Statistical
Challenges in
Astronomy




Statistical Challenges in Astronomy



Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris
Tokyo



Eric D. Feigelson G. Jogesh Babu
Editors

Statistical Challenges
in Astronomy

With 104 Illustrations

) Springer



Eric D. Feigelson G. Jogesh Babu

Department of Astronomy Department of Statistics

and Astrophysics Pennsylvania State University
Pennsylvania State University University Park, PA, 16802
University Park, PA 16802 USA
USA babu@stat.psu.edu

edf @astro.psu.edu

Cover art: Conference logo of the cross-disciplinary conference, “Statistical Challenges in Modern
Astronomy,” held on August 11-14, 1991, at the University Park campus of Pennsylvania State
University.

PACS: 95.75/MSC: 62P35

Library of Congress Cataloging-in-Publication Data
Statistical challenges in astronomy / editors, Eric D. Feigelson, G. Jogesh Babu.
p. cm.
Includes bibliographical references and index.
ISBN 0-387-95546-1 (alk. paper)
1. Statistical astronomy—Congresses. L. Title: Statisical challenges in astronomy.
II. Feigelson, Eric D. III. Babu, Gutti Jogesh, 1949—
QB149 .S75 2002
520".7"2—dc21 2002026661

ISBN 0-387-95546-1 Printed on acid-free paper.

© 2003 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York,
NY 10010, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America.

987654321 SPIN 10886440

Typesetting: Pages created by the authors using a Springer TgX macro package.
WWWw.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH



Preface

The third Statistical Challenges in Modern Astronomy (SCMA III) con-
ference was held at Penn State University during July 18-21 2001. The
SCMA conferences are intended to bring together scholars in two commu-
nities that have much in common yet relatively little contact with each
other. Astronomers are acquiring enormous (terabyte or larger) datasets
that require sophisticated processing and modeling to arrive at important
astrophysical conclusions. Great advances have similarly occurred in the
development of statistical methodologies in recent decades. The vibrant
atmosphere of the SCMA III conference supports our belief that powerful,
mutually beneficial synergisms can emerge when astronomers and statis-
ticians get together do discuss astrostatistical problems and approaches.
SCMA conferences are designed to foster cross-disciplinary interaction —
talks by scholars in one field are followed by commentaries by scholars
in the other field. We are extremely grateful to the invited speakers for
preparing their talks in advance of the conference to facilitate this valuable
cross-talk.

The conference was kicked off by an historical overview by Virginia Trim-
ble and four extremely useful interactive tutorials: Robin Ciardullo and
Joe Bredekamp introduced statisticians to basic cosmology and NASA ac-
complishments, while Steve Arnold and Alanna Connors introduced as-
tronomers to the principles and practice of Bayesian statistics.

The first research session continued with Bayesian strategies for astro-
physical modeling astronomical data. Eric Kolaczyk provided a valuable
overview of Bayesian methods for Poissonian data, Tom Loredo showed
how to plan astronomical observations with optimal efficiency, David van
Dyk explained sophisticated nested models to deal with instrumental and
Poissonian effects, and Jim Berger provided a convincing analysis of a non-
linear modeling problem.

The rapid growth of astronomical data sets and archives were presented
by Joe Bredekamp. George Djorgovski presented plans for the federation of
such databases into a vast Virtual Observatory during the next decade. An
early glimpse at this database-rich future was provided by Michael Strauss’
talk on the Sloan Digital Sky Survey.

The conference then delved into its principal theme: statistical method-
ologies for modeling fundamental characteristics of the Universe on its
largest scales. The first of these cosmological issues is the large-scale struc-
ture (LSS) in the Universe; the nonlinear, anisotropic clustering of galaxies
in 3-dimenaional space. Vicent Martinez set the stage on the rapid progress
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in this field, and specific issues were then developed by two speakers: Alex
Szalay on the exciting new results from the Sloan Digital Sky Survey using
the Karhunen-Loeve transform; and Rien van de Weygaert on an statisti-
cal approach involving tessellations. The second major cosmological issue is
the modeling of fluctuations of the cosmic microwave background (CMB).
Bayesian, frequentist and nonparametric approaches to CMB studies were
presented by Andrew Jaffe, Chad Schafer and Larry Wasserman, respec-
tively.

The next session investigated statistical methodologies for studying the
clustering of points in p-dimensional space. This could either be galaxy
clustering in 3-space, or any multivariate study of a population in multidi-
mensional parameter space. Three distinguished statisticians introduced
astronomers to recent advances in this area: Leo Breiman on decision
tree methods, Adrian Raftery on Bayesian clustering methods, and Fionn
Murtagh on very-high-dimensionality problems. Dianne Cook showed as-
tronomers developments in data visualization tools, and Bob Nichol pre-
sented new computational tools for clustering very large datasets.

After this deep immersion in cosmology, the conferees turned to some
practical issues in the daily challenges of astronomical data analysis. Jeff
Scargle provided a profound perspective on Bayesian signal detection in
both image and time series analysis. Larry Bretthorst placed a major tool,
the Lomb-Scargle periodogram for unevenly spaced data, upon a general
mathematical footing. We heard from Jean-Luc Starck, Iain Johnstone and
Peter Freeman on advances in wavelet analysis, methods that simultane-
ously treat structure on many scales.

The conference was closed with thoughtful comments by two distin-
guished leaders, Berkeley statistician John Rice and Oxford astrophysicist
Joe Silk. A strong feeling that such astro-statistical interactions are neces-
sary and fruitful for the enrichment of the two fields.

In addition to the invited speakers and discussants, several dozen sci-
entists from many countries presented contributed papers. Many of these
are briefly summarized in the final portion of this volume. We thank all
participants for their labor on this cross-disciplinary frontier.
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Statistical Challenge in
Medieval (and Later)
Astronomy

Virginia Trimble'

ABSTRACT Portions of the history of the interaction between astronomy
and statistics are told in the form of short case studies of a number of
people who appear (or should appear) in books about both. These should be
regarded as notes for a serious discussion of the subject, not the discussion
itself.

In memory of Peter August Georg Scheuer from whom I (and many
others) first heard that N % is sometimes signal rather than noise.

1.1 A demographic introduction

If one is going to explore the contributions of astronomers to statistics and
of statisticians to astronomy, one ought perhaps to begin by deciding what
is meant by as astronomer, a statistician, and statistics. I will not do so, and
merely call attention to the cases, first, of Roger Boscovich of Dubrovnik,
who rates a whole section in Hald (1998) for extending the method of least
absolute deviations beyond where it had been left by Galileo for application
to astronomical observations of latitude but is known only to the subsets
of astronomers who collect foreign paper money or speak Serbo-Croatian
(in which his name is spelled - and pronounced - quite differently) and,
second, of John Michell, who appears in lots of astronomy treatises for
inventing the concept of black holes, and, occasionally, for the discovery
of binary stars, but does not make it into the statistics histories of Hald
(1998), Stigler (1986), or Pearson (1976), despite his binary task having
been accomplished by a method that most of us would call both statistical
(certainly probabilistic) and innovative.

How large is the overlap between the two communities? Of the 76 as-
tronomers indexed in Abell (1982) who flourished from ancient times up to
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about 1850, 49 (from Airy to Zach) appear in one or more of the statistical
histories by Stigler (1986, 1999), Hald (1990, 1998), Pearson (1976) and
Franklin (2001). They, in turn, mention another 27 astronomers (Arago
to Thomas Young) who did not make the Abell cut but who are men-
tioned in Russell, Dugan, and Stewart (1926), in Hoskin (1999) or some
other reasonable place. RDS was the primary introduction astronomy text
in English for about 20 years. George Abell wrote the first of the now-
ubiquitous books for non-science major courses, with the 4th, 1982, edition
the last over which he had control. And Hoskin’s volume is the most recent
attempt to put the entire history of astronomy between two covers.

Closer to the present, scientists become more and more specialized but
in the period from 1850 to 1950 at least the following can reasonably be de-
scribed as having contributed to the astronomy /statistics interface: Simon
Newcomb (1886), Arthur Eddington (1914), and Harold Jeffreys (1939),
noted by Hampel (1998), who also regards the work of Cannon, Flem-
ing, and Leavitt as statistical in nature, Jacobus Kapteyn (1922, ending
his 40+ years of work on the topic), Jerzy Neyman and Elizabeth Scott
(1956), W.M. Smart (...), S. Chandrasekhar (1939), Gunnar Malmquist
(1920, 1924), Col. Frank J.M. Stratton, and Robert Trumpler and Harold
Weaver (1953).

The sign of the contribution is not always clear. Consider the case of
Stratton, who was the last person to have participated officially in every
general assembly of the International Astronomical Union and who was
one of the officers who held the Union together during the very difficult
1939-1945 period, but whose astronomical work most of us would be hard-
pressed to recall. He was also the Cambridge tutor of Ronald Fisher (of the
F-distribution and much else), and I cannot resist quoting the following
from Hald (1998):

The astronomer F.J.M. Stratton (1881-1960), who was Fisher’s
tutor, lectured occasionally on the theory of errors. We do not
know precisely the contents of his course, but in the preface
to a book by D. Brunt (1917), the author thanks Stratton, “to
whose University lectures I owe most of my knowledge of the
subjects discussed in this book, and upon whose notes I have
drawn freely.” There is nothing original in this book.

Not knowing Hald, I cannot be sure whether he means this to be as
mirth-provoking as it is. Stigler (1999), on the other hand, clearly means to
amuse as well as to enlighten when he includes in a section called “Questions
to Discovery” a chapter entitled “Who discovered Bayes’ Theorem?”, one
called “Daniel Bernoulli, Leonhard Euler, and Maximum Likelihood” (to
which a local wit responded, “Oh, yeah. Old Max. He used to drink a
lot.”), and one called “Gauss and the invention of least squares.” The issue
of which items in astro-statistics and statistico-astronomy should be called
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discoveries and which inventions is another issue that I will not resolve
here. Indeed I will say nothing about Gauss and least squares, since his
contributions, the antecedents, and descendants were so well explored by
Rao (1997) in SCMA II.

What will appear in the rest of this paper is a series of case studies, of
what strike me as fruitful interactions between the fields. None is precisely
medieval (how sure are we that the number of cardinal sins falls between
4.65 and 9.357), though some archeoastronomy items appear at the end.
Just how many of the tales get told will depend on the editor, who will
remove as many as necessary to get below the assigned page limit.

1.2 Giants in the Land

These stories concern scientists of enormous reputation over a range of
disciplines, and I have not consulted the original literature, but retell from
Franklin (2001), Hald (9190, 1998), Hoskin (9199), Stigler (1986), Pearson
(1976), and other sources read too long ago to be honorably recalled.

1.2.1 Galileo and Least Absolute Deviations

In the simplified version of history we hand our students while they are get-
ting settled into their seats at the beginning of a lecture, the Aristotelian-
Aquinian principle of “the immutability of the heavens” was overthrown
by Tycho Brahe (1546-1601), who set an upper limit to the geocentric par-
allax of his nova stellar of 1572 (and also the comet of 1577) placing them
beyond the sphere of the moon. But, not surprisingly, he was not the only
astronomer of the time to look for this parallax. Incidentally, seeing the ge-
ometry of it is rather tricky for modern eyes, but it is a true statement that
the new star, if it is close to the earth and turning in the diurnal motion
about the pole, will show itself more distant from the pole when it is below
the pole on the meridian than when above it (roughly Galileo’s words). A
certain Scipione Chiaramonti (1565-1652) combined some of Tycho’s ob-
servations with those of 11 other astronomers to conclude that what we
now call NS 1572 was at most 32 earth radii away, with similar conclusions
for SB 1604 and the nova stella of 1600 (actually Mira).

This provoked Galileo (1564-1642) in his 1632 Dialogo to look again at
all the reported measurements of upper and lower culmination altitudes of
the 1572 star made by astronomers at latitudes from 38.5 to 56° north. That
is, he is looking for geocentric parallax over a fairly small baseline rather
than for earth rotation parallax which can be measured by a single observer
and, for circumpolar stars (as SN 1572 was for Tycho) has a baseline of 2
R, cos (latitude).

Galileo then compared the sums of the absolute values of the errors of the
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observations implied if the distance was 32 R, vs. sufficiently large to yield
no parallax. Of the more than 100 pairings of the data points available,
Galileo picked 10 most favorable to Chiaramonti’s hypothesis and 10 most
favorable to his (with no overlap). The sums of the absolute errors in the
two cases were 756.9 arc minutes and 83.7 arc minutes respectively. Small
being good in this context, he regarded the result as being strong evidence
for a translunar location for the event. And so do we.

The method then languished until 1755, when Boscovich applied it to
the determination of the lengths of arcs of latitude at various locations
(in connection with the problem of determining the shape of the earth
- prolate had been claimed). Galileo was also the first to figure out the
odds of getting various outcomes from the case of three dice. I checked his
numbers by writing down all the combinations, which is presumably how
he did it. He got it right, and it is left as an exercise for the Gosset to
figure out how the results would change in the case of fermionic or bosonic,
rather than distinguishable, dice.

1.2.2 Edmond Halley and survival rates

Halley (1656-1742) is known to astronomers best for his prediction of the
return of the period comet now bearing his name. On the astronomical side,
he also discovered proper motions of the stars and secular acceleration of the
moon, accurately predicted the path of the eclipse of 1715 over England,
and served as Astronomer Royal from 1720 until his death (succeeding
Flamsteed, who was first).

But he also wrote, in 1694, “... on... degrees of mortality... and prices of
annuities.” The end of the title makes clear why men of practical bent were
concerned with human survival and death rates as a function of age. His
work in this area is an interesting illustration of what our grandmothers
called “making do with what you have.” Since it was English annuities for
which he was trying to set a fair price (or anyhow one that people would
pay an that would not bankrupt the issuers), he would obviously have liked
to have rates of the deaths of English persons (not just men, since annuities
were often purchases for widows) as a function of age. But the methods of
recording births and deaths in England, mostly in parish registers, did not
provide the numbers needed, so he used tables of numbers of births an
deaths and total population for Breslau.

According to Pearson (1976), Halley was probably also the author of a
1699 piece in Philosophical Transactions of the Royal Society (the
first scientific periodical in any language, in case you wondered) called “a
calculation of the credibility of human testimony.” This is also phrased in
the language of how much you should be willing to pay for things. For in-
stance, of someone who is 90% reliable tells you that he has seen your cargo
ship safely into the harbor and unloaded without damage, then you should
be prepared to pay (only) 10% of the value of the cargo to insure against
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the loss of the whole. The paper does not address how you determine the
reliability quotient of your informant, which is the aspect of the problem on
which we most often stumble even today, whether the issue is astronomical
or financial.

1.2.3 Tobias Mayer and the libration of the Moon

Mayer (1723-1762) tackled a problem whose geometry is even more diffi-
cult to see than that of geocentric parallax and solved it, using a method
(called Mayer’s or, more often, the method of averages) that would elude
Euler working on the mathematically rather similar problem of mutual
perturbations in the orbital motion of Jupiter and Saturn. Mayer’s goal
(connected with the use of lunar motion for longitude determination) was
to find three angles: the one between the true rotation axis of the Moon and
the poles of the circumference parallel to the ecliptic, the ecliptic longitude
of the node at which the plane of the lunar rotation equator crosses the
ecliptic, and the true latitude of the crater (Manilius, a suitable choice in
several ways) he had observed. The observations were 27 pairs of angular
positions of the crater parallel and perpendicular to (changing) apparent
equator of the moon (the circumference parallel to the ecliptic), gathered
by him over a couple of years.

Thus he had 27 equations in three unknown. His solution was to group
these in three sets, with large, medium, and small (negative) coefficients of
the first angle mentioned above, which he regarded as the most important.
He then added up the groups (he could alternatively have averaged them)
and solved the resulting triple, concluding that the result would be more
accurate than that from any three data pairs alone (true) by a factor nine
(false; it is at best three if only random errors in the observations are
important). He apparently invented + as well.

