in their orbits should cause the precession that is observed. A 
qualitative explanation goes something like this: Mercury travels around 
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the Sun once in 88 days, Venus takes 224 days, and Jupiter takes 4333 
days to make one circuit around the Sun. Thus, Mercury travels around 
the Sun 2.5 times for each circuit of Venus and about 50 times for every 
one circuit by Jupiter. Since Venus moves about twenty times more rapid- 
ly with respect to Mercury than Jupiter, it will have a larger effect on the 
precession of the perihelion of Mercury’s orbit even though its gravita- 
tional influence is smaller. From the viewpoint of Venus and Jupiter, one 
could assume that the mass of Mercury is concentrated on a single point 
on the major axis of Mercury’s orbit, as shown in Figure 11.4. This is 
clearly a crude argument, but it illustrates what happens. It is difficult to 
calculate the effective center of mass of the orbit, but we can make a 
rough estimate. Because of Kepler’s second law-the law of equal 
areas-Mercury spends more time on the right side of the orbit than on 
the left. This happens because Mercury moves more slowly when it is far- 
ther away from the Sun. A rough measure of just where the efective cen- 
ter of mass of the orbit is can be obtained by looking at the velocity of 
Mercury at perihelion and aphelion. From the conservation of angular 
momentum and the notation in Figure 1 1.4, we have 

(a - ae)u(perihelion) = (a + ae)u(aphelion) ( 1  1.56) 

so that 

u@erihelion) 1 + e 1.2056 
u(aphe1ion) 1 - e  0.794 

_- -  1.52 (11.57) --= - 

Orbit of Mercury 
I 

I 

FIGURE 11.4 
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and therefore 

v(perihe1ion) = 1.52u(aphelion) ( I  I .58) 

Thus, roughly speaking, the time spent on the left side of the Sun com- 
pared to the right side of the Sun should be in inverse proportion to the 
average velocities on the left and the right. Approximately, then, we have 

t(lefi) u(aphe1ion) -- = 1.52 
t(right) u(perihe1ion) 

(1 1.59) 

On the average, then, Mercury spends about 50% more time on the right 
side than on the left. The effective center of mass of the orbit is therefore 
some distance D to the right side of the Sun. The calculation of the actual 
value of D is complicated. The purpose here has been to make a plausibil- 
ity argument that the effective center of mass of Mercury’s elliptic orbit is 
located at a point different from that of the center of mass of the Sun, 

From the viewpoint of Venus and Jupiter, the Sun-Mercury system 
might therefore look something like the dumbbell shown in Figure 11.5. 
The effective center of mass of the orbit of Mercury can be considered as 
being “rigidly” attached to the Sun. The motion of Venus and Jupiter af- 
fects the “dumbbell” by pulling the effective center of mass of the orbit 
around the Sun. It is this effect that causes the precession of the perihe- 
lion of the orbit of Mercury around the Sun. The precession will be very 
slow because the Sun’s influence is very much larger than that of Venus 
and Jupiter. If we use the samefigure of merit that we used to compare 
the influence of Jupiter and Venus on Mercury, then, for the Sun, we have 

3.32 x 105 
(0.39)2 

= Mass of the Sun 
(Average distance of Mercury from the Sun)* 

= 2.2 x 106 (1  1.60) 

D 

Effective center 
of mass of 

Mercury’s orbit 

Sun 

FIGURE 11.5 
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This number is to be compared with 1 1.8, which has previously been cal- 
culated for Jupiter. The ratio is about 200,000. 

In 1865, the astronomer U. Leverrier calculated the secular preces- 
sion of the perihelion of the orbit of Mercury to be 537 seconds of arc 
per century caused by the influence of Venus, Jupiter and the other plan- 
ets in the solar system. To do this required a very complex calculation, 
but we have outlined the essential principles that were employed to do 
the job. He found that Venus was responsible for 277 arcseconds of the 
precession and Jupiter for 153 arcseconds, for a total of 82% of the ef- 
fect between them. Even though the gravitational influence of Venus is 
smaller than that of Jupiter, it moves much more rapidly with respect to 
Mercury. Thus, Venus accounts for about half the calculated precession 
of Mercury’s orbit. Measurements show that the actual precession is 574 
seconds of arc per century, and the measurements are accurate enough 
so that the difference had to be explained. In a classic application of 
perturbation theory, Albert Einstein showed that the additional 37 sec- 
onds of arc could be accounted for by an effect caused by his theory of 
relativity. It turns out that it is somewhat easier to make this calculation 
than the one performed by Leverrier. We shall therefore reproduce it 
here. 

The difference in the precession of Mercury’s orbit between the mea- 
sured value and Levertier’s calculated value is caused by the fact that the 
“mass” of an object is, according to the theory of relativity, a function of 
the velocity with which the body is moving. The relationship is 

m, 
(1 1.61) 

where m, is called the rest mass of the object. Equation (1 1.61) says that 
the faster an object moves (that is, the larger the velocity u), the heavier 
it becomes. It also says that no object can travel more rapidly than the 
speed of light. Referring back to Figure 11.4, the mass of Mercury 
would therefore be a function of where the planet is in the orbit. On the 
left side of the orbit, where the velocity is larger, the mass of Mercury 
is slightly larger than the “average” mass, and on the right side, con- 
versely, it is slightly smaller. Since the angular momentum of Mercury 
in orbit must be conserved, the slight mass changes dictated by equation 
(1 1.61) must be compensated for by slight changes in the velocity. 
These small changes give rise to precession of the perihelion of 
Mercury’s orbit in the same direction as that caused by the influence of 
Jupiter. 

In order to calculate the precession quantitatively, we will apply the 
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perturbation theory developed earlier in this chapter. Referring back to 
Chapter 4, the equation that leads to the elliptic orbit of Mercury is 

d2u GMm2 
do2 L2 

+ u =  - (1 1.62) - 

where 

1 
r 

u = -  ( I  1.63) 

L is the angular momentum of the planet in its orbit, M is the mass of the 
Sun, and m is the mass of Mercury. Equation (1 1.62) is similar to the har- 
monic oscillator equation discussed earlier so that the same techniques 
should apply. The solution of this equation is 

GMm2 
L2 

u=- + A(cosj) 

or 

GMm2 
L2 

+ A [ c o s ( ~  - w)] u=- (1 1.64) 

where the angles 0 and w are defined in Figure 1 1.2. This equation can be 
rewritten as 

GMmz 
L2 

u=- [ l  + e  cos (0-o)] (1 1.65) 

where e is the eccentricity of the orbit. 

the harmonic oscillator. First, we define a new variable: 
We will now develop a perturbation algorithm similar to the one for 

du 
d0 

v =  - 

and also 

(1 1.66) 

GMm2 
+u=Lz 

dv 
do 
- (1 1.67) 
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Equations (1 1.66) and (1 1.67) are now modified by a perturbation hnc-  
tionAO), and this is done by rewriting equation (1 1.67) as follows: 

(1  1.68) 

Note that we writefl8) as a function of 8. It could also be a function of i, 
because 0 and r are related through equation (1 1.64). We now develop the 
solutions of equations (1 1.66) and (1 1.67), which represent the unper- 
turbed system: 

GMm2 
L* 

[ 1 + e cos(8 - o)] u=- 

and 

GMm2 
L2 

V=+- sin@ - O) 

(1  1.69) 

(1  1.70) 

Now, in order to estimate the effect of the perturbationf(B), we assume 
that both of the “constants” e and w are functions of the angle 0. Taking 
the derivative of u with respect to 8 yields 

-cos(0-w)-e 
- =  du Gy2m2[ 2 
d8 

and equation ( 1  1.70) becomes 

du GMm2 
d0 L2 

sin( 8 - w) u =  -=+- 

- - ?[ $cos(O - w) -e 

Now, equation (1 1.72) becomes 

- dv =-- ‘T2 [$sin@ - W) + e 
d0 

Thus, substituting (1 1.73) into ( 1  1.68), we have 
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GMm2 GMm2 
L2 L2 

[ I  -ecos(e-o)J+ - +f (0) - - -- 

and this can be rewritten as 

L2 
f(e) 

de do 
--sin(f) - w) + e-cos(0 - o) = - 

d0 d0 GMm2 

Now, equation (1 1.72) can be rewritten as 

de do 
-cos(0 - o) + e-sin(8 - o) = 0 
de d0 

(1 1.74) 

(1 1.75) 

(1 1.76) 

The set of equations (1 1.75) and (1 1.76) are a simultaneous pair that can 
be rewritten as follows: 

de L2 - = -- f(O)sin(0 - o) 
do GMm2 

( I  1.77) 

Now, in order to solve equations (1 1.77), we need to look at the func- 
tionf(6). The formulation offlo) requires us to look at the theory of rela- 
tivity. Let us take a look at the origin of equation (1 1.62). Originally, the 
equation was derived in Chapter 4 from the following equation in terms 
of r and 0: 

GMm 
? 

p2 d2r 2L2 (dr  )'I - m  - mt>) =-- (1  1.78) m ---- - 
[m'? do2 m21J d0 

The term on the left is the inertial force, and that on the right is the gravi- 
tational force. The small relativistic perturbation arises from the fact that 
the masses on the left and the right sides of equation (1 1.78) now are 
hnctions of the variables r and 0, because the mass of the planet Mercury 
changes slightly depending on where it is in orbit. Thus, a general per- 
turbing h c t i o n  F(r, 0) is added to the left side of equation (1 1.78), 
which is derived from the theory of relativity using the same relationships 
that Albert Einstein used to derive equation (1 1.61). In terms of the func- 
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tion f(0), or f ( r ,  O), defined as the “generic” perturbation in equation 
(1 1.68), we have 

(1 1 -79) 

Now,f(r, 0) can be approximated as follows: The theory of relativity calls 
for an expansion in terms of the variable r, and the first effective term is 
the one that behaves as r2. It turns out that the function to be used in 
equation (1 1.77) is 

(1 I .80) 

where c is the velocity of light. Note, therefore, that F(r, 0), defined in 
equation (1 1.79) behaves as v4. Thus, it differs from the gravitational term 
on the left side of equation (1 1.78) as it must. This is however only the first 
term of a series expansion that arises from the theory of relativity. 

We can now rewrite the set of equations (1 1.77) as follows using 
(1 1.80): 

de 3GMm2 GMm2 
- = -( c2 )( T)[ 1 + e cos(0 - o)12 sin(0 - o) 
d0 

(11.81) 

We now need to make some assumptions, because equation (1 1.8 1) can- 
not be solved analytically. The fundamental assumption of perturbation 
theory is that the quantities, e and w in this case, are slowly varying func- 
tions of 0. This is quite reasonable by looking at the coefficients in equa- 
tion (1 l .81), since the square of the velocity of light (a very large num- 
ber) appears in the denominator of the coefficients. Thus, the right sides 
of equation ( I  1.81) are small by definition, and hence, e and o are both 
slowly varying functions of 8. 

Evaluating the coefficients yields 

1 3GMm2 GMm2 

-( e 
c2 )( li-) = 4 x 10-7 (1 1.82) 
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Both of the coefficients are small, as was expected. We can now integrate 
equation (1 1.82) for one revolution of Mercury around the orbit. These 
integrals will yield the change in the values of the quantities e and w for 
one orbit: 

Ae(one orbit) = 

3GMm2 GMm2 --( c2 )( T) C T ( l  + e cos(0 - w)]  sin(0 - W )  d0 (1 1.83) 

The integral on the right side of the equation can be rewritten as follows: 

(1 1.84) 19 1 
-( 1 + e C O S ( ~  - w))’ = o =[ 3e 

Therefore, the eccentricity of Mercury’s orbit does not change under the 
assumptions that are inherent in the perturbation approximation used 
here. Integrating the second equation in the set (1 1.8 1) yields 

Aw(one orbit) 

1 3GMm2 GMm2 
e 

= -( c2 )(-ti-) CT[1 + e cos(0 - w ) ] ~  cos(8 - W )  d6 (1 1.85) 

The integral on the right side of equation ( 1  1.85) can be rewritten as fol- 
lows: 

[*[1 + 2e cos(0 - 0) + e2 cos2(8 - w)]  cos(0 - W )  d(O - W )  

The first and third terms of the integral lead to zero when the integral is 
evaluated. The middle term yields 
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Therefore, the change in the angle w during one revolution of Mercury’s 
orbit is 

A0=2r(  3GMm2 c2 ) ( 7 ) = 5 x  GMm2 10-9rad/rev (11.88) 

If the result of equation (1 1.88) is converted to seconds of arc per century, 
we get 

A o  = 43 seconds of arclcentury (1 1.89) 

This is very close to the difference between the calculated and the mea- 
sured value of the precession of the perihelion of Mercury. 

One of the problems related to the long-time behavior of orbiting bod- 
ies is stability, which is an important, difficult, and unsolved problem of 
celestial mechanics. The stability of the rigid-body (rotational) motion of 
satellites and space stations is of considerable interest, and it is treated in 
detail in the literature (see Fitzpatrick, Chapter 14, and Thomson, Chap- 
ters 5-7). The following remarks will concentrate on the orbital stability 
of natural and artificial bodies. 

The reader’s attention is directed to the over 50 definitions of various 
kinds of stability, often leading to contradictory conclusions. It is strong- 
ly recommended that prior to any announcement of the stability of a dy- 
namical system, the definitions used be clarified. (The problem of the 
“stability” of the solar system is treated in Chapter 13.) 

