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Preface and Study Guide to
the First Edition

In Discovering the Solar System you will meet the Sun, the planets, their satellites, and the host
of smaller bodies that orbit the Sun. On a cosmic scale the Solar System is on our doorstep, but
it is far from fully explored, and there continues to be a flood of new data and new ideas. The
science of the Solar System is thus a fast-moving subject, posing a major challenge for authors
of textbooks.

A major challenge for the student is the huge range of background science that needs to be
brought to bear—geology, physics, chemistry, and biology. I have tried to minimise the amount
of assumed background, but as this book is aimed at students of university-level science courses
I do assume that you have met Newton’s laws of motion and law of gravity, that you know about
the structure of the atom, and that you have met chemical formulae and chemical equations.
Further background science is developed as required, as is the science of the Solar System
itself, and it is therefore important that you study the book in the order in which the material
is presented. There is some mathematics—simple algebraic equations are used, and there is a
small amount of algebraic manipulation. It is assumed that you are familiar with graphs and
tables. There is no calculus.

To facilitate your study, there are ‘stop and think’ questions embedded in the text, denoted
by ‘�’. The answer follows immediately as part of the development of the material, but it will
help you learn if you do stop and think, rather than read straight on. There are also numbered
questions (Question 1.1, etc.). These are at the end of major sections, and it is important that you
attempt them before proceeding—they are intended to test and consolidate your understanding
of some of the earlier material. Full answers plus comments are given at the end of the book.
Another study aid is the Glossary, which includes the major terms introduced in the book. These
terms are emboldened in the text at their first appearance. Each chapter ends with a summary.

The approach is predominantly thematic, with sequences of chapters on the interiors, surfaces,
and atmospheres of the major bodies (including the Earth). The first three chapters depart from
this scheme, with Chapter 2 on the origin of the Solar System, and Chapter 3 on the small
bodies—asteroids, comets, and meteorites. Chapter 1 is an overview of the Solar System, and
this is also where most of the material on the Sun is located. Though the Sun is a major body
indeed, it is very singular, and it is therefore treated separately. It also gets only very brief
coverage, biased towards topics that relate to the Solar System as a whole. There is a significant
amount of material on how the Solar System is investigated. The ‘discovering’ in the title thus
has a double meaning—not only can you discover the Solar System by studying this book,
you will also learn something about how it has been discovered by the scientific community in
general.

A large number of people deserve thanks for their assistance with this book. Nick Sleep
and Graeme Nash each commented on a whole draft, and Nick Sleep also made a major
contribution to generating the figures. Coryn Bailer-Jones, George Cole, Mark Marley, Carl
Murray, Peter Read, and Lionel Wilson commented on groups of chapters. Information and
comments on specific matters have been received from Mark Bailey, Bruce Bills, Andrew
Collier Cameron, Apostolos Christou, Ashley Davies, David Des Marais, Douglas Gough, Tom



PREFACE AND STUDY GUIDE TO THE FIRST EDITION xv

Haine, Andy Hollis, David Hughes, Don Hunten, Pat Irwin, Rosemary Killen, Jack Lissauer,
Mark Littmann, Elaine Moore, Chris Owen, Roger Phillips, Eric Priest, Dave Rothery, Gerald
Schubert, Alan Stern, George Wetherill, John Wood, and Ian Wright. Jay Pasachoff supplied
data for the Electronic Media list. Material for some of the figures was made available by
Richard McCracken, Dave Richens, and Mark Kesby. John Holbrook loaned me some meteorite
samples to photograph.

Good luck with your studies.



Preface to the Second
Edition

Much has been added to, or changed, in our knowledge and understanding of the Solar System
since the first edition of this book was completed in 1998 (and published in early 1999). The
book has been thoroughly revised accordingly, though the overall organisation into chapters and
sections is much the same.

In the preparation of this second edition, particular thanks are due to Nick Sleep, who read
and commented on a draft of the whole book. Many people have provided information and
comments on specific matters. They include (in alphabetical order) Steve Blake, Alan Boss,
John Chambers, Michele Dougherty, Michael Drake, Bruce Fegley, Martyn Fogg, Bernard
Foing, Tristan Guillot, James Head, Robert Hutchison, Andrew Ingersoll, Patrick Irwin, Noel
James, Joe Kirschvink, Chris Kitchin, Ulrich Kolb, Robert Kopp, Stephen Lewis, Ralph Lorenz,
Neil McBride, Adam Morris, John Murray, Richard Nelson, Carolyn Porco, Eric Priest, Janna
Rodionova, Dave Rothery, Sean Ryan, Chuck See, Peter Skelton, Sean Solomon, Anne Sprague,
Fred Taylor, Nick Teanby, Ashwin Vasavada, Iwan Williams, and Ian Wright.



1 The Sun and its Family

Imagine that you have travelled far into the depths of space. From your distant vantage point the
Sun has become just another star amongst the multitude, and the Earth, the other planets, and
the host of smaller bodies that orbit the Sun are not visible at all to the unaided eye. The Sun is
by far the largest and most massive body in the Solar System, and is the only one hot enough
to be obviously luminous. This chapter starts with a description of the Sun. We shall then visit
the other bodies in the Solar System, but only briefly, the purpose here being to establish their
main characteristics – each of these bodies will be explored in much more detail in subsequent
chapters. Chapter 1 then continues with an exploration of the orbits of the various bodies. Each
of them also rotates around an axis through its centre, and we shall look at this too. The chapter
concludes with aspects of our view of the Solar System as we see it from the Earth.

1.1 The Sun

This is only a very brief account of the Sun, and it is biased towards topics of importance for
the Solar System as a whole. Fuller accounts of the Sun are in books listed in Further Reading.

1.1.1 The Solar Photosphere

The bright surface of the Sun is called the photosphere (Plate 1). Its radius is 6�96 × 105 km,
about 100 times the radius of the Earth. It is rather like the ‘surface’ of a bank of cloud, in
that the light reaching us from the photosphere comes from a range of depths, though the range
covers only about one-thousandth of the solar radius, and so we are not seeing very deep into the
Sun. It is important to realise that whereas a bank of cloud scatters light from another source, the
photosphere is emitting light. It is also emitting electromagnetic radiation at other wavelengths,
as the solar spectrum in Figure 1.1 demonstrates. The total power radiated is the area under the
solar spectrum, and is 3�85 × 1026 watts (W). This is the solar luminosity. The photosphere, for
all its brilliance, is a tenuous gas, with a density of order 10−3 kg m−3, about 1000 times less
than that of the air at the Earth’s surface.

The spectrum in Figure 1.1 enables us to estimate the mean photospheric temperature. This
is done by comparing the spectrum with that of an ideal thermal source, sometimes called
a black body. The exact nature of such a source need not concern us. The important point is
that its spectrum is uniquely determined by its temperature. Turning this around, if we can fit
an ideal thermal source spectrum reasonably well to the spectrum of any other body, then we
can estimate the other body’s temperature. Figure 1.1 shows a good match between the solar
spectrum and the spectrum of an ideal thermal source at a temperature of 5770 K. Also shown
is the poor match with an ideal thermal source at 4000 K, where the peak of the spectrum is

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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Figure 1.1 The solar spectrum, and the spectra of ideal thermal sources at 5770 K and 4000 K �1 nm =
10−9 m�.

at longer wavelengths. Also, the power emitted by this source is a lot less. The power shown
corresponds to the assumption that the 4000 K source has the same area as the source at 5770 K,
and thus brings out the point that the temperature of an ideal thermal source determines not only
the wavelength range of the emission, but the power too. Note that 5770 K is a representative
temperature of the Sun’s photosphere; the local temperature varies from place to place.

At a finer wavelength resolution than in Figure 1.1 the solar spectrum displays numerous
narrow dips, called spectral absorption lines. These are the result of the absorption of upwelling
solar radiation by various atoms and ions, mainly in the photosphere, and therefore the lines
provide information about chemical composition. Further information about the Sun’s composi-
tion is provided by small rocky bodies that continually fall to Earth. They are typically 1–100 cm
across, and constitute the meteorites (Section 3.3). At 5770 K significant fractions of the atoms
of some elements are ionised, and so it is best to define the composition at the photosphere
in terms of atomic nuclei, rather than neutral atoms. In the photosphere, hydrogen and helium
dominate, with hydrogen the most abundant – all the other chemical elements account for only
about 0.2% of the nuclei. Outside the Sun’s fusion core (Section 1.1.3) about 91% of the nuclei
are hydrogen and about 9% are helium.

Plate 1 shows that the most obvious feature of the photosphere is dark spots. These are
called (unsurprisingly) sunspots. They range in size from less than 300 km across to around
100 000 km, and their lifetimes range from less than an hour to 6 months or so. They have
central temperatures of typically 4200 K, which is why they look darker than the surrounding
photosphere. Sunspots are shallow depressions in the photosphere, where strong magnetic fields
suppress the convection of heat from the solar interior, hence the lower sunspot temperatures.
Their number varies, defining a sunspot cycle. The time between successive maxima ranges
from about 8 years to about 15 years with a mean value of 11.1 years. From one cycle to the
next the magnetic field of the Sun reverses. Therefore, the magnetic cycle is about 22 years.

Sunspots provide a ready means of studying the Sun’s rotation, and reveal that the rotation
period at the equator is 25.4 days, increasing with latitude to about 36 days at the poles. This
differential rotation is common in fluid bodies in the Solar System.
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1.1.2 The Solar Atmosphere

Above the photosphere there is a thin gas that can be regarded as the solar atmosphere. Because
of its very low density, at most wavelengths it emits far less power than the underlying
photosphere, and so the atmosphere is not normally visible. During total solar eclipses, the
Moon just obscures the photosphere, and the weaker light from the atmosphere then becomes
visible. In Plate 2 the atmosphere just above the photosphere is not visible, whereas in Plate 3
the short exposure time has emphasised the inner atmosphere. The atmosphere can be studied
at other times, either by means of an optical device called a coronagraph that attenuates the
radiation from the photosphere, or by making observations at wavelengths where the atmosphere
is brighter than the photosphere.

Figure 1.2 shows how the temperature and density in the solar atmosphere vary with altitude
above the base of the photosphere. A division of the atmosphere into two main layers is apparent,
the chromosphere and the corona, separated by a thin transition region.

The chromosphere

The chromosphere lies immediately above the photosphere. It has much the same composition
as the photosphere, so hydrogen dominates. The density declines rapidly with altitude, but the
temperature rises. The red colour that gives the chromosphere its name (‘coloured sphere’) is
a result of the emission by hydrogen atoms of light at 656.3 nm. This wavelength is called H�
(‘aitch-alpha’).

The data in Figure 1.2 are for ‘quiet’ parts of the chromosphere. Its properties are different
where magnetic forces hold aloft filamentary clouds of cool gas, extending into the lower
corona. The filaments are the red prominences above the limb of the photosphere in Plate 3.
Prominences are transitory phenomena, lasting for periods from minutes to a couple of months.
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base of the photosphere.
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The chromosphere is also greatly disturbed in regions where a flare occurs. This is a rapid
brightening of a small area of the Sun’s upper chromosphere or lower corona, usually in regions
of the Sun where there are sunspots. The increase in brightness occurs in a few minutes, followed
by a decrease taking up to an hour, and the energy release is spread over a very wide range
of wavelengths. Flares, like certain prominences, are associated with bursts of ionised gas that
escape from the Sun. Magnetic fields are an essential part of the flare process, and it seems
probable that the electromagnetic radiation is from electrons that are accelerated close to the
speed of light by changes in the magnetic field configuration. As with so many solar phenomena,
the details are unclear.

The corona

Above the chromosphere the density continues to fall steeply across a thin transition region that
separates the chromosphere from the corona (Figure 1.2).
� What distinctive feature of the transition region is apparent in Figure 1.2?
A distinctive feature is the enormous temperature gradient. This leads into the corona, where
the gradient is not so steep. The corona extends for several solar radii (Plate 2), and within
it the density continues to fall with altitude, but the temperature continues to rise, reaching
3–4 × 106 K, sometimes higher. Conduction, convection, and radiation from the photosphere
cannot explain such temperatures – these mechanisms would not transfer net energy from a body
at lower temperature (the photosphere) to a body at higher temperature (the corona). The main
heating mechanism seems to be magnetic – magnetic fields become reconfigured throughout the
corona, and induce local electric currents that then heat the corona. Waves involving magnetic
fields (magnetohydrodynamic waves) also play a role in certain regions.

The corona is highly variable. At times of maximum sunspot number it is irregular, with
long streamers in no preferred directions. At times of sunspot minimum, the visible boundary
is more symmetrical, with a concentration of streamers extending from the Sun’s equator, and
short, narrow streamers from the poles. Coronal ‘architecture’ owes much to solar magnetic
field lines. The white colour of the corona is photospheric light scattered by its constituents. Out
to two or three solar radii the scattering is mainly from free electrons, ionisation being nearly
total at the high temperatures of the corona. Further out, the scattering is dominated by the trace
of fine dust in the interplanetary medium.

The solar wind

The solar atmosphere does not really stop at the corona, but extends into interplanetary space
in a flow of gas called the solar wind, which deprives the Sun of about one part in 2�5 × 10−14

of its mass per year. Because of the highly ionised state of the corona, and its predominantly
hydrogen composition, the wind consists largely of protons and electrons. The temperature of
the corona is so high that if the Sun’s gravity were the only force it would not be able to
contain the corona, and the wind would blow steadily and uniformly in all directions. But the
strong magnetic fields in the corona act on the moving charged particles in a manner that
reduces the escape rate. Escape is preferential in directions where the confining effect is least
strong, and an important type of location of this sort is called a coronal hole. This is a region
of exceptionally low density and temperature, where the solar magnetic field lines reach huge
distances into interplanetary space. Charged particles travel in helical paths around magnetic
field lines, so the outward-directed lines facilitate escape. The escaping particles constitute the
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fast wind. Elsewhere, where the field lines are confined near the Sun, there is an additional
outward flow, though at lower speeds, called the slow wind.

Solar wind particles (somehow) gain speed as they travel outwards, and at the Earth the
speeds range from 200 to 900 km s−1. The density is extremely low – typically about 4 protons
and 4 electrons per cm3, though with large variations. Particularly large enhancements result
from what are called coronal mass ejections, often associated with flares and prominences,
and perhaps resulting from the opening of magnetic field lines. If the Earth is in the way of
a concentrated jet of solar wind, then various effects are produced, such as the aurorae (the
northern and southern lights – Plate 26). The solar wind is the main source of the extremely
tenuous gas that pervades interplanetary space.

Solar activity

Solar activity is the collective term for those solar phenomena that vary with a periodicity of
about 11 years.
� What two aspects of solar activity were outlined earlier?
You have already met the sunspot cycle, and it was mentioned that the form of the corona is
correlated with it. Prominences (filaments) and flares are further aspects of solar activity, both
phenomena being more common at sunspot maximum. The solar luminosity also varies with
the sunspot cycle, and on average is about 0.15% higher at sunspot maximum than at sunspot
minimum. This might seem curious, with sunspots being cooler and therefore less luminous
than the rest of the photosphere. However, when there are more sunspots, a greater area of the
photosphere is covered in bright luminous patches called faculae.

All the various forms of solar activity are related to solar magnetic fields that ultimately
originate deep in the Sun. The origin of these fields will be considered briefly in the following
description of the solar interior.

1.1.3 The Solar Interior

To investigate the solar interior, we would really like to burrow through to the centre of the Sun,
observing and measuring things as we go. Alas! This approach is entirely impractical. Therefore,
the approach adopted, in its broad features, is the same as that used for all inaccessible interiors.
A model is constructed and varied until it matches the major properties that we either can
observe, or can obtain fairly directly and reliably from observations. Usually, a range of models
can be made to fit, so a model is rarely unique. Many features are, however, common to all
models, and such features are believed to be correct. This modelling process will be described
in detail in Chapter 4, in relation to planetary interiors. Here, we shall present the outcome of
the process as applied to the Sun.

A model of the solar interior

Figure 1.3 shows a typical model of the Sun as it is thought to be today. Hydrogen and helium
predominate throughout, as observed in the photosphere. Note the enormous increase of pressure
with depth, to 1016 pascals (Pa) at the Sun’s centre – about 1011 times atmospheric pressure at
sea level on the Earth! The central density is less extreme, ‘only’ about 14 times that of solid
lead as it occurs on the Earth, though the temperatures are so high that the solar interior is
everywhere fluid – there are no solids. Another consequence of the high temperatures is that at
all but the shallowest depths the atoms are kept fully ionised by the energetic atomic collisions
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Figure 1.3 A model of the solar interior.

that occur. A highly ionised medium is called a plasma. The central temperatures in the Sun are
about 1�4 × 107 K, sufficiently high that nuclear reactions can sustain these temperatures and the
solar luminosity, and can have done so for the 4600 million years (Ma) since the Sun formed
(an age based on various data to be outlined in Chapter 3, notably data from radiometrically
dated meteorites). This copious source of internal energy also sustains the pressure gradient that
prevents the Sun from contracting.

Though nuclear reactions sustain the central temperatures today, there must have been some
other means by which such temperatures were initially attained in order that the nuclear reactions
were triggered. This must have been through the gravitational energy released when the Sun
contracted from some more dispersed state. With energy being radiated to space only from its
outer regions, it would have become hotter in the centre than at the surface. Nuclear reaction
rates rise so rapidly with increasing temperature that when the central regions of the young Sun
became hot enough for nuclear reaction rates to be significant, there was a fairly sharp boundary
between a central core where reaction rates were high, and the rest of the Sun where reactions
rates were negligible. This has remained the case ever since. At present the central core extends
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to about 0.3 of the solar radius (Figure 1.3). This is a fraction �0�3�3 of the Sun’s volume, which
is only 2.7%. However, the density increases so rapidly with depth that a far greater fraction of
the Sun’s mass is contained within its central core.

The Sun was initially of uniform composition, many models giving proportions by mass close
to 70.9% hydrogen, 27.5% helium, and 1.6% for the total of all the other elements. In such a
mixture, at the core temperatures that the Sun has had since its birth, there is only one group
of nuclear reactions that is significant – the pp chains. The name arises because the sequence
of reactions starts with the interaction of two protons (symbol p) to form a heavier nucleus
(deuterium), a proton being the nucleus of the most abundant isotope of hydrogen �1H�. When
a heavier nucleus results from the joining of two lighter nuclei, this is called nuclear fusion.
The details of the pp chains will not concern us, but their net effect is the conversion of four
protons into the nucleus of the most abundant isotope of helium �4He�, which consists of two
protons and two neutrons.

The onset of hydrogen fusion in the Sun’s core marks the start of its main sequence lifetime.
A main sequence star is one sustained by core hydrogen fusion, and ends when the core hydrogen
has been used up. The main sequence phase occupies most of a star’s active lifetime. In the
case of the Sun it will be another 6000 Ma or so until it ends, with consequences outlined in
Section 11.5.

Various other subatomic particles are involved in the pp cycles, but of central importance are
the gamma rays produced – electromagnetic radiation with very short wavelengths. These carry
nearly all of the energy liberated by the pp chains’ reactions. The gamma rays do not get very
far before they interact with the plasma of electrons and nuclei that constitutes the solar core.
To understand the interaction, it is necessary to recall that although electromagnetic radiation
can be regarded as a wave, it can also be regarded as a stream of particles called photons.
The wave picture is useful for understanding how radiation gets from one place to another; the
photon picture is useful for understanding the interaction of radiation with matter. The energy
e of a photon is related to the frequency f of the wave via

e = h f (1.1)

where h is Planck’s constant. The frequency of a wave is related to its wavelength via

f = c/� (1.2)

where c is the wave speed. For electromagnetic radiation in space c is the speed of light,
3�00 × 105 km s−1. Table 1.6 lists values of c, h, and other physical constants of relevance to
this book. (For ease of reference, the Chapter 1 tables are located at the end of the chapter.)

On average, after only a centimetre or so, a gamma ray in the core either bounces off an
electron or nucleus, in a process called scattering, or is absorbed and re-emitted. This maintains
the level of random motion of the plasma: in other words, it maintains its high temperature. The
gamma ray photons are not all of the same energy. They have a spectrum shaped like that of
an ideal thermal source at the temperature of the local plasma. This is true throughout the Sun,
so as the photons move outwards their spectrum moves to longer wavelengths, corresponding
to the lower temperatures, until at the photosphere the spectrum is that shown in Figure 1.1
(Section 1.1.1). The number of photons is greater than in the core, but they are of much lower
average energy. From the moment a gamma ray is emitted in the core to the moment its
descendants emerge from the photosphere, a time of several million years will have elapsed.
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� What is the direct travel time?
The direct travel time at the speed of light c across the solar radius of 6�96 × 105 km is
6�96 × 105 km/3�00 × 105 km s−1, i.e. 2.23 seconds!

The transport of energy by radiation is, unsurprisingly, called radiative transfer. This occurs
throughout the Sun. Another mechanism of importance in the Sun is convection, the phenomenon
familiar in a warmed pan of liquid, where energy is transported by currents of fluid. When the
calculations are done for the Sun, then the outcome is as in Figure 1.3. Convection is confined
to the outer 29% or so of the solar radius, where it supplements radiative transfer as a means
of conveying energy outwards. The tops of the convective cells are seen in the photosphere as
transient patterns called granules. These are about 1500 km across, and exist for 5–10 minutes.
There are also supergranules, about 10 000 km across and extending about as deep.

Because convection does not extend to the core in which the nuclear reactions are occurring,
the core is not being replenished, and so it becomes more and more depleted in hydrogen
and correspondingly enriched in helium. The core itself is unmixed, and so with temperature
increasing with depth, the nuclear reaction rates increase with depth, and therefore so does the
enrichment. This feature is apparent in the solar model in Figure 1.3.

The solar magnetic field

The source of any magnetic field is an electric current. If a body contains an electrically
conducting fluid, then the motions of the fluid can become organised in a way that constitute
a net circulation of electric current, and a magnetic field results. This is just what we have in
the solar interior – the solar plasma is highly conducting, and the convection currents sustain its
motion. We shall look more closely at this sort of process in Section 4.2. Detailed studies show
that the source of the solar field is concentrated towards the base of the convective zone. The
differential rotation of the Sun contorts the field in a manner that goes some way to explaining
sunspots and other magnetic phenomena.

The increase of solar luminosity

Evolutionary models of the Sun indicate that the solar luminosity was only about 70% of its
present value 4600 Ma ago, that it has gradually increased since, and will continue to increase
in the future. This increase is of great importance to planetary atmospheres and surfaces, as you
will see in later chapters.

1.1.4 The Solar Neutrino Problem

There is one observed feature of the Sun that solar models had difficulty in explaining. This
is the rate at which solar neutrinos are detected on the Earth. Solar neutrinos are so unreactive
that most of them escape from the Sun and so provide one of the few direct indicators of
conditions deep in the solar interior. A neutrino is an elusive particle that comes in three kinds,
called flavours. The electron neutrino is produced in the pp chains of nuclear reactions that
occur in the solar interior. The rates at which electron neutrinos from the Sun are detected by
various installations on the Earth are significantly below the calculated rate. Are the calculated
pp reaction rates in the Sun too low?

No, they are not. It is now known that neutrinos oscillate between the three flavours. If, in
their 8 minute journey at the speed of light from the solar core to the terrestrial detectors, they
settle into this oscillation, then at any instant only some of the neutrinos arriving here are of the
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electron type. The earlier neutrino detectors could only detect the electron type. Now, all three
can and have been detected coming from the Sun, giving a greater flux. This accounts for most
of the discrepancy. The rest of it has been accounted for by improvements in solar models that
have modified the predictions of the solar neutrino flux.

Question 1.1

The Sun’s photospheric temperature, as well as its luminosity, has also increased since its birth.
What is the combined effect on the solar spectrum in Figure 1.1?

1.2 The Sun’s Family – A Brief Introduction

Within the Solar System we find bodies with a great range of size, as Figure 1.4 shows.
The Sun is by far the largest body. Next in size are the four giant planets: Jupiter, Saturn,
Uranus, and Neptune. We then come to a group of bodies of intermediate size. Prominent are
the Earth, Venus, Mars, and Mercury. These four bodies constitute the terrestrial planets, so
called because they are comparable in size and composition, and are neighbours in space. This
intermediate-sized group has an arbitrary lower diameter which we shall take to be that of
the planet Pluto, the ninth planet. At least one body well beyond Pluto is slightly larger than
Pluto – Eris, of which, more later. Seven planetary satellites are larger than Pluto. As their
name suggests, planetary satellites are companions of a planet, bound in orbit around it and with
a smaller mass. In spite of their size, this binding means that they are classified as planetary
bodies, rather than as planets.

There are plenty of bodies smaller than Pluto: the remaining satellites, of which one of
Uranus’s satellites Titania is the largest; a swarm of asteroids, of which Ceres (‘series’) is easily
the largest; a huge number of comets, or bodies that become comets; and a continuous range of
even smaller bodies, right down to tiny particles of dust.

Tables 1.1–1.3 display the radius, and several other properties, of Solar System bodies and of
their orbits. Table 1.1 covers the nine planets and Ceres. Table 1.2 covers the planetary satellites,
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Figure 1.4 Sizes of bodies in the Solar System.
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excluding the many satellites of Jupiter and Saturn less that 5 km mean radius, plus a few others
of Uranus and Neptune. Table 1.3 covers the 15 largest asteroids.

Figure 1.5 shows the orbits of the planets. These orbits are roughly circular, and lie more
or less in the same plane. The plane of the Earth’s orbit is called the ecliptic plane. The
planets move around their orbits at different rates, but in the same direction, anticlockwise as
viewed from above the Earth’s North Pole – this is called the prograde direction. The asteroids
are concentrated in the space between Mars and Jupiter, in the asteroid belt. The distances in
Figure 1.5 are huge compared even to the solar radius of 6�96 × 105 km. A convenient unit of
distance in the Solar System is the average distance of the Earth from the Sun, 1�50 × 108 km,
which is given a special name, the astronomical unit (AU). Between them, Figures 1.4 and 1.5
provide a map of the Solar System’s planetary domain.

1.5 × 108 km

1.5 × 109 km

Mars

Earth

Venus
Mercury

Pluto

Neptune

Uranus

Jupiter

Saturn

Asteroids

Figure 1.5 The orbits of the planets as they would appear from a distant viewpoint perpendicular to the
plane of the Earth’s orbit.
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1.2.1 The Terrestrial Planets and the Asteroids

The terrestrial planets occupy the inner Solar System (Figure 1.5). They consist largely of rocky
materials, with iron-rich cores. Most of the Earth’s core is liquid, and this is probably the case
for Venus too. Each core is overlain by a mantle of rocky materials (silicates), overlain in turn
by a silicate crust. Mercury’s surface is heavily cratered by the accumulated effects of impacts
from space (Plate 4), indicating little geological resurfacing since the planet was formed. It has
a negligible atmosphere. Venus is the Earth’s twin in size and mass, and like the Earth it is
geologically active, with volcanic features common (Plate 5), but it differs from the Earth in
that it has no oceans. The surface of Venus, at a mean temperature of 740 K, is far too hot for
liquid water, a consequence of its proximity to the Sun, and its massive, carbon dioxide �CO2�
atmosphere. The Earth is further from the Sun and has an atmosphere about 100 times less
massive, mainly nitrogen �N2� and oxygen �O2�. It is thus cool enough to have oceans, but not
so cold that they are frozen (Plate 6). Unlike Mercury and Venus, the Earth has a satellite –
the Moon. Figure 1.4 shows that it is a considerable world, larger than Pluto. It is devoid of an
appreciable atmosphere and has a heavily cratered surface (Plate 7).

Beyond the Earth we come to Mars, smaller than the Earth but larger than Mercury. It has
a thin CO2 atmosphere through which its cool surface is readily visible (Plate 8). About half
of the surface is heavily cratered. The other half is less cratered, and shows evidence of the
corresponding past geological activity. Plate 9 is a view at the surface. Mars has two tiny
satellites, Phobos and Deimos (Table 1.2). These orbit very close to the planet, and might be
captured asteroids.

It is the domain of the asteroids – the asteroid belt – that we cross in the large gulf of
space that separates Mars from Jupiter. Asteroids are rocky bodies of which Ceres is by far
the largest (Table 1.3), although it is still a good deal smaller than Pluto (Figure 1.4). It is
thought that there are about 109 asteroids larger than 1 km, and Plate 10 shows just one with a
typically irregular shape at this small size. At a size of 1 metre there is a switch in terminology,
with smaller bodies being called meteoroids, and these are even more numerous. Those that
fall to Earth constitute the meteorites, which have provided much information about the origin,
evolution, and composition of the Solar System. Below about 0.01 mm there is another switch
in terminology – smaller particles are called dust. This is widely distributed within and beyond
the asteroid belt, and is predominantly submicrometre in size (less that 10−6 m across). The
asteroids are sometimes called minor planets.

1.2.2 The Giant Planets

The giant planets are very different from the terrestrial planets, not just in size (Figure 1.4) but
also in composition. Whereas the terrestrial planets are dominated by rocky materials, including
iron, Jupiter and Saturn are dominated by hydrogen and helium. There are also materials,
notably water �H2O�. The icy materials tend to concentrate towards the centres, where it is
so hot, typically 104 K, that the icy materials are liquids not solids. Rocky materials make
up only a small fraction of the mass of Jupiter and Saturn, and they also tend to concentrate
towards the centres. Uranus and Neptune are less dominated by hydrogen and helium, and the
central concentration of icy and rocky materials is more marked. All four giant planets are fluid
throughout their interiors.
� What other body in the Solar System is dominated by hydrogen and helium, and is fluid

throughout?
The Sun is also a fluid body, dominated by hydrogen and helium (Section 1.2).



12 THE SUN AND ITS FAMILY

Jupiter is the largest and most massive of the planets. Plate 11 shows the richly structured
uppermost layer of cloud, which consists mainly of ammonia �NH3� particles, coloured by traces
of a wide variety of substances, and patterned by atmospheric motions. The prominent banding
is parallel to the equator.

Jupiter has a large and richly varied family of satellites. Figure 1.6 is a plan view, drawn
to scale, of the orbits of the four largest by far of Jupiter’s satellites – Io, Europa, Ganymede,
Callisto. They are called the Galilean satellites, after the Italian astronomer Galileo Galilei
(1564–1642) who discovered them in 1610 when he made some of the very first observations
of the heavens with the newly invented telescope. They orbit the planet close to its equatorial
plane. These remarkable bodies are shown in Plates 12–15. They range in size from Ganymede,
which is somewhat larger than Mercury and is the largest of all planetary satellites, to Europa,
which is somewhat smaller than the Moon. Io is a rocky body. The other three contain increasing
amounts of water (mainly as ice) with increasing distance from Jupiter. Table 1.2 includes all
but the smallest satellites of Jupiter.

We move on to Saturn, which is somewhat smaller than Jupiter, but is otherwise not so
very different (Plate 16). We shall say no more about the planet in this chapter, but turn to its
family of satellites, and in particular to its largest satellite Titan, an icy–rocky body larger than
Mercury, and second only to Ganymede among the satellites. A remarkable thing about Titan
is that it has a massive atmosphere. Indeed, per unit area of surface, it has about 10 times more
mass of atmosphere than the Earth. The atmosphere is well over 90% N2 with a few per cent
of methane �CH4�, but contains so much hydrocarbon cloud and haze that the surface is almost
invisible from outside it (Plate 17).

Saturn is most famous for its rings (Plate 18). These lie in the planet’s equatorial plane,
and consist of small solid particles. The rings are extremely thin, probably no more than a few
hundred metres. They are, however, so extensive that they were observed by Galileo in 1610,
though it was the Dutch physicist Christiaan Huygens (1629–1693) who, in 1655, was first to
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Figure 1.6 The orbits of the Galilean satellites of Jupiter.
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realise that they are rings encircling the planet. Plate 18 shows that each main ring is broken
up into many ringlets, to form a structure of exquisite complexity. The other three giant planets
also have ring systems, but they are far less substantial.

Beyond Saturn we head off across another of the increasingly large gulfs of space that separate
the planets as we move out from the Sun. We come to Uranus, a good deal smaller than Saturn,
and with a smaller proportion of hydrogen and helium and a large icy–rocky core. In spite of
its size it was unknown until 1781 when it was discovered accidentally by the Germano-British
astronomer William Herschel (1738–1822) during a systematic survey of the stars. This was the
first planet to be discovered in recorded history. It had escaped earlier detection because it is at
the very threshold of unaided eye visibility, owing to its great distance from us. Its bands are
generally not as strong as those of Jupiter and Saturn (Plate 19).

Neptune, like Uranus, was discovered in recorded history, but the circumstances were very
different. Whereas Uranus was discovered accidentally, Neptune was discovered as a result
of predictions made by two astronomers in order to explain slight departures of Uranus from
its expected orbit. The British astronomer John Couch Adams (1819–1892) and the French
astronomer Urbain Jean Joseph Le Verrier (1811–1877) independently predicted that the cause
was a previously unknown planet orbiting beyond Uranus, and in 1846 Neptune was discovered
by the German astronomer Johann Gottfried Galle (1812–1910) close to its predicted positions.
Neptune, the last of the giants, is not so very different from Uranus (Plate 20), and so in the
spirit of this quick tour we shall say no more here about the planet itself.

Uranus and Neptune have many satellites. The largest among them by far, Neptune’s satellite
Triton, is a rocky–icy body slightly larger than Pluto, and it is the only satellite other than Titan
that has a significant atmosphere, though it is fairly tenuous, and allows the icy surface of Triton
to be seen (Plate 21). Among Neptune’s other satellites, Nereid has a huge and extraordinarily
eccentric orbit (Table 1.2). The orbit of Triton is curious in a different way – though it is nearly
circular it is retrograde, which is the opposite direction to the prograde orbital motion of the
planets and all other large satellites.

1.2.3 Pluto and Beyond

Beyond Neptune lies Pluto, in an orbit where sunlight is 1600 times weaker than at the Earth.
Pluto was discovered in 1930 by the American astronomer Clyde William Tombaugh (1906–
1997) during a systematic search of a band of sky straddling the orbital planes of the known
planets. It is a small world (Figure 1.4) and has not yet been visited by a spacecraft. Consequently
we know rather little about Pluto and its comparatively large satellite Charon. Pluto is an icy
world, with about half of its volume consisting of frozen water and other icy substances, and
the remainder consisting of rock. Charon probably has a broadly similar composition. Pluto also
has two tiny satellites, Nix and Hydra, of unknown composition.

Beyond Pluto space is not empty, and we have certainly not come to the edge of the Solar
System. One type of body abundant beyond Pluto is the comets. These are small icy–rocky
bodies that, through the effect of the Sun, develop huge fuzzy heads and spectacular tails when
their orbits carry them into the inner Solar System (Plate 22). In the outer Solar System they
have no heads and tails, and are not called comets there. There are two main populations. One
of these has bodies in prograde orbits concentrated towards the ecliptic plane, and occupying
orbits ranging from around the size of Pluto’s orbit (39.8 AU from the Sun, on average) to far
larger. This is the Edgeworth–Kuiper belt, and its occupants are called E–K objects (EKOs).
Over 1000 have been seen, the largest at present being Eris, which Hubble Space Telescope
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(HST) images have shown to have a radius about 20% larger than Pluto. It is currently (2006)
97 AU from the Sun, and when closest to the Sun lies at a distance of 38 AU. It is estimated
that more than 105 EKOs are larger than 100 km across, and lie in orbits out to about 50 AU.
There are more EKOs further away, Eris among them, and there are certainly many more that
are smaller than 100 km.

The Edgeworth–Kuiper belt might blend into the second population of icy–rocky bodies, a
swarm of 1012−1013 in a thick spherical shell surrounding the Solar System, extending from about
103 to 105 AU. This is the Oort cloud (also called the Öpik–Oort cloud). Its outer boundary
is at the extremities of the Solar System, where passing stars can exert a gravitational force
comparable with that of the Sun. The Oort cloud has not been observed directly, but its existence
is inferred from the comets that we see in the inner Solar System. These are a small sample
of the Oort cloud and also of the Edgeworth–Kuiper belt, but in orbits that have been greatly
modified. Table 1.4 lists some properties of selected comets.

Definition of a planet

That Eris, and several other EKOs, are larger or comparable in size with Pluto, has raised the
issue of whether there are several more planets in the Solar System, or whether large EKOs,
including Pluto, should not be regarded as planets.

At its triennial meeting in Prague in 2006, the International Astronomical Union faced this
issue, and passed resolutions defining what, in the Solar System, determines whether a body
is a planet. You might be surprised that previously there was no formal definition. The least
controversial parts of the definition are that a planet is in its own orbit around the Sun and
is large enough for its own gravity to overcome the strength of its materials, which, for a
non-rotating, isolated body, would make it spherical. On this basis, Pluto, Eris, and Ceres
would be planets. But the IAU added a further criterion, that to be a planet a body has to
have cleared material in the neighbourhood of its orbit. This is a tricky concept. The important
point is that Pluto, Eris, and Ceres do not meet it, and are therefore to be regarded as dwarf
planets.

However, the debate is not over. Many astronomers are unhappy with the IAU resolutions, and
therefore the definition of what is a planet might well be revised in the near future. Consequently,
in this book, Pluto will continue to be regarded as a planet and also as a large EKO. Eris, and
other large EKOs, will not, for now, be labelled as (dwarf) planets, and Ceres will continue to
be regarded as the largest asteroid.

Question 1.2

In about 100 words, discuss whether there is any correlation between the size of a planet and
its distance from the Sun.

1.3 Chemical Elements in the Solar System

With most of the mass in the Solar System in the Sun, and the Sun composed almost entirely
of hydrogen and helium, the chemical composition of the Solar System is dominated by these
two elements. Hydrogen is the lightest element. Its most common isotope (by far) has a nucleus
consisting of a single proton. You saw in Section 1.1.3 that this isotope is represented as 1H.
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Helium is the next lightest element, with the nucleus of its most common isotope (again by far)
consisting of two protons and two neutrons. Recall that an element is defined by the number
of protons in its nucleus – this is the atomic number – and that the isotopes are distinguished
by different numbers of neutrons. To denote a particular isotope the number of neutrons plus
protons is included with the chemical symbol, as you have seen for helium’s common isotope,
4He (Section 1.1.3).

The Solar System contains all 92 naturally occurring chemical elements with atomic numbers
from 1 (hydrogen) to 92 (uranium). The relative abundances of these elements have been
determined through observations of the Sun and through analyses of primitive meteorites
(Section 3.3.2).

Most of the mass outside the Sun is in Jupiter and Saturn, and these are also composed
largely of hydrogen and helium, though they contain larger proportions of the other elements –
the so-called heavy elements. For the Solar System as a whole, Table 1.5 gives the relative
abundances of the 15 most abundant of the chemical elements. Note that the value for helium is
for the Sun outside its fusion core. This region has not been depleted in helium by its conversion
into hydrogen by nuclear fusion, such as occurs in the core of the Sun.

Except in very high-temperature regions, most of the atoms of most elements are combined
with one or more other atoms, either of the same element, or of other elements. The important
exceptions are helium, neon, argon, krypton, and xenon, which are so chemically unreactive
that they remain monatomic and have been given the name inert gases or noble gases. If an
element is combined with itself, as in H2, then we have the element in molecular form, whereas
if it is combined with other elements, then we have it as a chemical compound.

Water �H2O� is the most abundant chemical compound of hydrogen in the Solar System.
Table 1.5 suggests the reason.
� What is the reason?
It is because oxygen has a high abundance. But hydrogen is so overwhelmingly abundant that
there is plenty left over after the formation of hydrogen compounds. Most of the uncompounded
hydrogen outside of the Sun is in the giant planets, as H2, or as a fluid of hydrogen with metallic
properties. Water is the main repository of hydrogen in most of the other bodies.

1.4 Orbits of Solar System Bodies

1.4.1 Kepler’s Laws of Planetary Motion

Each planet orbits the Sun as shown in plan view in Figure 1.5. As a crude approximation, the
planetary orbits can be represented as circles centred on the Sun, with all the circles in the same
plane, and each planet moving around its orbit at a constant speed; the larger the orbit, the slower
the speed. A far better approximation is encapsulated in three empirical rules called Kepler’s
laws of planetary motion. These were announced by the German astronomer Johannes Kepler
(1571–1630), the first two in 1609, the third in 1619.

Kepler’s first law Each planet moves around the Sun in an ellipse, with the Sun at one focus
of the ellipse.

Kepler’s second law As the planet moves around its orbit, the straight line from the Sun to
the planet sweeps out equal areas in equal intervals of time.

We shall come to the third law shortly.
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Figure 1.7 An ellipse, though far more eccentric than the orbit of any planet. This is the shape of the
orbit of the comet 21P Giacobini–Zinner (Table 1.4).

Figure 1.7 shows an ellipse. The shape is that of a circle viewed obliquely: the more oblique
the view, the greater the departure from circular form. The important features of an ellipse are
marked in Figure 1.7, and are that

• it has a major axis of length 2a and a minor axis of length 2b – unsurprisingly, a and b are
called, respectively, the semimajor axis and the semiminor axis;

• there are two foci that lie on the major axis, each a distance ae from the centre of the ellipse,
where e is the eccentricity of the ellipse; note that the foci are in the plane of the ellipse, and
that e =√

1 − b2/a2.

The eccentricity is a measure of the departure from circular form. If e is zero, then the foci
coalesce at the centre, a equals b, and the ellipse has become a circle of radius a. If e approaches
one then the ellipse becomes extremely elongated.

Kepler’s first law tells us that the shape of a planetary orbit is an ellipse, and that the Sun is
at one focus. Figure 1.8 shows the orbit of Pluto, which among planetary orbits has the greatest
eccentricity, e = 0�254. Note that whereas the shape is very close to a circle, the Sun, which

Centre
Sun

Perihelion Aphelion

a

ae

Figure 1.8 The orbit of Pluto.
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is at one of the foci, is distinctly off centre. Note also that the semimajor axis is less than the
maximum distance of a body from the Sun, but is greater than the minimum distance, and it is
therefore some sort of average distance. At its greatest distance from the Sun the body is at a
point in its orbit called aphelion; the closest point is called perihelion. These terms are derived
from the Greek words Helios for the Sun, and peri- and apo- which in this context mean ‘in the
vicinity of’ and ‘away from’ respectively. The length of the semimajor axis of the Earth’s orbit
is called the astronomical unit (AU), mentioned earlier.

Kepler’s laws don’t apply just to planets. Figure 1.7 is in fact the shape of the orbit of the
comet 21P/Giacobini–Zinner (Table 1.4).
� Where should the Sun be marked in Figure 1.7?
The Sun should be shown at either one of the two foci. This is an orbit of fairly high eccentricity,
e= 0�7057. The non-circular form is now very clear, and the foci are greatly displaced from the
centre.

Kepler’s second law tells us how a planet (or comet) moves around its orbit. For the case
of Pluto the shaded areas within the orbit in Figure 1.8 are equal in area, and so by Kepler’s
second law these are swept out in equal intervals of time. Thus, around aphelion the body is
moving slowest, and around perihelion it is moving fastest. The difference in these two speeds
is larger, the greater the eccentricity.
� What are the speeds at different positions in a circular orbit?
In a circular orbit the equal areas correspond to equal length arcs around the circle, so the body
moves at a constant speed around its orbit.

So far, Kepler’s laws have described the orbital motion around the Sun of an individual body.
The third and final law compares the motion of one body to another:

Kepler’s third law If P is the time taken by a planet to orbit the Sun once, and a is the
semimajor axis of the orbit, then

P = ka3/2 (1.3)

where k has the same value for each planet.

P is called the orbital period or the period of revolution. It is the period as observed from a
non-rotating viewpoint, which, for practical purposes, is any viewpoint fixed with respect to the
distant stars. This leads to the term sidereal (‘= star-related’) orbital period for P. For the
Earth this period is called the sidereal year. Therefore, with P = 1 (sidereal) year and a = 1 AU�
k = 1 year AU−3/2. According to Kepler’s third law, this is the value of k for all the planets.

Equation (1.3) tells us that the larger the orbit, the longer the orbital period. This is partly
because the planet has to travel further, and partly because the planet moves more slowly. We
can see that the planet moves more slowly from the simple case of a circular orbit of radius
a. The circumference of the orbit is 2�a, so if the orbital speed were independent of a then
P would be proportional to a, not, as observed, to a3/2. Therefore, the orbital speed must be
proportional to a−1/2. In an elliptical orbit the circumference still increases as a increases, and
now it is the average speed that decreases.

Kepler’s third law enables us to obtain relative distances in the Solar System. If we measure
the orbital periods of bodies A and B, then the ratio of the semimajor axes of their orbits is
obtained from equation (1.3):

aA

aB

=
(

PA

PB

)2/3
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If one of the two bodies has a in AU, then we can express the other semimajor axis in
astronomical units. This can be repeated for all orbits. Moreover, from the shape and orientation
of the orbits, we can draw a scale plan of the Solar System, and at any instant we can show
where the various planets lie. At any instant we can thus express in astronomical units the
distance between any two bodies. If at the same instant we can measure the distance between
any two bodies in metres, we can then obtain the value of the astronomical unit in metres.

Today, the astronomical unit is best measured using radar reflections. Radar pulses travel
at the speed of light c, which is known very accurately (Table 1.6). Time intervals can also
be measured very accurately, so if we measure the time interval 	t between sending a radar
pulse from the Earth to a planet and receiving its echo, then the distance from the Earth to
the planet is c	t/2. Accurate measurements of distances in the Solar System have revealed that
the semimajor axis of the Earth’s orbit is subject to very slight variations. As a consequence the
AU is now defined as exactly equal to 1�495 978 706 9 × 108 km. The Earth’s semimajor axis is
currently (2006) 0.999 985 AU.

Question 1.3

The asteroid Fortuna is in an orbit with a period of 3.81 years. Show that the semimajor axis of
its orbit is 2.44 AU.

Question 1.4

Suppose that when the Earth is at perihelion Venus lies on the straight line between the Earth
and the Sun. The time interval between sending a radar pulse from the Earth to Venus and
receiving its echo is 264 s. Taking the speed of light in space as 3�00 × 105 km s−1, calculate to
two significant figures the astronomical unit in metres. Proceed as follows.

For the instant of measurement

• from the orbital details calculate the distance between the Earth and Venus in AU;
• from the radar data calculate the distance in km between the Earth and Venus.

Hence calculate the number of metres in 1 AU.
Note: For two-significant-figure accuracy Venus is sufficiently close to perihelion when the

Earth is at perihelion for you to use the perihelion distance of Venus.

1.4.2 Orbital Elements

The quantities a and e are two of the five quantities – of the five orbital elements – that are
needed to specify the elliptical orbit of a body. P is not normally among the three remaining
elements.
� Why is P (normally) redundant?
The orbital period is redundant because it can usually be obtained with sufficient accuracy from
a via Kepler’s third law. The need for three further elements is illustrated in Figure 1.9, which
shows the plane of the Earth’s orbit plus the orbit of another body. Note that, for clarity, the
orbit of the Earth is not shown, though the direction of the Earth’s orbital motion is indicated
by an arrow. The plane of the Earth’s orbit acts as a reference plane for all other orbits and,
as noted earlier, is called the ecliptic plane. The position of the Earth in its orbit at a certain
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Figure 1.9 The three orbital elements i� �� �, used to specify the orientation of an elliptical orbit with
respect to the ecliptic plane.

moment in the year provides a reference direction. The direction chosen is that from the Earth
to the Sun when the Earth is at the vernal (March) equinox. The direction points to the stars
at a location called the first point of Aries. The direction (and the location) has the symbol 
 .
The basis of these names will be given later.

For the other body in Figure 1.9, its orbital plane intersects the ecliptic plane to form a line.
The Sun lies on this line at the point S – the Sun must lie in both orbital planes (Kepler’s first
law). Another point on the line is marked N, and this is where the body crosses the ecliptic
plane in going from the south side to the north side, north and south referring to the sides of
the ecliptic plane on which the Earth’s North and South Poles lie. N is called the ascending
node of the body’s orbit. The angle � is measured in the direction of the Earth’s motion, from

 to the line SN. This is the orbital element called the longitude of the ascending node. It
can range from 0� to 360�. The orbital plane of the planet makes an angle i with respect to the
ecliptic plane, and this is the element called the orbital inclination. It can range from 0� to
180� – values greater than 90� correspond to retrograde orbital motion.
� What is the inclination of the Earth’s orbit, and why is the longitude of the ascending node

an inapplicable notion?
The Earth’s orbit lies in the ecliptic plane. With the ecliptic plane as the reference plane, the
inclination of the Earth’s orbit is therefore zero. An ascending node is one of the two points
where an orbit intersects the ecliptic plane. The Earth’s orbit lies in this plane and therefore the
ascending node is undefined.

The last of the five elements that are needed to specify the elliptical orbit of a body is the
angle �, measured from SN to the line Sp, where p (Figure 1.9) is the perihelion position of
the body. The angle � is measured in the direction of motion of the body, and can range from
0� to 360�. It is called the argument of perihelion. However, it is somewhat more common to
give as the fifth element the angle �� + ��. This is called the longitude of perihelion. It is a
curious angle, being the sum of two angles that are not in the same plane. Note that if the sum
exceeds 360�, then 360� is subtracted.

To specify exactly where a body will be in its orbit at some instant we need to know when
it was at some specified point at some earlier time. For example, we could specify one of the
times at which the body was at perihelion. This sort of specification is a sixth orbital element.
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Table 1.1 lists the values of the orbital elements for each planet and for the largest asteroid,
Ceres. Note that

• the orbital inclinations are small: the planets’ orbital planes are almost coincident, Pluto’s
inclination of 17�1� being by far the greatest;

• except for Pluto and Mercury, and to a lesser extent Mars, the orbital eccentricities are also
small, and the exceptions are not dramatic.

Question 1.5

(a) Comet Kopff has the following orbital elements: inclination 4�7�, eccentricity 0.54, argument
of perihelion 163�, longitude of the ascending node 121�. Sketch the orbit with respect to
the ecliptic plane and the direction 
 . (An accurate drawing is not required.)

(b) The distance of Comet Kopff from the Sun at its perihelion on 2 July 1996 was 1.58 AU.
Calculate the semimajor axis of the orbit, and hence calculate: its aphelion distance, its
orbital period, and the month and year of the first perihelion in the twenty-first century
(given that there are 365.24 days per year).

(c) The perihelion and aphelion distances of Mars are 1.38 AU and 1.67 AU, and yet the orbits
of Mars and Comet Kopff do not intersect. In a few sentences, state why not. (A proof is
not required.)

1.4.3 Asteroids and the Titius–Bode Rule

Nearly all of the asteroids are in a belt between Mars and Jupiter, and though their orbital
inclinations and eccentricities are more diverse than for the planets (Table 1.3), the asteroids in
the asteroid belt do, by and large, partake in the nearly circular swirl of prograde motion near
to the ecliptic plane.

If we compare the semimajor axes of the planets, and include the asteroids, then something
curious emerges. One way of making this comparison is shown in Figure 1.10. The planets have
been numbered in order from the Sun: Mercury is numbered 1, Venus 2, Earth 3, Mars 4, the
asteroids 5, Jupiter 6, and so on. The semimajor axes of the orbits have been plotted versus each
planet’s number. For the asteroids the dot is Ceres and the bar represents the range of semimajor
axes in the main belt, a concentration within the broader asteroid belt. The curious thing is that,
with a logarithmic scale on the ‘vertical’ axis, the data in Figure 1.10 lie close to a straight
line. This means that the semimajor axes increase by about the same factor each time we go
from one planet to the next one out. This is one of several ways of expressing the Titius–Bode
rule, named after the German astronomers Johann Daniel Titius (1729–1796), who formulated
a version of the rule in 1766, and Johann Elert Bode (1747–1826) who published it in 1772.
Theories of the formation of the Solar System (Chapter 2) can give rise to an increase in spacing
of planetary orbits as we go out from the Sun, so the Titius–Bode rule is an expression of this
feature of the theories.

1.4.4 A Theory of Orbits

Kepler’s laws are empirical rules that describe very well the motion of the planets around the
Sun. One of the many achievements of the British scientist Isaac Newton (1642–1727) was that
he was able to explain the rules in terms of two universal theories that he had developed. One



ORBITS OF SOLAR SYSTEM BODIES 21

1 2 3 4 5 6 7 8 9 10
Planet number

S
em

im
aj

o
r 

ax
is

/ A
U

 

0.3

1

3

10

30

Figure 1.10 The semimajor axes of the planets versus the planets in order from the Sun: 1 = Mercury,
2 = Venus, etc., until 10 = Pluto. The vertical line at 5 is the asteroid belt.

theory is encapsulated in Newton’s laws of motion, and the other in Newton’s law of gravity.
I state these laws here on the assumption that you have met them before, and will concentrate
on using them to explore motion in the Solar System.

Newton’s first law of motion An object remains at rest or moves at constant speed in a straight
line unless it is acted on by an unbalanced force. (In other words, an unbalanced force causes
acceleration, i.e. either a change of speed or a change of direction, or a change of both speed
and direction.)

Newton’s second law of motion If an unbalanced force of magnitude (size) F acts on a body
of mass m, then the acceleration of the body has a magnitude given by

a = F/m (1.4)

and the direction of the acceleration is in the direction of the unbalanced force.

Newton’s third law of motion If body A exerts a force of size F on body B, then body B will
exert a force of the same magnitude on body A but in the opposite direction.
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Newton’s law of gravity If two point masses M and m are separated by a distance r then there
is a gravitational force of attraction between them with a magnitude given by

F = GMm/r2 (1.5)

where G is the universal gravitational constant (its value is given in Table 1.6).

A point mass has a spatial extent that is negligible compared with r. For extended bodies the
net gravitational force is the sum of the gravitational forces between all the points in one body
and all the points in the other.

To derive Kepler’s laws from Newton’s laws three conditions have to be met:

(1) The only force on a body is the gravitational force of the Sun.
(2) The Sun and the body are spherically symmetrical. This means that their densities vary only

with radius from the centre to the (spherical) surface. In this case they interact gravitationally
like point masses with all the mass of each body concentrated at its centre.

(3) The mass of the orbiting body is negligible compared with the Sun’s mass.

The detailed derivation of Kepler’s laws from Newton’s laws can be found in books on celestial
mechanics, and will not be repeated here, but we can illustrate some links between the two sets
of laws.

Kepler’s first and second laws

Take the first and second laws together and consider a body A in an elliptical orbit such as
orbit 1 in Figure 1.11. Newton’s law of gravity tells us that the Sun attracts A. Thus, from the
second law of motion, A accelerates towards the Sun, its speed increasing as its distance from
the Sun decreases. Because it has a component of motion other than towards the Sun, it does
not fall directly towards the Sun. It therefore misses the Sun and swings through perihelion (p)

a

A

p

1

2 3 4

Figure 1.11 A body in a variety of orbits around the Sun.
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at its maximum speed. It is then slowed down by the Sun’s gravity as it climbs away from the
Sun, and has its minimum speed as it passes through aphelion (a). The mathematical details
show that under the three conditions the precise shape of the orbit is elliptical with the Sun at
a focus (Kepler’s first law) and that the increase in speed with decreasing solar distance gives
the equal areas law (Kepler’s second law).

Consider the body now in the circular orbit 2 in Figure 1.11. This orbit has the same perihelion
distance as orbit 1, but the body is now moving more slowly at p than it was in orbit 2, and
so it does not climb away from the Sun. It still accelerates towards the Sun in that its motion
is always curving towards the Sun, but its overall motion is just right to keep it at the same
distance from the Sun. Consequently its speed in its orbit is constant, and its acceleration is
entirely in its change of direction. If a body had no sideways motion then it would accelerate
straight into the Sun.

Parabolic and hyperbolic orbits

Now consider the body with a speed at the perihelion distance of p greater than that of the body
in orbit 1 in Figure 1.11.
� What would be the orbit were the speed at p only slightly greater?
In this case the body would climb slightly further away at aphelion – the semimajor axis would
be greater. If we increase the speed further then Newton’s laws predict that we will reach a
value at which the body climbs right away from the Sun, never to return. This threshold is met
in orbit 3 in Figure 1.11. This is a parabolic orbit. It is not a closed curve – the two arms become
parallel at infinity. Orbits with even greater perihelion speeds are even more opened out, and
one example is orbit 4. These are hyperbolic orbits. At infinity, the two arms of a hyperbola
become tangents to diverging straight lines; the greater the perihelion speed, the greater the
angle between the lines. Parabolic and hyperbolic orbits are called unbound orbits, whereas an
elliptical orbit is a bound orbit.

Are there any Solar System bodies in unbound orbits? Yes there are. Table 1.4 shows that
the orbital eccentricities of two of the comets listed are indistinguishable from 1, a value that
corresponds to a parabolic orbit. Two of those listed are in hyperbolic orbits. If a comet is in an
unbound orbit then, unless its orbit is suitably modified to become bound, e.g. by a close encounter
with a planet, it will leave the Solar System. Also, unless its orbit has been modified on its way
inwards, it must have come from beyond the Solar System. Comets are a major topic in Chapter 3.

Kepler’s third law

For Kepler’s third law �P =ka3/2� we have to consider bodies in orbits with different semimajor
axes. You saw earlier that the a3/2 dependence is the combined result of an increase in the
distance around the larger orbit, and a lower orbital speed. This lower speed is explained by
the decrease of gravitational force with distance (Newton’s law of gravity, equation (1.5)) and
the corresponding decrease in acceleration, a result derived in detail in standard texts. Such texts
also show that, under the conditions 1 and 2 above, Newton’s laws give

P =
(

4�2

G�M� + m�

)1/2

a3/2 (1.6)

where M� is the mass of the Sun and m is the mass of the other body. This is not quite Kepler’s
third law.
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� What further condition is needed?
To get Kepler’s third law 4�2/G�M� + m� must be a constant for the Solar System. With m
being the property of the non-solar body, this condition is met if m is negligible compared with
the Sun’s mass. This is condition (3) above. In the Solar System Jupiter is by some way the
most massive planet, but even so is only 0.1% the mass of the Sun. Therefore, condition (3)
is met to a good approximation, and Kepler’s third law is explained satisfactorily by Newton’s
laws.

Question 1.6

From the orbital data for the Earth in Table 1.1, calculate the mass of the Sun. Work in SI units,
and note that 1 year = 3�156 × 107 s. Repeat the calculation using the data for Jupiter’s orbit.
State any approximations you make, and whether your calculated masses seem to bear them out.

1.4.5 Orbital Complications

Conditions (1)–(3) in Section 1.4.4 are met only approximately in the Solar System, and because
of this, complications arise, as follows.

The mass of the orbiting body is not negligible compared with the Sun’s mass

Consider a single planet and the Sun, as in Figure 1.12(a). You can see that they each orbit a point
on a line between them. This point is called the centre of mass of the system comprising the Sun
and the planet. For any system of masses the centre of mass is the point that accelerates under
the action of a force external to the system as if all the mass in the system were concentrated at
that point. Thus if the external forces are negligible then the centre of mass is unaccelerated. By
contrast both the Sun and the planet accelerate the whole time because of their orbital motions
with respect to the centre of mass. In Figure 1.12(b) the same planet is shown in its orbit with
respect to the Sun. This orbit is bigger than the two in Figure 1.12(a) but all three orbits have
the same eccentricity and orbital period. Kepler’s first two laws apply to the planetary orbit
with respect to the Sun, as in Figure 1.12(b), and are not invalidated by the non-negligible
planet’s mass.

For two spherically symmetrical bodies, such as the Sun and planet in Figure 1.12, the centre
of mass is at a position such that

r�/rp = mp/M� (1.7)

where r� and rp are the simultaneous distances of the Sun and planet from the centre of mass at
any point in the orbits, and mp and M� are the masses. Though we shall not prove this equation,
it has reasonable features. For example, the greater the value of mp/M�, the further the centre
of mass is from the centre of the Sun. In Figure 1.12 mp/M� = 1/4, corresponding to a planet
far more massive than any in the Solar System.
� Where is the centre of mass if the mass of the planet is negligible compared with the solar

mass?
It is then at the centre of the Sun.

Jupiter, the most massive planet, has a mass 0.0955% of that of the Sun. Jupiter is in an
approximately circular orbit with a semimajor axis of 7�78×108 km, and so, from equation (1.7),



ORBITS OF SOLAR SYSTEM BODIES 25

(a)

(b)

rSun Planet
Centre
of mass

Centre
of mass

rp

x

x
Sun

Planet

Figure 1.12 A planet in orbit around the Sun. (a) Motion with respect to the centre of mass. (b) Motion
of the planet with respect to the Sun.

we can calculate that the centre of mass of the Jupiter–Sun system is 740 000 km from the Sun’s
centre. Thus, if Jupiter were the only planet in the Solar System the Sun’s centre would move
around a nearly circular orbit of radius 740 000 km – not much more than the solar radius. The
effects of the other planets are to make the Sun’s motion complicated, though the excursions of
the Sun’s centre are confined to within a radius of about 1�5 × 106 km.

The Sun and the body are not spherically symmetrical

Though the Sun and the planetary bodies are close to spherical symmetry, they are not perfectly
so. One cause is the rotation of the body. No body is rigid and so the rotation causes the equatorial
region to bulge, as in Figure 1.13(a), to give a tangerine shape. The rotational distortion of
Saturn is clear in Plate 16. Another cause of departure from spherical symmetry is a gravitational
force that varies in magnitude and/or direction across a body. From Newton’s law of gravity
(equation (1.5)) we can see that the parts of a planet closer to the Sun experience a slightly
larger gravitational force than the parts further away, and so the planet stretches. An additional
distortion arises from the change in direction to the Sun across the body perpendicular to the solar
direction – this results in a ‘squeeze’. The outcome (exaggerated) is shown in Figure 1.13(b) –
a shape somewhat like a rugby ball, or an American football. The differential force (stretch and
squeeze) is called a tidal force, and the distortion is called a tide. The Sun produces a tide in
the body of the Earth, and a larger tide in the oceans. The Moon also produces tides in the Earth
and actually raises greater tides than the Sun does, in spite of the Moon’s far lower mass. This
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Figure 1.13 Departures from spherical symmetry in a planet due to (a) rotation and (b) the tidal force of
the Sun.

is because it is so much closer than the Sun that the differential force it exerts across the Earth
is greater than the differential force exerted by the Sun: the gravitational force of the Sun is
almost uniform across the Earth, whereas that of the Moon is less so.

The importance of departures from spherical symmetry, however caused, is that they enable
one body to exert a torque – a twisting – on another body. For example, a planet in Figure 1.13(b)
in the direction P is slightly closer to the left end of the distorted planet than to the right end. It
therefore exerts a greater overall gravitational force to the left than to the right, and so there is
a torque. It can be shown that orbital changes result from such torques.

There are forces on a body additional to the gravitational force of the Sun

� List some gravitational forces on a planet other than the gravitational force of the Sun.
Most obviously there is the gravitational force exerted by the other planets. The planets have
much smaller masses than the Sun, and are relatively well separated. Therefore, from Newton’s
law of gravity (equation (1.5)), it is clear that the combined gravitational force of the other
planets is small, giving only slight effects on the planet’s orbit. In contrast, a comet can approach
a planet fairly closely, in which case the comet’s orbit will be greatly modified. Planetary
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satellites also have an effect – it is the centre of mass of a planet–satellite system that follows
an elliptical orbit around the Sun, in accord with Kepler’s laws. The planet and each satellite
thus follow a slightly wavy path.

As well as other gravitational forces there are non-gravitational forces. For example, when
a comet approaches the Sun, icy materials are vaporised – it is these that give rise to the head
and the tails. But they also exert forces on the comet, rather in the manner of rocket engines,
and considerable orbital changes can result.

Because of additional forces and a lack of spherical symmetry the planetary orbits are therefore
not quite as described by Kepler’s three laws. However, the departures from the laws are
usually sufficiently slight that we can regard the orbits as ellipses in which the orbital elements
change, usually slowly, and often chaotically, i.e. without pattern, although the semimajor axes,
eccentricities, and inclinations are usually confined to narrow ranges of values. The values given
in Table 1.1 apply in 2006, but the values, almost to the precision given, will be unchanged for
many decades. The values for a,e, and i in particular will not wander far from the values given,
for millennia, except perhaps for the least massive planet Pluto.

The word ‘usually’ has been used several times in the preceding paragraph, which raises the
question ‘what about the exceptions?’ In Section 1.4.6 we consider exceptions arising from the
gravitational interaction between two bodies orbiting the Sun.

Question 1.7

Explain briefly why the orbital elements of Venus would be subject to greater variation than at
present, if

(a) the Sun rotated more rapidly;
(b) the mass of Jupiter were doubled;
(c) the Sun entered a dense interstellar cloud of gas and dust.

1.4.6 Orbital Resonances

The gravitational interaction between two bodies orbiting the Sun gives rise to what are called
orbital resonances. These can greatly affect the stability of an orbit. There are two types of
resonance, mean motion resonances and secular resonances. Here we present a minimal account,
sufficient to serve later needs.

A mean motion resonance (mmr) occurs when the ratio of the orbital periods PJ and PA of
bodies J and A is given by

PJ

PA

= p + q

p
(1.8)

where p and q are integers. Figure 1.14 illustrates the case of Jupiter J and an asteroid A when
PJ/PA = 2, i.e. for every one orbit of Jupiter the asteroid completes two orbits. This is called
a 2:1 mmr. In Figure 1.14(a) the perihelion of the asteroid occurs when it is in line between
the Sun and Jupiter (the eccentricity of Jupiter’s orbit is small). Therefore, the asteroid is never
very close to Jupiter, and its orbit is likely to be stable. In Figure 1.14(b) the asteroid’s aphelion
occurs when it is in line between the Sun and Jupiter. It therefore approaches Jupiter more
closely and suffers a strong gravitational tug. Crucially, this is repeated in every Jovian orbit,
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Figure 1.14 A 2:1 mean motion resonance (mmr) between Jupiter and an asteroid. (a) The perihelion of
the asteroid occurs when it is in line between the Sun and Jupiter (probably stable). (b) The aphelion of
the asteroid occurs when it is in line between the Sun and Jupiter (probably unstable).

so the effect of the tugs builds up, probably leading to ejection of the asteroid from its orbit.
Many mmr effects are seen in the Solar System, as you will see in later chapters.

The other type of resonance is the secular resonance. ‘Secular’ in this context means a
long-term interaction. Thus, rather than looking at the instantaneous interaction between two
bodies in orbit around a star as in Figure 1.14, we consider the averaged interaction over a long
period, In effect, it is as if each body has been smeared out along its orbit and the gravitational
interaction is between these rings. There is a great variety of secular resonances.

Figure 1.15 illustrates just one type for the case of two bodies orbiting in the same plane.
For the sake of clarity the orbit of each body has been replaced by its semimajor axis.
Note that the interval between each configuration corresponds to many orbital periods. The
gravitational interaction between the two bodies causes the semimajor axis of each of them
to move around in the plane of the orbit (shown in grey). This means that the perihelion
of each body also moves around – this is called precession of the perihelion. This is a
general phenomenon when there are more than two bodies orbiting a star. But in this partic-
ular case you can see that the angle between the semimajor axes oscillates around zero, and
that it never gets large. This confined difference is an example of a secular resonance. In
this case it enhances the stability of the orbits. Other secular resonances lead to instability.
Later chapters outline examples of secular resonances in the Solar System. Precession of the
perihelion does not always correspond to a secular resonance, as you will see in the next
section.
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The grey background denotes the orbital plane

Figure 1.15 A secular resonance in which the angle between the semimajor axes never gets large.

Question 1.8

From the orbital periods of Neptune and Pluto in Table 1.1, deduce whether these two planets
are in a resonance, and, if so, whether it is a secular resonance or a mean motion resonance.

1.4.7 The Orbit of Mercury

As for all the planetary orbits, the orbit of Mercury is not quite an ellipse fixed in space. An
important departure is the precession of the perihelion that you encountered in Section 1.4.6.
For Mercury it is illustrated in Figure 1.16. The actual precession (with respect to a coordinate

Advance of
perihelion

Sun

Figure 1.16 Precession of the perihelion of the orbit of Mercury. The two orbits are separated by
2000 years.
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system fixed with respect to the distant stars) is through an angle of 574 arc seconds (arcsec) per
century (3600 arcsec= 1�). The effect of all the other planets, and of the slight departure of the
Sun from spherical symmetry, leaves a discrepancy of 43 arcsec per century. This discrepancy
(at rather less precision) was a great puzzle when it was identified in the nineteenth century,
and it was not accounted for until 1915 when the German–Swiss physicist Albert Einstein
(1879–1955) applied his newly developed theory of general relativity to the problem. General
relativity is not a modification of Newton’s laws, but a very different sort of theory. Fortunately,
for most purposes in the Solar System, the far simpler theory of Newton suffices. Einstein’s
theory accounts for the observed rate of precession of the perihelion of Mercury to within the
measurement uncertainties.

1.5 Planetary Rotation

Each planet rotates around an axis that passes through its centre of mass. In the case of the
Earth this rotation axis is shown in Figure 1.17. It intersects the Earth’s surface at the North
and South Poles, and the equator is the line half way between the Poles. You can see that the
rotation axis is not perpendicular to the Earth’s orbital plane (the ecliptic plane) but has an axial
inclination of 23�4� from the perpendicular.

As the Earth moves around its orbit the rotation axis remains (very nearly) fixed with respect
to the distant stars. This is shown (from an oblique viewpoint) in Figure 1.18. The axis is not
fixed with respect to the Sun, and so the aspect varies around the orbit. At A the North Pole
is maximally tilted towards the Sun. This is called the June solstice, and it occurs on or near
21 June each year. Six months later, at C, the North Pole is maximally tilted away from the
Sun. This is the December solstice, which occurs around the 21st of the month. At B and D we
have the only two moments in the year when the Earth’s rotation axis is perpendicular to the
line from the Earth to the Sun. Over the whole Earth, day and night are of equal length, which
gives us the name for these two configurations – the equinoxes. The direction from the Earth

South
Pole

North
Pole

Rotation
axis

Equator

Earth

Earth
orbital
plane

(edge view)

23.4°

Figure 1.17 The axial inclination of the Earth.
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Sun

Earth

A (about
21 June)

C (about
21 December)

D (about 21 March)

Earth orbit
(oblique view)

Earth
rotation

axis

B (about 22 September)

23.4°

Figure 1.18 The Earth’s rotation axis as the Earth orbits the Sun. This is an oblique view of the orbit,
which is nearly circular.

to the Sun at the vernal (March) equinox is used as the reference direction 
 in the ecliptic
plane that you met in Section 1.4.2.

We now turn to the period of rotation. Figure 1.19 shows the Earth moving around a segment
of its orbit. As it does so it also rotates, and the arrow extending from a fixed point on the
Earth’s surface enables us to monitor this rotation. Between positions 1 and 2 the Earth has
rotated just once with respect to a distant star. This is the sidereal rotation period. The distant
stars, to sufficient accuracy, provide a non-rotating frame of reference (just as for the sidereal
orbital period in Section 1.4.1). For the Earth, the sidereal rotation period is actually called the
mean rotation period – astronomical terminology can be perverse. However, the Earth has not
yet rotated once with respect to the Sun. The Earth has to rotate further to complete this rotation,
and in the extra time taken it moves further around its orbit, to position 3. The period of rotation
of the Earth with respect to the Sun is called the solar day. It is clearly longer than the mean
rotation period, though only by a few minutes.
� State in what way the motions in Figure 1.19 are not shown to scale.
In Figure 1.19 the Earth’s motion around its orbit between positions 1, 2, and 3 has been
exaggerated for clarity. As there are just over 365 days in a year, the Earth should only proceed
about 1� around its orbit in the time it takes the Earth to rotate once.

Sun

Earth orbital motion

Earth
1

2

3

To
star

Earth
rotation

Figure 1.19 The rotation of the Earth with respect to the Sun and with respect to the distant stars (not to
scale).
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The mean rotation period does not vary significantly through the year, but the solar day
does. This is a consequence of the eccentricity of the Earth’s orbit and the inclination of its
rotation axis (we shall not go into details). By contrast, the mean solar day is defined to be
fixed in duration, and has the mean length of the solar days averaged over a year. If solar
time and mean solar time coincide at some instant, they will coincide again a year later, but
in between, differences develop, sometimes solar time being ahead of mean solar time and
sometimes behind. The maximum differences are about 15 minutes ahead or behind. The day
that we use in our everyday lives, as marked by our clocks, is the mean solar day. Even this
varies in length, very slightly, and so for scientific purposes a standard day is defined, very
nearly the same as the current length of the mean solar day. It is this standard day that appears
in Tables 1.1–1.4 and elsewhere. It is exactly 24 × 60 × 60 seconds in length, and thus consists
of exactly 24 hours of 60 minutes, with each minute consisting of 60 seconds.

The mean rotation period is 23 h 56 min 4 s, i.e. 3 min 56 s shorter than the mean solar day.
Over one sidereal year, this difference must add up to one extra rotation of the Earth with
respect to the distant stars. You can convince yourself of this by considering a planet that is
rotating as in Figure 1.20. In this case there are three rotations per orbit with respect to the Sun
and four with respect to the stars. For the Earth, during the sidereal year there are 365.26 mean
solar days and 366.26 mean rotation periods.

Table 1.1 gives the axial inclination and sidereal rotation period of each planet and also of
the Sun. The inclination of each planet is with respect to the plane of its orbit, whereas in the
case of the Sun it is with respect to the ecliptic plane. Note that, with three exceptions, the
inclinations are fairly small. This means that the prograde swirl of motion of the orbits, almost
in one plane, is shared by planetary and solar rotation. The exceptions are Venus, Uranus, and
Pluto. The inclination of Venus is not far short of 180�.
� What is the difference between an axial inclination of 180� and 0�?
The difference is that 0� is prograde rotation whereas 180� is retrograde rotation, in each case
with the rotation axis perpendicular to the orbital plane. Any inclination greater than 90� is
retrograde, and so Pluto and Uranus are also in retrograde rotation, though Uranus’s inclination

Sun

1

2

3

4

1

2

3

Figure 1.20 A fictitious planet rotating three times per orbit with respect to the Sun.
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of 97�8� means that its rotation axis is almost in its orbital plane. We shall return to these
oddities when we discuss the origin of the Solar System in Chapter 2.

As in the case of the orbital elements, the axial inclinations and rotation periods of a body
are subject to changes, and for the same basic reason – the forces applied by the other bodies in
the Solar System. For example, the sidereal rotation period of the Earth is currently increasing,
somewhat erratically, by 1�4 × 10−3 seconds per century, largely because of the torque exerted
by the Moon on the Earth’s tidal distortion. The Earth has had a similar effect on the Moon, and
has slowed down the Moon so that it is now locked into a rotation period that keeps it facing
the Earth. When one body rotates so that it keeps one face to the body it orbits, it is said to be
in synchronous rotation.

Seasons

Figure 1.21 is an edge view of the Earth’s orbit with the positions A and C in Figure 1.18
marked, and the size of the Earth greatly exaggerated. When the North Pole of the Earth is
maximally tilted towards the Sun, as at A, there is summer in the northern hemisphere because
the surface there is receiving its greatest solar radiation. This is not only because the Sun reaches
high in the sky, but also because of the long duration of daylight. By contrast, the southern
hemisphere is maximally tilted away from the Sun.
� What season is this hemisphere experiencing?
It is winter in this hemisphere, because solar radiation is thinly spread over the surface and
daylight is short. Six months later, at C, the December solstice, the seasons are reversed. It is
thus the axial inclination that is responsible for seasonal changes. The eccentricity of the Earth’s
orbit has only a secondary effect. The Earth is at perihelion in early January, with the northern
hemisphere in the depths of winter, and so, as a result of the orbital eccentricity, the seasonal
contrasts are reduced in the northern hemisphere, and increased in the southern hemisphere.

Question 1.9

Discuss whether you would expect seasonal changes on Venus.

1.5.1 Precession of the Rotation Axis

So far, the direction of the Earth’s rotation axis has been regarded as fixed with respect to the
distant stars. This is not quite the case. In fact, it cones around in the manner of Figure 1.22, a

Sun

A C

North Pole

South Pole 

Figure 1.21 Seasonal changes in the solar radiation at the Earth’s surface.
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South
Pole

North
Pole

Earth

Figure 1.22 Precession of the Earth’s rotation axis.

motion called the precession of the rotation axis. It is a result of the torques exerted by other
bodies in the Solar System on the slightly non-spherical form of the Earth. The Moon and the
Sun account for almost the whole effect. All planets are slightly non-spherical, so all of them
are subject to precession. For the Earth, one complete coning takes 25 800 years, an interval
called the precession period of the Earth.

One consequence of precession is that the positions of the equinoxes and solstices move
around the orbit, giving rise to the term precession of the equinoxes. In the case of the Earth
this motion is in a retrograde direction (taking 25 800 years to move around once). Figure 1.23
compares the present configuration (dashed lines) with the configuration 12 900 years from now
(solid lines) – each equinox and solstice has moved half way around the orbit. Recall that the
reference direction in the ecliptic plane is the line from the Earth to the Sun when the Earth is
at the vernal equinox. Therefore, with respect to the distant stars, this reference direction has
moved through 180� in Figure 1.23. At present, when the Earth is at the vernal equinox, the
direction is to a point in the constellation Pisces, but about 2000 years ago, when precession
became widely recognised, it was in the constellation Aries, when its location was called the first
point of Aries. The name sticks, even though the point long ago moved into the constellation
Pisces, and is now not far from the boundary with the constellation Aquarius.

The slow retrograde motion of the vernal equinox around the Earth’s orbit means that the time
taken for the Earth to traverse its orbit from one vernal equinox to the next is very slightly less
than the sidereal year. The time interval between vernal equinoxes is called the tropical year,
and it is the year on which our calendars are based. Its duration is 365.242 190 days, whereas
the sidereal year is 365.256 363 days. From now on, the term year will mean the tropical year.
It is this year that is the unit of time measurement in Tables 1.1, 1.3, and 1.4, and elsewhere. It
is denoted by the symbol ‘a’, from the Latin word for year, annus.



THE VIEW FROM THE EARTH 35

Sun

Earth orbit
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Vernal equinox now
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Figure 1.23 The effect of the precession of the Earth’s rotation axis on the position of the equinoxes
and solstices. The dashed line is the Earth’s rotation axis now, and the solid line the axis 12 900 years
from now.

Question 1.10

What would be the problem with basing our calendar on the sidereal year?

1.6 The View from the Earth

1.6.1 The Other Planets

The way that the planets appear in our skies depends on whether the orbit of the planet is larger
or smaller than the orbit of the Earth. Figure 1.24 shows Venus representing the two planets
(Venus and Mercury) with smaller orbits, and Mars representing those with larger orbits. The
planets are shown at three instances. In position 1 all three planets are lined up with the Sun, a
very rare occurrence but a useful one for describing the view from the Earth. The planets move
at different rates around their orbits, so this alignment lasts only for an instant.

In position 1, Venus is between the Earth and the Sun. It is then at what is called inferior
conjunction. The alignment is rarely exact, because of the inclination of the orbit of Venus.
Exact or not, our view of Venus is drowned by the overwhelming light of the Sun. The greater
angular speed of Venus in its orbit then causes it to draw ahead of the Earth and we start to
see part of the hemisphere illuminated by the Sun as an ever-thickening crescent. At position 2,
Venus has reached its greatest angle from the Sun and is at what is called its maximum western
elongation. It is now relatively easy to see (before sunrise) and half of its illuminated hemisphere
is visible. As it moves on we see even more of its sunlit hemisphere, but it is getting further
away from the Earth, and closer in direction to the Sun, until at superior conjunction Venus is
pretty well in the direction of the Sun again, but now on the far side of the Sun. Subsequently, it
moves towards maximum eastern elongation, then again to inferior conjunction, and the whole
cycle is repeated.

For planets beyond the Earth, such as Mars in Figure 1.24, the sequence of events is different.
The line-up with Mars and Earth on the same side of the Sun does not result in an inferior
conjunction, but in what is called an opposition, Mars being in the opposite direction in the sky
from the Sun, as viewed from the Earth. Mars is then well seen, with the illuminated hemisphere
facing us, and the separation between the planets being comparatively small – though this
distance is different from opposition to opposition.
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Figure 1.24 The motion of Venus and Mars with respect to the Earth. Perihelia are denoted by ‘p’, and
Earth’s aphelion by ‘a’.

� When will the opposition distance between Mars and the Earth be a minimum?
It will be a minimum when opposition occurs with the Earth near aphelion, and Mars near
perihelion. After opposition the greater angular orbital speed of the Earth causes it to overtake
Mars ‘on the inside track’ as the configuration moves towards superior conjunction, with Mars
on the far side of the Sun as seen from Earth.

The time interval between similar configurations of the Earth and another planet is called
the synodic period of the planet. Opposition and inferior conjunction are important types of
configuration. For any type of configuration the synodic period varies slightly, mainly because
of the variations in the rate at which the Earth and the planet move around their respective
orbits, as described by Kepler’s second law. It is thus the mean value of the synodic period that
is normally quoted, as in Table 1.1. For a particular planet the mean synodic period is the same
for all types of configuration. These mean periods are not simple multiples or simple fractions of
the sidereal year, and so successive configurations have the Earth at different points in its orbit.

Question 1.11

Discuss why the opposition distance to Mars is least when oppositions occur in mid August.

1.6.2 Solar and Lunar Eclipses

Figure 1.25 shows an oblique view of the nearly circular orbit of the Moon around the Earth,
and part of the orbit of the Earth around the Sun (strictly, the orbit of the centre of mass of the
Earth–Moon system around the Sun). The size and inclination of the lunar orbit, and the sizes of
the Sun, Earth, and Moon, have all been exaggerated. When the Moon is at A (Figure 1.25(a)) its
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Figure 1.25 The Moon’s motion around the Earth, as the Earth orbits the Sun (not to scale).

unilluminated hemisphere faces the Earth, and we have a new Moon. A quarter of an orbit later,
at B, half of its illuminated hemisphere is facing us, and we see a half Moon, also called first
quarter. At C the fully lit hemisphere faces the Earth, and the Moon is full. At D, three-quarters
of the way around its orbit from A, we see another half Moon, the third quarter. We then get
another new Moon at A, on average 29.53 days after the previous new Moon.

The plane of the Moon’s orbit is inclined by 5�16� to the ecliptic plane, which it crosses at
the two nodes labelled B and D in Figure 1.25(a). This orbital inclination means that for this
configuration, the Moon, as seen from the Earth, cannot pass in front of the Sun, nor can the
Moon be touched by the Earth’s shadow. However, as the Earth moves around the Sun, the
Moon’s orbit stays (almost) fixed with respect to the distant stars, so that about a quarter of an
Earth orbit later (3 months) the nodes lie on or near the line that joins the Earth and the Sun, as
in Figure 1.25(b). If, at this time, the Moon is sufficiently near the node between the Earth and
the Sun, then, as seen from the Earth, part or all of the Moon will pass in front of the Sun, and
we get a solar eclipse. If the Moon is at or near the other node then the Earth’s shadow will
fall on part or all of the Moon, and we get a lunar eclipse. The nodes line up twice a year, and
usually the Moon is sufficiently near a node for there to be an eclipse of some sort.

There are different types of solar eclipses. Figure 1.26(a) shows umbral and penumbral
shadows of the Moon on the Earth. If we are at a point on the Earth’s surface within the
umbral shadow then the photosphere of the Sun is completely obscured and we see a total
solar eclipse. With the photosphere obscured, we see the pearly white solar corona (Plate 2),
the chromosphere, and prominences (Plate 3). It is worth making a considerable effort to see a
total solar eclipse, which is a most magnificent spectacle. If we are in the penumbral shadow
the Sun is only partly obscured and we see a partial solar eclipse. If the Moon is too far from
the node, then the umbral shadow misses the Earth completely, and nowhere on Earth can we
see a total solar eclipse.
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Figure 1.26 Different sorts of eclipses (not to scale). (a) Total and partial solar eclipses. (b) An
annular solar eclipse. (c) A lunar eclipse. (From Foundations of Astronomy 3rd Edition, by Seeds, 1994.
Reprinted with permission of Brooks/Cole, a division of Thomson Learning: www.thomsonrights.com,
Fax 800 730–2215)
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Even with the Moon at the node, not all solar eclipses are total. The Sun is about 400 times
the diameter of the Moon, but it is also about 400 times further away, so the angular diameters
of the two bodies are nearly the same, about 0�5�. Because of the eccentricity of the orbits of the
Earth and the Moon, this coincidence means that sometimes an eclipse occurs with the Moon’s
angular diameter a bit smaller than that of the Sun, as in Figure 1.26(b). The umbral shadow
does not reach the Earth, and from the Earth’s surface, at the centre of the penumbral shadow,
a thin ring of the photosphere is still exposed. This is called an annular solar eclipse. Largely
because of tidal interactions with the Moon, the distance between the Moon and the Earth is
currently increasing at a rate of about 25 mm per year, and so, from about 1000 Ma in the future,
the Moon will never be close enough to the Earth to produce a total solar eclipse, and all solar
eclipses will then be partial or annular.

Figure 1.27 shows the umbral shadow paths for the years 2001–2025. Within these narrow
paths a total solar eclipse occurs. The paths are determined by the line-up of the Earth, Moon,
and Sun, and by the combined effect of the orbital motion of the Moon and the rotation of
the Earth, which together sweep the umbral shadow across the Earth. The duration of totality
is longest at the centre of the path, and varies from eclipse to eclipse. The longest durations,
approaching 7.5 minutes, occur when the Earth is at aphelion, and the Moon is closest to the
Earth, at what is called perigee.

Figure 1.26(c) shows a total lunar eclipse, which occurs when the Moon is entirely within
the umbral shadow of the Earth. Where the umbral shadow falls on the Moon, the lunar surface

Figure 1.27 Total solar eclipse paths (umbral shadow paths) 2001–2025. (Eclipse map and calculations
courtesy Fred Espenak, NASA-GSFC)
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is not completely dark. Sunlight is refracted by the Earth’s atmosphere, red light more than the
other visible wavelengths, which can give the Moon a coppery tint. At any moment the eclipsed
Moon can be seen from half the Earth’s surface. The view from the Moon would be of the
black, night side of the Earth, surrounded by a thin red ring of sunlight refracted by the Earth’s
atmosphere.

Question 1.12

The nodes of the lunar orbit are not quite fixed but move around the lunar orbit in the retrograde
direction in 18.6 years. How does this explain why eclipses are not confined to particular
months?

1.7 Summary of Chapter 1

The Solar System consists of the Sun, nine planets with their satellites and rings, many asteroids
(about 109 greater than 1 km across), the Edgeworth–Kuiper belt (more than 105 objects larger
than 100 km), 1012–1013 small icy-rocky bodies in the Oort cloud, and an interplanetary medium
of tenuous gas and small solid bodies ranging in size down to less than 10−6 m.

Meteoroids are small rocky bodies, and those that fall to Earth are called meteorites, These
have provided much information about the origin, evolution, and composition of the Solar
System and the ages of events within it.

The planets orbit the Sun in one direction – the prograde direction – in approximately circular,
coplanar orbits with the Sun near the centre. The orbital planes of the asteroids have a wider
range of inclinations and eccentricities. The rotation of the Sun is prograde, as is that of most of
the planets. If the inclination of the rotation axis to the orbital plane is more than a few degrees
then the surface of the planet will experience seasonal changes. Rotation axes are subject to
precession.

Some comet orbits reach to within a few AU of the Sun, but the great majority spend most
or all of their time at far greater distances, where they are dormant icy–rocky bodies. There
are two reservoirs. The Edgeworth–Kuiper belt lies immediately beyond the planetary domain,
and contains bodies (EKOs) in orbits that are predominantly prograde and that are concentrated
towards the ecliptic plane. The Oort cloud is more far flung and consists of bodies in a spherical
distribution around the Sun, reaching out to the edge of interstellar space, about 105 AU from
the Sun.

The Sun is by far the largest, the most massive, and the most luminous body in the Solar
System. It is fluid throughout, and consists largely of hydrogen and helium. Its luminosity
is sustained by the nuclear fusion of hydrogen deep in its interior where temperatures reach
1�4 × 107 K.

The four planets closest to the Sun – Mercury, Venus, the Earth, and Mars – are the terrestrial
planets. They are comparable with the Earth in size, and consist of iron-rich cores overlain
by rocky materials. The Earth is the largest of these bodies. The asteroids are rocky bodies
concentrated between Mars and Jupiter.

The giant planets – Jupiter, Saturn, Uranus, and Neptune – are considerably larger and more
massive than the terrestrial planets, Jupiter by some margin being the most massive planet of all.
The giants consist largely of hydrogen, helium, and icy–rocky materials, and (like the Sun) are
fluid throughout. The giants have richly varied families of satellites, and all giants have rings,
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those of Saturn being by far the most substantial. Beyond Neptune we come to the outermost
planet, Pluto, smaller in size than the terrestrial planets, and more icy in its composition. The
comets are also icy–rocky bodies. Beyond Pluto there is at least one body somewhat larger than
Pluto – Eris. Pluto and Eris are regarded as large members of the Edgeworth–Kuiper belt.

The orbits of the planets are described to a very good approximation by Kepler’s laws of
planetary motion.

First law Each planet moves around the Sun in an ellipse, with the Sun at one focus of the
ellipse.

Second law As the planet moves around its orbit, the straight line from the Sun to the planet
sweeps out equal areas in equal intervals of time.

Third law If P is the sidereal period of a planet, and a is the semimajor axis of the orbit, then

P = ka3/2 (1.3)

where k = 1 year AU−3/2.

Elliptical orbits are characterised by five orbital elements: the semimajor axis a, the eccentricity
e, the inclination i, the longitude of the ascending node �, and the longitude of perihelion
�� + ��. To calculate the position of a body in its orbit we need a sixth element – a single
position at any known time.

Newton’s laws of motion and law of gravity account for Kepler’s laws, and go further by
accounting for the motion of comets and of other bodies, and for slight departures from Kepler’s
laws that have various causes. Major effects on orbits are caused by mean motion resonances
and secular resonances.

The precession of the perihelion of Mercury shows that at the highest level of precision
Einstein’s theory of general relativity is superior to Newton’s laws.

Our view from the Earth of the apparent motion of a planet depends on whether it is in a
smaller or larger orbit than our own. Solar and lunar eclipses result when the Moon, Sun, and
Earth line up. Figure 1.27 shows the umbral tracks of forthcoming total solar eclipses.

Tables 1.1–1.6 list basic data on the Solar System.
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Table 1.2 Some properties of planetary satellitesa�b

Objectc Some mean orbital elements Size, mass, mean density

Semimajor
axis/ 103 km

Sidereal
period/days

Eccentricity Inclination/ �d Radius/kme Mass/1018 kg Mean
density/kg m−3

Earth
Moon 384.4 27.322 0.0554 5.16 1738 73 490 3 340

Mars
Phobos 9.38 0.319 0.0151 1.1 11 0.0107 1870
Deimos 23.46 1.262 0.0002 1.8 var 6 0.0022 2300

Jupiter
Metis 128.0 0.295 0.0012 0.02 22 ? ?
Adrastea 129.0 0.298 0.0018 0.39 8 ? ?
Amalthea 181.4 0.498 0.0031 0.39 84 2.08 860
Thebe 221.9 0.675 0.0177 1.07 50 ? ?

Io 421.8 1.769 0.0041 0.04 1822 89 330 3530
Europa 671.1 3.551 0.0094 0.47 1561 48 000 3010
Ganymede 1 070 7.155 0.0011 0.17 2631 148 200 1940
Callisto 1 883 16.689 0.0074 0.19 2410 107 600 1830

Leda 11 165 241 0.16 27 ∼ 10 ? ?
Himalia 11 461 251 0.16 27 93 ? ?
Lysithea 11 717 259 0.11 28 ∼ 18 ? ?
Elara 11 741 260 0.22 26 43 ? ?

Ananke 21 276 630 0.24 149 ∼ 15 ? ?
Carme 23 404 734 0.25 165 ∼ 23 ? ?
Pasiphae 23 624 744 0.41 151 ∼ 30 ? ?
Sinope 23 939 759 0.25 158 ∼ 19 ? ?

Saturn
Pan 133.6 0.575 0.0002 0.007 13 ? ?
Atlas 137.7 0.602 0.0012 0.01 10 ? ?
Prometheus 139.4 0.613 0.002 0.006 50 ? ?
Pandora 141.7 0.629 0.004 0.052 43 ? ?

Epimetheus 151.4 0.694 0.010 0.35 60 0.5 610
Janus 151.5 0.695 0.007 0.17 90 1.9 660
Mimas 185.6 0.942 0.0206 1.57 199 38 1160
Enceladus 238.1 1.370 0.0001 0.01 253 84 1120

Tethys 294.7 1.888 0.0001 0.168 530 627 960
Telesto 294.7 1.888 ∼ 0 1.16 13 ? ?
Calypso 294.7 1.888 ∼ 0 1.47 10 ? ?
Dione 377.4 2.737 0.0002 0.002 560 1097 1480

Helene 377.4 2.737 ∼ 0 0.21 15 ? ?
Rhea 527.1 4.518 0.0009 0.327 765 2 308 1230
Titan 1 221.9 15.945 0.0288 1.634 2575 134 570 1880
Hyperion 1 464.1 21.276 0.0175 0.57 142 ? ?

Iapetus 3 560.8 79.331 0.028 14.7 718 1 590 1090
Kiviuq 11 365 449 0.33 46 7 ? ?
Ijiraq 11 442 451 0.32 47 5 ? ?
Phoebe 12 944 548 0.1644 175 ∼ 110 ? ?

Paaliaq 15 198 687 0.36 45 10 ? ?
Albiorix 16 394 783 0.48 34 13 ? ?
Siarnaq 18 195 896 0.30 46 16 ? ?
Tarvos 18 239 926 0.54 33 7 ? ?

(continued)
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Table 1.2 (Continued)

Objectc Some mean orbital elements Size, mass, mean density

Semimajor
axis/ 103 km

Sidereal
period/days

Eccentricity Inclination/ �d Radius/kme Mass/1018 kg Mean
density/kg m−3

Uranus
Cordelia 49.8 0.335 ∼ 0 0.08 13 ? ?
Ophelia 53.8 0.376 0.01 0.10 15 ? ?
Bianca 59.2 0.435 0.001 0.19 23 ? ?
Cressida 61.8 0.464 ∼ 0 0.01 33 ? ?

Desdemona 62.7 0.474 ∼ 0 0.11 30 ? ?
Juliet 64.4 0.493 0.001 0.06 43 ? ?
Portia 66.1 0.513 ∼ 0 0.06 55 ? ?
Rosalind 69.9 0.558 ∼ 0 0.28 30 ? ?

2003 U2 74.8 0.618 ∼ 0 ∼ 0 6 ? ?
Belinda 75.3 0.624 ∼ 0 0.03 34 ? ?
1986 U10 76.4 0.638 ∼ 0 ∼ 0 ∼ 20
Puck 86.0 0.762 ∼ 0 0.32 78 ? ?
Mab 97.7 0.923 ∼ 0 ∼ 0 8 ? ?

Miranda 129.9 1.413 0.0013 4.34 236 66 1200
Ariel 190.9 2.520 0.0012 0.04 579 1 350 1700
Umbriel 266.0 4.146 0.0035 0.0 585 1 170 1400
Titania 436.3 8.704 0.0024 0.0 789 3 520 1700
Oberon 583.4 13.463 0.0007 0.0 762 3 010 1600

Caliban 7 231 580 0.16 141 30 ? ?
Sycorax 12 179 1288 0.32 159 60 ? ?

Neptune
Naiad 48.2 0.294 ∼ 0 4.74 30 ? ?
Thalassa 50.1 0.311 ∼ 0 0.21 40 ? ?
Despina 52.5 0.335 ∼ 0 0.07 75 ? ?
Galatea 62.0 0.429 ∼ 0 0.05 80 ? ?

Larissa 73.5 0.555 0.001 0.20 95 ? ?
Proteus 117.6 1.122 ∼ 0 0.039 210 ? ?
Triton 354.8 5.877 ∼ 0 157 1353 21 400 2060
Nereid 5 513 360 0.75 7.23 170 ? ?

2002 N1 15 686 1875 0.57 134 25 ? ?

Pluto
Charon 19.57 6.387 0.000 96.15 603 1 518 1660
Nix 48.68 24.856 ∼ 0�002 96.18 tiny ? ?
Hydra 64.78 38.207 0.0052 96.36 tiny ? ?

a These data are as published in 2006.
b The inclinations of the rotation axes of the satellites and the rotation periods are not given, but in most cases the

inclinations are small. Many of the satellites, like the Moon, are in synchronous rotation around their planet.
c Very small satellites of the giant planets are not included. The excluded satellites are: Jupiter and Saturn, all

are < 5 km mean radius; Uranus, all those beyond Oberon smaller than Caliban; Neptune, all those beyond
Nereid smaller than 2002 N1.

d Note that in most cases the orbital inclination is with respect to the equatorial plane of the planet. The
exceptions are the Moon and the outer satellites of the giant planets: Jupiter, beyond Callisto; Saturn, beyond
Iapetus; Uranus, beyond Oberon; Neptune, beyond Triton. In these cases the inclination is with respect to the
orbital plane of the planet. This is because the inclination with respect to the equatorial plane changes
periodically through a fairly large range of values. Inclinations greater than 90� indicate retrograde orbital
motion, i.e. opposite to the direction of rotation of the planet.

e Values less than a few hundred km are average radii of irregularly shaped bodies. For many of these satellites
the size is based on an assumed albedo of 0.04.
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Table 1.3 Some properties of the largest 15 asteroids

Object/number
and name

Some orbital elementsa Rotation and size

Semimajor axis/
AU 106 km

Sidereal
period/years

Eccentricity Inclination/ � Sid. rotn
period/h

Radius/kmb

1 Ceres 2�766 413�8 4�599 0�080 10�59 9�07 479
2 Pallas 2�772 414�7 4�615 0�231 34�84 7�81 262
4 Vesta 2�361 353�2 3�629 0�089 7�13 5�34 256

10 Hygiea 3�137 469�3 5�555 0�118 3�84 27�62 222
704 Interamnia 3�061 457�9 5�357 0�150 17�29 8�69 165
511 Davida 3�166 473�6 5�633 0�186 15�94 5�13 163
15 Eunomia 2�643 395�4 4�298 0�187 11�74 6�08 160
52 Europa 3�102 464�1 5�464 0�103 7�47 5�63 151
3 Juno 2�668 399�1 4�357 0�258 12�97 7�21 137

87 Sylvia 3�489 522�0 6�519 0�080 10�86 5�18 131
31 Euphrosyne 3�150 471�2 5�591 0�226 26�32 5�53 128
16 Psyche 2�920 436�8 4�989 0�139 3�10 4�20 120
88 Thisbe 2�768 414�1 4�605 0�165 5�22 6�04 116
65 Cybele 3�433 513�6 6�362 0�105 3�55 6�1 115

324 Bamberga 2�682 401�2 4�394 0�338 11�11 29�41 114

a In September 2006.
b The asteroids are in order of decreasing size. Values less than a few hundred km are average radii of irregularly

shaped bodies.
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Table 1.5 Relative abundances of the 15 most abundant chemical elements in the Solar
System

Chemical element Relative
atomic mass
�12C ≡ 12�

Relative abundancea

Atomic
number

Name Symbol By number of
atoms

By mass

1 Hydrogen H 1�0080 1 000 000 1 000 000
2 Heliumb He 4�0026 97 700 388 000
6 Carbon C 12�0111 331 3 950
7 Nitrogen N 14�0067 83.2 1 160
8 Oxygen O 15�9994 676 10 730
10 Neon Ne 20�179 120 2 410
11 Sodium Na 22�9898 2.09 48
12 Magnesium Mg 24�305 38.0 917
13 Aluminium Al 26�9815 3.09 83
14 Silicon Si 28�086 36.3 1 010
16 Sulphur S 32�06 15.9 504
18 Argon Ar 39�948 2.51 100
20 Calcium Ca 40�08 2.24 89
26 Iron Fe 55�847 31.6 1 750
28 Nickel Ni 58�71 1.78 104

a Abundances are given to 3–4 significant figures. Many are known to better than this.
b The helium values correspond to those before the conversion of some of the hydrogen in the

Sun’s core to helium, i.e. to the Sun at its formation.

Table 1.6 Some important constants

Name Symbol Value

Speed of light (in a vacuum)a c 2�997 924 58 × 108 m s −1

Gravitational constantb G 6�672 × 10−11 N m2 kg−2

Boltzmann’s constant k 1�380 65 × 10−23 JK−1

Planck’s constant h 6�626 07 × 10−34 Js
Stefan’s constant  5�6704 × 10−8 Wm−2 K−4

Astronomical unit AU 1�495 978 706 9 × 1011m
Light yearc ly 9�460 536 × 1015 m
Parsec pc 3�085 678 × 1016 m
Solar luminosity L� 3�85 × 1026 W
Dayd d 86 400 s exactly
Tropical year a 365.242 190 d
Pi � 3.141 59� � �

a This is an exact value. The second (s) is now defined in terms of atomic vibrations, and the metre (m) as the
distance travelled by light in a vacuum in 1/�2�997 924 58 × 108� s.

b The kilogram (kg) is still defined as the mass of a metal cylinder at the International Bureau of Weights and
Measures, Sèvres, France.

c This is the distance travelled by light in a vacuum in 1 year of 365.2425 days.
d The mean solar day is presently (2006) 86 400.0004 s.



2 The Origin of the Solar
System

In Chapter 1 you met many of the broad features of the Solar System. It is these broad features
that any theory of the origin must explain, and this chapter presents the type of theory that is
very widely accepted. This is the solar nebular theory, in which the planets form from a disc of
gas and dust around the Sun. Such a type of theory also accounts for many of the details of the
Solar System, as you will see in subsequent chapters.

You might think that we could deduce the origin of the Solar System by working back from
the state in which we observe the Solar System to be today. This cannot be done, for several
reasons. First, our knowledge of the present state of the Solar System is incomplete. Second,
there are areas of ignorance about the way the Solar System has interacted with its interstellar
environment. Third, our understanding of the fundamental physical and chemical processes that
operate on all matter, though extensive and deep, is incomplete. Fourth, and most profoundly,
even if these three areas of ignorance were eliminated, it would still not be possible to ‘reverse
time’ and deduce the origin. This is because an infinitesimal adjustment in the present state
of the Solar System would lead to a very different journey into the past: it is not possible to
have sufficiently accurate knowledge to deduce the origin. This is an example of the scientific
phenomenon of chaos, and it is a barrier in principle, not just a barrier in practice.

Astronomers must therefore construct theories as best they can, guided by the broad features
of the Solar System and by our knowledge of the rapidly growing number of other planetary
systems – the exoplanetary systems. Observations of star formation and of young stars are also
important, because these increase our understanding of the formation of the Sun, an event that
was surely intimately involved in the formation of the rest of the Solar System.

2.1 The Observational Basis

2.1.1 The Solar System

Table 2.1 lists some of the broad features of the Solar System, most of which you met in
Chapter 1. Any theory worthy of serious consideration really has to be able to account for most
of these features, and for some others too. But it does not necessarily have to be able to account
for them all. If there are any features that a theory cannot account for, this would not necessarily
rule the theory out. For example, it might be that the theory has not yet been worked out in
sufficient detail, perhaps because a physical process is insufficiently well understood, or because
we do not know enough about the state of the substances from which the Solar System formed.
It is however, fatal for a theory if it unavoidably produces features that are clearly unlike those

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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Table 2.1 Some broad features of the Solar System today

1 The Sun consists almost entirely of hydrogen and helium
2 The orbits of the planets lie in almost the same plane, and the Sun lies near the centre of this plane
3 The planets all move around the Sun in the same direction that the Sun rotates (called the prograde

direction)
4 The rotation axis of the Sun has a small but significant inclination, 7�2� with respect to the ecliptic

plane (the Earth’s orbital plane)
5 Whereas the Sun has 99.8% of the mass of the Solar System, it has only about 0.5% of its total

angular momentum
6 The axial rotations of six of the nine major planets are prograde with small or modest axial inclinations.

The rotations of Venus, Uranus, and Pluto are retrograde
7 The inner planets are of low mass and consist of rocky materials, including iron or iron-rich

compounds; the closer to the Sun, the more refractory the composition
8 The giant planets lie beyond the inner planets, are of high mass, and are dominated by hydrogen,

helium, and icy materials, with a decreasing mass and hydrogen–helium content from Jupiter to
Saturn to Uranus/Neptune

9 The asteroids are numerous small rocky bodies concentrated between Mars and Jupiter
10 There are even more numerous small icy–rocky bodies concentrated beyond Neptune in two

populations, the Edgeworth–Kuiper belt and the Oort cloud. These give rise to the comets
11 The giant planets have large families of satellites that are rocky or icy–rocky bodies

observed. For example, if a theory predicts that roughly half the planets should be in retrograde
orbits then we can rule the theory out.
� What about a theory that predicts that there are no giant planets?
We can rule this out too!

2.1.2 Exoplanetary Systems

The number of exoplanetary systems presently known (13 January 2007) is 177, 20 with two
or more planets, giving 205 exoplanets in total. Already, they have supplied valuable insights
into the origin and evolution of the Solar System. Direct detection of exoplanets is at the limit
of present instrumental capabilities, because a planet is a very faint object with a very small
angular separation from a far brighter object – its star – and the planet’s light therefore cannot
be seen. Therefore, up to now detection has been almost entirely indirect.

Indirect detection techniques

Most of the exoplanets have been discovered through the motion they induce in the star they
orbit. In our Solar System the planets cause the Sun to follow a small (complicated) orbit
around the centre of mass of the system (Section 1.4.5). Therefore, if small orbital motion of
other stars can be detected we can infer the presence of one or more planets even if they are
too faint to be seen. One way is to measure repeatedly the position of the star with respect to
much more distant stars. This is called the astrometric technique. An outcome is shown in
Figure 2.1(a), where, for simplicity, it has been assumed that the centre of mass is fixed against
the more distant stellar background. In reality, the motion of the centre of mass would add to
that in Figure 2.1(a) to give a wavy stellar path. A second technique is possible if the angle i
in Figure 2.1(b) is greater than zero. In this case the orbit is not presented face on to us, and
therefore as the star moves around its orbit its speed along the direction to the Earth varies,
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Figure 2.1 (a) The orbit of a star due to a single planet in orbit around it, in the simple case when the
centre of mass of the system is stationary with respect to the distant stars. (b) The angle of inclination i of
the normal to the plane of the stellar orbit with respect to our line of sight.

i.e. its line-of-sight speed varies. These speed variations cause variations in the wavelengths of
the spectral lines of the star. This is due to the Doppler effect, whereby the observed wavelength
depends on the speed of the radiation source with respect to the observer (Christian Johann
Doppler, Austrian physicist, 1803–1853). The technique based on this effect is called the radial
velocity technique. It has discovered the great majority of exoplanets to date.

From either technique we can obtain the mass of the planet(s) and some of the orbital elements.
The details will not concern us except to note that whereas the astrometric technique gives the
mass of the planet mp, the radial velocity technique gives mp × sin�i�. This is because we detect
the component of the star’s orbital velocity towards us and not the total orbital velocity. Thus,
if i is unknown we obtain only a lower limit on the mass of the planet corresponding to i= 90�,
as if we had an edge-on view of the orbit.

There are some other techniques for indirect detection of exoplanets, and though so far they
have delivered a very small yield, this will rise, particularly in the case of the transit technique.
This relies on the slight diminution of the light we receive from a star, if one of its planets
passes between us and the star.
� If, from a distant observer’s vantage point, Jupiter were to transit the face of the Sun, what

decrease would it cause in the light received?
Jupiter’s radius is about a tenth that of the Sun’s, and so Jupiter would appear as a disc with
an area about one-hundredth that of the solar disc. Therefore, the decrease would be 1%. For a
transit to occur the orbit of an exoplanet must be presented edge on to us, or nearly so.

A much fuller account of the techniques for finding exoplanets can be found in books in
Further Reading. We now consider what the exoplanets teach us about the origin and evolution
of the Solar System.
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Some characteristics of the known exoplanetary systems

The first exoplanets were discovered in 1992 in orbit around a pulsar. A pulsar is the remnant
of a star that has suffered a catastrophic explosion – a supernova explosion. Such an explosion
would surely have destroyed any planetary system, and so the planets are presumed to have
formed subsequently. But interesting though these pulsar planets are, pulsars are rare objects,
quite unlike the Sun. It was in 1995 that the first exoplanet was detected in orbit around a star
other than a pulsar – the star was 51 Pegasi. Table 2.2 summarises the characteristics of the
known exoplanetary systems that are of particular relevance to this chapter – the small number
of pulsar planets is excluded.

Table 2.2 shows that, at present, the lowest known exoplanetary mass is 0.017 times the mass
of Jupiter, or 5.4 times the mass of the Earth (this happens to be its actual mass, not the minimum
mass). However, most exoplanets have (minimum) masses between a tenth and 10 times that of
Jupiter. Table 2.2 also shows that the minimum semimajor axis is only a = 0�0177 AU, much
less than Mercury’s 0.387 AU. Indeed, nearly half of the exoplanets have a < 0�387 AU. Many
of these have masses between 0.5 and 1.5 Jupiter masses, and are called ‘hot Jupiters’.

The distance range in Table 2.2 needs to be put into perspective. Our Galaxy is about 100 000
light years across its disc, and contains roughly 2 × 1011 stars (light year, ly – see Table 1.6).
The 300 ly in Table 2.2, compared with the size of our Galaxy, thus puts most exoplanetary
systems in our cosmic backyard. This is because the closer a star, the brighter it appears and
the easier it is to make observations. This is an example of an observational selection effect.

The stars in the great majority of the exoplanetary systems are main sequence stars not very
different in mass from the Sun. Such stars have been the star of choice for observers, mainly
because they have many narrow spectral lines suitable for the radial velocity technique, and
because they are much brighter than low-mass main sequence stars. Higher mass main sequence
stars are even brighter, but are rare and have short lives.

Only a few of the known exoplanetary systems are like the Solar System, with the giant
planets several AU from the star. Is therefore the Solar System a rare type of planetary system?
Not necessarily. This is because the easiest planets to detect with the radial velocity technique
are those that induce the greatest orbital speed of the star, and these are massive planets close
to the star – another example of an observational selection effect. Moreover, the orbital period
increases with semimajor axis, and therefore data have to be accumulated for longer times to
discover planets further out. In the case of Jupiter, with an orbital period of 11.86 years, an

Table 2.2 Some characteristics of the known exoplanetary systemsa

Characteristic Data Comment

Stellar mass 0.34–1.5M� A substantial majority are main sequence stars
Stellar distance 10.5 ly and up Very few are beyond 300 light years
Planet massb 0.017–13cmJ Most are in the range 0�1–10 mJ

Planet semimajor axis 0.0177–7.73 AU The second largest value is 5.257 AU
Planet orbital eccentricity 0–0.92 Most hot Jupiters have values less than 0.1

a At 13 January 2007: 205 planets in 177 exoplanetary systems, 20 systems with 2 or more planets; planets
around pulsars are excluded.

b These are minimum masses for those discovered by the radial velocity technique, in terms of Jupiter’s mass mJ.
c Above about 13mJ the object is a brown dwarf, a ‘failed star’ not massive enough to attain central temperatures
sufficiently high for hydrogen (1H) fusion, but only a brief phase of fusion of the rare isotope 2H (deuterium).
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alien astronomer would have to observe the Sun for at least this time to discern the motion that
Jupiter induces in it. Also, the probability of an edge-on view to give a transit decreases with the
size of the orbit. It is therefore quite possible that planetary systems like ours are more common
than in the presently known population of exoplanetary systems. Rather more than 10% of the
stars investigated have planetary systems, so there is plenty of scope for this proportion to rise
as the precision of observations increases, and as data are accumulated for longer times.

But already we reach the important conclusion that planetary systems are fairly common, at
least around solar-type stars. Before 1995 this was believed to be the case. Now there is growing
observational evidence that it is so.

Migration of planets in exoplanetary systems

Another important conclusion emerges from the exoplanetary systems, in particular from the
presence of hot Jupiters. You will see in the remainder of this chapter that though it is beyond
reasonable doubt that the giant planets formed within their systems, it is extremely unlikely that
they could have formed so close in.
� In this case, what is the only logical alternative to formation where there are today?
The hot Jupiters must have formed further out, and then moved inwards.

Mathematical models show that the most common cause of inward movement is the gravita-
tional effect of the (growing) giant planet on the circumstellar disc of gas and dust in which it
is embedded and from which it has formed (Section 2.2). At first, this disc is symmetrical about
an axis perpendicular to it and running through the growing star (protostar) at its centre. But as
the mass of the embryonic giant grows, its gravity produces spiral density enhancements in the
disc that destroy its symmetry. These spiral density waves have a net gravitational effect on the
growing giant planet that causes it to migrate inwards. Figure 2.2 shows an advanced stage of
migration.

Migration has to stop if a giant planet is to become a hot Jupiter rather that meet a fiery death.
There are several plausible stopping mechanisms, such as tidal forces between the protostar and
giant. Details are beyond our scope, but can be found in Further Reading. Ultimately, the disc
is dispersed by the protostar as it becomes a main sequence star, as outlined in Section 2.1.3.

The question arises, why do some exoplanetary systems, including the Solar System, not
have hot Jupiters? The answer is two-fold. First, the extent of migration depends on various
properties of the circumstellar disc (density, thickness, temperature, and so on). Certain values
give very low migration rates, with not a lot of inward movement before the disc is dispersed.
Second, there will usually be more than one giant planet. Interaction between the gravitational
effects they have on the disc can slow migration and even reverse it for some of the giants.

We thus reach the important conclusion: the giant planets in the Solar System might not have
formed where we find them now. They could have formed elsewhere and migrated, with effects
on the smaller bodies in the Solar System,

Question 2.1

Discuss why, in the astrometric technique,

(a) planets with large mass will be easier to detect than planets with small mass;
(b) it will be easier to detect planets around nearby stars than around distant ones.
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Figure 2.2 A computer simulation of an advanced stage of migration of a growing giant planet through
the circumstellar disc of gas and dust from which it has formed. (Reproduced by permission from F Masset,
CEA/CNRS/Université Paris, 2004)

Question 2.2

Discuss whether you would expect hot Jupiters to have orbits with eccentricities far larger than
those of Jupiter and Saturn.

2.1.3 Star Formation

Observations of star formation provide further insight into the origin of the Solar System. Star
formation is a relatively rapid process by astronomical standards, but it still takes many millions
of years, and therefore the process has been pieced together by observing it at different stages
in different locations, linking the observations together by physical theory. This is rather like
observing a large number of people at a particular moment – they are seen at all stages of their
lives, and it is therefore possible to use general biological principles to construct a theory of
the complete human life cycle from an observation that occupied only a small fraction of the
human lifespan.

From dense clouds to cloud fragments

Stars form from the interstellar medium (ISM) – the thin gas with a trace of dust that pervades
interstellar space. Its chemical composition everywhere is dominated by hydrogen and helium.
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In the region from which the Solar System formed, hydrogen typically accounts for about 71%
of the mass, helium for about 27%, and all the other chemical elements (the ‘heavy’ elements)
for only about 2%. Elsewhere in the ISM the proportion of helium is not very different, whereas
the proportion of heavy elements can be as low as about 1% and as high as 5%, sometimes
more. Almost all of the hydrogen and helium is in the form of gases, but a significant fraction of
most of the heavy elements is condensed in the dust in a variety of compounds. Dust accounts
for roughly 1% of the mass of the ISM.

The density and temperature of the ISM vary considerably from place to place. Star formation
occurs in the cooler, denser parts of the ISM, because low temperatures and high densities each
favour the gravitational contraction that must occur to produce a star from diffuse material.
Low temperatures favour contraction because the random thermal motions of the gas that
promotes spreading are then comparatively weak. High densities favour contraction because
the gravitational attraction between the particles is then relatively strong. The cooler, denser
parts of the ISM are called, unsurprisingly, dense clouds. They are often components of giant
molecular clouds, ‘molecular’ because the predominant form of hydrogen throughout them is
the molecular form, H2.

Dense cloud temperatures are of order 10 K. They must not, however, be thought of as chunky
things – a typical density at the high end of a wide range is only of order 10−14 kg m−3, rather
less than the density in a typical laboratory vacuum! A typical size is, however, a few light years
across, and therefore most dense clouds are massive enough to form many hundreds of stars.
They are also large enough for the dust content to make them opaque at visible wavelengths.

Though the conditions for gravitational contraction are best met in dense clouds, it is likely that
in most cases they will contract only if they are subject to some external compression, particularly
because magnetic fields and gas flows within the cloud hinder contraction. Compression can
occur in one or more of a variety of ways, such as in a collision between two clouds, or by the
impact of a shock wave from an exploding star, or by the action of a so-called spiral density
wave that sweeps through the whole Galaxy (thereby sustaining its spiral arms). One way or
another, a dense cloud, or a good part of it, becomes dense enough to become gravitationally
unstable, and it starts to contract. As it contracts it becomes denser, to the point where the denser
parts of the cloud, called dense cores, each contract independently, and are destined to become
stars. This leads us to expect stars to form in clusters, and indeed the great majority of young
stars are found in clusters (though a few form in isolation, from small dense clouds). Typically,
a cluster contains a few hundred stars, and Plate 23 shows an example. Star clusters gradually
disperse, and therefore older stars, like the Sun, are no longer in clusters.

From a cloud fragment to a star

Let us now follow the fate of a typical cloud fragment as it contracts. The gas molecules and
dust particles gain speed as they fall inwards, and when they collide there is an increase in
the random element of their motion. Temperature is a measure of the random motion of an
assemblage of microscopic particles, and therefore the temperature rises. However, the rise is
initially small because when the gas molecules collide they are raised into higher energy states
of vibration or rotation. When the molecules return to lower energy states they get rid of their
excess energy by emitting photons, usually at infrared (IR) wavelengths. Initially the density
of the cloud fragment is so low that most of these photons escape. This loss of energy by the
fragment retards the temperature rise.

The fragment continues to contract, and its density rises further. Detailed calculations show
that the central regions of the fragment contract the most rapidly. It is therefore these central
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regions that become opaque to the photons emitted by the molecules. The temperature rise is then
rapid and the central object is regarded as a protostar. Contraction continues, now more slowly,
and a few million years after the fragment separated from the dense cloud the temperature in the
core of the protostar has become high enough for nuclear fusion to occur – about 107 K. This
fusion releases energy and creates a pressure gradient that halts the contraction of the protostar.
At this point the protostar has become a star – a compact body sustained by nuclear fusion.

The fusion that dominates the nuclear reactions in the core of the star depends on its
composition.
� What element accounts for most of the mass of the star?
As in the dense cloud, typically about 71% of the mass is hydrogen. It is also the case that
nuclear fusion involving hydrogen occurs at a lower temperature than fusion involving helium
and the other elements. Therefore it is the fusion of hydrogen nuclei that is by far the dominant
source of energy. This fusion results in the creation of nuclei of helium, by the pp chains
(Section 1.1.3).

You saw in Section 1.1.3 that the onset of core hydrogen fusion marks the start of the main
sequence phase of a star’s lifetime. It lasts longer the less massive the star, and for a star of
solar mass it lasts about 1011 years. The Sun itself is 4600 Ma through its main sequence phase.
In all stars it is a period of relative stability, but it is immediately preceded by a well-observed
period of instability that is of considerable importance to the formation of any planetary system.
This is the T Tauri phase, named after the protostar that was the first to be observed in this
phase. For a protostar of solar mass it is thought to last for a few million years. It is marked
by a considerable outflow of gas, called a T Tauri wind, a protostar of solar mass losing the
order of 10% of its mass in this way, and by a high level of ultraviolet (UV) radiation from
the protostar. The root causes of T Tauri activity are the final stages of infall of matter to the
protostar, plus its strong interior convection and rapid rotation.

After the onset of hydrogen fusion the T Tauri activity quickly subsides. The UV radiation
falls to a much lower level, and the wind declines to a much smaller rate of mass loss, called a
stellar wind in general, and the solar wind in the case of the Sun (Section 1.1.2).

2.1.4 Circumstellar Discs

Meanwhile, that part of the fragment that has remained outside the protostar has also been
evolving. As it contracts, a dense core starts to form, with more tenuous material outside it. But
the fragment is rotating, and so it is to be expected that only the material on or near the rotation
axis falls fairly freely towards the core – the infall of the remainder is moderated by its rotation
around the core. A circumstellar disc should thus form in the plane perpendicular to the axis of
rotation. Planetary systems are thought to form from such discs.

In recent decades circumstellar discs have been detected around many protostars. The discs
have masses ranging from a few times the mass of Jupiter to hundreds of times Jupiter’s mass,
and diameters typically a few hundred AU. The gas component in the discs is readily imaged
through its emission at radio and millimetre wavelengths. This gas component is largely removed
during the T Tauri phase of the star (Section 2.1.3), in the case of solar mass stars in the 10 Ma
or so that leads up to the main sequence phase.

Discs have also been detected around several hundred young main sequence stars through
the IR emission from the dust in the discs. By this stage, the disc masses are considerably less
than those around protostars. Dusty discs are observed around stars up to ages of about 10 Ma.
There is a growing number of images of these dust discs, some utilising the dust emission at
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IR and submillimetre wavelengths, others utilising IR and visible wavelengths with the disc
in silhouette against a bright background. In Plate 24 the dust component in the disc around
the young main sequence star Beta Pictoris is imaged through the light from the star that the
dust scatters. There is good evidence that the dust in this disc is replenished by collisions of
cometary bodies. This was one of the first discs to be imaged. A disc of dust around the star
Rho1 55 Cancri, that has at least four planets, is thought to be sustained in the same way. The
Beta Pictoris disc does not extend inwards of about 20 AU from the star – could the hole have
been hollowed out by the formation of planets? This possibility is supported by a warping of
the inner disc that could be caused by a giant planet just within the hole, in an orbit inclined at
about 3� to the plane of the disc. Other discs have similar holes.

Thus, around protostars we have discs of material that could form a planetary system, and
around young main sequence stars we have discs that seem to indicate that planetary formation
has actually occurred. These observations lend strong support to solar nebular theories, to which
we now turn.

Question 2.3

Identify the feature of the Solar System in Table 2.1 that is already present in circumstellar discs
around protostars.

2.2 Solar Nebular Theories

Over the centuries there have been several different types of theory on the origin of the Solar
System, but in recent decades one type, with antecedents in the eighteenth century, has emerged
as the firm favourite. This is the solar nebular theory. Theories of this type are characterised
by the formation of the planetary system from a disc of gas and dust encircling the young
Sun – the solar nebula. This is clearly in accord with the relatively recent observations of
circumstellar discs around protostars and young stars. Overall, such theories fit the observational
data better than any other type of theory, and there are certainly no observations that rule them
out. Within the general type there have been many variants, though there has been some degree
of convergence so that most variants now differ only in relatively minor details. We shall
concentrate on the typical features of solar nebular theories, pointing out where the variants
differ significantly.

We pick up the story at the point where the proto-Sun is surrounded by a disc of gas and
dust of order 100 AU across – the solar nebula. This is shown edge on in Figure 2.3(a). The
disc would not have ended as abruptly as shown; it is the extent of the main bulk of the disc
that is indicated. The plane of the disc coincides with the equatorial plane of the proto-Sun, and
the disc and proto-Sun, being derived from a single dense cloud fragment, will rotate in the
same direction. The disc rotates differentially, the orbital period increasing with distance from
the centre, in accord with Kepler’s third law. The elemental composition of the disc is much
the same as the present Sun outside its core – we have adopted, by mass, 70.9% hydrogen,
27.5% helium, 1.6% the rest. The gas in the disc is predominantly hydrogen and helium, and a
significant fraction of the other elements is in the various compounds that constitute the dust.
The formation of planets in this disc will lead to their orbiting in the same plane, all in the
same direction, the direction of solar rotation. These are features of the Solar System that any
acceptable theory of its origin has to explain (Table 2.1).



SOLAR NEBULAR THEORIES 57

(c)

(b)

(a)

30 AU

~105 years after (a)

Rotation axis

Figure 2.3 The solar nebula surrounding the proto-Sun. The proto-Sun is too small to show on this scale.

The starting point is, however, ill defined in one important respect: we do not know the
initial mass of the disc. In some solar nebula theories the mass of the disc is about 1% of
the present solar mass M�. At the other extreme are versions in which the initial mass of the
disc is comparable with M�. A disc mass of about 1% M� is called the minimum mass solar
nebula, MMSN. This is calculated from the estimate that there are about 65 Earth masses of
heavy elements in the Solar System today, mainly in the interiors of the giant planets. To this is
added the hydrogen and helium necessary to achieve solar composition. Much of the hydrogen
and helium has been lost, mainly through the T Tauri wind. Some indication of an appropriate
choice of mass is obtained by considering the angular momentum in the Solar System.

2.2.1 Angular Momentum in the Solar System

The magnitude l of the angular momentum of a body with mass m moving at a speed v with
respect to an axis, as in Figure 2.4, is given by

l = mvr (2.1)
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Figure 2.4 A body of mass m moving at a speed v at a perpendicular distance r from an axis perpendicular
to the page.

where r is the perpendicular distance from the path of the body to the axis. The angular
momentum of m is with respect to this axis. In the solar nebula a natural choice of axis is the
rotation axis in Figure 2.3 – through the centre of the proto-Sun and perpendicular to the plane
of the disc. In the Solar System today the natural choice is for the axis to go through the centre
of mass of the Solar System and to be perpendicular to the ecliptic plane. It is the angular
momenta with respect to these natural choices of axes that are of concern here.

Equation (2.1) applies to the mass m when its dimensions are small compared with r so
that the whole of m can be regarded as being the same distance from the axis. This is closely
approximated by a planet in orbit around the centre of mass of the Solar System, and the quantity
is called the orbital angular momentum. If this condition is not met then the body is notionally
subdivided into many small masses �m and the magnitude of its angular momentum is then a
combination of the quantities �mvr. A simple case is when the angular momentum of a rotating
planet or the Sun is calculated, as in Figure 2.5. The natural choice of axis is again the rotation
axis, and because the paths of the �m around this axis are all circular and in the same set of
parallel planes, the combination is simply the sum of �mvr over the whole body. The quantity
in this case is called the rotational (or spin) angular momentum.

In the Solar System today about 85% of the angular momentum is in the orbital motion of
Jupiter and Saturn, and only about 0.5% is in the rotation of the Sun. Less than 0.5% is in the
orbital motion of the Sun around the centre of mass of the Solar System. This is in sharp contrast
to the Sun having about 99.8% of the mass of the Solar System. Thus today, ‘where the mass
is, the angular momentum is not’. The Sun’s rotational angular momentum is small because it
rotates slowly, about once every 26 days. Its orbital angular momentum is small for two reasons.
First, the centre of mass of the Solar System is just outside the Sun, so r in equation (2.1)
is small (call it r�). Second, the orbital period P� for its small orbit is about 12 years, so its
speed v��=2�r�/P�� is very small. For a planet, the average orbital angular momentum is well
approximated by mva, where m is the mass of the planet, v is its average orbital speed, and a
is the semimajor axis of the orbit (strictly, the distance from the centre of mass of the system
should be used). By combining Kepler’s third law

P = ka3/2 (1.3)
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Figure 2.5 The rotation of an element �m of a spherical body.

with equation (2.1), and using 2�a/P for the average speed, where P is the planet’s orbital
period, we get

lorb = 2�

k
ma1/2 (2.2)

where lorb is the average orbital angular momentum of the planet (see Question 2.4).
� So, why are the orbital angular momenta of Jupiter and Saturn large?
They have large orbits, and they are by far the most massive of the planets.

This distribution of angular momentum today is in sharp contrast with that calculated for
a contracting cloud fragment. The proto-Sun rotates rapidly, and has a correspondingly large
fraction of the total angular momentum. Therefore we need to explain how most of the angular
momentum of the proto-Sun could have been lost. One of the more convincing explanations
involves turbulence in the disc at the time it still blended with the outer proto-Sun. Turbulence
is the random motion of parcels of gas and dust and is expected to have been a feature of
the contracting nebula. (Note that though the parcels can be small, they are much larger than
atomic scale – this is not the random thermal motion that occurs at the atomic level.) Turbulent
motions are superimposed on the orderly swirl of circular orbital motion around the proto-Sun.
Turbulence transfers parcels radially, and it can be shown that the net transfer of disc mass is
outwards in the outer part of the disc and inwards in the inner part of the disc. The associated
net transfer of angular momentum is from the proto-Sun to the disc, and it is carried by a small
fraction of the disc mass.

Further transfer arises from the solar wind. The ions that constitute the wind get snared by the
Sun’s magnetic field. Therefore, as they stream outwards they are forced to rotate with the Sun,
and slow its rotation. There is thus a transfer of angular momentum from the Sun to the wind.