Euler, writing in 1749 (the year before Mayer) was faced with 75 sets of
observations of Saturn and Jupiter, gathered over 163 years, from which
to extract eight unknown describing the orbits and their interactions. He
pulled out the two that were not periodic in the 59-year synodic period
of the two planets, and then ground to a halt, when various combinations
of the equations let to wildly inconsistent results, saying that the errors
had multiplied themselves through combining of observations. Nevertheless,
most of us have heard of Euler, and few of Mayer. Indeed, Stigler (1986)
notes that the method of averaging (or summing) equations discovered
by Mayer is often attributed to Euler. His section heading is, of course,
Saturn, Jupiter, and Euler.
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1.3 Three careful clerics

James Bradley (1693-1762, third Astronomer Royal) and John Michell (c.
1724-1793) turn up in historical astronomy discussions with the words
statistics or statistical attached to their persons. Bradley is known to
Stigler, but not to Hald, and Michell to neither. These are the two sto-
ries for which I returned to the original literature and both remain high on
my list of favorites, even after reading many pages in which f is pronounced
s.

1.3.1 Bradley and the aberration of starlight

Bradley set out to find (as many others before him, and after, did) heliocen-
tric parallax as the definitive demonstration of Copernican cosmography.
He focused initially on Gamma Draconis, chosen by Robert Hooke for the
same purpose, because it comes very close to the London zenith, thus mini-
mizing both atmospheric refraction and flexure of the observing apparatus.
By great good luck, the star is also very close to the ecliptic pole. The crit-
ical papers are Bradley (1728 on nutation). Hirshfeld recounts many more
details than there is space for here.

Aberration is the apparent shift in positions of all stars (independent of
distance) caused by earth’s orbital motion. The maximum displacement is
the ratio of orbit speed of light (10~* or a half-angle close to 20 arseconds),
and the standard analogy is walking forward into falling rain and needing
to tip your umbrella to keep the drops from hitting you. Bradley seems to
have found geometry easy and does not sketch the situation. Incidentally,
he is able to report observations taken right through the year. You cannot
see stars by daylight from the bottom of a well, but you can with a suitable
(preferably long local-length) telescope.

Aberration shows in a year (or less) of data as our direction of motion
through space changes and a star near the ecliptic pole seems to move north
and south in declination at transit. Bradley continued to follow Gamma
Dra over the years at the same time as he moved on to other stars, seeking
to confirm the effect. After 20 years, it became clear that there was a
systematic residual, with period about 19 years, which we now call nutation
and attribute to lunar tides. His second paper makes use of (at least) the
following ideas that are statistical in nature:

(a) mean values for the rate of precession of the equinoxes and obliquity of
the ecliptic (rather than a favorite, or the most recent, or the oldest);

(b) a weighted mean for the maximum value of aberration for a star ex-
actly at the ecliptic pole, which takes into account data on about 10
stars, giving largest weight to Gamma Dra, which has the longest
data string, the smallest polar and ecliptic polar distances, and the
brightest apparent magnitude; and
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(c) an examination of the distribution of residuals.

He says that, in the comparison between observed declinations (or altitudes
at upper culmination) and ones calculated from his final model, 11 of 300
values differ by 2-3” and none by more than 3”.

Bradley ends by noting that he suspects that some physically meaningful
effect remains to be found (e.g. a secular decrease in the obliquity). In mod-
ern terms, the fact that the distribution of errors is flatter than a Gaussian
with a standard deviation of 1 arc second is confirmation of his suspicion.
He displays a number of tables of observed and model declinations, one of
whose implications is that, in 1748 in England, the autumnal equinox came
about September 9th.

1.3.2  John Michell and binary stars

Michell is also part of the quest for parallax, because his demonstration
that pairs of stars close on the sky are generally bound systems rather
than chance superpositions undid the hopes of William Herschel and oth-
ers to use such pairs for parallax measurement, on the assumption that
the fainter star would always be more distant. He also, of course, thereby
demonstrated that not all stars have the same absolute brightness, enor-
mously complication “star gauging” or “the” problem of statistical astron-
omy (next section).
Michell appears in various contexts as:

(a) the inventor of black holes (“all light emitted from such a body would
be made to return to it, by its own proper gravity.” Michell, 1783);

(b) designer of the Cavendish balance (Cavendish was his executor),

(c) propounder of the idea that earthquake energy travels in waves (based
on times at which Lisbon 1755 shook up other European cities); and

(d) the discoverer of binary stars (though it took Herschel’s measurement
of the first bit of an orbit before all were persuaded).

Michell (1767) began by asking for the probability that any one particular
star should happen to be within a certain distance (as for example one
degree) of any other given star and finding that it is (60)2/(6875.5)% or
1/13131. And the probability that it is not is 13130/13131. He then extends
to the probability that no one of whole number of stars n would be within
one degree from the proposed star, and its complement, 1—(13130,/13131)"
that there is one, and so onward to the probability that no one star should
be within a distance r of any other star, with n to choose from,

P(not) = (1 _ W{;)Q)nxn
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and its complement, the probability that one is.

He makes fairly heavy going of the arithmetic, ending up with a style
that resembles that of a modern student whose calculator doesn’t have quite
enough significant figures in its chips. Apparently (1+n)* =1+nxz +...
was not part of the standard tool kit, but he gets the right answer, finding,
for instance, that for Beta Cap (n = 230, r = 3.3 arc min) the chances
are 80:1 against its being a chance alignment. For the six brightest Pleiads,
the odds are 496,000 : 1 against a chance grouping.

If this sort of arithmetic rings a bell, it is probably because you have
met it before as the question of how many non-twins must you have in
the room before it becomes more likely than not that two of them have
the same birthday. The number (about 22) is smaller for Moslems because
their year is shorter. I have no idea whether Michell or his predecessors
knew about the birthday problem or other events described by the same
calculation, but he does seem to have been first to apply it in astronomy.

1.3.8 Newil Maskelyne and the personal equation

Maskelyne (1732-1811), the fifth Astronomer Royal, like Bradley and Mich-
ell, held orders in the Anglican church and is the member of the trio one
finds it hardest to associate with the concept of charity, perhaps because he
figures as something of a villain in the story of the quest to determine lon-
gitude at see. He was indeed a supporter of the method using the motion of
the Moon (Maskelyne, 1762), mentioned in connection with Mayer’s work.
He was also in some sense the discoverer of the first recognized systematic
error in astronomy, generally known as the personal equation.

Back in 1796, when the right ascensions of stars were determined from
their times of meridian transit, Maskelyne noticed that his assistant, David
Kinnebrook, whose work had formerly been consistent with his own, was
now recording transit times that were systematically 0.8 sec later than
his own. This corresponds to 12 arc seconds or as much as 0.2 miles at
sea, and this 68 years after Bradley had measured the polar distances of
stars to 1 arc second or better. Rather than rejoicing in the discovery that
systematic errors could be much larger than random ones (and that Bradley
had been wise to measure altitudes rather than hour angles), Maskelyne
waxed wroth and fired Kinnebrook. Twenty-some years later, Bessel (who
eventually found the long-sought parallax) looked again at hour angles
measured not only by Maskelyne and Kinnebrook but also ones of his own
and from Struve (another parallax discoverer), Argelander, Walbeck, and
Knorre and found systematic differences up to a second (of time) and more
which could vary from year to year.

His way of writing these, as, for instance, B—S = —0, 799 sec. appears to
have given rise to the name “personal equation” (Stigler, 1986). The magni-
tudes and variations were the sort normally associated with human reaction
times, as per the story of Galileo’s attempt to measure the speed of light
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with dark lanterns on the seven hills of Rome. The name personal equation
became customary and the numerical values dropped only with the adop-
tion of automatic and electrified chronographs. The very large difference
in systematic accuracies of right ascension (with personal equation) and
declination data (without it) propagated through astronomy in the form
of separate analyzes of the two components for many purposes, statistical
and others.

The term was sometimes used for systematic errors of other sorts, for
instance by Russell et al. (1926) to describe the tendency of some Mars
observers to draw thin, straight lines between the dots and others to avoid
this at all costs. Sherlock Holmes uses the phrase to mean something like
general intelligence, remarking at one point that he “need not allow for
what astronomers call the personal equation” since a particular foe is of
first-rate intelligence (like himself, of course).

Any astronomer will be able to come up with other examples of unrec-
ognized systematic errors utterly swamping the recognized random ones.
Stigler’s (1999) Table 20.1 shows 15 successive published values for the
length of the astronomical unit in miles. Only two fall within the error bars
of the previous value, and only two have error bars that take in the present
official number. This is known to 9 significant figures in metric units (from
radar travel times), but only about 6 in miles (owing to disagreement about
the conversion factor). My own favorite is the Hubble constant, which has
declined from 536 km/sec/Mpc (Mpc = megaparsecs) according to Hub-
ble’s initial, 1929, calibration, down to about 65, with 10% error bars at
every stage (Trimble, 1996).

Maskelyne also makes a cameo appearance at the beginning of our next
story, because he provided some of the key proper motion measurements
from which Herschel first charted the motion of the sun relative to its
neighbors. Other numbers came from Tobias Mayer, whom you have now
also met.

1.4 “THE” problem of stellar statistics

Newton thought of, Michell (1767) and undoubtedly many others devel-
oped, and William Herschel is generally given credit for applying the method
of determination of the distances and distributions of the stars in space
based on the assumption that they are as bright as the sun (see Hoskin,
1963, for details of this story). Herschel called the method star gauging
(gaging in his spelling) and by 1785 had put the sun near the center of
a flattened system having sharp edges, a uniform density of stars, and an
extent of a couple of kiloparsecs, stretching furthest in the directions where
we see the most and faintest stars (“the Milky Way”). Even the Cygnus
rift is there.
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From Herschel’s time down to the present, the key problem marching
under the banner statistical astronomy has been to turn counts of numbers
of stars as a function of apparent brightness into, in historical order:

(a) the size and shape of the system;

(b) the real distribution of stellar brightnesses (after Michell et al. showed
that they were not all the same); and

(c) the distribution of the velocities of the stars (as a function of location,
brightness, and so forth) after proper motion data and, later, radial
velocity measurements showed that the system is not a static one.

Trumpler and Weaver (1953) mark the high-point of this endeavor as a core
subject in astronomy.

Why is it a statistical problem? The number of stars you count as a
function of apparent magnitude, A(m), is given by

A(m) = w/ooo o(M)D(r)r*dr

where w is the solid angle you are examining, ¢(M) is the luminosity dis-
tribution, and D(r) is the density of stars as a function of distance in that
direction. The implied assumption that ¢ (M) and D(r) are separable func-
tions is already a fatal error if you propose to look more than about one kpc
in the galactic plane or 100 pc perpendicular to it. Built in is the relation
between apparent and absolute magnitude, M = m + 5 — 5logr — a(r),
where a(r) is the absorption in magnitudes and constitutes another un-
known function. Kapteyn (1922) was the last to do this for a(r) = 0 every-
where (though he had earlier suggested values of 0.3 and 2.0 mag/kpc in
the galactic plane), and even in this case, one clearly has to go over to sums
rather than integrals, leading to a Mayer- or Euler-like problem of many
equations in many (but fewer) unknowns and the potential for ending up
with nonsense through what Euler called the multiplying of errors (both
Gaussian and Poissonian in this case).

McCuskey (1965) and van Rhijn (1965, Kapteyn’s colleague and succes-
sor) summarize the additional computational difficulties introduced when
a(r) # 0 and make it clear when the confirmation of spiral arms in the
Milky Way was left for the radio astronomers (for whom a(r) really is 0
most of the time).

Now try to do the dynamical (stellar population) problem, where the
goal is to extract, for instance, N(M,V) from observations of Aj(m, u)
and As(m,V,.) in various directions in the sky, subject to the same un-
known a(r,6,0) and the non-separability of the luminosity function, the
density distribution, and the kinematic properties. Apart from everything
else, one simply must have the counts, apparent magnitudes, proper mo-
tions, and radial velocities for the same stars in the same directions in the
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sky. Kapteyn’s (1906) Plan of Selected Areas sought to address this
problem. The TAU Commission (32) on Selected Areas eventually voted
itself out of existence, but this is the one context in which Kapteyn’s name
is remembered today in a positive tone of voice. Binney and Tremaine
(1987), the relatively modern authority, mention neither Kapteyn nor his
star streams, but do make contact with his period via the velocity ellip-
soid of Karl Schwarzschild (which has, among other things, the shape of a
Gaussian normal in two or three dimensions).

“Data products” from the traditional endeavor called statistical astron-
omy include:

(a) the luminosity distribution(s) of stars (which we now immediately try
to turn into the mass distribution;

(b) the solar motion (first found by Herschel, using proper motions from
Mayer and Maskelyne); and

(c) galactic dynamics.

The local distribution of stellar motions was described by Kapteyn as two
star streams and by Schwarzschild as an ellipsoid. Neither means quite
what you might guess, and I recommend Russell et al. (1926) or their
references, Campbell (1913) and Eddington (1914) for clearer expositions
than found in more modern references. All wrote before Trumpler (1929)
forced galactic absorption upon us. Even so, the problem, in the words of
RDS,

The problem of stellar statistics is to deduce from the apparent
distribution of the stars in the heavens with respect to magni-
tude, proper motion, radial velocity, parallaz, galactic concen-
tration, etc. ... what is the true distribution of the stars in space

. in terms of three statistical functions: the density function,
which gives the total number of stars per unit volume. ... the lu-
minosity function, which shows what proportions of these stars
have absolute magnitudes lying in successive equal intervals; and
the velocity function, which defines the similar distribution of
their velocities in space.

must be sung as “to invert the impossible matrix”.

Against this background, the discovery of galactic rotation by Bertil
Lindblad and Jan Oort might seem nothing less than miraculous. They did
however, have the rotation of M81 (Max Wolf) and M31 (Vesto Melvin
Slipher) to guide them.
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1.5 A smattering of archeoastronomy

Archeoastronomy includes (at least) two territories - the use of ancient
observations to shed light on current questions (Chinese and other sightings
of comets and supernovae are the classic examples) and the use of modern
astronomy to shed light on ancient cultures (the classic example is the Star
of Bethlehem, which I shall not mention at all, statistical considerations
not often being important for single events, whether or not miraculous, but
this is perhaps as good a place as any to record my prejudice that Bayesian
methods, while excellent for changing your mind by a small amount, are
much less useful on the road to Damascus).

Was Ptolemy to be trusted? Two aspects of this question have a “good-
ness-of-fit” answer. First, it seems that some of his observations are “pre-
dicted” so well by his model that they must have been back-calculated. This
“excessive goodness-of-fit” result is an old one (Newton, 1977). Second, very
recently, Schaeffer (2001) has asked whether Ptolemy borrowed his catalog
from Hipparchus, and, if so, did it leave a statistical trail. Because the two
lived at different latitudes and in different centuries (with precession of the
equinoxes), different stars skimmed their horizons with differing degrees
of visibility (hence opportunities for accurate observations of position and
apparent brightness). The conclusion is that his fourth-quadrant stars are
borrowed, the first three new observations.

