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PREFACE TO THIRD (REVISED) EDITION

This book is intended primarily for those who have not the advantage

of a teacher and are anxious to obtain a foundation of the principles

of mathematical astronomy, with a view to undertaking the calculations

necessary in every branch of the subject. Experience derived from a

large amount of correspondence with students of this kind—usually

amateur astronomers—has shown the necessity of a book of this

nature to assist them over their initial difficulties. In many cases they

find the usual text-book too advanced for their purpose and are often

deterred from pursuing a course of studies in which they are intensely

interested but which presents too many difficulties. Simple explanations

for those who are thus handicapped will, it is hoped, prove of value.

Part 1 of the book follows the usual procedure adopted in mathe-

matical treatises on astronomy, but in addition it deals with some as-

pects of the subject which are not included in the ordinary text-book.

Chapter 3 deals with the tools of the mathematical astronomer—his

books of tables—and how they should be handled, as well as with the

way in which his work should be planned and laid out to the best

advantage. Chapter 10 deals quite simply with one of the most recent

advances in astronomy, the putting into orbit of several artificial earth

satellites and space probes.

Part 2 contains an elementary treatment of the subject of relativity,

in which an attempt has been made to avoid two extremes—abstruse-

ness on the one hand and over-simplicity on the other. Though it may

appear to have little bearing on the subject matter of the first part, it

too comes under the heading of mathematical astronomy. It is in-

tended for readers who have not an advanced mathematical equip-

ment, but it cannot be entirely devoid of mathematics. Popular ex-

planations of relativity without any mathematics have not been a

success, and leave the reader with confused and erroneous impressions.

Readers are expected to have an elementary knowledge of geometry,

algebraic transformations and mechanics, when they will have no
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difficulty in understanding the principles developed. Those who read

this part of the book intelligently will find it a useful introduction to the

theory of relativity as expounded in more advanced works, which
would prove unreadable without some such preliminary explanation.

One word of advice may not be out of place to amateur astronomers.

We have seen people with a good mathematical background utterly

puzzled when they took up the subject of mathematical astronomy
because the diagrams in the text could not show clearly enough the

three-dimensional problems with which astronomy necessarily deals.

The result was that they lost interest in the subject, which would not
have happened if they had been in possession of a celestial globe,

particularly one with a movable meridian circle.

It will be a great advantage if readers have some knowledge of
plane and spherical trigonometry, and it is assumed that they have a
working acquaintance with at least the former. The number of formulae
in spherical trigonometry essential for solving most of the problems
that arise is small, and these are provided in the text without proofs.

The methods of derivation can be found if desired in any text-book

on the subject, but probably most readers who are not familiar with
spherical trigonometry will be content to accept them.

While computing machines are a very great advantage and are

nowadays practically indispensable for more advanced computations,
logarithms are all that are required for the examples in the text or the

problems set at the end of each chapter. The methods adopted for

logarithmic computation are abundantly and fully illustrated and the

problems should not present any difficulty to those who have carefully

studied the worked examples. It is hoped that the treatment of the sub-

ject will fulfil its object in assisting those who desire a background in

mathematical astronomy.

A list of recommended mathematical tables is given at the end to-

gether with books and papers on artificial earth satellites and re-

lativity, the latter being arranged in order of increasing difficulty

so that readers will know where to start if they wish to continue the

study of the subject.

In conclusion we have to thank Dr. J. G. Porter, f.r.a.s., for many
helpful suggestions in planning the new edition; Mr. G. E. Taylor,

f.r.a.s., for Appendix III and advice on Chapter 10; the Controller of
H.M. Stationery Office for permission to reproduce from The Astrono-
mical Ephemeris 1960 the mean places of stars in Appendix IV, some of

preface 9

the material used in the discussion of Ephemeris Time and Inde-

pendent Day Numbers and in several of the problems and examples;

and the Council of the British Astronomical Association for per-

mission to reproduce data in Appendices I. II and V from the B.A.A.

Handbook for 1960.

MARTIN DAVIDSON

CAMERON DINWOODIE
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ONE

THE EARTH

Before the reader is introduced to the elementary principles of mathe-

matical astronomy it is essential that he should have a good working

acquaintance with the earth—its motion, shape, dimensions, etc. To

avoid unnecessary difficulties it will be assumed at first that the earth is

a sphere—an assumption which is sufficiently accurate for most prac-

tical purposes—but when the greater accuracy required for certain

special astronomical computations, such as eclipses, is demanded, the

exact shape of the earth must be taken into consideration.

The earth rotates about a diameter which is called its axis, and this

rotation can be simply illustrated by turning a sphere round on a rod

passing through its centre. If one end of this rod, representing the

axis, is pointed towards the pole star and the sphere is rotated from

west to east, this affords a simple model of the earth. We can imagine

that an observer is a very small speck somewhere on the surface of this

sphere and sharing in its rotation. It is important to remember that

when we are dealing with the earth the observer is assumed to be on the

surface of the sphere, whereas in dealing with the heavenly bodies he is

assumed to be inside the sphere, but this will be more fully explained

in the next chapter.

Definitions

The axis meets the surface of the sphere in two points N and S (Fig. 1),

called the poles. If we imagine a plane drawn through the centre of the

earth perpendicular to this axis, it will meet the surface of the earth in a

circle which is called the equator. It is possible to draw an infinite num-
ber of planes at right angles to the axis, but only one of them will pass

through the centre O. These other planes meet the surface in circles

with smaller radii than that of the equator. Fig. 1 shows one of these

circles and also the equator WABE.
The section of the surface of a sphere by a plane is called a great

13
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circle if the plane passes through the centre of the sphere, and a small

circle if the plane does not pass through the centre of the sphere. The

equator is a great circle and the other circle shown in the figure is a

small circle. The equator is not the only great circle which can be drawn

through any point on a sphere, nor are the small circles parallel to the

equator the only small circles which can be drawn through a point.

It is possible to draw an infinite number of each through a point on the

surface of a sphere. Fig. 3b shows seven great circles joining the poles,

Fig. 1

The terrestrial sphere

another great circle midway between the poles—the equator—and four

small circles parallel to the equator.

Let a be any point on the surface of the earth and wabe a small circle

parallel to the equator and passing through a (Fig. 1). A plane through

a and the axis NS will meet the equator in A. If O and o are the centres

of the earth and of the small circle respectively, than oa and OA are

parallel. The angle aOA between Oa and the plane of the equator is

called the latitude of a and will be denoted by
<f>.

It is also the latitude

of all places which lie on the small circle wabe. The colatitude aON is the

complement of the latitude, so that colatitude = 90o lat.

Let OA and oa be denoted by R and r respectively. Each of these

lines is perpendicular to NS and they are also parallel to each other.
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Since oa = Oa sin oOa = Oa cos AOa, it follows that

r = R cos <j> (1)

This formula applies to all the circles whose planes are parallel

to the equatorial plane ; such circles are called parallels of latitude. If

(f)
is 0°, that is, if the latitude is that of the equator, (1) reduces to r = R,

which is otherwise obvious because in this case the parallel of latitude

coincides with the equator. If
<f>
= 90°, r = 0, in other words, at

cither pole the parallel of latitude becomes a point.

Any plane drawn through the polar axis is called a meridian plane.

The semicircle NaAS drawn through a is called the meridian of a.

Similarly the semicircle NbBS drawn through any other point b is

called the meridian of b. It is convenient to have some meridian as

the standard from which other meridians can be reckoned, and the

meridian of Greenwich has been chosen for this purpose.

Suppose NaAS is the meridian of Greenwich and NbBS is any other

meridian. The arc AB of the equator, intercepted between these two

meridians, is the longitude of b. Longitude is reckoned from 0° on

the meridian of Greenwich eastward to 180°E. and westward to

180°W.

The angles aob and AOB are equal, and if each of them be denoted

by 6, then the arc ab = r9, and the arc AB = R6. Hence the arc

ab = the arc AB multiplied by r/R. Since r/R = cos
<f>,

it follows that

Arc ab = arc AB x cos
<f> (2)

As the earth rotates from W. to E. through 360° in 24 hours, or 15°

per hour, different stars will cross the observer's meridian, or, to be

more correct, the observer's meridian will be carried round so that it

travels from west to east across different stars. In many problems in

astronomy it is more convenient to assume that the stars are moving
round the centre of the earth than that the earth is rotating. When we
speak of a heavenly body rising or setting, which we shall frequently,

it must be remembered that it is really the earth's rotation which is

responsible for this phenomenon, but in spherical astronomy there is

usually an advantage in dealing with the subject on the hypothesis of a

fixed earth and moving stars.

Demonstrating the Earth's Rotation

A number of arguments can be brought forward in favour of the

earth's rotation. If the stars revolved around the earth the velocities
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of those which are far off from us would be incredibly large. In addi-

tion, there would necessarily be some arrangement by which stars far

away and those comparatively close would accomplish their diurnal

motions in exactly the same time—a view which is utterly untenable

unless the stars had a rigid physical connection. Other equally valid

arguments can be adduced, but these depend, like those just referred

to, on probabilities. Proofs by direct experiment are more convincing.

In Fig. 2 let OA be the radius of a sphere which is supposed to be

rotating in the direction shown by the arrow head. Let B be a point

^-iB'

Fig. 2

Demonstrating the rotation of

the earth by a body falling from
a tower

on OA produced and let a body be dropped from B and fall towards

the centre O of the sphere. By a well-known principle in dynamics the

body will not fall in a direct line towards O but will acquire a velocity

in the direction BB' so that its actual path will be along the curve BC.

The sphere can be taken to represent the earth rotating in the direc-

tion of the arrow. Let B represent the top of a high tower AB and B' the

position to which the top of the tower has moved in the interval during

which the body would have fallen to the earth. Obviously the velocity

of B exceeds that of the point A, the foot of the tower on the earth's

surface. The result is that the body, moving horizontally with the same

velocity as B, will not strike the earth at A' but at C a little to the side of

A towards which the earth is rotating. The argument is applicable

primarily to equatorial regions, but it applies also to any latitudes

except that of the poles, with certain modifications with which we need

not deal.

Experiments that have been carried out to test the above theoretical

considerations show that bodies falling from a high tower do actually

strike the surface of the earth a little to the east of the foot of the tower.

The only explanation that can be offered for this deviation from the

direction of the plumb line is that the earth is rotating from west to east.

The experiment is, however, difficult to carry out, as the deviation is very

small—about one-seventh ofan inch for a fall of 100 feet at the equator.

A simpler proof of the earth's rotation is afforded by Foucault's

Fig. 3a

Foucault's pendulum in polar re-

gions showing the earth's rotation

Fig. 3b

At the equator Foucault's pendulum

does not show the earth's rotation

pendulum experiment which readers may have seen for themselves in

the South Kensington Museum or elsewhere. It can be imitated on a

very small scale by means of a globe, terrestrial or celestial, and this

imitation of the experiment is worth trying. The fundamental principle

in Foucault's experiment depends on the tendency of a heavy body

suspended by a cord and swinging backwards and forwards to maintain

the plane of its swing when the point of suspension is rotated. To verify

this, construct a small pendulum swinging on a thread and suspended as

shown in Fig. 3a.

Hold the base of the support for the pendulum on the surface of a

globe as near the pole as possible and start the pendulum swinging.

Now ask someone to rotate the globe slowly and notice that the plane in

which the pendulum is swinging will not move round with the globe

but will pass through different points on its surface.

B
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If the experiment is repeated at the equator it will be found that the

plane of the swinging pendulum is simply carried round, partaking of

the general motion of rotation round the axis perpendicular to the plane

of the equator. Whatever be the plane of the swinging pendulum at the

equator, there is nothing to produce a disturbance in this plane relative

to a horizontal plane in the neighbourhood of the pendulum (see

Fig. 3b).

At places intermediate between the equator and the poles the con-

ditions will differ from those at the equator but will be intermediate

between them and those at the pole. At the pole the complete revolu-

tion of the plane of swing relative to the earth takes place in 24 hours,

and at the equator the time is infinite because in equatorial regions no
revolution of this plane relative to the earth takes place. At the place

with latitude <j> the time of a complete revolution is 24 cosec
<f>

hours.

Although a pendulum suspended in the manner described will not

oscillate long enough to make a complete circuit, it will do so during a

sufficient time to enable us not only to verify the earth's rotation, but

also to use the above expression for the time of a complete revolution.

We can make our computations from the arc of revolution in a certain

time, and then by a simple proportion ascertain what period would

correspond to a revolution of 360°. The actual results agree well with

the theoretical results, and Foucault's pendulum affords an excellent

proof of the earth's rotation.

Other direct proofs of the earth's rotation are available, with which

we need not deal, and we shall proceed to consider some other problems

connected with the earth.

Units of Measurement

A nautical mile is the great circle distance on the earth's surface be-

tween two points A and B which subtend an angle AOB of one minute of

arc at the earth's centre. Since the circumference of a circle contains 360°,

which is 21,600 minutes of arc, a nautical mile is obtained by dividing

the circumference of the earth by 21,600. If we take the earth's equa-

torial radius as 3963-35 English miles its circumference is 2n times

this, or 24902-44 English miles, and hence the length of an arc of one
minute on the earth's surface is 1- 15289 English miles or 6087 feet.

Owing to the fact that the earth is not a sphere the length of the nautical

mile varies for different latitudes, but in practice the difference is usually

ignored and a nautical mile is taken as 6080 feet. One degree on a great
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circle of the earth corresponds to 60 nautical miles. The unit of speed at

sea is one knot, which is defined as one nautical mile per hour.

An English or a statute mile is 5280 feet and hence 38 statute

miles contain 200,640 feet. A nautical mile is 6080 feet and hence 33

nautical miles contain 200,640 feet also, so we have the relation

38 statute miles = 33 nautical miles.

Referring again to Fig. 1, the number of nautical miles in the arc

AB is simply the number of minutes in the equatorial arc AB. The

length of the arc ab, measured in nautical miles, is found by multiplying

the difference in longitude between a and b, expressed in minutes of

arc, by the cosine of the latitude, which is obvious from (2). This

length is called the departure and is always expressed in nautical miles.

If a ship sails from a to b and follows the small circle, sailing all the

time parallel to the equator, the distance is greater than if a great circle

passing through ab had been followed. At first this may not seem very

obvious, but the following considerations will show that great circle

sailing is economical so far as saving distances is concerned.

In Figure 4a, o is the centre of a circle acb of radius /', and a and

Fig. 4a

Used to prove that great circle sailing is an

economy in space. See text for explanation
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N

Fig. 4b

Used to prove that great circle sailing is an
economy in space. See text for explanation

b are any two points on its circumference. oM is the perpendicular to

the chord ab, which it bisects. 6 is the angle aOb subtended by ab at

the centre of the circle: it is also the length of the arc acb in circular

measure, ab is also a chord of another circle adb of radius R (greater

than /), of which O is the centre, and in which OM is the perpendicular

bisector of ab. is the angle aOb, and also the length of the arc adb
in circular measure.

Then in the triangle aoM, aM = ;• sin \d, and in the triangle aOM,
aM = R sin \ifi. Therefore

r
sin tf>

= - - sin £0
R

Now imagine that ab is a hinge about which the two circles can be

rotated. We rotate them and get Fig. 4b, in which O is the centre of the

earth, with Oa = Ob = R, and o is the centre of a small circle of radius
oa = ob = r, at latitude

<f>. (Cf. Fig. 1.) The arc acb, of length 0, is the

parallel of latitude between a and b and the arc adb of length >p is the

great circle between the same points. Then from (1), r/R = cos
<f>
and

sin £ = cos
<f>

sin £ (3)
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Since cos <f>
is less than unity, i/j is less than 0, or in other words the

distance between a and b along a great circle is less than that along a

parallel of latitude.

The problem has been restricted to places in the same latitude, but

it will be shown later how general cases are solved.

The Visible Horizon

If an observer O is situated above the surface of the earth, the length

of the tangents OT and OT will limit his range of vision (Fig. 5). A

Fig. 5

The visible horizon

small circle 77" formed by the revolution of the point T or T about

the diameter AB will constitute the visible horizon or offing, and this will

depend on the height of the observer above the horizon.

From the elementary properties of the sphere we have the relation

BO.OA = OT2

If OA be denoted by h and OT by d, then, r being the earth's radius,

(2r + h)h = d2
, from which

h2 + 2rh - d2 =

Solving this quadratic for ft, we find

h= - r ±V(r2 + ^)
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The expression under the radical can be written in the form

V (r
2
(1 + d*jr*) ) = r y (1 + d2

/r*).

Expanding y/ (1 + d2
/r2

), we find the above becomes
/• (1 + d2/2r2 - rf

4/8r4 + . . .)

Hence // = - r ± r (1 + d2/2r2 - </
4/8r4 + ...) = d-jlr-d^^ (4)

Ignoring the second term, the above reduces to

h = d2/2r .. . . (5)

as a first approximation.

Knowing the distance d of an object which is just visible on the

horizon, the eye of the observer being supposed to be on the horizon,

the height of the object can be found from (5).

It is more useful to be able to ascertain the distance of an object

just visible on the horizon if the height // of the observer is given. This

is found from

d=J(2hr) (6)

If d and / are measured in nautical miles and // in feet, then, since a

nautical mile is 6080 feet and r is 3442 miles at the equator (but this

value can be used for all latitudes),

d = y/ (6884/J/6080) = J (H32A) = 1064 Jh . . (7)

Hence if h is given in feet d is easily found in nautical miles.

If statute miles are required the factor 1 -225 should be substituted

for 1 064 in (7). Hence

d= 1-225 yfh (7a)

for statute miles.

If </is given and h is required it is only necessary to square each side

of the two formulae (7) and to simplify the results. These give

h = 0-883</2 for nautical miles (8)

/; = 0-666*/2 for statute miles (8a)

To illustrate the principles considered in this chapter the following

examples are worked out fully. Four-figure tables will suffice in all

cases.

Example 1

Two places at latitude 50° have longitudes 5° E. and 10° W. What is

the difference in their longitudes and what is the arc of the small circle

between them (the departure)?
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Since one place is east of the meridian of Greenwich and the other

is west, their longitudes must be added to find the difference of their

longitudes. This is 15°.

To solve the second part notice that each degree of longitude corres-

ponds to 60 nautical miles and hence at the equator a difference of 15°

corresponds to 900 miles. The great circle arc AB is, therefore, 900

miles.

From (2) we have

log 900

log cos 50
c

log arc ab

arc ab

2-9542

1 8081

2-7623

578-5 miles

Example 2

A small circle parallel to the equator is drawn in latitude 60°. What

is its radius? (The earth's equatorial radius can be taken as 3442

nautical miles.)

From (1) we have r = R cos
<f>.

log*
log cos 60°

logr

r

3-5368

T-6990

3-2358

1721 nautical miles

Example 3

A Foucault pendulum is oscillating in the latitude of Greenwich

(about 51£° N.). If you observe it for 20 minutes through what arc

would it have appeared to rotate relative to the earth? In what direc-

tion, viewed from above, would this rotation appear to take place?

The time to complete a rotation is 24 cosec 51£°. The computation

is as follows:

log 24 1-3802

log cosec 5 1£° 01065

log time 1-4867

time 30-67 hours
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The time of a complete rotation through 360° is 30-67 hours and
hence in 20 minutes the arc described is

20 x 360
c

= 3°-9
30-67 x 60

The direction in which the plane of the pendulum appears to rotate

relative to the earth can be easily determined by considering the special

case at the north pole. If we imagine someone looking down on the

north pole from above, the rotation of the earth is in a direction opposite

to that of the hands of a watch. Hence the apparent movement of the

plane of the pendulum is clockwise. The same argument applies to all

latitudes between the north pole and the equator. In the southern

hemisphere the opposite effect prevails.

Example 4

A ship steams along the parallel of latitude 41° 12' from a place in

longitude 40° 18' W. to a place in longitude 21° 36' W. Find the depar-

ture between the two points and also find the distance if great circle

sailing is adopted.

The difference of longitude is 18° 42' = 1122'.

From (2) we have

log 1122 30500

log cos 41° 12' T-8765

log dep. 2-9265

dep. 844-3 miles

4> = 41° 12' and \Q = 9° 21', and substituting in (3)

log cos <j> T-8765

log sin £ d T-2108

log sin I </« T-0873

\ 7°01'-5

14° 03'

The radian measure of 14° 03' is 0-2452, and multiplying this by
3442 the result is approximately 843-9 nautical miles. Alternatively,

14° 03' = 843', which is equivalent to 843 nautical miles, and this is

less than the departure.
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Example 5

A lighthouse is visible at a distance of 24 miles, the eye of the

observer being close to the level of the water. What is the height of the

lighthouse?

Substituting 24 for d in (8) the result is as follows:

log 24

2 log 24

log 0-883

log/*

h

1-3802

2-7604

1-9460

2-7064

509 feet

Example 6

What error is committed by ignoring the second term in Example

(4)?

It is necessary to find the value of d4/Sr3
. Using four-figure loga-

rithms with d = 24 and r = 3442, we proceed as follows:

log 24 1-3802 3 log 3442 10-6104

log 3442 3-5368 log 8 0-9031

Sum = log 8/-3 11-5138

4 log 24 5-5208

log 8/-3 11-5138

Difference 60070

</
4/8/- 3 m 000000102 nautical miles

From (4) it is seen that the height is less than that given by (8) by

000000 102 mile, that is by about 006 inch. This shows that the neglect

of the second term in (4) is of no practical importance.

Example 7

What would be the height of the lighthouse in the above example if

statute miles were used?

The logarithm of 0-666 is 1-8235, and substituting this for 1-9460 it

is easily found that log h = 2-5839, and hence h = 384 ft. to the

nearest foot.
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Problems

1. Find the difference in latitude between two places A and B, given
that their latitudes are:

(a) A, 35° N.; B, 52° N. (b) A, 40° 12' S.; B, 37° 18' N.J (c) A,
90° N.; 5, 90° S.

2. Find the difference in longitude between two places A and B,

given that their longitudes are:

(a) A, 25° 13' E.; B, 72° 10' E.; (b) A, 28° 10' W.; B, 16° 23' E.;

(c)A, 110° 23' E.; B, 72° W.

3. A ship steams eastward along the parallel of latitude between
two places A and B at a speed of 20 knots. If A is 38° N. and 47° W.,
and the ship arrives at B in 18$ hours, what is the longitude of B1

4. Find the great circle distance between A and B in 3.

5. Find the height of a mountain which is just visible from sea-level

at a distance of 70 miles.

6. How long would Foucault's pendulum require to turn through 2°

in latitude 40?

TWO

THE CELESTIAL SPHERE

One of the best ways for the amateur astronomer living in or near

London to visualize the motions of the heavenly bodies is to attend the

lectures given daily in the London Planetarium, opened in March 1958

by Madame Tussaud's, Ltd., under the directorship of Dr. H. C. King.

Others less fortunately placed must try to do the best they can without

its valuable aid.

In Chapter 1 we regarded the earth as a sphere, the observer being

a very small object anywhere that he chose on its surface. When we

deal with the stars it will be necessary to modify this view and to

imagine that the inside of the sphere is studded with stars and that the

observer is inside the sphere—at its centre—so that he is looking at a

hollow spherical dome. To show this more clearly Fig. 6 should be

studied very carefully.

O is the centre of a sphere which may have any diameter—about a

hundred feet in the case of some planetaria but a matter of one foot or

less in the case of the usual celestial globes. The line drawn from O to

the stars A, B, C, D, etc., will intersect the surface of this sphere in

points a, b, c, d, etc., and hence, if we could imagine the vault of the

heavens reduced to a very small model, the sphere would represent this

vault, the observer at O, and the whole earth itself having shrunk to a

mere speck. Although the stars, A, B, C, etc., are represented by the

points a, b, c, etc., on the surface of the sphere, this does not imply that

the stars lie on a sphere. They are at various distances from the earth

—

from a little over 4 light-years to millions of light-years—but for certain

computations it is convenient to represent them as situated on the sur-

face of the sphere.

If the earth shrinks to a mere point O the same cannot be said about

the horizon. We have already explained the meaning of the visible

horizon on p. 21, but a definition of the word horizon will assist in

understanding certain methods of computation which follow.

27
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Referring to Fig. 3, if C is an observer on the earth's surface, the
prolongation of the radius OC defines the direction of the zenith Z at C.
The point diametrically opposite to the zenith is known as the nadir.

A plumb-line held at C can be regarded as determining this direction
since the plumb-line points from C to O. A plane through C perpen-
dicular to the direction of the zenith, or nadir, is known as the horizon,
and it may extend for any distance.

THE CELESTIAL SPHERE

Fig. 6

The celestial sphere

Suppose the axis of the earth points exactly to the pole star—

a

supposition which is not true, but we shall assume for the present that it

is true as this supposition simplifies the explanation—it is obvious that
an observer at the pole would see the pole star in his zenith. Ifhe were
at the equator the pole star would be seen on his horizon, and if he
went south of the equator it would not be seen at all, the earth intercept-

ing the light from it. At latitudes between the equator and the pole the
pole star would appear at various altitudes which would depend on the
latitude.

The position which a star or any other heavenly body occupies on
the celestial sphere can be referred to the observer's horizon and his

meridian. In Fig. 7 let O represent the observer at the centre of the

29

celestial sphere, and Z his zenith at any instant. Any plane through the

zenith and the observer will be a vertical plane and its intersection with

the celestial sphere is called a vertical circle or simply a vertical. One
vertical in particular must be noted. Suppose the plane through Z and

passes through the east and west points is and J-fand is perpendicular

to the observer's meridian; in this case the vertical circle obtained by its

intersection with the celestial sphere is known as the prime vertical.

Let She a star (Fig. 7), Zthe zenith, HWREthe plane of the horizon,

Fig. 7

The celestial sphere showing the observer's horizon

and ZSTthe vertical through the star meeting the horizon in T. R and H
are the north and south points, and the great circle HZR is the meridian

of the observer. We have already defined the terrestrial meridian as the

semicircle drawn through the observer and the earth's axis. The celestial

meridian is simply the great circle in which the terrestrial meridian

meets the celestial sphere, so if we could imagine the earth's centre at

O, and the observer's terrestrial meridian at any time extended to inter-

sect the sphere in the great circle HZR, this is the celestial meridian.

The observer's celestial meridian always passes through his zenith.

The azimuth of the star S is the arc RT of the horizon measured
from the north point R to the vertical of the star. It can also be defined
as the spherical angle TZR which the star's vertical makes with the

meridian. The manner in which azimuth is measured must be clearly
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understood, especially as the modern method differs from that given

in the older text-books. Azimuth is measured from the north up to

180° only, eastward or westward. Thus, if the arc RT or, what is the

same thing, the spherical angle TZR, is less than 180°, the azimuth of

the star is given as so many degrees east. If this angle exceeds 180°,

say it is 200°, the azimuth is not said to be 200° east but 160° (360°-

200°) west.

For an observer in the southern hemisphere the azimuth is measured

from the south point up to 180°, eastward or westward.

The angle TOS is called the altitude of the star and is the star's

angular distance from the horizon, measured along a vertical. The angle

ZOS is the zenith distance of the star and is the complement of the

altitude, so that a star's zenith distance is 90°— the star's altitude.

When the azimuth and altitude (or zenith distance) of a star are

given for any instant, its position is defined uniquely for the particular

latitude, and there is no difficulty in locating it provided one is equipped

with an instrument for measuring azimuths and altitudes.

It should be pointed out that at present we are dealing only with

the bodies very far away from the earth—so far that the same celestial

sphere serves to show the apparent positions of the stars, even after

many scores of years. Those who possess an old celestial globe will find

that it is practically as good as a modern one for this purpose because,

though all the stars are moving, yet, owing to their enormous distances

from us, these movements are generally inappreciable even after a cen-

tury, when reduced to the scale of a celestial globe.

The same thing does not apply to the sun, moon, planets, satellites

and comets—members of the solar system. All these are relatively

close to us and hence their movements in a short period are appreciable.

We are not concerned with these at the moment and shall confine our

attention to the stars.

The reader is strongly advised to set his globe, even a home-made

one if he has not got a proper celestial globe, for different latitudes and

so visualize the actual conditions under which observations are made.

This is of special importance in connection with the next point with

which we shall deal.

The Altitude of the Pole is Equal to the Latitude of the Place

In Fig. 8 let the sphere represent the earth and let C be the position

of an observer on it, PCP' being his meridian and the horizontal circle

THE CELESTIAL SPHERE 3*

the equator. The prolongation of the line OC from the centre of the

earth to C is in the direction of the observer's zenith Z. Let the arrow at

P, the north terrestrial pole, point to the pole star which is supposed to

be at an infinite distance. From C draw CS parallel to OP and let the

angle SCZ be denoted by z. Because CS is parallel to OP the angle POC
is equal to the angle SCZ and is therefore z. Notice that although there

may be a distance of thousands of miles between the lines OP and CS,

Fig. 8

Proof that the altitude of the celestial pole is equal to

the latitude of the observer

yet the pole star is in practically the same direction as seen from O and

C because such a small distance as thousands of miles compared with

the enormous distance of the pole star is insignificant.

The angle COC is the latitude
<f>

of the place, and since the sum of

the angles COC and POC is 90°, it follows that

<f>
+ z = 90°

But if a is the altitude of the pole star at C, we know from what was

previously stated that z = 90° - a, and hence

<f>
+ 90° - a = 90°, from which

<f>
= a
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This simple relation between the latitude of the place and the alti-

tude of the pole star is very important and will be frequently used in the

solution of various problems.

It may now be pointed out that the pole star is about a degree from

the north pole, which is the point on the celestial sphere to which the

earth's axis points. For this reason, instead of speaking of the pole star

it is more correct to speak of the north pole of the heavens. Hence the

above relation is accurately described as follows:

altitude of the celestial pole = latitude of observer

This applies to the south celestial pole also. There is no bright star

as close to the south celestial pole as the pole star is to the north

celestial pole, and we must imagine a point corresponding to the south

celestial pole. Such a point would be on the horizon of an observer at

the equator, at an altitude of 50° for an observer in latitude 50° S., and

in the zenith, or at an altitude of 90° for an observer at the south pole

of the earth, and so on.

We have seen that the earth rotates on its axis from west to east

in 24 hours, but the same effect would be produced if we imagine that

the earth is fixed (as the ancient astronomers thought) and that the

whole sphere of the stars is turning round the centre of the earth from

east to west. Hence it is necessary for the reader to imagine that he is

inside the celestial sphere and that it is turning round him from east to

west. In order to do this, and before proceeding to consider other means

for defining the position of a heavenly body, he should carry out some

experiments with a celestial globe.

A Celestial Globe

The figure opposite shows a simple celestial globe which can be made

by anyone who can secure a small wooden sphere. The diameter of the

sphere may be about 9 inches, but a smaller sphere than this will suffice

for demonstration purposes. This sphere is capable of rotating on pivots

at the poles, P being the north pole, these pivots being inserted into the

circular piece of brass MM' which represents the meridian of the ob-

server. The horizon HR can be made out of plywood. The meridian

MM' fits loosely into two slots in the horizon and rests on a small

support at its lowest point. It can be moved round in its own plane so

that the pole can be set at any elevation above the horizon. The
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meridian should be graduated and intervals of about 10° are good

enough for illustrative purposes.

The celestial equator C is shown by the thick circle and the ecliptic

E by the finer circle. It is also advisable to graduate these in intervals

of 5°. Graduation at intervals of a degree is difficult on a small sphere

and it is possible to estimate approximately the intermediate position

for 5° intervals. At every third graduation on the equator, that is,

at intervals of 15°, the hours of R. A. should be marked, T {The First

Diagram of a celestial globe showing the horizon

HR, the equator C, the ecliptic E, and the meridian

MPM 1
.

Point of Aries) being the zero point, 1
5° the first hour, 30° the second

hour, and so on. The explanation of the terms First Point of Aries

and Right Ascension is given on pp. 38 f.

The horizon cannot, of course, be continued inside the sphere, but

the reader can imagine that it is so continued and that he is situated on
it at the centre of the celestial sphere. Although the horizon of the

observer alters its direction in space as he moves over different latitudes,

it would be inconvenient to alter the horizon of a celestial globe. It is

simpler to maintain the horizon fixed and to alter the celestial sphere,

just as it is more convenient to keep a fixed earth and to imagine that

the heavenly bodies are moving round it.

When using the celestial globe we must make certain that the

c
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proper east to west direction of rotation is observed. This can be done

by making the globe rotate clockwise when looking at it from above

its North Pole.

From the list of positions of a few stars given in Appendix IV it is

possible to mark these on the globe, and this will be found useful as a

check on some of the computations.

The horizon also can be graduated if the reader wishes to check

the results of the computations of azimuths. Starting from the north

point the scale should extend through 180° east and west. To check

altitudes or zenith distances a metal strip known as the quadrant is

essential. This should be graduated from 0° to 90°, and when the

azimuth and altitude of a star are to be determined the procedure

is as follows.

Suppose the latitude of the place is 50° and that the local sidereal

time is 4h , which can be computed from the Greenwich sidereal time at

h and the G.M.T. at which the observation is made. If the longitude

is not that of Greenwich the usual corrections can be made (see p. 54).

Set the globe so that the arc from P to the horizon is 50° and then

rotate the globe until 4h is on the meridian. The globe now represents the

celestial sphere for latitude 50° and local sidereal time 4h . Place the 90°

graduation of the quadrant on the position marked 40° on the meridian

(90° - 50° = 40°), and notice that the zero of the quadrant just

reaches the horizon. This is a check on the accuracy of the graduation

because the position marked 40° on the meridian is in the zenith, which

is 90° from the horizon.

Retaining the 90° on the quadrant on the zenith, pass the quadrant

through any selected star marked on the globe and take the reading

which gives the altitude of the star. Take also the reading at the point

on the horizon where the quadrant touches it; this is the azimuth of the

star. It is more difficult to determine the azimuth accurately than it is

to determine the altitude, especially when the star is near the zenith.

In the latter case a small error in placing the quadrant on the star may

lead to a considerable error in the reading of the azimuth, but the pro-

cedure is intended merely as a rough check on the results obtained by

the accurate computations.

An even simpler model of the celestial globe can be made from a

spherical glass flask. It should be half filled with coloured water which

will represent the horizon for all positions of the flask. Through the

cork a piece of thin metal is inserted, one end projecting a few inches
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and the other end touching the water. The point of contact represents

the observer on the horizon and the piece of metal represents the

earth's axis.

Pieces of paper pasted on the outside of the flask in various positions

can be used to represent the stars, and the sphere can be set for different

latitudes by tilting it so that the 'axis' has various inclinations to the

horizon.

The Apparent Movements of the Heavens for Various Latitudes

Place the poles on the horizon and notice the position of the celestial

equator. It will be seen that it is at right angles to the horizon, and if the

globe is turned round, all the stars, whatever their positions may be, will

move in circles which are perpendicular to the horizon. When the pole is

on the horizon its altitude is 0°, and as the altitude of the pole is equal

to the latitude of the place, the latitude is 0°, in other words, the

observer is at the earth's equator. The globe being thus set for an

observer at the equator it is easy to see what happens there.

As both the north and south celestial poles are on the horizon, they

arc just visible from the equator, or perhaps it would be more correct to

say that they would be visible if it were not for the effects of absorption

of light by the atmosphere. Although this is considerably less in tropical

countries than it is in the British Isles, nevertheless it would scarcely be

correct to say that the portions of the sky representing the poles arc

visible from the equator. Assuming ideal conditions, however, we can say

that they are visible from the equator, and as further experiments will

show, there is no other place on the earth from which they are both

visible.

Notice that all the circles described by the stars are divided into

two equal portions by the horizon, and hence to an observer at the

equator all stars will always be 12 hours above his horizon and 12 hours

below it. The equator is unique in this respect as other experiments

will show. The phenomena described above are shown in Fig. 9.

Now set the globe so that the celestial equator corresponds with the

horizon, either pole in this case being at an altitude of 90°. Since the

altitude of the pole is the same as the latitude of the place, the latitude

is 90°, or we are dealing with a place at the pole (for convenience we shall

take it as the north pole). Turn the globe round in the usual manner

—

clockwise looking from above the north pole—and notice that no stars

either rise above or set below the horizon. Those at the equator just
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skim the horizon, those south of it are below the horizon and so are

invisible, while those north of it move in small circles parallel to the

equator, neither rising nor setting. (See Fig. 10.) The above description
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Fig. 9

The celestial sphere when the observer is at the

equator

Fig. 10

The celestial sphere when the observer is at the pole

gives a representation of what an observer at the pole would see, and is

very different from the conditions under which an observer in equatorial

regions sees the heavens.

Intermediate latitudes can be represented in a similar manner.

Thus, suppose we want to know how the heavens appear to an observer

in our islands, set the globe so that the arc from the horizon HR to the

north pole is about 52°. Z and N are respectively the zenith and nadir

The celestial sphere when the observer is at a

latitude intermediate between the equator and
the pole

of the observer. On rotating the globe a state of affairs different from

either of the others prevails. (See Fig. 1 1 .)

Circumpolar Stars

First of all, ifsome of the stars are on the celestial equator CC, it will

be seen that all such stars rise exactly in the east and set exactly in the

west. This phenomenon takes place for other latitudes as can easily be

verified, even for the equator, but it cannot be said to occur at either

pole because in this case stars on the celestial equator just skim the

horizon. Notice that stars fairly close to the pole do not rise or set;

they approach the horizon HR but do not go below it. Others, if situated

at the correct distance from the pole, just touch the horizon but do not
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move below it. Stars which neither rise nor set but move round and

round the pole are known as circumpolar stars. Others a little further

off from the pole than those that just touch the horizon rise and set

but remain a very short time below the horizon. Others further off

still remain a longer time below the horizon but spend most of their

time above it, while those very far away from the pole and near the

equator divide their time into nearly equal portions above and below

the horizon, the former being the greater. Stars on the equator are 12

hours above and 12 hours below the horizon, and when we observe

the stars south of the equator we shall find that they are less than 12

hours above, and more than 12 hours below, the horizon. These facts

should be verified and the experiments will serve as a check—if only a

rough check—on the results obtained later by the use of certain

formulae.

In whatever latitude the globe is set, except that of the equator,

it will be found that one celestial pole is above and the other below

the horizon. Hence at no latitude, except that of the equator, is it

possible to see all the stars in the celestial sphere. In higher latitudes

some, in one or the other hemisphere, will remain invisible.

The Ecliptic and the First Point of Aries

There is one great circle which must be drawn on the celestial sphere

if the explanations which follow are to be properly understood. This

circle can be drawn as follows and is shown in Fig. 12.

On the equator CC take any point which should be markedT and

with a scale measure 90° eastward from T along the equator to an-

other point C. On the great circle connecting C with the north pole P
measure C'E' equal to 23£°. From C on the equator measure another

arc C — equal to 90°. Continue round the equator and mark the point

C 90° from =, The First Point ofLibra, and on the great circle connecting

C with P', the south pole, measure CE equal to 23 \ °. By means of a

flexible strip of steel or brass draw a great circle through the four

points T E' = E. The great circle T E' = E around the sphere is the

ecliptic, in which the sun always moves. The point first selected, which

is one of the two points of intersection of the ecliptic and the equator,

is very important because it is the zero point from which certain measure-

ments are made. It is called The First Point of Aries, and is denoted by

the symbol T.
Instead of defining the position of a star with reference to the
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Fig. 12

The celestial sphere showing the equa-

tor, the ecliptic, and the first point of

Aries, ^

horizon and the meridian, that is by its azimuth and altitude, we can

define its position with reference to the celestial equator, taking T as

the zero point of reference. The following definitions should be re-

membered as they are in frequent use in all works on mathematical

astronomy.

The declination of a star (expressed by Dec.) is its distance from the

equator measured by the arc of the great circle which passes through

the star and the pole. The declination can be north or south according

to the side of the celestial equator on which the star is situated.

The right ascension of a star (expressed by R.A.) is the arc of the

equator from the first point of Aries to the foot of the perpendicular

on the equator from the star. It is measured eastward from 0° to 360°.

In Fig. 12, where CC is the celestial equator, EE' the ecliptic, and P
the north celestial pole, 5" is a star, and the great circle through P and S
intersects the equator at J. The arc SJ is the declination of the star. In-

stead of defining the position of the star by specifying its declination it is

sometimes more convenient to do so by giving its polar distance. The

arc SP is known as the star's north polar distance (expressed by N.P.D.)

and is the complement of its declination because the arc PJ is 90°, and

hence SP is 90°-SJ.
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The arc T/, measured from the first point of Aries to the foot of the

perpendicular J, from the star to the equator, is the right ascension. In

the figure the point / falls to the east of T but it may lie anywhere on

the equator. The right ascension is usually reckoned in hours, minutes,

and seconds, not in degrees, and it is easy transforming the right

ascension reckoned in time into degrees, or vice versa, when this is

necessary.

The celestial sphere completes a revolution in 24 hours, that is, it

turns through 360° in this time, and hence in 1 hour it turns through

15°. Since there are 60 minutes of arc in a degree and 60 seconds of

arc in a minute, the following relations are obvious:

l
h =15° .. 1° = 4m

l
m = 15' .. 1' = 4s .. .. (9)

I
s = 15" .. 1" = T>/

Thus, if we wish to convert the right ascension of a star, given as

3 h 12m 30s
, into degrees, minutes and seconds of arc, we proceed as

follows

:

3 h
.. .. 45° 00' 00"

12m .. .. 3° 00 00 .. .. (10)

30s
.. .. 7 30

3h 12m 30s = 48° 07' 30"

The Sidereal Day

Up to the present no definition has been given of the word 'day',

which has been loosely described as a period of24 hours, an hour being

60 minutes, and a minute 60 seconds. There are two kinds of days—the

ordinary day, which is determined from the motion of the sun and about

which more will be said later, and the sidereal day, which is nearly

4 minutes shorter than the ordinary day. For the present we shall

confine our attention to the latter.

The sidereal day is the time taken by the whole system of stars to

make a complete revolution from east to west. Owing to the fact that

the sun, while sharing in this revolution, has also an independent

motion from west to east, the solar day differs from the sidereal day.

A sidereal clock, if set for the same instant as an ordinary clock,

will soon show a discrepancy in the time, gaining about 4 minutes each

day. The setting of a sidereal clock is determined by the first point of

Aries; the clock should mark h m s when this point crosses the
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meridian of the place at which observations are made and is different

for different places. Hence the definition of a sidereal day is 'the in-

terval between two consecutive transits of the first point of Aries'; and

the sidereal time at any instant is the number of sidereal hours, minutes

and seconds that have elapsed since the preceding transit of this point.

Thus, when the sidereal time is l
h the first point of Aries is 15° west of

the meridian.

Hour Angle

The hour angle of a star (expressed by H.A.) is the angle which the

star's declination circle makes with the meridian. Thus, in Fig. 13, the

Fig 13

Explanation of the hour angle of a

celestial body

hour angle is SPZ and it is measured westwards from the observer's

meridian from 0° to 360° or from h to 24h . A scheme for converting

hours, etc., into degrees has just been given, and it is sometimes necessary

for certain purposes to make this conversion. Notice in Fig. 13 that the

equator is not drawn. This is unnecessary, because the great circle PS,

drawn from the pole to the star, is the star's declination circle.

The hour angle of a star which is on the observer's meridian is
h

,

and as the heavens are moving from east to west, the star's hour angle

immediately after it is on the meridian exceeds h
. By setting the globe

for any latitude, marking the position of a star on it, and then rotating

the globe, it will be found that after crossing the meridian the star will

set (unless it is a circumpolar star, but it is better for the present to deal
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with stars that rise and set), and some time after setting it will reach the

meridian again at its maximum distance below the horizon. The arc

through which the globe has been turned from the instant when the star

crossed the meridian at A" (see Fig. 14a) to the instant when it reaches

the meridian at X"—its maximum distance below the horizon—will be

found to be 180° or 12h . During all this time the star has been in the

western hemisphere, or, in other words, its azimuth is west, and this

applies to ail stars. So long as their hour angle lies between h and 12h

their azimuth is west.

Fig. 14a

The celestial sphere when the observer is in a
northern latitude and observing a star in the

eastern hemisphere

If the globe is turned after the star reaches the meridian at X" the

star passes into the eastern hemisphere and after a time it will rise at K.

Its hour angle from X" to X' where it crosses the meridian again lies

between 12h and 24h . At X' it is 24h or h
, and during this time its

azimuth is east. Just as the star attained its maximum distance below
the horizon at X", so it attains its maximum distance above the horizon

at X'.

When it is necessary to draw a diagram showing the positions of an
observer in latitude and also of a star, etc., the following conventions

should be observed.

Imagine that the observer is in northern latitude and that the star

is in the eastern hemisphere. The position of the zenith Z is always
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taken at the top of the diagram, and having settled this point the

horizon NESW can be inserted, but it is necessary to decide on the

positions of N and S. As the star or other heavenly body is in the

eastern hemisphere, E must be placed on the side of the horizon nearer

to the reader. The line EOW drawn through the centre O of the sphere

intersects the horizon at W and the points N and S are inserted in

accordance with the usual convention. The north celestial pole P must

be placed so that NP =
<f>.

Fig. 14a shows the various positions, the

star X being north of the equator CC, but the same diagram will do if

the declination of the star is south.

Fig. 14b

The celestial sphere when the observer is in a

northern latitude and observing a star in the

western hemisphere

When the star is in the western hemisphere the zenith and horizon

are settled in the same way, but now the point Wmust be placed on the

side of the horizon nearer to the reader. Having fixed this point the other

points on the horizon are marked according to the usual convention,

that is, if the west is on the left the north is straight ahead, and so on.

The north celestial pole P is placed so that NP =
<f>,

just as it is when

we are dealing with the eastern hemisphere. (See Fig. 14b.)

If the observer is in southern latitude and the star is east, the

positions are shown in Fig. 15a. The zenith and horizon are settled in

the same way as for an observer in northern latitude, remembering that
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the zenith is overhead whatever be the position of the observer, and
hence Z is at the top of the diagram. As the star is in the eastern hemi-
sphere the point E on the horizon is on the side nearer to the reader
and the other cardinal points are then inserted in the usual way. P'
represents the south pole of the heavens and the arc SP' =

<f>.

Fig. 15b shows the diagram for a star in the western hemisphere,
and the positions of the cardinal points, etc., are decided in the usual
way, W in this case being on the side of the horizon nearer to the
reader.

Fig. 15a

The celestial sphere when the observer is in a
southern latitude and observing a star in the

eastern hemisphere

When the star is in the eastern hemisphere, as shown in Figs. 14a
and 15a, its hour angle is between 12h and 24h and is measured by
24 - ZPA' or 24 - ZP'X. When it is in the western hemisphere its hour
angle is between and 12h and is measured by ZPX or ZP'X.

As the azimuth is measured from TV eastwards or westwards, in the

four diagrams the azimuth is the angle PZX (=arc NT) or P'ZX
(=arc ST). It should be pointed out that a spherical angle can never
exceed 180°, and hence ZPX ov ZP'X cannot exceed 180° or 12h .

When a star is on the meridian one half of its visible path is accom-
plished. Thus in Fig. 16, if T and T" are the positions of a star at rising

and setting respectively, and the star is on the meridian at M, the arcs

MT' and MT" are equal.
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Fig. 15b

The celestial sphere when the observer is in a

southern latitude and observing a star in the

western hemisphere

Fig. 16

Showing that a star has completed one half of its

visible course in the heavens when it is on the

meridian
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Latitude and Longitude of a Heavenly Body

Just as the right ascension and declination of a heavenly body are

referred to the equator as the fundamental plane, so the longitude and
latitude are referred to the ecliptic. The latitude of a heavenly body is

its distance from the ecliptic measured by the arc of the great circle

which passes through the star and the pole of the ecliptic. In Fig. 12

K is the pole of the ecliptic and KSJ' a great circle through K and the

star S meeting the ecliptic in /'. SJ' is the latitude of the star.

The longitude of a heavenly body is the arc of the ecliptic from the

first point of Aries to the foot of the perpendicular on the ecliptic from
the star. It is measured eastward from 0° to 360° in degrees, minutes

and seconds, and never in hours, minutes and seconds, like the right

ascension. In Fig. 12 T J' is the longitude of the star S. Right ascension

and declination on the celestial sphere correspond to longitude and
latitude on the terrestrial sphere. Longitude and latitude on the celes-

tial sphere are not used as much as right ascension and declination, and
in this work reference to these co-ordinates is necessary only on a few

occasions.

The Right Ascension of a Star is the Sidereal Time of its Transit

This important relation can be very easily proved by using the globe.

Suppose the R.A. of a star is l
h or 15° (we are not concerned with its

declination at the present) and the globe is rotated until the star is on
the meridian. It will be seen that 15° is on the meridian and we have
shown that a sidereal clock reads (P m s when the first point of Aries

is on the meridian, and l
h (15°) when the first point of Aries is 15° west

of the meridian. Hence when the star is on the meridian the first point

of Aries is 1 5° west of the meridian, and the right ascension of the star

(l
h
) is simply the sidereal time of its transit.

Upper and Lower Culmination of a Star

It has been shown that some stars are circumpolar, neither rising

nor setting. When the hour angle of a circumpolar star is zero the star

is said to be in upper transit or upper culmination, and when the hour
angle is 12h the star is said to be in lower culmination. It is easily seen

that in the former case the star is above the pole, and in the latter case

it is below the pole. The upper culmination can take place between the

pole and the zenith, when it is on the north side of the zenith, or it
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may take place on the side of the zenith remote from the pole, when it is

on the south side of the zenith.

Certain formulae are given in most text-books for dealing with

problems connecting a star's declination and meridian altitude with

the latitude of the place. In some cases these formulae are liable to

produce some confusion if adhered to rigorously, and the reader is

advised to work out each case for himself, without necessarily memoriz-

ing formulae, and to check the results, where possible, by using a globe.