Note that the transfer of disc mass leads to the loss of mass from the disc. In the outer disc this
loss is to interstellar space. In the inner disc it is to the proto-Sun, and also to interstellar space
via an outflow along the rotation axis of the disc, perhaps enhanced by mass loss from the polar
regions of the proto-Sun. Such bipolar outflow is observed from protostars, as in Figure 2.6,
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Figure 2.6 Bipolar outflow from the protostar in an object called HH-30. A disc (edge on) is also
apparent. The scale bar is 1000 AU long. (Reproduced by permission of C Burrow, AURA/STScI ID
Team, ESA)

where the disc is also apparent edge on. Why these outflows are so tightly collimated is not well
understood, but the magnetic field of the protostar or of the disc itself, acting on electrically
charged particles in the flow, might be important. Bipolar outflow would have carried off only a
small proportion of the rotational angular momentum of the proto-Sun. But this is not the whole
outflow, particularly in the strong T Tauri phase (Section 2.1.3), when a significant proportion
of the proto-Sun’s angular momentum could have been carried off.

How does the distribution of angular momentum cast light on the initial mass of the disc? If the
initial disc mass were only about 1% of the solar mass M� (the MMSN) the angular momentum
transfer would be weak, to the extent that it would be difficult to explain the necessary loss
of angular momentum by the proto-Sun. At the other extreme, an initial disc mass comparable
with M� is considerably more than is necessary and requires a huge proportion of disc mass
to be lost to space. Therefore, many astronomers favour an intermediate value, a few times the
MMSN. This will be adopted implicitly in Section 2.2.

Question 2.4

(a) Derive equation (2.2).
(b) Use equation (2.1) to calculate the magnitude of the average orbital angular momentum

of the Earth, and then use equation (2.2) to calculate the magnitude of the average orbital
angular momenta of Jupiter and Neptune.

2.2.2 The Evaporation and Condensation of Dust in the Solar Nebula

In nebular theories the formation of planets and other bodies occurs in a number of stages,
the first of which is the evaporation of some of the initial complement of the dust in the solar
nebula.
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Evaporation of dust

You have seen (Section 2.1.3) that the proto-Sun only begins to increase greatly in temperature
when it becomes dense enough to be opaque to its own radiation. The disc never becomes as
dense as the proto-Sun and therefore the tendency for its temperature to rise as it contracts is
more strongly moderated. Nevertheless the disc does rise in temperature, particularly in its inner
regions where it is denser and thus more opaque, and where infall to the proto-Sun has caused
greater frictional heating.
� What additional source of energy heats the inner disc more than the outer disc?
This is the proto-Sun when it becomes luminous.

In the inner disc, out to perhaps 1 AU, the calculated temperatures exceed about 2000 K, high
enough to evaporate practically all of the dust in the disc – only those substances with very
high sublimation temperatures escape evaporation. In sublimation, a substance goes directly
from solid to gas, as does carbon dioxide ice (dry ice) at the Earth’s surface. It occurs when
the pressure is too low to sustain a liquid, and in the disc the pressures are well below his
threshold. Above the sublimation temperature the substance is a gas, and below it, a solid. For
any particular substance the sublimation temperature depends on the pressure: the higher the
pressure, the higher the sublimation temperature. The value of the sublimation temperature for
a particular substance at a given pressure is one measure of the volatility of the substance.
The most volatile substances, such as hydrogen �H2� and helium (He), have extremely low
sublimation temperatures, whereas substances such as corundum �Al2O3� have extremely high
sublimation temperatures, and are said to be refractory. With increasing distance from the
proto-Sun the disc temperature decreases, and therefore increasingly more volatile substances
avoid sublimation. Beyond the order of 10 AU even quite volatile substances escape sublimation,
such as water ice.

Condensation of dust

So far the disc has evolved in completely the wrong direction to make planets – it has gained
gas at the expense of solid material! However, at some point the contraction of the disc slows.
Moreover, the luminosity of the proto-Sun declines as it contracts, its surface area decreasing
greatly whilst its surface temperature increases only slightly. (In contrast, the protosolar core
temperature is increasing enormously, because of the lower rate of energy transfer across the
outer layers of the proto-Sun.) Heat generation within the disc also declines, and so the disc
temperatures begin to fall as it continues to emit IR radiation. At some point fresh dust begins to
condense, its composition depending on the composition of the gas and on the local temperature.
Because of the low pressures, solids rather than liquids appeared.

Table 2.3 gives the condensation temperatures of representative substances (these are also the
sublimation temperatures). The pressure for the data is 100 Pa, 0.1% of the atmospheric pressure
at the Earth’s surface. This is a theoretical value for the total gas pressure in the disc. The
temperature at which a substance condenses will depend not only on this total pressure but also
on the proportion of the disc accounted for by the substance, which determines its contribution
to the total pressure, i.e. the partial pressure. It is the partial pressure that determines, albeit
rather weakly, the condensation temperature of a substance. Also, the pressure might have been
rather lower than 100 Pa, though the condensation temperatures are only slightly lower even
at 10 Pa.
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Table 2.3 A condensation sequence of some substances at 100 Pa nebular
pressure

Temperature/K Substance Chemical formula

1758 Corundum Al2O3

1471 Iron–nickel Fe plus ∼ 6% Ni by mass
1450 Diopsidea CaMgSi2O6

1444 Forsteriteb Mg2SiO4

< 1000 Alkali feldspars �Na� K�AlSi3O8

700 Troilite FeS
550–330 Hydrated mineralsc X�H2O�n or X�OH�n

190 Water H2O
135 Hydrated ammonia NH3�H2O
77 Hydrated methane CH4�7 H2O
70 Hydrated nitrogen N2�6 H2O
37 Methane CH4

∼ 8 Hydrogen H2

∼ 1 Helium He

a A particular form of pyroxene, �Ca� Fe� Mg�2Si2O6.
b A particular form of olivine, �Mg� Fe�2SiO4.
c X can be a molecule of a variety of minerals, and n is greater than or equal
to 1.

The disc temperatures are generally lower the further we are from the Sun. Therefore as the
disc cools a substance condenses rather in the manner of a wave spreading inwards to some
minimum distance within which the temperature is always too high.

In the innermost part of the disc the temperatures are probably always too high at the dust
condensation stage for anything much less refractory than iron–nickel to condense. At greater
distances less refractory dust components appear, including an important range of substances
exemplified in Table 2.3 by diopside, forsterite, and alkali feldspars. These are examples of
silicates. A silicate is a chemical compound that has a basic unit consisting of atoms of one or
more metallic elements and atoms of the abundant elements silicon and oxygen. For example,
olivine has the chemical formula �Fe� Mg�2SiO4. Therefore, in the basic unit there is one atom
of silicon (Si), four of oxygen (O), and two atoms of iron or magnesium – either two iron
atoms or two magnesium atoms, or one of each. A particle of dust consists of very many units,
and so the proportion of iron to magnesium in the particle as a whole can be anywhere in the
range 0–100%. The particular version of olivine in Table 2.3 (forsterite) has no iron at all.
Particular versions are called minerals, naturally occurring substances with a basic unit that has
a particular chemical composition and structure. Olivine is thus the name for a range of closely
related minerals. The whole family of silicates cover a wide range of compositions.

Silicates are by far the most common refractory substances in the Solar System after iron–
nickel, and they are common in rocks, a rock being an assemblage of one or more minerals
in solid form. Together with iron–nickel, silicates account for most of the common rocky
materials. Note that this is the name of a group of refractory substances and not an implication
that they are solid.

In the disc, an extremely important boundary is the distance beyond which water condenses.
This is important because there is a considerable mass of water in the disc, and where it condenses
it becomes the dominant constituent of the dust grains. Water must have been abundant because
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oxygen, among the heavy elements, is particularly abundant (Table 1.5), and in a hydrogen-rich
gas, at all but very high temperatures, most of the oxygen combines with hydrogen to form water
molecules, H2O. Figure 2.7 shows one model of the column mass of the disc versus distance
from the proto-Sun at a time well into the dust condensation stage, when the disc probably
resembled Figure 2.3(c). The column mass is the total mass in a cylinder of unit cross-sectional
area with its axis running perpendicular to the plane of the disc. The increase in column mass at
about 5 AU from the proto-Sun is due to the condensation of water beyond this distance. This
distance is sometimes called the ice line. Note that the values in Figure 2.7 are illustrative, and
not definitive. This applies to the column masses and also to the location of the ice line – in
recent models this is around 4 AU.

Though water as H2O condenses beyond 4–5 AU, the dust closer in is not devoid of water:
hydrated minerals (Table 2.3) have higher condensation temperatures than water. These are
substances that have one or more water molecules attached to their basic unit, or one or more
hydroxyl molecules (OH) which are a fragment of the water molecule. Water is one of a group of
substances called icy materials. As in the case of rocky materials this is the name of a group
of volatile substances with no implication that they are present as solids. The solid form is
called an ice. Other important icy materials include ammonia �NH3� and nitrogen �N2�, which
are shown in Table 2.3 in their hydrated forms, and methane �CH4�, shown in hydrated and
non-hydrated forms. Carbon monoxide (CO) and carbon dioxide �CO2� are also important icy
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materials – CO2 more volatile than water, CO more volatile than CO2. Thus, all of these icy
materials are more volatile than water and so have minimum condensation distances that are
greater than that of water.

Some evidence for extensive though incomplete evaporation of dust, followed by reconden-
sation, is provided by meteorites, where a proportion of their refractory and not-so-refractory
substances have isotope ratios that differ markedly from the Solar System average. This would
be the outcome if these proportions had survived evaporation – material that has not been
recondensed from a nebular gas retains an imprint of its origin beyond the Solar System.

Question 2.5

What indications are there already that we will get two zones in the Solar System, with terrestrial
planets in the inner zone and giant planets in the outer zone?

2.2.3 From Dust to Planetesimals

At the stage we have reached, the dust grains throughout the nebula are tiny, with sizes in the
range 1–30 �m�1 �m = 10−6 m�, as observed in circumstellar discs (Section 2.1.4). The grains
now grow slightly by acquiring atoms and molecules from the gas, rather as raindrops grow by
acquisition of water vapour. This slow-growth phase is accompanied by an increasing tendency
for grains to settle to the mid plane of the disc, a result of the net gravitational field and gas
drag. This tendency increases as the turbulence in the disc dies away and as the grains grow
in size. There is thus an increasing concentration of dust around the mid plane of the nebula,
forming a very thin sheet of order 104 km thick. The rest of the nebula is much thicker and
much more massive, and consists of gas, mainly H2 and He, and remnant dust. This is shown
in Figure 2.8 for the inner part of the dust sheet, where the thickness of the dust sheet has
been greatly exaggerated. Note that the sheet gets thicker with increasing distance from the Sun,
i.e. with increasing heliocentric distance.
� So how (except for the step up at the ice line) can the column mass of the dust decrease as

in Figure 2.7?
As the heliocentric distance increases, the mass of dust per unit volume of the sheet decreases
faster than the dust sheet thickness increases. This is mainly because the dust grains are further
apart, and not because they are smaller.

Proto-Sun

Thin dusty halo Dust sheet

Dust-free spheroid

Gas (+ trace of dust)

0.5 AU (approx)

Figure 2.8 Edge-on view of the gas and dust around the proto-Sun after the dust has settled towards the
mid plane. The thickness of the dust sheet has been greatly exaggerated.
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The concentration of the dust into a sheet leads to a greatly increased chance of a collision
between two grains. Neighbouring grains tend to be in similar orbits and therefore a significant
fraction of the collisions is at sufficiently low relative speed for the grains to stick together in
a process called coagulation. Coagulation is more likely when one or both grains have a fluffy
structure, and it is aided when the two grains have opposite electric charges, or when they contain
magnetised particles. Gravitational instabilities in the dust sheet might also aid coagulation.

The outcome of coagulation is the gradual build-up of bodies of order 10 mm across. The
time required for this to happen depends on the relative speeds of grains in slightly different
orbits: the lower the relative speeds, the lower the collision rate and the slower the coagulation.
These relative speeds are lower, the smaller the orbital speeds. Therefore, the coagulation time
generally increases with increasing heliocentric distance. This tendency is reinforced because the
coagulation time also depends on the average spacing of the grains: the greater the spacing, the
slower the coagulation. This spacing increases as the column mass of the disc decreases, and so
the coagulation time is further increased with increasing heliocentric distance. An exception is at
the ice line, where the step up in column mass causes a significant reduction in the coagulation
time in the Jupiter region. Broadly speaking, the coagulation times are in the approximate
range of 1000 years to a few tens of thousands of years within about 4–5 AU of the proto-
Sun, increasing to many hundreds of thousands of years at 30 AU. The earlier times for dust
condensation and settling are shorter.

By the time bodies 10 mm or so in size are appearing at 30 AU, the bodies out to 4–5 AU have
grown to 0.1–10 km across. These are called planetesimals, ‘little planets’, rocky within the ice
line, and when they subsequently form, icy–rocky beyond it. There are at least two means of
producing planetesimals, both of which might have been significant. The first is a continuation
of coagulation, promoted by the continuing thinning of the dust sheet with the corresponding
increase in its density. The second is a different consequence of this density increase. At a
sheet thickness of order 100 km it is possible that the gravitational attraction between the bodies
constituting the sheet leads to gravitational instability, the sheet breaking up into numerous
fragments, each fragment forming a planetesimal.

Though the formation of planetesimals is a considerable step towards bodies of planetary size,
there is clearly some way still to go. The theory of the remaining stages of planetary formation
indicates that the process was rather different in the inner Solar System – within the ice line –
than in the outer Solar System.

Question 2.6

(a) Use Figure 2.7 to estimate the total mass in the planetesimals between 0.8 AU and 1.2 AU
from the proto-Sun. Compare your result with the mass of the Earth, and comment on the
significance of the comparison.

(b) If the mean density of a planetesimal around 1 AU from the proto-Sun is 2500 kg m−3,
calculate the number of planetesimals corresponding to the mass you calculated in part (a).

In both parts, state any assumptions that you make.

2.2.4 From Planetesimals to Planets in the Inner Solar System

A planetesimal about 10 km across has sufficient mass for it to exert a significant gravitational
attraction on neighbouring planetesimals. This increases the collision rate between planetesimals,
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and models show that the net effect is growth of the larger planetesimals at the expense of
the smaller ones. An essential condition for net growth is that the collisions are at low speed,
thus requiring neighbouring planetesimals to be in low-eccentricity, low-inclination orbits. Such
orbits could have been wrought by nebular gas drag on planetesimals in more eccentric, more
inclined orbits. The acquisition by a larger body of smaller bodies is called accretion.

As a planetesimal gets more massive its accretional power increases, and consequently there
is a strong tendency for a dominant planetesimal to emerge that ultimately accretes most of the
mass in its neighbourhood. (This is an example of the Matthew effect: ‘For unto every one that
hath shall be given, and he shall have abundance: but from him that hath not, shall be taken away
even that which he hath.’ The gospel according to St Matthew XXV, 29. The Matthew effect is
also familiar to players of Monopoly.) The outcome is runaway growth, in which the population
of planetesimals in a neighbourhood evolves to yield a single massive planetesimal called an
embryo, that accounts for over 90% of the original planetesimal mass in the neighbourhood,
plus a swarm of far less massive planetesimals, the largest being perhaps a million times less
massive than the embryo. The neighbourhood of an embryo is an annular strip covering a small
range of heliocentric distances, and so we get a set of embryos each at a different heliocentric
distance.

Figure 2.9 shows the embryo mass versus distance calculated from one model, the results from
which must be regarded as illustrative and not definitive. In this model the orbits of the embryos
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within the ice line are spaced by about 0.02 AU, and the time taken for the full development
of a single embryo from a swarm of planetesimals is of order 0.5 Ma at 1 AU, and increases
with heliocentric distance. These times are very uncertain, though a general increase in time
with increasing heliocentric distance emerges in all models, largely because of the decrease in
column mass. Another common feature is an increase in embryo spacing with increasing solar
distance.
� In this model, how many embryos are there between 0.3 AU and 5 AU?
There are about �5−0�3�/0�02 embryos in this region, i.e. 200 or so. This is the region presently
occupied by the terrestrial planets and the asteroids. From Figure 2.9 and the 0.02 AU spacing,
their total mass can be estimated to be of order 10 times the mass of the Earth.

Figure 2.9 shows that (except perhaps for Mars) we have to put embryos together to form
the terrestrial planets. However, assembly is a slow process because of the small number of
embryos and their consequent large spacings. We have to rely on modest orbital eccentricities
to produce collisions. Such collisions would produce fragmentation, but the gravitational field
would be sufficient to assemble most of the fragments into a body with nearly the combined
mass of the two colliding embryos. At some intermediate stage there could have been a few
dozen Mars-sized embryos, and a host of less massive bodies. Collisions would usually have
been off centre, and so even if many of the embryos initially had small inclinations of their
rotation axes, larger inclinations could readily be imparted to some planets through the arrival
of large embryos. This is in accord with item 6 in Table 2.1.

The time occupied by the transition from embryos to a terrestrial planet increases with
increasing heliocentric distance. It is estimated that for the Earth the time was of order 100 Ma.
This is by far the slowest stage in the formation of the terrestrial planets, though it is short
compared with the 4500 Ma or so that have elapsed since. Figure 2.10 is a time line summary of
the formation of a terrestrial planet. The relative durations of each stage are more reliable than the
absolute durations, which vary considerably from model to model. Note the logarithmic scale.

After the last embryo collision we are left with planetesimals bombarding an essentially
complete planet. There is widespread evidence that the terrestrial planets and the Moon suffered
such a heavy bombardment, and that it tailed off about 3900 Ma ago, to be followed by a light
bombardment by small bodies that persists to the present day.

If the terrestrial planets did indeed form as proposed here, then they should consist largely of
substances more refractory than the hydrated minerals in Table 2.3, and the closer to the Sun the
more refractory the composition should be. Note, however, that the compositional differences
between the planets will have been moderated by embryos and planetesimals arriving from
different regions. This is in accord with what we know about terrestrial planet composition.
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Figure 2.10 Time line of the formation of a terrestrial planet. The relative durations of each stage are
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Nebular gas would also have been captured, and though only to the extent of a tiny fraction of
the planetary mass, it would have provided the planets with atmospheres rich in hydrogen and
helium. In the theory, such atmospheres are removed by the T Tauri activity of the proto-Sun.

Throughout the T Tauri phase the nebular gas has been depleted by its accretion onto the
proto-Sun. The T Tauri activity also removes nebular gas to space, driven out by copious UV
and particle emission. This is the mechanism by which the last remnants of gas are swept away,
and it happens rather rapidly. In Figure 2.10 this terminal sweeping is denoted by ‘nebula rapidly
disappearing’, which is also around the end of the T Tauri phase.

The effects of Jupiter in the inner Solar System

Figure 2.9 and the embryo spacing of roughly 0.02 AU, shows that from 2 AU outwards towards
Jupiter, but sufficiently far (about 4 AU) to evade direct capture, there are expected to have been
several tens of embryos each with masses of the order of 1024 kg. Today this region is occupied
by the asteroids, with a total mass only of order 1022 kg, the most massive being Ceres at 9�4 ×
1020 kg. The answer to this seeming contradiction is the effect of Jupiter, the most massive planet,
which is in orbit just beyond this region. In the theory, as Jupiter grows, its gravitational field
‘stirs’ the orbits of the planetesimals and embryos, producing a range of eccentricities, inclina-
tions, and semimajor axes, so that most collisions occur between two bodies occupying substan-
tially different orbits, with huge relative speed, as in Figure 2.11. The result is fragmentation and
dispersal of the fragments, rather than accretion. Some of the dispersed fragments are flung into
huge orbits, some are lost from the Solar System, and some are captured by the Sun and planets.
Only a small fraction remains at 2–4 AU. This population continued to evolve, and we see the

Jupiter’s orbit

Planetesimal
orbits

Proto-Sun

High-speed
collision

Figure 2.11 High relative speeds when two bodies in substantially different orbits collide.
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survivors today as the asteroids, with perhaps only the order of 0.1% of the original mass in
this region.

The growth of Mars at around 1.5 AU must also have been stunted by the stirring of the
planetesimal and embryo orbits by Jupiter. Nearer the Sun, the effect of Jupiter might have been
to speed up the final stages of growth of Mercury, Venus, and the Earth, partly through the
provision of material from outside the terrestrial zone, and partly by increasing the eccentricity
of the embryo orbits, thus increasing their collision rate without producing the huge relative
speeds of the asteroid region.

Formation of the Moon (and of Mars’s satellites)

Of the terrestrial planets only the Earth and Mars have satellites. The two tiny satellites of Mars
(Table 1.2), Phobos and Deimos, are probably captured asteroids. Their densities are too small
for them to be pieces of Mars, but the class C asteroids (Section 3.1.6) meet the requirements.
Capture directly into orbits so near Mars is unlikely. Instead, a class C asteroid could have struck
Mars, and the disc around Mars thus formed, consisting of a mixture of the asteroid material
and the Martian crust, underwent accretion to form Phobos and Deimos.

The Moon, at 1.2% of the mass of the Earth, is far too massive for capture to be likely. In
recent years widespread support has grown for the view that the Moon is the result of an embryo
with a mass 10–15% that of the Earth, colliding with the nearly formed Earth at a grazing
angle. All but the core of the embryo, and some of the outer part of the Earth, is scattered
along an arc, predominantly as a gas produced by vaporization during the impact. Much of this
material returns to Earth, some escapes, but a small fraction goes into orbit around the Earth,
from where, in only a year or so, it forms the Moon. You will see in later chapters that the
detailed composition and structure of the Earth and the Moon provide a good deal of support
for this theory. One simulation of the process is illustrated in Figure 2.12.

The lunar orbit has a (nearly) fixed inclination of 5�16� with respect to the ecliptic plane
(Figure 1.25), rather than to the equatorial plane of the Earth. This strong link to the ecliptic
plane makes the Moon different from all the other large planetary satellites in the Solar System.
Yet the models show that initially the inclination was (nearly) fixed with respect to the Earth’s
equatorial plane. This changed, because tidal forces between the Earth and the Moon caused the
Moon to recede. As it did so, the Sun became more influential on the Moon, and the Earth less
so, with the likely result that the lunar orbit acquired a (nearly) constant inclination with respect
to the ecliptic plane.

Question 2.7

List the features of the Solar System in Table 2.1 that apply to the terrestrial planets. For each
feature in your list state whether it can be explained by solar nebular theories.

2.2.5 From Planetesimals to Planets in the Outer Solar System

Figure 2.9 shows a huge increase in the embryo mass beyond the ice line. You might think
this is simply the result of the huge mass of condensed water, but comparison with Figure 2.7
shows that this is not the only important factor. In Figure 2.7 there is certainly an important
step up in the column mass of the solar nebula at 4–5 AU, i.e. at the ice line, but there is
also an underlying decrease in column mass with heliocentric distance. As a result, the column
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Figure 2.12 One way in which the Moon could have formed from a grazing embryo impact on the Earth.
Note the decreasing scale from frame to frame – the Earth (the larger object) is about the same size in all
frames. (Reproduced by permission of A G W Cameron)

mass in the neighbourhood of Jupiter is less than in the neighbourhood of the terrestrial planets.
Figure 2.9 therefore indicates that, in the models, as the heliocentric distance increases, planetary
embryos not only become more massive, but also become fewer in number. In other words, the
‘feeding zone’ of each embryo covers a wider annular strip of the disc. Consequently, embryo
masses of order 1026 kg are typical in the models for the Jovian region, i.e. of order 10 times
the Earth’s final mass!

At greater heliocentric distances it also takes longer to form the embryos from planetesimals,
about 0.5 Ma at 4–5 AU, and even longer further out. However, the time required is shorter for
smaller planetesimals, and so if there is a trend whereby the greater the heliocentric distance,
the smaller the planetesimals, then this would partly offset the increasing embryo formation
times. In any case, many planetesimals are left over after the embryos have formed, enabling
the embryos to grow.

The embryos are so few and far between beyond the ice line that embryo collisions are very
rare, and so the slow embryo-to-final-planet phase that operates in the terrestrial region does
not occur. Instead the embryos are massive enough to act as kernels that gravitationally capture
large quantities of the considerable mass of gas that still dominates the solar nebula.
� Which two substances made up nearly all of the mass of this gas?
Hydrogen (as H2) and helium (as He) together accounted for about 98% of the mass of the
nebula, and for nearly all of the gas component. At first, the rate of capture of gas by the kernels
is low, and it is estimated that it takes several times the kernel formation time for the capture
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of a mass of gas equal to the initial kernel mass. At this point, the capture rate is much higher
and it is rising rapidly with further mass increase – there is a runaway.

As nebular gas is captured it undergoes self-compression, to yield an envelope with an average
density that grows as its mass increases. As well as gas, the growing giants also capture a small
but significant proportion of the surviving planetesimals, which still account for nearly 2% of
the mass of the nebula. These icy–rocky bodies partially or wholly dissolve in the envelope,
particularly in its later, denser stages. Icy materials dissolve more readily than rocky materials,
so some preferential accretion of rocky materials onto the kernel might occur. On the other
hand, convection in the envelope opposes core growth, so the further central concentration of
icy–rocky materials might be slight. The (runaway) capture of gas is halted by the T Tauri phase
of the proto-Sun, when the high radiation and particle fluxes sweep the remaining nebular gas
into interstellar space.

We can thus account for the presence of giants in the outer Solar System. However, some
critical timing is seen to be essential when we look at the differences between the giants, notably
the decrease in mass with increasing heliocentric distance (item 8 in Table 2.1). In the models
outlined so far, the key to understanding this trend is the increasing time it takes to reach
the runaway stage with increasing heliocentric distance. If the T Tauri phase occurs after the
onset of runaway at Jupiter and Saturn, but before it starts at Uranus and Neptune, then we
can account qualitatively for the lower masses of Uranus and Neptune. This truncation of gas
capture by Uranus and Neptune also explains their smaller proportion of hydrogen and helium;
Chapter 5 presents incontrovertible evidence for this. Figure 2.13 is one possible time line for
the formation of the giant planets. Again, this is illustrative, not definitive. As in Figure 2.10,
the end of the T Tauri phase is around the time marked ‘nebula rapidly disappearing’.
� What would have been the consequence of a much later T Tauri phase?
If the T Tauri phase had been much later, then all the giants would now be more massive
than Jupiter.

After the T Tauri phase the giants must have captured further icy–rocky planetesimals. These
will have added only very slightly to the total mass, but could have significantly enriched the
envelopes in icy and rocky materials.

Non-zero axial inclinations of the giants could readily result from the off centre accumulation
of mass – the same sort of explanation that can account for the axial inclinations of the terres-
trial planets. But Saturn has a rather large inclination, 26�7�, and the planet is far too massive
for off centre accumulation to be the cause. Instead, the explanation probably lies in the rate of
Saturn’s axial precession being equal to the rate of regression of the nodes of Neptune’s orbit.
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Quite why this resonance explains the large inclination of Saturn is beyond our scope. The incli-
nation of Uranus is remarkable �97�8��, though for this less massive planet this can be explained
by the accumulated effects of icy–rocky planetesimals that just happened to nudge the rotation axis
predominantly in one direction. Alternatively, an impact with a large embryo could account for it.

This is the core-accretion model of giant planet formation.
The time line in Figure 2.13 does present us with some difficulties. The first is that Neptune’s

kernel might not have formed before the T Tauri phase had swept far too much of the gas away
for Neptune to acquire anywhere near the amount of hydrogen and helium that it contains. The
second is that the T Tauri phase could have been earlier, which gives us the same difficulty
with Uranus as we have with Neptune.

Both of these difficulties can be overcome if we include giant planet migration in our models.
These models also account neatly for other features of the Solar System.

Giant planet migration in the Solar System

If Uranus and Neptune formed closer to the Sun than we find them today (but not as close as
Jupiter or Saturn), their kernels could have formed rapidly enough so that by the time the gas disc
was removed by the T Tauri wind of the Sun they had acquired their modest hydrogen–helium
envelopes. In this case they must have since migrated outwards.

The evidence for giant planet migration in exoplanetary systems (Section 2.1.2) lends credi-
bility to the view that migration has indeed occurred in the Solar System. Note that the migration
of terrestrial planets is slight – their masses are too small to excite appreciable spiral density
waves in the disc. By contrast, the giant planets could well have migrated significant distances.
Indeed, it is possible that one or more (growing) giants were consumed by the proto-Sun. But
clearly four survived, possibly through gravitational interactions between them, via the spiral
density waves they each induced in the disc.

But if Uranus and Neptune formed closer to the Sun than they are today, and remained there
until the solar nebula had largely dissipated, how could they have moved outwards? The answer
is that there is another way for migration to occur. This is via the scattering of planetesimals
from one giant to another.

A recent computer simulation starts, after clearance of the gas disc, with Jupiter, Saturn,
Uranus, and Neptune in circular orbits at the respective solar distances 5.5 AU, 8.2 AU, 14.2
AU, and 11.5 AU (yes, Neptune is placed closer to the Sun than Uranus).
� So, which way does each giant need to move?
Jupiter needs to move inwards to 5.2 AU, Saturn outwards to 9.6 AU, Uranus outwards to
19.2 AU, and Neptune outwards to 30.1 AU. The model crucially includes a large population
of planetesimals in the range 15–35 AU, which constituted the Edgeworth–Kuiper (E–K) belt
at this time, though more distant bodies are not excluded. From the details of the simulation
it emerges that Uranus and Neptune scattered planetesimals predominantly inwards, and as a
result these two giants gained angular momentum, and thus moved outwards. Saturn is also a net
inward scatterer, so also moves outwards, though not by much owing to its large mass. Jupiter
is a net outward scatterer, so moves inwards, again not by much. Many of the outward-scattered
planetesimals escape into interstellar space; those that do not quite make it contribute to the
Oort cloud. Uranus and Neptune move into the E–K belt, ejecting many objects, some of which
make a major contribution to a late heavy bombardment in the inner Solar System, others of
which become the major component of the Oort cloud. The migration of Jupiter and Saturn
disturbs the asteroid belt, and this also contributes to the heavy bombardment.
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The simulated migration of Jupiter and Saturn causes them to pass through their mutual 2:1
mean motion resonance. This causes the eccentricity of the orbits of Uranus and Neptune to
increase to the extent that they interact, with the outcome that they exchange orbits. Their orbits
are reduced in eccentricity by further interaction with planetesimals. After several million years,
with the planetesimal population depleted, we end up with the four giant planets in their present
orbits. This kind of simulation can also explain the high eccentricity of Pluto, via the outward
migration of Neptune, and its capture into its 3:2 mmr with Neptune.

Formation of giant planets by gravitational instability in the disc

In the mid 1990s, before the problem of the slow formation of the Uranus and Neptune kernels
had been solved by models that included migration, a radical alternative model was put forward,
which solved the problem, and also tackled some other difficulties. In this alternative model, the
gas in the outer nebula becomes gravitationally unstable, and fragments of higher density form.
Each of these contracts to create, in at least some cases, what is called a protoplanet, rather
in the manner that the Sun formed at the centre of the nebula. The fragment further contracts
to form the giant. This one stage process is distinctly different from the core-accretion model
elaborated above. Note that the gas in the inner nebula is too hot to become gravitationally
unstable, so the model does not change the mode of formation of the terrestrial planets.

Initially, this gravitational instability model seemed promising, particularly because frag-
ments appear in the models when the nebula is only a few hundred years old. But further
modelling has revealed huge difficulties. First, with a solar nebula twice the minimum mass solar
nebula, the gas becomes gravitationally unstable only beyond about 10 AU. Even at 14 times
the minimum, instability extends inwards to only about 7 AU, still beyond the orbit of Jupiter.
Worse, the fragments are themselves unstable, and usually do not form protoplanets. At best, the
fragments might promote kernel formation. It is also difficult to see how Uranus and Neptune
can be so different in composition from Jupiter and Saturn. Therefore, the core-accretion model
is secure, for the time being.

Question 2.8

If the proto-Sun went through its T Tauri phase much earlier than in Figure 2.13, what might
the planets in the outer Solar System be like today?

2.2.6 The Origin of the Oort Cloud, the E–K Belt, and Pluto

Regardless of the model used, the Oort cloud consists of icy–rocky planetesimals that were flung
out by the giant planets, but not fast enough to escape from the Solar System. The remaining
question is how they became confined to a thick shell rather than retrace the orbit of ejection. This
is because their perihelion distances were increased, and the orbital eccentricities consequently
reduced, by the overall gravitational force of the stars and interstellar matter that constitute
our Galaxy. The force has this effect because it varies across a planetesimal orbit, i.e. it is a
differential force.
� What is a suitable name for this force?
A differential force is a tidal force (Section 1.4.5), and so a suitable name is the Galactic tidal
force, though it is usually called the Galactic tide. The planetesimal orbits were subsequently
randomised in orientation by this tidal force and also by passing stars and giant molecular clouds,
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yielding a spherical shell of 1012–1013 bodies greater than a kilometre across, 103–105 AU from
the Sun. The Oort members were thus emplaced (Section 1.2.3), perhaps on a time scale as
short as 103 Ma. In Section 3.2.6 you will see how the Oort cloud can account for some of the
comets observed today in the inner Solar System.

In the migration model outlined in the previous section, Uranus and Neptune generated the
majority of Oort cloud members, with Jupiter making a smaller contribution.

This model, and others like it, also show that few planetesimals within about 40 AU of the
Sun survived the migration of Neptune to its final orbit, with a semimajor axis of 30.1 AU.
Kepler’s third law shows that an object with a semimajor axis of about 40 AU will orbit the
Sun three times for every two orbits of Neptune – a 3:2 mmr. As Neptune migrated outwards it
captured bodies into this resonance and swept them before it, thus clearing the space. The bodies
beyond 40 AU are a mixture of planetesimals, even embryos, that formed from the solar nebula
and have always resided there, and those scattered by the giant planets to modest distances. This
mixture constitutes the E–K belt of icy–rocky bodies, with known sizes up to about 1500 km
radius, and clustering around the mid plane of the erstwhile solar nebula.

That there are no giant planets beyond Neptune is readily explained by the low spatial density
of objects in the E–K belt and their slow orbital motion, resulting in a very low collision rate,
and the lack of sufficient nebular gas to reduce their eccentricities and hence their collision
speeds – Figure 2.11 illustrates this in a different context. In Section 3.2.6 you will see that the
E–K belt makes a further contribution to the observed comets.

In models that do not involve giant planet migration, the great majority of E–K objects
(EKOs) are icy–rocky planetesimals that formed more or less where the E–K belt resides today.

The best-known member of the E–K belt is the planet Pluto, an icy–rocky body with a radius
of 1153 km. With a semimajor axis of 39.8 AU it is in the 3:2 mmr with Neptune. The migration
model shows that as Neptune migrated outwards it would have captured Pluto into this resonance
when Neptune was at about 25 AU.
� What would have been the semimajor axis of Pluto’s orbit at this time?
From Kepler’s third law (equation (1.3)) this would have been 25 × �3/2�2/3 = 33 AU (to two
significant figures). As Pluto was pushed outwards in this resonance a secular resonance would
have increased the orbital inclination of Pluto to about that observed, 17�1�. Its orbital eccentricity
would also have increased, again to about that observed, 0.25. This high eccentricity means that
Pluto comes closer to the Sun than Neptune – see Figure 1.5. The orbits do not intersect because
of their different orbital inclinations. Moreover, owing to the 3:2 resonance, Pluto is always near
aphelion at the times the orbits are close, so Pluto and Neptune avoid the close approaches that would
otherwise destabilise Pluto’s orbit. As mentioned in Section 1.2.3, Pluto is not the largest EKO.

Interactions between large EKOs can account for Pluto’s satellites, via capture, and the strange
orbit of Triton (Section 2.3.1). Collisions of large EKOs with Neptune can explain its large axial
inclination, 28�3�.

With Pluto and the E–K belt in place, there was ejection of some of the remaining objects
in the giant region, and the collisional evolution of smaller objects everywhere, including the
generation of dust. Thus, we have the Solar System as we see it today.

In Sections 3.2.6 and 3.2.7 we shall return to the Oort cloud and the E–K belt, and, in the
case of the latter, explore its populations in more detail.

Question 2.9

In a few sentences, discuss whether the E–K belt could blend into the Oort cloud.
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2.3 Formation of the Satellites and Rings of the Giant Planets

2.3.1 Formation of the Satellites of the Giant Planets

With the exception of Triton, all of the massive satellites of the giants, and many of their less
massive satellites, orbit the planet in the same direction as the planet rotates, and in a plane tilted
at only a small angle with respect to the equatorial plane of the planet (Table 1.2). This orderly
arrangement is strong evidence against separate formation and capture, and strong evidence for
formation in a disc of dust and gas around each planet, called a protosatellite disc. In some ways
this mimics the formation of the planets from the disc of gas and dust around the proto-Sun, but
it differs in one important respect – most of the angular momentum in the giant planet system
is in the rotation of the planet and not in the orbits of the satellites. Therefore, there is no need
to transfer angular momentum away from the planet, in contrast to the proto-Sun.

In the models, the protosatellite disc is composed of material attracted to the growing giant,
but that fails to be incorporated into it. The material forms a cloud of gas, dust, and planetesimals.
Interactions within the cloud and between the cloud and the planet cause the cloud to evolve
into a thin disc in the equatorial plane of the planet, and orbiting in the same direction as the
planet is rotating. Though much of the icy–rocky material in the disc is lost to interplanetary
space, coagulation and accretion occur, building up the satellites. The time scale for satellite
formation in this way is short, of order 1000 years, resulting in internal satellite temperatures
up to about 1000 K, a consequence of the gravitational energy released during accretion. For
satellites formed further out, the accretion is slower, so less heat is buried, and the accretion
temperatures are correspondingly lower. Remnant gas in the system is lost during the T Tauri
phase of the proto-Sun.

The surface temperature of Jupiter reaches about 1000 K – the result of infall of material
from the nebula to Jupiter’s outer envelope. The luminosity is then high enough for a significant
rise in the temperature of the inner part of the protosatellite disc, supplementing the accretional
heat. Therefore, the satellites that form close to Jupiter are expected to be more depleted in
icy materials than those that form further away. In particular they should be depleted in the
proportion of water that they contain, the temperatures in the solar nebula at Jupiter always
being too high for appreciable condensation of the more volatile substances.
� Given that water is less dense than rocky materials, why are the densities of the Galilean

satellites (Table 1.2) in accord with this prediction of a decreasing proportion of water with
decreasing distance from Jupiter?

Table 1.2 shows that the densities of the Galilean satellites increase with decreasing distance from
Jupiter, which is consistent with a decrease in water content. The lower internal temperatures
further out have resulted in Callisto, the outermost Galilean, being undifferentiated, i.e. being
a fairly uniform mixture of ice and rock, in contrast to Ganymede and Europa, where rocky
materials form a core overlain by water (ice at the surface, liquid deeper down). Io has lost
its water.

The known densities of the major satellites of Saturn, Uranus, and Neptune, i.e. with radii
greater than a few hundred kilometres, show no trend with distance from the giant, and no
density high enough to suggest a lack of icy materials. This could be the result of the lower
masses of these giants and the correspondingly reduced heating of the inner protosatellite disc.

The smallest satellites are highly irregular in shape – rocky or icy–rocky bodies need to have
radii greater than a few hundred kilometres for their own gravity to pull them close to spherical
form. Small satellites are prone to collisional fragmentation, particularly the inner ones where
the space is crowded with planetesimals gravitationally attracted to the giant and accelerated to
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high speeds. Therefore, any newly formed ice-poor satellite of modest mass in the inner region
is readily disrupted. Satellites subsequently forming in this region are built of substances from
across a wide range of distances from the giant, and compositional differences are consequently
diluted. Among the smaller satellites of the giants there are some that seem to be collisional
fragments. For example, Jupiter’s Amalthea, irregularly shaped with a mean radius of 84 km,
has a density so low that it must be a pile of rubble created by several collisions. Some of the
medium-sized satellites display evidence that they were once disrupted but reformed from the
fragments, e.g. Saturn’s Enceladus (253 km radius).

Many small satellites far from their planet are in irregular orbits, i.e. with high inclinations
and eccentricities, and a high proportion retrograde. For example, Saturn has at least 20 small
irregular satellites, most of them in retrograde orbits (most of these are below the size threshold
for inclusion in Table 1.2). These properties fit the capture model very well. Moreover, capture
is easier far from the planet – large orbits require the captured body to lose a smaller fraction
of its orbital energy than do small orbits, which is why the captured satellites are mainly far
out. Capture requires the proximity of a third body, additional to the planet and the incoming
object. This is typically a satellite already in the system. Disruption of the incomer and of the
satellite is a likely outcome.

Just one large satellite might have been captured. This is Triton, one of the largest satellites,
1.6 times the mass of Pluto, and by far the largest satellite of Neptune. It is unique among the
large satellites in that it orbits its planet in the retrograde direction (Table 1.2). This is strong
evidence that Triton was indeed captured, presumably from the E–K belt. Immediately after
capture its orbit would have been eccentric and perhaps inclined at a large angle with respect
to Neptune’s equatorial plane. Once captured, its gravitational interaction with Neptune would
have reduced the eccentricity and the inclination of its orbit in about 500 Ma. Its eccentricity is
now indistinguishable from zero. Tidal heating would have caused Triton to differentiate.

The capture of Triton could have been accomplished through its collision with one or more
satellites each just a few per cent of Triton’s mass. This event would have wreaked havoc with
any emerging or fully formed satellite system. The orbit of another satellite of Neptune, Nereid,
might bear witness to this. Its large eccentricity and large semimajor axis (Table 1.2) could be
the result of the capture of Triton. Nereid’s orbit would have remained peculiar because of its
large average distance from Neptune. If Triton was captured, then its broad similarity in size
and density to Pluto suggests that it might initially have been a large member of the E–K belt.
This is also Triton’s origin in an alternative explanation, in which Triton was originally one
member of a binary E–K object. This system passed so close to Neptune that it was disrupted.
As a result, Triton had its speed reduced to the extent that it was captured by Neptune. Its
erstwhile companion had its speed correspondingly increased, with the likely outcome that
further encounters with the giant planets resulted in its ejection from the Solar System.

Question 2.10

Examine Table 1.2 and list the satellites of the giant planets, additional to Triton, that are likely
candidates for a capture origin. Justify your choices.

2.3.2 Formation and Evolution of the Rings of the Giant Planets

All four giants have rings (Figure 2.14), and these are particularly extensive in the case of Saturn
(Plate 18). For all giants, the rings are close to the planet and lie in the equatorial plane. The
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Figure 2.14 Simplified diagram of the ring systems of the giant planets, scaled so that all four giants
are the same radius. dR�1000� and dR�2000� are, respectively, the Roche limits of bodies with densities
1000 kg m−3 and 2000 kg m−3. The synchronous orbits are also indicated.

rings consist of small bodies called ring particles. Very few are more than 1 m across, and the
great majority are far smaller, down to less than 1 �m. The rings are very thin – even in the
case of Saturn they are no more than about 100 m thick, and their total mass is only of order
10−5 times the mass of the Earth!

Rings and the Roche limit

An important concept relating to the origin of the rings is that of the Roche limit, named after
the French scientist Edouard Albert Roche (1820–1883) who in 1847 derived the eponymous
limit. It arises from the tidal force that one body exerts on another. Figure 2.15 shows the tidal
distortion of a body of mass m a distance d from a body of mass M . If m is held together only
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by gravitational forces, and if both bodies are of uniform density, then it can be shown that m
is torn apart if the distance d is less than dR, where

dR = 2�44 × RM

(
	M

	m

)1/3

= 1�51 ×
(

M

	m

)1/3

(2.3)

RM is the radius of M , and 	m and 	M are respectively the densities of m and M . The second
form is obtained from the first form using M = 	M × �4�/3�R3

M . The quantity dR is the Roche
limit. As one might expect, dR increases as M increases and as 	m decreases.

Equation (2.3) applies to an initially uniform spherical body held together only by the
gravitational attraction of one part on another. Bodies are also held together by non-gravitational
forces. These operate at short range, binding molecule to molecule. By contrast, gravity, being
proportional to 1/r2 (equation (1.5), Section 1.4.4), is a long-range force, and it is therefore the
dominant cohesive force in large bodies. Therefore, the Roche limit applies only to bodies that
are sufficiently large for gravitational cohesion to dominate – this explains why astronauts and
satellites in Earth orbit are not torn apart by the tidal force of the Earth. For non-porous solid
bodies made of icy or rocky materials, gravitational cohesion dominates only when they are
more than a few hundred kilometres in radius. For poorly consolidated bodies, such as comets
and loose aggregates, gravity dominates down to far smaller sizes.

Thus, any sufficiently large body that strays within the Roche limit will be torn apart. The
resulting fragments will be numerous and in similar orbits, and therefore collisions among them
will be frequent, resulting in further fragmentation. Any tendency to reassemble is counteracted
by tidal disruption. After hundreds of millions of years the material evolves to a population of
bodies that are predominantly smaller than a metre. This process is a plausible source of ring
particles. But the Roche limit also provides a second source – the disruption of bodies already
within this limit that are growing by accretion.
� How can this happen?
If such a body grows larger than the size at which gravitational cohesion predominates, it is
then disrupted by tidal forces. Both processes continue today.

The importance of the Roche limit is illustrated by Figure 2.14, which shows that not much
ring material exists outside the limits. The small quantity that does is readily explained by the
inward spiralling of dust produced outside the limit.

Ring particles, ring lifetimes

Observations show that Jupiter’s ring particles seem to be largely devoid of volatiles, and are
probably composed mainly of silicates. Those of Saturn seem to be ‘dirty snowballs’ – mainly
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water ice mixed with a trace of less volatile substances, including rocky materials. This can be
explained by the higher temperatures expected in the inner protosatellite disc of Jupiter than in
Saturn’s disc. This left Jupiter with ice-poor materials for its initial and subsequent populations
of ring particles. The ring particles of Jupiter and Saturn also differ in size, with most of Saturn’s
particles being in the range 0.01–1 m, and most of Jupiter’s being far smaller.
� How can the greater average size of Saturn’s ring particles be explained?
This can be put down to the survival around Saturn of water ice, which is an abundant substance.

Little is known about the composition of the ring particles of Uranus and Neptune. They are
very dark and for an unknown reason seem to be less icy than Saturn’s particles. Their low
reflectivity might be the result of solar wind action on hydrocarbons (compounds of carbon
and hydrogen). Silicates are presumably also present.

Different-sized ring particles are affected differently by a variety of processes acting on them.
One of several gravitational processes arises from the slight departure from spherical symmetry
of the giant planet’s gravitational field. The outcome depends on whether the orbital period of
the particle is greater or less than the giant planet’s rotation period. If these two periods are equal
then the particle (or any other orbiting body) is said to be in a synchronous orbit (Figure 2.14).
In such an orbit there is zero effect. In a closer orbit the outcome is a slow spiralling towards
the giant, whereas in a larger orbit the outcome is a slow spiralling outwards. This effect tends
to clear the rings of bodies of all sizes, but the replenishment rate is higher for small particles,
and so the net effect is a downward trend in the size distribution.

Another gravitational effect occurs in close encounters between particles in nearly identical
orbits. After the encounter is over the inner particle is in an even smaller orbit, and the outer one
is in an even larger one. This effect is greater, the larger the mass of the particles, and thus it
also causes a downward trend in the size distribution of the ring particles. The observed scarcity
of ring bodies larger than a metre or so can be explained by these two gravitational effects.

Two other effects are greater, the smaller the body. As a body is swept by solar radiation
it encounters the photons rather in the manner that you encounter raindrops when you are
running – the front of you collects more raindrops than your back. The effect of the extra
photon bombardment on the leading face of a body is to decelerate it. This is the Poynting–
Robertson effect, named after the British physicist John Henry Poynting (1852–1914) and
the US cosmologist Howard Percy Robertson (1903–1961). For a ring particle the effect is to
cause it to spiral towards the giant. The effect is greater, the smaller the particle, because the
magnitude F of the net force exerted by the bombardment is proportional to the surface area
of the particle, whereas the magnitude of the deceleration (or acceleration) is given by F/m

where m is the mass of the particle (equation (1.4), Section 1.4.4). The area, and hence F , are
proportional to the square of the particle’s mean radius rm, and m is proportional to its cube,
so F/m is proportional to r−1

m . The Poynting–Robertson effect explains the sparseness of ring
particles within the inner edge of the rings – particles of sizes that typify the rings traverse this
inner region rapidly in their downward spiral.

The second effect is really a group of effects involving electromagnetic forces. A proportion
of ring particles is electrically charged through the action on them of electrons and ions in the
vicinity of the giant planet. These charged ring particles are then susceptible to electromagnetic
forces exerted not only by the planet’s magnetic field, but also by the electric and magnetic
forces exerted by the ions and electrons that charged the ring particles. As for the Poynting–
Robertson effect, small bodies suffer greater accelerations, and therefore electromagnetic forces
are particularly important at micrometre sizes and below. Additional removal mechanisms that
affect small particles are collisions, including collisions with micrometeorites sweeping in from
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interplanetary space. Collisions fragment or remove small particles. Bodies of all sizes are
removed by the gravitational effects of satellites.

Ring particle lifetimes of 10–100 Ma have been estimated, which is much shorter than the
4600 Ma age of the Solar System. For Saturn, evidence of such a relatively short lifetime is the
brightness of the rings, which darken under micrometeorite bombardment. The narrowness of
Uranus’s rings indicates youth, because rings tend to spread with age. In the case of Jupiter the
particles are so small that they spiral into the planet in no more than about 1000 years.

Persistent sources of ring particles are therefore needed. Disruption within the Roche limit
has already been described. The fragments from this disruption will collide and produce ring
particles. A relatively recent disruption might explain why Saturn’s rings are the most massive.
Today, all the ring systems have small satellites interspersed among them, and perhaps100–
1000 greater than 1 km in size await discovery. These small bodies are ground down, partly by
existing ring particles, partly by micrometeorite bombardment, which is though to provide the
major source of fresh ring particles. Micrometeorites themselves can become ring particles. In
the case of Jupiter, a significant contribution comes from the volcanic emissions of Io, which
consist mainly of silicates. The likely composition of the small satellites matches what we know
about the composition of the rings.

Ring structures

The ring systems are structures of exquisite complexity (Plate 18, Figure 2.14). Electromagnetic
forces and gravitational forces are responsible for this fine structure too. Of particular note are
the gravitational effects of satellites, not only the large satellites well outside the rings, but also
small satellites embedded within the rings. Their gravitational effects sustain much of the fine
structure. The rings are a playground for modellers. Here, we merely list some of the types of
structure seen. Further Reading contains publications where the rings are discussed in much
greater detail.

• Narrow gaps between rings, either containing a small satellite or cleared by an mmr with a
satellite.

• Narrow rings confined by small satellites.
• Dark radial rings where ring particles have been raised by electrostatic forces.
• Eccentric and inclined rings.
• Density variations around a ring.

And so on, including waves, kinked, and braided rings. What a feast!

Question 2.11

Discuss whether, at some time in the future, compared with today
(a) the ring system of Saturn could be much less extensive;
(b) the ring system of Jupiter could be much more extensive.

2.4 Successes and Shortcomings of Solar Nebular Theories

The solar nebular theory outlined in this chapter accounts for many of the features in Table 2.1.
It accounts for other features too. Overall, it is a successful theory. Perhaps the most worrying
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aspect left unexplained is the 7�2� tilt of the solar rotation axis with respect to the ecliptic plane.
Whereas it is not difficult to account for the axial tilts of many of the planets’ axes by the effect
of material added asymmetrically, it is less easy to understand how the addition of material to
the proto-Sun could have been sufficiently asymmetrical. A possible explanation is that there
was a close encounter between the proto-Sun and another young star in the cluster in which the
Sun was born.

As with any scientific model, the nebular theory is not fully explored. Perhaps the most
important area that needs further exploration is the timing of the T Tauri phase with respect to
the evolution of the nebula. This is crucial to the final configuration of a planetary system.
� Why is this?
The T Tauri phase clears gas from the nebula, and thus halts the growth of the giant planets
(Section 2.2.5).

Nevertheless, the great majority of astronomers believe that solar nebular theories are in fairly
good shape, and offer by far the best type of theory that we have for the origin of the Solar
System.

2.5 Summary of Chapter 2

The origin of the Solar System cannot be deduced from its present state, though this state is an
essential guide for the construction of theories, as are observations of other planetary systems,
of star formation, and of circumstellar discs.

Most astronomers believe that solar nebular theories offer the correct explanation of the
origin of the Solar System. In these theories the Solar System, including the Sun, forms from
a contracting fragment of a dense interstellar cloud. As the fragment contracts it becomes disc
shaped, and at its centre the proto-Sun begins to form. Dust in the inner disc evaporates. As
the temperatures in the disc decline, dust condenses and, along with pre-existing dust, settles
towards the mid plane of the disc, where it coagulates into planetesimals, and these undergo
accretion to form planetary embryos. In the inner Solar System embryos come together and
accrete smaller bodies, ultimately to form the terrestrial planets, consisting of rocky materials.
In current theories the Moon is the result of a collision between a massive embryo and the Earth
late in the Earth’s formation.

In the outer Solar System most embryos reach several Earth masses, the result of fewer
embryos forming and the condensation of water beyond the ice line. These embryos – called
kernels – thus have an icy–rocky composition. They are generally too far apart to come together
but are massive enough to capture nebular gas, mainly hydrogen and helium, a process that stops
when the proto-Sun goes through its T Tauri phase and blows the gas out of the Solar System.
This is the core-accretion model. Icy–rocky planetesimals are also captured, and this capture
continues at a low rate today. The rate of growth of the giants decreases with increasing solar
distance, so the T Tauri phase, if correctly timed, can explain the decrease in mass from Jupiter,
to Saturn, to Uranus and Neptune, and the associated decrease in mass of the hydrogen–helium
envelopes. For Uranus and Neptune it is better for them to have formed closer to the Sun than we
find them today, otherwise their kernels, particularly that of Neptune, could well have formed
long after the nebular gas had disappeared. Such migration is easily attained in the models by
outward migration of the fully formed Uranus and Neptune (after the nebular gas is cleared)
through the scattering of planetesimals. This causes Saturn to migrate outwards slightly and
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Jupiter inwards slightly. We can thus account not only for the existence of giants beyond the
terrestrial planets, but also for the broad differences between them.

An alternative (less favoured) means of forming the giant planets (though still within the
context of solar nebular theories) is by a one-stage process in which each giant forms from
a fragment of the nebula that contracts to become a protoplanet, and then contracts further to
become the giant. This is the gravitational instability model.

Estimates of the time it took for the Solar System to evolve from the formation of a nebular
disc to the virtual completion of its formation are of the order of 100 Ma for the terrestrial
planets, and about 10 Ma for the giant planets including migration.

The distribution of angular momentum in the Solar System is thought to be the result of the
transfer of angular momentum by the proto-Sun to the disc through turbulence in the disc. The
Sun also lost much of its angular momentum via its T Tauri wind, and through the trapping by
the Sun’s magnetic field of ions in the solar wind.

The disc of gas and dust that gave birth to the planets would have been rotating in the same
direction as the solar rotation, giving rise to prograde planetary orbits roughly in the same plane.
The axial inclinations are less well ordered partly because of off centre acquisition of material
as the planets grew, and, at least in the case of Saturn, probably because of a resonance.

The asteroids are the result of failed accretion due to the gravitational influence of Jupiter.
Jupiter also stunted the growth of Mars, though it speeded the final stages of growth of the other
terrestrial planets. The comets are thought to be icy–rocky planetesimals that become active
when they enter the inner Solar System. There are two distinct source populations. First, the
far-flung Oort cloud, which is thought to be the result of icy planetesimals flung out by the
giant planets during their migration. Second, the Edgeworth–Kuiper (E–K) belt extending from
just beyond Neptune, which is thought to be a mixture of icy planetesimals and embryos, some
having formed in situ, the others having been pushed out by any outward migration of Neptune.
Pluto is probably a large member of the E–K belt, and so too might be Triton. There are a few
EKOs known to be larger than Pluto.

The rings and most of the satellites of the giants are derived from discs of material in orbit
around the giants. The Moon is thought to have originated from the impact on Earth of an
embryo 10–15% of Earth’s mass.

Solar nebular theories are successful in that they account for most of the broad features of
the Solar System in Table 2.1.



3 Small Bodies in the
Solar System

We turn now from the Solar System in general to look in more detail at the smallest bodies
that orbit the Sun – asteroids and bodies that appear as comets in the inner Solar System. These
are interesting in their own right, but they are also of importance in our attempts to understand
the larger bodies, so it makes sense to consider the small bodies first. We shall start with the
asteroids, then go on to comets, and conclude with meteorites – small interplanetary bodies that
have reached the Earth’s surface, where they can be collected and studied in much greater detail
than we can study any body in space.

3.1 Asteroids

Until 1 January 1801, interplanetary space between Mars and Jupiter seemed empty, puzzlingly
so, because the Titius–Bode rule (Section 1.4.3) had indicated the existence of a planet about
2.8 AU from the Sun. Therefore, a systematic search for the ‘missing’ planet was started in
1800 by 12 German astronomers. On 1 January 1801 the missing planet was discovered, not
by a member of the German team, but by the Italian astronomer Giuseppe Piazzi (1746–1826)
during routine stellar observations at Palermo. The new body was called Ceres, and though it
was close to 2.8 AU from the Sun (2.766 AU today), it was regarded as disappointingly small.
The modern value of its radius is 479 km – about a quarter that of the Moon. The German search
therefore continued, and by 1807 had revealed three further asteroids: Pallas (at 2.772 AU), Juno
(at 2.668 AU), and Vesta (at 2.361 AU). Each of these bodies is much smaller than Ceres, which
is by far the largest asteroid (Table 1.3).

Even the larger asteroids are so small that in nineteenth-century telescopes they looked like
points, as did the stars – ‘asteroid’ means ‘resembling a star’. Alternative names are ‘minor
planet’ and ‘planetoid’. Now, we can see the largest asteroids as extended objects, and spacecraft
have visited several. We can also detect very small ones, down to less than 1 km across. At a
size of the order of 1 m there is a somewhat arbitrary change in terminology, smaller bodies
being called meteoroids. At sizes below a few millimetres we have micrometeoroids, and
below about 0.01 mm we have dust.

Modern catalogues list over 20 000 asteroids that have had their orbits accurately determined.
These tend to be the larger bodies. Table 1.3 lists the orbital elements of the largest 15. Over
100 000 more asteroids have been seen, but have not had accurate orbits established. Overall,
we have probably seen all of the asteroids greater than 100 km across (238), but only a tiny
fraction of the small ones – it is estimated that there are about 109 with sizes greater than 1 km.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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The smaller the size, the greater the number, but the total mass of all asteroids is dominated
by the largest few. If an estimate of the order of 1022 kg for the total mass of the present-day
asteroids between Mars and Jupiter is correct, then Ceres accounts for about 10% of this total.
It is estimated that so much mass has been lost since the birth of the Solar System that a few
times 1025 kg must have been present initially between Mars and Jupiter. The Earth’s mass is
6 × 1024 kg (to one significant figure), so if there had been substantially less mass loss, Mars
would have been more massive and there would have been one or two more terrestrial planets
beyond Mars.

In Chapter 2 you saw that the asteroids are thought to be derived from the planetesimals and
embryos that were in the space between Mars and Jupiter. Jupiter prevented the build-up of a
major planet in this region, and scattered much of the material to other regions. Interactions
between the asteroids and Jupiter have continued, and also between the asteroids themselves.
This has resulted in considerable fragmentation and reduction of the asteroid mass over the
4600 Ma history of the Solar System.

Asteroid collisions continue, and the smaller fragments are subject to the Yarkovsky effect
(Osipovich Yarkovsky, Russian civil engineer, 1844–1902). It results in the removal of bodies
with sizes in the approximate range 0.1–100 m. The effect arises from the afternoon side of a
rotating body being the hottest. It therefore radiates to space more photons than elsewhere on
the surface. Photons carry momentum, and so these (infrared) photons act like a weak rocket. If
the body orbits in the same direction as it rotates, i.e. both directions are prograde or retrograde,
then the body is pushed in the direction of its orbital motion, and it gradually spirals outwards.
Conversely, if the directions are opposite to each other, the body gradually spirals inwards. At
a few AU from the Sun, in the asteroid region, the migration rate is about 0.1 AU in 10–50 Ma.
In no great time, this causes the body to encounter a mean motion resonance with Jupiter,
which usually results in ejection. On bodies outside the approximate 0.1–100 m size range, the
Yarkovsky effect is not important: larger bodies are too massive, and smaller ones are more
affected by the Poynting–Robertson effect (Section 2.3.2) and radiation pressure (Section 3.2.2)

3.1.1 Asteroid Orbits in the Asteroid Belt

Figure 3.1 shows the distribution of the semimajor axes of the orbits of the asteroids. You can
see that the great majority of values lie in the range 1.7–4.0 AU, with a particular concentration
in the range 2.2–3.3 AU. The asteroids with semimajor axes in these two ranges constitute
respectively the asteroid belt and the main belt. The orbital inclinations in these belts are fairly
small, with few values above 20�, so the asteroids are part of the prograde swirl of motion in the
Solar System, though on the whole the inclinations are larger than those of the major planets’
orbits. The orbital eccentricities are also somewhat larger, with values of 0.1–0.2 being typical.
� If the semimajor axis a of an asteroid’s orbit is 3.0 AU, and the eccentricity e is 0.30, what

are its perihelion and aphelion distances?
From Figure 1.7 (Section 1.4.1), the perihelion distance is �a − ae�, which is 2.10 AU, and the
aphelion distance is �a + ae�, which is 3.90 AU. This shows that a main belt asteroid even with
an atypically large orbital eccentricity does not stray from the space between Mars and Jupiter.

Figure 3.1 also shows that the semimajor axes are not distributed smoothly. A prominent
feature is the Kirkwood gaps, named after the American astronomer Daniel Kirkwood (1814–
1895) who first detected them. These gaps are semimajor axis values around which there are
few asteroids (because of orbital eccentricity it does not follow that these are depleted zones in
space). They correspond to mean motion resonances (mmrs) between the asteroid and Jupiter.
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Figure 3.1 The distribution of the semimajor axes of the orbits of the asteroids in October 2006. (Adapted
from data available at the Minor Planet Center)
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Figure 3.2 The 3:1 mmr of an asteroid with Jupiter. Figure 1.14 illustrates the 2:1 resonance.

Figure 3.2 illustrates the 3:1 mmr, in which an asteroid would orbit the Sun three times whilst
Jupiter orbited the Sun once, i.e. the orbital periods are in the ratio 3:1. This means that if
Jupiter and the asteroid are lined up, then three orbits later the line-up is exactly repeated. The
periodically repeated alignments make many resonant orbits unstable, leading to an increase in
eccentricity that might be abrupt and large, characteristic of chaotic behaviour. This results in
the asteroid crossing the orbits of one or more of Mars, the Earth, and Jupiter. There is then a
high ejection probability within a time of the order of only 0.1 Ma.

In Figure 3.1 the Kirkwood gaps are particularly noticeable at the mmrs 4:1, 3:1, 5:2, 7:3,
and 2:1. Simulations show that at the 2:1 mmr the removal process is inefficient, and so the
depletion of asteroids here might owe something to the original distribution of matter in the
asteroid belt. The dearth of asteroids beyond 3.3 AU, which defines the outer edge of the main
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belt, can be explained by present-day resonances, plus an inward migration of Jupiter by a
few tenths of an AU early in Solar System history (Section 2.2.5), which would have swept
mmrs through this region. Close to Jupiter asteroids have been removed by one-shot processes,
capture, or scattering, as can be performed by any planet. The location of the inner edge of the
main belt near 2.2 AU seems also to be the result of Jupiter’s gravity, though in this case orbital
resonances are not involved.

In a few cases, resonant orbits have an excess of asteroids. In Figure 3.1 the 3:2 resonance
with Jupiter shows just this effect, the corresponding asteroids constituting the Hilda group. A
factor that helps explain why they have not been removed by Jupiter is that when the Hilda
group have Jupiter near opposition they are near perihelion, and so close approaches are avoided
(cf. Figure 1.14).

Another feature of asteroid orbits is grouping into families. The members of a family have
similar semimajor axes, orbital inclinations, and eccentricities. In the early years of the twentieth
century the Japanese astronomer Kiyotsugu Hirayama (1874–1943) discovered several such
families, now called Hirayama families. Each family typically has several hundred known
members. The orbital similarities within each family indicate that the members are the colli-
sional fragments of a larger asteroid. This view is supported by the similar reflectance spectra
(Section 3.1.6) observed across the members of most families, spectra that are distinct from
those of other families. It is estimated that more than 90% of the asteroids in the asteroid belt
are in families.

Major collisions, including the sort that produce families, are thought to be occurring once
every few tens of million years on average. One outcome is that at least one of the two bodies
involved in the collision reassembles as a gravitationally bound rubble pile, with a low density.
Another outcome is that small fragments provide some asteroids with small satellites, e.g. Ida
has the tiny Dactyl.

3.1.2 Asteroid Orbits Outside the Asteroid Belt

A few thousand asteroids are known to have orbits with semimajor axes outside the range
1.7–4.0 AU. They thus lie outside the asteroid belt, and several interesting groups have been
identified.

Near-Earth asteroids

As their name suggests, near-Earth asteroids (NEAs) are asteroids that get close to the Earth.
Some even share the Earth’s orbit, each one with a distance from the Earth along the orbit that
oscillates over a large range. Collisions between NEAs and the Earth cannot be ruled out. Over
600 NEAs are known, and various estimates based on this population put the total number up to
several thousand greater than 1 km across. Of those discovered, 1950DA has the greatest chance
of hitting the Earth. This would occur on 16 March 2880, but only with a 0.3% probability.
This NEA’s direction of rotation is unknown, but if the sense is opposite to that of the orbit,
then the Yarkovsky effect will reduce the strike probability to zero.

The closest approach by an asteroid in recent decades was on 10 August 1972. A fireball was
observed, and filmed, grazing the Earth’s upper atmosphere over North America. The asteroid
is estimated to have been 3–6 m across. Since then, the closest approach was on 18 March 2004.
The Lincoln Near Earth Asteroid Research (LINEAR) survey saw an object about 30 m across
that passed the Earth at a range of 42 700 km. In 1908 the most recent substantial encounter
with Earth occurred, in the Tunguska region of Siberia, causing devastation in an area about
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80 km across, thankfully lightly populated. The body is estimated to have been 50–75 m across
and broke up in the atmosphere in a huge explosion. The average time between such encounters
is estimated as roughly 1000 years. To reach the ground intact an asteroid would have to
be considerably larger, depending on its composition. An intact body around 200 m across is
a 1-in-100 000 year event, on average, perhaps less often, but would cause a global climate
catastrophe, threatening human civilization.

A famous big hit was 65 Ma ago, when an asteroid 10–14 km across fell in Yucatan, and
probably put enough debris into the atmosphere to cool the Earth to the extent that contributed
to many species dying out, including all the dinosaurs.

Each NEA belongs to one of three well-known groups, each taking its name from a prominent
group member. The Amors have semimajor axes greater than 1 AU, but perihelion distances
between 1.017 AU and 1.3 AU.
� What is the significance of 1.017 AU for the Earth’s orbit?
This is the aphelion distance of the Earth. The Apollos have perihelia less than 1.017 AU, so,
if their orbital inclinations were zero, orbits with aphelia larger than Earth’s perihelion distance
of 0.983 would intersect the Earth’s orbit. Even with non-zero inclination, intersection occurs
if the ascending or descending node intersects the Earth’s orbit (Section 1.4.2). The Atens have
semimajor axes less than 1 AU. With non-zero eccentricity intersection with the Earth’s orbit
can occur.

Through the influence of the terrestrial planets, the orbital elements of the NEAs vary, and
therefore most of them will collide with the Sun sooner or later, and others will collide with
the Earth or with another terrestrial planet. It is estimated that the average orbital lifetime
is only a few million year. This is very short compared with the 4600 Ma age of the Solar
System, so replenishment must occur. The asteroid belt is undoubtedly a major source, the 3:1
orbital resonance being particularly copious. Comets are another source too, as you will see
(Section 3.2.1).

Trojan asteroids

The Trojan asteroids share Jupiter’s orbit – they are in a 1:1 mmr with Jupiter. Figure 3.3 shows
where the Trojan asteroids are concentrated. Over 1000 are known, the largest being Hektor,
330 km by 150 km. There are probably more than 1000 very small ones yet to be discovered.
The total mass is estimated to be of the order of 1021 kg, about 0.01% of the Earth’s mass. The
Trojans cluster around two of what are called the Lagrangian points of Jupiter and the Sun.
Figure 3.3 shows all five of these points, labelled L1–L5. They are named after the Franco-Italian
mathematician Joseph Louis Lagrange (1736–1813), who predicted their existence. They arise
in a system of two bodies in low-eccentricity orbits around their centre of mass plus a third body
with a much smaller mass. The five points are where the third body can be located and remain
close to that position relative to the other two. Thus, the whole configuration can be thought of
as rotating like a rigid body about the centre of mass. Regardless of the ratio of the masses of
the two main bodies, the points L4 and L5 are located as shown in Figure 3.3. By contrast, the
locations of L1 and L2 do depend on the mass ratio, and lie closer to the less massive body. For
the remaining point, if, as in the case of the Sun and Jupiter, the mass of one of the two bodies
is much greater than that of the other, then L3 lies very close to the orbit of the less massive
body. The positional stability of a small mass placed at L1� L2, or L3 is poor, but at L4 and
L5 it is much better. Objects at L4 and L5 need not remain exactly at the point, but can follow
orbits around it. It is at L4 and L5 that the Trojans cluster.
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Figure 3.3 The five Lagrangian points with respect to Jupiter and the Sun, and the Trojan asteroids.

In the case of the Sun and Jupiter, the stability of L4 and L5 is disturbed by the presence of
the other planets. Nevertheless, the Trojans can reside at and even orbit some way from these
points for the present age of the Solar System. The origin of the Trojans is unknown. Each
planet has Lagrangian points with respect to the Sun. By 2006, four Trojans of Neptune had
been detected, but no other planet has yet had any Trojans confirmed. (The NEAs that share
Earth’s orbit wander very far from L4 and L5.)

The Centaurs

There is a handful of small bodies known with orbits that lie among the giant planets. The first
of these to be discovered, Hidalgo in 1920, is a body about 15 km across, in an orbit with an
inclination of 42�5�, and so eccentric that it extends from 2.01 AU to 9.68 AU from the Sun.
� What is Hidalgo’s semimajor axis?
This is �9�68 AU + 2�01 AU�/2 = 5�85 AU (Figure 1.7). Its highly eccentric, highly inclined
orbit suggests that it might be the remains of a comet nucleus (Section 3.2.4). Small bodies
with perihelia greater than that of Jupiter’s semimajor axis (5.2 AU) and semimajor axes smaller
than that of Neptune (30.1 AU) are called Centaurs. The first Centaur to be named as such was
Chiron, discovered in 1977. It is about 180 km across, and ranges from 8.46 AU to 18.82 AU
from the Sun. However, Chiron has low surface activity suggestive of a comet, so it is classified
both as an asteroid and as a comet. In 1991 Pholus became the third asteroid to be discovered
beyond Jupiter, in an orbit that takes it from 9 AU to 32 AU. It is also about 180 km across. A
few tens have since been added to the list, ranging in size down to a few tens of kilometres.
At such large distances from us, bodies smaller than this are difficult to discover – it has been
estimated that there are a few thousand Centaurs greater than 75 km across. Several Centaurs
are known to have (weak) surface activity.

Calculations indicate that their lifetime as Centaurs is about 1–10 Ma (perhaps 100 Ma in
some cases) before they suffer huge orbital changes. Computer simulations show that their
source is the E–K belt, from which they are drawn by the gravitational influence of Neptune. In
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this case they are icy–rocky in composition. Over about 1–10 Ma (perhaps 100 Ma) a Centaur
will suffer a huge orbital change, resulting in its ejection from the Solar System or a reduction
of its perihelion to the point where the Sun evaporates its ices and it becomes a short-period
comet (Section 3.2.1).

Clearly, the Centaurs blur the distinction between asteroids and comets. They are probably
best regarded as a population transient between the E–K belt and the short-period comets.

Question 3.1

For the 15 asteroids in Table 1.3
(a) identify any unusual orbital elements, and state why each is unusual;
(b) discuss whether any of the 15 could be at the Lagrangian points L4 or L5 of the Sun plus

any planet.

3.1.3 Asteroid Sizes

With few exceptions, the asteroids are too small and too far away from the Earth to be seen as
anything other than points of light in the sky. The exceptions include the largest few asteroids, a
handful of NEAs, and a few that have been imaged from close range by spacecraft. Their sizes
are thus known from direct observations. In addition, a dozen or so have passed between us and
a star, the size then being obtained from the accurately known rate at which the asteroid moves
across the sky, and the length of time for which the starlight is blocked. For the great majority
of asteroids, sizes have to be obtained by indirect means.

An important indirect method depends on the measurement of the flux density of the reflected
solar radiation that we receive from the body. Flux density F is a general term defined as the
power of the electromagnetic radiation incident on unit area of a receiving surface. Our receiving
surface will be perpendicular to the direction to the asteroid, and F spans the wavelength range
of the whole solar spectrum.

Let us assume that the asteroid is in opposition, so that the Sun, Earth, and asteroid are near
enough in a straight line. In this case the asteroid is seen from the Earth at what is called zero
phase angle, as in Figure 3.4(a), and the flux density received by reflection is labelled Fr�0�. It
can be shown that

Fr�0� = kpA (3.1)

where k is a combination of known factors involving the Sun and the distance to the asteroid,
A is the projected area of the asteroid in our direction (Figure 3.4(a)), and p is a quantity called
the geometrical albedo. This is the ratio Fr�0�/FL�0�, where FL�0� is the flux density we would
have received from a flat Lambertian surface perpendicular to the direction to the Sun and
Earth, and with an area equal to the projected area of the asteroid (Figure 3.4(b)). A Lambertian
surface is perfectly diffuse (the opposite of a mirror) and reflects 100% of the radiation incident
upon it.
� Is the form of equation (3.1) reasonable?
It is reasonable that Fr�0� increases with p and also with A.

If we know p, and if we have measured Fr�0�, then A can be obtained from equation (3.1),
and the mean radius can then be estimated. The value of p depends on the composition and
roughness of the surface. Plausible surfaces have values of p ranging from about 2% to about
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Figure 3.4 (a) An asteroid in opposition. (b) A flat Lambertian surface with the same projected area as
the asteroid.
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Figure 3.5 The number of asteroids with mean radii per km interval of radius. The dashed lines indicate
uncertainties.

40%, and so, unless we can reduce this range, the size of the body can only be obtained to
an order of magnitude. Comparison of Fr�0� with the flux density Fe of the infrared radiation
emitted by the asteroid by virtue of its temperature has provided estimates of p, as have studies
of the polarisation of the reflected solar radiation. The details will not concern us.
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Indirect techniques have provided nearly all the size data in Figure 3.5. The data have not
been extended to sizes much below 10 km radius because at smaller sizes there must be a
significant proportion of undiscovered asteroids, the proportion increasing with decreasing size.
Even with this cut-off, the general increase in the number of bodies with diminishing size
is clear. The general shape of the curve is consistent with an initial population modified by
mutual fragmentation as a result of collisions. You have seen that it is thought that during the
formation of the Solar System, there were several embryos between Mars and Jupiter, plus a
host of smaller bodies, and that further growth was halted by the formation of Jupiter, whose
gravitational influence ‘stirred up’ the asteroid orbits. This increased collision speeds to the
point where net growth was replaced by net fragmentation. Note that this is net fragmentation –
some reassembly of fragments is to be expected to create rubble piles. And so it continues today.

Question 3.2

Even though the number of asteroids increases as size decreases (Figure 3.5), it does not follow
that the host of tiny asteroids doubtless awaiting discovery will add significantly to the mass of
those already discovered. Explain why this is so.

3.1.4 Asteroid Shapes and Surface Features

The term ‘radius’ in Figure 3.5 has to be interpreted with care. The self-gravitational forces
inside an asteroid result in an increase of pressure with depth. If the pressure exceeds the
strength of the solid materials in the interior, then the materials yield, and a roughly spherical
body results, flattened by rotation at high rotation rates. The internal pressures decrease as the
size of the body decreases, and there comes a point where the materials do not yield, and so the
body need not be even approximately spherical. For an asteroid made of silicates and iron, the
critical radius is about 300 km. Therefore, below this size ‘radius’ means an average distance
from the surface to the centre of the asteroid – the body is not necessarily anywhere near
spherical.
� Are any asteroids certain to be (very nearly) spherical?
From Table 1.3 you can see that only Ceres is significantly larger than the critical radius.
Therefore, we can be confident of a near spherical shape, and this is found to be so. Note that
if a body is significantly non-spherical we use the word ‘across’ rather than ‘radius’. In some
cases two or three dimensions represent the body fairly well.

A few asteroids have had their shapes determined directly, either from images or from the
way that the light we receive from them varies when a planet passes between the asteroid and
us. Hubble Space Telescope (HST) images of Ceres showed that it is nearly spherical, with an
equatorial radius of 487 km and a polar radius of 455 km, a difference of only about 30 km.
Significant departures from spherical form occur at smaller sizes, also as expected. Figure 3.6
and Plate 10 show images of asteroids that display their non-spherical shapes. A few other
main belt asteroids have been imaged, including Vesta, Gaspra, and Ida. The image of Vesta in
Figure 3.6(a) was obtained from Earth orbit by the HST (this is a model, based on the image).
The tiny asteroid Gaspra (Plate 10) was imaged in October 1991 by the Galileo spacecraft
en route to Jupiter, and in August 1993 the same spacecraft imaged the larger asteroid Ida
(Figure 3.6(b)) and a previously unknown tiny satellite, named Dactyl (beyond the edge of the
frame). Outside the main belt, but within the asteroid belt, Mathilde (Figure 3.6(c)) was imaged
in 1997 by the spacecraft NEAR. Toutatis is one of a few NEAs that have been imaged by
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Figure 3.6 Images of asteroid surfaces. The mean radius of Vesta and the longest dimension of the others
are given. (a) An image-based model of Vesta, 256 km. (AURA/STScI, NASA, PRC97-27, P Thomas and
B Zellner) (b) Ida, 53 km. (NASA/NSSDC P42964) (c) Mathilde 59 km. (The Johns Hopkins University,
Applied Physics Laboratory) (d) Toutatis, 4.6 km. (NASA/JPL P46256, S J Ostro and S Hudson) (e) Eros,
33 km. (NASA/JPL-CalTech, PIA03141) (f) Phobos, 26 km. (NASA/NSSDC 357A64)

Earth-based radar. The image of Toutatis in Figure 3.6(d) was obtained in December 1992 when
it passed the Earth at a range of only 4 × 106 km. Eros, another NEA, was orbited by NEAR
in 2001, which made a landing on 12 February 2001. Figure 3.6(e) is an image of Eros from
NEAR when it was in orbit. If, as is thought, the Martian satellites Phobos and Deimos are
captured asteroids then these also belong to the list of those imaged. Figure 3.6(f) is a Viking
Orbiter image of Phobos; Deimos is broadly similar.
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Many asteroids have had their shapes determined indirectly. All asteroids rotate, almost all
with periods in the range 4–16 hours, and as they rotate, the observed flux densities Fe and Fr�0�
vary with time. There are two possible contributory factors: surface features, and changes in the
projected area resulting from non-spherical form. From the variations in Fe and Fr�0� these two
factors can be separated. The outcome, as expected, is that large departures from spherical form
are common among asteroids. When repeated imaging of an asteroid is possible, the rotation
period can be obtained directly. For example, the HST has discovered a dark patch on Ceres,
and repeated observations have yielded a rotation period of 9.1 hours.

The rotational data also show a broad range of axial inclinations. These, and the range of
rotational periods, are consistent with models in which small bodies frequently collide. Irregular
shapes are expected from collisional fragmentation, though in some cases a small asteroid might
retain the irregular form it acquired at its origin. The heavily cratered surfaces of asteroids
(Figure 3.6) also bear witness to collisions, in this case with smaller bodies. Irregular forms can
also arise from the subsequent sublimation of volatile components. Conversely, small bodies can
become more spherical through erosion by dust impact. Surfaces exposed to repeated impacts
are expected to acquire thin layers of dust, and observations of light reflected and IR radiation
emitted indicate that a thin dust cover is indeed a common feature.

3.1.5 Asteroid Masses, Densities, and Overall Composition

A few asteroids have had their masses measured with useful precision. Close approaches of small
asteroids to Ceres, Pallas, and Vesta have yielded mean densities of 2100 kg m−3� 2710 kg m−3,
and 3440 kg m−3 respectively. The orbit of Ida’s tiny satellite Dactyl indicates a density for Ida
of �2600 ± 500� kg m−3. The NEAR mission to Eros in 2001 obtained �2500 ± 800� kg m−3.
Itokawa, another NEA, has been orbited by the Japanese spacecraft Hayabusa since September
2005, and has obtained a density of about 2500 kg m−3. All of these densities are consistent
with high proportions of rocky materials and, except for Vesta, low proportions of the much
denser metallic iron. By contrast, the effect of Mathilde on the path of NEAR corresponds to a
density of only �1300 ± 200� kg m−3. Such a low density could be due to hydrated substances
in abundance, but analysis of the light reflected from the surface indicates otherwise. Therefore,
the low density might indicate high porosity, such as could arise from disruption and (partial)
reassembly as a rubble pile. High porosity helps to explain how Mathilde could have survived
the large impacts that produced its heavily cratered surface – porosity cushions impacts, thus
preventing disruption. A low density has also been obtained for Sylvia, which has two small
satellites. The value is about 1200 kg m−3 which might mean that Sylvia is also a collision-
created rubble pile, its satellites being fragments from the collision. Many tens of asteroids are
known to have satellites, and therefore each of these asteroids could have its density determined.

Rocky materials thus seem to dominate the few NEAs and asteroids in the asteroid belt that
have had their densities measured with useful precision. From such a small sample we certainly
cannot infer that all the asteroids are mainly rocky, not even the NEAs and the asteroid belt
members, far less so the Trojans and Centaurs. Indeed, surface compositions vary hugely, and
these lead to inferences about the interiors, as you will see in the next section.

Question 3.3

(a) Why have gravitational forces failed to make the bodies in Figure 3.6 more spherical?
(b) If a small asteroid were spherical, what would this tell us about its possible histories?
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3.1.6 Asteroid Classes and Surface Composition

The surface composition of an asteroid can be inferred from a combination of various types of
data. These include ratios of the reflectance in different wavelength bands, derived from flux
density measurements. If the bands are very narrow, numerous, and contiguous the measurement
is called spectrometry, otherwise the measurement is called photometry. Further data include
the geometrical albedo, and the polarisation induced in reflected solar radiation.

A first step towards compositional determination is to use the observational data to divide
asteroids into different classes. This makes the problem more manageable – if we can obtain
the (surface) composition of one member of a class, then this is probably similar to that of the
other members of the class. Various classification schemes have been proposed. The one we
shall describe was devised by the American astronomer David J Tholen in 1983, and it is widely
used. It is based on the narrow band reflectances at eight wavelengths in the range 0�3–1�1 �m,
plus the geometrical albedo. Fourteen classes are recognised, and Figure 3.7 shows the mean
reflectance spectrum of each class, plus an indication of the albedo (high, medium, or low).
Note that the classes E, M, and P are distinguished only by albedo. Some classes are represented
by very few members. For example, until recently the V class was represented only by Vesta
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Figure 3.7 Reflectance spectra and geometrical albedos of the 14 Tholen asteroid classes. Note that the
reflectances show spectral shape on a logarithmic scale, not absolute values, and that the spectra are offset
vertically by arbitrary amounts.
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(hence the ‘V’), and even now only a handful have been added, all of them very small, and in
orbits that suggest they are collisional fragments of Vesta. Classes R and Q also contain only a
handful of members.

About 80% of classified asteroids fall into the S class, and about 15% into the C class.
Members of the C class have geometrical albedos in the approximate range 2–7%, so they are
very dark. Ceres, the largest asteroid, is C class, with an albedo of 7.3%.
� From Figure 3.7, how would you characterise the colour of S and C class asteroids?
At visible wavelengths the reflectances of C class asteroids do not vary much with wavelength,
so they are rather grey. The slightly greater reflectances at longer wavelengths gives them a
hint of red. S class asteroids are distinctly red, and they have higher albedos, about 7–20%. In
Figure 3.6, Ida is S class (as is Gaspra, Plate 10), whereas Mathilde is C class. Eros is also
S class, as are most of the NEAs, including Itokawa. The surface composition of Itokawa has
been obtained by the IR spectrometer on Hayabusa. It found it to be mainly the silicates olivine
and pyroxene (Table 2.3), plus possibly some plagioclase (another silicate) and iron.

By comparing reflectance spectra with laboratory spectra of various substances, and with
the aid of albedo and other observational data on asteroids, including radar reflectance, likely
surface materials can be identified. The outcome is that class M asteroids match alloys of iron
with a few per cent nickel, mixed with little or no silicates. Class S match mixtures of similar
iron–nickel alloys with appreciable proportions of silicates. Class C match a type of meteorite
called the carbonaceous chondrite, of which more later, but which consist of silicates mixed with
hydrated minerals, plus small quantities of iron–nickel alloy, carbon, and organic compounds.
These are compounds of carbon and hydrogen, often with other elements. Carbon and organic
compounds are collectively called carbonaceous materials, and they are mainly responsible for
the low albedos of class C. Classes P and D are broadly like class C, but correspond to material
that is richer in carbonaceous materials. Class V match some subclasses of a type of meteorite
called the achondrite, silicate meteorites of which, again, more later.

Note that these mineral matches are to the surface of the asteroid – it could be very different in
its interior. Note also that there could be (rare) cases where the matches are merely coincidences,
and that the surface composition of the asteroid is quite different from that of the corresponding
type of meteorite.

Asteroid classes across the asteroid belt, and asteroid differentiation

Figure 3.8 shows the distribution with heliocentric distance of the five most populous classes.
Fractions are shown, such that at each distance the fractions of all asteroids (not just those
shown) sum to one. Some idea of the actual numbers can be obtained by comparing Figure 3.8
with Figure 3.1, though it must be noted that Figure 3.1 shows observed asteroids, whereas in
Figure 3.8 an attempt has been made to correct for various observational biases: for example,
that a greater proportion of high-albedo asteroids must have been discovered than of low-albedo
asteroids.

It is clear that the distributions differ from one class to another. If the mineralogical inter-
pretations outlined above are correct, then the broadest trend is that mixtures of silicates and
iron–nickel predominate in the inner belt (class S), and that carbonaceous materials and hydrated
minerals become increasingly predominant as heliocentric distance increases (classes C, P, D).

An explanation of these trends is that the materials now in the outer belt formed there, where
the cooler conditions allowed condensation of the more volatile substances, such as carbonaceous
materials and hydrated minerals. In the warmer inner belt this was not possible, so we get
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Figure 3.8 The distribution in the asteroid belt of the five most populous classes of asteroid.

only silicates and iron–nickel alloy. This distinction could have been enhanced during the T
Tauri phase of the proto-Sun, when the solar wind would have heated the asteroids by magnetic
induction, i.e. by the heating from electric currents induced in the asteroids by the action of
the magnetic fields entrained in the wind. The heating decreased with heliocentric distance,
so asteroids in the inner belt would have been heated more than those in the outer belt. This
explanation requires that there has been only limited migration of the different classes across
the asteroid belt, and that differences across the belt never became obscured by migration into
the belt of planetesimals that formed elsewhere in the Solar System. An alternative explanation
places more weight on the loss of volatile materials from the inner belt throughout Solar
System history, in which case substantial inward migration of C class asteroids with subsequent
modification is a possibility.

Class M asteroids, which have surfaces that are largely or entirely iron–nickel, are presumably
iron–nickel throughout – there is no reasonable way of getting such an iron-rich surface and an
iron-poor interior. There is no plausible scheme of condensation and accretion in the solar nebula
that would give such a silicate-free composition throughout, and it is therefore necessary to
assume that internal temperatures in some asteroids rose to the point where the interiors became
partially or wholly molten. This allowed a process called differentiation to occur, whereby
denser substances settled towards the centre of a body, and the less dense substances floated
upwards to form a mantle, overlain in turn by a mineralogically distinct crust. The melting could
have resulted from heat released by asteroid accretion and collisions, plus heat from the decay
of short-lived unstable isotopes, notably the isotope of aluminium 26Al, nearly all of which
decayed in a few million years. The asteroid interior would then have cooled, and became solid
after a further interval of a few million years.

The temperature rise caused by isotope heating is greater, the larger the body. This is because
the mass of the isotopes present is proportional to the volume of the body, whereas heat losses
from the body are proportional to its surface area, and the ratio of volume to surface area is
greater, the larger the body. The temperature rise from accretion, all other things being equal,
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is also greater, the larger the body. In a body consisting of mixtures of silicates and iron–nickel
alloy (which thus excludes C class), differentiation would have occurred at sizes larger than
about 200 km across, and would have resulted in a predominantly iron–nickel core overlain by
a mantle and crust largely composed of silicates. There will also be a core–mantle interface
consisting of a mixture of iron–nickel alloy and silicates. Collisions can break up these bodies,
and fragments of the cores give us chunks of iron–nickel alloy, i.e. class M. Fragments of
the mantle and the mantle–core interface could be an important source of S class. The surface
properties of Vesta are consistent with the sort of silicates that would form the crust of a fully
differentiated body.

The scarcity of M and S classes in the outer belt indicates that differentiation was uncommon
there. One explanation is that supplementary heating by T Tauri magnetic induction was too
weak at these greater heliocentric distances.

Further discussion of the composition of asteroids is in Section 3.3.4, in relation to meteorites.

Beyond the main belt

The Trojans and Centaurs cannot readily be placed into the asteroid classes outlined above. The
Trojans are dark, with albedos in the range 0.03–0.13, similar to the small outer satellites of
Jupiter and the other giant planets. Of the small proportion of Trojans that have been classified,
most have been placed in D class, and the rest in either C or P.
� In what does this suggest that the surfaces are rich?
This suggests that the surfaces are rich in carbonaceous materials. Trojan spectra are similar to
those of the nuclei of short-period comets, and to some of the Centaurs and some of the E–K
objects.

There is no spectral evidence for water ice at the surface of any Trojan, though planetesimals
at their distance from the Sun would have been icy–rocky, so this could be the typical internal
composition. By contrast, there is such spectral evidence for some Centaurs, presumably because
of their greater average distances from the Sun and the consequent preservation of water ice at
their surfaces. The Centaurs otherwise resemble the Trojans, with albedos covering about the
same range. The dark surfaces of the Trojans and Centaurs suggest that all the surfaces are rich
in carbonaceous materials, further darkened by small impacts that produce dust at their surfaces,
and by the bombardment of ions and electrons.

As has been noted, the Centaur Chiron shows evidence of cometary activity. This cannot
be driven by the sublimation of water – Chiron is too cold – but it could be driven by
CO, CO2, or NH3. Moreover, the Centaurs’ spectra generally match those of EKOs. This fits
with the view noted earlier that the Centaurs are a transitory population between the E–K
belt and the short-period comets (except for those Centaurs that are flung out of the Solar
System).

Question 3.4

The reflectance spectrum and albedo of the asteroid Eros are shown in Figure 3.9. Explain why
it is placed in the S class. Hence deduce its likely surface composition. Where might it have
originated?
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Figure 3.9 The reflectance spectrum (log scale) and albedo of the asteroid Eros.

3.2 Comets and Their Sources

A comet is defined as a body that displays a large, thin atmosphere at some point in its orbit,
which can be of gas, of dust, or of both. This is called the coma, and from it develops a very
tenuous hydrogen cloud and two tails, as in Plate 22. One of these tails consists of dust, the
other of ionised gas. The coma can become as large as Jupiter, the hydrogen cloud larger than
the Sun, and the tails as long as a few AU. As seen from the Earth, a comet can be a spectacular
sight in the sky for several months. Figure 3.10 illustrates the growth and shrinkage of the
tails versus the heliocentric distance as the comet goes around its orbit, indicating that heat
from the Sun drives the activity. The source of the coma, cloud, and tails is a solid nucleus,
typically a few kilometres across, and this is all that exists of the comet when it is in the outer
Solar System. A comet’s nucleus must contain sufficient quantities of icy materials to generate
the coma, hydrogen cloud, and tails. This indicates that comets formed further out in the solar
nebula than asteroids, sufficiently far that solid icy materials were present.

Beyond roughly 10 AU from the Sun, solar radiation is too feeble to create a coma, and this
is also the case at smaller distances if there is a devolatilised crust protecting icy materials. We
have mentioned that the comets come from the E–K belt and the Oort cloud – more on this
shortly. The important point here is that comets are defined by their observed activity. When

Dust
tail

Gas
tail

Figure 3.10 The growth and shrinkage of the tails of a comet versus its heliocentric distance.
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they are inactive they are usually called something else – EKOs, Oort cloud objects, or, as you
will see, dead comets.

3.2.1 The Orbits of Comets

Cometary orbits fall into two main categories, long period and short period. As the names
indicate, the categorisation depends on the orbital period. There is no sharp physical division,
but the defining orbital period is exact.

Long-period comets (LPCs) have orbital periods in excess of 200 years. In most cases the
periods are greatly in excess of 200 years, with values extending up to about 10 Ma, and in
many cases not measured.
� Use Kepler’s third law to calculate the semimajor axis a of the orbit of a comet with an

orbital period P = 1Ma. Express your answer in AU.
From equation (1.3) (Section 1.4.1)

a = �P/k�2/3

where k = 1 year AU−3/2. Thus, with P = 1 Ma� a = 104 AU. Such comets are observed only
because they have highly eccentric orbits that bring them within a few AU of the Sun. A
small number of LPCs arrive on parabolic or hyperbolic orbits, though this could be due to the
perturbation of an eccentric elliptical orbit as a comet is on its way towards us. This perturbation
can be caused by a close approach to a planet, or by an eruption of gas from the comet. Thus,
there is no incontrovertible evidence for any comet having come from interstellar space, though
this cannot be ruled out in some cases. If a comet is leaving the inner Solar System on a
parabolic or hyperbolic orbit, and if this orbit is not perturbed into an ellipse, the comet will
certainly escape.

The huge orbital periods of most LPCs mean that most of them have been observed only once
in recorded history. About 1000 different LPCs have been recorded, and about 600 of these
have well-known orbits. On average, about half a dozen LPCs are observed per year, and about
one per decade becomes noticeable to the unaided eye. A spectacular example was Hale–Bopp
in 1997 (Plate 22), and its orbit in the inner Solar System is shown in Figure 3.11(a). One of the
factors that determines how spectacular a comet becomes is its proximity to the Earth. Another
is its perihelion distance. If this is less than the radius of the Sun (poor comet!) or not much
greater than this (Sun-grazing comets), then magnificent tails develop.

The orbital inclinations of the LPCs are randomly distributed over the full range, as are the
longitudes of the ascending node and of perihelion (Section 1.4.2). The LPCs thus bombard the
inner Solar System from all directions.

Short-period comets (SPCs) are defined as having periods of less than 200 years, and
therefore they must have semimajor axes less than 34 AU – comparable with the outermost
planets Neptune and Pluto. However, unlike the planets, most of the SPCs are in eccentric orbits,
in some cases with e > 0�9 (Table 1.4). A few hundred SPCs are known. Of these, roughly half
a dozen per year grow bright enough to be visible in a modest telescope.

Many of the SPCs have periods less than 20 years, the majority of these less than 15 years.
They move in moderately eccentric orbits with perihelion distances from about 1 AU to a few
AU, aphelion distances 4–7 AU, and in nearly all cases with inclinations less than 35� (median
value about 11�). Therefore, their aphelia are broadly in the region of Jupiter and so SPCs with
periods less than 20 years are often called the Jupiter family comets (JFCs). Though all comets
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Figure 3.11 (a) The orbit of the long period comet Hale–Bopp in the inner Solar System. (b) The orbit
of the short-period comet 1P/Halley.

are prone to orbital changes through gravitational interaction with a planet, this is particularly so
for the JFCs. This is because their low-inclination orbits, traversing the planetary zone, give a
comparatively high probability of a close encounter with a planet. Such an encounter will result
in a drastic alteration of the orbit, with an outcome that can be anything from solar capture to
ejection from the Solar System.

Nearly 200 JFCs are known, but survey limitations lead to estimates of the complete population
up to a few thousand. In addition, with active lifetimes of the order of a few thousand years,
and much longer dynamic lifetimes (before ejection or collision) estimated at about 0.3 Ma,
there should be many dead JFCs. Assuming a steady-state population due to resupply, it is
estimated that there could be roughly as many dead JFCs as active ones. On the other hand, if
devolatilisation usually leads to complete destruction of the nucleus, there would be very few
dead JFCs.

The remaining SPCs are typified by the most famous SPC of all, 1P/Halley, and so they are
called Halley family comets (HFCs). The P denotes a measured period. The members of this
small group have periods in the range 15–200 years, and their inclinations are typically larger
than for the JFCs, with a few in retrograde orbits. In the 15–20 year period overlap with the JFCs,
the distinction between HFCs and JFCs is made on the basis of a comet’s orbital elements a� e,
and i taken together, in what is called the Tisserand parameter. Its value for the HFCs is distinct
from that for JFCs. Consult books on celestial mechanics (Further Reading) for the details.
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Halley’s comet itself has an orbital period of 76 years and an orbital inclination of 162�,
i.e. retrograde (Table 1.4). It has been observed every 76 years or so, as far back as reliable
records go – at least as far back as 240 bc. One of its more famous apparitions was in the year
of the Battle of Hastings, ad 1066. It is named after the British astronomer Edmond Halley
(1656–1742), who noticed that the orbits of the bright comets of 1531, 1607, and 1682 were very
similar. He deduced that this was the same comet each time, and he predicted its reappearance
in 1758. Halley’s comet duly appeared, but alas Halley had died 16 years earlier. It was last at
perihelion on 9 February 1986, and in March 1986 it became the first comet to be imaged at
close range by a spacecraft. Figure 3.11(b) shows the orbit of Halley’s comet.

The number of known HFCs is smaller than the number of known JFCs, but because of their
generally higher inclinations and longer periods, it is very likely that a smaller proportion of
the HFC population has been discovered than in the case of the JFCs. It is estimated that there
could be about twice as many HFCs as JFCs in the complete populations. Like the JFCs, it is
assumed that the HFC numbers are roughly in a steady state due to resupply.

Question 3.5

The comet 55P/Tempel–Tuttle has a perihelion distance q=0�976 586 AU, an orbital eccentricity
e = 0�905 502, and an orbital inclination i = 162�49�. Show that this is an HFC. (Tempel–Tuttle
is associated with the Leonid meteor shower, which occurs in November.)

3.2.2 The Coma, Hydrogen Cloud, and Tails of a Comet

The coma that grows when a comet comes typically within 10 AU or so of the Sun is a result
of the heating of the nucleus by solar radiation. The coma is a large, tenuous atmosphere,
consisting of gases derived from the more volatile constituents of the nucleus, mixed with dust
carried aloft by the outgassing. Spectroscopic studies, and measurements made by spacecraft,
have shown that the dust in the coma consists of rocky materials like silicates and carbonaceous
materials. Such studies also show that except in the innermost part of the coma the gases are
predominantly fragments of molecules, rather than intact molecules. Such fragmentation is to
be expected as a result of the disruptive effect of solar radiation. This is called photodis-
sociation, and UV photons are particularly effective. The fragments, and intact molecules,
can also be ionised in a process called photoionisation, where a solar UV photon ejects an
electron.

From the molecular fragments, the parent molecules can be identified. Hydrogen atoms
(H), hydroxyl (OH), and oxygen (O) atoms are particularly common, and must have been
derived from water molecules �H2O�. Other molecular fragments have been derived from carbon
dioxide �CO2� and carbon monoxide (CO). H2O� CO2, and CO have also been detected as
intact molecules in the coma. From the relative abundances of molecules and fragments in the
coma, it is inferred that the predominant volatile constituent of the nucleus is water, typically
accounting for over 80% of the mass of the volatile substances. CO and CO2 are the next most
abundant volatiles. Note that these substances would be present in the nucleus as solids. They are
sublimed from the nucleus to form gases, and are then photodissociated and photoionised. The
more volatile the material, the greater the heliocentric distance at which it can sublime. Water
sublimes inwards of about 5 AU, and becomes the main driver of activity. CO2 sublimes further
out. CO is the driver well beyond 5 AU, and thus triggers activity in the LPCs as they move
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inwards, provided that previous journeys through the inner Solar System have not removed all
the CO.

The hydrogen cloud is derived from the coma through the photodissociation of the molecular
fragment OH. Even though the cloud can greatly exceed the size of the Sun, there is very little
mass involved.

The tails can likewise be huge, extending as far as a few AU from the coma, but they are also
very tenuous, so again little mass is present. There are two sorts of tail: a tail stretching almost
along the line from the Sun to the coma, and a curved tail that points away from the Sun only
in the immediate vicinity of the coma (Plate 22 and Figure 3.10). The spectrum of the radiation
received from the curved tail shows it to be a solar spectrum modified in a way consistent with
scattering from micrometre ��m� sized dust particles. Therefore, this is a dust tail, and it is
seen by the solar radiation that it scatters. By contrast, the radiation from the straight tail shows
it to consist of electrons and ionised atoms, plus a trace of very fine dust with particle sizes
less than 1 �m. The evidence is a very weak spectrum like that from the dust tail, and strong
spectral lines emitted by the ions, consequent upon absorption of solar radiation. This is the ion
tail. One common ion is OH+, produced from OH in the coma by photoionisation. All the ions
that have been identified in the ion tail could have been produced by the ionisation of atoms
and molecular fragments in the coma.

It is the strikingly different composition of the two tails that causes their separation in space as
they stream away from the coma. The ion tail is swept from the coma by the force exerted on the
coma ions by the magnetic field in the solar wind as the field moves across the ions. The details
are complicated, but the outcome is that the ions are swept in the direction of the solar wind,
i.e. radially from the Sun. The wind speed is much higher than the orbital speed of the comet, so
in the time it takes an ion to travel from the coma to where the tail is no longer distinguishable,
the comet does not move very far. Consequently, the tail is fairly straight. Because of the
intricate structure of the solar wind, the ion tail is highly structured, with filaments and knots,
and it can temporarily break away from the coma. The trace of submicrometre dust in the ion
tail is carried by the ion flow.

The dust tail is driven from the coma through bombardment by the photons that constitute
solar electromagnetic radiation. These carry momentum (as you saw in Section 3.1 in relation
to the Yarkovsky effect), and the resulting force on a dust particle is called radiation pressure.
The dust is driven away from the Sun, but only reaches speeds comparable with the orbital
speed of the comet.
� So, why is the dust tail curved?
This tail is curved because the comet moves appreciably around its orbit in the transit time of
the dust to the end of the visible tail.

The smaller the particle, the greater the acceleration caused by radiation pressure. This is
because the area-to-mass ratio is greater for smaller particles, as discussed in relation to the
Poynting–Robertson effect (Section 2.3.2). As a result, particles in the coma much greater than a
few tens of micrometres in size are retained. The greater effect of radiation pressure on smaller
particles raises the question of why it is not an important force on the ions in the tail. This
is because, when the particle size is less than the predominant wavelength of the photons, the
interaction is enfeebled. For solar radiation the predominant wavelength is about 0�5 �m, which
is very much greater than ion radii.

Often, more than two tails are seen. These extra tails are usually ion or dust tails with slightly
different properties, such as the thin tail of neutral sodium atoms seen streaming away from the
comet Hale–Bopp.
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In January 2006 the NASA Stardust mission returned to Earth with a sample of dust from the
vicinity of the comet 81P/Wild 2. Analyses of these samples is providing further information
on the composition of comets (Section 3.2.3).

3.2.3 The Cometary Nucleus

From their starlike images in all but the largest telescopes it has long been known that cometary
nuclei are small. Size can be estimated in a similar indirect manner to asteroids (Section 3.1.3),
but the uncertainties are great. Sizes of the order of a few kilometres are typical, extending up to
a few tens of kilometres for the largest comets. The composition of the nucleus can be deduced
from the composition of the coma, as indicated in Section 3.2.2. The typical nucleus is deduced
to consist of ices, predominantly water, mixed with some CO2 ice and CO ice, plus rocky and
carbonaceous materials.

A great variety of other molecules and molecular fragments have been identified in comas
and ion tails, implying the existence of small quantities of other icy substances in the nuclei of
some comets. Methanol �CH3OH�, methanal (HCHO), and nitrogen �N2� are usually the most
abundant traces inferred to exist. Some traces in some comets indicate that the icy dust grains
that formed their nuclei are interstellar material that has not been heated above about 100 K. On
the other hand the LPC Hale–Bopp has isotope ratios for C, N, and S that are the same as in the
Solar System in general, indicating that Hale–Bopp’s icy grains recondensed from a well-mixed
solar nebula.
� Why does this suggest that Hale–Bopp comes from the Oort cloud?
Solar nebular theories derive the Oort cloud from icy–rocky planetesimals that condensed in
the giant region (Section 2.2.6). Therefore, the composition of Oort cloud comets is expected
to resemble that of the nebula. An origin in interstellar space is unlikely because interstellar
dust grains were modified by evaporation and condensation in the solar nebula (Section 2.2.2).
An origin in the inner E–K belt, which was at least partly populated from the giant region
(Section 2.2.6), is ruled out by the long period. The low abundance of neon in Hale–Bopp
supports a giant region origin. Except in its inner part, the E–K belt would have been cold
enough for neon to condense from the solar nebula, and so neon would now be a more significant
component of Hale–Bopp.

Spacecraft missions to cometary nuclei

Our knowledge of cometary nuclei received a huge boost in 1986 when five spacecraft made
close observations of 1P/Halley. The European Space Agency’s Giotto flew closest, sweeping
past at a range of only about 600 km from the nucleus in March 1986, obtaining the image in
Figure 3.12(a). Halley was then within 1 AU of the Sun, only a few weeks after its perihelion at
0.53 AU. Consequently, its tails were well developed. The peanut-shaped nucleus is 16 km long,
and 8 × 7 km in typical cross-section. It rotates around its long axis with a period of 170 hours,
and this axis precesses with a period of 89 hours around an axis inclined at 66� with respect to
the long axis.

The mass of the nucleus was estimated from the effect on Halley’s orbit of the forces exerted
by gas jets erupting from surface vents. The estimated mass is 1014 kg, give or take 50%,
and therefore the density of the nucleus is only 100–250 kg m−3, considerably less than the
920 kg m−3 of water ice at the Earth’s surface. Therefore, the nucleus is not so much a block of
dirty ice as a fluffy aggregation of small grains. The effect of jets on the orbits of other comets
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(a)

(b)

Figure 3.12 (a) The nucleus of 1P/Halley in March 1986. The long dimension is 16 km, and the Sun is
to the left. (ESA 3416 etc. composite. Reproduced by permission of ESA) (b) The nucleus of 15P/Borrelly
in September 2001. The long dimension is 8 km. (NASA/JPL PIA03500)
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has yielded similar densities, though with much greater uncertainty. The fragility of cometary
nuclei is indicated by several that have broken up through their degassing as they approached
the Sun, or in the case of Shoemaker–Levy 9 by a close approach to Jupiter.

The spacecraft observations of the coma of Halley’s comet, supplemented by ground-based
observations, added many details to our knowledge of the composition of the nucleus, but did
not change the broad picture very much. It is deduced that Halley’s nucleus consists of 80%
water, 10% CO, 3.5% CO2, by numbers of molecules. Definite evidence for methane ice �CH4�

was not obtained, even though this was expected to be relatively abundant. An important detail
is evidence that some of the water is probably present in chemical combination with rocky and
carbonaceous materials, as water of hydration. Moreover, it seems likely that proportions of the
different icy materials are present in what are called clathrates, where one material is enclosed
in the crystal structure of another. In particular, the rather open crystal structure of water ice
can readily enclose molecules of other icy substances, such as CO2.

The Giotto flyby also confirmed that cometary nuclei can be very dark. Halley has a geomet-
rical albedo of only 3–4%, the result of carbonaceous materials at the surface. Low albedos
have since been established for the nuclei of other comets. It seems that, as the icy materials
evaporate near the Sun to give the coma and tails, a residue of dust depleted in icy materials
concentrates at the surface, where it forms an insulating protective crust over the ice-rich grains
beneath. This crust is broken by the vents that spew forth the coma and tail material. Vents tend
to switch on when they face the Sun, and switch off when they turn away from the Sun. For
1P/Halley this phenomenon is apparent in Figure 3.12(a).

Vents can explain the transient brightening that some comets exhibit when they are more
than a few AU from the Sun. Slow evaporation beneath the protective crust would build up the
gas pressure to the point where the fluff ruptures, and a vent forms. An interesting example is
29P/Schwassmann–Wachmann 1, which has a nearly circular orbit between Jupiter and Saturn
(Table 1.4). Though it is fairly large for a comet – about 40 km across – it would have gone
unnoticed but for its outbursts, which occur every year or so. Halley suddenly brightened in
1991, when it was 14 AU from the Sun. This might have been due to a large solar flare which
caused shock waves that ruptured the crust.

Since the flybys of 1P/Halley there have been a few more missions to comets. On 22
September 2001 NASA’s Deep Space 1 flew past 15P/Borrelly, then 1.36 AU from the Sun
and 8 days after perihelion. Deep Space obtained many images, one of which is shown in
Figure 3.12(b). You can see that it is a very irregular object, with a longest dimension of 8 km.
Its albedo is typically low for a comet’s nucleus, only 0.03 and even less in patches – down
to 0.007. As for comets in general, this is presumed to be a carbonaceous crust overlying an
ice-rich interior. About 90% of its surface is inactive, though a jet on one side makes it visible
from Earth.

The NASA Stardust mission in January 2006 returned dust to Earth from the vicinity of JFC
81P/Wild 2. It also imaged the nucleus, a rugged surface, with an albedo of about 3%. There
were four to five jets, and circular features that might be impact craters. It is about 5 km across,
and has a roughly spherical shape, indicating that it might not be a fragment from a collision.
The dust particles contain the sort of materials expected to have been present in the cool outer
Solar System, but there are also silicates, including those from the olivine group, that form at
high temperatures. These could have been placed in the outer Solar System by jets from the
young Sun, or might be pristine interstellar grains, forged by other stars. Further analysis will
rule out one of these two possibilities.



106 SMALL BODIES IN THE SOLAR SYSTEM

Perhaps the most dramatic mission so far was that of NASA’s Deep Impact, which, on 4
July 2005, fired a 370 kg copper bullet at 10�2 km s−1 into 9P/Tempel 1, a 14 × 4�4 × 4�4 km
JFC, when it was near its 1.51 AU perihelion on 5 July. The goal was to obtain the internal
composition. The ESA Rosetta spacecraft made observations before, during, and after the
impact. The water content of the ejected dust was measured, and was found, surprisingly,
not to be the dominant constituent. Non-icy materials dominate, and though this might be
local to the impact site, it is feasible that at least some comets are ‘icy dirtballs’ rather than
‘dirty snowballs’. The activity induced by the impact died after a few days, indicating that
such impacts on the crust from meteoroids are not the cause of the longer lived cometary
outbursts.

The crust on a JFC’s nucleus is estimated to have formed within about 0.1 Ma of its joining
this family. For any comet the time taken depends on the accumulated time spent close to
the Sun for the surface to devolatilise. But it is possible that comets first arrive with some
sort of crust already in place. Prolonged exposure to cosmic rays and UV photons chemically
transforms and devolatilises the surface, to form a 1 metre crust in the order of 100 Ma. This
is much shorter than the average residence times in the sources of comets – the Oort cloud and
the E–K belt (Section 3.2.5). But it is the subsequent growth of the crust that ends activity, and
leads to the death of comets.

Question 3.6

In 150–200 words, describe the visual appearance of a comet from when it is about 30 AU from
the Sun on its way in, to when it is outgoing at the same distance. Relate the visible changes to
events at the nucleus.

3.2.4 The Death of Comets

When beggars die there are no comets seen: the heavens themselves blaze forth the
death of princes.

William Shakespeare (Julius Caesar)

Comets die too, because the loss of volatiles is acute within a few AU of the Sun. If perihelion
is at 1 AU then the order of 100 perihelion passages will suffice to evaporate all the available
ices from a nucleus of typical size, leaving it with a crust so thick that the nucleus no longer
has the capability to develop a coma and tails. In some cases this devolatilisation could extend
to the centre, in which case the final act of the nucleus is to become dust, perhaps violently.
Models indicate that any nuclei smaller than about 1 km across can lose their remaining volatiles
sufficiently rapidly to explode. In less extreme cases there is a gentler dissolution to dust. A
rapid, jet-driven increase in rotation rate could also disrupt small nuclei. Disruption explains the
paucity of small nuclei.

Comets are seen in such last throes of activity – some of the SPCs have very small comas
and tails. For example, 133P/Elst–Pizarro shows a very feeble, thin tail. The Infrared Astro-
nomical Satellite (IRAS) that gathered data for nearly the whole of 1983 discovered many
Solar System objects with small dusty envelopes. Some of these might be asteroids that
never had ices, but are surrounded by fine collisional debris; others might be devolatilised
comets.
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Elsewhere in the Solar System some members of the low-albedo classes of asteroid, such
as the C and D classes, might also be devolatilised comet nuclei. The reflectance spectra and
albedos of cometary nuclei resemble those of these classes. For example, Hidalgo (Section 3.1.2)
is a D class asteroid with a perihelion of 2.01 AU but with an orbit so eccentric that it has an
aphelion of 9.68 AU, unusually distant for an asteroid, and so it is a good candidate for being
a comet remnant. Within the asteroid belt there are a few comets that seem to be nearly dead:
133P/Elst–Pizarro orbits in the asteroid main belt, as does the rather more active 2P/Encke,
with a period of 3.3 years. Some of the small satellites of the giant planets, particularly those in
unusual orbits, might also be cometary remnants, captured by the planet.

Support for the view that some asteroids are dead comet nuclei comes from the Tisserand
parameter (Section 3.2.1). Its value is distinct from asteroid values, except for some of the
asteroids with albedos around 4%, a value similar to comet nuclei.

A devolatilised comet nucleus has lost not only ices, but also a proportion of its dust, perhaps
even all of it. The inner Solar System is pervaded by dust, much of it cometary. The average
density of the dusty medium is about 10−17 kg m−3, but it is greater along the orbits of comets. (It
is even greater in the asteroid belt where dust from asteroid collisions makes a large additional
contribution.)

The most dramatic termination of a comet’s life is when it collides with another body. As
well as collisions with the Sun (Section 3.2.1), collisions with planets also occur. One such was
seen in July 1994 – the collision with Jupiter of D/1993 F2 Shoemaker–Levy 9, or rather its
fragments. There must have been many other collisions with the planets, including the Earth.
Some SPCs have orbits that resemble the Amor and Apollo asteroids, and it is thought that some
of these are devolatilised cometary nuclei. The collision of one such nucleus with the Earth
might account for the huge explosion in 1908 in the Tunguska River area of central Siberia,
though a small asteroid proper is another possibility (Section 3.1.2). There is archaeological
evidence for earlier impacts, and in the future the Earth must surely collect further comets.
Calculations show that dead JFCs could account for up to 50% of the NEAs.

Question 3.7

As well as perihelion distance, what other orbital property influences the mass of volatile
material lost by a comet per orbit? Justify your answer.

Question 3.8

In Section 3.2.1 an estimate of the active lifetime of a JFC was given. Reconcile this with the
statement in this section that a comet survives the order of 100 perihelion passages before it
becomes inactive.

3.2.5 The Sources of Comets

By now, you will have gathered that there are two sources of comets, the Oort cloud and the
E–K belt. These source populations are not called comets – that name is reserved for bodies
in orbits such that a coma develops along some part of it. In the sources the bodies are called
Oort cloud members and EKOs. In Sections 1.2.3 and 2.2.6 brief descriptions of the Oort cloud
and the E–K belt were given. The Oort cloud is a spherical shell of icy–rocky bodies extending
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from about 103 to 105AU. The E–K belt extends inwards towards the Sun to around the orbit
of Pluto, and has a flatter distribution, the objects having low to modest inclinations.

As well as being the sources of comets, the Oort cloud and the E–K belt are interesting
in their own right, so we describe each of these populations now, and how the comets come
from them.

3.2.6 The Oort Cloud

The origin of the Oort cloud was described in Section 2.2.6. You have seen that the members
of the cloud are thought to be icy–rocky planetesimals flung out by the giant planets.
� According to the giant planet migration model in Section 2.2.5, which region was a

particularly copious source of Oort cloud members?
The Uranus–Neptune region would have been a particularly copious source of icy–rocky plan-
etesimals flung outwards. Many were ejected not quite hard enough to escape into interstellar
space. The cloud is a thick spherical shell of 1012–1013 bodies greater than 1 km across,
103–105 AU from the Sun (Figure 3.13). In spite of the huge number of comets in the cloud, the
total mass is estimated to be only of the order of 1025 kg, about the same as the Earth’s mass.
The cloud is too far away to be observed directly. Its existence has long been inferred from
the LPCs.

You have seen that the orbits of the LPCs have aphelia far beyond the planets, and that
the aphelia lie in all directions from the Sun. This led the Estonian astronomer Ernst Julius
Öpik (1893–1985) to suggest in 1932 that there was a huge cloud of comets surrounding the
Solar System, but so far away that only those members with perihelia less than a few AU
became visible, through the growth of coma and tails. In 1950 this idea was developed by the
Dutch astronomer Jan Hendrick Oort (1900–1992). The Oort cloud is sometimes known as the
Öpik-Oort cloud.

Ecliptic
plane

Inner boundary of
Oort cloud

Sun

Edgeworth–Kuiper belt

1000 AU

(Cross-section)

Figure 3.13 The inner part of the Oort cloud of comets, and the E–K belt of comets.
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The outer reaches of the Oort cloud are at a significant fraction of the distances between
neighbouring stars in the solar neighbourhood – currently the nearest star (Proxima Centauri) is
2�7 × 105 AU away. The stars are in motion with respect to each other, so it is to be expected
that from time to time a passing star will perturb the cloud. As a result, some members are
drawn out of the Solar System, whilst others have their perihelion distances greatly reduced,
so that near perihelion a coma and tails are developed, and a new LPC is observed. Giant
molecular clouds in the interstellar medium can have similar effects to stars, as can the Galactic
tide (Section 2.2.6). These perturbations on the outer Oort cloud explain the highly eccentric,
large, randomly oriented orbits of the LPCs, and the frequency with which these comets are
observed. Bodies reaching us from beyond the Solar System might constitute a small proportion
of the LPCs.

The HFCs are thought to be LPCs, mainly from the inner Oort cloud, that have had their
orbits reduced through interactions with the giant planets.

3.2.7 The E–K Belt

In Section 2.2.6 you saw that the E–K belt is thought to be a mixture of icy–rocky planetesimals
composed of a population left over in the giant planet region that was then scattered further out
by the giants, and a population formed directly from the solar nebula.
� How does the giant planet migration model explain why the space within about 40 AU of

the Sun is largely devoid of EKOs?
This was cleared by the 3:2 mmr with Neptune during its outward migration.

Regardless of how it was emplaced, the E–K belt is now thought to be the source of the
SPCs. It used to be thought that the SPCs were LPCs that had had their orbits perturbed by
the giant planets. However, detailed simulations failed to produce an essential feature of the
orbits of the SPCs – namely, orbital inclinations predominantly less than 35�. By contrast, it is
easy to produce this feature from a source population already in low-inclination orbits. Because
the SPCs have active lifetimes of a few thousand years before devolatilisation, the population
of active SPCs needs to be resupplied. A reservoir of millions of bodies is needed to meet
the required rate, and the resupply would occur in two stages. First, an orbit is modified by
gravitational perturbations, partly by the outer planets, but particularly by the larger members of
the belt itself, of order 103 km across. Orbital changes can also result from collisions between
EKOs. These result in fragmentation. Second, if the new orbit is such that the object can
approach a giant planet, a possible outcome is that the orbit is further modified into one typical of
a SPC.

The E–K belt satisfies the requirement for a source population in fairly low-inclination orbits.
Its existence was first proposed in 1943, long before EKOs began to be discovered. The idea
came from the Anglo-Irish astronomer Kenneth Essex Edgeworth (1880–1972), and eight years
later from the Dutch–American astronomer Gerard Peter Kuiper (1905–1973) (which is why
it is sometimes called the Kuiper belt). The first EKO was discovered in 1992, and has the
name 1992 QB1 (QB1 identifies when it was discovered in 1992). It is about 200 km across and
occupies an orbit with a semimajor axis of 43.8 AU, an eccentricity of 0.088, and an inclination
of 2�2�.

Over 1000 EKOs are presently known, and their numbers are steadily rising. Very many more
await discovery as surveys are extended. Those in the inner E–K belt can presently be detected down
to the order of 10 km across, depending on albedo. For a fixed albedo, the brightness decreases
as r−4, where r is the distance from the Sun to the EKO – this is a factor r−2 for the decrease in
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solar radiation, and another factor of r−2 for the (approximate) distance of the EKO from our
telescopes. Therefore, as r increases the population is increasingly undersampled. The estimates
of the total population differ widely. One estimate is of at least 105 objects greater than 100 km
across out to about 50 AU. Thus, given that 50 AU is not the outer boundary, the total population
will exceed 105, probably by a huge factor for such sizes, and vastly more for sizes greater than
1 km across. The total mass could approach an Earth mass, though other estimates are about a
tenth of this, or even less. Figure 3.13 shows the E–K belt blending into the Oort cloud. This is
conjectural.

The population of EKOs is divided into three subpopulations: the classical EKOs, the resonant
EKOs, and the scattered disc EKOs.

Classical EKOs

These are defined to have perihelion distances q >35 AU, semimajor axes a in the approximate
range 40–50 AU, and low eccentricities e, around 0.1. They also have low inclinations i, though
this might be an observational selection effect, most searches concentrating near the ecliptic
plane. Over 600 are known, accounting for nearly two-thirds of the presently known EKOs.
There seems to be a sharp outer edge, which they might have inherited from their birth, or
because more distant ones were trimmed off in a close encounter with a star early in Solar
System history.

Resonant EKOs

These are the EKOs that have been found in mmrs with Neptune, mostly in the 3:2 resonance,
but also a few in the 4:3, 5:3, and 2:1 resonances. The resonances have generally produced
larger e and i values than in the classical population.
� What are the semimajor axes of these four resonances?
From equation (1.3), ares = aN�Pres/PN�2/3 where aN = 30�1 AU. Thus, with Pres/PN =
1�33� 1�50� 1�67� and 2.00 for the 4:3, 3:2, 5:3, and 2:1 resonances, we get 36.4 AU, 39.4 AU,
42.3 AU, and 47.8 AU respectively. You should recognise 39.4 AU as close to Pluto’s current
semimajor axis (it varies slightly) of 39.8 AU. The EKOs in this resonance are thus called
Plutinos, and over 100 are known, though it is estimated that roughly 1500 larger than 100 km
across await discovery.

Recall that the Plutinos are thought to have been pushed there as Neptune migrated outwards.
Some Plutinos, and Pluto, have perihelion distances less than 30 AU and so cross Neptune’s
orbit. Like Pluto, the position of each Plutino in its orbit is such as to avoid a close encounter –
a configuration maintained by the 3:2 resonance. If this were not so, the Plutino would not
be there!

Scattered disc EKOs

The scattered disc EKOs (SDOs) are characterised by eccentricities greater than those of the
classical EKOs, the dividing line being somewhat arbitrary, but 0.25 is in the midst of the
various proposals. Values up to 0.9 have been observed, corresponding to aphelia of several
hundred AU. Such extremes might be due to a stellar encounter. SDOs also have a greater
range of inclinations than the classical objects, extending above 20�. Their semimajor axes are
predominantly greater than 35 AU, extending to at least 120 AU. A few hundred SDOs are
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known, though our searches are very incomplete, and so a far greater number surely await
discovery.

The SDOs with perihelia less than about 35 AU could well have been classical EKOs that have
been perturbed by Neptune. Those with greater perihelia could be increasingly primordial as the
perihelion distance increases, i.e. they could be icy–rocky planetesimals scattered by the giant
planets in their migration phase, with the outward migration of Uranus and Neptune making
the largest contribution. One theoretical estimate is that about 30 000 planetesimals greater
than 100 km across were scattered outwards. This, and other estimates, foretell a cornucopia of
discoveries.

The origin of the SDOs and the classical EKOs seems not to be very different. Both could be
mixtures of a primordial population and a scattered population. It is not fully understood why
their orbital characteristics are somewhat different.

Physical properties of EKOs

Albedos have been obtained for a few EKOs. Among the larger EKOs Pluto has a geometric
albedo p varying from 0.5 to 0.7 across its surface, and its satellite Charon 0.38. Varuna, about
40% of Pluto’s radius, is dark, with p ∼ 0�07, but Eris (which HST images show has a 20%
greater radius than Pluto) is bright, with p ∼ 0�9. The albedos of other EKOs mostly lie within
the range 0.04–0.4. It is likely that the higher the albedo, the more recently the object has
been collisionally resurfaced with fresh icy materials. The colours of the EKOs show significant
diversity, from neutral grey through various degrees of redness, uncorrelated with brightness or
orbit. Spectra have been obtained for only very few. Some show water-ice features, others do
not. Surface temperatures are 50–60 K in the inner E–K belt, depending on the distance from the
Sun and the proportion of solar radiation absorbed (see equation (9.8)). Internal temperatures in
the larger EKOs could be considerably greater, as you will see in Section 5.2.2.

The mass of Eris will soon be determined from the orbit of its satellite Dysnomia, discovered
in 2005 by the Keck telescopes. We will then be able to calculate its density and hence its
composition will be constrained.

As well as supplying the SPCs, an EKO could also account, as you have seen, for Neptune’s
large satellite Triton, which has a peculiar orbit (Section 2.3.1) and resembles Pluto. It could
have been captured from the belt, as could some of the small icy–rocky satellites.

Question 3.9

Discuss which feature(s) of the orbits of HFCs indicate an inner Oort cloud origin for most of
them, rather than an origin in the E–K belt.

3.3 Meteorites

Meteorites are samples of extraterrestrial material that we find on Earth, and that have come
from other bodies in the Solar System, particularly the asteroids but also Mars and the Moon.
Well over 30000 have been collected. They are of enormous importance in establishing the
chronology of events in the Solar System, the nature of those events, and the composition of
the Sun plus its family, as you will see.
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3.3.1 Meteors, Meteorites, and Micrometeorites

You have probably seen a ‘shooting star’, a bright streak of light that flashed across the sky for a
second or so before disappearing. You might even have been lucky enough to see a spectacularly
bright example, called a fireball, or a bolide if it explodes. These phenomena are caused by
meteors, small bodies that have entered the Earth’s atmosphere at great speed, mostly in the
range 10–70 km s−1. Sometimes the sonic boom produced by the supersonic speed of the body
can be heard. They ionise the atmosphere as they travel, and their surfaces become very hot.
The streak of light is the glow from the ionisation. In space, the parent body of a meteor is
typically less than a few millimetres across.
� What are such bodies called?
Such bodies are called micrometeoroids, or dust if smaller than about 0.01 mm (Section 3.1).

Most meteors vaporise completely at altitudes above 60 km. The larger ones, greater than a
few tenths of a metre across, usually reach the ground, often fragmenting in the atmosphere or
on impact. As you have seen, a fragment, or the whole object from which a set of fragments
came, is called a meteorite. Meteorites that are seen to fall are, unsurprisingly, called falls, and
there can be no doubt that a fall came from the sky. For a handful of falls there are sufficient
observations of the path through the atmosphere for accurate orbits to have been obtained. These
orbits resemble those of the NEAs, suggesting an ultimate origin in the asteroid belt.

Only about 1 in 20 of the collected meteorites have been seen to fall. The rest have been
found on the Earth’s surface some time later. Naturally, these are called finds. You might
wonder why a rock on the ground should be thought to have fallen there from the sky. One
indicator is a fusion crust on its surface (Plate 25(a)). This is evidence of high-speed travel
through the atmosphere. Some of the meteorite burns off in a process called ablation, and the
fusion crust is the millimetre or so layer of heat-modified material overlying almost pristine
material underneath. However, though this indicates that a rock has arrived at a location via
a rapid passage through the atmosphere, it does not establish that it came from interplanetary
space. This can be learned from detailed study of its structure and composition, a topic for
Section 3.3.2.

Deserts and the Antarctic ice sheets are particularly good places to find meteorites, because
small rocky bodies on the surface stand out. Also, in the Antarctic, ice flows concentrate
meteorites into glaciers, where subsequent sublimation of ice exposes long-buried meteorites.