Alignments of pre-literate and peri-literate monuments have been scru-
tinized for astronomical significance from the time of Locker to the present
(Krupp, 1988, is a good source.). Conclusion range from, “you can see
the whole of positional astronomy, including precession and changes in the
obliquity at Stonehenge” to “yeah, the door is on the north side.” I have
dabbled in the now very densely populated part of this territory occupied
by the pyramids of Giza (Trimble, 1964). Objectively, one can say things
like

(a) the inclination of the shafts from the King’s chamber of Cheops’ pyra-
mid point (to the accuracy within which they can be determined) to
the north celestial pole (where there was a star when the pyramids
were built) and to the upper culmination of the middle star in Orion’s
belt;

(b) the main exit of the Great Temple of Amon-Ra at Karnak points
northwest, but misses the direction of sunset at summer solstice by
more than the accuracy of the measurement (1.0° at the time temple
was built, Krupp, 1988); and

¢) main axes o other temples built during the Empire period point in

i f 38 oth les built during the Empi iod point i
38 other directions, 7 close to the cardinal directions and 6 (NW), 7
(NE), 13 (SE), and 5 (SW) in each of the quadrants (Badawy, 1968,
p.184).
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You could ask a statistical question about how likely this is to be a chance
distribution (and answer it by frequentist or Bayesian methods). But if the
answer is to be a contribution to Archeoastronomy, then you must decide
what hypothesis you are testing. The choices include perpendicular to the
nearby riverbank or to the cliffs behind as well as astronomical orientations.

The next step is supposed to be to test the hypothesis against a new,
independent data set, or, failing that, to attempt to multiply the chance
probability you find (which is always very small or you wouldn’t be doing
this sort of thing) by the number of other hypotheses that would be equally
interesting. In the Empire Temple case, there is no comparable sample, but
lots of hypotheses, and you are left with the usual result, “well, maybe there
is something there.”

Section 3.3 carried the moral that systematic errors are nearly always
larger than random ones. The lesson here is that you must choose a testable
hypothesis and stick with it. “Part of Ptolemy’s catalogue is more consis-
tent with observations made from Hipparchus’ 4-dimensional location than
with observations from Ptolemy’s own 4-location” is such a hypothesis.
“The Egyptians deliberately lined up their temples and pyramids to incor-
porate astronomical information” is not. Investigations of non-cosmological
redshifts (which are now more than 35 years old) seem to me also to suffer
from a surfeit of shifting and untestable hypotheses.

1.6 Ancient statistics in modern astronomy

Recent forays of astronomers into statistical territory come sometimes per-
ilously close to reinventing the wheel and making it square. Nevertheless, I
think each of the following issues is still a live one and still on the interface.

Density of matter (including dark matter) in the galactic plane
This belongs to the tradition territory because the key equation is

{i In N(z)
dz  N(zo)

] < V2 >= —4nGoy

where < V2 > is the component of the velocity ellipsoid perpendicular to
the galactic place and the logarithmic gradient is that of the density of stars
perpendicular to the plane. The desired density is og, and the error made
if you choose to take m = 3 will be smaller than other that are unavoidable.
The equation and its application go back to Kapteyn and Jeans, though
Oort often gets credit, and forward into modern models of the galaxy from
Bahcall and Soneira, Kuijken and Gilmore, and others. The main errors
are now recognized as systematic rather than random (though the latter
are not small), because star populations change systematically away from
the galactic plane, rendering color-based parallaxes too large (distance too
small) because the more distant stars will be of lower metallicity, loser
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mass, and more advanced evolutionary stage. Kapteyn and Jeans actually
bracketed modern results, with oo = 0.099 to 0.143 My /pc?, and we remain
uncertain about whether there is a separate disk dark matter component.

Closely related is the attempt to estimate the contribution of very faint,
low mass stars to the total density. Small scale surveys (like those from the
Hubble Space Telescope) yield a handful of brown and old white dwarfs
(random errors win), and large scale ones suffer calibration errors (one of
which the late Willem Luyten ungenerously dubbed the Weistrop Water-
gate).

Malmquist bias and the Scott effect Wherever two or three cos-
mologists are gathered together, one will say that the others do not under-
stand these: their essence, the difference between them, or how to correct
for them. Adriaan Blaauw even objects to the term Malmquist bias, on the
ground that the concepts are all to be found in earlier papers by Kapteyn.

log N — log S This is a cumulative distribution of source numbers
vs. apparent flux. Errors due to binning are thereby removed, but others
introduced. Early applications in radio astronomy suffered from confusion
(meaning two or more faint sources getting counted as a single brighter
one), though the conclusion that there are more distance radio sources than
nearby ones stands. Giacconi (1972) used it at a time when very few X-ray
sources were yet known or identified to predict that the X-ray background
would eventually be resolvable into many distant sources. He too was right.

P(D) and N2/N  The concept that Poissonian fluctuations in num-
bers of sources within your beam will translate into apparent fluctuations in
background surface brightness has been rediscovered at every wavelength.
Scheuer (1957) used it to add a few points to the log N —log S curve from
the Third Cambridge Catalogue (rousing the wrath of the then-powerful
steady-state community). Applied to optical observations of elliptical galax-
ies, it is one of the newer subrungs on the distance ladder (because you can
pull out the brightness of the individual brightest stars contribution, de-
clare then to be on the red giant tip, and get a spectroscopic parallax).
Applied to the X-ray background, the calculation shows that the number
of sources needed is just about what you would get from a log N — log .S
extrapolation, if the background is to be neither more ragged nor smoother
than what we see (these sources have now been resolved by Chandra and
other missions).

V/ V., was Maarten Schmidt’s way of taking into account that he had a
flux limited sample with both radio and optical flux limits so that he could
use measured redshifts of a very small number to conclude that quasars
were commoner in the past. He has said that the basic ideas can again
be found in Kapteyn’s work (Schmidt, 2000). Recently he has suggested
(Schmidt, 2001, personal communication) that the same methodology ap-
plied to gamma ray bursters implies that those of short duration are closer
(and less beamed) than those of long duration (which optical redshifts now
exist).
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The Lutz-Kelker correction is needed when you look at groups of
measured parallaxes encumbered with measurement errors, which are in-
trinsically asymmetric (since no real parallax can be negative; Chiaramonti
had trouble with this!).

Kaplan-Meier survival curves  This is my own particular square
wheel, honed when I was trying to figure out how to show (or anyhow
display) data concerning the long-term publication records of astronomers
starting out with Ph.D’s from high and low prestige graduate schools. The
principle end point was, therefore, ceasing to publish. But it seemed to me
(Trimble, 1991) that posthumous publication was an unreasonable expecta-
tion (not true - Lundmark was co-author of a 1999 paper), and it removed
the deceased from the set of those at risk, so that the curves could turn
back up if more people in a cohort died than stopped publishing for other
reasons.

Properties of binary star populations There are at least two is-
sues. First, how do you allow for unresolved binaries when counting stars
as a function of apparent brightness (part of “the” problem of stellar statis-
tics). This cannot be dealt with until you know the answer to the second
issue, what are the real distributions of binary periods, separations, mass
ratios, eccentricities and all as a function of age, chemical composition,
and whatever else matters. These all fold into various attempts to under-
stand chemical, luminosity, and other evolution tracks for galaxies or their
separate stellar populations. Much ink has been expended since Kuiper
(1935) interpolated (correctly) and extrapolated (I thing incorrectly) from
the handful each of visual and spectroscopic binary orbits available to him.
I abandoned the fray in 1990, with the parting shot that the answer you
get will depend on the sample you choose to look at. This remains true.
Complete information could be obtained only by working to sharp limits in
apparent magnitude, magnitude difference and separation (for visual bina-
ries), velocity amplitude and period (for spectroscopic binaries), and light
amplitude and period (for eclipsing binaries) and then carrying out the
equivalent of V/V,,, in about six-dimensional space to get a volume limited
sample. This is (marginally) possible for nearby clusters. “all the F 'V stars
in the Yale Bright Star Catalog” or a few other narrowly circumscribed
classes, but otherwise impossible.

Can we derive any particular lesson from these more complicated cases?
I think so (and it is one that spectroscopists working on stellar structure
and evolution were forced, kicking and screaming, to accept a couple of
decades ago). It is that, when comparing hypothesis and data, it is better
to transform your model into the observed quantities rather than try to
put the data into theoretical bins (star color and effective temperature are
a characteristic pair). For complex situations, a Monte Carlo simulation is
often (not always) the best way to do this - assume a model and calculate
what the observers should see. There will, then, in effect be error bars on
your theory as well as your observations, but this cannot be helped.
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1.7 Conclusions

Statisticians and astronomers have been trespassing on each other’s territo-
ries for as long as the territories have existed. In addition to the discovery
of particular methods and concepts, we can find in this history several
lessons. It is easier to analyze data you have taken yourself than other
peoples (Mayer vs. Euler). Systematic errors generally exceed random ones
(Maskelyne and many more recent examples). It is important to decide
which hypothesis you are testing before you do the arithmetic, ideally even
before you collect the data (archeo-astronomy and non-cosmological red-
shifts). And, finally, if as is nearly always the case, there is not a precise
correspondence between the quantities you can measure and the ones in
your hypothesis, it is best to transform theorists’s units into observers’
units, rather than the converse.

And the most important lesson is that the story is never completely told.
Despite all these pages, I have not mentioned

(1) Oscar Sheynin (1996 and many prior papers), who is the real expert
on early astronomical statistics’

(2) the early recognition of interstellar absorption by King (1914, working,
as usual on “the” problem of stellar statistics);

(3) all the good things that Simon Newcomb did (despite his role as Whit-
man’s “learned astronomer” and opposition to astrophysics), many
of them statistical (corrections of coordinates for refraction, fluctu-
ations of the solar cycle, recognition of the background light of the
night sky as not being due to faint stars); or

(4) Lambert (of the reflector), who despite Stigler’s (1999) discussion of
Bernoulli, Euler, and Old Max, arguably invented Maximum Likeli-
hood (but did not use it for anything).

Acknowledgements: ~ Special thanks to organizers Babu and Feigelson
for finding something for me to do at the meeting and suggesting some ref-
erences. Brenda Corbin of US Naval Observatory was enormously generous
in finding and sending copies of papers not just older than UC Irvine but
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Power from Understanding the
Shape of Measurement:
Progress in Bayesian Inference
for Astrophysics

A. Connors!

ABSTRACT After a review of the historical context of Bayesian inference
in astronomy, we work a tutorial problem involving the search for pulsars
in gamma-ray astronomical data; i.e. the detection of periodicities in a
Poisson point process. We develop a model called Sparse Bayes Blocks for
this purpose. These methods are also effective for estimation of the pulsar
period.

This paper is followed by a commentary by statistician Eric D. Kolaczyk.

2.1 Introduction

2.1.1 WHY: Historical Context (A Personal View)

Overview

From antiquity to modern times (early 1900’s), fundamental advances in
astronomy and statistics had been intertwined (see [4, 2, 5]; and references
therein). In modern times, this was not so: the fields had separated. Hence
for the past few generations progress in astronomical data analysis pro-
ceeded piecemeal, in isolated spurts. Typically, first, one faced a class of
problems which could not be solved, or to which one got silly or inconsistent
answers using previously standard astrophysics methods. Second, one had
access to a lively subcommunity with greater statistical knowledge. Then,
an solitary solution to this specific class of problems was proposed, and
diffused outwards in the astrophysics community. Well-known frequentist
examples include: proper use of confidence intervals and likelihood ratios
for parameter estimation and hypothesis comparison [4, 5, 6, 7]; and clari-
fying linear regressions, esp. in the presence of error bars [8]. Each greatly
improved understanding, but often carried with them only bits and pieces

1Eureka Scientific
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of the wider framework from which they were derived (e.g. [9]).

Bayesian progress followed similar pattern, save that in contrast to “black—
box” methods, the formalism carries with it an overarching probabilistic/
likelihood framework. Learning this was perceived as a barrier; as was the
often high high computation cost. There seemed to be roughly four reser-
voirs of Bayesian statistical knowledge: statisticians applying their special-
ity to astronomical problems; physical scientists from other countries with
more robust statistics education (Spain, South America, Eastern Block
countries); people with some overlap in the engineering/radar/signal pro-
cessing community; and people who discovered the work of Ed Jaynes [10].
Interestingly, the first and last seemed by far the most influential.

Modern pioneers: 1970°s-80’s

Independent thinkerA. Bijaoui [11, 12] was probably first to use Bayes in
modern astrophysics. (He was the first to try many methods; at this con-
ference his influence is represented in the multi—scale sessions.) The second
modern application was the introduction of the EM algorithm (indepen-
dently) by statisticians Richardson [13] and Lucy[14] for “image deconvolu-
tion” in astrophysics. This garnered a sudden increase in popularity after a
high-profile data—analysis problem (Hubble Space telescope’s mirror being
out of focus) could not be fixed by the usual method of building a big-
ger telescope. (See [15, 16] for a modern EM view.) The third application
was the (ill-conditioned) ‘deconvolving’ of spatial images from radio inter-
ferometry (cf. [17]; history in [18]). The researchers discovered Maximum
Entropy; then the work of Ed Jaynes; and became ‘Evangelical Bayesians’.
One of the more spectacular examples was the use of Bayes methods for
COBE limits on fluctuations in the CBR. N. Kaiser (private communica-
tion) writes that for the CBR data, there was much heated discussion of
the silly range of the fluctuations — clearly not supported by common sense,
or by likelihood analyses. For example, one analysis [19] happened to have
an anomalously low x?; using the then standard [20] approach gave an un-
reasonable low “upper limit” on the fluctuations. At the same time, some
of the collaborators (A. Lasenby) had offices near the “evangelical” Maxi-
mum Entropy group, and so were introduced to lively discussions on how
to form the best likelihood ratio, and what were appropriate priors (see
[21, 22, 23], and references in [24]). Last, independent thinker T. Loredo
[25] also discovered the work of Ed Jaynes, and in turn influenced those at
U. Chicago, LANL, and beyond (e.g. [26, 27, 28]).

1990’s: SCMA I and 11

At the first SCMA, broadly speaking, the focus tended to be on the Bayesian
equivalent of standard problems and related ones that could not readily be
handled by frequentist methods [4]. Many of these were physical, para-
metric models; and one did the marginalization either analytically, or via



2. Bayesian Inference for Astrophysics 21

simple numerical integration methods (Laplace, quadrature). Some of these
solutions are only now coming into standard use (XSPEC, CIAO), despite
their simplicity. At the second SCMA, [2], there was more focus on com-
puter methods (esp. MCMC), and more formation of “working groups”
and more serious collaboration with statisticians (Duke, CMU, Purdue,
Chicago, Harvard, BU, ...). As Feigelson and Babu had predicted, it took a
great deal of work to “translate” between astrophysics jargon and culture
and that of the statisticians. However this brought not only access to more
advanced computational techniques but also to broader perspectives.

SCMA III: 2001

Now we have reached SCMA III, where we can see fruits of those collab-
orations many built in response to those challenges. What are the new
challenges that will be defined here? Is it time for an era of fundamentally
rethinking how we do measurements? “Data Analysis” (not even “Statis-
tics”) used to be an afterthought. Perhaps now it can be part of how one
phrases the scientific question or designs the experiment.

2.1.2 WHY: Astrophysicists now

Likelihood methods in general and Bayesian methods in particular are es-
pecially well-suited to modern astronomy and astrophysics. First, astro-
physics is unusual in being able to derive reliable quantitative estimates of
our errors and uncertainties, and of the entire measurement process [29].
Second, we have both (literally) millenia’s worth of prior observations —
much of it detailed, quantitative measurements [29]; plus astoundingly pre-
cise quantitative predictive theories, from quantum mechanics to relativity
and beyond. Third, unfortunately, unlike engineers, accountants, biologists,
economists, and others, we — generally speaking — do not have a formal
background in probability and statistics beyond what is in ‘cookbook’ texts
[30, 31]. This isolation often invites misapplication, both from unfamiliar-
ity with the larger probability framework, and from missing out on crucial
advances (e.g. it was clarified in the 1970’s that in certain cases the F-test
does not work; only slowly is this being brought into the astrophysics com-
munity [9]). On the other hand, together these give us an opportunity, now,
to build a more fundamental understanding.

The framework for approaching problems that I advocate here is a ‘like-
lihoodist’ perspective [32]. The method for deriving these is Bayesian.