Example 1

If the declination of Vega is 38° 44', what is its meridian altitude in

latitude 51° 30' N?
Problems of this nature should be attacked first of all by drawing a

diagram like Fig. 17. In this Z is the zenith, HR is the horizon, which

it is convenient to make parallel to the top and bottom of the sheet of

paper, and P is the north pole of the heavens, the arc RP being 51° 30'.

The equator can be drawn if desired, but as a number of great circles

is liable to lead to confusion it will be better to do without it where

it is possible. Since the declination of Vega is 38° 44', its north polar

distance is 90° - 38° 44' = 51° 16'. Let V be the position of Vega

Fig. 17

Showing how the relation between the latitude of

a place, the declination of a star and its meridian

altitude is determined
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so that PV = 51° 16'. Notice that PZ = 90— <£ = 38° 30', and
therefore J'' lies south of the zenith since PV > PZ.

The meridian altitude is HV, the great circle HPR being the obser-

ver's meridian, and we easily obtain the following relations

:

HV = HP - PV
But HP = HPR - PR= 180°-

Hence HV = 180°- 51° 30'- 51° 16'= 77° 14'.

Instead of expressing the above in this form it is obvious that, since

180° can be written as 90° + 90°, we have

HV - 90°-
<f> + 90°- N.P.D. = colatitude + declination.

The latter form is sometimes used to find a star's meridian altitude,

meridian altitude = colatitude + declination .. (11)

If the declination is south the negative sign is used before the

declination.

It is possible to derive (11) by drawing the equator CC in Fig. 17,

the point C being between H and V.

The arc HC is equal to the arc C'R = 90° - PR = 90° -
<f>,

(because PC = 90°, the pole being always 90° from the equator).

HC = 90° -
<f>,

which is the colatitude of the place. The arc CV is

the declination, and therefore

HV = HC + colatitude + declination.

The use of a general formula like the last one can lead to errors

unless some care is exercised, for which reason a diagram is always a
great advantage.

Example 2

The declination of S Draconis is 67° 34'. What is its altitude when
it is on the meridian of Birmingham,

<f>
= 52° 59' N.?

The N.P.D. is 22° 26' and if D is the position of the star on the

meridian (Fig. 18), DR = DP + PR = 22° 26' + 52° 59' = 75° 25'.

The distance RZ from the horizon to the zenith being always 90°, the

star must lie between the zenith and the pole. If we took the arc HD
as its altitude we should find that this exceeded 90°, which is absurd,

because the altitude of a star can never exceed 90°. The altitude must
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Fig. 18

Showing how the relation established by Fig. 17

requires some modification according to circum-

stances

be reckoned from R to D in this case, and is RP + PD or £ 4- N.P.D.

= 75° 25'. If we had used the expression derived above

meridian altitude = colatitude -I- declination

the result would have been 37° 01' + 67° 34' = 104° 25'. This would

be the length of the arc HD, and to obtain the length of the arc RD,

which is the star's altitude, it is necessary to deduct 104° 35' from 180°,

the result being 75° 25', the same as that previously obtained.

In this example we have dealt with the upper culmination of S

Draconis, and it remains to deal with the problem when the star is in

lower culmination.

Let D' be the position of the star at lower culmination. Its altitude

is RD' and from the diagram

RD' = RP - PD' = <f>- N.P.D.

The N.P.D. remains unaltered and hence

meridian altitude = 52° 59' - 22° 26' = 30° 33'.
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If we add the meridian altitudes of the star at upper and lower

culmination and divide by 2 the result is 52° 59', which is the latitude

of the place. This rule always holds and is easily proved from Fig. 18,

which can be taken to represent the upper and lower culminations of

any star.

RD = RP + PD, RD' = RP - PD', hence by addition

RD + RD' = 2RP = 2 <b

Example 3

What must be the declination of a star which just reaches the horizon

at lower culmination in the latitude of Birmingham?
From Fig. 18, which can be used for this case also,

RD' = RP - PD' =
<f>
- N.P.D.

When the star is on the horizon RD' = 0°, hence in these circum-

stances,

<f>
= N.P.D.

The N.P.D. of the star is, therefore, 52° 59', and hence its decli-

nation is 90° - 52° 59' = 37° 01'. This is the same thing as stating

that the declination of the star must be the same as the colatitude of

the place of observation.

If the star sets at lower culmination the point D' will be below the

horizon HR. Denoting this point by D" it is obvious that PD" > PR,
or N.P.D. > <f>.

Hence, in order that a star should set at lower cul-

mination, its N.P.D. should be greater than the latitude of the place.

Example 4

The decb'nation of a Aquilae (Altair) is 8° 43'. At what latitude in

the northern hemisphere is it just a circumpolar star, and at what
latitudes does it set?

N.P.D. = 81° 17', and hence in latitude 81° 17' Altair just reaches

the horizon. In order that the star should set at lower culmination its

N.P.D., 81° 17', should exceed the latitude of the place. Hence at all

places with latitude less than 81° 17' N. Altair will set. This can be
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verified roughly on the globe by setting it to latitude 81° and noticing

that a star with declination + 9° just skims the horizon when its hour

angle is 12h .

Example 5

What is the meridian altitude of Altair at a place whose latitude is

40° S.?

When dealing with problems involving latitudes and declinations

with different signs, it is always better to take the latitude + whether

it be the northern or southern hemisphere, and to take the declination

+ or - according to whether it is in the same or in a different hemi-

sphere. Hence, in the present case,
<f>
= 40°, 8 = - 8° 43'. We can

take P as the south pole of the heavens and S to be the star, which

is on the side of the equator opposite to P (Fig. 17).

Hence SC = 8° 43'.

Since HC = RC = 90° -
<f>
= 50°,

and HS = HC- SC = 50° - 8° 43' = 41° 17',

the meridian altitude is 41° 17'.

It should be noticed that the star is on the meridian again at 5",

but in this case is it below the horizon by a distance measured by the

arc RS'. In this case RS' = RC + C'S' = 50° + 8° 43' = 58° 43'.

Example 6

The declination of a Canis Majoris (Sirius) is - 16° 38'. (a) What

is its meridian altitude at a place where the latitude is 50° N.? (b) What

is its meridian altitude at a place in latitude 50° S.?

(a) 90° - 50° - 16° 38' = 23° 22'

(b) 90° - 50° + 16° 38' = 56° 38'

Problems Involving Right Ascension

Up to the present we have dealt only with the declinations of stars,

not with their right ascensions, which have not entered into the

problems.

The right ascensions were irrelevant in the various stars considered,
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but now some problems involving right ascension, not declination, will

be dealt with.

Example 7

The R.A. of a Tauri is 4h 32m 46s
. A sidereal clock records the

local sidereal time as 7h 22m 50s. What is the star's hour angle?

Problems of this kind are much better handled by using a globe.

Even if it yields only very rough results it will show the principle

involved.

On the globe mark a star with R.A. 4h 32m 46s
; its declination can

be any size, but it is more convenient to make it small so that the star

is close to the equator. Rotate the globe until 7h 22m 50s
is on the

meridian. The globe now represents the conditions of the celestial

sphere at the moment and it will be noticed that T is 7h 22m 50s west

of the meridian. Of course, accuracy to a minute cannot be obtained

on the globe, but this is immaterial. Remember the definition of the

sidereal time at any instant. It is the number of sidereal hours, minutes
and seconds that have elapsed since the preceding transit of T, and
obviously the conditions are fulfilled by setting the globe with 7b 22m 56s

on the meridian. The star is west of the meridian and hence its hour
angle lies between h and I2h

. You can place the star on the equator
if you wish, because the great circle through the pole and the star will

intersect the equator at 4h 32m 46s wherever the star may be. Deducting
4h 32ni 46s from 7h 22<n 50s

, the arc S T is found to be 2h 50m 04s
, if S is

the position of the star on the equator or if it is the foot of the perpen-

dicular through the star to the equator. This arc is the same as the

spherical angle SP T and is the hour angle of the star. Expressing the

hour angle in degrees, minutes and seconds, we proceed as follows

:

2h .. .. 30° 00' 00"

50m .. .. 12

4s
.. ..

H.A. . . 42

From the above example we can generalize about the relation

between R.A. and hour angle. This relation is

H.A. of a star = local sideral time - star's R.A.

or H.A. of a star + star's R.A. = local sideral time . . (12)

A general proof of (12) appears on p. 83.

30 00

01 00

31 00
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What is the H.A. of a Tauri if the local sidereal time is 2h 10m 15 s ?

In this case it is impossible to deduct the star's R.A. from the local

sidereal time, so we add 24h to the latter, and the computation is as

follows

:

local sidereal time 26h 10m 15s

star's R.A. .. 4 32 46

H.A. of star .. 21 37 29

Since the H.A. exceeds 12h the star's azimuth is east, a result which

can be easily checked on a globe.

21 h

37m

29s

H.A. of star

315
f

9

324

00'

15

7

22

00"

00

15

15

Local Sidereal Time

Local sidereal time has been referred to in all cases and this is the

time that would be shown by a sidereal clock at the place with which

we are dealing. Nothing has been said about the longitude of the place

because this is immaterial so long as the local sidereal time is given. The

Astronomical Ephemeris supplies the sidereal time of the Meridian of

Greenwich for each day of the year for h U.T., and the sidereal time

for any other hour can be computed from this by a method which will

be described later. The problem confronting us at the moment is that a

sidereal clock at any place, say Greenwich, does not record the same

sidereal time as another sidereal clock somewhere else, say at Lenin-

grad, and it is necessary to have some means for converting the sidereal

time at one place into that at another place.

The celestial sphere revolves through 360° in 24 sidereal hours or

through 15° in one sidereal hour, and hence if a sidereal clock at Green-

wich shows that the sidereal time is 10h a sidereal clock at a place 15°

east of Greenwich will indicate ll
h and at a place 15° west of Green-

wich it will read 9h . This is obvious from the fact that the transit of T
occurred at the place 15° east of Greenwich l

h before it took place at

Greenwich, and it occurred at the place 15° west of Greenwich l
h after

it took place at Greenwich. Hence, to obtain the sidereal time of a

place east of Greenwich it is only necessary to add the longitude of the
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place to the Greenwich sidereal time, and to obtain the sidereal time of
a place west of Greenwich the longitude must be deducted from the

Greenwich sidereal time. Longitudes east of Greenwich are reckoned -
and those west of Greenwich are reckoned +, and hence the following
rule can be applied in all cases, A denoting the longitude of the place

under consideration

:

local sideral time = Greenwich sidereal time - A . . . . (13)

Example 9

The sidereal time at Greenwich is 4h 12m 16s
. What is the sidereal

time at (1) Pulkovo, A = - 2h 01 ra 18s57; (b) U.S. Naval Observatory,

Washington, A = + 5h 05m 15?78?

(a) Sidereal time at Greenwich

Longitude of Pulkovo

Sidereal time at Pulkovo

(b) Sidereal time at Greenwich

Longitude of Washington

Sidereal time at Washington

Notice in (b) that 24h is added on to the Greenwich sidereal time
as otherwise the longitude of Washington could not be deducted from
it (see also Ex. 8).

If the sidereal time at any place other than Greenwich is given the

same method enables us to convert it into the sidereal time at Green-
wich. In this case the formula is

Greenwich sidereal time = local sidereal time + A . . (14)

Example 10

4" 12m 16*00

.. -2 01 18 57

6 13 34-57

4 12 16 00

.. +5 08 15-78

.. 23 04 00-22

The longitude of Urania Observatory, Vienna, is - l
h 05m 33

s
48,

and the sidereal time there is 15h 21 m 14
s
35. What is the hour angle

of a Bootis (Arcturus) at Greenwich at that time, if the R.A of a Bootis
is 14h 13m 07^54.

By equation (14)

Local sidereal time .. .. 15h 21 m 14
s
35

Longitude of Vienna .

.

-

1

05 33-48

Greenwich sidereal time .. 14 15 40-87
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Local sidereal time at

Greenwich .. ..14 15 40-87

Star's R.A. .. .. 14 13 07-54

H.A. of star 2 33-33 (see Ex. 7)

In the problems which follow, the declination of a star is given to

the nearest minute of arc, which is sufficiently accurate for the present

purpose. Readers are strongly advised to draw diagrams and not to

depend entirely on formulae ; by doing so they will gain a much better

knowledge of the subject than can be acquired by merely memorizing

formulae.

Problems

1. An observer is in latitude 38° 42' N. and observes a star in his

zenith. What is the declination of the star?

2. At the equinoxes the sun's declination is zero, and at the summer

and winter solstices his declination is +23° 27' and -23° 27' respec-

tively. What is the sun's meridian altitudes on these four occasions at a

place in latitude 53° N.?

3. On June 1 the sun's declination is approximately +22°. What is

the lowest latitude at which you would just be able to see the sun all

the night on this date?

4. The altitudes of a star at upper and lower culmination arc

observed to be 77° 18' and 17° 12' respectively. What is the latitude of

the place of observation?

5. The declination of « Canis Majoris is -28° 54'. At what latitude

would it appear on the horizon at the time of its transit?

6. The declination of Centauri is -60° 06'. Find its meridian

altitude at a place whose latitude is 70° S. What is its meridian altitude

if the observer is in latitude 20° N.?

7. If the meridian altitude of the sun is 10° on the shortest day of the

year, what is the latitude of the place? Note that on the shortest day of

the year the sun's declination is -23° 27', and apply equation (11).

8. A sidereal clock at Greenwich records the sidereal time as

22h 10m 34s
78. What is the sidereal time at Riverview Observatory,

Sydney, New South Wales, A = - 10
h 04m 38s

?
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9. In Exercise 8 what is the hour angle of Sirius (R.A. = 6h 43m) at

Sydney?

10. If the hour angle of a star is 2h 51 m 02s and the local sidereal

time is 4h 17m 20s
, find the star's right ascension.

11. Show by setting the globe that the sun rises at 6h and sets at 18h

on March 21 and September 23 whatever the latitude of the place may
be.

THREE

MATHEMATICAL TABLES
AND ASTRONOMICAL COMPUTING

This is an appropriate point at which to introduce the reader to the

tools of the mathematical astronomer—his books of tables—and to

say something about the qualities required by the worker in this

branch of astronomy.

One great advantage possessed by the mathematical astronomer

and the computer is that, seated at their desks, they are completely

independent of the weather. Cloudy skies never worry them. The

mathematical astronomer can have a very profound knowledge of his

subject, but the computer requires different qualities. Without neces-

sarily being able to derive all the formulae he uses he must like working

with figures and have considerable patience in dealing with them. He

must also be familiar with the use of logarithms and trigonometrical

tables. A slide rule is useful for some calculations, but within the scope

of the present volume there is no need for a computing machine. This

chapter is designed to help the reader to gain some experience beyond

what he has already learned at school. If he has a desk calculator at his

disposal, he should find it a simple matter to adapt the formulae to its

use.

The Astronomical Ephemeris

In 1767 the Astronomer Royal, Nevil Maskelyne, issued the first

Nautical Almanac (abbreviated to N.A.), which contained tables of

lunar distances from selected stars, a list of clock stars whose places had

been carefully determined, and other tables required in navigation. It

was also useful to the astronomer and in time the emphasis shifted to his

needs. The volume continued to increase in size and scope beyond the

immediate needs of the navigator, so that since 1914 the parts more

necessary for him have been issued separately as The Nautical Almanac

Abridged for the Use of Seamen. More recently, as a result of the

57
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development of flying, The Air Almanac has been provided for use in air

navigation, and there is also a Star Almanacfor Land Surveyors.

Then came the time when, in the opinion of astronomers, The

Nautical Almanac and Astronomical Ephemeris (the full title originally

given to it by Maskelyne) should be devoted entirely to their needs.

One important change, making it still less suitable for sea and air

navigation and more of an astronomer's volume, has been the intro-

duction of Ephemeris Time (see page 86). The opportunity has also

been taken to unify it with its counterpart, The American Ephemeris,

and beginning with the 1960 Edition the two contain the same

material but are published separately in Great Britain and the United

States. The British Edition is called The Astronomical Ephemeris

(abbreviated to A.E.). The other almanacs mentioned continue to

be issued for land, sea and air surveying and navigation with their

contents unchanged.

The Astronomical Ephemeris, which is indispensable for the serious

astronomer, contains tables giving the position of the sun on the

celestial sphere, its distance from the earth, semi-diameter, horizontal

equatorial co-ordinates, the equation of time, etc., for h
, Ephemeris

Time on every day of the year.

The moon's apparent longitude and latitude, semi-diameter, hori-

zontal parallax, etc., are given for every twelve hours, and its apparent

Right Ascension and Declination for every hour.

We also find in it the position, semi-diameter, distance from the

earth, etc., of the eight major planets, as well as the position, distance,

horizontal parallax, etc., of the four chief minor planets for every day.

The mean places of 1078 of the brightest stars for the beginning of

the year are given, together with the tables required to find their

positions at any time during the year.

There are tables required by those astronomers who carry out

observations on the physical characteristics of the sun, moon and

planets, tables of eclipses of the sun and moon, and tables of sunrise,

sunset, moonrise and moonset.

Positions of the planetary satellites are also provided, those of

Jupiter's being particularly useful to the amateur astronomer. Not
only are the times of the various phenomena noted but diagrams of the

configuration of the planet and its four large satellites make it very

easy for the observer using a small telescope to distinguish them one

from another at any time.
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The chief dates of interest in the religious calendars are given and

there is a very full Diary of astronomical phenomena. The names of the

chief observatories all over the world are also listed with the con-

stants necessary for reducing observations made at them, and finally

there are about fifty pages explaining the use of the various tables.

Four-figure Mathematical Tables

Two other books are essential—a book of four-figure mathematical

tables and a copy of Barlow's Tables of Squares, etc. The latter is useful

in finding various functions of the integers up to 12,500, for when
dealing with four-figure numbers the function can be read off without

interpolation, and much time is saved.

There are several good mathematical tables on the market, but the

reader is recommended to get those which have 'high' and 'low' dots

and positive characteristics in the logarithmic trigonometrical functions,

such as Milne-Thomson and Comrie's Standard Four-Figure Mathe-

matical Tables (Macmillan and Co., Ltd.).

Increased accuracy is obtained when rounding off the tabulated

values to four decimals by the use of the dots referred to, a 'high' dot

indicating on the average +3 in the fifth decimal place and a 'low'

dot —3. The dots are of course added and subtracted algebraically: thus

00532' + 1-4316. + 0063 V = 1-5479'

An example will show how increased accuracy may be obtained by

using them.

Example 1

Find by logarithms the value of

1-3923 x yf-505 x 1-341 x 204

(i) Neglecting the dots we have

log 1-392 = 01436 3 log 1-392 = 0-4308

log 1-505 = 01775 \ log 1-505 = 00888

log 1-341 = 0-1 274

log 2-04 = 0-3096

Sum = 0-9566

antilog of 0-9566 = 9049
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(ii) Taking account of the dots

log 1-392 = 0-1436" 3 log 1-392 = 0-4309

log 1-505 = 0-1775- i log 1-505 = 00888.

log 1-341 = 0-1274-

log 204 = 0-3096-

Sum = 0-9567-

antilog of 0-9567- = 9052.

By direct multiplication to five decimal places on a machine the

answer is 905 195, showing that a more accurate result is found by

taking the dots into account.

Logarithms with Positive Characteristics

When working with the logarithms of trigonometrical functions the

reader should also learn to use positive characteristics. To save con-

fusion with regard to the signs of characteristics the number 10 is

always added to them when they are negative. Thus tan 16° 30' =
0-2962 but log tan 16° 30' is entered in the tables as 9-4716, not as

T-4716. On the other hand, tan 57° 40' = 1-5798 and log tan 57° 40' is

entered as 01 986.

When carrying out operations in which the trigonometrical func-

tions are involved, the reader must be careful to note how many times,

in effect, 10 has been added in, and before taking out the answer from

the tables he must subtract the necessary multiple of 10 from the total.

In practice it is better to work throughout with positive characteristics,

adding 10 when necessary to all logarithms with negative character-

istics, whether of trigonometrical functions or not, and leaving the answer

also with a positive characteristic. Two examples will make this clear.

Example 2

Evaluate tan 40° 30' x cos 30° 21' x -0413

log tan 40° 30' = 9-9315 ( = -
1 + 10 + 0-9315)

log cos 30° 21' = 9-9360 (
= - 1 + 10 + 0-9360)

log 0413 = 8-6160. ( = - 2 + 10 4- 0-6160.)

Sum = 28-4835. ( = - 4 + 30 + 2-4835.)

- 20 ( = - 30 + 10)

= 8-4835.

antilog 8-4835. = antilog 2-4835. = -0304
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Example 3

Evaluate tan 40° 30' - cos 30J 21'

log tan 40° 30' = 9-9315 ( = - 1 + 10 + 0-9315)

log cos 30° 21' = 9-9360 ( = - 1 4- 10 + 0-9360)

Difference = - 1 + 0-9955 ( = + - 1 + 9955)

+ 10 ( + 10)

= 9-9955

antilog 9-9955 - antilog 1-9955 = 0-9897

The reader will quickly learn to add and subtract the necessary

multiples of 10 mentally without difficulty. If need be he can check his

results roughly without using logs.

Logarithms of Negative Numbers

In astronomical work we have often to deal with the logarithms of

negative numbers such as the sines of angles between 180° and 360°.

They are written with a small // after them thus

:

log cos 105° = 9-4130
n

The reader must remember that when the logarithms of two negative

numbers are added together (that is, when two negative numbers are

multiplied together) the result is positive. In other words two n's cancel

one another out, e.g.

log cos 105° = 9-41 30n

log ( - 2-49) = 3962n

log ( - 2-49 cos 105°) = 9-8092

- 2-49 cos 105° = 0-6445.

Addition and Subtraction Logarithms

A further saving in time and work can occasionally be gained by

using addition and subtraction logarithms. These are designed to find

the logarithm of the sum or difference of two positive numbers whose

logarithms are known. Thus, when a is greater than b

log (a + b) = log a + the addition log corresponding to

log a — log b.

log (a — b) = log a — the subtraction log corresponding to

log a — log b.
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Addition and subtraction logarithms are to be found in Milne-

Thomson and Comrie's Tables. The method of using them is illus-

trated in Examples 5 and 6 on pages 73 and 74.

Formulae Suitable for Logarithmic Work

In working with logarithms formulae should be expressed in such a

form that the operations to be carried out are, as far as possible,

multiplication and division. If an expression consists of sums and

differences of squares and multiples of various quantities, more time

than necessary is occupied in looking up tables.

To take a simple example, suppose we are given the three sides of a

triangle and are required to find its angles, we could use the formula

b2 + c
2 - a2

cos A =
2bc

This involves looking up the logs of three numbers, multiplying

each by two, finding three antilogs, adding two of the squares together

and subtracting the third from the total. We have next to find the log

of this new number which is the numerator of the expression, add to-

gether the logs of the three numbers forming the denominator (always

assuming we carry the value of log 2 in our heads), subtract this sum

from the log of the numerator, and finally refer to a table of log cosines

to find the angle—a total of eight searches in various tables, most of

them involving mental interpolation, and seven operations of addition,

subtraction and multiplication. Even so we have found only one angle,

and by the time we have found all three we shall have carried out

twelve searches and fifteen operations.

There is, however, another formula expressing the angle of a tri-

angle in terms of its sides, namely

A l(s -b) (s- c)
tan — = /' —

2 *J s (s - a)

where s is half the sum of the sides. Using it we first find s = | (a +
b + c) and subtract a, b and c in turn from s. Then we find the logs of

the four numbers, add together the two forming the numerator, and

take from this total the sum of the two forming the denominator,

divide the result by two to find log tan A/2, look up the tables to find

Afl and finally multiply by two—a total of five searches and ten

operations. To find all three angles involves us in only seven searches
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and fifteen operations, five of which are simple multiplication or

division by two.

As it is searching tables which takes time, the second method is

very much quicker. In a great deal of astronomical work, for example

in computing the perturbations of the planets on comets, the same
equation containing complicated expressions has to be numerically

solved again and again, so that in the end the time saved by using

appropriate formulae is very considerable.

Errors in Computing

Some errors in computing are unavoidable. They include the round-

ing-off errors which have already been referred to in the discussion of

high and low dots. The reader need not worry about them, so long as

he understands that the last figure in his results may be in error by one

or even two units. As has been shown, even in extreme cases this error

can be kept down to one unit if the dots are used.

Other errors arise from the use of an insufficient number of terms in

the formulae provided, as will be obvious from the following example.

Example 4

Find the value of 1/(1 — x) to three decimal places when x = I, from
the equation

1/(1 - x) = 1 + x + x2 + x3 + ...

Here we have x = -25, x2 = -0625, x3 = 015625, x4 = 00390625,

and x5 = 0009765625, from which 1/(1 - x) = 1-333 correct to

three decimal places. The reader can see that if he had stopped at the

fifth term his answer would have been 1-332, and that terms beyond
the sixth can be neglected. In other words, such errors are under his

control and he can avoid them through care and increasing familiarity

with the formulae he uses.

The most troublesome errors to deal with are the actual mistakes

made for various reasons by all computers. Over-confidence in putting

down constants such as rr, log 2, etc., from memory, and strangely enough
simple mental division by two or four, can cause errors which are diffi-

cult to trace because the computer, in attempting to find them, may
continue to repeat the original mistake. Again, figures taken out from
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sin cos tan

cosec sec cot

plus plus plus

plus minus minus

minus minus plus

minus plus minus

tables may be copied down wrong. The only way to minimize this risk

is to take them out and write them down in short groups of three or

four. Particular care should be taken with signs. This is important in

astronomical work, where angles are not confined to the first quadrant

(0° to 90°) but may be of any size. The following easily memorized

table of signs of the trigonometrical functions will help the reader.

Quadrant

First (0° to 90°)

Second (90° to 180°)

Third (180° to 270°)

Fourth (270° to 360°)

Laying Out and Checking Computations

It is most important for the reader to arrange his work neatly and in

an orderly fashion, so that he can always be sure what each quantity or

set of figures represents. If for example it is required to find a certain

quantity for six observations, the working sheet should be divided

vertically into seven columns and the various steps of the formula

giving the quantity set out in order vertically down the left-hand

column. The other six are numbered consecutively in order of time and

the computations worked across the page. In this way the run of the

figures helps to discover errors, which can be corrected before they are

used to compute later steps.

If even a small mistake is made in a long computation its cumula-

tive effect may be serious. So to save time and effort the reader should

check his work frequently. He may do so by repeating any part of it

where he feels he has gone wrong. It is much better to have an

independent check provided from a different formula, and wherever

possible this should be devised or provided. Some operations, such as

the numerical integrations in certain cometary computations where

difference tables are formed, are more or less self-checking so that when

a slip is made it is fairly easy to trace it. Finally, when mistakes do

occur, the more familiar the reader is with his formulae, the easier it

will be for him to discover and correct them.

Mathematical computing is a considerable mental strain, so that

the reader should not engage in it for more than two or three hours at a

time. If he feels tired or if his attention begins to wander, he should at
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once stop and turn his attention to something else. Otherwise he is

almost certain to make mistakes and waste his time and labour.

Problems

1. The sides of a triangle are 8-3 inches, 13-4 inches and 17-6

inches long. Using logs, find its angles by means of the formula

b2 + c2 - a%

cos A =
2bc

Check your results by means of the formula

A
tan — =

2

l{s -b){s- c)

s(s - a)

and also by A + B + C = 180°, and compare the two methods for

speed and convenience.

2. If
<f>
= 52°, z = 43° and A = 20° find 8 by means of the formula

sin S m sin
<f>
cos z + cos

<f>
sin z cos A

Check your result by using addition logs.

3. Find e, the natural base of logarithms, correct to four places of

decimals from the series

e= 1 + 1 + *! + V- + J! + • • • •

How many terms of the series must be used?

4. In order to find the position of a comet in the sky, certain

quantities are required, which are derived from o> the argument of the

comet's perihelion, ft the longitude of its ascending node and i the

inclination of its plane to the ecliptic. One of these quantities is

Px
= cos wcos ^ — sin w sin ft cos i

Find Px for Encke's Comet in 1944 August, when o> = 185° 11', ft =

334° 44' and i = 12° 20'. Check your result from the alternative

expression

Px = HI + cos cos (ft + o>) + Hi - cos cos (ft ~ w)

and say which you consider to be the more suitable for logarithmic

work.
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ELEMENTARY FORMULAE
IN SPHERICAL ASTRONOMY

Up to the present the calculations have not involved any knowledge

of spherical trigonometry, but a working acquaintance with this subject

is necessary before proceeding to certain computations which are in

constant use in astronomy. A few words follow on spherical triangles

and on some of the formulae frequently required.

A spherical triangle is the figure on the surface of a sphere bounded

by three arcs of great circles. A small circle cannot form the side of a

spherical triangle, and when it becomes necessary to deal with small

circles the method of treatment differs completely from that employed

in the case of great circles. See equation (1) for a case of a small circle

and the relation between its arc and that of a great circle.

If O is the centre of a sphere (Fig. 19) and OAB, OAC, OBC are

three planes through O intersecting the surface of the sphere in the arcs

AB, AC and BC respectively, ABC is a spherical triangle. The angles of

this spherical triangle are the inclinations of the three planes ; thus the

angle A is the inclination of the planes OAC and OAB; the angle B is the

inclination of the planes OBC and OBA ; and the angle C is the in-

clination of the planes OCB and OCA. The sides of the spherical

triangle are arcs of great circles and hence in dealing with spherical

triangles we are concerned primarily with angles and arcs, not with

lengths as in the case of plane triangles. Of course, the lengths of the arcs

can be determined when the radius of the sphere is known.

The following elementary formulae are important and proofs will be

found in any treatise on spherical trigonometry. Other formulae will be

given as required, but those numbered (a), (b) and (c) are all that are

necessary as a basis for the present chapter.

Let ABC be a spherical triangle, A, B and C denoting the angles at

A, B and C, and a, b, c denoting the sides opposite each of these angles.
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(a) cos a = cos b cos c + sin b sin c cos A
(b) sin A/sin a = sin 5/sin b = sin C/sin c

(c) cos A = (cos a — cos b cos c)/sin b sin c . . (15)

This last formula is derived from (a) and so is not an independent

formula.

It is possible to write other equations of the same form as (a), to

give cos b and cos c, thus:

cos b = cos c cos a + sin c sin a cos B
cos c = cos a cos b + sin a sin b cos C

It will be seen that (a) requires that two sides and the included angle

be given, from which it is possible to calculate the third side, while

Fig. 19

A spherical triangle

(b) requires that two angles and an opposite side or two sides and an

opposite angle be given, from which the other opposite side or the other

opposite angle can be found.

Transformation of Co-ordinates

The first problem that will be solved by the aid of these formulae is

connected with the transformation from the equatorial system of

co-ordinates—R.A. and Dec.—to the horizontal system—altitude and

azimuth. Instead of the declination the N.P.D. or S.P.D. will sometimes

be used, and the zenith distance will frequently take the place of the

altitude.

Problem 1. Given the latitude cf>, the R.A. a, the declination 8, of

a star, and the local sidereal time 6, find its azimuth A and zenith

distance z.
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Z

P.

Fig. 20

Used to find the formulae for the transformation
of a stars right ascension and declination into

its azimuth and altitude

In Fig. 20 let P be the pole, CC the equator, T the First Point of
Aries, Z the zenith, HR the horizon, HZR the meridian and S a star

which we will suppose is on the west side of the meridian. The arc

PS meets the equator in J and hence the star's right ascension is the arc

TJ. The hour angle ZPS is the difference between the local sidereal

time 9 and the R.A. of the star, so that h = 6 — a.

In the triangle ZPS we have

SP = N.P.D. = 90° - 8

ZP = 90° - lat. = 90° -
<f>

Angle ZPS = hour angle of the star = h

By (15a) we have

cos ZS = cos ZP cos SP + sin ZP sin SP cos h

But

cos ZP = cos (90° -
<f>)
= sin <£, cos SP = cos (90° - 8) = sin 8

sin ZP = sin (90° - <j>) = cos 0, sin SP = sin (90° - S) = cos 8

Denoting ZS by z, the above reduces to

cos z = sin
(f>

sin 8 + cos <£ cos S cos h (16)
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By (15b) we have

sin PZS/sln PS = sin ZPS/sin ZS

But PZS is the azimuth A of the star, and the above reduces to

sin y4/cos 8 = sin ///sin z,

or sin A = sin h cos 8/sin z (If)

While (16) and (17) determine the values of cos z and sin A, (17)

does not determine the azimuth A uniquely because the angle A might

lie in the first or second quadrant, and it is necessary to deal with this

ambiguity.

From (15c)

cos PZS = (cos PS - cos PZ cos Z5)/sin PZ sin ZS

Hence

cos A = (sin 8 - sin <f>
cos z)/sin z cos tj> .. .. (18)

From the manner of reckoning A, i.e. from the north eastward

up to 180°, or westward up to 180°, it is obvious that A must lie in the

first or second quadrant in all cases. To be consistent it will be better

to make h also lie in the first or second quadrant, and this can be done

as follows:

When h exceeds 12h deduct it from 24h and use the formulae just

given, noticing that in this case the azimuth must be east. When h is

less than 12h the azimuth is west. It must be remembered, however,

that the azimuth is not necessarily in the same quadrant as h, and hence

cos A must be computed to decide on the quadrant. It will be better

in most cases to compute sin A as well to check the results. There is no

ambiguity about z, which can always be determined from cos z and

z never exceeds 180°.

The use of the formulae will be illustrated by a few examples.

Example 1

Let
<f>

= 51° 30' N. and let the co-ordinates of a star be a = 21 h 40m ,

8 = + 25° 12', and let 6, the local sidereal time, be l
h 52m . Find z

and A, the star's zenith distance and azimuth.

h = 25h 52m — 21h 40ra = 4h 12m (add 24h to make the deduction

of a possible). 4h 12m = 63°.
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Referring to (16), let X = sin
<f>

sin S, and Y = cos <j> cos S cos h.

Hence

cos z = X + Y
log sin

<f>
9-8935"

log sin 8 9-6292

log*
X

9-5227'

0-3332

log cos
<f>

9-7941

'

log cos 8 9-9566.

log cos h 9-6570'

log Y 9-4077'

Y 0-2557

cos z = * + 7 = 0-5889.

z = 53° 55'

Using (17)

log cos 8 9-9566.

log sin h 9-9499.

Sum 9-9065^

log sin z 9-9075

Difference = log sin A 9-9990.

A is either 86° 02' or (180° - 86° 02') = 93°

From (18), cos A = (P - Q)/R, where

P = sin 8, Q = sin <£ cos z, R = sin z cos ^

58'

P = 04258 log sin
<f>

log cos z

log<2

Q
P-Q
log sin z

log cos

logi?

log (P - Q)
log J?

log cos A
A

9-8935'

9-7701.

9-6636

0-4609.

-00351

9-9075

9-7941-

9-7016-

8-5453n
9-7016-

8-8437n
180° - 86° = 94 c

This example shows that if an angle is close to 90° greater accuracy
is obtained by computing its value from its cosine. When an angle
is small its value should be computed from its sine. The reason is that
the sine of an angle changes slowly when it is close to 90° and its cosine
changes slowly when it is near 0° or 180°. In the present case an error

of 2' occurs from using the sine to determine the value of the angle.
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The use of tables without high and low dots increases the error to 6'.

This shows that using tables with the dots leads to more accurate

results. While it was unnecessary to compute sin A, yet it is advisable

to do so as a check on the working.

It will be noticed in the above example that (P - Q) and cos A are

negative: to denote this the letter n is put after them (see page 61).

Hence as cos A is negative A is in the second quadrant. The azimuth is

therefore 94° W.

Example 2

With the same data except the sidereal time, find A and z if 6 is

5h 28m .

h = 29h 28m - 21 h 40m = 7
h 48m = 117°.

Since 117° = 180° - 63°, the computation is the same as that just

given except that cos h is -. Hence cos
<f>

cos 8 cos h is -0-2557, and

X + Y = 00775. so that z = 85° 33'. The remainder of the com-

putation is as follows:

log cos 8 9-9566.

log sin h 9-9499.

log cos 8 sin h 9-9065.

log sin z 9-9987

log sin A 9-9078.

A 53° 58' or (180° - 53° 58')

log sin <j>
9-8935'

log cos z 8-8892

logQ 8-7827

Q 0-0606-

P-Q 0-3652

log sin z 9-9987

log cos
<f>

9-7941'

log/? 9-7928-

log (P - 9-5625

logi? 9-7928-

log cos A 9-7697.

A 53° 57'

Since cos A is positive A must be in the first quadrant. Because h i

less than 12h the azimuth is 53° 57' W
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Example 3

Now let 6 be 13 h 52m so that h = 13 h 52m - 21 h 40m = 16h 12m .

Since /; is greater than 12 we deduct 16 h 12m from 24h and obtain 7h 48m .

This case is then dealt with in the same way as the last example, and
z = 85° 33', A = 53° 58' E. The azimuth is east because h exceeds 12h .

Example 4

In the final example we shall assume 6 = 17h 28m so that h = 19h 48m.

Deducting this from 24h we obtain 4h 12m and the case is similar to

the first example. The zenith distance of the star is, therefore, 53° 55',

and its azimuth is 94° E.

All cases of transformation of a star's equatorial co-ordinates to

horizontal co-ordinates can be dealt with in the same way as in the

above four examples.

If we are given the latitude, azimuth and zenith distance, we can

find the hour angle and the declination. The method of computation

is easily seen from Fig. 20.

Using (15a), in the triangle ZPS we have

cos PS = cos PZ cos ZS + sin PZ sin ZS cos PZS
from which

sin 8 = sin
<f>
cos z + cos <j> sin z cos A . . (19)

To find h we can use (15c)

cos SPZ = (cos ZS - PZ cos PS)/sin PZ sin PS

or

cos h = (cos z — sin ^ sin 8)/cos </> cos 8

These formulae will be used to check the results just obtained.

(20)

Example 5

Let
<f>
= 51° 30' N., A = 94° W., z = 53° 55'.

log sin
<f>

9-8935- log cos
<f>

9-7941'

log cos z 9-7701 log sin z 9-9075
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log sin
<f>
cos z 9-6636' log cos A 8-8436n

sin
<f>
cos z 0-4609 log cos <j> sin z cos A 8-5452',

cos
<f>

sin z cos A —00351

sin 8 = 0-4609 - 00351 = 0-4258

8 = 25° 12'

To find h we have

cos z = 0-5890. log sin
<f>

log sin 8

log sin
<f>

sin 8

sin
<f>

sin 8

cos z — sin $ sin 8 = 0-2558.

9-7941' log 0-2558.log cos
<f>

log cos 8

9-8935'

9-6292

9-5227'

0-3332.

9-4079

9-9566.

log cos
(f>
cos 8 9-7507

log cos <j> cos 8 9-7507

log cos h 9-6572

h 62° 59'

This is 1
' out, the value previously adopted being 63°, but it is easy

to lose a unit or two in the fourth place in such computations. As the

star is west the hour angle is taken to be 63°.

Some of the above work may be shortened by using subtraction

logarithms. Thus we have

log a = log sin
<f>
cos z = 9-6636'

log b = log cos
(f>

sin z cos A = 8-5452'

log a- tog b =11184
Subtraction log correspond-

ing to 1 • 1 1 84 (because b is

negative) = 00344"

log (a - b) = log sin 8 = 9-6636'- 0-0344'= 9-6292

8 = 25° 12'

Example 6

Suppose that z is 85° 33' and A is 53° 58' E., find 8 and h.

log sin 9-8935' log cos
<f>

9-7941'

log cos z 8-8897 log sin z 9-9987

log sin
<f>
cos z 8-7833' log cos A 9-7696.

sin
<f>
cos z 00607' log cos ^ sin z cos A 9-5624

cos sin z cos A 0-3651

sin 8 = 0-3651 + 0-0607' = 0-4258'

S = 25° 12'
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log sin
<f>

log sin 8

log sin $ sin 8

sin
<f>

sin 8

log cos
<f>

log cos 8

9-8935*

9-6292*

9-5227*

0-3332

9-7941*

9-9566

cos z 00776

sin
<f>

sin 8 0-3332

cos z — sin
<f>

sin 8 —0-2556

log cos
<f>

cos 8 9-7507

log (cos z — sin
<f>

sin 8) 9-4075*
n

log cos
<f>
cos 8 9-7507

log cos h 9-6568.n

Since log cos h is negative it follows that h can be 180° ± 63° 1' (a

discrepancy of 1
' occurs in comparison with the earlier computation),

but as the azimuth is east h must be greater than 12h or 180°, hence

h = 243° V = 16h 12m .

As in Example 5, some of the working can be shortened by using

addition logarithms. Thus we have

log a = log cos
<f>

sin z cos A = 9-5624

log b = log sin $ cos z = 8-7833*

log a- log b =0-7791.

Addition log corresponding to

0-7791. = 00668*

log (a + b) = log sin 8 = 9-5624 - 00668* = 9-6292.

8 = 25° 12'

The R.A. of the star can be found when the local sidereal time is

known. Thus, suppose in the last case that the local sidereal time is

13 h 52m , then from the expression

H.A. of a star = local sidereal time — star's R.A.

we have

16h 12m = 13 h 52m - star's R.A.,

or star's R.A. - 13 h 52ra - 16h 12m = 21 h 40m .

Some of the problems previously considered for the particular case

when a star is on the meridian can be solved by (16). Thus, suppose we
want to find the conditions that a star should be on the horizon at lower

culmination, it is only necessary to make h = 12h or 180° in (16), and

z = 90°. Since cos 180° = - 1 and cos 90° = 0, (16) yields

sin 9S sin S — cos
<f>
cos 8 = 0,

or cos
(<f> + 8) = 0.

Hence + 8 = 90°.

Since 8 = 90° - N.P.D., it follows that

<t>
= N.P.D.,

a result previously obtained.

00762

9-5118.

9-5880. n

12* ± 4* 28"
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Calculation of the Times of Rising and Setting of a Heavenly Body

An important application of the formulae just derived is to deter-

mine the times of rising and setting of a heavenly body. This admits of a

simple solution, since z = 90° when a body is on the horizon, and (16)

becomes

sin
(f>

sin 8 + cos
<f>
cos 8 cos h = 0, from which

cos h = — tan
<f>
tan 8 (21)

The use of this formula will be illustrated by a few examples.

Example 7

The declination of the sun is + 18° about May 12 and August 21,

and the latitude of the place is 50° N. Find the hour angle of the sun at

rising and setting.

log tan <j>

log tan 8

log cos h

h = 180° ± 67° 13' = 12* ± 4* 28"' 52\

Both values satisfy the negative result for cos h, and as the sun rises

in the east and sets in the west, the hour angle in the former case

exceeds 12h and in the latter case is less than 12h . Hence the hour angle

at rising is 16h 28m 52s
, and at setting it is 7h 31 m 08s

.

Example 8

If the declination of the sun is —18°, find the hour angle of the

rising and setting of the sun at a place in latitude 50° N.

The computation is the same, but since tan 8 is — in this case and

the negative sign appears before the terms on the right-hand side of

(21), cos h is positive. Hence h = 67° 13' or 360° - 67° 13', either

value of h giving a positive result for cos h. In this case, therefore, the

hour angle of rising is 24h - 4h 28m 52s = 19h 31m 08s
, and the hour

angle of setting is 4h 28m 52s
.

Azimuth of a Heavenly Body at Times of Rising and Setting

The azimuth of a body at rising or setting is easily found by making

z = 90° in (18), which then becomes

cos A = sin S/cos
<f>

. . . . . . (22)
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Example 9

Find the azimuth of the sun at rising and setting on June 21 and

December 23 when his declination is +23° 27' and —23° 27', taking

the latitude as 51° 30' N.

On June 21 log sin 8 9-5998-

log cos
<f>

9-7941

'

log cos A 9-8057

A 50° 16'

The azimuth is 50° 16' E. at the time of rising and 50° 16' W. at the

time of setting.

On December 23, when the declination of the sun is —23° 27', sin S

is negative and hence log cos A is negative. In this case A = 180° —
50° 16' = 130° 44'. Hence the azimuth at sunrise is 130° 44' E. and at

sunset it is 130°44'W.

The Distance Between any Two Points on the Earth's Surface

The distance between any two points on a great circle was found

previously, in the restricted case where the points were in the same

latitude. It is possible to use (15a) to find the distance between two

points on a great circle connecting them, their latitude being the same.

The following example will show the method for computing the length

of the arc of a great circle drawn through any two places on the earth's

surface.

Example 10

A place is in latitude 50° N. and longitude 60° E., and another place

is in latitude 16° N. and longitude 36° W. Find the great circle distance

between the two places.

The reader should draw for himself a spherical triangle with its

angles at A, B and P the pole, or he may take A and B in Fig. 19 as the

two places and call C the pole. The angle APB is the difference in the

longitudes of A and B and is 60° + 36° = 96°; PA = 90° - 50° =
40°; PB = 90° - 16° = 74°.

By (15a)

cos AB = cos PA cos PB + sin PA sin PB cos APB

Hence

cos AB = cos 40° cos 74° + sin 40° sin 74° cos 96° = X + Y

log cos 40° 9-8843. log sin 40° 9-8081.

log cos 74° 9-4403' log sin 74° 9-9828'

log* 9-3246 log cos 96° 9-0192'
n

X 0-2111 log Y 8-810rn

Y -00646

cos AB = 0-2111 - 0646 = 01465

AB = 81° 35'

Example 1

1

Find the distance between two places A and B, the latitude and

longitude of A being 60° N. and 15° E., those of B being 20° S. and

75° E.

As in Example 10, join P the north pole to A and B by great circles.

Then since the distance from P to the equator is 90° the arc PB is 90°

+ 20° = 110°. The angle APB is 75° - 15° = 60°. The sides of the

spherical triangle APB are 30° and 110° and the included angle is

60°.

log cos 30° 9-9375- log sin 30° 9-6990

log cos 1
10° 9-5341. n log sin 110° 9-9730

log* 9-4716n log cos 60° 9-6990

X -0-2962- log Y
Y

9-3710

0-2350

cos AB = -0-2962- + 0-2350. = -00613
AB = 93

8 31'

Problems

1. What is the local sidereal time when a Geminorum is on the

meridian?

2. Find the hour angle of a Leonis if the local sidereal time is 18h.

3. What is the hour angle at rising and setting of a Virginis in

latitude 50° N.? What is the azimuth of the star in each case?
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4. Find the azimuth and altitude of a Pavonis when the local

sidereal time is 7h 12ra 15s at a place in latitude 40° S. The latitude and
declination are both south; hence both

<f>
and 8 can be taken as positive.

Use (16) to find z and then (18) to find A. Because h = 10h 51m, which

is less than 12h, A must be west. Note that in the southern hemisphere

A is reckoned east and west from the south.

5. What is the azimuth of the sun when rising on November 1 at a

place in latitude 20° S.? The sun's declination on November 1 can be

taken as - 14° 15'. Take
<f>
and 8 with the positive sign and apply (22).

At sunrise the sun's azimuth must be due east and in this case is

reckoned from the south.

6. The azimuth of € Ursae Majoris when it is rising is 30° E. What
is the latitude of the place? In (22) A and 8 are known: solve for </>.

7. If the sun sets at 15h (3 p.m.) on the shortest day of the year in

the northern hemisphere, what is the latitude of the place? In (21) sub-

stitute 45° for h and -23° 27' for 8.

8. At what latitudes would a Lyrae be circumpolar?

9. What is the hour angle of a Tucanae at rising and setting at a

place in latitude 20° S.? What is its azimuth in each case?

10. What are the values of h and A in (9) if the latitude is 20° N.?

11. The latitude and longitude of New York are 40° 43' N. and
74° W., and of Cape Town 33° 56' S. and 18° 28' E. What is the arc

of the great circle between them and what is its length in nautical miles?

See Example 10 for the method of solution.

FIVE

PROBLEMS ARISING FROM THE SUN'S MOTION
AMONGST THE STARS

The earth moves round the sun, completing a revolution in a year,

but the motion is not uniform, and this fact is responsible for certain

problems in the determination of time. The reason for the non-uniform

motion of the earth round the sun is that the curve it describes is not

a circle but an ellipse, the sun being in one focus of the ellipse. Fig. 21

shows an ellipse which can be easily traced out on a piece of paper by

inserting two pins into the paper, passing a loop of string over them,

and then moving a pencil round the paper, its point keeping the string

tight. It is not necessary to deal with the properties of an ellipse at

this stage but a few facts relating to the motions of the planets, including

the earth, will be considered.

Each pin is at a focus of the ellipse described by the point of the

pencil, and it is easily seen that the distances of different points on the

ellipse from a focus vary. The same remark applies to the planets,

all of which move in ellipses round the sun which is in one focus. When
a planet attains its closest approach to the sun (it is then said to be at

perihelion)* its velocity in its orbit is a maximum, and when it attains its

greatest distance from the sun (when it is said to be at aphelion)* its

velocity is a minimum. The distance of the earth from the sun at

perihelion, about January 2 each year, is 91,449,000 miles, and its dis-

tance at aphelion on July 4 is 94,561,000 miles. Hence the earth has a

greater orbital velocity on January 2 than it has on July 4, its velocity

gradually decreasing from perihelion to aphelion.

The orbital motion of the earth round the sun can be represented

by the motion of the sun round the earth, the earth now occupying one

of the foci. This conception is in accordance with the previous hypo-

thesis that the earth is fixed and that the whole celestial sphere is

* The word perihelion is derived from the Greek pert (near) and helios (the sun).

Aphelion is derived from the Greek apo (from) and helios. The words mean 'nearest

the sun' and 'at greatest distance from the sun' respectively.
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revolving round it from east to west. Hence the motion of the sun is not

uniform, and as the sun is used for measuring time in the ordinary

affairs of life, it is necessary to make certain assumptions about his

motion if an accurate record of time is to be kept.