An elliptic two-body orbit is generally considered stable since a small 
change of the initial conditions will not markedly change the orbital ele- 
ments or the shape and orientation of the orbit. This kind of stability, 
known as orbital stability, is intuitively clear and can be shown analytical- 
ly without much difficulty. Consider, on the other hand, the same elliptic 
orbit, and let us change again slightly the initial conditions so that the 
semimajor axis will change ever so slightly. The orbital stability is still 
valid, but the change of the length of the semimajor axis will result in a 
change of the period. After the change of the initial conditions, the small 
change in the mean motion will displace the body along the orbit. After a 
sufficiently large number of revolutions, the disturbed body might be 
close to apogee at the time the body on its original orbit will be at 
perigee. The two orbits will be very close, but the distance between the 
body on the original orbit and the body on the slightly changed orbit will 
be the length of the major axis. This behavior certainly cannot be consid- 
ered stable in spite of the fact that the original and the new orbits are 
close. PoincarC (using the first, geometric idea) calls our motion stable, 
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while Lyapunov (using the second, kinematic idea) considers the motion 
unstable. Poincark’s definition is known as orbital stability, and Lya- 
punov’s is usually referred to as isochronous (equal-time or simultane- 
ous) stability. 

An unsolved and rather important problem in celestial mechanics is 
the stability of the solar system. After the previous example, readers will 
require a definition of stability before attempting to find the answer. One 
of the generally accepted definitions of the stability of planetary systems 
was offered by Laplace (1 773), according to which stability requires that 
the semimajor axes of the planetary orbits show no secular changes, only 
small periodic changes so that orbits do not intersect. Another similar de- 
finition connects planetary stability with no collisions and no escapes. 

During the existence of the solar system (estimated at 5 x lo9 years) 
apparently, and probably, no major changes occurred, and numerical inte- 
grations indicate stability for the next lo8 years. Problems with the con- 
vergence of analytical series solutions are presently being clarified, but as 
humiliating as this is, we must admit that the problem of stability is still 
unsolved (see Roy’s book, Chapter 8). 

Concerning the details of the second problem of this chapter, see U. J. 
J. Leverrier, “Thkorie du movement de Mercure,” Ann. Ubserv Imp. Paris 
(‘dm.), Vol. 5 ,  pp. 1-196, 1859, and N. T. Roveveare, Mercury b Perihe- 
lion. From Leverrier to Einstein, Clarendon Press, Oxford (1982). Re- 
garding details of general perturbation methods, see Brouwer and 
Clemence (1961). A collection of over 50 definitions of stability is given 
in I? Szebehely, “Review of Concepts of Stability,” Celestial Mechanics, 
Vol. 34, pp. 49-64, 1984. The original papers concerning Cowell’s and 
Encke’s methods are by P. H. Cowell and A. D. Crommelin, Mon. Not. 
Roy. Astron. SOC., Vol. 68, p. 576, 1908, and by J. F. Encke, Berliner 
Jahrbuch, 1857. P. A. Hansen’s method is described in P. Musen’s article 
in the Astronomical Journal, Vol. 63, p. 426, 1958. For a general discus- 
sion, see Danby’s book, pp. 230-238. 

PROBLEMS 

11.1. Albert Einstein showed that the perihelion of the orbit of Mercury 
precesses more rapidly than it would if the theory of relativity were 
ignored. Without considering relativistic effects, the perihelion of 
the orbit of Mercury precesses in the same direction as the orbital 
motion at a calculated rate of 53 1 seconds of arc per century. This 
precession is caused by gravitational action of the other planets of 
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the solar system on Mercury. Including relativistic effects, the rate 
of precession is increased by 43 seconds of arc to 574 seconds of 
arc, which is the measured value. This means that the relativistic 
effect also creates an additional precession in the same direction as 
the orbital motion. The special theory of relativity predicts that 

where m(v) is the mass of the planet Mercury as a function of the 
linear velocity u of Mercury in its orbit. The quantity mo is the rest 
mass of Mercury, that is, the mass when u = 0, and c is the speed 
of light, about 300,000 W s .  Using this formula, show that the per- 
ihelion of Mercury precesses in the same direction as the orbital 
motion due to the relativistic mass change. 

11.2. Use the formulas in the first problem to show that the difference 
between the velocity at perihelion and that at aphelion is 

where 

- 
u = $ ( u p +  V A )  

The quantity E is the eccentricity of the planet’s orbit. From the fact 
that the relativistic effect adds 43 seconds of arc per century to the 
precession of the perihelion of the orbit of Mercury, estimate what 
the relativistic effect adds to the precession of the perihelion of 
Earth’s orbit. 



CHAPTER 12 

THE MOTION OF 
EARTH-ORBITING SATELLITES 

In the previous chapter, we examined a case of perturbation theory ap- 
plied to the motion of a planet (Mercury) orbiting the Sun. In this chapter, 
we shall look at satellites orbiting Earth and how perturbation approxima- 
tions can be used to explain their behavior. Before doing this, we will 
want to define clearly the variables used to describe the motion. Figure 
12.1 illustrates the general situation. The motion of an Earth-orbiting 
satellite is usually referred to the equatorial plane of Earth. The orbital 
plane defines the plane in which the satellite moves. The angle between 
the orbital plane and the equatorial plane is called the angle of inclination 
i. The line of intersection between the orbital plane and the equatorial 
plane is called the line ofnodes. In the case of Earth-orbiting satellites, it 
is often necessary to define an external coordinate system (or at least a 
direction) with respect to the line of nodes that we will want to use to de- 
fine how the line of nodes behaves. Normally, we will choose a direction 
G that points toward the Sun. Having done this, there is an angle 0 be- 
tween the external direction G and the line of nodes, which is another pa- 
rameter we will use to define the motion of Earth-orbiting satellites. 

Let us now refer to Figure 12.2, which shows the orbit of a satellite 
moving around Earth in the orbital plane. There are three parameters that 
define this orbit, the angle o between the line of nodes and the major axis 
of the ellipse, a, and the eccentricity of the elliptic orbit, e. The five para- 
meters that have been defined are called the orbital elements and these 
are summarized in Table 12.1. We will see that the orbital elements we 
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Equatorial plane 

FIGURE 12.1 

FIGURE 12.2 
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TABLE 12.1. Orbital Elements 

s2 
i 

w 

a 

e Eccentricity of the ellipse 

Angle between G and the line of nodes 
Angle of inclination between the orbital plane and the equatorial plane 

Angle between the major axis of the ellipse and the line of nodes 
Semimajor axis of the ellipse 

have defined completely describe the behavior of a satellite in elliptic or- 
bit around Earth. 

In addition to defining the parameters used to describe the orbit, it will 
also turn out to be useful to review potential theory, because we will have 
to use methods based on this idea. We will start once again by defining 
the gravitational force, 

and the gravitational potential is 

GmM 
r 

v,= - 

The relationship between the force and the potential is 

F, = grad V, 

(12.1) 

(1 2.2) 

(12.3) 

It is of some interest to take a look at the “gradient” operator, which re- 
lates the potential function to the force. If the potential function is spheri- 
cally symmetric, then the gradient operator is simple because it depends 
only on the variable r: 

a 
grad = i.- 

dr 
( 1  2.4) 

where i. is the unit vector in the r direction. I f  the potential function also 
depends on the angles 9 and cp, then the gradient operator is more com- 
plex. The expression is 
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(12.5) 

where the angles 0 and cp are defined in the polar coordinate system 
shown in Figure 12.3. The importance of defining these variables has to 
do with the fact that the actual potential function of Earth is not in fact 
spherically symmetric. 

The shape of Earth is determined by a number of different factors. The 
most important one is that Earth is not a sphere but rather an oblate 
spheroid. This means that the diameter of Earth at the equator is some- 
what larger than the diameter through the poles. This effect is caused by 
Earth’s rotation and its elasticity, which leads to a centrifugal force that 
creates a small “bulge” at the equator, as illustrated in Figure 12.4. The 
exact dimensions are 

A 0  = 6356.751 km 

and 

DO = 6378.136 km 

The difference between the two is 

DO - A 0  = 2 1.385 km 

or about 0.336%. It turns out that even this very small difference has a 
measurable effect on satellite orbits. Another nonspherical asymmetry is 

8 = azimuth angle 
(o= polar angle 

= - Y  

X 

FIGURE 12.3 
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Equator 

FIGURE 12.4 

due to the fact that the equator is not a perfect circle. Referring to Figure 
12.5, when we look down on the north pole, we have 

=: 10-5 NE - NH 
NE 

so that the difference between the largest and the smallest diameter is 
about 64 m. 

FIGURE 12.5 
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In addition to these nonsphericities, there are also the so-called mass 
concentrations. Earth’s internal structure consists of a number of layers. 
These layers are not of uniform density in all three directions, radial, az- 
imuthal¶ and polar. If the density of the body is constant, then the shape is 
the essential factor. Deviation from the spherical shape (for uniform den- 
sity) may be approximated by ellipsoidal bodies, and this is usually the 
approach for natural celestial bodies. Since the gravitational potential for 
ellipsoids (of uniform mass distribution) may be represented by Legendre 
polynomial expansions, this technique has become the most popular ap- 
proach in describing the gravitational properties of bodies. The approach 
used in geodesy today is straightforward but not necessarily the final 
word, and improvements in the basic approach and in the principles used 
might be forthcoming in the near future. The present method is to write 
out the potential using Legendre polynomials and, from satellite observa- 
tions, to evaluate the coefficients in the expansion. 

Another approach is known as the inverse problem of celestial me- 
chanics. Usually a force field is given, and for a set of initial conditions, 
we are establishing an orbit, often by numerical integration. This problem 
in celestial mechanics might be called the direct problem. 

If the orbit is given by observations, we might inquire about the force 
field that produced this orbit. This is known as the inverse problem, and 
it is considerably more complicated than the direct problem, for several 
reasons. It can be shown, for instance, that the force field is not unique- 
ly determined from an orbit, or in other words, there are several force 
fields that can produce the same orbit. If the general functional form of 
the force field, or of the potential, is given (such as in the case of the 
previously mentioned Legendre expansion), then the orbit might be used 
to determine the coefficients in the expansion. The problem with this 
“predetermined potential” approach is that the body, such as Earth, usu- 
ally is unaware of our selection of the functional form of its potential, 
and when the coefficients in our assumed series approximation are eval- 
uated, they often show dependence on the orbit. This is especially true 
for the higher order gravitational coefficients of the usual Legendre se- 
ries approach. 

It might be concluded that the inverse problem of celestial mechanics, 
often referred to as geodesy, is an unsolved problem, and at the present, 
only approximate analytical descriptions are available for the potential 
functions of natural bodies. 

Regarding the shape of Earth, we use the ellipsoidal approximation 
and then the corresponding infinite series expansion for the gravitational 
potential. Consider a spherical Earth first with homogeneous mass distri- 
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bution, that is, with constant density. An alternate formulation of the ba- 
sic description is to consider Earth made of concentric spherical shells of 
uniform density. For these models, as mentioned before, the potential is 
identical with a point mass potential. 

In Chapter 3, we proved the theorem regarding the location of the 
gravitational center of mass of a spherically symmetric mass. The expres- 
sion we used for the gravitational potential was 

(12.6) 

Equation (12.4) can be used to perform the calculations described in 
the foregoing paragraphs. The potential function 5 can be obtained eval- 
uating the integral. For the present purpose, we will look only at a simple 
case of an ellipsoid with an equatorial bulge. In that case, the potential 
function can be expressed as a series of Legendre functions: 

3 V,= - 
I= I r 

(12.7) 

The Legendre polynomials in this expression are defined as follows: 

Po'l P ,  = c o s 0  

p 2 =  k o s 2 e -  i P,= ic0s30- : C O S ~  

In the case of a spheroidal distribution, the odd functions drop out be- 
cause the mass distribution is symmetric in the angle 8. In Equation 
(12.5), RE is the average radius of Earth, and Y is the distance of the test 
mass from the center of mass of the spheroid. The coefficients, J ,  deter- 
mine the degree of deviation from a precise spherical shape. It turns out 
that the only important term is the one that corresponds to I = 2, and for 
this we have 

J2 = 1.0826 x lo-) (1 2.8) 

which yields the deviation from sphericity we have already mentioned. 
The potential hnction is therefore 

GME R 2 3  
V ,  = -[ r 1 - J2( f ) (z cos2 0 - ')] 2 (12.9) 
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We can now employ exactly the same methods that we have developed 
previously in Chapter 1 1, where the potential function could also be writ- 
ten as the sum of the unperturbed potential function GM,& and a small 
perturbing term, just as in equation (1 1.32): 

vg = V,(r) + A@, 0) (12.10) 

where 

Notice that the term defined in equation (12.1 1) is small because the co- 
efficient J2 is small. Also, the perturbing term gets smaller rapidly (like 
r3) as the radius of the satellite orbit increases. This is, of course, exactly 
what would be expected. Thus, the effects on the satellite orbit due to this 
perturbation are most important for near-Earth-orbiting satellites. 

We will not repeat the algebra again and will simply state the results of 
the calculation: 

dfl 3 2n 
d t - - ?  T (77 -Jz - cos i -- 

and 

do 3 2n RE 2 
- dt = --J( 2 T 7)  (2 - Ssinzi) 

where T is the period of the satellite in its orbit and 

(12.12) 

(12.13) 

(12.14) 

which is the semilatus rectum of the orbit of the satellite of mass m. Both 
equations (1 2.12) and (1 2.13) indicate that the perturbation due to the 
fact that Earth is a prolate spheroid lead to secular variations of the angles 
R and o. The magnitude of the variation depends upon the angle of incli- 
nation between the equatorial plane of Earth and the orbital plane of the 
satellite. Equations (1 2.12) and (1 2.13) can be integrated around one or- 
bit of the satellite to yield the following changes in the angles 0 and w for 
each satellite orbit: 
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(12.15) 

and 

Aw = 37rJ2 - (2 - I sin2i) (3 (12.16) 

Equation (1 2.15) says that the line of nodes, which is defined by angle 0, 
precesses around the polar axis of Earth. A special case of interest is the 
sun-synchronous orbit for which the line of nodes is always perpendicular 
to the line joining the Sun and the Earth ( A 0  = 217 per year). These orbits 
have an inclination of about 94" and are commonly used for Earth obser- 
vation satellites. Equation (12.16) indicates that there is a critical angle i, 
for which the elliptic satellite orbit does not precess: 

2 
sin i, = - v3 (12.17) 

and when this is evaluated, it turns out that the angle is 

i, = 63O26'5.8" 

Highly eccentric orbits with this inclination (Molnya orbits) are used 
for communications satellites by the Russians, because they can provide 
long and stable residence times at high, northern latitudes. 