A typical unfragmented meteorite is of the order of 10 centimetres across, and has a mass
of a few kilograms. Bigger parent bodies tend to fragment, unless they are predominantly
iron (Section 3.3.2). For example, the known fragments of the Murchison meteorite seen to
fall near the town of Murchison in Australia in 1969 amount to about 500 kg. A particularly
massive meteorite was observed to fall near the town of Allende in Mexico, also in 1969.
Fragments amounting to over 2000 kg have been recovered. More recently, in 2003, the Park
Forest meteorite was observed to break up over the area of this name near Chicago, USA. Many
fragments, each a few kilograms, have been recovered. It is estimated that the parent body
had a mass of 10 000–25 000 kg. This was the eighth meteorite to have had its orbit accurately
determined. The larger the meteorites, the rarer they are. A meteorite of the mass of Murchison,
or larger, will arrive at the Earth’s surface roughly once a month, but most of these land in the
oceans, or in remote areas where they go undiscovered.

Smaller meteorites are more common. The really small ones, a few millimetres or less across,
are placed in a separate category called micrometeorites. One type is found in abundance
in ocean sediments, where their nature is recognised through their spherical form. They are
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resolidified small bodies that melted in the atmosphere, or resolidified droplets from larger
bodies. At sizes below about 0.01 mm, the most common type is a fluffy aggregate of tiny parti-
cles, also found in sediments, but also collected by high-flying aircraft. These have traversed
the Earth’s atmosphere without melting because they are slowed down before they reach their
melting temperatures. In many cases those collected might be fragments of larger fluffy aggre-
gates. These dust particles float gently to Earth, and are so common that if you spend a few
hours out of doors, even as small a target as you is likely to collect one. Alas! You do not
recognise this extraterrestrial mote among all the dust of terrestrial origin that you collect.

Overall, extraterrestrial material is currently entering the Earth’s atmosphere at a rate of about
108 kg per year, mainly in the form of meteors that completely vaporise.
� What is this as a fraction of the Earth’s mass?
This is only just over 1 part in 1017 of the Earth’s mass.

More evidence that meteorites of all classes are of non-terrestrial origin comes from the
isotope ratios of certain elements, such as oxygen. The isotope ratios are strikingly different
from those found in the Earth’s crust, oceans, atmosphere, and Antarctic ice. In most cases
the non-terrestrial ratios are consistent with general Solar System values. However, in many
meteorites there are tiny refractory grains with very different ratios, indicating that these grains
have survived from before the birth of the Solar System. The range of isotope ratios suggests
several sources, including condensation in the winds from red giant stars and from the material
ejected in supernova explosions. Prominent in these grains are nanometre-sized diamonds, but
silicon carbide (SiC), graphite, and corundum �Al2O3� are also found.

Question 3.10

Why are most meteorites never found? (Four short reasons will suffice.)

3.3.2 The Structure and Composition of Meteorites

Three main classes of meteorite are defined: stones, stony-irons, and irons. Figure 3.14 shows
these classes in the relative numbers in which they occur in falls. Finds are excluded because
of a strong observational bias that favours irons. As their name suggests, irons are composed
almost entirely of iron, and resemble more or less rusty lumps of metal. Stones, as their name
suggests, look superficially much like any other stone. Irons thus look much odder than stones,
with the result that a much larger fraction of irons are found than of stones. Furthermore, some
stones suffer more rapid degradation than irons.

Iron meteorites, as has just been mentioned, consist almost entirely of iron. This is alloyed
with a few per cent by mass of the metal nickel, and small quantities of other materials. Naturally
occurring terrestrial iron is almost always combined in compounds with non-metals, and so an
extraterrestrial origin for irons is at once suspected, particularly given the variety of geological
environments in which irons are found. This suspicion can be reinforced by cutting an iron,
polishing the fresh surface, and etching it with a mild acid. A pattern emerges like that in
Plate 25(b). This is called a Widmanstätten pattern, after the Austrian director of the Imperial
Porcelain Works in Vienna, Alois von Widmanstätten (1754–1849), who discovered the pattern
in 1808. The pattern arises from adjacent large crystals that differ slightly in nickel content. The
large size of the crystals is the result of very slow cooling, 0.5–500 K per Ma, indicating that
solidification took place deep inside an asteroid at least a few tens of kilometres across. Such
slow cooling in the rare bodies of metallic iron in the Earth’s crust is extremely unusual.
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Figure 3.14 The proportions of the three main classes of meteorite in falls, with stones divided into their
main subclasses.

Stony meteorites are constituted mostly of various sorts of silicate, though small quantities
of iron and nickel are usually present, plus other substances.
� What do you think are the main constituents of a stony-iron meteorite?
A stony-iron meteorite is a mixture of roughly equal amounts of iron–nickel alloy and silicates,
with small quantities of other materials (Plate 25(c)). They are thought to come from transition
zones in asteroids that had formed a core of iron and a mantle of silicates, and were then
disrupted by a collision.

Stones comprise about 95% of all falls (Figure 3.14) and presumably of all meteorites. The two
subclasses are chondrites and achondrites. Achondrites are defined on the basis of something
that they (and the other two classes) have not got, namely chondrules. Their rather uniform
silicate compositions indicate that they are from the mantles of asteroids that have cores of iron
and transition zones.

Chondrites

The great majority of stones do have chondrules (Plate 25(d)), and they are accordingly called
chondrites. A chondrule is a globule of silicates, up to a few millimetres in diameter. They are
thought to have been formed by the flash melting of dusty silicate clumps, raising temperatures
to greater than about 1500 K, followed by the rapid cooling of the liquid droplets. Flash
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melting could have been caused by shock waves spreading from the spiral density waves
that were present during the formation of the Solar System (Sections 2.1.2 and 2.2.5), or
by electrical discharges in the sheet of dust in the solar nebula. However, some chondrules
postdate these possible mechanisms (Section 3.3.3). Therefore, impacts between planetesimals
or embryos have been evoked. By contrast the silicates outside the chondrules formed by
condensation of nebular gas directly to the solid phase. Chondrules are not found in terrestrial
rocks.

Ordinary chondrites (OCs) are the most abundant sort of chondrite (Figure 3.14). In the
matrix in which the chondrules are embedded there are more silicates, including fractured
chondrules, minerals that form at less than 1000 K, and 5–15% by mass iron–nickel alloy. The
alloy further distinguishes the OCs from terrestrial rocks. The carbonaceous chondrites (CCs)
are distinguished by a few per cent by mass of carbonaceous materials, and up to about 20%
water bound in hydrated minerals. Among the carbonaceous material are many compounds of
biological relevance, such as amino acids, which are the building blocks of proteins. There is
evidence that a proportion of many of these biomolecules predate the formation of the Solar
System. This is from the hydrogen isotope ratio 2H/1H, where 1H is the common isotope and
2H, deuterium D, is much rarer. In interstellar molecules this ratio is higher than general Solar
System values – the clouds are very cold, which favours incorporation of D into molecules.

The presence of volatile components suggests that the CCs have suffered little heating since
they formed. Moreover, they are not fully compacted, indicating that they have never been
greatly compressed. These are two of the indicators that CCs have never been in the interiors of
bodies more than a hundred kilometres or so across. They are therefore primitive, in that they
have been little altered since their formation.

The most primitive of all are the C1 chondrites. The matrix is particularly rich in water
and in other volatiles. C1s consist of little else but matrix – they are nearly free of chondrules,
so presumably predate chondrule formation. Further evidence that the C1s are primitive bodies
comes from the relative abundances of the chemical elements in them. Apart from the depletion
of hydrogen, helium, and other elements that would have been concentrated in the gas phase
of the nebula, the abundances in the C1s are similar to those in the observable part of the Sun.
This indicates that these meteorites are not from differentiated bodies, because on fragmentation
this would lead to non-solar ratios in each fragment. A particularly well-preserved primitive
meteorite is the Tagish Lake meteorite that was seen to fall in Canada on this frozen lake in
January 2000, in pieces totalling 56 000 kg. It is intermediate in type between C1 and another
primitive subclass CM. Its orbit shows that it came from the outer asteroid belt.

The other CCs also give close composition matches to the Sun, but not as close as do the C1s.
Therefore, in C1s it seems we have the least altered samples of the materials that condensed
from the solar nebula when the Solar System was forming.

Because the C1s are available for laboratory study, they have been used to refine the relative
abundances of all the elements in the Solar System, except those that are very volatile or reside
mainly in very volatile compounds.

As well as volatile compounds, CCs also contain irregular white inclusions, typically 10 mm
across, that are rich in non-volatile calcium and aluminium minerals such as corundum �Al2O3�
and perovskite �CaTiO3�. Unsurprisingly these are called calcium–aluminium inclusions, CAIs,
which are thought to have condensed from the solar nebula. They are rare in the OCs. Radiometric
dating (Section 3.3.3) shows that the chondrules generally solidified a few million year after
the CAIs, so the melting of CAIs might be a further source of chondrules. Some CAIs show
evidence of partial melting.
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Question 3.11

In what sort of meteorite would you expect the ratio of carbon to iron to be much the same
as that of the Sun? Why are the helium to carbon ratios far smaller in such meteorites than in
the Sun?

3.3.3 Dating Meteorites

There are various events in the life of a meteorite that can be dated, but we shall concentrate
on two important ones: first, the time that has lapsed since a meteorite, or a component within
it, last became chemically separated from its environment, almost always by solidification; and
second, the time for which a meteorite was exposed to space rather than protected by some
overlying material.

Radiometric dating

Radiometric dating is a powerful technique of wide applicability, as you will see in later chapters.
We introduce it here in the context of meteorites.

Imagine that, on chemical isolation, a component in a meteorite contains mineral grains that
include, for example, the chemical element rubidium. A small proportion of the rubidium atoms
will be of the unstable isotope 87Rb that radioactively decays to form the stable strontium isotope
87Sr:

87Rb → 87Sr + e− (3.2)

where e− is the electron emitted by the 87Rb nucleus, thus converting it into a 87Sr nucleus. The
number of 87Rb nuclei versus time t decays exponentially as

N�87Rb� = N0�
87Rb�e−t/� (3.3)

where the zero subscript denotes t = 0, and � is the lifetime of 87Rb, i.e. the time at which
N�87Rb� has fallen to 1/e�= 36�8%� of its value at t = 0. Assume that initially there was no 87Sr
in the component, but that it builds up as the 87Rb decays, and that neither of these isotopes
escapes from, nor is added to, any of the minerals in the component. The relative quantities
of 87Sr and 87Rb in each mineral thus change with time in mirror fashion as in Figure 3.15(a).
If, at some time, we measure the ratio N�87Sr�/N�87Rb�, then this will tell us how long ago
the component became isolated, provided that we know the lifetime of 87Rb. Such lifetimes are
known, and are usually expressed as the half-life t1/2 – the time for half the atoms to decay.
We have t1/2 = 0�693�. For 87Rb� t1/2 = 48 800 Ma, with a precision of a few per cent.
� What would be the value of N�87Sr�/N�87Rb� after 48 800 Ma, and after twice this time?
After 48 800 Ma, there would be an equal number of the two isotopes, so the ratio would be
1.0. After a further half-life 87Rb will have again halved and N�87Sr� would have increased by
half, so the ratio would be 1.5/0.5, i.e. 3. This general method of dating is called radiometric
dating. Thus, by measuring an isotope ratio, and knowing the half-life of the unstable isotope,
we can calculate the time that has elapsed since the component became isolated.

In practice things are more complicated because strontium is likely to be already present
in the component on separation. All four of its stable isotopes, including 87Sr, will be there.
This isotope builds up as 87Rb decays, but the amounts of the stable isotopes, including 86Sr,
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Figure 3.15 (a) The principle of radiometric dating using the decay of 87Rb into 87Sr. (b) The Rb–Sr
isochron plot for two minerals, A and B. The dashed lines are isochrons at three different times.

are constant. Figure 3.15(b) shows certain abundance ratios that can be measured today, for
example, for two mineral grains A and B in a component that differ in their initial endowments
of rubidium and strontium. The subscript‘0’ denotes zero time – the time when the component
became isolated. (N0 �86Sr� does not change.) The arrowed lines show the increase in radiogenic
87Sr relative to 86Sr as 87Rb decays. The time elapsed since isolation is t. The crucial feature
is that the slope of each dashed straight line shown is �et/� − 1�. Thus, knowing � we can get
t from the slope. Because each line in Figure 3.15(b) is for a given value of t, it is called an
isochron. Question 3.12 gives you the opportunity to prove that the isochron slope is �et/� − 1�.

Many radioactive isotopes are used to date meteorites. The 87Rb–87Sr decay has been used
here for illustration because the decay to the stable isotope end point is particularly simple
(equation (3.2)). In contrast, the decay of 238U to the 206Pb stable isotope end point involves
many stages, as does that of 235U to 207Pb. The half-lives of these decays are 4470 Ma and
704 Ma respectively, and are known to higher precision than the 87Rb–87Sr half-life.

The oldest radiometric ages that have been obtained from any body in the Solar System
are for the CAIs and chondrules in meteorites, 4570 Ma. This age has been established from
238U–206Pb and other decays. It is taken to be the age of the Solar System. The chondrules are
near to 2 Ma younger than the CAIs. To establish such a small age difference between two such
large ages use is made of short-lived isotopes. For example, 26Al decays to 26Mg with a half-life
of only 0.73 Ma, much faster than the decay of 238U. So, by comparing the lead and magnesium
isotope contents of the CAIs and chondrules we can get the age difference with reasonable
precision. The details will not concern us. Note that the presence of short-lived isotopes, as
inferred from their daughter products, indicates that the CAIs separated within a few million
years of the short-lived isotope being created in stars. Furthermore, the CAIs and chondrules
could not have survived in isolation for more that a few million year, and so the formation
of meteorite parents must have been fairly rapid. This is consistent with the time scale of the
formation of planetesimals in Chapter 2. Some separation ages are younger, but very few are
less that 1600 Ma. These younger ages are the result of some later melting or vaporisation that
reset the radiometric clock.

Space exposure ages

The time for which a meteorite has been exposed to space is obtained from the action of cosmic
rays on the parent meteoroid. Cosmic rays are atomic particles that pervade interstellar space,
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moving at speeds close to the speed of light. They are primarily nuclei of the lighter elements,
notably hydrogen. When a cosmic ray strikes a solid body it will penetrate up to a metre before
it stops, leaving a track, and creating unstable and stable isotopes via nuclear reactions. The
quantities of these isotopes increase with the duration of the exposure, and so, by measuring
the quantities among the tracks, and knowing the cosmic ray flux in interplanetary space, the
cosmic ray exposure age can be calculated.

Many meteorites have exposure ages considerably shorter than their chemical separation
(solidification) ages – strong evidence that solid bodies larger than the metre or so cosmic ray
penetration depth have been disrupted in space long after they solidified. Most exposure ages are
10–50 Ma, far too long to trace meteorite origins. Some stones have particularly short exposure
ages, as little as 0.1 Ma. This is presumably because stony materials are less strong than iron,
and are thus more readily broken in collisions and eroded by dust. This gives a constant supply
of unexposed material for cosmic rays to lay their tracks in.

Question 3.12

By obtaining an equation for N�87Sr�/N0�
86Sr�, show that the isochron slope in Figure 3.15(b)

is �et/� − 1�. (This needs good facility with algebra.)

Question 3.13

If a certain meteorite is a piece of a larger body, how could it nevertheless have an exposure age
far greater than the time ago that it was liberated from the larger body? Why could its calculated
exposure age never exceed its solidification age?

3.3.4 The Sources of Meteorites

As well as the Tagish Lake parent’s orbit (Section 3.3.2), a clue to the sources of the meteorites is in
the few known orbits of the parent meteoroid, which resemble the orbits of the NEAs (Section 3.3.1).
� What does this suggest is the source region of these meteorites?
This suggests an ultimate origin in the asteroid belt. The short cosmic ray exposure ages of
the stones supports this conclusion, the ages being consistent with the high rate of collisional
disruption expected in the asteroid belt, continuously liberating unexposed material, and the
relatively short times before many of the meteoroids so generated will collide with the Earth.
Many meteorites show evidence of collisional disruption, notably in minerals that have been
shocked, and in structures indicating broken fragments that have been cemented together.
Sometimes the fragments seem to have come from different bodies, or to have been subject to
different processes. To get a meteoroid from an orbit within the asteroid belt into a near-Earth
orbit, it is usually necessary for its orbit to be perturbed by Jupiter, or sometimes Mars, when the
meteorite encounters an mmr. Such encounters continually occur because of orbital migration
caused by the Yarkovsky effect (Section 3.1). Of the more than 30 000 meteorites known, very
nearly all seem to be asteroid fragments.

Further support for the view that meteorites are derived from the asteroids comes from
comparing the reflectance spectra of the various classes of asteroid with those of the various
classes of meteorite. As noted in Section 3.1.6, a clear correspondence exists between the CCs
and the abundant class C asteroids. The CCs are presumably collisional fragments of an asteroid
that never became sufficiently heated to lose its carbonaceous materials and hydrated minerals,
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and was far too cool to differentiate. The parent asteroid might itself have been a fragment of
a larger unheated body. In the outer belt we see class C asteroids in abundance, indicating that
this is where the large asteroids avoided differentiation, perhaps because of weaker magnetic
induction heating (Section 3.1.6), and lower proportions of rocky materials and iron, which
would give less accretional and radioactive heating. From their position in the outer belt there
could well be a low probability of transfer to a near-Earth orbit, which would explain why class
C asteroids are common, but the corresponding meteorites, the CCs, are rare.

There is also a clear correspondence between irons and the rare class M asteroids. As pointed
out in Section 3.1.6, early in Solar System history the larger asteroids (a few hundred kilometres
across, or larger) could have become warm enough to differentiate fully or partially. Figure 3.16
shows the resulting layered structure in the partially differentiated case. The Widmanstätten
pattern in irons is indicative of the slow cooling that would occur in the iron core of a large
asteroid. Fragmentation of the asteroid can expose the core, which itself could subsequently be
fragmented. The core, or its fragments, are the class M asteroids, and the smaller fragments are
the parent meteoroids of the iron meteorites. A complication is that the magnesium-rich silicate
called enstatite could be mixed with iron–nickel without betraying its presence. Therefore, some
class M asteroids might be a mixture of iron–nickel with this type of silicate. Radiometric dating
of irons indicates that the parent asteroid formed, in the main, early in Solar System history,
just 5–10 Ma after the CAIs.

Stony-irons show some correspondence with S class asteroids.
� What is a possible origin of such asteroids?
These asteroids could come from the interface between the iron core and the silicate mantle of
(partially) differentiated asteroids, where silicates and iron are mixed.

There are only a few asteroids that match the achondrites. The largest achondrite subgroup
comprises the howardites, eucrites, and the diogenites, called the HED subgroup. These are

100 –500 km

Some ordinary
chondrites

Some
achondrites

Stony-irons

Irons

2–50 km

Figure 3.16 A partially differentiated asteroid, showing regions from where various sorts of meteorite
could originate.
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composed of silicates like feldspar and pyroxene (Tables 2.3 and 6.1). In an asteroid these
would be produced by the melting of parent silicates, notably olivine and pyroxene (Table 6.1)
followed by differentiation, with the new silicates rising to the top, where they constitute basalts
(= feldspar + pyroxene), and the metallic iron sinking to form a core. This requires an asteroid
more than a few hundred kilometres across, a necessary (but not sufficient) condition that
differentiation is (nearly) complete, so that the achondrite silicates are at the surface and the
metallic iron is in a core. The HEDs show a good spectral match with the rare class V aster-
oids, which includes Vesta, 256 km mean radius, and a handful of small asteroids, presumably
collision fragments. HST images of Vesta show a big impact crater (Figure 3.6(a)) that could
have supplied a huge number of HEDs, a view supported by the few known HED orbits being
similar to that of Vesta. The high density of Vesta (Section 3.1.5) is consistent with a consid-
erable iron core. Radiometric dating of the HEDs indicates core formation within 4 Ma of CAI
formation.

Some of the achondrites that are not HEDs could have come from the interiors of partially
differentiated asteroids (Figure 3.16) that were collisionally disrupted. The rare basalt meteorite
(NWA011) might be from the asteroid Magnya which seems to have a basalt surface, in which
case Magnya is a differentiated body.

Ordinary chondrites

The most common class of meteorite is the ordinary chondrite, OC (Figure 3.14), in which the
silicates are composed largely of pyroxene and olivine, and (excluding volatile substances) with
elemental composition similar to the Sun. This indicates that they originate from undifferentiated
asteroidal material. In spite of their abundance, it was only in 1993 that an asteroid was
discovered that provided a good spectral match. This is Boznemcova, and it is only 7 km across.
Other candidate asteroids are the Q class, though these are few in number. A particularly
promising candidate is the S class asteroid Hebe, with a semimajor axis of 2.43 AU that places
it in the inner main belt. It has a mean radius of about 90 km, and in 1996 its surface spectrum
was shown to match that of the H-type subclass of OCs that accounts for about 40% of them.
Moreover, Hebe orbits near to the 3:1 resonance with Jupiter (Figure 3.1), and so chips off its
surface would readily find their way to the Earth. Some other OCs could originate from the
outermost zone of a partially differentiated asteroid (Figure 3.16).

Other S class asteroids could well be copious sources of OCs too. The S class constitutes
about 80% of the inner main belt (Figure 3.8), from where there is ready access to the Earth.
These asteroids have spectra that in a few cases are a good match to the OCs, but in many
cases display only muted and reddened spectral features of pyroxene and olivine. However, it
has been shown that space weathering by solar UV radiation, micrometeorite bombardment,
and perhaps cosmic rays, darken and redden OC materials in just the right way, and that the
pristine surface of an S class asteroid should be a close spectral match to the OC interiors.
NEAR’s mission to the S class asteroid Eros has shown that it has the same composition as
the OCs.

Martian and lunar meteorites

By mid 2006, there were 34 meteorite finds in which oxygen isotope ratios throughout the
group are distinctly non-terrestrial, and sufficiently similar to suggest a common origin. Each
one contains minerals of volcanic origin with solidification ages in the range 165–1360 Ma
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(except for one, ALH84001, which has a solidification age of 4500 Ma). We thus seek an
extraterrestrial parent body that could have produced molten rock at its surface by volcanic
processes 165–1380 Ma ago. It also has to be relatively nearby, and with at most a thin atmo-
sphere so that a huge meteorite impact could throw surface materials into space. Amongst
our neighbours, only Venus and Mars could have had volcanic processes so comparatively
recently.
� Venus has to be ruled out. Why?
Venus has a very thick atmosphere, inhibiting the escape of rocks. Also, the impact on Venus
would have to be so violent that either the rocks would be vaporised completely, or they would
bear telltale signs of extreme violence, and these are not seen.

Mars is thus the only candidate. That Mars is indeed the parent body is strongly indicated by
gases trapped within one of the meteorites, EETA 79001 – in the mid 1980s these were shown
to have a composition similar to the Martian atmosphere, and unlike any other plausible source.
Recently, the Mars Exploration Rover, Opportunity, found a rock with a mineral composition
very similar to EETA 79001. Other meteorites in this group have now also been shown to have
Martian characteristics. The Martian meteorites provide us with important information about
Mars, as you will see in later chapters.

What sort of impacts on Mars are required to provide the Martian meteorites? Computer
models show that an impact that would produce a crater about 3 km across would eject millions
of bits of the Martian crust into space large enough to constitute meteoroids rather than dust,
and with negligible impact melting. After the heavy bombardment, which ended about 3900 Ma
ago, a Martian crater about 3 km across would have been created at average intervals of 0.2 Ma,
leading to an estimate of a few meteorites per year landing on the Earth, certainly enough to
account for the small sample that has been found. But at least half of the Martian crust had
formed by about 4000 Ma ago, so why are the meteorite ages predominantly much younger?
One explanation is that the older Martian crust, having been exposed longer to meteorite
bombardment, has developed a thick coat of loose rubble and dust (regolith) that has cushioned
the larger impacts. Additionally, or alternatively, the widespread presence of sediments on the
older terrain could provide a cushion.

Nearly 100 meteorites from the Moon have also been found, a largely undisputed origin
because of the compositional similarities with the lunar surface samples that have been returned
to Earth by lunar expeditions. Further material from the Moon might be some of the many tektites
found on Earth. These are rounded glassy objects, typically 10 mm across, with a presumed
volcanic or impact melt origin.

The Moon is very much nearer to us than Mars. It is therefore a puzzle why there are not far
more lunar meteorites than Martian ones – models predict a ratio of about 100:1.

Question 3.14

State a possible origin of the stony-iron meteorites, and the likely origins of the OCs, and hence
account for the broad differences in their compositions.

3.3.5 The Sources of Micrometeorites

Most micrometeorites are derived from bodies that in space must have been less than a few
millimetres across. The great majority of bodies of this size vaporise completely in the Earth’s
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atmosphere and account for most of the meteors. Therefore, if we can find the source(s) of the
meteors we will have found the source(s) of the micrometeorites.

If you were to go out on a clear dark night, then on most days in the year you would see
on average about 10 meteors per hour. On or around a few dates, the same each year, the
hourly rates are considerably greater. These enhanced rates are called meteor showers. Just how
much greater the hourly rate becomes in a shower varies from year to year, but in exceptional
years rates of the order of 105 meteors per hour are observed; these are called meteor storms.
Observations show that the meteors in a shower very nearly share a common orbit, and for many
showers this orbit is the same as the orbit of a known comet. In other cases the orbit indicates
an asteroidal source. There are 19 major showers. Table 3.1 lists the six that are usually the
strongest, with their dates and associated comet or asteroid.

Figure 3.17 shows how a comet gives rise to a meteor shower (the case of an asteroidal source
is similar). Rocky particles are lost by the comet and initially do not get far away. They are
estimated to vary in size from submicrometre dust particles, to loose aggregates up to several
millimetres across, and sometimes far larger. With each perihelion passage of the comet the
debris accumulates, and various perturbations gradually spread it along and to each side of the
orbit. The debris moves around the orbit, and when the Earth is at or near the comet’s orbit at
the same time as the debris, a shower results. The year-to-year variations are the result of a non-
uniform distribution of debris along the orbit. The cometary origin of many showers is further
supported by estimates of the particle densities, obtained from the rate at which the Earth’s
atmosphere slows them down. Values in the range 10–1000 kg m−3 are obtained, suggesting
loose aggregates of dust particles of the sort that comets could yield.

Micrometeorites are also loose aggregates, indicating that they are comet debris that has
survived atmospheric entry. This possibility is strongly supported by the composition of the
micrometeorites, which is in accord with remote observations of comets and with in situ
measurements made by Giotto on dust lost by Halley’s comet. Micrometeorite composition is
something like that of the CCs, though sufficiently different to indicate a source other than class
C asteroids. It therefore seems that most meteors, and hence most micrometeorites, originate
from the rocky component of comets.

Of the meteors that do not belong to showers, most are thought to be comet debris no longer
concentrated along the parent comet’s orbit. A few meteors have entry speeds that are so high
�> 72 m s−1� that they might have come from beyond the Solar System. This interpretation is
supported by the greater fluxes of fast meteors when the Earth is at points in its orbit when it

Table 3.1 The six strongest meteor showers

Shower namea Date rangeb Associated parent

Quadrantids 01–06 Jan 96P/Macholtz 1
Eta Aquarids 01–08 May 1P/Halley (HFC)
Perseids 25 July–18 Aug 109P/Swift–Tuttle (HFC)
Orionids 16–26 Oct 1P/Halley (HFC)
Leonids 15–19 Nov 55P/Tempel–Tuttle (HFC)
Geminids 07–15 Dec Phaeton (an Apollo asteroid)

a Each name is derived from the constellation from which the shower appears to emanate.
b These are the approximate dates each year on which the shower is greatest.
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Figure 3.17 Meteor showers and the orbit of a comet.

is either travelling in the same direction through the Galaxy as the Solar System as a whole, or
travelling towards nearby massive stars.

Question 3.15

Give two plausible reasons for why some meteor showers are in orbits in which no comet has
been seen.

3.4 Summary of Chapter 3

The asteroids are small bodies, the great majority being confined to the space between Mars and
Jupiter in the asteroid belt. Their orbits are prograde but on average somewhat more eccentric
and more inclined than the orbits of the major planets. They have a total mass of the order of
1022 kg, and there is the order of 109 bodies greater than 1 km across. Ceres, with a radius of
479 km, is by far the largest asteroid, containing the order of 10% of the total mass.

Beyond the asteroid belt there are near-Earth asteroids, the Trojan asteroids which are near
the L4 and L5 points of Jupiter, and the Centaurs, with perihelia outwards from Jupiter’s orbit
and semimajor axes less than that of Neptune.

The asteroids nearer than Jupiter are thought to be the remnants of material in the space
between Mars and Jupiter that the gravitational field of Jupiter prevented from forming into a
major planet. Throughout Solar System history collisions in the asteroid belt have been common,
and so the population has evolved considerably. There has also been a net loss of material, the
present mass being only about 0.1% of the original mass.

An asteroid is categorised according to its reflectance spectrum and geometrical albedo.
There are 14 Tholen classes (Figure 3.7), with about 80% of classified asteroids falling
into the S class and about 15% into the C class. Class C dominates the outer asteroid belt
and Class S the inner belt. A class C asteroid is thought to consist of an undifferentiated
mixture of silicates, iron–nickel alloy, hydrated minerals, and carbonaceous materials. A class
S asteroid has a surface that consists of mixtures of silicates with iron–nickel alloy. The popu-
lation variations across the belt, and those seen in other classes of asteroid, could be the
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result of lower temperatures and weaker heating at greater heliocentric distances in the solar
nebula.

Comets are small bodies that are distinct from asteroids in that they develop a coma, a
hydrogen cloud, and tails when within 10 AU or so of the Sun. Studies of these huge structures
indicate that the solid nucleus of a comet – typically only a few kilometres across – contains
a significant proportion of icy materials, particularly water, in a loose aggregation with rocky
and carbonaceous materials. The volatile materials are liberated by solar radiation to form the
coma and hydrogen cloud, and then driven off by the solar wind and by solar radiation to form
the tails.

The comets have a wide variety of orbits. Long-period comets have orbital periods greater
than 200 years and enter the inner Solar System from all directions. About 1000 have been
recorded. It is inferred that they are a very small sample of a cloud of 1012 − 1013 bodies greater
than 1 km across, 103 − 105 AU from the Sun, called the Oort cloud. This cloud, with a present
day mass of about 1025 kg, is thought to consist of icy–rocky planetesimals ejected into large
orbits from the giant planet region during the formation of the giants, and during any subsequent
giant planet migration.

Short-period comets have orbital periods less than 200 years. Most of them have periods
less than 20 years and orbital inclinations less than 35�. These are the Jupiter family comets.
A few hundred are known. It is inferred that most of them (the Jupiter family comets) are
a sample of the Edgeworth–Kuiper (E–K) belt, planetesimals left over because of ineffective
accretion in the solar nebula beyond the giant planets, plus a proportion scattered out by the
giant planets, particularly Uranus and Neptune. The remaining short-period comets, typically in
higher inclination orbits, are the Halley family comets. These might in some cases be samples
of the inner Oort cloud. The Centaurs could be the larger members of a population in transition
from the E–K belt to the family of short-period comets.

Meteorites are small rocky bodies that survive passage through the Earth’s atmosphere to
reach the Earth’s surface. The three classes are stones, stony-irons, and irons. Stones account
for about 95% of the meteorites observed to fall to Earth. Most of them contain silicate
chondrules that define the subclass called chondrites, the remainder being achondrites. About
6% of the chondrites are carbonaceous chondrites, primitive bodies that contain not only
silicates, but also hydrated minerals and carbonaceous material. Radiometric dating shows
that the oldest components of meteorites – the calcium–aluminium inclusions and the chon-
drules – solidified 4570 Ma ago. These are the oldest ages obtained in the Solar System,
and are taken to be the Solar System’s age. A small number of meteorites have come
from Mars and the Moon. Micrometeorites are largely derived from the rocky component of
comets.

The composition of the particularly primitive C1 chondrites matches that of the observable part
of the Sun, except for elements that are volatile, or reside predominantly in volatile compounds.
These are greatly undersampled in meteorites. The C1s have enabled the relative abundances of
many elements in the Solar System to be significantly refined.

Spectral reflectances of asteroids and meteorites show matches between

• the carbonaceous chondrites and class C asteroids;
• the iron meteorites and class M asteroids, which are the iron–nickel cores of (partially)

differentiated asteroids;
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• most achondrites and the rare V class asteroids, which are from the silicate crust of fully
differentiated asteroids, of which Vesta is the most prodigious parent;

• the ordinary chondrites and S class asteroids.

A least some stony-irons are thought to come from the core–silicate mantle interfaces of
(partially) differentiated asteroids.



4 Interiors of Planets
and Satellites: The
Observational and
Theoretical Basis

Our understanding of planetary and satellite interiors is considerable, but will always be limited
by their inaccessibility – we have to rely on external observations. These are made by telescopes
on the Earth or in Earth orbit, and by instruments on spacecraft in the vicinity of the planetary
body. For Mars, Venus, the Moon, Titan, and of course the Earth, we also have observations
made at the surface of the body. For the Earth and the Moon we have additionally sampled
materials from below the surface, though for the Moon only the upper metre or so has been
sampled. Even in the case of the Earth, the deepest samples are from only about 100 km –
less than 2% of the distance to the centre, and brought to us by volcanoes. Nevertheless, good
models of planetary and satellite interiors have been developed.

The basic features of a model are a specification of the composition, temperature, pressure,
and density, at all points within the interior. Planets and large satellites are close to being
spherically symmetrical, so, at least as a first step, this reduces to a specification of properties
versus radius from the centre, or, equivalently, versus depth from the surface. Not all of the
features of a model are independent. For example, the density of a substance depends on its
pressure and temperature. Some of the relationships between various features are poorly known.

A model will embody certain physical principles. For example, if the material at some depth
is neither rising nor falling then the net force on it in the radial direction must be zero. With such
principles the model is then used, with initial depth profiles of the various features, to derive
properties that are observed externally, and the depth profiles are varied until an acceptable level
of agreement with the actual observations is obtained.

We shall now look at the main types of external observations that are available for modelling
planetary and satellite interiors. Table 4.1 lists many of the spacecraft missions that have made
particularly important contributions.

4.1 Gravitational Field Data

4.1.1 Mean Density

The mean density of a body is an important indicator of bulk composition. It is said to be an
important constraint because it places useful limits on the range of possibilities.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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Table 4.1 Some missions of planetary exploration by spacecraft

Object Spacecraft

Name Encounter
date(s)a

Some mission features

Mercury Mariner 10 Mar 74, Sept 74,
March 75

The only mission – flybys

Venus Venera 4b Oct 67 First penetration of
atmosphere

Venera 7b Dec 70 First lander
Pioneer Venus Dec 78–Oct 92 Orbiter – first global radar

mapping
Magellan Aug 90–Oct 94 Orbiter – radar mapping
Venus Expressc Apr 06– Orbiter – atmospheric studies

Earth Explorer 1 Jan 1958 First satellite to yield
scientific data

Moon Luna 3b Oct 1959 First images of lunar far side
Apollo 11 July 1969 First manned landing
Clementine Mar–Apr 94 First polar orbiter
Lunar Prospector Jan 98–July 99 Polar orbiter
SMART 1c Nov 04–Sept 06 Orbiter and collider

Mars Mariner 9 Nov 71–Oct 72 Orbiter; first global survey
Viking 1 Orbiter June 76–Aug 80 Orbiter; second global survey
and Lander July 76–Nov 82 First soft lander
Viking 2 Orbiter Aug 76–Jul 78 Orbiter; third global survey
and Lander Sept 76–Apr 80 Second soft lander
Mars Global Surveyor Sept 97–Nov 06 First polar orbiter
Mars Pathfinder July–Sept 1997 Lander and first rover
Mars Odyssey Oct 01– Orbiter; fourth global survey
Mars Exploration
Rovers

Jan 04– Rovers Spirit and
Opportunity

Mars Expressc Dec 03– Orbiter, fifth global survey
Mars Reconnaissance Mar 06– Orbiter, sixth global survey

Jovian system Pioneer 10 Dec 73 First flyby
Pioneer 11 Dec 74 Second flyby
Voyager 1 Mar 79 Third flyby
Voyager 2 July 79 Fourth flyby
Galileo Orbiter Dec 95–Sept 03 First orbiter
Galileo probe Dec 95 The only probe
Cassini–Huygens Dec 00–Jan 01 Fifth flyby

Saturnian system Pioneer 11 Sept 79 First flyby
Voyager 1 Nov 80 Second flyby
Voyager 2 Aug 81 Third flyby
Cassini July 04 Orbiter
Huygens Jan 05 Landed on Titan

Uranian system Voyager 2 Jan 86 The only mission – flyby

(continued)
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Table 4.1 (Continued)

Object Spacecraft

Name Encounter
date(s)a

Some mission features

Neptunian system Voyager 2 Aug 89 The only mission – flyby

Asteroids Galileo Oct 91 Images of Gaspra
Galileo Aug 93 Images of Ida
NEAR June 97 Images of Mathilde

Feb 01 Landed on Eros
Hayabusad June 2005 First asteroid sample return,

Itokawa

Comets Giotto Mar 86 First comet nucleus image
(1P/Halley)

July 92 Close approach to
26P/Grigg–Skjellerup

Deep Space 1 Sept 01 Images of 15P/Borrelly
Stardust Jan 04 Return of dust from

81P/Wild 2
Deep Impact July 05 Bullet penetration of

9P/Tempel 1
Rosetta 2014 First orbiter and lander,

67P/Churyumov–
Gerasimenko

a For orbiters and landers a range of dates is given if the encounter spanned more than a month. Payloads are
from NASA, except:

b from the USSR,
c from the European Space Agency,
d from Japan.

If the volume of a body is V and its mass is M , then the mean density is given by

�m = M/V (4.1)

For a sphere, V = �4/3��R3 where R is the radius. Planets and satellites are not perfectly spherical;
Saturn, for example, is clearly flattened by its rotation (Plate 16(a)). We can, however, measure the
shapes of planetary bodies sufficiently accurately for the actual volumes to be obtained.

There are various ways of measuring the mass M . You have seen in Section 1.4.4 how the
mass of the Sun can be obtained from the semimajor axis and period of the orbit of a planet.
The same procedure can be applied to get the mass of a planet itself, from the orbit of a satellite
or spacecraft around it. If the mass of the satellite or spacecraft is m, then from Newton’s laws
of motion and gravity we get an equation like equation (1.6) (Section 1.4.5), which can be
rearranged as

M + m = 4�2a3

GP2
(4.2)

where a is the semimajor axis of the orbit of m with respect to M� P is the orbital period, and
G is the gravitational constant. If m is much less than M , it can be omitted from equation (4.2),
and we get the value of M without knowing the value of m.
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If m is not negligible in comparison with M , e.g. the Moon in comparison with the Earth,
then we can still get M by finding the centre of mass of the system. It is the centre of mass that
moves in an elliptical orbit around the Sun, and M and m are each in orbit around the centre of
mass, as you saw in Section 1.4.5. The position of the centre of mass can be determined from
these orbital motions, and the ratio of M and m is then given by an equation like equation (1.7)
(Section 1.4.5)

M/m = rm/rM (4.3)

where rM and rm are the distances of M and m from the centre of mass at any instant. From
equations (4.2) and (4.3) we can obtain both masses, and we can then use equation (4.1) to get
the mean density of each body in turn.

The two bodies do not have to be in orbit around each other. Though the equations are different,
the masses can be obtained from the change in their trajectories as they pass each other. If one body
has a much smaller mass than the other, then only the trajectory of the smaller body will change
appreciably. This is the case, for example, when a spacecraft passes near a planet.

Table 4.2 lists the mean densities, and other data, for the planets and larger satellites. For a
wider range of bodies, Figure 4.1 shows the mean density along with the radius. Radius and
density are more indicative of composition than density alone, as you can see if we consider
two bodies with the same mean density but with greatly different radii. You might think that,
with equal mean densities, the two bodies could have the same composition. This is not so. The
internal pressures in the larger and thus more massive body will be much greater than in the
less massive body.
� What effect does this have on the mean densities?
This results in greater compression in the more massive body resulting in a greater density. The
hypothetical uncompressed mean density of the more massive body must be lower than that
of the other body, and therefore the more massive body must contain a higher proportion of
intrinsically lower density substances.

In Figure 4.1 some distinct groups can be recognised. On the basis of size alone the planets
can be divided into four giants, four terrestrial planets, and Pluto. With the mean densities added,
this broad division is reinforced by a strong indication of compositional differences between
the groups. Consider the giants. It is clear that these bodies are so large that the compression
is considerable. If the compression were slight their mean densities would be lower than those
in Figure 4.1 by a large factor. The mean densities of the other bodies would be much less
reduced, and so the already clear distinction between the giants and the rest would sharpen. The
giant planets thus form a quite distinct group.

For the remaining bodies in Figure 4.1, the uncompressed mean densities of Venus and the
Earth would be about 20% less than the values shown, with smaller reductions for the rest.
Therefore, the groupings among the non-giants are not sharply defined. The bodies in the centre
right region, namely the four terrestrial planets plus the Moon, Io, and Europa, constitute the
terrestrial bodies. The remaining large satellites, namely Ganymede, Callisto, Titan, and Triton,
group with Pluto to constitute the icy–rocky bodies, a term that reflects their composition. The
other bodies in Figure 4.1 are the two largest asteroids, namely Ceres and Pallas, and nearly
all of the intermediate-sized satellites. These satellites have mean densities comparable with
those of the icy–rocky bodies, whilst those of the two asteroids are more comparable with the
terrestrial bodies, indicating broad compositional affinities in each case.

In Section 3.1.4 you saw that there is a threshold size below which a body could have an irreg-
ular shape. Bodies large enough to be approximately spherical are often called planetary bodies.
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Figure 4.1 Radii and mean densities of Solar System bodies.

The threshold radius is very roughly 300 km, and therefore among the bodies in Figure 4.1,
Enceladus, Mimas, Miranda, and Pallas could be irregular.

Question 4.1

Use Figure 4.1 to argue that the giant planets divide into two subgroups on the basis of size and
composition.

4.1.2 Radial Variations of Density: Gravitational Coefficients

You have seen that to obtain the mean density of a body we must first measure its mass.
This measurement, however it is made, relies on the gravitational force that the body exerts on
some other body. From more detailed measurement of this force we can go further, and obtain
information on the variation of the density from point to point in the body.
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Newton’s law of gravity (Section 1.4.4) tells us that the magnitude (size) of the gravitational
force that a body of mass M exerts on a body of mass m at a distance r from M is given by

F = GMm/r2 (4.4)

This equation underpins equation (4.2), and requires either that M and m are point masses or
that they are spherically symmetrical, i.e. the density varies only with radius. In this latter case
r is measured from the centres of the bodies, and we have to be outside them for the equation
to apply. The direction of the force on m is towards the centre of M .
� By measuring F and using equation (4.4) can we learn anything about how the density

inside a spherically symmetrical body varies with radius?
For a spherically symmetrical body we can learn nothing from external gravity measurements
about the variation of density with radius – all possible variations of density with radius for a
given total mass M would give the same external force. Fortunately, each Solar System body
exerts a gravitational force that is not quite that given by equation (4.4), and therefore we can
learn something about the variation of density with radius.

It is useful to introduce the concept of gravitational field – this will allow us to ignore the
mass m, which is of no interest in itself. At any point in space there will be a gravitational force
that is the sum of the forces produced by all the surrounding bodies, with due regard to their
different directions (in what is called a vector sum). Thus we are not restricted to F as given by
equation (4.4). For this general gravitational force F acting on a body of mass m and negligible
size, the magnitude g of the gravitational field at the point where m is located is defined as the
force per unit mass

g = F/m (4.5)

The direction of g is the same as the direction of F . We can now refer to the gravitational
field of M without specifying the mass of the body used to measure it. For example, from
equations (4.4) and (4.5) it follows that

g = GM/r2 (4.6)

and so g is independent of m. Like equation (4.4), equation (4.6) applies if M is a point mass or if it
is spherically symmetrical. From Newton’s second law, g is seen to be the acceleration of m.

Because the gravitational forces exerted by planetary bodies do not conform to equation (4.4),
it follows that their gravitational fields do not conform to equation (4.6). Instead, the magnitude
of the field is given by

g = GM/r2 + extra terms (4.7)

The extra terms at some point of measurement P depend on the position of P. Figure 4.2(a)
shows P at some distance r from the centre of a planetary body, with the direction to P specified
in terms of the angles � and 	. For planetary bodies the extra terms are small, and the largest
is negative, −J2 �GMR2/r4�f���, where f��� varies with � though not with 	 or r� J2 (‘jay
two’) is the gravitational coefficient of this term. It measures the strength of the extra term,
and a particular planetary body will have a particular value of J2. Note the rapid decrease with
r, as 1/r4. This means that at large distances this extra term becomes negligible, but that at
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Figure 4.2 (a) Specifying the position of a point P. (b) The variation of gravitational field with � at a
fixed distance r from the centre of a planetary body with J2 = 0 and J2 > 0.

sufficiently small distances it is appreciable. The other extra terms decrease no less rapidly
with r .

For most planetary bodies the main source of the J2 term is the rotation of the body. This
flattens the sphere as in Figure 4.2(b), and it is the rotational flattening of the body that generates
this extra term. For a small degree of flattening the planetary body is an oblate spheroid
(Figure 1.13(a)) – note that it is symmetrical around the rotation axis. The rotational flattening
(also called the oblateness) is quantified by f = �Re −Rp�/Re, where Re is the equatorial radius
and Rp is the polar radius. Figure 4.2(b) also shows how, at some fixed value of r, the magnitude
of the total field g varies with direction when J2 is the only extra term. The field is symmetrical
around � = 0 (the rotation axis) and it is a maximum at � = 90�. The larger the value of J2, the
greater the variation of g with �. With J2 > 0 the field now points towards the centre of the
body only at � = 0� 90�, and 180� – this is not apparent in Figure 4.2(b) because magnitudes
alone are shown, not directions.

Regardless of its origin, the J2 term can be deduced from the gravitational field as mapped
by small bodies in the vicinity of the planetary body, such as natural satellites and spacecraft.
J2 provides a constraint on the variation of density with radius, in that only certain variations
are consistent with the measured value of J2. However, a more powerful constraint is obtained
if J2 is combined with other data to obtain a property of the body called its polar moment of
inertia. This is a topic for the next section.

Question 4.2

By considering a doubling in the distance r from a planetary body, show that the gravitational
field becomes more closely like that of a spherically symmetrical body.
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Figure 4.3 The basis of calculating a moment of inertia.

4.1.3 Radial Variations of Density: The Polar Moment of Inertia

A moment of inertia is a quantity involving a body and some axis. Any axis can be used, and
the corresponding moment of inertia calculated. If we imagine the body divided up into small
equal volumes 
V , as in Figure 4.3, then the moment of inertia for the chosen axis is the sum of
��
V �x2 over the whole body, where x is the perpendicular distance from 
V to the axis, and �
is the density in the volume 
V . (�
V is the mass 
M in 
V .) The moment of inertia therefore
depends on the choice of axis. For a rotating planetary body the rotation axis is a natural choice,
in which case we have the polar moment of inertia C. C depends on the variation of density
from place to place in the body, which is why it is a powerful constraint.

C can be obtained from the precession of the rotation axis (Section 1.5.1). Precession is
caused by the gravitational torque on the non-spherical mass distribution of the rotating body.
For the planets the torque is provided by any large satellites and by the Sun. In order to
calculate C, the precession period has to be known, and also the mass M of the rotating body,
its equatorial radius Re, its sidereal rotation period T , and J2. So far it has been possible to
apply this precession method with useful accuracy only to the Earth, the Moon, and Mars. The
details are beyond our scope – see books on celestial mechanics in Further Reading.

To obtain C for the other planetary bodies we have to assume that the interiors are in
hydrostatic equilibrium, i.e. that the interior has responded to rotation as if it had no shear
strength – as if it were a fluid. Solid materials in planetary interiors can achieve such equilibrium
in times very short compared with the age of the Solar System because of the huge internal
pressures that overwhelm the shear strength of the solids. For a planetary body in hydrostatic
equilibrium, the value of C can be calculated from M� Re� J2, and T – again the details will not
concern us. If J2 is unknown, then the rotational flattening f can be used instead. In fact, J2 is
preferred to f because any departures from hydrostatic equilibrium are likely to be confined to
the outer layer of the body, which influences f more than J2. Furthermore, terms additional to
the J2 term can reveal departures from hydrostatic equilibrium, and these can be used to adjust
J2 so that C can be calculated more accurately.

Table 4.2 lists the values of C/�MR2
e� for those planetary bodies for which C is known. The

division of C by MR2
e is useful, because it gives an indication at a glance of the degree of

concentration of mass towards the centre. For a hollow spherical shell C/�MR2
e� is 0.667 (2/3
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exactly); for a sphere with the same density throughout it is 0.4 exactly; and for a sphere with
its mass concentrated entirely at its centre it is zero.

The giant planets are so rotationally flattened that J2 is comparatively large, and further
terms in equation (4.7) are then also significant. Their strength is measured by the gravitational
coefficients J4 and J6 (odd-numbered terms like J3 and J5 are zero because of the northern–
southern hemisphere symmetry of the giant planets). In this case J2� J4, and J6 are in themselves
a useful constraint on radial variations of density, and for the giant planets are often used in
preference to C.

Question 4.3

Show that C/�MR2� = 1 exactly for a hollow, cylindrical tube, with a radius R and a mass M ,
for rotation around the axis running along its longitudinal axis.

4.1.4 Love Numbers

The measurement of the gravitational field near a body also enables us to obtain the Love
numbers of the body, named after the British geophysicist Augustus E H Love (1863–1940).
They are derived from the distortion of the surface and interior of a body caused by the tidal
forces exerted by other bodies. These tidal distortions can be sensed by their effect on spacecraft
orbits. For our purposes we need only note that their values give us a measure of how much the
interior of a planetary body deforms under tidal stresses. From this, we can deduce, for example,
to what extent the interior is liquid, liquids being much more deformable than solids.

4.1.5 Local Mass Distribution, and Isostasy

Very close to the surface of a planetary body the gravitational field is sensitive not only to
radial variations of density, but also to local mass distributions. For the modelling of planetary
interiors one of the most important things we can learn from such data is whether the planet is
in isostatic equilibrium. A familiar example of isostatic equilibrium is a block of ice floating
on water, as in Figure 4.4(a) and (b). The ice is less dense than the water and in equilibrium
floats with its base at a certain depth such that in any vertical column above this depth, within
the ice and beneath it there is the same amount of mass. This is where the term ‘isostatic’ comes
from – ‘equal standing’. If the ice is raised and released there is a net downward force on it,
and if it is pushed down and released there is a net upward force on it. Because liquid water
is very fluid the ice quickly regains its equilibrium level, and isostatic equilibrium is restored
rapidly. The minimum depth above which there is equal mass in each column is called the depth
of compensation.

Imagine measuring the gravitational field at a fixed altitude above the water surface. If the ice
is in isostatic equilibrium then the field changes very little over the block, because of the ‘equal
standing’. Thus, in spite of the mountain of ice, gravity hardly varies across it. By contrast, if
there is no isostatic equilibrium the amount of mass in a vertical column changes as we cross
the ice, and so the variations in the field are larger. By measuring the field as we cross the ice
we can determine whether the ice is in isostatic equilibrium.
� How does the field vary if the ice is below its equilibrium level?
If the ice is below its equilibrium level there is a deficit of mass in its vicinity and so the field is
slightly weaker than to each side. If it is above its equilibrium level there is an excess of mass
and the field is slightly stronger.
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Figure 4.4 Isostatic equilibrium. (a) Equilibrium in ice floating on water. (b) Disequilibrium with ice
and water. (c) Disequilibrium at a planetary surface. (d) Equilibrium at a planetary surface.

A planetary body typically has a crust of less dense solids of non-uniform thickness on top of
a mantle of more dense solids. For the crust to be in isostatic equilibrium the underlying mantle
has to be able to flow in response to departures from isostasy, and the upper layer must be able
to deform to take up the equilibrium shape. This is illustrated in Figure 4.4(c) and (d). Given
sufficient time, isostasy will be achieved. The greater the plasticity of the interior and the greater
the flexibility of the surface layer, the shorter the time required. The plasticity of the interior
increases with temperature and pressure, and depends on composition. The flexibility of the
surface layer also increases with temperature and depends on composition, and it also increases
as its thickness decreases. It is quite possible for the adjustment time to be many thousands of
years, or longer, and so departures from isostasy are to be expected, and are observed.

4.2 Magnetic Field Data

Magnetic fields are caused by electric currents. Therefore, if a planetary body has a strong
magnetic field there must be large electric currents within it, and this can tell us a lot about the
interior.

Whereas mass is the source of gravitational field, electric charge in motion – electric current –
is the source of magnetic field. For magnetic field, the basic source is an electric current loop,
and a circular one is shown in Figure 4.5(a). At distances that are large compared with the
distance across the loop, the magnetic field is independent of the shape of the loop and the field
is then called a magnetic dipole field. It has the form shown schematically in Figure 4.5(b),
where the loop is presented edge on. The lines show the direction of the magnetic field, and their
spacing is a qualitative indication of the magnitude of the field. Note that the field is rotationally
symmetrical around the magnetic axis, which is perpendicular to the loop and passes through its
centre. The distributions of currents in a planet are much more complex than a loop. Whereas
the field sufficiently distant from the currents is a dipole field, at closer range it has a somewhat
different form, depending on the configuration of the currents, and it is called a poloidal field.
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Figure 4.5 (a) A circular electric current loop. (b) Dipole field due to a current loop.

� The basic source of gravitational field is the point mass. Describe the equivalent drawing
to Figure 4.5(b) in this case.

The gravitational field lines of a point mass would be radial, and would point inwards to denote
attraction. The increase in the spacing of radial lines as distance from the mass increases is a
qualitative representation of the decrease in the size of the force with distance.

At any point of measurement at a given distance and in a given direction, the magnitude of
the magnetic field is proportional to i × A, where i is the electric current circulating around a
loop of area A that would generate the same dipole field as that observed. The magnitude of the
magnetic dipole moment is defined as

� = i × A (4.8)

The direction of the magnetic dipole moment is the same as the direction of the magnetic axis.
The mechanism for sustaining magnetic fields in planetary bodies is not fully understood. The

general idea is that the process starts with an electrically conducting fluid in motion. In planetary
bodies this will be due to thermal convection. The presence of a small external magnetic field
will set up electric currents in the moving liquid that generate further magnetic fields. This
influences the liquid motion in such a way that the disordered electric currents are enhanced and
coordinated so that the field strength is increased until there is as much energy in the magnetic
field as in the liquid motion. If the rotation of the planetary body is sufficiently rapid then the
liquid motions are coordinated such that a strong poloidal field is established. Once the field
is established, it is probably unnecessary to have a small external magnetic field to sustain it.
Thus we have the current sustaining the magnetic field that sustains the current in the moving
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liquid. This is called a self-exciting dynamo, by analogy with the familiar manufactured device
that operates in the same basic way. The energy in the field comes from the kinetic energy in
the liquid flow. In a manufactured dynamo the kinetic energy comes from the rotation of a coil
of wire.

The fluid motions tend to decline through viscous dissipation, and the currents themselves
tend to diminish through the electrical heating they cause. In the Earth, where the magnetic field
originates in a convective outer core of liquid iron, these losses would eliminate the magnetic
field in the very short time of about 10000 years. The losses need to be offset by internal energy
sources. In planetary interiors convection can be sustained by deep-seated heat sources, as you
will see in Chapter 5.

The crucial role of rotation leads to a fundamental theorem, the Cowling theorem, which
states that the field and the rotation cannot have the same symmetry (Thomas George Cowling,
British physicist, 1906–1990). This means that the rotation and magnetic axes cannot coincide –
there must be an angle between them. Most dynamo models require this condition.

The currents inside a planetary body are distributed throughout the conducting region. Conse-
quently the field at, and not far above, the surface of the body is very different from that of a
simple loop. The differences can be used to constrain the distribution of the electric currents
in the interior, somewhat as the extra terms in the gravitational field can be used to constrain
point-to-point variations in density. Nevertheless, the existence of a dipole field at sufficiently
great distances means that we can specify the strength of the source of the field by the corre-
sponding size of a magnetic dipole moment. The known values are given in Table 4.2. From
a large dipole moment we infer the presence of a considerable body of electrically conducting
fluid in motion within the planetary body.

Figure 4.6 shows the magnetic axes of the five planetary bodies that have large magnetic
dipole moments – the Earth and the four giant planets. Where the magnetic axis passes through
the surface of the body we have the magnetic poles. The magnetic equatorial plane (Figure 4.6)
is perpendicular to the magnetic axis, and they intersect at a point that is the centre of the far
field. You can see that this point is displaced from the centre of the planetary body, and so the
currents are not symmetrically distributed around its centre. The magnetic axis does not coincide
with the rotation axis – except for Saturn, where the angle between the axes is close to zero.
Saturn thus violates the Cowling theorem, which is worrying, though this might be a transitory
circumstance, planetary magnetic fields being variable.

Magnetic fields are subject to small variations in magnitude and in the direction of the
magnetic axis – those in Figure 4.6 are for the present time. For planets with rocky surfaces these
variations can be traced through rocks that retain the imprint of past magnetisation by the field.
One way in which this can happen is through the solidification of a magnetised molten rock.
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Figure 4.6 The magnetic axes of the five planetary bodies that have large dipole moments.
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This remanent magnetism can be used to trace the history of the field, particularly if the time
of solidification has been radiometrically dated. For the Earth it is known that the direction
of the magnetic axis has varied erratically, though the inclination with respect to the rotation
axis has never been very great. In addition, the field has reversed in direction many times.
Each reversal takes about 0.01 Ma, and during it the field declines in strength to zero, and then
grows in the opposite direction. During the last 80 Ma these magnetic reversals have occurred
at intervals of 0.1–1 Ma; the last time this happened was about 0.7 Ma ago. Earlier, there were
periods when the reversals were considerably less frequent. Intervals between reversals that
exceed 20 Ma are called superchrons. For example, one superchron lasted from 118 Ma to 83 Ma
ago. Numerical simulations of the dynamo theory as applied to the Earth’s interior do exhibit
magnetic variations, including reversals. In the case of the Earth this long-term variation in the
frequency of reversals is probably due to the effects on convection of fluctuations in temperature
at the top of the liquid iron core where it meets the rocky mantle. The reversals themselves
might owe much to chaos – large effects from small causes.

Other sources of magnetic fields, from electric currents in the upper atmosphere to permanently
magnetised rocks at and below the surface, are weak, and are sufficiently disorganised on a
planetary scale that their net contribution to the dipole field is zero. Note that in planetary
interiors there is also a field from a current configuration that does not generate a dipole field
at any range. This is called a toroidal field. It has no substantial external manifestation, and so
will not be discussed further.

Question 4.4

Making use of what you learned about the planets in Chapter 1, outline reasonable hypotheses
based on the self-exciting dynamo mechanism to explain why the Earth and the giant planets
have large magnetic dipole moments, but the other planets do not.

4.3 Seismic Wave Data

4.3.1 Seismic Waves

A seismic wave travels through a planetary body, and bears information about the conditions
along its path. Seismic waves are mechanical waves in that the wave proceeds via the direct push
of an atom or molecule on its neighbours. Other mechanical waves include sound waves in the
air and the ripples on the surface of a pond. There are several types of seismic wave. Rayleigh
and Love waves, rather like water ripples, can exist only at an abrupt change of density, such
as at the surface of a planet. But it is two other types that have been of particular value in
elucidating the structure of planetary interiors. These types are illustrated in Figure 4.7. In a
P wave the oscillatory motion of the substance is longitudinal – to and fro in the direction in
which the wave progresses, as in a sound wave in the atmosphere. In an S wave the oscillatory
motion is transverse – perpendicular to the progression. S waves require the medium to have
shear strength, so they do not travel in liquids or in gases, and they are strongly attenuated in
soft, plastic materials.

Seismic waves can be generated by surface impacts, by surface explosions, and by the sudden
yielding of interior rocks in which stresses have built up. These stresses can result from the tidal
action of external bodies, or from internal heating. Considerable surface motion occurs in the
vicinity of the source, and in the case of the Earth this constitutes an earthquake. Source sizes
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Figure 4.7 P and S waves. The vertical arrows indicate a maximum.

are typically only a few kilometres, and seismic waves travel from the source in all directions.
For a planet with a liquid core and a solid mantle some typical paths are shown in Figure 4.8.
The curvature of the paths is a consequence of the gradual increase in wave speed with depth.
You can see that the path bends away from the direction in which the speed is increasing.

The importance of P and S waves is that they can reach a considerable depth in the planetary
body. For example, in Figure 4.8 the P wave that enters the liquid core passes near the centre
of the body and reaches the surface on the far side. If it is detected there, and if we know the
source position and the time that the wave set off, we can calculate the average speed of P
waves along the path.
� If P waves set off at time t1 from a shallow depth, pass through the centre of a planet

with a radius R, and are detected at t2 on the opposite surface of the planet, what is their
average speed?

The average speed is the total distance divided by the total time: 2R/�t2 − t1�. If average speeds
are determined for many different paths, then we can deduce the P wave speed at all points
in the interior, and not just as an average along a path. A similar feat can be performed for S
waves. What can we learn from these data?

The P wave speed in a material depends on just two of its properties – its density � and its
axial modulus a. The axial modulus is one of several elastic moduli of a material. In general
an elastic modulus is the stress to which a material is exposed, divided by the resulting strain.
For P waves the relevant stress is the rapid application of a force along the direction of wave
motion, and the resulting strain is the compression or rarefaction along the wave direction with
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Figure 4.8 Seismic wave paths in a hypothetical planet. (In reality, the P and S waves would follow
different paths in the solid material.)

no expansion or contraction of the material perpendicular to this direction (Figure 4.7). In this
case the relevant modulus is called the axial modulus, and the P wave speed is given by

vP =
√

a

�
(4.9)

It is beyond our scope to derive this equation, but you can see that it depends on a and � in a
reasonable way. Thus, if the material is less deformable then a is larger and it passes the wave
along more rapidly. On the other hand, if it is denser then it is more sluggish in its response,
and the wave travels less rapidly.

For S waves the speed is given by

vS =
√

r

�
(4.10)

where r is a different modulus, called the rigidity (or shear) modulus. This is a rapidly applied
shear stress divided by the resulting shear strain (Figure 4.7).

Equations (4.9) and (4.10) show that if we know the P and S wave speeds at a point in a
material then we know something about the density and the elastic moduli there. Materials differ
in these properties so we seem to have valuable information on composition. Unfortunately,
because we have just two pieces of information – S wave speed and P wave speed – but
three unknowns – density and two elastic moduli, we cannot deduce the density and the elastic
moduli. Therefore, we have only a weak constraint on composition. Tighter constraints are
obtained by combining seismic wave speeds with gravitational and other data. The outcome is
that the density versus depth is strongly constrained, even deducible with sufficient data, and
this provides a strong constraint on composition.

Seismic data alone do, however, provide other types of information on the interior. Depth
ranges that are liquid, and therefore inaccessible to S waves, can be identified through the
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absence of S waves over that range. Also, if the S and P wave speeds change suddenly at a
certain depth, this is a strong indication of a change in the minerals present, either in their
chemical composition or in their crystal form.

For a body that is fluid throughout, seismic wave speeds can be obtained from the Doppler
effect of the wave motions on visible spectral lines in the radiation from the body’s outer
regions (Section 2.1.2). In the case of the Sun such studies constitute helioseismology, a well-
established technique that has yielded much information about the solar interior. Developments
are under way to apply a similar technique to spectral lines in the outer atmospheres of the giant
planets.

4.3.2 Planetary Seismic Wave Data

To obtain the P and S wave speeds versus depth requires a large network of seismic observatories
well spread over the surface of a planetary body, with data from a large number of seismic
sources. This has only been achieved for the Earth, and Figure 4.9(a) shows the P and S wave
speeds versus depth in our planet.
� What is the reason for the absence of S waves from 1215 km to 3470 km from the centre?
A liquid shell is clearly indicated by this absence of S waves. At all depths above and below
the shell S waves do exist, and so there are no other extensive regions that are liquid. (Note that
S waves are generated in a solid inner core beneath the liquid shell by P waves that traverse
the shell.)

Layering of the Earth is also indicated by large changes in the wave speeds over very short
depth ranges, and these generally indicate changes in composition at these boundaries. Between
these boundaries there is a general increase of speed with depth. Given that the density in
planetary interiors increases with depth, this would seem to be contrary to equations (4.9)
and (4.10) which show a decrease in speed for an increase in density. However, it is also the
case that the elastic moduli of most substances increase with an increase in density (though
decrease with an increase in temperature), so the outcome is not obvious in advance. The
seismic data are so extensive for the Earth that small changes have been detected in the wave
speed profiles, and some of these correspond to slow convective motions within the various
layers.

Figure 4.9(b) shows the P and S wave speeds versus depth in the Moon, the only other body
for which there are seismic data at present. These are from seismometers set up at the landing
sites of Apollos 11, 12, 14–16 (Table 4.1). The large uncertainties shown in the speeds are the
combined result of only having these five seismic stations, their being located all on the near
side of the Moon, some not working very well, and ‘moonquakes’ being much less frequent
and on average weaker than in the Earth. The speeds in Figure 4.9(b) are averaged over profiles
obtained by several seismologists. Every profile shows an increase in P and S speed with depth,
as does the average, but the averaging has obscured evidence in most profiles of small, but
sharp, changes at a few depths.

The data in Figure (4.9) will be further interpreted in Sections 5.1.1 and 5.2.1.

Question 4.5

Sketch the variation of seismic wave speeds versus depth in an imaginary planet that has both
of the following properties:
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Figure 4.9 Seismic wave speeds in (a) the Earth and (b) the Moon (global averages).

(1) an entirely fluid interior;
(2) a change in composition half way to the centre, with the material just below the boundary

having twice the axial modulus of the material just above it and a density 20% greater.

4.4 Composition and Properties of Accessible Materials

4.4.1 Surface Materials

Even though the only planetary materials available for direct compositional analysis are from the
surface or near surface, the composition of such materials can give us a useful indication of the
composition, temperature, and density deeper down. For example, the Earth’s surface consists of
rocks with a density of about 2700 kg m−3 on the continents and about 2900 kg m−3 in the ocean
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basins. (In many regions these rocks are covered by a very thin veneer of soil or sediment, but
that is of no relevance here.) By contrast, the Earth has a mean density of 5520 kg m−3, and it
is not possible for the internal pressures to be high enough to squeeze the surface rocks to such
a high mean value. Therefore, the interior must consist largely of intrinsically denser materials.

As well as densities, we can also constrain the range of minerals that could comprise the
interior. This is done by choosing a mineral mix such that when it is subjected to various
geological processes that produce surface rocks, it would produce those seen. We shall look at
this more closely in Chapters 5–8.

For the giant planets there is no solid surface, and they are all covered in atmospheres
that blend into deep outer envelopes. Therefore, determination of the composition of these
atmospheres is of particular importance in building models of their interiors.

4.4.2 Elements, Compounds, Affinities

A powerful constraint on composition is provided by observations, not of the body in question,
but of other bodies, notably the Sun and meteorites. The relative abundances of the elements in the
Solar System are obtained mainly from the composition of the Sun outside its core (Section 1.3)
and from the composition of the least altered meteorites, the C1 chondrites (Section 3.3.2).
Table 1.5 shows the relative abundances of the 15 most abundant chemical elements. It is to
these elements, and to compounds containing them, that we must look to account for most of
the mass of a planetary body. In doing so, we must take account of the density of the substance.
Table 4.3 lists the densities of some important substances, and distinguishes the more dense
from the less dense.

Table 4.3 Densities of some important substances

Substance Chemical formula Densitya/kgm−3

Iron–nickel Fe plus ∼ 6% Ni by mass 7925
Troilite FeS 4740
Corundum Al2O3 3965
Forsteriteb Mg2SiO4 3270
Silicon carbide SiC 3217
Diopsidec CaMgSi2O6 3200
Alkali feldspars �Na� K�AlSi3O8 2700
Quartz (silica) SiO2 2600
Hydrated mineralsd X�H2O�n or X�OH�n ≤ 2000 (or so)
Water (liquid) H2O 998
Carbon dioxidee CO2 1�98
Carbon monoxidee CO 1�25
Heliume He 0�166
Hydrogenf H2 0�08987

a At 293 K and 1�01 × 105 Pa unless otherwise indicated.
b A particular form of olivine, �Mg� Fe�2SiO4.
c A particular form of pyroxene, �Ca� Fe� Mg�2Si2O6.
d X can be a molecule of a variety of rocky minerals, and n is greater than or

equal to one.
e As a gas.
f As a gas, at 273 K.



COMPOSITION AND PROPERTIES OF ACCESSIBLE MATERIALS 145

For example, suppose that we are building a model of the Earth on the basis of its mean
density. In spite of their abundance we can rule out the two lightest elements hydrogen and
helium as important constituents – the Earth is far too dense to contain much of these intrinsically
low-density substances. But when it comes to choosing between iron–nickel �7925 kg m−3� and
zinc �7140 kg m−3� for the dominant constituent of a dense central core, density alone is a poor
guide – both substances are denser than the mean density of the Earth. There are many grounds
for choosing iron, but among them is the relative abundances of the elements in the Solar
System – iron is about 1000 times more abundant than zinc.

Of course, most elements will be present as compounds, and of particular importance are
abundant rocky materials, notably silicates, and abundant icy materials, notably water.
� Do silicates and water include abundant elements?
Silicates are based on the abundant elements oxygen and silicon (Section 2.2.2), and water �H2O�
is a compound of oxygen with the most abundant element of all, hydrogen. Rocky materials are
intrinsically denser than icy materials, and icy materials are intrinsically denser than hydrogen
and helium.

Chemical affinities are also important. These express the tendency for certain elements to
occur together. Elements can be grouped on the basis of these affinities, and three groups of
particular relevance to planetary interiors are the siderophiles, chalcophiles, and lithophiles.
The siderophiles (‘iron-lovers’) comprise iron, and various metallic elements that tend to be
present with metallic iron, such as nickel. The chalcophiles tend to form compounds with
sulphur. Zinc is one example. The lithophiles (‘rock-lovers’) tend to be found in silicates and
oxides – magnesium and aluminium are important examples. Iron is so abundant that it occurs
in sulphides, oxides, and silicates, as well as in elemental form.

To illustrate how chemical affinities can be used, consider a planetary body with a surface
that is heavily depleted in iron. It can then be argued that iron has been concentrated into the
interior, perhaps into a central core of metallic iron. Support for this possibility would be a
surface depletion in the siderophilic element nickel, and an enrichment in the lithophilic element
aluminium.

4.4.3 Equations of State, and Phase Diagrams

In deciding whether a substance could be a significant component at some depth in the
interior of a planetary body, we need to know its density at the pressure and tempera-
ture at that depth. The equilibrium relationship between the density of a substance and its
pressure and temperature is known as the equation of state of the substance. This equa-
tion not only allows us to calculate the density at some depth, but also enables our models
to achieve consistency. Thus, if we specify a substance at a certain depth, we are only
free to specify two of density, pressure, and temperature – the equation of state determines
the third.

For the great majority of plausible substances for the interiors of most planetary bodies, pres-
sure is far more important than temperature as a determinant of density. Though the temperatures
at all but shallow depths in the interior are far higher than at the surface, the thermal expansion
of rocky (and icy) materials is slight, resulting in only a slight decrease in density compared
with that at the surface. By contrast, the pressures at such depths squeeze the materials so much
that their densities increase far more than that required to offset the thermal expansion. So, to a
first approximation we can ignore temperature and concentrate on pressure.
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Pressures in the interior

To find the pressures in the interior we use the fact that if a body is neither contracting nor
expanding then the pressure at any radius must be just right to support the overlying weight.
Consider a thin spherical shell of material of inner radius r and thickness 
r, where 
r is small
compared with r , as in Figure 4.10. To a first approximation we can assume that the planetary
body is close enough to spherical symmetry so that we can regard its density as varying only
with radius. In this case it is remarkable but true that the mass above the shell exerts zero net
gravitational force at all points in the shell. The net gravitational force on the shell due to the
rest of the body is thus the gravitational force exerted on it by the inner sphere of radius r. The
net force is thus downwards, towards the centre. There is also a downward force on the shell
due to the pressure at r + 
r, and an upward force due to the pressure at r. In equilibrium the
total downward force must equal the upward force, and so the pressure at r must exceed that
at r + 
r . It follows that pressure increases with depth at all values of r. This is an important
general result.

If p is the magnitude of the pressure at r, and p − 
p the pressure at r + 
r , then the net
upward force Fup on the material in the shell has a magnitude A × 
p, where A is the surface
area of a sphere of radius r. Thus

Fup = 4�r2 × 
p

The magnitude of the gravitational force on the shell is obtained from Newton’s law of gravity,
equation (1.5).
� For a spherically symmetrical body of radius r, where can all of its mass be regarded as

concentrated when calculating the gravitational force it exerts?
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Figure 4.10 The balance of forces on a spherical shell in a planetary interior.
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It exerts a gravitational force as if all its mass were concentrated at its centre (Section 1.4.4).
We can thus use equation (1.5) as it is, with M as the mass of the inner sphere and m the shell
mass. Therefore, the gravitational force has a magnitude GMm/r2 where G is the gravitational
constant. The mass of the shell is its density times its volume, i.e. ��4�r2 × 
r�, and so

Fdown = −GM × ��4�r2 × 
r�/r2

where the minus sign indicates that Fdown is in the opposite direction to Fup. In equilibrium Fup

must equal Fdown. Thus, from the equations for these forces, and after tidying up the algebra, we
obtain


p = −GM

r2
� × 
r (4.11)

The minus sign shows that p decreases as r increases. Equation (4.11) is called the hydrostatic
equation. Planetary rotation adds a small term to the right hand side of the equation, but we can
ignore it for our purposes.

The central pressure is obtained by applying equation (4.11) step by step from the surface
to the centre, calculating the increase in pressure as we proceed. To obtain an exact value we
clearly need to know the density versus depth, yet this is one of the things that we do not know
until our modelling is complete. However, even without this knowledge the useful rough and
ready result can be established from equation (4.11) that the central pressure pc is approximately
given by

pc ≈ 2�G

3
�2

mR2 (4.12)

where �m is the mean density of the planetary body, and R is the radius of its surface.
Equation (4.12) indicates how huge the pressures are deep in the interior of a planetary body.

In the case of the Earth the equation yields a value of 1�7 × 1011Pa – over a million times
greater than atmospheric pressure at the Earth’s surface. For most substances the equation of
state is not very well known at such high pressures. But we can still deduce whether a substance
is a plausible ingredient. For example, molecular hydrogen �H2� and atomic helium require
pressures in the Earth far in excess of 1�7 × 1011 Pa to become even as dense as liquid water
at the Earth’s surface �1000 kg m−3�. The same is true of atomic hydrogen. Therefore, these
potentially abundant substances can account for no more than a tiny fraction of the Earth’s mass.
Water, at comparable pressures, is much denser than hydrogen and helium, but still well short
of the Earth’s mean density. Thus, neither can water, H2O, a compound of the first and third
most abundant elements, account for much of the Earth’s mass.

Equation (4.12) also shows how much lower the interior pressures are in smaller, less dense
bodies. Thus, at the centre of the Moon, equation (4.12) gives 4�7 × 109 Pa, nearly 40 times less
than at the centre of the Earth. Moreover, the higher the pressure given by equation (4.12), the
more this approximate equation underestimates the true pressure – by about a factor of 2 in the
Earth’s case (see Table 5.1).

The general conclusion is that a given substance will have a markedly different density in the
interiors of different planets. For comparing compositions, it is therefore useful to obtain the uncom-
pressed mean density. Unlike the mean density it is not directly measurable, but must be calculated
from equations of state, assuming a composition. Equations of state are measured in the labora-
tory up to pressures that fall short of those in the centres of the larger planetary bodies. For higher
pressures it is necessary to do the best one can with theoretical equations or reasonable estimates.
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Question 4.6

Calculate an approximate value for the pressure at the centre of Jupiter. What can you say about
the pressure at shallower depths?

Phase diagrams and equations of state

The pressure and temperature in the interior determine whether a substance there is liquid or
solid, and this is of importance to the behaviour of the interior. You have already seen this to be
the case with regard to magnetic fields and the passage of seismic waves, and more examples
will arise shortly. If a substance were to be a gas in the interior it would be unlikely to be
retained, but would escape to the surface. We therefore need to know the ranges of pressure and
temperature over which a substance will be liquid, solid, or gas. This information is provided
by a phase diagram, ‘phase’ being a generic term for solids, liquids, and gases.

Figure 4.11 shows the typical form of a phase diagram. It consists of the boundaries between
the phases. If the substance is in equilibrium, and its pressure and temperature are anywhere
within the area to the left of the solid + gas or solid + liquid boundaries, it will be solid.
Unsurprisingly, the solid phase is confined to the lower temperatures, particularly at low pres-
sure. The liquid phase requires a minimum pressure and temperature, marked by point Tr in
Figure 4.11. At each temperature up to Cr the gas phase can exist only up to a certain pressure.
At temperatures above Cr the gas phase becomes difficult to distinguish from a liquid, hence
the absence of a distinct boundary there. Tr and Cr are, respectively, the triple point and the
critical point of the substance.
� What do you think is the origin of the term ‘triple point’?
The triple point is so named because only at this point do all three phases coexist. By contrast,
on each phase boundary just two phases coexist – the phases on each side of the boundary.

Numerical values have not been attached to the axes in Figure 4.11 because the pressures and
temperatures of the phase boundaries vary from substance to substance. Note that the density
varies across the phase diagram. The density at a specified temperature and pressure is provided
by the equation of state of the substance, and so a phase diagram contains only a subset of the
information encapsulated in the equation of state.

It is instructive to take a substance on three imaginary journeys across the phase diagram,
each one at constant temperature and starting in the gas phase. If we start at T1 and increase
the pressure, the substance gets denser, and it then meets the phase boundary at A, where a
further increase in pressure causes a huge increase in density as it solidifies. Within the solid
phase there might be structural changes from one crystal form to another, which might give
small density changes. If we now reverse the track the substance sublimes at A. If we start at
T2, and increase the pressure, then at B the gas condenses, with a huge increase in density, and
it becomes a liquid. At C there is a much smaller increase in density as the substance solidifies.
Reversing the track, the substance melts at C and then vaporises at B. Finally, if we start at
T3, higher than the temperature of the critical point, and increase the pressure, then the density
goes on increasing to liquid-like values with no sudden changes in density such as occur across
phase boundaries.

The pressure and temperature of the triple point is a better measure of whether a substance
is volatile or refractory than is the sublimation temperature used in Section 2.2.2, which clearly
depends on pressure. The lower the triple point values, the more volatile the substance; the
higher the triple point values, the more refractory the substance. For water the triple point values
are 6.1 Pa and 273.16 K, whereas for iron the values are many billions of Pa and thousands of
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Figure 4.11 The typical form of a phase diagram. For very few substances, notably water, the solid +
liquid phase boundary slopes to the left, and not to the right as here.

K. Water is volatile, as are all icy materials, whereas rocky materials, which include iron and
other metals, are more or less refractory. Carbonaceous materials are intermediate.

In later chapters you will meet phase diagrams, not only in relation to the interiors of specific
bodies, but in the context of atmospheres too.

Question 4.7

Water is unusual in that the solid–liquid phase boundary slopes to the left from the triple point,
and not to the right as in Figure 4.11. Describe the phase changes that occur when water in the
gas phase at 273.10 K is gradually compressed at this temperature, to pressures greatly in excess
of 6.1 Pa.

4.5 Energy Sources, Energy Losses, and Interior Temperatures

Interior temperatures are an important property of a planetary body. For example, along with
composition, they largely determine whether there are any liquids in the interior, and conse-
quently whether a powerful magnetic field is possible. Temperatures in the past can determine
whether core formation has occurred, and whether other compositional divisions have become
established. Temperatures also determine the dynamics of the interior, such as the rate of any
convection. And the thermal history of a planetary body helps to determine the nature of the
surface and of any atmosphere, as you will see in later chapters. The temperatures inside a body
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at any particular moment in its history depend on the accumulated effects of the energy sources
and the energy losses at all earlier times.

It is important to distinguish between the internal energy of a body, its temperature, and
heat. The internal energy consists of kinetic and potential energy. The kinetic energy is almost
entirely in the random energy of motion of the particles (atoms and molecules) that constitute
the body (the motion of the body as a whole is excluded). The potential energy is the energy of
interaction between the particles, be this gravitational or electrical. It generally increases as the
mean separation between the particles increases. The temperature of the body is proportional to
the random kinetic energy per particle. Heat is a particular form of energy transfer, i.e. transfer
that is random at a microscopic level. For example, when a body at a certain temperature is
in contact with a body at a lower temperature there is a net transfer of random energy from
the higher to the lower temperature region through the random collisions of the microscopic
particles at the interface. ‘Heat’ is often used interchangeably with ‘energy’. This is avoided
here unless the language would otherwise sound peculiar. Power is the rate of energy transfer,
by heat, or by any other means.

If a region is a net receiver of heat its temperature might rise, and if it is a net loser its
temperature might fall. Temperature changes can also be caused without heating, by any other
process that causes a rise in the random kinetic energy part of the internal energy. One example
is the temperature rise when two bodies collide. However, heat transfer does not always give a
temperature change. For example, heat fed into a solid at its melting point does not cause a rise
in temperature but a change in phase from solid to liquid. When a liquid solidifies at its melting
point it gives out heat with no change in temperature. Heat that produces no temperature change
is called latent heat. It is the energy that has to be supplied either to increase the average
separation between the particles against their chemical attraction for each other, or (e.g. water) to
break chemical bonds between the molecules. In either case there is an increase in the potential
energy component of the internal energy.

It is important to stress that the present-day interior temperatures do not depend on the present
energy sources and losses, but on their accumulated effect right back to the formation of the
body. A familiar example of this dependence on history is the heating of water in an electric
kettle. The temperature of the water at any instant does not depend on the flow of electric current
and the energy losses at that instant, but on their earlier values. We cannot therefore separate
the present from the past when we consider energy sources and losses in a planetary body.

4.5.1 Energy Sources

Energy sources no longer active: primordial energy sources

You saw in Chapter 2 that planetary bodies are thought to have been built up from planetesimals
and other bodies in a process called accretion. This led to temperature rises as the kinetic energy
of the infalling material was partially converted to internal energy of the surface materials at
the point of impact. For the giant planets there was also a significant infall of nebular gas.
The kinetic energy of the infall, solid or gas, was derived from gravitational accelerations, and
so this accretional energy, as it is called, came from the conversion of gravitational energy to
internal energy.

If the rate of accretion was low, much of the internal energy would have been lost by IR
radiation from the surface to space, so the interior temperatures would not have risen much.
But if the rate of accretion was high, the hot surface would have been buried, leading to raised
temperatures in the whole interior. For a given mass of impactor, the energy transfer is greater,
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the more speed the impactor picks up as it is accelerated by the gravitational field of the body to
its point of impact on the surface. This leads to accretional energy per unit mass being roughly
proportional to �mR2, where �m and R were the then current mean density and radius respectively
of the planetary body. Therefore, in large bodies, rapid accretion will lead to extensive interior
melting.

Accretion is a primordial source of energy, in that accretion is not continuing today on an
important scale. But the effect of accretional energy lives on, as you will see later. Another
primordial source is any magnetic induction during the T Tauri phase of the proto-Sun
(Section 3.1.6). This could have given considerable temperature rises in bodies of asteroid
dimensions.

The other primordial source of importance was short-lived radioactive isotopes. Of particular
importance was 26Al, which decays to 26Mg. Studies of isotope ratios in meteorites indicate that
this isotope accounted for a significant proportion of the aluminium present in the Solar System
at its birth; 26Al has a half-life of only 0.73 Ma, and so there are about 62 half-lives in just the
first 1% of Solar System history.
� By what factor did the initial quantity of 26Al decrease during this time?
With a halving of the quantity every half-life the decrease in 46 Ma was by a factor of 2−62 of its
initial quantity, i.e. 2�2 × 10−19. Thus 26Al is long gone. But the shortness of its half-life, and the
estimates of a modest initial abundance, indicate that the initial rate of energy release was high.
If the isotope was distributed throughout the body, or concentrated at its centre, most of this
energy would have been contained, and this radiogenic heating would have given considerable
temperature rises in bodies of all but the smallest size. If the isotope was concentrated in the
surface, then a greater proportion of its energy would have been lost to space. The loss of a
greater proportion of energy when an energy source is concentrated at the surface occurs with
other energy sources too.

The source of 26Al, and of other short-lived isotopes, is thought to have been supernovae –
massive stars ending their lives in huge explosions that generated the isotopes and implanted
them in the interstellar medium from which the Solar System was born.

Differentiation

Primordial sources could have raised the temperatures of the interior of a planetary body to the
point where an important process occurred that is itself an energy source, and in some bodies it
might still be active today. This is differentiation (Section 3.1.6) – the separation of layers of
different density. For differentiation to occur, the chemical forces binding different substances
together must be weaker than the gravitational forces that tend to separate the denser substances
downwards. For example, if the Earth formed with a homogeneous composition throughout
(homogeneous accretion) and subsequently underwent partial or total melting, then most of the
iron would drain downwards to form a core, and most of the other materials would float upwards
to form a predominantly silicate mantle. This downward separation of denser materials would
have converted gravitational energy into internal energy, with a consequent rise in temperature.
There would have been no such energy source if the iron core formed first and the silicate
mantle was acquired later (heterogeneous accretion).

Differentiation can also result from the cooling of the interior. For example, if two liquids
are already mixed and the temperature falls, the liquids can unmix, the denser settling towards
the centre of the planetary body.
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Meteorites provide observational evidence that differentiation has occurred. For example,
irons and achondrites are readily interpreted as fragments of asteroids that differentiated to form
iron cores and silicate mantles, irons being fragments of the core and achondrites fragments of
the mantle (Section 3.3.4). The Widmanstätten pattern in irons (Section 3.3.2) is just what is
expected from differentiation in which a body of iron melted and then formed a core, which
then cooled slowly under the insulating mantle of the asteroid. Stony-irons could come from
the core–mantle interface. By contrast, the chondrites seem to represent the sort of material that
was around in the asteroid belt before any differentiation occurred.

Energy sources that can still be active

Ongoing differentiation is one possible ‘live’ source of energy in planetary interiors. Another is
latent heat released when a liquid solidifies.

A further type of active source is radiogenic heating. Of particular and widespread importance
are the four long-lived radioactive isotopes 235U� 238U� 40K� 232Th. Table 4.4 lists their half-
lives and an estimate of the power they would have been releasing 4600 Ma ago in a typical
rocky material. The same data are also included for 26Al. You can see that, unlike 26Al, their
half-lives are comparable with or exceed the 4600 Ma age of the Solar System, and so these
isotopes can have provided energy throughout the life of the Solar System, though at a declining
rate as they decay. They are distributed non-uniformly in the interiors of many planetary bodies.
For example, in the Earth there is a significant concentration into the outer 30 km or so, a result
of earlier partial melting at greater depths.

The other ‘live’ source of importance in some bodies is tidal energy.
� Recall what a tide is, and how a tide is caused.
In Section 1.4.5 you saw that a tide is a distortion produced by differential gravitational forces.
Now that you have met the concept of gravitational field (equation (4.5)) it is better to think
of this as a differential field, which we can call a tidal field. Figure 4.12 shows the elongation
of the whole Earth caused by the tidal field of the Moon. The rotation of the Earth carries
the elongation slightly ahead of the line connecting the centres of the Earth and Moon, but of
crucial importance to tidal heating is that this rotation also moves material into and out of the
elongation, as illustrated by the point P in Figure 4.12, which is fixed on the Earth’s surface.
From the viewpoint of the Earth’s interior, the elongation sweeps like a wave through it –
literally, a tidal wave. This flexing increases the interior temperatures in the Earth.

A second, smaller tidal effect is due to the variation in distance between the Earth and the
Moon. As the Moon moves around the Earth in its elliptical orbit, the size of the tidal elongation
varies, being least when the Moon is nearest to the Earth (at perigee), and greatest when it is
furthest (at apogee). This is another way that the Earth’s interior is flexed.

The Sun produces similar types of effect, but even though the Sun is far more massive than
the Moon it is much further away. Therefore, the solar tidal field across the Earth is about

Table 4.4 Radioactive isotopes that are important energy sources

Isotope 26Al 235U 40K 238U 232Th

Half-life/ Ma 0.73 710 1300 4500 13 900
Power a/10−12Wkg−1 104 3 30 2 1

a This is per kg of ‘typical’ rocky material 4600 Ma ago. The values are only
illustrative.
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Figure 4.12 Tides (greatly exaggerated) in the Earth due to the Moon (a) at some instant and (b) about 6
hours later, with the orbital motion of the Moon exaggerated five times. P is fixed to the Earth’s surface.

46% of that due to the Moon. Overall, the rate at which heat is being generated by tides in the
Earth today is about 30 times less than the rate at which heat is being released from long-lived
radioactive isotopes. By contrast, in Io, the innermost large satellite of Jupiter, tidal energy is
by far the main internal energy source.

For any two bodies, with masses M and m, the power Wtidal of tidal heating of either of them
is proportional to various properties of the two bodies and their orbit, including, among other
properties, those in the following expression:

Wtidal ∝ �Mm�2Re/a6 (4.13)

where R is the radius of the body whose tidal heating is being evaluated, e is the eccentricity of
their orbits, and a is the semimajor axis of the orbit of one with respect to the other. Note how
rapidly tidal heating decreases as a increases.

The ultimate source of tidal energy is the rotational energy of the bodies concerned, and the
energy in their orbital motions.
� Is it then possible for tidal heating to be associated with changes in rotation rates, and

changes in orbital motion?
This is not only possible, but must be the case – the internal energy gained through tides must
equal a loss of kinetic energy in rotation or orbital motion.

Solar radiation

A small planetary body might for a long time have had no significant energy source except for
solar radiation. In this case its interior will be at a fairly uniform temperature determined by a
steady state in which the rate at which the body absorbs solar radiation is equal to the rate at
which it emits radiation to space. Departures from uniformity will arise from diurnal and seasonal
variations in insolation, coupled with thermal inertia. The mean surface temperature will equal
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the interior value. At a given distance from the Sun the exact value of the temperature will
depend on the fraction of the incident solar radiation that the body absorbs, and on the efficiency
with which it emits its own radiation. For typical planetary materials at 1 AU from the Sun, the
value will be about 270 K. Most planetary bodies have far higher interior temperatures, so solar
radiation is not an important energy source in such cases.

High interior temperatures do not necessarily mean that the rate of energy input from sources
other than solar radiation greatly exceeds the solar input. A modest source confined to a
small core would give high core temperatures and a temperature gradient to the surface. If
the surface layer is a good thermal insulator, the interior can be hot throughout much of its
volume. Temperature gradients are themselves important, because they can drive processes such
as convection (Section 4.5.2).

Question 4.8

Draw graphs showing qualitatively how the rate of energy input to a planetary body from the
various energy sources outlined above might have varied during the 4600 Ma of Solar System
history.

Question 4.9

(a) Use equation (4.6) to show that the difference in the magnitude of the gravitational field
across a body of radius R due to a body with a mass M a distance r away is approximately
4GMR/r3 if r is much greater than R. (It is the difference along the direction to M that is
required.)

(b) Hence show that, for the Earth, the solar tidal field is 46% of the lunar tidal field.

4.5.2 Energy Losses and Transfers

As well as gaining internal energy from various energy sources, planetary bodies also lose
internal energy. In the near vacuum of interplanetary space, energy is not conducted or convected
away from the body, and so it is by emitting radiation that the internal energy is lost. For
an atmosphereless body this radiation is from the surface. If there is a substantial atmosphere
then a proportion, perhaps all, of the radiation is from the atmosphere. Overall, the radiation is
somewhat like that from an ideal thermal source (Section 1.1.1), and so the wavelengths depend
on the temperature of the source, as indicated in Figure 4.13. For planetary bodies the radiation
is predominantly at IR wavelengths.

In order to be radiated away, the internal energy must first reach the surface or atmosphere,
and there are several ways in which this happens, as follows.

Radiative transfer

This process was outlined in Section 1.1.3, and can be thought of as an outward diffusion of
photons. The rate of energy transfer increases very rapidly as temperature increases, and as the
opacity of the interior decreases. Planetary interiors are too cool and too opaque for radiative
transfer to be important, except perhaps in certain zones deep in the interiors of Jupiter and
Saturn.



ENERGY SOURCES, ENERGY LOSSES, AND INTERIOR TEMPERATURES 155

MicrowavesUltraviolet Visible Infrared
(middle)(near) (far)

Wavelength / µm

104

1.0

0.1

0.01

R
ad

ia
n

t 
p

o
w

er
 (

re
la

ti
ve

 u
n

it
s)

1 1010–1 103102

5770 K 300 K 3 K

Figure 4.13 The radiation spectra of ideal thermal sources at various temperatures. Note that the lower
temperature spectra have been scaled upwards to a peak radiant power of 1.

Thermal conduction

Thermal conduction is a process by which heat is transferred through the direct contact of two
regions that are at different temperatures. The more energetic particles in the higher temperature
region lose some of their random energy of motion to the less energetic particles in the lower
temperature region, just as a fast-moving ball transfers some of its energy of motion to a slower
moving ball with which it collides. There is thus a flow of random motion – of heat – from
the higher to the lower temperature region. This flow will cool the region of higher temperature
unless there is energy generation within it sufficient to offset (or exceed) the heat loss.

Clearly, conduction must play a role in transporting internal energy from the interior of a
planetary body to its exterior. Whether it is significant depends on the effectiveness of the two
remaining mechanisms, convection and advection.

Convection

Convection differs from conduction in that energy is transported by bulk flows, rather than on
an atomic scale. It is a process of energy transfer in a substance heated from below, and requires
that the substance can flow. The temperature of the heated substance increases, and it therefore
expands, becomes buoyant, and ascends, displacing the overlying cooler material downwards,
where it in turn is heated. The rising material loses energy to its surroundings, loses its buoyancy,
and descends. This sets up the cycle exemplified in Figure 4.14 by the everyday case of heating
a saucepan of liquid, where two so-called convection cells are shown in cross-section.

To obtain a closer look at convection in general, regardless of whether it is in a saucepan,
or in the atmosphere or interior of a planetary body, imagine a small parcel of material being
swapped with a parcel immediately above it. The hydrostatic equation (equation (4.11)) shows
that the raised parcel is now in a lower pressure environment. It quickly responds by expanding
until its pressure is the same as the pressure at its new level. This expansion alone causes a
decrease in the temperature of the parcel – no heat has had time to flow out of it, and the
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Figure 4.14 Convection in a pan of porridge, showing two convection cells.

decrease is solely a consequence of the expansion. The lower parcel will be compressed, and
this will raise its temperature, again with no flow of heat into it. If no heat has flowed into or
out of a parcel, then it has undergone what is called an adiabatic process. Note that an adiabatic
process does not rule out the transfer of energy, only of heat. Thus, energy is transferred through
the expansions and compressions that take place. Real processes are not strictly adiabatic – there
will be some heat transfer by conduction and by radiation. Nevertheless, an adiabatic process is
a very useful idealisation.

The crucial question is whether the parcel’s new temperature is greater or less than that of
its new surroundings. Let us focus on a parcel that moves upwards. If its new temperature is
greater than that of its surroundings, then, the pressures being the same, its density must be
lower than its surroundings. It is therefore buoyant, so it will continue to move upwards, and
convection will start.
� What will happen if its temperature is lower than its surroundings,?
Its density will then be higher than its surroundings, and it will sink back to its point of origin –
there is no convection. Corresponding conclusions apply to a parcel that moves downwards.

Whether the temperature of a raised parcel is less than that of its surroundings depends
on how rapidly the temperature of the surroundings decreases with increasing distance from
the centre – this is the temperature gradient. The critical value is the adiabatic gradient. This
is shown in Figure 4.15 along with two other gradients, A and B. If the actual temperature
gradient is greater than the adiabatic value, as in case B in Figure 4.15 (see figure caption), then
a rising parcel, which approximately follows the adiabatic gradient, is always hotter than its
surroundings and it will continue to rise. Thus, convection occurs. If the actual gradient is less
than the adiabatic value, as in case A in Figure 4.15, then a rising parcel is always cooler than
its surroundings and it will sink back, and convection will not occur. The value of the adiabatic
gradient depends on the gravitational field: the greater the field, the greater the gradient. It also
depends on various thermodynamic properties of the material of the parcel, though the details
will not concern us here.

If a substance can flow there is a strong tendency for the actual temperature gradient to
become equal to the adiabatic value. If the actual gradient is greater (B in Figure 4.15), energy
is transported at such a high rate that the deeper levels cool, thus reducing the gradient towards
the adiabatic value. If the gradient is less than the adiabatic value (A in Figure 4.15) then energy
is transported by conduction, and this is at such a low rate that the deeper levels get hotter, thus
increasing the gradient, until convection starts.

The existence of convective currents in planetary bodies does not make the hydrostatic
equation inapplicable, even though this equation requires that the gravitational force on a shell
is equal to the pressure gradient force, in which case there can be no convection. The convection
currents are quite slow, and therefore the imbalance between the two forces is relatively slight.
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Figure 4.15 The adiabatic temperature gradient and two possible actual gradients. Note that B has the
greatest gradient, because in this context the gradient is the rate of decrease of temperature with increasing
distance from the centre.

Moreover, averaged over large areas, the rising and sinking motions tend to cancel out, and so
the hydrostatic equation applies as a global average.

Convection in solids

It is natural to think of convection as being confined to fluids, and indeed convection does occur
in many of the fluid regions of planetary bodies. But it also occurs in some regions that are
solid! Solid state convection can occur if a solid behaves like a fluid, and this will be the case
if the pressure exceeds the yield strength of the solid.
� In what sort of planetary bodies are the internal pressures high?
Equation (4.12) shows that high internal pressures will be found in large planetary bodies.
Fluid behaviour is thus expected in a large planetary body, particularly if the yield strength is
reduced by raised temperatures. The rate of convection will depend on the composition and on
the buoyancy. Though the convective motions are extremely slow, e.g. of the order of 0.1 m per
year in the Earth, the associated rate of outward heat transport can exceed that of conduction.
In the case of the Earth, convection is particularly well developed and is the dominant process
of energy loss from the interior to the crust. Note that solid state convection is far too slow for
it to give rise to magnetic field generation.

There are three so-called styles of convection in rocky or icy–rocky planetary bodies. ‘Clas-
sical’ convection as in Figure 4.14 occurs, for example, in the Earth’s mantle and crust in the
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form of plate tectonics (Section 8.1.2). Stagnant lid convection is where the lithosphere (the
crust and the upper mantle) is too stiff to yield, and so convection occurs only at depth. This
can result in a rise in internal temperatures to the point where a catastrophic disruption of the
surface occurs, releasing heat, followed by restoration of the stagnant lid. This quasi-cyclic
process might be occurring in Venus (Section 8.2.7). Finally, there is lithospheric delamination.
The lithosphere loses material from its base, and this sinks into the more yielding lower mantle
(Section 5.1), its downward motion promoting convection. As well as occurring alone, it can
supplement classical convection and stagnant lid convection, as you will see in Chapter 8.

Advection

If the uppermost part of the interior of a planetary body is solid it will be at too low a pressure and
temperature to convect. But this does not leave conduction as the only mechanism of outward
energy transfer. Advection is the process of upward energy flow carried by local regions of
upward-moving liquids, such as molten rock, or water. If these erupt onto the surface we have
volcanic effusions of various sorts. But the liquids need not reach the surface. For example, if
molten rock solidifies at some depth it has still contributed to the outward flow of energy.

Table 4.5 indicates the relative importance of advection, convection, and conduction for a
few planetary bodies.

Heat transfer coefficient

Regardless of the energy transfer process, the intrinsic property of the material that determines
the rate is encapsulated in a heat transfer coefficient. This is the rate at which heat crosses unit
area of a material, per unit thickness, per unit temperature difference across the thickness. For
many planetary and smaller bodies the heat transfer coefficients are comparatively low at the
surface and in any atmosphere, and so these regions can have a significant effect on the overall
rate of energy loss.

Question 4.10

Suppose that a rocky planetary body has a weak energy source concentrated at its centre. The
interior temperatures throughout are modest, decreasing with increasing radius, almost the entire
decrease being across a thin surface layer.

Table 4.5 Mechanisms of heat reaching the surface regions of some planetary bodies
today

Conduction Convectiona Advection

Venus Probably unimportant Perhaps dominant Perhaps significant
Earth Minor contribution Dominant Minor contribution
Mars Dominant Negligible Minor contribution?
Moon Dominant Negligible Negligible
Io Minor contribution Negligible Dominant
Jupiter Negligible Dominant Negligible
Neptune Negligible Dominant Negligible

a Including any solid state convection and any large-scale lithospheric recycling.
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(a) Explain why it is likely that the only way in which energy is being transferred up to the
surface layer is by conduction.

(b) What can you deduce about the heat transfer coefficient of the thin surface layer compared
with that of the rest of the body?

4.5.3 Observational Indicators of Interior Temperatures

If planetary modellers only had the various types of energy gains and losses that might be
present, then models of the interior temperatures of planetary bodies would be very poorly
constrained. Fortunately, there are observational data that are direct indicators of the thermal
state. These include

• energy flow from the interior;
• seismic waves and the level of seismic activity;
• the degree of departure from isostatic equilibrium;
• the level and nature of geological activity at the surface, today and in the past;
• the magnetic field today, and evidence for its nature in the past.

The energy flow from the interior of a planetary body gives an indication of present-day interior
temperatures. In principle the flow can be measured via the IR radiation to space to which it
gives rise, this being the way that the energy is ultimately lost by the body. If there is flow
from the interior then the rate at which IR radiation is emitted to space would exceed the rate
at which radiation is absorbed from the Sun. In practice only for Jupiter, Saturn, and Neptune
is this IR excess large enough to have been measured accurately. For some other bodies the
present energy flow from the interior has been obtained by estimating the outward energy flow
at the surface by conduction, convection, and advection. Values for energy outflows from the
interiors of some planetary bodies are given in Table 4.2.

Seismic wave speeds can provide an indirect indication of interior temperatures.
� If there is a zone in which S waves do not travel, what can you conclude about the physical

conditions in the zone?
A zone free of S waves must have negligible shear strength, so it could be a liquid or be
highly plastic. Departures from isostatic equilibrium indicate lower plasticity, and changes in
isostasy can give an indication of how dynamic the interior is, as can the level of seismic
activity.

Geological activity is another indicator of interior temperatures, which will be elaborated in
later chapters. By examining the geological activity on surfaces of different ages it is possible
to gain insight into interior temperatures not only today but in the distant past. The present-day
magnetic field indicates whether there are liquids in convection, and past magnetic fields leave
an imprint in the rocks, enabling us to infer the nature of the field in the past, and hence gain
further insight into interior temperatures throughout the history of the body.

4.5.4 Interior Temperatures

It has been noted that the temperatures inside a planetary body at any time t depend on
the energy gains and losses at all earlier times. But the gains and losses themselves depend
on the temperatures. For example, at time t the temperature profile T�t� r� will help determine
whether there is any convection. If there is, then this will increase the energy loss rate at t, which
will influence subsequent temperatures. We thus have a complicated interplay, represented in
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Figure 4.16 The interplay between interior temperatures and the rates of energy gains and losses in a
planetary body.

the simplest manner by Figure 4.16. Planetary modellers have to grapple with this interplay
until there is self-consistency.

Though the modelling process required to obtain the interior temperatures of a planetary body
is intricate, there are three broad features that are readily appreciated. First, energy losses tend
to win in the end. Energy sources can slow down the rate of decline of interior temperatures,
and can hold interior temperatures steady, even for long periods, by producing energy at the
same rate at which energy is lost to space. But most sources of energy either have died already,
or are implanting less power as time passes. Sooner or later, interior temperatures will fall, and
ultimately all bodies will come to have internal temperatures determined by the balance between
solar radiation absorbed and IR radiation emitted to space.

Second, if sufficient time has passed since all energy sources at various depths became active,
the temperature decreases monotonically as we move outwards from the centre to the surface.
This is because the ultimate energy loss from the body is from its surface. The details of the
temperature profile depend on the radial distribution of energy sources and on the heat transfer
coefficients at each radius. Only if all energy sources have long been concentrated at the surface
will the interior temperature be the same everywhere.
� What can give this outcome?
This is the outcome if, for a long time, the only active source has been solar energy. Another
way is through the concentration of all radioactive isotopes into the surface.

Finally, a planetary body will lose internal energy faster per unit mass than a larger planetary
body, provided that the two bodies have similar heat transfer coefficients, similar interior energy
sources per unit mass, and similar spatial distributions of energy sources. This is because the
global rate of energy loss increases with the surface area A of the body, whereas the global rate
at which energy is released in the interior increases with the mass M of a body. A/M is thus a
measure of the rate of loss of internal energy per unit mass, and A/M increases as the size of
the body decreases. For a spherical body of radius R

A

M
= 4�R2

4�R3�m/3
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where �m is the mean density. This simplifies to

A

M
= 3

R�m

(4.14)

showing indeed that as R decreases the ratio increases. Thus, in a sufficiently small body,
from early in its history, any active energy sources will have been unable to compensate the
energy losses, so the interior temperatures will have declined, and the interior will already be at
temperatures determined by absorbed solar radiation and emitted IR radiation.

Question 4.11

Describe qualitatively the present-day temperature versus depth in a hypothetical planetary body
if its sole energy source (apart from solar radiation) has always been each one of the following:

(a) Accretional energy confined to its surface.
(b) Long-lived radioactive isotopes confined to a small central core.
(c) As for (b), but in a body that is a scaled-up version of that in (b).

4.6 Summary of Chapter 4

In order to develop our knowledge about the interior of a planetary body, a model has to
be constructed and adjusted until its predictions of external observations match the actual
observations as closely as possible.

A model has as its basic features a specification of the composition, temperature, pressure,
and density, at all points within the interior. For planetary bodies, variations versus radius from
the centre are dominant.

Details of the gravitational field of the body, plus other data such as mass, radius, and rotation
period, constrain the density at all points in the interior.

If the body has a large magnetic dipole moment then this is thought to be due to electrically
conducting liquid layers that are convecting. If this explanation is correct, then the location of
these layers can be deduced.

Seismic waves reveal the presence of liquid layers, the presence of regions that are plastic, and
changes in composition. Seismic waves also constrain the composition, particularly if combined
with other data.

The composition is also constrained by the composition and properties of accessible materials,
and by the relative abundances of the elements in the Solar System.

The temperatures in the interior of a body at any one time depend on the rates of energy
gains and the rates of energy losses at all earlier times. The interior temperatures are a factor in
determining whether differentiation has occurred, and they also determine the dynamics of the
interior and of the surface.

Energy sources no longer active include accretional energy and heat from short-lived radioac-
tive isotopes. Differentiation can be a primordial source of energy, or it can still be an active
source. Other active sources include heat from long-lived radioactive isotopes, tidal energy, and
solar radiation.

Energy is ultimately lost in the form of infrared radiation emitted to space by the surface
or atmosphere of the body. To reach these outer regions energy is conveyed by radiation,
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conduction, convection (in liquids or solids), and advection. Radiative transfer is negligible
(except perhaps in certain zones in Jupiter and Saturn), and the proportions of the overall flow
carried by the other three processes vary considerably from body to body.

Some insight into the thermal state of the interior of a body is provided by energy flow
measurements, by gravitational and seismic data, by its history of geological activity, and by
the magnetic field now and in the past.

There are three broad features of the thermal history of a planetary body:

(1) Except for very early on in Solar System history, interior temperatures have either been
roughly constant, or been declining.

(2) The temperatures today increase with depth.
(3) If all other things are equal, the smaller the planetary body the faster it loses internal energy

per unit mass.

Table 4.2 summarises some of the observational constraints relevant to interior models of various
planetary bodies. Other relevant data are given in Tables 1.5, 4.3–4.5, and in Figures 4.6 and 4.9.



5 Interiors of Planets
and Satellites: Models
of Individual Bodies

The models outlined here are of the interiors of the planetary bodies as scientists believe them to
be today. The evolution of planetary interiors, from the past to the present, and into the future,
is largely deferred to later chapters because of the consequences for surfaces and atmospheres.

Recall from the previous chapter that a model of the interior of a planetary body has, as its
basic features, a specification of the composition, temperature, pressure, and density at all radii
from the centre. From this basic specification, other things follow, such as internal motions,
magnetic fields, and so on. The model is arrived at through applying physical principles to
calculate the observed properties of the body, and the model is varied until an acceptable level
of agreement with the observations is obtained. It is invariably the case that a range of models
can be made to fit the observational data. The range will be wide if the data are uncertain, or if
some data are absent, such as seismic data. Therefore, a model is not unique, though for most
bodies certain features are beyond reasonable doubt.

In considering individual planetary bodies, it would be a very lengthy task to relate all
the various features of a model to the observational and experimental data that underpin it.
Therefore, we shall highlight just a few examples where specific data are strongly suggestive of
particular model features.

5.1 The Terrestrial Planets

Figure 5.1 shows models of the interiors of the terrestrial planets that highlight the main
compositional divisions within each of them. A common feature is an outer crust overlying a
mantle, which itself overlies a central core. In considering the various layers in Figure 5.1, it is
important to realise that it is cross-sections through spherical volumes that are shown. Therefore,
it is easy to get the wrong impression of the volume ratios of the different layers. For example,
from a superficial look it might seem that the volume of the Earth’s core (inner plus outer) is a
bit over half the total volume of the Earth – it extends a bit over half way to the Earth’s surface.
But the volume ratio is actually about one-sixth. A much better impression is obtained from the
cutaway drawing in Figure 5.2.

For all the terrestrial planets there is sufficient observational data to indicate that the increase of
density with depth is too great for the body to consist solely of the material at the surface, getting
denser as the pressure increases with depth. Gravitational data, as outlined in Section 4.1, have

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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been of particular importance in establishing density profiles. In accord with the observational
data, the bodies are shown differentiated, with the intrinsically denser substances lying deeper.
Thus, silicates dominate the outer layers, and iron, or iron-rich compounds such as iron sulphide
(FeS), dominate the cores. We therefore have rocky materials throughout.

Regardless of the form in which a chemical element is present, over 90% of the mass of
each of the terrestrial planets consists of oxygen, iron, silicon, magnesium, and sulphur, though
the proportions within this group vary from body to body. These are among the 15 chemically
most abundant elements in the Solar System as a whole (Table 1.5). Other abundant elements
are less well represented, notably hydrogen, helium, carbon, nitrogen, and neon. This is because
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the pure element or the common compounds, including icy materials, have densities that are
too low even at high pressures to fit the density data. It is their volatility that has led to their
scarcity in the terrestrial planets.

Table 5.1 gives temperatures, densities, and pressures at a few depths in the Earth, and
Table 5.2 gives the values at the centres of all the terrestrial planets and the Moon. Note
that these are model values, and therefore depend on the particular model adopted, so the
values are indicative and not definitive. Note also that for a given substance, its equation of
state links the three quantities in Table 5.2, and so in principle if we know any two we can
calculate the third. However, the equations are not well known, partly because the terrestrial
planets consist of mixtures of minerals in somewhat uncertain proportions, and partly because
the extreme conditions at great depths are beyond laboratory reach, though it helps that to a
fair approximation in terrestrial interiors we can ignore the effect of temperature on density.
In the case of the Earth, the density and pressure versus depth are comparatively well known,
from seismic and other data. The temperature versus depth is, however, much more poorly
constrained.

You can see in Table 5.2 that the central pressures are greater, the larger and denser the
body, in accord with equation (4.12) (Section 4.4.3). In Table 5.1 the pressures and temperatures
increase with depth.
� Could this be otherwise?
In Section 4.4.3 it was shown that pressure must increase with depth, and in Section 4.5.4
it was argued that, given sufficient time, temperature will decrease outwards from the
centre.

For a given temperature and pressure, whether a region is liquid depends on the substances
present. At a given pressure, the mantle silicates have melting points that are slightly lower than
that of pure iron (Table 2.3). However, even a small admixture of other substances into the iron

Table 5.1 Model temperatures, densitiesa,
and pressures in the Earth

Crustb

T (surface)/ K 288
� (ave)/ kg m−3 2 800

Mantle
� (top)/ kg m−3 3 300

T (base)/ K 3 300
p (base)/ Pa 1�4 × 1011

� (base)/ kg m−3 5 400

Core
� (top)/ kg m−3 9 900
� (centre)/ kg m−3 13 500
T (centre)/ K 5 500
p (centre)/ Pa 3�8 × 1011

a The densities are the estimated values in situ,
i.e. they are compressed densities.

b The crustal values are observed rather than
modelled.
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Table 5.2 Model densitiesa, temperatures, and pressures at the
centres of the terrestrial planets and the Moon

Mercury Venus Earth Mars Moon

�/ kg m−3 9300 12 500 13 500 7000 ∼ 8000
T / K 1370 3 700 5 500 2000 1600
p/109 Pa 44 286 380 43 5.9

a The densities are the estimated values in situ, i.e. they are compressed
densities. In all cases a predominantly iron core is assumed, with
Mars having an appreciable proportion of FeS.

reverses the situation, and so in several of the bodies in Figure 5.1 the mantle–core interface is
also shown as a solid–liquid interface.

Only at a level of greater detail would there be much dispute about any of the features of
Figure 5.1 and the data in Tables 5.1 and 5.2.

5.1.1 The Earth

Observational data pertaining to the Earth’s interior are particularly copious, and the model is
consequently tightly constrained. As well as an abundance of gravitational and magnetic field
data, the composition of the Earth’s surface is very well known, as are the details of its high
level of geological activity. It is the only planetary body for which we have copious seismic
data, far more than for the only other body for which we have any seismic data at all – the
Moon. Figure 5.3 shows the P and S wave speeds versus depth in the Earth.
� Do the boundaries in the model of the Earth in Figure 5.1 match those in Figure 5.3?
The division of the Earth in the model in Figure 5.1 into a crust, mantle, outer and inner cores
is apparent in the seismic data. There is plenty of evidence that at all these boundaries there is
a change in composition. The disappearance of seismic S waves in the outer core indicates that
it is liquid (Section 4.3.1). Their reappearance at greater depths indicates a solid inner core.

Iron is highly favoured for the core, because of the density indicated at this depth by the
seismic and gravitational data.
� Among the metals, what is another reason for favouring iron?
Iron is also favoured because of its high relative abundance in the Solar System. Though iron is
dominant throughout the core, models that fit the observational data need up to about 4% nickel
in the inner core (similar to iron meteorites), though the exact composition of the inner core is
uncertain. The density of the outer core needs to be about 10% lower than the inner core, and
its melting point needs to be lower too. Various minor constituents in addition to more nickel
can achieve this, such as a few per cent of iron sulphide (FeS), or even iron hydrides �FeHx�.
These hydrides could contain an amount of hydrogen equivalent to about 100 times that found
in the Earth’s oceans. The inner core is solid because of its slightly different composition, and
because it is at a higher pressure (Figure 4.11).

A liquid iron outer core is consistent with the strong magnetic field of the Earth, for which the
dynamo theory requires an electrically conducting fluid in convective motion (Section 4.2). The
crystallisation of iron from the outer core on to the inner core is thought to be the main source
of energy required at the base of the convecting outer core to maintain the convection. This
crystallisation releases latent heat and energy of differentiation (Section 4.5). It also releases
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Figure 5.3 P and S wave speeds versus depth in the Earth.

lighter elements that float upwards and this also promotes convection. It is estimated that the
solid inner core did not begin to form until roughly 1000 Ma ago. This was when the loss
of primordial energy from the core had reduced core temperatures to the point where core
differentiation started. At present, the inner core is thought to be growing by about 10 mm in
radius per century (≈ 0�1 km per Ma). At earlier times convection in the then totally liquid core
could have been sustained by the general outward loss of heat, and this still makes a significant
contribution to convection regardless of crystallisation.

In the model the mantle consists of silicates, and from samples of the mantle it is known
that the upper mantle consists almost entirely of a rock called peridotite. This is largely
a mixture of various silicates – about 60% olivine ��Fe� Mg�2SiO4�, about 36% pyroxenes
��Ca� Fe� Mg�2Si2O6, where rarely the metals can be Na, Al, or Ti), and 4% other sili-
cates. From a depth of about 400 km to about 1050 km there is a gradual transition zone
apparent in the seismic speeds (Figure 5.3) that can be explained by the gradual conver-
sion of the minerals in peridotite into higher density crystal structures that are more stable
at high pressures. The effect of such changes is particularly apparent around 410 km and
670 km. Such conversions continue down to the core, though the overall chemical composi-
tion remains much the same. The sharp changes in the speeds at an average depth of about
30 km mark the boundary between the continental crust and the mantle; oceanic crust is
thinner, 5–10 km. This is a chemical change, though the crust, like the mantle, is dominated by
silicates.

Seismic data indicate various structures in the mantle. Of particular interest is the D′′ layer
that constitutes the lowest 400 km or so. The data are consistent with silicates dominated by
�Mg� Fe�SiO3, in various forms, including a mineral called perovskite. Internal layering is also
indicated, which could be derived from slabs of the Earth’s lithosphere (see below) brought
down by mantle convection.
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The mantle as a whole is thought to contain compounded hydrogen equal in mass to at least
that in the Earth’s oceans.

The overall model composition of the Earth follows fairly closely the Solar System relative
abundances of the less volatile elements, as seen in the ordinary chondrites. Iron is underrepre-
sented in the mantle and crust because of its concentration in the core. The composition of the
crust, which is readily accessible, will be further discussed in Section 8.1.1.

Not far below the crust–mantle division, the seismic data in Figure 5.3 reveal a layer with
comparatively low speeds, present in much (but not all) of the upper mantle, and extending over
the approximate depth range 50–200 km. This indicates that around this depth the material is
particularly plastic. This plasticity is consistent with the isostasy of most of the crust.

The thermal structure of many models suggests that solid state convection is occurring in the
mantle. There is shallow convection around the low-speed layer, and larger scale convection
probably extending right down to the core, as indicated by the D′′ layer. These two types
of convective cell are shown schematically in Figure 5.4. The more plastic region of the
mantle constitutes the asthenosphere (from the Greek asthenes, meaning weak). It extends
from the base of the lithosphere (see below) to at least a few hundred kilometres, and perhaps
right down to the liquid core if that is as far as convection extends. In its upper reaches it
seems to incorporate the low-speed layer. Above the asthenosphere, the uppermost part of the
mantle and the crust is colder and therefore much tougher, though it is elastic rather than
brittle. This is the lithosphere (from the Greek lithos, meaning rock). Its average thickness
is about 95 km, with considerable local variations. Note that at the lithosphere–asthenosphere
boundary there is a change in dynamic properties, and not a change in composition. In the
lithosphere heat transfer is mainly by conduction, whereas in the asthenosphere it is mainly by
convection.

Convection in the Earth’s interior is manifest at the surface via lithospheric movements
that constitute plate tectonics. The Earth’s lithosphere is divided into a number of plates
in motion with respect to each other. At some plate boundaries one plate dives beneath its
neighbour; other boundaries correspond to upwelling that creates new lithospheric plates. Plate
tectonics is the subject of Section 8.1.2. The important point here is that, regardless of whether
convection reaches the core, plates of lithosphere are carried to great depths as part of the
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Figure 5.4 Convection in the Earth’s asthenosphere and the rigid lithosphere.
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internal convection – the lithosphere does not constitute a stagnant lid. Therefore, plate tectonics
makes an essential contribution to raising the rate of cooling of the Earth’s interior.

There is plenty of evidence that the Earth has had a hot interior ever since its birth about
4600 Ma ago, or not long after. For example, remanent magnetism in radiometrically dated
old rocks shows that the Earth’s magnetic field extends at least 3500 Ma into the past. There-
fore, if it formed undifferentiated it would soon have become warm enough to differentiate.
Thermal models indicate that long-lived radioactive isotopes are the dominant source of energy
for the Earth today. The compositional structure of the Earth, the chemical affinities of these
isotopes, and their relative abundances indicate that they are concentrated into the crust and
to a lesser extent into the mantle. Heat sources long dead, such as the energy from accre-
tion and from short-lived isotopes, still have an effect, because the Earth’s interior tempera-
tures remain a good deal higher than they would be if these extinct sources had never been
present.

Question 5.1

At some time in the Earth’s distant future its outer core will probably solidify. Describe two
observable effects this would have.

5.1.2 Venus

In its size and mean density, Venus is almost the Earth’s twin (Figure 4.1). When allowance
is made for the lower internal pressures in Venus (because of its slightly smaller mean density
and radius) then the uncompressed mean densities are even closer, and these densities are a
better basis for comparing compositions. Venus is also our planetary neighbour, and therefore
probably had available for its construction much the same sort of materials as the Earth. These
few data suggest very strongly that the interior of Venus is not very different from the Earth’s
interior, and this is reflected in the model in Figure 5.1. Support for this conclusion comes from
seven of the Soviet spacecraft that landed on the Venusian surface in the 1970s and 1980s. Six
of the craft found the sort of silicates that typify the Earth’s ocean basins, and the seventh found
silicates of the sort that typify the upper parts of the Earth’s continents.

Further support might be expected from seismic, gravitational, and magnetic field data.
Unfortunately, we have no seismic data for Venus, and it is so near to having a spherically
symmetrical mass distribution that gravitational data provide very weak constraints on the
density versus depth (Table 4.2). The spherical symmetry is largely a result of the slow rotation
of Venus, the slowest of all the planets, with a sidereal period of 243 days.
� Why is this relevant?
There is little rotational flattening, which is the main cause of departure from spherical symmetry
for a planetary body.

Evidence of a hot interior is provided by the surface of Venus. Though there is presently no
more than modest geological activity, there was a lot more a few hundred million years ago,
and the surface displays evidence of a plastic interior (Section 8.2). There is no evidence of
plate tectonics and so the lithosphere surely constitutes a stagnant lid on a convecting mantle.
In this case, radiogenic heat, produced at roughly the same rate as in the Earth, is escaping only
slowly, and the internal temperature must be rising. The dramatic effect of this on the surface
is outlined in Section 8.2. That the interior of Venus might well have been kept warmer than
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had plate tectonics developed makes it likely that a solid inner core has yet to develop. Also, a
hot mantle could suppress convection in a liquid iron core.

The magnetic field of Venus is extremely weak, and only a very small upper limit exists for
the magnetic dipole moment (Table 4.2). This could mean that there is no iron core, or that any
iron core is solid. The absence of a liquid iron core would be very surprising in light of Venus’s
broadly similar size and mass to the Earth.
� As well as an electrically conducting liquid, what other requirements are there for an

internally generated magnetic field?
Convection currents and sufficiently rapid rotation of the body are also thought to be necessary
(Section 4.2). We have already seen that core convection might be absent. Additionally, Venus
rotates slowly. Furthermore, the absence of a solid inner core might mean that there would be
none of the crystallisation of iron onto an inner core that is thought to help drive convection
in the Earth’s outer core. Note also that the Earth’s solid inner core means that the Earth’s
conducting fluid is a shell rather than a sphere, and it turns out to be easier to obtain a large
magnetic dipole moment from a shell. Thus, in spite of a very weak dipole field, we can retain
a liquid iron core in our models of Venus.

Overall, taking everything that we know about the interior of Venus, it seems beyond reason-
able doubt that it has not only a hot interior, but a liquid iron core and a silicate mantle of broadly
similar sizes and compositions to those of the Earth. At a more detailed level of modelling there
is far more uncertainty.

5.1.3 Mercury

Observational data on Mercury are sparse. We know the mass and the radius, and so the mean
density can be calculated, and it is between that of Venus and the Earth. However, Mercury is a
good deal smaller in radius, and so the internal pressures are considerably less. The uncompressed
mean density of Mercury is not much less than the mean planetary value of 5430 kg m−3,
whereas the mean densities of Venus and the Earth are reduced to 4000–4500 kg m−3 when
uncompressed. Therefore, the uncompressed mean density of Mercury is actually greater than
that of the Earth, and is the highest of all the planetary bodies. There is only one abundant,
sufficiently dense substance that must predominate – iron. Models of the formation of Mercury
indicate temperatures high enough for complete differentiation, in which case Mercury has
an iron core and a silicate mantle, and the iron core must account for a large fraction of its
volume, as in Figure 5.1. Initially, Mercury might have had a silicate–iron ratio more similar
to Venus and the Earth, with some of the silicate mantle removed by a large impact after
differentiation.

The surface has not been sampled, but IR spectroscopic data from Earth-based telescopes
indicate the expected silicate composition, in particular feldspars that include calcium, and
perhaps pyroxene (Tables 4.3, 6.1).

Gravitational or seismic data could confirm the existence of an iron core. Unfortunately, as for
Venus, we have no seismic data, and the gravitational data are similarly unhelpful, for the same
reason as for Venus – the sidereal rotation period of Mercury is 58.6 days, and such slow rotation
has led to inappreciable flattening. The planet is therefore nearly spherically symmetrical, and
so we can learn little about the increase of density with depth. We do know, however, that the
core pressures are low (Table 5.2), in which case it can be shown that the iron core would not
have acquired much oxygen (in the form of iron oxides). Also, sulphur, the other element that
could be compounded in abundance in an iron core (as FeS), could well have been lost from
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Mercury, because of the high temperatures so close to the Sun. Therefore, the core could be
fairly pure iron, and consequently denser. In this case, to meet the mass constraint the mantle
would be less dense, such as would be the case if it contained less iron (in the form of FeO).

The surface of Mercury (Section 7.2) indicates no internally driven geological activity since
very early in Solar System history – it is covered in impact craters that have accumulated over
billions of years, with little sign of removal. This lack of activity implies that the lithosphere has
long been thick, and this is consistent with the high rate of cooling expected from Mercury’s
small size. However, a thick, immobile lithosphere would then reduce the cooling rate, which
raises the question – is at least some of the iron core still liquid? In this case, Mercury could
have a non-negligible magnetic dipole moment.

In fact, this is the case (Table 4.2), which indicates that at least some of the iron core is liquid.
Thermal models indicate that, with a large iron core cooling slowly by conduction through a
largely lithospheric mantle, and with a modest abundance of long-lived radioactive isotopes, the
outer part of the core might still be molten, provided that the core contains a small proportion of
lighter elements, e.g. sulphur, to reduce the solidification temperature – a core freezing time of
about 500 Ma is deduced for a pure iron–nickel core. The inner core, being at a greater pressure
and possibly with a slightly different composition, is predicted to be solid, as in the Earth. But
even with a liquid shell, Mercury’s slow rotation counts against a strong magnetic field being
generated. The rather small dipole moment could well be consistent with slow rotation. A less
likely possibility is that the observed field is due to iron-rich surface rocks magnetised early in
Mercury’s history, perhaps by a strong field in an iron core that had not then solidified. In that
early time Mercury would also have been rotating faster – its rotation has since been slowed by
tidal interactions with the Sun.

The existence of a liquid core early in Mercury’s history is borne out by the surface topog-
raphy, which indicates contraction early on, such as would result from the solidification of at
least some of the core, but not necessarily all of it.

Question 5.2

State and justify your expectations regarding the existence and extent of an asthenosphere in
Venus and in Mercury.

5.1.4 Mars

Mars is somewhat larger than Mercury but has the much smaller uncompressed mean density
of 3700–3800 kg m−3, which is also significantly smaller than the uncompressed value for the
Earth �4000–4500 kg m−3�. The surface has been sampled, and from this and other data it is
clear that iron-rich silicates are common in the crust. Nevertheless, the low uncompressed mean
density indicates that, overall, iron is less abundant in Mars than in the Earth.

Seismic data for Mars are very limited, confined to measurements attempted in 1976–1980
by the Viking 2 Lander. No seismic activity was detected, though the winds were stronger than
expected, and would have masked all but the strongest seismic events by terrestrial standards.

Evidence for a core intrinsically denser than the rest of the planet is provided by the value of
C/MR2

e , given in Table 4.2.
� What is the value of C/MR2

e for a homogeneous sphere?
For a homogeneous sphere the value is 0.4 (Section 4.1.3). The Martian value of 0.365 is
sufficiently smaller to be consistent with a small, iron-rich core. The value of C/MR2

e has been
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obtained from the rotation period T , the value of the gravitational coefficient J2, and the rotation
axis precession period (0.1711 Ma), as outlined in Section 4.1.3.

The core is thought to consist of a mixture of iron (with a few per cent of nickel) plus less
dense materials such as FeS and perhaps magnetite �Fe3O4�, though core pressures might be too
low for the latter to be a significant component. Such mixtures arise from thermal models of
Mars indicating that differentiation might have been less complete than in the Earth. Incomplete
differentiation is also consistent with the iron-rich surface silicates and with models than indicate
a higher content of FeO in the mantle than in the case of Earth. Isotopes in Martian meteorites
suggest core formation within a few tens of million years of the formation of Mars.