2.1.3 WHY: Bayesian Inference

A properly constructed Bayesian likelihood ratio is always the best measure
of all the information in one’s data given competing null and interesting
hypotheses, plus one’s prior information. This is not in dispute by either
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classical or Bayesian statisticians. The difficulties lie in: 1) properly incor-
porating prior information into a clear well-specified prior probability; 2)
doing the marginalization (often numerical integration); and 3) parametriz-
ing the model so the first two steps are easier. Recall the Bayes prescription
requires four parts:

1. A set of hypotheses (class of model + parameters) Hy...Hn;0n;

2. An appropriate sampling statistic for the data, given the (class of)
model plus parameters p(D | Hy, 0n, I); and

3. Previous information I (instrument calibration, background measure-
ments, quantum mechanics, ...), appropriately quantified in prior
probabilities m(Hy, | I),m(fn | I). Combining these via Bayes’s The-
orem gives the posterior probability p(0,, | D, I'H) of the parameters
given the data D, model or hypothesis H, and prior information I,
or p(H | D,I) of the model or hypothesis given the data and prior

information:
(0|l
p(enlD;H'n;I): }(')(|_I!))p(D| 91'1[)) or
w(H, |1

4. The Bayesian formalism then allows another step: Marginalizing over
or averaging over uninteresting (or “nuisance”) parameters, such as
an unknown background rate, unknown continuum flux, pulsar phase,
etc ete.

Hence, a statistic can fail to be the best in four ways. The first two are
perhaps the most common:

1. Wrong sampling statistic (e.g. x? or Gauss-Normal when the dis-
tribution is skewed, or multipeaked; using a periodogram or even
traditional wavelets for Poisson data; and so forth.

2. Not the best underlying model class (e.g. using a FT when one does
not have a single stationary sinusoid; or — as in our upcoming ex-
ample! — one expects arbitrarily sharp peaks).

3. More subtle: not the best use of prior information (of which as-
tronomers have lots). It is also is this structure that prescribes how
to successively make use of more complexity:

e imaging / PSF and background information in timing or energy
analysis;

e systematic uncertainty in detection process (deadtime/pile-up;
calibration uncertainties; etc);
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e previous but uncertain measurements from, say, non-simultane-
ous observations (e.g., non-contemporaneous radio ephemerides).

4. More subtle yet: not the best handling of “nuisance” parameters
(background rates, etc).; i.e how best to summarize information on
multidimensional models. This may be the most powerful piece of
Bayesian methods. It defines how to reduce the dimension of one’s
statistic to only the interesting parameters, while still retaining all
of the information about them contained in the data. By contrast,
finding the maximum likelihood or letting some parameters “float
free” while interesting ones are fixed may be more familiar and a
quicker approximation, but it will only work under special circum-
stances. These include relying on underlying Gaussian assumptions
about the probability—space, which may in fact be highly skewed or
even multiply-peaked; and may often be unexpectedly uncalibrated

(e-g. [9]).

BUT this also means: for many astrophysical problems, it can be obvious
how to write down a more correct statistic! This is part of the opportunity
that comes from astrophysicists having ignored basic statistics for so long.

2.1.4 Paper overview

In the next two sections, we work through a single problem (due to [55]).
We show the nuts,bolts and struts of building the best (likelihood) measure
for any problem. The problem is simple enough to be given as an under-
graduate excersise; yet has real potential as a new method (e.g. detection
of unknown pulsars at high energies). We work the examples backwards:
hardest example first (Bayes model selection) then more familiar param-
eter estimation. Finally, we briefly widen our perspective to place it into
context. We conclude with references to more complicated works, and some
challenges.

2.2 Bayes Model Selection: detecting 1D structure

Based on [55], we work through a simple but powerful example of a new
method for detecting structure in a signal: 1D, no instrumental response. It
illustrates both pitfalls and insights relevant for more complex treatments.
For example the process is (almost!) identical to that used for: finding struc-
ture in an energy spectrum (complex solar flare line spectra, [33]); structure
in spatial imaging data (PET images [34]; [36] new Chandra new work);
even higher dimension problems; or even non-periodic timing (detecting a
flare or burst on a variable background: [37].
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2.2.1 WHAT: CGRO sources and y—ray pulsars
High energy pulsars

The extremely coherent periodic signal characterizing pulsars was first de-
tected in the radio. Since, pulsars have been detected at all wavelengths,
with periods ranging from ms to seconds. Pulsars are thought to be rapidly
rotating neutron stars (about the mass of the sun collapsed into ~10 km)
with extreme magnetic fields (102 —101* times that of Earth). These funnel
the radiation into a beam something like that of a rotating beacon from a
lighthouse. The grand sweep of the massive magnetic fields of the youngest
pulsars is thought to power not only the the population of highest energy
particles (cosmic rays) bathing out Galaxy, but also drive the generation of
the highest energy photons (y-rays). At lower (optical or X-ray) energies
one sees rounded, roughly sinusoidal pulse profiles, or light—curves (bright-
ness as a function of time or phase) suggestive of a larger rounded hot
spot on the pulsar itself rotating in and out of the line of site [38]. At high
energies, these pulse—profiles can be very sharply peaked — more like the
edge of a tightly focused cone of emission swinging in and out of the line
of sight ([39, 40]; and references therein).

Previous detections

As yet only six have been detected in y-rays, most by the Compton Gamma-
Ray Observatory (CGRO). They are usually detected first in radio ener-
gies (Crab; Vela; etc). However one of the brightest ~v-ray sources in the
sky turned out to be a nearby pulsar (Geminga; [13, 14]) and has yet to
be found in radio. One strongly suspects that many of the unidentified
CGRO/EGRET sources are in fact similar y—ray pulsar neighbors (e.g.
[9, 15]). But detecting them is difficult. In part this is due to the intrin-
sically low number of very high energy photons detected from celestial
sources: a decade’s worth of surveying the sky can result in only a few hun-
dred photons from one source. In part, could it be that previous carefully
crafted and studied pulsar—detecting algorithms aren’t optimal for the low
counts and sharp—edged pulse profiles at the highest energies?

Models for Detection of structure

Broadly, for the most sensitive detection, one wants a model that distills
the essential shape of the structure in the lowest number of parameters.
Of course the best would be a tightly—constrained physical theory (e.g.
in planet detection, modeling the Keplerian orbits; [45]). When that is not
practical, one uses the first few terms of flexible non—parametric multi—scale
models (Fourier components; wavelets; simple binning; etc).

Previous methods have been either Fourier transform-based (Z2; [2])
or binning-and—y?-based (epoch—folding; [17]). In the Z2, one takes the

Fourier transform of the pulsar phases indicated by the photon arrival
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times. The sum of the squares of its components (e.g. Rayleigh statistic),
plus those of its n — 1 harmonics, are then tested against flatness using a x?
distribution. One can show this is similar to assuming the pulsar light—curve
can be represented by an exponentiated Fourier transform (c.f. [48, 4, 6]
and references therein). This is reasonable at lower energies, where more
rounded pulse—profiles may better lend themselves to the standard Fourier
transform based methods (e.g. [38]). However at higher energies the pulse
profile is often expected to be sharply peaked (see [39]).

In classical epoch—folding, the data arrival times are folded on the known
or trial period, then binned into evenly spaced bins (weighted by exposure).
One tests against flatness in the resulting histogram via x? [17]. However
some difficulties remain: 1) How does one proceed when x? is not appropri-
ate (few counts per bin)? 2) How does one choose the bin size, balancing
fine detail (many small bins) versus good x? approximation (larger bins
for more counts/bin)? For a typical unidentifitd CGRO/EGRET source
the total counts can be low (a few hundred). Hence neither simple FFT or
epoch—folding/x? based methods are the best.

In a seminal “how—to” paper on Bayes in astrophysics, P. Gregory and
T. Loredo [18] derived a fully Poisson equivalent of epoch-folding — no
x? required. They also used the Bayesian technique of marginalizing (or
averaging, in parameter—probability—space) over unknown parameters to
address the question of the proper number of bins. Still, there is an implicit
penalty in using too many model parameters for detecting a feature. (See
[51] or [9] for the “Ockham’s Razor” that is built into Bayes odds ratios).
So if one could use the minimum number of parameters in one’s model,
yet still capture very sharp features, one could in theory do a better job of
detecting pulsars with very narrow peaks.

2.2.2 HOW: Sparse Bayes Blocks
Overview

For high—energy pulsars, one sees that previous methods may not have
been the best because either the model (Reason 1) or the sampling statistic
(Reason 2) were not the best. Hence, to derive a better statistical tool for
catching sharply—peaked pulsars, we shall use both the correct sampling
statistic (Poisson), and an improved model. With these we step through
the Bayes formalism: specify hypotheses; priors; and sampling statistic;
marginalize; and compare.

For our class of interesting hypotheses, we propose to use an extremely
simple model called “Sparse Bayes Blocks” [55]. It is a distillation of useful
points from epoch—folding ([18] and references therein) and the “Bayes
Blocks” changepoints approach [3]. Long used in other fields, changepoint
models assumes the process to be composed of relatively smooth segments
delineated by discontinuous jumps at the “changepoints”. These smooth
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segments can be constant (as in a histogram), exponential, or any smooth
function. The size of each segment (i.e. the width of each bin) is determined
by the data, rather than assumed to be evenly spaced. This allows a light—
curve with (say) one (or two) very narrow sharp peaks to be described by
only four (or eight) parameters: the positions of the two changepoints per
peak, and the expected average rate in each segment. This is in contrast
to standard epoch—folding binned models, which for our example would
require ~ 102 bins to properly model a single sharp spike. The “sparseness”
comes from using the fewest possible model parameters. We are interested
in detecting our pulsars first; later we may characterize them with more
complex changepoint models [34],[3].

Simplest Interesting hypothesis H,: two changepoints

The model is piecewise constant, with three segments (0, 1, 2), delineated
by two changepoints (¢g, ¢1). The rate at the end of the phase cycle (phase
= 1.) is required to match that at the beginning of the cycle (phase = 0.);
hence the rate of segment 2 is the same as that of segment 0. The model
rate u; above is 7 if that phase bin is between the two changepoints (i.e.
within the peak); and ro2 (i.e. background) otherwise.

Simplest Null hypothesis Hy: no changepoints

The model is a single constant segment, with model rate ur.

On Priors in Astrophysics, Part I

This is more subtle, and requires some thought. The problem can be ex-
pressed either as: we are looking for evidence of a new piece of structure, a
peak with unknown flux, on top of an existing background; or we already
know a source of approximately this flux exists, and want evidence that
some fraction of this total flux comes from a periodic peak. The first cor-
responds to looking for an extra component in a multi-component model
such as an emission line in an energy spectrum, or a new source in spatial
data. This is in general a hard problem; see [9]. The second is simpler and
corresponds to thinking of structure as fractional “shape parameters” (e.g.
[18]). We will illustrate both methods here.

First, we will work through the first, slightly more conservative assump-
tion: there may be one (or more) extra component(s) on top of a flat back-
ground. This leads to separate priors for the unknown rates in each segment.
If there were no previous measurements of any kind, at any wavelength, of
any similar types of objects; and also absolutely no theoretical predictions
(beyond that they cannot be larger than the maximum the instrument can
detect), one might choose priors based on invariance arguments. For rates
that both must be non—zero and for which one’s lack of prior knowledge is
unchanged, no matter in what units it is expressed (scale invariance) one
can use a log—prior; for rates that can be zero or negative one might use a
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constant prior (See [4] for examples and references). However this is astro-
physics; there is almost always some kind of previous information —- even
if it is only a measurement or prediction of an average rate. In this case,
following [22], we can use an exponential prior on the average rate. It is a
flexible, physical, conjugate prior. With low scale parameter it resembles
the log—prior, and with high average rates it resembles the constant prior.
Ed Jaynes [54] pointed out this was the Maximum Entropy prior when one
knows only a scale for the average rate before the measurement. Also, [37]
found that it worked well for catching bursts. It is informative, yet does
not strongly bias the outcome.

Therefore, for the average rates r1, g2 on each segment n, the prior 7 is

w(ry | Idr, = e(_ﬁ’”"")ﬂndrn

with scale 8 given by the inverse of the average from prior measurements.
For the changepoints {¢,,}, we used a prior = that is constant in phase
(that is, one that is invariant with respect to translations in phase):

7T(¢n | I)d¢n = d¢n~
Data and sampling statistic

The data are intrinsically Poisson: lists of times (plus energies, positions,
data quality indicators) measured by the instrument as photons (or back-
ground particles) arrive from a distant source. For pulsar (i.e. period)
searches, these arrival times are corrected for the (varying) travel times
between the pulsar and moving instrument (Bari-center corrections [2],
then folded on the (known or trial) period. The data are then in a the form
of a (Poisson—distributed) list of photon (BVC-corrected) arrival times and
associated phases (plus energies, positions, etc..) These X-ray or y—ray
photons can arrive with mean spacings of seconds to weeks — i.e. many
pulsar revolutions between each detection. Hence high precision is neces-
sary for the calculations. Sometimes these events are binned onboard the
satellite (along with the associated livetime per bin) before being sent to
ground for processing.

If p; is the average rate on the instrument during phase bin i, §t; its
livetime, and y; the number of counts measured, then the sampling statistic
is:

— (—nidti) (i0t:)¥" .

yr!
(This assumes the data are binned counts, but in the limit of very small
bins it takes the usual Poisson Point Process form.)

p(yi | pidt;)

Turn the crank: Apply Bayes Theorem to get Posterior

With the model and priors specified, we write down their product (divided
by a normalization term) to form the posterior probability. Let Ypa be
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counts in the background piece, with total livetime Tpo; Y7 be counts in
the peak, with total livetime Ti; and Yror be the total counts in the
observation, with total livetime Trpor. Then, with the (conservative) choice
of the scale factor 8 being the same for both, the posterior can be written:

p(r1,702, %0, #1 | {yi}, I, H2)dpodgidroadr =
deodgr x Bdroze*(ﬁJrToz)roz (TQQ)YOZ « ﬁdrlef(’BJrTl)rl (Tl)Yl
Nror ;
5tz Yi
< 11 “hrntiw 1)

After analytically integrating over the rates rgo, 71 one obtains the marginal-
ized posterior for the changepoints ¢g, ¢1:

[[Yo2 +1] LYy +1]
(8 +To2) ") (5 4+ 13) Y

Xa(¢o, 01 | Ha, I, {yi})dgoder = B2

Nror (5t

xdgodér x [T (
k=1

Null hypothesis, Hy

k)yk
Yr!

)/ (p(k 1 D).

The model is simply one constant segment, with no changepoints. From
above, one can see the marginalized posterior will have the form:

I'[Yror + 1] Neer (5ty,)v
= s« 0T (5 o 1),

Likelihood Ratios

Finally, the payoff: to find the Bayes likelihood ratio as a function of change-
points (¢g, ¢1), one divides the likelihood of null hypothesis Hy into that
of the interesting hypothesis Hs:

Ao(po, 1 | Ha,Ho, I, {yi})dooddr = deodey

TV + 1T Yoo +1] (8 + Tror) "o Y
I'Yror + 1] B+ Tl)(lerl)(ﬁ + TOQ)(Yonrl) )
This maps out the most probable changepoints. To find global (or total)
odds O, or Bayes factor, of Hs (one peak, two changepoints) versus Hy (flat,
no changepoints) we marginalize (i.e. numerically integrate) the expression
above over all changepoints (¢g, ¢1):

OUy)) | HaoHooI) = / dp1ddata(do, 1 | Has Ho. I, {y:}).

More complicated models are similar in form: for example, one exponen-
tial piece for the peak versus one constant piece (only background) looks
similar, save for an extra term due to marginalizing over the exponential
slope.
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2.2.3 On Priors in Astrophysics, Part 11

Notice the result above has a dependence on the prior parameter (5. Al-
though its effect on the likelihoods for the positions of the changepoints
is almost negligible, it has a stronger effect on the Bayes evidence, (i.e.
global odds ratio) comparing the null and interesting hypotheses. This is
not the case when the problem can be formulated as a question of unknown
fractional shapes rather than an unknown extra component: i.e. one knows
that a source exists and tests the hypothesis that it is a pulsar, rather than
testing for the existence of a source at the same time.