Another effect that is of interest is one that affects geosynchronous or- 
bits for which the angle of inclination is zero. In this case, the ellipticity 
of the equator that we have already mentioned has a measurable effect. 
When perturbation theory is applied to this effect, it is found that a geo- 
synchronous orbit, which is slightly elliptic, has two stable and two unsta- 
ble points. The stable points are positioned along the minor axis of the el- 
lipse that defines the shape of the equator, and the unstable points are 
along the major axis (see Figure 12.5). These considerations are impor- 
tant for orbital station keeping, since locating the satellite at the stable 
points in the orbit minimizes the fuel necessary to maintain the orbit. 

In addition to the nonspheroidicity of Earth, there are several other 
effects that result in deviations from two-body orbits of satellites. It is 
important to note that these effects depend on the orbit; therefore, dur- 
ing the lifetime of a satellite, the importance of terms in the equations 
governing its motion could change in time. It should be realized that, 
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FIGURE 12.5 

depending on the accuracy requirements, certain effects can be neglect- 
ed. 

Satellites in equatorial, geosynchronous orbits are primarily affected 
by the ellipticity of the equator, by their longitude (location), and by solar 
and lunar perturbations. 

If the altitude of the satellite is below 1600 km, the solar and lunar ef- 
fects (so-called third-body effects) might be neglected. 

The atmospheric drag becomes important below 600 km, and it strong- 
ly depends on the shape and mass of the satellites. It can be shown that at- 
mospheric drag has a secular effect on the semimajor axis, which de- 
creases, and on the eccentricity, which approaches zero. The orbit 
becomes more and more circular with decreasing semimajor axis until 
entry occurs. The precise evaluation of drag effects presents one of the 
most difficult problems in orbit mechanics with location and time. The 
unpredictable solar activities and their effects on the density make the en- 
try computations rather uncertain. 

The atmospheric drag per unit mass of the satellite is usually evaluated 
from the equation 

where C, is the drag coefficient, p is the atmospheric density, V is the ve- 
locity, and A is the area of the satellite normal to the velocity vector. The 
density depends on the location and on the time as mentioned before, but 
the major effect can be represented by the equation 
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p = pOedh 

where po and a are constants and h is the altitude. The area A might also 
vary since it depends on the attitude of the satellite and, therefore, it can 
change if the satellite is not spherical. The above formula for the drag 
might be modified by introducing the ballistic coefficient, 

where m is the mass of the space probe. The density variation is often rep- 
resented in tabular form (Jacchia) instead of by the above approximate 
equation. For all the above reasons, numerical integration becomes 
mandatory to determine the atmospheric effects on low-elevation satel- 
lites. 

Solar radiation effects are important for low-density (balloon) satel- 
lites with large surface area and with small mass. 

The previously mentioned deep-space orbits present major problems in 
celestial mechanics. These high-eccentricity satellites are influenced by 
atmospheric drag and zonal gravitational harmonics during the time they 
are near perigee. As these satellites approach their apogee, the perturba- 
tions due to atmospheric drag and gravitational perturbations become less 
important than the lunisolar effects. 

The effects of Earth’s magnetic field and of collisions with charged 
and noncharged particles are generally small on the orbital elements. 

Collisions with orbital debris, such as parts of inactive satellites, rock- 
et bodies, parts of missiles, and so on, present very serious danger to the 
fbnctioning of satellites, space stations, and space vehicles in general. At 
high altitudes, the dispersion of the debris is such that the probability of 
impact is small. The geosynchronous altitude is an exception since only 
recently it became mandatory that inactive communicative satellites be 
removed. At low altitudes, the probability of impact is reduced since the 
“space garbage” sooner or later reenters the atmosphere and burns up. 

Once again, the inverse problem should be mentioned since satellite 
orbits offer information, besides higher order gravitational coefficients, 
about the density of Earth’s atmosphere. Orbital decay allows the deter- 
mination of the density distribution and its dependence on the altitude. 

In conclusion, a recently proposed technique ( I  974) using tethered 
satellites is mentioned. This system consists of a space station, or a space 
vehicle, such as a space shuttle, which, while in orbit, deploys a small 
satellite into a region where the atmospheric density is to be measured. 
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This satellite will not reenter since it is tethered, and from its dynamical 
behavior, the atmospheric density can be determined. Other possible uses 
of such tethered satellite systems are to generate electricity using Earth's 
magnetic field and to allow altitude changes of the shuttle. 

The basic references are by Brouwer and Clemence (1 96 1) and by Ko- 
valevsky (1 963). Concerning the still intriguing problems of drag and ra- 
diation effects, see Battin's (1987), Escobal's (1963, Fitzpatrick's (1970)' 
and King-Hele's (1 964) books. A recent report on tethered satellites is by 
l? R. Bond, NASA-JSC-2268 1 (1 987). 

EXAMPLES 

12.1. Consider an artificial Earth satellite in a plane at 30" from the 
Equator (i = 30") with perigee and apogee heights hp = 161 km and 
h, = 837 km. Neglecting the effects of drag, find the secular varia- 
tions of the orbital elements. 

The semimajor axis and eccentricity are related to h, and hp by 
the well-known equations 

a(1 - e) = R, + h,, = rp 

and 

a(1 + e ) = R , + h , = r ,  

where R, is the equatorial radius of Earth. Note that the elevations 
are denoted by hp and h,. The corresponding distances from the 
center of Earth are rp and r,. 

The above equations give 

r, - r 
a =  f (r ,+r , )  and e =  

r a  + ' p  

or 

r, - r 
2a 

e =  P 

Note that the second equation for e is simpler than the first, but 
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it contains a previously computed value (a). Formulas using the 
original inputs (ra and rp) have the advantages of showing the func- 
tional dependence of the element (e )  on the inputs as well as avoid- 
ing propagating errors made in the previously computed element 
(a) as mentioned before. Also note that the above equations may be 
written as 

a = Re + $(ha + h,) 

and 

ha - hp 
e =  

2R,  + ha + hp 

The semilatus rectum is given by p = a( 1 - e2) or by 

and the ratio needed to evaluate dWdt  and doldt is 

The mean motion is computed from Kepler’s law: 

or 

The time derivatives of and o become 

d f l  
- = -A cos i dt 

and 
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do  - = A(2 - f sin2i) 
dt 

where 

Note that these equations allow direct use of the original input 
values. For the numerical values mentioned above, we have 

a = 6877.034 km 

e = 0.04914 

p = 6860.425 km 

- _  Re - 0.92970 
P 

~ I T W  = 1,10705 x rad/s 

P =  5675.61 s 

- -1.3457 x + I  O4 rad/s = -6.66"tday 
dR 
dt 
-- 

do  
-- - 2.1366 x 
dt 

rad/s = 10.58"lday 

12.2. 

The changes of s1 and o in one revolution of the satellite are AR = 

-7.64 x rad and Am = 12.13 x rad. 

The artificial satellite Explorer 6, known as 1959 62, was dis- 
cussed in Chapter 8, Example 12.7. Using the results obtained 
there, compute the major secular effects on the node and on the ar- 
gument of perigee when the inclination of the orbit to the equatori- 
al plane is 45". 

The regression of the ascending node becomes dRtdt = -4.155 x 
radtday, or 0.238 deglday, and the progression of the apsidal 

line is doldt = 4.407 x radday, or 0.252 deglday. 

12.3. The semimajor axis and the eccentricity of an artificial Earth satel- 
lite are 8676 km and 0.19, respectively, and it is in an orbit inclined 
to the equatorial plane by 34". The change of the argument of 
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perigee is 4.4 1 "/day and that of the nodal line is -3 .O 19"/day. Com- 
pare the two values of J2 that the above observations give. 

Solving equations (1 2.1 5) and (12.16) for J2, we have 

J2=---- "( - 7 -= 1 . 0 7 9 1 6 ~  
3 2.rr dt Re cos i 

and 

= 1.07275 x 

Note that the difference between these two computed values i s  in 
the sixth decimal and that the presently accepted value of J2 = 

1.08263 x shows a five-figure agreement with our value coin- 
puted from dnldt. 

12.4. Find the angles of inclination for which the motions of the nodal 
line and of the argument of the perigee are in resonance. 

By resonance, we mean that the ratio of the angular velocities of 
these motions are rational numbers, or 

dWdt n 
dwtdt n2 

- -- - - 

where n l  and n2 are integers. From the above relation, we have 

df l  dw 
n 2 ~ + n 1 - = 0  dt 

which is the usual way to express resonance conditions. If the right 
side of the above equation is only approximately zero, we have near 
or almost resonant motion. Substituting in the above equation the 
expressions given by equations (1 2.15) and (1 2.16), we have 

n, 5 cos2 i -  1 
n, 2 c o s i  

k =  -=  

where k is any rational number. 

in resonance. 
All angles of inclinations that satisfy the above equation result 
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For instance, for k = 1, we have i = 46.378', or i = 106,852', and 
for k = f ,  the resonance condition gives i = 56.065', or i = 
1 10.993'. (Note that resonance also exists for negative values of k. 
Regarding k = 2, which value gives i = 0, see Figure 12.2, where o 
was introduced as the proper variable for this special case.) 

PROBLEMS 

12.1. Jupiter's fifth satellite, Amalthea, shows a precession of the line of 
apsides, dddt  = 2.51 deg/day. The orbit is approximately circular 
with a = 18 1,200 km, and its inclination may be neglected. Find the 
oblateness parameter (J2) of Jupiter. 

12.2. Find the oblateness parameter (J2) of a planet having the same ra- 
dius and mass as Earth by observing the orbit of an artificial satel- 
lite around the planet having pericenter altitude hp = 200 km and 
apocenter altitude h, = 400 km; inclination from the equatorial 
plane is i = 30'; and pericenter shift is Ao = 10 deglday. 



CHAPTER 13 

THE PROBLEM OF THREE 
BODIES AND THE STABILITY 
OF THE SOLAR SYSTEM 

Everything we have described so far and all of the quantitative relation- 
ships that have been developed assume that the problem to be described is 
dominated by two bodies moving in the gravitational field produced by 
these bodies. In Chapter 1 1 ,  we introduced the notion of perturbations by 
small effects due to “third” bodies that affect the motion of the two-body 
system. The precession of perihelion of Mercury is caused mostly by a 
third body, Jupiter. What we want to do now is to take a more general 
look at the case of more than two bodies in a gravitationally interacting 
system. 

The basic and original definition of the problem of three bodies is as 
follows: Three point masses (or bodies of spherical symmetry) gravita- 
tionally attract each other; for a given set of initial conditions, find the re- 
sulting motion. 

In addition to the statement of the problem, we can say that the motion 
takes place in three dimensions, and there are no restrictions concerning 
the masses, the initial positions, and the initial velocities. Without actual- 
ly writing down the equations of motion, we can expect three second-or- 
der differential equations for the three position vectors of the three bod- 
ies, forming a 2 x 3 x 3 = 18th-order system. The energy is conserved 
since it is a conservative system; the angular momentum is conserved 
since there are no moments acting, and the center of mass of the three 
bodies moves with constant velocity. It is not hard to write down the 
equations of motion for the general problem of three bodies. Once the 
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equations are available, the integrals of energy, angular momentum, and 
center-of-mass motion can be derived. The methods used to do this are 
the same as those introduced in Chapter 2. These “integrals” are suffi- 
cient to solve the two-body problem, but they do not suffice for the three- 
body problem, because there are too many variables that have to be con- 
sidered to solve the problem. 

Isaac Newton was one of the first people to investigate the problem of 
three bodies formed by the Sun, Earth, and the Moon. Later, he recalled 
that “my head never ached but with my studies of the Moon,” because the 
mathematics involved was so very difficult. He also complained that 
thinking about the problem kept him awake at night. In spite of these af- 
flictions, Newton was finally able to develop methods for computing the 
motion of the perigee of the Moon’s orbit to within 8% of the observed 
value ( 1687). 

Following Newton, a number of prominent mathematicians attacked 
the problem by making approximations that permitted “closed” mathe- 
matical solutions. In 1760, Leonhard Euler developed solutions for a spe- 
cial case of the three-body problem in which two of the three bodies are 
fixed in space and the third moves in their gravitational field. This prob- 
lem can be solved by elliptic functions, and it is useful because, among 
other things, this approximation can well represent the motion of an 
Apollo spacecraft in the gravitational field of Earth and the Moon (see 
Vinti, 196 1). In 1772, Euler also proposed the use of a rotating synodic, 
coordinate system to approximate, for example, the almost circular mo- 
tion of the Moon around Earth. This allows more accurate approxima- 
tions of the motion of bodies in the gravitational field of Earth and the 
Moon. These ideas have been generalized in what is called the restricted 
problem of three bodies. In this general case, two of the three bodies have 
a mass that is much larger than the third. As a result, the motion of the 
two larger masses will not be influenced by the third body, but the larger 
bodies will govern the motion of the small body. A good example of im- 
mediate practical importance is the system consisting of Earth, the Moon, 
and a space probe traveling on a lunar trajectory. The masses of the par- 
ticipating bodies are approximately in the ratio 

mE : mM: mp = 100 : 1 : 

where mE, mM, and mp are the masses of Earth, the Moon, and a 6000-kg 
probe. If the forces are computed, we might see that the effect of the 
probe on Earth is always 16 orders of magnitude smaller than the Moon’s 
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effect on Earth. Furthermore, the effect of Earth on the Moon is always 
16 orders of magnitude larger than the effect of the probe on the Moon. 
We can continue these relative-force evaluations (using only two-body ef- 
fects) and find Earth’s and the Moon’s effect on the probe as it travels 
from Earth to the Moon. When it is in the vicinity of Earth, the Moon’s 
effect may be neglected since it is times that of Earth’s. When the 
probe is close to the Moon, Earth’s effect is times that of the Moon’s 
effect. 