Evidence that at least part of the core is liquid is provided by the Love numbers of Mars
(Section 4.1.4), derived from the Martian tide raised by the Sun, as observed by Mars Global
Surveyor. Even though this tide is only a few millimetres in amplitude at the surface, the
associated Love number is too large for a wholly solid interior. Further support for a (partly)
liquid core comes from thermal models of Mars. These indicate that a thick lithosphere formed
early in Martian history, which is consistent with the gravitational data on a regional scale
and with the surface features (Section 7.3). Such a lithosphere could well have acted as a
stagnant lid. With a stagnant lid, the core could be warm enough to be (partly) liquid provided
that it contains lighter elements, such as sulphur in the form of FeS. It is possible that there
is a solid inner core consisting of purer iron–nickel, possibly half the radius of the complete
core.

Only an upper limit exists for the magnetic dipole moment (Table 4.2), and this is less than
0.003% that of the Earth. Given the rapid rotation of Mars, if indeed part of the core is liquid,
this indicates that it is not convecting. One possibility is that there is no solid inner core forming.
Such a completely liquid core is possible if the melting point has been sufficiently lowered
by other ingredients. If sulphur accounts for more than about 15% of the core, it would be
entirely liquid today. However, such a liquid core seems to have generated a magnetic field in
the past. The evidence comes from weak remanent magnetism detected in crustal rocks by Mars
Global Surveyor, notably in the more ancient areas of Mars, indicating that Mars had a magnetic
field that died perhaps as long ago as 4150 Ma. The preferred explanation for this demise is a
rather low sulphur content and the consequent early rapid growth of an inner core, followed by
slower growth, so that we have since had a non- or weakly convecting liquid shell. The lack
of correlation of the remanent magnetism with topography suggests a magnetised layer deeply
buried, presumably including iron-rich minerals.

Figure 5.1 shows an iron-rich core with a radius near the middle of the 1300–1800 km range
of sizes that are all consistent with a mantle of composition suggested by the Martian meteorites
and with the measured value of C/MR2

e (Table 4.2). Variations in the detailed composition of
the core contribute to the range of radii.

The modelled mantles are a few per cent more dense than the Earth’s mantle. A greater
proportion of FeO (ferrous oxide) remaining in the Martian mantle can account for this, The
crust is also iron rich, with Fe2O3 (ferric oxide), which gives Mars its red tint. If FeS were a
significant proportion of the core then the mantle would be correspondingly depleted in sulphur.
There is some evidence of such depletion from the Martian meteorites. Though they are samples
of the crust, they can be used to make inferences about the composition of the mantle, because
the crust was derived from the mantle. One model has the upper mantle dominated by olivine,
underlain by a denser mix. If the core is sufficiently small, then the pressures at the base of the
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mantle could be sufficiently high to create a thin shell of the even denser mineral perovskite, as
at the base of Earth’s mantle.

Question 5.3

Explain why we would know much less about the interior of Mars if the planet rotated very
slowly.

5.2 Planetary Satellites, Pluto, EKOs

The large planetary satellites, Pluto, and the large EKOs fall into two broad groups. The Moon,
Io, and Europa are terrestrial bodies in that they are predominantly rocky in composition.
Ganymede, Callisto, Titan, Triton, Pluto, and the large EKOs (and presumably the small ones
too) differ from the terrestrial bodies in that a substantial proportion of the mass of each of them
consists of icy materials, so they are classified as icy–rocky bodies.

5.2.1 The Moon

Next to the Earth, the Moon is the most extensively studied planetary body. This is because
it is by far the closest to us. It has been visited by numerous spacecraft, and is the only other
body on which humans have walked, during the Apollo 11, 12, 14–17 missions, between 1969
and 1972.

The Moon is sufficiently small that its uncompressed mean density will not be much less than
its actual mean density of 3340 kg m−3. Even so, this is considerably less than the uncompressed
mean density of the Earth and even of Mars, strongly indicating that iron is comparatively
scarce in the Moon. The value of C/MR2

e has been accurately obtained from a combination
of J2 and the Moon’s response (as determined by laser ranging) to tidal torques exerted by
the Sun and the Earth. The value, 0.394 (Table 4.2), is slightly but significantly smaller than
that of a homogeneous sphere. Because of the slight central compression, this indicates that the
Moon is not homogeneous, but has a small dense core. If the core is nearly pure iron then it
will be of 300–400 km radius, but if it contains a high proportion of iron-rich compounds, such
as FeS, then because these are less dense than iron, the core radius will be somewhat larger.
Figure 5.5 shows a model of the lunar interior in which the core, of 470 km radius, is assumed
to include a fairly high proportion of iron-rich compounds. A pure FeS core would have a radius
around 530 km.

Further evidence for an iron-rich core includes the effect of the Moon on the Earth’s magnetic
field lines, which indicates the presence of a considerable mass of an electric conductor. There
is also depletion of siderophile elements in the mare basalts – these would have been carried
downwards during core formation. Radiometric dating of lunar minerals places this differentia-
tion at about 25–30 Ma after the impact that formed the Moon.

A rough indication of present-day internal temperatures has been obtained from measurements
of the electric currents induced in the Moon by the magnetic field in the solar wind. These
electric currents can be measured through the magnetic fields that they themselves generate. For
a given solar wind magnetic field, the higher the internal temperatures, the larger the currents.
The temperatures seem to increase with depth, reaching 1000 K or so at 300 km, and 2000 K or
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Figure 5.5 A cross-section through the Moon.

so at 1000 km. Further data on internal temperatures have been obtained from Love numbers
derived from the 100 mm surface tide at the lunar surface, generated mainly by the Earth. This
tide was measured from the round-trip laser travel times to the retroreflectors left by the Apollo
missions. This gives the distance at any instant with the required precision. A partially liquid
interior is indicated. Such a warm interior is consistent with the stagnant lid provided by the
Moon’s thick lithosphere.

We also have seismic data. At the Apollo 11, 12, 14–16 sites, seismometers were set up
successfully. The Moon is not nearly as seismically active as the Earth, but ‘moonquakes’
(mostly caused by tidal stresses induced by the Earth, or by surface impacts) have yielded the
data in Figure 5.6. These two profiles were seen earlier in Figure 4.9(b) where it was noted that
they are each the average of a number of profiles. This has obscured evidence of features visible
in most individual profiles. Note especially the large uncertainties, a result of the infrequency
of moonquakes and the small number of seismometers, all on one side of the Moon.
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Figure 5.6 P and S wave speeds versus depth in the Moon.
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The rapid increase in P and S wave speeds at shallow depths is consistent with a heavily
fractured surface layer that becomes less fractured with depth because of the increasing pressure,
and is unfractured below a depth of about 20 km. Figure 7.4 shows that there is a small but
sharp increase in the speeds at about 40 km (on the near side), widely believed to be due to a
change in composition, from the lower density silicates found in abundance at the surface to
higher density silicates including the pyroxene and olivine that dominate the Earth’s mantle.
Samples of the higher density silicates have also been found on the lunar surface, excavated
by huge impacts that created large craters. Thus, in addition to the core, there seems also to
be differentiation into a crust and mantle. Within the mantle, at a depth of about 500 km, there
might be an increase in wave speeds sudden enough to indicate a change in composition – a
change in crystal structure in mantle materials would not occur at this depth.

Wave speeds are not shown beyond a depth of about 1000 km. There are too few data from
waves that traversed greater depths. This could be due to the deflection of downward-propagating
waves from near-surface sources. It is also the case that there have been no moonquakes
sufficiently close to the centre of the far side for undeflected waves to have traversed the core.
Another possibility is strong attenuation in a plastic and therefore warm medium. It is thus
possible that there is partial melting within a radius of about 700 km of the centre. Thus the
transition from solid to a partial or total melt could be within the mantle, as shown in Figure 5.5,
and not, as in the case of the Earth, at the core–mantle boundary. Thermal models of the Moon,
incorporating measured abundances of radioactive isotopes, are consistent with a deep-lying
(partially) molten region. These models also indicate that the lithosphere became as much as
60–100 km thick within a few hundred million years of lunar formation. The ancient cratered
surface supports this conclusion, because a thin lithosphere would have allowed remoulding of
the surface.

The lunar magnetic dipole moment is too small to measure, so we only have an upper limit,
about 10−6 that of the Earth. Clearly, if any iron-rich core is (partially) liquid, then either it is
not convecting today, or the rotation of the Moon is too slow for a field to be generated – the
sidereal rotation period is 27.3 days. However, weak magnetic fields have been detected in the
surface rocks. In some cases they seem to have been produced by the effects of impacts, but
in other cases exposure to a magnetic field 3500–4000 Ma ago seems to be required. Clearly,
one possible source of such a field is the lunar interior, indicating that there might have been a
time when the liquid proportion of any iron-rich core was more extensive or more convective.
The lunar rotation would also have been more rapid then – it has since been slowed through
tidal interactions with the Earth. However, it is very likely that the magnetic dipole moment
was always considerably smaller than that of the Earth.

There is a lot of observational evidence that the Moon has a whole-body composition broadly
similar to that of the Earth’s mantle. This is consistent with the theory of the origin of the Moon
outlined in Section 2.2.4, in which a differentiated embryo 10–15% of Earth’s mass collided
with the Earth and ejected the material from which the Moon formed, in as little as a year or so,
giving the Moon a warm birth. In this theory, very little of the iron-rich cores of the Earth and
the embryo would have been ejected, and so the Moon formed largely from material derived
from the mantles of the two bodies. The embryo would have had a similar composition to the
Earth, having been formed in the same region of the Solar System, and this is borne out by the
oxygen isotope ratios 18O/16O and 17O/16O, which are similar in the Earth and the Moon. The
same is true of chromium isotopes.

Therefore this theory explains the broad similarity between the Moon’s overall composition
and the composition of the Earth’s mantle, and the corresponding global depletions in the Moon
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of iron and the siderophile elements (with additional depletion in the lunar mantle due to lunar
core formation). It also explains the Moon’s observed depletion in volatile and moderately
volatile substances, and the corresponding enrichment in refractory substances – the material
sprayed out by the embryo collision would have been hot enough to lose a high proportion of its
volatile materials to space. The anorthosite composition of the lunar crust (Section 7.1.6) is also
explained by the impact origin – the final stages of lunar accretion would have involved a heavy
bombardment that would have melted the surface thus allowing these low-density silicates to
rise to the top.

Finally, from the present 5� inclination of the Moon’s orbit with respect to the ecliptic plane, it
can be inferred that this inclination was initially about 10� with respect to the Earth’s equatorial
plane. This can be shown to be consistent with an impact origin. From all this evidence, the
embryo collision theory is highly favoured for the origin of our satellite.

Question 5.4

Outline the factors that are relevant to explanations of why the interiors of the Moon and Mars
are cooler than that of the Earth. You should refer to the general principles in Chapter 4, rather
than try to come to any firm conclusions.

5.2.2 Large Icy–Rocky Bodies: Titan, Triton, Pluto, and EKOs

The remaining large satellites and Pluto are all in the outer Solar System, and so we have
to consider the possibility that icy materials are substantial components. Whether this is the
case is indicated by their mean densities, and the values for all but Io and Europa are suffi-
ciently low to indicate that they are icy–rocky bodies, with icy materials accounting for
roughly half the mass in the iciest of them. In the solar nebula the icy/rocky mass ratio is
thought to have been about 3:1, and so it seems that the greater volatility of icy materials
has somehow led to their depletion in these bodies, and to an even greater depletion in Io
and Europa. Hydrogen and helium are excluded as significant contributors to the mass because
only in the giant planets are pressures sufficient to compress these substances to appreciable
densities.

Water was undoubtedly the most abundant icy material in the solar nebula, and it condensed
in and beyond the Jupiter region. Beyond the Jupiter region the more volatile ices condensed,
notably ammonia �NH3�, methane �CH4�, carbon dioxide �CO2�, carbon monoxide (CO), and
molecular nitrogen �N2�. If chemical equilibrium was attained, then at the low temperatures of
the outer solar nebula, nitrogen would have been present largely as NH3 and NH3�H2O, and
carbon as CH4 and CH4�7H2O. However, the low densities in the outer Solar System disfavoured
chemical equilibrium. In the interstellar medium nitrogen is present mainly as N2 and carbon as
CO, and so the outer Solar System could also have had appreciable quantities of CO, N2, and
N2�6H2O. Near to where a giant planet was forming, the higher densities and raised temperatures
might have promoted a shift towards chemical equilibrium. Sufficiently close to a protogiant
many icy materials would have been unable to condense.
� Why not?
A protogiant was luminous, and so the temperatures in the protosatellite disc (Section 2.3.1)
would have been too high.

Recipes for icy–rocky bodies thus have a range of icy ingredients available. The proportions
depend on the volatility of the different ices. Water is not only the most abundant icy material,
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but also the least volatile, and it is stable over a wide range of conditions. Thus, water is
expected to be the most common icy material in the interiors of all of the icy–rocky planetary
bodies. The more volatile icy materials are expected to be more abundant, the further the body
is from the Sun, and they could be concentrated towards the surfaces. This expectation is borne
out by what is known of the surface compositions.

The large icy–rocky bodies are Ganymede, Callisto, Titan, Triton, and Pluto. Ganymede and
Callisto are two of the four Galilean satellites of Jupiter, and these four will be considered
together in the next section. Therefore we start with Titan, the largest satellite of Saturn, and
second only to Ganymede in size among the planetary satellites of the Solar System.

Titan

Titan has a mean density of only 1880 kg m−3. This is consistent with 52% of its mass being
silicates, and the remainder being predominantly water (as ice) with about 15% NH3. Some
CH4 should also be present. NH3 and CH4 are probably caged at a molecular level within
surrounding water molecules, in what you have seen are called clathrates. Titan has a substantial
atmosphere, largely of N2 (probably derived from NH3) but with a few per cent of CH4, and
other gases. Differentiation seems likely given the calculated accretional energy and radiogenic
heating. The magnetometer on the Cassini Orbiter (Table 4.1) has failed to detect a magnetic
field of internal origin – the magnetic field at the equator is at least 10 000 times less than
that at the Earth’s equator. The Orbiter, the Huygens Lander, and Earth-based IR observations
indicate a surface dominated by water ice, but with ices of CH4 and other hydrocarbons also
present in abundance. The surface appears young, perhaps no more than 300 Ma in some
places.

Figure 5.7 shows one possible model of Titan’s interior, in which it is assumed that differ-
entiation has proceeded to the point where an iron-rich core has separated from the silicates.
This is overlain by a silicate mantle depleted somewhat in siderophile elements, overlain in turn
by a mantle of icy materials, predominantly water. If an iron-rich core has not separated, then
the silicate mantle would have a 100–200 km larger radius. Any iron core could be (partially)
molten, but is not generating a detectable magnetic field, perhaps because convection is not
vigorous enough, and because Titan rotates rather slowly, in 15.9 days.

The structure of the icy mantle depends on the temperature and pressure versus depth, which
are unknown. In Figure 5.7 a layer of liquid is shown over the depth range 75–375 km, which
is possible if the temperatures are in the approximate range 220–250 K and the water is mixed
with various recipes of other icy materials. Salts would also be dissolved in the water, in which
case they would dissociate into ions, making the liquid electrically conducting. This could be
detected by the magnetic field that would be generated by the passage of this conducting liquid
through Saturn’s magnetic field, and would be distinct in its spatial form from the magnetic
field that has been ruled out by Cassini. However, so far, the only magnetic effect of Titan on
Saturn’s magnetic field is due to Titan’s atmosphere.

Triton, Pluto, and EKOs

Triton is the largest satellite of Neptune. Triton is in a retrograde orbit, suggesting that is was
therefore captured by Neptune after Triton formed (Section 2.3.1). The tidal energy released
upon such capture would probably have melted Triton, in which case it is certainly differentiated
(Figure 5.7), though it is probably solid throughout now, except perhaps for partial melting in
the lower part of the icy mantle. Some of the mantle is probably an asthenosphere, perhaps
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Figure 5.7 Cross-sections of Pluto and the large satellites in the outer Solar System.

most of it. Ices of N2� CH4, CO, and CO2 have been detected on the surface. Observations,
particularly from the Voyager 2 spacecraft in 1989, reveal ongoing volcanism involving the very
volatile N2. This is thought to be a lasting consequence of the primordial tidal energy released
during capture, and of subsequent radiogenic heating. Volcanism involving icy materials is
called cryovolcanism (from the Greek kruos, meaning icy cold, or frost).

Distant Pluto is small, and has never been visited by a spacecraft. Consequently, we do not
know much about its interior. Its mass has been obtained from the orbit of its satellite Charon,
which gives the sum of the masses of Pluto and Charon (equation (4.2)). Charon is not that
much smaller than Pluto so we cannot assume its mass is negligible. The individual masses
of Pluto and Charon have therefore been obtained by measuring the position of the centre of
mass, and using equation (4.3) to obtain the ratio of the masses. The resulting mean density
for Pluto is 2030 kg m−3. The use of its tiny satellites Nix or Hydra would give a more direct
determination.

Pluto is thought to be differentiated into a partially hydrated rocky core, an icy mantle mainly
of water ice, and an icy crust that spectrometric observations show to be mostly solid N2, with a
few per cent of CH4 and some CO. If Pluto was not formed ready differentiated, then radiogenic
heating plus the tidal heating due to Charon should have been sufficient to cause differentiation.
Tidal heating is promoted by the proximity of Charon, only 19 570 km from Pluto, and by the
comparatively large mass of Charon – about 10% the mass of Pluto. Today, Pluto is expected
to be solid throughout, given its small size, though the lower icy mantle might constitute an
asthenosphere.



PLANETARY SATELLITES, PLUTO, EKOS 179

Table 5.3 Model pressures at the centres of Pluto and the large satellites of the giant planets, plus some
central densities and temperaturesa

Io Europa Ganymede Callisto Titan Triton Plutob

�c/ kg m−3 8000 4000–8000 5000–8000 2300 5000–8000 ? 2800–3500
T / K > 1000 ∼ 1000 ∼ 1000 ∼ 260 ∼ 1400 ? 100–600
p/ 109 Pa 9.3 3.2 3.6 2.7 3.3 2 1.1–1.4

a A ‘?’ denotes no useful value is available.
b If differentiated.
c The densities are the estimated values in situ, i.e. they are (slightly) compressed densities. The large ranges for
Europa, Ganymede, and Titan correspond to various possible compositions for the cores.

Figure 5.7 shows a model of Pluto’s interior, along with models of Titan, Triton, and the four
Galilean satellites. Table 5.3 gives further data from typical models.

The EKO Eris, which is slightly larger than Pluto, has a small satellite. Its orbit will enable
Eris’s mass to be determined and hence its mean density. Several other EKOs have companions,
which have yielded densities around 200 kg m−3, indicating a loosely consolidated structure,
rather like the nuclei of comets, as expected.

Question 5.5

How do solar nebular theories account for Pluto being an icy–rocky body, and being so small?

5.2.3 The Galilean Satellites of Jupiter

Much has been learned about the Galilean satellites from the flybys of Voyagers 1 and 2 and
from the Galileo Orbiter (Table 4.1). Figure 5.7 shows interior models, Table 5.3 gives central
temperatures, densities, and pressures, and Figure 1.6 shows their orbits.

Io

Io is the innermost of the Galilean satellites of Jupiter. It is slightly larger than the Moon, and
somewhat more dense. The mean density, 3530 kg m−3, indicates a predominantly silicate plus
iron/FeS composition, and the value of C/MR2

e of 0.378 is sufficiently less than the uniform-
sphere value of 0.4 to require concentration of denser materials into a core. The model in
Figure 5.7 has a predominantly iron core extending about half way to the surface, thus accounting
for about one-eighth of the volume. The Galileo Orbiter obtained inconclusive evidence for a
magnetic dipole moment, somewhat larger than that of Mercury, so the core could be (partly)
molten. This is also indicated by Io’s density. This is too low for any reasonable proportion of
iron or FeS, unless a proportion is liquid.

For the core to be partly molten the interior of Io would have to be hot, and there is dramatic
evidence that it is – Io is the most volcanically active of all the planetary bodies in the Solar
System (Plate 12)! The mantle, throughout most of its volume, is thought to be an asthenosphere
in which solid state convection is occurring, and is overlain by a thin lithosphere that includes
a silicate crust rich in sulphur. Partial melting within the asthenosphere would provide the
observed volcanic outflows, which are observed to consist of silicates, sulphur, and sulphur
dioxide �SO2�.
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It came as a surprise to most astronomers that such a small world has a sufficiently hot
interior to be so volcanically active.
� Why was this surprising?
Equation (4.13) (Section 4.5.4) indicates that small worlds lose energy rapidly, so should
now be cool to considerable depth. Indeed, the Moon is comparable in size and mass
with Io yet has little or no present-day volcanic activity, and nor does Mercury, which is
larger and more massive than Io. Moreover, volcanism is an efficient way for a body to
lose heat. We therefore need to find a considerable interior energy source for Io. There is
radiogenic heating, but this is far from sufficient. The only plausible additional source is
tidal energy.

In Section 4.5.1 you saw that tidal energy will be generated in a body by its rotation, which
sweeps the material of the body through the tidal elongation. In the case of Io the rotation
period is the same as its orbital period – synchronous rotation – and this is itself a result of
tidal effects. Were the orbit circular, Io would keep the same face to Jupiter, as in Figure 5.8(a),
and material would not be swept through the tidal elongation – the dot is fixed with respect to
the surface. There would then be no tidal heating by this means. Moreover, in a circular orbit
Io’s distance from Jupiter would be constant, so there would also be no tidal energy generated
through variations in the Jupiter–Io distance.

In fact, the orbit of Io is not quite circular. Therefore, there is tidal input through its distance
from Jupiter varying. Moreover, there is now a contribution from Io’s rotation. The rate of
rotation is constant, but the rate of motion around the orbit varies, just as the rate of motion of
a planet around its elliptical orbit varies in accord with Kepler’s second law. Therefore, as seen
from Jupiter, Io seems to swing to and fro as it orbits the planet, as shown in Figure 5.8(b),
and so material now oscillates through the tidal elongation. Were it not for mean motion
resonances with Europa and Ganymede – the orbital periods of Io, Europa, Ganymede are in
the ratios 1:2:4 – Io’s orbit would be much more circular, and tidal heating would be reduced
(equation (4.13)).

(b)(a)

Figure 5.8 Synchronous rotation (a) in a circular orbit and (b) in an elliptical orbit. The dot is fixed with
respect to the surface of the small body.



PLANETARY SATELLITES, PLUTO, EKOS 181

Question 5.6

The Moon is in synchronous rotation in its orbit around the Earth. With the aid of Tables 1.1
and 1.2 and the answer to Question 4.9, show that the tidal field across the Moon is only 0.004
times that across Io. In relation to tidal heating, why must this factor more than offset the greater
eccentricity of the lunar orbit than that of Io?

Europa

Europa, another Moon-sized world, is the next nearest Galilean satellite to Jupiter. Its surface
is covered in water ice, though its mean density, 3010 kg m−3, is only slightly less than that of
the Moon, indicating a predominantly silicate composition.
� What does the value of C/MR2

e in Table 4.2 indicate?
The value of C/MR2

e is less than that of Io, which can be met by a greater concentration of
denser materials as depth increases. If there is a dry rocky core of uniform composition (mainly
silicates plus FeS), overlain by a water mantle, ice, or ice plus liquid, then one model meets
the observational constraints with a mantle 150 km thick. A dry core is indicated by thermal
models. However, it is likely that the rocky core itself is divided into two zones, the inner zone
being iron-rich, perhaps with FeS and/or iron oxides. The Galileo Orbiter obtained inconclusive
evidence regarding a magnetic dipole moment. Various detailed compositions, with or without
an iron-rich core, lead to a range of models, but there is general agreement that Europa’s water
mantle is 100–200 km thick.

The same tidal input operates as in Io, though the rate at which energy is released in the shell
of water and in the interior is roughly 20 times less, because of Europa’s greater distance from
Jupiter, which more than offsets the larger eccentricity of Europa’s orbit (see equation(4.13)
and the answer to Question 5.6). We thus expect Europa to have a cooler interior, though
ongoing tidal and radiogenic heating, supplemented by solar radiation and residual primordial
heat, should be sufficient to liquefy the lower part of the water shell. There might even be a
modest amount of volcanic activity on the ocean floor. The very smooth icy surface indicates
an icy crust that could be as little as a few kilometres thick, and though this could be underlain
by icy slush rather than by liquid oceans, most astronomers believe that there are widespread
oceans. Temperatures throughout most of the mantle are too low for pure water to be liquid.
However, salts will be present, notably NaCl, which lower the freezing temperature, and this can
be lowered still further by the presence of NH3, which combines with H2O to form NH3�H2O.

Ganymede and Callisto

The two outer Galilean satellites Ganymede and Callisto have surfaces of water ice, with a thin
veneer of silicates covering much of Callisto. Their mean densities, 1940 kg m−3 and 1830 kg m−3

respectively, require a substantial proportion of ice – unlike Io and Europa these are icy–rocky
bodies. The conditions in which Ganymede and Callisto formed, and their observed surface
composition, mean that the icy component is predominantly water, probably salty, plus a few
percent of NH3 in Callisto, rather less in Ganymede. NH3�H2O is also expected to be present.
� From Figure 5.7, what is the proportion of the volume of Ganymede that is water ice?
If Ganymede’s water is essentially all in its icy mantle, then the proportion that is not water ice
is the cube of the radius of the silicate-rich mantle divided by the cube of Ganymede’s radius.
From Figure 5.7 this ratio is 0.24. Therefore, the proportion of the volume that is water ice is
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0.76. However, the proportion that is water by mass is about 50%, because water is much less
dense than silicates and iron-rich substances.

The low value of 0.311 for C/MR2
e indicates that the silicates and iron-rich materials in

Ganymede are concentrated into the core shown in Figure 5.7, perhaps with further concentration
of iron-rich materials into an inner core. Such extensive differentiation is to be expected in
such a massive body, the most massive in the Solar System. Ganymede has a magnetic dipole
moment about three times that of Mercury, which suggests that the core is at least partly molten
and convecting vigorously. Vigorous convection requires greater energy input than at present.
In the past this might have been driven by greater tides resulting from a more eccentric orbit.
It is likely that the orbits of all the Galilean satellites have evolved, and it is possible that
Ganymede’s eccentricity was substantially higher within the last 1000 Ma or so. The surface of
Ganymede reveals relatively recent and extensive geological activity, consistent with a warm
interior, and there is also evidence for differentiation at some time in the past (Section 7.4.2).
However, it is not clear whether convection driven at some earlier time could still be occurring.
Another explanation of the magnetic field is that there is a shell of magnetite, Fe3O4, that
became permanently magnetized by Jupiter’s magnetic field when the shell solidified, perhaps
2000 Ma ago.

A third explanation of the magnetic field is indicated by surface features (Section 7.4.2) that
suggest a liquid layer a few kilometres thick at a depth of about 170 km. This would be kept
liquid as a result of radiogenic and tidal heating. It would be salty, and therefore electrically
conducting.

For Callisto, the value of 0.358 for C/MR2
e is significantly less than the value of 0.38 that

would correspond to self-compression of an undifferentiated ice–rock mixture. However, it is not
small enough to indicate full differentiation, and so there is only a modest degree of concentration
of rocky materials towards the centre. Any core is predominantly rocky–icy, though a small core
free of icy materials cannot be ruled out. The surface of Callisto suggests that it has always had a
cooler interior than Ganymede, and this is consistent with limited differentiation. A likely reason
is negligible tidal heating, a result of the low eccentricity of Callisto’s orbit, the lack of orbital
resonances, and its greater distance from Jupiter. Further factors are the smaller mass ratio of
rocky to icy materials in Callisto, resulting in less radiogenic heating, and the possibility of solid
state convection in the rocky–icy core that hastened the cooling of the interior. The absence of
such a core in Ganymede would have helped promote its more complete differentiation.
� Would you expect Callisto to have a magnetic dipole moment?
If Callisto has a cool interior then the magnetic dipole moment should be zero. Callisto is
sufficiently far from Jupiter that the Jovian magnetic field is weak, allowing very weak local
fields to be detected. This has allowed the Galileo Orbiter to place a very low upper limit on
any magnetic dipole moment, entirely consistent with Callisto’s other properties. Callisto does,
however, disturb Jupiter’s magnetic field, indicating the presence of electrically conducting
liquids. A liquid shell of water rich in NH3� NH3�H2O, and salts, thus lowering the freezing
temperature, could be present in the icy mantle. This is also an explanation of the absence of
chaotic impact features diametrically opposite the impact basin Valhalla (Section 7.4.2).

The Galilean satellites as a group

Among the Galilean satellites, the proportion of icy materials increases as we go out from
Jupiter, from zero for Io, to over 50% by mass for Callisto. Unless these satellites formed further
out, and migrated inwards, the explanation is that Io formed too close to proto-Jupiter ever to
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have had an icy component. Europa acquired a small amount of ice, and Ganymede and Callisto
substantial amounts. Water ice would have dominated – the solar nebula in the Jovian region
would have been too warm to allow as much of the more volatile ices to condense, or remain
condensed.

Increasing distance from Jupiter also correlates with the inferred thermal histories, with
greater cooling from Io to Europa, to Ganymede, to Callisto. This trend is largely because of
the decrease in tidal energy input with increasing distance from Jupiter.

5.2.4 Small Satellites

There remain the host of small satellites, the asteroids, and the comets. The interiors of the
asteroids and the comets were discussed briefly in Chapter 3, and we shall say no more about
them here, but concentrate on the small satellites.

The smallest body we have so far considered is Pluto, which has a radius of 1153 km. Next
down in size is Titania, the largest satellite of Uranus. This has a radius of 789 km so this is a
real step down, and is a convenient point at which to break off discussion of satellite interiors
in any detail. Most of the small satellites that orbit the giants will have a composition roughly
the same as the large icy–rocky satellites – by mass about half icy materials and half rocky
materials. The densities of some of the innermost satellites of Saturn have been estimated from
their effect on the rings and on other satellites, and the values are very low – less than the
density of water ice (917 kg m−3 at 273 K and 105 Pa, denser at lower temperatures, but not very
sensitive to pressure).
� What does this indicate?
Such low densities indicate quite a high degree of porosity. Satellites very close to Jupiter have
been warmed, either tidally or by the luminosity of the young giant, to the extent that they are
very probably depleted in icy materials. One of these, Amalthea, mean radius 84 km, has had its
mass measured by the Galileo Orbiter. This gives a density of about 860 Kg m−3, which for an
ice-free body indicates high porosity, to the extent that it is probably a rocky rubble pile, loosely
reassembled after collisional disruption. Its highly non-spherical shape is consistent with this.

Just five small satellites are known not to orbit giants. These are the Martian satellites Phobos
and Deimos, rocky bodies that are probably captured asteroids, Pluto’s icy–rocky satellite
Charon, and its two tiny satellites Nix and Hydra. Tidal heating is likely to have ensured that
Charon is fully differentiated. The smallest satellites of all might not have differentiated even
if they have been warmed. This is because in very small bodies gravity is relatively weak,
and so the chemical forces between constituents can override the gravitational trend towards
differentiation.

The surfaces of some of the small satellites are more remarkable than their interiors, so we
shall return to them in Chapter 7.

5.3 The Giant Planets

In arriving at the four giant planets we move up an order of magnitude or so in size and mass,
with Jupiter, Saturn, Uranus, and Neptune having masses of 317�8mE� 95�1mE� 14�5mE, and
17�1mE respectively, where mE is the mass of the Earth. They are also worlds that are very
different in many other ways. Figure 5.9 shows compositional models of the interiors of Jupiter,
Saturn, Uranus, and Neptune that are consistent with the observational data. Some variation is
possible and so the models shown are broadly indicative rather than definitive. Much of the
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Figure 5.9 Cross-sections of the giant planets (in their equatorial planes).

reason for this is that the equations of state of candidate materials, notably hydrogen and helium,
are poorly known at the high pressures encountered in the deep interiors. Another difficulty is
that the gravitational coefficient J2 (Section 4.1.2) is rather insensitive to the density profile
within about a third of the distance from the centre. The other coefficients, J4� J6, etc., penetrate
even less far.

The interiors of the giant planets undoubtedly consist largely of hydrogen, helium, and icy
materials, with rocky materials making up only a small fraction of the mass. The dominance
of hydrogen, helium, and icy materials is required by the low mean densities of the giants
(Table 4.2), which range from a ‘high’ of 1640 kg m−3 for Neptune to an astonishing low of
690 kg m−3 for Saturn. These low densities, several times less than typical densities of rocky
materials, are even more remarkable given the large size of the giants.
� Why is size relevant?
Equation (4.12) shows that large radii lead to large pressures, and large pressures increase the
density of a substance. For Jupiter and Saturn the only models that fit their mean densities consist
largely of the intrinsically least dense materials – hydrogen and helium. Uranus and Neptune,
being smaller, must have icy materials as the main constituent. On the basis of the relative
abundances of the elements in the Solar System, water must be the dominant icy material in the
giant planets.

In the models of Jupiter and Saturn, the outer regions are hydrogen and helium, with small
quantities of other substances. In the case of Uranus and Neptune, even though the outer envelope
is mainly hydrogen and helium, there are substantial proportions of icy materials as well. The
outermost regions are directly observable, and of course the models match the observations.
The compositional layering in the models is strongly indicated by the gravitational data, though
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the boundaries between certain layers seem to be fuzzy. There is, however, a concentration of
icy–rocky materials towards the centres, though perhaps rather weakly in the case of Jupiter.
� Which theory of the origin of the giant planets does this favour?
The core-accretion theory predicts that the giants started as kernels of icy–rocky mate-
rials that grew massive enough to capture hydrogen–helium envelopes and icy–rocky
planetesimals (Section 2.2.5). Some central concentration of icy–rocky materials is thus
expected.

Table 5.4 lists the temperatures, densities, and pressures at a few depths in the giants –
again these are broadly indicative, not definitive. High interior temperatures are indicated by
the observed IR excesses from Jupiter, Saturn, and Neptune (Section 4.5.3). The corresponding
outward flows of energy from the interiors are given in Table 4.2. For all the giants, hot interiors
today are predicted by thermal models. Furthermore, the large magnetic dipole moment of each
giant planet indicates extensive, convective fluid regions in the interior that are electrically
conducting. Models predict that convection is occurring throughout much of the interior of each
giant. The low IR excess from Uranus can be explained by a current lack of convection over
some range of depths, perhaps due to a composition gradient.

It seems certain that the giants are fluid throughout, in which case hydrostatic behaviour is
expected, and the gravitational fields are indeed those expected of rotating hydrostatic bodies.

It is clear that the giant planets can be divided into two pairs: Jupiter and Saturn; Uranus and
Neptune (Question 4.1, Section 4.1.1). Indeed, some people used to restrict the term ‘giant’ to
Jupiter and Saturn, and call Uranus and Neptune ‘subgiants’. We examine each pair in turn.

5.3.1 Jupiter and Saturn

These two giant planets are most like the Sun in their composition, though whereas in the Sun
the heavy elements (those other than hydrogen and helium) account for only about 2% of the
total mass, in most models of Jupiter these elements account for 5–10% of the mass, and for
a roughly three times greater proportion in Saturn. Therefore, the actual mass of the heavy
elements is about the same in the two planets.

Table 5.4 Model temperatures, densitiesa, and pressures in the giant planets

Jupiter Saturn Uranus Neptune

Envelope

T�105Pa�/ K 165 135 76 72

T (base)/ K ∼ 6500 ∼ 6000 ∼ 2000 ∼ 2000
p (base)/ Pa ∼ 2 × 1011 ∼ 2 × 1011 ∼ 1 × 1010 ∼ 1 × 1010

� (base)/ kgm−3 0�8 × 103 0�8 × 103 ? ?

Centre
� (centre)/ kgm−3 2�3 × 104 1�9 × 104 ∼ 104 ∼ 104

T (centre)/ K 1�5–2�1 × 104 0�85–1�0 × 104 ∼ 8000 ∼ 8000
p (centre)/ Pa ∼ 4 × 1012 ∼ 1 × 1012 ∼ 0�8 × 1012 ∼ 0�8 × 1012

a The densities are the estimated values in situ, i.e. they are compressed densities.
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Jupiter

To explore the Jovian interior, we shall take an imaginary journey to its centre. We start in
the atmosphere, which is observed to consist by mass, of about 23% helium, nearly all of the
rest being hydrogen. Hydrogen is in the molecular form H2, and helium, an unreactive inert
gas, is in atomic form He. This helium mass fraction is significantly less than the primordial
solar value of around 27% (Section 1.1.3). Though the Sun and Jupiter formed from the same
nebula, it is not difficult to understand why the helium fractions differ. Some downward settling
of helium would occur, with the result that there is a greater fraction deeper down. Settling has
also occurred in the Sun – in the Sun’s atmosphere the helium mass fraction today is about
24%, by coincidence the same as in the Jovian atmosphere. The helium fraction in the metallic
mantle (see below) in Jovian models is about 27%, and so, with nearly all of the mass of Jupiter
in this mantle, the overall helium mass fraction in Jupiter is about that of the Sun at birth (and
outside the fusion core today).

Beneath the Jovian atmosphere we pass quickly through various cloud layers, the temperature,
pressure, and density gradually increasing as we descend. At several thousand km below the
cloud tops the density is several hundred m−3. This is not much less than the 1000 kg m−3

density of liquid water at the Earth’s surface. Therefore, we have arrived in what we can regard
as a hydrogen–helium ocean – and yet we crossed no surface. Figure 5.10 shows the phase
diagram of molecular hydrogen (the presence of helium will modify it somewhat, but the story
is still the same in all its essentials). Our journey took us along the path shown as a dashed line.
� Why was there no sudden transition from the relatively low-density gas phase to the much

higher density liquid phase?
The path stayed well to the right of the critical point (Cr), and so the density gradually increased.
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Figure 5.10 Phase diagram of molecular hydrogen, with Jovian conditions represented by the Galileo
probe measurements.
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This absence of a surface makes the Jovian radius a matter of definition. It is defined as the
radius at which the atmospheric pressure is 105 Pa (standard atmospheric pressure at the Earth’s
surface is 1�01 × 105 Pa). The same definition is adopted for all the giant planets. In the case of
Jupiter, 105 Pa is not far below the top of the upper cloud deck.

We do, however, encounter a surface of sorts deeper down, albeit with only about a 10%
increase in density across it. This is the transition between liquid molecular hydrogen (plus atomic
helium) and liquid metallic hydrogen (plus atomic helium). At pressures around 2 ×1011 Pa, the
density of molecular hydrogen is about 800 kg m−3, sufficiently high that each of the hydrogen
atoms in the H2 molecule is attracted to atoms in neighbouring molecules as much as to its
molecular partner. Therefore, the H2 molecules break up. Moreover, the single electron that
orbits the nucleus of each hydrogen atom will also become equally attracted to neighbouring
atoms, and so the atoms break up too. The hydrogen will then be a ‘gas’ of electrons moving
in a ‘sea’ of hydrogen nuclei. Many of the characteristic properties of metals arise from the
existence of ‘electron gases’ within them, so the term ‘metallic hydrogen’ is appropriate. Metallic
hydrogen was once just a theoretical prediction, but then in 1996 sufficiently high pressures
were produced in the laboratory for metallic hydrogen to appear as expected. In Jupiter the
transition to the metallic form takes place over a range of pressures, and divides the interior into
a metallic hydrogen mantle and an overlying molecular hydrogen envelope. The range of depths
over which the transition takes place is unknown. Figure 5.9 shows the top of the transition.
Beneath, there might be a narrow layer of inhomogeneous composition.

One of the properties that an electron gas gives to a metal is high electrical conductivity.
Thus, electric currents in the metallic hydrogen mantle are an obvious source of the planet’s
large magnetic dipole moment. The volume of metallic hydrogen, the hot convective interior,
and the rapid spin of Jupiter are all consistent with this conclusion. A small but significant
contribution to the field could arise from liquid iron and other conductors much deeper down.
The detailed configuration of the field close to Jupiter is consistent with currents in the metallic
hydrogen mantle.

Gravitational data indicate an increase in density towards the centre, but it is possible that
this is due to self-compression in the metallic hydrogen mantle. Models consistent with the data
have cores of rocky and icy materials ranging from 0 to 10mE. To satisfy the constraints, there
is a complementary range from 42mE down to little more than 10mE in the amount of rocky
and icy materials in the whole planet. This broad range of values results from various factors,
including uncertainties in the equations of state of hydrogen and helium, the insensitivity of the
gravitational coefficients to deep structures, the uncertainty in the width of the transition zone
between molecular and metallic hydrogen, and so on. If the icy–rocky core really has a low
mass, this could be due to erosion of the core by the high temperatures at the base of the mantle,
which is not much less than the central temperature given in Table 5.4.
� If icy and rocky materials account for 20mE in the whole of Jupiter, what is the heavy

element mass fraction?
Almost all the mass of icy and rocky materials consists of elements other than hydrogen and
helium, i.e. the heavy elements. Jupiter’s mass is 317�8mE, and so the fraction is 6.3%. This
is nearly four times the solar mass fraction of about 1.6%. The modelled enrichment of Jupiter
by a factor of a few is consistent with (but not the same as) the measured enrichment of the
atmosphere (Section 11.1.2). The enrichment is thought to be primordial, from a kernel composed
of rocky–icy materials, with a contribution from the subsequent capture of planetesimals. In the
gravitational instability model of formation, the planetesimal capture rate after the formation of
Jupiter would probably have been too low to give such a high heavy element fraction.
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Thermal models show that the present-day high temperatures of the Jovian interior can be
accounted for by two dominant energy sources – energy from accretion, plus energy from
differentiation when the icy–rocky kernel acquired more mass to become the icy–rocky core. An
active but small energy source is the settling of helium through the metallic hydrogen mantle.
The two major energy sources became inactive about 4500 Ma ago, yet the central temperature of
Jupiter is still about 2×104K. The reason is the large size of Jupiter. This has two consequences.
First, there would have been a huge amount of accretional energy per unit mass as Jupiter
formed, and so Jupiter would have become extremely hot (Section 4.5.1). Second, Jupiter has
a comparatively low ratio of surface area to mass, giving a low rate of internal energy loss
(Section 4.5.4) in spite of the efficient outward transfer of energy by convection.

Though convection is expected to occur throughout most of the Jovian interior, calculations
also indicate that over the depth range in which the temperatures are 1200–3000 K, energy
might be transported outwards by radiation rather than by convection. This would lead to cooler
interiors than in Table 5.4, and to a deeper transition to the metallic hydrogen phase than in
Figure 5.9. This is also the case for Saturn.

Saturn

In many ways, the interior of Saturn is similar to Jupiter, as Figure 5.9 shows. Saturn is a bit
smaller, and less dense, leading to lower internal pressures. These lower pressures mean that the
transition to metallic hydrogen occurs much nearer the centre, so whereas most of the hydrogen
in Jupiter is in metallic form, most of that in Saturn is in molecular form. As with Jupiter, it is
the top of the transition that is shown, should this occur over a (thin) shell. As in Jupiter, it is
the metallic hydrogen in models of Saturn that can account for the planet’s magnetic field. With
the two planets rotating at about the same rate, and with comparable internal activity, the lower
mass of metallic hydrogen in Saturn is predicted to lead to a smaller magnetic dipole moment.
� Is this the case?
Table 4.2 shows that the magnetic dipole moment of Saturn is about 30 times less than that of
Jupiter.

The smaller size of Saturn also means that its internal temperatures after formation would
have been lower than in Jupiter, and it should have cooled more rapidly. Therefore, the present-
day high internal temperatures, indicated by the IR excess, cannot be accounted for solely by
energy of accretion and by past differentiation as the icy–rocky kernel acquired more mass
to become the icy–rocky core. An additional source of energy is needed, and this is thought
to be the ongoing separation of helium from metallic hydrogen (which plays at most a small
role in Jupiter). Initially, the helium in the metallic hydrogen mantle was thoroughly mixed
at the atomic level, and random thermal motion prevented any settling of the helium atoms
downwards – a tendency arising from the greater mass of the helium atom. As the interior
cooled, the miscibility of helium in metallic hydrogen fell, and Saturn is estimated to have
reached the point about 2000 Ma ago where helium began to form small liquid droplets. These
could not be held by random thermal motions in uniform concentration throughout the metallic
hydrogen, so downward separation of the helium droplets began. This is essentially the same
process as the separation of oil from vinegar in salad dressing. Convection is believed to have
slowed the settling rate, but an outer core of helium is forming, and as it does so energy of
differentiation is released. An additional source of energy might be continuing growth of an
icy–rocky core.
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The removal of helium from the metallic hydrogen would result in helium diffusing down
from the molecular hydrogen envelope, so we would expect the observable atmosphere to
be depleted in helium compared with Jupiter. And indeed it is! In Jupiter the outer atmo-
sphere is observed to consist of about 23% helium by mass, whereas for Saturn the value
is about 20% helium. The greater extent of downward separation of helium in Saturn is
reflected in models by larger increases in the helium mass fractions with depth. Below the
molecular hydrogen envelope, which models indicate has a helium mass fraction not very
different from the atmospheric value, the same models give the metallic mantle about 30%.
Thus, overall, Saturn, like Jupiter, has about the same helium mass fraction as the Sun at
its birth.

The lower internal pressures make the equations of state for hydrogen and helium less
uncertain than in the case of Jupiter. This exposes strong evidence for a significant rocky–icy
core in Saturn, and thus further evidence against the gravitational instability model of formation.
It is likely that the core mass is not greater than 10–20mE, depending on the extent to which
heavy elements reside outside the core. The core mass could be reduced by several mE if, as is
quite possible, helium separation has produced a nearly pure helium shell around the core. The
mass of heavy elements in Saturn is roughly the same as that in Jupiter.

Question 5.7

As Jupiter’s interior cools, a certain energy source will become increasingly powerful. State
what this source is, and why it is triggered by cooling. What effect could this source have on
Jupiter’s subsequent internal temperatures?

5.3.2 Uranus and Neptune

We have noted that the mean densities of Uranus and Neptune show that they are much less
dominated by hydrogen and helium than are Jupiter and Saturn. The equations of state of the
icy–rocky materials that dominate the interiors are collectively less well known than those of
hydrogen and helium, and the range of possible models is thus larger. All models predict that
these planets, like Jupiter and Saturn, are fluid throughout.

Uranus and Neptune are smaller and less massive than Jupiter and Saturn, and the overall
composition of the models can be obtained, very roughly, by stripping away a good deal of the
hydrogen and helium from Jupiter or Saturn.
� How is this feature explained in core-accretion theories?
The kernels of Uranus and Neptune formed considerably more slowly than those of Jupiter
and Saturn, and so there was less time to capture hydrogen and helium before the proto-Sun’s
T Tauri phase drove away the nebular gas (Section 2.2.5). In typical models of Uranus and
Neptune, hydrogen and helium account for 5–15% of the mass of each planet.

The mass ratio of icy to rocky materials, derived from solar elemental abundances, is about
3, which means that for these planets 60–75% by mass is icy and 20–25% rocky. The greater
density of Neptune, 1640 kg m−3 versus 1270 kg m−3 for Uranus, in bodies of similar size,
indicates that either Neptune has a greater proportion of icy–rocky materials, and/or the rocky
proportion of the icy–rocky materials is higher in Neptune. Both possibilities are consistent with
models in which Neptune formed closer to the Sun than Uranus did, with subsequent outward
migration of both placing Neptune further out (Section 2.2.5). In the icy component, H2O� CH4,
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and NH3 must be the major ingredients. This mix will be rich in ions at depths where the
pressures and temperatures are high enough.

The atmospheres where the composition can be observed consist by mass of about 65%
hydrogen and about 23% helium – not very much less than the fractions estimated for the young
Sun. As in Jupiter and Saturn, the accessible hydrogen is in molecular form and helium is in
atomic form. The rest of the atmosphere is icy gases, enriched above what would be derived
from solar abundances by the capture of at least 0�1mE of planetesimals after the atmosphere was
in place. In typical models, such as those in Figure 5.9, the hydrogen–helium–icy composition
continues in this envelope down to an icy–rocky mantle, possibly with a rocky (but fluid) inner
core. The internal pressures are too low for metallic hydrogen, and so there is no metallic
hydrogen mantle.

The IR excess of Neptune indicates a hot, convective interior – convective throughout most
of its volume. An interior hot enough to be liquid is also implied by Neptune’s large magnetic
dipole moment. The detailed configuration of the field indicates that the electric currents are
located in a thin outer shell of the icy–rocky mantle. As noted above, mixtures of H2O� CH4,
and NH3 can become ionised, and thus highly electrically conducting. The predicted convective
interior and the observed rapid rotation of the planet complete the requirements of the dynamo
theory. For Neptune to have high internal temperatures today there needs to be an active energy
source. This is thought to be differentiation, though uncertainties about the internal distribution
of the various icy and rocky materials make the details obscure.

Uranus rotates only slightly slower than Neptune and has nearly double Neptune’s magnetic
dipole moment. As with Neptune, the detailed configuration of the field indicates that the electric
currents are located in a thin outer shell of the icy–rocky mantle.

The IR excess of Uranus is barely detectable, corresponding to a power outflow per unit
mass about nine times less than that of Neptune. However, the two planets are so similar in so
many ways that it is thought that the internal temperatures are roughly the same, and that some
process is greatly reducing the rate at which the energy in Uranus is transported to the upper
atmosphere, where it would be radiated away to space. It was mentioned near the beginning of
Section 5.3 that the suppression of convection over some range of depths, due to a composition
gradient, might be the reason for the low rate of transfer. This could be caused by a significant
change in the abundance of heavier molecules over some modest range of depths. In the case
of Neptune, any such region is likely to be at a greater depth, and consequently less effective.
Such zones are not ruled out by the gravitational data.

Question 5.8

It is believed that radioactive isotopes are only a minor energy source (per unit mass) in the
giant planets. Why is this believed to be the case?

5.4 Magnetospheres

This chapter concludes with a short account of a particular consequence of a planetary body
having a substantial magnetic field. The magnetic field of the planet then interacts with the solar
wind to create what is called a magnetosphere around the planet. Very complex mechanisms
are involved in magnetospheres, and so the approach here will be qualitative and brief.
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5.4.1 An Idealised Magnetosphere

Figure 5.11 shows a comparatively simple magnetosphere that will introduce the essential
features. To the left, the solar wind is flowing in interplanetary space, and it is undisturbed by
the planet. The magnetic field in the wind in this particular case is perpendicular to the flow, as
also, for simplicity, is the magnetic axis of the planetary field. If the field in the wind were static
then the interplanetary field would simply be the sum of the undisturbed wind field and the
undisturbed planetary field. But the wind field is entrained in the wind – this is because the wind
is a plasma, i.e. it is sufficiently ionised for copious electric currents to flow in it. Entrainment
means that the wind carries the magnetic field along with it. As a result, the interaction of the
wind with the planetary magnetic field gives a different outcome which we shall now explore.

The solar wind ‘sweeps’ interplanetary space clean of the planetary field except in the vicinity
of the planet. On the upwind side of the planet (to the left in Figure 5.11) there is a roughly
hemispherical boundary outside of which there is only the interplanetary field. On the downwind
side the boundary stretches out into a long magnetotail. Within the boundary the planetary
field near the planet is as if there were no wind field, but the planetary field gets more and
more distorted as the boundary is approached. The boundary is called the magnetopause, and
the volume it encloses is called the magnetosphere. The ‘sphere’ part of the name is to be
interpreted as the planet’s magnetic sphere of influence, rather than as a description of the shape
of the boundary.

There are three sorts of magnetic field lines: there are those that start and end on the planetary
surface, distorted though they may be; there are those that never encounter the planet; and there
are those that start on the planet but, in effect, connect with the wind field and therefore never
return to the planet – these are called reconnected lines.

The size of the magnetosphere is characterised as the distance from the centre of the planet
to the upwind magnetopause. This distance is proportional to �1/3/�n1/6v1/3�, where � is the
magnitude of the magnetic dipole moment of the planet, v is the wind speed, and n is the number
density (number per unit volume) of the charged particles in the solar wind (mainly electrons
and protons). Though v does not vary much with the heliocentric distance, n diminishes as this
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Figure 5.11 An idealised magnetosphere, with magnetic field lines.
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distance increases. Also, n varies with solar activity, and so the size of the magnetosphere also
varies, being a maximum when n is a minimum.

Because the solar wind approaches the magnetopause at the high speeds around several
hundred kilometres a second, it gets a rude shock at a boundary outside the magnetopause, called,
appropriately, the bow shock. (The ‘bow’ is by analogy with a related phenomenon created on
the surface of water as the bow of a boat moves through the surface at speeds greater than the
speed of the surface ripples.) Between the bow shock and the magnetopause the solar wind is
rapidly decelerated, the flow becomes turbulent and the wind plasma is strongly heated. The
wind flows around the magnetopause, with very little of the plasma entering the magnetosphere.
The region between the bow shock and the magnetopause is called the magnetosheath.

The small fraction of the solar wind plasma that enters the magnetosphere is only one source of
magnetospheric plasma. Another is cosmic rays (Section 3.3.3). These highly energetic charged
atomic particles readily cross the magnetopause, and though most of them pass out again, a
small proportion is trapped. Furthermore, a small fraction of the cosmic rays collides with the
atmosphere of the planet, or with its surface if it has no atmosphere. This results in the ejection
of particles, and these include neutrons that decay into protons and electrons, many of which
are then trapped in the magnetosphere. Yet another source of plasma is a slow leak of particles
from the planet’s upper atmosphere, both in the form of plasma and in the form of neutral atoms
that subsequently become ionised.

Magnetospheric plasma is not uniformly distributed, but becomes concentrated towards the
plane of the magnetic equator, where it constitutes the plasma sheet (Figure 5.11). Belts and
toruses of plasma surrounding a planet can also occur.

Though the magnetospheric plasma is being added to all the time, there are also losses,
outwards to interplanetary space, and inwards to the planet. Among the latter are energetic ions
and electrons that reach the upper atmosphere and excite atoms there. The resulting emission of
optical radiation is called an aurora. Aurorae are concentrated in a ring around each magnetic
pole. Large fluxes of energetic electrons plunging into the upper atmosphere generate radio
waves with wavelengths of the order of 10–100 metres. Such decametric radiation emanates from
the Earth and from the giant planets, and as early as 1955 indicated that Jupiter has a powerful
magnetic field. Aurorae and decametric radiation are intermittent phenomena, depending on
the strength of the solar wind. Other radio waves, with wavelengths of the order of 0.1–1
metre, are generated in the magnetosphere by electrons travelling at high speeds. This is called
synchrotron emission.

5.4.2 Real Magnetospheres

In the Solar System, the magnetic dipole moments of the Earth and of the giant planets are far
larger than those of any other planetary body (Table 4.2), and correspondingly they have the
most extensive magnetospheres. Their magnetic axes are not perpendicular to the solar wind
flow, nor on the whole is the solar wind’s magnetic field. Nevertheless, the general form of the
magnetosphere in each case is roughly as in Figure 5.11, and there is also a plasma sheet and
plasma belts.

Figure 5.12 shows the typical form of the magnetosphere of the Earth. There are two main
plasma belts around the Earth – the Van Allen radiation belts, named after the American
physicist James Alfred Van Allen (1914–2006) who discovered them in 1958. The inner belt
consists largely of protons and electrons. These come from the solar wind, and also from the
Earth’s upper atmosphere partly through the action of cosmic rays. The outer belt is more
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Figure 5.12 The Earth’s magnetosphere.

tenuous, and the particles are less energetic. It is populated largely by the solar wind. Within
the inner belt there is a third belt in which cosmic rays are prevalent.

There is also a plasma sheet (Figure 5.12). This has a low density, and is hot, the temperatures
being 1–5 × 107K. It is fed largely by the solar wind.
� What are the main constituents of the plasma sheet?
Being a sample of the solar wind, its main constituents are electrons and protons. Energetic
electrons from this sheet find their way by various means into the upper atmosphere, particularly
in a ring around the magnetic poles, where reconnected magnetic field lines intersect the
ionosphere (Section 9.2.2). There the electrons can give rise to decametric radiation, and (along
with other charged particles) also make a significant contribution to aurorae – the aurora borealis
(Plate 26) in the northern hemisphere, and the aurora australis in the southern hemisphere. When
the solar wind is strong, as at times of high solar activity, the ring widens and aurorae are then
seen further from the Earth’s magnetic poles, down to about 70� or so in magnetic latitude.
The magnetic axis is tilted by about 11�5� with respect to the rotation axis (Figure 4.6), and
so the corresponding geographical latitude depends on longitude. The auroral displays are at an
altitude of only about 80–300 km, and so the tropics are not the place to go to see aurorae!

Figure 5.13 shows Jupiter’s magnetosphere.
� Why is Jupiter’s magnetosphere bigger than that of the Earth?
It is bigger because Jupiter is further from the Sun, and so the number density of charged
particles in the solar wind is smaller (see the expression in Section 5.4.1), and because the
magnetic dipole moment of Jupiter is 20 000 times larger than that of the Earth (Table 4.2).
When the solar wind is particularly weak the upwind magnetopause can be about 100 Jovian
radii from Jupiter. If we could see such a magnetosphere from Earth with Jupiter at opposition
the magnetopause would be appear like a disc with an angular diameter about 2.6 times that of
the full Moon. The magnetotail can extend beyond the orbit of Saturn.

The Jovian magnetosphere is particularly rich in plasma – in the denser regions the human
body would quickly receive a lethal dose of ions. This richness is a result of copious internal
sources, notably the volcanoes of Io, but also the Jovian upper atmosphere and the surfaces of
Jupiter’s satellites and ring particles. Ions and electrons are ejected from the satellites and rings
by cosmic rays. As well as being sources of plasma, the satellites and rings also remove plasma
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particles that collide with them. The solar wind is not an important source of the magnetospheric
plasma, except near the magnetopause and far out in the magnetotail. It can then be shown that
the plasma sheet must be a result of leakage from the plasma belt. Leakage occurs preferentially
at the magnetic equator, where the magnetic containment is weakest. This domination of internal
sources of plasma is a result of electric fields in the magnetosphere plus the rapid rotation of
Jupiter – the details are beyond our scope. Jupiter also displays aurorae, with the same basic
cause as for the Earth.

Beyond Jupiter there are three more planets with extensive magnetospheres: Saturn, Uranus,
and Neptune. The magnetosphere of Saturn is intermediate between that of the Earth and Jupiter
in extent and plasma content. Sources and sinks of plasma include the rings and the satellites.
Saturn also displays aurorae. Compared with the Voyager encounters in 1980 and 1981, Cassini
in 2005 found no detectable changes in Saturn’s internal magnetic field. The magnetosphere
had changed in extent somewhat, but in line with the variable solar wind.

The considerable magnetospheres of Uranus and Neptune have some peculiarities arising
from the large angles between their magnetic and rotation axes (Figure 4.6), and in the case
of Uranus from its large axial inclination, but in terms of the above discussion no new major
phenomena are encountered.

Question 5.9

Outline the consequences for the Earth’s magnetosphere

(a) if the Earth had no atmosphere;
(b) if the speed and number density of charged particles in the solar wind were reduced.

5.5 Summary of Chapter 5

The terrestrial bodies are dominated by silicates, and by iron-rich compounds, including iron
itself (see Figures 5.1, 5.5, and Io and Europa in 5.7). They are all differentiated, with iron-rich
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cores and silicate mantles. Europa has a thin icy crust, mainly water ice, underlain by an ocean
of salty liquid water or slush, whereas the other terrestrial bodies have rocky crusts. The Earth’s
interior is by far the best known, and it is clear that there is an outer core mainly of iron that is
hot enough to be liquid. This outer core is the source of the Earth’s powerful magnetic field. All
but the uppermost part of the Earth’s mantle is an asthenosphere, and it is probably undergoing
solid state convection. It is thought that the other terrestrial bodies also have warm interiors
(Tables 5.2 and 5.3).

Internal temperatures in all of the terrestrial bodies are raised above the values they would
have in equilibrium with solar radiation. In all cases, except Io and Europa, this is almost
entirely through the effects of primordial energy sources and heat from long-lived radioactive
isotopes. The temperatures decrease as the size of the body decreases, with the exception of
Io, which, in spite of its small size, has an interior hot enough for silicate volcanism. This is
because Io has a dominant tidal component in its internal energy sources. Europa is less tidally
heated, being further from Jupiter, but this makes a contribution crucial to sustaining a salty
ocean/slush.

Pluto, and the remaining large satellites (Figure 5.7), differ from the terrestrial bodies in
having a much larger proportion of icy materials – they are icy–rocky bodies. They are thought
to be differentiated into icy-rich mantles, and rocky-rich cores. Ganymede, Callisto, Titan, and
perhaps Triton might well be liquid over some depth range. Eris is a bit larger than Pluto, and
is icy–rocky, but as yet we know nothing of its interior.

The remaining satellites have Titania as their largest member. Most of them consist of
roughly equal masses of icy and rocky materials. The very smallest satellites are unlikely to be
differentiated.

The four giant planets (Figure 5.9) are dominated by hydrogen, helium, and icy materials,
the proportion of hydrogen and helium being considerably greater in Jupiter and Saturn than
in Uranus and Neptune. For all four bodies the hydrogen–helium ratio for the whole body is
thought to be similar to that in the young Sun.

Jupiter and Saturn are each differentiated into an icy–rocky core, a mantle of metallic
hydrogen, and an envelope of molecular hydrogen �H2�, with helium (He) as the next most
abundant component in the mantle and envelope. The boundaries between mantle and envelope
are fuzzy. Saturn has a substantial icy–rocky core but in Jupiter the core might be very small,
even absent, the heavy elements then being more uniformly distributed.

Uranus and Neptune have deep atmospheres, like Jupiter and Saturn, dominated by H2, with
He the next most abundant component, but with more icy materials. These overlie predominantly
icy cores. Though models of Uranus and Neptune are poorly constrained, we can be sure that
because of the lower pressures there is no metallic hydrogen.

The interiors of all four giants are hot (Table 5.4), and they all have very large magnetic dipole
moments, originating in the metallic hydrogen mantles in Jupiter and Saturn, and in icy mantles
in Uranus and Neptune. The IR excess of Jupiter is largely accounted for by primordial accretion
and early differentiation. A substantial supplement of ongoing differentiation is required to
account for the IR excesses of Saturn and Neptune. In Saturn the differentiation is the separation
of helium from hydrogen in the metallic phase. This is happening faster in Saturn than in Jupiter
because of its lower internal temperatures. In Neptune the nature of the differentiation is unclear.
Uranus has a very small IR excess, and if indeed its interior is hot, then the outward energy
transfer rate is somehow being reduced, perhaps through the suppression of convection over
some range of depths by a vertical composition gradient.
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A planetary body with a substantial magnetic field will interact with the solar wind to produce
a magnetosphere. Beyond the magnetosphere the solar wind sweeps space clean of the planetary
field. Within the magnetosphere the planetary field becomes increasingly dominant as the planet
is approached. There will be a variety of plasma in a magnetosphere, much of it concentrated into
a plasma sheet and plasma belts or toruses. Interaction of the plasma with the upper atmosphere
can produce aurorae.



6 Surfaces of Planets
and Satellites:
Methods and
Processes

When we wonder about other worlds, it is usually their surfaces to which our thoughts first turn.
After all, it is the surface of one particular world upon which we live, and there is a fascination
with exploring terrestrial landscapes that differ from those of our own region. Even greater is
the immediate fascination with the landscapes of other worlds. Such individual landscapes will
be explored in the two chapters that follow this one. In this chapter we shall outline some of
the methods of investigating surfaces, and the various processes that have made the surfaces as
they are. The giant planets do not have surfaces in the generally accepted sense, so they are
excluded from these chapters.

6.1 Some Methods of Investigating Surfaces

The surfaces of Solar System bodies are more accessible than their interiors. The detailed surface
form is observable, and the physical and chemical nature of the surface can be determined
directly if samples can be obtained, or indirectly from space or from the Earth. We can also
observe many surface processes in action, such as volcanism.

But a surface, in the sense of being the outermost layer of a body, distinct from the interior,
is not entirely accessible. Therefore, all the methods described in Chapter 4 that are used to
investigate the interior are also applied to these shallow depths – seismology, gravitational and
magnetic field measurements, and so on. At such depths, as well as a global picture, they also
reveal regional and local details.

6.1.1 Surface Mapping in Two and Three Dimensions

Ever since the invention of the telescope around 1600, astronomers have had a growing capability
to map the surfaces of planets and satellites. At first this was by looking through the telescope,
but later various imaging instruments were added. The best images have been obtained from
orbiting or flyby spacecraft (Table 4.1), though ground-based telescopes and telescopes in Earth
orbit, such as the Hubble Space Telescope, are yielding images that would have astounded
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astronomers of earlier generations. The images are not restricted to visible wavelengths, but are
obtained at UV, IR, and radio wavelengths too. Computer processing can extract every last bit
of detail.

A two-dimensional image shows variations across a surface, though some altitude information
can be obtained, e.g. from the lengths of shadows cast by a feature, or from evidence that
one feature is partially obscuring another. We can, however, use other means to obtain a more
complete and more accurate picture of the three-dimensional form of a surface – the surface
topography. One way or another we need to measure the altitude at every point on the surface –
we need to perform altimetry. For the Earth, altitudes have been measured over the centuries
by traditional surveying methods on land and sea, resulting in relief maps of exquisite detail,
though the deep oceans were only mapped in the latter half of the twentieth century.

For other planetary bodies the best altimetry data have come from spacecraft in orbit around
the body. Altitudes have been obtained by sending a radar or laser pulse from the spacecraft to
the surface, and timing the interval for the echo to arrive back at the spacecraft, as illustrated in
Figure 6.1. The distance d of the spacecraft from the surface is then c�t/2 where c is the speed
of light and �t is the round-trip time of the pulse. One way to obtain the altitude from d is to
measure the corresponding distance r of the spacecraft from the centre of mass of the planetary
body. This distance can be obtained from the spacecraft’s orbit. The altitude of the point on
the surface with respect to the centre of mass is then �r–d�. From the orbit we also know from
where on the surface the pulse was reflected, and so the topographic map is built up.

Another technique using radar is particularly useful in low orbit. This is synthetic aperture
radar, in which a series of radar pulses is sent off below or to one side of the spacecraft,
as in Figure 6.1. One advantage in looking sideways is that a left–right ambiguity is avoided.
Each pulse illuminates a patch of ground that is much larger than in altimetry. The reflected
pulse consists of echoes from every point in the patch, and these points can be distinguished
by the different round-trip times and by the changes in wavelength due to the Doppler effect
(Section 2.1.2). Points ahead of the spacecraft return shortened wavelengths, and points behind
the spacecraft return lengthened wavelengths. Each point in a particular patch is illuminated
by several successive pulses as the spacecraft moves in its orbit, and this greatly increases
the spatial resolution. Synthetic aperture radar provides a three-dimensional image, and so the
surface topography is obtained.

Though the distance �r–d� reveals surface morphology, it is not the best way of specifying
altitude. It is differences in altitude that are important, and to emphasise these differences we
need to define a zero of altitude that lies within or close to the observed range. In the case of
Venus, the zero chosen is the mean equatorial radius of 6051.9 km. The surface of zero altitude
on Venus is thus a sphere.

Spacecraft

Altimetry beam

Imaging beam
d

Figure 6.1 Pulse altimetry and synthetic aperture radar.
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Though the choice of a sphere seems pretty obvious, it is not sensible for the Earth and many
other bodies. This is because these bodies are not as spherical as Venus, but are more flattened
by their rotations: the faster the rotation, the greater the flattening; Venus rotates slowly, and
so is not appreciably flattened. Consider a rotationally flattened planet in the idealised state of
hydrostatic equilibrium, as in Figure 6.2. If a sphere centred on the centre of mass were used
as the zero of altitude, the equator would be higher than the poles. Yet there is an important
sense in which it is not downhill from equator to pole: that is, a plumb line fixed with respect
to the rotating surface would hang perpendicular to the surface. Thus, for a real planetary body
rotating sufficiently fast to be appreciably flattened, the natural choice of zero altitude is the
surface that the body would have were it in hydrostatic equilibrium.

We could calculate the exact shape and size of this ideal surface. It is, however, easier to
use any fluids that are widespread at the surface of the planetary body. A fluid flows until it is
in hydrostatic equilibrium. In the case of the Earth, we have the oceans (‘hydrostatic’ derives
from ‘stationary water’). For zero altitude we could select any depth of given pressure in the
water, but the surface is an obvious choice, so mean sea level is defined as having zero altitude
on Earth.
� Why the ‘mean’ in mean sea level?
Sea level changes with tides, winds, atmospheric pressure, currents, and the amount of sea ice,
so we have to average out these effects. As far as we know, the Earth is the only planetary
body with liquid covering most of its surface, but several rotationally flattened bodies are totally
covered by a different sort of fluid – an atmosphere. The zero of altitude can then be defined
by some value of atmospheric pressure. In the case of the giant planets, the choice is 105 Pa –
close to mean atmospheric pressure on the Earth’s surface.

In the case of Mars, zero altitude has been defined as where the mean atmospheric pressure
is 610 Pa – the triple point pressure of water (Section 4.4.3). Recently, a close alternative has
become preferred, based on the gravitational field of Mars. From this field a quantity can be
obtained called the gravitational potential. This is the energy required to take unit mass from
a point in space outside a mass M to infinity, assuming no other mass is present. It has the
advantage that, unlike the field, it has only a magnitude, and not a direction, which makes it an
easier quantity to deal with. For a point outside a spherically symmetric planet, this potential
is given by –GM/r, where M is the mass of the planet and r is the distance from its centre

Rotation axis

Equator

Figure 6.2 A rotationally flattened planetary body in hydrostatic equilibrium.
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(compare equation (4.6)). The minus sign is because of the convention to take the gravitational
potential to be zero at r =�; as the distance is reduced, so is the gravitational potential. Depar-
tures from spherical symmetry add extra terms, analogous to those in the case of gravitational
field. Surfaces exist on which the gravitational potential is everywhere the same, except for
local variations. One such equipotential surface is used to define the zero of altitude on Mars,
in particular the one that has an average value of r at the equator of 3396.0 km.

Some bodies, such as the Moon, have surfaces that are not closely approximated by a sphere,
nor dominated by the effects of rotational flattening; nor do they have an atmosphere, nor a
well-known gravitational potential. In this case zero altitude is defined by what is called a
reference ellipsoid. This is a distorted sphere characterised by three different radii mutually at
right angles.

Question 6.1

Saturn’s large satellite Titan rotates slowly and has a massive atmosphere. How could you define
its zero of altitude?

6.1.2 Analysis of Electromagnetic Radiation Reflected or Emitted by a Surface

The radiation from the surface of a body includes thermal emission and reflected solar radiation.
The radiation can by analysed by the techniques of photometry and reflectance spectrometry
outlined in Section 3.1.6 in relation to asteroids. Just as for asteroids, each technique yields
information about the surface composition and surface roughness. For example, Figure 6.3
shows the reflectance spectra of Europa and of coarse-grained water ice. The correspondence is
close enough to conclude that water ice is the dominant constituent of Europa’s surface.
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Figure 6.3 Reflectance spectrum of Europa and of coarse-grained water ice.
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With radar we provide our own illumination, at wavelengths in the approximate range of
8–700 mm (microwaves). However, radar data are not easy to interpret. The strength of the
reflection depends on the angle at which the incident pulse strikes the surface, on the roughness
of the surface at the scale of the wavelength used, and on the composition of the surface down to
a depth of the order of 10 wavelengths. On the other hand, further information can be obtained
if the radar pulse is circularly polarised. Circular polarisation is possible in any wave in which
the oscillatory motion is perpendicular to the direction of travel, i.e. if it is a transverse wave.
The S wave in Figure 4.7 is transverse, and so too is electromagnetic radiation. A transverse
wave is circularly polarised if the oscillations rotate around the direction of travel of the wave
to create something like a corkscrew. For radar, if the pulse sent is circularly polarized, then the
echo will consist of a component rotating in the same direction as that sent, and a component
rotating in the opposite direction. The ratio of the strength of these two reflected components
provides further information on texture and composition.

X-ray fluorescence spectrometry reveals the chemical elements that are present. In
fluorescence the electrons in an atom are excited (raised in energy) by incoming radiation or
particle bombardment. As the electrons return to their initial orbits they emit electromagnetic
radiation at wavelengths characteristic of the atom. X-ray wavelengths are particularly useful,
and have been observed from spacecraft, such as SMART 1 (Table 4.1), which has detected
X-rays from fluorescence caused by the X-rays in solar flares. Gamma ray fluorescence
spectrometry is an analogous technique, the rays usually coming from the atomic nucleus.

In neutron spectrometry the energy spectrum of neutrons emitted by a substance, usually
as a result of bombardment, is used to investigate chemical composition.

6.1.3 Sample Analysis

The most direct way of establishing surface composition is to examine samples from known
locations. Such samples can also be radiometrically dated. The Earth has, of course, been
extensively sampled, and from volcanic activity we even have samples of the upper mantle. For
the Moon, we have some meteorites, plus samples brought back to Earth by various missions
or analysed in situ by landers. In the case of Mars we have in situ analyses plus a few tens
of meteorites of very probable Martian origin, and for Venus we have in situ analysis at four
sites. Meteorites and micrometeorites provide samples of asteroids and comets. For all the other
bodies in the Solar System we have no samples at all. Samples are analysed by a great battery
of chemical and physical techniques, but the details are largely beyond our scope.

Question 6.2

Venus is covered in clouds that are opaque to visible and IR radiation. Describe how a spacecraft
above the clouds could determine the surface morphology and composition.

6.2 Processes that Produce the Surfaces of Planetary Bodies

There are many processes that have produced the surfaces of planetary bodies. Here we shall
concentrate on those that are widespread and of particular importance. Most of the examples
will be for rocky materials, though most of the processes act on icy materials too. From the
effect of these processes we can learn much about the surface that has been exposed to them.
This, in turn, can tell us much about the interior.
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First, we shall see how surfaces are emplaced. Then we shall see how they are subsequently
modified.

6.2.1 Differentiation, Melting, Fractional Crystallisation, and Partial Melting

Differentiation of a planetary body was discussed in Section 4.5.1. Here we concentrate on the
formation of the crust from the upper mantle. The composition of the crust depends on the
composition of the materials from which the planetary body formed.

Consider first those planetary bodies dominated by silicates plus iron or iron-rich compounds.
Either the body will have an iron-rich core from the start, or one will start to grow by
differentiation as the interior temperatures rise. In either case there will be a silicate mantle
more or less rich in iron. In Section 5.1.1 you saw that in the case of the Earth the
mantle is predominantly peridotite, which consists of the minerals olivine, �Mg� Fe�2SiO4,
and pyroxene, �Ca� Fe� Mg�2Si2O6, where the pyroxene metals can less commonly be
Na, Al, or Ti. Table 6.1 lists these minerals, along with some others we shall shortly
encounter.

Melting and fractional crystallisation

Consider a peridotite mantle in the late stage of accretion of a planetary body. It is possible
that during this stage the uppermost mantle becomes completely molten. A magma ocean is
then said to have formed, magma being wholly molten material (rocky here, but it could be
icy). The ocean will consist of a mixture of substances and, as long as no crystals form, the

Table 6.1 Important igneous rocks and minerals, with their locations in the Earth and Moon as examples

Rock Mineral content (major
components)

Where found in the Earth and
the Moon

Peridotite Pyroxene + olivine Earth: mantle

Basaltic–gabbroic rocks
Basalt (extrusive) Feldspar + pyroxene Earth: oceanic crust

Moon:mare
Gabbro (intrusive) Feldspar + (Fe, Mg)-rich

silicates such as pyroxene
Earth: oceanic crust
Moon:mantle (with olivine)

Anorthositic gabbro/anorthosite
(intrusive)

Calcium-rich feldspar Moon:highlands

Granitic–rhyolitic rocks
Granite (intrusive) Feldspar + quartz Earth: upper continental crust
Rhyolite (extrusive) Feldspar + quartz Earth: upper continental crust

Andesite Intermediate between
basaltic–gabbroic and
granitic–rhyolitic

Earth: continental crust

Pyroxene �Ca� Fe� Mg�2Si2O6 (rarely Na, Al or Ti in the brackets).
Olivine �Mg� Fe�2SiO4.
Feldspar �K� Na� Ca�AlSi3O8.
Quartz SiO2 (a particular crystalline form of silica).
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random thermal motions keep the magma well mixed. The ocean gradually cools and the first
minerals begin to crystallise, with a well-defined chemical composition. Among these will be
silicates rich in magnesium and iron, such as olivine. These are dense silicates and so tend to
sink downwards. Other minerals that crystallise at the comparatively high temperatures at this
stage are calcium–aluminium-rich silicates that are rich also in silicon and oxygen. Feldspars,
�K� Na� Ca�AlSi3O8, are an important example. Such silicates have comparatively low densities
and so tend to float upwards. Pyroxenes, �Ca� Fe� Mg�2Si2O6, also float upwards. This mixture
of feldspars and pyroxenes constitutes basaltic–gabbroic rocks (Table 6.1). The process of
separation by crystallisation is called fractional crystallisation. Note that different elements
partition differently between different minerals.

The formation of feldspars, particularly those rich in calcium, is moderated by the effect of
pressure. At pressures in excess of about 1�2 × 109 Pa, calcium and aluminium crystallise within
denser minerals that do not float upwards. This means that feldspar would not emerge from
depths greater than those at which the pressure reaches 1�2 × 109 Pa. Such pressures are reached
at depths ranging from 40 km in the Earth to 250 km in the Moon, so the larger terrestrial bodies
would have been more vulnerable than the smaller bodies to pressure moderation of feldspar
formation.

Complete differentiation of the uppermost mantle might well not occur. Partial differentiation
would yield a surface layer rich in feldspar, plus other silicates rich in iron and magnesium,
notably pyroxene. Nevertheless, in all cases the formation and subsequent cooling of a magma
ocean would result in the surface layer being depleted in iron and magnesium, and enriched
in silicon, oxygen, and in metals such as calcium and aluminium. The upper mantle would
then consist of peridotite correspondingly somewhat depleted in elements such as calcium and
aluminium. A crust–mantle distinction would thus be established, as in Figure 6.4.

Partial melting

Fractional crystallisation is not the only way of creating a crust. This can also occur through
the partial melting of a solid outer mantle consequent upon a rise in internal temperatures, or a
reduction in pressure. Partial melting can occur whenever there is a mixture of minerals. As the
temperature rises, or pressure falls, there will come a point where a proportion of the mixture
will melt, such that the composition of the molten material is different from that of the original
solid mixture.
� Why does pressure reduction promote melting (see Figure 4.11)?
This is because when the pressure is reduced the melting point of a substance is also reduced
(except for water – see Question 4.7).

Magma ocean
molten peridotite

Solid
peridotite

Solid crust rich in
feldspar and pyroxene

Solid peridotite
depleted in Ca, Al

Solid
peridotite

Figure 6.4 Formation of a crust by differentiation in a peridotite mantle.



204 SURFACES OF PLANETS AND SATELLITES: METHODS AND PROCESSES

The onset of partial melting is marked by the emergence of a liquid of distinct composition.
For example, consider an upper (solid) mantle with a peridotite composition, subject to (local)
warming. The peridotite will typically consist of three components: olivine and two types of
pyroxene, namely orthopyroxene and clinopyroxene, that differ in their calcium content. As the
temperature rises it reaches what is called the eutectic temperature of the peridotite, which is
lower than the melting temperatures of the components. At this temperature a liquid appears of
a specific basaltic–gabbroic composition. Regardless of the proportions of olivine and the two
sorts of pyroxene in the peridotite, the composition of the liquid (and its eutectic temperature)
is fixed until all of one of the three components has melted. Before this occurs, the liquid, being
less dense than its surroundings and therefore buoyant, will rise into a cooler environment.
It then solidifies to form basaltic–gabbroic rocks – notably richer in silicon and oxygen than
peridotite, as pointed out earlier.

In the case of the Earth, the olivine in the upper mantle peridotite will be rich in magnesium.
Indeed, the upper mantle contains only about 8% iron by mass. The partial melting does result
in some concentration of iron into the melt, and so the Earth’s crust is slightly richer in iron
than the upper mantle. Note that if the Earth had a magma ocean and an early crust, this would
long ago have been recycled into the mantle by plate tectonics (Section 8.1.2), and that the crust
today is derived from partial melting of the upper mantle. Though Venus has little by way of
plate tectonics it is thought that the whole crust is recycled every few hundred million years, in
which case any crust from a magma ocean would also have been recycled (Section 8.2.7). In
the case of the Moon, the maria infill is basaltic, having been derived by partial melting of the
mantle (Section 7.1.2).

Partial melting also occurs on the icy satellites of the giant planets. For example, in the case
of a mixture of water ice with various ammonia hydrate ices (e.g. NH3�H2O) there is a eutectic
temperature of 176 K at a pressure of about 105 Pa, where a liquid consisting of two parts H2O
and one part NH3 emerges. The melting temperatures of H2O and NH3 at about 105 Pa are 273 K
and 195 K respectively.

Once a crust is established, further partial melting can occur within the crust to produce
additional differentiation. The outcome is more than one crustal type, and a rich variety of
surface rocks. Table 6.1 gives a few examples and, by way of example, where they are found
in the Earth and the Moon – more on this in Chapters 7 and 8.

The discovery at the surface of a planetary body of materials that could have resulted from
partial or total melting is evidence that such melting has occurred in the past. This indicates that
interior temperatures were sufficiently high to cause the melting.

Question 6.3

In one sentence, state why pure silica �SiO2� is not subject to partial melting or partial crystalli-
sation.

6.2.2 Volcanism and Magmatic Processes

Volcanism covers all processes by which gases, liquids, or solids are expelled from the interior
of a planetary body into the atmosphere or onto the surface. On icy worlds the processes are
collectively called cryovolcanism.

Volcanism and cryovolcanism start with partial melting in the interior, of rocky mate-
rials and icy materials respectively. The magma, being less dense on average than the
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surrounding materials, finds its way to the surface through fissures. En route, rocky magma
will dissolve volatile substances such as water, and the magma might partially freeze as it
approaches the surface. Volcanism and cryovolcanism lead to further chemical differentia-
tion. For example, granitic–rhyolitic rocks (Table 6.1) are richer in silicon and oxygen than
basaltic–gabbroic rocks.

The exact composition of the magma, its temperature, and volatile content determine what
is called the style of volcanism. There are two extreme styles. In explosive volcanism the
eruption is very violent, because the magma is viscous and rich in dissolved volatiles. Rocky
materials, rock fragments, and ash are erupted at high speeds. By contrast, in effusive volcanism
the volatile content is low, or has become low by the time the magma reaches the surface,
and the magma also has a low viscosity. Consequently there is a surface flow of molten rock
(or icy materials), called lava. Viscosity (which depends on composition and temperature) and
volatile content are continuous and somewhat independent variables, so there are mixed styles
too, including volatile-rich low-viscosity magma that erupts explosively yet leads to lava flows.
The details of each style are influenced by the rate of eruption and by the gravitational field. In
explosive volcanism the density of any atmosphere and the winds help to determine the spatial
distribution of the products.

Given so many different factors, it is not surprising that a wide range of volcanic features
is found. Here are some examples. The ‘classic’ volcanic cone (Figure 6.5(a)) is the result of
explosive volcanism where the rate of eruption is modest. At modest eruption rates and low
viscosities, a sequence of separate lava flows can create shield volcanoes (Figure 6.5(b)), which
derive their name from their resemblance to a warrior’s shield with a central boss. Less familiar
are vast volcanic plains created by low-viscosity lavas flowing at high rates from channels and
tubes that radiate out from a vent or fissure.

We need to distinguish volcanic craters from impact craters. Many volcanoes have summit
craters (Figure 6.5(a), (b)) and these are called calderas. There are also volcanic pits and
depressions that do not sit on mountains (Figure 6.5(c)). Some of these forms bear a superficial
resemblance to impact craters, but in most cases a more careful morphological examination will
reveal their volcanic origin. You can get some sense of this if you compare Figure 6.5 with
Figure 6.10.

Sometimes, magma moving up through a fissure does not reach the surface, but spreads
out sideways into other fissures and solidifies, often melting adjacent crust and incorporating
it into the melt. Erosion can subsequently reveal these intrusive rocks as they are called.
Lavas and products of explosive volcanism give rise to extrusive rocks. Widespread examples
of extrusive–intrusive pairs are basaltic–gabbroic rocks, basalt being the extrusive form and

(a) (c)

(b)

Volcanic
cone

Shield
volcano

Pit
crater

Figure 6.5 (a) Volcanic cone. (b) Shield volcano with summit crater. (c) Volcanic pit.
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gabbro the intrusive form, and granitic–rhyolitic rocks, where the extrusive and intrusive forms
are, respectively, rhyolite and granite. The extrusive and intrusive forms have much the same
mineral content, determined by partial melting. Thus, basalt and gabbro are each mixtures of
the minerals feldspar and pyroxene, and rhyolite and granite are each mixtures of feldspar and
quartz. The intrusive forms are coarser grained, i.e. have larger crystals. This is because they
solidified more slowly in their underground environments than did the rocks extruded onto the
surface.

Rocks produced from magma, whether intrusive or extrusive, constitute what are called
igneous rocks. Table 6.1 lists some important igneous rocks and their corresponding mineral
content.

Question 6.4

Why could you conclude from its location that the summit crater in Figure 6.5(b) is unlikely to
be of impact origin? How could you confirm your conclusion by surveying the composition of
the surface (assume a rocky world), and any layering around the crater perimeter?

6.2.3 Tectonic Processes

Tectonic processes are those that cause relative motion or distortion of the lithosphere. They
derive their name from the Greek word for carpenter – tekton. Volcanism can be associated with
tectonic processes, but this need not be the case. Tectonic features can vary in size from a few
kilometres to planetary scale.

Faults are a common tectonic feature. Figure 6.6 illustrates three of the many kinds of
fault. The normal fault in Figure 6.6(a) usually arises from stretching of the lithosphere – the
lithosphere is in tension and therefore cracks down to some depth, followed by relative vertical
motion. Some rift valleys, or grabens, are the result of slumping between two parallel normal
faults (Figure 6.6(b)). The Great Rift Valley that extends for about 6000 km from Syria to
southern Africa is a huge example. It is the longest rift valley on Earth, and has a typical width

Figure 6.6 Three kinds of fault. (a) A normal fault. (b) A graben (rift valley), made up of two normal
faults. (c) A thrust fault. (d) A strike–slip fault. (From Moons and Planets, An Introduction to Planetary
Science 3rd Edition, by Hartmann, 1993, Reprinted with permission of Brooks/Cole, a division of Thomson
Learning: www.thomson rights.com, Fax 800 730–2215)
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Figure 6.7 Part of the eastern wall of the Great Rift Valley. (The author)

of about 50 km. Part of one of its walls is shown in Figure 6.7. Normal faults and grabens are
common not only on the Earth, but on other bodies, such as Mercury, the Moon, Venus, Mars,
and some of the large satellites of the giant planets.

A thrust fault, or reverse fault (Figure 6.6(c)) usually results from lithospheric compression.
A strike–slip fault (Figure 6.6(d)) can arise from compression or tension, but is characterised by
motion that is predominantly horizontal and not vertical as in the other examples. Thrust faults
and strike–slip faults are seen on the Earth and on many other planetary bodies. Compression
can also cause bending and upthrust of the lithosphere, in extreme cases resulting in mountains,
e.g. the Maxwell Montes range on Venus (Section 8.2.6).

The Earth seems to be unique in that its lithosphere is divided into a global system of
many plates in motion with respect to each other, predominantly laterally. This lateral tectonics
produces mountain chains such as the Himalayas in Asia, the Alps in Europe, the Andes in South
America, and so on. This dominant aspect of terrestrial tectonics, plate tectonics (Section 5.1.1),
is the subject of Section 8.1.2. Other planetary bodies have lithospheres that are not divided into
plates, and consequently tectonic motion is predominantly vertical.

The extent to which a lithosphere has experienced tectonic processes depends on its compo-
sition and its thermal history. If the lithosphere is thick, or rigid, few tectonic features will
be present, and those that are will be mainly due to vertical motion. Conversely, the extent
and nature of tectonism provides important information on the thermal evolution of the body.
Further discussion of individual planetary bodies is in Chapters 7 and 8.
� Would you expect icy lithospheres to be subject to tectonic processes?
Yes indeed, though their expression will reflect differences between the behaviour of ices and
rocks. For example, except at very low temperatures, icy materials are more plastic than rocky
materials and have much less strength. This will rule out the building of high icy mountains.

6.2.4 Impact Cratering

We now shift emphasis away from processes that emplace surfaces to those that modify them,
though there is no sharp division between emplacement and modification. The most ubiquitous
process in the Solar System is impact cratering.

You will recall from Chapter 3 that interplanetary space is populated with large numbers of
small bodies in orbits that can intersect those of planetary bodies. It is therefore to be expected
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that the surfaces of planetary bodies will bear the scars of individual impacts. Indeed they do, in
the form of impact craters. The lunar craters are a familiar consequence of impact (Figure 6.8(a)),
and 174 impact craters, or structures clearly produced by impact, have been identified on Earth,
the best known being Barringer Crater in Arizona (Figure 6.8(b)).

An impact crater is produced when a projectile strikes the surface of a planetary body with
sufficient kinetic energy to excavate a hole. The kinetic energy of the projectile is given by

Ek = mv2/2 (6.1)

where m is the mass of the projectile and v is its speed with respect to the surface. The
value of v depends on the relative motions of the projectile and the planetary body, and on
any changes in projectile speed during the encounter, notably through its acceleration by the
planetary body’s gravity. Orbital speeds and the acquired speeds are each about 10 km s−1, to
an order of magnitude. Therefore, to an order of magnitude v is 10 km s−1. In the case of the
Earth, the impact speeds are in the range 5–70 km s−1. Such high impact speeds mean that even
a small mass can excavate a considerable crater.
� What is the kinetic energy of a small body with a mass of 108 kg and with a speed of

15 km s−1?
From equation (4.1) the kinetic energy is Ek = 108 kg × �15000 m s−1�2/2 ≈ 1016 joules. This is
the energy that would be liberated by the explosion of about 3 million tons of TNT, and it is
also about the energy that was required to excavate the 1.2 km diameter Barringer Crater. This
crater was excavated by an iron meteorite, and so the radius of the meteor at the Earth’s surface
would have only been about 15 metres if it had been travelling at 15 km s−1.

Figure 6.9 illustrates the stages in the formation of an impact crater. In stage 1 (Figure 6.9(a))
the projectile has struck the surface and has penetrated perhaps only 2–3 times its diameter

(a)

Figure 6.8 (a) The lunar impact crater Copernicus, about 90 km in diameter. (NASA/NSSDC AS17-
151-23260) (b) Barringer Crater in Arizona, about 1.2 km diameter. (D R Roddy, IcT, The United States
Geological Survey)
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(b)

Figure 6.8 (Continued)

before being brought to rest. It does not get far because the speed of the projectile at impact
exceeds the speed of seismic waves in the surface material, which at most will be about 4 km s−1.
Therefore, the material ahead of the projectile gets no ‘advanced warning’ of the impact, and so
cannot move away. This leads to the piling up of a sudden and enormous compression – a shock
wave. The pressures generated exceed the strength of the materials by factors of 103–104, and
so the surface materials and the projectile are highly fractured. At the same time nearly all of the
kinetic energy of the projectile goes into heating the projectile and its immediate surroundings.
Most of this material is vaporized and this produces a violent explosion. During stage 1 surface
materials are ejected at high speed.

In stage 2 (Figure 6.9(b)) shock waves spread out from the site of impact, fracturing and
melting subsurface layers and throwing huge quantities of material outwards. The immediate
result (stage 3, Figure 6.9(c)) is a hole with a volume greatly exceeding the volume of the
projectile itself. The hole is rimmed with the distinguishing characteristic of overturned rock
strata. Subsequently, modifications can occur by a variety of processes, as you will see.

The direction of the projectile has little effect on the shape of the crater unless it impacts at
grazing incidence – the explosion and the shock waves spread out uniformly from the point of
impact. Craters are thus roughly circular, unless produced by a near grazing impact, when the
crater will be elongated in the direction in which the projectile was travelling.

The volume of a crater is roughly proportional to the kinetic energy of the projectile. It
also depends on the gravitational field of the planetary body, and on the strength and density
of its surface layers. For example, for a surface of given strength and density, the crater size
diminishes as the gravitational field increases. This is because the surface materials are held
down more strongly. Also, there is a big difference between rocky surfaces and icy surfaces,
partly because of the lower densities of icy materials, and partly because of the lower strength of
icy materials, unless they are far below their melting points. For a projectile of specific kinetic
energy and a specific surface gravitational field, a crater produced in an icy surface will be
roughly double the diameter of one produced in a rocky surface.
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Figure 6.9 Three stages in the formation of an impact crater. (Adapted with permission from Kluwer,
from Figure 3.1 of Planetary Landscapes, R. Greeley, Chapman and Hall, 1994)

The morphology of a crater depends on its size. The reasons are complicated, but the outcome
is illustrated in Figure 6.10, where the diameter ranges are for the Moon. Small craters are
simple, bowl-shaped depressions (Figure 6.10(a)). The bowl is flatter at larger diameters, and at
yet larger sizes a central peak will be present (Figure 6.10(b)), probably the combined result of
floor rebound immediately after the excavation is complete and the reflection of shock waves
from any deep interfaces. At about this size there might also be slumping of the crater walls
soon after the impact, forming terraces. In yet larger craters the central peak is replaced by a
cluster of peaks, or by a ring of peaks, called a peak ring (Figure 6.10(c)). The largest craters
are complex multi-ringed structures, called multi-ring basins (Figure 6.10(d)), that are probably
the result of a combination of slumping and waves of surface motion. The larger craters can
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(a)

1–15 km

(b)

15 –140 km

Terrace
Central
peak

(c)

140 –350 km

Central peaks
or peak ring

(d)

>350 km

Multiple rings

Figure 6.10 Crater morphologies. The diameter ranges are for the Moon, and are approximate.

become flooded by lavas, though this might not happen for millions of years. The larger craters
are also modified by isostatic adjustment (Section 4.1.5).
� What effect do you think this will have?
A crater is a deficit of material, so isostatic adjustment will cause uplift within the crater at the
surface (and horizontal motion deeper down). This reduces the depth-to-diameter ratio to 1/20
or less. Craters of all sizes are continuously subject to erosion and partial infill by some material
or other.

The actual size ranges of the different types of crater depend on the gravitational field and
on the strength and density of the surface layers, and so vary from body to body. For example,
on the Earth, which has a rocky surface like the Moon but a larger gravitational field, central
peaks occur in craters as small as 6 km diameter. On the icy surface of Ganymede, which has
a comparable gravitational field with the Moon, they occur in craters down to about 10 km in
diameter.

As well as the crater itself, there will also be evidence of the ejected surface material, notably
rays, ejecta blankets, and secondary craters, i.e. craters produced by the impact of ejecta thrown
out by the primary impact (Figure 6.11). These features, like the crater itself, are subject to
modification through erosion and through deposition of material.
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Figure 6.11 Rays, secondary craters, and an ejecta blanket from the lunar crater Euler (27 km in diameter).
(NASA/NSSDC AS17-2923)

6.2.5 Craters as Chronometers

Impact craters can be used to determine the age of a surface. The older a surface, the greater the
number of impacts per unit area it will have accumulated. Therefore, a heavily cratered surface
on a planetary body must be older than a lightly cratered surface. Figure 6.12 shows a heavily
cratered region on the Moon adjacent to a much more lightly cratered region. Clearly the latter
is the younger surface.

For the Moon as a whole, Figure 6.13 shows the number densities of craters of different
sizes, i.e. the number of craters per unit area in defined ranges of diameters. These densities are
known with good precision. Two graphs are shown, the one averaged over the lunar highlands,
the other averaged over the lunar maria, which are the smooth, dark areas in Plate 7. (‘Maria’
is the plural of ‘mare’ (ma-ray), Latin for ‘sea’, though we now know that there are no seas on
the Moon.) The graphs clearly show that for the Moon as a whole the maria are younger than
the highlands. Regional studies show that even the oldest mare is younger than the youngest
highland area. Both graphs show that the smaller the craters, the greater their number density.
Therefore, the smaller the kinetic energy of a projectile, the more numerous they are. Among
the great range of projectile masses, impact speed is uncorrelated with mass and so, broadly
speaking, Figure 6.13 shows that massive projectiles in the Solar System have been fewer in
number than less massive ones. This is in accord with our understanding of the size distribution
of planetesimals (Section 2.2.3) and with the subsequent evolution of the remnant population.

The shapes of the curves in Figure 6.13 are sufficiently similar to indicate that the same
population of projectiles is responsible for both. These shapes are consistent with impacts by
projectiles with a distribution of sizes that would be expected if they came from the main belt of
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Figure 6.12 Lunar craters in the highlands and the adjacent Oceanus Procellarum. The frame is about
160 km wide. (NASA/NSSDC AS15-2483)
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Figure 6.13 Number densities of lunar craters of different sizes, averaged over the lunar highlands and
over the lunar maria.
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asteroids. That this has long been the case is indicated by data from lunar surfaces of different
radiometric ages (see below), which show that the size distribution has not changed much over
the past 4000 Ma. A significant cometary contribution cannot be ruled out, particularly if the
size distribution of comets has always resembled that of the main belt asteroids – the data on
comets are too sparse to tell. Bombardment on all the terrestrial planets seems to have been
caused by the same type of population.

In what sense is the age of a surface indicated by craters? On a given planetary body, one
surface will have a lower crater density than another because of some resurfacing event that
obliterated some or all of the existing craters. An obvious example is a flood of lava. Another
is melting of the surface. In such cases, the age of the surface indicated by its crater density is
the time in the past when such resurfacing occurred. Craters can also be obliterated by various
erosional or depositional processes. These will obliterate small craters much more rapidly than
large ones. This is a different sort of resurfacing, continuous in time rather than concentrated
near to a particular time, and it is important to avoid confusing its effects with those that result
from lava floods and the like. For example, suppose that erosion is more powerful near the poles
of a planet than near its equator. The crater density at the poles, particularly for small craters,
will consequently be lower than at the equator for surfaces of equal age.
� How could this be misinterpreted?
This could be misinterpreted to mean that the polar regions had been resurfaced by lava or by
melting more recently than surfaces elsewhere. It is therefore common to exclude from counts
those craters with diameters of less than a few kilometres.

Further complications arise from the need to avoid counting craters of volcanic origin and
secondary craters. Fortunately, most volcanic and secondary craters have morphologies and
spatial distributions that betray their origin. Again it is wise to exclude small craters, many of
which will be secondaries.

A final complication is the phenomenon of saturation. A surface becomes saturated with
impact craters when further impacts, on average, obliterate as many craters as they create. It
is then not possible to distinguish between older and younger saturated surfaces on the basis
of impact crater densities alone. The most heavily cratered parts of the lunar highlands are
saturated, as might be regions on some of the icy–rocky satellites, though definitively saturated
surfaces in the Solar System are rare. One measure of saturation is the degree of randomness
of the spatial distribution of craters. Simulations show that as an area approaches saturation,
the random distribution that characterises subsaturated areas becomes more uniform as sparsely
cratered subareas acquire more, and subareas near to saturation are little changed.

With care, crater densities can be used to place the various surfaces on a single planetary
body in the order of their age since some widespread resurfacing. This can also be done for the
surfaces on separate planetary bodies, provided that we know of any differences in

• the bombardment history of the two bodies;
• their surface properties;
• rates of erosion and deposition.

Unfortunately, such differences are rarely well known, particularly the first. The bombardment
history depends (among other things) on the local flux of potential projectiles. Differences
between local fluxes are poorly known. For example, Mars is close to the asteroid belt, and so
will surely have been more heavily bombarded than the Moon. But estimates of exactly how
much more are highly uncertain. One estimate is that a (unsaturated) surface of given age on
Mars has received twice the number of impacts as a surface of similar age on the Moon. If this
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is the case then we can estimate (with appreciable uncertainty) whether the surface on Mars is
older or younger than a particular surface on the Moon.

To obtain absolute ages we need to know in absolute terms the cratering history of at least
one body, and how to apply the data to other bodies. Only for the Moon do we have the
absolute ages for surfaces with widely different crater densities. These ages have been obtained
by radiometric dating, and they have enabled us to deduce the rate of impact cratering on the
Moon to about 4000 Ma ago. The crater densities and corresponding absolute surface ages are
shown in Figure 6.14 for the total number of craters larger than 4 km in diameter. (Smaller
craters are excluded to avoid the problems noted earlier.) Terrestrial craters are few because
much of the surface is young, and because erosion and deposition are very active. The limited
data for the Earth have been used to help get the curve at young ages (after correction for
Earth–Moon differences). The uncertainties in the data are not large, and on the y axis in
Figure 6.14 correspond to a factor, very roughly, of 1.5 either way, not huge on a logarithmic
scale. The curve for times preceding 4000 Ma is shown dashed, because it is an extrapolation,
older lunar surfaces being saturated.

Figure 6.14 also shows the impact rate in the Earth–Moon system inferred from the crater
densities. These densities are not nearly as well known as the crisp line in Figure 6.14 indicates,
and so the impact rate is correspondingly uncertain. Nevertheless, it is certain that at the
earliest times the rate was very high and then declined rapidly. Before about 4200 Ma ago
two possibilities are shown. In the one there is a monotonic decrease in bombardment, but in
the other there is a peak. In both cases the overall rapid decline presumably reflects the final
stages of mopping up of interplanetary debris left over from the formation of the Solar System.
Different models of these final stages lead to different impact rates at the earliest times. You
have seen that the period from the end of accretion about 4500 Ma ago to about 3900 Ma ago
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Figure 6.14 Crater densities versus surface age in the Earth–Moon system, and an inferred impact rate.
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is called the heavy bombardment. Any peak during the latter part of this time is the late heavy
bombardment. Not shown in Figure 6.14, because it is not quantified, is evidence of a peak in
impact rate on the Moon at 3900 Ma, lasting about 100 Ma, perhaps caused by a comet crashing
into the asteroid belt. This peak would be the last gasp of any late heavy bombardment.

In applying the data in Figure 6.14 to other bodies we have the same sources of uncertainty
that we encounter in placing surfaces in age order, particularly the differences in local fluxes of
projectiles through the ages. This leads to some uncertainty in placing absolute ages on various
surfaces on Mercury, Venus, and Mars. The only feature that presumably has roughly the same
age everywhere in the Solar System is the decline of the heavy bombardment. Therefore, any
near-saturated surface is likely to be older than about 3900 Ma. This reveals an interesting
difference between the inner Solar System and the outer Solar System, with the orbit of Jupiter
as a rough dividing line. On the most densely cratered surfaces, the relationships between the
number densities and crater size are rather different in these two regions, which indicates that
the sources of heavy bombardment projectiles were also different. This also seems to have been
the case subsequently, and this makes for considerable uncertainty in placing absolute ages on
outer Solar System surfaces that postdate the heavy bombardment. The difference in the sources
is presumably because the asteroid main belt cannot act as a significant source of projectiles in
this far-flung region.

Question 6.5

A plain called Chryse Planitia on Mars has a crater density of 2�2 × 10−4 per km2 for craters
greater than 4 km diameter.
(a) How many such craters are there in a typical area of 105 km2 in Chryse Planitia?
(b) Assuming that data for the Moon can be applied to Mars, estimate how long ago this area

was resurfaced. Why is your value an upper limit to the age?

6.2.6 Gradation

Gradation covers three sets of processes:

(1) those by which a surface is disintegrated or eroded;
(2) those that transport the loosened or liberated material;
(3) those that deposit it, perhaps in a different mineralogical form.

The gravitational field of the planetary body tends to cause settling to the lowest available
altitude, and therefore gradation tends to level off a landscape.

Disintegration and erosion

You have already met impact cratering. Additionally, disintegration of surface materials can be
caused, for example, by seismic waves, expansion and contraction in the day–night thermal cycle,
and the expansion and contraction of water in pores and crevices of rocks as it changes from liquid
to ice and back again. Material can be loosened by chemical reactions at the surface, particularly if
there is an atmosphere, and by the alteration of surface materials through UV irradiation. Material
can also be made subject to disintegration by the removal of adjacent material. Erosion is caused
by the impacts of micrometeorites and raindrops, by wind-borne dust, and by the action of rivers
and glaciers. Note that in this last case water need not be the agent. For example, you will see that
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on Mars, as well as water, CO2 ice plays a role, and on Titan CH4 acts analogously to water on
Earth.

Transport – mass wasting

Mass wasting is the downslope movement of loosened materials under the influence of gravity.
Material can be loosened by all the processes that cause disintegration and erosion. Once
sufficiently loosened, gravity does the rest. The distinctive feature of mass wasting is that
transportation is downhill directly from where the material lay to its new location – there is no
long-range transportation. One of many possible outcomes is shown in Figure 6.15, where mass
wasting has produced the fan-shaped deposits.

Transport – aeolian processes

Whereas mass wasting can occur on the surface of any planetary body, aeolian processes require
an atmosphere in which winds blow. Wind moves solid particles such as dust and sand, and
it can move them over large distances before they are deposited. Small particles tend to be
carried in the wind, and larger particles tend to bounce or creep along the surface. Wind-
borne particles cause further erosion – Figure 6.16. Wind can also sculpt a sandy surface to
create sand dunes, and these can creep over the landscape like slow waves. Accumulations
of small particles are called sediments, and deposition from winds is one way of producing
them.

Transport – evaporation, sublimation, condensation, precipitation

The more volatile constituents of a surface can be transported by becoming a gas, through
either evaporation from a liquid, or sublimation from a solid, followed by motion through the
atmosphere through winds or diffusion, to places where the gas condenses, either directly on the
surface as frost, or in the atmosphere from where it precipitates. On Earth water is the volatile
constituent.
� What is it on Mars and Titan?
On Mars it is water and CO2, and on Titan CH4 (plus other hydrocarbons).

Transport – processes involving liquids

One of the more familiar results of liquid transport is the terrestrial system of river valleys
resulting from surface drainage. The very existence of such systems is testimony to the large
quantities of material eroded and moved downstream by the surface run-off of liquid water.
Motion of groundwater near the surface and of water deeper underground also results in erosion
and transportation. Valley glaciers and ice caps remove huge quantities of material, but rather
more sedately. When glaciers and ice caps recede, characteristic landforms are left behind, such
as valleys with U-shaped cross-sections.

Lakes and oceans also erode materials, transport, and deposit them, as can be seen in landforms
like cliffs and beaches, and in extensive deposits of sediments, particularly on ocean floors.
Sediments deposited in water can subsequently be exposed if the oceans recede, or if a shallow
lake dries up.

Water moves material not only mechanically, but also chemically by dissolving some or
all of the minerals in rocks. Limestone, which is mainly calcium carbonate �CaCO3� and
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Figure 6.16 An effect of wind erosion in Chile. (K Segerstrom, The United States Geological Survey)

dolomite �CaMg�CO3�2�, is particularly susceptible, especially if the water contains dissolved
CO2. The removal of limestone from under the Earth’s surface has produced many magnificent
underground caverns.

Deposition

Many transport processes are inextricably linked with deposition, including all of the processes
outlined above, from the short-range deposition in mass wasting to the long-range deposition
of rivers. Deposits borne by fluids and by atmospheres are called sediments, and often form
sedimentary rocks, as outlined in the next section.

Question 6.6

List the gradational processes to which a planetary surface is subject if the planet has an
atmosphere but no surface liquids.

6.2.7 Formation of Sedimentary Rocks

A sediment, however formed, and wherever it lies, can form a sedimentary rock. Chemical
cementation of the solid particles is an important part of the process, though modest pressure
helps through the consolidation it produces. On the Earth, shale is a particularly abundant
sedimentary rock, making up an estimated 4% of the upper 6 km of the Earth’s crust. It consists
of very fine grains derived from consolidated sediments. These sediments consisted of clays



220 SURFACES OF PLANETS AND SATELLITES: METHODS AND PROCESSES

and silts, dominated by clay minerals in both cases but distinguished on the basis of size – clay
particles are defined as those smaller than 1/256 mm across, and silt particles as those in the
range 1/256-1/16 mm.

Clay minerals are a common outcome of chemical modification of a sediment by water.
One of the commonest processes of clay formation on Earth is the chemical decomposition of
feldspar, �K� Na� Ca�AlSi3O8, by water, but other minerals are modified too. Clay minerals
are also derived from insoluble minerals in limestone. One example of many clay minerals is
montmorillonite. This has a large molecule with the formula �Al� Mg�8�Si4O10�3�OH�10�12H2O,
which exemplifies the effect of water on silicates not only through the attached water molecules
H2O but also through the presence of the water molecule fragment OH (hydroxyl).

Limestone is another type of sedimentary rock, consisting mainly of cemented carbonate
particles. A carbonate is a compound that contains the chemical unit CO3. A common terrestrial
example is calcium carbonate, CaCO3.

6.2.8 Formation of Metamorphic Rocks

In addition to igneous and sedimentary rocks, there is just one other major rock type – metamor-
phic rock. A metamorphic rock is an igneous or sedimentary rock that has been modified but
not completely remelted. Metamorphosis can result from any combination of raised pressure,
raised temperature, or a change in the chemical environment. For example, if shales are subject
to a combination of raised pressure and temperature, then slate is a possible outcome. If granite
is subjected to high pressure and temperature then granite-gneiss (‘nice’) is formed, with a
prominent banded structure.

Metamorphic rocks can result from magmatism, which raises the temperature of rock next to
the magma, and might include modification of the rock by water. The cycling of rock through
the interior can also result in metamorphism, through high pressure as well as high temperature.
On the Earth this cycling is almost entirely a consequence of plate tectonics (Section 8.1.2), but
on other bodies it might be achieved in some other way.

Regardless of how metamorphic rocks are produced, this usually happens beneath the surface,
and therefore they have to be transported upwards to be seen.

Figure 6.17 summarises the processes described in Section 6.2. The three open arrows indicate
that the processes apply to all three types of rock in the triangle. ‘Subduction’ denotes any
process by which crustal materials are carried downwards, usually by (plate) tectonics. ‘Uplift’
is self-explanatory. Table 6.2 lists the planets and large satellites along with the processes that
dominate their surfaces today.

6.3 Summary of Chapter 6

Surfaces are investigated through mapping that establishes the topography. Mapping can be
performed using images, altimetry, and synthetic aperture radar. For bodies that are rotationally
flattened, the zero of altitude can be defined by a surface of hydrostatic equilibrium, such as
mean sea level on Earth. The gravitational potential is used on some bodies. For irregular bodies,
a reference ellipsoid is used.

The composition and other characteristics of a surface are investigated by photometry and
reflectance spectrometry, through the use of radar, by X-ray and gamma ray fluorescence
spectrometry, and by neutron spectrometry Direct analysis of surface samples has only been
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Figure 6.17 A summary of the processes described in Section 6.2.

Table 6.2 Dominant surface processes today in planets and large satellites

Planetary body Dominant surface processes today

Mercury Impact cratering; dry gradationa

Venus V + Mb; tectonics; gradation; metamorphic rock formation?
Earth Plate tectonics; other tectonics; V + M; gradation; S + Mc

Mars Gradation; impact cratering; tectonics?
Pluto Impact cratering; dry gradation; cryo-V+M?
Moon Impact cratering; dry gradation
Io V+M; gradation; impact cratering
Europa Cryo-V+M; cryotectonics; impact cratering; gradation
Ganymede Impact cratering; dry gradation
Callisto Impact cratering; dry gradation
Titan Cryo-V+M; cryotectonics; gradation; cryo-S+M?

a Dry gradation is gradation that does not involve fluids (liquids or gases).
b Volcanic and magmatic processes, including the formation of igneous rocks.
c S denotes sedimentary rock formation, and M denotes metamorphic rock formation.
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achieved for the Earth, the Moon, Venus, and Mars. Meteorites and micrometeorites provide
samples of asteroids and comets, and also of the Moon and Mars.

There are several different types of process that create and modify the surface of a plane-
tary body:

• melting, fractional crystallisation, and partial melting;
• impact cratering – in which bodies from interplanetary space impact the surface;
• (cryo)magmatism and (cryo)volcanism – all processes by which gases, liquids, or solids are

expelled from the interior;
• tectonic processes – all processes that cause relative motion or distortion of the lithosphere;
• gradation – all processes by which material is eroded from a surface, and transported and

deposited elsewhere, sometimes with chemical modification, notably the production of clays;
• the formation of sedimentary and metamorphic rocks.

Impact craters can be used to place surfaces on a given body in a sequence of ages: the greater
the crater density, the older the surface, i.e. the further into the past it was last resurfaced by
lava or by melting. Care has to be taken to allow for gradational effects, and to exclude volcanic
craters and secondary impact craters. Absolute ages of surfaces with widely different crater
densities have been obtained for the Moon. In comparing one body with another we have to
allow for any differences in the bombardment history of the two bodies, their surface properties,
and in the rates of gradation.



7 Surfaces of Planets
and Satellites: Weakly
Active Surfaces

Except for the Sun and the giant planets, which have no surfaces in the generally accepted
sense, the surfaces of all bodies in the Solar System are still subject to impact cratering and
gradation, but only some of them now experience (cryo)volcanism or tectonic processes to any
significant extent, and in this sense are active. This suggests an obvious grouping of the surfaces
into two sorts, and this is the basis on which Chapters 7 and 8 are organised. Thus, Chapter 7
describes surfaces that are now weakly active or inactive, and Chapter 8 describes those that
are much more strongly active. The bodies with active surfaces are the Earth and Venus – the
two largest terrestrial planets – and some of the larger satellites. The bodies with weakly active
surfaces range in size from Mars down to the smallest bodies in the Solar System, though we
shall concentrate on the larger ones. Broadly speaking, a body has a weakly active or inactive
surface because its interior has cooled to the point where its lithosphere is now too thick to
allow (cryo)volcanism or tectonic processes to occur.

7.1 The Moon

The Moon is the only body on which we can see surface features with the unaided eye (Plate 7).
The dark areas are the maria (singular, mare). These are relatively smooth, and they lie amidst
more rugged highland terrain that constitutes most of the lunar surface. The highlands reach up
to 16 km above the lowest lying regions, and are dominated by impact craters.

The Moon is in synchronous rotation around the Earth. Therefore one side – the near side –
always faces towards the Earth, and the other side – the far side – always faces away from the
Earth. However, this does not mean that one face of the Moon never sees the Sun. When we
see the Moon as less than full then part of the near side is in darkness, and consequently part
of the far side must be in sunlight. With no atmosphere to moderate surface temperature, the
temperatures at the equator reach about 400 K at lunar noon only to plunge to about 100 K at
lunar midnight. At any point on the lunar surface the average time between successive noons –
the lunar ‘day’ – is 29.53 days. A moment’s consideration will show that this is also the average
interval between successive new Moons, an interval which is called the synodic month.

With the Moon in synchronous rotation we would see just 50% of the lunar surface if every
one of the following conditions was met (you do not need to dwell on these):

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd



224 SURFACES OF PLANETS AND SATELLITES: WEAKLY ACTIVE SURFACES

Figure 7.1 Lunar far side (left half) and near side (right half), imaged by the Galileo spacecraft in 1990
en route to Jupiter. (NASA/JPL P37327)

• its orbit around the Earth were circular;
• its rotation axis were perpendicular to the plane of its orbit around the Earth;
• the lunar orbit did not precess about an axis perpendicular to the ecliptic plane;
• the radius of the Earth were negligible (so we would always observe the Moon from the same

vantage point as the Earth rotates).

None of these conditions is met, and as a result, from any point on the Earth’s surface, the
Moon appears to rock slowly to and fro (east–west) and nod up and down (north–south). These
are called geometric librations, and they allow us to see 59% of the lunar surface over a period
of about 30 years. In addition, because of tidal forces, the lunar rotation rate oscillates, and
consequently there is a physical libration that allows us to see a tiny bit more. Nevertheless,
about 40% of the lunar surface was hidden from us until 1959, when the spacecraft Lunik III
provided us with our first images of the far side. A more recent image of part of the far side is
shown in Figure 7.1.

A further consequence of the eccentricity of the Moon’s orbit around the Earth and the tilt
of its rotation axis, plus the Earth’s orbital eccentricity and other effects, is that the lunar ‘day’
varies slightly in length.

7.1.1 Impact Basins and Maria

Impact craters are the dominant lunar landform. Much of the highlands is near to saturation,
indicating great age. The largest impact craters are the impact basins, many of which have
subsequently been partially filled to create the maria, which constitute about 17% of the lunar
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surface. The maria are concentrated on the near side (Figure 7.1). The largest impact basin of
all, the South Pole–Aitken Basin, is on the far side near the South Pole. It has a maximum
depth of 8.2 km below the reference ellipsoid that defines zero altitude, and a diameter of
2250 km, making it the largest known impact basin in the Solar System. There is very little
infill. The impact might have excavated the upper mantle, and image analysis is consistent with
the presence of silicates richer in iron and magnesium than those in the crust.

There is plenty of evidence that the maria are partially filled impact basins. The circular
nature of the mare boundaries (Plate 7) and arc-shaped mountain ranges within the maria surely
indicate a multi-ring impact basin beneath. Further evidence is provided by gravitational field
measurements which show that coinciding with many maria there is excess mass – a mass
concentration called a mascon. One possible cause is the upward bowing of relatively dense
mantle immediately after the impact. The bowing would have greatly reduced the mass deficit
after excavation, but would still leave a depression. Any subsequent infill of the basin would
create the mascon, provided that the lithosphere had by then become too rigid to achieve isostatic
adjustment (Section 4.1.5). In some cases, the upward bowing could have been excessive, owing
to rebound held in place by a rigid lithosphere, which would create a mascon before any
infill.

Studies of impact basins, filled and unfilled, indicate that the Moon has long had a thick
lithosphere that has prevented isostatic equilibrium from being achieved.

7.1.2 The Nature of the Mare Infill

There is a good deal of evidence that the mare infill is mainly lava, and not debris from later
impacts, nor migrating dust. For example, mare samples have a basaltic composition, in sharp
contrast to the pyroxene-poor composition of the surrounding anorthositic highlands (Table 6.1
and Section 7.1.6). Also, shallow channels, called sinuous rilles, snake across the maria –
these could be the remnants of lava supply channels or collapsed lava tubes. Some linear rilles
might be graben created by the extraction of subsurface magma. More obvious signs, such
as volcanoes, are represented by only a handful of small features, and so it is presumed that
the upwelling of the lava was mainly through fissures that the lava itself buried – there are
terrestrial examples. Had the lava erupted all in one go, the resulting fluid would have filled
the basin to the level required by isostatic adjustment and there would be no mascon. It is
therefore necessary to suppose that the infill was in a series of sheets, each a few tens of metres
thick. There is evidence for such sheets on Mare Imbrium, in the form of scarps on the surface
(Figure 7.2).

It is widely believed that the mare lavas are derived from the partial melting of the mantle
a few hundred kilometres beneath the lunar surface, the melting being aided by the release
of pressure as the mantle material ascended. Detailed studies of large basins of different ages
suggest that this infill was available more readily early in lunar history than later, and this
indicates that the lithosphere gradually thickened as the interior cooled, making it more difficult
for lava to be released after later large impacts. Even so, the magma always took some time to
reach the surface. Radiometric dating shows that several hundred million years separated maria
basin formation from maria infill.
� What other evidence is there that the maria surfaces are younger than the rest of the lunar

surface?
The low density of impact craters on the maria surfaces also indicates relative youth. There is
thus plenty of evidence for the delay in mare infill necessary to explain the maria mascons.
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Figure 7.2 Part of the lunar Mare Imbrium, showing what are probably thin sheets of lava. The frame is
about 60 km across the base of this oblique view. (NASA/NSSDC AS-17-155-23714)

7.1.3 Two Contrasting Hemispheres

On the far side there is less infill of impact basins. The second largest of the far side basins,
Mare Orientale, about 900 km across, is in the centre of Figure 7.1. It is only slightly filled,
and the gravitational field shows a deficit of mass – a ‘negative mascon’. The lack of infill
on the far side is a possible outcome of the observed higher altitudes of the basin floors there
than on the near side, which could have placed the far side basins beyond the reach of magma.
The exception is the South Pole–Aitken Basin, which is so deep that the lack of infill indicates
significant regional differences in the properties of the crust and upper mantle.

Another striking difference between the near side and the far side is the crustal thickness. This
has a near side mean value of about 40 km, but gravitational and topographic measurements,
particularly by the Clementine Orbiter (Table 4.1), have shown that the mean thickness on the
far side is about 12 km greater than on the near side. On a regional rather than hemispherical
scale, the thickness of the crust varies over the approximate range 20–120 km, though it is
much thinner than 20 km in the South Pole–Aitken Basin. These regional variations must be
due in part to the transport of crustal materials across the surface of the Moon by giant impacts,
and this could also explain the difference on the hemispherical scale. Another regional factor
with hemispherical consequences might be major variations in the extent of melting of the
lunar exterior. Additional possibilities are that erosion by mantle convection early in lunar
history moved crustal material from the near side to the far side, or that mantle convection has
reincorporated into the mantle more of the near side crust than the far side crust.
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7.1.4 Tectonic Features; Gradation and Weathering

Tectonic features include faults and ridges, largely confined to the maria, and some of the linear
rilles – these occur in the highlands and on the maria. These features can be explained by a
combination of crustal tension early in lunar history, crustal deformation around impact basins,
and cooling of lava.

Gradation is confined to mass wasting and impact-related events. There is no evidence at all
that the Moon ever had oceans, lakes, rivers, or an atmosphere of any significance to weather
the surface, though there might be water ice in craters near the poles whose floors and some
walls have been shaded from sunlight for at least the last 1000 Ma or so, with temperatures
persistently around 100 K. The Moon must have been so dry at birth that any water is likely
to have been delivered subsequently, by volatile-rich impactors such as comets, or perhaps by
solar wind ions.

7.1.5 Localised Water Ice?

In 1996 radar data from the Clementine Orbiter found indirect evidence of ice near the South
Pole in the sloping walls of the Shackleton Crater (whose floor cannot be seen from the Earth).
In 1998 the orbiter Lunar Prospector, using neutron spectroscopy, found indirect evidence of
ice at both poles. In the case of the Moon, low-energy neutrons were detected that have been
generated by cosmic ray impacts on lunar surface materials, and lose much of their energy in
collisions with hydrogen atoms. Assuming that water is the dominant source of the hydrogen,
a few per cent by mass of the top metre or so of the surface in various polar craters would
be water ice. Any such water must have migrated there from elsewhere on the Moon, and has
survived because the sublimation rate from permanently shadowed areas is very low, though
dust protection might be necessary to shield any water from photodissociation by UV radiation
from starlight.

Doubt about the existence of near-surface water ice came when the Lunar Prospector mission
was ended by crashing the spacecraft into a crater near the South Pole on 31 July 1999. The
Hubble Space Telescope and Earth-based telescopes searched unsuccessfully for spectroscopic
evidence of water. Further doubt has since been cast by radar data from the 300 m Arecibo
radiotelescope on Puerto Rico. Radar provides evidence for large lumps or sheets of ice because
it gives a strong reflected signal, not so much from the surface, but throughout a depth equal
to several wavelengths of the radar. At a wavelength of 0.7 m, Arecibo has failed to detect ice
anywhere, thus ruling out large lumps down to a depth of about 5 m. The positive radar outcome
from Clementine could well be due to its observation of a sloping crater wall. A rough surface
at a low angle can mimic water ice because it too reflects radar strongly.

To explore the upper metre with greater precision, Arecibo also used a wavelength of 0.12 m,
again with a null outcome.
� How can this be reconciled with the Lunar Prospector detection of hydrogen to this depth?
A possible reason is that the ice is not present in large lumps or sheets but as tiny particles
mixed with the dust and rubble, perhaps generated by solar wind ions that gave rise to frosts.

7.1.6 Crustal and Mantle Materials

Lunar samples have been returned to Earth by the six Apollo manned landings and by three
Soviet Luna robotic missions, all on the near side, and, except for Apollo 16, all on maria.
Samples have also been analysed at the surface by several robotic landers, again on the near
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Figure 7.3 A typical view of the lunar surface, dominated by dust with few large rocks. This is at the
Apollo 17 landing site, on the edge of Mare Serenitatis. (NASA/NSSDC AS-17-145-22165)

side maria. In all cases the samples comprise small rocks found lying on the surface, pieces
chipped off larger rocks, and samples from cylindrical tubes that have penetrated to 2.4 m below
the surface. The orbiter SMART-1 carried out a global survey of the elements at the lunar
surface by X-ray fluorescence spectrometry (Section 6.1.2).

The surface of the Moon is covered in fine dust, called lunar fines or ‘soil’. Figure 7.3 is a
typical view of the dusty surface. The fines are a complicated mixture of silicate rock fragments
and glassy particles with much the same composition at the nine sites from which it has been
sampled. On the maria the fines have albedos of only 5–8%, whereas in the highlands the values
are in the range 9–12%, which is why the highlands look brighter. There are four sources of the
fines: recondensed minerals that were melted or vaporised by impacts; fine ejecta; surface rocks
fractured by micrometeorites; and dust infall from space. As well as the fines there are lots of
small rocks, but few large ones. These small rocks are mainly breccias (‘bretchy-ars’) – the
result of pressure and temperature welding of rock fragments by impacts. Fines plus breccias
dominate throughout the length of the core samples. The whole assemblage of fines and pieces
of rock is called the regolith.

What lies beneath the regolith? Seismic data from landers, all on the near side, are shown
in Figure 7.4, and indicate that beneath the regolith there is broken rock that becomes fully
compacted at a depth of about 15 km (perhaps a bit deeper).
� What does the sharp increase in speed at the greater depth of 40 km indicate?
The sharp increase in speed at about 40 km (at least on the near side) is widely interpreted as a
change in composition at a crust–mantle interface.

We turn now to the mineralogy of the lunar rocks. The highland rocks are dominated by
anorthosite, an intrusive igneous rock consisting largely of the mineral feldspar (Table 6.1), and
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Figure 7.4 Seismic wave speeds versus depth for the outer part of the Moon.

in particular the calcium-rich variety plagioclase feldspar. Anorthosite in this quantity could
be produced by strong differentiation in a widespread magma ocean created by impact melting
in the later stages of lunar accretion. To account for the anorthosite the ocean would have
needed to be a few hundred kilometres deep, with a peridotite composition similar to that of the
Earth’s mantle, though depleted in the more volatile elements and modified by the formation
of a small iron-rich lunar core. Fractional crystallisation would have established a lunar crust
rich in anorthosite, underlain by a mantle rich in olivine. It is this change in composition that
is held to be responsible for the increase in seismic speed at about 40 km in Figure 7.4. The
seismic speeds are consistent with anorthosite above this level and olivine-rich gabbro below it.
It is possible that the heat-producing radioactive isotopes of uranium, thorium, and potassium
are concentrated into the crust, and this would help explain why the Moon’s interior seems to
have cooled early in its history (Section 4.5.1).

The mare rocks differ from the highland rocks through being dominated by the extrusive
igneous rock basalt – just the sort of rock that would result from partial differentiation of the
mantle after crust formation. Though the maria cover about 17% of the lunar surface, the mare
infill is at most only a kilometre or so deep, and so the basalts comprise less than 1% of a lunar
crust of mean thickness of roughly 40–50 km.

Taking the crust plus mantle as a whole, analyses show that, compared with the Earth, the
lunar crust plus mantle is enriched in refractory compounds but heavily depleted in iron and
iron-rich compounds and in siderophile elements such as magnesium. The lunar crust plus
mantle is also heavily depleted in volatiles such as water, carbon dioxide, and hydrocarbons
(compounds of carbon and hydrogen), and in the more volatile silicates, such as those rich in
potassium. Metallic iron particles in the lunar rocks indicate that the lunar surface has never been
exposed to oxygen-rich volatiles to much extent – otherwise they would have been dissociated
and oxidised all the metallic iron.
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� Does any theory of the origin of the Moon account for these differences in crust plus mantle
compositions between the Earth and the Moon?

As explained in Section 5.2.1, these differences can be accounted for by the collision theory of
the origin of the Moon that was outlined in Section 2.2.4.

7.1.7 Radiometric Dating of Lunar Events

Two types of event have been radiometrically dated for the lunar rock samples. For the mare
basalts and many highland rocks we have the age of solidification; for the breccias as well as the
solidification ages of component fragments, we also have the time at which the rock fragments
were impact welded. In addition, isotopes of hafnium (Hf) and tungsten (W) have been used to
establish that the lunar core formed by 25–30 Ma after the formation of the Moon: 182Hf decays
into 182W with a half-life of only 9 Ma; 182W is removed by iron, so 182W depletion in rocks is
the telltale measurement, but there are many complications that will not concern us.