Rephrasing the interesting hypothesis Hs:

Let the total rate be rp. The fraction of the total counts in the peak is f1,
while the fraction outside the peak is fgo, with constraint f; + foo = 1.
The expected number of counts in each time (or phase) bin dt; is then:

ri = roTrordt(f1/Th), for ¢; € (¢o, P1];

ry = TTTTOT(Sti(fQQ/TOQ) otherwise.

As before T and Ty, represent the livetimes accumulated in the peak and
background sections, respectively.

Rephrasing the priors
The prior on the total rate has the same form as before:
7T(7‘T | I)dTT = e(iﬁTTT)ﬂTdTT.

However the prior on the fractional rates is new. It is uniform on [0, 1] with
the constraint that both sum to unity:

m(fi| )dfi = dfr, «(f1|I)dfi = dfi; with constraint fi+ fo2 = 1.
Alternate posteriors
With these changes, the posterior for the interesting hypotheses becomes:

p(rr, f1, foz, @0, 61 | {vs}, I, Ha)ddodp1drrdfidfor = dpoder x

ﬁdTTe—(ﬁ-FTTOT)TTOT( Yror o

rrorTror)

dfoQ(;LOZ)Y02 X dfl(%)Y1 x 0(f1+ fo2 —1)

Nror \Yi
< IT S5/ttt | 0.

i=0 v

The marginalized posterior becomes:

Aa(¢o,d1 | Ha, I, {yi})dpodp1 = dgoderx
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Preliminary Monte Carlo Results from Connors and Carramifiana 2001

Monte Carlo  CLASSIC — ZG2 BAYES — “Sparse BB” GL92
—logg logq logq logq logq
Model Cts n=6 Prob Tscale Oz g Oz a1 Osar Odds
spike 134  393.7 76.1 140. 96.6 174. 171. 32.1
spike 74 195.8 34.6 70. 41.2 93.1 91.7 14.2
spike 32 1024 15.7 35. 12.9 39.7 38.6 6.53
spike 13 32.3 2.91 10. 0.44 9.19 8.5 0.65
Vela 561  467.5 91.8 500. 52.4 52.2 70.0 77.6
Vela 277 279.3 52.0 300. 29.1 28.9 41.1 44.3
Vela 138  165.5 28.4 140. 16.2 16.1 26.6 23.0
Vela 72 73.8 10.21 70. 5.65 5.42 7.4 7.40
flat 538 14.9 0.61 500. -0.431 -0.91 -0.06 -1.92
flat 258 134 0.47 300. -0.453 -0.91 -0.3 -1.79
flat 136 9.4 0.17 140. -0.445 -0.89 -0.5 -1.78
flat 71 10.1 0.22 70.  -0.0046 -0.40 0.04 -0.95

TABLE 2.1. Note: "CLASSIC” is classical probability (frequency of occurrence)
of the null hypothesis, rather than a ratio of the probabilities of the null and
interesting hypotheses, as are the others. ‘E’ in O2 g stands for our first choice of
parametrization, with an exponential prior on each separate segment. ‘GL’ stands
for the second parametrization, similar to that from GL92. The number tells the
number of changepoints used in the model (two or three). GL92 Calculations
provided by P. Freeman, private communication; calculated for up to m = 12
bins. ”Vela” means CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as
“template” for source shape.

C[Yror +1]  Tror ™°T T[Y; + 1|T[Yoe + 1]
B+ TTOT)(YTOT+1) T Ty Y2 TYror +2]

T (B2 (ot 1 1),
k=1

Yr!

The marginalized posterior for the null hypothesis remains the same —
the first four terms from above, plus the last normalization term. The final
likelihood ratio for the changepoints then becomes:

Tror”™°" T[Yi + 1T Yoo + 1]

Ao (oo, Ha, I {yit) =
2(¢0, 91 | Ha, I, {yi}) Ty Y1 Ty Y02 I'Yror + 2]

Notice any dependence on the scale parameter ( for the prior on the flux has
cancelled out. Notice, too, how similar this is to the form in [18] (henceforth
GL92), save that the bins can now have arbitrary width and placement.

One can derive the equivalent marginalized likelihood ratio for three
changepoints (and higher; see [55]):

Tror™°T  T[Yi + 1T[Ys + 1T [Yos + 1]
As(¢o, d1 | Hs, I, {y:}) =
(00,01 | Mo I uid) = Zvig v v T[Yror + 3]
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2.2.4, Comparison Tests

In table 1, we list some of the results of Monte Carlo tests from [55]. They
simulated three kinds of data: 1) flat background; 2) a Vela pulsar—shaped
light—curve, with CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as
a template; and 3) a spike in a single 5 x 10~* wide bin. Each of these was
analyzed with three methods: 1) the current high energy standard, Z2 with
n = 6; 2) The Bayesian epoch—folding method of GL92; and 3) our new
statistic based on two or three “Bayes Blocks”. We note that the GL92
method would have performed better had we used a much larger cutoff for
number of bins, rather than stopping at the default number m = 12.

The preliminary test of the concept is very encouraging. Notice that both
“One BB’ methods outperformed the classical method on the “single spike”
pulse—profiles. Note further that parametrizing the model with an overall
rate and shape parameters improved the log Odds throughout.

2.3 Bayes for Parameter Estimation

Both [56] and [18] give excellent tutorials in Bayesian parameter estima-
tion. For astrophysicists, “parameter estimation” means either “confidence
intervals” (the % of data that would fall within contours of constant
Alog(mazimum likelihood); [4], [5]); or “credible regions” (the % volume
of parameter space contained in contours of constant

Alog(marginal likelihood); [18]). (Occasionally, an astrophysicist might
use something simpler such as adding error bars in quadrature, but seldom
for serious problems.)

Bayesian parameter estimation looks much the same as its classical coun-
terpart, but with predictable differences. First, one uses the posterior rather
than the sampling distribution. Second, one marginalizes over uninterest-
ing parameters, and to reduce the dimension of the interesting likelihood
statistic (rather than taking the maximum). Third, one does not use look—
up tables (c.f. [31, 4]). Instead one steps through a grid of the parameters
of interest, directly calculating the appropriate Alog(likelihood) for each
% volume of probability space (e.g. 67.23%,95.45%,99.73%, etc).

BENEFITS

1. No problems dealing with multiple peaks, skewed distributions, or
any other non—Gauss—Normal case (no CLT required).

2. Nice summary of highly dimensional models.

3. One can explicitly see the effect of each part (priors, model parame-
ters, model choice) on the final outcome.
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Simulated Vela Pulsar, 72 Photons

= dash=95.45%, dot=99.73%
m P
® R ® ©0 7]
q b :
3 I % o !
o - 0] E B
< Sr o || © 7
< [ o© 0 o |
& [ © f o ]
g © 1 o ]
\2/ o L I 1 1 Iill I 1 1 IOIO_
»5 0.995 1 1.005

Trial Rotation Frequency (cps)

FIGURE 2.1. Parameter limits on the unknown rotation period: Credible regions
delineating 95.45% and 99.73% (equivalent to 2 and 3 o) of the volume of posterior
probability space.

COSTS

1. Especially when the integrals (marginalization) cannot be done ana-
lytically, it can cost one significant computation time.

2. Although Bayesian parameter estimation is simpler than Bayesian
model comparison, as results do not depend as strongly on the choice
of prior, for weak data constraints it can still be important.

With this in mind, let us work through our brief example. Suppose one
of the parameters that we have assumed to be fixed, in the previous exam-
ple, is in fact unknown. This might be the true source position; the pulsar
rotation frequency (and its derivatives); or any other physical quantity —
the formalism remains the same. (This also lets us demonstrate the mod-
ular ‘hierarchical form’ one might use for taking into account instrumental
uncertainties; e.g. [5, 6] demonstrate including imaging information.)

Here, we will work through the example of the unknown rotation fre-
quency. As our test data—set, we will use a Monte Carlo one based on the
EGRET > 5GeV histogram of [39]. We assume a rotation period of 1.00
cycles/sec; and period derivative of zero. The simulated observation lasts
for 2 days — enough to accumulate 72 photons.

First, we will form the marginalized posterior likelihood as a function of
the pulsar rotation frequency v, via the procedure we have done before.
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Prior

Following [18] and [56], we assign a log prior on the unknown frequency:

dv v
(v |I) = k—, with £ = 1/log[—2X].
v VMIN
The limits can come either from non-simultaneous radio ephemerides, from
the minimum and maximum imposed by the data sampling; or from the

grand minimum and maximum seen from all observations of similar pulsars.
Marginalized posterior odds.

But from the preceding section, we can already write down the marginalized
posterior likelihood O, given a rotation frequency. Hence the posterior for
the frequency looks like:

AW | Py (b, D = 557 % O({ui) | P, Mo, ),

Notice for Bayesian methods it is the range of the trial frequencies and
derivatives that are important; not the total number of trials. Also, this is
usually multi-peaked. Hence, even once one has found the mode (largest
peak), using x? tables to tell one what drop in log-likelihood corresponds
to 67.43%, 95.45%, or 99.73% (i.e. 1, 2, and 30) will not work. But with
Bayesian inference, we can simply step through a grid of v values to directly
calculate the drop in log-likelihood that encloses each volume of probability
(see [4, 18, 56]). We show a figure of the log-likelihood vs v. and delineate
the Credible Regions containing 95.45%, and 99.73% of the total volume
posterior probability.

2.4  Conclusion: Challenges Subtle and Grand

There are many simple, low—dimension problems, of great importance yet
basic enough to give a student, left to be done. (Typically The worst prob-
lem for the student will be data I/0.) For more ambitious, higher dimen-
sional problems one will need more sophisticated computer techniques (such
as the kind of modular EM/DA/MCMC presented here [57]). Familiarity
with Bayesian fundamentals and computation details can also give one a
fresh perspective on frequentist methods (even bootstrapping! [33]). And,
finally, your work, as you collaborate further with experts in statistics,
may open up ways of looking at the data that most of us cannot begin to
visualize yet.
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Commentary by Eric D. Kolaczyk?

The problem selected here by Dr. Connors, that of detecting the presence
of changepoints in Poisson time series data, is somehow both simple and
rich ... at the same time ... and thus a wonderful “tutorial” problem.
And the fact that solutions to this problem have the potential for real
scientific impact makes it even more interesting. Reference was made in
the paper to a number of ways in which the basic principles and techniques
outlined may be extended to deal with structures more complex than those
addressed therein. I would like to describe one such extension — multiscale
changepoint detections — and in particular show how it in fact derives from
the same principles and techniques. In doing so, I also expand upon the
summary presented in [1].

Basic Modeling Framework

Implicit in the formulation of Connors is the presence of binned photon
counts. A total of Nror bins on the unit interval [0, 1] are assumed. With
this condition, one cannot hope to have the data indicate the location of
possible changepoints ¢ beyond the resolution of these bins. So we introduce
the notion of a model with two parts: (1) a hypothesis H; that there are
i changepoints, for ¢ = 0,1,..., Nror — 1, and (2) a set of changepoint
locations ¢(") = (41, ...,0;), restricted to some subset of the bin endpoints.
Our models are thus of the form M; = (H;, o).

Now suppose that one wishes to find simultaneously the most likely num-
ber of changepoints and their location. This then, in the Bayesian paradigm,
becomes a question of maximizing the quantity p(M,|y) over all models
M;, where y = (y1,...,YNror) are the observed (binned) counts. The
Bayes factor (BF) is often used as a device for comparison of models, and
is defined as the ratio of the posterior to the prior odds. For example, the
Bayes factor for comparing My = (H1, ¢1) and Mo = Hp is

Br = PMilY) /p(Moly) _ p(ylMy) _ plylér, Ha)

p(M1)/p(Mo)  p(y[Mo)  p(y[Ho)

2Department of Statistics, Boston University
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Note that the last expression above shows that the Bayes factor here is
essentially the statistic A(+]-) in section 2.2 of Connors i.e., without hav-
ing marginalized over the location of the changepoint. [Note too that, for
simplicity, I have adopted a non-periodic model here.]

Re-Parameterizing the Model

Let’s consider our comparison of M; and Mj in more detail. Suppose
that M; is true i.e., there is a single changepoint and it is located at ¢;.
This leaves the data parameterized simply by two means, say, ur and pg.
And the statistics containing all relevant information in the data for these
two parameters (technically, the sufficient statistics) are simply yr, and yg,
say, corresponding to the total counts in the bins to the left and right of
¢1, respectively. Similarly, in the case that M instead is true, the data
are parameterized by a single mean uror = pr + pr and the sufficient
statistic is just yror = yr + yr. Hence our Bayes factor actually has the
form
BF - P, yrM1)

p(yror|Mo)

But now consider that the pair (yror,yr) clearly contains the same
information as (yr,yr) in model M; and write the Bayes factor as

BF — p(yTOT|M1)

SITOT L M) 2.1
p(yTOT|MO) p(yL|yTOT 1) ( )

Writing with respect to our original parameterization (ur,,pur), the term
in the numerator of this expression is

p(yror|Mi) = /p(yTOT|ML7MR7M1)p(NLaNR|M1)dNLdMR-

But p(yror|pr, tr, M1) is just the probability mass function of a Pois-
son random variable with mean pror i.e., it depends on py and pgr only
through their sum. And certainly the term p(yror|Mp) in the denomi-
nator of equation (2.1) similarly only depends on pror. So if we choose
prior distributions p(uror|Mi) = p(uror|Mo) i.e., reflecting a belief that
the total expected counts in the data is unaffected by whether there is a
changepoint or not, then we obtain that p(yror|Mi) = p(yror|Mo) and
the Bayes factor becomes

BF = p(yr|yror, M1) .

Finally, writing

p(yrlyror, M) = /p(yL|MLaNRvyTOT7M1)p(NL7ML|YTOT;Ml)dﬂLdﬂRa
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and noting that the first probability in the integral above is the probability
mass function of a binomial random variable with parameters yror and
f = nr/pror, we see that

BF = /P(yL|f, Yror, M1)p(f|Yror, M1)df .

Which is just to say that our goal of testing for a changepoint at a given
location ¢, reduces to a comparison of two Poisson means, which in turn
reduces to a statistic based on the binomial distribution (which also is the
case, say, in the frequentist-based Neyman-Pearson theory for this reduced
problem).

Comparing the above then to section 2.3 of Connors, we see (1) that the
re-parameterization (uror, f) is a very natural one to make, and (2) why
the parameter 3 in the exponential prior drops out of the statistic Az(:|-).
In fact, the prior on uror as a whole, whatever it is, will drop out of this
Bayes factor, as long as it chosen to be the same under both M; and M.

Extending the Basic Model

The principles above may be applied in a recursive manner to deal with
multiple changepoint models as well i.e., models M; with 2 < i < Npor—1.
Take the case of two changepoints, with My = (Ha, (¢1, ¢2)). There will be
three intervals of interest, and hence three mean parameters (ur,, e, tr)
and three summary statistics (yr,yc,yr) of relevance. Now, without loss
of generality, we can (exploiting the independence inherent in Poisson sam-
pling) consider just the first two sub-intervals as a sub-problem of our full
problem, and note that it is simply the single changepoint problem from
above. In following our strategy of re-parameterization, we are led to the
alternate statistics (yr. ¢, yr) in place of (yr,yc), where yr.c = yr + yc.
Then treat the sub-intervals underlying y; ¢ and yr as a pair and again
apply our results from the single changepoint problem.