We have seen that the sun apparently moves in the ecliptic, this

apparent motion being actually due to the movement of the earth

round the sun (not to the earth's diurnal rotation). The apparent orbit

Fig. 21

Method for drawing an ellipse

of the sun relative to the earth lies in a plane which is called the plane

of the ecliptic. The earth's axis is inclined at an angle of about 66° 33'

to this plane, so that the planes of the equator and the ecliptic are in-

clined at an angle of 23° 27'.

It is very easy to notice that the moon has an easterly motion

amongst the stars but it is more difficult to see this in the case of the

sun. In places which afford the best opportunities for observing the

heavenly bodies at rising or setting—large flat plains like Mesopotamia

or Egypt, for instance—the easterly movement of the sun amongst the

stars is not difficult to detect. If the sun is observed to rise about half

an hour later than a star, a few mornings afterwards it will be observed to

rise more than half an hour after the same star, this phenomenon being

due to the easterly motion of the sun with reference to the star. The

same thing can be seen in the British Isles from places which have an

extensive eastern sea horizon: and of course the same phenomenon can

PROBLEMS ARISING FROM THE SUN'S MOTION 8l

be observed in the evening, with the star setting later than the sun over a

western sea horizon, except that after a few days the interval between

the setting of the two bodies is smaller instead of larger.

If the sun's motion among the stars were uniform and if he moved

in the equator instead of in the ecliptic, fewer complications regarding

time would arise. It may be said, however, that if the sun moved in the

equator this would imply that the earth's axis would be perpendicular

to the ecliptic, and we should not enjoy the changes of the seasons. Even

the lengths of the days and nights would not differ, day and night being

each 12 hours at every place on the earth. Probably most people would

prefer the existing arrangement in spite of the fact that the time indi-

cated by a sundial—known as dial time—can differ from the mean time

as shown by a clock by more than quarter of an hour.

Equation of Time

In Fig. 22 E is the earth and S the sun on January 2, the sun being

then at perigee* if we suppose that the earth is fixed and that the sun is

moving in the direction shown by the arrow. The line ES traces out

360° in a year but not at a uniform rate, and a fictitious point known

as the dynamical mean sun is supposed to move round £in the ecliptic at

a uniform speed, completing a revolution in a year. The dynamical

mean sun at perigee is in the direction ES, and since the real sun moves

more rapidly near perigee than it does elsewhere it will be in advance

of the dynamical mean sun at this portion of its orbit as shown, ES'

being the vector from the earth to the real sun and ED the vector to the

dynamical mean sun. At some other parts of its orbit the real sun will

be behind the dynamical mean sun and at apogee* its direction will

coincide with it again as it does at perigee.

In Fig. 23 let G be the earth in the centre of the celestial sphere

and let D be the dynamical mean sun at a point D on the ecliptic EE'.

In addition to this fictitious point another fictitious point M called the

mean sun moves round on the equator with the same angular velocity as

D. These two fictitious points do not coincide at perigee but at T, and

hence T D = T M. The mean sun describes the circuit of the equator

with reference to the stars in the same time in which the dynamical

mean sun describes the circuit of the ecliptic. Since the longitude of the

* Perigee and apogee, meaning 'nearest to the earth' and 'furthest from the earth',

are derived in the same way as perihelion and aphelion, except that^e, the Greek word

for the earth, takes the place of helios.

F
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:

Fig. 22

The apparent motion of the sun
around the earth in a year is an

ellipse

dynamical mean sun increases uniformly, the R.A. of the astronomical

mean sun also increases uniformly, so the motion of this point gives a

uniform measure of time.

Fig. 23

Used for deriving the formula for the

equation of time

A great circle from the pole P of the celestial sphere through 5", the

sun, meets the equator at A, and from the definition of right ascension,

the R.A. of S is T A. The R.A. of the mean sun is T M, and the small

arc AM, which is the difference of the right ascensions, is known as the

equation of time. If the R.A. of the mean sun be denoted by R.A. M.S.

and the R.A. of the true sun, or the apparant R.A. of the sun, be de-

noted by R.A. O, then, E.T. denoting the equation of time,

E.T. = R.A.M.S. - R.A.Q • • • • (23)

If PE' C is the meridian, the hour angle of S is the angle SPC and

is measured by the arc AC. The R.A. of Sis T A and since T A + AC
- ep C* S local sidereal time, it follows that the hour angle of the

sun 4- sun's R.A. = local sidereal time. The same thing obviously

applies to the mean sun A/, and hence we obtain the relation,

H.A. sun+ R.A. sun= H.A. mean sun+ R.A. mean sun = local sidereal

time.

This was shown to be true for a star: (see 12).

From the above relation we easily deduce

R.A. mean sun -R.A. sun= hour angle sun -hour angle mean sun.

Hence

E.T. = hour angle sun — hour angle mean sun = dial time

— clock time . . . . . . . . (24)

The value of the equation of time varies and vanishes four times in a

year, on or about April 16, June 14, September 1 and December 25.

Its maximum value takes place on November 3 when it is + 1

6

m 24*25.

The Astronomical Ephemeris supplies the value of the E.T. for

every day in the year.

Mean Solar Day

A mean solar day is the interval between two consecutive transits of

the mean sun over the same meridian. It is divided into 24 hours of

mean solar time and the hour is divided into minutes and seconds.

During a year, while the sun moves round a complete circuit, the first

point of Aries makes one more revolution about the earth than the sun

does and hence we have the following relation:

366J sidereal days = 365£ mean solar days.

From this relation the following figures are obtained

:

24h mean solar time 24h 03m 56?5554 sidereal time

l
h

„ .. 1 00 09-8565

l
m

„ .. 01 001643

I
s

„ .. 00 010027 „ .. (25)
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Tables are given in various works on astronomy for converting

intervals of one time into intervals of the other time, and those who
have an Astronomical Ephemeris will find the necessary tables there.

These save much labour in computation.

To convert intervals of sidereal time into mean solar time, the figures

below can be used. If computations are made, tables not being available,

it will be found simpler to leave the figures in the form given, as an

example will show.

24h sidereal ti

l
h

Im
1 »>

1
S

Suppose we wanted to convert 3
h 55m 10s sidereal time into mean

solar time, we proceed thus

:

3 x 9?8296 29?4888

55x01638 90090

10 x 00027 00270

24h sidereal time 24 h -3m 55?9 104 mean solar time

l
h

l
h -0 09-8296

l
m -0 01638

I
s „ I

s -0 00027 „ .. (26)

38-5248

Deducting 38?5248 from 3
h 55m 10s

, the corresponding interval in

mean solar time is 3 h 54m 31?4752.

The hour angle of the mean sun, denoted by H.A.M.S., measures

mean solar time (M.S.T.), or mean time as it is usually called. Mean
noon takes place when the H.A.M.S. is

h and midnight takes place 12h

later when the H.A.M.S. is 12h .

We have seen (Eqn. 13) that the local sidereal time at any place can

be found when the sidereal time at Greenwich is known and vice versa,

the longitude of the place being given. If the longitude is given in

degrees and the decimal of a degree it is only necessary to divide the

number expressing the longitude by 15 to reduce it to sidereal hours.

The local sidereal time at a place A in longitude A is Ah/15 less than

that at Greenwich, and similarly, the local solar time at A is Ah/15 less

than that at Greenwich.

Zone Times

If local solar times were observed throughout a country great incon-

venience would result from the arrangement, as a person travelling

eastward or westward would require to adjust his watch very freque ntly.
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Instead of observing local time it is usual to adopt a legal time which

depends on a standard meridian—in Great Britain this is Greenwich.

In the case of a ship at sea the earth's surface is divided into zones

bounded by meridians of longitude which are l
h apart, and inside a zone

the mean time of the central meridian is kept. Thus, in the zone between

the meridians of £
h W. and \\

h W., the meridian of l
h W. is used;

between the meridians of ljh W. and 2£h W. the meridian of 2 h W. is

used; between 2£
h W. and 3£

h W. the meridian of 3
h
is used and so on.

These are designated zones 1, 2, 3, etc., but if they are in longitudes east

of Greenwich they are designated — 1, —2, —3, etc.

A procedure similar to this is adopted in large countries. Thus, Mid-

European Time, which is observed by a number of European countries,

is associated with the meridian l
h E., but the boundaries of the zone are

not necessarily \
h E. and l| h W. In the United States of America there

are five zones which are 4h, 5h, 6
h

, 7 h and 8 h slow on Greenwich, and

the times are known as Atlantic, Eastern, Central, Mountain and Pacific

times respectively.

Greenwich Mean Time, Universal Time and Ephemeris Time

The civil day begins at mean midnight and ends at the mean mid-

night following. We have seen that the G.H.A.M.S. is 12h at mean

midnight and the Greenwich mean time clock then registers
h

. Hence

the G.H.A.M.S. differs by 12h from the Greenwich Mean Time (G.M.T.)

as it used to be called, because the Greenwich Meridian is by inter-

national agreement regarded as the standard meridian. The reader

must be careful to remember that the designation of time has fre-

quently changed in recent years. Previous to 1925 mean solar time,

reckoned from mean noon on the Greenwich meridian, was called

Greenwich Mean Time. From 1925, January 10, however, the astrono-

mical day was considered to begin at mean midnight. In the Nautical

Almanac this continued to be known by the old name of Greenwich

Mean Time, while the Americans called it Greenwich Civil Time

(G.C.T.), though not in the sense we ordinarily use the expression

'civil time'. In order to prevent confusion the term Universal Time

(U.T.) was finally adopted by all astronomers to denote 'the mean
solar time on the Greenwich meridian, reckoned in days of 24 mean
solar hours beginning with h at midnight'. {The Astronomical Ephe-

meris, 1960, page 484).

In Civil Time the hours are counted in two series of twelve, the first
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denoted A.M. (ante meridiem) extending from midnight to noon, and

the second P.M. (post meridiem) extending from noon to midnight.

Thus July 21 d 00h U.T. means the beginning of July 21 (which we
also regard as midnight of July 20), while July 21 d 04h U.T. means four

hours after the beginning of the day or 4 a.m. civil time. July 21 d 19h

U.T. means nineteen hours after the beginning of the day, seven hours

after mean noon, or 7 p.m. civil time.

The reader must remember that British Summer Time (B.S.T.) is

never used by the astronomer. If he makes an observation timed by his

watch or clock while summer time is in force, he must transform it to

Universal Time by subtracting 1
h

.

It should also be noted that dates are now recorded by astronomers

thus— 1959 October 12d 06h 15m 32s—the year first, then the month,

then the day and so on.

A further refinement in measuring time has been introduced in The

Astronomical Ephemeris. Universal time, being defined by the non-

uniform rotational motion of the earth, is not rigorously uniform. So a

uniform measure of time called Ephemeris Time (E.T.) is now being

used in the Tables of the Sun, Moon and planets. It is defined 'by the

laws of dynamics and determined in principle from the orbital motions

of the planets' (A.E., 1960, p. 482).

The difference between Universal Time and Ephemeris Time is not

large, being 35 seconds in 1960, but this is large enough to be taken into

account even to the limits of accuracy used in this book. For that

reason, care must be taken to note whether times are expressed in U.T.

or E.T. A Table for reduction from U.T. to E.T. is given on page viii

of the ^.£. for 1960.

The Julian Date

In some astronomical problems, such as computing the planetary

perturbations on comets, variable star work and calculating the dates of

eclipses from the cycle referred to on page 1 79, where long periods of

time arc involved, it is more convenient to use the Julian Date (J.D.)

than the usual method of reckoning. The Julian Date is the number of

days that have elapsed since mean noon on January 1, 4713 B.C. Tins

system was devised by Joseph Scaliger (1540-1609), whose father's

Christian name was Julius; hence he called it the Julian system. It is

very easy to reduce Calendar Dates to Julian Dates or vice versa by

means of the Tables provided in the A.E. (1960, pp. 454-5). Those
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who use the Tables must remember that the Julian Day begins at

Greenwich mean noon.

Before proceeding to other problems a few examples to illustrate

the subject matter in the text follow.

Example 1

If the hour angle of a star at a place in longitude 8°E. is 4h 08m 32s
,

find its hour angle at Greenwich.

On p. 52 it has been shown that

H. A. of a star = local sidereal time - star's R.A.

and since the R.A. does not change, the change in the H.A. must be due

to the local sidereal time. The local sidereal time—in this case at

Greenwich—is behind that in longitude 8° E. by 8/15 sidereal hour,

that is by 32m . Hence the H.A. of the star at Greenwich is 3h 36m 32s
.

Example 2

The H.A. of a star at Greenwich is 8h 18m 45s
. What is its H.A.

at Philadelphia, longitude 75° 16' 45" W.?

The longitude is easily found to be 5h 01 m 07s
, and hence the local

sidereal time is behind that at Greenwich by the above amount. There-

fore the H.A. of the star is 3 h 17m 38s
.

Example 3

An observation is made at Madras observatory, longitude 80° 14'

48" E. on 1960 October 6, at 14h 28™ 32s mean time. What is the

corresponding sidereal time?

Mean time at Madras, October 6 . . 14h

Longitude in time, east . . . . 5

Mean time at Greenwich, October 6 9

Sidereal time at
h

, October 6 (A.E.,

p. 16)

Change in sidereal time in 9h 07m 33s
.

.

28m 32s

20 59

07 33

58 37

1 30



07

28 32

28 39
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Mean sun's R.A. . . .

.

. . 1

Mean time at Madras 14

Sidereal time . . . . . . ..15

The change in sidereal time (see line 6 above) can be computed

from (25), but tables such as those in the A.E., or the B.A.A. Handbook,

if available, will be more convenient. The time is given to the nearest

second.

The Length of the Morning generally differs from that of the Afternoon

Example 4

On 1945 September 25 the equation of time is 8m 06s
. What is the

difference between the lengths of the morning and afternoon?

This problem will be used as a particular case of the more general

one—that the length of the morning exceeds that of the afternoon by

twice the equation of time. The solution of the problem should be

thoroughly understood, as a certain interesting phenomenon, which has

puzzled many people, depends on the above relationship between the

lengths of the morning and afternoon.

If we deal with a star the interval of time from its rising to its crossing

the meridian is exactly the same as the interval from the instant of

crossing the meridian until it sets. This can be verified by means of a

globe, or it is obvious from the formula,

cos h = — tan $ tan 8.

The same thing is not quite true about the sun because his de-

clination varies slightly in the course of a day, and 8 is a little different

at sunset from what it was at sunrise, so that the hour angle of the sun

is not the same at sunset as at sunrise. We shall ignore this small

change in the sun's declination (though the reader should notice that it

exists and for extreme accuracy must sometimes be taken into account)

and shall assume that the interval from sunrise to apparent noon—that

is, noon as indicated by the sun, not by a clock—is the same as the

interval from apparent noon to sunset.

What is implied in the ordinary words 'morning' and afternoon'?

When we speak of the morning we always imply the interval between

sunrise and mean noon, and similarly by afternoon we imply the in-

terval between mean noon and sunset. In the case under consideration
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the equation of time is 8m 06s
, in other words, sun time minus clock time

is 8m 06s
. As the sun time or apparent time exceeds the mean time it

follows that apparent noon will precede mean noon by an amount equal

to the equation of time.

On September 25 the sun rises about 5
h 50m* in the latitude of 52° N.,

the time 5
h 50m being indicated by a clock which records mean time.

Hence the time from sunrise to mean noon is 12h - 5h 50m = 6h 10m ,

and as apparent noon precedes mean noon by 8m 06s
it follows that

apparent noon take place 6h 10™ - 8m 06s = 6h 01m 54s after sunrise.

Neglecting the small changes in the sun's declination during the

day, sunset takes place 6h 01m 54s after apparent noon. But it has been

A M

S
/

/

EAST

SOUTH ^ tfe

•36. *± jg WEST
O

Fig. 24

Showing the position of the sun at apparent and mean noon on September 25. The

observer O is looking at the path of the sun on that day, when it rises at R, just south

of east, and sets at S, just south of west. At apparent noon the sun is due south at A,

and at mean noon (8"> 06* later) it is slightly further west at M. It takes 16" 12* more

to travel from R to M (midday as shown by a clock) than it does to travel from

M to S\ hence the morning is longer by that amount than the afternoon.

shown that apparent noon precedes mean noon by 8m 06s
,
and sunset

takes place 6h 01m 54s - 8m 04s = 5h 53m 48s after mean noon. The

results are as follows:

Mean noon take place 6h 10m 00s after sunrise.

Sunset takes place 5h 53m 48 s after mean noon.

Length of morning - length of afternoon = 16m 12s = twice

equation of time (2°)

The relation (28) always holds, regard being taken of the sign of the

equation of time. If it is negative the length of the afternoon will exceed

that of the morning.

* A computation by (21) gives a result differing a little from this, for reasons given

in Chapter 6, but this does not invalidate the results.
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After the Shortest Day of the Year the Afternoons Increase in Length
while the Mornings Decrease

Example 5

Explain the phenomenon noticed in the northern hemisphere that

after the shortest day of the year, about December 22, the afternoons
increase in length while the mornings continue to shorten. When
does this phenomenon cease and what is the reason for its cessation?

When the sun is at his greatest northern or southern declination,

his declination changes very slowly and hence we can consider the days
as practically equal in length for a week or more. As an instance of the

slow alteration in the length of the days about the time of the winter

solstice when the sun is at his greatest southern declination, take the

hour angles of sunrise and sunset on 1945 December 22, when the sun's

declination is -23° 26' 45" and 1946 January 2, when it is -22° 59' 27".

In the latitude of Greenwich h is 24h - 3h 48m 24s
at sunrise and

3h 48m 24s at sunset on December 22. On January 2 following the

corresponding figures are 24h - 3h 5

l

m 04s and 3h 51 m 04s
. The equations

of time on these two dates are l
m 40s and -3m 43s respectively. Hence

we obtain the following results:

Date Length of morning

December 22 3 h 50m 04s

January 2 3 47 21

It will be seen from these figures that, while the lengths of the after-

noons increase from December 22 until January 2, this increase being
8m 03s

,
the lengths of the mornings decrease in the same time by 2m 43s

.

On January 6, h = 3 h 53m 54s
at sunset and the equation of time is

-5m 34s
, so that the length of the morning is 3 h 48m 20s and that of the

afternoon 3
h 59m 28s

. Hence at this time the mornings have started to
increase, but they are not yet as long as they were on December 22. On
January 13, h = 4h 00m 30s

at sunset, and the equation of time is -8m
29 s

: hence the length of the morning is 3 h 52m 01 s
, which exceeds the

length of the morning on December 22 by only 2 minutes. On the other
hand, the length of the afternoon on January 13 is almost 4h 09m, which
is more than 22 minutes longer than the length of the afternoon on
December 22.

It will be seen that the reason for the cessation of the shorter morn-
ings is the increasing northern declination of the sun.

Length of afternoon

3 h 46m 44s

3 54 47
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Times of Rising and Setting and of Transit of a Heavenly Body

When the declination of a body is known its hour angle of rising and

setting for any specified latitude can be found by (21), but this does

not tell us anything about its actual time of rising and setting nor about

its time of transit. These can be obtained if the right ascension of the

body is given in addition to its declination, and the method of com-

putation can be more easily understood from an example.

Example 6

Taking the co-ordinates of a Leonis given on p. 269, find the time

that this star rises and sets and transits in the latitude of Greenwich

(51° 29'N.) 1960 November 1.

The problem will be simplified if the M.S.T. of transit is first of all

determined.

It has been shown that the local sidereal time at the instant of transit

is equal to the star's R.A.; hence in the present case the local sidereal

time is 10h 06m 1

5

s
. On referring to the A.E. it will be seen that the sidereal

time on November l
d

is 2h 41m 07s
, and an interval of 7h 25m 08 s

(10
h

06m 15 s - 2h 41m 07s
) has elapsed since midnight. Tins is reckoned in

sidereal time, and the corresponding interval in M.S.T. is 7h 23m 55s
.

Hence the G.M.T. of the transit of a Leonis is 7h 23m 55s
.

To find the times of rising and setting use (21) from which h = 7h

02m 47 s at the time of setting and 16h 57m 13 s at the time of rising. It

has been shown that

local sidereal time = H.A. of star + star's R.A.

Hence, substituting the values of the star's R.A. and H.A., it is found

that the local sidereal time at the instant of rising is 16h 57m 13
s +

10h 06m 15s = 3h 03m 28s
. By the same method it is found that the local

sidereal time at the instant of setting is 17h 09m 02s
.

The interval in sidereal time after midnight until the star rises is

3h 03m 28s — 2h 41m 07s — h 22m 21 s and the interval after midnight

until the star sets is 17" 09m 02 s - 2h 41 m 07s = 14h 27™ 55s
. The mean

of these is 7h 25m 08s and is the sidereal interval from midnight until the

time of transit. This corresponds with the value found earlier and is a

check on the accuracy of the work.

The sidereal time interval of h 22m 21 s corresponds to a mean time

interval of h 22m 17s
, and the sidereal time interval of 14h 27m 55s
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corresponds to a mean time interval of 14h 25m 33s
. Hence the results

are as follows:

17s

55

33

G.M.T. of rising of a Leonis . .
h 221

G.M.T. of transit 7 23

G.M.T. of setting 14 25

It will be observed that the time of transit is exactly the mean of the
times of rising and setting.

If we require the times of rising and setting and of transit approxi-
mately—say to within two or three minutes, which is sufficiently accurate
for many practical purposes—it is unnecessary to make the corrections
for changing sidereal intervals into mean time intervals. The method
in this case is as follows.

Having found the time of transit and also the hour angle of setting

(which will prove more convenient than the hour angle of rising), the
results are

Time of transit

H.A. of setting

Time of setting

Time of rising

7h

7

14

25m

03

28

22

The figures are given to the nearest minute and no distinction is

drawn between sidereal time intervals and mean time intervals. As
will be seen later, no corrections have been applied in the accurate
computations for refraction, and as this would make a difference of a
few minutes in the times of rising and setting, none of the figures shown
in the first computations are really quite correct.

Twilight

We shall conclude this chapter by dealing with the phenomenon of
twilight, which is due to the light of the sun being scattered or reflected
in various directions when the sun is below the horizon. Astronomical
twilight is said to end when the sun is 18° below the horizon, and nautical
twilight is considered to end when the sun is 12° below the horizon.
There is another twilight known as civil twilight, which ends when the
sun is 6° below the horizon. Problems involving twilight can be solved
by (16), as the following examples will show.

Suppose we want to find the latitude of a place at which twilight will
just last all night, it is only necessary to make z = 90° + 18°, or 108°

and h = 12h or 180°, because the sun attains its greatest distance below
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the horizon when h = 12 (see p. 42), and if this distance is 108° twilight

will be in evidence then. At an earlier or later time than is determined

from h = 12h the sun will not be so far below the horizon, and twilight

will last all night.

Since cos (90° + 18°) = - cos 72°, and cos h = - 1, (16) becomes

- cos 72° = sin
<f>

sin 8 - cos
<f>
cos 8 = - cos (<f> + 8)

Hence
<f>
+ 8 = 72°.

Suppose we wanted to find the conditions that twilight should last

all night in latitude <f>,
we have

<f>
+ 8 = 72°, or 8 = 72° -

<f>.
If the

sun should be 19° below the horizon twilight would not last all night

and in this case <£ + 8 = 71°, from which it is seen that if <j> + 8 < 72°,

twilight will not last all night. Hence the sun's declination must be

equal to or greater than 72° - <£, and if <£ = 51*° N. the declination

of the sun must not be less than + 20£°. On referring to the A.E. it will be

found that the sun attains this declination about May 23 and after this

twilight will last all night at latitude 51£° N. until July 21, when the

sun again attains a declination of about +20£°. After this his declina-

tion is less than 20£° and twilight will not last all night until May 23

of the following year.

Example 7

Find the duration of civil twilight on 1960 October 19 when the

sun's declination is about -9° 54', the latitude of the place being 48° N.

Two problems are involved here. First of all it is necessary to find

the hour angle of the sun at setting; then we must find the hour angle

of the sun when he is 6° below the horizon, and the difference between

these will give the duration of twilight, because civil twilight lasts from

the time the sun sets until the time that he is 6° below the horizon.

From (21), /z = 78° 49'. To find h in the second case, substitute 96°

for z in (20) and solve for h. This gives us the expression

cos h = (cos 96° - sin 48° sin - 9° 54')/(cos 48° cos - 9° 54')

= 00352.

Hence h = 87° 59', and the difference between the two hour angles

is 9° 10', which is equivalent to just over 36 minutes. The duration of

civil twilight under the above conditions is, therefore, 36 minutes after

sunset. The next morning it would last about 36 minutes before sunrise.
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Example 8

Find the duration of twilight at the equator at the equinoxes.

In this case both
(f>
and S are 0° and (20) reduces to the simple form

cos h = cos 108°; hence h = 108°.

If z = 90°, which occurs at sunrise or sunset, then (21) becomes

cos // = - tan
<f>
tan 8 = 0, or h = 90°.

Hence twilight after sunset or before sunrise will last 18/15 hours, or
l
h 12m .

Example 9

Find the duration of nautical twilight at the equator at the solstices.

In this case 8 = ± 23° 27', and A, the hour angle when nautical

twilight ends and begins respectively, is easily found to be 180° - 76° 54'

= 103° 06' at sunset and 180° + 76° 54' = 256° 54' at sunrise.

The hour angles at sunset and sunrise are 90° and 270
D
respectively,

and nautical twilight lasts after sunset or before sunrise for nearly

52£ minutes, the equivalent of 13° 06'.

Detailed working of the above examples has not been shown. The
reader should be able to check the figures obtained by using four-figure

logs. In the problems which follow four figures are all that will be
required.

Problems

1. On January 17 the equation of time is — 10m . By how much does
the afternoon exceed the morning?

2. Express the mean time intervals of (a) 14h 50m
, (b) 17h 53m 10s

,

(c) 3h 13m 57s as intervals of sidereal time.

3. If twilight just lasts all night when the sun's declination is -20°,
what is the latitude of the place?

4. On December 1 a person wants to find his south by the transit

of the sun. The equation of time on this date is 1 l
m 09s

, and his watch
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records correct mean time. At what time should he take the sun's bear-

ings to find the south?

5. Use (21) to find the times of rising and setting of the sun at a

place in latitude 74° N. when the sun's declination is +22°. What inter-

pretation can be placed on the result?

6. If astronomical twilight lasts all the night in latitude 62° N. what

are the limits of the sun's declination?

7. What is the duration of twilight (nautical) at the latitude of

Greenwich (51° 29' N.) on November 5 when the sun's declination is

-15° 30'?

8. What are the altitude and azimuth of a Geminorum on February

20d 21 h 30m U.T. at a place in longitude 12° E. and latitude 50° N.?

(The sidereal time at Greenwich on February 20d 00h can be taken as

10h.)



SIX

ATMOSPHERIC REFRACTION

A ray of light moves through a transparent medium in a straight line

only so long as the density of the medium remains uniform. If the ray
passes obliquely from one medium to another its course will be bent at

the point of incidence. Two important conditions are fulfilled when
a ray of light is thus bent or refracted: first, the two directions before
and after incidence will lie in the same plane with the perpendicular or
normal (as it is usually described) to the surface at that point; second,

the sines of the angles formed by the directions of the ray with the
normal are in a constant ratio.

When a ray of light passes from a rarer into a denser medium its

direction is altered in such a way that it approaches the normal, as shown
in Fig. 25. If EBD is the refracting surface, z the angle between the
incident ray AB and the normal MBN, and £ the angle between the

refracted ray BC and the normal, then

sin z/sin £ = fi (29)

where n, a constant depending on the medium, is known as the re-

fractive index of the medium. In the particular case where the ray enters

the medium at right angles to the surface, that is along the normal,
refraction does not take place.

Fig. 26 shows how a ray of light from a celestial body is refracted by
the atmosphere, the ray being bent towards the normal because, as it

approaches the earth's surface, it gradually passes through strata of the
atmosphere of increasing density. The figure shows why objects appear
higher than they actually are, and why refraction must be taken into

consideration in dealing with astronomical problems where great
accuracy is required.

Several formulae have been derived for computing the atmospheric
refraction of light from a body, but it will be sufficient if the method for
deriving one of these is given.
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Fig. 25

Refraction of a ray of light

There is a law known as the law of successive refractions which can

be stated thus:

If there be a number of different media separated by parallel planes

Fio. 26

Atmospheric refraction of light. On account of this, celestial

objects appear higher than they actually are

and a ray of light pass through these media, suffering refraction at their

boundaries, the final direction of the ray is parallel to what it would
have been if the ray had been refracted directly from the first into the

last medium without passing through the intermediate media.

G
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This law can be easily proved from elementary geometrical con-
siderations, but it will be assumed to hold, though it should be em-
phasized that it holds only in the case of parallel planes. Remembering
that the height of the earth's atmosphere is very small relative to the

earth's radius, it is obvious that we can regard the small portion of the

earth's surface with which we are dealing as flat and the successive

atmospheric strata as parallel, so that the law holds almost exactly in

these circumstances. We may therefore consider that a ray of light from
a celestial body enters the atmosphere at a height of about 50 miles,

C EARTH'S SURFACE

Fig. 27

Derivation of a formula for atmospheric refraction

where the density is so small that we can, for the present purpose, re-

gard it as a vacuum, and reaches the earth's surface by a single re-

fraction, the intermediate strata of the atmosphere being ignored.

In Fig. 27 the atmosphere is represented as consisting of a number
of horizontal layers in which the density increases towards the earth's

surface, the index of refraction also increasing. A ray QR from a star

S reaches the highest layer at R, the angle of incidence QRN being z,

RN being the normal, and is refracted so that RPC is its path in the

atmosphere, PC being the last short portion of its path. An observer

at C on the earth's surface sees the star in the direction CPS', and if

CZ is the direction of the zenith the angle ZCS' is the star's observed
zenith distance.

If CS" is drawn parallel to QR, ZCS" (= QRN) is the true zenith

distance of the star, because the star can be considered at an infinite

distance. It should be noticed that ZCS" would not be the true zenith

distance if we were dealing with a close body, but even in the case of the

moon the error introduced by this assumption is so small that for all

practical purposes it can be ignored.

The true zenith distance ZCS" being z, let the observed zenith

distance ZCS' be £. Then, ti being the index of refraction of the lowest

layer, by (29),

sin z = /x sin £

The angle S'CS" through which the star's zenith distance is dis-

placed is known as the angle ofrefraction and is denoted by R. From the

figure it is seen that R = z — £, hence,

sin (R + = p sin £ (30)

The left-hand side of (30) can be expressed in the form

sin R cos t, + cos R sin £

But R is always a small angle: hence, expressed in radian measure,

sin R = R, cos R = 1 , and (30) becomes R cos £ + sin £ = /x sin £, or

R = (n- 1) tan I (31)

In (31) R is expressed in radians, but it is more convenient to express

it in seconds of arc, one radian being 206,265 seconds of arc. Hence

(31) can be expressed in the form

R = k tan £ (32)

where k, the constant of refraction, is equal to 206,265" (/x — 1) and

depends on the value of n at the earth's surface. Its value, derived from

observation, is 58"2 when the height of the barometer is 30 inches, and

the temperature is 50°F. Hence (32) can be written in the form

R = 58r2 tan £ (33)

The mean refraction R, given by (33), enables us to calculate the true

zenith distance z since this is R + £, and £ is obtained from obser-

vation.

In cases where the barometric pressure and temperature differ from

those just given, the correction to R can be made by means of the

formula

17PJ?
Rl =

460 + T (34)

where Rt denotes the refraction when the height of the barometer is P
inches and T is the temperature in degrees on the Fahrenheit scale.
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When I = 90°, R is infinite, which is absurd, and in fact (33) cannot
be used for zenith distances beyond about 70°. Other formulae must be
used in cases where £ exceeds 70°, and for zenith distances close to 90°

it is impossible to derive the refraction by any practicable formula.

When £ is 90°, that is, when the body is on the horizon, the refraction,

then known as the horizontal refraction, is 34', this value being derived

from observation. When £ = 0°, that is, when the body is in the zenith,

R = 0, or there is no refraction, a result previously referred to when it

was stated that refraction does not take place when a ray of light enters

a medium at right angles to its surface.

We shall illustrate the formulae derived by two examples.

Example 1

A star is observed at an altitude of 60°. What is its true altitude,

standard atmospheric conditions being assumed?
The observed zenith distance £ is 90° - 60° = 30°, and

R = 58"2 tan 30°

log 58-2

log tan 30
c

tog J?

R

1-7649*

9-7614'

1 5264

33*6

The true zenith distance is 30° 00' 33"6; hence the true altitude is

50° 59' 26"4.

Example 2

In the last example what would be the true altitude of the star if

the barometer stood at 29 inches and the temperature were 60°F.?

P = 29,T= 60°

Using (34) the results are as follows

:

log 17 1-2304'

log 29 1 4624

log/? 1-5264

sum 4-2192
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log 520 2-7160

log Rx
1-5032

Rt
31 "86

z = 30° 00' 31*86, and the true altitude is 59° 59' 28" 14.

Some Effects of Refraction

Amongst the many effects of refraction may be noticed that on the

rising and setting of heavenly bodies. A star can be seen on the horizon,

assuming ideal seeing conditions, when it is actually 34' below the

horizon, and it does not set until it is 34' below the horizon. Hence

the rising of a heavenly body is hastened and its setting is retarded by

refraction, and in the formulae used for finding the hour angles of its

apparent rising and setting, z must be made equal to 90° 34'. By doing

so the star's apparent position, derived from (17) or (18), will always be

more to the north in the northern hemisphere than it would be if there

were no atmosphere.

The Sun is Considered to Rise and Set when his Upper Limb is on the

Horizon

When we are dealing with the hour angle of the rising or setting sun

or with the azimuth of the sun at rising or setting, another correction

must be made. The sun is considered to rise when his upper limb is on the

horizon (the same applies to the moon), and since the radius of the sun

subtends an angle of about 16' at the earth, the centre of the sun is

34' + 16' = 50' below the horizon at sunrise and sunset. Hence z must

be made equal to 90° 50' in (18), and in other equations where it has

been previously taken as 90°, when we are dealing with the sun. An
example will show the effect of these two corrections, which, though

small, must nevertheless be taken into consideration when accuracy

is required.

Example 3

In Example 7 given on p. 75 in which the hour angle of the sun at

rising and setting was found for a place in latitude 50° N. when the sun's

declination was +18°, what are the accurate figures, refraction being

taken into account and the sun being considered to rise and set when his

upper limb appears on the horizon?
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In this case cos z = cos 90° 50' = - 0-0145*, and (16) becomes

- 0-0 145* = sin 50° sin 18° + cos 50° cos 18° cos h

log cos 50° 9-8081. log sin 50° 9-8843

logcos 18° 9-9782 log sin 18° 9-4900.

sum 9-7863. sum 9-3742"

sin 50° sin 18°- 0-2367'

coz z - sin 50° sin 18° - 0-2513.

log ( - 0-2513.) 9 400l'n
deduct 9-7863.

log cos h 9-6139. n

h = 180° ± 65° 44' = 7h 37m 04s or 16h 22™ 56s

It will be seen on referring to p. 75 that there is a difference of 6
minutes between the times of rising and setting of the sun in the two
cases.

Example 4

Find the azimuth of the sun at rising and setting on June 21 at

a place in latitude 52° 30' N., taking refraction into consideration and
assuming rising and setting to occur when the upper limb of the sun
appears on the horizon.

As the reader is familiar with the use of logarithms by this time there

will be no necessity to work out all the examples in full here, but he
should do so for himself.

Substituting 90° 50' for z the azimuth A is found from (18).

cos A = (sin 23° 27' - sin 52° 30' cos 90° 50')/(sin 90° 50' cos 52° 30'.)

Substituting the values for the various functions,

cos A = 0-6500, or A = 49° 27' E or W.

Notice that sin 90° 50' = 1 in four-figure computation.

How Refraction Affects the Shape of the Sun and Moon
One effect of refraction is to make the sun about the time of sunrise

or sunset appear oval. The horizontal refraction is 34' and the refrac-

tion for an object with zenith distance less than 90° is less than 34'.

Hence the sun's lower limb appears raised towards the zenith slightly

more than his upper limb when he is just above the horizon, but refrac-

tion will not affect the sun's horizontal diameter because each end of it
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has the same zenith distance. For this reason the sun appears slightly

oval when very close to the horizon, and the same applies also to the

moon. The contraction of the vertical diameter amounts to about 5'.

This effect has nothing to do with the apparent increase of size of the

sun and moon when they are close to the horizon; this is a psychological

effect and is quite independent of refraction.

Another effect of refraction is to increase the distance of the visible

horizon and to decrease the dip of the horizon. It has been shown that

d = 1064 y/ h and h = 0-883 d2 (see p. 22), but owing to refraction

these formulae are modified slightly, d and h being determined from

d = 1 15 V h, h = 0-756 rf
2

.. .. (35)

The reason for this modification can be seen from an inspection of

Fig. 28. O is an observer at a height h above the earth's surface, and

the tangent OT to the sphere determines the limit of visibility if there

were no refraction. But since the ray of light proceeding from r to is

passing through strata of decreasing density, the ray will be bent to-

wards the earth's surface. If T be another point at a greater distance

from O than is T, the broken line shows the path of a ray of light from

T, and as it is bent towards the earth's surface, it will strike the ob-

server's eye at O, so that he will see the horizon in the direction OT" and

it will appear at a greater distance from him than does T. The dip of the

horizon is the angle H'OT", which is obviously less than the dip HOT
when refraction is ignored.

As the distance AT' in ordinary navigation or surveying is always

small compared with r the radius of the earth, in practice it may be

taken as equal to OT, the distance d of the horizon from the observer.

The dip may also be regarded as equal to the angle OCT. Hence the

radian measure of the dip is approximately d/r, or expressed in seconds

of arc, 206,265" d/r. Since r is 3442 nautical miles, the dip may be

taken as 60d seconds of arc. This approximation does not hold, of

course, when AO, AT' and OT' become large in relation to AC, as they

do for example when O is an artificial earth satellite.

Measurement of the Constant of Refraction

Different methods are in use for determiningk in (32).A simple method

consists in measuring the observed zenith distances of a star at upper and

lower culmination, and as it is possible by this method to determine the

declination of a star and also the latitude of the place of observation, an
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Fig. 28

The distance of the visible horizon is increased by
refraction

example will be given from which the reader will see more easily how
the general formula is arrived at.

On p. 48 it was shown that the meridian altitudes of 8 Draconis
in the latitude of Birmingham, 52° 59' N., were 75° 25' and 30° 33' at

upper and lower culmination respectively. Tn the computation the

effects of refraction were ignored, and it remains to deal with the

problem when these are taken into consideration.

The problem will now be stated in the following form:

Example 5

The declination of 8 Draconis is known to be 67° 34' approxi-
mately, and the latitude of Birmingham can be taken to be 52° 59' N.
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exactly. Under normal conditions of temperature and barometric

pressure the meridian altitudes of 8 Draconis at upper and lower cul-

minations were observed to be 75° 25' 15" 14 and 30° 34' 38?37 respec-

tively. Find the constant of refraction.

Using the figures on p. 48, the results are as follows:

90° - 67° 34' + 52° 59' = 75° 25' 15514 - k tan 14° 35' at

upper culmination.

52° 59' - (90° - 67° 34') = 30° 34' 38:37 - k tan 59° 25' at

lower culmination.

There is no necessity to use the seconds of.arc in the tangents of the

zenith distances because k is so small that k tan z will be unaffected by

the seconds of arc in z.

Adding these two equations we obtain

k (tan 14° 35' + tan 59° 25') = 105° 59' 53"51 - 105° 58' 00" =
1' 53f51.

Substituting the values of tan 14° 35' and tan 59° 25', we obtain

1-9522 k = 113:51, from which

k = 58:14

This is close to the result usually adopted, 58:2.

It will be seen that the declination of the star disappears by this

method and so it is unnecessary to know its declination. In fact, it is

possible in this way to find the declination of 8 Draconis, or of other

circumpolar stars, by substituting the value derived for k in either of the

equations above. If we take the first of these we find as follows:

Let 8 be the declination of 8 Draconis, and
<f>
and £ the latitude of the

place and the apparent zenith distance of the star. Then the first of the

above equations can be expressed as follows:

90° - a +
<f>
- 90° - & - * tan &

or

8 =
<f> + tt + k tan £x.

Substituting the values of
<f>, £x , and also that of k just derived, we

have

8 = 52° 59' 00" + 14° 34' 44"86 + 15:08 = 67° 33' 59:94.

It is also possible to obtain the latitude of a place by this method

even if the declination of a star is not known. The second equation

can be written as follows:
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- (90° - 8) = 90° - £2 - k tan £2

. 14° 34' 44"86

59 25 21-63

. 74 00 06-49

<f>
= 180° -- 74° 00' 06:49 -

8 = 180° -<f> - £2 -&tan£2 .

Subtracting this equation from the previous one to eliminate 8,

2
<f>
= 180° - & + Q - k (tan £, + tan £2)

Making the following substitutions

:

tan Ci .. .

.

0-2601

tan ^2 .. .. 1-6924'

tan^ + tan^ 1-9525'

A:(tan£
x + tan £2) 113"64

01' 53"64 = 180° - 74° 02' 00*13

= 105° 57' 59"87

Hence
<f>
= 52° 58' 59:94 N.

In this example the star culminates in each case north of the zenith,

and in these circumstances 8 > <j>. A general formula has not been given

because this would not hold if 8 <
<f>,

and readers are advised to work
out each case independently from a suitable diagram.

Before concluding this chapter an example on the rising and setting

of the sun will be dealt with, and the reader is recommended to verify

some which he can set for himself, from the A.E. or B.A.A. Handbook,

as the practice will make him familiar with certain points discussed in

this and the preceding chapter.

Example 6

In the Astronomical Ephemeris for 1960, p. 25, the declination of the

sun is given for May 190 as + 19° 43' 10"1 and for May 200 as + 19°

55' 55"7. Assuming that the declination at May I9d 12h is the mean of

these two, that is + 19° 49' 33" to the nearest second, and that this

value is sufficiently accurate to find the hour angle of the sun at rising

and setting, find the times of the rising and setting of the sun at a place

in latitude 52° N., and check the results from the Tables given in the

A.E. pp. 396, 397.

Substituting the values for cos z, etc., in (16), and remembering that

cos 2 is — 0145', the equation reduces to

-0 0145' = 0-2672' + 0-579 1" cos /;
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Hence cos h - -0-4865, orh = 180° + 60* 53' 25" = 16h 03m 34s at the

time of sunrise. Hence sunrise takes place at 4h 03m 34s and sunset at

19
h 56m 26s by sun time. The equation of time on May 190 is +3m

38?10 and on May 200 it is +3m 35*18, and we can take +3m 37s

as sufficiently accurate for the present purpose. Applying (24)

clock time = sun time minus equation of time, we have

clock time at sunrise = 4h 03m 34s - 3m 37s = 3h 59m 57s

clock time at sunset = 19h 56m 26s - 3m 37 s = 19h 52m 49s

The A.E. gives the times to the nearest minute and for 1960 May 19

they are 4h 00m for sunrise and 19h 53m for sunset—results in very good

agreement with those just derived.

Problems

(The barometer is assumed to be at a height of 30 inches and the

temperature to be 50°F., unless otherwise stated.)

1. The apparent altitude of a star is 60° 32' 45"80. What is its true

altitude?

2. At an observatory in the northern hemisphere the observed

zenith distances of a star at upper and lower culmination are 7° 22'

11:89 and 69° 37' 47:13 respectively. The upper culmination is north

of the zenith. Find the latitude of the observatory and the star's

declination.

3. A man looks out to sea from the top of a tower 180 feet above

sea-level. How far can he see (a) neglecting refraction; (b) taking

refraction into consideration?

4. Find the dip of the visible sea horizon when the eye is 200 feet

above sea-level, (a) when refraction is ignored ; (b) when it is taken into

consideration. (Find d in each case. The dip is 60</".)

5. Find the time of sunrise and sunset on July 1, taking the sun's

declination to be +23° 07' and the equation of time to be -3m 36s
,
at

places in latitudes (a) 60°; (b) 55°; (c) 50° N.

6. In example 5 what are the Greenwich times of sunrise and sunset

if the longitudes of the places are (a) 1° E.; (b) 1° W.; (c) 1° 15' W.?

7. To what latitude would you require to go on June 1 , when the

sun's declination is about +22", so that there would be no sunset?
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8. The true altitude of a star is 50
3 24' 32". What is its apparent

zenith distance?

9. In example 8 if the barometric height is 291 inches and the
temperature of the atmosphere is 35°F., what is the star's apparent
zenith distance?

10. What is the sun's azimuth at rising and setting in a place where
the latitude is 48° N. on June 23 when the sun's declination is +23° 27'?

What are the corresponding figures for December 22 when the sun's
declination is -23° 27'?

11. Find the times of rising and setting of the sun on December 22
and January 2 in latitude 52\° N. The equation of time at h

is:

Dec. 22 .

.

+ l
m 32?2

Dec. 23 .

.

+ l
m 02?2

Jan 2 .. -3m 30f5

Jan 3 .. -3m 58*8

SEVEN

PARALLAX

If you want a good illustration of parallax hold a finger in front of

your eyes and look at a distant object, closing each eye in turn. You

will notice that your finger appears to be displaced to the right relative

to the distant object if your left eye is open and to the left if your right

eye is open, and also that the closer you hold your finger to your eye

the greater the displacement seems to be. For the distant object sub-

stitute one of the remote stars—so far away from the earth that it may

be considered at an infinite distance; for your finger substitute a com-

paratively close celestial body, like the moon; and for each eye in turn

imagine that you are looking at the moon from two places separated

—

not by three inches as in the case of your eyes—but by thousands of

miles. Just as your finger appeared to be displaced when viewed by each

eye in turn, this displacement taking place with reference to some dis-

tant object, so the moon and other relatively close bodies appear dis-

placed with reference to the background of stars if they are viewed

from different places on the surface of the earth.

Some of the problems previously dealt with related to the sun whose

declination was given for a certain time, but nothing was said about

the place on the earth from which the declination was measured. It

would obviously be inconvenient if the A.E. had to supply the declina-

tion of the sun, moon, and planets for every observatory in the world,

and so these co-ordinates are always given for an observer at the centre

of the earth. Of course there is no such thing as an observer in this

position, but we can imagine that the earth is transparent and that some-

one at its centre can see the heavenly bodies and measure their positions.

Actually, when these positions are measured from any observatory,

it is a simple computation to make the necessary reductions and to

calculate what their right ascensions and declinations or longitudes and

latitudes would be if viewed from the earth's centre.

The parallax of a heavenly body is the angle between two lines

109
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drawn to it, one from the observer, wherever he may be on the earth's

surface, and the other from the earth's centre. (This applies only to
comparatively close bodies—like those in the solar system.) This angle
is small in the case of the sun and fairly large when we are dealing with
the moon, but it cannot be detected by the most delicate instruments
when we are dealing with the stars. The reason for the failure to detect

this angle in the case of the stars will be evident from the following

considerations.

The star nearest to us is about 25 x 1012 miles away, and the greatest

distance between two observatories on the earth is about 8,000 miles—
the earth's diameter. The earth's diameter subtends one second of arc
at a distance of about 16 x 108 miles and hence it would subtend
0"000064 at the distance of the nearest star—an angle utterly impossible
to measure by the most delicate instrument. Owing to the enormous
distances of the stars in comparison with the bodies of the solar system
they can be used as the background or points of reference when the

parallaxes of closer bodies are to be determined.

Derivation of Parallax Formulae

In Fig. 29 Cis the centre of the earth and O an observer on its surface,

M being a celestial body, say the moon. CO produced will pass through
the zenith of O, and the effect of parallax will be to change the zenith

distance of M from ZCM to ZOM. The angle CMO is the parallax,

and since ZOM is equal to the sum of the angles ZCM and CMO, the
parallax CMO is the difference between the two zenith distances. The
angle ZCM is known as the true zenith distance.

Let a be the earth's* radius, d the distance from the centre of the
earth to M, p the parallax CMO, and z the zenith distance ZOM. From
the elementary properties of the plane triangle COM, sin p/sin z =
a/d, hence,

sin p = - sin z
d

(36)

(Notice that sin COM, which is the angle considered in the triangle

COM, is the same as sin (180° - z) = sin z.)

When the body is on the horizon, z = 90° and p becomes the
horizontal parallax which will be denoted by P. (36) then reduces to

sin P = ajd (37)

* Parallaxes are always expressed in terms of the earth's equatorial radius.

PARALLAX III

This is otherwise obvious from the figure in which M' represents

the moon on the horizon, so that the angle COM' is 90°. Hence

sin CM'O = sin P = CO/CM' = a/d

By (36) afd = sin p/sin z, and combining this with (37)

sin p = sin P sin z (38)

Fig. 29

Derivation of parallax formula

In the above investigation it is assumed that the effect of refraction

has been removed from the observed zenith distance so that ZOM is

the apparent zenith distance derived by (33).

There is a simpler form for (37) which can be used in all cases, even

when we are dealing with the moon, the nearest celestial body to us,

the parallax of which is greater than it is for any other heavenly body.

The derivation of this form is easily verified by substituting 4000

for a and 240,000 for d in (37), so that sin P = 1/60. The angle whose
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sinejs 1/60 is 0° 57' 17:90 and the angle whose radian measure is 1/60
is 0° 57' 17775, the difference being only 0''15. Hence we can write
sin p = p and sin P = P, where p and P are in radian measure, without
any serious error in the case of the moon, the nearest celestial body to
us, and afortiori in the case of the sun and planets. In (38) sin p/sin P
= sin z, and since sin/?/sin P is the same as p/P, where p and P are in
either radian measure or seconds of arc, the ratio remaining unchanged
if seconds of arc are submitted for the radian measure, we obtain the
simple expression,

p" = P" sin z (39)

Also, (37) can be written in the form

P = 206,265"a/d (40)

The moon does not move round the earth in a circle but in an ellipse,
so that d varies and P varies also. The A.E. supplies the value of P
for the moon at intervals of 12 hours throughout the year, and from
this p can be computed by (39).