Turning to crust and mantle events, the oldest dates are solidification ages of 4460 Ma for some
highland samples of anorthosite. This is not long after the Moon formed, at about 4500 Ma. Most
other highland rocks are of comparable antiquity, though towards the lower end of the age range,
about 3800 Ma, the radiometric clocks could well have been reset by the impacts that made the
samples available on the mare. The earliest ages are in accord with the great antiquity of the
highlands inferred from the high impact crater densities there. Mare basalt solidification ages
range from about 3950 Ma to 3150 Ma. Breccia welding ages range down to 3100 Ma ago, except
for an age of only about 900 Ma for breccia from the impact that formed the crater Copernicus
(Figure 6.8(a)). The fresh-looking crater Tycho is even younger, perhaps as little as 100 Ma.

The older breccias help us to date the formation of the mare basin impacts, and the mare basalt
solidification ages help us to date the mare infills. The breccia welding ages range from 4000 Ma
for Maria Serenitatis, Nectaris, and Humorum to 3900 Ma for Mare Imbrium. Other basins, such
as Mare Tranquillitatis, are inferred to be older, because that have been modified by the earliest
dated basins. Other ancient basins have presumably been entirely obliterated. Table 7.1 gives
the ages of some lunar basins, along with the mare infill basalt solidification ages. As noted
earlier, you can see that infill was delayed for several hundred million years, the most recent,
that of Mare Procellarum, being completed about 3200 Ma ago. It is not known what caused
such delays. There are no radiometric dates for the lunar far side, but Mare Orientale, from
ejecta relationships, seems to be a bit younger than Mare Imbrium, and so has an estimated age
of 3800 Ma.

Table 7.1 Ages of some lunar basins and mare infill

Basin Basin age/ Ma Infill age/ Ma

Tranquillitatis Before 4000 3600
Fecunditatis Before 4000 3400
Serenitatis 4000 3800
Crisium 3900 3400
Imbrium 3900 3300
Procellarum ? 3200
Orientale About 3800 ?

‘?’ denotes an uncertain value.
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A small fraction of the lunar highlands is somewhat depleted in craters. This is largely due
to blanketing by ejecta from huge impacts, though in some regions there might be ancient lava
flows, over 4200 Ma old, since broken up by impacts and mixed with ejecta. Some features
here and there on the Moon are consistent with more recent volcanism. For example, crater
densities on parts of Mare Imbrium are so low that volcanism might have persisted here
until about 2500 Ma ago. Even today there is the rare observation of possible gas or ash
emission in tiny quantities. However, these transient lunar phenomena (TLPs) have many
possible causes, e.g. meteor strikes and moonquakes – volcanism is not generally required. Two
possible exceptions are an 8 second flash observed by an amateur astronomer in 1953, and a
possible venting of lunar gases (on the near side) seen by Lunar Prospector. But overall, from
about 4200 Ma ago, lunar volcanism was dominated by lava infill of mare basins, and this was
almost entirely over by 3200 Ma.

The lunar cratering rate through lunar history

It was explained in Section 6.2.5 how the radiometric ages of lunar surfaces with different crater
densities have been used to deduce the cratering rate throughout its history, with the outcome
shown in Figure 6.14. The cratering rate was very high early on, and as a result most of the
lunar surface became saturated. There has since been little resurfacing in what we see now as
the highland regions. The cratering rate declined steeply as the supply of debris left over from
planetary formation diminished, with 3900 Ma ago marking the end of the heavy bombardment,
possibly marked by a narrow peak, as outlined in Section 6.2.5. The rate continued to decline
until about 2000 Ma ago, since when it has not varied much.

7.1.8 Lunar Evolution

We can outline a plausible lunar evolution in broad terms as follows, on the assumption that just
after its formation the Moon had a uniform composition broadly similar to that of the Earth’s
mantle today, though depleted in volatiles and enriched in refractories.

(1) A small lunar core formed by 25–30 Ma after the Moon formed (at about 4500 Ma), depleting
the mantle in siderophile elements.

(2) Impact melting helped create a magma ocean several hundred kilometres deep. A thin
skin solidified and gradually thickened, but not before a crust rich in anorthosite formed,
overlying a mantle rich in olivine. The crust was in place by about 4400 Ma.

(3) By about 4000 Ma the magma ocean had solidified throughout its depth, with the whole
surface nearly saturated with impact craters, including some large basins. Further impact
basins formed, but with a rapidly declining impact rate even the youngest (Orientale) is
about 3800 Ma old.

(4) By about 4000 Ma ago the heat from radioactive decay had raised temperatures to the point
(about 2000 K) where there was an extensive asthenosphere. Isolated pockets of partial melt
formed in the rising legs of convection cells, and the asthenosphere migrated deeper as
radiogenic heating declined.

(5) The partial melt supplied basalt magma to infill some of the large impact basins, notably
on the near side where the basins are at lower altitude. Because of slow, deep convection
the magma did not reach the basins until hundreds of million years after they formed.
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(6) As the rate of radioactive heat generation subsided, the interior cooled and the lithosphere
thickened, to about 300 km by perhaps 3600 Ma ago, and it continued thickening until
magma became only very rarely available from about 3200 Ma ago.

Note that the magma ocean might not have been planet-wide at any one time. The degree of
isostatic compensation varies considerably across the Moon in a manner indicating that the crust
and upper mantle might have become rigid at different times in different regions.

Question 7.1

If the lunar highlands had a peridotite composition, how would this modify our view of lunar
evolution?

Question 7.2

(a) If the mare infill had been derived from the highlands through gradation, how would the
composition of the infill differ from that observed?

(b) Were a large impact basin to be excavated in the Moon today, why is it likely that any
subsequent infill would only be through gradation?

7.2 Mercury

Mercury, the planet closest to the Sun, is a small world almost entirely devoid of atmosphere.
Its proximity to the Sun means that at perihelion, when it is only 0.31 AU from the Sun,
the equatorial temperature at noon is about 725 K, though just before dawn the absence of
an atmosphere leads to a frigid 90 K. Mercury rotates three times during two orbits of the
Sun, giving a mean solar rotation period (Mercury’s solar ‘day’) of 176 days. It is the tidal
force of the Sun that has slowed Mercury’s rotation to the point where it is now in this 3:2
resonance.

Mercury is much less well explored than the Moon. It is very difficult to see much on the
surface of Mercury with ground-based telescopes, and with a maximum orbital elongation of
28� it is always too close to the Sun to be viewed by the Hubble Space Telescope. The Arecibo
radiotelescope is not constrained in this way, and has imaged the hemisphere unseen by Mariner
10, but at low resolution. The only spacecraft to have visited the planet was the flyby mission
of Mariner 10, twice in 1974 and again in 1975. Only 46% of the surface was imaged, with
a resolution of about 100 m – about the same as that of the Moon in the larger Earth-based
telescopes. Earth-based radar has indicated that the altitude range on Mercury is around 4–5 km,
but with a large uncertainty.

We have no samples of the Mercurian surface, though the remotely sensed properties of
the surface from Mariner 10 and from the Earth are consistent with dusty basaltic silicates
everywhere, plus iron sulphide. This makes it rather like the lunar fines.

Mercury is a dark world, though not quite as dark as the Moon, and it is generally more
uniform in its albedo, not displaying the maria–highlands contrast of the Moon. The albedo (at
visible wavelengths) over much of the surface lies in the range 10–20%.
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7.2.1 Mercurian Craters

The surface of Mercury is dominated by impact craters (Plate 4), ranging from small bowls at
the limit of resolution up to huge impact basins. Mercurian impact craters are broadly similar in
form to those on the Moon, the main differences being attributable to the higher gravitational
field at the surface of Mercury, 3�7 m s−2, compared with 1�6 m s−2 on the Moon.
� What effects on the craters should the higher field have?
Among the expected effects of higher gravity are that, for surfaces with similar compositions
and compaction, the craters will be smaller for given projectile kinetic energy, and ejecta will
be flung less far. Also, the diameter ranges of the various crater morphologies in Figure 6.10
will be different. Though these expectations are borne out, closer inspection reveals further
differences between Mercurian and lunar craters, presumably because the two surfaces have
somewhat different properties. Also, though the distributions of sizes are not hugely different,
such differences as there are remain largely unexplained.

Some craters are fresh, with bright rays of ejects, the brightest features on Mercury. Others
craters are degraded. Gradation of Mercury’s craters has occurred in various ways. Ejecta
from more recent craters partially obscures neighbouring older craters, and many craters show
evidence of infill that has created so-called smooth plains – in many cases this infill might be
lava. Larger craters show evidence of isostatic adjustment. There has also been mass wasting,
presumably a result in part of seismic activity. The paucity of craters greater than about 50 km in
diameter suggests that the crust might have been rather soft early in Mercury’s lifetime, leading
to viscous relaxation. This occurs in any solid substance warm enough to flow slowly under its
own weight, and the effect is exaggerated if the lithosphere is thin. The number of large basins
(300–1000 km diameter) is much the same as on the Moon, but they are more subdued because
of burial and infill.

The largest basin, indeed the largest structure on the surface, is Caloris, a multi-ring basin
1300 km across, with ejecta reaching as far again beyond the outer rim (Figure 7.5(a)). The infill
is a mixture of ejecta and impact melt. Caloris also has smooth plains thought to be lava flows,
an interpretation supported by the possible presence of lava channels. The smooth plains seem
to have been modified by isostatic adjustment, by magma withdrawal, and by tectonic processes.
Diametrically opposite the Caloris Basin is a unique region of hilly terrain criss-crossed by
linear features (Figure 7.5(b)). On a smaller scale, radar studies from the Earth show this region
to be very blocky, or fractured. It is thought to be the result of the focusing by a large and dense
planetary core of seismic waves from the Caloris impact. This is further evidence for the large
iron core postulated in Section 5.1.3. The Caloris impact was probably the final major impact.

7.2.2 The Highlands and Plains of Mercury

About 40% of the 46% on Mercury’s surface imaged by Mariner 10 consists of large craters,
basin rim structures, hilly terrain, and terrain with roughly linear topography. These Mercurian
highlands constitute the analogue of the lunar highlands, and constitute the heavily cratered
terrain. The more heavily cratered areas in Figure 7.6 and in Plate 4 are examples.
� What could have caused this type of terrain?
This terrain is considered to be left over from the terminal phase of the heavy bombardment, as
in the case of the lunar highlands.

The remaining 60% of the surface imaged by Mariner 10 comprises two types of plain, the
smooth plains, already mentioned, and the intercrater plains. The smooth plains constitute a
smaller fraction of the surface than the intercrater plains. As well as being found in the Caloris
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(a)

(b)

Figure 7.5 (a) The Caloris Basin on Mercury. Note the ejecta, the multiple rings, the infill, the smooth
plains. The inner ring is about 1300 km in diameter. (NASA/NSSDC AoM F21) (b) Hilly terrain diamet-
rically opposite the Caloris Basin. The largest crater, Petrarch, is about 150 km across. (NASA/NSSDC
FDS27370)
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Figure 7.6 The surface of Mercury, showing smooth plains (upper half) and heavily cratered terrain. The
frame is about 490 km wide. (NASA/NSSDC P15427)

Basin they are also found elsewhere on Mercury, such as in other basins and in large craters
(like Petrarch in Figure 7.5(b)). The less cratered half of Figure 7.6 is an example of where the
smooth plains are found exterior to impact basins and large craters. Though the name suggests
that the smooth plains are flat and sparsely cratered, they are more heavily cratered than the
lunar maria, which are the least cratered areas on the Moon. The cratering density is similar on
all such plains, suggesting that all are of much the same age. This is estimated (from the lunar
cratering record) to be around 3800 Ma, which is when the heavy bombardment was declining.
Though ancient, the smooth plains are the youngest surfaces on Mercury, borne out by the
relationship of smooth plains to adjacent material, which shows that the smooth plains came
later. All of them could be lava flows, a suggestion supported by sinuous lobed ridges that
could be the edges of lava sheets. The smooth plains seem to be the Mercurian equivalent of
the lunar maria.

The commonest type of surface on Mercury has no lunar equivalent. These are the rolling
intercrater plains, so called because they lie between clusters of large craters (greater than about
20 km in diameter). Most are in the highlands, and in low-resolution images seem to have few
craters. Many of the craters are secondaries, as indicated by their shallow, elongated forms and
tendency to form clusters and chains. The less cratered areas of Plate 4 are intercrater plains. In
fact, the crater density on the intercrater plains is much higher than on the smooth plains, the
population being dominated by craters smaller than 10 km in diameter. The intercrater plains are
therefore older than the smooth plains, with estimated ages of 4000–4200 Ma, which is during
the heavy bombardment. The intercrater plains are probably of volcanic origin, rather than a
result of erosion and deposition, or impact ejecta mantling. However, you should not envisage
volcanoes and volcanic eruptions as creating these plains. Rather, at that early time, Mercury’s
lithosphere would have been thin, so we have subsurface magma emerging through fractures in
the lithosphere, creating widespread flooding.
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It is quite possible that plain formation on Mercury was more or less continuous, from some
time during the heavy bombardment to when the youngest of the smooth plains were created.

7.2.3 Surface Composition

Earth-based IR spectra have detected feldspars and perhaps pyroxene, which also dominate
the lunar highlands (Section 7.1.6), though the detailed composition is different on Mercury.
The seven times greater solar radiation and solar wind at Mercury also contribute to surface
differences. These differences account for Mercury having a generally higher albedo than the
Moon. The feldspar-rich surface supports the view that Mercury is highly differentiated. IR and
microwave spectra have failed to detect basalts, which indicates that extrusive volcanism since
Mercury acquired a crust has been rare. If so, then loss of internal heat by volcanic extrusion
has not occurred, thus helping to sustain high temperatures in the interior.

Mercury, with an axial inclination of zero, has permanently shadowed regions near the poles,
like the Moon, that act as cold traps for migrating water. But unlike the Moon, there is good
evidence, from Arecibo radar, that in these regions there is ice, at least 1 metre thick, under
at most a thin layer of dust. How can Mercury have bodies of ice of moderate lateral extent,
whereas the Moon might well not? This could be a result of greater cometary bombardment on
Mercury, due to its position much closer to the Sun, and its lower water loss rate due to its
larger gravitational field.

7.2.4 Other Surface Features on Mercury

A few craters have dark halos, as have a few craters on the Moon. Such craters might be volcanic,
but in the case of Mercury better images are required to investigate this possibility. Arecibo
radar has seen a dome on the hemisphere unseen by Mariner 10, which might be volcanic.

Scarps are very common, 1–2 km high, and cross all types of terrain. Figure 7.7 shows part
of the scarp Discovery Rupes. Ridges are also common. Together with the scarps they suggest
planet-wide crustal compression. A 1–5 km decrease in the radius of Mercury could account for
them, though some might be the result of more local tectonics and others could be the result
of lava flows. Local crustal tension is indicated by a few graben and a few strike–slip faults.
Mercury continues to cool slowly, so compressional features will grow, equally slowly, though
on the basis of lunar cratering rates there has been little volcanic or tectonic activity on Mercury
in the past 3000 Ma.

7.2.5 The Evolution of Mercury

On the basis of the limited observations, including those that relate to the interior, a plausible
(but not unique) picture of the evolution of Mercury is as follows:

(1) Any early magma ocean would have solidified by 4000 Ma ago, a crust having formed much
earlier.

(2) Though we have no radiometric dating for Mercurian surfaces, models indicate that the
bombardment history of Mercury has been broadly similar to that of the Moon, and so the
heavy bombardment of Mercury would have ended about 3900 Ma ago.

(3) The existence of heavily cratered terrain indicates that a lithosphere formed before the end
of the heavy bombardment. It was not very rigid, and therefore allowed some of the craters,



MERCURY 237

Figure 7.7 The scarp Discovery Rupes on Mercury. The largest crater is Rameau, 55 km in diameter.
(NASA FDS528881-4, 27398-9, 27386, 27393, R G Strom)

particularly those around 50 km in diameter, to relax into oblivion, thus contributing to the
creation of the intercrater plains.

(4) The intercrater plains have ages of 4000–4200 Ma, and are largely the creation of lava flows.
(5) The formation of the massive iron core and radiogenic heating warmed the interior suffi-

ciently for an asthenosphere to extend up to the comparatively shallow depth of about 50 km,
thus making magma available to the surface. Any early expansion of the crust during this
heating phase is not seen in surface cracks, so it would have ended before the end of the
heavy bombardment.

(6) Crustal contraction created fractures, scarps, and ridges. Lava flows created more intercrater
plains. The contraction could have resulted from cooling and shrinkage of an iron core, aided
by lithospheric contraction. Fracturing could also have resulted from the stresses produced
by the tidal slowing of Mercury’s rotation by the Sun. If at this early time there was a molten
iron core, then it must still be largely molten today, because the large crustal shrinkage that
would have occurred on solidification would be preserved today, but is not seen.

(7) The final stage of heavy impact cratering created Caloris and its associated features, rather
as it created Mare Orientale on the Moon.

(8) Subsequently, when the impact rate had declined somewhat, the smooth plains were
emplaced, also through lava flows, and have ages around 3800 Ma.

(9) The lithosphere gradually thickened, to about 200 km by 2000 Ma ago, and it continued to
thicken thereafter. There might have been little volcanic or tectonic activity on Mercury in
the past 3000 Ma.
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Question 7.3

Discuss the factors relating to energy gains and losses that are relevant to the conclusion that
the lithosphere of Mercury is thicker today than those of the Earth and Venus.

7.3 Mars

Mars is one of the most spectacular sights in the night sky, particularly near its oppositions,
which occur every 780 days. In the months before and after, it gleams brightly, like a red eye.
It has inspired much literature, mostly based on the notion that Mars is inhabited, usually by
hostile beings.

Mars is somewhat larger than Mercury. On average it is 1.5 times as far from the Sun as we
are, and therefore under its thin atmosphere its surface is cold, with temperatures rarely above
273 K, and at night plunging to as low as 150 K in the coldest regions. The day on Mars is
nearly the same length as on Earth, the mean solar rotation period, the sol, being 24 hours 39
minutes 35.2 seconds, compared with 24 hours for the Earth. Mars takes longer than the Earth
to orbit the Sun, so there are nearly 669 sols in a Martian year.

Mars has for a long time been a favourite target of investigation, with its surface markings
that exhibit seasonal changes, and the consequent possibility of life, past or present. For nearly
400 years it has been scrutinised through telescopes, and in the Space Age there have been
many successful spacecraft missions (Table 4.1). Orbital missions have investigated Mars in
a great variety of ways: imaging, mapping, gravity measurements, spectroscopy at a variety
of wavelengths, neutron spectroscopy, and so on. Five successful landers have added in situ
investigations (Section 7.3.7), and Martian meteorites (Section 7.3.8) have provided samples
from other sites on the surface.

7.3.1 Albedo Features

From the Earth, the most obvious features on Mars are the white polar caps, the dark markings,
and the widespread light-red background (Plate 8). The polar caps consist of ices of carbon
dioxide and water. The light-red regions are fairly uniformly covered in dust, whereas the dark
regions are more streaky, and are darker because of a higher proportion of dark dust, and because
of the exposure of dark underlying terrain.

These albedo features exhibit seasonal changes – a result of Mars’s axial inclination of
25�2�. The orbit of Mars is fairly eccentric, with a perihelion distance of 1.38 AU and an
aphelion distance of 1.67 AU. Midsummer in the southern hemisphere occurs near perihelion
and midwinter near aphelion (the same as for the Earth). Therefore the seasonal changes in the
southern hemisphere are more extreme than in the north. The most obvious seasonal change
is the cyclical growth and retreat of the polar caps, visible from the Earth even in a modest
telescope. We now know that this cycle is the result of carbon dioxide condensing at the poles
in the autumn and subliming back into the atmosphere in the spring.

There are also seasonal changes in the shape of the dark areas and in their contrast against
the light areas. The agent is atmospheric winds. These mobilise dust, and as a consequence
streaks are created downwind of obstacles such as craters – light streaks where light dust has
been deposited on dark terrain, and dark streaks where dark dust has been deposited on light
terrain. Winds also create dark streaks by scouring away overlying light dust to reveal dark
terrain beneath. The dark areas are only weakly correlated with large-scale topographic features,
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but are strongly correlated with small-scale topography (such as small craters) and with wind
strength and direction. It is seasonal changes in the winds that cause the seasonal changes in the
dark areas, e.g. by scouring light dust from some areas and depositing it in others. Furthermore,
changes in the winds on time scales of decades cause changes in the dark areas on a similar
time scale.

The most dramatic manifestation of wind-raised dust is huge dust storms. These are most
frequent near to perihelion, and sometimes cover almost the whole planet in yellow-tinted clouds
that consist predominantly of the light dust. Spectrometric studies of these clouds and of the
light areas of the surface itself indicate basaltic minerals mixed with various clay minerals,
notably montmorillonite (Section 6.2.6). The dark material seems to be dominated by basaltic
silicates rich in iron and magnesium. The red tint of both the light and the dark areas is the
result of iron-rich minerals. It is thought that the light dust is derived from the dark material by
various physical and chemical processes.
� How are clay minerals produced?
Clay minerals are the result of the aqueous alteration of silicates. Direct evidence for the action
of water is a 500 km diameter area near the equator which is rich in haematite �Fe2O3�. Such
a concentrated deposit of haematite suggests that it was formed in a body of liquid water, now
long gone. In Section 7.3.6 you will learn a lot more about water on Mars.

7.3.2 The Global View

Spacecraft images show that the surface of Mars consists of two contrasting hemispheres, divided
approximately by a great circle inclined at 30� to the equator (Figure 7.8). The mean altitude
of the hemisphere north of this line, the northerly hemisphere, is a few kilometres lower than
that of the southerly hemisphere, and it is generally much flatter. Why it is so flat and why it
is at a lower mean altitude will be discussed shortly. Figure 7.8 shows altitude data in more
detail, as the frequency of occurrence of altitudes across the whole surface – the hypsometric
distribution for Mars. Two peaks are apparent. The one from −2 to −5 km corresponds to the
northerly plains and constitutes 34.5% of the surface. The one from 1 to 3 km corresponds to the
southerly highlands and constitutes 35% of the surface. The altitude of the boundary between
the two hemispheres ranges from −2 to 1 km, and accounts for 25% of the surface. The small
proportions at the extremes correspond to high mountains and deep depressions. The zero of
altitude is defined from gravity data as outlined in Section 6.1.1.

Gravity data, along with topographical data, have been crucial in crustal models that indicate
a mean crustal thickness of about 60 km in the southerly hemisphere and about 35 km in the
northerly hemisphere, with uncertainties of 10 km or so. It has been suggested that the thinner
crust in the northerly hemisphere is the result of mantle convection. It is less likely to have been
caused by multiple large impacts – these would probably have been too few – and one giant
impact would have disrupted the planet. Whatever the cause, it is possible that the thinning of
the crust was instrumental in producing the lower altitudes in this hemisphere.

The hemispheres also differ in other ways. The southerly hemisphere is dominated by impact
craters and impact basins, whereas the northerly hemisphere is dominated by plains that constitute
the flattest areas known in the Solar System. In the northerly hemisphere there are also domes,
volcanoes, and huge grabens and pits. The scarcity of impact craters in this hemisphere shows
that it is the younger one, and this is also indicated by abundant evidence that it has been
resurfaced by basaltic lava flows, sediments, and sedimentary rocks. At least some of the
sediments could have come from the southerly highlands, which have morphologies indicating
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the removal of material in the Noachian (see below), to a depth of at least a kilometre. The
relative youth of the northerly hemisphere is consistent with a thinner northerly crust, because
magma would then have had easier access to the surface.

However, the radar on board Mars Express (Table 4.1) has detected many impact craters and
impact basins at a depth of a few kilometres in the northerly hemisphere, indicating that the
young plains there are underlain by a far older surface.

Relative ages from crater densities are used to define three epochs:

(1) The Noachian, with near-saturation crater densities, lasts until the heavy bombardment was
over. This terrain is found mainly in the southerly hemisphere (the highlands).

(2) The Hesperian, with moderate crater densities, is the time immediately following the
Noachian. These areas consist mainly of ridged plains that overlap Noachian terrain.

(3) The Amazonian, with light cratering, immediately follows the Hesperian, and extends right
down to the present. This terrain dominates the northerly hemisphere.

Radiometric dating has not been carried out at the Martian surface. We therefore have to obtain
absolute ages by adapting to Mars the lunar cratering rate in Figure 6.14, making due allowance
for Mars’s different gravity, its proximity to the asteroid belt, the different nature of the Martian
surface, and the greater degradation on Mars. The end of the Noachian is placed at around
3700 Ma, by which time the bombardment rate on Mars had declined considerably from its peak.
The end of the Hesperian is not as well known, with dates ranging from 3300 Ma to 2900 Ma,
or even earlier and later.

A pre-Noachian epoch is now recognised, based on huge numbers of craters tens to hundreds
of kilometres across that underlie Noachian surfaces. The pre-Noachian surface constitutes the
early crust of Mars. It is defined to be older than the huge Hellas Basin, which has been dated
(using impact craters) at 4080 ± 60 Ma.

Another date yielded by impact craters is that of the formation of the boundary between the
two hemispheres, and therefore of the initial formation of the northerly lowlands. Its value,
4120 ± 80 Ma, places the formation in the pre-Noachian. Partially buried craters and basins in
the northerly lowlands indicate an underlay of (pre-)Noachian terrain.

Indications of surface composition have come from spectra obtained by Mars orbiters. In the
southerly hemisphere, IR spectra indicate the presence of basalts or basaltic materials. In the
northerly hemisphere, given the many basaltic volcanic structures there, it was a surprise to
find evidence of andesitic signatures over wide areas. It is thought that the basalt, presumed to
be widespread, has become altered at many locations by weathering, and distributed by winds.
Also, the IR spectra that have provided much of the data from orbit only ‘see’ 1–2 mm below
the surface, and therefore it is possible that the alteration is not deep. Evidence from a few
surface locations is outlined in Section 7.3.7.

Let us look more closely at each hemisphere separately.

7.3.3 The Northerly Hemisphere

Figure 7.8 includes the main topographic features of the northerly hemisphere. The plains that
constitute a large fraction of this hemisphere are young and thought to be largely volcanic.
The numerous volcanic features support this conclusion. Spectrometric evidence from orbiting
spacecraft and evidence from surface analyses by the landers is consistent with the presence
of iron-rich basaltic materials such as would constitute silicate lava flows. Radar reflectivities
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and the rapid response of the temperatures of some areas to changes in insolation are consistent
with a covering of volcanic ash. This ash could have been carried by the wind from the sites of
explosive volcanic eruptions.

Though the northerly plains are rather flat, superimposed on them are two large raised domes,
the Elysium and Tharsis regions. The Tharsis region is the more dramatic, a broad dome
about 5000 km across, rising to 10 km above the surrounding plains. In the case of Tharsis
there is evidence, e.g. from magnetic anomalies, that it was probably in place by the late
Noachian. On both domes, substantial lava flows occurred up to a few hundred million years
ago. Since then, volcanic activity has been rare, though virtually uncratered hillsides indicate
activity perhaps more recently than 3 Ma. Various processes could have contributed to the
formation of these domes – convective plumes in the mantle, isostatic adjustment, intrusive
and extrusive igneous activity. Different regions of each dome have different ages, indicating
protracted formation. Whatever single or combined process created the domes, the gravitational
fields in their vicinity show that there is excess mass present near the surface, perhaps because
the underlying lithosphere is so thick that it takes hundreds or thousands of million years for
isostatic equilibrium to be achieved, or perhaps because the domes are still being borne aloft by
convective plumes in the mantle.

Each of these domes is associated with features arising from crustal tension that would result
from uplift, or perhaps in some cases from the effect of the intrusion of dykes of magma.
Most spectacular is Valles Marineris, a system of cracks and grabens enlarged and modified
by slumping, landslides, wind erosion, and magma withdrawal, and perhaps also modified by
water flow at and below the surface. It is nearly 4000 km long (Figures 7.8 and 7.9), up to
several hundred kilometres across, and with an average depth of 8 km. Mars Global Surveyor
(MGS) images were the first to reveal layers in the walls, each layer about 10 km thick. The
layers are thought to be lava flows. At the west end of Valles Marineris is Noctis Labyrinthus,
consisting of short grabens running in all directions. At its east end is an example of Martian
chaotic terrain – jumbled, heavily mass wasted, with wide channels leading downhill.

The domes also bear huge shield volcanoes. One old volcano, Alba, on the Tharsis dome,
has a lopsided topography that suggests it predates the Tharsis dome, and was then tilted as
the dome grew. At the other extreme, some volcanoes are so unweathered that they could be
dormant or recently extinct, and could have contributed lava flows to dome building. The least
eroded and youngest volcanoes are four South of Alba, on the Tharsis dome, on what is called

Figure 7.9 Valles Marineris on Mars. It is nearly 4000 km long, extending from a system of grabens to
the west (left), called Noctis Labyrinthus, to chaotic terrain to the east. (NASA/USGS PIA00422)
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Figure 7.10 Olympus Mons on Mars. The steep scarp is about 550 km across, and the summit is 25 km
above the adjacent plains. The vertical scale is exaggerated. (NASA/JPL)

the Tharsis Ridge. These resemble terrestrial shield volcanoes such as Mauna Loa in Hawaii,
though the Martian examples are much larger than the terrestrial ones. Olympus Mons is the
largest of all (Figures 7.8 and 7.10), 550 km across, and rising to 25 km above the adjacent
plains. Lava has flowed from a huge complex of summit calderas and from numerous vents on
its flanks. The expected basaltic composition of the lava is borne out by orbital spectrometry.
Gravity data, combined with topographic data, give a density of 3100 ± 200 kg m−3, which is
consistent with such a composition. The great size of each Martian shield volcano could result
from the combined effects of a magma source in a fixed position with respect to the crust, and
a thick lithosphere retarding isostatic adjustment.

Some volcanoes seem to have erupted ash rather than lava.
� What does the magma need to contain to form ash?
Ash indicates the presence of dissolved volatiles in the magma. Other volcanic features include
fissures from which lava emerged, and channels along which lava has flowed. Low-rise lobes
are common, consistent with lava flows, though the source vents in many cases are now hidden,
as in the case of the lunar maria.

In spite of these extensive indications of volcanism, detailed studies show that the accumulated
volcanic activity on Mars is considerably less than on the Earth. This might be because crustal
formation from a magma ocean concentrated the heat-producing radioactive elements in the
crust, depriving the interior of a heat source. This might also be the case for the Moon. Mars,
however, is bigger than the Moon, which is why Martian volcanism and tectonic activity have
been more widespread and persisted longer.

7.3.4 The Southerly Hemisphere

The southerly hemisphere is dominated by impact craters, much of it near to saturation. The
largest crater is the impact basin Hellas, within which is found the lowest elevation on Mars,
6.5 km below zero altitude, and about 8 km below the general altitude of the surrounding high-
lands Figure 7.8. About half way down to its rather flat floor it is about 1800 km across, making
it second only to the Moon’s South Pole–Aitken Basin among impact basins in the Solar System.
Beyond the main ring of uplifted mountains are fractures, with associated volcanism. Within
the Hellas Basin is the plain Hellas Planitia, built of lava and wind-blown dust. The next largest
impact basin is Argyre (Figures 7.8 and 7.11), 900 km across, also filled in the manner of Hellas,
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Figure 7.11 Part of the Argyre Basin on Mars, visible in the lower left quarter of this image. The basin
is about 900 km across. (C J Hamilton and NASA)

as indeed are many smaller craters. Impact crater densities have been used to date Hellas to
4080 ± 60 Ma, and Argyre to about 4040 Ma. The most ancient surviving highland crust is dated
at about 4400 Ma.

On the most heavily cratered parts of the southerly hemisphere, many of the craters are
heavily weathered, and smaller craters have been totally eradicated. On slightly less cratered
and therefore slightly younger terrain the smaller craters still survive, implying a decrease in
weathering rate at some time in the distant past, before 3000 Ma ago. A decline in atmospheric
mass would account for such a decrease – more on this in Chapter 10.

Impacts have reduced the surface density of the southerly hemisphere. Gravity data yield
values in the range 2500–3000 kg m−3. This is too low for solid rock of basaltic composition –
Martian meteorites (Section 7.3.8) have densities 3200–3300 kg m−3. A fractured surface to
some unknown depth is indicated.

Apart from impact craters, the southerly hemisphere displays a few heavily weathered, almost
obliterated shield volcanoes, and lava channels that indicate long-extinct volcanic activity. There
are not many such features, and so the activity was not as widespread as in the northerly
hemisphere.
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The boundary between the hemispheres

The boundary between the two hemispheres is ragged, with hummocky outliers of high ground
in the northerly hemisphere, some of them surrounded by landslides. This is called fretted terrain,
and it could be the result of retreating scarps, or the weathering of a once-sharp boundary, or
the removal of underground magma, or some combination of all three. You have seen that the
boundary is dated at 4120 Ma.

7.3.5 The Polar Regions

The seasonal polar caps in the northern and southern hemispheres extend in midwinter to
latitudes of about 65 �N and 50–60 �S respectively. In both hemispheres the caps undoubtedly
consist largely of CO2 ice. This is the dominant constituent of the Martian atmosphere, and
the temperature of the seasonal caps, about 150 K, is that at which CO2 would condense (gas
to ice) at Martian surface pressures. The temperature remains near to 150 K throughout much
of the long winter, sustained by the latent heat released on condensation of CO2. Some of this
condensation occurs at ground level, but in the polar regions of the atmosphere it also forms
CO2 clouds from which powdery snow falls. The depth of the seasonal caps has been estimated
from their rates of advance and retreat, a metre or so topping the range of values.

By high summer the seasonal cap has retreated, leaving behind the residual cap (Figure 7.12).
The North Pole residual cap reaches temperatures of about 240 K, far too high for it to consist
of CO2. These temperatures, at Martian surface pressures of water vapour, are not far above
those on the ‘solid + gas’ line on the phase diagram of water (Figure 9.9), and so the residual
northern cap is presumed to be water ice. Reflectivity measurements by the Galileo Orbiter
indicate that dust is also present, in accord with earlier findings. At the South Pole the residual
cap seems to be CO2 (plus dust), though presumably underlain by dusty water ice.
� If seasonal changes are more extreme in the southern hemisphere, how could the residual

cap be CO2 when in the northern hemisphere it is water ice?
The South Pole is at the higher altitudes characteristic of the southerly hemisphere, and so is
colder than the lower lying North Pole.

The northern cap is generally smooth, but both caps are scarred by wind-scoured pits and
valleys. These show that the caps overlie extensive, nearly horizontal layered sediments a few
kilometres deep. Each layer is 10–50 m thick and is richer in dust than the residual caps. The
layering is thought to arise from a variation in the dust/water-ice ratio from layer to layer, and
it is estimated that each layer represents many years of deposition. Much thinner annual layers
could exist within those resolved. These layered sediments overlie unlayered and largely ice-free
bright dust that is several hundred metres thick near the poles. It extends further towards the
equator than the layers, thinning as latitude decreases, and petering out at mid latitudes. Nearer
to the poles, and encircling the residual caps, are dark polar collars that consist of dunes of
dark grains. The polar deposits are all very lightly cratered, but though Amazonian they could
still have ages in excess of a few hundred million years. The pits and valleys extend down to
the underlying terrain, which in the north is seen to be the lightly cratered plains typical of
the hemisphere. The north cap reaches an altitude of at least 2.5 km above its surroundings.
Beneath the polar deposits at the South Pole lies the heavily cratered terrain that is typical of
that hemisphere.

The dust has presumably been transported to the polar regions by winds, each dust particle
having acted as a nucleus on which CO2 and water condensed from the atmosphere, the water
adding to any water content the grain initially had. The particle with its icy mantle was then
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Figure 7.12 Residual Martian cap at the North Pole in October 2006 (see also front cover). The width
across the ‘Swirly’ cap is about 1000 km. Clouds are visible to the left of the cap. (NASA/JPL/Malin
Space Science Systems, MOC2–1607)

precipitated at the pole. Subsequently, at least some of the CO2 content was lost through
sublimation. For so much dust to be present at the poles, evidence of denudation elsewhere is
a reasonable expectation, and such evidence is found. For example, Valles Marineris seems to
have suffered wind erosion, as have various hummocky terrains.

A scenario that can account for many of the polar features has as its central feature switches
from net deposition to net erosion. First, the thick unlayered deposit is laid down over many
years, perhaps as a set of layers no longer preserved. Net deposition then switches to net
erosion, cutting into the deposit. Then there is a switch back to net deposition, resulting in the
oldest layers that are preserved today. The layered deposits are then partially eroded and this is
followed by another deposition episode. Evidence for several layering episodes is provided by
what is called an unconformity, a mismatch in orientation between a set of layers and another
set above it. Net deposition then switches to net erosion again, to give the pits and valleys that
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we see today. It is not known whether there has recently been a switch back to net deposition.
A major factor in these switches is probably quasi-periodic changes in the axial inclination of
Mars – more on this in Chapter 10.

The polar layering is currently (early 2007) being explored by the radar and high-resolution
optical imager on board the Mars Reconnaissance Orbiter (MRO, Table 4.1). So far, these
instruments have revealed variations in the thickness and composition of the layers at both
poles, which will elucidate climate changes. The MRO climate sounder has detected atmospheric
pressure variations due to CO2 snowfall at the winter pole, which makes the major contribution
to layer formation.

The MRO spectrometer and imager are detecting gypsum �CaSO4�2H2O� near the North Pole,
and clay minerals elsewhere, indicators of wet conditions at some time in the past. Water-related
features are the subject of the next section.

Question 7.4

In Plate 8 there is a variety of albedo and topographic features. In 300–400 words explain the
origin of an example of each of them.

7.3.6 Water-related Features

The most intriguing features on Mars are those that seem to require the involvement of liquid
water. The intrigue is that liquid water is not evident anywhere on the Martian surface today,
and that the present surface conditions would everywhere result in rapid freezing of water.
Nevertheless, the features indicating the involvement of liquid water are many and varied.

Unusual ejecta blankets

A small proportion of Martian impact craters have unusual ejecta blankets – Figure 7.13 shows
one example. Such blankets are readily explained by the impact-generated melting and surface
flow of liquid water with entrained rocky materials, and so they are evidence that the Martian
surface contains water in some form. (A less favoured explanation is that such blankets were
produced by dry ejecta interacting with the thin atmosphere.) The lack of impact craters on the
blankets indicates their youth, and so the water is presumably still there. Older blankets of this
sort that would now bear craters are not seen, presumably because such low-relief features are
readily eroded away by the atmosphere.

Martian channels

More intriguing are Martian channels. Figure 7.14 shows three sorts of channels, all of which
suggest the flow of liquid water. Their locations indicate that their formation was concentrated
in the late Noachian or Hesperian. They could, however, form under present conditions, because
salts can lower the freezing point of water, and ice can cap slow-moving streams, protecting
them from freezing.

Figure 7.14(a) shows an example of an outflow channel. These are of the order of 103 km
long, 102 km wide, and a few kilometres deep, and their morphology strongly suggests the
sudden outflow of liquid water, in many cases more than once. Downstream there are features
that indicate ice flow as well as liquid flow, presumably because some of the water froze. Lava
flows would have generated quite different morphologies.
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Figure 7.13 The Martian crater Arandas, with an ejecta blanket suggesting a surface flow of water plus
entrained rocky materials. The crater itself is about 28 km across. (NASA/NSSDC P17138)

At the head of the channel in Figure 7.14(a) is an example of Martian chaotic terrain. Such
terrain is found at the head of most outflow channels.
� What mechanism does this suggest for the formation of chaotic terrain?
A ready explanation is that chaotic terrain is the result of collapse following the removal of the
water that created the channel. The outflow channels indicate that the removal was rapid, and
this is thought to be due to the release of groundwater from an aquifer that was sealed beneath a
permafrost layer until the layer was suddenly disrupted. This disruption could have been caused
by an impact, direct or nearby, by fault movement, or by volcanic activity. Another possibility
is the bursting forth of water from the aquifer as the pressure of water in it exceeded a critical
value. The terracing of channel walls is one indication that there have been repeated floods
as the aquifer refilled and emptied. In this case there might be further outflows in the future,
though most of the channels are on Hesperian terrain and so were formed in that early epoch.

The remaining outflow channels originate in canyons. Groundwater seepage into these canyons
could have created lakes with ice-covered surfaces. Subsurface seepage of water could have
eroded and weakened the canyon walls leading to catastrophic break-out of the water beneath
the ice, and the formation of the outflow channel.

Most of the outflow channels flow into low-lying plains in the northerly hemisphere and into
the Hellas Basin in the southerly hemisphere. Lakes must have formed on these plains, and
there are features in the northerly plains that are consistent with this possibility, e.g. possible
shorelines and layered sediments. It is even conceivable that much of the northerly hemisphere
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(a)

(b)

(c)

Figure 7.14 (a) The Martian outflow channel at the head of Simud Vallis. The width of this frame is
about 300 km. (C J Hamilton and NASA (P16893 is similar)) (b) The fretted channel Nirgal Vallis on
Mars. The frame is about 160 km across. (NASA/JPL) (c) A valley network on Mars. The frame is about
130 km across. (C J Hamilton and NASA (from 63A09))
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was once covered by an ocean. It is not clear where the lake or ocean water went. It might still
be present as ice deposits hidden by dust, or it might have seeped into the groundwater system.
At equatorial latitudes under present conditions, surface ice can quickly be lost by sublimation.
We shall return to Martian oceans and lakes shortly.

Fretted channels (Figure 7.14(b)) are narrower than outflow channels and are more sinuous.
Another distinguishing feature is short, stubby tributaries. They occur along parts of the boundary
between the northerly and southerly hemispheres, and stretch hundreds of kilometres into the
uplands.

Valley networks (Figure 7.14(c)) consist of channels that are narrower still, with typical
widths of 1–10 km and typical depths of 100–200 m, and they have better developed tributary
systems. Most of them occur in the southerly hemisphere in areas of Noachian age, particularly
at high altitudes and low latitudes. It is widely accepted that the fretted channels and the valley
networks were carved by the flow of liquid water. But this leaves open the question of whether
the water was supplied by precipitation or by groundwater sapping. The detailed form of the
fretted channels and of most of the networks is similar to that of terrestrial systems that were
created by sapping, though some Martian networks might have been carved by precipitation.
For precipitation it is necessary for atmospheric temperatures and pressures to have been higher
in the Noachian than they are today. But if sapping was the sole cause then conditions need not
have differed much from the present day. We shall return to Martian atmospheric conditions in
Chapter 10.

A minority view is that the fretted channels and valley networks were not caused by liquid
water alone, but by subsidence mobilised by groundwater at the base of the debris, in which
case it would have been rocky dust and rubble that comprised most of the flow. It is, however,
difficult to see how such a process could have produced such long narrow channels.

Martian gullies

Gullies were first imaged by MGS (Table 4.1). A typical example is shown in Figure 7.15, in
the south-facing wall of Nirgal Vallis, at the location of the small box in Figure 7.14(b). The
frame width is just 2.3 km.

The gullies are about 1 km in length, 10 × 10 m in section, and are located on steep slopes on
young surfaces with ages of about 1–10 Ma. Older gullies have presumably been lost through
erosion, which would rather rapidly erase such small features. They are confined to latitudes
30�–70� north and south. The gullies typically consist of three sections: an alcove at the top,
a tapered channel, and debris at the bottom. The tapering shows that the liquid water was lost
rapidly, as would occur by freezing and evaporation/boiling – the slopes are too steep for loss
by infiltration. This rapid loss of liquid also explains the short lengths of the gullies. The loss
mechanism is consistent with the altitudes at which the gullies are found, altitudes at which the
pressure and temperature are below the triple point of water, thus leading to rapid conversion
to solid and gas.

All of these features are well explained by a model in which a subsurface aquifer at the
altitude of the alcove feeds the gullies with liquid water, though aquifers extending to depths
well below the alcove cannot be ruled out. Rarely, snowmelt could provide the liquid, though
a counter indication is that gullies are found on slopes of all orientations, not just Sun-facing
ones. Also, the alcoves are usually below the top of the slope, again inconsistent with snowmelt.

In the aquifer model the aquifer is created by geothermal heating of ice, trapped within rock
layers, at a few hundred metres depth. Increase in aquifer fluid pressure fractures the ground
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Figure 7.15 Gullies in the south-facing wall of Nirgal Vallis, in the small box in Figure 7.14(b). Frame
width 2.3 km. (NASA/JPL/Malin Space Science Systems)

ice plug and liquid water emerges from the slope. The regional clustering of gullies can be
explained by the geothermal heating being localised. The cause of the pressure increase could
be a rise in temperature consequent upon the variation in Mars’s axial inclination, which alters
the amount of solar radiation received at each latitude (see Section 10.2.4). Ice plugs at the
required shallow depths would not be stable at equatorial latitudes, which explains the current
absence of gullies within about 30� of the equator. If at any earlier times the axial inclination
was so high that the polar regions were significantly warmer than today, then gullies should
have formed at higher latitudes. If this was so, these gullies have not survived.

Bright new deposits seen in two gullies by the camera on MGS (Table 4.1) suggest that water
has transported sediment through these gullies at some time between 1999 and 2005.

Martian oceans and lakes?

An indication that Mars once had oceans and lakes is terraces in an ancient north polar basin and
in other basins, notably Hellas, interpreted as shorelines. The laser altimeter on MGS provides
support by showing that each terrace is at a gravitational equipotential. Another lake/ocean might
have existed to the south-east of Elysium (Figure 7.8). Here, a very flat area, 800 × 900 km,
displays features seen in pack ice on Earth – break-up into plates followed by drift with rotation,
and pressure features from ice floe collisions. The paucity of impact craters indicates an age of
3–7 Ma. If volcanic ash quickly covered the ice then the sublimation rate could have been low
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enough for some water, now frozen, still to be there. Lava flow is less likely – the plates are
too big and the area is too flat.

Support for the view that liquid water on Mars was widespread comes from the OMEGA
visible and IR spectrometer on Mars Express. This instrument has revealed that Mars is widely
coated in hydrated silicates and sulphates that are evaporites. These are several billion year
old. Carbonates were also expected to have formed in abundance from atmospheric CO2 and
liquid water. But MGS’s thermal emission spectrometer indicates a 2–5% carbonate content in
the dust, too little if much of the presumed massive early CO2 atmosphere was removed by
dissolution in liquid water. Such dissolution could have been inhibited by high acidity, due to
a high concentration of dissolved iron compounds and sulphates.

At the surface (Section 7.3.7) the Mars Exploration Rover (MER) Opportunity found chemical
and textural indications that the region around it was formed under water, acidic water at
that. The MER Spirit crossed into a region where haematite and perhaps sulphates are present,
indicating deposition from liquid water.

Global evidence

Mars Odyssey’s gamma ray spectrometer has detected hydrogen at shallow depths – below
about 0.2 m at the South Pole, gradually deepening to below about 1.2 m at 40�S, the range of
latitudes investigated. Neutron spectrometry indicates a large quantity of buried water.

When was Mars wet, and why not now?

Clearly, there is much subsurface water on Mars, presumably largely frozen today, much of it
mixed with rock dust. It is also clear that at some earlier time liquid was fairly abundant at
or near the surface. This seems to have been in the distant past, in the early Hesperian and
Noachian. Most of the features described above indicate this.
� What are the exceptions?
The gullies, which are all recent, are an exception, and those outflow channels that have released
liquid water as a result of magma heating. Further evidence for more abundant surface water
in the past is that in the first 1000 Ma or so of Martian history the rate of fluvial and glacial
erosion was about 10–100 times greater than subsequently.

So, why is liquid water now rare near the surface? The usual explanation is that the climate
in the Noachian was warmer. This requires a much more substantial, and possibly different,
atmosphere as discussed in Section 10.6.3. Most of the atmosphere was gradually lost. This
would have included water, some to space and, as temperatures fell, some to the (sub)surface
as ice.

An alternative is that Mars was normally in much the same atmospheric state as it is today,
except that early in its history, large, infrequent impacts in the heavy bombardment ejected
subsurface water ice into the atmosphere as liquid, raining out in about 10 years. This is long
enough to carve the valley networks, whether by groundwater sapping or precipitation. The
fretted channels presumably formed by sapping. Additionally, major volcanic episodes could
have released water from magma.

Question 7.5

State, with reasons, which one water-related landform on Mars is least likely to be found
on Earth.
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7.3.7 Observations at the Martian Surface

In 1976 the Viking Landers became the first two spacecraft to land on the Martian surface and
carry out a long and successful series of investigations. They landed in well-separated areas in
lowland plains in the northerly hemisphere (Figure 7.8). The view from both sites was broadly
similar: a gently undulating, dusty landscape strewn with boulders in the 0.01–1 m size range,
most of which were probably ejected from nearby impact craters. The limited photometry that
the Lander cameras could perform on the boulders is consistent with basalt. Bedrock might be
visible here and there. At the Viking Lander 2 site some of the surface has the same crusty
appearance as so-called duricrust on the Earth, where it is the result of dust grains becoming
bound together by materials precipitated in pools of water as they evaporate. In the case of
Mars, the water could have come from upward percolation, or from the melting of permafrost.

At both sites the dust was sampled and analysed. The relative abundances of chemical
elements and isotopes were measured, rather than chemical compounds being detected, and so
the mineralogy has to be inferred from the elemental analysis and from sparse data from other
observations. Broadly, the data can be matched by dust consisting largely of clays rich in iron
and magnesium. On Earth such clays result from the action of water on iron- and magnesium-
rich basalts, and on both planets such basalts are to be expected in volcanic lavas. Orbital
spectrometry provided evidence that iron- and magnesium-rich clay minerals are common in
the bright regions. The dust in general has a high iron content. Oxidation, among other things,
produces haematite, and this gives Mars its red appearance, though the reason for the oxidation
is unknown. The dust is rich in sulphur, a possible result of sulphates left behind by water
evaporation. The action of water is also expected to produce carbonates. The Landers had no
means of detecting carbonates.

Evidence for organic compounds was not found. This is consistent with the negative results
of the Lander experiments to detect life. But even without the activities of living organisms,
organic compounds must continuously be delivered to the surface of Mars
� What sorts of bodies deliver organic compounds?
The bodies delivering these compounds are comets and carbonaceous meteorites. The absence
of any traces of organic compounds is thought to be the result of their destruction by peroxides
produced by solar UV radiation. Such radiation reaches the Martian surface almost unattenuated,
because the atmosphere is largely devoid of the ozone that protects the Earth’s surface.

In July 1997 Mars Pathfinder landed on Mars near the mouth of the outflow channel Ares
Vallis, just inside the northerly hemisphere (Figure 7.8). The view to the west is shown in
Figure 7.16. Particularly noticeable are the two peaks on the horizon, about 1 km away. These
are 30–35 m tall, and, unsurprisingly, have been dubbed Twin Peaks. Though the most recent
outflow from Ares Vallis might have been as long as 2000 Ma ago, the outflow was copious, and
the expected evidence of water flow at the Pathfinder site is found in topographical forms such
as ridges, troughs, and a distant streamlined island, and also in the boulders – the assortment of
types, their size distribution, the roundness of some of them, and the way that some are stacked.
One or two boulders, and also the more southerly of Twin Peaks, might be layered, suggesting
that they are sedimentary.

As well as evidence of water flow, there is abundant evidence at the Pathfinder site, as
elsewhere on Mars, of aeolian processes – dunes, ripples, moats, wind tails, and centimetre-sized
scours on rocks. In the thin atmosphere of Mars it takes a very long time to produce such
features, and their prominence is further evidence of the low level of the volcanic, tectonic,
and fluvial processes that would erase the aeolian features. Further evidence of wind action is
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Figure 7.16 Mars, a view from Pathfinder. The two peaks on the horizon – Twin Peaks – are 30–35 m
tall and 1–2 km to the west. (NASA/JPL P48984/PIA00765)

air-borne dust. At the Pathfinder site samples were collected and analysed, and a high magnetic
content was found, at least partly due to maghemite, an iron oxide slightly depleted in iron
compared with magnetite, that on Earth is formed by precipitation from water that is rich in
iron compounds. The surface dust was also analysed and found to be much the same as at the
two Viking Lander sites. Bright dust was more common than dark dust, the latter predominantly
being found where winds would have swept the bright, finer dust away.

A crucial aspect of the Pathfinder mission was a briefcase-sized rover, called Sojourner,
that made several trips up to 12 m from Pathfinder to measure the relative abundances of the
elements in six boulders – the Viking Landers could only perform such analyses on the dust.
These analyses were supplemented by photometry in more wavelength bands than the Viking
Landers could perform, covering the range 0�44–1�0 �m. The somewhat surprising result is that
some of the boulders are rather andesitic in composition, indicating chemical differentiation in
basaltic–gabbroic crustal rock (Table 6.1). If so, then rather more extensive differentiation has
occurred in the Martian crust than previously thought. However, as noted above, it is possible
that the andesitic material is only a veneer produced by weathering.

The most recent landers are the two MERs, Spirit and Opportunity, which arrived in January
2004. Plate 9 shows a view from each of them, and Figure 7.8 shows their locations. By
November 2006 they had spent over 1000 sols on Mars, photographing and analysing the
surface (a sol is a day on Mars, just slightly longer than a day on Earth). Each of them carries
a panoramic camera and a low-power microscope. They also carry a rock abrasion tool and
three spectrometers – IR, X-ray, gamma ray. Unfortunately, they have no means of carrying out
radiometric dating. By November 2006 Spirit had travelled about 7 km and Opportunity about
10 km. What have they found on their travels?

Spirit landed in Gusev Crater, a 150 km diameter impact crater in the southerly hemisphere,
not far south of the equator, in a region 3000–4000 Ma old. This crater was selected because
the channel system Ma’adim Vallis drains into it from the south, so signatures of a water fill
were expected. However, there was no immediate evidence that a lake had ever been present –
no sedimentary rocks or deposits, no water-formed minerals (e.g. carbonates). Spirit found
magnesium-rich basalts dominated by olivine. Presumably, if there were any lake sediments
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then they would have been buried by lavas, deep enough so that the small craters within Gusev
would not have reached them.

Spirit then made a journey towards some hills within Gusev Crater, named the Columbia Hills,
3–4 km from where it landed. En route it saw some layered outcrops that could be sedimentary.
On reaching the Columbia Hills it ascended one of the tallest, Husband Hill, though it is only
about 100 m above the surrounding crater floor. In this region it found rocks with a wide variety
of compositions. Detailed analyses indicate that many are basaltic impact ejecta, subsequently
altered aqueously, but only slightly, perhaps by steam and local fumeroles. At least one rock
is an unaltered basalt, and one other is a basaltic sandstone cemented by sulphates, though
unaltered pyroxene and olivine indicate that the wetting was brief. Spirit then visited Home
Plate, a bright, low plateau. This is an altered basalt, its association with nearby blocks of lava
of similar composition favouring a volcanic origin over an impact one.

Husband Hill (and presumably the rest of the Columbia Hills) seems to be a sample of the
ancient basaltic Martian crust, with impacts as the main modifying process. Water has played
only a minor role, probably confined to a brief period over 3500 Ma ago. Plains volcanism
postdates the formation of the Columbia Hills.

Opportunity landed in Meridiani Planum, a 3000–4000 Ma old plain in the southerly hemi-
sphere just east of Valles Marineris, 2�S, in a crater 20–30 m across, subsequently named Eagle
Crater. This site was chosen because it is rich in haematite, indicative of the past presence of
liquid water.

Eagle Crater has punctured the dark, sandy basaltic plain to reveal fine layers running half
way around the crater wall, resembling sedimentary rocks on the Earth. The action of (salty)
water here is supported by rock textures and evaporite mineral compositions. Similar layers
were found 700 m away in the 130 m Endurance Crater. This larger crater has penetrated to
different material, so Opportunity was sent several metres down a slope named Karatepe to
examine it. It encountered a knobby texture, in contrast to the finely laminated upper material.
The knobby texture can be explained by recrystallisation, the water reaching the level marked
by the transition to the upper material. The chemical composition also changes between the two
layers. This can be explained by the aqueous removal from the basaltic upper layer of about
55% of its Fe, Mg, and Si.

Opportunity then went on to a highly eroded impact crater called Erebus, about 300 m across,
where it found sediments displaying evidence of water action. Finally, it journeyed to the 800 m
diameter impact crater Victoria where it is examining the layering in the crater walls.

In this long journey it has scrutinised the Burns Cliff. The lower part is aeolian dunes,
truncated by a middle layer that is an aeolian sand sheet that must have eroded the dunes. The
upper layer shows the rippled texture typical of that formed on sand by flowing water. This was a
habitable area, but only intermittently. At another location, Escher rock has polygonal fracturing
consistent with shrinkage due to dehydration of sulphates. Other rocks are erratics, i.e. have
come from elsewhere. For example, Bounce Rock is pure pyroxene, ejected from a distant
impact crater. It resembles EETA79001, the youngest Martian meteorite (see Section 7.3.8). A
meteorite on Mars has also been found – an iron meteorite named Heat Shield Rock.

Of particular interest are the ‘blueberries’, granules 1–5 mm across. That they formed in water
is indicated by a composition with more than 50% haematite, and a morphology consistent
with growth in liquid water. These are found in the crater layers and in sedimentary outcrops
outside them.

The approach to Victoria Crater is slightly uphill, the blueberries and the surface cracks
disappearing. The blueberries reappear higher up. One explanation is the creation of the gentle
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slope by aeolian erosion, which removed blueberries from the surface, followed by the formation
of Victoria Crater, a process that created the blueberries near its rim. Victoria Crater has a
crenellated rim, the result of erosion, and its interior contains sand dunes. The crenellation is
due to erosion, a conclusion borne out by Opportunity’s image of the crater wall, which shows
an ejecta blanket overlying barely disrupted rock that could not have been at the edge of the
initial crater. The crater wall shows layering that Opportunity will explore by working around
the crater.

The action of water is much more in evidence in the area explored by Opportunity than that
explored by Spirit. The area is also rich in elements that are mobilised by water. Water certainly
seems to have been important in this region.

In summary, exploration at the surface has taught us that the surface composition of
Mars, and the textures and morphologies, are consistent with volcanically produced basalts,
perhaps with some subsequent modification by partial melting and certainly by weathering,
including the action of water. The areas explored were damp, perhaps wet, at some time
in the distant past. The absence of organic materials is thought to be due to their destruc-
tion by peroxides produced by solar UV radiation. These conclusions are consistent with
what we have learned from orbit. Are they also consistent with what we learn from Martian
meteorites?

7.3.8 Martian Meteorites

The samples examined by the various landers are not the only samples of the Martian surface
that we have scrutinised at close range. In Section 3.3.4 you learned that by mid 2006 there were
34 meteorites that are widely regarded as having come from Mars. The radiometric solidification
ages vary from one to the other (more properly called chemical isolation ages). The oldest
(ALH84001) has a solidification age of 4500 Ma; for the others it ranges from 1360 Ma to as
recent as 165 Ma, indicating prolonged igneous activity. For reasons outlined in Section 3.3.4,
Martian surface as old as about 4500 Ma is underrepresented in the meteorites. Even so, with
just one so far in the collection, it is deduced that such an ancient crust is more common on
Mars than on the Moon.

Martian meteorites are broadly basaltic–gabbroic in composition, and so have presumably
crystallised from magma at and below the Martian surface. Basalt predominates in several of
them, thus providing further evidence that basalts are common on the Martian surface. Note,
however, that the meteorites are so few that their sampling of the crustal composition is poor.
In particular, they do not necessarily represent bulk crustal composition – all but one are less
than 1360 Ma old, and most are cumulates of various minerals, which makes it hard to infer
the composition of parent magmas. They do, however, indicate that the mantle is depleted in
siderophile elements and in elements that preferentially enter sulphide melts. This indicates an
iron-rich core in which FeS is prominent.

They have also enabled the dates of key events in Martian history to be obtained, through
accurate measurements of isotopes in various minerals in Martian meteorites. For example, the
concentration of hafnium and tungsten isotopes in meteorite minerals has been used to date
Martian core–mantle separation at about 150 Ma after the formation of Mars. The method relies
on the decay of 182Hf into 182W, also used to date the Moon’s core formation (Section 7.1.7).
The decay of the samarium isotope 146Sm into the neodymium isotope 142Nd (half-life 103 Ma)
has been used to date the separation of crust to within 100 Ma of Mars’s formation. The details
will not concern us.
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Also of global significance is the evidence that since solidification, the Martian meteorites
have been modified by liquid water, up to at least the last few per cent of Martian history.
Weathering products in them add to the evidence for clays on Mars. Carbonates are also present.
Martian meteorites thus support the idea of liquid water being available near the surface of Mars
throughout much of its history.

7.3.9 The Evolution of Mars

A plausible picture of the early history of Mars resembles early lunar history, with differences
because of the lower rate of Martian heat loss per unit mass, consequent upon its greater size,
and because of its greater abundance of water and other volatiles.

(1) Towards the end of accretion there was a magma ocean created by impact melting (perhaps
aided by a thick blanketing atmosphere). This led to the formation, within 100 Ma of the
formation of Mars, of a crust of different composition from the mantle, perhaps with a
concentration of the heat-producing radioactive elements in the crust. The magma ocean,
always shallow because of Mars’s low mass, had solidified by the end of the heavy
bombardment.

(2) Ancient impact basins became places of crustal weakness that were sites of subsequent
volcanic activity that flooded these basins with lava, and in some cases led to later volcanic
activity.

(3) Probably before a well-developed lithosphere was established, and around 150 Ma
after the formation of Mars, the core formed consisting largely of iron and iron
sulphide.

(4) Around 4120 Ma ago (about 450 Ma after the formation of Mars), the northerly/southerly
divide was created, as a result of mantle convection. This resulted in a thinner northerly
crust, and this made the northerly hemisphere more prone to volcanic resurfacing.

(5) The uplift of the Tharsis dome was complete by the late Noachian (which ended around
3700 Ma ago), producing extensive fracturing. This uplift might have been the result
of a convective plume in the mantle. Radiogenic heating increased the temperature of
the interior, and the subsequent crustal expansion resulted in further fractures and in
volcanic activity, particularly in the northerly hemisphere. There is a similar story for the
Elysium dome.

(6) Volcanism persisted throughout much of Martian history, focused in later times on the
Tharsis and Elysium regions, perhaps to within the last 3 Ma. Volcanism declined as
radiogenic heating declined, so the interior cooled and the lithosphere thickened. The
lithosphere, about 80 km thick at 4100 Ma, is at least 120 km thick today, and the
asthenosphere might now have vanished completely. There is no evidence for plate
tectonics (Section 8.1.2).

(7) Volcanic and tectonic activity might rarely still occur. Impact cratering and degradation are
certainly continuing, with the thin Martian atmosphere playing a prominent role.

(8) There is ample evidence that liquid water was more readily available and more persistent
in the Noachian and early Hesperian than today. The likely cause is a warmer climate, and
perhaps major volcanic episodes or large impacts. Liquid water can occur locally today, as
seen in the gullies, and perhaps some outflow channels can still be prone to activity, driven
by geothermal heating and the variation in Mars’s axial inclination.
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Question 7.6

Make a brief case for transferring this section on Mars to the next chapter – on active surfaces.

Question 7.7

Outline how the surface of Mars might have been different if its crust had everywhere been as
thin as it is thought to be in the northerly hemisphere.

7.4 Icy Surfaces

Pluto, its satellite Charon, and most of the satellites of the giant planets have icy surfaces. This
is revealed by spectroscopy, and by the low mean densities of those bodies for which data are
available (Table 1.2). Icy surfaces are expected in the outer regions of the Solar System because
of the low temperatures, and you have seen that, because of its high cosmic abundance and low
volatility among icy materials, water is expected to be dominant. Beyond Jupiter other ices, such
as those of NH3� CH4, and N2, can be significant components of surfaces. The near absence of
these icy materials from the satellites of Jupiter is due to the higher temperatures closer to the
Sun, and to IR radiation from the formation of this massive planet.

Among the icy surfaces, only those of Europa, Titan, Enceladus, and Triton are active. The
rest are, at most, weakly active, and we shall concentrate on the four largest of these. Table 7.2
highlights the distinguishing features of the largest of the remainder – the icy satellites of
intermediate size. Not included are the smallest satellites, icy or rocky. Very few of these have
in any case had their surfaces explored to any significant extent.

7.4.1 Pluto and Charon

With a radius of 1153 km Pluto is far smaller than the eight planets closer to the Sun, and
because of its great distance from the Sun its surface temperatures never exceed about 60 K.
Its visual geometric albedo ranges from 0.5 to 0.7 across its surface, consistent with fairly pure
icy materials. Earth-based IR spectrometry has identified nitrogen �N2� ice on the surface, plus
smaller quantities of CH4 ice and a trace of CO ice. Hubble Space Telescope images have
revealed a bright polar cap and bright patches elsewhere, presumably consisting of clean ice.
The rest of the surface could be ice mixed with rocky materials, or with organic compounds
generated by the action of UV radiation on ices. Organic tars called tholins have been detected.

The distribution of albedos over the surface exhibits changes, perhaps due to atmospheric
transport of frosts. There is a very thin, slightly hazy atmosphere with a current surface pressure
of about 15 Pa. It is dominated by N2, with some CH4. CO is also presumed to be present.
It is thought that a layer of solid CH4 about 10 km thick could have been lost to space from
the surface over Pluto’s lifetime, in which case the surface will be depleted in impact craters
up to about 10 km in diameter. No spacecraft has yet visited Pluto so we cannot confirm this
prediction.

An icy surface is in accord with the model of the interior in Figure 5.7. Water ice is the main
constituent of the icy mantle, but this is expected to be topped by the more volatile ices that
have been detected at the surface. Any CO2 would also be hidden from view. Note that in the
low nebular pressures where Pluto formed, N2 is more likely to harbour nitrogen than NH3, so
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Table 7.2 Distinguishing surface features of the inactive intermediate-sized icy satellites

Object Orbit
semimajor
axis/ 103 km

Radius/ km Surface features

Saturn
Mimas 186 199 Heavily cratered, though craters over 30 km are rare, perhaps

due to partial resurfacing before the end of the heavy
bombardment. Herschel crater, at 140 km across, and by far
the largest, shows long grooves opposite this impact, possibly
a result of seismic waves

Tethys 295 530 Heavily cratered, except for a region of early cryvolcanic
resurfacing

Dione 377 560 Cratered, though with considerable cryovolcanic resurfacing
near the end of the heavy bombardment

Rhea 527 765 Imaged hemisphere dominated by the heavy bombardment.
A later, lighter bombardment confined near to the North Pole.
Little resurfacing

Iapetus 3561 718 Heavily cratered. In synchronous rotation. The leading
hemisphere has a visual albedo of 0.04 (‘soot’), the value for
the trailing hemisphere is over 0.6. The ‘soot’ is no more than
about 1 km thick, and postdates the craters. Its source is one
or both of the outer satellites (by impact erosion) and
interplanetary particles

Uranusa

Miranda 130 236 Heavily cratered, plus three regions resurfaced after the heavy
bombardment, perhaps due to collisional disruption followed
by tectonics and cryovolcanism

Ariel 191 579 Surface cratered after the heavy bombardment with global
tectonic features and associated volcanism lasting to about
2000 Ma ago

Umbriel 266 585 Heavily cratered. A particularly low albedo (0.19), perhaps
from a surface veneer additional to effects of methane
decomposition

Titania 436 789 Similar to Ariel, and perhaps with a similar surface history

Oberon 583 762 Heavily cratered, rather like Umbriel
Neptunea

Proteus 118 210 Poorly imaged. Craters and tectonic features present, plus a
large depression

Nereid 5513 170 No good images or other data, but presumably icy. Some
evidence of surface markings

a Many of the satellites of Uranus and Neptune are darkened by the cosmic ray decomposition of methane in the
surface ices.

NH3 could only exist in the interior. Likewise, CO would be the nebular repository of carbon
as opposed to CH4 (mainly) and CO2.

Pluto experiences extreme seasons. This is due to its high orbital eccentricity (0.254) and
its high axial inclination �123��. The latter is an expected result of the collision between Pluto
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and another body that is thought to have formed Charon. This collision can also explain the
surface cleansing that has given Pluto a significantly higher albedo than many EKOs. Pluto also
has a highly variable atmospheric mass. The very volatile N2 is expected to condense on the
surface as Pluto recedes towards aphelion, having passed through perihelion in 1989 in its 251
year orbit.

Pluto’s largest satellite, Charon, has a radius of 603 km, about half that of Pluto. With a
visual geometric albedo of 0.4 it too seems to have been cleansed by the collision. Spectroscopy
indicates that about 70% of its surface is water ice, in a crystalline form indicating slow
condensation. The remaining 30% or so has a spectrum matched by a mixture of NH3 and
NH3�H2O. The NH3 is probably a thin veneer, derived from the interior: as noted above, N2

is the stable form at low pressure, such as that at the surface. CH4 might be absent from the
surface of Charon.

Radiogenic and tidal heating might have been appreciable, but it is very unlikely that volcanic
or tectonic processes still operate.
� Why is this?
They are small bodies, and so cool rapidly.

Pluto and Charon are in mutual synchronous rotation, with a period of 6.387 days.

7.4.2 Ganymede and Callisto

Of the four Galilean satellites of Jupiter, the outer two, Ganymede and Callisto, are no longer
tectonically or volcanically active. Ganymede and Callisto have been investigated by a variety
of flybys, and from December 1995 to September 2003 by the Galileo Orbiter. The outer regions
(Figure 5.7) are dominated by water ice. Hydrated minerals are also present, along with small
quantities of so far unidentified substances. These satellites are too close to the Sun for the more
volatile ices to be present as more than traces.

Callisto is the third largest satellite in the Solar System, slightly smaller than Titan. It is very
heavily cratered (Plate 15), indicating little by way of resurfacing since the heavy bombardment,
except for the partial burial of small craters by dark, smooth material. Indeed, among the icy
satellites, Callisto is one of the darkest, with a visual geometric albedo of only about 0.2. This
might be a consequence of the great age of the surface – loss of ice through sublimation or
through bombardment by charged particles in the magnetosphere could have created a surface
enriched in the rocky materials that were originally a minor component. A significant proportion
of rocky dust in the ice is also indicated by the manner of gradation of some crater walls and
by the low radar transparency of the ice.
� Where would you expect to see high albedos on Callisto?
If there is purer ice beneath the surface, then young craters and the ejecta from them should
have high albedos. This is observed to be the case. There is no evidence of volcanic or tectonic
activity.

Large craters, greater than about 60 km diameter, are scarce, and many craters show evidence
of viscous relaxation – the effect on large craters is greater than on smaller ones, and as a
result many of the oldest larger craters have vanished. Under present conditions on Callisto this
would not happen even in 4600 Ma. Therefore, a thinner lithosphere and warmer subsurface
conditions are indicated for the past, and this is consistent with thermal models of Callisto. The
higher interior temperatures in the distant past were a result of residual heat from accretion
and differentiation, tidal slowdown of the rotation (to yield the present synchronous rotation),
and greater radiogenic heat from radioactive isotopes in the rocky materials. A thin lithosphere
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and viscous relaxation in the past are also indicated by several multi-ring basins with flat areas
in the centre. Today, a comparable impact would not generate rings around the impact basin,
and the central region would be bowl shaped. The absence of lumpy, grooved, and hilly terrain
opposite the impact basin Valhalla contrasts with the hilly terrain diametrically opposite the
Caloris Basin on Mercury, and indicates a soft shell inside Callisto in the distant past. Indeed,
there is some evidence for a soft shell today, in particular an electrically conducting liquid. The
evidence, as noted in Section 5.2.3, is the effect Callisto has on Jupiter’s magnetic field. The
liquid would be water, and the conductivity would be provided by dissolved salts. These, along
with NH3, would also serve to reduce the freezing temperature sufficient for the liquid phase.

The other inactive Galilean satellite, Ganymede, is the largest satellite in the Solar System.
It has a radius 1.08 times that of Mercury, though only 45% of Mercury’s mass.
� What does this indicate about the composition of Ganymede?
This indicates a large proportion of icy materials (water), as in Figure 5.7. Its surface displays
two distinct terrains, each accounting for about half the surface, though the two are intermingled
(Plate 14). There are regions of heavily cratered darker terrain, and bands of less heavily cratered
brighter terrain that here and there makes wedge-shaped incursions into the darker terrain.

On the darker terrain the crater density is about a third of that on Callisto, with a notable
scarcity of craters larger than about 100 km in diameter. The craters show evidence of even
greater viscous relaxation than on Callisto and this could account for their smaller number,
though cryovolcanic resurfacing before the end of the heavy bombardment is another possibility.
Though large craters are scarce on Ganymede, there are flat circular features called palimpsests
that could be almost fully relaxed impact basins, or impacts that penetrated a thin lithosphere
and released slushy ice.

The brighter terrain is criss-crossed by belts of ridges and grooves that suggest several
episodes of formation and a consequent range of ages for this type of terrain (Figure 7.17). This
conclusion is borne out by the variation in crater densities from place to place on it. Overall,
the crater density on the brighter terrain is less than on the darker terrain, indicating that the
brighter terrain is younger, though the high-resolution Galileo Orbiter images have confused
this simple picture by revealing that one dark area has been reworked relatively recently, and
that one bright area has fine grooves plus numerous small impact craters that can be explained
by crustal expansion long ago.

The most likely origin of the bright terrain is from the thermal expansion of Ganymede
consequent upon differentiation, or expansion upon freezing of an icy mantle. This cracked the
lithosphere to form grabens that filled with slushy ice. This ice froze, and the ridges and grooves
could be the result of cracks and subsidence, or of cryovolcanism along cracks. In this model the
infill is brighter because as a partial melt it is relatively free of dust and rock fragments. This also
makes it less dense than the overlying material, which helps it to rise to the surface. Episodes of
enhanced tidal heating, with the most recent perhaps about 1000 Ma ago, can explain the range
of ages in the bright terrain. Such episodes could arise from orbital evolution (Section 5.2.3). It
is even possible, as noted in Section 5.2.3, that there is a liquid salty water shell today, sustained
by radioactive and tidal heating. IR spectra have revealed magnesium sulphate �MgSO4� at the
surface, which alone would make any liquid shell conducting. This is one way to explain (some
of) Ganymede’s magnetic dipole moment. Models indicate that a liquid shell would be a few
kilometres thick at a depth of about 175 km (shown in Figure 5.7).

Compared with Callisto, Ganymede has clearly been more extensively resurfaced. This is
consistent with Ganymede’s greater size (slower cooling rate), its slightly greater ratio of rocky
to icy materials (greater radiogenic heating), and a possible history of significant tidal heating.
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Figure 7.17 Two swathes of brighter terrain on Ganymede, one down the centre and a narrower one
across the bottom of this 950 km wide frame. (NASA/JPL P50037)

This is consistent with the clear evidence that Ganymede is differentiated more completely than
Callisto.

Question 7.8

State, with justifications, how you would modify the orbit of Pluto and the orbit of Ganymede
to cause cryovolcanism on these bodies.

7.5 Summary of Chapter 7

The solid surfaces in the Solar System can be divided into those that today are subject to little
other than impact cratering and gradation, and those that are additionally subject to a significant
level of volcanic or tectonic activity. Broadly speaking, the larger the body, the more likely it
is to have a surface that falls into the latter category, though tidal heating blurs this size-based
distinction.

The largest bodies that are no longer subject to volcanic or tectonic activity comprise the
Moon, Mercury, and Mars, which have rocky surfaces, and Pluto, Charon, Ganymede, and
Callisto, which have icy surfaces. In general, these surfaces are now dominated by impact
craters, though they all bear evidence of volcanic and tectonic activity early in their history, the
details varying from one body to another. There is no evidence of plate tectonics (Section 8.1.2).

The surface of Mercury has been modified by crustal shrinkage and by viscous relaxation
early in its history, and subsequently by lava flows. This has produced a variety of terrains
that differ in their crater densities, from heavily cratered terrain, through intercrater plains, to
smooth plains.

The Moon has a predominantly anorthositic crust, thought to be derived from a peridotite
mantle. The impact basins on the near side have been filled by basalt lavas to form the maria –
areas with much lower crater densities than the nearly saturated highlands that dominate much
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of the Moon. The basins on the far side, perhaps because they are at higher altitudes, are only
partially filled. The crust on the far side is generally thicker than that on the near side.

The surface of Mars, like that of the Moon, also has two distinct hemispheres. The southerly
hemisphere is dominated by impact craters, and has an abundance of channels and other features
that have been created by flowing water. It is an ancient domain. The northerly hemisphere
has a lower altitude, and the crust is thinner there. There are few impact craters, but extensive
evidence of volcanic and tectonic activity, with some lava flows as recent as a few million years,
though mostly much older. Unlike Mercury and the Moon, there are extensive deposits of ices
of water and CO2, particularly at the poles. The observable surface of Mars is largely basaltic,
the result of volcanism. Subsequent alteration by various processes has occurred, including
those involving water and solar UV radiation, the latter eliminating organic materials. Further
crustal differentiation might have taken place, to produce rocks more andesitic in composition,
though the andesitic signatures might be largely or wholly due to a thin surface layer produced
by the weathering of basalts. Gulleys provide evidence that aquifers can deliver water to the
surface today.

Pluto, and many of the larger icy–rocky satellites, have a long history of surface inactivity,
and are known or presumed to be heavily impact cratered. Their surfaces are not pure water
ice, but contain rocky dust and, beyond Jupiter, other ices, in some cases as a thin veneer.
They all show some variation in composition across the surface. Callisto and Ganymede show
evidence of viscous relaxation in the distant past. Ganymede also seems to have experienced
some resurfacing due to enhanced tidal heating, most recently perhaps about 1000 Ma ago.

Except for Enceladus, the smaller bodies all lack volcanic and tectonic activity today. The
surface characteristics of some of them are summarised in Table 7.2.



8 Surfaces of Planets
and Satellites: Active
Surfaces

In this chapter we discuss the surfaces that are still (cryo)volcanically and tectonically active – the
surfaces of the Earth, Venus, Io, Europa, Titan, Enceladus, and Triton.

8.1 The Earth

The Earth is the largest of the terrestrial bodies, slightly larger than Venus, and for obvious
reasons its surface is the best known in the Solar System. About 70% of the surface is covered
in oceans, but in this chapter, as well as the continents, we are concerned with the solid surface
under the oceans, postponing a discussion of the oceans to Chapter 10.

The Earth’s surface is both tectonically and volcanically very active, largely because of
its high internal temperatures and thin lithosphere. The high temperatures are a consequence
of primordial heat plus the heat from long-lived radioactive isotopes. The Earth is unique in
that it has a global tectonic system called plate tectonics, referred to briefly in Section 5.1.1.
This has sculpted the large-scale features, and has given the Earth a predominantly youthful
surface almost devoid of impact craters. Plate tectonics will therefore be the focus of this
section. To understand plate tectonics we first need to look at the Earth’s lithosphere in
more detail.

8.1.1 The Earth’s Lithosphere

On the basis of rock samples, seismic, gravitational, and other evidence, a typical section through
the Earth’s lithosphere is known to be as in Figure 8.1. The concentric layering that characterises
the structure of the deep interior is absent. Instead, the structure of the lithosphere varies from
one region to another. It is mostly 90–100 km thick, and consists of the Earth’s crust plus the
uppermost part of the mantle. The mantle consists of peridotite, which you will recall is a
mixture of iron-and magnesium-rich silicates, notably pyroxene and olivine (Table 6.1). The
crust consists of less dense silicates that are not so rich in iron and magnesium. The crust is
subdivided into oceanic crust and continental crust. As their names imply, these are found under
the oceans and on the continents respectively. However, though continental crust reaches higher
altitudes than oceanic crust and thus accounts for most of the dry land, and though oceanic crust
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Figure 8.1 The Earth’s lithosphere and hypsometric distribution.

with rare exceptions lies beneath the sea, the sea shore is rarely the boundary between the two
crustal types. In many regions continental crust only gives way to oceanic crust some distance
off shore. Only if the volume of water in the oceans were somewhat reduced would the sea
shore predominantly coincide with the boundary.

Continental crust not only reaches higher altitudes than oceanic crust, but also occupies a
largely separate range of altitudes. This is shown by the Earth’s hypsometric distribution in
Figure 8.1. You can see that there are two peaks – it is bimodal. The lower peak corresponds
mainly to oceanic crust, and the higher peak mainly to continental crust. Oceanic crust is 5–10 km
thick (mostly about 7 km), has an average density of about 2900 kgm−3, and is dominated by
basaltic–gabbroic rocks. Continental crust has an average thickness of about 30 km, ranging
from about 20 km to about 100 km beneath large mountain ranges. It has an average density
of about 2600 kgm−3, and has an overall andesitic composition, which is intermediate between
basaltic–gabbroic rocks and granitic–rhyolitic rocks (Table 6.1). In its upper reaches continental
crust is more granitic–rhyolitic and in its lower reaches it is more basaltic–gabbroic. Much of
the Earth’s continental crust is covered by a thin veneer of soil. This is derived from rocks
through gradation plus extensive modification by the Earth’s biosphere. Much of the oceanic
crust is covered in sediments.
� What general processes could give rise to the formation of a crust on the mantle, and the

separation of the crust into two types?
Partial melting created the oceanic crust and then fractional crystallisation separated it into two
types. These processes continue today.

In Figure 8.1 you can see that crustal elevations are mirrored by deep ‘roots’. This is a
consequence of isostatic equilibrium, evident in gravitational data, and common over the Earth’s
surface. Such extensive isostasy implies the existence of a plastic region – an asthenosphere –
for which there is much evidence (Section 5.1.1). It underlies the lithosphere. Were oceanic
crust as thick as continental crust then, because of the greater density of oceanic crust, isostasy
would still lead to it ‘floating’ lower on the asthenosphere than does the continental crust. The
smaller thickness of oceanic crust increases the altitude difference, as does the weight of water
lying on top of it.
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8.1.2 Plate Tectonics

Most of the large-scale features of the lithosphere, and the volcanic and tectonic processes that
mould it, can be explained by the theory of plate tectonics. This theory developed from seeds
sown in the early years of the twentieth century, and it had its full flowering and wide acceptance
in the 1960s.

According to the theory, the lithosphere of the Earth is divided into fairly rigid lithospheric
plates in motion relative to each other. The continents are carried on these plates, and therefore
the modern map of the world is transitory. There are seven large plates, as shown in Figure 8.2,
and a greater number of smaller ones, only a few of which are shown. Their relative motions
define three kinds of boundaries between the plates. The first kind is where two plates are
sliding past each other, side by side. This kind is called a conservative margin, and the boundary
is a transform fault where the predominant displacement is horizontal. Figure 8.2 shows many
examples, e.g. the San Andreas Fault, marked by the line near the Pacific coast of California.

The second kind of plate boundary is the constructive margin. The plates on each side of a
constructive margin are continuously created from the upper mantle by partial melting of the
mantle beneath mid-oceanic ridges (Figures 8.1 and 8.2). This partial melting is the result of
pressure release as material ascends, and it creates a magma of basalt–gabbro which has a lower
density than mantle peridotite and therefore rises to form basaltic–gabbroic crust as the upper
layer of the plate. This is how oceanic crust is created. The rest of the oceanic plate consists
of mantle peridotite somewhat depleted in the elements that are enriched in basalt–gabbro. The
elevation of the ridges is largely due to isostasy associated with their higher temperatures and
consequent lower densities. The oceanic plates slowly spread away from the ridges. This motion
is recorded in the oceanic crust by remanent magnetism, which preserves reversals of the Earth’s
magnetic field as the crust solidified.

The movement of the oceanic plates away from the ridges has its immediate cause in the
descent of oceanic plates into the Earth at the third kind of plate boundary, the destructive
margin, to which we now turn.

Destructive margins

Because the Earth is not expanding, plate spreading must lead to plate collisions elsewhere. To
consider collisions, it is necessary to distinguish between plates where the crust is oceanic and
plates where the crust is continental.

Consider first the collision between two oceanic plates, as shown to the right in Figure 8.1.
This is the first kind of destructive margin. You can see that one plate dives steeply beneath the
other and descends into the Earth – it is subducted. As it descends, it pulls the rest of the plate
with it. This is called slab pull. The pull is considerably enhanced by the dehydration of the
descending oceanic lithosphere and its conversion into denser minerals, constituting eclogite, a
mixture of pyroxene (Table 6.1) and garnets (typically Mg–Al–Fe silicates). The dehydration
results in the hydration of the mantle part of the overriding plate. This lowers its melting
temperature, which results in partial melting to form basaltic magma. The hydration, and other
volatiles, lead to explosive volcanism. In the crust of the overriding plate, usually at its base,
fractional crystallisation of the basaltic magma can form magmas with higher silica content, and
continental crust is born in the form of island arcs (Figure 8.1 and, for example, many islands
around the Pacific Ocean).

Consider now the case where continental crust has grown to the point where it occupies a
significant fraction of a plate. We can then have the second kind of destructive margin, as shown
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to the left in Figure 8.1. The lithospheric plate that bears continental crust will always override
the oceanic plate.
� Why is this?
Continental crust is less dense than oceanic crust, and thicker. Magmas form from the mantle of
the overriding plate as outlined above. As these ascend, they pass through the existing continental
crust and partially melt it to form andesitic magmas (andesites – Table 6.1). These are named
from the Andes, the mountain chain built largely from andesites (plus upward bending of the
overriding plate. It lies alongside the Peru–Chile Trench in Figure 8.2. Andesites are widespread.

The continental crust formed by the process of fractional crystallisation of magma typically
consists of two layers, an upper layer particularly rich in silicon and oxygen (granitic–rhyolitic
in Table 6.1) and a lower layer richer in magnesium and iron (though remember that iron is not
a major component of the Earth’s mantle and crust). The lower layer gives the crust strength,
because it does not deform plastically at the prevailing temperatures, unlike the upper layer.

The descending plates at both kinds of destructive margins do not melt, but seem to descend
to the core–mantle boundary – the mantle, though solid, is plastic enough to allow this. There
is seismic evidence for plate fragments in the lower mantle, mentioned in Section 5.1.1. How
the sunken plates then evolve is unknown, but presumably they merge with the mantle.

Continental collisions

If the diving plate also carries continental crust, then, as subduction continues, this crust can
ultimately meet the continental crust of the other plate. This will uplift any sedimentary deposits
and bits of oceanic crust trapped between the two continents. There is also a thickening of the
continental crusts from the compression of one or both plates and from reverse faulting. Isostasy
ensures that the topography rises, to form mountain ranges such as the Himalayas.

The continental part of some plates is particularly rigid, and is called a craton. An example
is India. When the plate carrying India collided with the plate carrying Asia, the Himalayas
and the Tibetan highlands were raised as a result of compression of the Asian Plate, where the
lithosphere is warm in parts and relatively weak. In contrast, India was relatively undeformed.
Other cratons include the continents of Africa, South America, Australia, and Antarctica. Along
with India, these are pieces of an ancient supercontinent called Gondwana – this is apparent
within the dashed circle in Figure 8.3 below in an early stage of break-up. The rigidity of cratons
can have several contributory causes: metamorphism that has removed radiogenic isotopes,
resulting in a cooler lithosphere; a dry lower crust (which increases the yield strength) from
early partial melting; and an unusually thick lithosphere (up to about 200 km).

A new constructive margin can form within a continent as a result of a rising (solid) plume
in the mantle. In its initial stages the plume will create a rift valley, such as the Red Sea, where
the associated subduction under the Zagros Mountains of Iran. Therefore, plate motion not only
moves continents and joins continents, it can also disrupt them. From the onset of surface rifting
to the start of the creation of new oceanic lithosphere takes of the order of 10 Ma. Note that the
Great Rift Valley in Africa (Figure 6.7), a splendid example of a graben, is also the result of a
plume, but does not seem to be a constructive margin yet – there is no slab pull in operation.

Creation and destruction of continental crust

Destructive margins are the main source of continental crust, through the emplacement of
extrusive and intrusive igneous rocks. Since about 2500 Ma ago the rate of creation has averaged
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200 Ma ago Present day

Figure 8.3 The Earth’s continents today and 200 Ma ago.

about 1�7 km3 per year. What about its rate of destruction? The volume of oceanic crust is
kept roughly constant by subduction (Figure 8.1). For subduction to cause significant loss of
continental crust, continental oceanic sediments would have to be subducted. This happens only
to a very limited extent. The sediments are too buoyant and a large proportion is thus left behind
where it can rejoin continents or remain on the sea floor. Delamination could also remove
continental crust (see below). But overall, the volume of continental crust plus sediments derived
from it is thought to have gradually increased over the billennia.

As well as preserving continental crust it is also necessary to maintain its altitude above sea
level. It has been estimated that gradation at the rates that we know have been operating over
the past few hundred million years can convert all of the continental crust above sea level into
ocean sediments in much less than 100 Ma. Therefore, some opposing mechanism must have
been operating. Thickening of continental lithosphere in continental collisions helps. Also, as
the lithosphere thickens it gets denser. The lower mantle part of the plate reaches densities that
exceed that in the upper asthenospheric mantle. It breaks away, and isostatic adjustment causes
the remaining lithosphere to rise. This loss of the lower lithosphere is called delamination.
In some cases the breaking away might extend to the denser lower crust, in which case this
contributes to the loss of continental crust.

Plate tectonics in the early Earth

Before about 2500 Ma ago, plate tectonics seems to have operated differently. The evidence
includes peculiar geological landforms on ancient continental crust. At that time heat flow from
primordial sources was several times greater than today. This resulted in either smaller plates, or
a higher rate of spreading from constructive margins. Either way, oceanic crust was warmer and
more buoyant. Consequently, it descended at a shallow angle and thus had time to melt partially
before it had time to dehydrate and form eclogite. Models, plus geochemical evidence, show
that there was no fractional crystallisation of magma at this time, and that therefore the whole
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continental crust was rather like the upper crust today. It was therefore weak and in collisions
between continents high mountain ranges could not be built.

The rather abrupt change at about 2500 Ma might have been caused by a pulse of continental
crust formation, perhaps triggered by the decreasing heat flow from primordial sources reaching
some threshold.

8.1.3 The Success of Plate Tectonics

You have probably already noted many features of the Earth’s surface that can be accounted
for by plate tectonics. Thus, it accounts for the two types of crust, oceanic and continental.
These arise from the partial melting at constructive and destructive margins. Additionally, it
explains the division of continental crust into upper and lower layers, the result of fractional
crystallisation. It also accounts for the hypsometric distribution – the bimodal form of this
distribution arises from a combination of the greater density of the oceanic crust and the greater
thickness of the continental crust, with both crusts in isostatic equilibrium over most of their
areas. Plate tectonics also accounts for the greater thickness of the continental crust.

One of the earliest indications of the existence of mobile plates was the fit of the continents,
notably on the opposite sides of the Atlantic Ocean. Down the centre of the Atlantic there is a
mid-oceanic ridge (Figure 8.2), roughly equidistant from Europe and Africa on one side, and the
Americas on the other side. This was explained by the creation of new oceanic plate material
and the consequent spreading of oceanic plates away from the ridge, carrying the pre-existing
continents further apart. Today there are measurements of the rate at which oceanic plates spread
from mid-oceanic ridges – typically a few centimetres per year. For example, the South Atlantic
Ocean is presently widening at about 3 cm per year.
� The South Atlantic Ocean is about 5000 km wide in the direction of widening. If it has

always been widening at about 3 cm per year, how long ago were South America and
Africa in contact?

At this rate of widening, the Americas were in contact with Europe and Africa about 200 Ma
ago. Figure 8.3 shows an estimate of where all of the continents were at that time. Very much
earlier they were somewhat more scattered again.

It is clear that, according to the theory, oceanic crust near a constructive margin is young, and
that it is older, the further it is from the margin. This is just what is found by radiometric dating.
Oceanic crust near mid-oceanic ridges is less than 1 Ma old, increasing up to about 200 Ma near
subduction zones. As expected, most continental crust is older than this, some of it more than
2600 Ma old.

As well as mid-oceanic ridges, many other types of expected landform exist, and in the right
places. For example, many mountain ranges border a coastline with a deep ocean trench that
has every appearance of a subduction zone. Moreover, the andesitic materials found in such
regions are as predicted by plate tectonics (Section 8.1.2). Transform faults also exist, and some
of these are in motion, the most notorious being the San Andreas Fault in California.

Earth’s volcanic and tectonic activity is concentrated at transform faults, mid-oceanic ridges,
the mountain ranges that border ocean trenches, and at island arcs. In plate tectonics these
features are near constructive and destructive plate boundaries, just where the theory predicts
that volcanic and tectonic activity will be concentrated. Also, in the region of mountain ranges
and mid-oceanic ridges, there are departures from isostasy of the sort expected from continuing
vertical lithospheric motions at plate boundaries.

The explanatory power of plate tectonics is vast, and you can explore it further in Question 8.1.
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Question 8.1

In terms of plate tectonics, account for each of the following features of the Earth’s surface: (a)
the scarcity of impact craters; (b) a rift valley that crosses Iceland; (c) the Urals (the mountain
range east of Russia); (d) seismic activity at shallow depths near mid-oceanic ridges and ocean
trenches; (e) the Aleutian Islands (alongside the Aleutian Trench).

8.1.4 The Causes of Plate Motion

The superficial cause of plate motion is slab pull, outlined in Section 8.1.2, the pull arising
from the steeply descending part of the plate that has acquired a greater density through its
conversion into eclogite. The sideways motion that carries a plate away from a constructive
margin is assisted by the slight downhill gradient.

The underlying cause of plate motion is solid state convection in the mantle (recall that the
mantle is almost entirely solid). A constructive margin is where motion in the convection cells
is upwards, and a destructive margin is where it is downwards. A possible (simplified) pattern
of mantle convection was shown in Figure 5.4. The depth range in the mantle that permits
convection can be regarded as the asthenosphere.

If there were no convection there would be no plate tectonics. However, the absence of plate
tectonics does not imply that there is no convection. For example, if all of the continental plates
were sufficiently rigid, it is likely that the global system of plates would not permit relative
motion – it would lock up. In the case of Venus, where there is evidence for mantle convection,
the absence of plate tectonics might be due to a rigid lithosphere, or to some other cause – see
Section 8.2.7.

As well as the large-scale convection that drives the plates it is known that there are huge
rising columns of hot (but solid) mantle material underneath plates, well away from any margins,
called plumes. Therefore, though convection offers an explanation of plate motion, there is no
simple relationship between convection patterns and plate boundaries.

Plumes account for some strings of volcanic islands well away from plate boundaries (unlike
island arcs). The Hawaiian Islands are one such chain. The sequence of ages when the different
volcanoes there became extinct indicates that plate motion over the plume generated the chain,
and continues to do so. Plumes are also a possible source of the huge quantities of basalt that
have occasionally flooded parts of the Earth. As the plume head rises the pressure decreases,
and in the asthenosphere the pressure can decline to the point where extensive partial melting
occurs, creating large volumes of basalt that spill onto the Earth’s surface to create volcanic
plains. Mantle plumes can be detected as ‘hot spots’. However, of the 100 or so hot spots, only
about 10 seem to be due to mantle plumes, as indicated by seismic imaging (tomography), by
uplift of the crust, and by correlation with plate motion. The other 90 or so could be due to
cracks in the lithosphere, or mantle heterogeneity, or small-scale mantle convection.

Of course, the deeper question is: what causes the large-scale convection?
� Recall from Section 5.1.1 what the cause might be.
Models of the Earth’s interior indicate that heat from long-lived radioactive isotopes, plus the
residual effect of primordial heat, can sustain an adiabatic temperature gradient in the mantle,
and that the temperatures are sufficiently high for solid state convection to occur from the base
of the lithosphere to great depth, perhaps as far as the outer core boundary.

Plate cycling is an efficient means of removing heat from the Earth’s interior. It accounts for
about 70% of the energy that reaches the crust, as hot plates are created at constructive margins
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and cold plates descend at subduction zones. Plumes probably account for a large proportion of
the remaining 30%.

8.1.5 The Evolution of the Earth

A plausible history is as follows. We start nearly 4600 Ma ago, with a composition that was
roughly uniform at all but the smallest scales. At the smallest scales, certainly at the level of
centimetres and millimetres, there was a mixture of free metal (mainly iron) and silicates. The
overall composition was broadly similar to that of the ordinary chondrites.

(1) After a few million years, radiogenic heating, perhaps assisted by energy from accretion
and other heat sources, had raised temperatures to the melting point of iron, and so partial
melting occurred with the appearance of liquid iron (plus some minor constituents such as
nickel). This was denser than the remaining material and so the iron drained downwards, a
process aided by the plasticity of the surrounding material. The iron core was thus formed,
and heat of differentiation was released. The overlying mantle was thus depleted in iron and
siderophile elements, and acquired the composition of peridotite. Core formation took only
about 30 Ma.

(2) The final giant impact, at about 4500 Ma, was from a body of broadly terrestrial composition
that created the Moon. It contributed the final 10% or so of the Earth’s mass.

(3) Impact melting (perhaps assisted by the thermal blanketing of a dense atmosphere) created
a magma ocean several hundred kilometres deep. Fractional crystallisation led to the forma-
tion of a chemically distinct oceanic type crust of basaltic–gabbroic composition, and a
corresponding depletion in the upper mantle of elements that are enriched in the crust.
Subsequent impacts in this primeval crust might have led to regional differences that aided
the subsequent formation of continental crust. The magma ocean froze throughout its depth
before 4000 Ma ago.

(4) Direct evidence of the early heavy bombardment that pervaded the Solar System is found in
some of the oldest surviving rocks, 3700–3800 Ma, from Isua in Greenland – isotope ratios
indicate that a meteorite component is present. There is also evidence for a late veneer from
the particularly primitive C1 chondrites.

(5) Meanwhile, at the surface, plate tectonics was already established, and had destroyed the
early crust. New oceanic crust was created and entered the plate tectonic cycle. This slowly
increased the volume of continental crust up to about 2500 Ma ago, since when the volume
has continued to increase slowly.

(6) At about 2500 Ma there was a change in the way plate tectonics operated, probably caused
by a pulse of continental crust formation, perhaps triggered by the heat flow from primordial
sources decreasing to some threshold.

(7) Around 1000 Ma ago, as the core lost primordial heat, it cooled to the point where the
separation of the solid inner core began to occur. It is growing at about 10 mm per century.

(8) Plate tectonics continues, driven by mantle convection in the asthenosphere, which might
extend to the core–mantle boundary. Throughout Earth history it has been responsible for
the continuing high level of tectonic and volcanic activity, and thus for much of the sculpting
of the Earth’s surface.

(9) The Earth’s surface is also sculpted through gradation, mainly by water and winds. Impact
craters are scarce because of such gradation and all other forms of geological activity.
Nevertheless, over 170 large impact craters have been identified. Most of them are heavily
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eroded. Impacts continue, and a Tunguska-size impact (Section 3.2.4) occurs every 800–1800
years. The famous impact, 65 Ma ago, that contributed to the demise of the dinosaurs and
many other species was far larger, but, thankfully, far rarer.

8.2 Venus

Venus has a volume only 15% smaller than that of the Earth, and its global mean density is
5% less than the terrestrial value. As noted in Section 5.1.2, there is little doubt that its interior
broadly resembles that of the Earth, though Venus is not the Earth’s twin, particularly in its
massive, hot atmosphere and at its surface.

As well as Earth-based radar, Venus has been extensively explored by orbiters and by landers.
The landers were from the USSR, and they reached Venus in the 1970s and 1980s. Several of
them returned data from the surface, and four of these returned images – a considerable achieve-
ment given the mean surface temperature of 740 K. None carried out seismic measurements. The
many orbital missions included NASA’s Magellan Orbiter that between 1990 and 1992 mapped
98% of the surface using radar altimetry and synthetic aperture radar to ‘see’ through the 100%
cloud cover. The images obtained with synthetic aperture radar have spatial resolutions down
to a few tens of metres. The Magellan Orbiter subsequently mapped the gravitational field,
in an extension of the mission with the spacecraft in a lower orbit that provided gravitational
detail. Currently, Venus is being explored by ESA’s Venus Express, which went into orbit in
April 2006. Its instruments are exploring the atmosphere (Section 10.3) and also mapping the
surface temperature.

8.2.1 Topological Overview

Figure 8.4 shows a highly simplified topographic map of Venus. Venus is nearly spherical, so the
zero of altitude is defined as the mean equatorial radius, 6051.5 km. About 80% of the surface
of Venus is volcanic plains. The plains are streaked with low, broad ridges, indicating gentle
folding and shortening, and networks of wrinkle ridges indicating compressional deformation.
Within the plains is highly deformed terrain, called tesserae, lying above zero altitude, and
constituting 8% of the surface. Ishtar Terra (Figure 8.4) consists mostly of tesserae and mountain
belts, and includes Maxwell Montes that rises to 11 km, the highest peak on Venus. There are
over 100 gently sloping volcanoes that resemble the basaltic shield volcanoes on Earth. They
constitute 4% of the surface, and have a maximum altitude in Maat Mons, at 9 km (Plate 5).
There are numerous small volcanic constructs, including domes, and concentric ringed features,
called coronae. Coronae are up to about 1 km high, and mostly less that 300 km across, though
a few exceed 1000 km.

Reaching downwards, there are chasms resembling rift valleys, presumed to be the result
of tectonic extension – these are called chasmata. They are typically a few kilometres deep,
hundreds to thousands of kilometres long, and constitute 8% of the surface. A few of the longest
are shown in Figure 8.4, including Diana Chasma, where the lowest altitude on Venus has been
recorded, about 4 km below zero. The extreme altitude range on Venus is thus about 15 km,
rather less than the Earth’s 20 km range.

Figure 8.4 also shows the hypsometric distribution. It is unimodal, whereas the Earth’s
(Figure 8.4) is bimodal.
� What does this indicate?
The bimodal distribution on Earth arises from the existence of two types of crust, continental
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and oceanic. The unimodal distribution on Venus thus indicates that there is one crustal type, or
that any other type is scarce. There is much evidence (see below) that the crust is basaltic. One
model has a mean crustal thickness of about 70 km. Comparison of the two distributions also
shows that the altitudes cluster around the one maximum on Venus more than they do around
either maximum on the Earth, and therefore on a large scale Venus is a good deal smoother,
probably the result of its higher surface temperature – this reduces rock strength.

8.2.2 Radar Reflectivity

Almost all the imaging of the Venusian surface has been done by orbiting radar, at wavelengths
of the order of 10 cm. At such wavelengths the radar reflectivity of the surface correlates with
the surface altitude – broadly, the greater the altitude, the higher the reflectivity. This suggests
that on a scale of a centimetre or so the lowlands are smooth whereas the highlands are rough.
This is thought to result from gradation, in particular the erosion of highland material to form
fine dust that collects on the lowlands. The generation of dust presumably owes much to the high
atmospheric pressures and temperatures, and to traces of corrosive gases. Further evidence for
gradation is wind streaks behind obstacles, and the existence of some dune fields and landslides.

At altitudes above 3.5 km the reflectivity abruptly becomes considerably higher, and this
might be due to a thin veneer of various metal chlorides, fluorides, and sulphides. These are
somewhat volatile, and therefore condense at the lower surface temperatures in the highlands –
the temperature decreases by about 8 K for every kilometre increase in altitude. These substances
would be emitted in small but sufficient quantities by the volcanoes of Venus. The very highest
altitude summits have low reflectivities, perhaps because of a veneer of materials that are even
more volatile.

Radar shows that about 75% of the surface is bare rock, and the four landers that returned
images each showed much bare rock, with only patches of gravel and finer material. This is
one indication that gradation is not as powerful on Venus as on the Earth. This is not surprising
given the lack of any precipitation and the low surface wind speeds – less than about 2 m s−1.

8.2.3 Impact Craters and Possible Global Resurfacing

The surface of Venus is lightly covered in impact craters, ranging from simple bowls a few
kilometres across, to multi-ringed basins with diameters of more than 100 km (Figure 8.5(a)).
Really small craters are absent because Venus has long had a dense atmosphere that has disrupted
small projectiles before they reached the ground; any surviving fragments would produce small
pits well beyond Magellan’s image resolution. The fragments of larger projectiles are presumably
responsible for the observed crater clusters and for shallow surface scars.

Many craters have radar-dark halos. These are presumed to be smooth, perhaps because the
ejecta blanket contains much fine dust, or perhaps as a result of surface pulverisation by an
atmospheric shock wave caused by the projectile – such a shock wave would be very powerful
in the dense atmosphere. Flows extend from some craters out to about 150 km. These could
be ejecta that was confined near to the surface by the dense atmosphere. Alternatively, or
additionally, the flows could be magma released by the impact.

The spatial distribution of impact craters is not very different from random, with a global
surface density indicating a mean surface age in the range 500–800 Ma. Moreover, many of the
craters have suffered little degradation. One interpretation is that most of the Venusian surface
was wiped clean of craters 500–800 Ma ago and that there has been little resurfacing since.
Another view is that the resurfacing has been more extended in time, and that 500–800 Ma
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(a)

(b)

Figure 8.5 Radar images of two Venusian impact craters. (a) Meitner, about 150 km across the outer rim.
(NASA, part of F-MIDR55S319, R Greeley) (b) Dickinson, 69 km in diameter. (NASA/NSSDC P37916)
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is an average retention age for craters. There has, however, been some recent resurfacing,
because areas of particularly low crater density correlate with volcanic and tectonic features.
The predominant view is that 80–85% of the surface dates to a short period of intense geological
activity concentrated at some time between 500 Ma and 800 Ma, followed by much lower activity
down to the present. Possible reasons for this history are outlined in Section 8.2.9.

8.2.4 Volcanic Features

Some were briefly mentioned in Section 8.2.1. Volcanic features are abundant on Venus.
Particularly widespread are volcanic domes from a few kilometres to several tens of kilometres
across. The largest are flat topped and only about 1 km high, and are consequently called pancake
domes (Figure 8.6). Domes also occur on Earth, where they are the result of viscous lava oozing
from a central vent, and though on Earth they are only up to a few kilometres in diameter, they
are thought to have the same origin on both planets. There are also Venusian shield volcanoes
(Plate 5), built from low-viscosity lavas. They are up to hundreds of kilometres in diameter,
several kilometres high, and tend to be on broad regional rises. The larger shields are the same
sort of size as the largest shields on Earth.

Lava floodplains cover about 80% of the surface. Some areas have very few craters and
so these areas must be recent. Presumably the lava erupted from fissures, and ran along the
channels that are seen to meander for up to thousands of kilometres. Some of these channels
now run uphill, presumably as a result of uplift since the lava flowed. The vast floodplains and
long channels indicate lava with low viscosity.
� What else do these features indicate?
The lava must also have remained liquid for a long time. The high surface temperature of Venus
would facilitate longevity and low viscosity, but a distinct composition is also required. One
possibility is lava with a high sulphur content. Another is carbonatite lavas. These are rich in
igneous (not sedimentary) carbonates and in simple compounds such as sodium chloride. They

Figure 8.6 Radar image of pancake domes in the Eistla region of Venus. The largest is about 65 km
across. (NASA/NSSDC P38388)
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have melting points not much above the Venusian surface temperature. Their sources would be
near the surface.

Low lava viscosity also helps to account for the rarity of explosive volcanism. A further
factor would be any dryness of the Venusian crust and mantle, and the consequent low volatile
content of the magma (Section 10.4). For any explosive volcanism that did occur, the high
surface atmospheric density would have confined the explosively erupted material close to its
source.

Volcanism might continue today. There is indirect evidence in the existence of fresh-looking
lava flows, and also in fluctuations in atmospheric sulphur dioxide �SO2� that could indicate
variations in volcanic activity. However, as yet there have been no direct observations of active
volcanism on Venus.

8.2.5 Surface Analyses and Surface Images

Direct analyses of surface materials have been carried out by several of the Soviet landers –
Veneras 7–10, 13, 14 (between 1970 and 1982), and Vegas 1 and 2 (in 1984). These all landed
in regions of volcanic flows. Venera 8 landed 5000 km east of Phoebe Regio (Figure 8.4), and
the rest of the Veneras landed on the flanks of Beta Regio. The Vegas landed on Rusalka
Planitia, which is on the northern flanks of Aphrodite Terra, a predominantly highland region
with several large volcanoes. Gamma and X-ray fluorescence spectrometry indicate that, except
at the Venera 8 and 13 sites, the rocks are basaltic, consistent with a basaltic–rhyolitic crust. At
the other two sites they are more granitic. This suggests that some division into two crustal types
has taken place, though the hypsometric distribution indicates that this has not gone very far.

Veneras 9, 10, 13, and 14 returned images from the Venusian surface, and those from Veneras
13 and 14 are shown in Figure 8.7. Venera 9 landed on the steep slope of a tectonic trough,
with talus and platy rock fragments in view. Venera 14, and also Veneras 10 and 13, landed
on plains of low-relief outcrops of platy rocks with fine material in small depressions between
them. The fines everywhere consist of particles less than 4 mm across, and are neutral in colour,
with a reflectivity of 3–5%. The reflectivity of the platy rocks is 5–10%, presumably because
they are larger and less fragmented than the fines. The rocks at all four sites are finely layered,
perhaps, in some cases, a result of wind deposition followed by consolidation. At the Venera 13
and 14 sites (Figure 8.7) the rocks are porous, either because of weak consolidation, or because
they are volcanic tuff. Some rocks could consist of thin lava layers.

8.2.6 Tectonic Features

Tectonic features are abundant on Venus. Some mountain ranges have complex folds and faults
resulting from crustal compression and tension. Among these is Ishtar Terra (Figure 8.4), which
includes the mountain range Maxwell Montes plus three other ranges and a high plateau. As well
as mountain ranges, the highlands also bear rugged tracts of faulted and folded terrain called
tesserae. Alpha Regio, a rugged plain with a mean altitude of about 2 km and about 1000 km
across, is a major tessera. Some of the fracturing in the tesserae might be due to a process that
degrades all elevated features on Venus. This is the plastic flow of rocks at the surface, a result
of the high surface temperatures. The process is much more rapid on Venus than on the Earth,
but it still takes tens of millions of years to have a significant effect.

Other tectonic features are belts of ridges and grooves hundreds of kilometres long. There
are also the chasmata, many of which seem to have formed through crustal tension. One
such example is Devana Chasma which, at 3000 km long, is of Africa’s Great Rift Valley
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Figure 8.7 Images from two of the four Venus landers that returned images. Left, Venera 13; right,
Venera 14. (Via NASA/NSSDC, processed by Don P Mitchell and used with his permission)

dimensions, and divides the young volcanic regional rise Beta Regio and also the neighbouring
rise Phoebe Regio (Figure 8.4). Other chasmata, such as those in Figure 8.8(a), have profiles
that suggest they might be places where one slab of crust is being forced under an adjacent
slab, somewhat like subduction on Earth. Another type of tectonic feature is the coronae. These
roughly circular plains, typically a few hundred kilometres in diameter but no more than about
a kilometre high, are ringed by ridges and grooves. Some of them bear volcanic domes and
display volcanic flows (Figure 8.8(b)) – their spatial relationships with other landforms indicate
that they were created at different times. The tectonic interpretation is that each one is the
combined effect of crustal uplift, perhaps involving rising plumes of hot mantle, plus volcanism,
and sagging, in a prolonged and intricate sequence, not always with uplift first. A few coronae
might be highly degraded or deformed impact craters.

8.2.7 Tectonic and Volcanic Processes

In spite of the tectonic features just described, Venus lacks landforms that would suggest planet-
wide plate tectonics. For example, long sinuous constructive margins like Earth’s mid-oceanic
ridges seem to be entirely absent. Moreover, the unimodal hypsometric plot indicates that there
has been no widespread creation of a second kind of crust, and surface samples suggest that any
second crust is at most rare.

If, as seems likely, plate tectonics on Venus is at most a local phenomenon affecting only
a small fraction of the surface, then this requires explanation. It could be because the hot
surface has made the lithosphere so plastic that widespread tectonic stresses are distributed,
with the result that we get many lithospheric fractures that prevent the formation of a few large
plates. Alternatively, it might be that the plate system is too rigid to be mobile because it lacks
widespread continental-type plates, which on the Earth might give the system a necessary lack
of rigidity (except at the cratons). Such rigidity could arise from a lack of water, and indeed
the evidence from the surface and atmosphere indicates that Venus is very dry – more on this
in Section 10.4. The high crustal temperatures also contribute to the stiffening by precluding
‘slippery’ minerals like chlorides and serpentine. Observations also indicate a stiff lithosphere,
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(a)

(b)

Figure 8.8 Radar images of tectonic features on Venus. (a) Diana and Dali Chasmata. The frame is about
4200 km across. (MIT17/12/97, NASA, P G Ford and G H Petengill) (b) A corona, about 150 km across,
in Aino Planitia. (NASA/NSSDC P38340)

particularly the correlation of regional gravity with topography. These data also point to little by
way of an asthenosphere, at least not at relatively shallow depths. The scarcity of water in the
lithospheric materials will also have raised their melting temperatures, so that a subducting plate
would have to penetrate deep to melt (partially or wholly). There might be too much friction
between a long length of plate and its surroundings for deep penetration to occur. This would
further inhibit plate tectonics.
� Plate tectonics is absent from some planetary bodies probably because they have thick

lithospheres. Why is this an unlikely explanation for Venus?
Even though increased melting temperatures, consequent upon dryness, would cause some litho-
spheric thickening, a really thick lithosphere on Venus is unlikely because there are widespread
tectonic features, and tectonism might still be occurring today. Lower estimates of lithospheric
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thickness of a few tens of kilometres are obtained from a close examination of how the surface
has responded to stresses.

With no plate tectonics, how do we explain the tectonic and volcanic features, and how do
we explain a possible global resurfacing 500–800 Ma ago?

One explanation is that there is a system of convective hot plumes in the mantle, rather
as seems to be the case underneath some of the plates on the Earth. Hot plumes on Venus
could give rise to volcanoes that create some new crust, as in Figure 8.9. In this model these
are the sites of the coronae. The sequence of events that create the coronae, as outlined in
Section 8.2.6, then includes material being uplifted by a plume, then volcanism, and finally
sagging as the plume wanes. All stages in this proposed sequence are visible in different coronae.
In some cases sagging seems to have preceded uplift. The tesserae result from the downgoing
part of a convective cycle (Figure 8.9). On this view the tesserae have been created by crustal
compression. Some of the folded, faulted highlands might also have originated this way, such
as Ishtar Terra (Figure 8.4). However, the topography of Ishtar Terra is also consistent with
mantle uplift in this region. Such is the persistent puzzle that is Venus!

Support for the plume model comes from gravitational field measurements. Detailed gravi-
tational analyses reveal that some topographic highs are in isostatic equilibrium due to crustal
thickening, whilst others are probably supported dynamically. In the latter case isostatic adjust-
ment makes a contribution to the raised topography through the reduction in density consequent
upon the greater temperatures in dynamically supported regions. These interpretations are in
accord with the particular types of high terrain that fall into each gravitational category. Thus,
many of the candidates for dynamic support, such as Beta Regio, show evidence that they
are volcanic constructs that could have been created by a mantle plume that also provides
dynamic support. By contrast, many of the candidates for isostatic support, such as Alpha
Regio, are not obviously volcanic but look more like regions of crustal thickening such as
could arise from crustal compression. The largest of these, Ishtar Terra, is so large that it
might not simply be a thicker version of the surrounding crust, but also have lower density,
in which case it is a rare example on Venus of crust analogous to continental crust on the
Earth.

The occurrence of a particularly large number of plumes about 500–800 Ma ago could
possibly have generated enough magma at the surface to account for the widespread resurfacing
that might have occurred around that time. An alternative explanation is that the lithosphere
gradually thickened until plastic deformation within it decreased its viscosity to that of the
underlying convective mantle. At this point there was global subduction of the lithosphere.

Convecting mantle

Effect of
compression

Volcano at
crustal extension

Hot plastic crust

New
crust

Figure 8.9 Mantle convection and its effects in Venus.
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A new lithosphere formed, and the cycle is being repeated. However, there is as yet no general
agreement on any one of these or any other explanations, even supposing such widespread
resurfacing occurred.

8.2.8 Internal Energy Loss

You have seen that the interior of Venus today is probably not very different from that of the
Earth. Therefore the interior energy sources have probably been similar in the two planets. In
the case of the Earth, most of the internal energy has been escaping through plate recycling,
but this does not seem to occur on Venus, and conduction through the lithosphere is probably
weak. How then has Venus been losing its internal energy?

It is possible that mantle plumes can get rid of much of the energy, in which case the
coronae are important sites of heat loss. Subduction of lithosphere at certain chasmata could
also make a contribution, because the lithosphere is cool and so would absorb internal energy
from the interior. The episodic global subduction of the lithosphere that has been proposed to
explain global resurfacing could result in enormous, if occasional, heat loss. The new lithosphere
then puts a stagnant lid on the interior (Section 4.5.2), and the internal temperatures rise
until the next subduction. However, as with many things to do with Venus, there is much
uncertainty.

8.2.9 The Evolution of Venus

The interior evolution of Venus has probably been much the same as that of the Earth. The
main differences are at the surface. No global system of plate tectonics has developed, and
various possible reasons were outlined in Section 8.2.7. Instead, there might be a system of
mantle plumes and downwellings that subduct little or no lithosphere but that account for many
of the tectonic features. We therefore have predominantly one type of crust, a basaltic–rhyolitic
crust derived by partial melting of a peridotite mantle, the crust gradually increasing in volume.
Plumes, delamination, and subduction might account for most of the current loss of internal
energy.

Episodic global subduction of the lithosphere might occur, and this could account for the
global resurfacing that seems to have happened 500–800 Ma ago. The loss of the stagnant lid
would release a burst of internal energy. Any extensive resurfacing 500–800 Ma ago could
alternatively have been caused by an outburst of mantle plumes at that time that resulted in
sufficiently copious production of basaltic lavas to obliterate almost all of the surface. We have
no idea what happened on Venus before this extensive resurfacing.

Volcanic activity might continue today, as might tectonic activity, and further resurfacing
episodes are possible.

Question 8.2

What is a reasonable explanation for the absence of huge impact basins on Venus?

Question 8.3

Speculate on how the granites found on Venus by Veneras 8 and 13 could have formed.



IO 283

8.3 Io

Io is the closest of the four Galilean satellites to Jupiter. It is slightly larger than the Moon, and
like the Moon it has a rocky surface and a rocky interior. Unlike the Moon it is volcanically
active, and highly active at that.
� What are the main sources of energy to drive this activity?
The main source is tidal, with a supplement from radiogenic heating (Section 5.2.3). The tides
raised by Jupiter are huge, about 100 m at the surface.

The volcanic activity of Io was discovered on images returned during the flyby of Voyager
1 in 1979 and it came as a surprise to most planetary scientists. Voyager 1 revealed not only a
surface free of impact craters and dominated by fresh-looking volcanic features, but also nine
active volcanoes that made Io the most volcanically active body in the Solar System! Two active
volcanoes are visible in Plate 12, one edge on at the limb, the other face on in the centre.

Since Voyager 1, Io has been flown past by Voyager 2 in 1980, and scrutinised by the Galileo
Orbiter at various times from December 1995 up to its plunge into Jupiter in September 2003.
At the end of 2000 Cassini flew by at 97 million kilometres en route to Saturn.

Well before Voyager 1 it was known that Io had a reddish hue. Voyager 1 showed that this
is due to an intricate pattern of red, orange, yellow, white, and black. IR spectrometry from
the Galileo Orbiter indicates that the white areas are frosts of sulphur dioxide �SO2�. The other
colours could be due to other sulphur oxides and to the various forms of sulphur itself. On the
basis of cosmic relative abundances, Io could certainly have been born with sufficient sulphur
for a surface layer several kilometres thick, and less than a few tens of metres would since have
been lost to space. However, it seems likely that most of Io’s sulphur is in an iron-rich core
as iron sulphide (FeS), and that at the surface sulphur and its oxides are present only as a thin
veneer that colours the surface. This veneer is presumed to have come from the volcanoes.

Over 500 volcanic sites are known, randomly spread over the surface. Activity at any one
time is concentrated at a few of these sites. Some sites are shield volcanoes up to a few hundred
kilometres across and a few kilometres high, complete with summit calderas, and others are
paterae, low-relief volcanoes with vents up to 200 km in diameter. Some caldera walls are so
high and steep that sulphur and its oxides would be insufficiently strong to constitute them.
Silicates would be sufficiently strong, thus supporting the view that sulphur and its oxides are
present only as a thin veneer. The vents switch on and off, and new ones appear, as indicated by
changes in the 3 months between the Voyager 1 and 2 flybys, by subsequent observations from
the Earth of transient infrared hot spots, and by Galileo Orbiter observations in 1996–2003. The
estimated rate of volcanic resurfacing is 100 m depth per Ma, which explains the absence of
impact craters.

The observed volcanic activity of Io includes volcanic plumes that rise to hundreds of
kilometres (Plate 12). Some shield volcanoes, e.g. Pele, have remained active since the Voyagers.
Plumes require some gaseous content to create them, and vaporised sulphur or SO2 seems
likely, as opposed to water as on the Earth. Lava flows are also observed, with temperatures
of around 2000 K. The SO2 frost, caldera wall strength, Galileo Orbiter IR measurements, and
thermodynamic arguments all suggest that the dominant constituents of the plumes and of the
lava are silicates, with sulphur and SO2 as minor constituents. Variations in the proportions of
sulphur to silicate could explain the different types of flow and plume seen.

Though volcanoes are numerous, a second type of terrain covers most of Io’s surface. These
are flat blotchy plains (Plate 12). Here and there erosion has exposed layers, each one a few
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hundred metres thick. A volcanic origin is presumed, involving effusive lava flows hundreds of
kilometres long, plus fallout from volcanic plumes.

The third type of terrain is mountains. These are dotted around the surface, though constitute
less than 2% of it. The largest are about 200 km across and 10 km high. Most of them do not
seem to have a volcanic origin, and the plains sweep around the mountains in a way that shows
the mountains to be older. They are too steep and too high to be made of sulphur and its oxides,
and though they have a reddish tint, sulphur would be redder, and so they are presumed to be
predominantly silicate.

Tectonic features on Io include faults attributed to tidal flexing of the lithosphere, but there
is no sign of plate tectonics.

The estimated heat flow from the interior approaches a prodigious 10−9 W kg−1, much greater
than the 0�006 × 10−9 W kg−1 for the Earth (Table 4.2). Indeed, this is several times more that
the estimated input to Io from tidal heating! Much of the outflow is in the radiation from broad
regions at temperatures of about 300 K, which though less than the 1000 K or so of the IR hot
spots is significantly greater than the 130 K mean surface temperature of Io. Silicate lavas are
a possible explanation of the warm regions, in which case Io might be in an atypically active
volcanic phase, and the heat flow is then anomalously high.

The evolution of Io

Io presumably formed in a high-temperature environment near to proto-Jupiter. In this case
it would have formed depleted in water and in substances with greater volatility. Subsequent
radiogenic and tidal heating could soon have completed the devolatilisation. It seems certain
that Io is differentiated into a predominately silicate crust 20–30 km thick, overlying a partially
molten, predominantly silicate mantle, overlying in turn a core of iron plus FeS, and that
there is a thin lithosphere and convective asthenosphere (Figure 5.7). The crust is probably
rapidly recycled through being created volcanically and destroyed by melting at the base of the
lithosphere.

Question 8.4

If Io were devoid of sulphur, what difference would this make to volcanism on Io and to its
surface?

8.4 Icy Surfaces: Europa, Titan, Enceladus, Triton

We end this chapter with a brief discussion of the four bodies with icy surfaces that seem to be
volcanically or tectonically active today.

8.4.1 Europa

Europa is the second closest of the Galilean satellites to Jupiter, and was particularly well
imaged by the Galileo Orbiter in 1996–1997 (Plate 13). It is predominantly a rocky body, but
is known from spectroscopy to be entirely covered in fairly pure water ice, plus some salts
and perhaps NH3. The albedo in most areas is high, indicating that the ice has a clean surface.
Areas of mottled terrain and dark plains might be where the surface has been darkened by ion
implants from external bombardment, or by some non-icy component from interior and exterior
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sources. The existence of water ice is also indicated by Hubble Space Telescope UV spectra that
have detected monatomic oxygen gas (O) in a thin atmosphere. This is very probably derived
from water vapour through dissociation by solar UV. Models suggest that most of the oxygen
is present as O2, and that the atmospheric pressure is only 10−6 Pa.

The surface has almost no craters larger than a kilometre across. An exception is the crater
visible at lower right in Plate 13 in the centre of the bright area. This 26 km diameter crater is
called Pwyll (pronounced, roughly, ‘Poo-eel’), after a character in Welsh legend. The paucity
of impact craters indicates that the surface is nowhere older than about 200 Ma, and much of it
must be considerably younger. Though viscous relaxation has played a role in this rejuvenation,
there must also have been cryovolcanic resurfacing, perhaps continuing today. This will give a
surface with the observed high albedo that will darken with age through ion implantation and
dust infall.

The surface is remarkably flat, the tallest features being systems of dark ridges up to about
300 m high. These systems might be the result of thin cracks through which liquid water escaped
to form a ridge on each side of the crack. The weight of the ridges produced further, parallel
cracks, and the process repeated itself. Subsequent cracks can cross the older ones, to give the
observed network of ridge systems, some of which is visible in Plate 13. The ridges gradually
disappear through viscous relaxation to leave smooth, dark bands. Ridges display faults, and
there are areas where the surface has been broken up, liberating rafts of ice that moved away
to be trapped by upwelling freezing water (Figure 8.10). Tidal stresses are probably responsible
for disruption of the icy crust, though the patterns indicate that a shift in the rotation axis might
also have contributed. As well as the area in Figure 8.10, many other areas on Europa display
features consistent with the creation of new icy crust. To keep the surface area constant it is
necessary for plates of ice to converge and disappear into the interior. Evidence for this has now
been found, solving a long-standing mystery.

The smoothness of the surface, detailed topographical studies, and the ready access that liquid
water seems to have to the surface indicate that the icy crust could be as little as a few kilometres

Figure 8.10 The ridged and faulted surface of Europa, including rafts of ice frozen into new positions.
The frame width is 42 km. (NASA/JPL P48526)
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thick, and that underneath it there is icy slush, perhaps mixed with rock. More dramatically,
it is increasingly believed that widespread oceans of liquid water are present. Support for this
view might have been provided by Galileo’s magnetometer. A possible influence of Europa
on Jupiter’s magnetic field could be due to a conducting fluid, such as salty water. Salts also
lower the freezing point, as does NH3 � 33% NH3 in water would lower the freezing point to
about 173 K.

The shell of water, ice, and liquid probably has an average thickness of roughly 150 km
(Section 5.2.3). Throughout most of its depth the icy shell is plastic, and it thus constitutes an
asthenosphere. Though tidal heating today is 20 times or so weaker in Europa than in Io, tidal
heating coupled with radiogenic heat, perhaps with the aid of generally raised temperatures from
solar radiation and residual primordial heat, could sustain an ocean or an icy slush. Heat from
the underlying rocky mantle could be driving convection in the water, and this in turn could
have created some of the cracks and ridges. Silicate volcanism in the rocky mantle is possible,
extending to the ocean floor, and this could vent material rich in organic compounds that might
darken some of the water that reaches the surface. It has even been speculated that life has
originated in the oceans of Europa, and this is certainly worth investigation.

A less dramatic, less widely held view is that there is a solid icy asthenosphere, and it is
partial melting in its upper reaches and at the base of the icy lithosphere that produces icy
magma for cryovolcanism.

That Europa has a shell of water and Io does not was explained in Section 5.2.3 – it comes
down to the greater distance of Europa from proto-Jupiter.

Question 8.5

Describe the differences between the surfaces of the Galilean satellites that can be explained by
the decrease in tidal heating that occurs with increasing distance from Jupiter.

8.4.2 Titan

Saturn’s huge satellite, Titan, larger than Mercury and second only to Ganymede among the
planetary satellites, formed from the disc of gas and dust around Saturn. Its low density,
1880 kg m−3, indicates a substantial fraction of water. Titan could well be partially or wholly
differentiated (Section 5.2.2). If it is differentiated, then it should have an outer mantle of water,
wholly or mainly solid, with perhaps about 15% NH3 by mass, plus smaller quantities of other
substances (Figure 5.7). Irradiation of the atmosphere and surface by solar UV radiation, cosmic
rays, and charged particles from Saturn’s magnetosphere would have dissociated the NH3 to
yield a considerable atmosphere consisting largely of N2, as observed. In the lower troposphere
it also contains 4.7% CH4 and traces of other carbon compounds.