If the model of the restricted problem is applied to a very large 
“probe,” such as to the Moon as influenced by Earth and by the Sun, the 
above neglected order of magnitude becomes lo-*. Therefore, the 
restricted problem should be used only as a first approximation to es- 
tablish the orbit of the Moon (see the examples at the end of this chap- 
ter). 

The essential idea of the restricted problem is that we can separate the 
motion of the two large bodies (often called the primaries) and solve this 
two-body problem first without considering the third small body. After 
the problem of two bodies is solved, we investigate the motion of the 
small body in the (known) gravitational field of the two large bodies. In 
many problems of interest in space dynamics, the primaries move on ap- 
proximate circles (Earth and the Moon, the Sun and Jupiter, etc.). This re- 
sults in the simplest form of the problem, known as the circular restricted 
problem of three bodies. 

It is important to recognize that the “restricted” problem of three bod- 
ies is closely related to perturbation theory. In Chapter 11, we showed 
that it is possible to calculate small changes in the behavior of a two-body 
system by using the two-body motion as a first approximation and calcu- 
lating the small changes in the motion due to a third body, or another 
small perturbation. In the restricted three-body problem, we consider the 
two large bodies as fixed with respect to each other, that is, the first-order 
approximation, and then calculate the motion of the third “small” body in 
the gravitational field of the other two bodies. 

In the late 1770s, the distinguished French mathematician Joseph 
Louis Lagrange applied his formidable powers to treatments of the re- 
stricted problem of three bodies. When the primaries move on circles, he 
discovered that there are five points in the plane of their motion where the 
forces acting on a probe are balanced. These forces are the gravitational 
attractions of the large masses on the probe and the centrifugal force act- 
ing on the probe revolving with the primaries. This revolving system is 
known as the synodic system, in which the primaries are fixed. In a fixed 
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inertial system called the sidereal system, the primaries are moving in cir- 
cles. Three of the equilibrium points are located on the line connecting 
the primaries and two points form equilateral triangles with the primaries. 
The three colinear points are unstable, and the two triangular points are 
stable for small mass ratios. This means that if outside forces are acting 
on the probe, which is placed at any of the colinear equilibrium points, 
the probe will depart. A probe placed at the triangular points will librate 
instead of escaping, provided the mass ratio of the primaries is smaller 
than 0.0385. The triangular points, therefore, are also called points of li- 
bration. (Libration is an oscillatory motion around an equilibrium point.) 
Because of their discoverer, the equilibrium points are also known as La- 
grangian points. The condition of the stability of the triangular points 
(i.e., the small mass ratio of the primaries) is satisfied for systems of in- 
terest in space dynamics. For instance, for the Earth-Moon system, the 
value of the mass parameter is 0.0 12. The instability of the colinear loca- 
tions might be counteracted by station-keeping propulsion systems. Fig- 
ure 13.1 shows the locations of the five equilibrium points for the 
Earth-Moon system. 

/ \ I  \ radlsec 

FIGURE 13.1 Location of the equilibrium points in the restricted problem of 
three bodies. 
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Some of the numerical values describing this system are 

E M =  384.4 x lo3 km OE = 0.012 x EM 

ML,  2: ML2 0.16 x EM EL, E M  

The first and second colinear libration points (L ,  and L,) are located at 
16% of the Earth-Moon distance, and the third (L,) is approximately 
symmetrical to the Moon’s location. For the triangular points, we have 

To make clear how these equilibrium points are created, Figure 13.2 
shows the gravitational equipotentials that illustrate how the so-called La- 
grangian points come about. This diagram shows one way of displaying 
the combined gravitational fields of two massive objects. Each line repre- 
sents an equipotential contour, along which a small object would feel the 
same total force. The resulting contour map serves as a topographic map, 
showing “hills” and “valleys” in the force field. Any small object in this 
field will feel a force pulling it in the “downhill” direction. 

Earth 

Moon 

FIGURE 13.2 
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The basic and important difference between the problems of two and 
three bodies is that the former is integrable but the latter is not. The some- 
what complicated concept of integrability is associated with the names of 
H. Bruns (1 887) and Henri Poincare (1 890), and it usually refers to the 
availability of generally valid analytical solutions. For any given set of 
initial conditions, we can predict the quantitative and qualitative behavior 
of the problem of two bodies. This is not the case for the problem of three 
bodies. If an analytical solution is desired for a certain set of initial condi- 
tions for the problem of three bodies, this solution is usually expressed by 
infinite series. If the series converges for any length of time, we have an 
analytic solution for a given set of initial conditions. Changing the initial 
conditions, the solution might change completely, and the series might di- 
verge. This solution, consequently, has no general validity. Furthermore, 
solutions given by infinite series (even when they converge) do not offer 
a qualitative picture. For the problem of two bodies, the initial conditions 
will tell us the qualitative nature of the solution, such as the type of orbit 
the bodies will follow: circular, elliptic, parabolic, or hyperbolic. This is 
not the case in the problem of three bodies, where the qualitative proper- 
ties of the solution are generally not known. 

Another representation of the concept of integrability is that the sys- 
tem has a sufficient number of generally valid and independent invariant 
relations (integrals) between the variables so that analytical solutions can 
be obtained. The idea of integrability is not a simple one, and it does not 
belong to an introductory textbook; nevertheless, its importance warrant- 
ed the above short description. 

As an additional note, the reader is reminded of two, already men- 
tioned, concepts of some interest. First, it is recalled that the time depen- 
dence of the variables in the solution of the problem of two bodies cannot 
be expressed by closed-form functions, as made clear by Kepler’s equa- 
tion. This fact does not mean that this problem is not integrable. The sec- 
ond remark is related to the solvability of a dynamical problem versus its 
integrability. By solution, we can mean a special solution obtained by nu- 
merical integration, valid for a certain given time. Such solutions, of 
course, exist and might be obtained for the problem of three bodies. As 
the time increases, the special solution will lose its accuracy and validity. 
Not so for the problem of two bodies. If the initial conditions indicate an 
elliptic solution, the participating two bodies will remain on their elliptic 
orbits forever. 

Henri PoincarC’s proof that the general problem of three bodies inter- 
acting through gravitational forces has no “closed” mathematical solution 
was only the first step. What was really important is that he then asked 
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himself what statements can be made about the motion of the system 
even though no analytic solutions exist. By employing the concept of 
phase space (about which more later), Poincare developed an ingenious 
method for tracing the behavior of the three-body problem for many dif- 
ferent mass ratios and initial conditions. In performing these calculations, 
he made the startling discovery that we have already mentioned briefly. 
For a certain set of initial conditions, the three bodies (as represented by 
their “motion” in phase space) execute a periodic motion, which can be 
predicted for all time by the governing differential equations. For a slight- 
ly different set of initial conditions, however, the resulting trajectory 
could be very different. Sometimes, the new set of initial conditions 
yielded a trajectory that was predictable by the governing equations. At 
other times, the trajectory PoincarC calculated represented a “chaotic” be- 
havior that could not be predicted by the original equations. He was 
therefore confronted with the paradox that a system such as the three 
bodies interacting through a gravitational field could be represented by a 
completely deterministic set of equations (Newton’s gravitational equa- 
tions in this case) but that in certain instances the behavior of the system 
could not be predicted. 

A simple thought experiment can be used to illustrate this state of af- 
fairs. Imagine a rigid rod attached to a bar with a frictionless bearing. 
When at rest, the rod hangs vertically, but when the bottom end is given a 
push, the rod starts to move. If the initial push imparts an angular veloci- 
ty to the rod below a certain critical value, then it will swing as a pendu- 
lum. Above that critical value, it will “go over the top” and revolve 
around the bearing. The difference between the initial conditions, that is, 
the initial push, which leads to two entirely different outcomes, may be 
very small. If the rod is replaced by a string with a weight on its end, then 
there is a third possibility. In addition to pendulum motion and rotation, 
there are values of the initial push for which the velocity is such that the 
centrifugal force is too small to maintain the tension in the string when 
the weight is near the top of the circle. Therefore, the weight falls and the 
string stops it short when it is stretched again. The subsequent motion is 
not predictable but rather chaotic. The properties of the three-body prob- 
lem that we have described are characteristic of all systems governed by 
nonlinear equations, 

In Chapter 10, we used the simple harmonic oscillator to illustrate how 
perturbation theory works. We shall use the simple harmonic oscillator 
again to describe in the most elementary terms what happens in the case of 
nonlinear dynamics. The fundamental result of the application of high- 
speed computers to the solution of nonlinear differential equations is what 
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Poincarb had already glimpsed in his early work on the three-body prob- 
lem. It might be stated as follows: Nonlinear differential equations of the 
type we are considering here are deterministic. This means that they ex- 
press a definite relationship between the variables. There are two classes of 
solutions of such equations. One, called the special solutions, has closed- 
form expressions, such as the solution of the equations for elliptic and hy- 
perbolic orbits in the case of the two-body problem. However, there is an- 
other class of solutions that does not permit a precise prediction of the 
behavior of the system. In short, these solutions satisfL the equations, but 
they are not determined by them, and as we have seen, these solutions de- 
pend sensitively on the initial conditions that are imposed on the system. 

The linear harmonic oscillator is the simplest dynamical system. It is 
governed by the equation 

d 2x 

dt2 
m - - - + k x = O  (13.1) 

and leads to sinusoidal oscillations, as shown in Figure 13.3. A mass on a 
spring in a gravitational field behaves as a linear harmonic osciltator. If 
instead of the distance versus time, or time series description shown in 
the diagram, we adopt aphase space with distance along one axis and ve- 
locity along the other, then the linear harmonic oscillator describes a cir- 
cle as shown in Figure 13.4. This circle is called the phase space diagram 
of the motion. If a dissipative term is added to equation (13.1), then it 
looks like this: 

d2x dx 
m - - + l - + k = Q  

dt2 dt 
(13.2) 

FIGURE 13.3 Sinusoidal oscillation. 
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FIGURE 13.4 Phase diagram of a sinusoidal oscillation. 

The result of this motion is shown in Figure 13.5 and 13.6. The phase 
space diagram of the damped oscillator is sometimes called an attructoj; 
because the motion causes the point in the phase space as it moves to be 
attracted to the origin of the coordinate system. 

This same idea can be applied to nonlinear motions as well. Take, for 
example, the nonlinear equation 

d2x dx 
dt2 dr 
- + ~ - + x ~ = B c o s ~  (13.3) 

We can also plot a time series for this equation that is more complicated 
than the time series for linear harmonic motion. An example is shown in 

FIGURE 13.5 Oscillation of a damped system. 
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FIGURE 13.6 Phase diagram of a damped oscillator. 

Figure 13.7. We can also plot a phase space diagram of the motion, and 
both of these are shown in Figure 13.8 and 13.9. Instead of circular mo- 
tion, we now see the more complex diagram, but what is interesting is 
that the motion in phase space has a very definite “order.” Instead of 
moving randomly in the phase space, the point that describes the dynami- 
cal behavior of the system executes specific orbits. These orbits never 
close on themselves, since the motion is not periodic, but they do have a 
well-defined pattern. The pattern, firthennore, depends on how the mo- 
tion was started. In other words, it depends on the initial conditions im- 
posed on the equation. 

Edward Lorenz, who was one of the first to study nonlinear equations 
on powerfbl desktop computers, called these patterns strange attractors, 
and it is the strange attractors that seem to indicate that there is, in fact, an 
underlying order in the chaotic motions of nonlinear systems. What 
Lorenz found in exploring the solution space of nonlinear equations was 
that there is a level of order that can be shown to exist only after the capa- 
bility to perform vast numbers of numerical calculations was in hand. 
Lorenz showed that the initial conditions of the problem defined a solu- 
tion space for the equations that exhibited quite regular patterns. Another 
way of saying this is that the phase space occupied by the solutions of the 
system was quite limited and exhibited a regular pattern depending on 
how the calculation was started. Lorenz called these regularities in the so- 
lution space of the equation the strange attractors around which the solu- 
tions of the nonlinear dynamical system he was considering seemed to 
congregate. 

The appearance of these new “regularities,” by the way, gives the lie to 
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%+kk+x3=Bcos  t kz0.05, 6 ~ 7 . 5  Unique chaotic attractor 
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FIGURE 13.7 Time series of a steady-state response. 

dx'dt t 

I 
FIGURE 13.8 Steady-state chaotic trajectory in the phase plane (x, dxldt) of the 
nonlinear differential equation d2x/dt2 + 0.4 (dx/dt) - x + x3 = 0.4 sin t. This be- 
havior is typical of such nonlinear equations that have complex attractors of this 
kind. 
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Time Series 

Strange Attractor 

- 1  

FIGURE 13.9 

the statement that computers are only tools, or computational aids. The 
fact is that brand-new and genuine scientific insights can arise from 
large-scale computations precisely because they permit us to explore the 
solution space of a nonlinear system more completely than we have ever 
been able to do before. If we look at Johannes Kepler’s work 300 years 
ago, we should not be surprised. When Kepler painstakingly used Tycho 
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Brahe’s observations of the orbit of Mars to derive the laws of planetary 
motion, he really did demonstrate the importance of computational 
physics! It is, indeed, true that the most important lessons have to be re- 
learned every once in a while. 