From the method for deriving the above formulae it is seen that the
azimuth of a body is not affected by parallax. Only the zenith distance
(or altitude) is affected, and the zenith distance is increased, contrary
to the effect of refraction, which decreases the zenith distance.

The horizontal parallax of the moon is about 1°, and as the sun is

nearly 400 times as far from the earth as is the moon, the horizontal
parallax of the sun is about 1/400 of a degree or about 9 seconds of arc.
In some of the examples which follow it can be taken as 8"80, but as the
parallax of the moon varies much more than does that of the sun, it

will be given for the particular time of the observation.
A few examples illustrate the application of the formulae just given.

It is assumed that the effect of refraction has been removed so that the
correction for parallax only is to be applied.

Example 1

The sun's observed zenith distance is 35°. Find his true zenith dis-
tance.

8"80 sin 35° = 8"80 x 0-5736 = 5"05.

Hence the sun's true zenith distance is 35° - 5T05 = 34° 59' 54"95

PARALLAX "3

Example 2

If the moon's horizontal parallax is 60'2, find her true zenith dis-

tance if her observed altitude is 30°.

z = 60°, sin z = 08660, 60J2 x 0-8660 = 52tt3.

Hence the moon's true zenith distance is 60° - 52' 1 3 = 59° 07' 52".

Example 3

If the moon's horizontal parallax is 60' what must be her zenith

distance so that the correction to apply for parallax is 45'?

If z be the required zenith distance the effect of parallax is 60' sin z,

and as this is equal to 45', sin z = 0-7500. Hence z = 48° 35'.

Measurement of the Moon's Distance

The moon's distance is measured by making use of the same principle

utilized by a surveyor who measures a base line and two angles. Having

done this, the triangle is easily solved and the lengths of the other sides

determined.

Fig. 30 shows the method as applied to finding the distance of the

moon M, the base line being Ox 2 where Ox and 2 are two obser-

vatories separated by as great a distance as possible, one in each hemi-

sphere. COxZx and C02Z2 are the lines drawn from the centre C of the

earth to each observatory and these lines pass through the zenith of each

observatory. The zenith distances of the moon, ZxOxM, Z2 2M, at

each place are measured, and since the latitudes of the places are

known the angle OxC02 is known and also the equal angles COx 2 and

C02Ox . (The earth is so nearly spherical that CO x
= C02 with sufficient

accuracy.)

It is assumed, to simplify the problem, that the two observatories

are on the same meridian of longitude so that the moon will transit at the

same instant at each observatory. The angle COxM is equal to 180° -

Z
xO xM&Y\d is therefore known, and the angle 2O xM is equal to CO

x
M

- CO
x 2 . As the angle CO x 2 is known the angle 2OjMcan be found,

and then in the same way the angle O x 2M. Knowing the angle OxCO.,

and the sides O x C, 2C in the triangle OxC02 , the chord Ox 2 can be

computed: then the triangle O x 2M can be solved and the lengths

H
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Fig. 30

Measurement of the moon's distance from her parallax at two observatories

O xM, 2M found. When either of these is known the length MC can
be computed, and hence the distance of the moon from the centre of the
earth—the geocentric distance—is determined.

Observations conducted over a prolonged period show that the
moon's distances from the earth vary from about 226,000 to 252,000
miles, the mean distance being a little less than 240,000 miles. (English
miles, not nautical miles, are used to express the distances of the
heavenly bodies.)

Relation Between the Semi-diameter and the Parallax of a Body
The angle subtended at the earth's centre by the radius of the moon

(or any of the other bodies of the solar system) is called its semi-dia-
meter, and there is an important relation between this and the hori-
zontal parallax. In Fig. 31 let M be the centre of the moon and C the
centre of the earth, and let a be the earth's radius, r the moon's

Fig. 31

Showing how to derive a relation

between the parallax of a

heavenly body and its semi-

diameter

radius and d the distance between her centre and the earth's centre,

each being expressed in miles. If S is the angle MCP, or the moon's

angular semi-diameter, CP being the tangent to the moon from C, then

sin S = r/d (41)

It has been shown in (37) that

sin P = a/d, or d = a/sin P

hence

sin S = - sin P
a

(42)

For the same reasons that (38) was expressed more simply in the

form (39), we can express (42) in a simple form because S and P are

small angles; hence

S = P- (43)
a

Having found the distance d of the moon, (40) enables us to find P

and then from (43) we obtain r when S has been measured. The radius

of the moon, obtained in this way, has been found to be 1080 miles.

When a relation has once been established between the distance of

the moon and her horizontal parallax, by measuring her angular semi-

diameter her radius is found, and then by measuring her angular
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semi-diameter at any time her parallax is found by (42) and hence her
distance. This may seem a little complicated, but an example will show
that it is not so difficult as it appears.

Example 4

Suppose the distance of the moon from the earth's centre, deter-
mined by the trigonometrical method already described, is found to be
235,640 miles and the angular semi-diameter at the time is 15' 45"36.
Find the moon's horizontal parallax and also her radius.

By(40)i> = 206,265" x 3963/235,640 = 3469" to the nearest second
of arc.

By (43) 945:36 = 3469" r/3963, from which

/• = 1080 miles.

Example 5

Check the consistency of the following data taken from the A.E. for
1960, p. 56, assuming that the moon's radius is 1080 miles:

Moon's semi-diameter . . 16' 18"51 Apr. 13-5

H horizontal parallax 59' 5ir271 Apr. 13-5

By (43) S = 3591"271 x 1080/3963-35 = 978"46.

The value given in the A.E. is 978751. As was pointed out previously,
an error can occur by using the radian measure instead of the sine of
the angle.

The sun's distance from the earth can be measured in the same way
as that of the moon but this method does not provide accurate results
owing to the great distance of the sun. Other methods have been
adopted, about which more will be said in a later chapter.

The most recent results give the sun's horizontal parallax as 8''7984

± 0r0004. This is the angle that the earth's equatorial radius subtends
at the sun when he is at the mean distance from us, and this distance is

about 92,916,000 miles. Naturally such a great distance cannot be
found with the same accuracy as the distance of a closer body like the
moon, and there is a probable error of± 4000 miles in this distance-
not a very serious matter in dealing with such large figures.
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Numerical Example of Computing the Moon's Horizontal Parallax

The actual method for determining the moon's horizontal parallax,

and from this her distance from the earth, will be shown by an example

in which ideal conditions will be assumed—that observers in the

northern and southern hemispheres are situated on the same meridian.

When they are not on the same meridian certain corrections can be

applied, but it is unnecessary to burden the reader with these.

Example 6

Observers at two places O x
and 2 in latitudes <f> x and <£2 , where <f> x

=
51° 28' 38"2 N.,

<f>2
= 35° 56' 02"5 S., make simultaneous observations

of a well-defined crater supposed to be on the centre of the moon's

disc. The observed zenith distances (uncorrected for refraction) are

36° 46' 58"56 and 51° 59' 56: 13 respectively. Find the moon's hori-

zontal parallax and her distance from the earth.

By (33) Rx
= 58"2 tan 36° 47' = 43"5l

R2 = 58-2 tan 52 00 = 7449

(It is sufficiently accurate to take the zenith distance correct to the

nearest minute in determining R.)

Hence the corrected zenith distances of the moon's centre at each

place are

£, .. ..36° 47' 42"07

£ 2 .. .. 52 01 10-62

In Fig. 30 Zx and Z2 are the true zenith distances corresponding to

the apparent zenith distances £ x , £2 , and p x and p2 are the parallaxes at

O x and 2 respectively.

In the triangle CO xM the exterior angle t,x is equal to the sum of the

two interior angles Zx
and pv and a similar relation holds for the

triangle COM.; hence we have the following relation,

Px = £i
_ zx Pi = £2 - Z2

Now Zx + Z2 = O xC02
= 87° 24' 40"70. The angle O xC02

measures the difference between the latitudes of the two places, the +
sign being used because the places are in different hemispheres. If they

had been in the same hemisphere the difference in latitude would have

been 15° 32' 35"70, in which case a shorter base line than O x O.> would

have been available and less accuracy would be attained.



u8 ELEMENTS OF MATHEMATICAL ASTRONOMY

Hence

Pi + p* = d - zx + t2 - z2
= (, x + z2

- (& + 02).

By (39) px = P sin £l5 and p2 = P sin £2 , hence

P (sin 36° 47' 42"07+ sin 52° 01' 10"62) = 88° 48' 52*69-87° 24' 40"70.

Substituting the values to seven decimals for the sines of each of the

angles we have

P (0-5989540 + 0-7882215) = 1° 24' lir99 or

1-3871755 P = 5051*99

P = 3641 :93.

From (40) d= 206,265 x 3963-35/3641-93 = 224,469 miles.

To find the distance from the centre of the earth to the centre of the

moon it is necessary to add on the moon's radius, 1080 miles, to the

above figures, and the result is 225,548 miles.

The method described on p. 113 can be used and leads to almost the

same results. As a matter of interest it will be shown how the principle

explained is applied, and although the work has been done here with

seven-figure tables and a calculating machine, the reader should check
the results for himself with four-figure logarithms.

Referring to Fig. 30 and applying the elementary properties of
plane triangles, the following results w

Angle O
xC02

CO x 2 = \ (180° - OxC02)

COx 2 + tx

MOx 2

C02O x + ta

M02O x

O
xM02 = 180° - (MO

x 2 + M02Ox)
=

11 be obvious:

87
c

46

83

96

98

81

1°

24'

17

05

54

18

41

24'

40"70

39-65

21-72

38-28

50-27

09-73

11 "99

O xM/O x 2
- sin M02OJsin O xMO»=

sm 81 ° 41 '

°

9
"
73

1
sin 1° 24' 11?99

Hence OxM = 40-40337 O x 2

Now Ox 2 = 2 OxC cos CO x 2

and taking the radius of the earth as 3963-35* we have

* This assumption is not, of course, correct, nor is it correct to take the earth's
radius as 3963-35 miles as the earth is not a sphere. The error introduced by the
assumptions is not very large, and the main object of the example is to illustrate the
method.
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O
x 2

= 2 x 3963-35 x cos
" = 5476-98 miles.

46° 17' 39*65

Hence

O
x
M = 40-40337 x 5476-98 = 221,228 miles

We have still to find the geocentric distance of M, and to do so it is

necessary to solve the triangle MO xC, given MOx
= 221,288 miles,

O xC = 3963-35 miles, and the angle MO xC = (180°- £j) = 143°

12' 17*93.

In the triangle MO xC,

MC2 = MO x
2 + O xC2 - 2 MO x . O xC cos MOxC.

Cos MO xC = - 0-8007834, and writing the above in the form

MC2 = MO x
2

(1 + -7— + 2~r- x 0-8007834)
MO x

2 MO x

we obtain, on substituting the value of O xC/MO x , which is 00179 104,

MC2 = MO x
2

(1 + 001791042 + 00286847)

= 221,2882 x 10290055

Hence

MC = 224,474 miles

This is the distance to the crater on the surface of the moon, and

adding 1080 miles to this, the geocentric distance of the centre of the

moon is 225,554 miles. The value found by the other method was

225,548 miles, and the difference of 6 miles is due to an accumulation

of small errors. Both methods have been shown to let the reader see

that the method which makes use of the parallaxes is very much shorter

and should always be used.

Example 7

What are the moon's semi-diameters as seen from O x and C?

Sin S = r/d, or, with sufficient accuracy, S = 206,265" r/d. In the

first case d = 222,368 and hence r/d = 00048,568. In the second case

d = 225,548 and r/d = 0-0047,883. Hence the moon's semi-diameter at

O
x is 100K78 = 16' 41*78, and at C it is 987"66 = 16' 27"66.

If S is the moon's semi-diameter at any place O on the surface of
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the earth and S is the geocentric semi-diameter, the distances from the

moon being d and d in each case, then

S = S . d/d .

Thus in the above example, if d is 225,548 and d is 222,365,

S^ = 987:66 x 225,548/222,365 = 987766 x 10143 = 100ir78

The moon's semi-diameter varies between 16' 45" and 14' 42"

approximately, these variations occurring owing to the elliptic motion
of the moon round the earth. The moon does not actually move round
the earth's centre, but this will be dealt with in a later chapter.

The Sun's Horizontal Parallax

The A.E. gives the sun's horizontal parallax for every day in the year.

On p. 18 of the A.E. for 1960 the sun's horizontal parallax for the
beginning of the year is given as 8795 and for the middle of the year it is

8766. The sun is nearest to and at greatest distance from the earth about
these periods, and its distance from the earth in each case can be found
by (40). In the first case this is 91,340,825 miles and in the second case
it is 94,399,583 miles. It should be noted that only three figures are given
in the parallax; hence there is some uncertainty in the fourth figure in

the computed distances, while the figures from the fifth to the eighth
are quite meaningless, and zeros or other figures could be used in place
of those given (see p. 116 on probable error of sun's distance). Thus,
instead of 91,340,825, we could take the distance as 91,341,000 and it

would be as accurate as that given above. In the figures for the sun's
distance an error of 5000 miles is like an error of an inch in 500 yards.

Stellar Parallaxes

It has been shown that the earth's radius subtends such a small angle
at the distance of the nearest star that it is impossible to detect this

angle. A much larger base line is necessary, and this is provided by the

diameter of the earth's orbit in its motion round the sun. As this

diameter is about 186 million miles one might imagine that it would be
a very satisfactory base line, but unfortunately it is much too small
except for the comparatively close stars. The method of determining
the parallaxes of stars—sometimes called annual parallaxes because
they depend upon the earth's annual motion round the sun—will be
better understood by referring to Fig. 32.

Let S be a star at a distance d(to be determined) from the sun, and

Fig. 32

Showing how the parallax of a star is found

let a be the radius of the earth's orbit assumed to be circular to simplify

the problem. Just as a background of stars was necessary in finding the

moon's distance from the earth, so a background of stars is necessary in

finding the distance of a star from the sun. In the latter case any star

will not do because it may be too close, so it is necessary to select a

background of faint stars which may be presumed, from their faintness,

to be very far away from the earth—much further than the star whose

parallax we wish to find.

Let E and E' be the positions of the earth in its orbit at two periods

separated by an interval of six months, so that EE' is a base line of about

186 million miles. Suppose it is required to measure the parallax of a

star S whose direction from the sun is practically at right angles to EE'.

This is the simplest case, but when the star lies in a position which does

not comply with this condition corrections can be applied. Now imagine

that there is a faint star S' which lies in the plane SEE' and which is very

far distant from the sun—so far that the lines ES' and E'S' can be con-

sidered parallel. A similar assumption is made when observations of the

pole star are made from different places on the earth's surface to find the

latitudes of the places, but in this case the distance between the ob-

servers is only a minute fraction of the length EE'. The angles SB'S' and

SES' are measured carefully and from these the angle ESE' is easily

obtained as follows.

The angle SE'S' is equal to the angle EPE' because ES' and E'S'
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are parallel, and the angle EPE' is equal to the sum of the angles ESP
and SEP, or the angle SE'S' is equal to the sum of the angles ESE' and
SEP. Hence SE'S' - SEP = ESE'. The angle ESE' is not the parallax;

the parallax is the angle subtended by the radius of the earth's orbit, just

as the parallax of the sun, moon or a planet is the angle subtended by
the radius of the earth at the body in each case.

In the simple case under consideration, if we imagine that the paral-

lax of S is found to be CK'25, then, because the line drawn from S to the

sun is perpendicular to EE', the distance of the star is 93,005,000 x
206, 265/0-25, or 77 x 1012 miles approximately.

The parallax of a star is the maximum angle subtended at the star

by the line joining the earth and the sun, and in cases where the line

sun-star is not at right angles to the line sun-earth, although the angle
subtended at the star is obviously less than in the case considered, re-

ductions are always made so that the parallax refers to the maximum
angle.

It has been assumed that the faint star is at an infinite distance, but
as this assumption is not quite valid the results obtained are only the
relative parallax, or the parallax with reference to some other star. If

the distance of the faint star can be determined (and other methods
besides the trigonometrical one just described are used for finding

stellar distances) the absolute parallax of the brighter star is obtained
by adding its relative parallax to the parallax of the faint star. The
corrections to apply in such cases are usually very small.

It is not convenient to use miles to express planetary or stellar dis-

tances, and other units have been adopted. One very convenient unit for
measuring planetary distances is the astronomical unit, which is the
mean distance of the earth from the sun. For stellar distances a con-
venient unit is the light-year, which is the distance through which light

would travel in a year. As light travels with a speed of 186,282 miles a
second, this is equivalent to 5-88 x 1012 miles a year. Another unit is

the parsec, which is the distance corresponding to a parallax of one
second of arc. Since P" = 206,265" a/d, if P is I", d = 206,265 a.

Expressing a as one astronomical unit, it follows that a parsec is

206,265 astronomical units. But an astronomical unit is 93,005,000
miles, therefore a parsec is 19-183 x 1012

miles. Since a light-year is

5-88 x 1012 miles, it follows that a parsec is 19183 x 10 12/(5-88 x 1012
)

= 3 26 light-years. The relations between the various units are shown
below.
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One astronomical unit . . 93,005,000 miles

One light-year . . . • 5-88 x 1012 miles = 63222 astronomical

units

One parsec . . . . 19-183 x 1012 miles = 3-26 light

years C44)

If a star has a parallax of p" its distance is l/p parsecs.

Example 8

What is the distance of Sirius in miles, astronomical units, parsecs

and light-years, if its parallax is 0"371?

d = 206,265 x 93,005,000/0-371 = 51-7 x 1012 miles.

d = 206,265 x 1/0-371 = 555,970 astronomical units.

d = 1/0-371 = 2-695 parsecs.

d = 2-695 x 3-26 = 8-8 light-years.

Example 9

The nearest star to the earth is Proxima Centauri, whose parallax is

0"783. What is its distance in light-years?

Its distance in parsecs is 1/0-783 = 1 -277. Hence its distance in light-

years is 1-277 x 3-26 = 416.

Problems

It should be noticed that in some of the following problems only

three significant figures are available for the parallax and semi-dia-

meter. In such cases the fourth significant figure in the computations

cannot be exact and the remaining figures are meaningless although

they appear in the answers. The A.E. supplies the values of the distances

of the sun and the planets from the earth for each day in terms of the

astronomical unit.

1. The observed zenith distance of the sun, uncorrected for re-

fraction, is 25°, and his horizontal parallax is 8:80. Find his true zenith

distance.
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(Use equation 33 to find /?, which has not been included in the
observed zenith distance. Then use equation 39.)

2. About the middle of October the sun's horizontal parallax is

8"83. Find his distance from the earth at that time. (Use equation 40.)

3. The A.E. gives the moon's horizontal parallax on 1960 July
8-5 as 61' 23:775 and her semi-diameter as 16' 43:71. Find her distance
from the earth and also her diameter in miles.

4. If the moon's altitude above the horizon, corrected for re-
fraction, is 32° 16' 17!8, find her true zenith distance if her horizontal
parallax is 53' 58"90.

5. On 1960 September 28, the horizontal parallax of Venus is 5"96,

and her semi-diameter is 5:70. Find the distance of Venus from the
earth and also her diameter in miles.

6. On 1960 February 22, the polar semi-diameter of Jupiter is 16"23.

Assuming that the polar diameter of Jupiter is 82,800 miles, find his

distance from the earth on the above date. (Substitute the expression
for P derived from equation 40 in equation 43.)

7. The moon's maximum and minimum horizontal parallaxes are
about 603 and 54.'0. Find the maximum and minimum distances of the
moon from the earth.

8. Find the maximum and minimum values of the moon's angular
semi-diameter from the data in 7.

9. What must be the parallax of a star if its light has been travelling
since the Battle of Waterloo in 1815 and reaches the earth in 1946?

10. The sun's horizontal parallax on 1960 December 31 is 8"95 and
his semi-diameter subtends an angle of 16' 17757. Find the distance of
the sun from the earth at the time and also his diameter.

11. A spot is observed on the sun near the centre of his disc on 1960
May 17 and subtends an angle of 3* at the earth. What is the diameter
of the spot in miles?

12. The moon's horizontal parallax is 59' 12"35 and the angle sub-
tended at a place on the surface of the earth by the crater Triesnecker
near the centre of the moon's disc is 125". What is the diameter of the
crater?

13. What assumption has been made in 12 and why is it justified?

EIGHT

ABERRATION, PRECESSION AND NUTATION

The phenomenon of aberration is due to the fact that the velocity of

light is finite— 186,282 miles, or, as it is often approximately expressed,

3 x 1010 cm. per second. In 1725 James Bradley, who later succeeded

Edmond Hailey as Astronomer Royal, started a series of observations

of the star y Draconis with the object of measuring its parallax. He

noticed certain discrepancies which were inexplicable at first, but in

1728 he was able to explain these by the phenomenon of aberration,

a description of which follows.

Illustration of Aberration

A familiar illustration of aberration is usually given in text-books

and affords quite a simple explanation. The illustration refers to the

method adopted for protection against drops of rain which, we may

suppose, is falling vertically, while someone who is carrying an um-

brella is walking through the rain and holding the umbrella over his

head.

In the first instance, if the person is standing still he holds the um-

brella straight over his head, but if he starts walking he finds that it is

necessary to hold it in a slanting position and inclined in the direction

of his motion. In addition, the faster he walks the greater the slope of

the umbrella. Although we assume that the rain is falling vertically,

the apparent direction in which it is falling when the man is walking is

not vertical but slightly inclined to the vertical. It must be remembered

that another person who was standing still and looking on would see

the rain falling vertically, but the one who is walking sees it falling at a

slope with reference to himself. If he stands still the rain appears to

fall vertically.

Determination of the Constant of Aberration

The principle involved is that of the parallelogram of velocities. To

explain how the position of a star is displaced owing to the earth's

125
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S/ /S'

1

Fig. 33

Explanation of aberration

orbital velocity, let O (see Fig. 33) be an observer on the earth and A'OA
the direction of the earth's motion at any instant. Let OS be the true

direction of a star 5". On the tangent A'OA to the earth's orbit take OA
to represent the earth's velocity in magnitude and OK, in SO produced,

the velocity of light on the same scale.

The relative motion of the light with reference to the earth will not

be altered if a common velocity is given to each, and it will be assumed
that this common velocity is OA', which is equal and opposite to OA.
The earth will be brought to rest and the velocity of the light from the

star will be represented by OW, the diagonal of the parallelogram

A'OKW. If WO is produced the direction in which the star will be seen

is OS' and the angle SOS' is called the aberration of the star.

In the first instance, suppose that the star is in the pole of the

ecliptic so that its light is moving at right angles to the direction of the

earth's motion. The parallelogram could have been constructed with

OA and OS as sides, the diagonal OS' representing the direction in

which the star is seen; hence Fig 34 can be used to determine the effect

of aberration. A telescope would not be pointed in the direction OS but
in the direction OS' to see the star.

Let v be the earth's orbital velocity and c the velocity of light.

Then if the star is in the pole of the ecliptic, its light will reach the

earth at right angles to the earth's orbital motion. Therefore in the
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Fig. 34

Determination of the constant of aberration

triangle SOS' the angle S'SO will be a right angle, and we get the

relation

tan SOS' = SS'/SO = v/c (45)

When the earth is at its mean distance from the sun, v = 18-49 miles

per second, and tan SOS' = 18-49/186,282 = 000009926. Hence the

angle SOS' = 20T47.

In this particular case the angle SOS', denoted by a, is called the

constant of aberration. It should be noticed that tan a = 000009926;

and because a is a very small angle, tan a = sin a = the radian measure

of a.

When the direction of the light from the star is not at right angles to

the direction of the earth's orbital motion, we have, from Fig. 34,

SS'
sin SOS' = — sin SS'O = tan a sin SS'O . . (46)

SO

Since SOS' is smaller than a, which we have shown to be so small

that sin a = tan a = radian measure of a, we can express both a and

SOS' in radian measure, and obtain the simple relation,

aberration = constant of aberration x sin SS'O . . (47)

The constant of aberration can be defined as the apparent displace-

ment of a star when the earth is moving with average speed at right

angles to the star's direction.

The angle SS'O is equal to the angle S'OA, which is practically equal
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to the angle SOA, because SOS' is very small. The angle SOA between

the lines drawn from O to the star and in the direction of the earth's

motion is known as the earth's way; hence we have the relation

aberration = constant of aberration x sin earth's way (48)

We have described the effects of aberration in displacing the position

of a star and have shown that the maximum effect of this displacement

is 20"47. Tf the star is directly in front of or behind the earth the earth's

way is 0° or 180°, and the aberration is zero. In all other cases correc-

tions in the right ascension and declination of the star must be made,
and The Astronomical Ephemeris provides certain constants which can
be used in the computations. These will be dealt with later when cor-

rections for other phenomena are considered.

Diurnal Aberration

The aberration with which we have just dealt is due to the earth's

orbital velocity, but there is another kind of aberration which is due to

the earth's daily rotation. Suppose an observer is at the equator where
the velocity of the earth, due to its axial rotation, is about 0-288 mile

per second, which is 0-288/18-49 = 001557 times the earth's average

orbital velocity, then the aberration effect will be

Diurnal aberration = 001 557 x 20"47 = 0"32 . . (49)

At a latitude
<f>

the effect will be
ff

32 cos
<f>,

or, if * is the diurnal

aberration at any place with latitude
<f>,

k = 0r32 cos <j> (50)

The effect of the diurnal aberration is a maximum at the equator
and vanishes at cither pole of the earth.

The effect of diurnal aberration is so small that it can generally be

neglected, but if a star is near the celestial pole it should be taken into

consideration. When a star is on the meridian its right ascension is in-

creased by the diurnal aberration by an amount

0*32 cos <j> sec 8 = 0?0213 cos 4> sec 8.

If
(f>
= 0°, that is, if the observer is in equatorial regions, and if the

star is near the equator so that 8 = 0°, or sec 8 = 1 , the time of transit

of the star will be delayed by 00213 second of time, which would be

difficult to observe. On the other hand, if the declination of the star is

85°, then since sec 85° = 11-47, the retardation in this case would be
11-47 x 0-0213 = 0-24 second, which would be appreciable. This
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applies to the case of an observer at the equator, but at the latitude of

Greenwich, where cos <j> = 0-6228, the retardation would be only 015

second.

Planetary Aberration

Just as the direction of a star is affected by aberration which is due to

the motion of the earth, so the apparent direction of a planet or other

body in the solar system is affected by the motion of the earth, and in

addition, by the motion of the planet or other body in the solar system.

It will be recalled that a star is so far away from the earth that its motion

can be ignored unless it is considered over a long period, but as the

bodies in the solar system are comparatively close to us, their motions

must be taken into consideration.

Fig. 35

Explanation of planetary aberration

To show the effects of aberration in the case of a planet we shall take

the particular case of Venus, but all the planets can be dealt with in a

similar manner.

In Fig. 35 £and E' are two positions of the earth in its orbit repre-

sented by the outer circle. The inner circle represents the orbit of

Venus, V and V being two positions of the planet. Suppose that the

distance from V to E is 30,000,000 miles. Then since light travels at a

speed of 186,282 miles per second, the light from Venus will require

161 seconds to reach the earth. Let EE' be the distance that the earth

moves over in 161 seconds and also let VV be the distance that Venus

travels in her orbit in the same time. The light which leaves Venus when

she is at V reaches the earth when it is at E', and the direction of the

actual motion of the light is VE', so we have the relation

EE'/VE' = orbital velocity of earth/velocity of light.

From Fig. 35 it is obvious that VE represents the direction of re-

lative velocity of the light with respect to the earth; and when the earth

i
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is at E' Venus is seen in a direction parallel to EV. But Kwas the position

of Venus 161 seconds previously; hence the apparent direction of
Venus is just what its real direction was 161 seconds previously. It

should be noticed that the above correction for relative motion auto-

matically includes stellar aberration.

The same argument applies to the sun and other bodies in the solar

system, provided the path of the earth can be taken as a straight line in

the interval. As the light-time for bodies in the solar system is always

relatively short, the above condition holds with sufficient accuracy.

The mean distance of the sun from the earth is 93,005,000 miles, and
light travels this distance in 499-3 seconds, or say 500 seconds. Hence,

expressing the distance of an object from the earth as A astronomical

units, its true position can be determined by finding what it was 500/1

seconds previously.

As an illustration of the above principle, take the following example.

Example 1

On 1960 February 27, Jupiter's distance from the earth was 5-5874

astronomical units. What is the relation between his actual and apparent

co-ordinates?

5-5874 x 500 = 2794 seconds.

Hence Jupiter's apparent co-ordinates are his actual co-ordinates

46m 34 s previously.

Precession

The precession of the equinoxes is caused by the pull of the sun and
the moon on the equatorial bulge of the earth and this pull varies

directly as the mass and inversely as the cube of the distance of the

acting body. This means that the effect of the moon is about two and
one-sixth times as great as that of the sun, owing to the fact that, though
its mass is only 1/(27 x 106

) that of the sun, the sun is 389 times as dis-

tant. Because the protuberance at the equator is slightly nearer the sun
and moon than are the other portions of the earth, the attraction there

is greater, and the tendency of the pull of the sun and moon is to make
the equator coincide with the ecliptic. As the earth is rotating there is a

gyroscopic effect which can be illustrated very easily by means of a

specially designed spinning top (see Fig. 36).
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This top has a conical space GCH cut away, and is made to spin on

the spike KCL attached to the base AB. It has a ring of lead GH at its

foot to balance the part removed. MN is a handle held against the axis

PP' while the top is being started by pulling the string D, and then re-

moved. If the top is not spinning it remains at rest with its axis vertical,

but when spinning occurs with the axis inclined other forces are set up

and the top reels round the vertical in a direction opposite to the spin.

Fig. 36

A spinning top used to explain precession

The arrows show the directions of spin and reel. If we imagine that the

axis of the spinning top represents the earth's axis and that the base AB
represents the ecliptic, we have a good illustration of the phenomenon of

precession. The plane of the ecliptic can be regarded as fixed while the

axis of the earth moves round at a constant angle with the perpendi-

cular to it. The effect of precession is that the earth's axis performs a

slow conical movement round a line joining the poles of the ecliptic, a

complete precession taking place in 25,800 years (see Fig. 37).

Observations of the positions of the stars by Hipparchus about

125 b.c. led to the conclusion that while the ecliptic is practically a fixed
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70 POLE OF ECLIPTIC

TO CELESTIAL

NORTH POLE

Fig. 37

Showing the phenomenon of the precession of the equinoxes

great circle on the celestial sphere with reference to the background of

stars, yet the celestial equator moves so that the first point of Aries is

carried backwards on the ecliptic. He did not know the cause of the

phenomenon, but was able to measure it with a fair degree of accuracy.

The effect of precession is to make T move backwards along the

ecliptic at the rate of 50"2 a year, so that the longitudes of the stars

increase by this amount each year while their latitudes remain un-

changed. The change in longitude implies changes in right ascension

and declination of the stars; hence it is necessary when we describe the

equatorial co-ordinates of a star to specify the year for which the

co-ordinates are reckoned. Thus, if we say that the right ascension and

declination of a star are 3h and 60° respectively, this does not supply very

accurate information unless we specify the time for which the reckoning

is made.

It is usual to give the positions of the stars for the equator and

equinox for the beginning of the year, and in these circumstances we
describe these as the mean equator and mean equinox for the beginning
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of the year, written in the form 19460 for the year 1946, and so on. This

method is not always adopted and varies with the star catalogues. In

addition, 19500 has been adopted as a standard equinox for certain

purposes in describing the positions of heavenly bodies.

Computation of Precessional Effects

The mean co-ordinates as thus defined can be found for any other year

up to a period of about 40 years with sufficient accuracy by the follow-

ing formulae, a and 8 denoting the mean co-ordinates for the year /,

and ajL and 8 X the mean co-ordinates for the year t + n:

a x
- a = n (3?073 + 1?336 sin a tan S)

8j - 8 * n (20
ff04 cos a) (51)

If we wish to find the co-ordinates for an earlier year—say to trans-

fer the co-ordinates from 19460 to 19400—we make n negative in the

above expressions.

Nutation

The moon's orbit is inclined at more than 5° to the ecliptic, and inter-

sects the ecliptic in two points known as the nodes. These nodes have a

motion round the ecliptic, completing a revolution in less than 19 years,

and during this time the inclination of the moon's orbit to the equator

varies between 23£° ± 5°, that is, between 18£° and 2U°. Her effect

on the earth's equatorial regions varies also owing to the different

inclinations; hence precession does not proceed at a uniform rate.

The result is that the curve described by the axis of the earth is not

exactly a circle but fluctuates slightly, the pole 'nodding', for which

reason this phenomenon is called nutation (from the Latin nutare, to nod).

Although (51) gives accurate co-ordinates of the stars, provided the

interval is not too long, it takes no account of nutation effects. These

must be taken into consideration in all cases where accuracy is re-

quired, and formulae for computing nutation, etc., will be given later

when we come to deal with certain constants given in the A.E.

Proper Motion

The subject of proper motion will be considered more fully later.

Meanwhile it will be sufficient to say that all the stars are in motion and

the annual change in heliocentric direction on the celestial sphere, due

to a star's motion through space, is called its proper motion. The proper
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motions of a number of stars have been calculated with considerable

accuracy, and these are given in right ascension and declination to

enable the star's co-ordinates to be recorded with precision.

The Tropical Year and the Sidereal Year

Up to the present we have defined the year as the interval required by
the sun to complete a circuit of the ecliptic, and this period is called the

sidereal year. From what has just been said about precession and
nutation it is evident that a sidereal year does not correspond to the

interval between two successive passages of the sun through T be-

cause this point has a backward movement of 50"2 yearly on the

ecliptic. Hence the sun will reach T sooner on his annual motion
amongst the stars than he reaches a defined point with reference to the

stars. The interval between successive passages through T is known as

the tropical year, the mean value of which is 365-2422 mean solar days.

The relation between the two kinds of year can be found as follows:

In a sidereal year the sun moves through 360° and in a tropical year

he moves through 50"2 less than 360°, that is, through 1,296,000" -
50"2 = 1,295,949"8. Hence

1 tropical year/1,295,949-8 = 1 sidereal year/ 1,296,000,

from which we find that a sidereal year is 1 00003935 tropical years.

The length of a tropical year is 365-2422 mean solar days, so that a

sidereal year is 365-2564 mean solar days.

Apparent, Mean and True Places of a Star

It has been shown that there is a movement of the equator and equi-

nox owing to precession and nutation and that it is necessary to define

the time for which the co-ordinates of a star are given, as otherwise

there would not be a common basis from which astronomers could work
and make their calculations. In addition to precession and nutation,

there are other effects which must be taken into consideration and cor-

rections applied for each one of them. The corrections can be included

under five heads as follows: (1) Precession; (2) Nutation; (3) Aber-
ration; (4) Annual parallax; (5) The proper motion of the star. Refer-

ence has already been made to all of these, and the method for making
the necessary corrections will be shown in the example at the end of the

chapter.

The apparent position of a celestial body is its position on the
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celestial sphere, as it would be seen if the observer were at the earth's

centre. It is referred to the true equator and true equinox at the instant

of observation.

As the geocentric parallax of a star is negligible, the apparent place

of a star is simply its observed position, corrections for refraction being

applied. The geocentric parallax of bodies in the solar system cannot

be ignored ; hence the apparent position of a planet or other body in the

solar system is its observed position on the celestial sphere, corrections

for both refraction and parallax having been applied. The co-ordinates

are referred to the true equator and true equinox at the instant of

observation.

The true place of a star is its position as it would be seen by an

observer if he could be transferred to the sun. The co-ordinates are

referred to the true equator and true equinox at the instant of ob-

servation.

If the corrections due to aberration and the annual parallax are

applied to the true place of a star the result is its apparent place.

The mean place of a star is its position as seen from the sun, but it

is referred to the mean equator and mean equinox at the beginning of

the year.

If observations of a star are made at different times of the year it is

possible to compare them only when they are reduced to some agreed

equator and equinox. The equator and equinox for the beginning of

the year are used for this purpose, and if the observations are made

over a series of years it is necessary to make the reductions from the

mean position for one year to the mean position for the beginning of

another year.

Independent Day Numbers

The reductions are facilitated by the use ofthe Besselian Day Numbers

and also by the Independent Day Numbers which are given for each

day of the year in The Astronomical Ephemeris. If the computations

were carried out without these the process would be involved and

tedious, but, as will be shown, it is a simple matter to make the reduc-

tions by using these numbers. If the Besselian Day Numbers are used

certain constants for the particular star must be computed but if the

Independent Day Numbers are used the computation of these con-

stants is unnecessary. We shall therefore illustrate the process of re-

duction by using the Independent Day Numbers.
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Example 2

ABERRATION, PRECESSION AND NUTATION 137

The mean place for a Orionis for 1960 is a = 5h 53m 00-

3

s
, 8 =

+ 7° 24' 04". Find its apparent place on 1960 April 4.

The formulae for making the corrections are as follows, a and 8

being the mean right ascension and declination, ax and S
x the apparent

right ascension and declination on 1960 April 4, and /n and /x' the proper

motion in right ascension and declination.

a
x
— a = / + g sin (G + a) tan 8 4- h sin (// + a) sec 8 + /x

T
8
t
— 8 = g cos (G + a) + h cos (H + a) sin 8 + /' cos 8 + ^'T

The values of the Independent Day Numbers used in these two

equations are given on pp. 266-81 of the A.E. for 1960./, g and G are

numbers which give the reduction for precession and nutation, and they

are derived from improved values of the nutation, including short-

period terms. The numbers It and //give the reductions for aberration,

and they are derived from the actual disturbed velocity of the earth

referred to the centre of mass of the solar system, t is the fraction of the

tropical year which has elapsed since the date to which the tabular

values of the Independent Day Numbers are referred. To avoid as far

as possible a second-order reduction, the Day Numbers are referred to

the nearest beginning of a year, instead of always to the beginning of the

current year. The apparent place is obtained with these Day Numbers

from the mean place at the beginning of either the current Besselian

Year or the next following year, according to the tabular value of r.

a and p! are the proper motions of the star in right ascension and

declination during the portion t of the year which has elapsed: they

can be ignored at present as they are so small. (See page 186 for a fuller

discussion of proper motion.)

Four-figure Tables are sufficient for the computations and (G + a)

and (H + a) can be taken to the nearest second of time as in the A.E.

The Independent Day Numbers for 1960 April 4 are:

/ + -6436s
: g 9"764: G 4h 16m 07s

: h 18*883: H 16h 58m 12s
:

i - 7"893.

From the equations we find

:

(G + a)= 10h ll m 07 s

log g . . 0-8086
-

log sin (G+ a) 9-6603

(// + a) = 22h 51m 12s

log/? .. 1-2761.

logsin(//+a) 9-4709. n

log tan 8 .. 91136 log sec 8 .. 0-0036'

sum .. 9-5825- sum .. 0-7506. n

antilog ..+0*382 antilog ..-5:631

The sum of the second and third terms on the right-hand side of the

above equation is therefore - 5"249. This must be expressed in seconds

of time by dividing it by 15. The result is -0-350 sec. Hence

ai _ a = 4- 0-644 - 0-350 = +0-294 sec.

logg .. 0-8086' log/i .. 1-2761.

log cos (G+ a) 9-9490n log cos (//+ a) 9-9801

sum .. 0-7576- n log sin 8 .. 9 1099'

antilog . . — 5T721 sum .. 0-3661

antilog ..+2T323

log 1 . . • • 0-8972-n

log cos 8 . . 9-9964.

sum . . 0-8936n

antilog ..— 7T827

8j - 8 = -5:721 + 2"323 - 7"827 = - 1 1
"225

Applying these corrections to the mean place of the star, the

apparent place of a Orionis on 1960 April 4 is found to be

R.A. 5h 53m 00?6

Dec. + 7° 23' 53"

Problems

1. The mean place of a Persei for the year 1946 is as follows:

R.A. 3 h 20m 2731, Dec. + 49° 40' 14:7. What is its mean position for

the year 1940?

2. On 1946 March 1, the apparent right ascension and declination

of Saturn are given as follows: a = 7 h 19m 16
s
23; variation in 1 day

-8S
75; 8 = +22° 11' 50" 1 ; variation in 1 day +22"8. The distance of

Saturn from the earth at the time is 8-42073 astronomical units. What

are the actual co-ordinates of Saturn at the time?

3 The Astronomical Ephemeris for 1960 gives the mean place of

v Ccntauri for 1960-0 as R.A. 14h 32- 57
s
4, Decl. -41° 59' -00". What

is its apparent place on 1960 June 210? The Independent Day Numbers

for 1960 June 21.0 are /+ l
s
2436, g 12"654, G 3 h 20m 30s

, h 20"467,

// 12h 01 m 28s
,

/ - 0:057. The proper motion terms may be neglected.



NINE

THE LAW OF GRAVITATION AND THE
MOTIONS OF THE HEAVENLY BODIES

For a long time the motions of the planets were believed to take place

in circles. Aristotle taught that the circle was the 'perfect figure', and
owing to his dominating influence astronomers even as recently as the

sixteenth century attempted to reconcile the observed positions of the

planets with circular motion. Tycho Brahe (1546-1601) made very

accurate observations of the positions of Mars, and the discrepancies

between theory and observation were cleared up by Kepler (1571-1630),

who abandoned the idea of circular motion and adopted the view that

the planets moved in ellipses, the sun being in one of the foci of the

ellipse. A short description of the ellipse follows.

The Ellipse

It has been shown in Chapter 5 how an ellipse can be traced out
on a sheet of paper. If the reader carries out this experiment and varies

the distances between the pins, he will be able to trace out a number of
ellipses of various shapes—some very elongated and some nearly

circular, with intermediate types. Fig. 38 shows an ellipse which
resembles the orbits of a few of the minor planets; the orbits of the

major planets are much more like circles than Fig. 38 and if these orbits

were reduced to the scale used in drawing this curve it would be very

difficult to distinguish them from circles.

The two points S and S", corresponding to the two pins used in

drawing the figure, are the foci of the ellipse, and the line passing
through S, S', and terminated by the curve at A and B, is known as the

major axis of length, 2a. The middle point O of AB is the centre of the

ellipse, and the line CD drawn through O Perpendicular to AB and
bounded by the curve is the minor axis of length 2b. The perpendi-
cular to AB through S or S', terminated by the ellipse, is the semi-latus
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rectum. The ratio SO (or S'O) to OA is known as the eccentricity, e, and

the greater the eccentricity the more oval is the ellipse. The eccen-

tricity lies between and 1, and if it is exactly the ellipse becomes a

circle as can be easily verified by making the pins approach closer and

closer and noticing that the curve becomes more circular each time

the pins approach each other. When they finally coincide it will be

found that the method for drawing the curve, while still applying, will

now trace a circle. When the eccentricity is exactly 1 the figure becomes

a parabola, and in this case one of the foci is at an infinite distance. A

D

Fig. 38

An ellipse, showing the foci and major axis

figure rather like a parabola can be drawn by placing the pins far apart,

in which circumstances the portion of the curve near either pin resem-

bles a parabola. A parabola, unlike an ellipse, is an open curve, not

closing in again on itself. The hyperbola, in which the eccentricity ex-

ceeds 1 , is also an open curve.

Generally speaking, most of the considerations regarding the

motions of the heavenly bodies will be restricted to motion in an

ellipse, in which curve move by far the great majority of celestial

bodies, including all the planets and asteroids. Some properties of the

ellipse will be dealt with at a later stage; meanwhile the three laws of

planetary motion formulated by Kepler will be considered and brief

explanations given of each of these.
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Kepler's First Law

The orbit of a planet is an ellipse with the sun situated in a focus.

In Fig. 39 S is the sun in one of the foci of an ellipse and Pv P2 , Ps ,

P4 represent various positions of a planet in its revolution round the

sun. Kepler's law was applied in the first instance to the orbit of Mars,

but it applies to all the planets and also to the satellites ; in the latter

case the planet to which the satellite or satellites are attached and round
which they revolve as the planets revolve round the sun is the focus of

the ellipses described. It has been shown that the sun appears to

describe an orbit round the earth—a hypothesis which is often useful for

simplifying certain computational problems—though of course it is the

Fig. 39

Explanation of Kepler's first two laws of
planetary motion

earth which describes the orbit relative to the sun which is in one of the

foci of the ellipse described. The eccentricity of the earth's orbit is small

—about 1/60—therefore this orbit does not differ very much from a

circle.

The points A and P which are at the greatest and least distances

from S are called aphelion and perihelion, respectively. The angle 8

which a line from S to any point on the ellipse makes with SP is called

the true anomaly, and lines such as SPV SP2 , etc., are known as radii

vectores, r. The following simple relations hold for all ellipses

:

SA = a (1 + e)

SP = a (1 - e)

p — r (1 + e cos 0)

b2 = a2
(1 - e2) .

.

(52)
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Kepler's Second Law

The radius vector joining the sun to a planet sweeps out equal areas in

equal times.

This law is illustrated in Fig. 39, where Pv P2 and P3 ,
PA are two

pairs of points on the orbit of a planet such that the time required for

the planet to revolve from Pl
to P2 is the same as the time required to

revolve from P3 to Px . The second law states that the area P
1
SP2 is

equal to the area P3SPt . Since SP, and SP3 are greater than SP2 and

SP, ir is obvious that the arc PZP, must be less than the arc PX
P, to

produce the equality in area between Px
SPt and PSSP,. Hence the

greater the distance of a planet from the sun the less the arc it will

traverse in a given time, and the nearer it is to the sun the greater the

arc it will traverse in the same time. The earth moves over a greater arc

in the same time on January 2 when it is nearest to the sun than it does

on July 4 when it is at its greatest distance from the sun.

If the planet completes a revolution in P days (the period of re-

volution), the radius vector sweeps out an angle of 360°. Let n° denote

the average rate of motion of the radius vector in one day, then n° =

360°/P. n° is called the mean daily motion of the planet.

Kepler's Third Law

The squares of the periodic times of any two planets are in the same pro-

portion as the cubes of their mean distancesfrom the sun.

It has been stated in (52) that SA = a(\ + e), and SP = a (1 - e).

SA and SP being the greatest and least distances of a planet from the

sun- hence the mean distance is the arithmetical mean of these two

distances, that is, the mean distance is a. MP be the periodic time of the

planet, that is, its sidereal year, Kepler's third law asserts that a*/P2
is

the same for all planets revolving round the sun. It should be noticed

that this ratio is independent of the eccentricity of the orbit and depends

only on the periodic time and the semi-major axis.

Suppose we apply Kepler's third law to the earth. In this case we

can take P to be a sidereal year and a to be an astronomical unit,

93,005,000 miles, and we can use the law to find the mean distance of

any other planet in the solar system, provided we known its sidereal

period. It is necessary to use the same units throughout, that is, the

unit of distance is 1 astronomical unit and the unit of time is 1 sidereal

year. Of course we could have used other units. We might have taken a

kilometre as the unit distance, or a mile, and 365-224 days as the unit
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of time, but these would prove very inconvenient. The units suggested

are those universally in use, and they will be employed in subsequent

calculations. Kepler's third law can be expressed in the form

a 3/P2 =1 (53)

by taking the proper choice of units.

Example 1

As an application of Kepler's third law take the case of the planet

Mars whose sidereal period is known to be 686-95 days or 1-881 years.

What is its mean distance from the sun?

Since P = 1-881, expressed in the unit adopted for the time, it

follows from (53) that a 3 = 3-538161, and hence a = 1-524 astronomical

units. If we wish to find this distance in miles it is only necessary to

multiply 1-524 by 93,005,000 miles, and the result is 141,740,000 miles.

The mean distances of all the planets can be found in a similar manner.

The Most Accurate Determination of the Solar Parallax

If we know the distance of a body comparatively close to the earth

and also its sidereal period, we have the data for determining the

distance of the sun from the earth and hence the sun's parallax. The
planets Venus and Mars have been used for this purpose, but it was
hoped to make a better determination of the solar parallax by means of

the minor planet Eros, which sometimes comes within 14 million miles

from the earth. When it makes a close approach its distance from the

earth is found by a process similar to that used in determining the

distance of the moon. Knowing the sidereal period of Eros, its mean
distance from the sun is also known in terms of the earth's distance

from the sun, whatever that may be. We are not concerned with the

actual mean distance of the earth from the sun for the moment—we
merely take this as one unit and then the mean distance of Eros

from the sun is calculated from its sidereal period in terms of this

unit.

If the actual distance of Eros from the earth at any time is known
in miles or kilometres or any other standard unit and its distance is also

known in terms of an astronomical unit (which we wish to express in

miles) it is possible to equate the fraction of an astronomical unit
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denoting the distance of Eros from the earth with its actual distance in

miles, and hence to determine the value of an astronomical unit.

This was accomplished by the late Sir Harold Spencer Jones,

Astronomer Royal from 1933 to 1955, who completed his investigations

in 1941. Eros approached the earth in 1930-31 to within a distance of

16 million miles and twenty-four observatories in different parts of the

world co-operated in observing the body. An enormous amount of

work was involved in making the necessary reductions and introducing

various refinements and corrections to ensure accuracy. Unfortu-

nately the resulting parallax, 8"790 ± 0*001, although accepted at the

time by many astronomers as an improvement, appears to be affected

by systematic errors. In 1950, E. Rabe of Cincinnati Observatory, by a

dynamical method, obtained the value 8"7984 ± 0T0004 (Astron.

Journal, Vol. 55, pp. 112-26, 1950), which has now been found to

agree with previously irreconcilable dynamical determinations made

between 1921 and 1933. It may, however, not be many years before

projects in progress in the fields of radar and radio-astronomy yield a

value at least ten times as accurate.