The CH4 forms clouds and the carbon compounds form hazes. As a result the surface is
obscured at visible wavelengths. Consequently, the images returned by Voyagers 1 and 2 in 1980
and 1981, respectively, revealed nothing of the surface, but only the general orange appearance
of the atmospheric aerosols. The atmosphere is, however, less obscuring at certain near-IR
wavelengths, and observations in these windows have been made from the Earth’s surface and
from the Hubble Space Telescope. Water ice is dominant, as expected, but the surface is not
uniform in brightness, and therefore variable proportions of other substances are presumed to
be there, notably hydrocarbons and NH3. The global mean surface temperature and pressure
�94 K� 1�5×105Pa�, and the atmospheric composition, had indicated that there might be a surface
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veneer of CH4 and ethane �C2H6�, plus smaller quantities of larger hydrocarbon molecules.
The possibility of extensive oceans of hydrocarbons had been diminished by Voyager 2 in its
1981 flyby, and also by Earth-based radar investigations, the atmosphere being transparent at
wavelengths greater than about 1 cm. The radar reflectivities were deduced to be consistent with
regions of bright ice consisting of mixtures including water, NH3, and other regions darkened
by solid and liquid hydrocarbons.

Our knowledge of Titan has been hugely increased by the NASA–ESA Cassini–Huygens
mission that reached Saturn in June 2004. In January 2005 Huygens landed on Titan, from
where it transmitted data for about 80 minutes to the Cassini Saturn Orbiter and thence to Earth.

Images and data from Huygens

Figure 8.11 shows a mosaic of three frames of the surface obtained during the descent of
Huygens by the descent imager/spectral radiometer (DISR). The width across the top of the
rightmost frame is 3.0 km. A river-like drainage system is apparent, flowing downhill to a flatter,
darker area bounded by what looks like a coastline, though the area is currently dry. The narrow
channels with side feeders at sharp backward angles indicate precipitation run-off, whereas the

Figure 8.11 A mosaic of three frames of the surface from Huygens’ descent imager/spectral radiometer.
The width across the top of the rightmost frame is 3.0 km. (NASA/JPL/ESA/University of Arizona
PIA07236)
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short stubby channels that join the main channel at right angles indicate sapping and subsurface
fluid flow. Spectral analysis shows that the darker area into which the channels feed is covered
in material that came from the adjacent higher land, thus supporting the view that rivers have
flowed to fill a lake. But it was not water that flowed, but a hydrocarbon, quite possibly CH4.
CH4 can exist as a solid, liquid, or gas at and near Titan’s surface, in accord with the surface
temperatures and pressures and the phase diagram of CH4 (Figure 10.17). Consequently, CH4

plays the same role as water does on the Earth, and at the surface can occur in any of the three
phases.

Water on Titan is very hard and strong at the low temperatures. It dominates the surface and
plays a somewhat analogous role to rocks on the Earth. Figure 8.12 is a DISR view at Titan’s
surface, showing pebbles of water ice and hydrocarbon ices. The two just below image centre
are about 15 cm and 4 cm across, and about 0.85 m distant. The surface is darker than expected
and consists of a mixture of water ice and hydrocarbon ice. The pebbles are rounded, and have a
size distribution consistent with transportation by a fluid. Huygens probably landed just within
a dark area, possibly a lake bed where the pebbles were carried by hydrocarbon rivers.

Surface impact data as Huygens landed are consistent with both a solid granular material
with very low cohesion and a damp surface like sticky ‘tar’. Fine grains of ice plus a collection

Figure 8.12 A DISR view at Titan’s surface, showing ice pebbles. The two just below image centre are
about 15 cm and 4 cm across, and about 0.85 m distant. (ESA/NASA/JPL/University of Arizona PIA07232)
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of photochemical products could comprise any tar. The gas chromatograph–mass spectrometer
(GCMS) on Huygens detected CH4 as a gas, but not the next member of this hydrocarbon series,
ethane �C2H6�. This might be because of its lower volatility or because it has drained from the
area. NH3 is also much less volatile than CH4, so could also be present. Certainly, a surface rich
in organic compounds is to be expected, generated from N2 and CH4 in the upper atmosphere
by solar UV radiation and by energetic electrons from Saturn’s radiation belt. These organics
filter downwards and condense to form the haze layers (Plate 17) that gradually rain out to the
surface.

Mountains, Channels, lakes, and oceans

Among its many instruments, the Cassini Orbiter is equipped with radar, the imaging science
subsystem, ISS �0�2–1�1 �m�, and the visible and infrared mapping spectrometer, VIMS
�0�35–5�1 �m�. These instruments are being used to map the surface, and also to perform
compositional studies.

Among the many types of landforms seen is a mountain range about 150 km long, 30 km
wide, and 1.5 km high. The range must be as hard as rock, though made of water ice and other
icy materials. In the upper reaches there is bright, white material, perhaps CH4 snow or exposed
fresh material. The range could be the result of material welling up to fill gaps opened when
two crustal plates were pulled apart.

Many channels have been seen, with broadly similar characteristics to those in Figure 8.11.
One notable area is Xanadu, revealed by Cassini’s radar to be a mountainous, Australia-sized
region, with eastern and western margins laced with networks of narrow channels that lead
into darker regions. The liquid that carved the channels was surely CH4 or/and C2H6. The
darker regions might be lakes or dry lake beds. In the case of Xanadu the overall observational
evidence indicates that it consists of rather porous water ice washed clean of hydrocarbons,
which explains its brightness in the near IR.

There is evidence for other lakes, perhaps dry. One of these is near the South Pole, where
Cassini saw a dark feature, 234 × 73 km, with a shore-like boundary, in what was at the time
the cloudiest region on Titan. From these white CH4 clouds, CH4 rain would fall, and evaporate
only slowly at the low temperatures, not far from the triple point (Figure 10.17). Thus, this area
is either a lake of liquid CH4, perhaps with liquid C2H6, or a dry lake with dark deposits – or,
disappointingly, a broad depression, such as a caldera, filled with dark, solid hydrocarbons. The
crucial test would be for a specular reflection of the Sun in the near IR, such as would arise
from a liquid surface, but this test has not yet been made on this feature.
� Why not make this test at visible wavelengths?
At visible wavelengths the atmospheric haze blocks sunlight from the surface. The best evidence
for lakes so far (early 2007) is dark patches at high northerly latitudes, up to 70 km actors. Radar
data indicate that these are (predominantly) of liquid CH4.

The specular reflection test has been made in the search for large oceans. The 10 m Keck II
telescope on Mauna Kea examined 27 locations in the near IR. At none of these was a specular
reflection observed, thus ruling out large oceans. At the much longer wavelengths of radar
beamed from the 300 m Arecibo radiotelescope, specular reflections were observed at 12 of 16
locations, but at these wavelengths a better interpretation, and one consistent with the Keck
data, is of very flat solid surfaces, though perhaps covered by liquid in the past.

The lingering possibility that the dark equatorial regions were liquid has also been ruled out.
Cassini radar has shown that these are indeed seas, but of sand dunes. These consist of particles
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of unknown composition, presumably formed by erosion during heavy rainfall of CH4. These
particles must be mobilised by the surface winds, which, though generally very light, must
occasionally blow stronger.

With no large oceans of CH4, replenishment of atmospheric CH4, which constitutes 4.7%
of the lower atmosphere, can not be met by evaporation from open bodies of liquid CH4.
Replenishment is necessary because the lifetime of atmospheric CH4 against disruption by solar
UV radiation and fast electrons from Saturn’s magnetosphere, is only about 10 Ma. Evaporation
from surface/subsurface CH4 ice must make a contribution. But cryovolcanism could make a
much larger one.

Cryovolcanic features, impact craters, and surface age

Evidence for cryovolcanism has been obtained by the Cassini Orbiter. Possible cryovolcanic
features include domes, lobate flows, rough terrain, and landforms that resemble volcanoes.
‘Smoking guns’ have also been seen – east–west cloud streaks hundreds of kilometres long
originating at fixed locations on the surface. These could well be due to gas vented by cryo-
volcanic activity. It is not only CH4 that cryovolcanism releases, but water vapour and other
carbon compounds.

Cryovolcanism would be driven by a combination of residual heat from Titan’s accretion,
radiogenic heat from the core, and modest tidal heating. Overall, the rate of heat loss is less
than 10% of that from the Earth, but this is sufficient for cryovolcanism.

Cryovolcanism can obliterate impact craters. Obliteration will also result from wind/fluid
erosion, by the accumulation of organic compounds from the atmosphere, and by tectonic
processes. If not obliterated, some craters will be subdued, though this can also result from
viscous sagging. Cassini’s radar has (so far) mapped a few per cent of the surface at high
resolution, and indeed very few craters have been seen. This scarcity, over much of the surface,
has been confirmed by Cassini’s ISS and VIMS. There are a few as large as a few hundred
kilometres, increasing in number as size decreases, with a cut-off at about 20 km because of
the shielding effect of Titan’s considerable atmosphere, which will cause small projectiles to
break up.

The visible surface of Titan is therefore young, much of it only a few hundred million years
old, though there might be regions of considerable greater age.

Question 8.6

Explain why water has played a relatively minor role in weathering the surface of Titan.

8.4.3 Enceladus

Enceladus is a medium-sized satellite of Saturn, radius 253 km, with a mean density of
1120 kg m−3.
� What does such a low density suggest about its interior?
The low density suggests a predominantly icy composition. The surface is certainly icy, and
has an albedo of about 0.9, the highest in the Solar System. This suggests that the surface is
very fresh. Its light-scattering properties are consistent with the texture of frost. The high albedo
keeps the surface of Enceladus cold, with a mean surface temperature of 75 K, lower than any
other of Saturn’s many satellites.
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The first spacecraft to visit Enceladus was Voyager 1, which flew through the Saturnian
system in November 1980. In August 1981 it was followed by the flyby of Voyager 2. There
was then a long gap until the arrival of Cassini–Huygens in June 2004. Since then, the Cassini
Orbiter has made several close approaches to Enceladus, culminating on 14 July 2005, when
the spacecraft descended to a minimum altitude of 175 km. Figure 8.13 shows an image taken
during the approach, revealing the richly varied landscape first revealed by the Voyagers.

Crater densities vary from almost zero, as, for example, in the lower part of Figure 8.13 (the
south polar region is at lower right), to about that of the least cratered areas on the surfaces
of the other satellites of Saturn. This indicates that even the oldest terrain postdates the heavy
bombardment, and the youngest terrain could be very much younger, and certainly no older
than 1000 Ma. Within each type of terrain the craters show various degrees of degradation, due
in part to viscous relaxation. The most degraded areas might have been above interior hot spots
analogous to mantle plumes in Venus.

There are various types of tectonic grooves and ridges, and these are concentrated in plains.
Some of the grooves and ridges seem to be tensional features, others compressional, and yet
others might be cryovolcanic fissures and vents. The south polar region is particularly interesting.
As well as being virtually devoid of impact craters, it is replete with tectonic features, including
the parallel wavy lines at lower right in Figure 8.13 that have been dubbed ‘tiger stripes’. These
are cracks, about 130 km long and spaced about 40 km apart. They are ‘warm’, with temperatures
up to about 110 K. There are also many boulders present, 10–100 m across. Together, this
evidence indicates that this region is particularly young and active.

Figure 8.13 Enceladus, from the Cassini Orbiter. The south polar region is at lower right, and displays the
‘tiger stripes’ that seem to be the source of cryovolcanism. (NASA/JPL Space Science Institute PIA06249)
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Dramatic evidence for activity came from Cassini during its 14 July 2005 flyby, when it
imaged a broad fountain of icy particles and vapour reaching an altitude of at least 500 km.
The source was the south polar region, notably the ‘tiger stripes’. Cassini flew through this
fountain, sampled it with its mass spectrometer, and found the vapour to consist (by numbers
of molecules) of about 65% water. 20% H2, and some N2 or CO.
� Why can a mass spectrometer not distinguish between N2 and CO?
The common isotopes of nitrogen, carbon, and oxygen have atomic masses of 14, 12, and 16
respectively, so the molecular mass of N2 is the same as that of CO. The composition of the
ice at the surface of Enceladus has been measured by Cassini’s VIMS, which has revealed it to
be near pure water ice. Other ices, such as NH3 and CO2 that are surely present in the interior,
could be too volatile to exist on the surface.

Such cryovolcanic activity accounts for several other observations. The magnetometer detected
oscillations of Saturn’s magnetic field near Enceladus at a frequency suggesting ionised water
vapour. Allowing for ionisation by solar UV radiation, this shows that a very thin atmosphere is
present, mainly water vapour. It might be thin, but there is still too much to have been retained
by the satellite’s weak gravity. Cryovolcanism could sustain the atmosphere. Such activity also
explains the resurfacing that has created the high albedo and the areas with few impact craters.
The continuing escape of the atmosphere also accounts for Saturn’s tenuous E ring (Figure 2.14)
which has a maximum density at the orbit of Enceladus. The water-ice particles that constitute
the E ring have estimated lifetimes of only about 10 000 years and thus need replenishing.

The presence of cryovolcanism indicates that at least some of the interior is warm enough
for water, and other icy materials, to melt. Evidence for (partially) fluid subsurface materials is
provided by the altitude range. This is largely confined to 1000 m, low for a body of the size of
Enceladus, and indicates interior softness. This is consistent with Cassini magnetometer data,
which showed Enceladus to be deflecting and slowing charged particles in Saturn’s magneto-
sphere, as would be expected from liquids made electrically conducting by dissolved salts.

How can a small body like Enceladus sustain cryovolcanism and tectonic activity? The
neighbouring satellites are similar in density – Mimas is about the same size as Enceladus, and
Tethys is considerably larger, yet neither have signs of current or recent activity. This points
to tidal heating for Enceladus, but not for its neighbours. But equation (4.13) indicates that the
present eccentricity of the orbit of Enceladus, 0.0001, is too small for sufficient tidal heating
today. Moreover, heat from radioactivity in Enceladus’s rocky component cannot make up the
shortfall. Perhaps, as a result of gravitational interactions between Enceladus and some other
satellites, the eccentricity was greater in the past, and this could have led to intermittent periods
of greater tidal heating, each lasting 10–100 Ma, with the last period ending relatively recently.
This is plausible – at present Enceladus is in a 1:2 mean motion resonance with the larger
satellite Dione, radius 560 km, which could raise its eccentricity.

8.4.4 Triton

Much of what we know about Triton, which at 1353 km radius is by far the largest satellite
of Neptune, is from the flyby of Voyager 2 in August 1989, supplemented by Earth-based
spectroscopy and occultations of stars by Triton. Voyager 2 obtained high-resolution images of
about two-thirds of the sunlit hemisphere, with rather more of the southern than of the northern
hemisphere being included. Plate 21 is a composite of these images, with southerly latitudes in
sunlight.
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Icy materials must comprise about a third of Triton’s mass and 60% of its volume, probably
concentrated into an icy mantle around a rocky core (Figure 5.7). Though water ice is expected
to be the dominant icy material, IR spectroscopy reveals that at the surface N2 ice dominates,
and that CH4 ice and CO ice are also present. These surface ices are presumably fairly thin
veneers, derived from the mantle through their greater volatility than water. An indication that
N2 and CH4 ices are no more than veneers is provided by topographic features such as 1 km
high scarps – only water ice is strong enough at the surface temperature of 38 K to support such
topography. There are also patches of CO2 ice, perhaps the result of chemical reactions triggered
by impacts. The surface ices, if pure, would be colourless, and so the pinkish appearance of
much of the surface (Plate 21) is presumably because cosmic rays and solar UV radiation have
produced traces of complex organic compounds.

The surface is overlain by a thin atmosphere of N2, plus traces of CH4 and CO. This is clearly
consistent with the surface composition. The surface pressure measured by Voyager 2 was
1�4 ± 0�1 Pa. In November 1997 the atmospheric pressure was measured again, this time from
the Earth, utilising the transit of a star. This is not very accurate, but placed the pressure in the
range 2.0–4.5 Pa, a considerable increase in the 8 years since the flyby of Voyager 2. Possible
explanations for this are presented in the section on Triton’s atmosphere, Section 10.8.2. One
of them is surface activity releasing N2 into the atmosphere.

Evidence of surface activity

There are three main types of terrain on Triton. High smooth plains are presumed to be the
result of a series of flows of icy lavas. At their edges they are seen to overlie the other two
types of terrain
� What does this imply about the relative ages of the three types?
The high smooth plains must be the youngest, a conclusion borne out by the low density of
impact craters on these plains. A similar type of surface is seen beyond the smooth plains,
constituting the floors of four depressions 100 km or so across. A rugged area at the centre of
each floor indicates a cryovolcanic origin for this infill, in which case the depressions could be
calderas.

The second type of terrain is hummocky plains that border the smooth plains on their poleward
side. Domes and a single ridge suggest volcanic creation of this type. It is the most cratered
terrain on Triton, though only about as much as the lunar maria. No absolute ages can be
deduced, but the hummocky plains, though still young among the surfaces of planetary bodies,
are at least twice as old as the high smooth plains.

Finally, there is cantaloupe terrain, which is unique to Triton, and can be seen towards the
day–night boundary in Plate 21. It gets its name from its resemblance to the skin of a cantaloupe
(melon), and consists of a patchwork of approximately 10 km diameter dimples and bumps
criss-crossed by grooves and troughs. Some of the grooves and troughs might be graben, and
some have ridges running along their centre lines, which might be extrusions of viscous ice.
Such extrusions might also account for some of the bumps. Fresh long troughs cut all types
of terrain, and might be recent graben. The high smooth plains and hummocky terrain overlap
cantaloupe terrain and so it must be the oldest type, yet there are few impact craters – this is a
mystery.

In Plate 21 a polar cap is visible extending from the South Pole towards the equator. It
generally has a higher albedo than the rest of the surface, reaching 0.89 in its brighter parts
(though even the darkest parts of the imaged surface have the rather high albedo of 0.62). Any
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north polar cap was hidden on the night side. The polar cap presumably consists of the same
materials as the rest of the surface veneer. The cap’s high albedo would then be the result of
the seasonal deposition of pure ices, notably the more volatile N2, presumably as N2 frost is
sublimed from one pole and deposited at the other.

Within the south polar cap four plumes have been identified in Voyager data. They rise
straight up to an altitude of about 8 km, such high altitudes resulting from their buoyancy in the
atmosphere. At 8 km the plumes are no longer buoyant and high-speed winds then carry them
sideways for 100 km or so. Dark steaks elsewhere in the polar cap indicate deposition from
earlier plumes, and some of these are visible in the lower right of Plate 21. The plumes are
probably geysers from the sublimation of N2 below the surface, the N2 gas breaking through
the overlying ice. The sublimation could be the result of heat flow from the interior, or from
the solar heating of darkened ice beneath a metre or so surface layer of pure transparent ice.
Increased geyser activity could account for the increase in atmospheric pressure between 1989
and 1997.

Though the geysers are the only definite sign of ongoing activity on Triton, much of the
surface is comparatively young, and models of the thermal evolution of Triton, in which there
was powerful tidal heating early in its life, show that cryovolcanism could be occurring today
as a result of the raised temperatures from primordial tidal heating plus radiogenic heat. The
presence of nitrogen ice in the outer layers enables these heat sources to drive cryovolcanism
because nitrogen is very volatile.

Question 8.7

Why is nitrogen cryovolcanism probably confined to Triton?

8.5 Summary of Chapter 8

The bodies that are still subject to volcanic and tectonic activity comprise the Earth, Venus,
and Io, which have rocky surfaces, and Europa, Titan, Enceladus, and Triton, which have icy
surfaces. Rocky surfaces experience silicate volcanism and icy surfaces cryovolcanism. Impact
craters are scarce as a result of resurfacing.

The Earth seems to be unique in having a global system of plate tectonics, in which the
Earth’s lithosphere is divided into a number of plates in relative motion. Oceanic crust is created
at constructive plate margins from where the crust spreads, and it is destroyed at destructive
plate margins where it is subducted into the mantle. At both types of margin there is a great
deal of volcanic and seismic activity. Oceanic crust is derived by the partial melting of the
mantle, and is basaltic–gabbroic in composition. Continental crust is, on average, andesitic,
with a granitic–rhyolitic composition in its upper regions. It is derived, ultimately, from oceanic
lithosphere. Continental crust is eroded mainly through the production of ocean sediments by
gradation. Plate motion is sustained by solid state convection in the asthenosphere, driven by the
residual heat from primordial energy sources plus ongoing radiogenic heating. Plate recycling
accounts for about 70% of the energy that reaches the crust, with mantle plumes accounting for
most of the rest.

On Venus there is no widespread system of plate tectonics. It is unlikely that this is because
of a really thick lithosphere, but more likely because its lithospheric properties differ from those
of the Earth. Instead, there might be a system of mantle plumes and downwellings. Sample
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analyses indicate a predominantly basaltic crustal composition, in accord with the lack of an
extensive system of plate tectonics. The predominance of one type of crust is also indicated by
the unimodal hypsometric distribution. Volcanic activity has been widespread within the past
few hundred million years, and little of the surface of Venus is older than 500–800 Ma. This
might be due to episodic global subduction of the lithosphere, which otherwise acts as a stagnant
lid. Any extensive resurfacing 500–800 Ma ago could alternatively have been caused by an
outburst of mantle plumes at that time that resulted in sufficiently copious production of basaltic
lavas to obliterate almost all of the surface. Plumes, delamination, and (limited) subduction
might account for most of the loss of internal energy. Any episodic global subduction could
make a major if intermittent contribution. Volcanic activity might continue today, as might
tectonic activity, and further resurfacing episodes are possible.

Io is the most volcanically active body in the Solar System. Its silicate volcanism depends
largely on tidal heating. Europa has a smooth icy surface, the result of cryovolcanism, also
sustained largely by tidal heating. Titan has a surface dominated by water ice, but so cold that
it behaves like rock on Earth. CH4 plays a similar role to water on Earth, and in its liquid
form must have been responsible for most of the channels and other fluvial features. There is
widespread evidence of cryovolcanism, thought to be driven by a combination of residual heat
from Titan’s accretion, radiogenic heat, and modest tidal heating.

The icy surface of Enceladus has displayed its cryovolcanism most dramatically in the form
of a broad fountain of icy particles. Its cryovolcanism needs substantial tidal heating. This does
not seem sufficient today because of its low orbital eccentricity, but gravitational interactions
with other satellites, notably Dione, could have increased the value in the past, and could do
so again in the future. On the icy surface of Triton, dramatically expressed in the form of N2

geysers, the present cryovolcanic activity could be the result of the residual effects of primordial
tidal heating plus radiogenic heating, the presence of the highly volatile nitrogen ice in the outer
layers enabling these heat sources to be effective.



9 Atmospheres of
Planets and Satellites:
General Considerations

The atmospheres of the planetary bodies are richly diverse. This is apparent from Table 9.1,
which lists some of the properties of the substantial atmospheres. As you can see, the list
includes the main constituents of each atmosphere. This is specified as the number fraction of
each constituent: that is, the number of molecules of the constituent divided by the number of
molecules in the whole atmosphere. For convenience, we shall extend the term ‘molecule’ to
include constituents that are present as single atoms, such as argon in the Earth’s atmosphere.
In the case of the four giant planets there is no clear distinction between the atmosphere and the
interior (Section 5.3), and so zero altitude is defined at the altitude at which the atmospheric
pressure is 105Pa. The number fractions do, however, apply to the whole atmosphere down to
pressures that are greater than this, and for non-condensing components, considerably greater.

The total quantity of an atmosphere can be expressed as the number of kilograms ‘standing’
on each square metre of the surface of the planetary body. This global mean value is called the
column mass mc, and these are listed in Table 9.1. The total, except for the giant planets, mass
of an atmosphere is the column mass multiplied by the surface area of the body. The total is a
very small fraction of the planetary mass – an atmosphere is a low-density veneer.

Table 9.1 also gives the size of the atmospheric pressure ps at the surface of the body. This
is related to the column mass as follows:

ps = mcgs (9.1)

where gs is the magnitude of the gravitational field at the surface (Section 4.1.2). To understand
this relationship note that the right hand side is the mass of atmosphere standing on unit area of
the surface, multiplied by the magnitude of the gravitational force per unit mass. The right hand
side is therefore the size of the force exerted by the atmosphere per unit area of surface. A force
per unit area is pressure, and thus the right hand side is the magnitude of the surface pressure.
Strictly, equation (9.1) is an approximation because gs neglects the effect on ps of rotation of
the body, and the slight decrease of the gravitational field with altitude. In Table 9.1 the surface
gravity is ge, the acceleration of gravity that would be experienced by an object fixed at the
equator, and so includes the slight effect of rotation.

Also included in Table 9.1 is the mean surface temperature Ts. In equilibrium, Ts is related
to the mean surface pressure ps and the mean surface density �s via an equation of state

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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(Section 4.4.3). Atmospheric gases are at relatively low densities. Therefore they can be regarded
as perfect gases, also called ideal gases, and we can then use the perfect gas equation of state.
This equation applies locally, and is

p = �kT

mav

(9.2)

where k is a universal constant called Boltzmann’s constant (Table 1.6), and mav is the mean
mass of the molecules in the atmosphere at the point in question. If we apply equation (9.2) at
the surface then it allows us to calculate any one of �s� Ts, and ps from the other two.
� In order to do so, what else needs to be known at the surface?
We also need to know mav. This is obtained from the atmospheric composition.

You can see from Table 9.1 that atmospheric compositions and column masses vary consid-
erably from body to body. For the planetary bodies not listed, any atmospheres are far more
tenuous than those included. Why atmospheres vary so much is a topic for Chapters 10 and 11,
where we examine individual atmospheres in detail. Before then, we shall look at atmospheric
processes in general. But first, we take a brief look at how atmospheres are studied.

9.1 Methods of Studying Atmospheres

One way of studying an atmosphere is from instruments within it, and the Earth’s atmosphere
has been widely studied in this way for centuries. For other atmospheres to be studied in this
manner it is necessary to fly a probe through the atmosphere, or to place a lander on the surface.
Venus, Mars, Jupiter, Titan, and the Moon have had their atmospheres directly explored by
probes or landers. But much of what we know about atmospheres comes from studying them
remotely from the Earth’s surface, from telescopes in Earth orbit, or from spacecraft that fly
past the remote body or go into orbit around it.

Spectrometry

Spectrometry is of great importance in remote studies of atmospheres. As a typical example,
Figure 9.1 shows part of the IR spectrum of Mars. This is the spectrum of the thermal radiation
emitted by the Martian surface and then modified by passage through the Martian atmosphere.
The atmosphere is cool and/or thin enough so that it emits more feebly than the surface,
and so the surface acts as a bright source of background illumination. Atmospheric molecules
absorb the background at various wavelengths, and then emit the absorbed radiation at the same
wavelengths, but equally in all directions, so the net effect is removal of some radiation from
our line of sight. This results in a set of absorption lines, often narrower than the absorption
lines produced by solids or liquids, and therefore readily distinguished from them. A particular
molecule absorbs at a characteristic set of wavelengths, and therefore if absorptions at such
wavelengths are detected, the presence of the molecule is inferred. The absorption line in
Figure 9.1 lies at a wavelength known from laboratory studies to correspond to gaseous CO2

and so it shows that CO2 is present as a gas in the Martian atmosphere.
At the wavelengths in Figure 9.1 the solar radiation scattered from the Martian surface is

much weaker than the radiation emitted by the surface, and it therefore makes a negligible
contribution to the source on which the absorption lines are produced. At shorter wavelengths
solar radiation dominates. The atmospheric constituents then make an imprint not only on the
fraction scattered by the surface, but also on the solar radiation on its way in to the surface.
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Figure 9.1 Part of the IR spectrum of Mars, with a prominent absorption line due to CO2. Note that the
smooth shape of the spectral flux from an ideal thermal source at 273 K has been subtracted. (Adapted
from C.A.Beichman, JPL Publication, 96-22, (1966))

Note that as well as a solid (or liquid) surface, clouds or deep atmospheric layers will do just
as well as emitters or reflectors. Note also that, in addition to absorption lines, emission lines
from atmospheres can also be observed in suitable circumstances, e.g. if the source region is
hotter than the background. The wavelengths of emission lines also indicate composition.

So far we have used only the wavelengths of the spectral lines. There is clearly more to spectral
lines than that: they have width, area, and shape; absorption lines have depth (Figure 9.1);
emission lines have height. These characteristics can be used to infer three further properties
of the atmosphere: namely, the number of molecules that produced the line(s), the temperature
of the molecules, and their pressure. We shall use the two absorption lines in Figure 9.2 to
exemplify how these properties are extracted.

Wavelength with respect to line centre

A
b

so
rp

ti
o

n Width at
half depth

Depth

C

D

Figure 9.2 Two spectral absorption lines. The depth and width (at half depth) are the same in both cases,
but the shapes and areas differ.
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The number of molecules that produce a spectral line is the total number along our line of
sight through the region in which the spectral line is produced. This total influences the area
of the line: the greater the total, the greater the area. In Figure 9.2 the area of one of the lines
has been shaded. The area of the other line is greater. The area also depends on the average
temperature along the line of sight. For example, consider a gas with a copious source of photons
beyond it, i.e. a gas against a bright background. A particular spectral absorption line in the gas
requires the molecule to be in a particular state before the photon is absorbed. The proportion
in this state depends on the temperature of the gas. If the proportion is low, it is as if far fewer
molecules are present, and the area of the line is consequently reduced.

Temperature also influences the width of the line (Figure 9.2). This is through the Doppler
effect – the greater the temperature T , the greater the spread in the random velocities of the
atoms or molecules, and therefore the greater the Doppler width. At a given temperature, the
greater the mass m of the atom or molecule causing the line, the smaller the spread in the random
velocities, and so the Doppler width is reduced. Overall, the Doppler width is proportional to√

T/m. The spreading of the line due to this Doppler broadening gives the line a characteristic
shape – line D in Figure 9.2.
� Will the Doppler effect change the wavelength of the centre of the line?
The directions of motion are random, so at any instant there are about half the particles moving
away from us and about half towards us, regardless of the temperature. Therefore, the centre of
the line remains at the same wavelength. Only if the source of the line as a whole is moving
towards or away from us is there a change in wavelength at the centre of the line.

A spectral line can also be broadened owing to collisions. If, during the absorption or emission
of a photon, an atom or molecule collides with another, the photon energy will be changed
slightly and hence so will its wavelength. The overall effect is that the width of the line is
proportional to p/

√
T , where p is the pressure. This collisional broadening (also called pressure

broadening) imparts a characteristic shape to a spectral line, different from that in Doppler
broadening – line C in Figure 9.2. To show that the line width is proportional to p/

√
T we need

to use three fairly fundamental relationships. Do not worry if you are not familiar with them.
They are: that the line width is proportional to the frequency of collisions; that this frequency is
proportional to ��, where � is the average speed of a molecule and � is the density; and that �
is proportional to

√
T . Accepting these, you can see that the collision frequency and hence the

line width is proportional to �
√

T . Using the perfect gas equation of state (equation (9.2)), we
then obtain p/

√
T for the factor to which line width is proportional.

Clearly a huge amount of information is embedded in a spectral line. Even more information
is embedded in sets of lines. For example, the relative area of two different lines from the same
region depends on the temperature of the region. The main point is that by examining the details
of one or more spectral lines it is possible to establish the total number of molecules of the sort
that produce the line(s), and the temperature and pressure of the molecules.

Different absorption lines can originate from different altitudes. Therefore by observing a
variety of absorption lines it is possible to estimate altitude variations of composition, pressure,
and temperature. Moreover, a particular line can be formed over a great range of altitudes,
and this is a further influence on the shape of the line. Therefore, a single line can also
provide information about conditions at different altitudes. Variations with altitude can also be
determined by observing how absorption lines change as the detector line of sight is swept
across the disc of the planet. Near the centre of the disc we are looking vertically through the
atmosphere and the tenuous upper reaches have less effect than when we are looking near the
edge of the disc.
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Figure 9.3 The occultation method of studying planetary atmospheres.

Occultation

Another way of investigating atmospheres is to use the radio transmission from an orbiting or
flyby spacecraft when the craft passes behind (is occulted by) the planetary body as seen from the
Earth. Then, to reach us, the radio waves have to pass through the atmosphere as in Figure 9.3,
and they are refracted slightly. The angle of refraction can be measured and the mean refractive
index along the path can then be calculated. During the occultation the path changes, which
allows the refractive index versus altitude to be calculated. The refractive index depends on the
mean density, the mean molecular mass, and on certain properties of the candidate molecules
that are known from laboratory studies. Radio waves can penetrate clouds with particular ease,
and so we can get information from depths that are obscured at other wavelengths. A similar
technique at shorter wavelengths uses the occultation of a star by the planetary body.

Clouds

Clouds can be studied spectroscopically, though, as for all condensed matter, the spectral
signatures that reveal composition are usually much less distinctive than for gases. As well as
spectroscopy, we can measure how the intensity of the solar radiation scattered by the cloud
particles varies with the phase angle, i.e. the angle between the incoming solar radiation and
our line of sight. This not only provides further information on composition, but also reveals
particle shapes. Atmospheric circulation is revealed by following particular cloud features.

Question 9.1

Describe the effect on the spectral line in Figure 9.1 of

(a) a decrease in the number of CO2 molecules in the Martian atmosphere;
(b) an increase in the temperature of the Martian atmosphere;
(c) an increase in the pressure of the Martian atmosphere.

9.2 General Properties and Processes in Planetary Atmospheres

9.2.1 Global Energy Gains and Losses

In considering global energy gains and losses, we need to include the gains and losses at the
planetary body’s surface. The giant planets have no surfaces, in that there is no abrupt change
in density from an atmosphere to an interior that is opaque to solar radiation. Their ‘surfaces’
can crudely be regarded as some depth in the atmosphere beyond which solar radiation does
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not penetrate. For bodies with well-defined surfaces but no atmospheres, it is clear that the
references to the atmosphere below are to be ignored.

If we treat the atmosphere plus the surface as a single global entity, then energy can be
gained by this entity in two major ways: namely, from solar radiation and by heat flow from the
interior. There is only one major loss of energy – the loss to space of radiation emitted by the
surface, by clouds, and by atmospheric gases. This will be at IR wavelengths. Let Wabs denote
the power absorbed from solar radiation, Wint the rate of heat flow from the interior, and Lout

the radiant power emitted to space. A steady state requires

Lout = Wabs + Wint (9.3)

Because of short-term variations in these three quantities, the steady state of interest is in
the longer term. Each of the three quantities is then an average over a period typically much
greater than the orbital period. Table 9.2 gives the ratio Lout/Wabs for the planetary bodies with
substantial atmospheres, and also for Mercury and the Moon, which are two of the many bodies
that have tenuous or negligible atmospheres.
� What is the value of Lout/Wabs if there is negligible heat flow from the interior?
Lout then is equal to Wabs, and Lout/Wabs = 1. You can see from Table 9.2 that only for Jupiter,
Saturn, and Neptune is this ratio substantially greater than one. Their IR excesses were discussed
in Section 5.3. For all other planetary bodies listed, Wint is much less than Wabs. Among those
not listed, Io is the only exception, because of its huge tidal heating. Its value of Lout/Wabs is
uncertain but is substantially smaller than the Jovian value. We shall not consider Io further here.

Table 9.2 Lout/Wabs� aB, and Teff for some planetary bodies

Planetary body Lout/W a
abs aB Teff/ K

Venus 1.000 0.76 229
Earth 1.0002 0.30 See Q9.2
Mars 1.000 0.25 210
Titan 1.000 0.21 85
Triton 1.000 ∼ 0�85 ∼ 32
Plutob 1.000 ∼ 0�5 ∼ 37
Jupiter 1.67 0.34 124
Saturn 1.77 0.34 95
Uranus 1.06 0.30 59
Neptune 2.62 0.29 59
Mercuryc 1.000 0.10 436
Moonc 1.000 0.11 271

a Values shown as 1.000 depart from being exactly 1 in the fourth or
lower decimal places. This is also the case for the bodies not included
here, except for Io. Digits in brackets are uncertain.

b Pluto’s distance from the Sun varies far more than those of the
other planets, and it has a long orbital period. The values are for the
late 1990s.

c Mercury and the Moon differ from the other bodies here in that they
only have extremely tenuous atmospheres.
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Figure 9.4 The projected area of a planetary body.

Wabs is related to the flux density Fsolar of solar radiation at the distance r of the planetary
body from the Sun, via

Wabs = FsolarAp�1 − aB� (9.4)

where Ap is the projected area of the surface (Figure 9.4), which for a spherical body of radius
R is �R2, and aB is the Bond (or planetary) albedo, i.e. the fraction of the intercepted solar
radiation that is reflected back to space by the surface and atmosphere (William Cranch Bond,
American astronomer, 1789–1859). Table 9.2 lists values of aB. Fsolar is given by the solar
luminosity L� divided by the area of the sphere over which the energy is spread at the distance r:

Fsolar =
L�

4�r2
(9.5)

Equation (9.5) assumes that solar radiation is uniformly distributed over all directions.
It is usual to express Lout as the effective temperature of the planetary body. This is defined

in terms of the radiation from an ideal thermal source (Section 1.1.1). The power radiated by
unit area of such a source depends only on its absolute temperature T , and is given by 	T 4

where 	 is a universal constant called Stefan’s constant (Table 1.6). For an ideal thermal source
of surface area A the power radiated is therefore given by

L = A�	T 4� (9.6)

If A is the total area of a planetary body, and if Lout is the power radiated, then equation (9.6)
defines T to be the effective temperature Teff of the planetary body. Thus, by definition Lout =
A�	Teff

4�, which can be rearranged as

Teff =
(

Lout

A	

)1/4

(9.7)

If Wint is negligible, then, for a spherical body (see Question 9.2),

Teff =
(

Fsolar�1 − aB�

4	

)1/4

(9.8)
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This is useful in that Teff depends only on the solar flux density at the orbit of the planetary
body and on its Bond albedo – the radius of the body has been eliminated. Table 9.2 gives
values of Teff .

However, a planetary body does not radiate in the manner of an ideal thermal source, which
raises the question of what Teff means in terms of actual temperatures. For a body without
an atmosphere the global mean surface temperature Ts will be approximately equal to Teff if
the surface is a very good absorber of radiation at the wavelengths of its emission. The less
good it is, the greater will be Ts for a given Teff (for a given L). For a body with a substantial
atmosphere, the radiation emitted to space comes from a range of altitudes in the atmosphere, as
well as from the surface. In this case, Teff is the temperature at some altitude above the surface,
but this is not from where all the emission comes.

As well as total quantities, it is also important to consider the spectral distribution of the
radiation. Figure 9.5(a) shows a typical spectrum of the radiation emitted to space by the Earth,
and Figure 9.5(b) the spectrum of solar radiation. Note that whereas planetary emission is mainly
at middle IR wavelengths, solar radiation is mainly at visible and near-IR wavelengths (see also
Figure 4.13). This is a consequence of the different source temperatures – the solar photosphere
has a temperature around 5800 K, whereas the temperatures of planetary atmospheres and
surfaces are much lower, typically a few hundred kelvin. Because these two wavelength ranges
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Figure 9.5 (a) The Earth’s emission spectrum (per unit frequency interval). (b) The solar spectrum (per
unit wavelength interval).
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are so separate, a surface or atmosphere can absorb a very different proportion of radiation in
one range than in the other.

Question 9.2

(a) Derive equation (9.8).
(b) Use it to calculate the missing value of Teff in Table 9.2.

9.2.2 Pressure, Density, and Temperature Versus Altitude

In this section we shall be concerned with global averages across the surface of a planetary
atmosphere.

The temperatures and pressures in a planetary atmosphere vary from point to point. Here we
shall concentrate on altitude variations, globally averaged, deferring the horizontal variations to
Section 9.2.6.
� If we know the temperature and pressure versus altitude, how can the density versus altitude

be obtained?
The density versus altitude can be obtained from the perfect gas equation of state (equa-
tion (9.2)), provided we know at each altitude the mean mass of the molecules that constitute
the atmosphere there.

Pressure and density versus altitude

Figure 9.6 shows pressure versus altitude in the Earth’s atmosphere, which will serve to introduce
the general ideas. How do we account for the rapid drop in pressure? On average over the
globe, the atmosphere is neither expanding nor contracting, and so we can apply the hydrostatic
equation introduced by equation (4.11). This gives the change in pressure 
p for an increase 
r
in the distance from the centre of a spherically symmetrical body. A planetary atmosphere is a
relatively thin layer on the surface and so in place of 
r it is more sensible to use the increase

z in altitude z above the surface. If we again ignore planetary rotation, which has a relatively
small effect on pressure, then


p = −GM

r2
�
z (9.9)

where r is the distance from the centre of the body to a point in the atmosphere, M is the total
mass within r, and � is the density at altitude z. This equation shows that as altitude increases
the pressure must decrease.

In equation (9.9) GM/r2 is the magnitude g of the gravitational field at r (equation (4.6)),
and with the atmosphere being a thin, low-mass layer we can use the surface gravitational field
gs everywhere within it. Thus, to a good approximation,


p = −gs�
z (9.10)

Substituting for � from equation (9.2)


p = −p�gsmav/�kT��
z (9.11)
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Figure 9.6 Pressure versus altitude in the Earth’s atmosphere.

where T is the temperature at altitude z. If the temperature is the same at all altitudes (isothermal
atmosphere), and if mav is also independent of altitude, then it can be shown that equation (9.11)
leads to

p = pse
−z/h (9.12)

where ps is the pressure at zero altitude and h is kT/�gsmav�. The quantity h is called the
isothermal scale height. For every increase in z of h the pressure falls by a factor of e, which
is 2.718 (to four significant figures). For the Earth, h is about 8 km in the lower atmosphere –
very much less than the Earth’s radius.

Though atmospheres are not isothermal, and though mav can change with altitude, equa-
tion (9.12) possesses the observed feature that the pressure falls rapidly with altitude. It follows
from equation (9.2) that, for any realistic temperature variation with altitude, the density must
also fall rapidly with altitude.

Temperature versus altitude

The temperature versus altitude depends on the various ways that energy is gained and lost at
each level, and at the surface. These processes are summarised in Figure 9.7.

Consider first the surface of a body. It receives the solar radiation that has survived passage
through the atmosphere. A fraction of this is absorbed by the surface, and the rest is reflected.
The surface also receives radiation emitted by the atmosphere. Recall from Figure 9.5 the very
different wavelength ranges of these radiation inputs, with solar radiation mainly at visible and
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Figure 9.7 Energy gains and losses in a planetary atmosphere.

near-IR wavelengths (around 1m) and atmospheric radiation mainly at middle IR wavelengths
(around 10m). The surface also receives heat from the interior, but (except for the four giant
planets and Io) this is a sufficiently small fraction of the absorbed solar radiation that it can be
ignored.

The surface loses energy by emitting its own radiation, again in the middle IR. It will also
lose energy through the conduction of heat into the atmosphere in contact with the surface,
usually followed by convection in the atmosphere. Convection was described in general terms
in Section 4.5.2.
� What condition on the variation of temperature with altitude must be met for convection

to occur?
For convection to occur, the temperature decrease with altitude must be at least as great as in
the adiabatic gradient. In the atmosphere convective plumes then rise upwards, surrounded by
denser, descending atmosphere that replaces the plume material. The convective plumes break
up, and mix with the surrounding atmosphere, thereby transferring heat from the surface to the
atmosphere. In planetary atmospheres the rate of temperature decrease with altitude is called the
lapse rate, and so the adiabatic gradient is called the adiabatic lapse rate. Note that a positive
lapse rate corresponds to a decrease in temperature as altitude increases (Figure 4.15). If the
actual lapse rate is less than the adiabatic value, there is no convection. If it is greater than the
adiabatic value the rate of convection is so large that the adiabatic value, or something close to
it, is quickly established.

For an atmosphere in which there is no condensation of any component in the rising plumes,
the adiabatic lapse rate is given by

�d = gs

cp

(9.13)

where cp is the atmospheric specific heat at constant pressure, i.e. the quantity of heat that
must be transferred (at constant pressure) to unit mass of the atmosphere to cause unit rise
in temperature. The value of cp depends on atmospheric composition. The only significant
condensate in the Earth’s atmosphere is water, and if water condensation is not occurring then
the value of �d is about 10Kkm−1. The derivation of equation (9.13) is in standard texts on
planetary atmospheres (see Further Reading), though you can perhaps convince yourself that the
equation should contain gs and cp, because gs determines the rate of decrease of pressure with
altitude (equation (9.10)), and cp determines the temperature change of a parcel of atmosphere
when it is in a new pressure environment.
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The surface can also lose energy through the evaporation of liquids or solids (we shall use
the term ‘evaporation’ to include sublimation). It takes energy to convert a liquid or a solid into
a gas, energy properly called the enthalpy of evaporation, but more colloquially known as the
latent heat of evaporation (Section 4.5). For this to be a significant energy loss, the gas has to be
removed so that further evaporation can take place. Convection provides one means of removal,
by carrying the evaporated gas upwards.

In a convective column the temperature declines and might reach a value where the evaporant
condenses in the atmosphere, to form liquid or solid droplets, which might constitute a cloud.
The atmosphere is then said to be saturated with the condensable gas. When condensation
occurs, energy is released, and so the energy lost by the surface is gained by the atmosphere.
The energy released in condensation is called the latent heat of condensation, and it has the
effect of introducing additional thermodynamic properties of the atmosphere to the right hand
side of equation (9.13). For the Earth, if a region of the atmosphere is saturated with water
vapour then �d can be as low as 3 K km−1. The global average is about 6�5Kkm−1.

Each level in the atmosphere where convection is occurring is thus heated not only directly by
convection, but also indirectly through the effect that convection has on promoting latent heat
deposition. A level is also heated by absorbing a proportion of the solar radiation passing through
it, and by absorbing some of the IR radiation emitted by the other levels in the atmosphere and
by the surface. Energy is lost by each level through its emission of (IR) radiation. A further
process that is effective in some circumstances is conduction. All these processes are shown in
Figure 9.7. Together they determine the temperature at each atmospheric level.

A steady state

Though surface and atmospheric temperatures exhibit daily and seasonal changes, the average
of the overall rate of gain at the surface is very nearly equal to the overall rate of loss if the
average is taken over several orbits of the Sun. The same is true at each level in a planetary
atmosphere. Therefore, the gains and losses in Figure 9.7 are nearly in balance, and so we are
close to a steady state. It follows that the average temperatures are very nearly constant. Note
that this also applies to the giant planets, where substantial heat flow from the interior occurs at
a quasi-steady rate.

The actual value of the mean temperature at the surface and at each atmospheric level depends
on the way the various rates of energy gain and loss vary with temperature. Any change in any
of the gains and losses, and the temperature is likely to change. For example, if the flux density
of solar radiation Fsolar were suddenly reduced, then the immediate effect at the surface would
be a rate of gain of energy that was smaller than the rate of loss. This would result in surface
cooling and a reduction in the rate of energy loss from the surface until a steady state was
re-established at a new, lower surface temperature. Correct though this conclusion is, the details
are very complicated, involving changes in energy transfer rates throughout the atmosphere, and
between the atmosphere and surface.

Atmospheric domains

The lapse rate is one basis on which an atmosphere can be divided into different domains, and
Figure 9.8 shows these domains in an idealised way – the Earth’s profile in particular is more
complicated, as you will see in Section 10.1.1.

The troposphere is where the temperature decreases with increasing altitude, the lapse rate
having a large positive value, in many cases equal or close to the adiabatic value. Indeed, the
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Figure 9.8 A schematic profile of temperature versus altitude, and the major atmospheric domains.

term ‘troposphere’ means ‘turning sphere’, which implies convection. The troposphere is where
most clouds occur and is where weather changes can be rapid and large. In addition to the
ubiquitous heat exchanges through the emission and absorption of IR and solar radiation, a
convecting troposphere also transports heat by convection, the result of the heating of the surface
(and perhaps the lower troposphere) by the Sun, and in the case of the giant planets, also by
heat from the interior. The troposphere extends up to the tropopause. Above the tropopause the
atmosphere is sufficiently thin that nearly all of the IR radiation emitted upwards there escapes
to space, and this is the essential feature that determines the altitude of the tropopause. The
altitude varies with latitude, season, and weather.

Above the tropopause there is the mesosphere, where the temperature hardly varies with
altitude. The mesosphere gains energy by the absorption of IR radiation from below, by solar
radiation, particularly at the UV wavelengths that lie just beyond visible wavelengths, and
loses it by the emission of IR radiation downwards and to space. There is no convection. The
mesosphere ends at the mesopause. The thermosphere extends above the mesopause and is
characterised by a negative lapse rate – the temperature increases with increasing altitude. It
is heated by the absorption of solar UV radiation at much shorter wavelengths. Energy is lost
through IR emission and by the downward conduction of heat.
� Is there any convection in the thermosphere?
With a negative lapse rate there is no convection. The lapse rate is a complex outcome of the
way the energy gains and losses vary with altitude.

You can see from Figure 9.8 that the atmosphere is also divided on bases other than the lapse
rate. In the homosphere, atmospheric motions and frequent atomic and molecular collisions
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keep the atmosphere well mixed and therefore it has the same composition at all altitudes,
except for any substances that condense (such as water vapour in the case of the Earth) –
condensation depletes the local gas phase in the condensable substance, and the locality will
be depleted as a whole if the condensed solid or liquid particles fall downwards (precipitate).
In the heterosphere the mixing is weaker, with the result that molecules with greater mass are
more concentrated by gravity into the lower heterosphere. In the exosphere the density is so
low that collisions between molecules are sufficiently rare to allow the escape to space of a
large fraction of any particles moving upwards with sufficient speed. Below the exosphere the
density is higher, and so a particle is likely to collide before it escapes. In the ionosphere solar
UV radiation has ionised a sufficient fraction of the molecules for the medium to display special
properties, e.g. high electrical conductivity.

Question 9.3

(a) Rewrite equation (9.12) in terms of density instead of pressure.
(b) In what domain in a planetary atmosphere should the actual decrease of pressure with

altitude follow most closely the form of equation (9.12)? Give reasons.

Question 9.4

Describe the possible effects on a planetary atmosphere if the UV radiation from the Sun were
to become much weaker.

9.2.3 Cloud Formation and Precipitation

A cloud consists of a thin dispersion of solid or liquid particles in a gas. Though a cloud is
very effective at scattering light, the particles are separated by distances that are much greater
than their diameter, and so the density of a cloud is not much greater than the density of the
cloud-free atmosphere adjacent to the cloud.

Crucial to our understanding of cloud formation is the phase diagram of the substance that
can condense to form the cloud particles. Let us take a region of the Earth’s atmosphere as an
example, where the condensate is water, and start with the region in a state where clouds cannot
form. We thus have a mixture of water vapour and the other atmospheric gases, mainly N2 and
O2. The atmospheric pressure is the sum of the pressures of the individual gases – O2 exerts a
pressure, so does N2, so does water vapour, and so does each of the other constituents. Each
gas in the atmosphere behaves much like a perfect gas, and it is useful to note that � = nmav,
and to rewrite equation (9.2) as

p = nkT (9.14)

where n is the total number of molecules per unit volume – the number density (not the number
fraction, which is global). For a mixture,

p = �n1 + n2 + n3 + � � � �kT (9.15)
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where T is the temperature of the mixture, and ni is the number density of the molecules of
type i. The pressure contributed by a particular gas is called its partial pressure. For the ith
constituent the partial pressure is

pi = nikT (9.16)

In considering cloud formation we can usually use the phase diagram of the condensable
substance, provided that we interpret the pressure as its partial pressure.

Figure 9.9 shows the phase diagram of water. Suppose that at some point in the atmosphere the
partial pressure of water vapour (gas) is at point A, and that the temperature of the vapour is that
of the atmosphere. Starting at A, consider an increase in partial pressure at constant temperature.
This could be achieved by putting more water vapour into the atmosphere – equation (9.16)
shows that the partial pressure is proportional to the number density. When the pressure reaches
the ‘liquid + gas’ line, liquid water droplets form. The number density of water molecules in
the vapour is then fixed at the value corresponding to the partial pressure on this line. Any
attempt to increase the number density will be negated by further condensation.

Returning to A, consider a decrease in temperature at constant partial pressure.
� What sort of cloud particles form if the temperature is reduced sufficiently?
The ‘solid + gas’ line is reached, so solid particles of water (ice) form. The formation of ice
particles fixes the number density of water molecules in the vapour at the value corresponding
to the partial pressure on this line. The ‘liquid + gas’ and ‘solid + gas’ lines together constitute
the saturation line. The partial pressure on this line is called the saturation vapour pressure
and the atmosphere there is said to be saturated with water vapour.
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Figure 9.9 Phase diagram of water. Note that water is unusual in that the solid + liquid line slopes to
the left, though this is barely apparent on the scale here. The triple point is at 273.16 K, 610 Pa.



312 ATMOSPHERES OF PLANETS AND SATELLITES: GENERALITIES

Droplet or ice particle formation is delayed without the presence of other particles, such
as dust, to act as condensation nuclei. Without such nuclei, and particularly if the decrease
in temperature is rapid, the partial pressure will overshoot the saturation vapour pressure,
and the atmosphere becomes supersaturated. This is not an equilibrium condition so ulti-
mately the gas will condense, thus reducing the partial pressure to the saturation value –
remember that a phase diagram, like an equation of state, is valid only for equilibrium condi-
tions. It is also common for liquid droplets to appear initially, even if the temperature is
low enough for ice to form. Such supercooled droplets are also in non-equilibrium, and will
freeze.

Cloud formation is common in planetary atmospheres. Gas borne aloft by convection cools,
and clouds form at a base altitude at which the saturation line of the condensate is reached.
The curve in Figure 9.9 starting at B is one particular possibility in the Earth’s tropo-
sphere. Clouds can also form above the cloud base if the conditions at higher altitudes lie
on or to the left of the saturation line. Also, some cloud particles are carried upwards by
vertical currents, even to the top of the convective column. Until condensation occurs, the
partial pressure of the condensate at all altitudes is a fixed proportion of the total pressure.
Above the cloud base the gas phase is depleted in the condensable substance, and so pi/p
is less.

If cloud particles become sufficiently large, or if the upward currents are too slow, then the
particles fall out of the cloud. If they do not wholly evaporate before they reach the surface
the residue will reach the surface as rain, snow, or hail – different forms of precipitation.
Water vapour can also condense directly from the atmosphere onto the surface if the surface is
sufficiently colder than the atmosphere. We then get dew, or frost. This return of water to the
surface is the opposite physical process to the loss of water from the surface to the atmosphere
through evaporation or sublimation.

Question 9.5

Suppose that in some region of the Earth, the surface temperature is 293 K, and the lapse rate
in the troposphere up to the cloud base is 7 K km−1. If the partial pressure of water in the lower
troposphere in this region is 100 Pa, use Figure 9.9 to estimate the altitude of the cloud base.
Will the clouds consist of water droplets or ice crystals?

9.2.4 The Greenhouse Effect

In Section 9.2.1 you saw that a surface–atmosphere system loses energy to space in the form
of radiation, largely at IR wavelengths, at a rate given by the radiant power Lout. The radiant
power Ls emitted by the surface alone is generally greater than Lout. The name given to this
phenomenon is the greenhouse effect and it can be quantified by the ratio Ls/Lout. You saw that
Lout can be represented by an effective temperature Teff , which is an equivalent ideal thermal
source temperature. Ls can likewise be represented by an effective temperature, but because the
surface of a planetary body radiates approximately like an ideal thermal source, the effective
temperature is not very different from the global mean surface temperature Ts. For this reason
the magnitude of the greenhouse effect is more often quantified as Ts − Teff . The greenhouse
effect raises surface temperature above the value it would otherwise have. (The effect gets its
name from the passive heating of greenhouses, though detailed calculations show that only a
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small fraction of the temperature rise in a greenhouse is associated with IR radiation. Most of the
rise is due to the trapping within the greenhouse of warmed air that cannot be convected away.)

It might come as a surprise to you that Ls can exceed Lout – at first sight it seems to imply a
continuous build-up of energy in the atmosphere. However, this is not so. Ls and Lout are only
two of the many energy flows involving the surface–atmosphere system (Figure 9.7). As long
as the total rate of energy gain by the surface equals its total rate of loss then it will be in a
steady state, and the same applies to the atmosphere and to the system as a whole. Any single
rate of flow need not equal any other single rate – energy can flow at a much greater rate within
a system than the rate at which it enters or leaves the system. In the case of Ls and Lout, the
former originates from the surface, but the latter originates not only from the surface but from
throughout the atmosphere, notably in and just above the troposphere. The positive lapse rate in
the troposphere then ensures that Teff is less than Ts.

The greenhouse effect depends on the absorption by atmospheric constituents of the radiation
that is emitted by the atmosphere and by the surface. If a constituent absorbs radiation then it
must also emit radiation. Some of this emission will be absorbed by the surface, thus raising its
temperature above what it would have been had the atmosphere been transparent to the radiation
(and if all else was the same). If the atmosphere is non-absorbing then the surface would emit
all of its radiation direct to space. Furthermore, there would then be no emission from the
atmosphere. Therefore, Ls would equal Lout and the greenhouse effect would be zero. Emission
from planetary surfaces and atmospheres is at mid-IR wavelengths, and so it is the atmospheric
absorptivity at such wavelengths that is important. Molecules consisting of a single atom do not
absorb significantly at such wavelengths, and molecules with two atoms – diatomic molecules –
are weak absorbers unless the atoms are of different elements. Molecules with more than two
atoms are relatively strong absorbers.

If a strong absorber is introduced into an atmosphere then, if all other factors remain the
same, Ts will rise, and the difference Ts − Teff will become greater. There is, however, a limit.
For example, consider the CO2 absorption line in Figure 9.1 centred on 15m. As more CO2

is introduced, the atmosphere will become completely opaque around 15m. Ultimately this
will be the case for all the absorption lines of CO2, and adding more of it will not appreciably
increase the greenhouse effect.

The effects of cloud particles

As well as the gaseous absorption–emission greenhouse effect, there is also a greenhouse effect
from the scattering of mid-IR radiation by cloud particles. Some of the radiation from the
surface and lower troposphere will be scattered back to the surface by this means, resulting in
further warming. Clouds can also cool, by increasing the albedo of a planet. Which effect ‘wins’
depends on the size of the cloud particles/drops, their number density, their distribution with
altitude, and, in atmospheres with more than one condensate, on their composition. Overall, the
effects of clouds on temperature are complex and poorly understood.

Question 9.6

(a) Suppose that the atmosphere of a planet consisted solely of single atoms of argon. Discuss
whether the greenhouse effect would be significant.

(b) Explain why Ts would rise if a dry atmosphere had water vapour added to it.
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9.2.5 Atmospheric Reservoirs, Gains, and Losses

The specific molecules in a planetary atmosphere are transient. They are removed to the surface
by precipitation and also by chemical combination with surface materials. They are lost to
space, and they can undergo chemical reactions within the atmosphere. The average time that
a molecule of a particular constituent spends in a planetary atmosphere is called its residence
time, and it is rather short, typically less that a few tens of days. Therefore, unless the constituent
is replaced, it will quickly disappear from the atmosphere. The almost constant mass of the
various constituents of planetary atmospheres shows that molecules are being replaced today
almost exactly as rapidly as they are being removed.

Figure 9.10 illustrates this balance for a typical constituent. The constituent resides in a set
of interconnected reservoirs, and the chemical form of the constituent need not be the same
in all of these. The reservoirs are connected by the processes through which the constituent
moves from one reservoir to another, and each process transfers the constituent at a partic-
ular rate. As long as the sum of the rates of loss from a reservoir is (very nearly) equal
to the sum of the rates of gain, then the quantity of the constituent in that particular reser-
voir will be (very nearly) in a steady state. Note that Figure 9.10 can be applied with care
to the giant planets, with surface and subsurface reservoirs being regarded as at considerable
depths, at which the atmosphere has become far denser than the atmospheres at the surfaces
of the other bodies in the Solar System. We shall now examine the various processes show in
Figure 9.10.

Physical processes between the atmosphere and surface

You have already met precipitation as a physical process that removes a condensable constituent
from the atmosphere, such as water from the Earth’s atmosphere. Atmospheric gases are also
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Figure 9.10 The reservoirs of some atmospheric constituent, and the various types of process by which
it can be transferred from one reservoir to another.
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removed through other physical processes, notably dissolution in liquids (such as the Earth’s
oceans) and, much more slowly, dissolution in solids. The reverse processes are evaporation
(liquid to gas), sublimation (solid to gas), and degassing (the reverse of dissolution).

A constituent can also pass from surface to atmosphere through volcanism. This is called
outgassing, and it can be accompanied by chemical changes not far below the surface so that
the gases emitted are not the same as those at the source. The opposite process to outgassing is
when an atmospheric constituent that has been physically trapped or chemically combined at the
surface is subsequently buried by geological activity. Later, it might be outgassed again, though
some proportion of outgassed material will never before have been part of the atmosphere –
such gases are called juvenile.

Note that for an atmospheric constituent to be in a steady state, there is no requirement for
these individual gains and losses to balance.
� Why not?
For a steady state, it is the sum of the rates of loss from a reservoir by all the various loss
processes that must equal the sum of the rates of gain by all the various gain processes.

Thermal escape

You saw in Section 9.2.2 that in the exosphere collisions between molecules are sufficiently
rare to allow the escape to space of a large fraction of any molecules moving upwards with
sufficient speed. The sufficient speed is called the escape speed. It is given by

vesc =
√

2 GM

r
(9.17)

where G is the gravitational constant, M is the mass of the planetary body, and r is the distance
from the centre of the body to the base of the exosphere. As you might expect, equation (9.17)
shows that the escape speed increases as the mass of the planetary body increases, and decreases
as the height of the exosphere increases.

The fraction of any constituent with sufficient speed to escape depends on the distribution of
molecular speeds at the base of the exosphere. Here, collisions are just about frequent enough
for the atmosphere to be treated as if it were in thermal equilibrium. In this case, the atmosphere
has a well-defined temperature, and it determines the speed distribution for molecules of a given
mass. The distribution is called the Maxwell distribution after the British physicist James Clerk
Maxwell (1831–1879), who did much theoretical work in this area.

Figure 9.11 shows the Maxwell distribution for CO2 at 400 K and 600 K, and for H2O at 400 K.
� How does the distribution vary with molecular mass and with temperature?
At a given temperature, the greater the mass of the molecule, the lower the speeds. For a
given molecular mass, the higher the temperature, the greater the speeds. Note that a particular
molecule changes its speed at every collision, and so a particular range of speeds in Figure 9.11
does not apply to a particular group of molecules, but to the fraction of the whole population
that at any instant has speeds in that range. The speed at the peak of the distribution is called
the most probable speed, and is given by

vmps =
√

2 kT

m
(9.18)
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Figure 9.11 The Maxwell distribution of speeds of CO2 and H2O, compared with one-sixth of the escape
speed of some planetary bodies.

where k is Boltzmann’s constant, T is the absolute temperature, and m is the mass of the
molecule.

In considering escape, T can be taken to be that at the base of the exosphere. The greater the
value of T , the greater the value of vmps, and the larger the fraction of a constituent that will have
speeds in excess of the escape speed vesc. The prominence of temperature in this escape process
leads to its name, thermal escape. For a given exospheric temperature, the greater the mass of
a molecule, the slower the rate of thermal escape, and this leads to discrimination between one
type of molecule and another, between CO2 and H2O in the example in Figure 9.11. Thermal
escape is thus mass selective. Mass selection extends to isotopes. The graphs in Figure 9.11
correspond to the isotopes 1H� 12C� 16O, but had, for example, some water molecules included
an atom of deuterium 2H, to form 2H1HO instead of 1H2O, then these molecules would have
had a mass 19/18 times that of 1H2O, and a correspondingly slower rate of thermal escape.

Figure 9.11 includes vesc/6 for some planetary bodies. If, throughout the 4600 Ma history
of the Solar System, it has been the case that for some constituent vmps < vesc/6 then the
accumulated fraction of the constituent lost by thermal escape will be small. Figure 9.12 shows
more extensive data. Each planetary body is plotted at a point corresponding to vesc/6 and the
temperature at the base of its exosphere (which is at its surface if it has little or no atmosphere).
This gives a broad indication of which constituents are more likely to have suffered extensive
thermal escape.
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Planetary bodies are at the temperatures at the base of their exospheres.

Other physical processes between the atmosphere and space

Molecules in the exosphere can also be removed by the impact of charged particles coming from
the solar wind or from any substantial magnetosphere of the planetary body. Ionised molecules
can also be removed by entrainment in the solar wind’s magnetic field, particularly if there is
no substantial planetary magnetosphere. Early in Solar System history, when the Sun was going
through its T Tauri phase (Section 2.1.3), the greater UV flux must have generated ions in
exospheres in great abundance, and the stronger wind must have been more effective in ejecting
them. Therefore, the losses could have been considerable.

The opposite processes to losses to space are gains from volatile-rich bodies and the solar wind
(Figure 9.10). These processes (as you will see) are thought to have been of great significance
early in Solar System history, but the fluxes today are so low that they are negligible for
all major atmospheric constituents in all substantial planetary atmospheres. Today, significant
replacement of the major constituents can come only from the surface (possibly en route from
the interior).

Early in Solar System history, during the heavy bombardment, giant impacts must have been
common, and instead of adding to an atmosphere they must have caused huge net losses. If
the impactor had a radius greater than about the isothermal scale height of the atmosphere
(Section 9.2.2) then pretty well the whole atmosphere would have been ejected, largely as a
result of the shock-induced vibrations of the planet. This is called blow-off. Smaller impactors,
less than the scale height of the atmosphere, would have caused more modest losses – partial
ejection largely due to the explosion of hot vapour generated at the impact site. Once this impact
erosion has started, the scale height falls, making the atmosphere subject to erosion by smaller
impactors, and these are more numerous. Considerable losses can consequently occur. Blow-off
and impact erosion are not mass selective.

Chemical processes

Chemical reactions can increase the kinetic energy of the products of the reaction, thus increasing
their speed, particularly for products of lower molecular mass than the reactants. For example,
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a nitrogen molecule can be dissociated by a photon of solar UV radiation to give fast-moving
nitrogen atoms:

N2�+UV photon� → N + N (9.19)

This can lead to escape to space, adding chemical escape to thermal escape.
� Where does the reaction need to take place for escape to be possible?
The reaction needs to take place in the exosphere.

For some constituents, chemical escape can be far more rapid than thermal escape, and
like thermal escape it is mass selective: the greater the mass, the slower the rate of escape.
Hydrogen H or H2 are the least massive molecules, and can therefore escape particularly rapidly
through chemical and thermal means. If there is a large quantity of hydrogen escaping, then
the high-volume flow rate can entrain other molecules and carry them off in a process called
hydrodynamic escape. It is thought to have been important early in Solar System history.
Hydrodynamic escape is mass selective: the greater the mass of the molecule, the less likely it
is to be entrained, and the slower its rate of escape.

The involvement of the UV photon in reaction (9.19) makes this an example of a photochem-
ical reaction. Such reactions are not only important in increasing loss rates. Thermospheres are
in part warmed by the energy acquired through photochemical reactions, again involving solar
UV photons. In the case of the Earth, the stratosphere is also warmed in this way, through the
absorption of solar UV photons by ozone �O3�� O3 is itself a product of photochemical reactions
(more on this later). Indeed, there is a great variety of important photochemical and other types
of chemical reactions within planetary atmospheres that modify their compositions.

Chemical processes also lead to gains and losses at planetary surfaces. For example, if an
oxygen-poor mineral is exposed on the surface, then atmospheric oxygen can combine with it
in a process called oxidation. Gases can also be removed through adsorption onto grains, and
through the formation of clathrates (Section 3.2.3), in which water ice entrains small molecules
in its open, cage-like structure – molecules such as CO2. Chemical processes can also release
gases from the surface, such as in the weathering that occurs in chemical reactions between
surface materials and water.

Question 9.7

State, with justification, which gain and loss rates are affected by each of the following factors:

(a) the mass of a planet (the radius of the exosphere being fixed);
(b) the temperature at the base of the exosphere;
(c) the mass of the molecule of an atmospheric constituent;
(d) the flux density of solar UV radiation.

9.2.6 Atmospheric Circulation

Atmospheric circulation is the combination of a variety of atmospheric motions on a global
scale. The circulation distributes energy and materials throughout a planetary atmosphere, and
is a crucial factor in regional climates. Some types of motions are important on only a single
planetary body, and those are excluded from consideration in this general section.
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Figure 9.13 A single Hadley cell per hemisphere on a slowly rotating terrestrial planet with a small axial
inclination.

Hadley circulation

Consider the case of a planet with an axial inclination considerably less than the 23�4� of the
Earth. The solar radiation per unit area of its surface is then always greatest at the equator
and least at the poles. This is because, as latitude increases, the surface tilts more and more
away from the Sun, and also because a greater thickness of atmosphere has to be traversed. The
surface at the equator thus becomes hotter than at the poles, and consequently the atmosphere
becomes warmer and more buoyant, rises, moves polewards, and radiatively cools sufficiently to
sink to the surface. The cycle is completed by the equatorward motion of the atmosphere at the
surface, where it constitutes an equatorward wind. In the lower atmosphere of each hemisphere
a huge convection cell is thus established, stretching from equator to pole, as in Figure 9.13.
These convection cells transport energy away from the equator, and thus reduce the temperature
change with latitude.

This kind of convection cell is called a Hadley cell after the British scientist George Hadley
(1685–1768) who proposed the existence of such cells in the atmosphere of the Earth. They
must not be confused with the smaller scale convective plumes described in Section 9.2.2, by
which an adiabatic lapse rate can be established locally in a troposphere.

You will see shortly that for the circulation in Figure 9.13 to occur it is necessary for
the planet to rotate no more than slowly. Among the planetary bodies with significant atmo-
spheres, Venus rotates the most slowly, and it also has a small axial inclination. It is therefore
reassuring to find that in its troposphere there is indeed a prominent single Hadley cell per
hemisphere. The other bodies with significant atmospheres rotate much more rapidly, and so
we need to consider the effect of this on Hadley circulation. This brings us to the Coriolis
effect.

The Coriolis effect

Consider a parcel of atmosphere of mass m at the equator of a planet, and suppose that the
rotation of the planet is carrying the parcel west to east at a speed ve, the same as the equatorial
surface speed. These speeds are with respect to an external observer fixed in space. The parcel
starts to move polewards. The motion could be at the top of a Hadley cell, though any other
poleward motion will do. It moves to a latitude l, and gravity keeps it close to the surface,
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Figure 9.14 The Coriolis effect at a planetary surface.

as in Figure 9.14(a). The parcel will increase its speed in the direction of rotation (not in the
northerly direction) in accord with the principle of conservation of angular momentum. This
principle emerges from Newton’s laws of motion, and as applied to the parcel it states that
the angular momentum mvr (equation (2.1)) is constant, where v is its west-to-east speed, and
r is its perpendicular distance from the axis of rotation, which has a value re at the equator
(Figure 9.14(a)). The parcel mass m is constant, and thus as r decreases then, if the atmosphere
is free to slip over the surface, v increases in proportion. At a latitude l the value of r is reduced
to re cos�l�, and therefore the west-to-east speed has increased to ve/ cos�l�.

We can now obtain an expression for the speed of the parcel with respect to the surface at
a latitude l. With respect to the external observer, the surface at l is moving west to east at a
speed ve cos�l�, and the parcel is moving west to east at a speed ve/ cos�l�. Therefore, the speed
of the parcel relative to the surface is given by

vrel =
ve

cos�l�
− ve cos�l� (9.20)

With 0 < l < 90� it follows that 0 < cos�l� < 1, and therefore vrel is greater than zero. The speed
relative to the surface is west to east. The parcel started with zero west-to-east relative speed,
so in moving northwards it has picked up relative speed in the direction of rotation. This would
also be the case for a poleward-moving parcel in the other hemisphere. A notional path of the
parcel across a planetary surface is shown in Figure 9.14(b). This path indicates the change in
wind direction as the atmosphere heads northwards.
� What happens to the parcel when it travels to the equator at the bottom of a Hadley cell,

if it starts there with vrel as given by equation (9.20)?
The parcel will lose the relative speed it has acquired – as the distance from the rotation axis
increases, the west-to-east speed of the surface increases, and the parcel loses speed to keep
its angular momentum constant. In equation (9.20) we need to put l = 0 (the equator), and we
see that then vrel = 0. In reality the motion of the parcel is moderated in various ways, e.g. by
friction between the atmosphere and the surface.
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Figure 9.15 Mid-latitude atmospheric waves.

The west-to-east speeds of the atmosphere in Figure 9.14 are an example of the general case of
a body (here a parcel of atmosphere) viewed from a rotating frame of reference (here the surface
of a planetary body) having a tendency to accelerate in a direction that is perpendicular both to
the motion of the body (here polewards along the planet’s surface) and to the axis of rotation.
It will actually accelerate in this direction if it is free to do so. The size of the acceleration
is proportional to the sine of the angle between the rotation axis and the body’s direction of
motion. This tendency is called the Coriolis effect after the French physicist Gaspard Gustave
de Coriolis (1792–1843).

The Coriolis effect has a profound influence on atmospheric circulation. From equation (9.20)
you can see that it is proportional to the equatorial surface speed ve, and is therefore greater,
the more rapid the rotation. One effect on a rapidly rotating planet, such as the Earth, is that the
Hadley cells in Figure 9.13 are disrupted and do not reach as far as the poles.

Other circulation patterns

Rotation can have a further important effect. Figure 9.15 shows mid-latitude circulation on
a rapidly rotating planet. The rotation has resulted in a wave-like pattern of motion in the
middle troposphere, which at the surface is correlated with the wind circulations labelled L
for ‘cyclones’ and H for ‘anticyclones’ that are familiar from terrestrial weather maps. From
such weather maps you will know that cyclones (low-pressure areas) and anticyclones (high-
pressure areas) come and go, and so the details of the pattern in Figure 9.15 are not fixed.
When atmospheric waves such as those in Figure 9.15 are present at mid latitudes, they are
the dominant mechanism of the poleward transport of energy. Many other sorts of atmospheric
wave exist.

As well as winds associated with Hadley circulation, cyclones, and anticyclones, there are
winds at a more local scale that arise, for example, from local temperature differences, such as
occur between land and sea on the Earth. Winds, however caused, can be deflected by large-scale
topography into stable patterns called stationary eddies.

On the Earth, and some other planets, a rich variety of cloud forms is associated with the
winds. You will see that the motions of clouds can help discern the pattern of the winds.
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Question 9.8

(a) On the Earth there is a Hadley cell extending from the equator to about 30 �N and another
extending from the equator to about 30 �S. Calculate the east-west speed picked up by a
parcel of atmosphere in travelling from the equator to a latitude of 30�, and state the direction
of motion in the east–west direction in each hemisphere.

(b) Speculate on the effect on this Hadley circulation were the Earth to rotate much more slowly.

9.2.7 Climate

We all have some idea of what is meant by climate on the Earth. Climate can be defined
regionally – the climate of the coast of Kenya is unlike the climate of the Loire Valley in
France – and it can be defined globally. Regional or global, the main elements that specify
climate are temperature, precipitation, cloud cover, and wind speed. These are the same as those
that specify weather, the difference being that whereas weather can change on a daily or hourly
basis, with climate we take a longer term view. The climate is the average of each of the various
elements over a sequence of years, usually 30 for the Earth. These averages do not change much
from one 30 year sequence to the next, whereas larger changes are common on the shorter time
scales of weather.

In addition to the 30 year average, we can also specify climate variability. For example, as
well as noting that the 30 year mean temperature for some region is 8 �C, we could add that in
three years out of four the annual mean temperature is between 6 �C and 10 �C. We can also
specify climate and its variability month by month, or season by season.

All planetary bodies have climates in some sense, those without appreciable atmospheres
having comparatively simple ones. Ignoring the latter, climate, global or regional, depends on
a huge number of factors. For example, global climate depends on the energy gains and losses
for the surface and atmosphere as a whole, on energy exchanges within the atmosphere, and
on the exchanges between the atmosphere and the surface. The greenhouse effect depends on
atmospheric composition. Further factors include surface topography, and, at least in the case
of the Earth, the behaviour of the oceans. Among many further significant factors is the rate
of rotation of the planet, which determines the influence of the Coriolis effect on atmospheric
circulation. So complex are climate systems that many aspects of planetary climates are poorly
understood. Climate change is just as poorly understood, though there is ample evidence for
large climate changes on several planets throughout their long histories, including the Earth,
and climates will continue to change. Particular cases are outlined in the next chapter.

9.3 Summary of Chapter 9

A few atmospheres have been studied by means of instruments within them. Any atmosphere
can be studied remotely, and spectral absorption lines produced within an atmosphere have been
used to establish the composition, pressure, and temperature at various altitudes. Refraction of
spacecraft radio waves and of starlight during occultation are additional sources of information.

For the surface–atmosphere system as a whole, solar radiation and heat flow from the interior
are the two major gains of energy, with the latter being significant only for the giant planets
(and Io). Energy loss is through the emission of radiation to space. This loss is often expressed
as an effective temperature.

Atmospheric pressure decreases rapidly as altitude increases. The variation of temperature
with altitude is more complicated, and depends on the energy gains and losses at each altitude,
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as summarised in Figure 9.7. On the basis of the way the temperature changes with altitude, an
atmosphere is divided into a troposphere, mesosphere, and thermosphere, though for the Earth
there are more divisions. Subdivisions are also made on other bases. These subdivisions are
summarised in Figure 9.8.

Clouds can form if the partial pressure of the condensable substance exceeds its saturation
vapour pressure, though cloud formation is delayed without the presence of condensation nuclei.
Ultimately the liquid droplets or ice crystals that form a cloud will precipitate out of it.

The greenhouse effect depends on the absorption by atmospheric constituents of (some of)
the IR radiation that is emitted by the atmosphere and by the surface. If a constituent absorbs
radiation then it must also emit radiation. Some of this emission will be absorbed by the surface,
thus raising its temperature above what it would have been had the atmosphere been transparent
to the radiation (and if all else was the same).

Atmospheric constituents are gained and lost by a variety of physical and chemical processes
operating between a number of reservoirs, as summarised in Figure 9.10.

Atmospheric circulation is the combination of a variety of atmospheric motions. Motions
that occur in several planetary atmospheres include Hadley circulation, Coriolis winds, and
atmospheric waves with their associated cyclones and anticyclones.

Global or regional climates on a planetary body are specified in the main by the medium-term
averages of temperature, precipitation, cloud cover, and wind speed, along with their variability.
Climate and climate change depend on a huge number of factors, and are not well understood.

Table 9.1 reveals the rich diversity of the substantial planetary atmospheres.



10 Atmospheres of
Rocky and Icy–Rocky
Bodies

In this chapter, attention is focused on the substantial planetary atmospheres. This means that
the majority of planetary satellites are excluded from detailed consideration, and also the planet
Mercury. From the rocky bodies only the Earth, Venus, and Mars are included, and from the
icy–rocky bodies only Titan, Triton, and Pluto. The atmospheres of the four giant planets are
the subject of Chapter 11. Tables 9.1 and 9.2 list the main properties of the atmospheres to be
considered in detail.

10.1 The Atmosphere of the Earth

The Earth’s atmosphere is, of course, the most familiar of all. From Table 9.1 you can see that
the column mass today is modest, 10 300 kg m−2, but that it is the only substantial atmosphere
in which O2 is more than a minor constituent, with a number fraction of 0.21 (most of the rest
being N2). This is not the only way in which our atmosphere is atypical.

10.1.1 Vertical Structure; Heating and Cooling

Figure 10.1 shows the present-day globally averaged vertical structure of the Earth’s atmosphere
up to the top of the homosphere (Section 9.2.2). Only the lowest part of the thermosphere is
included – it extends beyond the base of the exosphere, which is at about 500 km, the temper-
ature rising as altitude increases. The thermosphere is heated mainly through the absorption
of solar photons with wavelengths shorter than 91 nm – the extreme ultraviolet (EUV). The
main absorbers are oxygen atoms that are themselves largely created with the aid of solar UV
radiation with wavelengths in the range 100–200 nm. This radiation photodissociates oxygen
molecules

O2�+UV photon� → O + O (10.1)

At times of high solar activity the EUV flux is greater, and consequently the thermospheric
temperatures are higher, particularly above 120 km, and can reach 2000 K or more at 500 km.
The heating at each level in the thermosphere is balanced by cooling, mainly through the
downward conduction of heat, but also by radiation from O and NO.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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Figure 10.1 The globally averaged vertical structure of the Earth’s atmosphere, up to the top of the
homosphere. The angularity of the profile is an averaging artefact.

If you compare Figure 10.1 with the generic Figure 9.8 you will see that between the
thermosphere and the troposphere there is a temperature bulge, a feature unique to the Earth.
The upper part of the bulge is the mesosphere, and though the temperature decreases with
altitude this is insufficient to promote much convection, heat losses and gains at any level being
mainly through the absorption and emission of IR radiation by CO2. The lower part of the
bulge, in which the temperature increases with altitude, is called the stratosphere. There is
negligible convection here. The temperature bulge results largely from the absorption by ozone
�O3� of solar UV radiation in the wavelength range 200–300 nm. Heating is balanced by cooling,
mainly through IR radiation emitted by CO2 and H2O. The ozone is produced from molecular
oxygen O2 by a sequence of two chemical reactions that starts with the photodissociation of O2

(reaction (10.1)) and finishes with

O + O2 + M → O3 + M (10.2)

where M is any atom or molecule involved simultaneously in this collision of O and O2. O3

production is significant in the altitude range 10–80 km.
As well as creating O3, solar UV photons also destroy it. It is also destroyed by reactions

with a variety of atoms and molecules. The quantity of O3 at any altitude depends on the local
rates of production and destruction. At high altitudes the atmosphere is thin, and three-body
collisions as in reaction (10.2) are rare, so there is little O3. At low altitudes there is little O3

because much of the UV radiation that creates it has been absorbed at higher altitudes. The
optimum is at about 25 km, so this is where the quantity of O3 is greatest.
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O3 is important to life on Earth because it screens the surface from most of the solar UV
radiation that is damaging to life. It is therefore a matter of concern that substances are being
released by human activity that are reducing the quantity of O3. The reduction is particularly
severe over the poles and mid latitudes, where so-called holes in the ozone layer have appeared.
The main substances that destroy O3 are nitrogen oxides released by high-flying aircraft, and
chlorine from the dissociation of chlorofluorocarbons (CFCs). In contrast, O3 in the troposphere
is increasing, owing to human activities, and direct contact with O3 damages life. It would be
fortunate indeed if the benefit to life of the increased UV screening offset the deleterious effects
of direct contact.

In and above the stratosphere the atmosphere is sufficiently thin for significant cooling to
take place by IR radiation to space. This ceases to be significant at an altitude marked by the
tropopause, which is the rather sharp upper boundary of the troposphere, at an average altitude
of about 11 km. The troposphere contains about 75% of the mass of the Earth’s atmosphere. It
is convective throughout most of its volume most of the time.
� What does this imply about the lapse rate in the troposphere?
It thus normally has an adiabatic lapse rate, for the reasons discussed in Section 9.2.2, where
you also saw that the value depended on the water vapour content. In Figure 10.1 a global
average of about 6�5 K km−1 is shown. The heating at any level in the troposphere is mainly
through the absorption of IR radiation from the ground and from other atmospheric levels, plus
the latent heat of condensation of water. This water is made available through the convection in
the troposphere, the convection itself also contributing to the heating. In the lower troposphere
absorption of solar IR radiation by water vapour makes a further heating contribution. The
troposphere cools mainly through the emission of IR radiation.

Most clouds are in the troposphere. These consist of liquid water droplets, or of flakes
or particles of water ice. Some icy clouds occur in the lower stratosphere. At any one time
approximately 50% of the Earth’s surface is covered in clouds, and this raises the Earth’s albedo
considerably (Table 9.2). The contribution made by a particular cloud depends on its altitude,
thickness, particle/drop size, and composition, in poorly understood ways.

The global mean surface temperature Ts of the Earth is 288 K, whereas the effective temper-
ature Teff is 255 K.
� What is the reason for the 33 K difference?
This is caused by the greenhouse effect (Section 9.2.4). About 21 K is due to water vapour, a
minor constituent, and most of the rest is due to CO2, which is an even more minor constituent
with a number fraction of only 0.000 37. Figure 10.2 shows the contributions of these two
gases to the mid-IR absorptivity of the Earth’s atmosphere. There are small contributions by
other gases, such as methane. High-altitude cloud particles also contribute, and this includes
condensation trails from aircraft. We shall return to the greenhouse effect in the next section.

Question 10.1

Explain why convection and condensation play no role in heat transfer in the Earth’s stratosphere.

10.1.2 Atmospheric Reservoirs, Gains, and Losses

Figure 9.10 in the previous chapter summarises the various gains and losses that can affect the
quantity of an atmospheric constituent. For the Earth today a major source is outgassing through
volcanic activity. Most of the gases are recycled atmospheric constituents that have been buried
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Figure 10.2 The absorptivity of the Earth’s atmosphere versus wavelength.

by geological activity, though a small proportion of volcanic emissions might be juvenile (never
outgassed before). A major loss of atmospheric constituents is through the formation of minerals
that then constitute rocks. Thermal escape and chemical escape occur, but at very low rates.
� Why are the thermal escape rates of the major atmospheric constituents oxygen �O2� and

nitrogen �N2� so low?
Figure 9.12 shows that for both of these gases, at the present temperature at the base of the
Earth’s exosphere, vmps is much less than vesc/6, and so these gases must be escaping at very
low rates.

The generic nature of Figure 9.10 obscures two components of the Earth’s surface that
have played a major role in determining the quantities of various constituents of the Earth’s
atmosphere. These components seem to be unique in the Solar System today. One of them is the
oceans, and the other is the biosphere. The biosphere is the assemblage of all living things and
their remains. It is a thin veneer covering most of the land (down to a depth of a few kilometres),
and it also occupies the oceans, particularly the surface layers. One of several important effects
of the oceans and the biosphere is the dominant role they play in determining the atmospheric
quantities of O2 and CO2, as we can see if we examine the carbon cycle.

The carbon cycle

The main features of the present-day carbon cycle are shown in Figure 10.3. The most important
reservoirs of carbon are shown as a set of rectangles. Though the predominant repository of
carbon in the Earth’s atmosphere is CO2 (with a number fraction of 0.000 37), other chemical
forms predominate in other reservoirs, and therefore it is the mass of carbon in each reservoir
that is shown. The arrows represent transfers between reservoirs, only the main ones being
included. Each arrow is labelled with the rate of transfer of carbon between the two reservoirs
connected by the arrow. The greatest rates involve the biosphere.

Consider first the arrow labelled ‘Photosynth’ connecting the atmosphere to the land surface.
This is photosynthesis, the process of building body tissue from CO2 and water, and it is
performed by green plants and cyanobacteria with the aid of photons of solar radiation at visible
and near-UV wavelengths. A long sequence of chemical and photochemical reactions can be
represented as

nCO2 + nH2O�+photons� → �CH2O�n + nO2 (10.3)
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where n can have a variety of values. �CH2O�n are carbohydrates, and are the basis of further
tissue building. The CO2 is taken from the atmosphere, the water is taken from the soil, and
the O2 is released into the atmosphere. Most other organisms build body tissue by consuming
other organisms. The carbon in tissue derived directly or indirectly from photosynthesis is called
organic carbon.

Respiration and decomposition (‘Rsp + decomp’ in Figure 10.3) have the reverse effect of
that of photosynthesis. Respiration is performed by most organisms, and in higher animals it
is called breathing. In respiration, oxygen is taken in, and converts some tissue to CO2 and
water. The chemical energy released by this process enables the organism to live and breed.
After death, the dead tissue might be consumed, but if not it can decompose, and this too
takes up atmospheric O2 and releases water and CO2. Not all death results in the reversal of
photosynthesis. Most dead tissue on land is in the form of leaf fall. A small proportion of this
becomes buried, and over many millions of years it is transformed into the organic carbon
components of rocks. Particularly rich examples are the fossil fuel deposits, of coal, oil, and
natural gas. This transformation is included in ‘Formation of rocks’ in Figure 10.3

Photosynthesis also occurs in the oceans – inside the ocean reservoir in Figure 10.3 – where it
is performed by cyanobacteria, particularly in the upper 100 metres or so, where solar radiation
can penetrate. As on land, the carbon involved in photosynthesis is in the form CO2, in this
case dissolved in the oceans. However, about 99% of the carbon in the oceans is in the form of
the bicarbonate ion HCO−

3 , and the carbonate ion CO2−
3 , both of which result from reactions in

solution between water and CO2. Ocean organisms make use of this to form shells of calcium
carbonate, CaCO3. The carbon in these shells is called inorganic carbon to distinguish it from
the organic carbon that is derived from photosynthesis.
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Respiration and decomposition also occur in the oceans, where, as on land, a small proportion
of the organic carbon escapes, in this case by settling to the ocean floors as a component
of the sediments that can later form rocks. In addition, inorganic carbon also settles into the
sediments, and this has led to the formation of huge deposits of sedimentary carbonate rocks,
such as limestone and chalk, and their metamorphic products such as marble. Consequently,
rocks are by far the largest reservoir of carbon on Earth (Figure 10.3). Carbonate rocks are
exposed by geological processes and are weathered, particularly by water. The resulting dissolved
(bi)carbonate ions return to the oceans. Volcanic activity returns CO2 to the atmosphere.

The atmospheric quantity of CO2 is determined by the accumulated effect of all the various
rates of transfer in Figure 10.3. The quantity will be in a steady state if the sum of the rates of
transfer into the atmosphere equals the sum of the rates out.
� Are these two sums equal in Figure 10.3?
The rate of gain is slightly greater than the rate of loss. Consequently the atmospheric quantity
must be rising, and Figure 10.4 shows the observational evidence that it is. In fact, it was this
sort of evidence that showed that there must be an inequality. The slight imbalance in recent
decades has probably been the result of human activities, mainly the burning of fossil fuels
and forest clearance (‘Human acts’ in Figure 10.3). The effect of these activities is to transfer
some of the carbon in the rocks and on the land into the atmosphere, as CO2. The rate of rise
in Figure 10.4 is only about half of the rate of release by human activities. This is because
the rate of dissolution in the oceans and the rate of photosynthesis have increased in partial
compensation.

Global warming today

The main concern about the increase in atmospheric CO2 is that it is an important greenhouse
gas (Figure 10.2) and therefore the Earth’s surface temperature will rise if nothing else changes
in compensation. Global data since about 1870 show that the Earth’s global mean surface
temperature (GMST), though exhibiting short-term fluctuations, has risen by about 0�7 ± 0�2 �C,
the rate of rise being greatest in the last few decades. This is not entirely due to CO2. Good data
from orbiting spacecraft since 1978 have shown that the flux density of solar radiation Fsolar has
risen, and though the rise is slight, it can account for 20–30% of the rise in the GMST from 1980
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Figure 10.4 The recent increase in the atmospheric quantity of carbon dioxide.
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to 2002. For the remaining rise, at least some of it is thought to be the result of the increase in
atmospheric CO2, a conclusion supported by the similarity of the curve in Figure 10.4 to the
broad trend in the GMST over the same period. A rise in the atmospheric abundance of water
vapour and decreases in cloud cover would also contribute to a rise in the GMST, but such
changes, and their effects, are not well known.

As well as substances that promote global warming, global cooling can result from increases
in albedo, resulting from increased cloud cover, increased dust and aerosol content of the
atmosphere, and increased snow and ice cover. Clearly, the factors that promote warming are
currently winning, and indeed one consequence seems to be a decrease in snow and ice cover.

The rate of rise of the GMST is slowed by the thermal mass of the oceans, which can
absorb large quantities of heat with little temperature rise. But as oceanic temperatures rise, their
moderating effect on the rise in the GMST is diminished. Thus, if the excess of heating over
cooling were held constant from now, the GMST would continue to rise for about 100 years. In
fact, human activities will increase the greenhouse effect, so the rise in the GMST might well
be greater. So, what does the future hold?

Climate modelling is fraught with difficulties – lack of data, lack of understanding of physical,
chemical, and biological processes, lack of computing power, and uncertainty about future human
activities. Different modellers come up with different assumptions and different compromises.
As a consequence there is a range of predictions of the rise in the GMST over the next 100
years, from 1.4 K to 5.8 K or more. Even the lower limit, which is fairly firm, will give rise to
significant climate change, with loss of surface snow and ice, and more extreme weather. The
changes will be more severe in some regions than others. Ocean levels are predicted to rise
somewhere in the range 0.1–0.8 m, mainly through the thermal expansion of water, which will
result in the inundation of many heavily populated coastal regions.

The rise in the GMST could be greatly increased if methane became more abundant. It is a
greenhouse gas that fills some of the absorption gaps in Figure 10.2, and, molecule for molecule,
it is much more absorbing of IR radiation than CO2. What are its sources and sinks?

Methane

Currently methane �CH4� accounts for only 1.7 ppm of the molecules in the atmosphere. It
is rapidly oxidised by oxygen, so to sustain a constant amount requires some fairly copious
sources.
� If atmospheric CH4 is destroyed at a certain high rate, at what rate must it be released into

the atmosphere to keep the amount constant?
To sustain a constant amount, it must be released at the same high rate. Less than 1% comes
from non-biogenic sources, such as volcanoes. The rest comes from the biosphere. About 21%
comes from wetlands, 20% from the guts of ruminants, 15% from bacteria in termites and other
creatures, and about 12% from rice paddies. Nearly all of the remainder comes from natural gas
and the burning of biomass, and it is the increase in these rates through human activities that
could, in principle, increase the greenhouse effect.

But a much larger increase of CH4 is possible. Large quantities are locked in methane
clathrates in permafrost ice crystals, even more is trapped beneath continental shelves, and it
is observed to be seeping from a few ocean floor sites. Rises in temperature could release this
CH4, rather suddenly, producing a huge, if temporary, increase in atmospheric CH4. The rise in
the GMST could far exceed the few degrees currently predicted. This would present humanity
with huge challenges.
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Oxygen

The biosphere also plays the major role in determining the amounts of the two main constituents
of the Earth’s atmosphere, O2 and N2. Photosynthesis is the main source of O2 in the Earth’s
atmosphere. A much smaller contribution comes from the photodissociation of water vapour and
from the conversion of sulphates to sulphides (with the aid of organic matter) and their subsequent
burial. Therefore, if respiration and decay completely reversed the effect of photosynthesis, then
the number of molecules of O2 in the atmosphere and oceans would be only a little greater
than the number of carbon atoms in the biosphere. In fact there is far more O2 than this in
the atmosphere, and an even greater quantity is dissolved in the oceans (mainly combined with
sulphur, in the sulphate ion SO2−

4 �. This is a consequence of the formation of the organic carbon
component of rocks. From carbon stored in this way a huge amount of oxygen has been released
from CO2.

And yet most of the oxygen corresponding to the organic carbon in the rocks is not in the
atmosphere and oceans. Over the ages most of the O2 liberated from CO2 has combined with
oxygen-poor volcanic gases, and with freshly exposed oxygen-poor minerals in crustal rocks.
This includes crustal rocks that have become (more) oxygen poor as a result of oxygen ions
supplied by the rocks to the ocean in the formation of carbonates. As a result, the total mass of
oxygen released through the formation of the organic carbon component of rocks is split today
between the atmosphere, oceans, and surface rocks in the approximate ratios 1:2:40.

Atmospheric O2, and oxygen dissolved in the oceans, are currently removed mainly by the
oxidation of organic matter and sulphides freshly exposed by geological processes, and by
volcanic activity that generates under-oxidised magma, and gases such as H2� SO2� H2S, and CO.
� Why not H2O and CO2?
These are already fully oxidized.

Nitrogen

The biosphere and the oceans also influence the N2 content of the atmosphere. N2 is removed
mainly by lightning and by combustion. Nitrogen oxides are thus created that are washed out
of the atmosphere, to form the nitrate ion NO−

3 in the oceans, and in the form of nitrates (NO3

group(s)) and nitrites (NO2 group(s)) in minerals. Various bacteria also remove nitrogen, at an
overall rate roughly double that of lightning and combustion. N2 is returned very slowly to the
atmosphere by the weathering of crustal rocks, but much faster by certain bacteria. The outcome
is that nitrogen is now roughly equally split between the atmosphere, where it is present as N2,
and sedimentary rocks (and their metamorphic products), where it is stored mainly as nitrates
and nitrites.

There is only a small amount of nitrogen in the biosphere. But without the action of the
biosphere and the oceans, the atmospheric mass of N2 would be nearly double its present value.
The quantity stored in nitrates and nitrites would be correspondingly small. For example, without
the biosphere the O2 content of the atmosphere would be much less, and thus the rate of
formation of nitrogen oxides by lightning would be greatly reduced. Without the biosphere but
with the oceans nearly all the nitrogen would be in the oceans, in the form of the nitrate ion NO−

3 .

Question 10.2

Suppose that the Earth’s biosphere is entirely destroyed, and that sufficient time passes for the
Earth’s atmosphere to reach a new steady-state composition.
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(a) Explain what this new composition might be in terms of the major overall constituents.
(b) Why is it not possible for you to estimate the change in the Earth’s GMST?
(c) Why would the solar UV radiation levels at the Earth’s surface probably be greater?

10.1.3 Atmospheric Circulation

The atmospheric circulation in the Earth’s troposphere, averaged over time, is shown in
Figure 10.5. There are three cells per hemisphere. The ones nearest the equator are Hadley
cells (Section 9.2.6). They extend to about latitudes 30� north and south, and thus cover about
half of the Earth’s surface. They are stabilised in latitude against seasonal changes by the slow
thermal response of the oceans. Disruption by wave-like disturbances at mid latitudes prevents
them reaching higher latitudes. The polar cells are less prominent and less permanent. The
mid-latitude cells are also impermanent, and are artefacts of averaging around the Earth various
complex patterns, including waves. They are not Hadley cells – for example, the circulation
is in the opposite direction to that conforming to the decrease of temperature with latitude.
At mid latitudes there is the system of cyclones and anticyclones shown in Figure 9.15. The
Coriolis effect modifies the circulation within each cell by deflecting the north–south flow in
the east–west direction, to give a diagonal flow. The resulting winds at the surface are shown
schematically in Figure 10.5. In the tropics the winds are called the trade winds, and were
utilised by sailing ships.

Wind directions are modified by friction between the atmosphere and the surface, and by
other disturbances such as mountain ranges and continents. They are considerably modified by
the oceans. The oceans also have circulation patterns, strongly influenced by the configuration
of the ocean basins. Oceans and the atmosphere interact, and so the circulation of the one
influences the other. This is a unique feature of the Earth. As mentioned earlier, it makes climate
modelling particularly difficult.

NE trade
winds

SE trade
winds

Equator

Figure 10.5 Circulation in the Earth’s troposphere. The vertical scale is greatly exaggerated.
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10.1.4 Climate Change

In this section we shall examine climate change extending back from today to about 3000 Ma,
leaving even earlier times to Section 10.6.2. At 3000 Ma we are in the middle of an eon called
the Archaean, defined as starting at the end of the heavy bombardment, 3900 Ma ago, and ending
2500 Ma ago, when atmospheric O2 started to rise. The time before the Archaean is called the
Hadean.

Ice ages – the record

Perhaps the most dramatic aspect of climate change in the past is the occurrence of ice ages.
An ice age is characterised by a cooling of mid-latitude and polar regions to the point where
polar ice caps, and any deposits of ice elsewhere, spread to give glacial conditions down to mid
latitudes. Within an ice age there can be short-lived warmings to give interglacial conditions in
which the ice sheets retreat.

Figure 10.6 shows the Earth’s over the past 3000 Ma, inferred from geological and biospheric
evidence. There was an ice age around 2300 Ma ago (the earliest dip in Figure 10.6) and
another at 750–600 Ma. There have been others since. The one around 2300 Ma was probably
the most severe the Earth has ever experienced – the dip in temperature shown is probably an
underestimate. At this time all oceans seem to have been covered in thick ice, leading to the
appellation ‘snowball Earth’. The ice age at 750–600 Ma might have been less severe, with large
areas of ocean covered in thin ice, or no ice at all, as indicated by marine fossils from this time
that photosynthesised. If so ‘slushball Earth’ is an appropriate name!

We are presently in an ice age that started about 2.4 Ma ago, though in an interglacial period
that has so far lasted about 10 000 years. The present extent of the permanent ice is shown in
Figure 10.7(a), and the extent at the height of the last glacial period, 18 000 years ago, is shown
in Figure 10.7(b).
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Figure 10.6 The Earth’s GMST. The time axis has changes of scale at the vertical lines. Between
adjacent lines the scale is linear. The age ranges marked off, from right to left, denote (approximately):
the Quaternary period, the Tertiary period, the Mesozoic era, the Palaeozoic era (see Further Reading).
(Adapted from L A Frakes, Climates Throughout Geological Time, Elsevier, 1979)
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Figure 10.7 (a) The present extent in the northern hemisphere of permanent ice on land. (b) The maximum
extent at the height of the last glacial period in the current ice age, about 18 000 years ago. (Adapted from
B S John, The Ice Age, Collins, 1977)

The transition from glacial to interglacial conditions can be rapid, occupying as little as
a century, or so. It is thus possible that the current interglacial period could be over in 100
years time, with permanent ice spreading again to mid latitudes. However, any incipient glacial
conditions could be delayed by human activities.
� How could human activities delay the onset of a glacial period?
A delay could result from the burning of fossil fuels and forest clearance. These activities are
contributing to an increase in atmospheric CO2 (Figure 10.4) and consequently to an increase
in the greenhouse effect.

The causes of ice ages

The underlying causes of ice ages and of interglacials within ice ages have been much disputed,
and the matter is not yet clear. There are several factors that have certainly had some influence
on climate. The primary source of energy for the Earth’s climate system is the Sun, and it is
known that the luminosity of the Sun varies by up to about 0.5% on a time scale of centuries.
On a longer time scale, stretching back to the origin of the Solar System 4600 Ma ago, there
has been a gradual increase in luminosity from about 70% of its present value.

A further factor is changes in the Earth’s orbital eccentricity and in the precession of its
perihelion (Section 1.4.6), largely due to the gravitational field of Venus, which is nearby, and
of Jupiter, which is massive. Also, there is precession of the rotation axis (Section 1.5.1) and
changes in the axial inclination, largely due to the gravitational field of the Sun and Moon acting
on the slightly non-spherical mass distribution of the Earth. These changes alter the seasonal
and latitudinal distribution of solar radiation. Another factor that influences climate is changes
in the latitude distribution of the continents, and in the shape of the ocean basins.
� What is the cause of these changes?
The cause is plate tectonics (Section 8.1.2). The time scale is 1–103 Ma. Yet another factor is
atmospheric composition. This has changed on time scales ranging from a year (a major volcanic
eruption) to billions of years. The operation of one or more of these factors might not in itself
be sufficient to cause the recorded climate changes. They can, however, act as triggers.
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Let us turn from generalities to a few specific examples, namely the ice age around 2300
years ago, the one from 750 to 600 Ma, and the current ice age.

A currently popular view is that the ice age that occurred around 2300 Ma was triggered by
the increase at that time of O2 in the atmosphere. (The history of atmospheric O2 is presented in
Section 10.6.2.) At that time the luminosity of the Sun was only 85% of its present value, and it
is proposed that the Earth was being protected from a deep freeze by the powerful greenhouse
gas, CH4. With the increased production of O2 the CH4 was destroyed by oxidation, with a
consequent fall in the GMST, perhaps by as much as 30 K. One possible cause of the increase
in O2 was the flourishing of oxygenic cyanobacteria, perhaps due to an increase in organic
nutrients in the oceans, though the reasons for any such increase are unclear. It is possible that
the prime cause of the rise in O2 at 2300 Ma was the change in the nature of plate tectonics at
about 2500 Ma (Section 8.1).

So, with such a dramatic fall in the GMST, how did the Earth escape from its snowball state?
The carbonate–silicate cycle was surely responsible. With the Earth covered in ice, the rate of
loss of CO2 from the atmosphere through the weathering of silicate rocks, with the aid of liquid
water, would have declined sharply. Volcanic emission of CO2 would have carried on regardless,
and so the amount of atmospheric CO2 would have increased, increasing the greenhouse effect.

The 750–600 Ma ice age might also have had biospheric changes as an essential contribution.
It has been suggested that a population spurt of marine plants removed so much CO2 from the
atmosphere that the greenhouse was diminished.

The current ice age came at the end of a gradual cooling over the past few tens of million
years (Figure 10.6). This coincides with a reduction in atmospheric CO2, but the reason for this
decline remains obscure. One suggestion arises from the growth of the huge Tibetan Plateau
during this period, caused by the collision of the Indian craton with the Asian Plate. This growth
could have increased the rate of removal of CO2 through weathering. Also, plate motion was
placing more continental area at high latitudes, which would accumulate ice more readily than
the oceans, and thus increase the Earth’s albedo.

One feature that might be unique to the current ice age is the relatively short-term oscillations
of the GMST, apparent in Figure 10.6, that give rise to interglacial periods. It is thought that
these oscillations are largely due to the orbital and rotational changes outlined above. These are
quasi-periodic, and much work has been done to try to match these periods to the temperature
record. One example will suffice. The interval between interglacial periods over the past 1 Ma
is of order 0.1 Ma. One suggestion is that this is due to the variation in the inclination of the
Earth’s rotation axis. This varies from 22�5� to 24�0� (the current value is 23�43�, decreasing).
Glacial periods end near times when it is 24�, at which times the poles are warmer. However,
the period of this variation is 41 000 years, about three times too short. A model shows that
the missed deglaciations are because it takes two–three cycles for ice sheets to build to the size
required for them to become sensitive to inclination variations. That either two or three cycles
are required explains the variability in interglacial interval. The precession of the equinoxes
might also modulate the timing.

Other climate changes

As well as ice ages, there have been other dramatic changes in global climate, though with
considerably shorter durations. The most famous of these is around the time of the extinction of
the dinosaurs, 65 Ma ago. Indeed, about 70% of marine species and a large proportion of land
species became extinct. There was a major asteroid or comet impact at that time, which is partly
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to blame, mainly by injecting dust into the upper atmosphere that would have enhanced the
global cooling, which (cause unknown) was in any case occurring. This episode of cooling was
too brief to be shown in Figure 10.6. Other mass extinctions are also thought to have resulted
from relatively brief cool periods, with a variety of possible (non-impact) causes.

Throughout Earth history there have been relatively small climate changes, with relatively
short durations. Recorded history includes the Little Ice Age that lasted from roughly 1550 to
1850, when average temperatures in Europe fell by somewhat less than 1 �C. A contributory
factor might be indicated by the Maunder minimum – the virtual absence of sunspots from
1645 to 1715. There is evidence that low solar activity, of which a symptom is few sunspots, is
associated with reduced solar luminosity. It has been estimated that Fsolar was 2–4 W m−2 lower
during this period.

Question 10.3

Present a qualitative argument to show that the solar flux density at the Earth’s surface at the
poles, averaged over a year, is less when the Earth’s axial inclination is zero than when it has
its present value. (Assume no change in cloud cover.)

10.2 The Atmosphere of Mars

From Table 9.1 you can see that the atmosphere of Mars is much less substantial than that of
the Earth.
� On a square metre of Martian surface, by what factor is the mass of the Martian atmosphere

less than that of the Earth?
This factor is the ratio of the column masses, �1�03 × 104�/�0�015 × 104� = 69. As well as a
much smaller column mass, you can also see that the composition is very different. Whereas the
Earth’s atmosphere is dominated by N2 and O2, the Martian atmosphere is dominated by CO2.

10.2.1 Vertical structure; heating and cooling

Figure 10.8 shows the globally averaged vertical structure of the Martian atmosphere when its
dust content is low. In the kilometre or so near the ground there are huge diurnal variations,
with surface temperatures at night plunging typically to roughly 100 K below that shown in
Figure 10.8. A major difference from the Earth (Figure 10.1) is that there is no mesospheric
bulge of temperature. This is a direct consequence of the near absence of O3, itself a consequence
of the very small quantity of O2. The lapse rate in most of the troposphere is close to the dry
adiabatic value.
� What does the ‘dry’ mean?
This is the lapse rate when there is no condensation. In fact, water vapour does condense,
and thin clouds of water ice can form. But the number fraction of water vapour is only about
0.0002, and so the latent heat release is slight. A more serious disturbance of the adiabatic
lapse rate would be the condensation of CO2, but its low condensation temperature restricts its
condensation to the coldest regions of the atmosphere.

Some water-ice clouds are just visible in Figure 7.11 edge on in the upper left. The water-ice
clouds are rather like cirrus, and not the billowy sort. They are seen from the Earth, from
Martian orbit, and from the surface, e.g. from Spirit and Opportunity. They form from air lifted
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Figure 10.8 The globally averaged vertical structure of the Martian atmosphere when its dust content is
low. The two curves in the thermosphere correspond to extremes of low and high solar activity.

by Hadley circulation, mainly at low latitudes when Mars is near aphelion and thus colder. They
also form in the winter polar region, where the atmosphere is so cold that clouds of CO2 ice
crystals also form. Elsewhere, at ground level, water-ice fogs have been observed, and water
frost has condensed on landers and on the ground in their vicinity.

The atmosphere is generally transparent to solar radiation, but there is so much fine dust at
the Martian surface that surface winds (up to the order of 10 m s−1) often raise enough of it
into the lower atmosphere to make it the major absorber there. This makes the lapse rate in
the lower troposphere smaller. There is then little convection and it is more appropriate to refer
to the ‘lower atmosphere’ rather than to the ‘lower troposphere’. The dust consists of particles
typically 1–3 �m across, composed of basalt and clay minerals. There is also about 1% of an
iron oxide that gives the dust its reddish tint, similar to that often seen in the sky from the
surface of Mars (Plate 9). Carbonates might also have been detected in atmospheric dust.

The exploration rovers have seen spectacular evidence of wind-raised dust, in the form of
‘dust devils’, earlier seen by Pathfinder. These are caused by thermal whirlwinds, which raise
dust columns, some of which are more than 100 m across. They rotate with surface speeds of
the order of a metre per second, and migrate across the landscape at a few metres per second.

On a much larger scale, seen from Martian orbit or from Earth, there are the dust storms
noted in Section 7.3.1. They typically appear in the southern summer, when Mars is around
perihelion. They vary from less than about 100 km across, lasting a few days, to global storms,
lasting many weeks. Only 10 global or near global storms have occurred in the past 130 years.
Many of the largest storms originate in the Hellas Basin, probably because of cold air moving
northwards from the warming south polar region. This air sinks into this huge deep basin, thus
creating winds.
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The Martian GMST is considerably lower than that of the Earth, 218 K instead of 288 K.
Though Mars has a lower planetary albedo than the Earth, it is at a greater distance from the
Sun, and has a greenhouse effect of only about 5 K, compared with about 33 K for the Earth.
The smaller greenhouse effect is largely a consequence of the much lower water vapour content
on Mars – the column mass of CO2 is actually greater than it is in the Earth’s atmosphere.

10.2.2 Atmospheric Reservoirs, Gains, and Losses

The dryness of the Martian atmosphere is the result of the low temperatures – the atmosphere
is in fact close to saturation. It is thus to be expected that atmospheric water vapour is in
equilibrium with surface deposits. As well as frosts, there is at least one substantial deposit of
water – the permanent cap at the North Pole. There is ample evidence for other surface deposits
too. This evidence includes the water-related surface features described in Section 7.3.6, and
the observations at the surface outlined in Section 7.3.7. The Martian meteorites contain rather
modest proportions of water, though it is not possible to infer from this anything very useful
about the water content of the regions from where they came. There is a wide range of estimates
of the present quantity of water at and near the surface of Mars. These are usually given in
terms of the uniform depth to which the water would cover the entire planet if the water were
all liquid. For the Earth the total in the (near-)surface and atmospheric reservoirs corresponds
to a depth of 2700 m, whereas for Mars the estimates range from several tens of metres to a
few kilometres. Even the smallest estimates are far larger than the equivalent of around 10−5 m
presently in the Martian atmosphere.

The major constituent of the Martian atmosphere, CO2, also condenses onto the surface,
notably at the coldest parts. The winter pole can be as cold as 130 K, which is well below the
condensation temperatures of CO2 at the surface of around 150 K. You saw in Section 7.3.5 that
the seasonal caps at both poles on Mars consist largely of CO2 ice, and that this is also the case
for the permanent cap at the South Pole (perhaps underlain by water ice). Frosts of CO2 also
occur. This is unlike the major constituents of the Earth’s atmosphere, where it never gets cold
enough for O2 and N2 to condense. Over the seasonal cycle about a third of the CO2 content of
the atmosphere is exchanged with the surface, causing a noticeable oscillation in atmospheric
pressure.

Additionally, CO2 can be locked up in water ice as a clathrate, and adsorbed onto clay
minerals. It can also be present in carbonates, which have been detected in small amounts in the
Martian surface dust by spacecraft and landers, probably also in the airborne dust, and in Martian
meteorites. Is there a lot more to be found? The evidence that Mars was warmer and wetter in
the distant past (Section 7.3.6) includes possible evidence for bodies of water of various size at
the surface, in which case extensive carbonate deposits are likely to have formed. However, as
pointed out in Section 7.3.6, even if there were such bodies, there could have been chemical
inhibition to the deposition of carbonates. All in all, it is not surprising that estimates of the
present quantity of CO2 in some form in Martian (near-)surface reservoirs range from the order
of 102 times the amount in the atmosphere to far greater quantities.

Evidence that there are significant reservoirs of some sort is provided by carbon isotopes.
Atmospheric CO2 is photodissociated by solar UV radiation. This results in some loss of carbon
atoms to space. A greater proportion of the lighter, common isotope 12C is lost than 13C.
Over 4600 Ma, this would lead to a substantial enrichment of 13C in the atmosphere, compared
with, for example, the Earth, where the higher gravity has retained nearly all the carbon. This
enrichment is not seen, either in the Martian atmosphere, or in the Martian meteorites. This
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indicates a substantial subsurface reservoir that replenishes the atmospheric CO2. This need not
be in the form of carbonates – it could, for example, be a water–CO2 clathrate.
� Atmospheric O2 is similarly unenriched. Why?
There must be a (sub)surface reservoir for oxygen too. This is water. This enters the atmosphere
as vapour where it is photodissociated by solar UV radiation. The hydrogen readily escapes to
space, oxygen far more slowly, but enough over 4600 Ma to produce enrichment of the heavier
isotopes if there were no reservoir. No such enrichment is seen. By contrast, the 15N/14N ratio in
the atmosphere of Mars is 1.6 times that on the Earth (Section 10.4). It is not surprising that there
is no significant nitrogen reservoir on Mars, without persistent rain and oceans (Section 10.1.2).

Atmospheric CO2 is photodissociated at a high rate by solar UV radiation – the atmosphere is
thin and almost devoid of ozone, so UV radiation can do its damage through the whole depth of
the atmosphere. If there were no regeneration of CO2 then it would be almost entirely photodis-
sociated in 3000 years and at any instant there would be almost no CO2 in the atmosphere!
That this is not the case is the result of various chemical reactions in the lower atmosphere that
put the molecule back together again. Of crucial importance in these reactions is the trace of
atmospheric water.

10.2.3 Atmospheric Circulation

Figure 10.9 shows three important modes of atmospheric circulation in the lower atmosphere
of Mars. The contrast with the Earth is striking (Figure 10.5). With a rotation rate and axial
inclination similar to the Earth, a similar type of circulation might be expected. However, the
absence of oceans on Mars leads to a rapid change of surface temperature in response to seasonal
changes in insolation. Therefore, in the summer the hottest surface is not near the equator but at
the subsolar point. As a consequence there is a single Hadley cell stretching from the subsolar
latitude across the equator to the less heated hemisphere (Figure 10.9(a)). In this hemisphere at
mid latitudes there are frequent cyclones and anticyclones. Around the equinoxes the picture is
more like that on the Earth, with a Hadley cell in each hemisphere, and perhaps a smaller one
at 60�–70�, circulating the opposite way. Also as on the Earth, the Coriolis effect causes Hadley
cells to break down far from the equator, to be replaced by cyclones and anticyclones.

In addition to Hadley cells there is condensation flow (Figure 10.9(b)). This arises from the
condensation of CO2 at high latitudes in the winter hemisphere, notably at the seasonal polar
cap. The associated reduction in pressure draws the atmosphere towards this region.

Figure 10.9 Atmospheric circulation in the lower atmosphere of Mars. (a) Hadley cell. (b) Condensation
flow. (c) Thermal flow. (Adapted by permission from Figure 5 (p97) of The New Solar System, J K Beatty
and A Chaikin (eds.), Sky Publishing, 1990)
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� Why is condensation flow unimportant in the Earth’s atmosphere?
Condensation of a major atmospheric constituent does not occur on the Earth. Another component
of the circulation is a thermal tide (Figure 10.9(c)). This is the result of the rapid cooling of
the Martian atmosphere at night, leading to low pressure near dawn and a consequent flow from
the warmer and consequently higher pressure afternoon hemisphere. Thermal tides occur on the
Earth, but the thin atmosphere of Mars, dominated by the efficient IR radiator CO2, leads to
far greater night-time falls in tropospheric temperatures, typically by 100 K. This leads to far
stronger flow on Mars. Among other thermal effects there is a correlation with topography, with
downhill drainage of cold air at night, and uphill ascent during the day.

10.2.4 Climate Change

In Section 7.3.6 it was noted that many water-related features on Mars indicate a warmer,
wetter climate in the distant past. This important issue will be considered in Section 10.6.3.
You also saw (Section 7.3.5) that the polar deposits suggest an intricate series of more recent
climate changes. It is thought that changes in the axial inclination of Mars have been particularly
important in the climatic changes reflected in the polar deposits, as follows.

Calculations of these changes show that the axial inclination, currently 25�2�, has ranged in
the past millions of years from 0� to 60� – far greater than the 22�5� to 24�0� range for the
Earth. This is because the Earth’s axis is stabilised by the Moon. The Martian changes are
quasi-periodic, with an underlying period of about 0.12 Ma, superimposed on a longer period
of about 2 Ma. At low axial inclinations the total annual solar radiation in equatorial regions is
much greater than in polar regions, but the totals become more equal as the inclination increases
(Question 10.3). The greater high-latitude temperature at large inclinations has the effect of
reducing the quantities of CO2 and water in the polar reservoirs, and increasing those in the
equatorial and atmospheric reservoirs. The net effect is an increase in atmospheric mass, and
this is expected to increase the frequency of dust storms, which increases the dust content of
the atmosphere and promotes deposition at the poles. A competing effect is the depletion of the
polar reservoirs and a possible increase in wind scouring there. Thus, as the axial inclination
varies with its two characteristic periods, there is a complicated interplay of erosion, deposition,
and the dust/water ratio in the atmosphere.

Additionally, there is a 51 000 year cycle in the season at which perihelion occurs – the
combined effect of axial and perihelion precession. Also, it is likely that the dust/water ratio in
the atmosphere has also been changed by volcanic eruptions and by impacts. These effects would
have been particularly significant on shorter time scales. Combined with the changes in axial
inclination, it is plausible that they have led to the patterns of layering, deposition, and erosion
seen in the polar deposits. Swings in climate across the globe are a necessary accompaniment
to the changes reflected in the polar deposits.

Changes in axial inclination can also account for other surface features, such as the gulleys
(Section 7.3.6), and the evidence for past glaciation at mid latitudes (debris in valleys, arcs of
debris on slopes, and so on) – at high inclination the polar regions get more radiation, and so
water sublimes and condenses closer to the equator.

More recently, there is evidence of global warming on Mars. Data from the past 150 years
or so show that the frequency of (near) global dust storms has increased. Also, the springtime
retreat of the south polar cap in 1999–2000, observed by Mars Global Surveyor, was earlier that
the one observed in 1977 by the Viking orbiters, and the north polar cap receded faster in the
1980s and 1990s than in the 1960s, with its residual (water-ice) cap diminishing. The cause of
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this warming is uncertain. One cause, or contributory factor, is an increase in solar luminosity.
Accurate measurements extend back to only 1978 (Section 10.1.2). For earlier times, back to
about 1750, data on the Earth’s GMST has been shown to anticorrelate with the length of the
solar cycle, which has varied from 18 to 26 years. This suggests an anticorrelation between cycle
length and solar luminosity. Since 1950 the cycle length has been shortening, so the presumption
is that the solar luminosity was increasing between 1950 and 1978, as well as later.

Question 10.4

(a) Starting at midsummer in the southern hemisphere on Mars, describe the changes in the
location of the Hadley cell(s) as Mars goes around its orbit.

(b) Describe how the location of the Hadley cell at midsummer in the southern hemisphere
changes as the axial inclination of Mars varies.

10.3 The Atmosphere of Venus

For a planet that has a mass, size, and internal structure not very different from those of the Earth,
the atmosphere of Venus is astonishingly different from ours. Like the Martian atmosphere it
is dominated by CO2 (Table 9.1), but the column mass is 102 × 104 kg m−2 compared with
0�015 × 104 kg m−2 for Mars and 1�03 × 104 kg m−2 for the Earth. Additionally, Venus is 100%
cloud covered, giving it a planetary albedo of about 0.76. In spite of this high albedo its GMST
is an astonishing 740 K, which exceeds the melting points of lead, tin, and zinc. The mean
surface pressure and density are 93 × 105 Pa and 67 kg m−3.

10.3.1 Vertical structure; heating and cooling

Figure 10.10 shows the globally averaged vertical structure of the Venusian atmosphere. Like
the Martian atmosphere it has no mesospheric bulge of temperature.
� Why is this?
Again, this is because there is no strong absorber of solar radiation concentrated at these levels.
The lapse rate is invariably adiabatic in the lower 35 km or so of the troposphere, but from 35 km
up to the cloud base at about 45 km it can be less than adiabatic. This is because at these higher
altitudes the atmosphere is more transparent to IR wavelengths, so can more readily exchange
heat radiatively.

The main cloud deck extends from about 45 km to 65–70 km, completely shrouding the
planet all the time. The upper 10 km or so consists primarily of droplets of sulphuric acid,
H2SO4� 1–10 �m in diameter. The clouds have a pale-yellow tint, possibly due to a trace of
sulphur or FeCl3. Below this upper deck the particles might be crystalline, which is incompatible
with H2SO4. X-ray fluorescence analysis has shown the presence of sulphur and chlorine, and
crystals involving chlorine are a possibility. The non-volatile content of the clouds is thought to
be sustained by large impacts raising crustal materials high into the atmosphere. A sufficiently
energetic impact is estimated to occur roughly every million years.

Above the cloud deck there is a haze of 1–3 �m particles that on the night side has been shown
by Venus Express to extend to an altitude of about 105 km, and is fairly thick up to about 90 km.
Below the deck a haze of 1–2 �m droplets extends down to about 30 km. The haze particles
are dominated by H2SO4. It seems that they form at an altitude around 80 km, the H2SO4 being
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Figure 10.10 The vertical structure of the Venusian atmosphere.

produced by photochemical reactions involving minor atmospheric constituents including SO2,
the sulphur initially entering the atmosphere in the form of sulphur vapour as a minor component
of volcanic gases. Once formed, the particles descend to the upper tropopause where they are
kept aloft by convection to form the main cloud deck. The droplets leak downwards, particularly
those that grow large, and as they descend below the cloud deck they gradually evaporate in the
ever-increasing temperatures, with none surviving below about 25 or 30 km.

Though the cloud deck is thick, its density is rather less than that in typical Earth clouds. One
consequence is that the daytime surface is not that dark. We would perceive an illumination
equivalent to that on a surface a few metres from a reading lamp. Daylight on Venus is tinted
red by the atmosphere.

Below the haze the atmosphere is much clearer, and the temperature continues to increase to
reach an astonishing GMST of 740 K. The effective temperature is 229 K, and so the size of the
greenhouse effect is a huge 510 K or so. The greenhouse effect on Venus is largely sustained by
the combined effects of CO2, water vapour, SO2, and H2SO4 droplets. These substances, plus
the huge atmospheric pressure that broadens the spectral lines, make the atmosphere strongly
absorbing over a wide range of mid-IR wavelengths. However, these substances cannot account
for all of the IR opacity. Some unknown constituents are plugging some of the IR gaps.

10.3.2 Atmospheric Reservoirs, Gains, and Losses

The atmosphere is very probably the main reservoir of carbon on Venus today. This is unlike
the Earth where most of the carbon is in organic carbon deposits and in sedimentary carbonate
rocks. The absence of oceans on Venus means that the carbonate generation rate is extremely
low, whereas volcanism and high surface temperatures will gradually have destroyed any ancient
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sedimentary carbonate deposits and liberated CO2 into the atmosphere. Support for this conclu-
sion is the approximately similar mass of carbon in the Venusian atmosphere to that in all of
the Earth’s reservoirs. This is to be expected from their proximity in the Solar System.

Volcanic activity presumably still releases CO2, but with so much already in the atmosphere,
volcanic emission at the present estimated rate would cause only a very slow increase.

Similar considerations apply to nitrogen. The quantity of N2 in Venus’s atmosphere is some-
what greater than that in the Earth’s atmosphere, but the Earth also has nitrate and nitrite
deposits, and when these are included, the two quantities are not so very different.
� Why are extensive deposits of nitrates and nitrites on Venus unlikely?
Nitrate and nitrite formation is promoted on Earth by the oceans and biosphere. It is possible
that there were short-lived oceans early in Venusian history, but it is very unlikely that there
was ever a biosphere. The widespread view is that there are no extensive deposits of nitrates
and nitrites on Venus, and that consequently most of Venus’s nitrogen is in the atmosphere.

With the global total quantities of carbon dioxide and nitrogen on Venus being similar to
those on the Earth, it might be expected that this would also be the case for water. This is not so.
The number fraction in the Venusian atmosphere is about 4 ×10−5, and the surface is far too hot
for much water to be present, even if it were bound to minerals. The quantity of water deep in
the crust and in the mantle is unknown, but is unlikely to exceed terrestrial quantities. Excluding
potential deep reservoirs in both planets, if all the Venusian water is in the atmosphere, then
Venus has about 10−5 times the water known on Earth! However, as for Mars, the trace of
atmospheric water plays a role in reversing the effects of the photodissociation of CO2.

The present low water content in the Venusian atmosphere could represent a balance between
the gains from slow outgassing by volcanic activity, plus the occasional impact of comets and
asteroids, and a slow rate of loss by photodissociation. Quite why there is so little water is a
topic for Section 10.5.

10.3.3 Atmospheric Circulation

On such a slowly rotating planet with a small axial inclination, a single Hadley cell extending
from equator to pole in each hemisphere is to be expected (Figure 9.13). There is evidence
that such cells exist in the lower atmosphere. However, above these cells there are others, and
the reasons for this are not well understood. There is also a thermal tide (Figure 10.9(c)), and
though this is not as significant a component of the circulation as it is on Mars, the mass of the
Venusian atmosphere is so great that the thermal tide could have influenced the rotation of the
planet. Also, the associated mass redistribution leads to a gravitational tidal force exerted by the
Sun, and this too influences planetary rotation. The net accumulated effect of the atmosphere
on the rotation rate of Venus is unclear, though some astronomers have tentatively concluded
from computer models that the atmosphere has played a prominent role in causing the present
slow (243 day), retrograde rotation of Venus.

The Hadley circulation is apparent in the 5–10 m s−1 winds from equator to pole at the
cloud tops. At the surface, owing to friction between the atmosphere and the surface, the
pole-to-equator flow is less than 1 m s−1, but with such a massive atmosphere this transfers
heat sufficiently rapidly to reduce equator-to-pole temperature differences to only about 1–2 K.
Surface friction also causes a low-altitude east–west wind. At the Venera and Vega sites these
were in the range 0�3–1 m s−1, and at altitudes around 10 km were still only a few metres per
second. But this suffices to reduce day–night temperature differences to about 1–2 K also. This
east–west drift continues to increase with altitude, becoming about 100 m s−1 at the cloud tops,
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Figure 10.11 Atmospheric circulation at cloud-top level on Venus, imaged in UV by the Pioneer Venus
Orbiter. (NASA P790226)

particularly at high latitudes. These high speeds can be explained as a result of the upward
transfer of angular momentum from the lower atmosphere, though the details are complicated
and not at all fully worked out. Figure 10.11 shows the combined effect of the north–south and
east–west drifts at the cloud tops. This image is at UV wavelengths to enhance cloud features –
the dark places are not breaks in the cloud. Their cause is unknown.

Since April 2006, Venus Express has been in orbit around the planet and is returning much
atmospheric data. As well as investigating the haze (see above), it is revealing atmospheric
motions by tracking cloud features. For example, it has clarified the structure of a double vortex
over the South Pole, and has revealed the existence of a single vortex over the North Pole. Why
the poles differ in this respect is not known. Over the next year or so, this and many other
aspects of the atmospheric circulation of Venus should be elucidated.

Question 10.5

If no solar radiation penetrated the clouds of Venus, why would the lapse rate below the clouds
be close to zero?

10.4 Volatile Inventories for Venus, the Earth, and Mars

You have seen that the volatile substances that constitute a planet’s atmosphere might also be
present at or under the surface of the planet, perhaps in a different chemical form. In considering
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the origin of atmospheres we must consider the origin of volatiles totalled over all these possible
reservoirs, and an essential first step is to attempt a volatile inventory for the present day.
This inventory is then a basis for estimating the inventory at earlier times. In this section we
will confine ourselves to the main constituents of the volatile inventories of the three planets
described in the preceding sections – Venus, the Earth, and Mars.