We will now return to the problem of three bodies and show how it is 
related to the stability of the solar system. Following PoincarC’s work on 
the three-body problem, many people worked to establish the region of 
the parameter space for a given problem in which well-defined closed so- 
lutions existed and those for which there were none. In the course of this 
work, it was discovered that there were chaotic solutions for the three- 
body problem in which one of the bodies acquired sufficient velocity to 
escape from the other two. This happens even when the total energy of 
the three-body system is negative. PoincarC himself was, of course, aware 
that this could happen, and it was this phenomenon that focused his atten- 
tion on the problem of the “stability” of the solar system. 

If a negative total-energy three-body system “ejects” one of the bodies, 
it can be said to be unstable. What the word unstable means in this case is 
that the end state of the system (two bodies orbiting around each other 
and a third one infinitely far away) is qualitatively different from the ini- 
tial state (three bodies moving in their mutual gravitational fields). Poin- 
care, therefore, decided to revisit the problem of proving that the solar 
system is stable. 

In the early nineteenth century, Pierre Simon de Laplace used pertur- 
bation theory to show that the solar system is stable. What he did was to 
treat the solar system as a many-body problem in which not only the ac- 
tion of the Sun on the planets but also the effects that the planets have on 
each other were considered. (We have already illustrated some of these 
effects in Chapter 1 1 .) He wanted to show that any changes in the motion 
of the planets due to these perturbations did not lead to secular diver- 
gences (i.e., “ejections” of planets in the solar system). Since most of the 
perturbations caused by one planet on another are periodic in nature, 
Laplace developed solutions using Fourier series expansions. He suc- 
ceeded in showing that for the perturbations he considered, the orbits of 
the planets, to a good approximation, would not be significantly altered. 
PoincarC studied Laplace’s work and discovered that some of the series 
expansions Laplace had used were not absolutely convergent. Therefore, 
Laplace’s conclusion that the planetary orbits do not change substantially 
and, therefore, that the solar system is stable was not warranted. 

The question of what “stable” means in a system as complex as the 
solar system needs to be examined more carefully. One definition, as in 
the case of the three-body problem, might be the requirement that the 
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solar system does not eject a major planet. Recently, very powerful nu- 
merical integrating machines have been built that are programmed to in- 
tegrate the detailed differential equations describing the solar system 
forward in time. (These are called digital orreries.) Using these ma- 
chines, it has been demonstrated that the nine major planets execute mi- 
nor excursions around their current orbits, but there is no indication that 
the orbit of any planet gains enough energy to be ejected. Nor is there 
any indication of a major change in the orbital parameters of any of the 
planets. Since the estimated lifetime of the Sun is about 10 billion years 
and the age of the solar system is about 4.5 billion years, more integra- 
tion time on the digital orrery is required to show that the solar system 
is stable for the entire lifetime of the Sun. Some work has been done 
already that indicates that if the solar system’s major planets exhibit 
instabilities, then the growth rates are very long, 20-40 billion years. 
This work has been done by Jack Wisdom and his associates at the 
California Institute of Technology. See Ivars Peterson’s book (1993) in 
the Appendix. 

There are, of course, other ways of defining stability. One could, for 
example, look for evidence of chaotic motion in the solar system, and if 
an example is found, then one could perhaps broaden the definition of 
stability to include phenomena that are characteristic of chaotic motion. 
An intriguing example is the case of the Earth-crossing asteroids. The 
vast majority of the approximately 5000 known asteroids execute almost 
circular orbits at an average distance of about 2.5 a.u. from the Sun. A 
small number, however, are in orbits that are sufficiently eccentric so that 
they actually spend some time inside the orbit of Earth, hence the term 
Earth crossing. In 1857, Kirkwood proposed a possible explanation for 
this observation. He carefully examined the orbits of about 50 large aster- 
oids, and he discovered that asteroids having periods that have a simple 
fractional relationship with the orbit of Jupiter (e.g., 3 to 1, 5 to 2, 7 to 3, 
and 2 to 1) are missing. These are the so-called Kirkwood gaps. Asteroids 
with periods having simple fractional relationships with the period of 
Jupiter will experience a perturbation of their orbits always in the same 
position in the orbit. Kirkwood conjectured that the cumulative effect of 
these perturbations was large enough to throw these asteroids into highly 
eccentric orbits around the Sun. In 198 1, using the methods of chaos the- 
ory, Jack Wisdom showed that Kirkwood’s conjecture was correct. Thus, 
we can say that the influence of Jupiter creates chaotic motion in a certain 
asteroid that leads to an instability in that orbit that causes it to assume 
one that is qualitatively different. (A snapshot of about 5000 asteroids as 
observed at one moment in time is shown in Figure 13.10.) It can be seen 
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. .  

FIGURE 13.10 “Snapshot” of the inner solar system capturing the locations of 
the Sun, Mars, Jupiter, and approximately 5000 asteroids at one moment in time. 
Most asteroids orbit the Sun in a belt 1.5 a.u. wide between the orbits of Mars 
and Jupiter. (Courtesy of S. Ferraz-Mello, University of Sao Paulo.) 

that a few move inside the orbit of Mars, and about a half dozen of these 
are actually inside the orbit of Earth. 

There is one established case of chaotic motion in the solar system that 
has been demonstrated by direct observation and that is the tumbling mo- 
tion of one of Saturn’s satellites, Hyperion. It turns out that this satellite is 
not spherically symmetric. Therefore, as it tumbles, the intensity of the re- 
flected light from the satellite changes. Figures 13.1 1 and 13.12 illustrate 
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FIGURE 13.1 1 Images captured by the Voyager 2 spacecraft provide three dif- 
ferent views of Hyperion's irregular shape, (Courtesy of NASNJet Propulsion 
Laboratory.) 

the situation. Note the similarity of Hyperion's light curve to the chaotic 
time series shown in Figure 13.7. It is worthwhile to look for more exam- 
ples of chaotic motion in the solar system to see how prevalent this is. 

Is the solar system stable? What we have shown is that there is no sim- 
ple answer to this question. There is no formal mathematical proof, no 
closed method that provides a yes or no answer. Numerical approximations 

150 160 170 180 190 200 210 220 

Days after 01/00/87 
FIGURE 13.12 Plotting Hyperion's brightness each night for a period spanning 
more than 60 days produced an erratic pattern that no single periodic curve 
would fit. (Courtesy of James Klavetter.) 
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using a model that contains most of the major interactions between the 
planets over and above the influence of the Sun show that major instabili- 
ties, if they exist, have very long growth periods. At the same time, the so- 
lar system is very complex, with hundreds of thousands of minor bodies 
orbiting around the Sun. It has been shown that some of these orbits some- 
times become chaotic and thus unstable. The solar system is unbelievably 
complex and rich in new problems to be investigated in the future. 

For those readers who are interested in pursuing the problems dis- 
cussed in this chapter in more detail, there are a number of books worth 
reading. A very comprehensive treatment of the three-body problem is 
given by V. Szebehely with special emphasis on solutions of the restricted 
problem of three bodies (Theory or Orbits: The Restricted Problem of 
Three Bodies, by Victor Szebehely, Academic Press, New York and Lon- 
don, 1967). A good discussion of stability theory for various kinds of or- 
bits and conditions is given in several papers that are collected in a book 
that reports on the proceedings of the Alexander von Humboldt Colloqui- 
um on Celestial Mechanics in March 1984 (The Stability of Planetmy 
Systems, edited by R. L. Duncombe, R. Dvorak, and P. J. Message, D. 
Reidel Publishing Company, Dordrecht and Boston, 1984). To learn more 
about what has come to be called chaos theory, there is a good elementary 
but comprehensive textbook that deals with all of the important aspects of 
the problem (Nonlinear Dynamics and Chaos, by J. M. T. Thompson and 
H. B. Stewart, John Wiley & Sons, New York, 1986). For those who 
would like to gain an understanding of the issues dealt with in this chap- 
ter without the mathematical details, there are two excellent works. One 
deals with chaos theory (Chaos: The Making of a New Science, by J. 
Gleick, Viking, New York, 1988) and the other with the solar system 
(Newton 5. Clock: Chaos in the Solar System, by I .  Peterson, W. H. Free- 
man and Co., New York, 1993). Both of these books are easy to read and 
they contain a wealth of information. 

EXAMPLES 

13.1. In this example, we will compute the forces acting between the 
bodies participating in the problem of three bodies formed by the 
Sun, Earth, and the Moon. 

The force between the Sun and Earth is 

= 3.54 x lOI9 kg GMSME 
FSE = 

r& 
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The force between Earth and the Moon is 

The force between the Sun and the Moon is 

The following conclusions can be reached: 

(a) The Moon’s motion is governed by the Sun rather than by Earth 
since 

(b) Earth’s motion is governed by the Sun rather than by the Moon 
since 

(c) The Sun’s motion is more influenced by Earth than by the 
Moon since 

(d) The motion of the Earth-Sun system can be computed as a 
problem of two bodies since the effects of the Moon on the Sun 
and on Earth are two orders of magnitude smaller than the 
force between the Sun and Earth. This is the reason why the 
model of the restricted problem of three bodies is used only as 
a first approximation to compute the orbit of the Moon. 

Note that when the forces were computed, the eccentricities of 
the orbits were neglected, and the approximation of rsM = rsE was 
used. This relation introduces an error of 0.5% because of the vari- 
able distance between the Sun and the Moon. The effect on the 
force computation is 1 YO. 

Earth-Moon system using the notation of Figure 13.1. 
13.2. Find the location of the first colinear equilibrium point (15,) in the 



EXAMPLES 281 

The centrifugal force per unit mass acting on a space probe lo- 
cated at L 1  is 

F, = (LI0)W2 

Earth’s gravitational effect per unit mass on the probe is 

and the Moon’s gravitational effect is 

The forces are balanced when 

The sum of the masses of Earth and the Moon, ME + MA,, will be 
denoted byM,. Kepler’s third law gives 

Since the center of mass is at point 0, 

EM 
O M =  -ME 

n/r, 

and since L ,  0 = OM + ML,  , we have 

The distance between Earth and L ,  is 

ELI = EM + MLI 

Now we substitute the above expressions for L,O, w2, and ELI into 
the force-balance equation and write x for ML,,  1 for EM, a for 
MEIMT, and b for M,,,/Mp The result is 

x’(~u + ~ ) ( l  + x ) ~  - Pax2 - Pb(Z + x ) ~  = 0 where a + b = 1 
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The unknown in this fifth-order equation is the distance x = 
ML,,  which gives the location of the first colinear equilibrium 
point. All the other quantities in this equation are known. The com- 
putation of the only positive root by iteration is left to the reader. 

The approximate solution is given by 

The solution is x = 61500 km, which distance corresponds to ap- 
proximately 1.54 times the circumference of Earth. 

PROBLEM 

13.1. Locate the coordinates of all five equilibrium points for the 
Earth-Moon system and for the Sun-Jupiter system (and in this 
way become a scientific descendant of Lagrange). 
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GLOSSARY 

Anomalies: the angles describing the motion of a body in a reference 
frame as independent variables (see eccentric, mean, and true anom- 
alies). 

Anomalistic year: the mean interval between successive perihelion pas- 
sages of Earth. 

Aphelion: the point of a planetary orbit that is at the greatest distance 
from the Sun. 

Apoapsis: the point of an elliptic orbit farthest from the focus. 
Apogee: the point of an elliptic satellite orbit farthest from Earth. 
Apsidal line: the line connecting the periapsis with the apoapsis. 
Argument of latitude: the angle from the ascending node to the location 

of the body (measured in the orbital plane); also the sum of the argu- 
ment of periapsis and the true anomaly. 

Argument of periapsis: the angle between the nodes and the apsidal line 
in the plane of the orbit. 

Ascending node: the point in the equatorial plane, or in general, in the 
reference plane, where the body passes from the Southern to the 
Northern Hemisphere. 

Astrodynamics: branch of space engineering or astronautics dealing 
with the orbital and rigid-body motion of artificial bodies in space. 

Astronautics: branch of engineering dealing with space missions. 
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Barycenter: the center of mass of a system of bodies. 
Celestial latitude: the angle between the ecliptic and a given point, mea- 

sured along the great circle. 
Celestial mechanics: branch of dynamical astronomy, dealing mostly 

with the motion and dynamics of bodies of the solar system. 
Circular restricted problem of three bodies: two bodies with large 

masses move on circular orbits and influence the motion of a third 
body with much smaller mass. 

Circularization: the change of an elliptic orbit to a circular orbit by 
change of the velocity. 

Dynamical astronomy: branch of astronomy dealing with the motion 
and dynamics of celestial bodies. It includes celestial mechanics, stel- 
lar dynamics, motion of binary stars, positional astronomy, etc. 

Eccentric anomaly: the angle at the center of an elliptic orbit, formed by 
the apsidal line and the radius vector drawn from the center to the 
point on the circumscribing auxiliary circle from which a perpendicu- 
lar to the apsidal line will intersect the orbit (see the angle E on Fig. 
7.1). 

Eccentricity: the distance from the center to the focus divided by the 
length of the semimajor axis. 