Newton's Law of Gravitation

Kepler's three laws can be deduced from Newton's law of gravita-

tion, which can be stated as follows:

Every particle of matter in the universe attracts every other particle

with a force varying directly as the product of their masses and in-

versely as the square of the distance between them. In the case of a

spherical body Newton showed that its attraction on a particle outside

the sphere was the same as if the entire mass of the body were con-

centrated at its centre. If, therefore, we assume that the sun and planets

are spherical, which is very nearly true, and that the distance between

the centre of the sun ofmass Mand the centre of a planet of mass m is r,

the attraction of the sun on the planet and the planet on the sun is

G x Mw/r2
, where G is a constant—the constant of gravitation. Its

value depends on the units of length, mass and time adopted, which in

scientific work are the centimetre, the gram and the second respectively.

In this system of units, which is known as the c.g.s. system (from the

initials of the three units), the value of G is 6-67 x 10
-8

dynes. This

is the force with which a spherical mass of 1 gram would attract

another spherical mass of 1 gram when the distance between their

centres is 1 centimetre. From our knowledge of the value of this
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constant it is possible to find the gravitational attraction between
any two spherical bodies, provided their masses and also the distance

between their centres are known.
The method just described for determining the attraction of one

body on another is not rigorously accurate, though in the case of the

sun and most of the planets it can be used with accuracy sufficient for all

practical purposes. The modification in the form of the expression given

above is as follows.

Modification in Kepler's Third Law
Let S and P denote the masses of the sun and a planet respectively,

and let r be the distance between their centres. Then, G being the con-
stant of gravitation, the attraction of the sun on each unit mass of P
is GSfr2

, and hence the sun's attraction on the mass P is GSP/r2
.

Similarly, the attraction of P on 5 is GPSjr2
, so that the moving force

with which the masses S and P tend towards each other is the same on
each body—a necessary consequence of the equality of action and
reaction.

The velocities with which the bodies would approach each other are

different. The expression for the velocity of P, which would be generated
in unit time, is obtained by dividing the force GSP/r- by P, and is

GS/r2
. Similarly, the velocity of S which would be generated in unit

time is GPjr2
, and each of these is a measure of the acceleration due to

the action of P and S respectively.

The relative motion of two bodies is unaltered if equal and parallel

velocities be given to each one, and hence we can bring the sun to rest,

relative to the planet, by giving the sun a velocity GPjr2 in a direction

opposite to that of the force exercised by the planet on the sun. We
must apply the same velocity to the planet, and hence when the sun is

reduced to relative rest there are two accelerations acting on the planet,

GPjr2 and GS/r2
, so that the total acceleration of the planet towards the

sun, regarded as a fixed centre, is

G (S + P)/r2

Hence it is necessary to regard the absolute force between the sun
and the planet as proportional, not to S, but to S + P. This modifies
Kepler's third law, but in the case of most of the planets this modi-
fication is very small and insignificant. The modification is as follows:

Instead of writing a^/T2 = 1, the correct form is
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a3/T- = 1 + P/S (54)

The ratio P/S is 1/1047 for Jupiter and 1/3502 for Saturn, while it is

only 1/333,434 for the earth, and in the latter case a3/T2
is altered only

very slightly by taking the mass of the earth into consideration.

Computation of the Mass of a Planet

It is possible to find the mass of a planet which has one or more

satellites by a slight modification of (54). If s is the mass of a satellite and

t and a
x
its sidereal time of revolution round the planet and its semi-

major axis respectively, the semi-major axis being the mean distance of

the satellite from the planet, (54) can be expressed in the form

a*/t2 = C (1 + s/P) (55)

where C is the ratio of the planet-satellite mass to the sun-earth mass.

The application of this formula will be shown for the planet Mars.

Example 2

Mars has two satellites revolving round him, the nearest of which—

Phobos—has a sidereal period of 31891 day or 00008731 year. Its

mean distance from Mars is 5834 miles, or 0000062725 astronomical

unit. In the case of the Mars-Phobos system, therefore, we can write

the constants as follows:

/ = 8-731 x 10"4
, a x

= 6-2725 x 10"5
,

the units being the same as those employed in the case of the earth and

sun. Hence from (55)

(6-2725 3 x 10-15)/(8-731
2 x 10"8

) = C(l + s/P).

From this we find C (1 + s/P) = 3-24 x 10~7
.

The mass of Mars and Phobos is, therefore, 3-24 x 10~7 that of the

earth and sun, or ignoring the mass of Phobos in comparison with that

of Mars, and the mass of the earth in comparison with that of the sun,

the mass of Mars is 3-24 x 10
-7

that of the sun. Deimos, the other

satellite of Mars, can be used in a similar manner to find the mass of

Mars, and the same result follows.

The mass of the earth-moon system in comparison with that of the

sun-earth system can be found in the same way. The moon's sidereal

K
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period is 00748 year and her mean distance from the earth is 000257

1

astronomical unit, and (55) gives

000257

1

3/007482 = C(l + s/P).

Hence C (1 + s/P) = 000000303471.

This shows that the mass of the earth-moon system is 303471 x 10~8

that of the sun-earth system.

Orbital Velocity of a Planet or a Comet

The velocity V in miles per second of a planet (or comet) at a point

in its orbit where its distance from the sun is /• can be found from the

formula

**«/*(: -1) (56)

where a is the semi-major axis, and ^ is a constant for all bodies re-

volving round the sun. If the planet moves very nearly in a circle, as in

the case of Venus, r = a approximately, and (56) becomes

V* = n/r (57)

The earth moves nearly in a circle, therefore (57) holds approxi-

mately for the earth. A rigorous value for the planets is given by the

expression

V= 18-49 7 (-
r

- 1

-) " --(58)

In the case of Jupiter, the mass of which is about 0001 that of the

sun, (58) requires slight modification, but this is so small that (58) can
be used for all practical purposes for all the planets, including Jupiter,

and the comets. In the case of comets travelling in parabolic orbits a is

infinite, and \/a is zero. Even in the case of comets with a large, though
not infinite, value of a, \/a can be neglected when r is fairly small, that

is when the comet is near the sun. In these circumstances

V = 18-49V (2//-) = 26-15/ Jr (59)

From (58) it appears that the velocity of a planet in its orbital

motion around the sun decreases with increasing distance of the planet

from the sun. This is in accordance with Kepler's second law.

In Fig. 39 we supposed that the planet traversed the arc PXP2 in the

same time as it traversed P3P^. As PXP2 is greater than P3P4 the velo-

city of the planet is greater between Px and P2 than it is between Pz and
P4 , when it is further from the sun.
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From this fact the direct and retrograde motions of the planets are

easily explained.

Direct and Retrograde Motions of the Planets

It will be observed that the three easily visible planets whose orbits

lie outside the earth's (i.e. Mars, Jupiter and Saturn, usually along with

the others beyond them called the superior planets) move among the

stars for the greater part of the time in the same direction as the moon,

that is with direct motion. When, however, one of them approaches the

Fig. 40

Explanation of retrograde

motion of a planet

position when it is in the opposite part of the sky from the sun, this

direct motion is slowed down and the planet appears to stop momen-

tarily at a point called a stationary point. Thereafter for some time its

motion is in a backward, or retrograde, direction until it reaches a

second stationary point, after which its motion is once again direct.

The further away the planet is from the sun the greater is the proportion

of time it spends retrograding.

Suppose the inner and outer circles in Fig. 40 represent the orbits

of the earth and Jupiter, these orbits being supposed to lie in the plane

of the paper. If E and / are the positions of the earth and Jupiter when

Jupiter is in opposition, that is, in a line with the sun and the earth,

then when the earth is at E' Jupiter will be at J', the arc EE' being larger

than //'. The motion of Jupiter is judged by projecting the planet on
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the background of stars and when the earth is at E the direction of

Jupiter will be EJ. When the earth is at E' the direction of Jupiter will be

E' J', therefore an observer on the earth will describe the motion of

Jupiter at opposition as retrograde. The lengths of the arcs EE' and JJ'
have been exaggerated to show the effect.

In the position shown in Fig. 41 JE is a tangent to the earth's orbit

so that the elongation of Jupiter from the sun, measured by the angle

JES, is 90°. Jupiter is then in quadrature and will no longer appear to

have a retrograde motion. While the earth is moving directly away

Explanation of direct motion
of a planet

from Jupiter for a very short period, Jupiter will have moved in the

same interval to J', and an observer on the earth will see the planet

projected on the background of stars in the direction EJ', so that the

motion of Jupiter will be direct at quadrature. It is clear that somewhere
between opposition and quadrature Jupiter has been at a stationary

point.

The case of a superior planet only has been considered, but the

reader can easily draw diagrams which show the effect in the case of
Venus and Mercury, whose orbits lie inside the earth's, and which are

usually called the inferior planets.

It is not surprising that the ancient astronomers, who regarded the

earth as fixed with the heavenly bodies all revolving round it, were
puzzled by the phenomena of direct and retrograde movements of the
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planets. They were forced to postulate a uniform movement of each

planet in a circle (the epicycle), the centre of which revolved uniformly

in another circle (the deferent) round a point (the eccentric) which was

near but did not exactly coincide with the centre of the earth.

If we could imagine an observer at the centre of the sun watching

the movements of the planets it is obvious that he could tell exactly

how long any planet required to revolve round the sun—in other words,

he could find the planet's sidereal period—by noticing how long it took

to return to the same position with regard to the stars. It would not be

necessary to observe the planet over a complete revolution (an as-

tronomer would require to live nearly 250 years to see Pluto complete

its revolution); it would be necessary merely to observe the number of

degrees through which the planet moved in a certain time, and as a

complete circuit is 360
3

, to divide 360° by the number of degrees and

multiply the result by the time. As an astronomer is unable to observe

from the sun he must find a planet's sidereal period by other means.

Synodic and Sidereal Periods of a Planet

When one of the inferior planets is observed from the earth to lie

in a line between the earth and the sun, it is said to be in inferior

conjunction. If the sun lies between the earth and the planet, the planet

is said to be in superior conjunction. If a planet is in the part of the

heavens directly opposite the sun, it is said to be in opposition. Mercury

and Venus can never, of course, be in opposition. The interval between

two successive conjunctions or two successive oppositions is known as

the planet's synodic period, and is the apparent time that the planet

requires to revolve around the sun. The synodic period is determined by

observation, and when it is known it is very easy to find the planet's

sidereal period.

Take first of all the case of an inferior planet. Let P be the sidereal

period and S the synodic period, the sidereal period of the earth being

E. An observer on the sun would be able to compute the angular

velocity of the planet and of the earth as follows.

Assuming uniform motion for each body, the observer on the sun

would know that the angle described by the earth in unit time was

360°/£, and that the angle described by the planet in unit time was

360°/P. He would not be concerned with synodic periods but an

observer on the earth would be, and he could find a simple relation

between the planet's synodic period and the sidereal period of each
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body. In unit time an inferior planet traces out a larger arc than does

the earth in the same time. Suppose the gain made by the planet on the

earth is 360°/5, we have the relation

360/S = 360/P - 360/E, or

1/5 = 1/P - \/E, or

\/P=\/S+\/E (60)

If the orbit of the planet is outside that of the earth, that is, if we are

dealing with a superior planet, the same method is used, but in this

case P is greater than E and the equation corresponding to (60) is

]/S=l/E-l/P (61)

The sidereal period of any planet can be found from the expression

l/P=\/E±]/S (62)

the upper sign being used when we are dealing with an inferior planet

and the lower sign when we are dealing with a superior planet.

The application of (62) will be illustrated by two examples.

Example 3

The synodic period of Venus is 583-92 days. What is her sidereal

period?

Since Venus is an inferior planet, and E = 365-25 days, (62) becomes

1/P - 1/365-25 + 1/583-92 = 1/224-70.

Hence P = 224-70 days for Venus.

Example 4

In the case of Mars where 5 = 779-94 days, (62) gives

l/P = 1/365-25 - 1/779-94 = 1/686-95.

Hence P = 686-95 days for Mars.

All the other planets can be dealt with in a similar manner.

Problems

1. The semi-major axis of the orbit of Mars is 1-5237 astronomical

units and the eccentricity of his orbit is 00933534. Find the length of
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the semi-minor axis of the orbit and also the greatest and least distances

of the planet from the sun.

2. If a minor planet has a sidereal period of 6-7 years what it its

semi-major axis?

3. The period of Io, a satellite of Jupiter, is 1-76914 days, and its

mean distance from Jupiter is 262,233 miles. From these data find the

mass of Jupiter in terms of the mass of the sun.

4. The period of Halley's Comet is approximately 76 years. Find

the semi-major axis of its orbit.

5. If the eccentricity of the orbit in Problem 4 is 0-967275, what are

the greatest and least distances of the comet from the sun, and what is

the speed of the comet in miles per second when its distance from the

sun is 1-2 astronomical units?

6. Show that in the second part of Problem 5 no appreciable error

would occur if the speed of the comet is supposed to be parabolic.

Why could this assumption not be made when the comet is far from

the sun—say at aphelion?

7. The mean synodic period of Uranus is 369-66 days. Find the

sidereal period of the planet in years.

8. If the sideral period of Pluto is 247-7 years, find its mean synodic

period.

9. In Problem 8 what is the sidereal mean daily motion (in degrees)

of Pluto?

10. The sidereal period of Triton—the inner satellite of Neptune

—

is 5-8768 days and its mean distance from Neptune is 219,817 miles.

Compare the mass of Neptune with that of the sun.



TEN

ARTIFICIAL EARTH SATELLITES AND
SPACE PROBES

The fourth of October, 1957, is one of the important dates in history.

Late that day the first artificial earth satellite (A.E.S.) was launched

from a point in the Soviet Union into a nearly circular orbit round the

earth, as part of the programme of the International Geophysical

Year. We may say that this great achievement is the technical counter-

part of the discovery of Neptune. For whereas that planet actually

existed and was found by deriving the mathematical equations appli-

cable to it, since 4th October, 1957, several additional satellites

launched by the Russians and the Americans have been created for the

earth which satisfy the previously worked-out equations.

This chapter is devoted to a simple discussion of the theory of

motion of artificial earth satellites and to the prediction of the positions

of those that are visible from published data.

Motion of an A.E.S. in a Circular Orbit

The reader should refer to the discussion of Newton's Law of

Gravitation on pp. 143ff. which is the basis of what follows.

Let us suppose that a small spherical body of mass m is revolving

in a circular orbit round the earth, whose mass is M and radius r, at a

height h above its surface. Then, assuming that the mass of each is

concentrated at its centre, the gravitational attraction between them is

Mm
G.

(r + hf

Again, if the orbital velocity of the small body is v, the component
of its centrifugal force outwards along the radius, which balances the

gravitational attraction, is

/77 V2

(r + h)

152
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Hence

v2 = G.
M

(63)
(r + h)

The acceleration due to gravity (g) at the earth's surface is G.M/r2
,

therefore

r»g
v2 =—£- (64)

(r + h)

If, then, an artificial earth satellite is carried up by a rocket to a

point at a height h above the earth's surface and projected in a direction

perpendicular to the line joining that point to the earth's centre, it will

revolve in a circular path round the earth, provided its velocity satisfies

(64). The time it takes to make one complete revolution will be

2" (r + /'>
(65)

Example 1

What is the orbital velocity of an A.E.S. travelling in a circular

orbit round the earth at a height of 250 miles above its surface, and what

is its period of revolution?

In (64), substitute r = 3963 miles, /; - 250 miles and g = 32 ft. per

sec. per sec, then

log 3963

log 5280

sum
x 2

log 32

sum

v- =

3-5980
1

3-7226'

7-3207.

14-6413'

1-5051-

161465.

(3963 x 5280)2 x 32

4213 x 5280

log 4213 3-6246.

log 5280 3-7226-

sum 7-3472

log numerator 16-1465.

log denominator 7-3472

difference 8-7993-

x I 4-3997.

Therefore the velocity of the satellite is approximately 25,100 feet

per second, or about 17,100 miles per hour.

Its period is (2-n- x 42 13)/ 17, 100 hours, or approximately 93

minutes.
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Motion of an A.E.S. in an Elliptical Orbit

So far we have assumed that the artificial satellite was launched in

such a direction and with such a velocity that its orbit was exactly

circular. In fact the orbits of the satellites which are revolving round the

earth are not circular because the precise conditions required are not
satisfied.

As we have already seen (p. 138ff.), any small body which moves
round a large one under the force of gravity describes a curve which is

an ellipse, a parabola, or a hyperbola, the circle being the special case

of an ellipse where the foci coincide. The speed and direction of an
artificial satellite relative to its height above the earth's surface at the

moment of projection determine the orbit in which it will move. Thus
if the direction is perpendicular to the line joining the point of pro-

jection to the centre of the earth but the speed is less than a critical

value, the satellite will describe an ellipse with the centre of the earth as

focus. Tf it is equal to the critical value, its path will be a parabola and
if greater a hyperbola.

Velocity of Escape and Space Probes

The critical velocity with reference to the earth is defined by

M 2r*g
V2

e = 2G. (66)
(r + h) (r + h)

" "
where the terms are the same as those in (63) and (64).

Example 2

Find the velocity with which a body must be projected from the

surface of the earth in order to escape from it.

Here h = and V%

e = 2rg. In (55) substitute g = 32 ft. per sec.

per sec. and r = 3963 x 5280 feet.

Then Ve = ^{2 x 32 x 3963 x 5280) x — miles per hour

log 2

log 32

log 3963

log 5280

sum

0-3010-

1-5051'

3-5980'

3-7226-

9-1268-
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X \

log 15

sum
log 22

difference

4-5634

11761

5-7395

1-3424'

4-3971

V
e
= 24,950 miles per hour = 6-9 miles per sec.

To find the velocity of escape of a body from another planet, let

M be the mass and d the diameter of the planet, those of the earth

being taken as unity. Then if Vp is the velocity of escape from the

planet

Vp = 24,950 yfujd miles per hour . . . . (67)

Any body which is projected from the earth's surface is also, like

the earth-moon system, under the gravitational influence of the sun.

If its velocity is at least equal to the escape velocity from the earth, the

time will come when its motion will be controlled mainly by the sun.

By the time this happens, the total velocity relative to the sun of such a

space probe will be the vectorial sum of its own velocity relative to the

earth and the earth's velocity relative to the sun. This will be much less

than the velocity of escape of the space probe from the sun, so that it

will continue to move like another minor planet in an elliptical orbit

with the sun at one focus. This is what has happened to Lunik I and

Pioneer IV. Lunik 111, which transmitted the first pictures of the other

side of the moon, is more properly a lunar probe travelling round the

earth in a very elongated ellipse highly inclined both to the ecliptic and

to the moon's orbit.

Artificial Earth Satellite Predictions

Suppose an A.E.S. has been launched in an elliptical orbit of small

eccentricity at an angle of 65° to the equator, in the direction of the

earth's rotation and with a period P minutes. Suppose too that its

height above the surface is small compared with the radius of the

earth. Then it will be approximately correct to say that it passes through

the zenith of places lying between latitudes 65°N. and 65°5.

If the earth were not rotating the satellite would cover its orbit in

P minutes, always tracing out the same path relative to points on the

surface. However, as the earth does rotate, any point on its surface

moves eastwards through approximately 360P/(24 x 60) degrees or

about 0-25P of longitude during each revolution of the satellite.
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The result is that the satellite finishes any revolution in the zenith

of a point 0-25P° west of the point above which it started.

Using the figures of Example 1 (p. 153), where h = 250 miles and
P = 93 minutes, the satellite will reach its extreme north latitude

(called the apex) at a longitute about 23° further west after each re-

volution. This is illustrated in Fig. 42, where the tracks of three suc-

cessive revolutions of such a satellite are shown. In time, of course,

Fig. 42

Tracks of three successive revolutions of an earth satellite

provided it revolves often enough, the satellite will appear in the zenith

of every point on the earth's surface between latitudes 65°N. and 65°S.

Effects of Air Resistance and Oblateness of the Earth

Two important factors that affect the motion of an A.E.S. must now
be considered ; they are the resistance of the air and the gravitational

attraction of the earth's equatorial bulge.

The density of the atmosphere at heights above 100 km. is not
accurately known, so that the effect of air resistance is uncertain. In-

deed one of the purposes of launching artificial satellites is to learn

more about this. When, for instance, the perigee of the rocket of
Sputnik 111, which was moving backwards along its orbit, reached a
latitude of about 30

C
N. in July 1958, it encountered a considerable
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increase in air density caused by a solar disturbance, making it move in a

different path from what had been predicted.

If a satellite enters the atmosphere near its perigee, it collides with

the molecules of the air and loses energy, as a result of which it spirals

in towards the earth and loses height, as well as increasing its orbital

velocity so that its period grows progressively smaller. In theory, at an

altitude of 250 miles the loss of height is only about 35 yards in each

revolution, but when the satellite is only 100 miles above the surface it

is as much as 33 miles. The actual figures differ from these theoretical

ones, and from the difference we can arrive at a better knowledge of the

density of the earth's atmosphere.

As the satellites and their rockets are not true spheres, their major

axes are continually changing direction so that their loss of energy is

not constant. As a result, reasonably accurate predictions of their

positions can be made for only a few revolutions ahead. Their apparent

magnitudes are also constantly varying due to the continually changing

surface area which is presented to the earth.

In addition to this, the earth itself is not a perfectly homogeneous

sphere, so that we are not justified in assuming that its gravitational

force on a satellite is the same as if its total mass were concentrated at

its centre. This assumption does not matter for a body like the moon

which is distant quite a number of the earth's radii from it, but it is not

true for a satellite within a few hundred miles of the earth's surface.

In fact, the equatorial radius of the earth is about 13 miles greater than

its polar radius, so that even if a satellite did travel in a circular orbit

with regard to the earth's centre, its height above the surface in any but

an equatorial orbit would continually vary. The result is that the orbits

of earth satellites regress at rates depending on their period of re-

volution and inclination to the equator.

In the early stages of the life of the first Sputniks, for example, the

effect of air resistance was negligible, but the earth's oblateness caused

their orbits to move about \° westwards every revolution. Even this is

small enough to be neglected in predictions covering only a few re-

volutions. But it must be taken into account for predictions a day or two

ahead.

Another effect of the oblateness of the earth on its artificial satel-

lites is that the line of apses (the line joining perigee and apogee) con-

tinually changes direction. That is to say, if a satellite happened to be

at its nearest point to the earth's centre as it passed the apex, it would
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not be at perigee the next time it reached the same point on its orbit.

The calculation of this effect is beyond the scope of the present book,

and only requires mention in passing. It varies in amount and direction

for each satellite, and fortunately is not very large. 'The perigee points

of the (first) two Sputniks drifted very slowly backwards along the

orbit at a rate of one third to one half degree a day, whereas with the

first American satellites (/ = 34°) perigee moves forwards along the

orbit at about 6 degrees a day.'*

It is of interest to remark that the motion of the moon, the earth's

natural satellite, shows similar features. The moon's orbital plane

moves westward, and the perigee moves forward in the orbit, but these

motions are caused by the attraction of the sun on the earth-moon

system. The effects of the earth's equatorial bulge on the moon's
motion are insignificant on account of the great distance of the Moon
from the earth (about sixty times the earth's radius).

Derivation of Prediction Formulae

If the period of revolution and inclination to the earth's equator ofan

earth satellite arc known, and also the time when it passes through the

zenith of any point on the earth's surface (called a sub-satellite point),

then it is possible to calculate when it can be seen from any other place

and its track across the sky. As before, we shall assume for the sake of

simplicity that the satellite is travelling in a circular orbit. This means
that the times and distances derived may be slightly in error, but the

errors are of the same order as those due to omitting to take into

account the effect of the earth's oblaieness and to our inability to allow

correctly for air resistance. In practice all these errors may be neglected

as a first approximation, except in the case of satellites with very

eccentric orbits like Explorer VI and Lunik III.

From equation (15a) we have in any spherical triangle

cos a = cos b cos c + sin b sin c cos A
Another formula, connecting two sides and two angles of any spherical

triangle, is

cos b cos A = sin b cot c — sin A cot C
Putting A = 90° in these two equations, we get

cos a = cos b cos c (68a)

cot C = sin b cot c (68b)

* Gordon E. Taylor, Journal of the British Astronomical Association, Vol. 69,
No. 3, p. 123.
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In Fig. 43, let A be the apex of an A.E.S., S a sub-satellite point and

N the north pole of the earth. Then AS ( = d) is part of the track of the

satellite projected on the earth's surface. Let the geocentric latitude

of the apex be i, the same as the inclination of the orbit of the satellite

to the equator. Owing to the fact that the satellite is some distance

above the earth's surface, this is not quite the same as the latitude of the

apex read off from a map, but the difference can be ignored. Let its

terrestria' longitude measured westwards from the meridian of Green-

wich be AA . Let the latitude and longitude of the sub-satellite point be

cj> and A, and the times when the satellite is in the zenith of A and 5,

respectively be t and /. Let is also be assumed that when S is east of A,

Fig. 43

Derivation of prediction formulae of an earth satellite

the satellite reaches S after it has passed the apex. (AA - A) and (t - t )

(measured in minutes) are therefore positive. Then if the period of

revolution of the satellite is P minutes,

d° = x 360
c

(69)

Now in the spherical triangle NAS, A is a right angle, NA =

(90° - /), NS = (90° - tf>) and the angle ANS = (AA - A). Then

from equations (57a) and (57b)

cos (90° -
<f>)
= cos (90° - /) cos d

cot (AA - A) = sin (90° - i) cot d

sin
<f>
« sin /cos d (70a)

cot (AA - A) = cos i cot d (70b)

or
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If the earth were not rotating 5" would be fixed with respect to A,

but in fact at the instant t when the satellite is at A the point S is west of

where it is (t - t ) minutes later when the satellite reaches it. So
(AA — A) must be corrected by having 0-25 (t — t ) subtracted from it.

Example 3

During September 1958 the rocket of Sputnik III was travelling in

an orbit inclined at an angle of 65° to the equator. It was at an apex in

longitude 311° on 1958 September 22d . 03h 45m5 U.T., when its period

was 99-2 minutes. Calculate when it reached the zenith of a point in

latitude 60° N. and the longitude of that point. (Assume that the orbit is

circular, work throughout to two decimals and round off the answer to

one decimal.)

From (70a) cos d = sin 60°/sin 65°

log sin 60° 9-9375

log sin 65° 9-9573

log cos d 9-9802

d 17°17

From (69) t - t = (99-2 + 1717)/360 minutes

log 99-2

log 1717

sum
log 360

difference

t - t

1-9965

1-2346

3-2311

2-5563

0-6748

From (70b) cot (AA - A) = cos 65

log cos 65°

4- 4-73 minutes

cot 17?17

9-6259

0-5102

01361

= - 1°18

log cot 17° 17

sum
(AA - A) = 36°17

The correction to (AA - A) = - (0-25 X 4-73)
c

Therefore (AA - A) = 35°.

The sub-satellite point is 60° N. 276° W., and the satellite was in the

zenith there on 1959 September 25d 03 h 50m2 U.T.

If on the other hand the time when a satellite is in the zenith of any

point is known, the longitude of the immediately preceding apex may be
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found as well as the time when the satellite was there. The times when

the satellite is at other apices may be found by adding or subtracting

the appropriate multiple of the period, as well as correcting the longi-

tude for the rotation of the earth and the effect of its oblateness. In this

way prediction tables may be formed similar to those published in the

British Astronomical Association Circulars. By using them the track

of an A.E.S. may be plotted on a map or latitude-longitude grid.

Local Predictions

Once such tables have been prepared, predictions for the appear-

ance of satellites for any point on the earth's surface may be made.

In Fig 44 let O be the centre of the earth, S the satellite at a height h

above the known sub-satellite point S', and P the position of the

observer, /• being the radius of the earth. Then the arc PS' (measured

by the angle POS = a) is the distance of P from the sub-satellite point.

This distance can be read off from a map, converted to nautical miles

and then transformed to circular measure. At the same time the azimuth

of 5" from P is measured.

PM is drawn at right angles to OP, and the angle MPS is the altitude

(A) of the Satellite as seen from P.

Fig. 44

Local prediction of an earth satellite
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Now in the plane triangle SOP, OP = r, OS = r + h, angle

SOP = a, and angle OPS = 90° 4- A. Therefore

r sin (90° + A) = (r + h) sin OSP
But sin OSP = sin (OPS + SOP) = sin OPS cos SOP + cos

OPS sin SOP. Therefore

r cos /* = (/• + /;) (cos A cos a — sin A sin a)

or (r + //) sin A sin a = (r + /j) cos /I cos a — r cos ^4

Dividing both sides by (r + /;) sin a cos A,

tan/4 =
(r+h) cos /4 cos a— r cos /4

= cot a —
(71)

(r+h) sin a cos A (r+h) sin a

If any two of the quantities /I, /* and a in equation (71) are known, in

addition of course to r, the third may be found. The height of an arti-

ficial earth satellite is found from the original elements of its orbit in the

same way as the distance of the moon from the earth, or of a planet from
the sun. But the observer may determine his position with respect to the

satellite's orbit by making two observations of its position as accurately

timed as possible (to within 01 minute). From these he can deduce the

longitude of its apex and the time when it was at the apex. The distance

a can then be measured, and as the altitude A is known the height of the

satellite can be found.

Example 4

If an observer is 516 miles from a point on the earth's surface above
which an A.E.S. is passing at a height of 528 miles, at what altitude does

he see it?

516 miles = 4478 nautical miles, therefore a = 7° 28'. Hence by
using equation (71)

tan A = cot 7° 28' - 3963/4491 sin 7° 28'

log 4491 3-6523 log/- 3-5980

log sin 7° 28' 91138 2-7661

sum 2-7661

COt a

diff.

7-630

0-8319

antilog 0-8319 6-790

tan A

A --= 40°

0-840
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The reader should remember that artificial earth satellites revolve

relatively very close to the earth, so that even when they are above the

horizon they are in the earth's shadow for most of the time. The result

is that they are visible to the naked eye only at dusk and dawn.

Graphs will be found in the Journal of the British Astronomical

Association, Volume 69, No. 5, p. 217, from which the apparent

altitudes of satellites can be read off when the ground distance and

height of the satellite are known. By using them in conjunction with the

map or diagram of the satellite's track (see p. 156), the observer can

quickly work out whether it is above the horizon at any particular

time and if so in what direction and at what altitude it can be seen.

Problems

1. At what height above the earth's equator must a satellite revolve

if it is to remain permanently in the zenith? (Use equation (65) to find

vin terms of (r+h), and substitute in equation (64). Work throughout

in feet and seconds before finally expressing h in miles.)

2. Find the velocity of escape of a small body from Jupiter, whose

mass is 318-4 times and whose diameter is 11-2 times that of the earth.

3. After completing 7765 revolutions, Sputnik III (;'=65°) was at its

apex in longitude 320?7 on 1959 November ll
d 19 h 19

m4 U.T. Its

period was then 95-8 minutes. Assuming that it was travelling in a

circular orbit, find when and in what longitude it crossed latitude 40° N.

soon afterwards.

4. At what altitude will an A.E.S. appear to be if it is passing at a

height of 1350 km over a point 400 km. away from the observer?

5. If an A.E.S. appears to have an altitude of 35° to an observer

who is 1500 km. away from its sub-satellite point, at what height above

the earth is it?
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THE MOON

A brief outline of the motion of the moon and of certain phenomena

associated with this motion is all that can be attempted in this chapter.

The motion of the moon is extremely complicated and an adequate

treatment of the subject would require a volume to itself. The reader

will find in this chapter sufficient for most purposes, but if he wishes to

pursue this specialized branch further he can consult more advanced

works on the subject.

The Barycentre

The moon moves in an elliptic orbit round the earth, just as the

earth moves in an elliptic orbit round the sun, the sidereal period being

27-321661 days. This statement requires slight modification, because

the mass of the moon, being 00 123 that of the earth, cannot be ignored;

hence the centre of gravity of the earth-moon system is not at the

centre of the earth but at a distance of 00 123 x 240,000 or nearly 3000

miles from the earth's centre. This point, known as the barycentre, is the

focus of the ellipse which the moon describes in its motion and is also the

focus of the ellipse which the earth describes in its motion. We have

dealt elsewhere with binaries which revolve round their common centre

of gravity (pp. ISSf.), 1 but the earth and moon can be regarded as

akin to a binary system, except that the disparity in their masses is

considerably greater than it is in the case of most binary stars. The

earth and moon are revolving round the barycentre, which is 1000

miles below the earth's surface, and an important effect of this is the

apparent displacement of the sun during a month.

Fig. 45 shows that at full moon, when the earth lies between the sun

and the moon, the earth's centre is nearer to the sun than is its bary-

centre by 3000 miles, and at new moon, when the moon is between

the earth and the sun, the earth's centre is 3000 miles further from the

1 See also M. Davidson, From Atoms to Stars, p. 121.
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The earth and moon revolve around their common centre of

gravity, known as the barycentre, marked in the figure as the

middle X

sun than the barycentre. It has been shown in Chapter 8 that the

positions of the sun, measured from observatories on the earth's surface,

are referred to the centre of the earth, not to the barycentre, so that
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the sun appears to be displaced according to the relative positions of the

sun, earth and moon. The angle subtended by a line 3000 miles long

at the sun is 206,265" x 3000/93,005,000= 6"65; hence the sun appears

to be about 6"6 in front of his average position at the moon's first

quarter, and the same amount behind the average place at the last

quarter. Careful measurements of the exact displacement have shown

that the mass of the moon is about 1/81 that of the earth.

The interval between two successive new moons is called the

lunation or the synodical month. Its value varies from month to month,

owing to the complexities of the moon's motion, but its average

value, taken over a long period, has been found to be 29-53059 days, or

29d
1

2

h 44m 2?9. The sidereal period of the moon, already referred to,

is deduced from the observed synodical month in the same way as the

sidereal period of a planet is deduced from its synodical period. Taking

the sidereal year as 365-25636 days, the synodical month as 29-53059

days and the moon's sidereal period as M days,

\\M = 1/365 25636 + 1/29-53059, from which

M = 27-32166 days.

New moon occurs at the instant when the centres of the sun and

moon are in conjunction, that is, when the centres as seen from the

centre of the earth have the same longitude. The age of the moon is the

time, expressed in days, that has elapsed since the previous new moon,

and when integral values only are used the moon is said to be one day

old when less than 24 hours have elapsed since new moon, two days old

during the next 24 hours, and so on. The A.E. gives the age of the moon
for each day at h U.T. throughout the year.

The Metonic Cycle

In 433 B.C. Meton, an Athenian astronomer, made an important

discovery regarding the relation between the lengths of the year and a

lunation. This relation will be better understood from the table below:

19 tropical years = 19 x 365-2422 days = 6939-60 days

235 lunations = 235 x 29-53059 days = 6939-69 days

The difference between the two cycles is only 009 day and therefore

after 19 tropical years the phases of the moon repeat themselves, that is,

if it were full moon on a certain date, full moon will occur again on the

same date nineteen years later. The Metonic Cycle can be used to

predict the dates of full and new moon for many years ahead.
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Finding the Age of the Moon

The method for arriving at the simple formula given below would

require too much space if dealt with fully. Those who wish to understand

the reasons for the method should consult The Journal of the British

Astronomical Association, 51, 9, 1941 October, pp. 313-18, where Dr.

Davidson has given a full investigation of the subject. It should be said

that it does not profess to give absolutely accurate results and the ages

ofthe moon obtained by the formula and tables may be in error by as much

as two days, but this will often be close enough for practical purposes.

In the first instance the moon's age will be found for h on January 1

in any year and then it will be shown how it can be derived for any

date in the same year.

It should be noticed that 12 lunations occupy 354-367 days, which

is 10-875 days less than the tropical year. If we can imagine new moon

occurring at the beginning of a year, then at the beginning of the

second year the moon's age will be 10-875 days, at the beginning of the

third year 21-750 days, and at the beginning of the fourth year 32-625

days, or, deducting 29-531 days, the period of a lunation, the moon's age

at the beginning of the fourth year will be 3,094 days. At the beginning

of the fifth year the moon's age will be 1 3-969 days, and so on.

The moon's age at h on January 1 is known as the epact (from the

Greek epaktos, which means added), the word referring to the eleven

days which must be added to twelve lunations to make a tropical year.

It will be denoted by E.

Let y denote the year and the operation ( ) r the remainder ob-

tained when the division inside the brackets is carried out. We are not

concerned with the quotient. Then the age of the moon at h on January

1 in any year y is given by

£• =
(

U9,

Y 30

For the present century deduct 1 from the value given by this

equation for E.

As an example of applying the formula, find the age of the moon on

1832 January 1.

y = 1832, (y/19), = 8, E = [—^-)
r

- 28 davs -

Therefore the moon's age, or the epact, on 1832 January 1 is 28.
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To find the moon's age on any other date in the same year it is

necessary to find the number of days from January 1 to this date, add

this to the moon's age on January 1, and divide by 29-53, the number of

days in a lunation, the remainder being the moon's age. To simplify the

computations the two tables given below have been compiled, and from

these the moon's age can be deduced.

Table 1

Add to epact Add to epact

Month increased by Month increased by

date of month date ofmonth

January -1 July 180

February 30 August 211

March 58 September 242

April .

.

89 October 272

May .

.

119 November 303

June .

.

150 December 333

Table 2

29.53 x 1 . . 29-5 29-53 x 7 206-7

2 . 591 8 236-2

3 . 88-6 9 . 265-8

4 . 1181 10 295-3

5 . 147-7 11 324-8

6 . . 177-2 12 . 354-4

In Table 1 the numbers from March to December must be increased

by 1 in the case of a leap year. The use of the tables will be shown by
an example.

Example 1

Find the age of the moon on April 10, 1832.

The epact is computed by the formula and this gives 28 days, as

already shown. Since 1832 is a leap year we must add 90—not 89—
to the epact, and then to this the date of the month, 10. This gives 128,

and from Table 2 it is seen that the nearest number to this, less than 1 28,
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is 1181. Deducting 118 from 128 the result is 10 days, which is the

moon's age on April 10, 1832.

Inclination of the Moon's Orbit to the Plane of the Ecliptic

The moon does not move in the ecliptic, the plane of her orbit

being inclined to the plane of the ecliptic at an angle of 5° 9' on the

average. Hence the moon's orbit intersects the ecliptic in two points

known as the ascending and descending nodes, the former being applied

to the point where she crosses from south to north and the latter to the

point where she crosses from north to south. By marking the position

of the moon on a globe on a great circle drawn at an inclination of about

5° to the ecliptic the following facts regarding the moon's declination

will be obvious.

If the position of the moon coincides with a point on her orbit which

is at the maximum distance north from the ecliptic, that is 5° 9', and this

portion of the ecliptic is at its maximum distance north from the equator

about 23*2°, then it is possible for the moon to have a declination of

more than 28£°. If, on the other hand, the position of the moon on

her orbit is at the maximum distance south of the ecliptic, and this

happens to be the maximum distance from the equator to the ecliptic,

this portion of the ecliptic being south of the equator, the moon's

declination will be 28£
3
S. It is possible, therefore, for the moon to have

all declinations between 28£° N. and 28£° S., and this explains why the

moon appears so high in the heavens at one time and very low at an-

other time.

Take the case of a full moon about the time of the winter solstice.

Since full moon occurs when the earth lies between the sun and the

moon, and the declination of the sun at the winter solstice is 23i° S., the

moon at this time must have a declination 23£° ± 5° N. If we take the

upper sign this will be 28 \° N.; hence in northern latitudes the full

moon at the winter solstice can attain a greater meridian altitude than

the sun does at the summer solstice. Take a place in latitude 52° N. At

the summer solstice the sun's meridian altitude is colat. + declination

(see p. 48) or 61£°, and the moon's meridian altitude at the winter

solstice can be 66i°. On the other hand, the altitude might be 5° less

than that of the sun at the summer solstice because the declination of

the moon when full at the winter solstice might be only 18° N. In the

latter case she attains a meridian altitude of 56£°.

In the summer, when the sun's declination is far north, that of the
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full moon is far south, and the same reasoning shows that during this

season the full moon may be lower when she is on the meridian than the

sun is. This brief explanation will show why the altitudes of the moon
vary so much throughout the year.

Retardation of the Moon's Transit

If observation be made of the times when the moon is due south it

will be found that she crosses the meridian later each night, but that

there is a considerable variation in the intervals. This variation is due
to the fact that the moon does not move at a uniform speed round the

earth, as her orbit is eccentric, the eccentricity being 00549. The
maximum and minimum distances of the moon from the earth are

252,120 miles and 225,880 miles respectively, and at her minimum dis-

tance her orbital speed is greater than when she is at her maximum
distance. Other factors contribute to irregularities in the motion of the

moon, but it is not within the province of this book to deal with these.

We are concerned for the present with the retardation, and its average

value can be easily found as follows.

We have seen that the synodic period is 29-53059 days and in this

time the sun crosses the meridian once oftener than the moon. To
make this clearer, remember that in this period the moon makes a com-
plete circuit of the heavens, returning to the same position with regard

to the sun, so that if we reckon days by the moon instead of by the

sun, there will be only 28-53059 lunar days in 29-53059 solar days. The
length of the lunar day is, therefore:

29-53058/28-53059 = 1 03505 solar days.

As 003505 solar day = 50m 28 s
, the interval between transits, on

the average, is about 50£ minutes.

This retardation explains why the tides are later each day, as the

moon is primarily responsible for the tides, the sun acting in a subor-

dinate capacity, owing to his great distance from the earth, which more
than offsets his greater mass.

Harvest Moon
If the moon moved along the equator at a uniform rate her times of

rising and setting and of crossing the meridian would be later by 50£m

each day. Not only does the moon not move in the equator; in addition,

her motion is far from uniform, and considerable variations in the
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retardation occur, these variations depending on the latitude of the

place and other factors. At the full moon nearest to the autumnal

equinox it has been observed that for a few successive evenings the

times of rising follow sunset at a short interval, and as the continuance

of the light is advantageous to farmers for gathering in the harvest, the

name Harvest Moon has been applied to the moon at this time. It may

be remarked that this phenomenon occurs each month but is not so

noticeable because it is more conspicuous when this minimum retarda-

tion takes place near full moon and also when the moon rises about

the time of sunset. At any time when the moon is near T and is moving

from the north to the south side of the ecliptic this retardation can be

observed, whatever the phase of the moon, but unless people set out to

watch it carefully it will not be very obvious.

To explain this phenomenon, it will assist to refer to Fig. 12 and to

suppose that the moon is moving in the ecliptic EE' from south to north

of the equator. Other circumstances being the same, the change in the

moon's declination for any period is greater at the points where the

equator and ecliptic intersect than elsewhere. The same thing applies

to the sun and a reference to the A.E. will confirm this. Thus, on 1960

March 23 when the sun is near T the change in his declination each day

is more than 23', whereas the change on May 27 is only 10' and on June

20 it is less than 1'.

Full moon occurs on 1960 September 5d ll
h

, and at this time the

moon's declination is increasing by over 10' an hour, whereas little

more than a week later, at 2h on September 14, it is practically station-

ary. On September 5 the moon is near T, which accounts for the

rapid change in her declination. Readers who possess a celestial globe

should measure a few equal intervals on the ecliptic, starting at T, and

should then measure the declinations of the equidistant points on the

ecliptic. It will be found that the declinations increase more quickly

near T than they do at a distance from it.

It may seem remarkable that a rapid change in the moon's declina-

tion should have any effect on her time of rising and setting. It is to be

expected that a change in R.A. would alter these times, an increase of

say 50m in R.A. causing a corresponding delay in her time of rising,

transit and setting. The explanation will be easily understood by those

who have followed Chapter 4.

Assume that the observer is in latitude 52° N. Then from p. 412 of

the A.E. it is found that moonrise on 1960 September 5 is at 18h 42m
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local mean time. This is near enough to the time of full moon for the

present purpose, so interpolating from the figures given on p. 130 of the

A.E. the moon's R.A. and Dec. at moonrise are 23 h 13m and -5° 11'

respectively. The corresponding figures for the next night are h 8m and
-0° 43'. Making use of equation (21), Chapter 4, the figures for h the

hour angle of rising are as follows:

Local

sidereal time

September h R.A. of moonrise

5 18h 27m 23 h 13m 17h 40m

6 18h 04m h 08m 18h 12m

The last column is obtained by using (12), Chapter 2, where it has

been shown that the expression

local sidereal time = hour angle + R.A.

can be used for any heavenly body and it has been applied above in the

case of the moon. The difference between the two times of moonrise
is 1 sidereal day 32 minutes, which is the equivalent of about 28m of
mean time later in the lime of rising on the second night under con-

sideration. Hence in this case the moon rises only 28 minutes later on
the second night.

Suppose the moon's declination had not changed in the interval or

had changed by such a small amount that it was insignificant, what
difference would this make in the computation? In these circumstances

the moon could be treated as a star, so far as declination is concerned,

and on September 6 h would be 18h 27m just as it is on the previous day.

Hence the local sidereal time of moonrise on September 6 would be
18h 27m + h 08m = 18h 35m , which is 23 minutes greater than the

actual time of moonrise. This shows the effect of the change in the

moon's declination.

At the full moon following the Harvest Moon the same phenomenon
occurs, though it is not generally so pronounced. The moon at this time
is called the Hunter's Moon because it is the hunting season.

An examination of the A.E. will confirm the results just obtained,

and certain other interesting matters are shown which are easily ex-

plained from the formulae obtained in Chapter 4.

It has been shown that the moon is near T on 1960 September 5 and
actually on September 6 between 23h and 24h her declination becomes
zero which implies that she is on the equator. We have seen on p. 37 that
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when a heavenly body is on the equator its times of rising and setting

are practically the same for all latitudes, and on referring to the A.E.,

p. 412, it will be seen that the times of rising of the moon on September

6 differ very little for various latitudes. The same applies to other cases

where the moon has a small declination, as for instance on May 7.

Now take the case where the moon is near T but not necessarily

full, say about 1960 May 2. From the explanation given above the

moon's declination is changing rapidly at this time and from the A.E.,

p. 103, it will be seen that the moon is moving north by about 10' per

hour. Hence we should expect that the retardation should be small in

the northern hemisphere, and on p. 403 of the A.E. it will be seen that

this is only 24 minutes in latitude 52° N. For southern latitudes we

should expect just the opposite—a considerable retardation—and on

p. 424 of the A.E. it will be seen that an interval of I
h 07m exists between

moonrise on May 21 and May 22 in latitude 52° S. As the moon is 25

days old on May 21 and rises about l
h 26m before the sun in latitude

52° N. the phenomenon is not conspicuous.

It should be noticed that in all cases where the retardation of moon-

rise is small the retardation of moonset is large, and vice versa. The

explanation of this is given below.

Take the case of moonset on 1960 September 6 and 7. Interpolating

from the A.E. figures on p. 130 it is found that at moonset on the above

dates the R.A. and Dec. of the moon are as follows:

September

6

7

R.A.

23h 40 r

35

Dec.

-3° 04'

+ 1 32

Applying (21) to determine h, the following figures are obtained:

September

6

7

5h

6

44"

08

R.A.

23h 40"

35

Local sidereal time

of moonset

5 h 24m

6 43

The interval between the two times of moonset in this case is l
d

l
h

19m sidereal time, which is the equivalent of l
h 14m mean time later on

the second day.

The reason for the large retardation in the time of moonset will be

seen from the two sets of figures—those for moonrise and those for
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moonset. In the former case the hour angle on the second day is smaller

than on the first day, and this implies that, as the R.A. on the second day
is necessarily greater than it is on the first day, a partial compensation is

effected by the addition of the smaller hour angle to the increased R.A. In

the case of moonset both the hour angle and the R.A. are greater on the

second day than they are on the first day, and so their addition, giving

the local sidereal time of moonset, does not affect a partial compensation

but accentuates the retardation.

The effects of refraction and of parallax have been ignored and the

times of rising and setting are considered to occur when the centre of

the moon's disc is on the horizon. The moon is actually considered to

rise and set when her upper limb is on the horizon, like the sun's, but the

neglect of these points makes no difference to the argument and does

not seriously affect the quantitative results.

The phenomena just described are very simply explained by the use

of a celestial globe which can be set for any convenient northern latitude

—say about 50° N. Imagine that the moon is at v where her R.A. and
Dec. are zero. Rotate the globe eastward until the moon is on the horizon

The hour angle of rising is measured by the arc from the meridian,

round the equator in a westerly direction to the moon, and is obviously

equal to 24h minus the arc from the meridian to the moon measured in

an easterly direction. The latter is, of course, easier to measure and it

will be found that it is 6h , therefore the hour angle of the moon at rising

is 18h . If the globe is rotated until the moon is on the horizon again at

the time of setting, the hour angle in this case is 6h
, assuming that the

moon has not moved in R.A. or Dec.

Now instead of taking the moon on the equator, imagine that she is

a few degrees north of the equator, her R.A. still being zero. When the

globe is rotated so that the moon is on the horizon at rising it is found
that the angle from the meridian to T is greater than 6h

; hence h is

less than 18h when the moon is rising. Rotating the globe until the

moon is on the horizon again at the time of setting, the angle from the

meridian to the moon exceeds 6h and in this case h is greater than 6.

These results were brought out in the above investigation.

Instead of making the moon move northwards in declination make
her move south and notice that precisely the opposite phenomena now
occur. At the time of rising her hour angle has increased and at the

time of setting it has decreased. Hence to observers in the southern

hemisphere a large retardation in the time of the moon's rising would
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correspond to a small retardation to observers in the northern hemi-

sphere.

It should be noticed that in these experiments with a globe the R.A.

has been maintained constant as the object is to show the effect of

changes in the moon's declination on the times of her rising and setting.