Figure 10.12 shows the present volatile inventories of water, carbon, and nitrogen for Venus,
the Earth, and Mars. The quantities are the global mass fractions of H2O� CO2, and N2, i.e. the
total mass of each substance divided by the total mass of the planet. The quantities in other
forms, such as water as hydroxyl (OH), carbon in carbonates, nitrogen in nitrates, are included
by adjusting them to the masses of H2O� CO2, and N2 that these other forms would yield.
� Why do the major volatiles consist of hydrogen, oxygen, carbon, and nitrogen?
These are cosmically abundant elements (Table 1.5), and they form relatively volatile
compounds. (Note that volatiles are not the major repositories of oxygen. Most of a planet’s
oxygen is present in silicates and metal oxides. By contrast, only a small fraction of the carbon
and nitrogen is not in the volatile reservoirs.)

The atmospheric quantities in Figure 10.12 are well known, but you have seen that the
quantities at and beneath the surface are far less certain. Consequently, the global mass fractions
shown in Figure 10.12 are lower limits, and in many cases the actual quantities could be very
much greater. This is true even for the Earth – the quantities in Figure 10.12 are for the surface
and crust. For example, there is also water in the upper mantle, but estimates vary from 60 ppm
to over 200 ppm by mass, and even a trace in the greater volume of the lower mantle could
add hugely to the inventory. To illustrate the uncertainty further, note that Figure 10.12 places
lower limits on the Martian global mass fractions that are less than those for the Earth. This is at
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Figure 10.12 Present volatile inventories of Venus, the Earth, and Mars. The bars are for the atmospheres,
and the lines with arrows are the lower limits for the global mass fractions.
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variance with studies that indicate that Mars is richer than the Earth in volatiles. If this is so, it is
either because Mars was made from materials richer in volatiles, or because the Moon-forming
impact depleted the Earth in volatiles. If Mars is indeed volatile rich, it does not seem to be
much outgassed – this is discussed in Section 10.5.5.

This is an unpropitious start! Nevertheless, Figure 10.12 indicates that the present volatile
endowments of Venus, the Earth, and Mars are very different. But what about the past? Were the
inventories more similar then? For the global mass fractions, only loss of different proportions
to space could have made a difference.

Losses to space

There is strong evidence that Mars has lost to space a considerable proportion of its nitrogen.
The evidence is in the atmospheric isotope ratio n�14N�/n�15N�, where n�14N� is the number
density of atoms of the common isotope 14N in the atmosphere, and n�15N� is the number
density of 15N atoms. Each number density includes the isotope present as single atoms and as
contained in the molecule N2. In the Earth’s atmosphere today n�14N�/n�15N� = 272, whereas
in the Martian atmosphere it is about 170. The accepted explanation is the greater rate at which
the less massive isotope has escaped from Mars, thus leading to its relative depletion there.

Nitrogen has been lost from Mars mainly by chemical escape, e.g. by the photochemical
reaction

N2�+UV photon� → N + N (10.4)

where the UV photon is provided by solar radiation. This reaction is only one of several, but
in all of them the resulting nitrogen atoms are boosted to sufficient speeds to escape at a far
greater rate than they do by thermal escape. The lighter isotope is lost at a faster rate because
above the homosphere the atmosphere is no longer well mixed, and the number of lighter N2

molecules decreases less rapidly with altitude than does the number of heavier molecules. This
leads to enrichment of the lighter isotope in the exosphere, from where chemical escape occurs.
If the Earth and Mars started out with the same n�14N�/n�15N� ratio, then it can be shown that
the present difference in the ratios indicates that Mars has lost to space the order of ten to a few
hundred times its present atmospheric content of nitrogen.
� Why has the Earth lost less nitrogen than Mars through chemical escape?
Chemical escape of nitrogen from the Earth has been less because of the Earth’s higher escape
speed (Table 9.1).

Some escape to space of Martian oxygen and carbon must occur, but, as noted in
Section 10.2.2, there must be sufficient reservoirs of water and CO2 at or near the surface to
have prevented enrichment of the lighter isotopes. For nitrogen there seem to be no such reser-
voirs, presumably because any oceans and rainfall have, at best, been confined to the Noachian
(Section 7.3.9).

Escape to space can also go some way towards explaining the dryness of Venus. The
explanation starts with photodissociation of water in the upper atmosphere. The net effect of a
series of reactions is

2H2O�+UV photon� → 2H2 + O2 (10.5)

yielding hydrogen and oxygen molecules as gaseous components of the upper atmosphere. H2

thermally escapes at only a low rate from Venus today because the base of the exosphere is
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cold (Figure 9.12), but in the past the upper atmosphere could have been warmer. Also, when
the Sun was young, though its luminosity was lower than today, there could have been a greater
solar UV flux and a more copious solar wind, thus enhancing the rate of escape. Furthermore,
though the exosphere is too cool today for thermal escape, loss of hydrogen might still be
occurring through the action of electric and magnetic fields in the solar wind. These fields could
accelerate hydrogen ions in the exosphere to escape speeds, the ions having been formed by
photodissociation. It is thus likely that large quantities of hydrogen have been lost to space over
the lifetime of Venus.

We must also get rid of Venus’s oxygen – there would have been far more produced from
reaction (10.5) than the very small upper limit that we have for the atmosphere today.
� Why is thermal escape inadequate?
The mass of the O2 molecule is much greater than that of H2, so the molecular speeds of O2

would have been much lower than those of H2, and the rate of thermal escape correspondingly
small (Figure 9.12). Presumably the oxygen has combined with the crust, and some evidence
for this is provided by the lander Venera 13, which found highly oxidised surface rocks.

The series of reactions summarised by equation (10.5) also occurs on Earth, but most terrestrial
water is in the oceans and in other surface reservoirs, where it is protected from dissociation.
Consequently, the Earth has lost little of its initial endowment of water. It was the hot troposphere
of Venus and the consequent lack of precipitation that allowed water to reach high altitudes,
thus exposing it to rapid photodissociation.

Support for this water loss mechanism from Venus is provided by the present-day isotope
ratios n�2H�/n�1H� for Venus and the Earth. The lower mass of 1H enables its molecules and
ions to escape to space at a greater rate than molecules and ions that include 2H, and therefore on
both planets n�2H�/n�1H� tends to increase with the passage of time. Atmospheric and surface
reservoirs exchange water, and with most terrestrial water residing in the surface reservoirs,
protected from dissociation, this tends to maintain the terrestrial n�2H�/n�1H� ratio at its initial
value. On Venus there have been no oceans for a long time, if ever. Therefore, we would expect
the n�2H�/n�1H� ratio on Venus to be greater than on the Earth, and this is exactly what we
find – about 150 times the terrestrial value of 1�6 × 10−4.

With detailed models it is possible to estimate the amount of water that must have been lost
by Venus to give such an enhancement. These models include the greater UV flux in the past.
If the initial ratio of n�2H�/n�1H� was much the same on both planets, and if the atmosphere
of Venus has not been resupplied with water, then this loss process has got rid of the order of
102–103 times the mass of water presently in the atmosphere. This loss is equivalent to a global
layer of liquid water of the order of 3–30 m. This is evidence that the crust of Venus is dry,
though mantle water, as in the case of the Earth, cannot be ruled out.

The hydrogen isotope ratio n�2H�/n�1H� on Mars also indicates loss to space – the ratio is
five times greater than that of the Earth, indicating a far less severe fraction lost than in the case
of Venus. This is consistent with the existence of (sub)surface reservoirs of water.

The models that predict the losses to space make various assumptions, and therefore in tracing
volatile inventories into the past there are further uncertainties to add to those about the present
inventories. Moreover, processes that were concentrated early in Solar System history, such
as impact erosion, blow off, and hydrodynamic escape (Section 9.2.5) probably removed huge
quantities of volatiles. Therefore, we must now start at the earliest times and try to work forward,
under the constraint that there has to be an acceptable match with what we can establish by
working back.
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Question 10.6

If Venus has lost to space 102–103 times the mass of water presently in its atmosphere, what
would its global mass fraction of water have been before this loss, and how does this compare
with the global mass fraction of water on Earth?

10.5 The Origin of Terrestrial Atmospheres

Important evidence about the earliest times is provided by the inert gases.

10.5.1 Inert Gas Evidence

The complete suite of inert gases is helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon
(Xe), and radon (Ra). Recall that they are called inert because they are chemically unreactive,
and they are called gases because at all but very high pressures or very low temperatures they
exist in the gaseous phase – they are extremely volatile.
� Would you expect argon gas to be Ar or Ar2?
In accord with their chemical unreactivity, the inert gases are present in atomic form, rather
than combined into molecules.

Of particular importance here are the inert gas isotopes that are stable (not radioactive), and
that have not been produced by radioactive decay – such radiogenic isotopes will have had their
atmospheric quantities increased over time in some uncertain manner. All of radon’s isotopes
are unstable, and the non-radiogenic isotopes of helium are excluded because the atoms are
light enough for helium to escape from the terrestrial planets. By contrast a high and similar
proportion of the other isotopes will have been retained. Moreover, the unreactivity and extreme
volatility of the inert gases make it likely that nearly all of the initial endowment of each of
these isotopes is in the atmosphere. The global mass fractions of the atmospheric isotopes should
therefore bear a primordial imprint.

The non-radiogenic isotopes used most often in studies of planetary volatiles are
20Ne� 36Ar� 84Kr, and 132Xe. Figure 10.13 shows the present-day global mass fractions of these
isotopes in the atmospheres of Venus, the Earth, and Mars. Also included are the values for the
Sun, which must surely have had a composition similar to the nebula from which the planets
formed. A striking feature of Figure 10.13 is that the graphs for the terrestrial planets have
very different shapes from that for the Sun. Greater similarity would be expected if a high
proportion of today’s planetary volatiles had been captured from the solar nebula as a whole.
This expectation remains even allowing for subsequent mass-selective loss mechanisms such as
thermal escape and hydrodynamic escape. Therefore, if the terrestrial planets ever did capture
a large quantity of volatiles from nebular gas and dust (mainly from the gas) then it has since
been lost or overwhelmed by other sources. Section 10.5.3 discusses loss mechanisms.

The fifth graph in Figure 10.13 is for the C1 chondrites (the dashed line). These are a
particularly primitive subclass of the carbonaceous chondrite meteorites (CCs, Section 3.3.2),
and are thought to have a broadly similar chemical composition to the planetesimals from which
the terrestrial planets formed (Section 10.5.2). Moreover, the heavier inert gases would not
have been lost to space when the planetesimals impacted the growing planet. In contrast to the
Sun, the shape of the graph for the C1 chondrites is not very different from the shapes for
the terrestrial planets. It is therefore an easy step to conclude that a large fraction of the mass
of the terrestrial volatiles must have been delivered within planetesimals of broadly chondritic
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Figure 10.13 The atmospheric global mass fractions of the important non-radiogenic inert gas isotopes,
for Venus, the Earth, and Mars. The mass fractions for the Sun and for the C1 chondrites are also shown.

composition, or embryos built of such planetesimals. The C1 chondrites certainly contain the
right sort of substances – they have water, mostly in hydrated minerals such as serpentine
�3MgO�2SiO2�2H2O�, and they have carbon and nitrogen, mostly within organic compounds.
Furthermore, the non-volatile composition of comets is not very different from that of the C1
chondrites, and so if this similarity extends to the volatiles then one cannot rule out comets as
important sources of terrestrial volatiles too.

But though the shapes of the graphs for the planets and the C1 chondrites are similar, they
are not identical. Also, the graphs are separated by large differences in the values of the global
mass fractions. We shall account for these features in Section 10.5.3. First we need to consider
more closely the acquisition of volatiles from planetesimals and other bodies, during planet
formation.

10.5.2 Volatile Acquisition During Planet Formation

The initial volatile endowment of the terrestrial planets is inextricably linked with the formation
of the terrestrial planets as a whole. The solar nebular theory of their formation was outlined in
Chapter 2, and we can pick up the story at the point where the inner Solar System was full of a
swarm of planetesimals, plus embryos. The volatile content of these bodies increased somewhat
from the region where Venus will form, to the region now occupied by the asteroid belt.
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� Why only ‘somewhat’?
An increase in volatile content with heliocentric distance is to be expected from the associated
decline in nebular temperatures. However, with the growth of planetary embryos, close encoun-
ters between embryos, and between an embryo and a planetesimal, made many orbits highly
elliptical. Therefore, embryos and planetesimals began to criss-cross the terrestrial and asteroid
zones, blurring any compositional differences.

By the time that Venus, the Earth, and Mars had grown to about 0�1mE�mE is the present
mass of the Earth), the impacts of planetesimals were sufficiently violent for the planetesi-
mals to be fully devolatilised. This resulted in massive atmospheres, mainly of H2O, which is
the most abundant volatile, but with CO2� plus some NH3� SO2, and other volatiles. Impact
devolatilisation is expected to have been less overall for Mars because 0�1mE is about the same
as the planet’s present mass. Nevertheless, the later arriving material would certainly have been
devolatilised, and this would have created a considerable atmosphere on Mars too. Note that
devolatilisation, which would be followed by substantial losses to space (Section 10.5.3), would
result in a trend in global composition away from the C1 chondrites and towards the ordinary
chondrites.

For the Earth, a computer model of its formation has shown that many planetesimals came
from regions well beyond its orbit, where a broadly C1 composition is expected. The Earth
was still forming after the gaseous component of the nebula had been dissipated. Enough time
had then elapsed so that embryos had formed in what is now the outer asteroid belt. These
would be rich in volatiles. A few of them collided with the Earth. For an embryo mass a few
per cent of that of the Earth, the model indicates that they brought to our planet the bulk of
its water and other volatiles. Consistent with this model is the ratio of deuterium �2H� to 1H in
the Earth’s oceans. It is close to the mean value in the water-rich components of CCs. A late
veneer of volatile-rich bodies from the Uranus–Neptune region and the E–K belt could distort
this picture. But the model shows that the amount of material impacting the Earth from these
outer zones would deliver less than 10% of the earlier endowment. Late veneers are the subject
of Section 10.5.4.

So, we have arrived at the point where Venus, the Earth, and, to a lesser extent, Mars have
massive water-rich atmospheres. This led to large rises in surface temperature, partly because
of the associated large greenhouse effect, and partly because of aerosols that not only added
to the greenhouse effect but also absorbed solar radiation. With most of the kinetic energy of
the impactors converted to heat, a magma ocean at about 1500 K was formed on Venus and
the Earth (Sections 8.1.5 and 8.2.9). Mars might have lacked a magma ocean partly because
the greater heliocentric distance would have reduced the solar heating of the surface, and partly
because of lower impact speeds – the combined result of lower orbital speeds at the greater
distance and the smaller gravitational field of Mars. On Venus and the Earth, water dissolved
in the magma oceans, stabilising the atmospheric mass at the order of 1021 kg. With a general
decline in impacts the magma oceans solidified, giving up some of the water and other dissolved
volatiles as they did so. In the case of the Earth most of the atmospheric water condensed to
form oceans, but this might not have happened on Venus because of the greater solar heating
closer to the Sun. If no magma ocean appeared on Mars, and if there was little subsequent
geological activity that folded the surface into the mantle, then the mantle might be dry, with
any water that condensed confined to no more than shallow depths.

The earliest atmospheres were subject to enormous modifications by various processes,
notably those outlined in the next section.
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10.5.3 Early Massive Losses

Whereas the smaller planetesimals brought a net increase of the volatile endowment, larger
planetesimals caused impact erosion, and the very largest and any left-over embryos would have
caused blow-off (Section 9.2.5). Not all volatiles were equally affected. Water can condense
or combine with surface materials more readily than the other common volatiles, and can thus
obtain some protection. This can help to explain the dryness of Venus, where incorporation in
the surface was limited by the high surface temperatures resulting from the proximity to the
Sun. The extent to which CO2 was protected depends largely on whether any oceans of water
appeared quickly enough for dissolution and carbonate formation to occur before extensive
impact erosion. Note that blow-off is consistent with the delivery of volatiles by embryo impact.
Not all the volatile endowment of embryos is necessarily lost. (The Moon formed from largely
vaporised material from a grazing impact by a massive embryo, which explains its low volatile
content – Section 5.2.1.)

Impact erosion can also explain the low global mass fractions of the inert gases in the Martian
atmosphere (Figure 10.13) – the low mass of Mars and its proximity to the asteroid belt resulted
in the loss of a great proportion of these gases. This was also the case for other volatiles, and
could explain any scarcity of carbonates on Mars, at least in part. It is also possible that impact
erosion accounts for any shortfall between the large quantities of water that seem to be needed
to explain the Noachian fluvial features (always supposing that they were not caused by the
cycling of a small quantity of water), and the possible inadequacy of subsurface reservoirs to
have supplied this water.

Another major early process is hydrodynamic escape (Section 9.2.5), resulting from a huge
pulse of H2 production. Any iron in a magma ocean would react with water to generate such a
pulse. The simplest reaction is

Fe + H2O → FeO + H2 (10.6)

where the water might be present as H2O or chemically combined with minerals. Water in
hydroxyl form undergoes an equivalent reaction. Hydrogen would have been generated in a
similar way during core formation as liquid iron trickled through the mantle. The hydrogen built
up in the atmosphere, and little water was left in the crust and mantle. Additional hydrogen in a
water-rich atmosphere would come from the photodissociation of water. But regardless of how
it was generated, the presence of large quantities of hydrogen in the atmosphere led at once to
a large outflux of hydrogen to space.
� Why is this?
Hydrogen as H or H2 has a low mass, so readily suffers thermal escape. Other molecules are
entrained and so are lost too. Recall that the process is mass selective and would have led to an
increase in the n�2H�/n�1H� ratio.

One entrained molecule was O2 from the photodissociation of water, though models indicate
that on all three terrestrial planets most of the O2 was retained, and was removed later by the
oxidation of rocks. If there was sufficient CO, it too would have taken up a significant mass of
O2 in being oxidised to CO2.

There is evidence of hydrodynamic escape. For example, it explains differences in xenon
isotope ratios between the Martian atmosphere and interior. Other isotope data suggest the
escape happened within 160 Ma of the birth of Mars.

Less dramatic, but very effective at removing atmospheres, is the solar wind, which was
particularly copious when the Sun was young. This could have stripped atmospheres in a few
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thousand years, unless protected at that time by a powerful magnetic field, as in the case of the
Earth, and perhaps Mars too.

It seems likely that all the terrestrial planets suffered huge losses through hydrodynamic
escape, blow-off, and erosion by impacts and perhaps the solar wind. Blow-off would have been
most likely about 4600 Ma ago, and hydrodynamic escape before about 4200 Ma ago. Impact
erosion would have been in step with the heavy bombardment, so would have been in steep
decline about 3900 Ma ago. Almost entire atmospheres could have been removed, in which case
the present atmospheres must largely be the result of subsequent outgassing (including from the
incorporated fragments of bodies that caused blow-off) and, additionally, late veneers.

10.5.4 Late Veneers

With the growth of the giant planets, it is expected that icy planetesimals (comets) and other
volatile-rich bodies were thrown across the terrestrial zone, and some were captured by the then
(nearly) fully formed terrestrial planets, thus providing them with a late veneer. This veneer
could probably have provided them with considerable quantities of volatiles, supplementing
significantly, or even dominating, any residue from earlier times. Subsequent geological activity
would have buried much of this veneer into the mantle, except perhaps on Mars because of its
lower level of activity. Today, the rate of acquisition of volatiles by this means is very low.
� Why did these bodies not cause impact erosion?
They were small bodies.

Evidence that at least some of the water on Mars came as a late veneer is provided by the
Martian meteorites. Oxygen isotope ratios in some of the water are different from those in the
oxygen in the silicate components. The water presumably came largely from water deposits at
or near the surface, whereas the silicates were derived from deeper in the lithosphere. It thus
seems that the lithosphere and surface have had rather separate histories.

Further evidence that there was a late veneer, and that it was due at least in part to icy
planetesimals, is provided by Figure 10.13. The C1 chondrite graph at its right hand end is much
flatter than the graphs for the terrestrial planets. This can be explained by volatile-rich bodies
additional to bodies with a C1 chondrite composition, and icy–rocky planetesimals is a popular
choice. In the Jupiter region the volatile complement would have been dominated by water
ice, plus small quantities of ices rich in carbon and nitrogen. Further out there were increasing
quantities of ices of the more volatile substances, in accord with the decreasing temperatures.
The gas trapping efficiency also increases with decreasing temperature. The planetesimals from
the furthest reaches, from beyond Neptune, would have had, as well as water, ices and trapped
gases rich in nitrogen and carbon so that, overall, the elements C and N are in solar proportions.
Of relevance to Figure 10.13 is that the inert gases would also have been present in solar
proportions, except for an underabundance of He and, to a lesser extent, of Ne. A propor-
tionate input from these icy–rocky planetesimals can give a match to the terrestrial graphs in
Figure 10.13.

A late veneer on the Earth is indicated by a handful of crystals of zircon, ZrSiO4, from Jack’s
Hills in Western Australia. The oldest of these hardy crystals have survived from 4400 Ma ago,
not long after the Moon-forming impact. They formed in crustal rocks, long gone, and have
oxygen isotope ratios that can be shown to indicate that in their vicinity there were large lakes,
even oceans. Outgassing might not have had enough time to meet the need, in which case icy
planetesimal impacts are indicated.
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In order to account for many of the details of the volatile endowments of the terrestrial
planets it is necessary to assume that each terrestrial planet received a particular mixture of the
various bodies, the mix depending on the heliocentric distance of the planet. It is then possible
to explain why Venus, the Earth, and Mars have global mass fractions of the inert gases that,
on the whole, are smaller than their global mass fractions of H2O� CO2, and N2. Furthermore,
these three fractions can be turned into two ratios by dividing by the global mass fraction of
H2O. This is useful because we can be far more certain about the values of these ratios than
we can about the individual global mass fractions. It is the different values of these ratios from
planet to planet that can be explained. The details are beyond our scope.

Finally, note that icy–rocky planetesimals are hydrogen-rich bodies, and therefore they can
give rise to chemical reactions that produce NH3 and CH4 in terrestrial atmospheres. These are
powerful greenhouse gases and if they were abundant they would have been important in the
evolution of the atmospheres, as you will see.

10.5.5 Outgassing

A late veneer does not preclude the possibility of continued outgassing, long after any magma
ocean solidified and any core formation was complete. Indeed, outgassing must have been
important on even the least geologically active of the three planets, Mars. Outgassing continues
to this day on the Earth, probably on Venus, and possibly on Mars.

The mix of gases emerging from the interior depends on the mix of materials there and on
the temperature. Any metallic iron present in the mantle, such as there would be before core
formation, would remove oxygen from molecules, and thus convert much of the H2O in the
mantle to H2 and much of the CO2 to CO. The decomposition of any carbonates present would
yield CO rather than CO2. With iron concentrated in the core, leaving little or none in the mantle,
then at the sort of temperatures occurring in terrestrial planet mantles, the volatile-rich materials
would outgas H2O� CO2, and N2. Recent experiments in which CCs are heated, experiments
supplemented by extensive chemical calculations, indicate that if the terrestrial planets have
a significant CC content, then the early atmospheres might have consisted not only of water
vapour but of CH4 and NH3 too, plus several tens of per cent of H2. This seems to be consistent
with outgassing before the formation of an iron-rich core.

Whatever the main constituents, there were traces of other volatiles. Among these were 40Ar
from the radioactive decay of the unstable isotope of potassium, 40K. Potassium is confined to
rocky materials, and so if we know the atmospheric quantity of 40Ar, and if we can estimate the
amount of potassium in the interior of a planet, we can estimate the degree to which the planet
has outgassed. We know the atmospheric quantities of 40Ar for Venus, the Earth, and Mars, and
a rough estimate of the potassium content has been made for the Earth, and also for Mars from
studies of Martian meteorites. It seems that Mars is less outgassed than the Earth. This is in
accord with its lower level of volcanic activity.

If indeed Mars is less outgassed than the Earth, then this is a factor in accounting for its lower
atmospheric global mass fractions of inert gases in Figure 10.13. It is also a factor in accounting
for any deficiencies in the near-surface quantities of other Martian volatiles. However, we do not
know the initial volatile inventory of the interior, and so we cannot use the degree of outgassing
as a means of calculating the quantities of water and other volatiles that have appeared on the
surface.

In spite of the many uncertainties, we nevertheless have rough estimates of the early volatile
inventories of the terrestrial planets. What happened next?
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Question 10.7

Describe the CO2 data in Figure 10.12, and outline the processes common to the three planets
that have determined their global CO2 endowments. State to what extent the differences between
the CO2 endowments have been explained so far in this chapter.

Question 10.8

Present a plausible argument for the absence of significant atmospheres on

(a) the Moon
(b) Mercury.

10.6 Evolution of Terrestrial Atmospheres, and Climate Change

In considering the origin of the terrestrial atmospheres we have been concerned largely with
events that occurred up to no later than the end of the heavy bombardment at about 3900 Ma ago
(perhaps a bit later on Mars). We shall now be more concerned with events from about 4200 Ma
ago to the present. By 4200 Ma any magma oceans had solidified, any blow-off had occurred,
and core formation, rapid outgassing, and hydrodynamic escape were over. Impact erosion was
continuing, but at a declining rate. Since then the atmospheres of Venus, the Earth, and Mars
have taken dramatically different evolutionary paths. This has been against the backdrop of a
gradual increase in solar luminosity as shown in Figure 10.14.

Some plausible scenarios are now presented. In considering each planet in turn some familiar
material will be encountered as we blend the past into the present. You will see that distance
from the Sun has been a crucial factor.
� What are the ratios of the solar flux densities at the orbits of Venus, the Earth, and Mars?
These are the ratios of 1/r2 (equation (9.5)), where we can use the semimajor axes for r. Thus,
the ratios compared with the Earth are �1/0�723�2 � 1 � �1/1�524�2, i.e. 1.91:1:0.43. These are
substantially different from one. For example, in the beginning, when the Sun was only 0.7
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Figure 10.14 The increase in solar luminosity from its birth 4600 Ma ago until the end of its main
sequence lifetime, about 6000 Ma into the future, according to recent models.
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times its present luminosity, the flux density at Venus was still 1.3 times the present flux density
at the Earth.

10.6.1 Venus

About 4200 Ma ago Venus probably had an atmosphere of CO2, water vapour, and N2, perhaps
overlying oceans of liquid water. The atmosphere was not as massive as it is today, but it
contained sufficient water and CO2 for a modest greenhouse effect. This, coupled with the
proximity of Venus to the Sun, made the lower atmosphere warm. The warm temperatures
sustained a high partial pressure of water, and the release of latent heat on condensation reduced
the lapse rate to the point that atmospheric temperatures decreased rather slowly with height.
Therefore, the number fraction of water was sustained to high altitudes, where it was subject
to photodissociation and the consequent loss of hydrogen to space. The oxygen liberated has
probably been lost through oxidation of the surface rocks, particularly as the surface temperature
rose (Section 10.4).

Though water was being lost by photodissociation it was replenished by evaporation from
surface reservoirs, thus maintaining its partial pressure. As the solar luminosity rose, the partial
pressure of water in the lower atmosphere crept up the saturation curve. This increased the
greenhouse effect which caused a further increase in partial pressure. This is an example of
positive feedback, an inherently unstable feature that is thought by many to have resulted in the
complete evaporation of the oceans within the order of 100 Ma, by which time the temperatures
were high, though not as high as today, and the atmosphere contained a huge mass of water
vapour. Models indicate that this runaway greenhouse effect would have occurred very early
in Venus’s history, probably well before 3000 Ma ago

A variant on this is the moist greenhouse effect. Depending mainly on the atmospheric
properties, and particularly by lowering the solar luminosity, models can produce an outcome in
which Venus lost its oceans much more slowly than in a runaway. Consequently the temperatures
rose more slowly. The dissolution of CO2 in the oceans and the formation of carbonates would
have further moderated the rate of temperature rise. Though the oceans were hot, they did not
boil. In this model there is still a moist stratosphere, and thus there was again a steady loss of
water by photodissociation and the escape of hydrogen. Gradually the water was lost, and as
temperatures rose the carbonates were dissociated. The end point is much the same, but reached
less dramatically, and perhaps as late as 3000 Ma ago.

Though most of Venus’s water was lost through photodissociation, the process slowed as the
atmosphere dried out and the upper atmospheric temperatures consequently declined. Therefore,
the last 106 Pa or so of water vapour must have been lost some other way. One possibility is
incorporation into the crust and subsequent burial in the mantle through geological processes.
Volcanic activity can subsequently release such water, but in a steady state it is feasible that
only a small proportion is ever in the atmosphere, which has therefore remained dry.

You have seen that photodissociation also explains the high ratio of n�2H�/n�1H� in the
atmosphere of Venus today.
� What is the explanation?
Photodissociation liberates hydrogen, and the lower mass of 1H enables its molecules and ions
to escape to space at a greater rate than molecules and ions that include 2H. In addition, the
earlier hydrodynamic escape of hydrogen also favoured the lighter isotope.

With the loss of oceans, sedimentary carbonate formation became negligible, and so the
CO2 content of the atmosphere increased as volcanic activity released CO2 from the crust and
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mantle, including from any remaining carbonates that might have formed as ocean sediments,
to form the massive CO2 atmosphere that we have today. This sustains the present temperatures
through the greenhouse effect of CO2, enhanced by pressure broadening, aided by the greenhouse
effect of the clouds, and of small quantities of other constituents, some of which remain
unknown.

There is an alternative scenario in which oceans never formed on Venus, but the end point
is again the same. This alternative is unlikely, if, as is widely believed, the devolatilisation of
impactors and the late veneer produced large quantities of water over a relatively short time.
If Venus did once have oceans of liquid water for hundreds of millions of years then it is just
possible that life began a short Venusian career. But there is little chance that any evidence has
survived to today.

Global resurfacing at 500–800 Ma

The one major climatic event that we are confident has occurred on Venus was due to the
near global resurfacing that occurred over a short interval between 500 Ma and 800 Ma ago
(Section 8.2.3). The copious volcanic emissions would have included CO2, but there was so
much in the atmosphere already that this barely made a difference. Of more significance was
the H2O and SO2, which it is estimated would have increased the atmospheric quantities by 10
times and 100 times respectively. This increased the greenhouse effect by (partially) closing
windows at IR wavelengths, but also increased cloud thickness and hence increased the albedo.
One model indicates that initially the increase in albedo ‘won’, and the GMST fell, perhaps by
100 K. The clouds thinned. The excess H2O and SO2 were disposed of in the usual way (loss to
space, reactions with rocks), and in a few hundred million years, via a trickle of volcanic gases,
including H2O and SO2, the clouds were restored and the earlier conditions re-established.

During this considerable climatic disturbance, there could have been a dramatic increase in
temperature if the H2O content of the atmosphere rose sufficiently for the ‘leaky’ IR window at
2�1–2�7 �m to be much less transparent. A 20 times increase to around 0.5% would have caused
a rapid rise in the GMST. This rise would have been limited to about 920 K. At that temperature
the peak in the IR spectrum of the radiation welling upwards from the surface would have been
right in this window, and the GMST stabilized. In the usual way H2O was lost, the atmosphere
cooled, and the earlier conditions re-established as before.

We have no evidence of substantial climatic change since then.

10.6.2 The Earth

In Section 10.5.4 mineralogical evidence was outlined for extensive bodies of liquid water on
the Earth 4400 Ma ago. Metamorphosed sedimentary rocks 3800 Ma old must have been derived
from ocean sediments. Biological evidence for water is the likely continuous presence of life
since about 3850 Ma ago – only about 50 Ma after the end of the heavy bombardment. Though
the details of the origin of life on Earth are still largely obscure, we do know that liquid water
is essential for life in all its forms.

This stark contrast with Venus arises from the greater solar distance of the Earth. The atmo-
sphere never became warm enough for water vapour to be abundant in the upper atmosphere –
the upper troposphere has always been a cold trap where water has condensed and returned to
the surface. Indeed, we have the opposite problem. The low luminosity of the youthful Sun
(Figure 10.14) means that if the Earth’s albedo and greenhouse effect were initially as they are at
present, the GMST would have been about 265 K, and the oceans in that far-off time would have
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completely frozen over. The albedo would then have become so high that it would not have been
until 1000–2000 Ma ago that the solar luminosity would have risen to the point where the ice
melted. And yet there was no extensive glaciation throughout this time. This is called the faint
Sun paradox.
� How could different atmospheric composition have helped prevent global freezing?
If the Earth’s greenhouse effect was sufficiently larger, the effect of reduced solar luminosity
could have been offset. Something like 300–3000 times the present atmospheric mass of CO2

is needed around 3800 Ma ago, with a slow decline rather well matched to the increasing solar
luminosity, otherwise the temperatures would have become higher than we know they were. The
total volatile inventory of CO2 on the Earth is at least 105 times that in the atmosphere, so the
problem is one of controlling the atmospheric fraction. Could a carbon cycle accomplish this?

As soon as oceans appeared, they began to dissolve the CO2, and they reached a steady state
with the atmosphere on the short time scale of the order of centuries. Carbonate formation in
the oceans was slower, operating on a time scale of order 102 Ma. On this longer time scale a
carbon cycle became established, but it was not in a steady state – the atmospheric CO2 content
must have declined as the outgassing rate decreased with the reduction in volcanic activity. It
is therefore conceivable that there was always sufficient atmospheric CO2 to prevent a global
freeze but not so much as to cause temperatures to be too high. This rather fine tuning is aided
by the carbonate–silicate cycle (Section 10.1.4).

A higher CO2 content early on could also have helped warm the Earth through the scattering
greenhouse effect by CO2 cloud particles (Section 9.2.4). The low temperatures high in the
atmosphere when the Sun’s luminosity was well below its present value could have led to
extensive CO2 cloud cover. This would have increased the planetary albedo – just what we do
not want. However, if the cloud particles were larger than a few micrometres they would have
scattered IR radiation emitted from below them and enhanced the greenhouse effect to an extent
that more than compensated for the increased albedo.

It is quite possible that the CO2 content of the atmosphere was never sufficient to compensate
for the Sun’s faintness. The shortfall could have been bridged by greenhouse gases that filled
the windows in the CO2 absorption spectrum, such as NH3 or CH4. A further compensation
would have come from the lower albedo of the Earth’s surface, because of smaller land area,
and the shorter day (14 hours) that reduced the night-time during which ice could form – these
two factors together could have raised the GMST by about 5 K.

NH3 or CH4 are rapidly broken up by solar UV radiation so we need either a steady resupply,
or protection. The icy planetesimals that contributed to the late veneer could have been the
early resupplier of both gases. Subsequently, if methanogens became the dominant form of
life, they could have taken over as the main resupplier of CH4. For protection from UV we
also look to CH4. It would be photodissociated in the upper atmosphere to yield a fine dust
of solid hydrocarbons that could shield NH3. The amounts of NH3 and CH4 in the atmosphere
would have declined as the atmosphere became more oxidising. This could have been due to
the descent of metals and sulphides into the Earth’s core, because of their high density. Models
show that NH3 and CH4 could have warmed the Earth significantly until about 3800 Ma ago,
and perhaps for a few hundred million years later, by which time the solar luminosity had risen.
The early presence of NH3 and CH4 would have facilitated the synthesis of the huge organic
molecules that life is based on, notably proteins, RNA, and DNA.

The occurrence of ice ages (Section 10.1.4) shows that the fine tuning that is needed to keep the
Earth’s surface temperature fairly constant as the solar luminosity rose has not been perfect. It is
nevertheless impressive, and this has led to the suggestion by the British chemist James Ephraim
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Lovelock that the biosphere (unconsciously) took an active part in the control. The cumulative
mass of all organisms that have ever lived is at least an appreciable fraction of the Earth’s total
mass! Therefore, a significant effect is not out of the question, though this does not of itself
indicate that the effect has been stabilising. The general notion of active biospheric control that
tends to preserve optimum conditions for the biosphere is called the Gaia hypothesis. One of
many ways in which it could operate is through the biogenic release of CH4, and the release
and uptake of CO2.

The biosphere has certainly had a profound effect on atmospheric composition. You saw in
Section 10.1.2 that it sustains almost the whole O2 and N2 content of the atmosphere, and that
is has promoted the removal of CO2. Let us look more closely at oxygen, and not just at the
biosphere’s role, though that is where we start.

The history of oxygen in the Earth’s atmosphere

When did the biosphere become active? We know that by about 3850 Ma ago simple single
cells probably existed on Earth and that at about the same time an early form of photosynthesis
was probably operating. By no later than 3400 Ma ago photosynthesis that generated O2 existed,
and this soon overtook the photodissociation of water as the main source of O2.
� Why has photodissociation always been a rather weak source of O2?
Most of the water has been in the oceans, beyond the reach of solar UV radiation.

At first the O2 from photosynthesis was almost entirely consumed by the oxidation of less
than fully oxidised substances – rocks, volcanic gases, and biological materials. Rocks older
than about 2300 Ma have sufficient pyrite �FeS2�, uraninite �UO2�, and siderite �FeCO3� to
indicate that the O2 partial pressure must have been less than about 20 Pa, otherwise oxidation
would have largely destroyed these minerals. A lower limit of about 10−6 Pa has been suggested
by some scientists, on the basis of the abundance of Fe3O4, one of the more oxygen-rich iron
oxides. Photodissociation of water alone might have yielded a partial pressure of O2 of around
5 × 10−4 Pa. The present value is 21 000 Pa.

Further evidence for a low partial pressure comes from the decline in the formation of
banded iron formations (BIFs) after 2400 Ma ago. BIFs are widely distributed, finely layered
sedimentary rocks that consist of dark layers with up to 30% iron alternating with lighter
layers of silica. The iron-rich layers require the iron to have been dissolved in oceans, from
which they precipitated. This is not possible unless the oxygen content of those ancient oceans
was far smaller than it is today. At about 2000 Ma ago redbeds appeared. These are formed
when iron is weathered out of rocks in the presence of oxygen, not necessarily as much as in
the atmosphere today, but significantly more than before 2000 Ma. BIFs enjoyed a resurgence
from around 2000 Ma to about 1800 Ma, indicating a temporary and modest decrease in atmo-
spheric oxygen, presumably due to a decrease in the organic carbon burial rate, for reasons
unknown.

About 2000 Ma ago a type of cell began to spread upon which all of the higher forms of
life is based. This is the eukaryotic cell, which has a nucleus and other internal structures, in
contrast to the less structured prokaryotic cells that had earlier been the only kind. Even though
all life was still in the sea (and almost entirely single celled) we can estimate the atmospheric
O2 that would have been needed to sustain the minimum O2 content of water for eukaryotic
cells to exist, and this corresponds to about 102 Pa of atmospheric O2.
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From this and other evidence it is clear that after about 2400 Ma, O2 levels rose hugely. In
fact, they have never since been less than about 100 Pa, and in the past 1600 Ma never less than
about 2000 Pa. What caused the increase from 2400 Ma?

One possibility is that the decline in tectonic activity as the Earth aged reduced the rate of
appearance of under-oxidised substances at the surface, or (perhaps additionally) there was a
change in composition, with a decline in the proportion coming from the mantle, which is a
source of under-oxidised substances. It could be that a change in the composition of volcanic
gases sufficed, with a reduction in oxygen devouring gases such as H2.

An alternative view is that oxygenic cyanobacteria, though present much earlier, flourished,
perhaps due to an increase in organic nutrients in the oceans, as mentioned in Section 10.1.4.
Another possible biogenic cause is that methanogens captured volcanic H2 to make CH4, thus
reducing the removal of O2 by H2 to make water. The CH4 was dissociated in the upper
atmosphere, and the hydrogen escaped.

For about 1000 Ma after this rise in O2, the eukaryotes did not evolve much. Evidence from
sulphur isotopes is consistent with anoxic oceans at all but shallow depths, which would have
restricted the living space available, and thus retarded evolution.

From 800–600 Ma ago, sulphur isotopes (and other evidence) indicate a rise in O2 from about
2000 Pa to about 18 000 Pa, not far short of the present value of 21000 Pa. This could have been
caused by an increased rate of burial of organic carbon, itself perhaps a result of higher rates
of deposition of sediments due to the continental break-up known to be occurring at that time.
Another factor could have been the growth in biomass, e.g. with the increase in marine plants
during this period. This, in turn, could have been the result of the ending of the 750–600 Ma
ice age (Section 10.1.4) or the increased availability of nutrients, or both factors. At present the
cause(s) of the rise in atmospheric O2 at this time is very uncertain.

There is yet other geological and biological evidence. The totality of evidence leads to the
inferred record of the partial pressure of atmospheric oxygen in Figure 10.15. There are large
uncertainties, particularly in the pre-Cambrian, i.e. before about 570 Ma ago, where the data are
more qualitative than quantitative. The onset of the Cambrian is marked by the emergence of
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Figure 10.15 The build-up of atmospheric oxygen on Earth.
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life with hard shells (e.g. trilobites) that have well-preserved fossils, and consequently provide
good evidence for sea temperatures.

10.6.3 Mars

The Noachian

The big question concerning atmospheric evolution and climate change on Mars is posed by the
abundant evidence outlined in Section 7.3.6 that liquid water was stable at the surface during
the Noachian epoch, timed to end at the end of the heavy bombardment, about 3700 Ma ago at
Mars. This requires temperatures over much of the surface to exceed 273 K, and pressures to
exceed 610 Pa. The pressure requirement is not difficult to meet. The temperature requirement
is a much bigger problem. At a time of about 75% the present solar luminosity this requires an
enhanced greenhouse effect just as in the case of the Earth, but the requirements for Mars are
more severe because of its greater distance from the Sun.

Various atmospheric models have attempted to produce sufficient warming with a CO2–H2O
atmosphere, with different amounts of cloud, with or without a contribution to the greenhouse
effect from scattering by CO2 cloud particles. This scattering contribution is now thought to have
been slight. Also, the most optimistic models of outgassing in these early times, consistent with
the composition of Martian meteorites, give column masses no more than about 1�5×104 kg m−2,
which, though about 100 times the present column mass, no longer seems enough. But even
if huge quantities of CO2 and water vapour were present, there would still be gaps in the IR
absorption spectrum, to the extent that a CO2–H2O atmosphere would never suffice.
� So, how could sufficient warming have occurred?
One way is if the powerful greenhouse gases NH3 and CH4 had been present. Each of these
gases fills some of the IR absorption gaps. Much of them could have been derived from icy
planetesimals. Sufficient impacts could have been sustained to the end of the Noachian. Also,
enhanced volcanic activity could have provided significant amounts. What have we found?

NH3 has not yet been detected, and the upper limit is a number fraction of only about 5 parts
per billion. It would be rapidly destroyed on the surface today, so would need to be emitted at
a prodigious rate to be discovered. We thus have no evidence that NH3 was ever a significant
component of the Martian atmosphere. The case of CH4 is more encouraging.

CH4 was first definitely detected on Mars in 1999, by Earth-based telescopes. Since then
there have been other detections, notably by the Fourier IR spectrometer on Mars Express,
which obtained a number fraction of 10 ± 5 parts per billion (and water vapour) above three
equatorial regions that have subsurface ice. All this CH4 would be destroyed by solar radiation
in only about 600 years, and so there must be a source. Comets and meteorites are insufficient,
so a subsurface source is needed, which could be geological, even biological! Whether there
was enough atmospheric CH4 in the Noachian for the greenhouse effect to raise the temperature
above 273 K is unknown.

If not, there are other ways to achieve a warm, wet Noachian. One is through major impacts
that vaporised subsurface ice, and delivered their own water content, to form clouds that rain out
in about 10 years at a rate of 1–2 m per year. Longer lasting is surface warmth from hot ejecta
that could have released subsurface water for hundreds of years. There are about 30 large impact
craters with ages exceeding 3500 Ma – the ‘smoking guns’. Another way is via major volcanic
episodes that release water vapour from the magma. All in all, there are plausible models for a
warm Noachian.
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After the Noachian

But gradually the atmosphere became less massive. CO2, a greenhouse gas, was removed
through impact erosion, adsorption into the regolith with no plate tectonics to restore it, and
the formation of sedimentary carbonates. Removal by carbonates would have been particularly
rapid if there were large open bodies of liquid water and if there was no chemical inhibition. It
should be noted, however, that very little carbonate has been detected on Mars (Section 7.3.6),
perhaps because of high acidity in the water, though ‘dry’ formation of carbonates can occur
if water vapour is present. Volcanic activity returned CO2 to the atmosphere, but because of
Mars’s small size and consequent rapid interior cooling, volcanic activity declined steeply early
in Mars’s history. With CO2 removal still occurring, its atmospheric mass declined. Any NH3

and CH4 content was eliminated as these gases were destroyed by solar UV radiation faster than
the declining rate of supply by volcanic activity, The atmosphere cooled and so became dry, the
water joining the surface and subsurface deposits. The clement conditions came to an end.

Since the end of the Noachian, impact erosion has been slight, but CO2 has continued to be
removed from the atmosphere by regolith adsorption and by dry carbonate formation.

What of the other volatiles? For water, one view is that since early in the Noachian the
equivalent of a global depth of at most about 100 m of liquid water has been outgassed, and
perhaps a lot less. A fraction of this water has been lost by photodissociation and the escape
of hydrogen, though much of it has been protected in some surface or regolith reservoir. The
fraction lost has been estimated from the Martian atmospheric isotope ratio 2H/1H (or D/1H).
This is about five times greater than that on the Earth, indicating that Mars might have lost more
than half of its initial endowment of water, though interpretation of the Martian data is fraught
with uncertainty.

Chemical escape has deprived Mars of far more N2 than is presently in its atmosphere, and
even if there ever were open bodies of water on Mars they were too short lived to trap much
nitrogen (as nitrates), otherwise the observed atmospheric enrichment of 15N over 14N would
not be observed today, as discussed in Section 10.4.

10.6.4 Life on Mars?

It seems probable that during the first 1000 Ma or so after the planet’s formation, liquid water
and the associated clement conditions existed on its surface even if only in discrete episodes.
Life probably got going on Earth by about 50 Ma after the end of the heavy bombardment, so
the question arises of whether life arose on Mars, and whether it survives today.

This latter question was put to the test in 1976 when Vikings 1 and 2 landed on Mars and
made surface observations for several years. Though three of the experiments were designed
to detect life, none of them gave unequivocally positive results. Nor was there any evidence
of organisms in the surface images. At the other extreme, organic compounds (which in any
case can have a non-biological origin) were found to be present in only very small quantities.
Nevertheless it is just possible that in some warmer and perhaps wetter regions life clings on
today. As to whether life once existed but is now extinct, many astrobiologists are optimistic,
and therefore a search for Martian fossils is a high priority for future missions. One Martian
meteorite, ALH84001, was once thought to display evidence of an early Martian biosphere, but
most scientists now believe that the evidence is not there.

The discovery of atmospheric CH4 in 1999 has raised the possibility that it has a biological
source, analogous to methanogens of Earth. The subsequent detection of CH4 in association
with water above three regions known to by icy raises hopes still further. Moreover, traces of
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atmospheric H2 have also been detected. Though this could come from the photodissociation of
water, some at least could have an underground origin where it could provide an energy source
for methanogens in their production of CH4. Methanogens exist in the Earth’s crust. Could they
exist today on Mars, at depths where water is liquid?

Question 10.9

Suppose that the solar luminosity increased considerably. Describe the possible consequences
for the atmospheres of the Earth and Mars.

10.7 Mercury and the Moon

Mercury and the Moon have extremely tenuous atmospheres, with column masses of the order
of 10−10 kg m−2. On Mercury, O, H, and He were detected by Mariner 10, and Na, K, and
Ca by observations from the Earth. Other substances are expected to be there, presumably
below present instrumental limits. On the Moon H, He, and Ne dominate. The atmospheres are
entirely exospheric. Figure 9.12 shows that thermal escape is not entirely to blame. As well as
thermal escape, substantial proportions of such tenuous atmospheres are also lost through the
UV ionisation of atoms and molecules, the ions then being carried off by the magnetic field
in the solar wind. The solar wind is also a source of atmosphere, partly by supplying ions and
atoms for capture, and partly by ejecting particles from the surface. UV radiation also ejects
surface particles. Other sources are feeble outgassing, and the capture of volatile-rich bodies
such as comets and CCs. In each case the atmospheric turnover is rapid.

The main source of the H and He on Mercury is almost certainly directly from the solar
wind. For Na and K the surface must also be a source, the material being ejected by solar UV
radiation and by micrometeorite impact vaporisation. If Mercury was initially well endowed
with an atmosphere, and if this survived impact erosion, then Mercury’s proximity to the Sun
would have ensured that it developed a large greenhouse effect. Its low escape speed and the
high UV radiation levels and intense solar winds so close to the Sun would soon have stripped
it of all atmosphere and surface volatiles, leaving it with the tenuous atmosphere we see today.
The surface of Mercury shows it to have been volcanically rather inactive, and this is because
of its small size and rapid cooling. It might therefore be only partially outgassed, in which
case juvenile volatiles might be appearing on its surface today – perhaps contributing to the ice
deposits near the poles (Section 7.2.3). On the other hand, if much of Mercury’s mantle was
stripped by a giant impact (Section 5.1.3), the remaining mantle might be almost free of volatiles,
in which case Mercury has never had an appreciable atmosphere. There might, however, still
be a contribution from the interior to Mercury’s atmosphere.

It is likely that the lunar interior has no atmosphere in waiting, and never has had.
� Why is this?
It is thought to have been created almost volatile free by the manner of its birth (Section 5.2.1).
Any late veneer was not retained in the face of the various loss processes, because of the
Moon’s low gravitational field. The present tenuous atmosphere, from the mass spectrometer on
Apollo 17, consists of H, He, and Ne, in roughly equal amounts, plus traces of other substances,
including 40Ar, which is the daughter product of 40K, and thus probably comes from the lunar
interior. Otherwise, the solar wind is the major source, supplemented by micrometeorite impacts
that bring their own volatiles.
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10.8 Icy–Rocky Body Atmospheres

The only icy–rocky bodies with more than negligible atmospheres are Titan, Triton, and Pluto.
Among the icy–rocky bodies these have comparatively high escape speeds (Table 9.1). However,
this cannot be the only factor. The Galilean satellites have comparable escape speeds yet they
all have negligible or extremely tenuous atmospheres.
� What is another factor in determining atmospheric retention?
Temperature must also be considered. Titan, Triton, and Pluto have low surface temperatures
(Table 9.1), a result of the great distance of these bodies from the Sun. Escape is therefore at
a low rate. However, a surface can be too cold, resulting in very low vapour pressures. For
example, in the cases of Europa, Ganymede, and Callisto, the water ice that is so abundant at
their surfaces is too involatile to have a significant vapour pressure even at their comparatively
high surface temperatures. Therefore a further factor is the types of volatile material that have
been available.

10.8.1 Titan

Saturn’s Titan, at 2575 km radius slightly larger than Mercury, has a remarkable atmosphere
with a column mass 11 times that of the Earth. In the lower troposphere it consists of 95%
N2, with nearly 5% CH4, and traces of many other substances. Photochemical hazes screen
the surface from view at visible wavelengths and give an orange tint (Plate 17). The vertical
structure of the atmosphere is shown in Figure 10.16 up to 350 km.

Vertical structure; heating, cooling, and circulation

At the surface of Titan the atmospheric pressure is 1�5 × 105 Pa. GMST is 94 K. Above
the surface there is a troposphere in which the temperature declines with altitude, to the
tropopause at about 42 km. Above this there is a stratosphere, where the temperature increases
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Figure 10.16 The vertical structure of Titan’s atmosphere.
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as altitude increases. The stratosphere continues through the thickest part of the haze layers.
There is then a mesosphere extending well beyond the top of Figure 10.16, and then a
thermosphere. A layered ionosphere peaks lies around 1180 km, and is produced, at least
in its upper half, by galactic cosmic rays. There are layers of haze above the stratosphere
(Plate 17). Changes in these layers since the Voyagers in 1980–1981 could be due to seasonal
changes affecting either photochemistry or atmospheric circulation (the solar ‘year’ on Titan is
30 Earth years).

There is a greenhouse effect due mainly to CH4, with a magnitude of about 21 K. This is partly
offset by the hazes, because they are transparent at mid-IR wavelengths but absorb 90% of the
incident solar radiation. Without hazes the surface temperature would be several degrees higher.
Atmospheric circulation and the massive atmosphere ensure very little temperature variation
across the globe. In spite of the solar ‘day’ on Titan being rather long, 16 days, the diurnal
variation is only about 0.5 K. The main haze layer is very deep and it is this layer that completely
screens the surface from us at visible wavelengths.

The surface temperature is close to methane’s triple point temperature (90.4 K) and so at
the surface CH4 could exist as a solid, liquid, or gas, as shown by the methane phase diagram
in Figure 10.17. If the CH4 number density at the surface is sufficiently high, then the partial
pressure of CH4 will be on the saturation line in Figure 10.17. Any tendency for it to be higher
causes condensation, to form CH4 clouds, and precipitation. This would maintain the partial
pressure close to the saturation value in regions of precipitation. It is the surface temperature
that determines the mass of CH4 in the atmosphere, just as in the case of water in the Earth’s
atmosphere.

The altitude range of the expected CH4 clouds is shown in Figure 10.16, in the troposphere.
Such clouds have been seen from the Cassini spacecraft. In 2005, when it was summer in
the southern hemisphere, there were white, fluffy/billowy clouds in the south polar region,
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which disappeared a few months later as autumn came on. There were more persistent clouds,
wispy, cirrus-like, at 40 �S. If these are related to atmospheric circulation they should move
to about 10 �N by about 2015, following the Sun. Alternatively, these clouds might be due to
cryovolcanism at 40 �S. In this case, the rate of release of CH4 is comparable with that required
to sustain the CH4 content of the atmosphere against photochemical disruption. Elsewhere,
small CH4 clouds are often seen, of order 100 km across. Longer cloud streaks, with lengths of
order 1000 km, are present at a few locations. They seem to originate from particular locations
on the surface, either from where CH4 is released, or from where the wind blows over local
topography.

As noted above, CH4 will precipitate from the clouds. This will fall as rain at the surface. A
variety of other hydrocarbons presumably also precipitate onto the surface, conjuring a vision of
a somewhat murky landscape of water ice and hydrocarbon ices, and hydrocarbon lakes, even
oceans, though observations indicate that CH4 lakes or oceans are not widespread and many are
transitory (Section 8.4.2).

The clouds have also enabled winds to be measured, from which the circulation of the
atmosphere can be deduced. Observations of cloud motions by Cassini have revealed that winds
in the middle and lower troposphere flow west to east, at speeds up to 34 m s−1, as predicted
by circulation models. In the northern polar regions, when it was winter, the winds circulated
around the pole, isolating it from the rest of the atmosphere. This happens on Earth at the South
Pole, when it is winter there. Winds were also measured from the motion of the Huygens Lander
as it descended through the atmosphere. The on-board wind sensor failed, so the motion was
detected from the Earth by radiotelescopes that measured the Doppler shift of the radio signals
from Huygens. There was a decrease in wind speed from about 120 m s−1 at 60 km altitude, to
about 30 m s−1 at 50 km altitude, to zero at about 7 km. There was a reversal in direction in
the lowest kilometre or so, to east to west. This reversal is consistent with the motion of the
longer cloud streaks, also east to west, and with comparable speeds of a few metres per second.
The speeds throughout the troposphere are not very different from those obtained from cloud
motions.

Composition, sources, and sinks

It had long been known that above the thick photochemical haze the atmosphere consists largely
of N2 and CH4 with mere traces of other substances. The gas chromatograph–mass spectrometer
(GCMS) and aerosol collector and pyrolyser (ACP) on board the Huygens Lander showed that
this is also the case below the haze. Below an altitude of about 5 km the GCMS gave 4.7% CH4

by number fraction, which corresponds to a CH4 relative humidity of about 50%. The isotope
ratio 15N/14N shows enrichment in 15N.
� What does this indicate?
It indicates that much of the N2 has escaped. It is estimated that Titan once had 1.6–100 times the
present mass in its atmosphere. The main cause of escape is through bombardment by energetic
particles from Saturn’s magnetosphere.

A rich variety of carbon compounds exists as traces in Titan’s atmosphere, particularly
hydrocarbons (additional to CH4), HCN, and more complex molecules. These come from a series
of chemical reactions that start with the dissociation of N2 and CH4 high in the atmosphere,
caused by solar UV radiation and by energetic electrons from Saturn’s magnetosphere. At the
pressures and temperatures of the atmosphere many of these traces will condense to form solid
or liquid particles, and it is these that constitute the haze layers in Figure 10.16. Typical particle
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sizes are 0�1–0�5 �m. In the particles the ACP found NH3, HCN, and many other species. Not
all of these are condensed directly from the atmosphere. For example, atmospheric NH3 has not
been detected.

Different complex chemistry occurs at the winter pole, where the various atmospheric
constituents are in the dark, in a zone isolated by circumpolar winds. The atmosphere is sinking
at the winter pole so a great variety of organic compounds is carried down to the surface, where
layers must build up. The surface of Titan is thus greatly enriched by its atmosphere.

10.8.2 Triton and Pluto

Triton, the large, 1353 km radius satellite of Neptune, has a tenuous atmosphere consisting
largely of N2, with a few per cent of CH4 and a trace of CO. Other common volatiles would
have extremely low vapour pressures at the 38 K surface temperature measured by Voyager 2
in 1989. It also measured the surface pressure, 1�4 ± 0�1 Pa, corresponding to a column mass of
1�8 kg m−2. Voyager 2 imaged a haze layer about 3 km thick centred at an altitude of about 3 km,
through which the surface was readily seen (Plate 21). N2 ice covers much of the surface, and
there are also ices of CH4, CO, and CO2. With N2 dominating the surface and atmosphere, and
with the expected equilibrium between these two phases, the atmospheric pressure is determined
by the mean surface temperature. At 38 K the pressure of N2 would indeed be around 1.4 Pa.
Because of this equilibrium the surface temperature is the same everywhere to within about 1 K,
through the sublimation of surface frosts on the day side, and their condensation on the night
side, releasing latent heat. The ‘day’ on Triton is 5.88 days – if it were much longer then heat
transport would not be able to equilibrate the temperature, and a really long ‘day’ would result
in complete condensation of the atmosphere on the night side.

In November 1997 Triton occulted a star bright enough to allow further atmospheric investi-
gations, this time from Earth. The atmospheric pressure was determined with low precision, but
lay somewhere in the range 2.0–4.5 Pa, distinctly higher than in 1989. This increase might be
due to the shift in the latitude of the subsolar point, which moved from 45�4 �S in 1989 to 49�6 �S
in 1997, thus increasing the insolation on the south polar region. This could have increased the
sublimation rate of surface frosts if they are non-uniformly distributed, or there could have been
an increase in nitrogen geyser activity (Section 8.4.4). The subsolar point oscillates between
about 50 �N and 50 �S with a period of about 688 years, the outcome of the configuration of the
Neptune–Triton system and the orbital period of Neptune.

The temperature increase corresponding to this rise in pressure, assuming equilibrium, is a
modest 1–2 K. This is because pressure is very sensitive to temperature (as can be seen for
methane in Figure 10.17).

Evidence of winds on Triton was obtained by Voyager 2, which observed the plumes from
the active geysers being swept into streaks. Note that the geysers, predominantly emitting N2,
could sustain the atmosphere against losses to space.

The high orbital inclination of Triton gives rise to huge seasonal changes over the 164 year
orbital period of Neptune and so there is presumably a component of atmospheric circulation
akin to the condensation flow on Mars.

Pluto also has a surface dominated by N2 ice, and in addition there are ices of CH4 and a
trace of CO ice (Section 7.4.1). A stellar occultation in 1988 revealed a very thin, slightly hazy
atmosphere consisting mainly of N2 with some CH4, and presumably some CO. The surface
pressure was about 5 Pa. A surface temperature somewhere near 40 K indicates equilibrium
between surface and atmospheric nitrogen, as on Triton. For the same reason as on Triton, the
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temperature might well be fairly uniform across the surface. Another stellar occultation in 1994
showed a near tripling of atmospheric pressure, though the corresponding rise in temperature is
only about 2 K, as for Triton (again assuming equilibrium). There are several possible causes
of this increase: first, the slight decrease in albedo of Pluto observed in recent years; second, a
frost layer near the North Pole, where it is now spring, might be subliming more rapidly; third,
thermal inertia in the surface ices, 1994 being not long after Pluto’s 1989 perihelion.

Pluto has an eccentric orbit that carries it within the orbit of Neptune for 20 years. Since 1999
it has been further from us than Neptune. At aphelion, in 2113, it will be about 1.7 times further
from the Sun than at perihelion, with a correspondingly far colder surface and an atmosphere
far more tenuous than it is now. As Pluto goes around its orbit the column mass is estimated to
vary over a considerable range.

10.8.3 The Origin and Evolution of the Atmospheres of Icy–Rocky Bodies

Titan

When Voyager 1 in 1980 provided the first direct measurement of the composition of Titan’s
atmosphere, the predominance of nitrogen caused some surprise, though there were theoretical
indications that nitrogen would be present.

There are two possible sources of the copious quantity of N2 in Titan’s atmosphere. First,
when Titan formed in the outer solar nebula, the temperature was so low that N2 molecules were
trapped within the water ice that constituted a large fraction of the icy–rocky planetesimals that
formed Titan.
� What kind of substance is this water-ice–N2 combination?
This is a clathrate. Much of this N2 was released during accretion. The subsequent slight heating
of Titan, tidal or radiogenic, has since released more.

Second, in the cold outer solar nebula, NH3 is expected to be a significant constituent of the
icy planetesimals. At the low surface temperature of Titan, NH3 has a very low vapour pressure,
which is why, if it is still present in the ices, it has not been detected in the atmosphere. However,
via a series of chemical and photochemical reactions, atmospheric NH3 can be converted into N2

and H2. The H2 will suffer thermal escape, which explains the small quantity in the atmosphere,
but the nitrogen is retained. Operating over the 4600 Ma history of Titan, this can account for
some of the nitrogen. It can only account for most or all of it if the surface of Titan was 50 K or
so warmer in the past. This condition is necessary to prevent the condensation of an intermediate
product in the reaction sequence, namely hydrazine (HNNH). If hydrazine condenses then it
cannot undergo a crucial photochemical reaction and the sequence halts. It is plausible that
the surface was sufficiently warm to prevent condensation, through greater tidal or radiogenic
heating in the past. Isotope data favour this second source as the major one, but the matter is
far from settled.

The origin of CH4 is better understood. It is readily photodissociated in the atmosphere, with
escape of hydrogen and some carbon. However, there is no enrichment of 13C over 12C so there
needs to be an active source of CH4. Argon and carbon isotopes indicate that it comes from
geological activity, and not, for example, from biospheric activity, which would enrich 12C over
13C in the CH4, which is not the case. There is evidence from certain CH4 clouds (see below),
and from surface features that might be cryovolcanoes, that cryovolcanism could sustain the
atmospheric CH4. This could be driven by tidal heating. As well as gaseous CH4, there would
be ‘lava’ of liquid water, liquid NH3, and other icy materials.
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The whole family of icy–rocky body atmospheres

Among Pluto and the large satellites of the outer Solar System you have seen that it is only Titan
that has a massive atmosphere. Triton and Pluto have tenuous atmospheres, and the remaining
large satellites have negligible atmospheres. The explanation starts with the sort of ices that
could have condensed in the outer Solar System during its formation, and in the sort of gases
that the ices could have trapped. At Jupiter’s distance from the Sun the nebular temperature
was so high that the icy planetesimals contained water ice as the only significant volatile, with
only small quantities of carbon-rich and nitrogen-rich ices. Little gas would have been trapped.
The present surface temperatures of Europa, Ganymede, and Callisto are not sufficiently high
to generate a significant atmosphere from the relatively involatile water ice. Io probably formed
too close to Jupiter to have ever had much water ice, but if it did, tidal heating would have
driven it off.

From Saturn outwards the more volatile ices of CH4 and NH3 could condense in the plan-
etesimals, and at the lower temperatures, trapping of significant quantities of gases like N2 and
CO was possible. Titan is sufficiently warm for a massive atmosphere to have been derived
from these ices. Further out, Triton and Pluto are too cold for such a massive atmosphere –
the N2 and CH4 are largely condensed on the surface, the less volatile substances even more
so. Only small quantities of inert gases would have been trapped in the planetesimals, so it is
unsurprising that these have not yet been detected.
� At the low nebular pressures around where Pluto formed, in what gases would most of the

nitrogen and carbon occur?
In Section 7.4.1 you learned that most nitrogen would be in N2 rather than NH3, and most
carbon would be in CO rather than CH4 or CO2. This is consistent with the atmospheric and
surface compositions of Pluto (and also of Triton, which might have been captured from the
Pluto region (Section 2.3.1)).

In Section 10.5.2 you were reminded that planetesimals were not confined to the zone in which
they formed, which raises the question of why the Galilean satellites did not acquire atmospheres
similar to that of Titan, as a late veneer. A possible explanation is the high speeds acquired by
planetesimals as they fall towards the Sun, made even higher as they subsequently fall towards
Jupiter. The impacts would then be too violent for volatiles to be retained. Moreover, if the
Galileans already had atmospheres, this is one way in which they could have been removed –
by impact erosion.

Question 10.10

Suppose that Titan and Triton swapped places today! Discuss whether the atmosphere of Titan
would become like that of Triton, and vice versa.

10.9 Summary of Chapter 10

Tables 9.1 and 9.2 and Figure 10.12 present the basic properties of the atmospheres discussed
in this chapter.

The Earth’s atmosphere today differs from that of Mars and Venus in that it consists largely
of O2 and N2 rather than CO2. This is largely a consequence of the action of the oceans and
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the biosphere. The abundance of O2 has led to the unique feature of a stratospheric ‘bulge’ in
temperature, caused by the absorption of solar UV radiation by ozone �O3�, derived from O2.

The greenhouse effect is small on Mars, because of its thin, dry atmosphere. It is larger on
Earth, because of the greater quantity of atmospheric water vapour, supplemented by CO2 (and
traces of other greenhouse gases). On Venus the greenhouse effect is very large, sustained by a
huge mass of CO2, with the assistance of far smaller quantities of water vapour, sulphur dioxide,
and the sulphuric acid droplets that constitute the planet-wide cloud.

The circulation of the Earth’s atmosphere is dominated in the tropics by one Hadley cell per
hemisphere, by planetary waves at mid latitudes, and by a cell in each polar region. The Coriolis
effect limits the extension of the Hadley cells, and also deflects the winds. On slower rotating
Venus there is just one Hadley cell per hemisphere in the lower troposphere, stretching from
equator to pole. Mars, except near the equinoxes, when its circulation resembles Earth’s, has a
single Hadley cell stretching from the subsolar latitude to the winter hemisphere. There is also
condensation flow, and a thermal tide stronger than that on the Earth and Venus.

The present volatile inventories of the Earth, Mars, and Venus show substantial differences.
It is not possible to deduce their initial volatile inventories by adjusting the present inventories
using loss processes that are still operating. This is because the effects of blow-off, impact
erosion, and hydrodynamic escape, all of which are thought to have occurred early in Solar
System history, are very uncertain and yet caused huge losses. A consistent picture is one in
which there is rapid loss of volatiles from embryos and planetesimals during planet formation,
followed by outgassing due to core formation. Much of these early atmospheres were then lost,
and volatiles subsequently reached the surfaces through further outgassing and through collisions
with a variety of volatile-rich planetesimals.

The three terrestrial atmospheres have evolved quite differently from each other largely
because of their different distances from the Sun. On Venus the volatiles that have been retained
are largely in the correspondingly massive atmosphere, except for water, most of which has been
photodissociated, with loss of hydrogen to space and incorporation of oxygen into rocks. On the
Earth, the oceans and the biosphere have ‘locked’ most of the carbon into carbonates, and about
half the nitrogen into nitrates. Photosynthesis has resulted in a build-up of atmospheric oxygen
over the last 2000 Ma. Mars probably has much of its volatiles in a variety of near-surface
deposits, because of its greater distance from the Sun. Martian volatiles have also been lost to
space, through thermal and chemical escape.

The increase in solar luminosity, and the greenhouse effect as determined by evolving
atmospheric compositions, have been of enormous importance in the evolution of the volatile
inventories on Venus, the Earth, and Mars, and consequently in their long-term climate changes
too. In the case of the Earth there is much concern over climate change that seems to be a result
of human activities, particularly those that increase the greenhouse effect.

The smaller terrestrial bodies – Mercury and the Moon – are devoid of significant atmospheres
because of their low escape speeds and proximity to the Sun, and in the case of the Moon, the
low volatile content of the material from which it formed.

Titan, Triton, and Pluto have atmospheres determined by the types of icy materials available
to them when they formed, and their surface temperatures. At Titan, ices of CH4 and NH3 are
expected in addition to the water ice that can also condense closer to the Sun. The water ice
could also contain N2, as a clathrate. Titan’s atmosphere is dominated by N2 with a few per cent
of CH4, but there is uncertainty about whether the nitrogen was delivered predominantly as
N2 or as NH3. At Triton and Pluto, N2 and CO would have been the dominant repositories of
nitrogen and carbon, and this is reflected in their atmospheric and surface compositions. The
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atmosphere of Titan is more massive than that of Triton and Pluto because it is closer to the
Sun and hence warmer.

Other large icy–rocky bodies, and Io, lack significant atmospheres because of the lack of
volatile materials that would be gaseous at their surface temperatures. Small bodies have insuf-
ficient gravity to retain atmospheres.



11 Atmospheres of the
Giant Planets

With Jupiter, Saturn, Uranus, and Neptune we come to four planets where, as Table 9.1 shows,
the atmospheres are dominated by molecular hydrogen �H2� and atomic helium (He), and
not by water and substances rich in carbon and nitrogen. Moreover, for these giant planets
the distinction between the atmosphere and the interior is blurred. This is apparent from the
interior models discussed in Section 5.3. In Jupiter and Saturn the atmospheres blend seam-
lessly into the molecular hydrogen envelope, with no surface separating them. In Uranus and
Neptune the atmospheres acquire high densities, though not terrestrial liquid densities, by
the time we reach a fairly sharp transition to a liquid mantle consisting of icy and rocky
materials.

Because of cloud formation, but additionally because of the huge depths of the atmospheres,
variations of composition with depth are to be expected. In Table 9.1 the compositions of
the giant planet atmospheres are given for the atmosphere above that at which the pressure
is a few times 105 Pa, which is well into the troposphere. These are number fractions. In the
case of the hydrogen-dominated giants it is also common to specify the composition as the
number of molecules of each constituent in a volume divided by the number of hydrogen
molecules �H2� in the same volume. This is the mixing ratio of the constituent, in this case
with respect to H2. Table 11.1 gives the mixing ratios corresponding to the values in Table 9.1
for He and CH4, plus values for NH3 and H2O. Several trace constituents have not been
listed.

These values have been obtained by a variety of techniques, including visible reflection, and
emission at IR and micro-wavelengths. The emission includes radiation from beneath cloud
and haze that obscures visible radiation. After early visits by Pioneer spacecraft in the 1970s
(Table 4.1), Jupiter and Saturn were visited by the Voyagers, and Uranus and Neptune by
Voyager 2. Since then, Jupiter has been orbited by Galileo, which also delivered a probe
into the atmosphere in December 1995. Cassini flew past Jupiter around New Year 2001, and
since July 2004 it has been orbiting Saturn. From Earth, large optical and radiotelescopes have
been used.

Though there are similarities between the four atmospheres, there are also differences, and
consequently the atmospheres can be grouped into two pairs, Jupiter and Saturn forming one
pair, Uranus and Neptune the other. The atmospheres within each pair resemble each other more
closely than they resemble the atmospheres in the other pair. Even so, Saturn is not Jupiter’s
twin, and Neptune is not Uranus’s twin, as you will see.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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Table 11.1 The atmospheric composition of the giant planets,
given as mixing ratios with respect to H2

Speciesa Jupiter Saturn Uranus Neptune

H2 1 1 1 1
He 0.156 0.13 0�18 0�18
CH4 2�1 × 10−3 5�1 × 10−3 0�019 0�027
NH3

b 7�1 × 10−4 < 7�7 × 10−5 — —
H2Ob < 6 × 10−4 — — —

a Only abundant species are shown, as measured in the upper molecular
hydrogen envelopes at depths where the pressures are a few times
105Pa.

b A dash indicates that no useful upper limit is available.

11.1 The Atmospheres of Jupiter and Saturn Today

Plates 11 and 16 show the highly coloured, richly structured cloud tops of Jupiter and Saturn, at
once strikingly different from the planetary bodies that we have so far considered. The patterns
are more distinct on Jupiter partly because the overlying haze there is thinner (because of the
higher temperatures), and partly because on Saturn the lower gravity has caused the upper cloud
deck to be spread over a greater range of altitudes, and it is consequently less sharply defined.

11.1.1 Vertical Structure

Figure 11.1 shows the vertical structure of the atmospheres of Jupiter and Saturn, obtained from
many observations. For both planets the lapse rate up to the tropopause is close to the adiabatic
value for the mix of gases present, and so the atmosphere is probably convective. The energy
source is mainly heat welling up from the interior, supplemented among the clouds by the
absorption of solar radiation. In the mesospheres and thermospheres there is no convection, and
the lapse rate is determined by radiative transfer between the different altitudes, by radiation to
space, and by the absorption of solar radiation. The generally lower temperatures for Saturn (at
a given pressure) are due to the greater distance of Saturn from the Sun and the lower heat flux
from its interior. The Jovian exosphere is particularly hot, perhaps because of atmospheric waves
travelling upwards, or bombardment by magnetospheric electrons, or a reduction in methane
content – methane promotes radiative cooling.

For each planet, three layers of cloud are shown in Figure 11.1, plus some layers of haze. In
each case the uppermost cloud layer consists of NH3 ice particles that form cirrus-like sheets.
This layer is readily observable, but it is not unbroken. On Jupiter it has bands where it is very
thin, called belts, which appear dark at visible wavelengths, in contrast to the brighter bands
where it is thick, forming zones – see Plate 11. In polar regions the band structure is absent,
and the NH3 clouds are patchy. Plate 16 shows a comparable belt structure on Saturn. At lower
altitudes on both planets there is thought to be a layer of ammonium hydrosulphide �NH4SH�
cloud, perhaps mixed with ammonium hydroxide �NH4OH�. The NH4SH is formed from NH3

and H2S – the latter has been detected as a trace in the atmosphere. Lower still a cloud layer of
water is thought to exist. In all three layers the cloud particles would be solid.

Cloud formation was outlined in Section 9.2.3.
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Figure 11.1 The vertical structure of the atmospheres of Jupiter and Saturn.

� Try to recall the essential features of the process.
As altitude increases the partial pressure of each atmospheric gas decreases, but in the troposphere
the temperature decreases too. If, for any constituent, the partial pressure and temperature meet
the saturation line in the phase diagram of the constituent then the constituent can condense,
either as ice crystals or as liquid droplets, depending on the temperature. The lowest altitude
at which this occurs will be at the base of the clouds. The higher the partial pressure of a
constituent in the atmosphere below the cloud base, the lower the altitude of the cloud base
will be.

Jupiter

Much of the general picture in Figure 11.1 was for a long time based more on modelling than
on measurement. Though the earlier spacecraft provided valuable data, it was IR measurements
from the Galileo Orbiter that played a large part in confirming the general picture, and in adding
detail, such as the altitudes of the various deeper cloud layers. It was the orbiter that first
confirmed that Jupiter’s upper cloud layer consisted of NH3 ice particles.

The Galileo probe returned data from an altitude range of 150 km, over which the atmospheric
pressure increased from 0�4 × 105 Pa to 22 × 105 Pa. It thus held the promise of the direct
sampling of cloud particles at accurately measured altitudes. But it went through an almost
cloud-free hole, called a hot spot. At hot spots the Jovian atmosphere is rather clear, allowing
IR radiation to escape from warm lower levels. In spite of this bad luck, the probe detected a
patchy cloud layer with a base at about 0�6 × 105 Pa and a very tenuous layer with a base at
about 1�5 × 105 Pa. An increase in opacity below 9 × 105 Pa might have been the thin upper
reaches of a third cloud layer. The composition of the particles in these layers was not measured
by the probe, but the highest level cloud is presumed to be the NH3 cloud. The very tenuous
layer could be the NH4SH cloud – the probe’s mass spectrometer detected sufficient NH3 and
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sulphur compounds in the gas in this region to make NH4SH particles. If there was a third layer
then it might have been H2O. The Galileo Orbiter, with its solid state imager (SSI) and near-IR
mapping spectrometer (NIMS), detected patchy clouds at 4 × 105 Pa near the edges of hot spots.
These were probably clouds of water ice.

Figure 11.1 also shows haze layers. In the mesosphere there is a thin brown haze, the result
of solar UV radiation and aurorae that dissociates CH4. Recombination produces hydrocarbon
molecules larger than CH4, giving particles with an overall brown tint. In the upper troposphere
there is a thicker brown haze, possibly consisting of particles settling from the mesosphere,
mixed with particles from below. The haze reaches the NH3 clouds, so NH3 particles could
readily be delivered upwards by convection. There might also be phosphine �PH3� particles in
this lower haze. The cloud is so thin in the belts and in dark streaks that the brown haze has
been observed in near-IR and red wavelengths down to a thin cloud layer at about 0�9 × 105 Pa,
presumably NH4SH, below which there is a visually dark, and therefore fairly clear, atmosphere.

In 1994, before the Galileo spacecraft reached Jupiter, the fragmented Comet Shoemaker–
Levy 9 plunged into the Jovian atmosphere. Unfortunately, less has been learned than had been
hoped, in large part because it is difficult to distinguish between comet material and Jovian
material. However, gases were observed leaving Jupiter at greater than the escape speed, so the
impact did teach us something about impact erosion.

Saturn

Until Cassini arrived in 2004, Saturn was not nearly as well observed as Jupiter. Therefore,
the compositions of the clouds and the altitudes of the cloud bases had been inferred from the
measured temperatures and pressures at each altitude, and from atmospheric composition. With
Cassini’s arrival the situation improved, but there are still large gaps in our data.

As for Jupiter, the uppermost cloud consists of NH3 ice particles. It is readily observable,
though the overlying haze is deeper than on Jupiter and so features at the cloud surface are less
distinct. Cassini’s visual and IR mapping spectrometer (VIMS), observing at about 5 �m, where
the obscuration by higher level hazes and clouds is largely overcome, also saw clouds deeper
down, about 30 km beneath the NH3 clouds. At this wavelength they were seen in silhouette
against the IR radiation from Saturn’s hot interior. Many of the clouds were isolated, and took
a variety of forms. The composition of these clouds was not measurable, but it is presumed to
be either NH4SH or H2O.

Cassini also saw dozens of planet-girdling lanes of clouds at comparable depths. These are
not the bands seen at higher level in the NH3 clouds (Plate 16), but deeper, narrower, and more
numerous. Many of them connect with what appear to be convective cells.

11.1.2 Composition

Hydrogen and helium

Table 11.1 gives the mixing ratios at depths down to a few times 105 Pa, which is well into
the homospheres. H2 is readily detected, but even though He is a substantial constituent it
has not been easy to establish its quantity. This is because its strong spectral signatures are
at UV wavelengths. The Earth’s atmosphere is opaque at such wavelengths, and in any case
the UV signatures of He are obscured by the UV signatures of H2. Spacecraft have detected
He spectrally in the atmospheres of Jupiter and Saturn, but only above the homopause, where
the mixing ratio is not the same as in the homosphere. Then, in 1995, the He mixing ratio for
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Jupiter was obtained by direct sampling of the homosphere by the Galileo probe, and it is this
value that is given in Table 11.1. Up until then, the quantities of He in the homosphere had
been obtained for Jupiter only by indirect techniques. This is still the case for Saturn and the
other giants.

In one indirect technique the total pressure of the atmosphere is obtained from the collisional
broadening (Section 9.1) of the IR spectral lines of H2. It is assumed that, except for H2,
the atmosphere contains little else except atomic helium (He). Thus, the partial pressure of
He is assumed to be the difference between the measured total pressure and the measured
partial pressure contributed by H2 (and any other measured substances, notably CH4). In another
indirect technique, data from radio occultation have been combined with IR measurements to
obtain the mean molecular mass of the atmosphere. On the assumption that the atmosphere is
dominated by H2 and He, the mixing ratio of He is then calculated. Because both techniques
use IR and radio wavelengths at which the giant planet atmospheres are relatively transparent,
the He content has been determined to some way below the uppermost cloud layer, to where
the pressure is several times 105 Pa.

H2 and He do not condense in the giant atmospheres, nor are they significantly depleted by
chemical reactions. Therefore the values in Table 11.1 apply to great depths. In the case of
Jupiter and Saturn the values probably apply throughout the molecular hydrogen �H2� envelope
down to the metallic hydrogen interface, deep in the interior. This is because the envelope is
certainly fully convective. Models indicate, however, that the He mixing ratios in Table 11.1
are lower now than in the past because of the downward settling of He in the metallic hydrogen
mantle – this depletes the upper mantle in He which in turn depletes the envelope. Models of
the evolution of Jupiter and Saturn outlined in Section 5.3.1 suggest that the depletion should
be greater in Saturn.
� Do the values in Table 11.1 bear this out?
If Saturn and Jupiter started out with similar mixing ratios of helium, then today we would
expect the mixing ratio in the atmosphere of Saturn to be less, and this is exactly what we find,
as Table 11.1 shows. Table 11.2 gives the present-day He content of the molecular envelopes
and metallic hydrogen mantles, as mass fractions. (These values were quoted in Section 5.3.1).
The envelope values are those for the observable troposphere, and the mantle fractions are from
models.

Other substances

With the other atmospheric constituents we have to be aware of the possibility of strong
compositional variations with altitude. That the values in Table 11.1 apply at a level well into
the homosphere is no guarantee against this.

Table 11.2 Mass fractions of helium in Jupiter and Saturn

Mass fraction Jupiter
envelope

Jupiter
mantle

Saturn
envelope

Saturn
mantle

Helium (Y) 0.238 ∼ 0�27 ∼ 0�20 ∼ 0�30

The division between the envelope and mantle are for the present time.
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� Why not?
In a homosphere, by definition, there is sufficient mixing to prevent gases from separating. This
does not rule out separation through condensation. Condensation will lead to the formation of
cloud and haze. In the troposphere convection will carry the cloud particles above the cloud
base, but this will only partially offset the depletion. Moreover the gas phase will still be heavily
depleted, and it is the gas phase that many compositional detection methods sense. Another
cause of altitude variation is chemical reactions within the atmosphere. Above the clouds it is
photochemical reactions driven by solar UV radiation that are important, giving rise to layers
of photochemical smogs consisting largely of hydrocarbons that are much scarcer lower down.
The ozone layer in the Earth’s atmosphere is another example of a photochemical product.

Table 11.1 shows that in the upper molecular hydrogen envelopes the next most abundant
atmospheric constituents after H2 and He are (in order) CH4� NH3� H2O. To what extent do
the mixing ratios of these compounds represent the whole molecular hydrogen envelope?

CH4, the main repository of carbon, does not condense anywhere in the atmospheres of
Jupiter and Saturn, nor is it significantly depleted by photochemical reactions. There is, however,
a significant chemical conversion very deep in the molecular hydrogen envelope, where the
temperatures exceed about 1200 K. Models show that a proportion of the CH4 is converted to
CO via the reaction

CH4 + H2O → CO + 3H2 (11.1)

Evidence that this occurs is the detected trace of CO, presumably brought up by convection.
But even if a significant fraction of CH4 has been converted to CO at these depths, the C/H2

ratio for the whole envelope must be almost exactly equal to the measured CH4 fraction in its
upper reaches. This is partly because it makes no difference whether the C is in a CH4 molecule
or in a CO molecule, and partly because the quantity of H2 produced by reaction (11.1) is
very small. What would make a difference would be the production deep in the envelope of
significant quantities of a condensable carbon compound that was then confined there. There is
no evidence, theoretical or observational, that this has happened.

The dominant repository of nitrogen in a hydrogen-rich atmosphere at the pressures and
temperatures of the observed homospheres is NH3, and the altitude variation in its mixing ratio
has been followed down to several times 105 Pa. In Figure 11.1 you can see that in Jupiter such
pressures occur beneath the NH3 and NH4SH clouds, and it is this deep measurement that is
given in Table 11.1. Therefore, it is thought that the NH3/H2 fraction in Table 11.1 is typical
of the molecular hydrogen envelope of Jupiter. The position with Saturn is more marginal – the
measurements might not reach the supposed NH4SH cloud level.

For each planet the variation of the NH3 mixing ratio with depth provides additional informa-
tion on the composition of the cloud layers. The ratio increases by several orders of magnitude
as we move down through the uppermost cloud deck, lending support to the view that this deck
consists of NH3 crystals. For Jupiter there is also a clear increase in the NH3 fraction as we
traverse lower altitudes, and this is in accord with the Galileo Orbiter findings that a second
cloud deck exists, and that it consists of particles of NH4SH, presumably with some NH4OH.
Chemical models predict the formation of such substances in the giant atmospheres by the
reactions

NH3 + H2S → NH4SH (11.2)

NH3 + H2O → NH4OH (11.3)
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the amounts of the products depending on the partial pressures of the reactants and on the
temperature. The models predict that NH4SH is more abundant than NH4OH and that at altitudes
above about 1�5 × 105 Pa it is an important repository of sulphur. However, H2S is the main
repository of sulphur in the gas phase in a hydrogen-rich atmosphere – NH4SH condenses. If
NH3 was initially much more abundant than H2S then reaction (11.2) is a plausible explanation
of the very small quantities of H2S found in the Jovian atmosphere above this cloud level.

Before the Galileo probe measured the composition of the Jovian atmosphere, H2O (the
oxygen repository) had been detected only above the presumed water cloud deck. Unsurprisingly
the mixing ratios are very small. The value in Table 11.1 is from the probe at a depth of
19 × 105 Pa, at which depth the value was still increasing.

Neither H2O nor H2S has been detected in Saturn’s atmosphere. Both are presumed to be
present, but would be condensed at levels well below those so far observed.

In Section 11.3 we will compare these compositions with the values thought to have been
present in the solar nebula, to see what more we can learn about the origin of the giant planets.

Question 11.1

(a) From Table 9.1, use the number fractions for Jupiter to calculate the average mixing ratios
in the atmosphere. Compare your values with those in Table 11.1. Comment briefly on the
outcome.

(b) If, in Jupiter, measurements were to be made at much greater depths than a few times 105 Pa,
would the mixing ratios differ from those in Table 11.1? Justify your conclusions (in a few
sentences).

11.1.3 Circulation

The atmospheric circulation of the two planets is revealed by the cloud patterns (Plates 11
and 16) and their motions. Though the details of the patterns change on a time scale of days,
the largest scale features have changed little in their broad appearance over the three centuries
or so of observations. This indicates a stable system of atmospheric circulation.

Belts and zones

The most prominent, most widespread large-scale feature is the banding parallel to the equator.
The bright bands are called zones and the dark ones are called belts. Figure 11.2 illustrates a
widely accepted model of what distinguishes belts from zones, based on temperature measure-
ments and on vertical cloud motions.

The zones are marked by high, cool clouds freshly formed near the tops of convective
columns, and therefore consisting of clean crystals (presumably of NH3). The belts are where
the atmosphere is sinking to complete the convective cycle. This sinking causes warming. The
belts are freer of cloud because the condensates have been largely frozen out as cloud particles
in the zones, from where a substantial fraction of the particles precipitate (presumably), rather
than get carried into the belts. The sparseness of cloud in the belts exposes deeper lying, warmer
regions that are more richly coloured, and are darker at visible wavelengths because they are
poorer reflectors of sunlight. This convective model of the banding also explains, for example,
the presence at cloud-top altitudes of phosphine �PH3�. Though this is present only as a trace
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Figure 11.2 An explanation of the belts and zones of Jupiter and Saturn.

gas, its abundance is far above the quantities that should exist in chemical equilibrium at the
low temperatures at these altitudes.
� What does this indicate?
It indicates that PH3 has been borne aloft from deep below where the higher temperatures have
created it.

On Saturn the correlation between zones and ascending atmosphere and belts and descending
atmosphere is weak, and so the convective model in Figure 11.2 might not apply. Cassini has
provided evidence that supports this conclusion. Images with a superb 58 km resolution at Saturn
show fast-rising, towering plumes of white clouds in the belts. This indicates that the atmosphere
is rising there, not sinking. The plumes are thought to originate at about the 5 × 105 Pa level,
where water condensation (to form clouds) releases latent heat that drives convection. It might
be that such upwelling is also occurring in the zones, but is obscured by the clouds. Of course,
the atmosphere cannot be rising everywhere! In the belts it could be a local phenomenon, with
other regions in the belts sinking. This problem is unresolved.

Belts, zones, winds, and deep circulation

For both planets we still have to account for the zones and belts forming bands rather than
some other geometrical form, and for the orientation of these bands parallel to the equator.
Data are provided by the winds, as revealed by the motion of the observable clouds, mainly the
NH3 clouds. The motions are very predominantly parallel to the equator with speeds typically
as in Figure 11.3, where positive values are west to east (the direction of planetary rotation),
and negative are east to west. The flow can be thought of as a set of parallel jets. The speeds
are with respect to the rotation of the deep interior, which is deduced from the periodicity of
kilometric radio emissions from charged particles orbiting under the influence of the planets’
magnetic fields. The rotation period of the deep interior of Jupiter is secure at close to 0.4135
days. For Saturn the value from the Voyagers is 0.4440 days. Cassini’s magnetometer, however,
in May 2006 detected a small periodic variation of 0.4484 days. This difference from the earlier
Voyagers’ value is unexplained.

The wind speeds for Jupiter in Figure 11.3 are from Cassini during its flyby in 2000. The
wind profiles have hardly changed in the 21 years since Voyager 2 in 1979. You can see that the
same is not true for Saturn at equatorial latitudes. Two results from Cassini show substantially
lower speeds. The three sets of measurements were obtained at three different wavelengths,
which sense different depths. Detailed analysis has led to two conclusions about Saturn. First,
there is an increase of wind speed as depth into the atmosphere increases. Second, the altitude
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of the visible clouds has increased since 1979, to where the wind speeds are lower. It is also
possible that seasonal changes are a factor, including the motion of the shadow of the rings
from one hemisphere to another.

In Jupiter the wind speeds also increase with depth. As well as observations of clouds, this
has been observed directly by the Galileo probe, which entered the Jovian atmosphere at 7�4 �N,
near the northern edge of the equatorial zone. It obtained 80–100 m s−1 at the top of the NH3

cloud, increasing to about 170 m s−1 some 35 km deeper, and then remaining at about this value
for as far as the probe reached, about 100 km below the cloud top.

Figure 11.3 shows that on Jupiter there is a strong correlation between the wind profiles and
the (idealised) bands. In the zones, the wind speed increases as latitude increases, and in the belts
it decreases, with speed maxima and minima generally coinciding with the boundaries between
belts and zones. In the case of Saturn the strong equatorial jet correlates with the equatorial
zone, but elsewhere the bands correlate rather better with the mean wind speed in the band.

Presumably, the convection circulation between belts and zones, plus the strong Coriolis
effect on these rapidly rotating bodies, plays a role in establishing the predominantly west–east
flows in the observable atmosphere. Nevertheless, the winds are not fully understood, and in
particular whether they are a shallow phenomenon, where solar radiation plays a major role, or
deep seated where internal energy sources dominate. One clue is provided by the Galileo probe
measurements of wind speeds. It was noted above that these remained at about 170 m s−1 from
35 km below the top of the NH3 clouds to at least about 100 km. At such a depth, over most of
Jupiter, little solar radiation penetrates. If the winds are powered only by the absorption of solar
radiation, the speeds might be expected to have decreased considerably as the probe sank. That
they did not indicates that the outward flow of internal energy might be the main power source
of these winds. Only in the upper troposphere could solar radiation play a significant role.
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Further insight into the nature of the circulation in Jupiter and Saturn is provided by the
temperatures in the upper tropospheres – these vary only by a few kelvin with latitude. The
decrease of solar irradiation with latitude on Jupiter tends to produce a temperature decrease
from equator to pole. On Saturn, with its greater axial inclination (26�7� versus 3�1�) and ring
shadowing, the summer pole can be warmer than the equator, but again only by a few kelvin.
That the measured differences are so slight must be the result of equator-to-pole circulation, plus
heat flow from the interior which is expected to be independent of latitude. Table 9.2 shows that
about 1.7 times as much energy is radiated by Jupiter and Saturn as is absorbed from the Sun.
Therefore, the internal source is comparable with the solar source, and is surely important, even
essential, in reducing latitude variations of temperature. Loss of internal heat sustains convection
throughout the molecular envelopes, which must have adiabatic temperature gradients.

These considerations support the circulation model illustrated schematically in Figure 11.4.
There are concentric cylinders of fluid, extending throughout the molecular hydrogen envelope,
and with axes coincident with the rotation axis of the planet. Models of rapidly rotating fluid
spheres with adiabatic temperature gradients develop such concentric cylinders of fluid. If this
kind of circulation exists in Jupiter and Saturn then the observable wind jets that form the bands
would be at the tops of the cylinders. The cylinders terminate at the metallic hydrogen mantle.
At equatorial latitudes the cylinders extend from one hemisphere to the other, but at higher
latitudes the metallic hydrogen mantle gets in the way. The curvature of this boundary helps

Figure 11.4 A possible circulation pattern in the molecular hydrogen envelopes of Jupiter and Saturn.
This is a schematic illustration. (Adapted from The New Solar System, J. K. Beatty and A. Chaikin (Eds),
Figure 14, p 148, Sky Publishing 1990)
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organise the flow into narrower jets, as observed. The difference between the thicknesses of the
molecular hydrogen envelopes in Jupiter and Saturn could then help account for the differences
in the wind patterns between these two giant planets.

To test the model in Figure 11.4, we await more data, including more detailed measurements
on the planets’ gravitational fields.

Ovals and spots (vortices)

As well as belts and zones, Jupiter and Saturn display ovals of various sizes, from the limit of
instrument resolution (a few tens of kilometres), up to thousands of kilometres across. Cloud
motions within and around the ovals show them to be vortices, also called eddies – regions of
rotating atmosphere rather like cyclones and anticyclones on Earth. In the northern hemisphere
of the giant planets (and the Earth) cyclones rotate anticlockwise, and anticyclones clockwise. In
the southern hemisphere these directions are reversed. The vortices come and go, with lifetimes
from the order of weeks for the smaller ones to many years for the largest. Vortices are seen
to merge.

The atmosphere is generally rising at the core of an anticyclone and descending in a spiral
outside the core. In a cyclone the atmosphere generally descends in the centre, though there
are small regions where upwelling occurs. Vortices are concentrated where the horizontal wind
shear is greatest, which on Jupiter is at the boundaries between the bands. The vortices rotate
in accord with this shear (rather like cylinders between two plates moving at different speeds),
which often transforms vortices into wavy streaks. The vortices drift westwards, but do not
drift in latitude. They do not exchange material laterally, though they might dredge up material
from below.

On Jupiter, several hundred vortices can be seen at any one time, though not within about
10� of the equator, where wavy streaks develop instead. Most vortices have sizes in the range
1000–10 000 km across. The smaller vortices are usually dark. The larger ones are usually white,
and extend to several kilometres above the top of the surrounding cloud layer, presumably raised
by local convection. At high latitudes, beyond the visible bands, a mottled appearance has long
been observed. At these latitudes Cassini has seen numerous spots that might be small vortices.
A weak narrow band structure is indicated by the motion of these spots. If, over a narrow range
of latitudes, the motion is east to west, over adjacent narrow ranges it is west to east.

The largest vortex, the Great Red Spot (GRS) on Jupiter (Plate 11) measures about 22 000 km
east–west and about 11 000 km north–south. For comparison, the Earth’s (equatorial) diameter
is 12 756 km. It has existed for at least 100 years, and probably for over 300 years. Its longevity
is a result of its size. From when it became sufficiently large, its rotational energy has been so
huge that it has survived encounters with smaller features. Longevity also owes something to
the lack of a solid surface to dissipate rotational energy. The GRS is in the southern hemisphere
and rotates anticyclonically, once every 6 days. It extends to no more than about 100 km above
the surrounding clouds, and no more than about 500 km below them, so it is rather shallow for
its huge lateral size. However, it extends well below any water-ice clouds, from where it could
dredge up material. If this includes traces of phosphorus compounds, their dissociation would
yield phosphorus that could account for the red colour of the GRS. Three white vortices south
of the GRS were each about the diameter of Mars, and lasted for over 50 years.

Other patchy or wispy features are not vortices. In some cases they are glimpses through the
upper cloud layer. These include irregular dark-brown spots and irregular dark-blue spots, about
103 km across. The dark-brown spots are thought to be glimpses of a lower cloud layer, whereas
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the blue-grey/purple spots are the hot spots mentioned briefly in Section 11.1.1. In these almost
cloud-free areas, our view is limited only by the depth to which sunlight can penetrate, a limit
imposed by the scattering of sunlight from atoms and molecules. This is Rayleigh scattering,
named after the British physicist, John William Strutt Rayleigh (1842–1919), and it accounts
for the blue tint of the hot spots (and also for the blue skies on Earth).
� What does the existence of hot spots indicate about the spatial distribution of the deeper

cloud layers?
Clearly, these cloud layers are patchy. This is in accord with the findings of the Galileo probe.

Saturn’s major bands are fewer in number than those of Jupiter (Plate 16). The bands have
wavy edges that often break into vortices. Cassini has penetrated below the upper cloud layer
by observations of deep clouds at 5 �m wavelength. About 30 km below the upper cloud layer,
there are planet-girdling lanes, many of them connected with clouds that indicate convective
cells. As noted above, there is also an increase in jet speed with depth, at least in the equatorial
region. Cassini has seen more than 10 oval spots greater than 500 km across, mostly dark but
many with bright haloes. As on Jupiter, they come and go, and merge, with lifetimes exceeding
a week. The spots are anticyclonic, and, again as on Jupiter, rotate in accord with the shear
between adjacent wind jets. They migrate along the jet boundary at speeds up to about 25 km s−1,
which, compared with the jet speeds (Figure 11.3), is modest. Nothing on the scale of the GRS
has ever been seen on Saturn.

The vortices on Jupiter and Saturn probably originate from instabilities in the wind jets, and
derive their rotational energy from the motion of the rising currents of atmosphere. However,
there is much still to be understood, not only about the vortices on each planet separately, but
also about the differences between the circulation and its manifestations on these two giant
planets.

11.1.4 Coloration

It remains to account for the colours of Jupiter and Saturn. The substances that are thought
to dominate each cloud layer – NH3� NH4SH� NH4OH, and H2O – are all colourless. Clouds
consisting of these substances would therefore appear white. Whitish features are confined to
high altitudes and are presumably freshly condensed NH3 particles almost free of colouring
agents. Other features have presumably had time to become coloured. It needs only a trace of a
coloured substance to cause the intensity of the observed colours.

One group of possible colouring agents, as on Io, is various forms of solid particles of
sulphur, derived photochemically from sulphur compounds below the upper cloud deck. Some
forms of solid sulphur are yellow, others are brown. Another possibility is phosphorus, solid
particles of which can be yellow or red. Though phosphine �PH3� has been detected as a trace
in both Jupiter and Saturn, it is not known if the appropriate chemical reactions occur to form
phosphorus particles. If they do form, then, as noted earlier, they could account for the red
colour in the GRS. Other possible colouring agents are various compounds that can be formed
by chemical reactions involving some or all of the compounds CH4� NH3, and H2S. The hazes,
as noted earlier, are likely to be dominated by hydrocarbon particles above the clouds, but
possibly enriched by phosphorus and its compounds at and below the clouds. But in spite of all
these possibilities the actual colouring agents and the reasons for their spatial distribution are
unknown.
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Question 11.2

Suppose that the atmospheres of Jupiter and Saturn consisted only of hydrogen and helium.

(a) Discuss plausible differences this would make to: the clouds; the temperatures in the upper
molecular envelope; the facility with which the atmospheric circulation could be investigated.

(b) State why the solar driven component of the circulation would be changed.

11.2 The Atmospheres of Uranus and Neptune Today

Table 11.1 shows that, like Jupiter and Saturn, the atmospheres of Uranus and Neptune consist
mainly of H2 and He. These massive atmospheres are each bounded by a liquid icy–rocky mantle.
Plates 19 and 20 show that Uranus and Neptune are blander in appearance than Jupiter and
Saturn, and that Uranus is somewhat blander than Neptune. The predominant visual impression
in Plates 19 and 20 is the result of the Rayleigh scattering of sunlight from a deep layer of
gas, the bluish-green tint arising from absorption of red wavelengths by methane. Uranus has a
slightly greener tint, perhaps due to a deep-lying layer of methane cloud.

11.2.1 Vertical Structure

Figure 11.5 shows the vertical structures of the atmospheres of Uranus and Neptune, deduced
from much the same variety of measurements used for Saturn before Cassini. The observable
atmospheres are generally colder at comparable pressures than those of Jupiter and Saturn,
a consequence of the greater solar distance. Heating is by solar radiation down to about the
10 × 105 Pa level, which includes the upper troposphere. It is not known whether the lapse
rates are as large as the adiabatic values. Below this level the increase of temperature with
depth depends on internal heat sources. These greater depths have been explored by microwave
observations, which have revealed that whereas in Neptune the increase is probably at the
adiabatic rate, in Uranus the lapse rate is generally a bit smaller. Therefore, the deep troposphere
of Neptune is probably convecting, whereas that of Uranus is probably not, or only weakly
so. One would therefore predict that there must be a far lower rate of escape of heat from the
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Figure 11.5 The vertical structures of the atmospheres of Uranus and Neptune.
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interior of Uranus than from the interior of Neptune. This is consistent with the barely detectable
IR excess from Uranus and the greater excess from Neptune (Table 9.2). Models indicate that
deeper into the interior the lapse rate is adiabatic in both planets.

In the upper tropospheres there are flecks and streaks of cirrus-like clouds. These are white
because they are at too shallow a depth to be seen though a tinted atmosphere. Higher still
there is a thin haze of photochemical compounds, mainly hydrocarbons. The low temperatures
result in extensive freezing out at low altitudes of many condensable atmospheric components,
giving rise to deep-lying cloud decks. The composition of the visible and deep-lying clouds
can only be inferred, but evidence from atmospheric composition, atmospheric temperatures,
and the CH4 phase diagram strongly suggests that the high-altitude white clouds are CH4 ice
crystals, whereas any deep-lying cloud deck is probably CH4 droplets, or, less likely, particles
of H2S. If there is a deep-lying CH4 cloud deck, then models suggest it might be underlain by
H2S clouds, perhaps underlain in turn by H2O clouds.

11.2.2 Composition

Table 11.1 shows the main constituents of the atmospheres of Uranus and Neptune as mixing
ratios with respect to H2. Table 9.1 shows H2, He, and CH4 as number fractions. The atmospheres
consist mainly of H2 and He (the He having been measured indirectly, as for Saturn). Compared
with Jupiter, and particularly Saturn, He is rather more abundant in these two subgiants. These
differences have a ready explanation based on our models of the interiors (Section 5.3). The
interiors of Uranus and Neptune do not attain pressures sufficiently high for metallic hydrogen
mantles to form. Therefore, there is no possibility of the downward settling of He arising from its
insolubility in metallic hydrogen. Consequently the He mixing ratio measured in the observable
atmospheres of Uranus and Neptune is presumed to be the same as that in the whole planet. The
interiors of Jupiter and Saturn do attain sufficient pressures for metallic hydrogen mantles to
form, but whereas Jupiter is so hot that only slight segregation has occurred, the cooler interior
of Saturn has led to greater segregation. It is thus possible that the whole-planet He mixing
ratios are similar in all four giant planets. We shall return to this important point in Section 11.3.

Unlike He, CH4 has had its abundance measured directly. It was important to measure it at
depths where the temperature is sufficiently high to prevent condensation. The measurements
in Table 11.1 are at such depths, and you can see that CH4 is considerably more abundant in
Uranus and Neptune than in Jupiter and Saturn. This is another important point for Section 11.3.
High in the atmospheres, Uranus and Neptune are greatly depleted in CH4. This lends strong
support to the view that the observed clouds and any deep-lying cloud deck consist of CH4.

H2O has not been detected in either atmosphere. This is not surprising in view of the low
temperatures.
� Why is it not surprising?
H2O is much less volatile than CH4, so it would condense very deep in the atmospheres. Whether
there is a very deep-lying H2O cloud deck is unknown, but if there is, and if the particles are
liquid, then we can explain another observation – the failure to detect NH3. This is no surprise
in the upper troposphere, again because of the low temperatures, but microwave observations
indicate that NH3 depletion persists to greater depths. NH3 is very soluble in liquid H2O, so this
scarcity could be the result of its solution in H2O droplets. However, there are other possible
explanations. Here are two of them.

The nitrogen/sulphur ratio could be so low that NH3 has largely disappeared into the forma-
tion of NH4SH, which would form deep-lying clouds, beyond present detectability. Another
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possibility relates to the chemical reaction that produces NH3 from N2

N2 + 3H2 → 2NH3 (11.4)

This reaction is favoured in the low-temperature conditions in the atmospheres of Uranus and
Neptune, but it requires a catalyst if it is to proceed at a high rate. If there are no suitable
catalysts, and if the original form of nitrogen were N2 rather than NH3, then this could also help
to explain the scarcity of ammonia.

In the upper troposphere of Neptune CO and HCN have been detected, but not in the case
of Uranus. In hydrogen-rich atmospheres at the low temperatures in the upper tropospheres,
chemical reactions would quickly reduce CO and HCN to very small quantities unless they were
being replenished at a sufficient rate from the deep interior. Convection can fulfil this role. In
the case of CO, it is CO itself that would be brought up, whereas for HCN it is N2, which
then participates in reactions that yield HCN. The direct detection of N2 is beyond present
capabilities because of its weak (IR) spectral lines. The absence of CO and HCN from the
upper troposphere of Uranus might be another indication, in addition to the barely detectable IR
excess, that convection is absent in some layers of the atmosphere of Uranus.

11.2.3 Circulation

The circulation of the atmospheres, as for Jupiter and Saturn, is revealed largely by bands, and
by the motion of the rather sparse cloud features. The speeds of motion are again with respect
to the rotation period of the interior, and this period is again determined from the periodicity of
radio emissions. It has been more difficult to establish the circulation of Uranus. This is because
until 2000 it displayed fewer atmospheric features than Neptune. The rare, elusive white flecks
of cloud seen in the upper troposphere of Neptune were even rarer and more elusive on Uranus.
That changed in 2003–2004, when near-IR images from the Keck II telescope revealed dozens
of clouds on Uranus, as in Plate 19. They varied in size, brightness, and longevity, from a few
hours to possibly the two decades since Voyager 2 flew by in 1986. This change is probably the
result of the large climate swings on this tipped-over planet as it orbits the Sun every 84 years.
In 1986 the southern hemisphere was in early summer, with the South Pole pointing nearly
towards the Sun. Now, the southern summer has ended with the equinox in 2007. The larger,
longer-lived clouds might be underpinned by vortices, but these are unlikely to be anywhere
near as energetic as a terrestrial hurricane – solar radiation is far weaker at Uranus, and the heat
from the interior is slight (Table 9.2). Such as it is, vortex formation is aided by the absence
of a surface at shallow depths – this reduces frictional dissipation that would otherwise hamper
vortex formation.

Neptune too has displayed an increase in cloudiness since Voyager 2 flew past in 1989
(Plate 20). Neptune’s clouds are probably particles of CH4 ice in the stratosphere. That new,
bright bands of cloud have appeared in the sunny south suggests some kind of seasonal change.
The HST has shown a clear increase in cloudiness on Neptune since 1996. With solar radiation
900 times less than on Earth, and each season lasting over 40 years, this increase might be
due partly to an internal change, such as one that has promoted convection. Certainly, the
considerable IR excess of Neptune (Table 9.2) could make cloud formation sensitive to small
internal changes.

Though no main cloud decks are visible for either planet, a deep-lying haze layer on Neptune
exhibits dark belts and dark spots. A large dark spot was discovered in the southern hemisphere
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by Voyager 2 in 1989, and named the Great Dark Spot. It covered about the same fraction of
Neptune’s surface as the GRS covers of Jupiter’s surface, and also seems to have been a vortex.
It had vanished when Neptune was examined by the HST a few years later, but another one
had appeared in the northern hemisphere. The dark spots can be interpreted as holes in the haze
layer, giving a view into deeper regions that appear darker because they scatter less sunlight.

The deep haze layer of Uranus has weaker banding, but one gigantic storm has been seen,
in the southern hemisphere. Images from the HST and the Keck telescopes show that the storm
had lasted since at least the arrival of the new millennium. It extends to higher altitudes than
observed for any cloud features before, presumably because of vigorous convection raising
material from below. Strangely, and unlike other features on Uranus and Neptune, it drifts
appreciably north–south, across about 5� of latitude. The reason is unknown.

The wind speed data for both planets are sparser than for Jupiter and Saturn. Figure 11.6
shows a rather idealised picture for both planets. The equatorial wind speed for Uranus is
from radio occultation data. Though there are considerable differences in the details between
Figure 11.6 and the corresponding Figure 11.3 for Jupiter and Saturn, all four planets exhibit
one prominent feature common to their circulations.
� What is this?
The observed circulation is predominantly parallel to the equator. As in the case of Jupiter and
Saturn, the Coriolis effect promotes such an outcome, but any further contribution from any
deep circulation is largely unknown. One striking feature on Neptune, possibly due to deep-
seated circulation, is the large negative wind speeds – the atmosphere is predominantly rotating
more slowly than the interior. At present the cause of this slow rotation is unknown. There is,
however, a plausible explanation for the small temperature difference between poles and equator
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on Neptune. As in the cases of Jupiter and Saturn, this could well be the combined effect of a
high rate of heat flow from the interior, which is independent of latitude, and equator-to-pole
circulation efficient enough to offset the greater equatorial insolation.

In the case of Uranus, the solar radiation incident at each latitude, averaged around the orbit,
is greater at the poles than at the equator. Moreover, the thermal response time of the troposphere
is of the same order as the orbital period. Consequently, a Hadley circulation transferring heat
from the poles to the equator could be a fairly persistent feature in each hemisphere. It can be
shown that such a flow is consistent with the variation of wind speed with latitude in Figure 11.6.
However, measurements have show that the South Pole is not much hotter than the equator, but
is at much the same temperature. Therefore, there is an efficient redistribution of absorbed solar
radiation across the whole planet. The mechanism is unknown.

Question 11.3

In Table 11.1, the mixing ratios of He in the atmospheres of Uranus and Neptune are indirect
estimates, based on the amounts needed to top up the atmospheres to their total masses. These
estimates have assumed that the proportion of N2 is negligible. In which of these two planets
might this assumption fail, and what is the evidence? What (qualitatively) would be the effect
on the estimate of the He mixing ratio (in one sentence)?

11.3 The Origin of the Giant Planets – A Second Look

The atmospheres of the giant planets are so massive that their origin is inseparable from the
origin of the giant planets as a whole.

In the solar nebula theory (Chapter 2), the planets form from a disc of gas and dust around
the Sun. This disc has much the same composition as the young Sun, which is preserved today
outside the core in which fusion reactions are occurring. The composition by mass that we
have adopted is 70.9% hydrogen, 27.5% helium, and 1.6% ‘heavy’ elements (Section 2.2). The
gas in the disc has much the same He/H mass ratio as the young Sun, but it is somewhat
depleted in those heavy elements that form the icy and rocky compounds that make up the dust
grains in the disc. Conversely, the dust grains are enriched in heavy elements, and depleted
in hydrogen and helium. Helium is almost entirely absent from the grains, and only a small
fraction of the hydrogen is present. At the distances that the giant planets formed from the Sun,
hydrogen in the dust grains is in compounds such as H2O� NH3, and CH4. In the core-accretion
theory of the formation of a giant planet (Section 2.2.5), the dust accretes to form icy–rocky
planetesimals and a number of these become assembled into a kernel of several Earth masses
of rocky and icy materials, massive enough to capture nebular gas and other planetesimals.
We thus have two distinct sources of giant material – nebular gas (with a trace of dust) and
icy–rocky planetesimals. The planetesimal material tends to concentrate into a central core and
the nebular gas into a surrounding envelope.

Can we reconcile the data in Table 11.1 with this theory? To see whether we can it is conve-
nient to convert the data into elemental mass ratios with respect to hydrogen. For example, the
He/H mass ratio is the ratio of the mass of helium in any region to the mass of hydrogen in the
same region. For elements such as N, C, and O that form compounds, the mass of the element is
the sum over all the forms in which it has been measured. Table 11.3 gives the elemental mass
ratios for C, N, O, and He for the four giant planets. Values for the young Sun have been added.
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Table 11.3 Elemental mass ratios with respect to hydrogen in the giant planet
molecular envelopes and in the young Sun

Ratio Jupiter Saturn Uranus Neptune Young Sun

He/H 0.31 0.26 0�36 0�36 0.39
C/H 1�3 × 10−2 3�1 × 10−2 0�11 0�15 3�9 × 10−3

N/Ha 5�0 × 10−3 < 7�7 × 10−4 — — 1�2 × 10−3

O/Ha < 4�8 × 10−3 < 1�6 × 10−6 — — 1�1 × 10−2

a A dash indicates that no useful upper limit is available.

The He/H ratio

The He/H mass ratio in the captured gas is expected to be much the same as in the young Sun.
� Why is this?
This is because He has remained almost entirely in the gas, and only a small fraction of the
hydrogen has been removed from the gas in the form of compounds in the planetesimals. This
expectation is borne out in Uranus and Neptune within the uncertainties of the data for these
planets. Jupiter has a slightly but significantly smaller ratio, and Saturn a yet smaller ratio.
Remembering that the data are for the outer envelopes of the giants, this is a further indication
that there has been a slight settling of He in the metallic hydrogen mantle of Jupiter, and rather
more in that of Saturn. This is in accord with the expectation that the mantle of Jupiter is at a
considerably higher temperature than that of Saturn (Section 5.3.1).

There seems to have been very little settling in Uranus and Neptune, and this is in accord
with the lower interior pressures and the consequent absence of metallic hydrogen.

The C/H ratio

The C/H ratios in Table 11.3 are thought to apply to the whole envelope – CH4 does not
form clouds in Jupiter and Saturn, and the values for Uranus and Neptune are probably below
the methane cloud base. You can see that for all four giant planets the C/H ratio exceeds the
solar value. Moreover, the ratio increases from Jupiter, to Saturn, to Uranus and Neptune. How
can these excesses be reconciled with the supposed formation of the envelopes from captured
nebular gas that was at least mildly depleted in heavy elements?

The answer is probably that the planetesimal material becomes hot enough during and after
planet formation to lose some of its more volatile constituents. These constituents thus enrich
the surrounding envelope in certain heavy elements, including carbon. If all four giant planets
have acquired about the same mass of planetesimals (of order 10 Earth masses), and if their
planetesimal materials have all outgassed to roughly the same extent, then the C/H ratio in the
envelope will be inversely related to the mass of the envelope – the greater the mass of the
envelope, the greater the dilution of the outgassed carbon. It follows that there would then be
an inverse relationship between the C/H ratio and the total mass of the planet.
� Is this what we find?
This is exactly the feature in Table 11.3. Further carbon enrichment in all four cases would
come from the subsequent capture of volatile-rich bodies, notably icy–rocky planetesimals and
comets.

In the alternative, gravitational instability model of giant planet formation (Section 2.2.5), all
four giants are predicted to have an overall initial composition similar to the Sun. It is therefore
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very difficult to account for an excess of carbon in the atmospheres. Indeed, core separation of
heavy elements would cause a depletion. Capture of planetesimals and comets could offset this
depletion, though perhaps not completely, and moreover this might well not produce the strong
differences between the giants. Further difficulties facing the gravitational instability model have
been outlined in Section 2.2.5.

Other mass ratios

The atmospheric 2H/1H mass ratio (not shown in Table 11.3) is around 4 × 10−5 for Jupiter and
Saturn, which is about the same as the Sun, but increases to about 12 × 10−5 for Uranus and
Neptune. In spite of large uncertainties, the increase from Jupiter and Saturn (and the Sun) to
Uranus and Neptune is significant. A good explanation of this increase starts in the interstellar
medium (ISM), where the dust was formed that subsequently became a component of the solar
nebula. The formation of most compounds in the ISM depends on reactions between ions and
molecules. In ion–molecule reactions involving hydrogen, there is a tendency for the heavy
isotope to become concentrated in condensable substances. For example, in HCN the ratio
2HCN/1HCN is greater than the overall 2H/1H ratio. In the solar nebula the dust is thereby
enriched in 2H (deuterium), and consequently the planetesimal material is likewise enriched.
The remainder of the argument accounts for the differences between the giants, and parallels
the argument just given for the C/H ratio. The protoplanet theory has difficulty explaining the
2H/1H ratios too, and for similar reasons to its difficulty with the C/H ratios.

The N/H ratio for Jupiter is a few times that of the Sun. We have only an upper limit for
Saturn, comparable with the solar value, and no values at all for Uranus and Neptune. Jupiter has
presumably benefited from outgassing from the kernel and from the icy component of captured
planetesimals. Saturn could have more nitrogen beneath any NH4SH clouds, so might also have
N/H in excess of the solar ratio, and for the same reasons. As noted in Section 11.2.2, the failure
to detect NH3 in the atmospheres of Uranus and Neptune might be because NH3 has been taken
up in the formation of NH4SH, or that it has dissolved in deep-seated water clouds. It is also
possible that the planetesimals that formed in the cold outer reaches of the solar nebula had
much of the carbon and nitrogen in CO and N2, rather than as CH4 and NH3, in which case the
planetesimals would preferentially acquire carbon, CO being less volatile than N2. Moreover,
you have seen that if the nitrogen is largely in the form N2 in the atmospheres it would not yet
be detectable.

The only measurements we have of O/H are from measurements of H2O in Jupiter and
Saturn. The atmospheres above any H2O clouds are expected to be very dry, but you have
seen (Section 11.1.2) that though the Galileo probe penetrated to depths below where water
clouds in Jupiter lie, it entered a dry hole. Therefore, we only have an upper limit on O/H of
rather less than a half of the solar ratio. If this is typical of the whole of Jupiter outside the
core, it is possible that water, being less volatile than the repositories of carbon and nitrogen,
outgassed from planetesimal material to a far smaller extent. It is also possible that different
compounds have different solubilities in metallic hydrogen. About 85% of Jupiter’s hydrogen is
in the metallic phase, and so a modest excess solubility of water could lead to a large depletion
in the molecular hydrogen envelope. The position with Saturn is much the same.

The data in Table 11.3 cover only a few elements, though they are among the most abundant.
Taking the data as a whole, and in spite of some remaining puzzles, we can conclude with some
confidence that the atmospheres of the giant planets are consistent with an origin of the giant
in which a kernel of icy–rocky materials captured nebular gas (with a trace of dust) and other
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icy–rocky planetesimals. The composition of the envelopes was then modified by outgassing of
the kernels, and to some extent by the subsequent capture of volatile-rich bodies.

Question 11.4

Neon (Ne), like helium, is a volatile inert gas. Discuss whether you would expect the Ne/H
ratio to be the same in the giant planets as in the young Sun. Given that Ne is soluble in liquid
helium, would you expect the Ne/H ratio measured in the outer envelope of each giant to be the
same as for the planet as a whole?

11.4 Summary of Chapter 11

Tables 9.1 and 9.2 list basic properties of planetary atmospheres, and Tables 11.1–11.3 give
further data for the giant planet atmospheres.

All four giants have atmospheres dominated by molecular hydrogen �H2� and helium (He),
with small quantities of less volatile substances that form clouds. There are traces of other
(unknown) substances that colour the clouds. The clouds are banded parallel to the equator.
The circulation revealed by the clouds is predominantly west to east, and a factor in this is the
large Coriolis effect in these rapidly rotating planets that acts on convection patterns. For Jupiter
and Saturn there is probably a major contribution from deep-seated circulation patterns in the
molecular envelope, in the form of concentric cylinders.

Jupiter, Saturn, and Neptune have adiabatic lapse rates in their tropospheres, the result of
heat welling up from the interior, supplemented by the absorption of solar radiation in the
upper tropospheres. Uranus has a subadiabatic tropospheric lapse rate in the lower troposphere,
consistent with the low rate of upwelling heat.

The composition of the giant planets’ atmospheres can be explained by the formation of icy–
rocky kernels and subsequent capture of nebular gas during the formation of the Solar System,
with subsequent modifications due to the downwards segregation of helium in the metallic
hydrogen mantles of Jupiter and Saturn, the outgassing of planetesimal material, and the capture
of volatile-rich bodies.

As you will now see, the Solar System will undergo huge changes when the Sun evolves into
a red giant and then into a white dwarf.

11.5 The End

We have now completed our study of the Solar System as it is today, of how it might have
originated, and of how it might have evolved to its present condition. We hope you have found
this exploration of our own planet and of our neighbours in space as exciting, fascinating, and
intriguing as it deserves to be. By way of valediction let us consider briefly what awaits the
Solar System in the future.

The interiors of all planetary bodies will continue to lose energy, and for those bodies whose
geological activity is dominated by interior sources of heat, the level of geological activity will
decline. Atmospheric loss mechanisms will continue, and with the decline in outgassing that
accompanies a decline in geological activity, a decrease in atmospheric mass will occur until the
growing luminosity of the Sun (Figure 10.14) begins to drive volatiles from surface repositories.
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In the case of the Earth, for the next 1000 Ma or so, the increasing solar luminosity will
make the Earth warmer, though negative feedback should stabilise the temperature to some
extent. The feedback operates through a decrease in the size of the greenhouse effect, due to
the carbonate–silicate cycle outlined in a different context in Section 10.1.4. But the feedback
will not be fully effective and so the surface temperature will rise, and this will put more water
into the atmosphere. The consequent increase in the greenhouse effect now introduces a positive
feedback. One scenario for 1400 Ma into the future has GMST of about 325 K, the result of
a moist greenhouse runaway (Section 10.6.1). A bacterial biosphere could survive to at least
400 K – some of Earth’s present bacteria flourish at such temperatures – but at 400 K there would
be no liquid water at the surface. The Earth is now firmly on the evolutionary trail followed by
Venus early in Solar System history. As the GMST rises, the crust softens, causing a rise in
volcanism, which increases the CO2 content of the atmosphere. In spite of water loss through
UV photodissociation, the GMST rises further, which promotes a further rise in volcanism. This
positive feedback causes a dry greenhouse effect. As a result, perhaps by 3500 Ma from now,
perhaps earlier, the Earth will have a Venus-like atmosphere and a correspondingly high surface
temperature.

At some time during the demise of the Earth as we know it, Mars might (again) become
clement, as CO2 and water vapour are released from surface and subsurface reservoirs.

The increasing solar luminosity in Figure 10.14 is the result of the continuing conver-
sion of hydrogen to helium in the solar core (Section 1.1.3). An inert inner core of helium
grows in size, surrounded by a shell in which hydrogen is still undergoing fusion. About
6000 Ma from now, with the Sun about 11 000 Ma old, this shell will be so thin that the rate
of energy release by fusion within it will be insufficient to support the interior. The Sun has
then reached the end of its main sequence lifetime. The core will contract and, in a compli-
cated process, the rest of the Sun will expand and cool, the surface taking on an orange tint.
The huge increase in the surface area of the Sun will far outweigh the decrease in surface
temperature, and so the solar luminosity will increase greatly. The Sun will reach beyond
the present orbit of Venus, nearly as far as the Earth. However, the Sun loses mass in the
form of an intense solar wind, so that the planetary orbits increase in size, in the case of
the Earth to about 1.7 AU. This might spare the Earth from consumption, and perhaps Venus
too, though not Mercury. On the other hand, the tidal interaction between the bloated Sun
and the Earth will tend to reduce the size of the Earth’s orbit, so it will be touch and go!
In any case, the atmospheres of Venus, the Earth, and Mars, and all surface volatiles, will
have escaped to space long before. The peak surface temperature of the Earth will be about
1600 K.

The Sun will have then made the transition to a red giant, where the gravitational energy
released by the contraction of the He core will have raised core temperatures to the point where
helium undergoes fusion to form carbon, releasing energy at a sufficient rate to maintain a
temperature gradient that stabilises the star. The red giant phase will last about 1000 Ma, during
which time Pluto and some of the satellites of Uranus and Neptune might become suitable
for life.

But this is a turbulent time, with luminosity variations and a copious solar wind. It comes to
an end in a runaway instability in which the Sun will cast off a significant fraction of its mass,
a supersonic blast of hot gas tearing though the Solar System on its way to forming a huge shell
of gas called a planetary nebula (nothing to do with planets). The solar remnant will contract
to become an Earth-sized body called a white dwarf. Though its surface will be far hotter than
that of the Sun today, it will be so small that its luminosity will be feeble. Its gravitational
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field will also be much reduced, and it is likely that some planets will escape from the Solar
System. These, and the planets that remain in solar orbit, having been cooked and blasted, will
then freeze. Any intelligent beings that might have survived will probably have to journey to
other stars to find somewhere to live. The existence of extrasolar planets will give them great
expectations.



Question Answers and
Comments

Note that comments are in curly brackets { }. These are not expected as part of your answer.

Question 1.1

At the lower photospheric temperature in the past the spectrum was at longer wavelengths.
Also, the lower luminosity in the past gave a smaller area under the spectrum. Since then, the
spectrum has shifter to shorter wavelengths and the area under the spectrum has increased. {See
Figure 1.1.}

Question 1.2

Figures 1.4 and 1.5 together show that the medium-sized planets – the four terrestrial planets –
are closest to the Sun, the largest, the Earth, being the third one out. Then comes the largest
planet, Jupiter, then the somewhat smaller planet Saturn, and then the two smaller giant planets,
Uranus and Neptune. Finally we come to Pluto, the smallest planet of all. The broad correlation
of size with distance is therefore that the largest planets lie at intermediate distances, with smaller
planets closer to, and further from, the Sun. {The reasons for this are discussed in Chapter 2.}

Question 1.3

The semimajor axis of Fortuna is obtained from the equation (Section 1.4.1)

aF

aE

=
(

PF

PE

)2/3

where the subscript E denotes the Earth, and F denotes Fortuna. For the Earth, aE is 1 AU and
PE is 1 year. The orbital period PF of Fortuna is given in the question as 3.81 years. Therefore

aF = �1 AU� ×
(

3�81 years
1year

)2/3

= 2�44 AU
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Question 1.4

The perihelion distance of a planet from the Sun is a�1 − e� (Figure 1.8). Taking a and e
from Table 1.1, the perihelion distances of the Earth and Venus are, respectively, 0.983 AU and
0.718 AU. Thus the Earth–Venus distance is 0.265 AU.

From the radar data, this distance is also �3�00 × 105 km s−1� × �264 s/2�, which is 3�96 ×
107 km. Therefore, 1 AU = 3�96 × 107 km/0�265 = 1�5 × 108 km to two significant figures. {The
accurate value in metres is given in Table 1.6.}

Question 1.5

(a) {One possible sketch is shown. You might have adopted a different viewpoint, but the
relationship between the orbit of Comet Kopff, the ecliptic plane, and � should be the same.
Also, the shape of the orbit should (roughly) reflect its eccentricity, with the Sun distinctly
off centre, and with some allowance for the oblique viewpoint.}

4.7°

163°

121°

�

(b) Denoting the perihelion distance by q, Figure 1.8 shows that

q = a�1 − e�

and so

a = q

1 − e

Thus, putting in the values of q and e given in the question,

a = 1�58 AU
1 − 0�54

= 3�43 AU

The aphelion distance is (Figure 1.8) a�1 + e�, which is 5.28 AU. The orbital period PK is
obtained from Kepler’s third law (equation (1.3)), which gives

PK = PE

(
aK

aE

)3/2

= �1 year� ×
(

3�43 AU
1 AU

)3/2

= 6�35 years

This is 6 years and 0�35 × 365�24 days, which is 128 days. Thus, the first perihelion date in
the twenty-first century is 6 years 128 days after 2 July 1996. This puts it in November 2002.
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(c) If the orbits are in the same plane they will intersect, but they are not – the orbits have
different inclinations. In this case they will intersect only if the two orbits have just the right
relative sizes for the difference between the longitudes of the ascending node. Given that
the orbits do not intersect we must conclude that this condition is not met.