Ecliptic: the mean plane of Earth’s orbit around the Sun. 
Ephemeris: the tabular representation of the position as a function of 

Equatorial bulge: see flattening. 
Equatorial satellite: a satellite orbiting in the equatorial plane of Earth. 
Equinox: the intersection of the equatorial plane and the plane of the 

ecliptic. 
Escape velocity: the velocity that results in a two-body orbit with zero 

velocity at infinity. 
Flattening: a measure of deviation from a spherical shape,f= (a - b)/a, 

where a is the equatorial radius and b is the polar radius. Also known 
as oblateness or equatorial bulge, and it is applied to a body generated 
by the rotation of an ellipse about its minor axis. 

General perturbation method: analytical solution of the differential 
equations describing a perturbed orbit. 

Geocentric: referred to the center of Earth. 
Geocentric gravitational constant: the product of the mass of Earth and 

time of natural or artificial bodies. 

the constant of gravity. 



GLOSSARY 285 

Geoid: an equipotential surface of Earth corresponding to the mean sea 

Geostationary satellite: a satellite at geosynchronous altitude. 
Geosynchronous altitude: the elevation above Earth’s equator, where a 

Gravitational constant: the factor of proportionality in Newton’s law of 

Gravitational harmonics: the terms in the Legendre series expansion of 

Gravitational potential: a function, the derivative of which gives the 

Heliocentric: referred to the center of the Sun. 
Heliocentric gravitational constant: the product of the mass of the Sun 

Hohmann orbit: the tangential elliptic transfer orbit between two orbits 

Hyperbolic excess velocity: the velocity above escape velocity. 
Inclination: the angle between the orbital plane and the reference plane, 

which is the equatorial plane for planetary satellites and the ecliptic for 
heliocentric orbits. 

Intermediate orbit: an approximation to the actual perturbed orbit (spe- 
cial case is the osculating orbit). 

International ellipsoid: ellipsoid approximating the shape of Earth. 
Invariable plane: the plane containing the center of mass of the solar 

system and perpendicular to the angular momentum vector of the solar 
system. 

Isochronous stability: kinematical behavior of the disturbed path (Lya- 
punov’s stability). 

Kepler’s equations: the transcendental relation between mean and ec- 
centric anomaly. 

Kepler’s laws: three principles describing the motion of the planets in the 
solar system, generally applicable to the problems of two bodies. 

Lagrangian solutions: the equilibrium solutions of the restricted prob- 
lem of three bodies (see Fig. 13.1). 

Lambert’s theorem: a relation showing the elapsed time on a two-body 
orbit as a function of the chord, of the sum of the radial distances, and 
of the semimajor axis. 

level of the open ocean. 

satellite’s position is fixed relative to Earth’s rotation. 

gravity. 

the gravitational potential. 

gravitational force. 

and the constant of gravity. 

of different radii or semimajor axes (see Fig. 8.4). 

Laplace’s invariable plane: see invariable plane. 
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Latitude: the angle between the ecliptic (or the equatorial plane) and the 
position vector measured at the center of the Sun (or Earth) along the 
great circle (or the meridian). 

Libration: oscillation about equilibrium points; for instance the variation 
of the orientation of the Moon with respect to the Earth; also motion of 
bodies around the triangular equilibrium points in the restricted prob- 
lem of three bodies, 

Linear stability: effect of small disturbances when applied to the lin- 
earized equations of motion. 

Line of nodes: the line connecting the ascending and descending nodes 
(see Fig. 9.1). 

Longitude: the angle between the vernal equinox and the great circle, 
measured in the ecliptic or the angle between the Greenwich meridian 
and the meridian of a given position measured in the equatorial plane. 

Longitude of periapsis: the sum of the angles of the longitude of the as- 
cending node and the argument of periapsis (Fig. 9.1). 

Lunar theory: a prediction of the motion of the Moon, usually analytical. 
Mean anomaly: the product of the mean motion and the interval of time 

since pericenter passage. 
Mean motion: the value of a constant angular velocity required for a 

body to complete one revolution. 
Meridian: the great circle between the North and South poles (terrestrial 

and celestial) which passes through the point directly above the ob- 
server. 

Newton’s law of gravitation: the gravitational force between bodies is 
directly proportional to the product of their masses and inversely pro- 
portional to the square of their distances. 

Nutation: the short-period oscillation of the pole. 
Oblateness: see flattening. 
Obliquity: the angle between the equatorial and orbital planes. 
Obliquity of the ecliptic: the angle between the equatorial and the eclip- 

Orbit: usually the path of a body with respect to another such as plane- 

Orbital stability: geometrical behavior of the disturbed orbit (Poincark’a 

Orbit mechanics: branch of mechanics dealing mostly with the orbital 

tic planes. 

tary orbit around the Sun. 

stability). 

motion of natural and artificial bodies in space. 
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Osculating elements: the elements of the pertubed two-body orbit which 

Osculating orbit: the two-body orbit which would be followed if the per- 

Parabolic velocity: see escape velocity. 
Periapsis: the point of an orbit closest to the focus. 
Perigee: the point of a satellite orbit closest to the Earth. 
Perihelion: the point of a planetary orbit closest to the Sun. 
Period: the interval of time between consecutive occasions on which the 

system is represented by the same vector in the phase space (same po- 
sition and velocity). 

Periodic motion: the motion repeats itself in equal intervals of time (re- 
currence of dynamical properties). 

Periodic pertubations: the periodically changing effect of perturba- 
tions. 

Perturbations: forces which result in deviations between the actual orbit 
and reference orbit, such as a two-body orbit. (See also special, gener- 
al, secular and periodic pertubations.) 

Phase space: combination of position and velocity coordinates (six-di- 
mensional for the three-dimensional motion of a point mass). 

Planetary theory: prediction of the motion of planets of the solar sys- 
tem, usually analytical. 

Polar orbit: it passes over the North and South pole, its inclination is 90 
degrees. 

Problem of three bodies (general): the dynamics of three gravitationally 
interacting point masses. 

Problem of three bodies (restricted): the modification of the general 
problem in the case when one of the three bodies, because of its small 
mass, is not influencing the motions of the other two bodies with much 
larger masses. 

Problem of two bodies: the dynamics of two gravitationally interacting 
point masses. 

Precession: the secular motion of the pole. 
Rectilinear orbit: a straight-line orbit, for two bodies with unit ecentric- 

Regularization: the elimination of singularities from the equations of 

Restricted problem of two bodies: the mass of one of the bodies is 

would be applicable if the pertubation would be eliminated. 

turbations would be turned off (see also intermediate orbit). 

ity and zero semilatus rectum. 

motion . 
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much smaller than the mass of the other and the gravitational effect of 
the smaller body is neglected. 

Sectorial harmonics: the terms in the Legendre series expansion of the 
gravitational potential that depend only on the longitude. 

Secular perturbation: the continuously increasing effect of perturba- 
tions. 

Selenocentric: referred to the center of the Moon. 
Semilatus rectum: the distance between the focus and a point on the 

Semimajor axis: the distance from the center of an ellipse or hyperbola 

Semiminor axis: the distance from the center of the ellipse along the line 

Sidereal time: a measure of Earth’s rotation with respect to the stars. 
Sidereal year: the time for Earth to complete one revolution on its orbit 

with respect to a fixed vernal equinox or with respect to the back- 
ground stars. 

Singularity: the appearance of zero distances between participating bod- 
ies, or in general, zero denominators appearing in the equations of mo- 
tions. 

Small divisor: the denominator appearing in perturbation analysis that 
approaches zero, usually because of resonance conditions. 

Special perturbation method: numerical integration of the differential 
equations describing a perturbed orbit. 

Stability: behavior of a dynamical system when disturbances are applied. 
Stable motion: the effect of initially small disturbances stay below a giv- 

en limit. 
Stellar dynamics: branch of dynamical astronomy dealing with the mo- 

tion and dynamics of stars and stellar systems such as clusters and 
galaxies. 

Synodic period of planetary motion: the time between two successive 
conjunctions of two planets, as observed from the Sun. 

Synodic period of satellite motion: the time between two successive 
conjunctions of the satellite with the Sun, as observed from the satel- 
lite’s planet. 

Synodic system: in general, a coordinate system rotating around the ten- 
ter of mass of the participating bodies. 

conic section measured in the direction normal to the apsidal line. 

to an apsis. 

perpendicular to the apsidal line. 
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Terrestrial harmonics: terms in the Legendre series expansion of 
Earth’s gravitational potential. 

Terrestrial latitude: the angle between the equatorial plane and a given 
point, measured along the meridian. 

Tesseral harmonics: the terms in the Legendre series expansion of the 
gravitational potential that depend on the latitude and longitude) Jj ,  
j # k). 

Time of perigee passage: the time when a satellite passes closest to 
Earth. 

Topocentric: referred to a point on the surface of Earth. 
Trajectory: usually the part of an orbit such as a missile’s or rocket’s 

path. 
True anomaly: the angle at the focus (nearest the pericenter) between the 

apsidal line and the radius vector (drawn from the focus to the orbiting 
body). (See anglefin Figs. 4.4 and 7.1 .) 

Unstable motion: the effect of initially small disturbances increase above 
a given limit. 

Vernal equinox: the direction where the Sun crosses the equatorial plane 
from south to north in its apparent motion along the ecliptic (its appar- 
ent longitude i s  zero); the ascending node of the ecliptic on the equato- 
rial plane. 

Zonal harmonics: the terms in the Legendre series expansion of the 
gravitational potential that depend only on the latitude. 



APPENDIX II 

PHYSICAL CONSTANTS 

The reader is reminded that the following constants change as better mea- 
surements and observations become available, but their value wiIl never 
be known “exactly.” Most of the numbers presented are based on the 1997 
edition of the Astronomical Almanac issued by the Nautical Almanac Of- 
fice, U.S. Naval Observatory and published by the US. Government 
Printing Office, Washington, D.C. These numbers do not always agree 
completely with those given by other sources, such as the International 
Astronomical Union and the International Association of Geodesy. For 
instance the IAG value for Earth’s equatorial radius is 6378136 f 1 m, 
which constant in our table is 6378.14 km. 

Some of the entries are redundant since the reader certainly can com- 
pute the constant gravity (G)  if the geocentric gravitational constant 
(GM,) and the value of Earth’s mass (ME) are given. The reason for fur- 
nishing such redundant values is to facilitate the solution of actual prob- 
lems in space dynamics. Some of the constants for Earth are given in the 
table (rounded-off values) and also are listed with the presently existing 
highest accuracy, showing the error limits. 

The effects of uncertainties in orbit mechanics are discussed by G. B. 
Westrom’s article, which appeared in the proceedings of a symposium on 
“Space Trajectories,” published by Academic Press, New York (1 960), 
and by a fascinating paper by Sir James Lighthill, “The Recently Recog- 
nized Failure of Predictability in Newtonian Dyanmics,” Proceedings of 
the Royal Society of London, Vol. A407, pp. 35-50, 1986. 
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For additional information see the above-mentioned Astronomical Al- 
manac or its Explanatory Supplement (1961, revision published in 1988). 
A. E. Roy’s Orbital Motion, listed in the references, also has many of the 
useful constants. 

Table of Constants of the Planets 
~~ 

R e  M 32 i a 
Planet (km) ( 1 024 kg) (1  0-3) (degrees) (a.u.) e 

Mercury 2,439 0.33022 - 7.006 0.3871 0.2056 
Venus 6,052 4.8690 0.027 3.395 0.7233 0.0067 
Earth 6,378.14 5.9742 1.02863 0.001 1.0000 0.0167 
Mars 3,397.2 0.64191 1.964 1.851 1.5237 0.0933 
Jupiter 71,395 1,899.2 14.75 1.305 5.2030 0.0482 
Saturn 60,000 568.56 16.45 2.486 9.5281 0.0542 
Uranus 25,400 86.978 12 0.663 19.1829 0.0459 
Neptune 24,300 102.98 4 1.769 30.0796 0.0 10 I 
Pluto 2,500 0.663 - 17.142 39.3396 0.2462 

Notes 
Re: equatorial radius 
M. mass 
J2: second zonal gravitational harmonic 

i: inclination to the mean ecliptic 
a: semi-major axis 
e: eccentricity 

The heliocentric osculating orbital elements given in this table are referred to the 
mean ecliptic and equinox of 52000 and are given for February 9, 1988. 

Additional Constants of the Solar System 

Equatorial radius of the Sun: 696000 km 
Mass of the Sun: 1.9891 x 1030 kg 
Heliocentric gravitational constant: GM, = 1.3271244 x lozo m3/s2 
Astronomical Unit: 1.49597870 x lo8 km 

Mass of Sun 
Mass of Jupiter 

= 1047.355 

Mass of Sun 
Mass of Earth 

= 332,946 
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Mass of Sun 
Mass of Earth + Moon 

= 328,900.5 

Equatorial radius of Earth: Re = (6,378,136 f 1) m 
Polar radius of Earth: Rp = (6,356’75 1 f 1) m 
Flattening of Earth:f= 3.35281 x 

Second zonal harmonic of Earth: J2 = { 108263) x 

Period of Earth’s revolution (one sidereal year): 356.25636 days 
Anomalistic year: 365.25964 days 
Angular velocity of Earth’s rotation: o = (7.2921 I5 f 
Period of Earth’s rotation (one sidereal day): T = 23 h 56 min 4.1 s 
Obliquity of the ecliptic: 23’26’2 1”.448 at standard epoch 2000. 
Geocentric gravitational constant: GM, = (3986004.48 f 0.03) x lo8 

x radls 

m3/s2 

Mass of Moon 
Mass of Earth 

= 0.0123000 

Mean radius of the Moon: 1738 km 
Mass of the Moon: 7.3483 x loz2 kg 
Semimajor axis of the lunar orbit: 384400 km 
Moon’s orbital period (sidereal): 27.32 166 1 days 
Eccentricity of the lunar orbit: 0.0549 
Constant of gravitation: G = 6.672 x lo-” m3/kg s2 
Speed of light: 299,792,458 mls 
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ANNOTATED LIST OF MAJOR 
REFERENCE BOOKS 

The preparation of such lists presents many difficult choices. Inclusion of 
too many items will not help readers, but anything important left out will 
be to their definite disadvantage. The notes added might help the readers 
to decide how to spend their time and where to turn to satisfy their curios- 
ity. A few books emphasizing the historical aspect are also included to al- 
low the readers to balance science and humanities. 