The Moon's Libra

t

ions

The moon rotates on her axis in the same time as her sidereal orbital

period of 27-3217 days and so presents practically the same face to-

wards the earth. If her axis of rotation were perpendicular to the plane

of her orbit and the orbit were circular so that the orbital motion was

uniform, we should be able to see just a very little more than half her

surface. This is due to the fact that as the moon is a comparatively

close body, observers on different parts of the earth see a little more than

half of her surface. An observer at any particular place sees this because

he is carried round by the rotation of the earth, but this effect is small in

comparison with two other effects which will now be considered.

Just as the earth is sometimes ahead of and sometimes behind the

positions it would occupy if its angular orbital motion round the sun

were uniform, so the moon, owing to her elliptical motion round the

earth, is sometimes ahead of and behind her mean position. Assuming a

uniform axial rotation of the moon, it is obvious that additional portions

of her surface are seen on her east and west limbs. This phenomenon is

known as Vibration in longitude.

The axis of rotation of the moon is not perpendicular to her orbital

plane but is inclined at an angle of 83£° to this, or at an angle of 6£° to

the perpendicular to this plane. The result is that portions of the moon's

surface on 'the other side of the moon' are visible, these portions ex-

tending 6£° beyond the moon's poles. This effect is known as libration

in latitude.

In consequence of these three librations about 59% of the moon's

total surface is visible from the earth.

Total and Partial Eclipses of the Sun

An eclipse of the sun occurs when the earth enters the shadow cast by

the moon and so can take place only when the moon is between the

earth and the sun—that is at new moon. Fig. 46 shows the shadow cast

by the moon, and this is a cone whose vertex is O. The portion shown

in dark shading is the umbra, inside of which no light from the sun can
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pass. Outside the umbra is the penumbra, shown in light shading, and
some of the light of the sun enters this portion. Transverse tangents

from the sun to the moon enclose this space on the side of the moon
remote from the sun.

On any part of the earth between P and P' the eclipse will be total,

but outside these points the surface of the earth will be in the penumbra,
and a partial eclipse will be visible under these conditions. As will

appear in the course of the investigation, a total eclipse of the sun is

visible over a very small part of the earth.

It must be noted that the figure is drawn entirely out of scale, in

order that the geometrical proofs may be more easily followed. In

actual fact the arc PP' would cover, on the scale on which the earth

is drawn in the figure, approximately the thickness of the lines in it;

even the whole partial phase of a total eclipse is visible over only a

small portion of the earth's surface.

In Fig. 46 let R and r be the radii of the sun and moon respectively,

and let O be the vertex of the cone formed by the tangents to the sun
and moon. From the properties of similar triangles,

™,~w «, 430,000 milesSOOM - Rr = - = 400
1080 miles

Now SO = SM + MO, hence

SO/OM = SM/OM + 1, from which

SM/OM = 399, or

OM = 00025063 SM.

If SM = SE - ME = 93,005,000 - 239,000 miles = 92,766,000
miles, then MO is about 232,500 miles.

Annular Eclipses of the Sun

The mean distance between the centres of the earth and moon is about
239,000 miles, but P can be nearly 4000 miles nearer to M than this,

though tins would not occur frequently as it requires the moon to be in

the zenith of P. Assuming that the moon is in the zenith of P, this

implies that P is at C and so 235,000 miles from M. Hence P would be

about 2500 miles further away from the sun than O, the vertex of the

cone of the moon's shadow. In these circumstances, or when the moon
is still further away from the earth, we have the situation indicated at the

right of Fig. 46, where inside the portion QQ' of the earth's surface

the eclipse will appear annular. That is to say, even at its central
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Fig. 46

An eclipse of the sun

moment a ring (annulus) of uneclipsed sun surrounds the dark body of

the moon.

When the centres of the moon and earth are less than 232,500 miles

apart, the least distance being about 226,000 miles, the point P can be

from zero to 6500 miles nearer the sun than O, and a total eclipse is

possible, its size and duration depending on how far inside the cone of

the moon's shadow the surface of the earth is.

It is a coincidence, but a fortunate one for those who love the

beauty of natural phenomena like eclipses, that the relative diameters

of the sun and moon and their distances from one another and the

earth are such that they appear to us to be almost exactly the same size

in the sky. Had the moon been a little smaller or a little further away

from the earth, total eclipses could never have occurred.

Width of the Shadow during a Total Eclipse

From similar triangles, MOT, COP, considering the small arc CP to

be a straight line of length s,

CP/CO = MT'/MO, or s = CO x MT'/MO.

Suppose that MO = 232,500 miles and MC = 222,000 miles, then

CO is 10,500 miles; hence s = 1080 x 10,500/232,500 = 51 miles.

The width of the shadow is 2s or about 100 miles. This occurs under

very favourable conditions when the moon is in perigee, but the width

of the shadow during totality is usually much less than this. The shadow

on a small portion of the earth's surface would be a circle of radius 51

miles under the above conditions, if it were projected perpendicular to

the horizon at the place. As this does not occur very often, the outline of

the shadow is an ellipse, the minor axis being just over 100 miles with

M
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the circumstances as given above, but this is only a particular case and
the minor axis of the ellipse is often less than that just indicated.

The calculations required for the circumstances of an eclipse, time,

line of totality, etc., are too abstruse to be dealt with in this book. The
A.E. for each year contains all the details and should be consulted by
those who are interested in eclipses.

Lunar Eclipses

Aneclipse of the moon occurs when the earth comes between the sun

and the moon, the shadow in this case being cast by the earth, and it

can be either total or partial. There is no such thing as an annular

eclipse of the moon. Fig. 47 shows the moon in the umbra and later

in the penumbra, these terms being the same as in the case of a solar

eclipse. We have seen that the moon's orbital plane is inclined to the

ecliptic at an angle of over 5°, and because of this inclination

eclipses of the sun and moon do not necessarily take place every

month. If the moon is at or close to one of its nodes (see p. 169) and is

new or full at the time, an eclipse of the sun or moon will occur.

It has been shown that the distance of the vertex of the umbral cone

during a solar eclipse is about 232,500 miles from the centre of the

moon and also that this depends on r, the moon's radius. If we sub-

stitute the earth's radius for that of the moon we shall obtain the dis-

tance of the vertex of the umbral cone of the earth's shadow: as the

earth's radius is nearly 3-66 that of the moon, this distance is about
851,000 miles. Hence the vertex O of the cone lies a long way outside

the greatest distance of the earth from the moon, and for this reason the

moon can never enter the portion of the shadow on the other side of the

vertex. Hence an annular eclipse of the moon is impossible.

Fig. 47

An eclipse of the moon
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The moon's nodes are not fixed points on the ecliptic but have a

backward movement, making a complete circuit of the ecliptic in

6793-5 days or about 18f years. It is easily found from this by a method

similar to that used in deriving equation (62), Chapter 9, that the synodic

period of the moon's nodes, that is, the interval between successive

coincidences with the sun, is 346-62 days, and from this an important

discovery has been made regarding the recurrence of eclipses.

The Saros

From the above figures and also from the period of a lunation the

following figures are obtained:

19 synodic periods = 6585-78 days

223 lunations = 6585-32 days

The interval of 6585 days is known as the Saros and is very im-

portant in connection with eclipses. Suppose an eclipse of the sun

occurs on 1919 May 29. The moon must have been new at the time and

close to one of her nodes, the sun also being close to the same node. In

19 synodic periods the sun must be close to the same node again and in

223 lunations the moon must also be close to the same node, and, in

addition, must be new. Hence, the conditions are very nearly the same

as for an eclipse 6585 days later and in fact another total eclipse of the

sun took place on 1937 June 8, which is 6585 days after 1919 May 29.

The Chaldean astronomers discovered the Saros and were able to

predict eclipses of the sun and moon by making use of it.

Without giving a proof the following facts about eclipses can be

accepted

:

During any year there must be at least two eclipses, both of the sun.

During any year there cannot be more than seven eclipses. Of these,

four can be solar and three lunar, or five can be solar and two lunar.

From the last rule it will be seen that under no circumstances can

there be four lunar eclipses in a year. The word 'eclipses' includes

every form of eclipse, total, partial, or, in the case of the sun, annular.

Problems

1. Find the age of the moon on 1999 August 11.

2. Find the age of the moon on 1940 January 31 and also on 1940

April 6.



TWELVE

THE STARS

Certain problems arise in dealing with stellar magnitudes, proper

motions, the masses of binaries, etc., and a brief outline of the method
of attacking some of them by elementary mathematics follows.

Hipparchus, born at Nicsea in Bithynia about 190 B.C., compiled

the earliest star catalogue and divided the stars into six classes accord-

ing to their brightness. He included about 20 of the brightest stars in the

first magnitude and the large number of faint stars that were just visible

to the naked eye in the sixth magnitude. Between these extremes, stars

of intermediate brightness were catalogued as magnitudes 2, 3, 4 and 5.

The higher the number denoting the magnitude of a star the fainter is

the star.

Stellar Magnitudes

In 1856 the English astronomer Pogson proposed the adoption of a

definite light ratio between the stars of different magnitudes. In 1830

Sir John Herschel had announced that the average first magnitude star

was 100 times brighter than one of sixth magnitude.

Suppose we assume that a star of magnitude 1 is x times as bright

as a star of magnitude 2, and a star of magnitude 2 is x times as bright

as a star of magnitude 3, and so on. Hence a star of magnitude 1 is x
multiplied by x or x2 times as bright as a star of magnitude 3, x z times

as bright as a star of magnitude 4, and xh times as bright as a sixth

magnitude star. As the light ratio between a first magnitude and a sixth

magnitude star is 100, from Herschel's observations, we obtain the

equation

x* = 100.

Taking logarithms of both sides, 5 log x = 2, from which log

x = 0-4, or

a- = 2-512.
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Hence, to compare the brightness of two stars we find the difference

in their magnitudes and raise 2-512 to the corresponding power, re-

membering that the brighter star has always the smaller magnitude

number. Refinements in determining stellar magnitudes have neces-

sitated the use of intermediate numbers. Thus, the magnitude of

Regulus is given as 1-34, and of Spica 1*21.

Various methods are used for finding the ratio between the bright-

ness of stars, but it is not within the scope of a mathematical treatise to

describe these. If we take l
x
and l2 to be the brightness of two stars of

magnitude m
x
and m2 respectively, it is obvious from what has just been

said that

Itlh = 2512(

Taking logarithms of both sides,

h

m _/n
2 -)•• (72)

log — = 0-4 (m2 - m x), or
'2

L
log j- = 0-4 (/Wj - Wa)

n
(73)

As an example of the application of (73), take the case of the two

stars just mentioned, Regulus and Spica. Using these figures for the

magnitudes, what is the ratio of the brightness of Spica to that of

Regulus?

Let m
x , l

x
denote the magnitude and brightness of Regulus and m2 ,

/2 those of Spica. Then, since m x
— m2 = 013, log— = 0-40 x 013 =

'x

0052. Hence l2jlx
= 1- 127, or Spica is IT 27 times as bright as Regulus.

If we know the relative brightness of two stars we can find the

difference in their magnitudes from (64). Thus, if we were informed that

Sirius was 6-67 times brighter than Procyon, and we were asked to

determine the difference in their magnitudes, we proceed as follows,

lx and m x
applying to Sirius and /2 and m2 to Procyon:

l
x
jl, = 6-67, and log 6-67 = 0-824, hence we have

0-824 = 0-4 (m2
— m x),

from which

mz
— m

x
= 206, or m2 = m

x
+ 206.

Hence Procyon is 206 magnitudes fainter than Sirius. The magni-

tude of Sirius is — 1 -58, so that of Procyon is 0-48.

A star of magnitude 1 is not the brightest of stars. Magnitude 1 has



1 82 ELEMENTS OF MATHEMATICAL ASTRONOMY

been arbitrarily chosen, on the visual scale, as the mean brightness of

the two stars Altair and Aldebaran, but there are stars much brighter

than they are, for which fractional or even negative magnitudes are

necessary. This explains why Procyon has a magnitude 0-48 and why
Sirius, the brightest star in the heavens, has one of — 1 -58. The accuracy

of the figures can be checked as follows.

It has been found that the brightness of Sirius is 11-37 times that of

Aldebaran, therefore if lx and mx are the brightness and magnitude of

Sirius, and /2 and m2 those of Aldebaran, equation (73) gives

0-4 (m2 - m,) = log IJU = log 11-37 = 1056

m2 — m x
= 2-64

Hence, Sirius is 2-64 magnitudes brighter than Aldebaran, whose

magnitude is 1 06. Therefore the magnitude of Sirius is 1 06 — 2-64 =
— 1 58.

The following problem is a little more difficult than those just con-

sidered, and the reader should follow the method used, as questions of

this nature will be set in the Examples at the end of the chapter.

The star Castor, which appears single to the naked eye, is resolved

by the telescope into two stars of magnitudes 1-99 and 2-85. What is

the magnitude of the combined system?

Let /
x
and L be the brightness of each component, / the brightness

of the combined system and m its magnitude. Then, remembering the

definition of a logarithm,

l
x
= 2-512- 1 " /2 = 2-512-285 I = lx + L

log /t
= - 1-99 x 0-4 = - 0-796 = - 1 + 0-204

log /2 = - 2-85 x 0-4 = - 114 = - 2 + 0-86

/, = 01 60 I, = 00724

lx + 4 * 0-2324

2-512-m = 0-2324, and hence

- 0-4 m = log 0-2324 = - 1 + 0-3662 = - 0-6338,

from which m = 1 -58.

The brightness of a star does not necessarily supply us with any

information on its intrinsic brightness. If two stars have the same in-

trinsic brightness but one is further off than the other, the former will

appear fainter, or it will have a greater magnitude number than the

latter. To compare the intrinsic brightness of stars, or their lumino-

sities, we must compare their brightness when they are at the same dis-

tance from us. The standard distance selected for this purpose is 32-6
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light-years, which is ten times the distance corresponding to a parallax

of one second, or 10 parsecs (see p. 122).

The intensity of illumination varies inversely as the square of the

distance that the star is away from us. Hence if the luminosity of a star

is lx when its distance is L light-years and its luminosity is l2 when it is

at a distance 32-6 light-years, we have the relation

(L/32-6)* = /2//,

The ratio ljlx is 2-512 (
m-m

a) where m is the apparent magnitude of

the star and ma is its magnitude at a distance of 32-6 light-years, or its

absolute magnitude.

Hence

(L/32-6)2 = 2-512 (
m-m

a)

Taking logarithms of both sides and remembering that log 2-512 =
0-4, we obtain the relation

2 (log L - log 32-6) = 0-4 (m - ma)

Substituting 1-5132 for log 32-6 and simplifying, we obtain

ma
= m + 7.566 - 5 log L . . . . (74)

The parallax p of the star can be used instead of its distance in light-

years. It has been shown on p. 122 that L = 3-26//?, and if this value

for L be used we have

^)
2

=25l2 (m - mj

Hence
0-4 (m — mu)

= — 2 log 10 — 2 log p, from which

ma
= m + 5 + 5 log p . . . . (75)

Both of the above formulae will be used to find the absolute visual

magnitude of /3 Centauri, the apparent visual magnitude of which is

0-86, parallax 0"01 1, and distance 296 light-years.

From (65)

ma
= 0-86 + 7-566 - 5 log 276 = 0-86 + 7-566 - 12-356 = - 3-9

From (66)

ma
= 0-86 + 5 + 5 log 001 1 = 5-86 - 10 + 0-2070 = - 3-9

Relation Between the Effective Temperature, Diameter and Absolute
Magnitude of a Star

There is a useful formula connecting the effective temperature of the

surface of a star with its diameter and absolute magnitude, the diameter
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being computed in terms of the diameter of the sun as the unit. The
formula is fairly good up to temperatures of 7,000° K., but after that it

gives only approximate results. This formula is as follows:

Let D be the diameter of the star, that of the sun being the unit,

T its absolute temperature, and ma its absolute magnitude. Then

log D = 5900/r - 0-2 ma - 002 .

.

(76)

As an example, take the case of Aldebaran, the temperature of

which is 3300° K. and parallax 0"057. To find the diameter we must

first of all compute its absolute magnitude by (66), taking its apparent

visual magnitude as 1 06.

ma = 106 + 5 4- 5 log 0057 = 606 + 5 (-2 + 0756) = -016

From (76)

log D = 5900/3300 - 2 x -016 - 002 = 1-788 + 0012= 1-800

Hence D = 63.

The sun's diameter is 864,000 miles, therefore the diameter of

Aldebaran is about 54$ million miles.

Cepheid Variables

There is an important relation between the apparent magnitudes of

the Cepheid variables and their period of variation. This relation was

discovered in 1912 by Miss Henrietta S. Leavitt, Harvard Observa-

tory, and developed later by Professor Shapley: it enables us to find

the distance of a Cepheid variable when its period is known (this is

merely a matter of observation), and also its apparent magnitude.

First of all, the absolute magnitude of the Cepheid must be deter-

mined from its period, and this can be done by using the period-

luminosity curve, Fig. 48, in which absolute magnitudes are plotted

against the logs of the period. Thus, if the period is 100 days so that

log P = 2, the absolute magnitude is —6-5. If the period is 0-56 day

then, since log 0-56 = T-75 = -0-25, the curve shows that the abso-

lute magnitude is —0 15. To find the distance of the Cepheid in the

latter case, assuming that the apparent magnitude is 15, use (75),

-015 = 15 4- 5 + 5 log/>.

Hence 5 log/? = —2015, or log/? = -403 = 5-97, from which

p = 0"000093, which corresponds to 3-26/0-000093 = 35,000 light-

years.
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Fig. 48

The relation between the absolute magnitude of a Cepheid

variable and the logarithm of its period in days can be taken

from the curve. On the left of the zero 0.0 on the horizontal

line (the abscissa) the logarithms are negative, the periods in

these cases being a fraction of a day

The curve is difficult to read for small values of the period, and in

such cases, where the period is less than a day, the following empirical

formula will suffice for all practical purposes:

,nu
= -0-39 - 0-95 log period.

Readers can check the above result by means of this formula, but it

should not be used for values of the period much greater than a day.

Masses of Binary Systems

It has been shown on p. 145 that the mass of a planet can be found

when the distance of a satellite from the planet and also its period of

revolution are known. The same method can be used to determine the

mass of a binary system—not the mass of each component of the system

but the combined mass of the two stars. Writing (54) in the form

as/T2 = S + P,

taking the mass of the sun as the unit, and applying the same formula

to a binary system in which the mass of each component is m x
and /;;2 ,

the semi-major axis of their orbit a1 astronomical units, and their period
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of revolution round their common centre of gravity Tx years, then we
obtain the expression

affTf = m x + m2 . . .

.

(77)

Before applying (77) it is necessary to know the distance of the

system from the earth or the sun (it is immaterial which is used because
this distance is so great that it can be considered the same whether
it is measured to the earth or the sun). There is no necessity to find

the distance in light-years or astronomical units; it is sufficient to deter-
mine the parallax of the system. Neither is it necessary to determine
the length of the semi-major axis of the orbit described by the system;
this can be measured in seconds of arc and the result used as shown
in the following formula.

If d is the distance of the system from the sun, measured in astro-
nomical units, then, p being the parallax of the binaries,

smp = i/d (78)

If a is the angle in seconds of arc subtended at the earth (or the sun)
by the semi-major axis of the system, then

sin a = ajd (79)

Dividing (79) by (78) and remembering that both p and a are very
small angles, so that the angles can be substituted for their sines,

a
ax

= -

P
Hence we can substitute alp for ax in (77) and the result is

'"1 + '"2 = (-) IT* . . .

.

(80)

The application of (80) will be shown for Sirius and its companion,
the data being as follows:

The parallax p of Sirius is 0*371, the semi-major axis a of the system
is 7"57, and the period T of revolution is 50 years. What is the mass of
the binary system in terms of the mass of the sun as the unit?

By (80)

/ 7-57 \ 3

m x + m2 = ['—) /2500 = 3-40.

Proper Motion and Radial Velocity of a Star

In the year 1718 Edmond Halley discovered that the positions on the
celestial sphere of the three bright stars, Sirius, Arcturus and Procyon,
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had altered appreciably in relation to the rest of the stars since the time

of Hipparchus. This suggested that they had a definite motion in space

relative to the sun, and since then this motion has been confirmed and

measured for many other stars. The displacement, which is always

extremely small, is called the proper motion of the star, and it is usually

measured in seconds of arc per annum.

It is of course only one component, that across the line of sight, of

the true motion of any star. The other component in the line of sight,

called the radial velocity, can only be measured by the spectroscope.

It was not until 1868 that Sir William Huggins first found that of Sirius.

The method of finding the radial velocity is as follows:

C B"

Fig. 49

Proper Motion and Radial Velocity of a star

If J A is the change of wavelength of a line in the spectrum of the

star, the wave-length of the line being A, the radial velocity is

Velocity of light x AX/X

It is defined as positive when the distance of the star from the sun

and the earth is increasing, and negative when it is decreasing.

The star is approaching or receding according as the displacement

is towards the violet or red end of the spectrum. Thus, if the wave-

length of a line in the spectrum of a star is 4861 102 and the wave-

length of the line in the comparison spectrum is 4861-327, the radial

velocity of the star towards the earth is 0-225/4861 or 0-0000463 times the

velocity of light. Hence the radial velocity is - 13-9 kilometres, or about

— 8-7 miles a second.

In Fig. 49 let S be the sun, which for all practical purposes in con-

sidering proper motions can be taken as the place of observation in-

stead of the earth.

Let AB be the true path of the star in a year, at an angle 6 to the

line of sight SAD, and the angle ASB (= /*) its annual proper motion.

As /x is a very small angle we can assume that ACBD is a rectangle in
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which AC(= BD) is the component of the distance travelled by the star

across the line of sight, and AD(= BC) the component along the line of
sight. To Jind the actual length ofAC we must know the distance of the
star from the sun.

If the parallax of the star is p, its distance is 3-26/y? light-years, or
19-2 x I0u/p miles. The number of miles traversed by the star at right

angles to the line of sight (i.e. AC) is therefore 19-2/* x 1012
/206,265/?

in a year, and dividing this by the number of seconds in a year, the
result is 2-94 /*//> miles or 4-74 pjp kilometres. Hence if T is a star's

tangential velocity,

T = 294 nip miles per second = 4-74 fi/p kilometres per second (81)

Take the case of Kapteyn's star, which has an annual proper
motion of 8"76. Its parallax is 0T317, and its tangential velocity by (81)
is

2-94 x 8-76/0-3 17 = 81 miles a second.

When the radial velocity Fand the tangential velocity Tare known,
the space velocity v of the star relative to the sun is easily found from the
formula

v* = V2 + T2
(82)

the well-known formula for the parallelogram of velocities, d is de-
rived from the formula

tan 6 = T/V (83)

Arcturus has a radial velocity of 3 miles a second away from us and
a tangential velocity of 84 miles a second. Its space velocity, relative to
the sun, derived from (82) is therefore 8405 miles a second. The direc-
tion which its space motion makes with the line of sight by (83) is

tan
-1

84/3 = tan"1 28 = 88°.

We can now consider the last terms of the equations for finding the
apparent places of the stars, given on p. 136. Thus the annual value of
the proper motion of a Ononis is +0?0019 in R.A. and +0"010 in
Dec. On 1960 April 4 the fraction t of the year is +-2564 (see p. 270
of the A.E.): hence y.

?
= + 0?0005 and p,'

r
= + 0"003. It is clear that

within the accepted limits of accuracy we were justified in neglecting
the correction for proper motion.
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1. The apparent visual magnitude of a Centauri is 006 and of

a Leonis 1-34. Compare the brightness of a Centauri with that of

a Leonis.

2. The apparent visual magnitude of a Carinae is —0-86 and of

a Virginis 1-21. Compare the brightness of a Carinae with that of a

Virginis.

3. The apparent visual magnitude of a Aurigae is 0-21 and of

a Eridani 0-60. Compare the brightness of a Eridani with that of a

Aurigae.

4. The apparent visual magnitude of a Bootis is 0-24 and its parallax

is 0"080. Find its absolute visual magnitude.

5. What is the absolute visual magnitude of a Aquilae, apparent

visual magnitude 0-89, if its parallax is 0"204?

6. If two stars differ in magnitude by 2-34, compare their brightness

viewed in the telescope.

7. The star a Crucis is a double star, the magnitudes of the com-

ponents being 1-58 and 209. What is the apparent visual magnitude of

the system as seen by the naked eye?

8. I Ursae Majoris seen with the telescope is a double star, the

magnitudes of the pair being 2-40 and 4-50. What is the magnitude of

the star as seen by the naked eye?

9. The magnitude of the sun is -26-72. How many times does the

brightness of the sun exceed that of a first-magnitude star?

10. Taking the sun's apparent visual magnitude as given in Problem

9, find his absolute magnitude. (The sun's distance from the earth is

00001585 light-year).

11. What is the diameter of a Aurigae if its absolute temperature is

5500°, apparent visual magnitude 21, and parallax 0"069? Use

equation (75) to find mu , then substitute mu in equation (76).

12. The period of a Cepheid variable is 12 6 days and its apparent

magnitude is 14-5. Find its distance in light-years.

13. The star a Geminorum consists of two components which re-

volve round the common centre of gravity of the system in 306-3 years.
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The semi-major axis of the orbit is 6"06 and the parallax of the system is

0''076. Find the combined mass of the system, taking the mass of the

sun as the unit.

14. The star a Centauri, parallax 0"758, is a binary, the semi-major

axis of the system being 17"67, and the period of revolution 80 years.

Compare the mass of the system with that of the sun.

15. If the annual motion of Capella is 0"439, its parallax W
075, and

its radial velocity +30-2 km. per sec, find its tangential velocity, its

velocity in space relative to the sun, and the angle between its direction

of motion and the line of sight.

PART TWO

A Brief Exposition of Relativity
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INTRODUCTORY REMARKS

This part of the book is intended to be a popular exposition of a sub-

ject which is not very simple, but the reader must not imagine that it can

be understood without serious concentration. It is recommended that

those who have previously read little or nothing on the subject should

study each chapter carefully and try not to hurry through the text. To
understand Relativity it is necessary to live in it and to readjust our

ideas, and this is not always a simple process for those who have been

accustomed to Newtonian mechanics.

We who live in the twentieth century find ourselves in a sense in the

same kind of intellectual atmosphere as the inhabitants of Europe in

the sixteenth century, when the foundations of science as we knew it

until about fifty years ago were being laid. At that time a change was
brought about 'not by new observations or additional evidence in the

first instance, but by transpositions that were taking place inside the

minds of the scientists themselves. ... Of all forms of mental activity,

the most difficult to induce even in the minds of the young, who may be

presumed not to have lost their flexibility, is the art of handling the

same bundle of data as before, but placing them in a new system of

relations with one another by giving them a different framework, all of

which virtually means putting on a different kind of thinking-cap for

the moment The supreme paradox of the scientific revolution is the

fact that things which we find it easy to instil into boys at school, be-

cause we see that they start off on the right foot—things which would
strike us as the ordinary natural way of looking at the universe, the

obvious way of regarding the behaviour of falling bodies, for example
—defeated the greatest intellects for centuries, defeated Leonardo da
Vinci and at the marginal point even Galileo, when their minds were
wrestling on the very frontiers of human thought with these very

problems.' (Herbert Butterfield, The Origins of Modern Science, new
edition, pp. 1, 2). In the same way, today we find it very difficult to

n 193
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change our way of thinking on physical problems so as to grasp the
implications of the theory of Relativity.

A special instance of this readjustment is found in the case of the
length of an object, which we usually assume to be something absolute
and an intrinsic property of the body. As explained later, in Chapter 14,
we must discard this view, and to assist in the process the analogy of
'weight' explained in Chapter 18 will prove profitable. If the reader
can adjust his conceptions on this particular portion of the problem
he will find that the other questions relating to time, velocity and mass
will fall into their proper place and will be easy to understand.

The Generalized Theory of Relativity is dealt with towards the end
of the book and should not present any special difficulties if the earlier
parts are understood. A brief account of the crucial tests which gave the
verdict in favour of Einstein is given, but the mathematics of the subject
cannot be dealt with in an elementary work.

It must not be imagined that everything will be made clear about
Relativity by a reading of this exposition. It makes no pretence to do
more than supply an outline of the subject, and if it renders the pursuit
of the subject easier, the authors will feel that their labours have not
been in vain.

It is trite to remark that most of the terms which we use are relative,
though very often we are unaware of the fact. Take, for instance, the
expressions 'up' and 'down'. When we use these words we think we
understand exactly what they mean and no doubt we generally do, but
perhaps we sometimes forget that unless we define the object with
reference to which anything is up or down the terms are meaningless.
When we speak of anything going up in this country we imply that it

is moving approximately in a line drawn from the centre of the earth
to our position on the earth's surface, and in a direction away from the
eartrfs centre. A New Zealander implies the same thing when he is

describing the meaning of the word 'up' in his own country, but with
reference to the earth's centre, a distant star, and also to some of our
closer neighbours—the planets—the two directions are nearly opposite.
This simple illustration shows us that if we wish to be very accurate in
our descriptions of directions we must define our terms more clearly
than we have been accustomed to do.

The same principle must also be recognized in dealing with quan-
titative results. Very often people speak of an object as 'big' or 'small',
but obviously these words have little meaning unless we know what
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is our standard of comparison. A minor planet is big in comparison

with a house but very small in comparison with the earth. The earth

itself is considered a small planet when it is compared with Jupiter,

and Jupiter is very small when we place it beside the sun. Actually

Jupiter is more than 1300 times the volume of the earth, and the sun

is about 1000 times the volume of Jupiter, but the sun itself is very small

in comparison with some of the giant stars such as Betelgeuse, Antares

and others. This last star is more than 100 million times the size of the

sun. In spite of the enormous size of Antares it dwindles into in-

significance when compared with the size of the Galaxy.

At the other end of the scale we speak of some things being very

small, such as bacilli, viruses, etc., but what is our standard of com-

parison? If it is some of the ordinary forms of life which we find in

our ponds, such as the amoeba, the Paramecium, the rotifer, etc., and

which present many interesting features when we look at them with an

ordinary microscope, it may be admitted that bacilli are small. If,

however, we compared bacilli with atoms we should be obliged to admit

that they were very large and that the atom was extremely small. But

the atom is no longer regarded as small since the discovery of the

electron, and we now know that the atom occupies an enormous

space in comparison with that occupied by the electron. It is unneces-

sary to multiply instances, and we must return to our starting point

and repeat that a great many of our terms are relative and that they are

meaningless unless we adopt some standard of reference.

When we deal with motion and velocity there are many pitfalls

unless we are careful to define our terms very carefully. If we are on a

boat which is moving with a speed of 15 knots we think we know
exactly what our velocity is, and we should be prepared without hesita-

tion to assert that it is 15 nautical miles an hour. But what is our

reference point? If we are prepared to take some landmark, a buoy or a

rock, and to say that relative to this we are moving at a certain speed, no

serious objection would be raised to our statement. Now, however,

consider some of the other motions in which we are taking part and of

which we may be unaware when we carelessly speak of our speed. With

reference to the centre of the earth we are moving with a velocity of

more than 1000 miles an hour, if our boat is in equatorial regions. If it

is in latitude 30° this speed is about 870 miles an hour, and in latitude

60° it is only half of what it was at the equator. These speeds are in

addition to the speed of the boat—15 knots—and may be in the same
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or in opposite directions to the boat's motion or in intermediate
directions. Then, if we want to be more accurate still and to determine
our speed with reference to a body outside the earth—say the sun—we
must take into consideration another motion, that is, the orbital motion
of the earth, which is nearly 18£ miles a second, as it revolves round the
sun. Even this does not exhaust all the motions that we experience,
because the sun itself is moving in the local star cloud, which, in turn, is

moving round the centre of the Galaxy, completing a revolution in
about 220 million years. If, therefore, we thought it quite sufficient to
confine our calculations to that comparatively small portion of the
universe known as the Galaxy, which consists of about 100,000 million
stars, we should attempt to determine our velocity with reference to the
centre of this system. What the centre of the Galaxy is doing need not
concern us at the moment. We believe that it is moving away from the
centres of other galactic systems but this is of little interest for us at pre-
sent.

So far we have seen that motion is relative and we can find our
relative speed without much difficulty when we are dealing with
terrestrial objects and standards. But now suppose we are dissatisfied

with this limited attainment and start out to discover where we are
going or towards which galaxy we are moving, what procedure should
we adopt? A simple illustration from the case of a boat will assist us in
answering this question.

While the boat previously considered is moving with a velocity of
1520 feet a minute relative to a buoy, imagine that a passenger paces
the deck with the speed of 240 feet a minute, relative to a mark on the
deck; it is not difficult to find his speed relative to the buoy, and this

will depend on the direction in which he is walking. If he is moving in
the same direction as the boat his speed relative to the buoy is 1760 feet a
minute, and if he is moving in the opposite direction it is 1280 feet a
minute. If he is moving across the deck at right angles to the boat's
direction of motion, his speed relative to the buoy is found from the
simple principle of the parallelogram of velocities and is just under
1539 feet a minute. We have no hesitation in applying the ordinary
elementary principles that we learned at school to obtain these figures,

but, as will appear later, they are not strictly correct, though the reader
may accept them as correct for the present. Later on it will be shown
that they are based on a fundamental fallacy.

It seems fairly obvious that it might be possible to detect the motion
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of the earth through the ether because, assuming that the earth is moving

through the ether, this is the same thing as if the ether is streaming past

the earth. If you are rushing through the air, relatively it is the same

as if the air were rushing past you, and an object projected by you in the

direction of your motion will not have the same speed as it has when

projected in the opposite direction. Speed in these cases is measured

with reference to some mark on the ground. In the same way the

velocity of light should be less when it is moving against the ether

stream than when it is moving with it. We shall return to this point in

the next chapter.
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HOW EINSTEIN'S THEORY AROSE

An Experiment with Two Boats on a River

Figure 50a represents a river, the thick lines being the banks, and the
arrow showing the direction in which the stream is flowing with a uni-
form velocity of 8 feet a second. Two men set out from a point P, each
equipped with a motor-boat capable of moving 10 feet a second in still

water, one going down stream and the other across stream. It will be
assumed that there is no wind and that the speed of each boat remains
exactly the same all the time. The other bank is 180 feet distant from P,
measured at right angles to the direction of the stream, and A decides to
take his boat across to T, directly opposite P, and back again to P. B
decides to take his boat to L, which is 180 feet from P, measured down
stream, and to return to P, and a discussion arises regarding the time
that each boat will require.

A will be very far out in his reckoning if he sets his course straight

for T because the stream will carry him down a considerable distance in

the direction of the arrow, and instead of finding himself at 7" he would
reach the other bank a long way down stream. If he knows how to steer

his boat correctly he will set his course along the direction PC, which
can be calculated as follows.

For every 10 feet that the boat moves along PC the stream will carry
it 8 feet down stream, so it is necessary to arrange the direction of PC
in such a manner that if PC is 10 feet and CD is 8 feet, the point D will
lie exactly on the line joining P and T. It must not be imagined that
A ever reaches the point C; the stream is making the boat drift every
instant, so when the prow is set parallel to PC the actual course of the
boat will be in the direction PT and A will reach the opposite bank
exactly where he intended to go.

What time will A require to accomplish his journey? To answer
this question it is necessary to find out what his speed across the river
is. This speed is obviously proportional to PD, on the same scale on
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which PC and CD represent the velocities of the boat and the stream

respectively. Since the angle PDC is a right angle, it follows that

PD2 = PC2 - CD2 = 100 - 64 = 36

Hence PD = 6.

The actual speed of A's boat across the river is, therefore, 6 feet a

second, and he will require 30 seconds to cross the stream. The return

journey will occupy exactly the same time, provided A remembers how
to steer his boat properly. If he steers it so that the prow is not pointed

sufficiently far up stream he will find himself somewhere between P and
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Fig. 50a

A simple experiment with boats crossing a stream and
moving up and down stream

L when he reaches the bank. If he points the prow too far up stream

he will reach the bank above P and will then be obliged to go down
stream to reach his goal. This will involve wasting time and he will have

failed to do the trip in the minimum time.

How long will B take to do the double journey, down stream to L
and back again to PI

Down stream B is moving with a speed of 10 feet a second relative to

the water, and the stream is carrying him 8 feet a second relative to the

bank. Hence his speed relative to the bank is 18 feet a second and he
will require 10 seconds to go 180 feet down stream. On his return

journey he is still moving with a speed of 10 feet a second relative to the

water but the stream is carrying him back with a speed of 8 feet a second

relative to the bank, so that his speed relative to the bank is only 2 feet

a second. Hence he will require 90 seconds to do the journey of 180 feet
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up the stream, the total time to make the double dourney being 100

seconds. The ratio of the times required to do the double journey along
and transverse to the river is 100/60 or 5/3.

We can generalize from this case and conclude that the time to cross

and recross is always shorter than that required to go up and down
stream by the same distance. Instead of taking the velocity of the boat

to be 10 feet a second and that of the stream 8 feet a second, we shall

denote the speed of the boat by c and that of the stream by v. In addi-

tion, the width of the river will be denoted by d instead of 180 feet, and
by referring to the above example the following expressions will be

obvious and can be checked by taking a number of cases:

.4's speed across the river yj (c2 — v2)

2?'s speed down stream c + v

2?'s speed up stream c — v

Time required by A to cross and recross 2d/ J (c2 — v
2
)

Time required by B to go down stream d/(c + v)

Time required by B to go up stream df{c - v)

Time required by B to perform the double

journey 2cd/(c2 - v2)

Suppose we want to find the ratio between the times taken by A and
B to perform the journey there and back, we divide 2d\ yj (c

2 — v2) by
2 cdj (c

2 — v
2
) and obtain for the required ratioJ (c2 — v2) /c, which is

independent of the distance d. In our example c is 10 and v is 8, there-

fore the ratio is J (102 - 82
) /10, or 3/5, which is the same as that

obtained previously.

We can imagine a third party coming along and offering to tell A
and B the speed of the river if they will supply him with the following

information: (1) the ratio of the times that each requires to do the

double journey; (2) the speed of each boat (which is supposed to be the

same). On informing him that the ratio is 3/5 and that the speed of
each boat is 10 feet a second, the equation yj (c2 - v2) /c = 3/5 will

provide the answer. By making c = 10 the equation then becomes

yj (100 - v2) = 10 x | = 6, from which v = 8 feet a second.

The problem, as the reader no doubt can see, is a particular case

of the composition of velocities, the general solution of which is as

follows.

In Fig. 50b, suppose the river is flowing in the direction OB' and
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A's boat is moving in the direction OA! relative to the stream of the

river. Using any convenient scale, lay off OA to represent the magni-

tude of the velocity of the boat, c, and OB to represent that of the river,

v. Complete the parallelogram OACB and draw the diagonal OC. This

diagonal will represent in magnitude, V, and direction the velocity of

the boat with reference to the river bank.

From elementary properties, in the triangle OAC, where AC = OB,

and angle OAC = (180° - AOB)

OC2 = OA2 + OB2 - 20A. OB cos OAC
Therefore V2 = c2 + v2 + 2 cv cos AOB

When the direction of the resultant OC is given and it is required to

find the direction of OA with reference to it, a graphical construction

O B B'

Fig. 50b

The composition of velocities

can be used or the direction may be computed. Thus in the situation we

have been considering, the resultant direction of motion of A's boat,

OC is at right angles to the direction of flow of the river, OB. The

reader should draw a new figure, when he will find that under these

conditions the angle AOB is greater than a right angle, so that cos

AOB is -OB/OA or -v/c, and also that OC2 = BC2 - OB2 =
OA2 - OB2

, from which

V2 = c2 - v2

We can also arrive at this result by substituting — v/c for cos AOB
in the general equation derived above for V2

.

The Michelson-Morley Experiment

We shall now give a very brief description ofan important experiment

which was made first of all by Michelson in 1 88 1 and afterwards re-

peated by Michelson and Morley with the aid ofmore refined apparatus
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in 1887. The object of this experiment was to detect the motion of the
earth through the ether by the effect on the velocity of light. The
principle of this experiment is explained very simply in Fig. 51, in which
the earth and the apparatus are supposed to be moving through the
ether in the direction CA, and from the point of view of an observer on

B

u
Fig. 51

The apparatus for the Michelson-Morley experiment

the earth the ether is streaming past him in the opposite direction, that

is from A to C. Imagine that AB and AC are measured carefully and are

exactly the same length, and that rays of light are dispatched at the same
instant from A, one along AB and the other along AC. In addition,

suppose that mirrors at B and C reflect the two beams back to A, which
beam will arrive first?

A detailed description of the apparatus is outside our scope and
readers must consult text-books on physics for a full explanation. It

may be pointed out, however, that the mirror at A was half silvered, one
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portion allowing the beam from a source S to proceed straight to C and

to be reflected back again to A by which it was reflected into a telescope.

The mirror A was tilted at an angle of 45° to the direction AC, so that its

silvered portion reflected the beam to B, from which it was reflected

back to A and passed into the telescope. By means of the interference

fringes it was possible to detect if there was any difference between the

times of arrival of the rays at the telescope.

The principle is the same as that of the men in the boats. The

velocity of light corresponds to that of either boat, and the velocity of

earth through the ether corresponds to that of the river. The reader will

immediately conclude that the answer to the question, "Which beam will

arrive first at the telescope?' is simple. From the analogy of the boats

he will say that the beam which was sent transverse to the direction of

the earth's motion, AB in the present case, would arrive first. The re-

markable thing was that both beams arrived at precisely the same

instant, and on repeating the experiment the result was always the

same.* It might be suggested that, considering the different motions of

the sun and also the orbital motion of the earth, previously referred to,

the resultant velocity of the earth relative to the ether happened to be

zero at the time of the experiment. This explanation was shown to be un-

tenable by repeating the experiment six months later, when the earth's

orbital motion was in a different direction, the result being the same as

before. Another suggestion was that the earth dragged the ether with

it, in which case no difference in the times of arrival of the beams would

be expected. This hypothesis is quite invalid, and no doubt many
readers will remember Sir Oliver Lodge's experiments with rotating

discs to detect any drag of the ether, all of which gave negative results.

In addition, the astronomer is unable to allow such an ether drag be-

cause it would vitiate his explanation of the well-known phenomenon of

aberration.

The results of this famous experiment exercised a profound influence

on scientific and philosophic thought, and it almost seemed that the

whole edifice of physical conceptions was crumbling and was destined

to fall in ruins. The experiment showed that the earth was not moving,

but the astronomer knew that it was moving, so the world about which

we thought we knew so much was one thing to the physicist and some-

thing different to the astronomer. Was there any possibility of reconcil-

ing views which appeared contradictory? We have spoken of the ether

* As will be seen later, there is an important exception to this.
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and of the attempt to detect motion through it, but it is irrelevant for

our purpose whether there is such a thing as the ether of space. It is un-
necessary to postulate some of the extraordinary properties of the ether

which the older physicists assumed, and indeed it is unnecessary to

postulate its existence at all, though it will do no harm to assume that it

is there. We are reminded of the conversation said to have taken place

between Laplace and Napoleon. Napoleon asked Laplace where the

Deity came in his System of the World, and Laplace replied, 'I have no
need of that hypothesis.' The reply has sometimes been misconstrued
and taken to imply that Laplace meant he simply assumed the existence

of God and that there was no need to form any hypothesis about the

matter. What he really meant was that his scheme did not require the

hand of God continually regulating the movements of the heavenly
bodies (we are reminded of the theory, before the days of Laplace, that

angels pushed the planets along) and that mechanical principles were
sufficient. He did not imply that God did not exist, nor did he imply that

He did, but He was just irrelevant for the matter under consideration.

On the whole, however, it will assist the reader if he assumes that there

is an ether, but he need not concern himself with its properties. The
restricted Principle of Relativity tells us that it is impossible by any
experiment to detect uniform motion relative to the ether.

Reverting to the failure to detect motion through the ether, men
of science have now come to the conclusion that the universe which
they once believed to be independent of those who perceived it can no
longer be regarded in this way. In fact everything that we see assumes
a form and content determined by its relation to the observer, and the

external world of matter situated in space and time is really all things to

all men. There is no meaning in absolute motion. All motion is relative

and it depends on our own way of thinking. Let us see how all this is

verified by returning to the experiment with the boats.

Certain Implications of the Miehelson-Moricy Experiment

We must now introduce some ideal or perhaps hypothetical conditions

into consideration, but these will not detract from the validity of the

argument. First of all we shall take a large lake instead of a river, and
imagine that its shores are invisible to A and B. We shall postulate a
surface current with a speed of 8 feet a second, but, as no landmarks are

visible, A and B will not be aware of this current, and if they shut off

their engines they will imagine that their boats are stationary. It will be
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also necessary to assume that there are rocks or some other obstructions

under the water, by means of which A and B can measure distances in

the direction of the current and at right angles to it. Having measured

these there is no reason why they should not again engage in a com-

petition just as they did on the river. The fact that these rocks might

Fig. 52

A further experiment with boats in a stream

lead them to infer the presence of a surface current need not concern us

as we are dealing with very ideal conditions in which a lapse of memory
may be helpful. Finally, a balloon is moored to a fixed object, say at the

bottom of the lake, and in this balloon an observer C is making careful

notes of what takes place. (See Fig. 52.)

A and B sit in their boats, having stopped their engines, and do not

notice that they are drifting with the current. If they look at C they will

be convinced that he is moving away from them with a speed of 8 feet a
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second, and even if there are floating objects on the lake, these will not

prove that A and B are moving because these objects will have the same
speed as the boats. Each boat represents a ray of light in the Michelson-

Morley experiment and the stream represents the motion of the ether

in a direction opposite to that of the earth's motion, and we shall

imagine that the experiment is repeated on the scale of ordinary

terrestrial velocities.

Each person is provided with a standard measure—say a foot rule

—

and these have been carefully compared and have been found to agree.

A and B measure 180 feet in the direction of the current and at right

angles to it, and the positions are marked by the rocks just submerged
beneath the water. Knowing nothing about the surface current they

believe that their speed is 10 feet a second, so they estimate that the

double journey of 360 feet in each case will occupy 36 seconds. It may
be objected that this is absurd, because their clocks will show that the

times are different, the actual times being as previously given on

pp. 199-200. It must be remembered, however, that we are now perform-

ing the Michelson-Morley experiment which shows that the times are the

same, so we must examine the foot rules and clocks to see if there is any
defect in these which will explain the apparant anomaly. The following

are the views of each of the three people engaged in this experiment.

As an independent observer C knows that A is crossing the stream

with a speed of 6 feet a second, as we showed previously, and will

estimate his time to cross and recross from one rock to the other to be

60 seconds—not 36 seconds as A thinks. C will also estimate 5's time

to go up and down the course to be 60 seconds, because A and B re-

quire exactly the same time for the trip (see p. 203), though B, like A, is

convinced that the time is only 36 seconds. When they all meet to dis-

cuss the results of the experiment the following imaginary conver-

sation will show how each of them records his observational results

:

C. I have timed your trip very carefully, A, and find that it re-

quired exactly 60 seconds. I hope you agree with my figures.

A. I am afraid I disagree with you. I timed my trip and found that

it required only 36 seconds. I consider your clock does not keep very

good time.

B. Did you time me for my trip too?

C. Yes, and I found by my clock that your time also was 60 seconds.

B. 1 do not agree. 1 found by my clock that my time was only 36

seconds.
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C. I am afraid the trouble lies with your clock, A. You say it

registered 36 seconds, but in point of fact it should have registered 60

seconds, so it loses very badly. With regard to your statement, B, I

think I know where your mistake lies, and I should like to explain the

matter fully. I observed your movements very carefully and found that

while you travelled with a speed of 18 feet a second on the outward
trip your speed on the return trip was only 2 feet a second. You believed

that the length of each portion of the trip was 180 feet, so that the time

required to go there and back would be 180/18 + 180/2 = 100 seconds,

but as I found it was only 60 seconds 1 must conclude that the length of

60
the half-trip is only— x 180 = 108 feet. Your measure is obviously

very much in error—in fact it is only 3/5th of a foot.

B. It is difficult to know why you think that my foot rule is so far

out. You checked it yourself.

C. True, but under different conditions. It was then held in a certain

direction, perpendicular to the direction of a surface stream, of which

you seem to be unaware. When it is placed parallel to the direction of

the stream its length contracts by the amount that I have just stated.

I should like to say, further, that your clock loses at the same rate as A's.

You allege that your trip both ways occupied only 36 seconds, but I find

that the time was 60 seconds, so your clock loses like A's.

The question now arises, 'Who is right?' Each one has equally

valid reasons for maintaining his own view on the matter, and how are

we to decide which view, if any, is to be accepted? The answer is that all

three are right, each from his own point of view. If one world is moving
relative to another, the standards of space and time, and, as we shall

see later, of mass as well, become different. This may seem a revolu-

tionary idea, or at least it did seem so when the Michelson-Morley

experiment upset some of our old-established views, but we are gradu-

ally becoming accustomed to it, and it is no longer regarded as mere
speculation. It is based on experimental evidence.

It can be shown by a similar process of reasoning that A's and Z?'s

ideas about C are the same as those which C formed about A and
B, and the following is a summary of the results as judged by each
one:

C says that clocks in the world of A and B lose time, registering an
interval as only 3/5th of its true value.

C says in addition that a measure placed parallel to the stream
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records only 3/5th the actual length. If placed at right angles to the

stream it measures correctly.

A and B disagree with practically all of this. They maintain that

their clocks keep normal time and their foot rules or any other standards
of length remain correct in all positions.

A and B further assert that clocks in C's world lose time and register

only 3/5th of the correct interval.

They also say that a measure in C's world placed at right angles to

the stream is correct, but parallel to the stream it records only 3/5th
of the true length.