Although the above argument is heuristic, one can show formally that,
for example, in comparing My to Mg we are led a Bayes factor of

p(yror|M2) pyr,clyror, M2) plyrlyr.c, Ma2)

P(yT0T|M0)
= plyr.clyror, M2)p(yrlyr,c, Ma),

BFyo =

or in comparing Ma to My = (Hy, ¢2) we get

p(yror|M2) pyr,clyror, M2) p(yrlyr,c, M2)

p(yror|M1) p(yr.clyror, M1)
= pyrlyr,c, Ma).

BFy:1 =

In both cases we exploit the assumption that priors are chosen for uror
and the parameters f (of which there are now two) so as to be independent
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of the underlying M, as in the single changepoint example above. For
example, a natural family to use here is the family of beta distributions
with density function

POvi+72) pim1 4 pyvet
F(’Yl)r(’m)f =1

and positive parameters (71, 72). Included in this family is the special case
71 = 2 = 1, which corresponds to the uniform distribution on [0, 1], which
is the prior used in section 2.3 of Connors.

p(flv,72) =

Multiscale Changepoint Detection

The above arguments generalize to an arbitrary number of changepoints
and it is not hard to see that a comparison of any two nested models
involves a Bayes factor that is a product of conditional probabilities across
various scales or resolutions of aggregations. For non-nested models one
obtains a ratio of such products.

Kolaczyk and Nowak have studied probability models with this sort of
multiscale structure in some detail. Formal links between them and wavelet-
based methods can be made, including an analogue of multiresolution anal-
ysis (MRA) and various efficient computational algorithms for estimation
and testing. See [1] and the references therein.

Here in the present context, in searching for an optimal number of
changepoints and their locations, the product structure of the Bayes factors
and a strong degree of redundancy among candidate intervals over all pos-
sible changepoint locations allows (somewhat surprisingly!) for the search
over all possible models to be solved exactly using a dynamic programming
algorithm of complexity O(N%OT). An example of results from applying
this technique to gamma-ray burst data can be found in [1]. Interestingly,
the same approach also can be derived from the perspective of minimum
description length (MDL).

References
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Hierarchical Models, Data
Augmentation, and Markov
Chain Monte Carlo

David A. van Dyk!

ABSTRACT The ever increasing power and sophistication of today’s high
energy astronomical instruments is opening a new realm of high quality
data that is quickly pushing beyond the capabilities of the “classical” data-
analysis methods in common use. In this chapter we discuss the use of highly
structured models that not only incorporate the scientific model (e.g., for a
source spectrum) but also account for stochastic components of data collec-
tion and the instrument (e.g., background contamination and pile up). Such
hierarchical models when used in conjunction with Bayesian or likelihood
statistical methods offer a systematic solution to many challenging data an-
alytic problems (e.g., low count rates and pile up). Hierarchical models are
becoming increasingly popular in physical and other scientific disciplines
largely because of the recent development of sophisticated methods for sta-
tistical computation. Thus, we discuss such methods as the EM algorithm,
data augmentation, and Markov chain Monte Carlo in the context of high
energy high resolution low count data.

This paper is followed by a commentary by astronomer Michael Strauss.

3.1 Introduction

Today’s highly sophisticated astronomical instruments offer a new window
into the complexities of the visible and invisible universe. As the state of
instrumentation evolves to produce ever finer resolution in spectral, spa-
tial, and temporal data ever more sophisticated statistical techniques are
required to properly handle this data. For example, standard off-the-shelf
methods such as x? fitting and background subtraction are ill-equipped
to handle the high resolution low count per bin data available from such
instruments as the Chandra X-ray Observatory. See Siemiginowska et al.
(1997) and van Dyk et al. (2001) for a general discussion of such issues. The
Gaussian assumptions implicit in such methods are not justified with low
counts and the resulting fits and error bars are therefore unreliable. Testing

IDepartment of Statistics, Harvard University
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for model features such as spectral lines or a source above background is
always a challenging task and standard methods such as the F-test, likeli-
hood ratio test, and Cash statistic though commonly used in practice are
inappropriate (Protassov et al. 2002). An even greater challenge is properly
accounting for pile-up in X-ray detectors, a task that confounds standard
techniques and thus demands more sophisticated statistical methods.

In this chapter, we outline a paradigm for data analysis that we believe
is robust enough to systematically handle these and many other statistical
challenges presented by modern astronomical instruments. It is important
conceptually to break any data analysis scheme into (at least) three com-
ponents, all of which are critical and must be done thoughtfully to ensure
sound inference. These components are model building, statistical inference,
and statistical computation.

The importance of careful model building is evident in the complexity
and subtlety of the physical mechanisms giving rise to the observed data
of modern instrumentation. The instrument response blurs the energy and
sky coordinates of photons, counts are contaminated with background, the
effective area of the instrument and the propensity of photons to be ab-
sorbed vary with energy, pile-up masks the energy and count of incoming
photons, source spectral models are complex and may include emission and
absorption features as well as a continuum. A statistical model should aim
to describe all such components of data generation. Thus, by a model we
mean much more than a parametric description of how the mean source
flux varies with energy and/or sky coordinates. Models that include sta-
tistical descriptions of the processes that degrade the data can guide us
in accounting for these degradations and eliminate the need for ad-hoc
corrections, e.g., for pile-up and background. Because of the complexity
of these models, we organize them into a hierarchical structure, which is
formulated in terms of various unobserved quantities (e.g., counts without
background contamination). Such unobserved quantities are often called
augmented data and play an important role in the computational methods
we suggest.

Once a model is formulated, statistical inference involves drawing infer-
ences (e.g., point estimates and error bars) regarding unobserved quantities
such as the model parameters describing the flux of the source. Important
model-based modes of statistical inference include maximum likelihood and
Bayesian inference. With large samples the asymptotic Gaussian behavior
of the maximum likelihood estimate can be the basis for sound frequen-
tist inference. Nevertheless, we generally take a Bayesian perspective for a
number of practical reasons such as a ready mechanism for combining infor-
mation from multiple sources, mathematical justification in small samples,
and an obvious framework for handling nuisance parameters. Despite the
placement of this chapter in a Bayesian section, we say very little about
the relative merit of Bayesian and frequentist methods; our emphasis is on
model building and statistical computation. Because of the aforementioned
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practical advantages of Bayesian methods, they are often the only tractable
methods available for fitting complex models—which is motivation enough
for many practical minded statisticians to “be Bayesian.” Here we give only
enough details of Bayesian and likelihood methods to motivate the compu-
tational tools, giving somewhat more emphasis to Bayesian methods. For
further reading on Bayesian methods, we recommend one of the several
high-quality recent texts on the subject such as Gelman et al. (1995), Car-
lin & Louis (1996) and Gilks et al. (1996), as well as other chapters in this
volume including those by Connors, Loredo & Chernoff, and Berger et al..

Because of the highly-structured nature of the statistical models that we
propose, sophisticated computational methods (e.g., the EM algorithm, the
data augmentation algorithm, and Markov chain Monte Carlo) are often re-
quired. The methods we suggest are designed to be computationally stable
and generally easy to implement. The details of the algorithm often fol-
low directly from the hierarchical model specification via simple statistical
calculations.

The remainder of this chapter is organized into five sections. In Sec-
tion 3.2 we introduce a simple example, accounting for background con-
tamination of counts. We use this example to motivate hierarchical mod-
eling and the method of data augmentation, which are in turn generalized
and more fully developed in Section 3.3. The computational methods are
introduced and illustrated using the motivating example of background
contamination in Section 3.4. In Section 3.5 we outline how these methods
can be used to tackle the difficult problem of photon pile-up. Concluding
remarks regarding the direction of modern statistical analysis appear in
Section 3.6.

3.2 A Motivating Example

In this section we introduce a simple example that is used throughout the
chapter to motivate ideas and methods. The example is simple so as not to
distract attention from the statistical methods. As illustrated in Section 3.5,
however, hierarchical models, data augmentation, and MCMC can tackle
much more complicated problems.

Suppose we have observed counts, Y, contaminated with background in a
(source) exposure and have observed a second exposure of pure background
resulting in counts, Z. Throughout we assume the source exposure is 7g
seconds and the pure background exposure is 75 seconds with both expo-
sures using the same area of the detector. To model the source exposure,
we assume Y follows a Poisson distribution? with intensity Ag + As, where

2Recall Y ~ Poisson ()\) (read as Y is distributed as Poisson with intensity \) in-
dicates that Y follows the Poisson distribution with intensity and expectation A, i.e.,
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Ap and \g represent the expected counts during the source exposure due
to background and source respectively. Thus, the distribution function for
Y given Ap and Ag is

p(Y|Ap,As) = e P2 (\p + Ag)Y /YT for Y =0,1,2,....  (3.1)

We wish to estimate Ag and treat Ap as a nuisance parameter, a parameter
that is of little interest, but must be included in the model. The expected
counts during the background exposure are assumed to be the same as in
the source exposure, but corrected for the exposure time, Ag75/75. Le.,

p(Z|Ap, As) = e~ AETEIT) (N1 [75)7 [ 2! for Z = 0,1,2,....  (3.2)

Maximum likelihood estimation involves estimating Ap and Ag by the
values the maximize the likelihood function, i.e., the product of Equa-
tions 3.1 and 3.2. Under certain regularity conditions (e.g., Ag, Ag > 0),
maximum likelihood estimates asymptotically follow a Gaussian distribu-
tion. This result leads to confidence intervals and error bars with (asymp-
totic) frequentist properties.

Bayesian inference is based on the posterior distribution,

p(As, AsB|Y, Z) o p(Y|AB, As)p(Z|AB, As)p(AB, As), (3.3)

where p(Ap, Ag) is the prior distribution which quantifies information re-
garding the values of the Ag and Ap available prior to observing the data.
The posterior distribution combines such prior information with the infor-
mation in the observed counts. The posterior distribution is a complete
summary of our information, but if it is similar to Gaussian in shape, it
is often summarized by its mean vector and variance matrix that can be
used as point estimates and to compute error bars. The posterior distri-
bution can also be used to compute a (-level credible region, R, such that
Jrp(\s, AB|Y, Z)dAsdAp = (. Such probability statements should be re-
garded as summaries of the available information for the model parameters,
in contrast to the frequentist interpretation of a confidence interval.
Implicitly, the counts from the source exposure, Y, are made up of two
components, Y = Yg 4+ Y, where Yg are counts from the source exposure
due to the source and Yp are the counts due to background. Since neither
Ys nor Yp are observed, we call these counts missing data. We note that
if Y5 and Yp had been observed, our statistical analysis would be greatly

simplified since we could confine attention to Yg i Poisson(Ag). Of course,
it is impossible to observe Ys and Yp. Nonetheless, this “thought experi-
ment” offers insight into computational methods that are useful both for
Bayesian and likelihood-based inference. In particular, the method of data
augmentation is an elegant computational construct allowing us to take

p(Y =y) =ery Nyl
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advantage of the fact that if it were possible to collect additional data,
statistical analysis could be greatly simplified. This is true regardless of
why the so-called “missing-data” are not observed. There is a large class of
powerful statistical methods designed for “missing-data” problems. These
methods have broad application in astrophysics (and in the physical sci-
ences generally) once we note that quantities observed with measurement
error can be regarded as “missing-data”.

To illustrate the method of data augmentation, we begin by reformulat-
ing our model in terms of Y5 and Yg. In particular, consider the multi-level
or hierarchical model

LEVEL 1: Y|Yg, As L Poisson(As) + Y,

LEVEL 2: Yp|Ap L Poisson(Ap) and Z|Ap & Poisson(Ap75/Ts),
LEVEL 3 (optional): specify a prior distribution for Ap and Ag.

Notice that in each level of the model, we specify the distribution of ran-
dom quantities conditioning on unobserved quantities whose distribution is
specified in lower levels of the model. For example, in LEVEL 1, we condition
on Yp, the distribution of which is specified in LEVEL 2. The power of such
a hierarchical model is that it separates a complex model into a number of
easy to handle smaller parts.
If Ys and Yp were observed, LEVEL 1 specifies the form of the likelihood
for Mg, i.e.,
L(Xs|Ys) = 6_/\5)\)5/3, (3.4)

and LEVEL 2 specified the form of the likelihood for Ag, i.e.,
L\B|Yp, Z) = e AeF\Lp T2 (3.5)

where k = (75 + 75)/7s. Notice that Equations 3.1 and 3.2 are relatively
complex functions of Ag and Ap and are harder to, for example, maximize
than are Equations 3.4 and 3.5.

It is also easy to estimate the “missing data” in this hierarchical model.
In particular, if A\ and Ag were known, the conditional distribution of Y5
given Y can be computed using Bayes Theorem,

p(Y Y, As, As) p(YB|As, AB)

Yi[Y, As, Ap) = 3.6
PBIY, A5 As) P hsA) (30
v Ys Y-Yp
- (WG (55 oo
Yr As + AB As + Ap
That is,
Y5|Y, As, Az < Binomial® [V, Ap/(As + Ag)] . (3.8)

3Recall Y & Binomial(n, P) indicates that Y follows a binomial distribution with n
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Thus, given the model parameters, we can predict the “missing data”
(e.g., by its conditional expectation with error bars based on its conditional
standard deviation). Likewise, given the “missing data” we can estimate the
model parameters (e.g., using maximum likelihood or a Bayesian estimate).
This leads to an iterative strategy that updates the “missing data” given
the model parameters and then the model parameters given the “missing
data.” Such computational methods include the EM algorithm and the
Data Augmentation (DA) algorithm and are referred to generally as the
method of data augmentation.

In the next two sections we abstract and generalize the important fea-
tures of this example to construct robust tools for analysis of the high res-
olution high quality data available with today’s sophisticated instruments.
In Section 3.4 we show how data augmentation can be used to compute
maximum likelihood estimates, Bayesian posterior modes and means, as
well as error bars. Generally these methods involve maximizing, simulat-
ing, and computing expectations of standard distribution functions. Such
simple distributions often arise naturally from a hierarchical model ex-
pressed in terms of the “missing data,” e.g., Equations 3.4, 3.5, and 3.8.
Details of the computation stability as well as examples which illustrate
the computational simplicity appear in the following sections.

3.3 Data Augmentation and Hierarchical Models

The term “data augmentation” originated with computational methods de-
signed to handle missing data, but as illustrated in Section 3.2, the method
is really quite general and often useful when there is no missing data per
se. In particular, for Monte Carlo integration in Bayesian data analysis we
aim to obtain a sample from the posterior distribution, p(6]Y). In some
cases, we can augment the model to p(@,X]|Y), where X may be missing
data or any other unobserved quantity (e.g., counts due to background).
With judicious choice of X, it may be much easier to obtain a sample from
p(0, X[Y) than directly from p(0]Y). Once we have a sample from p(0, X|Y),
we simply discard the sample of X to obtain a sample from p(@|Y). The
notation here is more general, but the idea is exactly that of Section 3.2;
we use statistical insight to construct p(6,X|Y) so that both p(8|X,Y) and
p(X|0,Y) are simple or at least standard distributions.

Absorption Lines. Absorption can be accounted for by supposing the
expected counts in energy bin ¢ are F;m;, where F; would be the expected
counts if there were no absorption and 7; is the expected proportion of

independent trials each with probability p, i.e., Pr(Y = y) = (Z)py(l —p)* Y. As an
example, Y may be the random number of heads in n independent flips of a (possibly
unfair) coin that has probability p of coming up heads on each flip.
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counts in energy bin ¢ that are not absorbed. (We might, for example,
parameterize F; as a power law.) In particular, we might model the counts

in energy bin ¢ as Y; L Poisson (Fim;). To formulate this model using
data augmentation, we let Y;* be the unobserved counts that the detector
would have detected if no photons were absorbed. We can then formulate
the hierarchical model,

Lever 1: Yi|Y;", 7, m; & Binomial (Y;',7,),
Lever 2: V1| F; & Poisson (F;),
LevVEL 3 (optional): specify prior distributions for F; and ;.