H. Alfven and G. Arrhenius (Eds.), Evolution of the Solar System. NASA SP- 

E. 

v. 

R. 

345, U.S. Government Printing Office, Washington, D.C., 1976. This work is 
an excellent and also comprehensive description of the state of knowledge of 
the Solar System following the first decade of exploration with spacecraft 
carrying out interplanetary missions. 
N. da C. Andrade, Sir Isaac Newton. Macmillan, New York, 1954. Combina- 
tion of Newton’s life, works, personality, human dimension and detailed biog- 
raphy. 
I. Arnold, Mathematical Methods of Classical Mechanics. Nauka, Moscow, 
1974. Translation published by Springer-Verlag, New York, 1978. Modern 
mathematical approach to dynamics, including Newtonian, Lagrangian and 
Hamiltonian formulations. Classical mechanics is related to areas of mathe- 
matics such as Riemannian geometry, Kolmogorov’s theorem, Lie groups, 
mapping theorems, etc. This is an advanced text book used by Arnold teach- 
ing classical mechanics at Moscow State University. 
M. L. Baker and M. W. Makemson, An Introduction to Astrodynamics. Aca- 
demic Press, New York, 1960. Second revised edition 1967. Easy to read, 
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written in clear style, mostly for engineers. Many useful exercises concerning 
space dynamics. 

l! R. Baker, The Channels of Mars. The University ofTexas Press, Austin, 1982. 
This book is focused on the topography of Mars with special emphasis on fea- 
tures that might have a bearing on the presence of liquid water on the planet in 
the past. It has many spectacular illustrations. 

R. R. Bate, D. D. Mueller and J. E. White, Fundamentals of Astmdynamics. 
Dover, New York, 1971. This textbook is for introductory engineering cours- 
es, emphasizing the systems engineering approach, the practical aspects of or- 
bit determinations, lunar and interplanetary trajectories (with patched conic 
approximations) and ballistic missile trajectories. The “historical digressions” 
are short and interesting as are the many exercises. 

R. H. Battin, An Intmduction to the Mathematics and Methods ofAstrodynamics. 
American Institute ofAeronautics and Astronautics, New York, 1987. A major 
reference work from the basic two-body problem to highly sophisticated 
problems of engineering space dynamics with many fascinating personal re- 
marks describing the U.S. space program of which the author was one of the 
major contributors. The large amount of material included and many mathe- 
matical details require devoted readership. Battin’s earlier book, entitled As- 
tronautical Guidance, McGraw Hill, Inc. (I  964) is another volume of consid- 
erable importance to space engineering, The Apollo guidance system is 
discussed in detail by the author who was the director of the space guidance 
analysis division of this project. 

A. Beer and K. A. Strand (editors), Copernicus. Vistas in Astronomy. Vol. 17, 
Pergamon Press, New York, 1975. This volume represents the proceedings of 
a conference held in 1972 in Washington, D.C. to commemorate the 500th an- 
niversary of the birth of Copernicus. It highlights Copernicus’ ideas and place 
in the history of celestial mechanics. 

G. D. Birkhoff, Dynamical Systems. American Mathematical Society, New York, 
1927. Advanced theoretical treatment emphasizing the qualitative aspect of 
dynamics. Main subjects are stability, periodic orbits, problem of three bodies 
and integrability. 

D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics. Academic 
Press, New York, 196 1. This advanced reference and textbook is one of the 
classics in the field of celestial mechanics. Astronomically oriented and dedi- 
cated readers will find a large amount of very useful information. 

E. W. Brown, An Introductory 7Fearise on the Lunar fieory. University Press, 
Cambridge, 1896. Also Dover, New York, 1960. A clear description of the 
problem of the motion of the Moon with several approaches to the solution. 
The major methods (Laplace, de Pontecoulant, Hansen, Delaunay, Hill, etc.) 
are explained and compared. This is a major reference book rather than an in- 
troductory treatment. 

E. Burgess, Urnnus and Neptune: The Distant Giants. Columbia University 
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Press, New York, 1988, and Far Encounter: The Neptune System. Columbia 
University Press, New York, 199 1.  These books are both well illustrated and 
highly readable accounts of the exploration of Uranus and Neptune. 

P. Cattermole, Venus: The Geological Story. The Johns Hopkins University 
Press, Baltimore, 1994. This is a richly illustrated volume using the radar 
images obtained by Magellan. The striking pictures in this book provide ev- 
idence of tectonic motion, volcanic activity and many other phenomena. 
This is recommended reading for anyone who wants to learn more details 
about the planet. 

C. Y L. Charlier, Die Mechanik des Himmels. Vols. 1 and 2, Viet and Co., 
Leipzig, 1902-1 907. Mathematically oriented, highly advanced, but quite 
readable German text. 

J. Chazy, Mdcanique Cdeste. Presses Universitaires de France, Paris, 1953. De- 
lightfully short and concise French text on a rather advanced level, discussing 
canonical transformations, variational equations, perturbation theories, etc. 

G .  A. Chebotarev, Analytical and Numerical Methods of Celestial Mechanics. 
Nauka, Moscow, 1965. English translation by L. Oster, American Eisevier, 
New York, 1967. Advanced astronomically oriented, clearly written, graduate 
textbook. Planetary theories, lunar theories, study of minor planets, satellites 
and comets. 

P. E. Cleator, Rockets Through Space: The Dawn of Interplanetary Travel. Simon 
and Schuster, New York, 1936. This book describes the development of rock- 
ets after World War I. It is important because it is oriented toward the develop- 
ment of rockets for space flight and it contains many original mission profiles 
and calculations that outline the energy levels and velocity increments that 
must be achieved to carry out interplanetary and Earth orbital flight. The 
book is very well written. 

N. Copernicus, De Revolutionibus Orbium Coelestium. (The Revolution of Heav- 
enly Spheres.) Norimbergae (Nurnberg), apud Ioh. Petreium, 1543. This hook, 
written in Latin, was published under the Imprimatur of the Bishop of Frauen- 
berg. It is the first detailed description of the Solar System with the Sun 
placed at the center. The book was published after the death of Copernicus in 
1543. 

J. M. A. Danby, Fundamentals of Celestial Mechanics. Macmillan, New York, 
1962. The use of vectors can simplify some of the equations and ideas of ce- 
lestial mechanics as demonstrated in this basically introductory book with 
several well-selected exercises. 

R. Deutsch, Orbital Dynamics of Space Vehicles. Prentice-Hall, Englewood 
Cliffs, New Jersey, 1963. Advanced text emphasizing the theoretical founda- 
tions and outlining the solution techniques used in celestial mechanics. The 
subjects treated in some detail, besides the basics, are orbit determination, an- 
alytical dynamics as applied to general perturbation techniques, and modern 
topological research related to the problem of three bodies. 
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G. N. Duboshin, Celestial Mechanics, Fundamental Problems and Methods. 
Nauka, Moscow, 1 968 and Celestial Mechanics, Analytic and Quantitative 
Methods. Nauka, Moscow, 1978. These basic and important books in our field 
are available only in their original Russian editions. 

D. Dubyago, The Determination of Orbits. Nauka, Moscow, 1949. English trans- 
lation by R. D. Burke, G. Gordon, L. N. Rowell and F. T. Smith, Macmillan, 
New York, 196 1. Book is basically for astronomers, discussing the determina- 
tion of orbits of minor planets, comets and meteors. Many excellent exam- 
ples. 

K. A. Ehricke, Space Flight. Vol. I, Environment and Celestial Mechanics, 1960. 
Vol. 11, Dynamics, 1962. Vol. 111, Operations, 1964. D. Van Nostrand, Prince- 
ton, New Jersey. Space missions and system analysis are emphasized in these 
easy to read volumes, directed to astronautical engineers, with details on bal- 
listics and powered flights. Many well selected examples and references. 

B. Erdi, Egi Mechanika (Celestial Mechanics). Vols. 1-3, Eotvos University, Bu- 
dapest, 1972-74. Subjects emphasized are orbit determination, general per- 
turbations, lunar theory, dynamics of artificial satellites. This clearly formu- 
lated basic text is available only in Hungarian. 

F? R. Escobal, Metho& of Orbit Determination. R.  E. Krieger, Huntington, New 
York, 1965. Oriented to aerospace engineers and applied astrodynamicists, 
this highly readable book offers a large amount of very usefbl information 
with many examples and detailed computational algorithms. 

E. C. Ezell and L. N. Ezell, “On Mars: Exploration of the Red Planet 
1958-1978.” NASA SP-4212, U.S. Government Printing Office, Washington, 
D.C., 1982. This books contains a very good nontechnical account of the ex- 
ploration of Mars up to the two Viking missions in 1976. It is very well writ- 
ten and it is recommended for students who wish to gain background knowl- 
edge about Mars without getting into the technical details. There are many 
interesting illustrations. 

E. Finlay-Freundlich, Celestial Mechanics. Pergamon Press, New York, 1958. 
Delightfully short and clear. The problem of two bodies treated in the intro- 
ductory chapter which is followed by advanced dynamical astronomy. 

P. M. Fitzpatrick, Principles of Celestial Mechanics. Academic Press, New 
York, 1970. Emphasis on artificial satellites, including rigid body rotational 
motion, Advanced and often mathematically oriented treatment with many 
exercises. 

K. F. Gauss, Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem 
Ambientium (Theory of the Motion of the Heavenly Bodies Revolving around 
the Sun in Conic Sections). Hamburg, 1809. English translation by C. H. 
Davis, Little, Brown, Boston, 1957. One of the classics of theoretical and 
computational celestial mechanics, emphasizing orbit determination (such as 
orbits from three observations), method of least squares, orbits of Ceres, Pal- 
las and Juno, etc. 
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T. Gehrels, (Ed,), Jupiter. The University of Arizona Press, Tucson, 1976. This is 
an excellent collection of papers reporting on the results of Pioneer 10 and I 1  
fly-bys of the planet. This book is intended for a technical or scientific expert 
on the subject. 

J. Gleick, Chaos: The Making of a N e w  Science. Viking, New York. 1988. This is 
a highly readable and imaginative account of how chaos theory has been de- 
veloped. It is strongly recommended for someone who wants to learn about 
the topic without becoming enmeshed in mathematical details. 

R. H. Goddard, “A Method for Reaching Extreme Altitudes.” Smithsonian 
Institution, Miscellaneous Collection LXXI, No. 2, p. 69 (1  91 9) and “Report 
to the Smithsonian Institution Concerning Further Developments of the 
Rocket Method of Investigating Space,” reprinted in: E. C. Goddard and G. 
E. Pendray, (Eds.), The Papers of Robert H. Goddard. McGraw-Hill, New 
York, 1970. These papers represent Goddard’s seminal work on rocket 
propulsion. The rocket equations are derived and experimental results are re- 
ported in quantitative detail both for solid and liquid fueled rockets. in the 
second paper Goddard describes the use of rockets to reach space above the 
atmosphere. 

H. Goldstein, Classical Mechanics. Addison-Wesley, Reading, Mass., 1950. In- 
troductory (compared to Whittaker’s book), easy to read, clear, basic refer- 
ence text. 

Y. Hagihara, Celestial Mechanics. Vols. 1 and 2, Massachusetts Institute of Tech- 
nology Press, Cambridge, Mass., 1970-1972; Vols. 3-5, Japan Society for 
Promotion of Science, Tokyo, Japan, 1974-1976. These volumes represent 
the encyclopedia of celestial mechanics. The reader will find everything dis- 
cussed in considerable detail, even those subjects or approaches which are 
only indirectly connected with celestial mechanics. This major reference book 
is comprehensive, clear and connects astronomy with mathematics. 

S. W. Hawking and W. Israel, 300 Years of Gravity. Cambridge University 
Press, London, 1987. Several contributors discussing mostly physics since 
Newton: cosmology, relativity, black holes, superstring unification and quan- 
tum theory. 

P. Herget, The Computation of Orbits. Edwards Brothers, Ann Arbor, Michigan, 
1948. This astronomically oriented, easy to read, advanced text specializes in 
orbit determination. The author’s and his associates’ humor will be enjoyed by 
those scholars who carefully translate the Greek language subtitles of the 
chapters. For instance: Chapter 2. Problems in Spherical Astronomy. (Leave 
hope behind all ye who enter here.) Chapter 6. Improvement of the Orbit. (If 
at first you do not succeed try, try again.) Chapter 7. Special Perturbations. 
(These numbers laid end to end would reach to insanity.) 

S. Herrick, Astrodynamics. Vols. 1 and 2, Van Nostrand Reinhold, London, 
197 I-1972. Basic text with applications to space engineering and astronomy. 
Some of the unconventional notations require carehl attention. Principle sub- 
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jects are special and general perturbation theories, orbit determination and 
universal variables. Many examples with details. 

G. Hunt and P. Moore, Saturn. Rand McNally, New York, 1982. This is a very 
good study of Saturn and its rings and satellites. This book is recommended 
for anyone who is interested in expanding his or her knowledge of Saturn. It is 
a well written book. 