The above results are most important and it will be advisable to

illustrate them by some examples. For the purpose of numerical illus-

trations it will be convenient to take the velocity of the boat as the unit

and that of the stream as a fraction of this unit. Thus, instead of saying
that the velocity of a boat is 10 feet a second we shall call this velocity 1

and that of the stream 4/5, which will be denoted by u. The summary
of the views of the different people can then be expressed as follows:

C says that clocks in the world ofA and B register an interval which
is only yj (1 - w2

) that of the true interval. A and B assert the same about
the clocks in the world of C.

C says that a measure placed parallel to the stream registers only

y/ (1 - w2
) of the true length, though placed at right angles to the stream

it registers correctly. A and B agree that a measure in C's world, if

placed at right angles to the stream, is correct, but say that if it is

placed parallel to the stream it registers only >/ (1 - u2
) of the true

length. These results can be checked, if the reader so desires, by a
number of examples.

There is a well-known elementary principle which is useful for com-
puting approximate results when u is small. This principle is that

J (1 - «*) = 1 - \u\ and 1/ y/{\ - «f) = 1 + |*,

and the smaller u is the more accurate the results are. Thus, if u is 0-2,

the value of y/ (1 - «2
) is 0-9798, and 1 - \u2

is 0-98, the discrepancy
being only 00002.

Suppose we were asked to find how much the length of the earth's

diameter contracted owing to its orbital motion round the sun and also

how much a clock loses each day on the earth because of this motion
(about 18£ miles a second), we must define the positions of the observers.

The orbital motion is round the sun, so we can imagine that C is at rest
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relative to the sun and sees the earth carried away from him in the

direction of the tangent to the earth's orbit at the time. As the velocity

of light is about 186,000 miles a second, which we shall take as the unit,

the velocity u of the earth is nearly 00001. Substituting this value in

the above expression we find that 5's clock records 1 — 0000000005

second according to C, or in other words, it loses 0000000005 second

per second which is 0000432 second per day.

The change in the length is §u* for each unit of length, and as the

earth's diameter is nearly 8,000 miles, the decrease in the length of the

diameter which is parallel to the direction of motion is 000004 mile, or

a little over 2\ inches.

It may seem strange to be told that the earth contracts as a result

of its orbital motion, and if we take into consideration the other

motions of the earth with reference to some distant star (the motion

which it shares with the sun in his journey through space) we should

have to allow for other 'contractions'. The reader must not assume that

there is an actual physical contraction, and this can be made clearer by

remembering that if the earth is receding from an observer C we can

express the statement in a different way by saying that the observer C
is receding from the earth. We can scarcely assume that the earth con-

tracts because C is receding from it, though it would not be incorrect to

say that its length contracts. There is nothing absurd in this statement

because length is not an intrinsic property of a body, though we once

believed it was. Length is merely a conception which we associate with

every body and which we define as a function of two quantities. These

are (1) its length / measured by a scale at rest with reference to the body;

and (2) the velocity w of the object in the direction of its length, relative

to our standard of reference.

Times in Different Worlds

We shall now proceed to an important problem which will be solved

by means of a special case. It will be shown later how formulae can be

derived which are applicable to all cases.

Suppose two people A and B are moving with a velocity 1/3 of a

unit relative to another person O, the motion being away from O in the

direction A to B, Fig. 53. Let the distance AB be 10 units, which will be

taken to be the distance through which light travels in 10 seconds. A
and B wish to synchronize their clocks and agree to do so as follows

:

A proposes that when his clock registers zero hour he will send a

o
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O.A- B
POSITION AT ZERO HOUR

POSITION 10 SECONDS AFTER ZERO HOURO—
A B

Fig. 53

How to derive an expression for the relation between
the times in different worlds

light signal to B, this light signal requiring 10 seconds to reach B. Hence
B sets his clock 10 seconds after zero hour and waits for A's light

signal. When he receives it and starts his clock he will have syn-
chronized it with ^'s clock, and so far the problem seems quite simple.
But it will not appear so simple when we have enquired into O's views
about this synchronization.

From our previous investigation we know that O will judge the
distance AB to be 10 y/ (1 - w2

), which is 9-43 since u is 1/3. From A to
B the light ray travels at the rate of 1 unit a second, but as B is receding
at the rate of 1/3 unit a second, the ray gains on B at the rate of 2/3
unit a second. For this reason the time taken by the ray to reach B is

9-43/f = 1414 seconds. On the return journey from B to A the point A
is advancing to meet the ray and the velocity of the ray relative to A is

1£ unit a second, so that the time required for the return journey is

7 07 seconds. The total time required for the ray to travel from A to B
and back is, therefore, 21-21 seconds; hence O says that the outward
journey from A to B occupies 1414/21-21 or 2/3rd of the whole time.
Since A's clock registers 20 seconds for the total time there and back,
O says that A's clock registers 13£ seconds for the journey from A to B.

Hence O says that A's signal to B reaches him in 1 3^ seconds and not in

10 seconds, and when they have synchronized their clocks O says that
B's clock is 3£ seconds behind A's clock. These figures are easily ob-
tained by multiplying 10, the distance between A and B, by 1/3, the
velocity ofA and B relative to C. In all cases the problem can be solved
by the simple relation,

tx
— t2 = us

where tx and t2 denote the times of the clocks of A and B respectively,

u is the velocity of A and B with reference to O, and s is the distance
between A and B expressed in the selected unit—the distance through
which light travels in one second.

The following problem will illustrate the appliction of the above

formula.

A and B are at rest with respect to each other but they are moving

relative to O with a velocity 7/25. They are separated by a distance of

20 units and have synchronized their clocks. A passes O at zero hour by

the clocks of both A and O. What, according to O, is the difference

between A's clock and B's clock (1) when the direction of motion is

AB; (2) when the direction of motion is BA1

(1) fc-4-»Xg- 5-6

(2) tt
- t2 = 20 = - 5-6

25

In the second case u is negative because B is approaching O. In

the first case A's clock is 5-6 seconds ahead of B's, and in the second

case it is 5-6 seconds behind B's, according to O.

Suppose that A holds a foot rule parallel to the direction of his

motion relative to O, what would be O's estimate of the length of the

rule?

According to O the length of the rule is J (1 - it
2
) = 24/25 foot.

Hence in O's world the length of the foot rule is over 11j inches. Com-
paring this with the case of the earth in its orbital motion round the

sun, it will be seen how the change of length increases rapidly with

increase in velocity.

Before proceeding to examine a number of other relations in

different universes in which motion of one relative to another takes

place, something will be said on an exception to the statement that all

attempts to measure the velocity of matter with respect to the ether

have failed.

Professor Dayton Miller conducted a number of experiments with

a refined form of the Michelson-Morley interferometer, and as a result

concluded that there are definite effects. He believed that not only is

the earth's orbital motion indicated, but in addition, the motion of the

solar system through the ether is suggested, the velocity of this motion

being about 130 miles a second. In the Michelson-Morley experiment

very slight displacements of the fringes were noticed and these were

attributed to experimental errors, but Miller thought that they were

real effects due to a dragging of the ether by the earth, or to the opera-

tion of a modified Fitzgerald contraction.
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It is difficult to explain the results of Professor Miller's experiments,
and if we accept their validity we must account for many other experi-
ments which showed that there was no effect. It is unfortunate that
some satisfactory explanation was not forthcoming before Miller's
death some years ago. If his results were correct there would be no
object in proceeding with the present work, but we shall accept the
results of the Michelson-Morley experiment, as is done amongst prac-
tically all physicists, and proceed with our explanations.

The negative result of the Michelson-Morley experiment was ex-
plained first of all by Fitzgerald, a Dublin physicist, and afterwards
by Larmor and Lorentz. It was suggested that a material body moving
through ether is automatically contracted by a factor J (1 - u2

) in the
direction in which the component of velocity is u. If this were true the
length / of a body at rest would become / J (1 - u2

), and the experi-
ment would fail to give us any knowledge of the earth's motion through
the ether, because the standard with which a distance is measured
would contract in the same proportion as the distance itself.

We do not propose dealing with the subject from the point of view
of the Fitzgerald contraction as this is liable to mislead the reader.
When we say that a body contracts on moving we express the Fitz-
gerald contraction hypothesis correctly, and we can imagine an actual
physical contraction. This, however, is different from the hypothesis
of relativity because, as we saw on p. 209, length is not an intrinsic
property of a body.

The word 'clock' has been frequently used and requires some
explanation. It is not implied that observers carry about with them
time-measuring instruments exactly like our clocks or watches. A
clock is simply a mechanism for measuring time-intervals accurately,
and may be a pendulum, a water-clock, a sundial, or various other
forms of apparatus. Just as we must not speak in relativity about actual
physical contractions of bodies in motion, so we must not imagine that
a clock's rate is altered by motion. We change our unit of time in such
a way that it is merely the time taken by a moving body to cover a
selected number of units of length. On referring to the conversation
between A, B and C (p. 208) it is obvious that the modification in the
definition of length implies also a modification of the unit of time.
Instead of /and t in a universe at rest relative to an observer O, we
must take /J (1 - u2

) and t J (1 - u2
) when the speed of the universe

relative to O is «.

FIFTEEN

RELATION BETWEEN
TIME- AND DISTANCE-INTERVALS

We shall now proceed to derive important relations between time-

and distance-intervals in two worlds which will be denoted by O and A.

Subscripts will be used in the symbols employed for each world: thus

sot t , and sa , ta refer to space- and time-intervals in the world of O and

A respectively, and u will be used throughout to denote the velocity ofA
relative to O or of O relative to A.

Fig. 54 shows A and B moving with velocity u in the direction of the

O
A B

Fig. 54

Derivation of the relation between time- and distance-intervals in

different worlds

arrow, the distance-interval AB being sa as measured by A or B. It

will be the same for each, as A and B have no motion relative to each

other. When A is passing O at zero hour event 1 occurs, and event 2

occurs at B in / seconds after zero hour by 0's clock. O says that the

distance-interval between the two events is s , which is his measure of

the length of OB (see p. 210). Since A is moving away from O with a

velocity u, in tQ seconds A has moved a distance utQ away from O. From

the diagram we see that

AB = OB - OA = s - ut

Hence O says that by his rule the right-hand side of the above ex-

pression is AB.

A measures AB as sa and O says that this distance is iflX/(l — u2
).

Equating the two expression for the length of AB according to O,

sQ - utQ = sa y/ (1 - u2
)

213
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from which

The corresponding expression for s can be found by similar reason-
ing or it can be written down from symmetry, remembering that when
we wish to find sQ it will be necessary to change the sign of u. Hence

•yo = (^ + «0/ v/(i -u2
).

To find ta and t , let ^/(l - u2
) - k. Substituting this forJ (1 -

?/
2
)

in the two expressions for sa and s , we obtain

•ya = (s - ">o)/£> or So ~ utQ = ksa
s = (•*« + uta)/k, or sa + uta = ksQ

Multiplying the first of the above equations by k and transposing the
terms, we obtain

ksQ = k\ + kut .

But by the second equation ks = sa + uta . Hence,

k\ + kut = sa + utai from which
kutQ = (1 - k2

) sa + uta = u\ + uta .

Dividing by u we obtain kt = usa + tai from which

t = (ta + usa)l 1/ (1 -«*),

The value of ta can be found in a similar manner, and the four
equations connecting the time- and distance-intervals between the two
events are as follows:

4 = (So ~ Ut )/J(\ - U2
) ta

=
ft,

- US )ly/{\ - U2
)

So = (Sa + «./)/V(l ~ U2
) tQ = {ta + USjfy/Q - u2

)

Two examples follow, and the first of these is solved by the use of
the formulae and also by dealing with the problem merely as a par-
ticular case. This latter method will show the reader the justification
for the formulae which have been derived.

An observer O says that ,4's world is moving away from him due
east with a velocity of 4/5 unit. A's world says that there are two special
events and that the second occurs 6 units due east of the first and 10
seconds later. How does O record the time- and space-intervals between
the events?

The data are as follows:

sa = 6, ta = 10, u = 4/5, therefore ^(1 - u2
) = 3/5.
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Hence

5(1 = 6 + 10

tn = 10 + 6„M-„
This problem can be solved by dealing with it as a particular case,

and this will be done for the space-interval.

A says that AB is OB - OA and O says that OB is s which is as yet

unknown but which will be obtained. A does not agree with O that OB
is sQ and asserts that it is soS/(\ - u2

) = 3sJ5. In addition, A says that

OA is 4/
fl
/5, because in A's time ta he has moved with velocity u = 4/5.

4
Hence A says that OA is - x 10 = 8. We have seen that A says that AB

is OB - OA or 3j /5 - 8, but he also says that AB is 6, because in his

world the event occurred 6 units east of A. Hence

3sJ5 - 8 = 6, or 3^ = 70, from which s = 23|*

Another observer O' says that A is moving from him with a speed

of 4/5 due west. How does O' record the interval between the events?

The diagram shows that in this case u = -4/5. In the first example

A's world was moving eastward and the second event occurred 6 units

due east of the first. In the second example the second event occurs

6 units due east of the first, but A"s world is not moving due east; it is

moving due west, which implies that u must be given the negative sign.

The results are therefore as follows

:

sn = 6 - 10

L = 10 - 6

4
x -

5

4
x -

5

It may have been noticed that in several instances u has been selected

with such a value that 1 — u2
is an exact square. This has been done to

simplify the computations, but in many of the examples which follow

the above expression will not be an exact square. In most cases accuracy

to the first two decimals will suffice for our purpose.

Two more examples are given, and the reader should work these out

for himself by using the above formulae. These arc very important, as
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certain conclusions which are based on them must be understood before

proceeding further.

Another observer says that A's world is moving away from him due
east with a velocity 0-3. What are his records, assuming that A says

the intervals between two events are the same as before (6, 10)? (The
space- and time-intervals will be denoted in this way for convenience.)

Answer. He records the intervals as (9-43, 12-37).

Another observer says that A's world is moving from him due east

with a velocity of 0-25. What are his records?

Answer. His records are (8-78, 11-88).

The Separation of Events

The four results are obtained on the assumption that the two events

had intervals of (6, 10). Naturally different results would be obtained

if the intervals were altered, but we shall adhere to the same figures

for the present. The results are shown below:

Value of u .. 04 -0 4 0-3 0-25

Distance-interval 23-33 -3-33 9-43 8-78

Time-interval .. 24-67 8-67 12-37 11-88

t
2 - s2 . . .

.

64 64 64 64

These four examples will be sufficient to show that there is an inter-

esting relation between the distance- and time-intervals. If we deduct

the square of the space-interval from the square of the time-interval we
obtain the figures shown in the last row, decimals being ignored. It

will be seen that the figures obtained are the same as those found by

deducting the square of the space-interval from the square of the time-

interval in /Ts world, that is 102 - 62 = 64. Although the time- and
space-intervals vary in the different worlds, nevertheless all the ob-

servers agree that /
2 - s

2
is constant and is 64. If we had started with the

original intervals as 12 and 4, say, we should have obtained 122 - 42 =
128 as the constant, whatever values of u were used.

The expression y/{f - s
2
), which will be represented by 5", is called

the separation of the two events, and is a fusion of space and time. It

is quite independent of the world in which the records are made and
represents an intrinsic property connecting the two events, irrespective

of the conditions under which they were observed. This may seem a

little confusing, but a few simple illustrations will clarify the subject.

Light travels in vacuo with a velocity of 186,282 miles a second, and
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so requires 500 seconds to travel from the sun to the earth when the

sun is at his mean distance from the earth (about 93,005,000 miles).

Suppose event 1 occurs on the sun and event 2 on the earth, event 1

being a solar eruption and event 2 being the appearance of a solar

prominence. Let the intervals be 500 and 400, 500 being the space-

interval and 400 the time-interval. This implies that the distance of the

sun is 500 light-seconds (the space travelled by light in 500 seconds) and

that the time between the events is 400 seconds. In this case t
2 - s2 =

-90,000, and as this is negative, its square root is imaginary. This

does not mean that the events are imaginary but it has an interpre-

tation which is important.

The message sent off from the sun requires 500 seconds to reach

the earth and it could not arrive at the earth (where event 2 took place)

before the occurrence of event 2, because the time-interval was only

400. Hence no time order exists in this case. It may be pointed out that

when an observer places on record the time of an event he gives the

corrected time after allowing for the time that the light requires to

reach him, and he can do this when he knows the distance where the

event takes place. Suppose, for example, that the beginning of an

eclipse of the sun is observed at 1 l
h

. To find the time at which it really

commenced the astronomer must make allowance for the time that

light requires to reach the earth, and so he would deduct 8 minutes 20

seconds from ll h to obtain the time at which the eclipse actually com-

menced.

Suppose in the next case that the time-interval of event 2 is 600,

then S2
is positive and a time order exists. Soon after event 1 has hap-

pened on the sun we can imagine a wireless message sent off to the

earth reporting the event (the wireless message will travel with the speed

of light), or simply a light signal announcing an eruption, and this will

reach the earth in 500 seconds. Since event 2 took place with time-

interval 600 seconds it is easily seen that the message about event 1

will reach the earth before the occurrence of event 2.

Suppose 5 is zero, what interpretation shall we give in this case?

Obviously in such circumstances t = s, or, in other words, the time-

interval between the events is the same as the time required by a light

signal to travel from the sun to the earth. This merely shows that the

signal was sent off from the sun as soon as event 1 took place and was

observed on the earth as soon as it arrived. It is clear that it could not

have been seen a second sooner.
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It is important to remember that all observers, if we could imagine
them on different planets and moving with various velocities which, for

the sake of illustrating the point, can be taken as very great, would make
different records of / and s. Their values for these could be found from
the equations previously given, provided u were known in each case.

It is equally important to notice that each observer is entitled to his

view and that there is nothing to show why any preference should be
given to the opinion of one more than another. When we deal with the

ordinary velocities with which we are accustomed on the earth, the

views of various observers are nearly the same—so close indeed that

it is generally impossible to detect any difference. Nevertheless such
differences exist, though we have been unaware of them until

comparatively recent times. We shall now use an illustration

which is not purely imaginary, in which a fairly high velocity is

involved.

Fig. 55a shows the earth E, Jupiter /, and a distant spiral nebula
N which has a star in it attended by a planetary system. An observer on
one of these planets says that the solar system is receding from him
at a speed of 1860 miles a second (not an improbable velocity if we
imagine that the spiral nebula is about 20 million light-years distant).

An observer on E notices two special events: (1) an eclipse of one of
Jupiter's satellites; (2) a light or wireless signal from Jupiter which
he receives 3000 seconds after event 1 . How does the observer on the

planet somewhere in the spiral nebula record the interval between the

events? The distance of the earth from Jupiter can be taken as 2600
light-seconds.

Using the formulae deduced on p. 214 and noticing that the observer
within the nebula corresponds to O and that u is 00 1 because the

velocity of E relative to N is 1/100 the velocity of light, we find as

follows:

j = (2600+0-01 x 3000) x 1 00005= 2630 to four significant figures

tQ= (3000+ 001 x 2600) x 1 00005= 3026

The approximate value of 1/^/(1 - u2) = 1 + £ k2 has been used
and is sufficiently accurate for the present purpose.

The separation in this case is x/(3026
2 - 26302

) = 1497 to four sig-

nificant figures, and this is practically the same as y(30002 - 26002
), as

we should expect, because it has been shown that the separation is the

same for each observer. The very slight discrepancy between the two

I
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values of the separation is due to the fact that only four figures were

used in the computation of sQ and f .

What would O's opinion be if the relative positions were as shown

in Fig. 55b?

In these circumstances it is necessary to make u = — 001. On sub-

stituting this value it is easily found that s = 2570, t = 291r

4. The

separation is ^7(2974* - 25702
) = 1497 as previously obtained.

Suppose that the observer on the earth receives the signal 2610

seconds after event 1, and that the relative positions of N, E, and J are

N- J

Fig. 55a

How an observer on a

planet in a distant nebula

which is receding from

the earth records an event

on Jupiter

N.
J

Fig. 55b

The same as Fig. 55a ex-

cept that Jupiter is now
between the earth and the

nebula

as shown in Fig. 55b. How does the observer in the spiral nebula record

the interval between the events?

sQ = (2600 - 001 x 2610) x 1-00005 = 2574

r = (2610 - 001 x 2600) x 1 00005 = 2584

The results should be noticed very carefully as they involve an

apparent contradiction.

Considering the last example for the present, what does it show us

regarding time-sequence? We have seen that an observer on the earth

receives the signal 2610 seconds after event 1, which implies that he

received it 10 seconds after the eclipse. The observer on the planet

within the nebula judges that the time was only 2584 seconds, or in

other words, according to him event 1 followed event 2, and this

involved an apparent contradiction. If the reader will substitute the

value —000385 for u he will find that tQ = 2600, so that an observer on

a planet in a nebula which had the velocity 000385 would judge the

events 1 and 2 to be simultaneous. The special theory of relativity shows

us that there is really no such thing as before or after or simultaneity

when bodies are moving relative to other bodies. It all depends upon

the point of view of each observer and no one can claim the right to be

more correct than another. While this may seem a startling view, it
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must be remembered that it is only startling because we have been
accustomed to judge from the standpoint of a universal cosmic time.

For each body there is a time order of events which has been called its

'Proper Time', and the proper time varies according to circumstances.

So far as our own experience is concerned this is always governed by
the proper time for our own body. It may be admitted that the proper

times ofhuman beings are very nearly the same, but this is only because

our speeds relative to one another are very small in comparison with the

speed of light, and so, for all practical purposes, the proper times for

all of us can be taken to be the same and can be identified with terres-

trial time.

It may be objected that all this may be useful for the metaphysician

but that it has no bearing on our ordinary life. Even if it is admitted

that people on planets which have high speeds with reference to the

solar system have their own proper times, there is nothing on our own
planet comparable to this. In answer to this it may be pointed out that

when we come to deal with the electrons later in this work, it will be

shown that the relativity theory has a most important bearing. In

addition, it will be shown that in the solar system itself the general

theory of relativity has some very relevant applications.

Before proceeding to the next chapter the reader is advised to make
himself familiar with the application of the formulae given on pp. 2 1 3- 1

5

by solving the problems given below. A positive value for u can be

assumed in the 2nd and 3rd problems, in which a quadratic equation is

involved.

Problems

1. A gives the interval between two events in the form (2, 3), and
O says that A's universe has a velocity of 0-3. How does O record the

interval? What is the separation?

2. A records the interval between two events as (7, 10), and O says

that the time-interval is 14 seconds. Find (1) the velocity that O attri-

butes to A
; (2) O's record of the space-interval

; (3) the separation.

3. A records the interval between two events as (5, 7), and O says

that the space-interval is 9-81. What velocity does O attribute to A
and what is O's record of the time-interval?
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4. The following events are noted on the same day: (a) an earth-

quake at Formosa at l
h

; (b) an eclipse of a satellite of Jupter at l
h 30m ;

(c) occultation of Aldebaran by the moon at l
h 55?0. What do you

know about the time-order of these events? Use the corrected times,

allowing for the time light requires to travel from Jupiter to the earth

(2600 sec.) and also from the moon to the earth (1-5 sec).



SIXTEEN

THE WORLD OF THE FLATLANDER

Up to the present we have considered events which take place at

points on a straight line along which the worlds are separated, and it is

now necessary to extend this to deal with events which occur anywhere
in space. Most readers have probably a knowledge of three-dimen-
sional geometry, but for the sake of those who are not conversant with
it the following elementary explanation will be sufficient for all that is

contained in this chapter.

A point Pin a room, say an electric bulb, can be defined by referring

it to its distances from two walls and the floor, as shown in Fig. 56.

These are the planes of reference, and if its distances from these planes

are 10, 8, and 7 feet, then its distance from is ^/(lO2 + 82 + 72
) =14-6

feet. This is merely an extension of the theory of Pythagoras which says

that the square on the hypotenuse of a right-angled triangle is equal
to the sum of the squares on the other two sides. In addition, if another
point P' is taken whose distances from the planes are 6, 3, and 9, respec-

tively, the distance between P and P' is

V((10 - 6)
2 + (8 - 3)

2 + (9 - 7)
2
) = ^45 = 6-7 feet.

Now suppose that an event A is given by x = 10, y = 8, z = 7,

/ = 20. This means that it is located by its distances from three planes
at right angles to one another, the distance x being measured from O
towards the right, that of y being measured perpendicular to the
plane of the paper, and the distance z being measured vertically. The
axes Ox and Oz are in the plane of the paper. The time-interval of 20
cannot be represented as a fourth dimension but it will be shown later

how to deal with it in a simple way.

If an event B is given by x = 6, y = 3, z = 9, t = 8, the space-
interval between A and B is 6-7, as shown above. The time-interval is

12; hence the separation is^^ - 45) = 10 approximately. Problems
of this kind are treated on the same principles as those where only one
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co-ordinate was considered (p. 216) and do not present any special

difficulties.

If we imagine that the points P and P' or, if we wish, the events

A and B, are in the plane xOy, which is the plane of the floor, the same

method is adopted. Thus, suppose that the co-ordinates of x and y and

also the time-intervals are the same as before; the distance PP' is now

^/((10 - 6)
2 + (8 - 3)

2
) = ^/41 ; hence the separation is ^(144 - 41),

which is slightly greater than 10.

P.

-X

V

Fig. 56

How to find the distance between two
points the co-ordinates of which, referred to

three planes, are given

We shall now deal with an imaginary being who is a Flatlander

living in a world of two dimensions as shown by xOy, Fig. 57. From O
draw Ot perpendicular to the plane xOy and let Ot represent the time-

axis. It will be seen that we have dispensed with the z-axis because

it is a two-dimensional world so far as space is concerned, and we can

easily visualize the third axis as representing the time-axis. Let us follow

the movements of Flatlander, whom we shall describe by Fin the future.

F starts his life at a, and an observer O makes a record of his life

history. He does this by finding out how far F'\s from Oy and also from

Ox at any instant, these distances being denoted by x and y respec-

tively, and, in addition, he makes records of the times, so that he can

make use of the /-axis also. O can therefore represent each event in the

life of F by a point in space, not in the plane xOy but as shown in the

space which includes /. Thus the point A corresponds to event a, the
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Fig. 57

A Flatlander in a three-

dimensional world, time

being a dimension

point B to event b, and so on, so that the history of Fis represented by

the curve AB which we can call F's 'world-line'. There may be thou-

sands or millions of Fs, each one ofwhom has his own world-line, and,

as shown in Fig. 57, these make up the space-time of the Flatlanders'

universe.

Suppose that two .P meet. O will record this as the intersection of

two world-lines. If he wants to compile a catalogue of simultaneous

events, say the marriage of one F and the death of another, he must
select points which are at the same height above the plane xOy, or

simply points which have the same values for the /-co-ordinate. In most

cases all the Fs will agree closely with O's conclusions, but if one Fwas
capable of moving rapidly he would make different space and time

measurements from O.

Let us now take a numerical example from the Flatlanders' universe,

and we shall concentrate our attention on one which can be taken as

typical of all the others. The units are the same as those previously

adopted.

Event A B C D E
Time / 5 10 20 40 80

x-co-ordinate 1 2 4 8 16

v-co-ordinate . 3 6 12 24 48

The time-interval between the events E and A is (80 — 5) = 75.

The space-interval of E from A is v/((16-l)
2 +(48-3)2)= x/2250

1 47-43.
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The separation of E from A is y/(15
2 - 47-432

) = 5809.

The space-interval from E to A is the sum of the space-intervals of

A to B, B to C, C to D and D to E, and the same applies to the time-

interval. Thus, if we consider the x-co-ordinate, the sum of the space-

intervals from A to B and so on is 1 + 2 + 4 + 8 = 15, and in the

same way it is seen that this applies to the v- and /-co-ordinates also.

Does the same apply to the separation? Testing this, we obtain the

following results:

Intervals

/-co-ordinate

x-co-ordinate

v-co-ordinate..

Squares of /-intervals

„ x-intervals

„ j>-intervals

Sum of squares of x- and

j-intervals

Squares of /-intervals

minus the last row

Separations

Sum of separations

AtoB
5

1

3

25

1

9

10

15

3-87

BtoC
10

2

6

100

4

36

40

60

7-75

CtoD
20

4

12

400

16

144

160

240

15 49

Dto E
40

8

24

1600

64

576

640

960

30-98

5809

We have already shown that the separation between A and E is

5809. This equality will hold under certain conditions which will now

be considered.

It will be seen that if each of the x-co-ordinates is divided by the

corresponding /-co-ordinate the result is 1/5. Also, if each of the ^-co-

ordinates is divided by the corresponding /-co-ordinate the result is 3/5.

Expressed in a different way we can say that each of the rows in a series

in geometrical progression with the same common ratio—in the present

case 2. It makes no difference what the common ratio is so long as it is

the same for each row. In such circumstances the separation between

the first and the last event will always be the sum of the separations

between the first and the second, the second and the third, and so on

to the last.

A general proof that the separation is the same for different ob-

servers is as follows:

Using the values of ta and sa on p. 214,

p
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t'a-4 = ft - 2us t + &4 -s* + 2us t - uHl)l{\ - II*)

This reduces to

[to (1 - «2
) -ag(l- «2

)]/(l - k2
) - tl - si.

Does this rule hold if the common ratio is not the same for each
co-ordinate? To answer this question a test will be made from another
specific example, and two of the rows will be assigned the same common
ratio which, however, will differ from that of the third row.

Event

f-co-ordinate

.x-co-ordinate .

.

y-co-ordinate

A B C
5 10 20

1 3 9

3 6 12

A to B BtoC AtoC
5 10 15

2 6 8

3 6 9

13 72 145

12 28 80

3-46 5-29 8 94

Intervals

f-co-ordinate

x-co-ordinate

^-co-ordinate

Sum of squares of x- and ^-intervals

Difference between squares of /-in-

tervals and last row

Separation

The sum of the first two separations is 8-75, which is less than
8-94, the separation between events A and C, and however many cases

are taken it will be found that the separation of the last event from the

first is always greater than the sum of the separations of the first from
the second, the second from the third, and so on to the last. This holds
only under the conditions that the common ratio referred to shall not
be the same for each co-ordinate.

The interpretation of the above results is not difficult. If the reader

will plot the curve in the first case between any two of the co-ordinates,

say x and yy
then x and /, then y and /, he will find that in each it is a

straight line. If he does the same in the second example he can obtain

a straight line if he uses the /- and j-co-ordinates but in no other case.

In the first example O says that the Flatlander is moving with uniform
speed in a straight line, which implies that he is moving freely, being
uninfluenced by any force. In the second example the Flatlander's

world-line is curved and he is not moving freely. The meaning to be

assigned to the terms 'freely' will be discussed later.
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In Fig. 58 let the world-line of F consist of two straight portions AB
and BC. From what has just been said we know that the separation of

C from A is greater than the sum of the separations of B from A and

of C from B. This seems contrary to Euclidean geometry, which says

that AB plus BC is greater than AC, but we are not now dealing with

Euclidean geometry. Any number of paths could join A and C in space

and time, but AC is unique in one respect—all observers agree that it

yields a separation greater than any of the others. The separation of the

various paths would differ from one another but any one would be less

than AC.

Although we have been dealing with a race of Flatlanders the same

argument applies in three-dimensional space. The name geodesic is

applied to the world-line possessing the unique property referred to

—

B

Fig. 58

Deals with 'separations'. See

text for explanation

that winch yields the maximum separation. We have seen that the

separation between two events in the life of a body is equal to its proper

time which is the time-interval measured by a clock which the body

carries about with it. It appears, therefore, that if a body is left to

itself it will follow the path which makes the proper time between events

as great as possible, according to its own clock. Let us see how all this

compares with Newton's laws.

Newton presupposed absolute space, time and motion, and it must

be admitted that those who have been brought up on Newtonian

mechanics find it difficult to free themselves from their bondage. He said

that a body left to itself moved in a straight line, but now we must ask

ourselves what we mean by a 'straight line'. A line which is straight

in one person's space may be curved in the space of another person.

Then again, in his second law Newton measured force by the accelera-

tion or rate of change of motion of a body, but in whose system is the

rate of change to be measured? What did Newton mean by force which

he could not observe but which he postulated? In the Newtonian sense

we cannot observe force, which is a mere hypothesis, though we can
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observe change of motion. The rate of change of motion certainly

implies a cause, and probably no serious harm is done by formulating a

hypothesis to describe it, so long as this hypothesis is recognized as

purely provisional. A relativist can state Newton's first law in a different

form, which does not involve so many difficulties and ambiguities, as

follows

:

'If a body is moving freely and if A and B are two events in its

history, then the space-time path which the body follows between A and
B is such that the separation of B from A, measured along that path, is

a maximum.'

It will be necessary to return to this point later in the work when we
come to deal with general relativity. Before proceeding to deal with the

problems of mass and momentum arising out of the previous investi-

gation, a few examples will be worked to make the reader familiar

with the formulae employed. Problems follow which the reader can

then work out for himself.

Example 1

An event A is given by x = 2, y = 3, z = 4, t = 20, and an event

B by x m 1, y = 5, z = 7, / = 25. What is the separation of B from A1
(In future the co-ordinates will be written in the form (2, 3, 4; 20), etc.)

The differences between the co-ordinates of x, y, z, and t respec-

tively, irrespective of the signs, which will not affect the results, are

1, 2, 3, and 5. The separation is therefore y/(5* - (l 2 + 22 + 32
) ) =

y/ll = 3-32.

Example 2

If the world-line of a particle is the straight line AB in the above,

what are the space co-ordinates of an event happening to the particle

when t = 30?

A change of (25 - 20) in t implies a change (— 1, 2, 3) in the other

co-ordinates. A change of (30 — 20) is required by the problem, and

hence the change in (x, y, z) is twice that given above, or (-2, 4, 6).

Adding these to the first co-ordinates the result is (0, 7, 10).

Example 3

A, B, C, events in the life of a particle, are given by (0, 0, 0; 0),

(3, 6, 14; 20), (7, 9, 16; 25). What is the separation of C from At Is

the particle moving freely?

The separation is V(25
2 - (7

2 + 92 + 162)) = ^239 = 15-46.

From what has been previously said about the criterion for a particle

moving freely it is obvious that in this case it is not moving freely. This

can be checked by noticing that the separation of C from A is less than

the sum of the separations of B from A and of C from B.

Problems

1. Find the separation between events given by (3, 6, 10; 12), and

(2, 3, 4; 20).

2. Verify that a particle is moving freely from the following co-

ordinates of three events: (3, 4, 5; 10), (9, 12, 15; 30), (27, 36, 45; 90).

3. An observer says that the events in 1 occur at the same place.

What time-interval does he attribute to the two events? (Notice that the

separation remains the same.)



SEVENTEEN

VELOCITY AND MASS
IN DIFFERENT WORLDS

Composition of Velocities in a Moving World
It will be necessary at this stage to refer to a previous example given
on pp. 214-15, which will be stated in a slightly different form as follows

:

An observer O says that A's world is moving away from him with
a velocity 4/5. In /fs world there are two special events: (1) a ball
passes the position A, with a velocity 0-6 moving in the same direction
as A's world; (2) the ball is 6 units from A 10 seconds later. What
velocity does O attribute to the ball?

It will be seen that we have derived the velocity of the ball in A's
world by dividing the space traversed, 6 units, by the time, 10 seconds.

It was shown that O attributed a space-interval 23£ and a time in-
terval 24| to the ball, and hence he asserts that its velocity is 23J/24I
= 70/74.

Now let us use the ordinary method for finding the velocity of the
ball.

A's velocity from O is 0-8 and the velocity of the ball relative to A
is 0-6, so that the velocity of the ball relative to O is 0-8 + 0-6 = 1-4.

This differs from the velocity found above, which is only 70/74, and it is

obvious that the old method used for the composition of velocities is

erroneous. Without dealing with the method of proof it may be said
that the formula which must be used when compounding velocities in
the same line is as follows, where u is the velocity of the world in which
the event occurs relative to the observer O, v is the velocity of the
body in this world, according to an observer who is moving with it, and
w is the resultant velocity, according to O.

w = (u + v)/(l + uv).

Substituting 0-8 and 0-6 for u and v in this formula, we find

w = 1-4/1-48 = 140/148 = 70/74.
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When the velocities are in opposite directions the negative sign must

be used with one of them—preferably with the small velocity.

If the velocity above is 1, that is, if the body in A's world is moving

with the velocity of light, w = (u + l)/(w 4- 1) = 1, that is, the re-

sultant velocity is the velocity of light. This is just what we should

expect, because, as we have seen earlier, all observers who measure the

velocity of light, whatever their own velocities may be, obtain the same

result.

The Newtonian method of composition of velocities is not strictly

accurate, but when we are dealing with the velocities to which we are

accustomed in our world it is difficult to detect any discrepancy.

Generally speaking, our velocities are very small in comparison with

that of light; hence w will differ very little from u + v. An example

will make this clear.

Suppose an observer O is at rest relative to the sun and therefore

says that the earth is moving with a velocity of 18 J- miles a second.

Imagine that a train is travelling at a speed of 60 miles an hour in a

direction opposite to that of the earth's orbital motion. How will O
judge the speed of the train?

Expressing all speeds in terms of that of light, u 00001, v =

-000000009; hence w = (00001 - 000000009)/(1-0000000000009),

the negative sign being used as the velocities are in opposite directions.

The numerator is obtained by the usual Newtonian method, and the

discrepancy between this method and the more accurate method appears

in the denominator. As will be seen, this discrepancy is less than 1 in

ten thousand million and, even with the velocity of 1 84 miles a second

for the earth and 60 miles an hour for the train, would be only of the

order of the one-thousandth of an inch per second.

There is an important verification of the formula for the composition

of velocities. Up to the present we have considered velocities in vacuo, but

when light is propagated through any medium its velocity differs from

that in vacuo. Its velocity in air is nearly the same as in vacuo because

the refractive index of air is nearly 1 , and the velocity varies inversely as

the refractive index of the medium. In the case of water with refractive

index 4/3 the velocity of light is 3/4, that in vacuo being the unit.

Suppose light is transmitted through a stream of water which is

moving through a tube with velocity u in the same direction as the ray

of light. Can we deduce the velocity of the ray relative to the tube?

Using the formula given for the composition of velocities,



232 A BRIEF EXPOSITION OF RELATIVITY

"(!H/(
3

Since u is very small when it is expressed in terms of the velocity of light,

the value of 1/(1 + f u) in the above expression is practically 1 — § u;

hence, multiplying this by f + w, we find

„, = - + u u —
16

The last term involving u- is so small that it can be ignored, and the

final value for w is f + u (1 - -&).

If \i is used instead of 4/3 to denote the refractive index of the

medium, the value of w can be written in the form

w =- -f u\ 1 — --
J

, which can be used for any medium.

Experiments by Fizeau in 1851 and by Hoek in 1868 showed that

the rate of advance of the light-ray relative to the tube was in accord-

ance with the above formula, very close approximations to the theo-

retical results being obtained.

The Mass of a Body in Motion

It is a little difficult to deal fully with the problem of mass in an
elementary treatise, and the reader must be prepared to accept certain

conclusions without adequate proofs. If we agree to all that has been
said up to the present about the special theory of relativity, we may
conjecture that the mass of a body is not independent of its velocity.

It will suffice to say that, just as length, time and velocity are different

in different worlds in motion relative to one another, so masses are

different also.

Suppose the mass of a body at rest in A's world is m and then that

it moves in A\ world with a velocity u, A will measure its mass as

mfy/Q - U2
)

Since u is usually very small compared with the velocity of light, the

above expression is approximately m (1 + \u2
), and those who have an

elementary knowledge of mechanics know that the second term, \rnu-,

represents the kinetic energy of the body. Thus a body with mass 100

gm. moving with a velocity of 200 cm. per sec. has a kinetic energy or

capability of doing work represented by

1 x 100 x 2002 = 2 million ergs.
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It is now accepted that mass is nothing other than a form or appear-

ance of energy, and annihilation of matter implies a certain amount

of energy released in the form of radiation. The amount of energy thus

released by a mass ofm gm. is mc2 ergs, c being the velocity of light in

cms. per sec. Hence each gramme of matter is equivalent to (3 x 1010)
2

ergs, irrespective of the time required for the annihilation of the matter.

If a body of mass 1 gm. moves with a velocity of 200 cm. per sec, its

total energy is, therefore, (9 x 1020 + 20,000) ergs.

We can represent the total energy of a body, potential and kinetic,

by the expression mc2
(1 + £u2

), so that the mass of a body moving with

velocity u is m (1 + \u2
), which is very nearly the same as m/VG ~ "2

)

when u is small. The fact that the mass of a body increases with its

velocity merely tells us that an increase in its kinetic energy reveals

itself by an increase in the apparent mass. If U could become 1, that is,

if the body could move with the velocity of light, the mass would be

infinite, as the denominator in the above expression would be zero. No

body can attain the velocity of light and in fact the expression for the

mass of a body sets an upper limit to the velocity of any body. Since m

can never be infinite it follows that u can never attain the value 1. The

nearest approach to the velocity of light takes place with electrons, and

it has been known for a long time, before Einstein propounded his

relativity theory, that electrons moving with high speeds increased

their apparent mass by the amount suggested by the above expression.

The energy of a body at rest is, as we have seen, mc2
, and this has

been called the 'energy of constitution' of the body. If we regard the

energy of the sun as due to the 'annihilation' of matter, we must con-

clude that the sun, like other stars, is losing mass. A simple calculation

shows that on this view the present output of solar energy requires the

annihilation of about 4 million tons per second. This may seem very

large, but considering that the mass of the sun is about 2 x 1027 tons,

it is relatively very small.

The view that the output of energy of the sun and other stars is

due to the annihilation of matter has been confirmed in recent years.

The transformation of hydrogen into helium, induced by the high

temperature in the interior of the sun and many other stars, and aided

by the catalytic action of carbon and nitrogen, is believed to supply the

necessary energy, a certain amount of mass disappearing in the process.

A discussion of this, however, is outside our scope.
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Example 1
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A body is moving in As world with a velocity 0-3 in the direction
A to B. O says that As world is moving in the direction A to B with a
velocity 0-4. What is the velocity of the body according to 01

Substituting 0-3 for v and 0-4 for u, the formula for w gives
0-7/112 = 0-625.

Example 2

If O says that A*s world is moving in the direction B to A, what
velocity does he attribute to the body?

In this case vis + 0-3 and wis -0-4, so that w is -01/0-88 = -0114.
The direction of motion, according to O, will correspond with that of
u, which is from B to A.

Example 3

O says that the velocity of a particle in A's world is 5/17 in the
direction AB and also that A's world is moving in the same direction
with a velocity 01. What does A say the velocity of the particle is?

w m 5/17, u = 01, hence 5/17 = (01 + v)/(l + 01 v), from which

5 + 0-5 v = 1-7 + 17 v

hence v = 0-2

Since the value of v is positive, A says that the particle is moving in
the direction AB.

Example 4

If an electron is moving with a velocity 0-4, verify from the exact
expression for the mass of a particle in motion that its apparent mass
increases by more than 9 per cent. What increase is given by the
approximate formula?

The mass is 1^/(1 - u2
) = lA/0-84 = 1091 if the mass at rest is 1,

though, strictly speaking, there is no such thing as an electron at rest.

When we use the term 'at rest' it implies a small velocity.

The approximate expression gives m + \ x 016 = 108. In the

case of these high speeds it is better to use the exact formula.

Problems

1. A body at rest has a mass 2. It then moves in /i's world with a

velocity 0-3. What is A's measure of its mass?

2. O says that A's world is moving in the same direction as the

body in 1, with a velocity 01. What is 0's measure of the mass?

3. A body in A's world is moving with a velocity of 0-5 and O says

that its velocity is 0-421 in the same direction. How does O judge the

velocity of A's world?

4. A's world is moving with a velocity 0-5 and a body in his word

is moving with a velocity 0-5 in the same direction, both with reference

to O. Why does O not think that the velocity of the body with reference

to himself is the same as that of light?

5. What is the mass of a body whose mass is 1 at rest, as judged by

A and O respectively in 4?

6. The mass of an electron at rest is about 8 x 10"28 gm. With

what velocity must an electron move, in kilometres a second, so that its

apparent mass may be (a) 12 x 10~28 gm., (b) 24 x 10"28 gm.?
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SUMMARY OF THE
RESULTS OF SPECIAL RELATIVITY

A summary of the position may assist the reader at this stage if he has

understood the significance of the new conception of the physical world

and also the elementary formulae which embody that conception. Some
may think that a summary in the first instance would have been more
helpful, but this is a mistake. Many popular accounts of the theory of

relativity which are free from any form of mathematics have not always

been successful in enlightening the reader. When the new ideas are

expressed in non-mathematical language they are still difficult—prob-

ably more difficult than they would be if mathematics were introduced.

If the subject has been followed carefully up to the present it will be

obvious that, to a large extent, the theory of relativity depends on throw-

ing overboard a number of conceptions which are wrong, though they

work fairly well, and have come to be regarded as necessities of

thought.

It must be borne in mind that the Universe cannot be completely

comprehended by our finite minds, though it can be interpreted. This

interpretation depends on ourselves and our faculties. Science is con-

ditioned by the human mind and must therefore be relative to it. We
must not, however, fall into the error of asserting that everything is

relative; if this were true there would be nothing in the Universe to

which it could be relative. It is true, on the other hand, that everything

in the physical world is relative to the observer, and for this very reason

the theory of relativity seeks to exclude what is relative and to arrive at

statements of physical laws that shall be independent of the observer.

If it failed to do so it could not claim to be science.

The Michelson-Morley experiment shows that the velocity of light

in vacuo, as determined by every individual, is an absolute constant—

a

statement which seems extraordinary from the point of view of tradition

and 'common sense'. If a number of people walk along a road at
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different speeds and a number of motor-cars dash past them, people

and cars going in different directions, in a few seconds they will be at

different distances from a point on the road if all started there at the

same instant. This is mere common sense, but if we apply our common

sense to the next step in the argument it will seem to contradict the

relativity theory. Suppose a flash of light is sent out at the instant

when they are all at the same point, the light-waves will be at 186,282

miles from each pedestrian and car a second later, by each one's clock.

This seems to be impossible by our conventional way of thinking,

because in the second some of the cars might be 50 feet from the point

on one side and some the same or a greater distance from it on the other

side, and the pedestrians, too, would be at various distances from it. If

the reader has followed the results of the Michelson-Morley experiment,

and also its application to the illustration of the men in the boats, he

will see that this is what relativity leads us to—each observer will find

that the velocity of light is precisely the same.

We have been accustomed to regard matter, space, and time as

the three independent foundation-stones of the Universe, and indeed

Science has been obliged to adopt them as the data in terms of which

discoveries can be expressed. But now men of science have good reasons

to enquire whether they are the absolute and fundamental things that

they were once considered to be. Suppose that they are not absolute

but mean different things to different people? IfA calls a certain interval

a minute, and B calls it half a minute, or if A says that the length of an

object is a foot and B says that it is half a foot, and if there is no

criterion for testing the validity of each one's statement, we need not be

surprised if apparently contradictory results are obtained. Nevertheless,

if we regard the Universe in the right way we shall see that failure to

detect absolute motion is nothing more than an observable natural

occurrence, and once we have convinced ourselves that absolute

motion is meaningless, we shall find no difficulty in calculating the

necessary changes that must be introduced in certain terrestrial

standards.

If absolute motion is meaningless, why should we have expected to

be able to measure it and how does this knowledge affect our standards?

The answer to the first question is that we have entertained false con-

ceptions of the Universe in the past, and when we have discarded these.

Nature is simplified. As Sir Arthur Eddington says, 'The relativity

standpoint is then a discarding of certain hypotheses, which are un-
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called for by any known facts, and stand in the way of an understanding
of the simplicity of Nature.'* We have already answered the second
question when it was shown how our conceptions of length, time, and
mass were modified. Let us return to the definition of length given on
p. 209.

There seems something very arbitrary in defining the length of a
body as 7^/(1 - u2

), where u is the velocity of the body in the direction

in which the length is measured, with reference to the standard of rest

adopted. The view that this definition is arbitrary arises from our earlier

outlook when we thought in terms of Newtonian mechanics. This
outlook was responsible for the conception of length as absolute and
it is not easy to free ourselves from the old obsession. Here is an
example of a false view in another sphere which we have discarded
without any difficulty.

Everyone knows, or thinks he knows, the meaning of the term
'weight'. When two bodies have the same weight this fact is indicated by
a good balance of the usual type or by a spring balance, and we shall

confine our attention to the latter for the present. Suppose we are given a
pound weight of some commodity and we check it on a spring balance,

say at a place in the latitude of Greenwich. It might not occur to every-

one that the weight is not an intrinsic quality of the body, but if we
experimented at different places on the earth's surface we would find

that there was nothing absolute about the weight of the body. If we
could test it at either Pole by means of the spring balance we would
find that it weighed 1003 lb. and if we went to the equator it would
weight just under 0-998 lb. If we could take it to the moon it would
weigh about 1/6 lb., while on Jupiter it would weigh more than 2\ lb.

In fact, it would show a different weight on every planet or satellite, and,
as has been shown, even on the earth itself there is nothing absolute
about the weight of the body.

If we were anxious to define the weight of a body with greater

accuracy we would discard some of the old conventions and ideas about
the permanency of weight and would proceed as follows:

The weight of a body on the earth will be defined by the expression

mQ (1 - 000265 cos 2
<f>)

where mQ is its weight at latitude 45° and
<f>

is the latitude of the place.

Although this expression neglects small terms and is not, therefore,

* Space, Time and Gravitation, p. 29.
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exact, it is a very close approximation and will suffice for the purpose of

the illustration.

If the weight of a body cannot be regarded as absolute why should

there be any reason for treating the length of a body as an intrinsic

property of the body? It has been shown why lengths / in one world

are measured as lengths /^/(l - w2
) in another world, u being the

relative velocity of one world with reference to the other. As Professor

H. Dingle points out: 'The special theory of relativity is completely

contained in the purely physical statement that the fundamental

measurement of physics is lj{\ - v
2
/c

2
), all other measurements which

in classical physics have been defined in terms of / being thereby sub-

ject to modification only by the substitution of this more complete

expression, their definitions remaining otherwise the same.'* (It should

be noticed that v is the velocity of the body and c that of light,

so that v/c corresponds to u, which has been used in the present

work.)