Question 1.6

Applying equation (1.6) to the Earth,

M� + mE = 4�2 a3
E

G P2
E

M� � mE� so

M� ≈ 4�2a3
E

G P2
E

= 4�2�1�496 × 1011 m�3

�6�672 × 10−11 N m2 kg−2��3�156 × 107 s�2

Therefore

M� ≈ 1�989 × 1030 kg

Applying the same procedure to Jupiter,

M� ≈ 4�2�7�782 × 1011 m�3

�6�672 × 10−11 N m2 kg−2��3�743 × 108 s�2

Therefore

M� ≈ 1�990 × 1030 kg

The values of a and P in Table 1.1 are only given to four significant figures, so these two values
of the solar mass agree within this precision. {We have actually calculated M� +mplanet, and mJ

is about M�/1000, whereas ME is only about M�/300 000. Therefore, the second value needs
to be reduced by a factor of about 1000, giving M� ≈ 1�988 × 1030kg. The accurate value for
M� is 1�9891 × 1030 kg.}

Question 1.7

(a) If the Sun rotated much more rapidly then its departure from spherical symmetry would
be greater. Therefore, the orbital elements of Venus would become more variable. {This
would not apply to a planet in an orbit in the equatorial plane of the Sun. No planets orbit
in this plane.}

(b) If the mass of Jupiter were doubled it would exert a greater gravitational force on the
other planets. Again, the orbital elements of Venus would become more variable. {Also,
because Jupiter would more greatly distort the other planets tidally, they would have a
greater influence on Jupiter itself.}

(c) If the Sun entered a dense interstellar cloud the gravitational and non-gravitational forces
on Venus would increase. Once more, the orbital elements of Venus would become more
variable.
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Question 1.8

From Table 1.1, the orbital period of Neptune is 165.07 years and that of Pluto is 250.88 years.
The ratio of these periods is 1.52. Bearing in mind the (slight) variations in orbital periods, and
that a resonance has a ‘width’, it is entirely plausible that Neptune and Pluto are in a 3:2 mean
motion resonance. {This is the case. A secular resonance might fortuitously occur here as well,
but it is beyond our scope to see if this is the case. In fact there is no secular resonance here.}

Question 1.9

Table 1.1 shows that the axial inclination of Venus is 177�4�, and so makes an angle of only
2�6� with the plane of its orbit – nearly 10 times less than the case of the Earth. Therefore,
seasonal variations would be small, unless its orbit were very eccentric. However, Table 1.1
shows that the orbital eccentricity is only 0.0068, less than half that of the Earth. {The seasonal
variations on Venus are indeed small.}

Question 1.10

If our calendar were based on the sidereal year, then, because of the precession of the equinoxes,
the seasons would gradually move through the year. For example, 12 900 years from now, in
the northern hemisphere, spring would start in September, and the summer solstice would be in
December.

Question 1.11

The orbit of Mars is moderately eccentric, whereas the Earth’s orbit is only slightly eccentric
(Table 1.1). Consequently, the opposition distance is more sensitive to the position of Mars in
its orbit than to the position of the Earth in its orbit. It is thus particularly important to have
Mars near perihelion when it is at opposition. From Figure 1.24 it is clear that when Mars is at
perihelion, then for it to be in opposition the Earth has to be about two-thirds of the way around
its orbit from its own perihelion in early January. Therefore, the date of such an opposition is
late August/early September {in fact, late August}. Because the Earth is at aphelion in July, the
closest oppositions will be slightly earlier {in fact, in mid August}.

Question 1.12

Eclipses can only occur when the Moon is at or near a node of its orbit when at the same time
the nodes are on or near the line from the Earth to the Sun. If these nodes are not fixed with
respect to the Earth’s orbit around the Sun then the line-up will move through the months of
the year, and consequently eclipses are not confined to particular months.

Question 2.1

(a) The greater the mass of a planet, the larger the displacement of the star from the centre of
mass of the system (equation (1.7)), and therefore the larger the orbit of the star around the
centre of mass. This makes it easier to detect and measure the stellar orbital motion.
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(b) For a stellar orbit of given size, the angular size of the orbit is greater, the nearer the star,
and therefore the easier the orbital motion is to detect and measure.

Question 2.2

With the giant planet spiralling inwards (Figure 2.2), there is no reason to expect high eccentric-
ities in hot Jupiters unless the process that stops migration, and the subsequent disc dispersal,
causes this. {In fact they do not. Hot Jupiters have low eccentricities. High eccentricities do
occur in some of the other giant exoplanets.}

Question 2.3

The feature already apparent in circumstellar discs is feature 2 in Table 2.1 – that the orbits of
the planets lie in almost the same plane {the plane of the circumstellar disc}, and that the Sun
lies near the centre of this plane.

Question 2.4

(a) The magnitude of the average orbital angular momentum of a planet is given to a good
approximation by

lorb = m�a (2.1)

where m is the mass of the planet, v is its average orbital speed, and a is the semimajor axis
of the orbit. The average speed is given by 2�a/P where P is the orbital period. Therefore

lorb = m

(
2�a

P

)
a = m

(
2�a2

P

)

Using Kepler’s third law

P = ka3/2 (1.3)

we obtain

lorb = m

(
2�a2

ka3/2

)

Therefore

lorb = 2�

k
ma1/2 (2.2)

(b) We use equation (2.1) in the form in part (a)

lorb = m

(
2�a2

P

)
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with values for m, a, and P from Table 1.1. Thus, for the Earth

lorb = 5�974 × 1024 kg
(

2��1�496 × 1011 m�2

3�156 × 107 s

)

= 2�662 × 1040 kg m2 s−1

From equation (2.2)

lorb = lorb�Earth�
ma1/2

mEa
1/2
E

So, from Table 1.1, for Jupiter

lorb = �2�662 × 1040 kg m2 s−1�

(
1�8988 × 1027 kg
5�974 × 1024 kg

)√
7�782 × 1011 m
1�496 × 1011 m

= 1�930 × 1043 kg m2 s−1

Similarly

lorb = 2�504 × 1042 kg m2 s−1

for Neptune.

Question 2.5

The ice line divides the dust into two zones, with water ice dominating in the outer zone and
rocky materials in the inner zone. The ice line during the formation of the Solar System was
located roughly where the present division between the terrestrial planets and the giant planets
lies (Figure 2.7).

Question 2.6

(a) Assume that all the dust in the sheet in the distance range 0.8–1.2 AU forms planetesimals
in that range, and that no planetesimals come from elsewhere. In this case the total mass M
of the planetesimals is the area between these distances times the average column mass. To
sufficient accuracy, from Figure 2.7

M = �	�1�2 AU�2 − �0�8 AU�2
 × 102 kg m−2

Converting AU to metres (Table 1.6), we get

M = 6 × 1024 kg

This is similar to the Earth’s mass of 5�974 × 1024 kg, and so this suggests that much of the
dust sheet in the range 0.8–1.2 AU went to form the Earth. This is consistent with 0.8 AU
being beyond the orbit of Venus, and 1.2 AU being within the orbit of Mars.
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(b) The size range of planetesimals is given in Section 2.2.3 as 0.1–10 km across, so use a
typical size of 1 km across. {A typical size of 0.5 km is acceptable, but 5 km is not – there
will be only a small proportion this big.} Taking the typical size to be the diameter of a
sphere, the typical volume V is

V = 4
3

��500 m�3 = 5 × 108 m3

With a mean density given in the question as 2500 kg m−3, the typical mass m is 1×1012 kg.
{It is sufficient to work to one significant figure.} Thus the number of planetesimals in the
range 0.8–1.2 AU is of order

M

m
= 6 × 1024 kg

1 × 1012 kg
= 6 × 1012�A lot!�

Question 2.7

The features in Table 2.1 that apply to the terrestrial planets are (in the numbering in the table)
2, 3, 6, 7, and 9. All of these features can be explained by solar nebular theories. {The rotation
of Venus is not discussed explicitly in Chapter 2. Its retrograde rotation is discussed briefly in
Section 10.3.3.}

Question 2.8

If the proto-Sun went through its T Tauri phase much earlier than in Figure 2.13, then the
growth of the giant planets would have been stunted. Jupiter and Saturn would have acquired
less massive envelopes of hydrogen and helium, and Uranus and Neptune might have got no
further than the kernel stage.

Question 2.9

The inner boundary of the Oort cloud is thought to be spherical, centred on the Sun, with a
radius of order 1000 AU. EKOs beyond about 40 AU from the Sun are thought to be a mixture
of those formed in situ and those scattered by the giant planets. It is not known whether there
is a significant population of EKOs at 1000 AU, but this cannot be ruled out, in which case the
E–K belt would blend into the Oort cloud.

Question 2.10

The satellites of the giant planets in Table 1.2 (additional to Triton), that are likely candidates
for a capture origin, are as follows:

Jupiter: Ananke, Carme, Pasiphae, Sinope

Saturn: Phoebe

Uranus: Caliban, Sicorax

Neptune: 2002 N1
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These all have orbital inclinations greater than 90�, so are in retrograde orbits. They are also in
large orbits, well away from the giant planet.

Question 2.11

(a) The present ring system of Saturn is the outcome of the accumulated effects of various
processes that replenish ring particles, and various processes that remove them. The time
scale on which these processes operate is much shorter than the age of the Solar System.
Therefore, if the replenishment rate were to fall substantially below the removal rate, then
at some time in the future the ring system would be much less extensive.

(b) By the same arguments as in part (a), it is possible that the ring system of Jupiter will
be much more extensive in the future: this would require the replenishment rate to rise
substantially above the removal rate, such as could follow the disruption of a small satellite.

Question 3.1

(a) The orbital inclinations of Pallas and Euphrosyne are unusually large for belt asteroids,
the inclinations of belt asteroids being predominantly less than 20�. The eccentricity of
Bamberga is considerably larger than the typical range of 0.1–0.2 for belt asteroids.

(b) To be at or near L4 or L5, the semimajor axis of the orbit must be similar to that of the
planet (Figure 3.3) {and the eccentricity has to be similar}. Comparison of the semimajor
axes in Table 1.3 with those in Table 1.1 shows that none of the asteroids in Table 1.3 is at
or near any L4 or L5 points.

Question 3.2

It depends on how rapidly the number of asteroids increases with decreasing size. Consider the
total mass in a certain range of size R centred on R1. The total mass is the number of asteroids
in the range times the average mass of an asteroid in the range. If R is centred on a smaller size
R2, the average mass decreases, and this can offset the greater number of asteroids in this new
range, so that the total mass is considerably less than in the first case. {In Figure 3.5, unless the
graph turns up unrealistically sharply at sizes below those shown, there is only a small fraction
of the total mass in the asteroid belt awaiting discovery. You might have answered the question
in a different way, perhaps without using symbols. Does your answer contain the essential idea,
and does it express it succinctly?}

Question 3.3

(a) All of the asteroids in Figure 3.6 are smaller than the approximate 300 km radius above
which gravitational forces make a body roughly spherical. {Vesta comes close.}

(b) A small spherical asteroid could have been born spherical, in which case it is not a collisional
fragment, which would be non-spherical. Alternatively, regardless of its initial shape, it
could have since suffered extensive erosion by dust impact, which tends to make asteroids
spherical, and little by way of volatile loss, which tends to make them non-spherical.
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Question 3.4

Among the five most populous asteroid classes – S, M, C, D, and P – the reflectance spectrum
of Eros (Figure 3.9) has a similar shape (up to a wavelength of 1�1 �m) to that of class S, with
class D as the only other plausible possibility (Figure 3.7). But the albedo of Eros is medium,
like class S, and not low, like class D. Consequently, it is placed in the S class. Its surface is
thus likely to be made of iron–nickel alloy mixed with appreciable proportions of silicates.

Though Eros is an NEA, its composition indicates that it probably originated in the inner
region of the asteroid belt.

Question 3.5

The semimajor axis is given by (Figure 1.8)

a = q

1 − e

= 0�976 586 AU
1 − 0�905 502

= 10�334 AU

The orbital period, from Kepler’s third law (equation (1.3)), is

P = 10�3343/2 years = 33�22 years

It is thus a short-period comet, with rather a long period for the Jupiter family. It thus seems
to be a member of the Halley family. This is confirmed by its large orbital inclination. {Its
inclination is over 90�, so it is in a retrograde orbit.}

Question 3.6

At 30 AU from the Sun there might be a coma consisting of the most volatile icy substances
evaporated from the nucleus by the (feeble) heat of the Sun. Any such coma could well be
too faint to be seen from the Earth. As the comet approaches the Sun the coma grows as less
volatile materials, notably water, begin to evaporate, and the coma becomes visible. Evaporation
is from vents in a residue of ice-depleted dust that covers the surface of the nucleus, and the
venting gas carries dust into the coma. A huge hydrogen cloud forms, and also ion tails, dust
tails, and perhaps other types of tail. The ion tail points away from the Sun; the dust tail only
approximately so, and it is curved. As it recedes from the Sun the gases recondense onto the
nucleus so the tails fade away and the coma also. There might be sporadic outbursts from
reactivated vents that break through the dusty surface.

Question 3.7

The other property is the time spent near the Sun. For example, a comet in a low-eccentricity
orbit will spend most of its orbital period not far from its perihelion distance, whereas a comet
in a high-eccentricity orbit will dash through the inner Solar System, and therefore spend only
a very short time near perihelion.
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Question 3.8

The active lifetime of a JFC is of the order of a few thousand years. The order of 100 perihelion
passages is thus consistent with an orbital period of the order of 10 years, which is typical of
JFCs. {These are very much order-of-magnitude correspondences.}

Question 3.9

The feature of the orbits of HFCs that indicates an inner Oort cloud origin is their gener-
ally larger orbital inclinations than the other short-period comets. The orbits of EKOs
generally have low-inclinations, and would tend to give rise to low-inclination short-period
comets.

Question 3.10

Most meteorites are never found because

• they fall in the oceans (which cover most of the Earth’s surface);
• they fall in remote parts of the continents;
• they get buried or otherwise obscured before anyone passes by;
• they are mistaken for terrestrial rocks.

Question 3.11

For the ratio of carbon to iron to be much the same as in the Sun, the meteorite would be of
the most primitive kind, i.e. a carbonaceous chondrite (CC), particularly a C1 chondrite. Such
meteorites have relative abundances of all the elements, much like those in the Sun, except for
those elements that remained as gases, and so were not retained by the meteorites. Helium is
one of these, and this is why in CCs the ratio of helium to carbon is far smaller than in the Sun.

Question 3.12

Suppose a mineral becomes isolated from its environment at t = 0 with a number N0�
87Rb� of

87Rb nuclei. Equation (3.3) gives the number of radioactively unstable 87Rb nuclei at time t as

N�87Rb� = N0�
87Rb�e−t/�

Therefore, the radiogenically produced 87Sr grows as

N�87Sr� = N0�
87Rb� − N�87Rb� = N0�

87Rb��1 − e−t/�� = N�87Rb�

e−t/�
�1 − e−t/��

Therefore

N�87Sr� = N�87Rb��et/� − 1�
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We must now add the 87Sr present in the mineral at t = 0. This gives us

N�87Sr� = N�87Rb��et/� − 1� + N0�
87Sr�

We now divide by N0�
86Sr�, where 86Sr is a stable isotope of strontium. Thus

N�87Sr�
N0�

86Sr�
= N�87Rb�

N0�
86Sr�

�et/� − 1� + N0�
87Sr�

N0�
86Sr�

At a given time t� �et/� − 1� is a constant, so a graph of N�87Sr�/N0�
86Sr� versus

N�87Rb�/N0�
86Sr� is a straight line with a slope �et/� − 1�.

Question 3.13

If the meteorite came from the outer metre or so of a larger body then it will have been exposed
before it was liberated, and so its exposure age would be greater than the time from when it
was liberated. However, its exposure age could not exceed its solidification age because cosmic
ray tracks cannot survive in a liquid.

Question 3.14

A possible origin of the stony-iron meteorites is the interface between the iron core and the
silicate mantle of differentiated asteroids. Stony-irons, as their name indicates, consist of mixtures
of silicates and iron (alloyed with nickel), clearly in accord with their suggested origin. The
OCs are thought to come from S class asteroids – these are undifferentiated. The OCs consist of
silicates, with an elemental composition (excluding volatile substances) similar to the Sun. The
S class asteroids also consist of silicates, and, as undifferentiated bodies formed at a few AU
from the Sun, are thought also to have an elemental composition (excluding volatile substances)
similar to the Sun.

Question 3.15

One reason is that the comet is in such a long-period orbit that it has not passed through the
inner Solar System in recorded history. An alternative reason is that the comet has devolatilised,
or become disrupted, so is no longer visible.

Question 4.1

In Figure 4.1 there is a clear gap in size between the pair of giant planets Jupiter and Saturn and
the other pair Uranus and Neptune. Moreover, because of their greater mass, the mean densities
of Jupiter and Saturn have been more increased by compression than have those of Uranus and
Neptune, with Jupiter more compressed than Saturn. Thus, in equal states of low compression,
Jupiter and Saturn could be distinctly less dense than Uranus and Neptune. This points to
different compositions. Therefore, on the basis of size and composition, Jupiter and Saturn could
form one subgroup, and Uranus and Neptune another. {This is the case, as you will see later.
Note that no reference was made to the uncompressed mean densities of the giant planets. This
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is because much of their mass would be gaseous in such a state, and an uncompressed gas will
expand indefinitely.}

Question 4.2

At double the distance the 1/r2 term in equation (4.7) is reduced by a factor of 4, but the J2

term, which is proportional to 1/r4, is reduced by a factor of 16. Therefore, the ratio of these
terms is reduced by a factor of 4. Any further extra terms fall off no less rapidly, and so, at
double the distance, the field is more closely that of a spherically symmetrical body.

Question 4.3

For a hollow cylindrical shell, with a radius R, every mass element �M is a distance R from
the longitudinal axis. Thus the sum of �MR2, which is C, is MR2 where M is the total mass of
the shell. Therefore C/MR2 = 1.

Question 4.4

A self-exciting dynamo generates a large magnetic dipole moment if there is an electrically
conducting fluid in the interior of the planetary body, an energy source to sustain convection
in the fluid, and rapid rotation of the planet to coordinate the motions. The Earth and the
four giant planets rotate relatively rapidly (Table 1.1). In Section 1.2.1 it was stated that the
Earth has an iron-rich core, largely liquid, and in Section 1.2.2 it was stated that the giants are
fluid throughout. Therefore, a reasonable hypothesis is that these five planets not only rotate
sufficiently rapidly, but also contain electrically conducting fluids in convective motion. {This
is the case.}

For the other planets one or more of these conditions must not be met. Venus, which is the
Earth’s twin in size and mass, and probably has an iron-rich, largely liquid core (Section 1.2.1),
differs in that it rotates slowly, so this might explain the absence of a large magnetic dipole
moment. {Another reasonable possibility is that internal energy sources are insufficient to sustain
convection.} Mercury also rotates slowly, so that might be the explanation for its lack of a large
magnetic dipole moment too. {As well as a lack of sufficient internal energy sources, another
reasonable possibility is that there are no conducting fluids.} Mars rotates about as rapidly as the
Earth, so reasonable hypotheses are that either it contains no electrically conducting fluids, or,
if it does, the internal energy sources are insufficient to sustain convection. Pluto rotates slowly,
and it is a small body a long way from the Sun, so could well be solid throughout. {Chapter 5
will explore these hypotheses in more detail.}

Question 4.5

{With an entirely fluid interior, only P waves exist. The P wave speed will change with depth.
The likely case of an increase with depth is shown here. Half way to the centre, the P wave
speed will increase in accord with equation (4.9) by the factor

√
2/1�2, which is 1.29. The speed

is then assumed to increase further to the centre, also likely.}
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Question 4.6

We use equation (4.12) with �m and R for Jupiter taken from Table 1.1, and G taken from
Table 1.6. Thus

pc ≈ 2� × 6�672 × 10−11 N m2 kg−2

3
�1330 kg m−3�2�7�149 × 107 m�2

≈ 1�3 × 1012 N m−2 = 1�3 × 1012 Pa = 1300 GPa

{This is about 3.4 times the pressure at the Earth’s centre. Models of Jupiter yield the more
accurate value of about 4000 GPa, so equation (4.12) underestimates the pressure, as expected.}

At shallower depths the pressure must be less – pressure increases with depth.

Question 4.7

As the water is compressed at constant temperature the solid + gas phase boundary is encountered
{just to the left of the triple point}. The water then solidifies. On further compression the solid +
liquid phase boundary is encountered {this is because this boundary slopes to the left from the
triple point}. The water then melts to become a liquid. Further compression increases the density
of the liquid.

Question 4.8

{Much of the detail in the figure is arbitrary. The important features are

• the rates of energy release from accretion and initial differentiation rise to an early maximum
and then decline to zero, with differentiation later than accretion;

• the rate of energy release from short-lived radioactive isotopes is now negligible, whereas
that from long-lived isotopes, though declining, is still significant {many short-lived isotopes
decay far more quickly than the example shown};

• ongoing differentiation, tidal energy (where it is significant), and solar energy are more
sustained, with solar energy (in this example) making a relatively minor contribution (and
increasing as the solar luminosity increases).
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The details will differ greatly from one planetary body to another.}

Question 4.9

(a) From equation (4.6), the difference g in the magnitude of the gravitational field across a
body with a radius R, due to another body with a mass M a distance r away, is

g = GM

(
1

�r − R�2
− 1

�r + R�2

)

This can be rearranged to give

g = GM

(
�r + R�2 − �r − R�2

�r − R�2�r + R�2

)

Expanding the brackets on the top line and cancelling terms gives

g = GM

(
4rR

�r − R�2�r + R�2

)

If r is much greater than R, then �r − R� and �r + R� are each equal to r to a good
approximation. Thus

g ≈ GM

(
4rR

r4

)
= 4GM

(
R

r3

)

(b) For the Earth, the ratio of the solar tidal field to the lunar tidal field is 4GM��RE/a3
E�

divided by 4GMM�RE/a3
M�, where RE is the radius of the Earth, M� is the mass of the Sun,

aE is the semimajor axis of the Earth’s orbit, MM is the mass of the Moon, and aM is the
semimajor axis of the Moon’s orbit. The ratio is thus

M�a3
M

MMa3�

Putting in the values from Tables 1.1 and 1.2, this ratio is 0.46, or 46%. {As well as g,
the magnitude of the tidal ‘squeeze’ (Section 1.4.5) is also proportional to GM�R/r3�.}
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Question 4.10

(a) Radiative transfer is important only at high temperatures, so it is unlikely to be significant.
Local regions of molten material are also unlikely, so advection is probably not occurring.
With low temperature gradients beneath the surface layer, there is no convection below the
surface layer, which itself is probably at too low a pressure for (solid state) convection.
Therefore, conduction is very probably the only means by which energy is being transferred
to the surface layer.

(b) The thin surface layer must have a lower heat transfer coefficient than the rest of the body.

Question 4.11

(a) Accretional energy was endowed in a short period a long time ago, so the temperature will
long since have become uniform throughout the interior.

(b) Long-lived radioactive isotopes will still be releasing energy in the core, so there will be a
temperature increase towards the core.

(c) Because A/M is smaller in the larger body, it will have cooled less, so the temperature
increase towards the centre will be greater. {This assumes that the heat transfer coefficients
in the interior are similar in both bodies.}

Question 5.1

Were the Earth’s outer core to solidify

• there would be no electrically conducting fluid and so (according to the self-exciting dynamo
theory) no magnetic dipole moment;

• seismic S waves would be able to travel throughout the interior, unless the latent heat released
on solidification melted the lower mantle.

{The contraction of the core on solidification would wreak havoc with the crust. Further crustal
havoc might result from the latent heat released, which could make the solid state convection
in the mantle more vigorous.}

Question 5.2

Venus might have an asthenosphere as extensive as that of the Earth, i.e. extending throughout
most of the mantle. Support for this view is that Venus probably has a similar composition
to the Earth, with comparable pressures and temperatures at a given depth. In this case the
‘plasticity profile’ could be similar in the two planets. Moreover, the surface displays evidence
of extensive geological activity a few hundred million year ago, consistent with a convective
interior presently overlain by a lithosphere that acts as a stagnant lid.

If Mercury has an asthenosphere at all, it will extend over a small range of radii, and be
located deep down, where pressures and temperatures are sufficiently high. Mercury is a small
world, and in spite of its high mean density its internal pressures are not as high as in the Earth
(Table 5.2). Its surface indicates that the lithosphere is thick.
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Question 5.3

If Mars rotated very slowly it would be less flattened by rotation, and so the gravitational
coefficient J2 would be smaller and consequently more difficult to measure. Also, the more
spherical form of Mars would result in a reduction in the torques that cause precession of the
rotation axis, and a consequent increase in the precession period. At present the precession
period is 0.1711 Ma, so would be more difficult to measure if it were even longer.

We would thus have a far less precise value of C/MR2
e and consequently a much poorer

constraint on the variation of density with depth.

Question 5.4

Planetary body A will have a cooler interior than planetary body B for either one or both of the
following reasons:

(1) body A has had less copious energy sources;
(2) body A has lost energy at a greater rate.

Accretional energy per unit mass is roughly proportional to �mR2 (Section 4.5.1), and so the
Earth would have received more accretional energy per unit mass than the considerably smaller
Mars and Moon. The Earth’s core is also a greater proportion of the mass of the Earth than the
cores of Mars and the Moon in proportion to those bodies, so any energy of differentiation would
have been greatest in the Earth. Insufficient information is given about radioactive sources and
any other energy sources, to decide whether, overall, the Earth has had more copious energy
sources than Mars and the Moon.

Equation (4.14) shows that, other things being equal, the energy loss rate per unit mass has
been greater from Mars and the Moon than from the Earth because of their greater area-to-
mass ratios. However, the generally higher temperatures in the Earth have promoted solid state
convection, and advection could also have been more effective (Table 4.5), thus increasing the
Earth’s heat transfer coefficient, and hence obscuring the issue.

{In fact, the smaller sizes of the Moon and Mars are indeed thought to be the main reason
for their cooler interiors.}

Question 5.5

Pluto is an icy–rocky body because it formed well beyond the ice line in the solar nebula
(Section 2.2.2). It is small because beyond Neptune there was a low spatial density of planetes-
imals and embryos, and slow orbital motion, resulting in a low collision rate. There was also
a lack of nebular gas sufficient to reduce the eccentricities of these bodies. Consequently, their
collision speeds were so high that fragmentation was more likely than accretion (Section 2.2.6).

Question 5.6

Adapting the answer to Question 4.9, the tidal field produced by the Earth across the Moon is
given by 4GME�RM/a3

M�, where ME is the mass of the Earth, RM is the radius of the Moon, and
aM is the semimajor axis of the Moon’s orbit. In the case of tides produced in the Earth, the
Sun is only 46% as effective as the Moon (Question 4.9(b)), and it will be even less effective
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for the Moon because the Earth/Sun mass ratio is much greater than the Moon/Sun mass ratio.
So we can neglect the tide produced in the Moon by the Sun.

The tidal field produced across Io by Jupiter is given by 4GMJ�RI/a3
I �, where MJ is the mass

of Jupiter, RI is the radius of Io, and aI is the semimajor axis of Io’s orbit. The tide produced
in Io by the Sun and other bodies is negligible by comparison.

The ratio of the tidal field produced across the Moon by the Earth, to that produced across
Io by Jupiter, is thus

MERMa3
I

MJRIa
3
M

Putting in the values from Tables 1.1 and 1.2, this ratio is 0.004 i.e. 250 times greater in Io.
Equation (4.13) shows that tidal heating is proportional to orbital eccentricity. The eccentricity

of the lunar orbit (0.0554) is 13.5 times that of Io (0.0041). The Moon being much less
geologically active than Io, it must be the case that the far greater tidal field across Io more than
offsets the greater eccentricity of the lunar orbit in determining tidal heating. {This is indeed
the case.}

Question 5.7

As Jupiter’s interior cools the rate of settling of helium will increase, releasing energy
of differentiation. It is triggered by cooling because the lower the temperature of the
metallic hydrogen mantle, the lower the miscibility in it of helium. The heat from this
differentiation will tend to sustain the internal temperatures, and so their decline will be
retarded.

Question 5.8

The important radioactive isotopes are elements found in rocky materials (Table 4.4). Rocky
materials are a minor ingredient of the giant planets, and therefore radioactive isotopes are only
a minor energy source.

Question 5.9

(a) If the Earth had no atmosphere then the atmospheric source of electrons and ions
for the Earth’s magnetosphere would be replaced by the Earth’s surface. It is thus
possible that the nature of the plasma belts would change {they would}. There would be
no aurorae.

(b) If the solar wind had a lower speed v and a lower number density n of charged particles, then
the factor �1/3/n1/6v1/3 (Section 5.4.1) would be increased, and the magnetosphere would be
larger. The number density of solar wind particles in the magnetosphere would be reduced.

Question 6.1

Because of its slow rotation, Titan will not be rotationally flattened, and in view of its large size
it is likely to be approximately spherical. Therefore, a sphere centred on Titan’s centre of mass,
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and lying within or near the range of radii at the surface, could serve as a zero of altitude. {This
is the approach adopted, zero altitude being the sphere with a radius of 2575.0 km.}

Alternatively, a specific value of mean atmospheric pressure could be used, somewhere near
the mean surface pressure. {A body does not need to be rotationally flattened for atmospheric
pressure to be used in this way.}

Question 6.2

If the atmosphere of Venus were transparent to radar, then radar could be used to establish surface
morphology and composition. If circularly polarised radar were used then extra information
on surface composition would be obtained. {The atmosphere of Venus is indeed transparent to
radar, and much of what we know about the surface comes from radar.}

Gamma and X-ray fluorescence can provide further information on composition. {Neutron
spectrometry is not feasible, because the neutrons would be unable to traverse the
atmosphere.}

Question 6.3

Pure silica is not subject to partial melting or fractional crystallisation because it is a single
mineral, not a mixture of minerals.

Question 6.4

For the summit crater in Figure 6.5(b) to be of impact origin the impact would have had to be
in the centre of a pre-existing mountain – rather unlikely. If the composition were typical of
extrusive volcanism, then this would strongly indicate that the crater was a volcanic caldera. If
around the crater the layers of rock were not turned over {as they are in Figure 6.9(c)} then this
would be strong evidence against an impact origin. {You might have spotted other indicators,
such as the profile of the shield volcano in Figure 6.5(b) being unlike the impact crater profiles
in Figure 6.10.}

Question 6.5

(a) With a crater density on Chryse Planitia of 2�2 × 10−4 per km2 for craters greater than
4 km in diameter, there are �105km2��2�2 × 10−4 per km2� such craters on a typical area of
105 km2. This is 22 craters greater than 4 km diameter.

(b) If the Earth–Moon data in Figure 6.14 apply to Mars, then Chryse Planitia was resurfaced
about 3500 Ma ago. However, the impact rate on Mars throughout much of Solar System
history has been greater than in the Earth–Moon system. Therefore Chryse Planitia must have
been resurfaced more recently than 3500 Ma ago. {Quite when is uncertain. One estimate is
3400 Ma.}

Question 6.6

If a planet has an atmosphere but no surface liquids then gradation will be via
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• disintegration by impact cratering, dry thermal cycling, seismic waves, chemical reactions,
UV irradiation, removal of adjacent material;

• erosion by micrometeorites and wind-borne dust;
• mass wasting and aeolian transport processes;
• deposition from the atmosphere only (not from rivers, lakes, or oceans).

Question 7.1

The anorthositic composition of the lunar highlands is thought to have been derived by differ-
entiation from a magma ocean of peridotite composition. If the highlands had a peridotite
composition this would imply that no such magma ocean formed.

Question 7.2

(a) Mare infill derived through gradation from the highlands would have the mineralogical
composition of the highlands, i.e. anorthosite rather than basalt.

(b) Because of lithospheric thickening and interior cooling, lava has been unavailable since
about 3100 Ma ago, and so the only infill of an impact basin formed today would be through
gradation.

Question 7.3

{This question is similar to Question 5.4.}
A thicker lithosphere is a consequence of a cooler interior, so we have to look at energy gains

and losses.
Accretional energy per unit mass is roughly proportional to �mR2 (Section 4.5.1), and so

Mercury would have received less accretional energy per unit mass than the considerably larger
Earth and Venus. This might have been offset by energy of differentiation – Mercury’s core is a
greater proportion of the mass of Mercury than the cores of the Earth and Venus in proportion
to those bodies (Figure 5.1). We have no surface analyses of Mercury so can say little about
radiogenic heating, and so it is not possible to say, overall, if Mercury has had less copious
energy sources than the Earth and Venus.

Equation (4.14) shows that, if the heat transfer coefficients have been comparable, then the
energy loss rate has been greater from Mercury than from the Earth and Venus, because Mercury
has a higher area-to-mass ratio. However, the generally higher temperatures in the Earth and
Venus have promoted solid state convection, thus increasing these two planets’ heat transfer
coefficients, hence obscuring the issue.

{Detailed thermal models show that, in essence, the higher area-to-mass ratio of Mercury
is the underlying reason for its cooler interior, and consequently for its greater lithospheric
thickness.}

Question 7.4

Syrtis Major, the triangular dark feature to the right, is an example of a dark region. These are
where the light dust is streaky, with a higher proportion of dark dust, and with exposure of dark
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underlying terrain. The dark areas are at locations determined by small-scale topography, wind
speed, and direction.

To the left of Syrtis Major is an example of a bright region. These are where the light-red dust
provides the dominant covering. The red tint is the result of iron-rich minerals. It is thought that
the light dust is derived from the dark dust (also iron rich) by a variety of physical and chemical
processes. The dark dust is basaltic, whereas the light dust includes various clay minerals. The
dark dust itself is derived from the basaltic crust.

To the north are the smooth plains of the northerly hemisphere. These are the result of basaltic
lava flows, resulting in a comparatively young surface, almost free from impact craters. The
volcanic activity is thought to be the result of a thinner northerly crust, the result of crustal
thinning early in Martian history, perhaps caused by convection.

To the south of Syrtis Major is the Hellas Basin, the result of a giant impact when Mars was
young. To the left of Hellas there are examples of smaller impact craters.

The generally cratered southerly hemisphere is apparent in the lower half of the image. Here
the crust is thicker, and therefore volcanic activity has for long been rare. Consequently, many
impact craters are present.

At the bottom of the disk the south polar cap is visible. Its rather small extent is consistent
with it being summer/near summer in the southern hemisphere {in fact, summer}. This (receding)
cap is formed from deposits of CO2 ice particles (plus dust). The residual cap will have the
same composition.

The atmospheric haze at the top of the disc is cloud over the winter/near-winter north polar
cap. It must consist of the icy particles of the condensibles in the atmosphere, i.e. water and/or
CO2 {in fact, mainly CO2 – see Section 10.2.1}.

Question 7.5

Among the water-related features on Mars, ejecta blankets such as that in Figure 7.13 are
the most unlikely to be found on the Earth. Though such blankets might be produced in
areas of deep permafrost {rare on the Earth}, the production rate would be very low and the
removal rate, by weathering and geological processes, high. {No such blankets are known on
the Earth.}

Question 7.6

The northerly hemisphere of Mars has many volcanic and tectonic features, and the Martian
meteorites indicate that magma was solidifying as recently as 165 Ma ago. There is evidence
that volcanism was occurring in the Tharsis and Elysium regions as recently as 3 Ma. Therefore,
though there is no direct evidence for volcanic and tectonic activity today, it is possible that it
is still ongoing. If this were not very rare, the material on Mars in this chapter would fit better
in the chapter on active surfaces. {In fact volcanic and tectonic activity is so sparse today that
Mars fits comfortably in this present chapter.}

Question 7.7

Had the Martian crust in the southerly hemisphere been as thin as that in the northerly hemisphere
then it is possible that the southerly hemisphere would resemble the northerly hemisphere. In
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this case there would be no heavily impact-cratered surface, and the evidence from the Martian
channels for an early warmer, wetter epoch would be absent. Instead, there would be more
volcanic and tectonic features.

Question 7.8

To cause cryovolcanism, the outer shell of each body needs to have its temperature raised so
that (partial) melting can occur. If Pluto were moved closer to the Sun then solar radiation could
accomplish this. In the case of Ganymede, if it were moved closer to Jupiter, or if its orbital
eccentricity were increased, then tidal heating could cause cryovolcanism.

Question 8.1

(a) Plate tectonics promotes rapid recycling of oceanic crust, and promotes volcanism that,
along with erosion, resurfaces continental crust. Therefore, most of the Earth’s surface is
young and impact craters consequently rare.

(b) The rift valley is explained as a new constructive margin. {Iceland is oceanic crust, so this
is not a rift valley within continental crust.}

(c) Mountain ranges in the midst of continents are often sites where two slabs of continental
crust have met, and crumpled. {As is the case here.}

(d) At shallow depths near mid-oceanic ridges and ocean trenches there is a comparatively
large amount of upward and sideways motion, and partial melting. This general activity
is expected to generate stresses and fractures in the crust and in the solid mantle beneath,
which will be observed as seismic activity.

(e) Figure 8.2 shows that the Aleutian Islands border a destructive margin, and so they could be an
island arc. {This is the case.} Island arcs are caused by partial melting, fractional crystallisation,
and volcanism at destructive margins where there are no continents at the margin.

Question 8.2

The Venusian surface dates from no more than about 800 Ma ago. Large impacts have been
so rare since the end of the heavy bombardment 3900 Ma ago that it is no surprise that Venus
has not suffered an impact large enough to produce an impact basin in the last few hundred
million year.

Question 8.3

On the Earth granites are intrusive rocks formed at destructive margins by fractional crystalli-
sation and the partial melting of continental crust (Section 8.1.2). An essential feature of these
margins is subduction. Subduction probably occurs on Venus only in a few locations (at certain
chasmata), involving small quantities of crust, so perhaps granites are formed at such sites.

Question 8.4

If Io were devoid of sulphur then the magma would be devoid of what seems to be major volatile
components, such as sulphur dioxide and sulphur itself. Therefore, the volcanic plumes would
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not reach as high, and perhaps the volcanism would be almost entirely effusive. The surface
would be less colourful, because much of the present colour comes from a veneer of sulphur
and its oxides.

Question 8.5

The decreasing tidal heating with increasing distance from Jupiter (equation (4.13)) leads one
to expect that the surface of Io will show signs of greater activity than Europa, with Callisto
showing the least signs of activity. This is as observed. Io has extensive silicate volcanism, and
a young surface devoid of impact craters. Europa has cryovolcanism, liquid or slushy oceans of
water, and perhaps some volcanic activity on the rocky floor of the oceans. Ganymede displays
evidence of viscous relaxation and of episodic partial resurfacing by cryovolcanism, perhaps at
times when tidal heating was greater than today. Callisto displays less viscous relaxation, and
little sign of cryovolcanic resurfacing since soon after its formation – it is heavily cratered.

Question 8.6

At the low atmospheric and surface temperatures on Titan, water is well below its triple point
and is thus very hard, behaving rather like rock on the Earth. Therefore, there is no flow of
liquid water at the surface, and nothing that behaves like glaciers on Earth. There is very little
water in the atmosphere, and it cannot be present as a liquid. Consequently there is a negligible
water–frost cycle, negligible snow, and no rain of water.

Question 8.7

It is only in the outer Solar System that temperatures can always have been low enough for the
very volatile N2 to have been retained as a solid (Section 5.2.2). N2 has only been detected on
satellites beyond Saturn and on Pluto itself. If there is subsequent modest internal heating, this
can vaporise some of the N2, giving nitrogen cryovolcanism, though sufficient internal heating
would be restricted to the larger of this group of bodies. Triton is the largest of all, but still only
has weak N2 volcanism in spite of powerful tidal heating early in its history. Pluto is next down
in size, and is thought to be inactive, partly because of its smaller size, and partly because it
probably never experienced as much tidal heating as Triton (Section 7.4.1).

Question 9.1

(a) If the number of CO2 molecules in the Martian atmosphere were to decrease, the area of
the spectral absorption line in Figure 9.1 would decrease.

(b) If the temperature of the Martian atmosphere were to increase, the Doppler width of the line
would increase. If Doppler broadening was not initially determining the line shape it would
increasingly do so as the temperature rose. {Such a rise could also reduce the line area, if
a proportion of the CO2 was thereby in a higher energy state to start with. The absorption
lines of such molecules would be at longer wavelengths.}

(c) If the pressure of the Martian atmosphere were to increase the collisional broadening of the
line would increase. If collisional broadening was not initially determining the line shape it
would increasingly do so as the pressure rose.
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Question 9.2

(a) If Wint is negligible, then, from equations (9.3) and (9.4),

Lout = FsolarAp�1 − aB�

Substituting this expression for Lout into equation (9.7) gives

Teff =
(

FsolarAp�1 − aB�

A�

)1/4

For a spherical body the projected area Ap =�R2 and the total surface area A= 4�R2. Thus

Teff =
(

Fsolar�1 − aB�

4�

)1/4

(b) The missing value is for the Earth. The Earth’s average distance from the Sun is 1�496 ×
1011 m (Table 1.1), and so, from equation (9.5) and with L� from Table 1.6,

Fsolar =
3�85 × 1026 W

4��1�496 × 1011 m�2

= 1370 W m−2

Thus, using � from Table 1.6 and aB from Table 9.2,

Teff =
(

1370 W m−2�1 − 0�30�

4 × 5�67 × 10−8 W m−2 K−4

)1/4

= 255 K

Question 9.3

(a) To rewrite equation (9.12) in terms of density, the perfect gas equation of state (equa-
tion (9.2)) needs to be used in the rearranged form

� = p
(mav

kT

)

Because mav and T are assumed to be the same at all z in equation (9.12), they are the same
at the surface as elsewhere, and so

� = �s e−z/h

where �s is the density at zero altitude. {Thus, because density is proportional to pressure,
the form of the equation is the same for density as for pressure.}

(b) A planetary atmosphere is approximately isothermal in the mesosphere {the Earth is an
exception – Section 10.1.1}. If (as in Figure 9.8) the mesosphere is in the homosphere then
(except for any condensable substances) it will also have uniform composition. It is thus
in such a mesosphere that the pressure is expected to vary with altitude in accord with
equation (9.12).
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Question 9.4

Though solar UV radiation is a small fraction of the total luminosity (Figure 9.5(b)), it is the
main energy source for the mesosphere and thermosphere, and so these domains would be
cooler, and the increase of temperature with increasing altitude in the thermosphere would be
less steep. Also, without solar UV radiation there would be only a feeble ionosphere {from
cosmic ray impacts}.

Question 9.5

At a partial pressure of 100 Pa, the solid + gas line in Figure 9.9 is at about 253 K. Therefore,
if the partial pressure did not change with altitude the cloud base would be at an altitude of
�293 K − 253 K�/7 K km−1, i.e. 5.7 km. This is a large change in altitude, and so the pressure
will be less, and consequently the partial pressure of water too. A better estimate is to follow a
path parallel to that shown from point B in Figure 9.9, starting at 293 K and 100 Pa. This shifted
path intercepts the solid + gas line at a temperature of about 247 K. In this case the altitude of
the cloud base would be about 6.6 km.

In either case, the cloud will consist of water-ice crystals, though if supercooling persists,
then it will consist of liquid water droplets.

Question 9.6

(a) An atmosphere consisting of single atoms would be a weak absorber of mid-IR radiation,
and therefore the greenhouse effect would be weak.

(b) Water molecules consist of three atoms, and so water vapour is a strong absorber of mid-
IR radiation. Therefore, if a dry atmosphere were to have water vapour added to it the
greenhouse effect would be larger, and Ts would rise. {However, if clouds became a lot more
extensive, this rise could be offset by the increase in albedo and the consequent decrease in
temperature.}

Question 9.7

(a) With a given exosphere radius, the escape speed is proportional to
√

M (equation(9.17)),
where M is the mass of a planetary body. Therefore, the thermal escape rate is dependent
on M . Chemical escape and hydrodynamic escape must also depend on M , because the
greater the escape speed, the less likely it is that molecules attain it, even if their speeds
are non-thermal. {Impact erosion is a more difficult case. Greater planetary mass makes it
less likely that atmosphere will be ejected, but greater mass also results it greater impact
energy, and for a population of small potential impactors, greater planetary mass increases
the collection rate.}

(b) The temperature at the base of the exosphere affects the thermal escape rate: the greater the
temperature, the greater the rate.

(c) The greater the mass of a molecule, the less likely it is to have the escape speed. The mass
thus affects the rates of thermal escape, chemical escape, and impact erosion. The greater
the mass of a molecule, the less likely it is to be entrained in outflow, and so the rate of
hydrodynamic escape is reduced too.
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(d) The solar UV flux is essential for at least some forms of chemical escape, and any reduction
in this flux will reduce the rate of chemical escape. {A reduction in solar UV will also affect
photochemical reactions deep in the atmosphere, and at the surface.}

Question 9.8

(a) Equation (9.20) gives the required speed. We need first to obtain the equatorial surface
speed ve. This is obtained from the Earth’s equatorial radius and sidereal rotation period in
Table 1.1. Thus

ve = 2� × 6�378 × 106 m
0�9973 × 24 × 3600 s

= 465 m s−1

Thus from equation (9.20)

vrel =
465 m s−1

cos�30��
− 465 m s−1 cos�30��

= 134 m s−1

{Quite a wind! The wind would be reduced for example by friction at the surface.}
In the northern hemisphere the parcel moves from west to east, and in the southern hemi-
sphere from east to west.

(b) If the Earth were to rotate much more slowly, then as well as lower east–west speeds, the
Coriolis effect would be less disruptive on the Hadley circulation, and so the equatorial
Hadley cells might extend to higher latitudes. Also, the cyclonic–anticyclonic activity at
mid latitudes might be less.

Question 10.1

Figure 10.1 shows that in the Earth’s stratosphere the lapse rate is zero or negative (temperature
increases with increasing altitude), and so there will be no convection, and consequently no
condensation.

Question 10.2

(a) The Earth’s biosphere sustains both of the major present constituents of the atmosphere – O2

and N2. Without the biosphere the O2 would largely be lost in oxidising surface substances
and certain volcanic gases, and most of the N2 would end up as the nitrate ion in the oceans.
The Earth’s atmosphere would then consist mainly of water vapour, argon (Table 9.1),
and CO2. {The carbon cycle will become altered so that the atmospheric mass of CO2 is
increased, and it will become the main constituent.}

(b) Without knowing the new masses of the greenhouse gases H2O and CO2 in the atmosphere,
and any changes in albedo {due to changes in cloud cover and in ice and snow at the
surface}, it is impossible to estimate the change in the Earth’s GMST.
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(c) Solar UV radiation at the surface would probably be greater because of the greatly reduced O2

content of the atmosphere, and the consequent reduction in oxygen atoms in the thermosphere
and ozone in the stratosphere. {This could be offset by greater cloud cover.}

Question 10.3

When the Earth’s axial inclination is zero, the flux density on the Earth’s surface at the poles
is always extremely small because the Sun is always on the horizon. With its present axial
inclination, though at the poles the Sun is below the horizon for about half the year, it is well
above the horizon in midsummer. Consequently, the solar flux density at the poles, averaged
over a year, is less when the Earth’s axial inclination is zero than it is at present.

Question 10.4

(a) At midsummer in the southern hemisphere the Hadley cell on Mars extends from the subsolar
latitude (in the southern hemisphere) to the northern (winter) hemisphere. After midsummer
the subsolar latitude moves northwards, and with it the Hadley cell. Around the equinox
the Hadley cell transforms into one each side of the equator, perhaps with smaller cells at
higher latitudes, but with the approach of midsummer in the northern hemisphere the single
Hadley cell becomes re-established, now extending from a northerly subsolar latitude to
the southern hemisphere. Thereafter, the cell migrates southwards, transforms around the
equinox as before, and becomes re-established as at the start of this answer.

(b) As the axial inclination of Mars varies, the midsummer subsolar latitude swings towards
and away from the equator, being nearer the equator at low inclinations. For example, the
location of the Hadley cell at midsummer in the southern hemisphere lies further south at high
inclinations, and further north at low inclinations, possibly splitting into the configuration
seen at the equinoxes at the present time.

Question 10.5

For a positive lapse rate it is necessary that there is some heating from below. With no solar
radiation penetrating the clouds, heating would be from above (ignoring the small outflow from
the interior). Consequently the temperature would vary little with altitude, i.e. the lapse rate
below the clouds of Venus would be close to zero. {This point was made in relation to planetary
interiors, in Question 4.11(a).}

Question 10.6

From Figure 10.12, the global mass fraction of water on Venus today has a lower limit of about
2 ×10−9, so 102 −103 times this value is a lower limit of between 2 ×10−7 and 2 ×10−6. On the
Earth the lower limit is much higher, about 2 × 10−4, so before the loss Venus would probably
still have been drier than the Earth.

Question 10.7

Figure 10.12 shows that the lower limits of the global mass fractions of CO2 for Venus, the
Earth, and Mars are, respectively, 1 × 10−4� 6 × 10−5, and 3 × 10−6. The atmospheric quantity
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on Venus is only slightly less than the lower limit on its global value, whereas for the Earth it
is less by a factor of about 105, and by a factor of about 100 for Mars.

The very first atmospheres seem to have been lost, presumably when the Sun went through
its T Tauri phase. Subsequently, the late stages of accretion would have brought CO2 to these
three planets. Even if all of this endowment was lost through hydrodynamic escape, impact
erosion, and blow-off, a late veneer would have resupplied the planets. It is more likely that
some of the earlier endowment was retained inside the planet, and that a proportion of this was
outgassed, to add to the late veneer. Since the end of the heavy bombardment there has been
little by way of loss to space, and so we can account for the quantities of CO2 for Venus, the
Earth, and Mars being substantial.

The differences in the global mass fractions of CO2 have only been addressed in the broadest of
terms, in relation to the composition of the materials from which these three planets formed, and
the subsequent acquisition of volatile materials and losses to space. There are great uncertainties.

Question 10.8

(a) The Moon has a very low abundance of volatiles. It also has low gravity (see Figure 9.12),
so that retention even of CO2 would be marginal, particularly as the surface temperatures
can reach 400 K at equatorial noon (Section 7.1), rather than the 275 K or so surface average
in Figure 9.12. Furthermore a tenuous atmosphere would be stripped by the Sun. Solar UV
disrupts molecules, reducing the particle masses, making escape easier, and the solar wind
assists by blowing the fragments away.

(b) Mercury might have suffered a massive impact that stripped away most of the silicate
mantle and most of the volatiles. Though Figure 9.12 indicates that Mercury could retain
an atmosphere of N2� O2, and CO2, the temperature in Figure 9.12 (about 440 K) is some
average over the surface: as mentioned in Section 7.2, the equatorial temperature at noon is
about 725 K, which would make the retention even of CO2 marginal. Moreover, Mercury is
so close to the Sun, that its stripping power is much greater than at the Moon.

{Both of these bodies might have had thin atmospheres today, if they had ever had atmospheres
sufficient to moderate the peak surface temperatures. Given the likely paucity of available
volatiles, this is unlikely.}

Question 10.9

If the solar luminosity increased considerably, the Earth’s atmosphere might well come to
resemble that of Venus. The mass of water vapour in the atmosphere would increase, and this
would increase the greenhouse effect, leading to positive feedback, until most or all of the
oceans had evaporated to give a massive atmosphere initially dominated by water vapour. The
mass of CO2 would then increase as sedimentary carbonates decomposed in the high surface
temperatures. The proportion of water would gradually fall through photodissociation of H2O
and the escape to space of the liberated hydrogen.

In the case of Mars, a significant proportion of the surface and near-surface reservoirs of
water and CO2 would be liberated, raising atmospheric pressure. The enhanced greenhouse
effect would lead to higher surface temperatures, and there would be large open bodies of liquid
water. For Mars to end up something like Venus, the luminosity of the Sun would have to rise
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more than that required for the Earth to become like Venus. This is because of the greater solar
distance of Mars. In any case a Venus-like phase might be short lived because of the lower
escape speed of Mars.

Question 10.10

The differences between the atmospheres of Titan and Triton are believed to be due largely
to their different distances from the Sun. Therefore, if they were to swap places they would
also swap atmospheric characteristics. Much of the N2 and CH4 in Titan’s atmosphere would
condense onto its surface, and N2 and CH4 ices on the surface of Triton would be evaporated
into the atmosphere.

Question 11.1

(a) To obtain the Jovian mixing ratios, the number fractions in Table 9.1 have to be divided by
the number fraction of H2. This gives the following table, with the values from Table 11.1
added for comparison. The values for He and CH4 are the same because in both tables the
data for these substances are for the atmosphere above a few times 105 Pa.

Species Mixing ratio from
Table 9.1

Mixing ratio in
Table 11.1

H2 (1) (1)
He 0.156 0.156
CH4 2�1 × 10−3 2�1 × 10−3

(b) Helium is thought to be well mixed in the molecular hydrogen envelope, and therefore the
mixing ratio in Table 11.1 probably applies down to the metallic hydrogen envelope. CH4

does not condense anywhere in Jupiter’s atmosphere, is also well mixed, and so the same
conclusion applies. The NH3 mixing ratio in Table 11.1 is at a pressure of a few times
105 Pa, where we are below the level at which NH3 clouds and any NH4SH clouds lie
(Figure 11.1). Therefore, the Table 11.1 value also typifies the envelope.

Question 11.2

(a) If the minor constituents of the atmospheres of Jupiter and Saturn were absent there would
be no cloud formation. The absence of clouds would decrease the albedo, and this would
lead to greater solar heating of the upper molecular envelope and (presumably) to greater
temperatures there, except perhaps where the latent heat of condensation of cloud particles
had been important.
Without clouds it would be less easy to discern the circulation.

(b) The solar driven component of the circulation would be changed because of the greater
solar heating of the upper envelope, and the absence of condensation. {Plausible details are
beyond the scope of this question.}
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Question 11.3

The assumption that the proportion of N2 is negligible in the atmospheres of Uranus and Neptune
might fail for Neptune. The evidence is the detection of HCN in the upper troposphere of
Neptune. HCN can be formed from N2, and the mixing ratio of HCN for Neptune is large enough
to require a source of N2 from the interior. The mixing ratio of HCN for Uranus is certainly
much less, and this difference between the two planets is consistent with other evidence for the
lack of convection at some depths in Uranus.

If indeed there is N2 in Neptune’s atmosphere, then the mixing ratio of helium must be
reduced correspondingly. {Likely quantities would reduce it only slightly.}

Question 11.4

Neon, because it is volatile and unreactive, would have largely resided in the nebular gas, with
only a small proportion trapped in the planetesimals. Because of its great abundance, most of
the hydrogen was also in the gas. Similar proportions of the hydrogen and the neon in the nebula
would have been captured, and therefore it is to be expected that the Ne/H ratio is the same in
the giant planets as in the young Sun.

Because Ne is soluble in liquid helium, it will become depleted in the outer envelopes of
the giant planets if helium settling has occurred. Therefore, the measured Ne/H ratios in the
outer envelopes of Uranus and Neptune are expected to be about the same as in the young Sun,
whereas the ratio for Jupiter should be lower, and that for Saturn lower still. {The Galileo probe
found that in the outer Jovian envelope the Ne/H ratio is only about 10% of the value for the
young Sun. There are no measurements for the other three giant planets.}



Glossary

Cross-references to other glossary entries are italicised.

accretion The acquisition by a larger body of smaller bodies. It is an essential stage in planet
building in solar nebular theories.

achondrite A type of stony meteorite that lacks chondrules.
adiabatic process A process during which no heat is transferred to or from a substance. If a

vertical temperature gradient exceeds the adiabatic gradient, then convection occurs.
advection A process of energy transfer by local bulk motion of warm liquids, such as molten

rock or water, or of solids.
angular momentum The angular momentum of a body of mass m moving at a speed v a

perpendicular distance r from an axis has a magnitude mvr. If no angular momentum is
transferred to or from a system, its angular momentum is constant – this is the principle of
conservation of angular momentum.

aphelion The point in the orbit of a body at which it is furthest from the Sun.
argument of perihelion The orbital element of a body in the Solar System that is the angle

around an orbit between the direction from the Sun to the ascending node and the direction
from the Sun to perihelion, measured in the direction of orbital motion.

ascending node The point where the orbit of a body in the Solar System intersects the ecliptic
plane when the body crosses from south to north of this plane.

asteroid belt A belt that includes the great majority of asteroids. It lies between the orbits of
Mars and Jupiter.

asteroids Small rocky bodies, largely confined to the asteroid belt.
asthenosphere A plastic region in the interior of a body, usually located in the mantle, and

perhaps covering a great range of depths.
astrometric technique A means of detecting the presence of a celestial body through the

effect it has on the position of a visible body.
astronomical unit (AU) The semimajor axis of the Earth’s orbit around the Sun.
aurora A dynamic display of light in the upper atmosphere of a body, mainly in the polar

regions. Aurorae are caused by energetic charged particles that enter the upper atmosphere
and collide with the atoms there.

axial inclination (obliquity) The angle between the rotation axis of a body and the perpen-
dicular to its orbital plane.

basaltic–gabbroic rocks Extrusive (basalt) and intrusive (gabbro) rocks, consisting largely of
the silicates feldspar and pyroxene.

biosphere The assemblage of all living things and their remains. The Earth is the only planet
known to have a biosphere.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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black body See ideal thermal source.
blow-off The loss of nearly all of a planetary atmosphere through a large impact from space.
Bond (or planetary) albedo The fraction of the intercepted solar radiation that a body reflects

back to space.

C1 chondrites A particularly primitive subgroup of the carbonaceous chondrites.
caldera A crater created by volcanism and not by impact.
carbonaceous chondrite A type of chondrite (meteorite) that contains carbonaceous material

and hydrated minerals. Carbonaceous chondrites have never been subjected to much heating
or compression, and overall they have been little altered since they formed. Therefore they
are primitive bodies.

carbonaceous materials Carbon and organic compounds.
carbonate A chemical compound containing the chemical unit CO3.
carbonate–silicate cycle A feedback mechanism that stabilises the Earth’s climate by regu-

lating the amount of carbon dioxide in the atmosphere, and hence modifying the greenhouse
effect.

Centaurs A group of asteroids with orbits that lie among the giant planets. They are icy–rocky
bodies from the Edgeworth-Kuiper Belt.

centre of mass The point in a body (or in a system of bodies) that accelerates under the action
of an external force as if all the mass were concentrated at that point.

chalcophiles Chemical elements that tend to form compounds with sulphur, e.g. zinc.
chaos That property of a system whereby its configuration in the future/past is so sensitive to

its present configuration that aspects of its future or past configuration cannot be predicted or
‘retrodicted’ at all, or only within certain limits.

chemical escape The escape to space of a component of an atmosphere, promoted by chemical
reactions that give the reaction products high speeds.

chondrite A type of stony meteorite that contains small globules of silicates – chondrules –
that have solidified from molten droplets. Most chondrites are classified as ordinary, but a
small, important proportion are carbonaceous chondrites.

chondrule A component of a chondrite, being a small silicate globule, solidified from a molten
droplet.

clathrate An icy solid plus another substance enclosed within its crystal structure, such as
carbon dioxide enclosed in water ice.

clay mineral A silicate mineral that has been chemically modified by water.
climate The medium-term (e.g. 30 year) average of temperature, precipitation, etc., plus the

variability of these factors.
collisional broadening The broadening of spectral lines due to collisions between atoms and

molecules in the source region. Also called pressure broadening.
column mass (1) The total mass in a column of unit cross-sectional area running perpendicular

to the disc of the solar nebula. (2) The total mass of atmosphere in a column of unit
cross-sectional area stretching vertically upwards from the surface of a body.

comets Small, icy–rocky bodies that develop huge fuzzy heads and tails when they are in the
inner Solar System.

condensation flow A component of atmospheric circulation whereby an atmospheric
constituent flows to where it is condensing.

convection The transport of energy by bulk flows arising from vertical temperature gradients.
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core-accretion model The model of the formation of a giant planet, in which a kernel of icy
and rocky materials forms, that captures gas from the solar nebula.

Coriolis effect As viewed in a rotating frame of reference, the tendency of a body to accelerate
in a direction that is perpendicular both to the rotational motion of the body and to the axis
of rotation.

cosmic rays Atomic particles that pervade interstellar space, moving at speeds close to that
of light. They are primarily nuclei of the lighter elements, notably hydrogen.

Cowling theorem This states that the magnetic field of a planet cannot have the same
symmetry as the rotation. This means that the rotation and magnetic axes must have an angle
between them.

crust The relatively thin outermost solid layer of a body, chemically distinct from the under-
lying layer.

cryovolcanism Volcanism involving icy materials.

day By definition, exactly 24 × 60 × 60 seconds in length. It is very nearly equal to the mean
solar day, which varies slightly over a period of years.

delamination The loss of the base of a lithosphere through any compressional thickening that
makes the base sufficiently dense to break away and sink.

differentiation A process whereby denser substances settle downwards, and less dense
substances float upwards.

Doppler effect The dependence of the observed wavelength (or frequency) of radiation on
the speed of the source relative to the observer along the line of sight. The Doppler shift is
the change in wavelength. The Doppler effect can lead to the broadening of a spectral line –
Doppler broadening.

dust In space, particles less than about 0.01 mm across.
dwarf planet A controversial relabelling of Pluto, Eris, Gres, and comparable bodies.

eccentricity A measure of the degree of departure of an ellipse from circular form. It is defined
as

√
1–b2/a2 where a is the semimajor axis and b is the semiminor axis.

eclipse The passage of a body into the shadow of another body. As seen from the Earth, in a
total solar eclipse the Moon completely obscures the Sun, whereas in a total lunar eclipse the
whole Moon enters the umbral shadow of the Earth. There are also partial eclipses.

ecliptic plane The plane of the Earth’s orbit.
Edgeworth–Kuiper belt A belt of icy–rocky bodies extending from just beyond the orbit of

Neptune perhaps as far as the inner Oort cloud. Only its innermost, largest members have
been observed. The belt supplies some of the comets.

effective temperature A temperature defined by �Lout/A��1/4, where Lout is the radiant power
that a body emits to space, A is its total area, and � is Stefan’s constant.

ellipse A closed curve that has the shape of a circle when viewed obliquely. Half its long
dimension is its semimajor axis, half of its short dimension is its semiminor axis.

embryos Bodies of the order of the mass of the Moon or Mars that appear at a fairly late
stage in the growth of planets in solar nebular theories (solar nebula).

enthalpy See latent heat.
equation of state For a substance in equilibrium, the relationship between the pressure on the

substance and its density and temperature.
equinox A point in an orbit where the rotation axis of a body is perpendicular to the line from

the body to the Sun. At any latitude, day and night have equal length at this point.



GLOSSARY 425

escape speed The minimum speed a particle requires to escape from a body.
exoplanetary system A system of planets around a star other than the Sun.
exosphere A layer in an atmosphere from where atoms and molecules can readily escape

directly to space if they are travelling upwards at greater than the escape speed.
extrusive rocks Rocks that form from magma that solidifies at the surface of a body (via

volcanism).

faint Sun paradox The lack of extensive glaciation early in Earth history in spite of the lower
solar luminosity. A larger greenhouse effect is common to many resolutions of the paradox.

fault A fracture in a lithosphere, along which relative motion can occur.
first point of Aries The direction from the Earth to the Sun when the Earth is at the vernal

equinox.
flux density The power in the electromagnetic radiation that is incident on a unit area facing

the source.
fractional crystallisation The crystallisation of a mineral from a magma so that the compo-

sition of the remaining melt is modified.

Gaia hypothesis The hypothesis that active biospheric control tends to preserve optimum
conditions for the Earth’s biosphere.

Galactic tide The tidal force exerted on bodies in the Solar System by the stars and interstellar
matter in the Galaxy. It is thought to have been important in modifying the orbits of comets.

Galilean satellites The four large satellites of Jupiter: Io, Europa, Ganymede, Callisto. They
are named after their discoverer, Galileo Galilei.

gamma ray fluorescence spectrometry The investigation of the chemical composition of a
substance using the gamma rays emitted when its atomic nuclei return to the state they were
in before they were excited into higher energy states.

general relativity A theory by Albert Einstein that is superior to Newton’s laws (of motion,
and gravity), though Newton’s (simpler) laws can be used for most purposes in the Solar
System.

geometrical albedo A particular measure of the reflectance of a surface with respect to solar
radiation.

giant planet In the Solar System, one of the four planets Jupiter, Saturn, Uranus, Neptune.
These massive planets consist largely of hydrogen, helium, and icy materials.

global mass fraction The total mass of a substance divided by the total mass of the body of
which it is a component.

graben A valley produced by slumping between two parallel normal faults.
gradation Any process by which material is eroded from a surface, and then transported and

deposited elsewhere.
granitic–rhyolitic rocks Extrusive (rhyolite) and intrusive (granite) rocks consisting largely

of feldspar (a silicate) and quartz.
gravitational coefficient A factor that defines the size of each extra term that has to be added

to GM/r2 to represent the gravitational field of a body.
gravitational field The gravitational force per unit mass at any point in space; equivalently,

the acceleration of any unrestrained mass placed at the point.
gravitational instability model The model of formation of a giant planet in which the whole

planet forms through gravitational contraction of a fragment of the solar nebula.
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gravitational potential The energy required to move unit mass from a point in space outside
a body to infinity, assuming that no other mass is present.

greenhouse effect The phenomenon in which the radiant power emitted by the surface of a
body exceeds that emitted by the body to space. This excess arises from the absorption and
scattering of infrared radiation by atmospheric constituents. The greenhouse effect is often
quantified as Ts–Teff , where Ts is the global mean surface temperature, and Teff is the effective
temperature.

Hadley cell A large convection cell in an atmosphere that arises from the decrease in solar
heating with increasing distance from the subsolar latitude.

half-life The time it takes half of the nuclei of a radioactive isotope to decay into another
isotope.

Halley family comets A small subgroup of short-period comets with orbital periods in the
range 15–200 years, and with orbital inclinations typically larger than the Jupiter family
comets.

heat Energy transferred in which the transfer is random at a microscopic level.
heavy bombardment The heavy bombardment of bodies in the Solar System that persisted

until about 3900 Ma ago. In solar nebular theories (solar nebula) it is due to the mopping up
of remnant planetesimals. A possible peak in the bombardment before 3900 Ma ago is called
the late heavy bombardment.

heavy elements All chemical elements other than hydrogen and helium.
heterosphere The layer in a planetary atmosphere where, aside from any substances that

condense, the composition depends on altitude. It lies above the homosphere.
Hirayama family A group of asteroids with orbits sufficiently similar to suggest that they

have originated from the break-up of a larger asteroid,
homosphere The layer in a planetary atmosphere where, apart from any substances that

condense, the composition is the same at all altitudes. It lies below the heterosphere.
hydrated mineral A mineral that includes water, either as attached molecules of H2O, or as

attached hydroxyl, OH.
hydrocarbon A compound consisting of carbon and hydrogen. One of the simplest is methane,

CH4.
hydrodynamic escape The escape of an atmospheric constituent through its entrainment in

the high-volume flow of a rapidly escaping lighter constituent, notably hydrogen.
hydrostatic equilibrium The equilibrium state of a body when it has responded to forces in

the manner of a fluid, i.e. in the manner of material with zero shear strength.
hyperbolic orbit An open orbit in which the two arms at infinity are diverging. A parabolic

orbit is a marginal case, where the two arms are parallel at infinity. Elliptical and circular
orbits are closed.

hypsometric distribution A histogram showing the frequency distribution of different alti-
tudes of the surface of a body.

ice age A long period on Earth of cooler climate, particularly outside the tropics, where
glacial conditions reach to mid latitudes. An ice age is punctuated by warmer intervals called
interglacial periods.

ice line The distance from the proto-Sun beyond which water condenses in the solar nebula.
icy materials A group of volatile substances, such as water, ammonia, methane, carbon

dioxide, nitrogen, etc.
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icy–rocky bodies Bodies consisting of icy and rocky materials, with icy materials accounting
for a significant proportion of the mass.

ideal gas See perfect gas.
ideal thermal source A body that absorbs all of the electromagnetic radiation that falls on

it. One consequence is that the spectrum of the radiation emitted by the body is uniquely
determined by its temperature.

igneous rocks Rocks produced from magma.
impact crater A crater formed by the impact of a projectile. They are the commonest feature

of surfaces in the Solar System.
impact erosion The loss of a proportion of a planetary atmosphere through the impacts of

numerous small bodies from space.
inert gases (noble gases) A group of chemically unreactive elements: helium, neon, argon,

krypton, xenon, radon.
internal energy The energy within a body, as opposed to the energy of the body as a whole.

It consists of the random kinetic energy of its atoms and molecules, plus their (chemical)
potential energy of interaction.

intrusive rocks Rocks that form from magma that solidifies beneath the surface of a body.
ionosphere A layer in a planetary atmosphere sufficiently ionised for the layer to display

special properties. Solar ultraviolet radiation is an important cause of ionisation.
iron meteorite A meteorite consisting almost entirely of iron alloyed with a few per cent of

nickel.
isostatic equilibrium A state in which, above some depth in a body, there are equal masses

in each vertical column. The minimum depth in any region for which this condition holds is
the level of compensation.

J2 The gravitational coefficient of a particular term additional to GM/r2 in the gravitational
field of a body. For planetary bodies the J2 term is the largest extra term.

Jupiter family comets These comprise the majority of the short-period comets, and are
characterised by orbital periods less than 20 years and low-to-modest orbital inclinations.
Their aphelia (see aphelion) lie in the region of Jupiter’s orbit.

Kepler’s laws of planetary motion Three empirical rules that describe fairly accurately the
orbital motions of the planets. They are explained by Newton’s laws (of motion and of
gravity).

Kirkwood gaps Ranges of semimajor axes in the asteroid belt where there are few asteroids.

Lagrangian points Five points at locations fixed with respect to two bodies in (a low-
eccentricity) orbit around each other. In principle, a third body with a small mass can be
placed at each of these points, and remain there, though in practice some of the points are
unstable.

lapse rate The rate of decrease of temperature with increasing altitude in a planetary atmo-
sphere. The adiabatic value is the adiabatic lapse rate.

latent heat Heat that produces no temperature change. Instead, the energy goes to increase
the (chemical) potential energy contribution to the internal energy.

lava Magma that reaches a surface owing to volcanism, or icy liquids that reach a surface
owing to cryovolcanism.
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light year The distance travelled by light in a vacuum in a year of 365.2425 days. It equals
9�460536 × 1015 metres.

lithophiles Chemical elements that tend to be found in silicates and oxides, e.g. magnesium
and aluminium.

lithosphere The rigid outer region of a body, usually comprising the crust and upper mantle.
longitude of perihelion The orbital element of a body in the Solar System that is the sum of

the longitude of the ascending node and the argument of perihelion.
longitude of the ascending node The orbital element of a body in the Solar System that is

the angle, in the direction of the Earth’s motion, from the direction to the first point of Aries
to the line from the Sun to the body’s ascending node.

long-period comet A comet with an orbital period in excess of 200 years.
Love numbers Parameters that give us a measure of how much the interior of a planetary

body deforms under tidal forces.
lunar eclipse See eclipse.

magma Molten rocky or icy materials.
magnetic dipole field The magnetic field some distance away from a loop or loops of electric

current.
magnetic dipole moment The strength of the source of a magnetic dipole field.
magnetic field The force field sustained by electric current. A current loop generates a field

that has the form of a dipole field far from the loop, and a strength proportional to the
magnetic dipole moment of the loop.

magnetosphere The magnetic ‘sphere of influence’ of a body, bounded by the magnetopause.
The Earth and the giant planets have extensive magnetospheres.

main belt A zone within the asteroid belt with a particularly high concentration of asteroids.
main sequence star A star in that phase of its lifetime when it is sustained by hydrogen

nuclear fusion in its core.
mantle The layer of a body that underlies any crust, and is chemically distinct from the crust.
mascon A region on the Moon with an excess of mass.
Maxwell distribution The distribution of molecular speeds in a gas in thermal equilibrium.
mean density The total mass of a body divided by its total volume.
mean motion resonance The situation in which the orbital periods of two bodies have the

ratio �p + q�/p, where p and q are integers. The gravitational interaction between the bodies
in such cases can enhance orbital stability, or lead to instability.

mesosphere A layer in a planetary atmosphere where the lapse rate is less than the adiabatic
value, and so convection does not occur. It lies above any troposphere but below any
thermosphere.

metallic hydrogen A high-pressure form of hydrogen in which the electrons detach from the
nuclei. The substance then has the properties of a metal.

metamorphic rock An igneous or sedimentary rock that has been modified in any way short
of complete melting.

meteor A small body that enters the Earth’s atmosphere at high speed. They are commonly
seen as bright, transient streaks of light across the night sky.

meteor shower A period of a few days during which the rate at which meteors are seen is
enhanced. The members of a shower have similar orbits in space.
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meteorite A body, or its fragments, that has come from beyond the Earth and has survived
passage to the Earth’s surface. A micrometeorite is a meteorite less than a few millimetres
across; some of these have recondensed after being vaporised or melted in the atmosphere.

meteoroids Asteroids smaller than about a metre across.
micrometeorite A meteorite less than a few millimetres across.
micrometeoroid A smaller meteoroid, in the approximate size range of 0. 01 millimetres to a

few millimetres across.
mineral A naturally occurring (solid) substance with a basic unit that has a particular chemical

composition and crystal structure. A rock is an assemblage of one or more minerals,.
minimum mass solar nebula A solar nebula with the least mass that could have produced

the Solar System.
minor planets See asteroids.
mixing ratio The number of molecules of a constituent in a local volume divided by the

number of molecules of some other constituent in the same volume. In the giant planet
atmospheres, mixing ratios are normally given with respect to H2.

near-Earth asteroids Asteroids that can make close approaches to the Earth, with the possi-
bility of collisions with the Earth.

neutron spectrometry The investigation of the chemical composition of a substance using
the energy spectrum of neutrons ejected from the substance.

Newton’s law of gravity Enunciated by Isaac Newton. If two point masses M and m are
separated by a distance r then there is a gravitational force of attraction between them with
a magnitude GMm/r2, where G is the universal gravitational constant.

Newton’s laws of motion Enunciated by Isaac Newton. The three laws are as follows:

(1) An object remains at rest or moves at constant speed in a straight line unless it is acted
on by an unbalanced force.
(2) If an unbalanced force of magnitude F acts on a body of mass m, then the acceleration
of the body has a magnitude F/m, and the direction of the acceleration is in the direction
of the unbalanced force.
(3) If body A exerts a force of magnitude F on body B, then body B will exert a force of
the same magnitude on body A but in the opposite direction.

nuclear fusion A nuclear reaction in which a more massive nucleus is formed from less
massive nuclei. The pp chains that power the Sun have the overall effect of converting four
protons �1H� into a nucleus of the helium isotope 4He.

number fraction The number of molecules of an atmospheric constituent divided by the
number of molecules in the whole atmosphere.

occultation A body is occulted when it passes from view behind another body.
Oort cloud A thick spherical shell of icy–rocky bodies inferred to extend from about 103 to

105 AU from the Sun. It supplies some of the comets.
opposition As viewed from the Earth, a body is in opposition when it is at that point in its orbit

that places it nearest to being in the opposite direction to the Sun. At inferior and superior
conjunctions, the body is nearest to being in the same direction as the Sun. These terms can
be applied to vantage points other than the Earth.
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orbital elements Five quantities that specify the shape, size, and orientation of an orbit. For
an elliptical orbit they are: the semimajor axis, the eccentricity, the inclination, the longitude
of the ascending node, and the longitude of perihelion.

orbital inclination The angle between an orbital plane and a reference plane. The reference
plane for planetary orbits is the ecliptic plane.

ordinary chondrite The most common sort of chondrite. There is little carbonaceous material.
organic compound A compound of carbon and hydrogen, often with other elements. Hydro-

carbons are a subclass of organic compounds.
outgassing The volcanic emission of gases from the interior of a body.
oxidation A variety of chemical processes including those in which oxygen is incorporated

into the reaction products. The opposite process – the extraction of oxygen – is one form of
a chemical process called reduction.

partial melting The process in which a mixture of minerals starts to melt, such that the
composition of the molten material is different from that of the original mixture.

partial pressure The pressure exerted by the molecules of any one component in a mixture
of gases.

perfect gas (ideal gas) A gas that obeys the relatively simple equation of state p = �kT/mav,
where p, �, and T are respectively the gas pressure, density, and temperature. k is Boltzmann’s
constant, and mav is the mean mass of the molecules in the gas. Real gases approach perfect
gas behaviour at low densities and/or high temperatures.

peridotite A rock consisting largely of the silicates olivine and pyroxene. The minerals in the
Earth’s lower mantle have different crystal structures but the chemical composition is still
that of peridotite.

perihelion The point in its orbit at which a body is nearest to the Sun.
phase diagram A diagram that shows the equilibrium phase of a substance at each pressure

and temperature. Solid, liquid, and gas are three phases. The solid phase region is subdivided
in accord with different crystal structures (different minerals).

photochemical reaction A chemical reaction involving electromagnetic radiation, e.g. as in
photodissociation and photoionisation. Such radiation can also promote chemical reactions
by exciting molecules/atoms, short of dissociation/ionisation.

photodissociation The disruption of molecules by electromagnetic radiation. Ultraviolet radi-
ation is particularly effective.

photoionisation The ionisation of atoms and molecules by electromagnetic radiation. Ultravi-
olet radiation is particularly effective.

photometry The measurement of the radiation received from a source in up to a few, broad
ranges of wavelengths. Compare spectrometry.

photon The particle of electromagnetic radiation in those circumstances where the radiation
can be regarded as a stream of particles.

photosphere The bright surface of a star (including the Sun).
photosynthesis The process in which certain life forms, notably green plants and cyanobacteria

bacteria, synthesise carbohydrates from smaller molecules with the aid of solar radiation.
Through photosynthesis, green plants and blue-green bacteria release molecular oxygen.

planetary body A body large enough for its own gravity to ensure that it is in, or close to,
hydrostatic equilibrium. In this case an isolated body will be spherical.
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planetesimals ‘Little planets’, small bodies 0.1–10 km across, formed from dust in the solar
nebula. In solar nebular theories, many are incorporated in embryos en route to forming
planets and the cores of giant planets.

plasma A highly ionised medium. In the Solar System, examples include the solar interior,
the solar wind, and the plasma in magnetospheres.

plate tectonics The sculpting of the Earth’s surface through the relative motion of lithospheric
plates (see lithosphere). The plates are thought to be driven by convection in the mantle.

polar moment of inertia (C) The moment of inertia of a body with respect to its rotation axis.
power The rate at which energy is transferred, by any mechanism.
Poynting–Robertson effect The deceleration of a small particle in space due to the extra

photon bombardment on its leading surface. It is more important the smaller the particle, and
is insignificant for particles greater than about 0.1m across.

precession of the equinoxes The coning of the rotation axis at fixed axial inclination. This
causes the location of the equinoxes to move around the orbit.

precession of the perihelion The motion of the perihelion direction around the plane of
an orbit.

precession of the rotation axis The coning of the rotation axis at fixed axial inclination. It
leads to precession of the equinoxes.

prograde direction The predominant direction of orbital motion and rotation in the Solar
System – anticlockwise as viewed from above the Earth’s North Pole.

radial velocity technique The measurement of the orbital motion of a body (usually a star)
from the oscillating Doppler shifts of its spectral lines (see Doppler effect).

radiation pressure The pressure exerted by photon bombardment.
radiative transfer The transfer of energy by means of electromagnetic radiation.
radiogenic heating Heating resulting from the decay of radioactive isotopes.
radiometric dating The dating of a variety of events from the relative abundances of radioac-

tive isotopes and the isotopes they create when they decay. The measured half-lives of the
radioactive isotopes enable absolute ages to be obtained.

Rayleigh scattering The scattering of electromagnetic radiation by objects that are much
smaller than the wavelengths in the radiation.

refractory substance A substance with low volatility.
regolith The mixture of dust and small pieces of rock that is abundant on the surface of the

Moon (and other bodies).
residence time The average time that a molecule spends in a reservoir, e.g. the atmosphere.
retrograde motion The opposite of prograde motion.
Roche limit The distance between a smaller body and a larger body within which the smaller

body is disrupted by the tidal force exerted by the larger body. It applies only if the smaller
body is held together by gravitational forces.

rock An assemblage of one or more minerals, in solid form.
rocky materials A group of relatively refractory substances, including silicates, iron–

nickel, etc.
rotational flattening (oblateness) The flattening of a body along its axis of rotation, caused

by the rotation.
runaway greenhouse effect A greenhouse effect enhanced greatly by positive feedback that

rapidly increases the amount of greenhouse gases in the atmosphere.
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saturation vapour pressure The pressure on the saturation line of a substance, i.e. the line
in the phase diagram on which liquid and gas, or solid and gas, coexist.

secular resonance A gravitational interaction between bodies, averaged over a time much
longer than the orbital periods of the bodies involved, that couples the evolution of one or
more orbital elements of one body with one or more of those of another.

sedimentary rock A rock produced from a sediment by chemical action, or pressure.
seismic wave A mechanical wave in a planetary body (in smaller bodies too). They also occur

in the Sun. Two important types are P waves and S waves.
self-exciting dynamo A mechanism thought to sustain the magnetic fields that originate deep

in the Sun and in certain planets. It involves the conversion of kinetic to magnetic energy,
which also happens in a dynamo.

semimajor axis Half of the long dimension of an ellipse.
shield volcano A volcano that in profile resembles a warrior’s shield. Shield volcanoes result

from a sequence of low-viscosity lava flows, erupted at modest rates.
shock wave A wave with a very steep front, so that the material in front of the wave is

undisturbed, whereas the material immediately behind the wave is highly disturbed. One way
in which a shock wave is generated is when a projectile encounters a body at a speed greater
than that of seismic waves in the body.

short-period comet A comet with an orbital period of less than 200 years.
sidereal orbital period The time it takes a body to complete one orbit from a viewpoint fixed

with respect to the distant stars. For the Earth this is the sidereal year.
sidereal rotation period The rotation period with respect to the distant stars. For the Earth it

is called the mean rotation period.
siderophiles Chemical elements that tend to be present with iron, e.g. nickel.
silicate A chemical compound that has a basic unit consisting of atoms of one or more metallic

elements and atoms of silicon and oxygen.
solar activity A collective term for those solar phenomena that vary (currently) with a period

of about 11 years. The number of sunspots, flares, and prominences, and the luminosity of
the Sun, are among various aspects of this activity.

solar day The period of rotation of the Earth with respect to the Sun. The mean solar day
is the mean length of the solar days averaged over a year. The mean solar day varies very
slightly, whereas the day is exactly 24 × 60 × 60 seconds in length.

solar eclipse See eclipse.
solar nebula The disc of gas and dust that is presumed to have encircled the young Sun. In

solar nebular theories, the Solar System forms from such a disc.
solar wind A thin, gusty stream of high-speed particles (mainly protons and electrons) that

escapes from the Sun.
solstice A point in an orbit where one of the poles of a body is pointed maximally towards

the Sun (the other pole is then pointed maximally away from the Sun).
spectrometry The measurement of the radiation received from a source in numerous, narrow,

contiguous wavelength ranges. Compare photometry.
spherical symmetry When the only variation in a quantity is with radius from some centre. In

a body with a spherically symmetrical mass distribution, the density varies only with radius
from the centre of the body.

steady state A system is in a steady state with respect to certain parameters (e.g. temperature),
when the values of the parameters are not changing. A steady state is achieved when inputs
that tend to increase a parameter are balanced by those that tend to decrease it.
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stony-iron meteorite A type of meteorite that consists mostly of silicates and iron–nickel alloy.
stony meteorite A type of meteorite that consists mostly of silicates, often with small quantities

of iron–nickel alloy.
stratosphere A layer peculiar to the Earth’s atmosphere, immediately above the troposphere,

where the temperature increases with increasing altitude. The mesosphere lies above the
stratosphere, and in it the temperature decreases with increasing altitude. The temperature
bulge is the result of the absorption of solar ultraviolet radiation by ozone.

sublimation A phase change in which a substance goes directly from solid to gas.
sunspot A small patch on the Sun’s photosphere at a lower temperature than the rest of the

photosphere. The number visible goes through a cycle with a mean period (currently) of 11.1
years. Sunspots are one aspect of solar activity.

synchronous orbit An orbit for which the period equals the rotation period of the body that
is being orbited.

synchronous rotation When the rotation period of a body A with respect to a body B equals
the orbital period of A around B so that A keeps the same face to B.

synchrotron emission Electromagnetic radiation emitted by electrons travelling at very high
speeds through a magnetic field.

synodic period For the Earth and another body, the time interval between similar spatial
configurations, e.g. oppositions and conjunctions. The term can be applied to vantage points
other than the Earth.

synthetic aperture radar A particular radar technique used to determine the topography of a
landscape with high three-dimensional resolution.

T Tauri phase The phase in a star’s lifetime just before the main sequence phase (see main
sequence star). It is characterised by instability, with powerful stellar winds (the T Tauri
wind) and high ultraviolet flux.

tectonic processes Processes that cause relative motion or distortion of the lithosphere.
terrestrial bodies The large bodies that consist largely of rocky materials, i.e. the terrestrial

planets plus the Moon, Io, and Europa.
terrestrial planet One of the four planets Mercury, Venus, the Earth, Mars. They consist

largely of rocky materials.
thermal conduction The process by which heat is transferred through the direct contact of

two regions that are at different temperatures.
thermal escape Escape of an atmospheric constituent arising from the Maxwell distribution

of speeds for speeds in excess of the escape speed.
thermal tide A component of atmospheric circulation whereby the atmosphere flows to regions

where the pressure has been lowered by cooling. This mass redistribution makes the atmo-
sphere subject to an extra torque exerted by tidal forces.

thermosphere An upper layer in a planetary atmosphere where temperature increases with
altitude, to reach high values.

tidal force A differential gravitational force. Any distortion produced by a tidal force is called
a tide. Tidal energy is an important source of internal energy in some bodies.

Titius–Bode rule An empirical rule that describes the increasing spacing of the planetary
orbits with increasing distance from the Sun.

torque A system of forces that tends to cause twisting or rotation. Tidal forces can exert
torques. One outcome is precession of the equinoxes.

total solar eclipse See eclipse.
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transit technique The means of detecting a body when it passes between us and the photo-
sphere of a star, thus causing a (slight) reduction in the apparent brightness of the star.

Trojan asteroids A group of asteroids near the L4 and L5 Lagrangian points of Jupiter.
troposphere The lowest layer in a planetary atmosphere where temperature is decreasing with

altitude and where convection is usually pervasive.

uncompressed mean density? The mean density that a body would have were its interior not
compressed by the general increase of pressure with depth.

Van Allen radiation belts The belts of plasma that surround the Earth. They lie within the
Earth’s magnetosphere.

vernal equinox The equinox that occurs in March. Also, the position of the Earth in its orbit
at this equinox. See also the first point of Aries.

volatility A property of a substance that can be measured by the maximum temperatures at
which it is in equilibrium in a condensed phase; the lower these temperatures, the greater the
volatility.

volcanism The processes by which gases, liquids, or solids are expelled from the interior of
a body.

X-ray fluorescence spectrometry The investigation of the chemical composition of a
substance using the X-rays emitted when electrons in its atoms return to the states they were
in before they were excited into higher energy states.

Yarkovsky effect The slow change in the semimajor axis of the orbit of a rotating body as a
result of the greater photon flux emitted (in the infrared) by its warmer, afternoon side. It is
significant only for bodies less than about 100 m across.

year Used here to mean the tropical year. The tropical year is the time interval between the
Earth’s vernal equinoxes. Its duration is 365.242 190 days. The sidereal year is the Earth’s
orbital period with respect to the distant stars, and its duration is 365.256 363 days. These
years differ because of the precession of the equinoxes.
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There is a huge range of electronic media and a high rate of updating and obsolescence. An
annotated list of free astronomy software, websites, news, and much else is available at the
Sky Publishing Corporation website http://skytonight.com/. It is updated monthly. We strongly
recommend it.

CD-ROMs and DVDs – Commercial

The list below is a small selection of what is currently available on the Solar System, though
many products include much else. In most cases we have specified no supplier website. In
such cases you can find a supplier, with a full product description, often with reviews, via
http://www.google.com/ by entering the name of the product into the search field.

Welcome to the Planets, CD-ROM for PCs or Macs, NASA/Planetary Data System/Data
Distribution Laboratory. 190 images of Solar System bodies, with narration and data.
http://pds.jpl.nasa.gov/planets/welcome/cdrom.htm

Dance of the Planets, CD-ROM for PCs (and Macs with Windows), ARC Science Simulation,
Colorado, USA. An extensive planetary tour.

Starry Night Deluxe, CD-ROM for Macs or PCs, Sienna Software Inc., Ontario, Canada. Plenty
on the Solar System, and lots more besides.

RedShift 3, CD-ROM for PCs or Macs, Piranha Interactive Publishing Inc., Arizona, USA.
Covers the Solar System and lots more.

A Few Websites

http://www.google.com/ A very useful website for obtaining information on anything that can
be expressed in a word or in a few words.

http://wikipedia.org/ An on-line encyclopaedia, with entries supplied by anyone. Generally
OK, but the entries are not refereed.

http://www.skytonight.com/ The website of Sky Publishing Corporation, publishers of Sky and
Telescope, the leading popular astronomy monthly in the USA and elsewhere. See above also.

http://www.astronomynow.com/ The website of Astronomy Now, the leading UK popular
astronomy monthly. Much information and news.

http://www.nasa.gov/search/index.html The NASA web search engine.
ftp://ftp.hq.nasa.gov/pub/pao/pressrel/ NASA press releases, from 1990 onwards.
http://www.jpl.nasa.gov/ Lots of information available here, including news of missions.

Discovering the Solar System, Second Edition Barrie W. Jones
© 2007 John Wiley & Sons, Ltd
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http://photojournal.jpl.nasa.gov/ A huge selection of NASA images.
http://nssdc.gsfc.nasa.gov/ The National Space Science Data Center – NASA’s permanent

archive for space science mission data. A mine of information on NASA, including a photo
gallery.

http://www.stsci.edu/ The Space Telescope Science Institute website. Many resources on offer.
http://www.esrin.esa.it/ The European Space Agency website. Many resources on offer.
http://www.nineplanets.org/ The nine planets. A multimedia tour of the Solar System. Bill

Arnett.
http://www.solarviews.com/eng/homepage.htm Views of the Solar System, C J Hamilton. Many

images, much data, and several animations.
http://www.exoplanet.eu/ Information and listings of exoplanets, with much background infor-

mation and many links.
http://www.popastro.com/ The website of the UK Society for Popular Astronomy (SPA). This

society, with over 3000 members, promotes astronomy as a hobby, with a particular focus on
beginners, but catering also up to the highest levels.

http://www.britastro.org/baa/ The website of the British Astronomical Association (BAA). It
has about 3000 members and promotes astronomy as a hobby with a focus at rather higher
levels than the SPA.

http://www.astrosociety.org/ The Astronomical Society of the Pacific’s website. This caters
for amateur astronomers at all levels.



Further Reading

This is a selection of the many good books available. A visit to a university bookshop, or a scan of
Amazon on the Internet, will reveal further good titles, as will use of the Internet search engine Google
http://www.google.com/.

Books at the ‘popular astronomy’ level are largely excluded from this list, as are books aimed at
amateurs who wish to make their own observations. With a few exceptions, picture books are excluded,
as are books published before 1999.

In some cases the ISBN is for a hardback edition – check with your supplier whether a paperback
edition is available.

Books more advanced than Discovering the Solar System are marked with an asterisk.

Dictionaries and Atlases

The Compact NASA Atlas of the Solar System, Ronald Greeley and Raymond Batson, Cambridge University
Press 2001, ISBN 0 521 80633X

Oxford Dictionary of Astronomy, Ian Ridpath (editor), Oxford University Press 2004, ISBN 019 860513 7
Collins Internet-linked Dictionary of Astronomy, John Daintith and William Gould, HarperCollins 2006,

ISBN 0 00 722092 7

Books Covering the Whole Solar System

The New Solar System (4th edition), J Kelly Beatty, Carolyn C Petersen, Andrew L Chaikin (editors),
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1992 QB1, 109

accretion 66
accretional energy 150–151
Adams, John Couch 13
adiabatic gradient, see convection
adiabatic process 156
advection 158
albedo

Bond (or planetary) 303
geometrical 89–90

Allende meteorite 112
altimetry 198
Amalthea 76, 183
angular momentum 57–58

principle of conservation 320
anorthosite, see rocks
aphelion, see orbit
asteroids Table 1.3, 9, 11

Amor group 87
Apollo group 87
asteroid belt 84
Aten group 87
C class 94–97, 118–119
Centaurs 88–89, 97

origin 88
composition (surface and interior) 93, 95–97
differentiation 96–97, 119–120
discovery 83
Hirayama families 86
interior heating 96
Kirkwood gaps 84
M class 94–97, 119
main belt 84
mean densities 93
near-Earth 86–87
number 63
orbits 20, 84–89
origin 68–69, 72
rotation 93
S class 94–97, 120
shapes 91–93
sizes 89–91

surface features 92
Tholen classes vs semimajor axis of orbit

95–97
Tholen classification 94–95
total mass 84
Trojans 87–88, 97
V class 94, 120

asthenosphere 168
astrometric technique 49–50
astronomical unit 10, 18
atmospheres (see also specific bodies)

adiabatic lapse rate 307
blow off 317
chemical escape 318
circulation 318–321

anticyclones and cyclones 321
condensation flow 339
Coriolis effect 319–321
Hadley cell 319, 321
Hadley circulation 319
stationary eddies 321
thermal tide 340
waves 321

clouds and their formation and effects
310–312, 313, 321

column mass 296
data Tables 9.1 and 9.2
convection 307

lapse rate 307
energy gains and losses 301–307

steady state 308, 313
exosphere 310
gains and losses 314–318

steady state 314–315
greenhouse effect 312–313
heterosphere 310
homosphere 309–310
hydrodynamic escape 318
impact erosion 317
ionosphere 310
isothermal scale height 306
mesosphere 309
methods of studying 298–301
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number fraction 296
outgassing 315
precipitation 312, 314
pressure and density vs altitude 305–306
reservoirs 314

residence time 314
temperature vs altitude 306–309
thermal escape 315–317
thermosphere 309
troposphere 308–309

aurora australis and borealis, see Earth,
magnetosphere

axial inclination (obliquity) 30

Barringer Crater (impact) 208–209
basalt, see rocks
Beta Pictoris 56
biosphere, see Earth
bipolar outflow, see protostars
black body, see ideal thermal source (black body)
Bode, Johann Elert 20
Bode’s law, see Titius–Bode rule
bolide 112
Bond, William Cranch 303
Borrelly (15P/Borrelly) 104–105
Boznemcova 120
breccia, see Moon

Callisto
central pressure, temperature, density

Table 5.3
core 178

composition 178, 182
energy (heat) sources for the interior 182, 260
interior model 178, 181–183
magnetic field 182, 261

generation 182, 261
mantle 178, 260–261

composition 178, 182, 260
observational data on the interior Table 4.2
overall composition 176–177, 181
surface 182, 260–261

carbonaceous chondrite, see meteorites
carbonaceous materials 95
carbonates, see rocks
Centaurs, see asteroids
centre of mass 24–25
Ceres

discovery 83
properties 91, 93, 95

chalcophiles 145
chaos 48
Charon 13

interior 183
origin 74
surface 111, 260

chemical affinities 145
chemical elements, relative abundances, see Solar

System
Chiron 88, 97
chondrule, see meteorites
circular polarisation 201
circumstellar discs, see protostars
clathrates 105, 177, 318, 338–339
clay minerals 220
climate and its determinants 322
climate change 333
clouds, see atmospheres
coagulation 65
column mass 63
comets Table 1.4, 13–14, 98–107

collisions with the Sun and planets 107
coma 98, 101–102
devolatilisation 106
Halley family 100
hydrogen cloud 98, 102
Jupiter family 99–100
long period 99
nucleus 98, 101, 103–106
orbits 16–17, 99–101
remnants 106–107
short period 99
sources, see Edgeworth–Kuiper (E–K) belt;

Oort cloud (Öpik–Oort cloud)
tails 98, 102

dust tail 98, 102
ionised gas tail/ion tail 98, 102

transient brightening 105
conduction, see thermal conduction
convection 8, 155–158, 307

adiabatic gradient 156–157
adiabatic process 156
delamination 158
lapse rate 307
solid state 157
stagnant lid 158

core accretion model, see solar nebular theories
Coriolis effect 319–321
Coriolis, Gaspard Gustave de 321
coronagraph 3
cosmic rays 117
Cowling theorem, see magnetic field
Cowling, Thomas George 138
craters, see impact craters
critical point, see phase diagram
crust 163

formation 203–204

day 32
mean rotation period (Earth) 32
mean solar 32
solar 31
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Deimos 69, 92, 183
delamination 158, 269
dense clouds 54
densities

mean 128
uncompressed mean 129
of some important substances Table 4.3
variation with depth (or with radius) 131–135

differentiation 96, 202–204
heat generation 151–152
partial 203

Doppler, Christian Johann 50
Doppler effect 50, 300
dust 83, 112

Earth
age 117, 272
ages of rocks 169, 272
asthenosphere 168, 265

convection 168–169
atmosphere

carbon dioxide 327–330, 357–358
circulation 332
evolution (and climate change) 356–360
formation (origin), see terrestrial planets
methane 330, 357–358
nitrogen 330, 358
oxygen 331, 358–360
ozone 325–326
properties Tables 9.1 and 9.2
reservoirs, gains and losses 326–331
stratosphere 325
vertical structure, heating and cooling

324–326
biosphere 327, 357–360

origin of life 356
carbon cycle 327–329

carbonate–silicate cycle 335
central pressure, temperature, density

Table 5.2
climate change (see also global warming

today) 333–336
ice ages and their causes 333–335, 357

clouds 326
composition (overall) 168
continental crust (see also Earth, plate

tectonics) 265–266
core 164, 166–167

composition 166
crust 164, 166

composition 164, 264
D′′ layer (mantle) 167–168
energy (heat) sources for the interior

166–167, 169
evolution of interior and surface 272–273
faint Sun paradox 357

first point of Aries 19, 31, 34
Gaia hypothesis 358
global warming today 329

causes and consequences 329–330
greenhouse effect 326–327, 357
heat transfer to surface 169, 271
hypsometric distribution 265
ice ages, see climate change
impact craters 208–209, 211
interior model 164–166
internal temperatures, pressures, densities

Table 5.1, 5.2, 165
isostatic equilibrium 265
life, see Earth, biosphere
lithosphere 168, 264–265
magnetic field 166

reversals 139
magnetosphere 192–193

aurora australis and borealis 193
Van Allen radiation belts 192

mantle 164, 166–168
composition 164, 167, 264

mantle plumes 271
observational data on the interior Table 4.2
oceanic crust (see also Earth, plate tectonics)

265–266
orbit 10, 17–19
photosynthesis 327
plate tectonics 168–169, 266–272

causes of plate motion 271–272
conservative margin 266–267
constructive margin 266–267
continental collisions 268
continental crust, creation and destruction

268–269
destructive margin 266–268
early Earth 269–270
oceanic crust, creation and destruction

265–266
successes 270–271

precession of the equinoxes 34–35
precession of the rotation axis 34–35
respiration and decomposition (biosphere) 328
rotation axis 30–31
rotation period 31–32

increase 33
seasonal changes 33
seismic low speed layer 168
seismic wave speeds and interpretation

166–167
solid state convection 168
spectrum

radiation absorbed in the atmosphere 327
radiation emitted to space 304

surface temperatures 326, 333, 356–357
vernal equinox 19, 31, 34
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volatiles (see also terrestrial planets)
inventories 345–346
inventory changes 346–347

eccentricity (of an orbit), see orbit
eclipses

annular solar 38–39
forthcoming total solar 39
lunar 37
partial solar 37
solar 37
total lunar 38–40
total solar 37–38

ecliptic plane 10, 18
Edgeworth, Kenneth Essex 109
Edgeworth–Kuiper (E–K) belt 13, 109–111

origin 72, 74
physical properties 111
population 110
as a source of comets 13, 109
subpopulations

classical EKOs 110
Plutinos 110
resonant EKOs 110
scattered disc EKOs 110–111

effective temperature 303
Einstein, Albert 30
elemental mass ratio 387
ellipse 16
Elst–Pizarro (133P/Elst–Pizarro) 106–107
embryo 66
Enceladus

cryovolcanism 292
energy (heat) sources for the interior 292
interior 290, 292
surface 290–292

Encke (2P/Encke) 107
energy sources

planetary and smaller bodies 150–154
Sun 6–7

equation of state 145, 147–148, 165
perfect gas 298

equinoxes 30
Eris 13–14, 111, 179
Eros 92–93, 95, 98, 120
escape speed 315
Europa

asthenosphere 286
atmosphere 285, 368
central pressure, temperature, density

Table 5.3
core 178

composition 178, 181
crust 178, 285–286

composition 178, 181, 285–286
energy (heat) sources for the interior 181, 286
interior model 178, 181

life 286
mantle 178

composition 178, 181
volcanism 286

observational data on the interior Table 4.2
oceans of liquid water 178, 181, 286
overall composition 176–177, 181
surface 181, 284–286

composition 284
cryovolcanic resurfacing 285–286

exoplanetary systems 49–53
discovery methods 49–50
migration of exoplanets 52–53
properties Table 2.2

faint Sun Paradox, see Earth
faults, see tectonic processes/features
first point of Aries, see Earth
flux density 89
fractional crystallization 203

Galactic tide 73
Galilean satellites (as a group) 12

interiors 182–183
origin 75

Galileo Galilei 12
Galle, Johann Gottfried 13
gamma ray fluorescence spectrometry 201
Ganymede

central pressure, temperature, density
Table 5.3

core 178
composition 178, 182

energy (heat) sources for the interior 182, 261
interior model 178, 181–183, 262
magnetic field 182

generation 182, 261
mantle 178

composition 178, 181, 260
observational data on the interior Table 4.2
overall composition 176–177, 181, 261
surface 182, 261–262

Gaspra 91, 95
general relativity 30
giant molecular clouds 54
giant planets (see also individual planets) 9,

11–13, 129
atmospheres vs interiors 371
atmospheric properties Tables 9.1, 9.2,

11.1–11.3
elemental mass ratios Table 11.3, 388–390
formation (origin) 69–73, 387–390
formation of satellites 75–76
helium mass fractions Table 11.2, 375
interior models 183–185
observational data on the interiors Table 4.2
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giant planets (Continued)
rings 12–13

fine structures 80
formation and evolution 76–80
lifetimes 80
particles 77–80

global mass fractions 345
global warming today 329
graben (rift valley), see tectonic processes/

features
gradation 216–219

deposition 219
disintegration 216
erosion 216–217
transport

aeolian processes 217, 219
evaporation, sublimation, condensation,

precipitation 217
mass wasting 217–218
processes involving liquids 217, 219

U-shaped valleys 217
granite, see rocks
gravitational coefficients 132–133, 135

J2, 132–133
gravitational field 132
gravitational instability model, see solar nebular

theories
gravitational potential 199

equipotential surface 200
Great Rift Valley (Earth) 206–207
greenhouse effect, see atmospheres

H� spectral line 3
Hadley cell, see atmospheres
Hadley, George 319
Hale–Bopp

orbit 100
properties 102–103

half life 116
Halley’s comet (1P/Halley)

orbit 100–101
properties 103–105

Halley, Edmond 101
Halley family comets, see comets
heat 150
heat sources, see energy sources
heat transfer coefficient 158
heavy bombardment, see impact craters
heavy (chemical) elements 15
Hebe 120
Hektor 87
helioseismology 142
Herschel, William 13
Hidalgo 88, 107
Hirayama families, see asteroids
Hirayama, Kiyotsugu 86

Huygens, Christiaan 12
hydrated minerals 63
hydrocarbons 79
hydrostatic equation 147, 156, 305
hydrostatic equilibrium 134
hypsometric distribution 239

ice ages, see Earth
icy materials 63
icy–rocky bodies 129, 176–179, 183

atmospheres 363–367
atmospheric origins 367–368
atmospheric properties Tables 9.1 and 9.2
surfaces 258–262

Ida 91–93, 95
ideal gas, see perfect gas (ideal gas)
ideal thermal source (black body) 1, 155
impact craters 207–216

ejecta blankets 211
erosion and infill 211, 214
formation 208–210

central peaks or peak rings 210
isostatic adjustment 211
multi-ring basins 210
terraces 210

heavy bombardment 67, 72, 215–216
late heavy bombardment 215–216
morphologies 210–211
rays 211
saturation of a surface 214
secondary craters 211, 214
use in determining surface ages 212–216

inert gases (noble gases) 15
inferior conjunction 35
infrared excess 159, 185, Table 9.2
interiors (see also specific bodies)

central pressures 147
specific planetary bodies Tables 5.1, 5.2

energy sources 150–154
energy transfer to surface and losses 154–159

specific planetary bodies Table 4.5
modelling constraints

from available materials 143–149
from gravitational field data 126–136
from magnetic field data 136–139
from seismic wave data 139–143
on temperatures 159–161

modelling principles 126
observational data Table 4.2
pressures 146–147
size effect on temperatures 96–97, 160–161
temperatures 149–150

observational indicators 159
specific planetary bodies Tables 5.1, 5.2

internal energy 150, 154
interstellar medium 53–54
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Io
asthenosphere 179, 284
blotchy plains 283
central pressure, temperature, density

Table 5.3
core 178

composition 178–179, 283
crust 178

composition 178–179, 284
energy (heat) sources for the interior 180, 284
evolution of interior and surface 284
heat transfer to surface 179, 284
interior model 178–180
lithosphere 179, 284
magnetic field 179
mantle 178

composition 178, 284
mountains (non volcanic) 284
observational data on the interior Table 4.2
overall composition 176–177, 179, 283
surface composition 283
tectonic features 284
volcanic activity 179, 283

isostatic equilibrium 135–136
depth of compensation 135

Itokawa 93, 95

Juno
discovery 83

Jupiter
atmosphere Table 9.1

circulation 377–382
composition 186, Table 9.1, Table 11.1,

374–377
energy gains and losses Table 9.2
vertical structure 372–374
winds 378–379

clouds and haze 372–374
belts and zones 372, 377–379
coloration 382

composition (overall) 184
core 184, 187
elemental mass ratios Table 11.3, 388–390
energy (heat) sources for the interior 188
Galilean satellites formation 75
Great Red Spot 381
heat transfer to surface 188, 372
helium mass fractions 186, Table 11.2, 375
hot spots 373
infrared excess 159, 185, Table 9.2
interior circulation 380–381
interior model 184, 186–188
internal temperatures 185–188
internal temperatures, pressures, densities

Table 5.4
magnetic field 187

generation 187
magnetosphere 193–194
metallic hydrogen mantle 184, 187
molecular hydrogen envelope 184, 187
observational data on the interior Table 4.2
ovals 381
Shoemaker–Levy 9 impact 374
spots (vortices/eddies) 381–382

Jupiter family comets, see comets

Kepler, Johannes 15
Kepler’s laws of planetary motion 15–18, 22–24
kernel (giant planets) 70
kinetic energy 208
Kirkwood, Daniel 84
Kirkwood gaps, see asteroids
Kuiper belt, see Edgeworth–Kuiper (E–K) belt
Kuiper, Gerard Peter 109

Lagrange, Joseph Louis 87
Lagrangian points 87–88
lapse rate, see atmospheres; convection
late heavy bombardment, see impact craters
latent heat 150, 152, 308
Le Verrier, Urbain Jean Joseph 13
light year 51
limestone, see rocks
lithophiles 145
lithosphere 168
long period comets, see comets
Love, Augustus, E. H. 135
Love numbers 135
Lovelock, James Ephraim 358
lunar eclipse, see eclipses

magma 202
magma ocean 202

magnetic field 8, 136
axis 136–138
Cowling theorem 138
dipole field 136–137
dipole moment 137
equatorial plane 138
generation in planetary body interiors

137–138
near to and far from a planetary body 136, 138
poles 138
poloidal field 136–137
remanent magnetism 138–139
self exciting dynamo mechanism 137–138
superchrons 139
toroidal field 139

magnetosphere 191–192
aurora 192
bow shock 192
decametric radiation 192
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magnetosphere (Continued)
magnetopause 191
magnetosheath 192
magnetotail 191
reconnected lines 191
size 191
sources of plasma 192
synchrotron emission 192

Magnya 120
main sequence star 7, 55
mantle 163
Mars

aeolian/features processes 238–239, 253–254
ages (surfaces) 241, 244
albedo features 238–239

dark areas 238–239
light areas 238

altitude (of surface) 240
zero 200, 239

Argyre 243–244
atmosphere

circulation 339–340
dust 238–239, 337
evolution (and climate change) 360–361
origin, see terrestrial planets
properties Tables 9.1 and 9.2
reservoirs, gains and losses 338–339
vertical structure, heating and cooling

336–338
winds 238–239, 337

central pressure, temperature, density
Table 5.2

chaotic terrain 246–247
climate change 252, 340–341
clouds 336–337
contrasting hemispheres 239–241

boundary 245
northerly hemisphere 239–243
southerly hemisphere 239–240, 243–245

core 164
composition 164

crust and surface
composition 164, 171–172, 239, 241–243,

253–256
thicknesses (crust) 239

differentiation 172
dust storms 239
evolution of interior and surface 256–257
fretted terrain 245
greenhouse effect 338
Hellas basin 243, 248, 251
hypsometric distribution 239–240
impact basins 241, 243
impact craters 241, 243
interior model 164, 172–173
internal temperatures 172

life? 361–362
lithosphere 172
magnetic field 172

generation 172
mantle 164

composition 164, 172–173
meteorites from Mars 120–121, 172,

255–257, 361
observational data on the interior

Table 4.2
observations at the surface 171, 253–256
Olympus Mons 243
origin of satellites 69
polar regions/caps 238, 245–247, 338

composition 245
growth and retreat 238
layered sediments 245–247
temperatures 245

regional domes 242
seasonal effects 238
surface temperatures 238, 338
Tharsis region 242–243
Valles Marineris 242
volatiles (see also terrestrial planets) 243,

245, 247–252
inventories 345–346, 349
inventory changes 346–347, 360–361

volcanic activity 242
volcanic features 242–244
water related features 247–252

duricrust 253
fretted channels 249–250
gullies 250–252
lakes/oceans 248, 250–252
layered deposits 253, 255–256
minerals 252–256
outflow/outflow channels 247–249, 253
unusual ejecta blankets 247–248
valley networks 250

weathering 244, 246
mass measurement 128–129
Mathilde 91–93, 95
Matthew effect 66
maximum eastern elongation 35
maximum western elongation 35
Maxwell distribution 315–316
Maxwell, James Clerk 315
mean motion resonance, see orbital resonances
Mercury

age (surface) 235
altitude range (surface) 232
atmosphere 362
Caloris basin 233–234
centralpressure, temperature,density Table5.2
core 164

composition 164, 170–171, 233
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crust 164
composition (surface) 170, 232, 236, 244

evolution of interior and surface 236–237
gradation 233
heavily cratered terrain 233, 235
highlands 233
impact basins 233
impact craters 233
intercrater plains 233, 235
interior model 164, 170–171
interior thermal history 171
lava flows 235–236
lithosphere 171
magnetic field 171

generation 171
mantle 164

composition 164, 170
observational data on the interior Table 4.2
polar ice 236
precession of the perihelion 29–30
rotational resonance 232
smooth plains 233, 235
surface temperatures 232
tectonic features 236–237
volatiles 362
volcanic features 236, 241–243

metallic hydrogen 187
meteorites 2, 11, 112

calcium-aluminium inclusions 115
chondrule 114–115
classes (and their properties)

achondrites 114
C1 chondrites 115
carbonaceous chondrites 95, 115
chondrites 114–115
HED subgroup 119–120
irons (iron meteorites) 113–114
ordinary chondrites 115
stones (stony meteorites) 114
stony-irons (stony-iron meteorites) 114

dating meteorites
cosmic ray (space exposure) ages 117–118
solidification (chem. sepn.) ages 116, 117,

119
falls 112
finds 112
flux rate 112
isotope ratios 113
lunar 121
martian, see Mars, meteorites from Mars
orbits of the parent meteoroid 112, 115
sources (of each class) 113, 118–121
Widmanstätten pattern 113

meteoroids 11, 83
meteors (shooting stars) 112

showers Table 3.1, 122–123

sources 122–123
micrometeorites 112–113

composition 122
sources 121–122

micrometeoroids 83, 112
minerals

list of important ones Table 6.1
minor planets, see asteroids
mixing ratio 371
moment of inertia 134

polar (C� 134–135
Moon

ages of rocks 230
altitude (definition of zero) 200
atmosphere 362
breccias 226
central pressure, temperature, density

Table 5.2
composition (overall) 175–176, 229
core 174

composition 174
crust 174

composition 173–174, 228–229
thicknesses 226

dates of events in lunar history 215–216,
230–232

evolution of interior and surface 231–232
far side–near side contrasts 224–226
fines 228
formation 69–70, 175–176
gradation 227
highland rocks formation 229–230
highlands 223
impact basins 224–225

ages Table 7.1, 230
impact crater densities versus surface age

212–213
impact cratering rate versus time 215, 231
impact craters 224
interior model 173–174
internal temperatures 173–174
lava flows 225–226
librations 224
linear rilles 225
lithosphere 175
magma ocean 229, 232
magnetic field 175

source 175
mantle 174

composition 174, 229
mantle convection 226
Mare Imbrium 225–226
Mare Orientale 226
maria 223

infill 225
infill ages Table 7.1, 225
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Moon (Continued)
mascons 225
observational data on the interior Table 4.2
orbit 37
origin, see Moon, formation
overall composition 175–176
regolith 226
seismic activity 142, 228
seismic observations and interpretation

174–175, 228–229
Shackleton Crater 227
sinuous rilles 225
South Pole–Aitken basin 225–226
surface fracturing 175, 228
surface temperatures 223
synchronous rotation 223
synodic month 223
tectonic features 227
transient lunar phenomena 231
volatiles 227, 362
volcanism 215–216, 229, 231
water ice 227

Murchison meteorite 112

near-Earth asteroid (NEA), see asteroids
Neptune

atmosphere
circulation 385–387
composition 190, Table 9.1, Table 11.1,

384–385
energy gains and losses Table 9.2
vertical structure 383–384
winds 386

clouds and haze 383–386
spots 385–386

composition (overall) 184, 189, 384
core 184
discovery 13
elemental mass ratios Table 11.3, 388–390
energy (heat) sources for the interior 190, 383
heat transfer to surface 190, 383–384
helium mass fractions 190
infrared excess 159, 185, 190, Table 9.2, 384
interior model 184, 189–190
internal temperatures 190
internal temperatures, pressures, densities

Table 5.4
magnetic field 190

generation 190
magnetosphere 194
observational data on the interior Table 4.2
spots (vortices) 385

Nereid 76
neutron spectrometry 201
Newton, Isaac 20
Newton’s law of gravity 22

Newton’s laws of motion 21–24
non-gravitational forces 27
nuclear fusion 7

pp chains 7
number density 310
number fraction 296

oblate spheroid 133
observational selection effect 51
occultation 301
olivine, see rocks
Oort cloud (Öpik–Oort cloud) 14, 108–109

origin 72–74
as a source of comets 14, 108–109

Oort, Jan Hendrick 108
Öpik, Ernst Julius 108
opposition 35
orbit

aphelion 17
argument of perihelion 19
ascending node 19
changes in orbital elements 27–30
eccentricity 16
elliptical 18
hyperbolic 23
inclination 19
longitude of perihelion 19
longitude of the ascending node node 19
parabolic 23
perihelion 17
period 17
semimajor axis 16
semiminor axis 16
unbound 23

orbital elements (see also orbit) 18–20
orbital resonances 27–29

mean motion 27–28, 84–86, 110, 180
secular 28–29

orbits of the planets in the Solar System 10
organic compounds 95
outgassing 315
oxidation 318

Pallas
discovery 83
properties 93

Park Forest meteorite 112
partial melting 203–204
partial pressure 61, 311
perfect gas (ideal gas) 298
peridotite, see rocks
perihelion, see orbit
period (of an orbit), see orbit
phase boundary, see phase diagram
phase diagram 148–149

critical point 148
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methane 364
molecular hydrogen 186
phase boundary 148–149
saturation vapour pressure 311
triple point 148
water 311

phase (of a substance) 148
Phobos 69, 92, 183
Pholus 88
photochemical reactions 318
photodissociation 101
photoionisation 101
photometry 94, 200
photon 7
photosynthesis, see Earth
physical constants Table 1.6
Piazzi, Giuseppe 83
planet

definition 14
dwarf planet 14

planetary bodies 9, 129–130
planetary nebula 391
planetary rings, see giant planets
planetary satellites (see also specific bodies)

Table 1.2, 9
formation of giant planet satellites 75–76
protosatellite discs 75
small/intermediate-sized satellites

interiors 183
origin 69–70, 75–76, 183
surfaces Table 7.2

planetesimals 65
plasma 6
plate tectonics, see Earth
Plutinos, see Edgeworth–Kuiper (E–K) belt
Pluto

atmosphere 260, 366–367
origin and evolution 367–368

central pressure, temperature, density
Table 5.3

core 178
discovery 13
energy (heat) sources for the interior 178
interior model 178, 258
observational data on the interior Table 4.2
orbit 10, 16
origin 74
overall composition 176–177
satellites 13, 178, 183
seasons 259–260
surface 111, 258–259, 366

pressure 367
temperature 366–367

power 150
Poynting, John Henry 79
Poynting–Robertson effect 79, 84

pp chains, see nuclear fusion
precession of the equinoxes 34
precession of the perihelion 28
precession of the rotation axis 33–35, 134
prograde direction 10
protoplanets 73
protostars 55

bipolar outflows 59–60
circumstellar discs 55–56
nuclear fusion in the interior 55

protoSun, see Sun
pulsar 51

planets 51
pyroxene, see rocks

radar 198, 201
radial velocity technique 50
radiation pressure 84, 102
radiative transfer 8, 154
radiogenic heating 151–152
radiometric dating 116–119

isochron 117
Rayleigh, John William Strutt 362
Rayleigh scattering 382
red giant 391
reference ellipsoid 200
refractory substances 61
resonances, see orbital resonances
retrograde direction 13, 76
rift valley (graben), see tectonic processes/features
Robertson, Howard Percy 79
Roche limit 78
rocks 62

anorthosite 202
basalt 205
basaltic–gabbroic 203
carbonates 220
extrusive 205
granite 206
granitic–rhyolitic 205
igneous 206
intrusive 205
list of important ones Table 6.1
limestone 217
metamorphic 220
olivine 167
peridotite 167
pyroxene 167
sedimentary 219

rocky materials 62
rotational energy 153
rotational flattening (oblateness) 133
runaway growth of mass 66, 71

satellites, see planetary satellites
saturation vapour pressure, see phase diagram
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Saturn
atmosphere

circulation 377–382
composition 189, Table 11.1, 374–377
depletion of helium 189
energy gains and losses Table 9.2
vertical structure 372–373
winds 378–379

cause of large axial inclination 71–72
clouds and haze 372–374

belts and zones 372
coloration 382
lanes 374

composition (overall) 184
core 184, 188–189
elemental mass ratios Table 11.3, 388–390
energy (heat) sources for the interior 188
heat transfer to surface 372
helium mass fractions Table 11.2, 375
infrared excess 159, 185, Table 9.2
interior circulation 380–381
interior model 184, 188–189
internal temperatures 185, 188
internal temperatures, pressures, densities

Table 5.4
magnetic field 188

generation 188
magnetosphere 194
metallic hydrogen mantle 184, 188, 375
molecular hydrogen envelope 184, 188, 375
observational data on the interior Table 4.2
ovals 381
rotation period puzzle 378
spots (vortices/eddies) 381–382

Schwassmann–Wachmann 1 (29P/...) 105
seasons, see Earth
secular resonance, see orbital resonances
sediments 219
seismic waves 139–142

generation 139
Love waves 139
paths in a planetary body interior 140–141
P waves 139–142
Rayleigh waves 139
S waves 139–142
use in investigating interiors 141–142

self exciting dynamo, see magnetic field
semimajor axis, see orbit
shock wave 54, 209
Shoemaker–Levy 9 107
shooting star, see meteors (shooting stars)
short period comets, see comets
sidereal orbital period 17
sidereal rotation period 31
siderophiles 145
silicates 62

solar activity, see Sun
solar day, see day
solar eclipse, see eclipses
solar nebula 56

see also solar nebular theories
solar nebular theories 56–74, 387

condensation of dust 61–64
dust sheet formation 64
Edgeworth–Kuiper belt formation 74
embryo formation 66
evaporation of dust 61
giant planet formation

core-accretion model 69–72, 185, 189, 387
gravitational instability model 73, 187,

189, 388–389
ice line 63
migration of giant planets 72–73
minimum mass solar nebula 57
Oort cloud formation 73–74
planetesimal formation 64–65
satellite formation 69–70, 75–76
successes and shortcomings 80–81
terrestrial planet formation 65–69

Solar System
age 117
angular momentum 57–60
future evolution 390–392
general properties Tables 1.1–1.5, 2.1
orbits 10
origin, see solar nebula and solar nebular theories
sizes and densities of bodies 9, 131
relative abundances of the chemical elements

Table 1.5, 15, 144–145, 164
solar wind, see Sun
solidification age, see radiometric dating
solstices 30
spacecraft (mostly first mention only) Table 4.1

Apollo missions 227
Cassini Orbiter 287

Huygens Lander 287
Clementine Orbiter 226–227
Deep Impact 106
Deep Space 1 105
Galileo Orbiter 260

Galileo probe 373
Giotto 103
Hayabusa 93
IRAS 106
Luna missions 227
Lunar Prospector 227
Lunik III 224
Magellan Orbiter 273
Mariner 10, 232
Mars Exploration Rovers, Spirit, Opportunity

254
Mars Express 241
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Mars Global Surveyor 242
Mars Odyssey 252
Mars Pathfinder 253

Sojourner (rover) 254
Mars Reconnaissance Orbiter 247
NEAR 91
Rossetta 106
SMART 1 228
Stardust 103
Vega landers 278
Venera landers 278
Venus Express 273
Viking Landers 253
Voyagers 283

spectral lines 298–300
collisional broadening (pressure broadening)

299–300
Doppler broadening 299–300
H� 3
information from spectral lines 298–301

spectrometry 94, 200, 298–300
spherical symmetry 22, 25–26
spiral density wave (in the Galaxy) 54
star clusters 43
star formation 53–55
stellar winds 55
sublimation 61
Sun

age 6
chromosphere 3
composition of the interior 5–6

initial composition 7
composition of the photosphere 2
convection in the interior 8
corona 4
emission spectrum 2, 304
evolution 354
faculae 5
flares 4
granules 8
interior 5–9
luminosity 1

increase 8, 341, 354, 390–391
magnetic field 8
main sequence lifetime 7
neutrinos from the interior 8–9
nuclear fusion in the interior 7
photosphere 1

temperature 2
prominences 3
protoSun 56

rotation 59
radioactive transfer in the interior 8
rotation 2
solar activity 5
solar radiation (heating effect) 153–154

solar wind 4, 55, 59, 317
spectrum (electromagnetic) 2
sunspots 2

cycle 2
supergranules 8
transition region 4
T Tauri phase 55, 68, 71, 75, 96, 151, 317

superior conjunction 35
supernova 151
surfaces (see also specific bodies)

active and inactive/weakly active 223
dating surfaces 212–216
energy gains and losses 301–307

steady state 308, 313
investigations by reflection or emission of

radiation 200–201
investigations by sample analysis 201
mapping in two and three dimensions

197–200
processes that produce surfaces 201–212,

216–221
zero altitude definitions 198–200

Sylvia 93
synchronous orbit 79
synchronous rotation 33
synodic period 36
synthetic aperture radar 198

Tagish Lake meteorite 115
tectonic processes/features 206–207

faults
normal 206–207
strike-slip 207
thrust, or reverse 207

graben (rift valley) 206
mountains 207

tektites 121
Tempel 1 (9P/Tempel 1) 106
Tempel-Tuttle (55P/ Tempel-Tuttle) 101
temperature (fundamental definition) 150

size effect, see interiors
terrestrial bodies 129
terrestrial planets 9, 11

atmospheric evolution (and climate change)
in the distant future 390–391
in the past 354–361

atmospheric origins 348–353
during planet formation 349–350
early massive losses 351–352
inert gas evidence 348–349

atmospheric properties Tables 9.1 and 9.2
formation (origin) 65–69
interior models 163–166
interior properties Tables 5.1 and 5.2
late veneers (of volatiles) 352–353
observational data on the interiors Table 4.2
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terrestrial planets (Continued)
outgassing (of volatiles) 353
overall chemical composition 164
possible consumption by the Sun 391
volatile acquisition during planet formation

349–350, 352–353
volatile inventories 344–349

thermal conduction 155
thermal escape, see atmospheres
Tholen, David J. 94
tidal energy (heating) 152–153
tidal force 25–26
Tisserand parameter 100
Titan

atmosphere (including clouds and haze) 286,
289–290, 363–366

atmospheric origin and evolution 365–368
central pressure, temperature, density

Table 5.3
core 178

composition 177–178
cryovolcanism 290, 365
energy (heat) sources for the interior 177, 290
icy mantle 178

composition 177–178
impact craters 290
interior model 177–178
magnetic field 177
mountains 289
observational data on the interior Table 4.2
overall composition 176–177
rain, channels, and lakes 287–289, 365
rocky mantle 178

composition 177–178
surface 177, 286–290

age 290
composition 286–289
images 287–288
temperature 363

winds 365
Titius–Bode rule 20–21
Titius, Johann Daniel 20
Tombaugh, Clyde William 13
torque 26
total solar eclipse, see eclipses
Toutatis 91–92
transit technique 50
triple point, see phase diagram
Triton

atmosphere 293–294, 366
origin 368

cantaloupe terrain 293
central pressure, temperature, density

Table 5.3
core 178, 293
cryovolcanism 178, 293–294, 366

energy (heat) sources for the interior 178, 294
interior model 178
mantle 177–178, 293
observational data on the interior Table 4.2
origin 76, 177
overall composition 176–177, 293
polar cap 293–294
surface 293–294, 366

pressure 366
temperature 366

Trojan asteroids, see asteroids
T Tauri phase/activity/wind (see also Sun) 55
Tunguska impact 86–87, 107
turbulence 59

Uranus
atmosphere

circulation 385–387
composition 190, Table 9.1, Table 11.1,

384–385
energy gains and losses Table 9.2
vertical structure 383–384
winds 386

cause of large axial inclination 72
clouds and haze 383–386

bands 386
composition (overall) 184, 189, 384
core 184
discovery 13
elemental mass ratios Table 11.3, 388–390
energy (heat) sources for the interior 190, 383
heat transfer to surface 190, 383–384
helium mass fractions 190
infrared excess 159, 185, 190, Table 9.2, 384
interior model 184, 189–190
internal temperatures 190
internal temperatures, pressures, densities

Table 5.4
magnetic field 190

generation 190
magnetosphere 194
observational data on the interior Table 4.2
spots (vortices) 385

Van Allen, James Alfred 192
Van Allen radiation belts, see Earth,

magnetosphere
Varuna 111
Venus

asthenosphere 280
atmosphere

circulation 343–344
evolution (and cimate change) 355–356
origin, see terrestrial planets
properties Tables 9.1 and 9.2
reservoirs, gains and losses 342–343
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vertical structure, heating and cooling
341–342

central pressure, temperature, density
Table 5.2

chasmata 273–274, 278, 280
clouds 341–342, 356
core 164, 170

composition 164, 170
coronae 273, 279–281
crust 164, 281

composition 164, 169, 275, 278
energy (heat) sources for the interior

169, 282
evolution of interior and surface 282
global resurfacing 275, 281, 356
gradation 275
greenhouse effect 342, 355

moist 355
runaway 355

heat transfer to surface 169, 282
highlands and mountains 273–275, 278–279,

281
hypsometric distribution 273–274
impact craters 275–277, 279
interior model 164, 166, 169
life? 356
lithosphere 279–282
lowlands or volcanic plains 273, 275, 277
magnetic field 170

generation 170
mantle 164

composition 164, 170
mantle convection 169, 281
observational data on the interior Table 4.2
oceans 255–256
pancake domes 277
surface

composition 275, 277–278
images from landers 278–279
temperature 342, 356
texture 275

tectonic features 278–279
tectonic processes 279–280

tesserae 273, 281
volatiles (see also terrestrial planets)

inventories 345–346, 349
inventory changes 346–347, 355–356

volcanic features 277–278
volcanic processes 281

vernal equinox, see Earth
Vesta

discovery 83
properties 91–93, 97, 120
V class asteroids 94, 120

volatility 51
volcanism and magmatic processes 204–206

calderas 205
cryovolcanism 204
effusive volcanism 205
explosive volcanism 205
extrusive rocks 205
igneous rocks 206
intrusive rocks 205
lava 205
shield volcanoes 205
volcanic cones 205
volcanic craters 205
volcanic pits 205
volcanic plains 205
volcanism 204

white dwarf 391
Widmanstätten, Alois von 113
Widmanstätten pattern, see meteorites
Wild 2 (81P/Wild 2) 103, 105

X ray fluorescence spectrometry 201
Xena, see Eris

Yarkovsky effect 84, 86
Yarkovsky, Osipovich 84
year 34

sidereal 17, 34
tropical 34

Yucatan asteroid impact 87