Again, the power of the data augmentation is the ability to partition the
model complexity into simpler pieces, in this case a binomial absorption
model and a Poisson spectral model with no absorption.

Many standard absorption models (including absorption lines) and con-
tinuum spectral models (e.g., power laws and bremsstrahlung emission)
can be formulated using simple transformations of 7; and F; that are lin-
ear functions of energy. In this case, given the “missing” absorbed photon
counts both LEVEL 1 and LEVEL 2 specify Generalized Linear Models that
are well studied and generally easy to fit. Likewise, given the model param-
eters and the observed data, the absorbed photons follow a simple model,

Y, L Poisson (1 —m)F] + Y.

Emission Lines. Spectral models often include emission lines,
K
.7:1' = C(EZ) + Z 52’]@
k=1

where ¢(FE;) is the expected continuum counts in energy bin ¢ and d;;, is the
expected counts from emission like k£ in energy bin i. For each photon, we
postulate a variable that specifies whether the photon is due to the contin-
uum or a particular emission line. This unobserved specification variable is
treated as “missing data.” Given this variable we can fit the continuum us-
ing the counts due to the continuum without the complication of emission
lines. Likewise we can fit each of the emission lines (e.g., parameters speci-
fying a Gaussian or Lorenzian distribution) using the counts attributed to
that line. Conversely, given the parameter of continuum and the emission
lines, the specification variable for each photon follows a simple multinomial
distribution.

Multiple Model Components. So far, we have divided the unobserved
quantities into two groups, the model parameters and the “missing data.”
More generally, we may partition 8 into @ = (64,...,6,), where some
component of # are model parameters of scientific interest, others may be
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nuisance parameters, and still others may be “missing data” or other un-
observed quantities. The key is that we select the unobserved quantities
and the partition of @ so that p(0x|01,...,0k-1,0%+1,...,60,,Y) is a stan-
dard distribution for each k. In this way we partition a complex problem
into a sequence of simpler standard problems which we handle iteratively
and one at a time. Thus, we can easily account for absorption, emission
lines, instrument response, and background, all in the context of a Poisson
model without sacrificing numerical stability, computational simplicity, or
sound statistical inference. Details of such a model appear in van Dyk et
al. (2001); see also van Dyk’s discussion of Strauss (this volume).

3.4 Model Fitting

In Sections 3.2 and 3.3 we emphasize repeatedly that judicious choice of the
“missing data,” X, can lead to simple conditional models, p(8|X,Y) and
p(X|0,Y), even when p(0|Y) is much more complex. In this section we show
how these simple conditional models can be used to construct computation
tools for likelihood-based and Bayesian model fitting. In recent years, these
tools have become popular throughout the social, physical biological and
engineering sciences primarily because of their computational stability and
simplicity.

3.4.1 The EM Algorithm

Dempster et al. (1977) formulated the expectation maximization (EM) al-
gorithm to compute a maximum likelihood estimate, that is

0 = argmaxg o L(0]Y), (3.9)

where Y is the observed data, 8 is a model parameter, L(8]Y) is the likeli-
hood function, and @ is the maximum likelihood estimate. (More generally,
we can replace L(0]Y) with a posterior distribution in Equation 3.9 and
use EM to compute the posterior mode, é) In particular, Dempster et al.
(1977) considered maximum likelihood estimation in the presence of in-
complete data or problems that can be formulated as such (e.g., spectral
imaging with background or degraded counts). In this context, the EM
algorithm builds on the intuitive idea that (i) if there were no “missing
data,” maximum likelihood estimation would be easy, and (ii) if the model
parameters were known, the “missing data” could easily be imputed (i.e.,
predicted) by its (conditional) expectation.

These two steps take on a simple form in the context of the background
example described in Section 3.2. In particular, if Ys had been observed,
we could estimate Ag with Yg. Likewise, if A\¢ and A were known, Yy
could be estimated as the proportion of the observed counts, Y, implied by
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As and Ap, i.e., the conditional expectation of Ys, Y As/(Ap + Ag). This
leads naturally to a two-step iteration which converges to the maximum
likelihood estimate. It should be noted that this procedure necessarily leads
to a non-negative estimate of Ag, whereas the common estimate resulting
from “subtracting background,” Y — Z7g /7, may be negative.

The two steps in this simple iteration correspond to the M-step (i.e.,
maximization step) and the E-step (i.e., expectation step) of EM respec-
tively, with the proviso that not the missing data, but rather the so-called
augmented-data log likelihood should be imputed by its conditional ex-
pectation. In general, we begin by defining the missing data, X, and the
corresponding loglikelihood, L(0|Y,X). EM starts with an initial value*
0¥ € © and iterates the following two steps for t = 0,1, ...

E-step: Compute the conditional expectation of the loglikelihood corre-
sponding to the augmented data (Y, X), given the observed data and
the current parameter value,

Q016" =E [1og L(B|Y,X)|Y, 0(”] : (3.10)

M-step: Determine 6% by maximizing Q(0|0(t)), that is, find @+
so that Q(OUFV|0W) > Q(0|6) for all O € O;

until convergence. The usefulness of the EM algorithm is apparent when
both of these steps can be accomplished with minimal analytic and com-
putation effort but the direct maximization in Equation 3.9 is difficult. In
many common models (e.g., multivariate Gaussian, Poisson, binomial, ex-
ponential, etc.) log L(0]Y,X) is linear in a set of simple “augmented-data
sufficient statistics.” Thus, as will be illustrated below, computing Q(0|0(t))
involves routine calculations. The M-step then only requires computing the
maximum likelihood estimates as if there were no “missing data,” by using
the predicted augmented-data sufficient statistics from the E-step as data.

To illustrate these ideas, we return to the example of Section 3.2. We set
X ={Ys, Y}, Y ={Y, Y5}, and 6 = (Ap, As). In this case, log L(0]Y,X) =
log L(\s|Ys)+log(Ap|Yp, Z); see Equations 3.4 and 3.5. Thus, Q(8]0") =

s +E (YS|Y, 0<t>) log As — kAp + [Z +E (YB|Y, 9<t>)} log Ap. (3.11)
Elementary calculations show the expectations in Equation 3.11 are given
by Y As/(As+As) and YAp/(Ap + As), which is the E-step, and Q(8]0)

is maximized by )\SH) = E(YglY, )\g)) and )\gﬂ) = [Z+E(YR|Y, )\g))]/k,
which is the M-step.

4Parenthetic superscripts indicate iteration number.
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3.4.2 The Data Augmentation Algorithm

In the context of Bayesian data analysis, numerical summaries of the pos-
terior distributions are often computed via numerical integration. Because
of the high dimension of the parameter space in most practical problems,
Monte Carlo integration is really the only useful method. If we can ob-
tain a sample from the posterior distribution, {H(t),t =1,...,T}, Monte
Carlo integration approximates the posterior mean of any function, g, of
the parameter with

Elg(6)[Y] = / (O)p(6]Y)d6 Z (8, (3.12)

where we assume E[g(0)|Y] exists. For example, g(8) = 0 and g(6) = (60 —
E(6]Y))(0 —E(0]Y))’ lead to the posterior mean and variance respectively.
Probabilities, such as ¢ = Pr(6 € R) can be computed using ¢(8) = I{0 €
R}, where the function I takes on value 1 if the condition in curly brackets
holds and zero otherwise. Likewise, quantiles of the distribution can be
approximated by the corresponding quantiles of the posterior sample. In
short, a robust data analysis requires only a sample from the posterior
distribution.

In the highly structured models we described in Section 3.3 we must use
sophisticated algorithms to obtain a posterior sample. Here we introduce
the powerful Data Augmentation (DA) algorithm (Tanner & Wong 1987).
A description of the more general Gibbs sampler (Metropolis et al. 1953)
and Metropolis-Hastings algorithms (Hastings 1970) with applications in
astronomy can be found in (van Dyk et al. 2001). All of these algorithms
construct a Markov chain with stationary distribution equal to the posterior
distribution (e.g., Gelfand & Smith 1990); i.e., once the chain has reached
stationarity, it generates samples which are identically (but not indepen-
dently) distributed according to the posterior distribution. These samples
can then be used for Monte Carlo integration; hence these algorithms are
known as Markov chain Monte Carlo or MCMC methods. (See Tierney
[1996] for regularity conditions for using Equation 3.12 with MCMC draws
[11].) From the onset then, it is clear that three important concerns when
using MCMC in practice are (1) selecting starting values for the Markov
chain, (2) detecting convergence of the Markov chain to stationarity, and
(3) the effect of the lack of independence in the posterior draws. Space
does not allow us to address all of these practical issues. Instead we direct
interested readers to van Dyk et al. (2001) and the references therein.

In order to obtain a sample from p(€,X[Y), the DA algorithm uses an
iterative sampling scheme that samples first X conditional on @ and Y and
second samples 0 given (X,Y). Clearly, the DA algorithm is most useful
when both of these conditional distributions are easily sampled from. The
iterative character of the resulting chain naturally leads to a Markov chain,
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which we initialize at some starting value, 0. For t = 1,...,T, where T
is dynamically chosen, we repeat the following two steps:

Step 1: Draw X® from p(X|Y,0<t—1)),
Step 2: Draw 0% from p(8]Y,X®).

Since the stationary distribution of the resulting Markov chain is the desired
posterior distribution, for large t, o) approximately follows p(8|Y).

To illustrate the utility of the algorithm, we return to the background
contamination model introduced in Section 3.2. Given some starting value,
6 = ()\g), )\go)) the two steps of the algorithm at iteration ¢ become

Step 1: Draw Yg) using the binomial distribution given in Equation 3.8
and set Yét) =Y — Yg).

Step 2: Draw )\g) and )\g) from independent v distributions®

ANV &y (ap + Y + 7,8 + k) and AP [V & 5 (as + Vs, Bs + 1)

(3.13)
Here ap, 8p,as, and Bg are hyperparameters which quantify prior infor-
mation via a prior v distribution on Ag and Ap; see van Dyk et al. (2001)
for guidance in selecting these parameters. In the first step, we stochas-
tically divide the source count into source counts and background counts
based on the current values of Ap and Ag. In the second step we use this
division to update Ap and Ag. Markov chain theory tells us the iteration
converges to the desired draws from the posterior distribution.

3.5 Accounting for Pile Up

Pile-up occurs in X-ray detectors when two or more photons arrive in a
single spatial cell during the same time frame (i.e., the discrete time units).
Such coincident events are counted as a single event with energy equal to
the sum of the energies of each of the individual photons. Thus, for bright
sources pile-up can seriously distort both the count rate and the energy
spectrum. Accounting for pile-up is perhaps the most important outstand-
ing data-analytic challenge for Chandra. Conceptually, however, there is
no difficulty in addressing pile-up in a hierarchical Bayesian framework
using MCMC; we must stochastically separate a subset of the observed

5The v (o, 3) distribution is a continuous distribution on the positive real line with
probability density function p(Y) = 8*Y*~1e=8Y /I'(a), expected value o/, and vari-
ance a/(? for positive a and 3.
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FIGURE 3.1. A Typical Energy Spectrum. We plot the expected photon count per
bin per time frame as a function of energy and illustrate the smooth continuum
with three small emission lines. This spectrum is plotted at low resolution (100
energy bins) to reduce the computational burden required for handling pile-up;
see Figures 3.2.

counts into multiple counts of lower energy while conditioning on the cur-
rent iteration of the model being fit. The attraction of hierarchical models
in this setting is that they allow us to handle pile up ignoring all other
model components. That is, when we separate counts into multiple counts
of lower energy, the spectral model is completely specified and all the other
degradations of the data (e.g., instrument response and background con-
tamination) are accounted for by conditioning on the appropriate “missing
data.” Thus, we can attack pile up as an isolated problem.

Unfortunately, even in isolation handling pile up is challenging. The dif-
ficulty lies in computation. Simply enumerating the set of photons that
could result in a particular observed event, let alone their relative proba-
bilities, is an enormous task. Nonetheless, we believe there is great promise
in Monte Carlo techniques which if carefully designed, can automatically
exclude numerous possibilities that have minute probability. As an illustra-
tion, Figure 3.2 plots the conditional distribution of the energy of one of
two photons with energy summing to 10 keV, assuming the energy spectra
is as in Figure 3.1 and the point spread function is uniform across some
area of the detector. The symmetry of the distribution in Figure 3.2 re-
flects the exchangeability of the component photon energies and the modes
arises from the spectral emission lines in Figure 3.1. In practice, an ob-
served energy can be the sum of more than two actual photon energies; in
this case there is an 8% chance that there are three photons (and a 61%
chance of only one photon, 29% chance of two photons, and 1% chance of
four photons).

Care must be taken to efficiently sample from such complex distributions.
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FIGURE 3.2. Un-piling Two Photons. The plot illustrates the conditional dis-
tribution of the energy of one of two photons with energy summing to 10 keV,
assuming the energy spectra is as in Figure 3.1 and a uniform point spread func-
tion. Sophisticated Monte Carlo methods are required to simulate such a highly
multi-modal distribution.

Development of Monte Carlo samplers for this task is an area of current re-
search. Nonetheless, even with substantial simplifying assumptions (e.g., at
most two photons can pile) preliminary results from our hierarchical model
fit via MCMC show great promise. An example is given in the contributed
paper by Kang et al. (this volume).

3.6 The Future of Data Analysis

The highly structured models described in this chapter reflect a new trend
in applied statistics—it is becoming ever more feasible to build applica-
tion specific models which are designed to account for the hierarchical and
latent structures inherent in any particular data generation mechanism.
Such multi-level models have long been advocated on theoretical grounds,
but recently the development of new computational tools such as those
described here has begun to bring such model fitting into routine practice.
Although these methods offer great promise, they are by no means statis-
tical black boxes that will automatically solve any problem. The flexibility
of such models and computational methods require users to be statistically
savvy. We, however, believe the benefits of superior scientific modeling far
outweigh these costs. Indeed the future of data analysis lies in sophisticated
application-specific modeling and methods.
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Commentary by Michael A. Strauss®

Astronomers often find themselves tackling complicated likelihood prob-
lems. With some basic knowledge of the underlying statistics of a given
astronomical problem, and some familiarity with likelihood functions and
Bayesian statistics, we often are able to write down a likelihood function in
closed form. However, if the problem is complicated enough (read “interest-
ing”, as it usually is), we are stymied when it comes time to maximize this
likelihood, especially if there is an interesting and complicated parameter
space to fit for. This paper describes useful techniques for solving exactly
this sort of problem, which are common in astronomy, by a “divide and
conquer” approach, doing the problem iteratively. The very nasty problem
of deconvolving the effects of “pile-up” in X-ray spectra is a particularly
good example of this.

Another problem which may be amenable to this approach is illustrated
in Figure 3.3, which shows the spectrum of a quasar from the Sloan Digi-
tal Sky Survey (see my contribution to these proceedings). The spectrum
shows a blue continuum with strong superposed emission lines. Blueward
(to the left) of the Lya emission line of hydrogen are superposed a large
number of absorption lines of Lya, due to filaments and wisps of hydrogen
gas at redshifts between that of the quasar and zero. Astronomers very
much want to measure the statistics of the Ly« forest absorption, but are
stymied in part because of the lack of complete understanding of the unab-
sorbed continuum of the quasar itself. That is, the observations represent
the convolution of two unknowns: the quasar spectrum, and the Lya for-
est absorption spectrum, and it is not clear how optimally to separate the
two. It would be interesting to know if the methods described in this paper
could allow an optimal solution to this problem.