The modification in time corresponding to that in length is easily

derived. In the description of the conversation between A, B, and C,

given on p. 206, it was shown that 5's clock must lose to compensate

for the shortened course, and this loss was proportional to the shorten-

ing of the course. Velocity is simply length divided by time, and if

velocity is to remain unchanged, while length becomes ^/(l - u2
), it is

obvious that t must also become ty/{\ ~ "2
)-

The problem is a little more difficult when we deal with the increase

of mass, but the following considerations will show why there should

be an increase of mass with increase of velocity.

The velocity of a body increases indefinitely, up to a point, when a

force acts continuously on it. We use the word 'force' for lack of a

better word, because it is a mere mathematical convention, as will

appear later. There is a limit to the velocity of a body and that limit

is the velocity of light. Assuming, then, that it is impossible for a body

to attain the velocity of light, there must be something opposing its

increase of velocity, and that something is the increasing resistance that

it offers—in other words, its increase in mass.

It would be simpler in certain ways if we altered our definition of

energy and took it as mc2/y/(l - w2
) because this expression gives a

better measure of energy than the usual formula. When u is small, as it

usually is in terrestrial phenomena, the above expression gives the

* The Special Theory of Relativity, pp. 29-30.
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energy as mePQ. + iw2
), but this is not correct when we deal with high

velocities such as often occur with electrons. The symbol m refers to the

mass of a body when it is at rest relative to the observer, and if u = 0,

the energy of the body becomes mc2
, that is, its mass multiplied by the

square of the velocity of light; this has been called the 'energy of con-
stitution' of the body. It has been shown that mass and energy can be
identified, so that absorption of energy, say by heating a body, implies

an increase in its mass, though this is relatively so small that it is diffi-

cult to detect it. On the other hand, parting with energy implies a
decrease in mass, and this has been verified when four hydrogen atoms
form a helium atom. If the hydrogen atoms could be arranged without

the transformation of any material weight into radiation, the helium
atom would be exactly four times the mass of the hydrogen atom. The
actual ratio of the masses is only 3-970 to 4, the difference representing

the energy emitted in radiation.

Relativity has made it impossible to reduce Nature to mere matter
and motion, and some believe that it has dealt a very serious blow to

the materialism of the last century. It is outside the scope of this work
to deal with this particular aspect of the question, and we shall proceed
to examine the relation of 'events' to matter, space, and time. This is

necessary because the word 'event' has been used on various occasions

without explaining fully what it means, and readers may have found the

use of the word a little misleading.

An Event

Sir Arthur Eddington* defines 'event' as follows: 'An event in its

customary meaning would be the physical happening which occurs at

and identifies a particular time and place.' This is its customary mean-
ing, but he uses the word in another sense also, which is explained in

the same chapter. A point in space-time, which is the same as a given
instant at a given place, is called an 'event'. It will assist if a specific

illustration is used to explain the term.

However great the intelligence of a human being, his knowledge of
Nature is derived from experience. This experience is gained gradually

in life from the observation of phenomena, and the process is so slow
that we are not always aware of the progress that we make. It is possible

to imagine a human being suddenly introduced into the phenomenal

* Space, Time and Gravitation, p. 45.
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world, possessing powers of observation and of ratiocination, but

devoid of previous experience. What would he perceive and what would

be his interpretation of the occurrences?

Professor H. Dingle* gives a very fine description of the experience

of the intelligent human being in such circumstances, and an epitome

of this follows, the human being being denoted by A.

Event 1. A sees a wasp alight on an object.

Event 2. A sees the wasp alight on his hand.

A then begins to use his intelligence and to impose some order on

the circumstances in which he finds himself.

He notices that there is something common to the two events—in

particular that there is an 'object' with black and yellow bands and this

object characterizes the series of events between 1 and 2. He has now

gained a perception of matter in the form of a wasp.

This, however, is not sufficient, and he must construct some other

relation between the events. He does so by saying that the events are

in different places—the object on which the wasp rested and his hand

are in different places, and so he forms an idea of place, and by ex-

tending the same relation to other events which he perceives, he

becomes conscious of 'Infinite space'. Matter and space have thus

arisen as conceptions derived from a common source—the events

themselves.

Event 3. The wasp stings A.

How can he relate the unpleasant sensation to Event 2, the wasp

alights on his hand? He finds a third type of relation and says that one

of the events occurred before the other. By generalizing this relation he

forms the conception of 'time'.

According to the relativist, then, matter, space and time are types

of relations between events, and together they appear to be capable of

relating the whole of inanimate Nature in a consistent and orderly way.

A and his descendants ultimately come to regard matter, space and

time as the fundamental perceptions of the human mind, ignoring the

event which sinks into insignificance. But the derivative character of

matter, space and time lies at the heart of the modern principle of

relativity, and the event is the immediate entity of perception. Since

events finally constitute the external physical world, two observers of

Nature see the same events, but not necessarily the same matter. The

* In Relativity for All.

Q
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spatial, temporal and material relations imposed by observers on the

events will not necessarily be the same.

Problem

1. What would be the loss of a watch per day and the shortening

of a foot rule in Problem 6a of Chapter 17?

nineteen

GENERAL RELATIVITY

Up TO the present we have limited ourselves to a restricted class of

observers—those who are moving relatively to events with uniform

velocity. We have seen that each observer forms his own opinion about

length, time, mass and velocity, and that there is no reason why special

preference should be given to the opinion of one more than of another.

Now suppose observers and events move with variable velocity with

reference to one another, what modifications, if any, will be intro-

duced into our equations? The investigation of this subject forms the

subject of General Relativity.

Imagine a lift ascending or descending with uniform velocity and

that a passenger with a spring balance weighs himself when lift and

passengers are ascending and then when they are descending. Those

who have an elementary knowledge ofdynamics know that the machine

will record his exact weight on each occasion, the uniform velocity

making no difference. Now suppose that the lift is ascending with an

acceleration of 10 feet a second per second, or, in order words, that it is

moving with increasing velocity, the velocity being augmented 10 feet

a second each second of its motion. In this case a passenger who weighed

11 stones would find that the balance indicated 11 (32 + 10)/32 = 14£

stones approximately, 32 ft. per sec. per sec. being the value of g where

the experiment is performed. If the lift is descending with the same

acceleration, that is, 10 feet per second per second, his apparent weight

will be 11 (32 - 10)/32 = 1\ stones. If the lift is descending with

acceleration 32 ft. per sec. per sec. the passenger's weight is 1 1 (32 - 32)/

32 which is 0, and in this case, which implies that the lift is falling

freely, no pressure is exerted by anyone on the floor of the lift. All this

is elementary and does not require further explanation.

We shall now describe an experiment which could be partly carried

out, but as no one would survive to tell us about his experiences, we

must accept the following without inviting anyone to verify it.

243
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The Principle of Equivalence

Imagine a lift with a transparent bottom through which an inmate

can see clearly, and imagine further that the lift with its inmate, whom
we will call /, is taken up to a height of about 5 miles in an aeroplane and
then dropped. Ignoring atmospheric resistance and also the slight

variation in gravity owing to the varying distance of the lift from the

earth's centre, both lift and / will descend with an acceleration of

32 feet a second per second. The following are some of the experiences

of/.

If he places anything against the walls of his temporary home or

his 'universe', ifwe may use this expression, it will remain there, because

it shares the acceleration with / and the lift. If he can raise himself

from the floor he will remain poised in the air between floor and
ceiling. If he throws an object across his home the object will describe

a straight line. All this is from /'s point of view.

Now imagine an observer O on the surface of the earth who is look-

ing at the lift and /and who, we may assume, can see through the trans-

parent floor so that objects inside the lift are easily seen. The following

are O's opinions of what takes place.

/ and the lift are falling towards the earth with an acceleration

equal to g at the place. Objects which / thinks are at rest inside

his lift are sharing in the acceleration. An object thrown by / is not

pursuing a straight line but is following a path which O knows is a

parabola.

/ is quite unaware of a gravitational field in his neighbourhood and
if he looks through the floor of his home he will imagine that O is

approaching him with an acceleration of 32 feet a second per second. If

he forms any opinions of the cause of this acceleration he will conclude

that O is in a field of force. We can imagine that /is able to look through

the earth and sec an aeroplane at O's antipodes, and if this aeroplane

should crash, / will conclude that it is in another field of force of

greater intensity than that which O experiences. A parachutist descend-

ing slowly in the vicinity of /'s home would appear to be ascending, so

/ would naturally conclude that another field of force existed in the

parachutist's world, but this would appear to be of less intensity than

that in O's world. If the parachutist throws an object horizontally

from his parachute, / sees it describing a curve which, however, differs

from the curve that O sees. It is unnecessary to multiply instances of the

appearances of different worlds to /. We must now enquire why / has
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caused so much confusion, judging from O's point of view, by creating

different fields of force.

When we judge the motion of an object and ascertain its velocity,

we must start with some reference point, or axes of reference, as it is

generally described. For instance, if we are driving a car and another

car passes us, we can ascertain its velocity relative to our car at the

time, and this may be 10 miles an hour. If, however, we ascertained its

velocity with reference to a point on the road, we might find its velocity

to be 40 miles an hour. By selecting our axes in our car we make the

other car appear to be moving much more slowly than we do when we

select our axes on the road. If we were meeting the car, the speed of

each being the same as before, and we took our axes of reference in our

car again, we should ascribe a speed of 70 miles an hour to the other car.

(The speeds of the cars relative to the road are 40 and 30 miles an

hour.)

Let us apply this reasoning to /and O.

/selected his axes in his world, and there is no reason why he should

not do so, just as we are entitled to select our axes in our moving car.

The fact that we are aware of the motion of our car and that / is un-

aware of the motion of his world need not concern us. What has /done

by selecting his axes of reference in his world? He has made O appear to

be moving towards him with an acceleration, an aviator falling to the

earth at the antipodes to be also moving towards him, but with greater

acceleration, and a parachutist to be moving with less acceleration.

From /'s point of view the choice of axes was probably the most sensible

thing he could do, but from the point of view of O he introduced con-

siderable complications into his universe by producing artificial fields

of force.

Einstein's Principle of Equivalence can now be enunciated and its

meaning will be clearer after the above remarks on the choice of axes.

This principle is as follows:

A gravitational field of force is precisely equivalent to an artificial

field of force, so that in any small region it is impossible by any con-

ceivable experiment to distinguish between them.

By a choice of axes / has neutralized in his immediate neighbour-

hood what O calls a gravitational field, but in doing so he has created a

gravitational field in the neighbourhood of O and also of others. Al-

though we generally consider the presence of matter responsible for

creating a gravitational field, nevertheless any observer can so choose his
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axes that in his immediate neighbourhood all gravitational effects are

neutralized.

Observer on a Rotating Disc

Let us now consider the world-line of / moving through a space-

time domain. At each point in space-time he neutralizes the gravita-

tional field in his immediate neighbourhood, and he can measure the

separation of two close events in his career by means of his own clock.

This separation will be the proper time (see p. 220) as recorded by his

clock. The total separation between two events in his career, measured

along his world-line, can be found, and, as we have seen, this world-

line will appear straight to the observer who is moving with it, when the

Fig. 59

The world of an observer on a rotating disc

body is moving freely. But observers outside / say that the geodesic is a

curve and not a straight line, because the presence of matter has dis-

torted space-time in its neighbourhood. This will be clearer from an-

other illustration taken from Einstein's Relativity, The Special and the

General Theory, which is amended to a certain extent and made a little

simpler for the reader.

Instead of dealing with / in a lift we shall imagine that he lives on

a large disc (Fig. 59) rotating about an axis perpendicular to its plane.

An observer O, not on the disc, says that it is rotating about this axis,

but /regards the disc as motionless and imagines that O is moving in a

circle in the reverse direction, /uses axes through C as axes of reference,

so that any point is defined by its distances from these axes, and there

is no reason why he should not do so. The case is analogous to the lift

in which, as we saw, / formed his own system of reference. Let us now
see how /and O will regard their experiences.
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While the disc is rotating there will be a tendency for / to be moved

from a point P towards the periphery, and the force causing this is

proportional to the distance ofP from C.

This is easily shown by making use of the ordinary principles of a

rotating body. The centrifugal force at a distance r from the centre is

v2/r, where v is the velocity of / at this distance. If w is the angular

velocity of the disc, then v = wr, and substituting this value of v in the

above expression for the force, it becomes w2
r, which is proportional to

the distance of /from the centre, provided w remains the same. If /is at

the centre of the disc r = 0, and he will experience no force.

At other points /is convinced that there is a gravitational field acting

from C towards the periphery of the disc. If a body starts from C and

moves in the direction CO with uniform velocity, /, who says his disc

is at rest, describes the body as travelling from C along the line CO
which is rotating in the direction shown by the arrow. Using his axes

through C to trace the path of the body, he will say that it describes a

spiral curve. Now if a body describes a spiral curve we usually attribute

its motion to some force, and / naturally concludes that the spiral

curve which it describes is due to a gravitational field, which, as we

have seen, he believes exists. How does O regard the situation?

O says that / is moving round C in a circle with uniform speed and,

just as a stone whirling round the end of a string is held in a circular

path by the pull of the string, so O thinks /has an acceleration towards

C which is produced by /clinging on to the disc to avoid ejection. The

body which / thought moved in a spiral curve due to a field of force is

described by O as moving in a straight line devoid of a field of force.

Now let us deal with measurements on the disc. Imagine that /

uses his rule to find the diameter and circumference of the rotating

disc. When he measures the diameter, which we may take to be 100,000

units, O will agree with his result because the rule has no velocity in the

direction of its length when a measurement is made radially. When /

places the rule tangentially to the disc to measure its circumference, the

rule has a velocity in the direction of its length relative to O, but not

of course to /, and O says that it contracts (see p. 207), and owing to

this contraction more than 314,159 measures of the rule will be

necessary, according to O, to measure completely round the disc.

It is presumed that O knows that -rr, the ratio of the circumference of

a circle to its diameter is 314159 approximately, and he informs / about

the discrepancy. / and O agree on the number of times the rule is
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applied to go round the disc, and /, who is unaware of the contraction

because he is moving with the rule, concludes that the ratio of the cir-

cumference of a circle to its diameter is not 314159 but exceeds this.

For this reason /'s geometry is not the geometry of Euclid, and we
describe his space as non-Euclidean. It is obvious that if the speed of

rotation of the disc is different or if the disc is larger or smaller, different

values for tt will be found by /, because the contraction-ratio varies and

hence the number of times the rule must be used, according to O.

Variations in the speed of rotation imply variations also in /'s 'gravita-

tional fields', so that -n depends on the strength of the gravitational

field in /'s world.*

It has been shown that clocks run at different rates according to

the 'contraction' of a body, which in turn depends on the velocity of

the observer relative to the body (see p. 208). Hence clocks on different

parts of the disc where the linear velocities are not the same, increasing

from C outwards, do not run at the same rate, according to O. The
greater the distance of a clock from C the slower it runs by O's reckon-

ing, and so there is an irregularity of time-measurement as well as of

space-measurement. In fact, the space-time world of / is distorted in

respect of time and space.

O does not share with / the view that there is this distortion, and

O considers that both space and time are uniform. The non-Euclidean

character of /'s space and the irregularity of time are due to the fact

that /created a gravitational field by his choice of axes.

We have seen that the separation between two events was estab-

lished on the assumption that space-time is uniform (pp. 226-8), but if

there is a distortion of space-time this uniformity no longer exists, and

if the separation is to remain the same to all observers, we must adopt a

new geometry. We have generally assumed that the geometry of Euclid

was the only one applicable to our universe, but it has been shown that

other equally consistent geometries exist. The sum of the three angles

of a triangle in Euclid's geometry is equal to two right angles, but this

sum is less in Hyperbolic Geometry and greater in Elliptic Geometry.

It might seem possible to put the matter to the test but to do so would
involve using a triangle whose sides were ofenormous length compared
with terrestrial standards. Gauss made the attempt to determine the

sum of the three angles of a triangle by using the summits of three

* It has been estimated that a mass of a ton placed inside a circle of five yards
radius would affect tt in the twenty-fourth or twenty-fifth decimal.

mountains as the corners of the triangle, but experimental errors ex-

ceeded the difference between the sum of the three angles and two right

angles. Our hope lies in assuming Einstein's hypothesis and then

checking it with facts. If it does not explain the facts as well as the

Newtonian laws then it must be modified or rejected. If, on the other

hand, it explains certain phenomena which are inexplicable on the basis

of the Newtonian laws, there is a very strong presumption that it is a

more accurate description of the Universe than we can obtain from

Newton's laws. We shall come to the experimental verification of

Einstein's hypothesis later.

How does Einstein's theory explain the movements of the heavenly

bodies—for instance, the revolution of the planets round the sun?

Newton explained them by the universal law of gravitation, every body

in the universe attracting every other body with a force that is propor-

tional to the product of the masses of the bodies and inversely propor-

tional to the square of their distance apart, but now it is unnecessary

to postulate the existence of this 'force'. It will assist at this stage if

we refer to some points dealt with in the earlier portion of Part Two.

Path Chosen by a Body

It has been shown on p. 216 that the separation between two events

is constant for all observers, and that this separation is obtained by

taking the square root of a quantity derived from the time- and space-

intervals for each observer. The separation between two events in the

life of a body is equal to the proper time for that body—that is, the

time-interval measured by a clock in the body's universe. A body

chooses the path which, in its own view, gives the greatest length of

life

—

a ru ie of conduct called the 'Law of Cosmic Laziness' by Bertrand

Russell.*

Now take the case of the earth in its revolution round the sun from

January 1 to March 1, say. Why does it move in an ellipse, not in a

circle or straight line, as seen from the sun? If it moved in either of

these paths the separation would have the same value for all observers

though a different value from that which it has. If, therefore, we can

settle something about this interval, we can formulate a statement

which may be called a law of Nature.

Einstein assumed that Nature was such that the interval between

any two events was a maximum. If, therefore, the earth moved in any

* In The ADC of Relativity, p 124.
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other path different from its present path, the total four-dimensional

interval between the dates selected would be smaller than it actually is.

Although there is an essential difference between Newton's assump-

tions and those of Einstein, deductions based on either view agree with

very great accuracy, except for a few crucial cases. Newton assumed
that matter, if free to move, would take the minimum spatial distance

between two points on its path, or, in other words, it would move in a

straight line. Einstein assumed that an event would be separated from
another event by the maximum four-dimensional distance. Fortu-

nately it has been possible to test each theory in its application to the

motions of bodies, and as a result it has been shown that the actual

path does not give the maximum four-dimensional interval when the

geometry of Euclid is used.

On first appearance this seems fatal to Einstein's hypothesis, but

there is another assumption which saves the situation for the relativity

theory—the assumption that space is non-Euclidean. Of course if

experiment could prove that space was Euclidean then Einstein's theory

would necessarily be modified or discarded, but experiment in the

ordinary way is unable to settle the matter for reasons already given.

Although ordinary experiments cannot decide in favour of either hypo-
thesis, certain very refined experiments have been made and these are

entirely in favour of Einstein's theory.

Why, then, does a planet or a satellite pursue the course that it does

and no other? To answer this question we shall use an analogy em-
ployed by Bertrand Russell,* and it is hoped that this will make the

subject a little clearer.

Although we can make our space Euclidean in any small region in

the neighbourhood of matter, we cannot do so throughout any region

within which gravitation varies sensibly. If we assumed that a large

region of space in the neighbourhood of matter was Euclidean we
should be obliged to discard the view that bodies move in geodesies,

and we wish to retain this view. In the neighbourhood of matter there is

a hill in space-time, using an analogy which must not be taken too

seriously, and this hill grows steeper as it gets nearer the top, ending in

a sheer precipice. By the law of cosmic laziness a body will not attempt
to go straight over the hill but will go round it. The body does not do this

because of any attraction exercised on it by the larger body nor because

of any mysterious 'force'; it follows this path simply because of the

* Ibid, pp. 127-9.
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nature of space-time in its vicinity. Hence, instead of dealing with the

motions of bodies—planets and others—by dynamical equations, the

problem is merely one in geometry.

Mr. Russell's analogy to clarify this point is very helpful. He asks

us to imagine a number of people walking across a great plain on a

dark night, one part of the plain containing a great hill with a flaring

beacon light on the top. The hill is supposed to get steeper as we ascend

and finally to end in a precipice. Villages are dotted about the plain, and

men carrying lanterns are walking from village to village, paths having

been made to show the easiest way. To avoid going up the hill these

paths will be more or less curved, and near the top of the hill they will

be more sharply curved than they are lower down. An observer from a

balloon, knowing nothing about the hill and unable to see the ground

by night, will observe people turning out of a straight course when they

approach the beacon, and they will turn aside still more as they come

closer to it. The observer, who has no previous knowledge about the

configuration of the country, will conclude that the movements of the

people in various curves are due to an effect of the beacon—perhaps

it is very hot and people avoid it for fear of being burned. If the bal-

loonist waits for daylight he will see that the beacon merely marks the

top of the hill and exercises no influence on the people with their

lanterns.

In this analogy the beacon corresponds to the sun, the people with

lanterns to planets and comets, the paths correspond to their orbits,

and the coming of daylight to the coming of Einstein, who says that the

sun is at the top of a hill in space-time. Each body at each moment

adopts the course easiest for it, but owing to the hill this course is not a

straight line. Every body pursues the easiest course from place to place,

but this course is affected by the hills and valleys that are encountered

on the way. If we walk through a wood the most speedy course from

one end to the other is not always a straight line; owing to the obstruc-

tion of trees and undergrowth it may be necessary to make a detour in

many cases and we shall reach the other end sooner than we could do

by following a straight line.

Although Einstein's law of gravitation gives practically the same

results as Newton's when applied to the computation of the orbits of

comets, planets, satellites, etc., there are a few cases in which Einstein's

law is better than Newton's. Einstein published his views on special

relativity in 1905 and on general relativity in 1915, and he pointed out
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that the peculiar motion of the perihelion of the orbit of the planet

Mercury, which had puzzled astronomers for many years, could be

accounted for by his general relativity.

Verification of Einstein's Theory

All the planets, Mercury included, move round the sun in ellipses, so

it may seem remarkable that Mercury was selected out of all the planets

to verify the Einstein hypothesis. The reason was because Mercury

moves in a very eccentric orbit and, in addition, being the closest

planet to the sun, has a higher orbital velocity than any other planet.

At one time the planet comes within 28| million miles from the sun,

and at another time, 44 days later, it is over 43 million miles from the

sun, its velocities on these occasions being 33 and 27 miles a second

respectively. Mercury is disturbed slightly by the other planets, being

pulled a little out of its course, and in consequence its nearest position

to the sun, that is, its perihelion, is not the same from year to year. In

fact it has to move through a little more than 360° at each revolution

to return to its nearest point to the sun. Now astronomers are able to

compute the amount of disturbance or perturbation, as it is called,

which Mercury suffers from the other planets, and so they were able to

explain the movements of its perihelion, but not exactly. There was a

discrepancy of 43 seconds of arc per century—a very small amount, it

is true—and astronomers were very puzzled about it because no known
facts about the solar system would explain it. It was believed by some

that there was a small planet between Mercury and the sun which had

escaped detection, and its mass and distance from the sun were cal-

culated to fit in with the extra 43 seconds of arc, this planet being

supposed to produce additional perturbations. Search was made for

'Vulcan', as this hypothetical planet was called, but it was never found

and indeed never will be because it does not exist. Asaph Hall at-

tempted to solve the problem by assuming that Newton's inverse

square law did not hold exactly, the attraction between two bodies

varying as l/r2(1
+J)

, where dis only 1/13,000,000. This new 'law' would

explain the discrepancy so far as Mercury was concerned but intro-

duced a discrepancy in the nearest position of the moon to the earth,

known as the moon's perigee.

Einstein explained the discrepancy very easily and did not introduce

complications in other phenomena by doing so—on the contrary, he

explained other phenomena that were inexplicable on the Newtonian
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laws. A simple explanation of the behaviour of Mercury under the

Einstein hypothesis is as follows.

From what has been said about mass and velocity we can surmise

that the force of attraction (using the Newtonian expression for the

present) increases with the speed of the body and vice versa. When
Mercury is at its greatest distance from the sun the slight defect in the

force implies a longer time to return to perihelion. When Mercury

is at perihelion the excess of the force means that the planet takes a

longer time to reach aphelion—its greatest distance from the sun—and

in each case perihelion moves forward.

The motion of the perihelion of a planet's orbit can be found as

follows. Let u denote the mean orbital velocity of a planet, that of light

being the unit, then in each revolution of the planet its perihelion will

advance 3m2 of a revolution. In the case of Mercury u is 16 x 10~5

approximately, and in a century there arc 415 revolutions of Mercury

round the sun. Hence in this period the perihelion will advance by

3187 x 10~8 of a revolution, or, since a revolution corresponds to

360° or 1,296,000", the advance in a century will be over 41". The

figures used arc only approximate but the result is close to the actual

figures, 43".

In the case of the earth u is nearly 10""1 and 3w2
is 3 x 10~8

. In a

century this would be 3 x 10 6 of a revolution, or nearly 3"9, and

would be observable if the earth's orbit were sufficiently eccentric. But

as the earth's orbit is nearly circular (the eccentricity is about 1/60) it

is impossible to be very precise about the earth's perihelion position.

This will be more obvious if we think of an orbit which is circular; in

this case there is no perihelion, all points on the orbit being at the same

distance from the sun. The planet Venus moves in an orbit which is

nearly circular, the eccentricity being only 00068, and so it would be

impossible to use Venus to determine the Einstein effect. When we go

beyond the earth's orbit we are dealing with smaller velocities of the

planets and the effect diminishes.

If Mercury had not combined the two qualities of moving in a

highly elliptic orbit (high at least for a planet), and also of moving in an

orbit comparatively close to the sun, the discrepancy in the motion of its

perihelion might never have been discovered.

According to the general theory of relativity, a ray of light will

experience a curvature of its path when it is passing through a gravi-

tational field. This curvature is similar to that experienced by the path
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of a body which is projected in a gravitational field. According to

Newton's laws also there should be a curvature of the path of the ray,

but calculations showed that the deflection in this latter case should

be only one half of what it should be under the relativity theory.

Thus ifthe gravitational mass of the sun is m and if r is the mean dis-

tance of a planet from the sun, the acceleration of the planet towards the

sun is denoted by mjr2
. Assuming that the mean orbital velocity of the

planet is u, the acceleration radially is u2
/r, so that mjr2 = u2fr, or

m = u2
r. Since u is expressed in terms of the velocity of light as the

unit, r must be taken in light-seconds, that is, r = 500. Hence in the

case of the earth where u is 10~4
, m = 5 x 10~6

. Since light travels

3 x 1010 cm. per second, m is 15 x 104 cm. or 1*5 kilometres.

It has been shown that the deflection of a ray of light passing at a

distance r from the centre of the sun is 4/w/r radians on Einstein's

theory and 2/w/r on the Newtonian theory. If we substitute 697 x 103

kilometres for r and 1-5 for m, the deflection is 6/(697 x 103
) radian or

1"75 on Einstein's theory, or 0"87 on the Newtonian theory. It is not

easy to submit the matter to a crucial test because it is not often that a

star almost in line with the sun can be seen. It can be seen during

a total eclipse provided the star is sufficiently bright, but stars suffici-

ently bright are not always in the correct position during total solar

eclipses. Fortunately on May 29, 1919, the sun was close to some bright

stars during a total eclipse, and the Royal Society and the Royal

Astronomical Society equipped two expeditions to obtain photographs,

one to Sobral, in Brazil, and the other to Principe, West Africa. Un-

fortunately clouds interfered badly with the expedition to Principe, but

conditions were excellent at Sobral. The party at the latter station re-

mained for two months after the eclipse to photograph the same region

of the sky before dawn, so that they might have comparison photo-

graphs taken under the same conditions. It is remarkable that some of

the photographs taken at Sobral pointed to agreement with the New-

tonian value, but certain complications diminished the value of these

plates. A set of seven plates taken at Sobral, the measurements of

which had been delayed for certain reasons, provided the final decision,

and their verdict was indisputably in favour of Einstein's value for the

deflection. The story is fully described by Sir Arthur Eddington in

Space, Time and Gravitation, Chapter 7, and his conclusion of the

matter is summarized as follows:

'Those who regard Einstein's law of gravitation as a natural deduc-
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tion from a theory based on the minimum of hypotheses will be satisfied

to find that his remarkable prediction is quantitatively confirmed by
observation, and that no unforeseen cause has appeared to invalidate

the test.'

Similar tests at subsequent eclipses have corroborated those of the

1919 eclipse, and the matter is now regarded as established beyond any
possibility of doubt.

The vibration of an atom can be regarded as providing us with a
natural clock, and if we measure the separation between the beginning

and end of a vibration in two atoms which are identical, the result

should be the same, other circumstances being identical. If one of the

atoms is close to a massive body—say the sun—it can be shown that its

period of vibration is slightly slower than the period of the same atom
removed from the neighbourhood of a massive body or on a body less

massive than the sun. As a consequence the solar atom would be ex-

pected to vibrate slower than the atom on the earth and a small shift in

the solar spectrum towards the red should take place, where the

spectrum is compared with that of the same atom on the earth. Al-
though this shift is very small in the case of the sun, its effect is more
noticeable when the physicist deals with the stars of very great density—
the white dwarfs—such as the companion of Sirius, and no doubt now
remains that the Einstein effect is in evidence in these cases. The con-

firmation of Einstein's theory by three independent lines of research

just mentioned is a wonderful tribute to its ability to unify those laws
which have won a place in human knowledge held today by physical

science.

Although Relativity is a physical theory and hence is no more philo-

sophical than any other physical theory, nevertheless it has a consider-

able importance for philosophers—probably more than any other

branch of physics. Its chief importance for the philosopher is found in

its implications regarding the character of physical thought, but it is

beyond the scope of this book to enter into such questions. Readers will

find them discussed in some of the more advanced works dealing with

philosophy and physical science. It need scarcely be remarked that

such problems are of the utmost importance and we shall refer very

briefly to one of these on which there is a great diversity of opinion.

Kant thought that we ought to be able to build up a pure science

of Nature solely by the use of a priori knowledge. A similar view was
held by Sir Arthur Eddington, who believed that from epistemological
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considerations we can foresee all the laws of Nature that arc generally

classified as fundamental. (Epistemology is the science of knowledge.)

On this view an intelligence unacquainted with our universe but ac-

quainted with the system of thought by which the mind is able to inter-

pret to itself the content of its sensory experience, would be able to

attain to all the knowledge of physics that has been attained by ex-

periment. His view does not imply that the particular objects and

events of our experience could be deduced a priori, but the generali-

zations that we have based on them could be deduced in this way.

It is very difficult to accept this view, and most physicists reject it,

although Sir Arthur Eddington's arguments are not always easy to

confute. The subject is merely referred to here to show that philosophi-

cal problems arise which touch on the province of the physicist, but a

discussion of these does not lie within the scope of this work.

Answers

ONE

1. (a) 17°. (b) 77° 30'. (c) 180°.

2. (a) 46° 57'. (b) 44° 33'. (c) 177° 37'

3. 39° 10.'4 W.
4. 370 nautical miles.

5. 4327 ft.

6. Nearly \2h minutes.

TWO

1. 38° 42'.

2. 37° at the equinoxes. 60° 27'; 13
c 33' at the solstices.

3. 68° N.

4. 47° 15'.

5. 61°06'N.

6. 80° 06'. 9° 54'.

7. 56° 33'.

8. 8h 15m 12!78.

9. l
h 32m 12

s
78.

10. l
h 26m 18s

.

1 1

.

On these dates the sun should be placed at either point of inter-

section of the equator and the ecliptic. Measure the arc from the meridian

to the sun along the equator.

THREE

1. (i) A, 26° 58'; B, 47° 3'; C, 106° 0'; A + B + C, 180° 1'.

(ii) A, 26° 57'; B, 47° 2'; C, 106° 0'; A + B + C, 179° 59'. The second
method is more compact and saves time.
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2. 76° 9'. 76° 8'.

3. e = 2-7183. Eight terms are required.

4. -0-9384: -0-9383.

FOUR

1. 7 h 32m 03s
.

2. 7h 53m 45s
.

3. 18h 53ra 19 s
; 5

h 06m 41 s approximately. 107°H' E.and 107
c

4. Azimuth 9° 40' W. Altitude 8°.

5. 74° 49' E.

6. 16° 24'.

7. 58° 28' N.

8. 51° 15' N. and higher latitudes.

9. 15h 20m 05s and 8h 39m 55s
. 22° 1 1' E and W.

10. 20h 39m 55 s and 3
h 20m 05 s

. 157
= 49' E. and W.

11. 113° 02'. 6782 nautical miles.

ll'W.

FIVE

1

.

20 minutes.

2. (a) 14h 52m 26s
206. (b) 17h 56m 06?295. (c) 3h 13m 28?695.

3. 52° S.

4. llm 09 s before noon.

5. Cos h is found to be numerically greater than 1 which is im-

possible. Hence the physical interpretation is that the sun neither rises

nor sets at the time, remaining above the horizon all the time.

6. From +10° to +23£°.

7. About l
h 21m after sunset and before sunrise.

8. 69° 40'. 147° 37' W.

six

1. 60° 32' 12"92.

2. 51° 28' 38*36. 58° 50' 57:78.

3. (a) 14-28 nautical miles, (b) 15-43 nautical miles.

4. (a) 15' 03". (b) 16' 16".

ANSWERS 259

5. (a) 2h 41 ra 48s
, 21 h 25m 24s

. (b) 3h 25m 16s , 20h 41m 56 s
.

(c)3h 54m 40s
, 20h 12m 32s

.

6. (a) 4 minutes earlier, (b) 4 minutes later, (c) 5 minutes later.

7. 67° 10'.

8. 39° 34' 39"87.

9. 39° 34' 39:90.

10. 52° 21' E. and W. 125° 21' E. and W.
11. 8h 9m ; 15h 48m ; 8 h llm ; 15h 57m to the nearest minute.

SEVEN

1. 25° 00' 23M4.

2. 92,574,000 miles.

3. 221,920 miles. 2160 miles.

4. 56
3
58' 03:4.

5. 137,169,000 miles. 7580 miles.

6. 526,150,000 miles.

7. 252,235 and 225,930 miles respectively.

8. 16' 25"87 and 14' 42"93.

9. 0"025 nearly.

10. About 91,333,000 miles. 865,660 miles.

11. About 1367 miles.

12. 139 miles.

13. That the diameter of the crater is nearly at right angles to the

line drawn from the observer to the crater. The assumption is justified

because the crater is near the centre of the moon's disc.

EIGHT

1. R.A. 3h 20m 01?63. Dec. +49° 38' 57:7.

2. R.A. 7h 19m 16
s
66. Dec. +22° 11' 49"0.

3. R.A. 14h 33m 00s
5. Dec. -41° 59' 11".

NINE

1. 1-5170 astronomical units. 154,941,000 and 128,483,000 miles.

2. 3-554 astronomical units.
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3. 1/1047.

4. 17-9422 astronomical units.

5. 3283 and 54-6 million miles respectively. 23-47 miles per second.

6. If a is infinite v = 18-49 J 1-6666 = 23-87 miles per second.

When the comet is at aphelion r is large and is only a little less than 2a;

hence 2/r is of the same order as I /a in (58). For this reason I /a cannot

be ignored as its omission would make a relatively large difference in

the right-hand side of (58).

7. About 84 years.

8. 1 0040535 years = 366-73 days.

9. 0°003979 or 14?32.

10. 0000051.

TEN

1. About 22,200 miles.

2. About 37 miles per second.

3. 1959 Nov. ll d 19" 31 -3
m

: 256°-7.

ELEVEN

1. 28-3 days.

2. 21-5 days.

3. 28-4 days.

1. 3-25 times as bright.

2. 6-73 times as bright.

3. 0-7 times as bright.

4. -0-24.

5. 2-44.

6. 8-63.

7. 105.

8. 2-29.

9. 12-25 x 1010.

10. 4-85.

TWELVE

ANSWERS 26

1

11. 131 times the sun's diameter.

12. Log 12 6 = 1100 and the curve shows that ma
= -315. From

(75) log p = -4-53 or p = W0000295. Hence the distance is 33,900

parsecs or about 110,500 light-years.

13. 5-40.

14. 1 98.

15. 27-7 km. per sec.

41 km. per sec.

42?5.

FIFTEEN

(b).

1. (304, 3-77); 2-23.

2. (1)0-4; (2) 12; (3) 714.

3. 0-5; 10-7.

4. (c) occurred after (a) and (b): no time order exists for (a) and

SIXTEEN

1. 4-24.

3. 4-24 sees.

SEVENTEEN

1. 2097.

2. 2-18.

3. O says that it is moving in the opposite direction with a velocity

01.

4. The denominator of the expression for w exceeds 1, and the

resultant velocity is less than 1

.

5. 1-15 and 1 67.

6. (a) 223,000, (b) 283,000.

EIGHTEEN

1. 8 hours; 4 inches.
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APPENDIX II

DIMENSIONS OF THE SUN, MOON, AND PLANETS

(from The Handbook of the British Astronomical Association, 1959)

Diameter Reciprocal Escape

of Mass
{Sun = J)

Velocity

mis/secMiles Kilometres

Sun 864,000 1,391,000 — 384

Moon 2,160 3,476 27,158,000 1-5

Mercury 3,100 4,990 6,000,000 2-6

Venus . 7,700 12,400 408,000 6-4

Earth (Eql.) 7,927 12,757 329,400 6-9

(Polar) 7,900 12,714 —
Mars 4,200 6,800 3,093,500 3-1

Jupiter (Eql.) 88,700 142,700 1047-35 37

(Polar) 82,800 133,200 —
Saturn (Eql.) 75,100 120,800 3501-6 22

(Polar) 67,200 108,100 —
Uranus 29,300 47,100 22,869 14

Neptune 27,700 44,600 19,314 15

Pluto 4,900? 7,900? 360,000
i
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11
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Jan

2
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7
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3
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13
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.

.

J
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\
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Rocket

.

.

.

.

J

Vanguard

III

Lunik
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.

.

~t

Lunik

III
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Explorer

Vll
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\
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VIII
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V
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.
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.
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>

Transit
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.

.
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268 APPENDICES

NOTES

i is the inclination to the Earth's equator.

P is the Period in minutes.

e is the eccentricity.

The Perigee and Apogee are the heights in miles over the earth's equatorial
radius.

Sputnik I was the first artificial earth satellite. The rocket re-entered the

earth's atmosphere on 1957 December 1 after 879 revolutions, and the

satellite during January 1958.

Sputnik II contained the dog Laika. It re-entered the earth's atmosphere
on 1958 April 14 at 2 hours U.T.

Lunik I was the first artificial planet. Elements: Inclination to ecliptic 0°;

eccentricity 0148; a 115 A.U.; </0-98 A.U.; period 1-23 years.

Pioneer IV was the first American artificial planet.

Lunik II hit the Moon at 21 h 2m 24s U.T. on 1959 September 13.

Lunik III was the first lunar probe, and from it the first photographs of
the other side of the moon were taken.

Tiros I was the first meteorological satellite.

Transit IB was the first navigational satellite.

Echo I is a 100-foot-diameter balloon, and can be seen in the sky as a
bright object of magnitude 0.

Sputnik V contained two dogs which returned safely to earth.

APPENDIX IV

RIGHT ASCENSION AND DECLINATION OF SOME BRIGHT STARS

Equinox 19600

From 'Mean Places of Stars' {The Astronomical Ephemeris for the year 1960)

R.A . Dec.

Designation Name /* m s
' "

a Tauri Aldebaran 33 37-4 + 16 25 50

|3 Orionis Rigel 5 12 36-9 - 8 14 47

a Aurigae Capella 5 13 43-8 -f45 57 34

a Orionis Betelgeuse 5 53 00-3 + 7 24 04

a Carinae Canopus 6 23 03-8 -52 40 24

a Canis Majoris Sirius .

.

6 43 23-2 -16 39 36

a Geminorum Castor 7 32 02-9 +31 58 39

a Canis Minoris Procyon 7 37 12-5 + 5 19 44

>t Leonis Regulus 10 06 14-6 +12 09 48

c Ursae Majoris Alioth 12 52 16 5 +56 10 36

a Virginia Spica 13 23 04-9 -10 57 11

a Bootis Arcturus 14 13 50 1 + 19 23 23

« Lyrae Vega .

.

18 35 350 +38 44 43

a Aquilae Altair 19 48 49-9 + 8 45 41

a Pavonis . . . • - 20 22 29-7 -56 51 55

« Tucanae 22 15 46-7 -60 27 35
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APPENDIX V

SOME ASTRONOMICAL AND MISCELLANEOUS CONSTANTS

Mean distance of Sun from Earth . . . . 93,005,000 miles

149,700,000 kilometres

Sun's horizontal parallax 8*80

Sun's Zenith Distance at Rising and Setting .

.

90° 50'

Obliquity of the Ecliptic (19500) . . .

.

23° 27'

Semi-diameter of Earth (equatorial) .. .. 3963-35 miles

6378 kilometres

(polar) 3950 miles

6357 kilometres

Mean Distance of Moon from Earth . . .

.

238,900 miles

384,040 kilometres

Moon's Horizontal Parallax 3422*70

Constant of Aberration 20*47

Constant of Atmospheric Refraction .. .. 58*2

(Barometer, 30 in., Temperature 50° F.)

Constant of Gravitation 6-67 x 10"8 c.g.s.

units (dynes)

Velocity of light in vacuo 186,282 miles per sec.

299,791 kilometres per sec.

1 parsec .. 1916 x 1012 miles 1 light year 5-88 x 10 12 miles

1 radian 206265" 1 nautical mile 6080 feet
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LIST OF BOOKS AND TABLES, ETC.

MATHEMATICAL TABLES, ETC.

The Astronomical Ephemeris (published annually by H.M. Stationary Office).

L. M. Milne-Thomson and J. L. Comrie, Standard Four-Figure Mathe-

matical Tables. (MacMillan and Co., Ltd. 1931.)

Chambers Four-Figure Mathematical Tables (ed. L. J. Comrie). (W. and R.

Chambers, Ltd. 1947.)

Barlow's Table of Squares, etc. (ed. L. J. Comrie). (E. and F. N. Spon, Ltd.)

For those who do not wish to buy expensive Tables, the following arc

recommended

:

John B. Clark. Mathematical and Physical Tables. (Oliver and Boyd.)

(This gives positive characteristics in the logs.)

The Handbook of the British Astronomical Association, published annually in

November.
(Contains data on the sun, moon, eclipses, occultations, planets, meteors

and comets. Invaluable for the amateur astronomer.)

Messrs. George Philip and Son, Ltd. can supply Celestial Globes six inches

in diameter, on a fixed tilted axis. This is sufficient to illustrate many

points, but in order to deal with all the problems discussed, one with a

movable meridian, twelve inches in diameter, is required. The production

of such a globe is under consideration.

artificial earth satellites

The literature is now very extensive. One good and simple book has been

chosen out of many, together with one or two papers and articles which

deal in greater detail with particular points.

D. R. Bates (ed.). Space Research and Exploration. (Eyre and Spottiswood.)

A. C. Clark and R. d'E. Atkinson. Interplanetary Travel. (Journal of the

Institute of Navigation, 3, No. 4, 1950 October.)

G. E. Taylor. Various articles in the Journal of the British Astronomical

Association, Volume 69, pp. 121, 217 and 305.

Artificial Earth Satellites. (Memoirs of the B.A.A., Vol. 39, No. 2, 1961.)
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272 LIST OF BOOKS AND TABLES

RELATIVITY

Sir Oliver Lodge, Relativity. (Methuen, 1925.)

H. Dingle, Relativity for All. (Methuen, 1922.)

H. Dingle, The Special Theory of Relativity. (Methuen, 1940.)

Bertrand Russell, The ABC of Relativity. (Kegan Paul, Trench, Trubner
&Co., 1925.)

Albert Einstein, Relativity, The Special and the General Theory. Fourth
Edition. (Methuen, 1950.)

Charles Nordmann, Einstein and the Universe. (T. Fisher Unwin, 1922.)

Edwin E. Slosson, Easy Lessons on Relativity. (George Routledge & Sons,
Ltd., 1921.)

Moritz Schlick, Space and Time in Contemporary Physics. (Oxford Univer-
sity Press, 1 920.)

Clement V. Durell, Readable Relativity. (G. Bell & Sons, Ltd., 1925.)

F. W. Lanchester, Relativity. (Constable, 1935.)

W. H. McCrea, Relativity Physics. (Methuen, 1935.)

Sir Arthur Eddington, Space, Time and Gravitation. (Cambridge University
Press, 1923.)

Sir Arthur Eddington, The Mathematical Theory of Relativity. (Cam-
bridge University Press, 1924.)

A book which will be found very helpful in understanding the difficulty

of adjusting our minds to the theory of Relativity is Herbert Butterfield,
The Origins ofModern Science. New Edition. (G. Bell and Sons, Ltd., 1957.)

INDEX

Aberration, 125

Constant of, 127

Diurnal, 128

Planetary, 129

Stellar, 126

Absolute Magnitude, 183

Addition Logarithms, 61

Afternoon, Length of, 88, 90

Air Almanac, The, 58

Air Resistance, Effect of, 156

Altitude, 30

American Ephemeris, The, 58

Annihilation of Matter, 233

Annular Eclipse of Sun, 176

Anomaly, True, 140

Aphelion, 79

Apogee, 81

Apparent Place of Star, 134

Aries, First Point of, 33, 38

Aristotle, 138

Artificial Earth Satellites, Prediction

of, 158

Astronomical Ephemeris, The, 57

Astronomical Twilight, 92

Astronomical Unit, 122

Axis of Earth, 13

Azimuth, 29, 75

C.G.S. System of Units, 143

Celestial Globe, 32

Celestial Sphere, 27

Cepheid Variables, 184

Circles on Sphere, 1

3

Circumpolar Stars, 37

Civil Twilight, 92

Colatitude, 14

Computing, Astronomical, 57

Errors in, 63

Conjunction, 149

Co-ordinates, Transformation of, 67

Culmination, 46

Daily Motion, Mean, 141

Day, Mean Solar, 83

Sidereal, 40

Declination, 39

Deferent, 149

Departure, 19

Dial Time, 81

Dingle, Prof. H., 239, 241

Direct Motion of Planets, 147

Distance between points on Earth, 76

Distance-interval, 213

Dynamical Mean Sun, 81

Barlow's Tables, 59

Barycentre of Earth and Moon, 164

Besselian Day Numbers, 135

Binary System, 185

Bradley, James, 125

Brahe, Tycho, 138

British Summer Time, 86

Butterfield, Prof. H., 193

Earth, 13

Earth Satellites, Artificial, 152

Eccentric, 149

Eclipses, 175

Ecliptic, 38
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STRANGE WORLD
OF THE MOON
AN INQUIRY INTO LUNAR PHYSICS

V. Axel Firsoff
M.A., F.R.A.S.

Many books about the moon have appeared

in recent years, but they hardly touch on the

important and fascinating problems of lunar

physics and their bearing on the origin of

the moon and her surface features. Failure

to detect an atmosphere round the moon,

and the firmly rooted view that the ring

mountains were formed in an immensely

remote past, have engendered the popular

idea that the moon is a totally dead and un-

changing world, yet competent observers

have reported physical changes on its

surface. Can these changes be accom-

modated within the known facts of physics?

This is the problem the author has set

himself in the present volume. He explores,

in terms accessible to the non-scientific

reader, the almost virgin field of the

properties of lunar rocks and the associated

questions of the atmosphere and origin of

the moon.

'Since the subject is well to the fore,

Mr. Firsoff's book is timely. . . . This is a

thorough piece of work. . . . The book is

well annotated, there is an excellent index

and some good plates, including a number

of original sketches of lunar formations by

the author. Mr. Firsoff is to be compli-

mented on the production of this book,

which provides not only some original

arguments of his own but also a useful

summary of present-day opinions about

the moon.'
Times Literary Supplement

Large Demy 8w. Illustrated. 2js.net

Printed in Great Britain



Towards a Unified Cosmology

MARTIN
DAVIDSON

REGINALD O. KAPP

This is an original, unorthodox book—a radically new view of the

origin and development of the universe and of tiie physical laws that

govern it. Professor Kapp, former president of the British Society for the

Philosophy of Science and a writer of notable clarity, sets forth a closely

reasoned thesis which will shock most physicists and provide food for acid

debate among cosmologists.

The author attempts to bring all physical phenomena—the origin and

nature of matter, energy, gravitation, the formation of galaxies, and so on

—

within one simple, unified scheme based on a few universal principles. As

an adherent to the Bondi-Gold-IIoyle school of 'steady-state' cosmologists,

he not only upholds the theory that new matter is continually being created

but goes a step farther and argues that matter is also continually vanishing

at the same rate. In the process he proposes a completely new interpretation

of the conservation of matter and energy. Among other things, he contends

that the earth is steadily losing mass and was once substantially more massive

than it is today.

Whatever criticisms may be made of it in detail, here is a provocative,

interestingly written work in the tradition of Sir Arthur llddington, who

inspired Kapp's interest in cosmology.

'
. . . the most stimulating cosmological speculation since the Hoyle-

Bondi-Gold hypothesis of continual creation.
3

AKTHUR. KOESTl,F.R in The Ghtmrr

'.
. . a verv remarkable book, of a type which h all too rarely written . . .

a very significant milestone.'
British Jcwm/for Pbilosophj of Sekmt

\-arge Drmy Srr,. j;s. ml

Hutchinson