R. Jastrow and S. I. Rasool (Eds.), The Venus Atmosphere. Gordon and Breach, 
New York, 1969. This is a detailed and comprehensive description of the at- 
mosphere of Venus after the first fly-bys by Mariner and Venera spacecraft 
and the first atmospheric entry by Venera 4. The book is intended for those 
students who are interested in studying planetary science. 

M. H. Kaplan, Modern Spacecrafr Dynamics and Control. J. Wiley, New York, 
1976. This is an excellent undergraduate textbook on the subject. It is easy to 
read and has many good problems. 

D. G. King-Hele, Satellites and Scientific Research. Routledge and Kegan Paul, 
London, 1962 and Theory of Satellite Orbits in an Atmosphere. Butterworths, 
London, 1964. One of the important contributors to the still unsolved problem 
of atmospheric effects on satellite motion. See also his Technical Memoran- 
dum No. 212 of the Royal Aircraft Establishment, entitled “A View of Earth 
and Air,” 1974. 

A. Koestler, The Sleepwalkers. Macmillan, New York, 1959. History of science 
from about 3000 B.C. to Newton. Book emphasizes history rather than sci- 
ence, and the “cold war” between humanities and science. 

J. Kovalevsky, Introduction a la Mkchanique Cdleste. Librairie Armand Colin, 
Pans, 1963. English translation, D. Reidel, Dordrecht, Holland, 1967. This 
short and well-written book emphasizes perturbation theories and the problem 
of artificial satellites. In the author’s opinion, “the construction of increasing- 
ly more accurate analytical theories remains the central task of celestial me- 
chanics.” 

J. Lagrange, Oeuvres. 14 Volumes, Gauthier-Villars, Paris, 1867-1 892 and 
Michanique Analytique. Veuve Desaint, Paris, 1788. Author’s infatuation with 
equations makes his work somewhat difficult to read. The brilliance of the 
presentations and the analytical manipulations show clearly Lagrange’s mas- 
tery of his subjects and will fill the reader with admiration of these volumes 
written in French. 

€? S. Laplace, Tmit.4 de Mkcanique Cileste. Vols. 1-3, Duprat, Paris, 1799-1 802; 
Vol. 4, Courrier, Paris, 1805; Vol. 5 ,  Bachelier, Paris, 1823-1825. English 
translation by N. Bowditch, Volumes 1 4 ,  Chelsea, New York, 1829-1839. 
This major classic of celestial mechanics is directed to advanced, astronomi- 
cally oriented readership. The comments and detailed explanations in the 
English translation are of considerable help. 

A. B. Lerner, Einstein and Newton. Lerner, Minneapolis, Minnesota, 1873. 



ANNOTATED LIST OF MAJOR REFERENCE BOOKS 301 

Lives, backgrounds, and accomplishments compared via many valuable quo- 
tations from correspondences. 

S. W. McCuskey, Introduction to Celestial Mechanics. Addison-Wesley, Read- 
ing, Massachusetts, 1963. This easy to read, clear, introductory text empha- 
sizes the basic principles and offers well selected examples. 

E. D. Miner, Uranus: The Planet. Rings and Satellites. Ellis Harwood, New York, 
1990. This book is a detailed and comprehensive study of Uranus and her sys- 
tem, It is intended for graduate students but the material is presented in such a 
way that it is also usefil for undergraduates as well. 

J. Moser, Stable and Random Motions in Dynamical Systems with Special Em- 
phasis on Celestial Mechanics. Princeton University Press, Princeton, NJ. 
1973. The author of this mathematical exposition is the third member of the 
famous KAM trio (Kolmogorov, Arnold, Moser). The book concentrates on 
the convergence problem of the series solutions, the role of small divisors, 
non-integrability, ergodic motions, quasi-periodic behavior, etc. With patience 
and some analytical background the reader will enjoy this version of Moser’s 
Hermann Weil lecture series delivered at the Institute for Advanced Study in 
1972. 

F. R. Moulton, An Introduction to Celestial Mechanics. Macmillan, New York, 
1960. This book is an easy to read classic with astronomical orientation. The 
historical remarks and well-selected references are most informative. 

I. Newton, Philosophiae Naturalis Principia Mathernatica (The Mathematical 
Principles of Natural Philosophy). Royal Society of London, 1687. Transla- 
tion by A. Motte (1 729) edited by F. Cajori, University of California Press, 
Berkeley, California, 1946. Difficult to read because of the author’s well 
known insistence of using classical geometry to treat dynamical problems. It 
is reasonable to assume that Newton derived many of his theorems by calcu- 
lus but presented the proofs with geometrical tools. To quote Laplace: “The 
Principia is pre-eminent above any other production of human genius.” The 
First Book is on theoretical mechanics, containing his laws of motion, law of 
gravitation, and problem of two bodies. The Second Book is on hydrodynam- 
ics. The Third Book forms the major part of the Principia and treats the dy- 
namics of satellites and planets, including the problem of mass determination, 
flattening, and precession of the equinoxes. Lunar theory, theory of tides and 
orbits of comets conclude the Third Book. 

H. Oberth, Die Rakete zu dem Planetenraum. Oldenburg, Munich, 1923, reprint- 
ed by Uni-Verlag, Nurnberg, 1960 an dWege zur Ratrmschiflahrt. 1929, 
reprinted by Kriterion, Bucharest, 1974. These are popular works that were 
the first to attract a large circulation. Oberth’s books inspired the first really 
popular space related science fiction movie, Fitz Lang’s “Die Frau Im Mond’ 
(“The Girl on the Moon”) which was premiered in 1929. 

F. I. Ordway and M. R. Sharpe, The Rocket Team. MIT Press, Cambridge, 1982. 
This is an excellent history of rocketry from the end of World War I1 to the 
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Apollo Project. It is recommended as good background reading so that stu- 
dents can understand why large rockets were built. 

L. A. Pars, Treatise on Analytical Dynamics. Heinemann, London, 1965. Excel- 
lent presentation of dynamics, emphasizing the principle of least action. 
Many references and examples. 

I. Peterson, Newton’s Clock: Chaos in the Solar System. W. H. Freeman, New 
York, 1993. This book is highly recommended for all students of celestial me- 
chanics. It is a sophisticated yet readable account of the development of our 
knowledge about the workings of the solar system. A limited understanding of 
mathematics is required to get the benefit of this important work. 

H. C. Plummer, An Intmductoly Treatise on Dynamical Astronomy. Cambridge 
University Press, London, 1915. Reprinted by Dover, New York, 1960. This 
book is strongly oriented to dynamical astronomy in a clear and understand- 
able style, on an advanced level. In addition to the basic problems of two and 
three bodies, considerable details are offered on planetary theory, lunar theo- 
ry, determination of orbits, orbits of binary stars, perturbation methods, etc. 

H. Poincark, Les Mdhodes Nouvelies da la Micanique Cileste. Gauthier-Villars, 
Paris, 1892-1 899. Reprinted by Dover, New York, 1957. English translation 
NASA-TTF-450, 1967. It is difficult to read because of the author’s concise 
style, but it has many brilliant ideas and suggestions for future research in ce- 
lestial mechanics, especially along mathematical lines. 

H. Pollard, Mathematical Introduction to Celestial Mechanics. Prentice-Hall, 
Englewood Cliffs, New Jersey, 1966. The author shows how a mathematician 
might write an easy to read and clear book. Some of the subjects emphasized 
in the book might be of more interest to mathematicians than to astronomers 
or to engineers. 

I. Prigogine, From Being to Becoming. W. H. Freeman, San Francisco. 1980. 
Book connects the “classical period” of dynamics with the modem aspects of 
statistical mechanics. The reader will find a refreshing view of instability, 
non-integrability, and the complexities which uncertainties can create in the 
physical sciences. 

J. H. Rogers, The Giant Pfanet Jupiter: Cambridge University Press, Cambridge, 
MA, 1995. This is an excellent and highly readable account of our modern 
knowledge of Jupiter. This book is strongly recommended for anyone who 
wants to ieam more about Jupiter and its satellite system. 

A. E. Roy, Orbital Motion. Adam Hilger, Bristol, 1978. This book is an easy to 
read, excellent text, offering combinations of astronomical and space research 
applications. Many advanced subjects are covered and several usehl exercis- 
es are included. 

Y. Ryabov, Celestial Mechanics. Foreign Languages Publishing House, Moscow, 
1959. Also Dover, New York, 196 1. This semi-popular book is simple and pre- 
sents basic ideas without much mathematics and with many numerical expla- 
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nations. For the layperson the book is heavy reading, but the undergraduate 
astronomy or engineering student will consume it with pleasure in a short 
time with considerable benefit. 

C. L. Siege1 and J. K. Moser, Lecture on Celestial Mechanics. Springer-Verlag, 
Berlin, 1971. This is a readable, mathematically oriented book, based on 
Siegel’s book published in 1956. It concentrates on the problem of solution of 
differential equations of celestial mechanics and on the problem of three bod- 
ies. It is based on the works of PoincarC, Sundman, Birkhoff and Wintner. 

W. M. Smart, Celestial Mechanics. Longmans, Green, London, 1953. One of the 
few easy to read, advanced books on celestial mechanics, with astronomical 
orientation. Almost one third of the book deals with lunar theories. Few refer- 
ences and no exercises are given but complete and clear explanations of the 
basic theoretical aspects are offered. 

T. E. Sterne, An Introduction to Celestial Mechanics. Interscience Publishers, 
New York, 1960. This short and clear test is for advanced level readers. Tt con- 
tains the author’s original contributions to the analysis of the dynamics of arti- 
ficial satellites. 

E. L. Stiefel and G .  Scheifele, Linear and Regular Celestial Mechanics. 
Springer-Verlag, Berlin, 197 1. Book describes regularizing transformations 
which result in linear differential equations for the problem of two bodies. 
Generalizations are discussed from two to three dimensions, using canonical 
theories. Several results are shown, concerning the numerical advantages of 
regularization. 

K. Stumpff, Himmelsmechanik. Vols. 1-3, Deutscher Verlag der Wissenschaften, 
Berlin, 1959-1974. Clear, easy to read treatment emphasizing orbit determi- 
nation, the problem of three bodies and perturbation theories. Many details 
make reading this book, written in German, a rather lengthy but definitely 
worthwhile project. 

G. l? Sutton, Rocket Propulsion Elements: An Introduction to the Engineering of 

Rockets. Sixth Edition, J. Wiley, New York, 1992. This is an excellent treat- 
ment of the science and engineering of rocket propulsion. It is written at the 
graduate level but the introductory chapters are useful for undergraduate stu- 
dents. 

V. Szebehely, Theory of Orbits. Academic Press, New York, 1967. This advanced 
reference text discusses the restricted problem of three bodies with theories 
and applications concerning periodic orbits, space trajectories, stability and 
dynamical astronomy. 

L. G .  Taff, Celestial Mechanics: A Computational Guide for the Practitioner J. 
Wiley, New York, 1985. This highly readable, often informal text is prepared 
for advanced courses, emphasizing orbit determination and computational ap- 
proaches. 

F. Tisserand, Trait& de M6canique Ckleste. Vols. 1-4, Gauthier-Villars, Paris, 
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1889-1896. This book, written in French, is a remarkable advanced text di- 
rected to astronomically oriented readers. It is more readable than some of the 
other classics, such as Poincarb or Laplace. Contains discussions of general 
perturbation methods, figures of celestial bodies and their rotational motions, 
theory of the motion of the Moon, theory of motion of Jupiter’s and Saturn’s 
satellites and of minor planets and comets. 

J. M. T. Thompson and H. 8. Stewart, Non-Linear Dynamics and Chaos. J. Wi- 
ley, New York, 1986. This book is an excellent quantitative treatment of the 
subject of chaos theory and related topics. It is intended for graduate students 
but some of the material is appropriate for undergraduates as well. 

W. T. Thomson, Introduction to Space Dynamics. J. Wiley, New York, 1961. 
More along the lines of gyrodynamics, optimization, flexible missiles, etc. 
than celestial mechanics. Many examples of practical importance. 

H. C. Urey, The Planets: The Origin and Development. Yale University Press, 
New Haven, 1952. This books provides a detailed description of the Solar 
System before the era of exploration with spacecraft. It provides an excellent 
starting point for students who want to learn more about how our knowledge 
about the planets accumulated. The book is not easy to read. 

E. T. Whittaker. A Treatise on the Analytical Dynamics of Particles and Rigid 
Bodies. Cambridge University Press, London, 1904. This is one of the excel- 
lent books from which one can learn advanced dynamics. Many applications 
to celestial mechanics are treated in a clear style. 

W. E. Wiesel, Spacejlight Dynamics. McGraw-Hill, New York, 1995. This book 
is a modem treatment of both spacecraft dynamics and orbital mechanics. 
There are a number of elegant derivations in this book that are worth studying 
in detail. 

J. N. Wilford, Mars Beckons. Alfred A. Knopf, New York, 1990. John Noble Wil- 
ford is one of the most distinguished science writers working today, having re- 
ceived two Pulitzer Prizes for his work. Perhaps the best way to describe this 
book is to cite the statement on the dust jacket which talks of “the mysteries, 
the challenges and the expectations of our next great adventure in space.”This 
book is very well written and it is highly recommended. 

A. Wintner, The Analytical Foundations of Celestial Mechanics. Princeton Uni- 
versity Press, New Jersey, 194 1. The author wishes to emphasize “analytical 
foundations” in the title pointing out that “it  is almost forgotten how much the 
theory of analytic functions owes to the elementary problem of two bodies.” 
This book was written by and is appreciated by “c-trained mathematicians” 
more than by engineers and astronomers. Excellent set of references are giv- 
en, and it is carehlly pointed out that the traditional references to the origin of 
the fundamental mathematical notions in analytical dynamics are often incor- 
rect. 
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