SPrinceton University Observatory
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FIGURE 3.3. The spectrum of a high-redshift quasar from the Sloan Digital Sky
Survey.
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Bayesian Adaptive Exploration

T

homas J. Loredo! and David F. Chernoff

ABSTRACT We describe a framework for adaptive astronomical explo-
ration based on iterating an Observation—Inference—Design cycle that allows
adjustment of hypotheses and observing protocols in response to the results
of observation on-the-fly, as data are gathered. The framework uses a uni-
fied Bayesian methodology for the inference and design stages: Bayesian
inference to quantify what we have learned from the available data; and
Bayesian decision theory to identify which new observations would teach
us the most. In the design stage, the utility of possible future observations
is determined by how much information they are expected to add to current
inferences as measured by the (negative) entropies of the probability distri-
butions involved. Such a Bayesian approach to experimental design dates
back to the 1970s, but most existing work focuses on linear models. We use
a simple nonlinear problem—planning observations to best determine the
orbit of an extrasolar planet—to illustrate the approach and demonstrate
that it can significantly improve observing efficiency (i.e., reduce uncertain-
ties at a rate faster than the familiar “root-N” rule) in some situations. We
highlight open issues requiring further research, including dependence on
model specification, generalizing the utility of an observation (e.g., to in-
clude observing “costs”), and computational issues.

This paper is followed by a commentary by David A. van Dyk.

4.1 Introduction

Incremental learning from experience, where one proceeds step by step
to a desired goal, making decisions and asking questions on the basis of
available information, is a basic aspect of human behavior. The classical
paradigm for the scientific method, with its rigid sequence of hypothesis for-
mation, followed by experiment and then analysis, bears little resemblance
to this adaptive, self-adjusting learning behavior. The classical paradigm
has served science well but its limitations are apparent in settings where
data collection and analysis may proceed in concert, where learning pro-
ceeds on-the-fly and what has been learned from past data may be prof-

itably used to alter the collection of future data.

IDepartment of Astronomy, Cornell University
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FIGURE 4.1. Information flow through one cycle of the adaptive exploration
process. Information (e.g., data) and an observing strategy are input from a
previous cycle on the left; combined information and a new observing strategy
are output to the next cycle on the right.

We describe here an adaptive extension of the scientific method built on
a model for scientific exploration where, after an initial setup phase, ex-
ploration proceeds by iterating a three-stage cycle: Observation—Inference—
Design. Figure 1 depicts the flow of information through one such cycle.
In the observation stage, new data are obtained based on an observing
strategy produced by the previous cycle of exploration. The inference stage
synthesizes the information provided by previous and new observations to
assess hypotheses of interest. This synthesis produces interim results such
as signal detections, parameter estimates, or object classifications. Finally,
in the design stage the results of inference are used to predict future data
for a variety of possible observing strategies; the strategy that offers the
greatest predicted improvement in inferences (subject to any resource con-
straints) is passed on to the next Observation—Inference—Design cycle.

The Bayesian approach to statistics provides ideal tools for developing
a unified framework for adaptive exploration: Bayesian inference for the
inference stage, and Bayesian experimental design for the design stage.
Bayesian inference—using probability theory to combine prior information
and data to produce posterior probabilities for hypotheses of interest—
is a formal description of learning perfectly suited for the tasks of the
inference stage of the exploration cycle. It is now widely used in several
astronomical disciplines and its basic features will be familiar to many
astronomers. In contrast, formal methods for experimental design (Bayesian
or otherwise) will likely be new to most astronomers. Bayesian design—an
application of Bayesian decision theory—identifies an optimal experimental
or observational design by first specifying the purpose for a study, and then
comparing how well candidate designs achieve that purpose by using the
techniques of Bayesian inference to predict and analyze future data. A main
goal of this brief paper is to introduce astronomers to Bayesian design, in
the context of adaptive exploration.

In 1956, Lindley described how one could use tools from information
theory and Bayesian statistics to compare experimental designs when one’s
purpose is simply to gain knowledge about a phenomenon [Lin56]. He later
incorporated these ideas into a more general theory of Bayesian experimen-
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tal design, described in his influential 1972 review of Bayesian statistics
[Lin72]. Although non-Bayesian methods for optimal design predate Lind-
ley’s work (standard references are [Fed72, Che72, AF97]), the Bayesian
approach provides a more fundamental rationale for many earlier methods,
and unifies and generalizes them (see [CV95] for discussion of the relation-
ships between Bayesian and non-Bayesian design). In the three decades
since Lindley’s review, the theory of design has matured significantly. But
as noted in Toman’s recent review, “unfortunately much of the work in
this area remains purely theoretical” [Tom99]. This is largely due to the
computational complexity of Bayesian design, an obstacle noted already in
Lindley’s foundational work. In experimental design, one must account for
both uncertainty regarding the hypotheses under consideration, and uncer-
tainty about the values of future data. For the former, one must perform the
difficult parameter space integrals that are characteristic of Bayesian infer-
ence [Lor99]; for the latter, one must additionally integrate in the sample
space as is typically done in frequentist calculations. In a sense, experimen-
tal design is the arena in which the Bayesian and frequentist outlooks meet,
producing problems with the combined complexity of both approaches.

As a result of this complexity, the vast majority of research in optimal
design (Bayesian or non-Bayesian) has focused on simple models for which
the required integrals can be evaluated analytically, such as linear models
with additive Gaussian errors. Existing work on nonlinear design typically
linearizes about a best-fit model [Mac92, SS98]. But the last decade has
seen enormous strides in Bayesian computation due largely to the develop-
ment of sampling-based methods for evaluating parameter space integrals,
particularly Markov Chain Monte Carlo (MCMC) methods. Such methods
not only facilitate rigorous calculations with complicated models; they also
provide results in a form that can be readily interpreted and processed
by end-users, even when the hypothesis space is of large dimension. We
describe them further below.

Only recently have sampling-based algorithms that combine parame-
ter and data sampling been brought to bear on Bayesian design [MP95,
CMP95, MP96, Mul99]. Here we use simple sampling algorithms to imple-
ment the adaptive exploration strategy outlined above in the context of a
simple but realistic nonlinear astronomical design problem. The sampling
approach not only allows us to evaluate integrals without approximating
the integrands, but also allows straightforward graphical display of all el-
ements of the calculation. We hope this example provides an accessible
introduction to Bayesian experimental design for astronomers, as well as a
demonstration of the potential of adaptive exploration.

The following section describes the motivation for our interest in adaptive
exploration—optimal allocation of observing resources for the Space Inter-
ferometry Mission—and then introduces adaptive exploration by example.
We follow the strategy through one full cycle and through the observation
and inference stages of a second cycle, using as an example radial velocity
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observations of a star with the goal of determining the orbital parame-
ters of an unseen planetary companion. The final section discusses several
directions for future research.

4.2 Example: Measuring an Exoplanet Orbit

Our work on adaptive exploration is motivated by the Space Interferom-
etry Mission, the first main mission of NASA’s Origins program.? SIM is
designed to measure the directions to astronomical sources with unprece-
dented accuracy. In its highest precision mode it is expected to achieve
1 microarcsecond astrometric accuracy. This will allow detection of the
reflex motion “wobble” of a star with an Earth-like planet at a distance
of several parsecs, or with a Jupiter-like planet at kiloparsecs. But SIM’s
high-accuracy measurements are time consuming, seriously restricting the
number of stars that can be examined in a search for extrasolar planets.
SIM observations are thus a precious resource that must be optimally al-
located (not only for planet searches, but also for other diverse science
SIM will undertake). During the mission, targets with no planets must be
quickly weeded out, and observations of targets with companions must be
scheduled to optimally determine the number of planets and their orbital
parameters so that SIM can characterize as many systems as possible. In
addition, before the launch of the SIM spacecraft in 2009, the SIM project
will undertake extensive preparatory observations in order to carefully se-
lect both science target stars and reference stars against which the motions
of the science targets will be measured. Reference stars must be free of
planetary companions that would complicate their motion. The SIM Ex-
trasolar Planet Interferometric Survey (EPIcS) key project is considering
using binary stars with eccentric orbits as reference stars, since planets will
have been swept from such systems. The preparatory observing campaign
must identify hundreds of such stars and measure their orbits with high
precision. This will require a huge expenditure of observational resources
that must be optimized.

As a simple example of the kind of problem that must be addressed for
optimizing SIM mission and preparatory observing, we consider here the
problem of making radial velocity (RV) measurements of a star in order
to best determine the parameters of the orbit of an unseen Jupiter-mass
companion. Observations of this type will comprise much of SIM prepara-
tory observing; similar ideas will apply to analysis of astrometric data. We
consider observations of a 1 Mg star known to have a single planetary
companion; our goal is to choose future observations to best improve our

2For detailed information about SIM, see the SIM web site:
http://sim. jpl.nasa.gov/
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estimates of the planet’s orbital parameters. The function giving the ra-
dial velocity vs. time for a star exhibiting Keplerian reflex motion has six
parameters. To simplify the calculations, we focus here on the three most
important parameters—the orbital period, 7, the eccentricity, e, and the
velocity amplitude, K—and we presume the remaining geometric parame-
ters are known a priori (these include the time of periastron crossing, the
longitude of periastron, and the orbital inclination). We model the value of
each datum d; as having additive noise, so that

di :U(ti;TvevK)+ei; (41)

where v(t; 7, e, K) gives the velocity at time ¢ as a function of the param-
eters, and e; represents the unknown noise contribution for datum i. We
take the noise to have independent Gaussian distributions with standard
deviation o = 8 m s~! (typical of current RV surveys).

The first cycle of exploration requires a “setup” strategy specifying the
initial observations. Ideally, such a strategy would be developed using de-
sign theory and predictions based solely on prior information about the pos-
sible orbits (e.g., an assumed period distribution for orbits). For simplicity,
the setup strategy here specifies 10 equally-spaced velocity measurements.

4.2.1 Cycle 1: Observation

Figure 2a shows the results of the observation stage of the first Observation-
Inference-Design cycle. The points with error bars show the results of 10
simulated observations. For reference, the dashed curve shows the true
velocity curve, with 7 = 800 d, e = 0.5, and K = 50 m s~ ! (typical
parameters for current observations of Jupiter-like extrasolar planets). The
observations span somewhat less than two periods.

4.2.2  Cycle 1: Inference

For the inference stage, we calculate the posterior probability density for
the parameters given the available data. Bayes’s theorem gives this as

p(r e, K|D, I) o p(7, e, K|I) L(7, €, K), (4.2)

where p(7, e, K|I) is the prior probability density for the orbital parameters,
L(7,e, K) is the likelihood function (the probability for the data presuming
7, e, and K are known), and I denotes the modeling assumptions (Keple-
rian orbit, noise properties, etc.). We assume we have no significant prior
knowledge of the parameters, and take the prior to be a constant. Our
assumption of Gaussian noise probabilities leads to a likelihood propor-
tional to exp[—x?(7, e, K)/2], where x*(7, e, K) is the familiar goodness-of-
fit statistic given by a weighted sum of squared residuals. Thus,

p(r,e, K|D,I) O(eXp[—X2(T,6,K)/2]. (4.3)
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FIGURE 4.2. One cycle of the exploration process for simulated planet search
data. (a) Observation stage, showing 10 simulated observations and true velocity
curve (dashed). (b,c) Inference stage, showing samples from the posterior distri-
bution for two velocity curve parameters (b) and two derived orbital parameters
(c). (d) Design stage, showing predicted velocity curves (thin solid curves), true
velocity curve (dashed curve), and the expected information gain for a sample at
each time (thick solid curve, right axis).
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To find best-fit parameters, we could maximize the posterior density
(corresponding to minimizing x?). To constrain the parameters, we could
locate the constant-y? surface that encloses, say, 90% of the posterior prob-
ability for all three parameters; such a region is called a 90% (joint) credible
region. If we were primarily interested in just the period, we could sepa-
rately focus on it by calculating the marginal distribution for 7, given by
integrating out the other parameters;

p(r|D,I) oc/de/dK eXp[*XQ(T,G,K)/Q]. (4.4)

A 90% credible region for T alone would be a region of the 7 axis containing
90% of this marginal density.

All of these summaries of the posterior distribution could be calculated
with common numerical methods (optimization and quadrature). But for
problems with more dimensions, such calculations can be challenging. A
more flexible approach is to use posterior sampling (see [Lor99] for a brief
introduction and references). In this approach one constructs a random
number generator that samples from the parameter space according to the
posterior distribution (in contrast to more common Monte Carlo methods
that sample from the data space). In this case, each sample would be a
triplet (7, e, K) drawn from p(7, e, K|D, I); repeated sampling will produce
a set of values, {7, e;, K;}. Once a set of such samples is available, many
quantities of interest can be found by simple manipulations of the samples.
In addition, posterior samples can be used directly to report results in a
way that is easy to interpret and easy to use in future calculations.

Figures 2b and 2c¢ are examples of interim results from the inference
stage of the exploration cycle based on the observations shown in Figure
2a. We used a simple rejection method [PTVF92] to sample the posterior
distribution; Figure 2b shows the 7 and e coordinates of 100 such samples,
displaying the marginal distribution p(7, e|D, I). In a more careful calcula-
tion, we would use more samples and smoothing to find contours of credible
regions; here it suffices to note that the displayed cloud of points should
conservatively bound a 90% credible region. We see that the period and
eccentricity are usefully constrained by the 10 data points, although signif-
icant uncertainty remains. Also, the posterior distribution is obviously not
well-approximated by a Gaussian. Figure 2¢ shows how easily a compli-
cated marginal distribution can be found using the samples; it displays the
marginal distribution for the planet’s semimajor axis, a, and msini, the
product of its mass and the sine of its orbital inclination. These are each
nonlinear functions of the three model parameters. To produce Figure 2c
we simply evaluated these functions for each of the 100 samples of (7, e, K)
already produced; this is much simpler than numerically evaluating the
multiple integral defining the marginal distribution over a (msini,a) grid.
By reporting the actual sample values, other investigators could use the
results of these observations in their own calculations and fully account for
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the uncertainties simply by evaluating any quantities of interest over the
set of samples.

4.2.8  Cycle 1: Design

For the design stage, we locate the time at which to make the next ob-
servation so that we have the best chance of significantly reducing our
uncertainty in the parameters. We accomplish this in three steps: predict
future data at various times, find the effect of the predicted data on infer-
ences, and then identify the time for which the expected improvement in
precision is greatest. We discuss each step in turn.

To predict the value, d, of a future datum at time ¢, we calculate the
predictive distribution. To find it, we first predict d assuming we know the
true parameter values, and then account for parameter parameter uncer-
tainty by averaging over the parameter space. For given values of (7, e, K),
the predictive probability density for d is just the likelihood for d (a Gaus-
sian centered at v(t; 7, e, K)). The averaging weight we must use to account
for parameter uncertainty is the posterior distribution from the inference
stage. The predictive distribution is thus the convolution of the Gaussian
likelihood for d and the posterior from the inference stage;

/dT/de/de(T,e,lﬂD,I)

1 eXp([d—v(t;r,e,K)P)

oV2r

p(d|t, D, I)

Q

o
{7j.ej . K;}

where the last line gives a Monte Carlo integration estimate of the predic-
tive distribution using N posterior samples from the inference stage. To
give some sense of what the predictive distribution looks like for various
values of time, Figure 2¢ shows the v(t) curves for the first 15 sampled
parameter points as thin solid lines; the true curve is again displayed as a
thick dashed curve. The ensemble of thin curves depicts our uncertainty in
v(t). The predicted data values at each time are additionally uncertain due
to the noise which “blurs” the curves by 8 m s~!. The ensemble of blurred
curves represents the predictive distribution as a function of time. The un-
certainty is greatest near times of periastron crossing when the velocity is
changing most quickly (it is minimal at 300 d, the initial time of perias-
tron crossing we assumed was known). Also, the uncertainty in the period
makes the velocity uncertainty at periastron crossing grow with time as
predictions with different periods fall increasingly out of synchronization.
Next we must measure how future data would affect our inferences. If
datum d at time t were available, we could update our inferences simply
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by multiplying the posterior distribution from the previous stage by the
likelihood function based on the single new datum (the Gaussian factor
in equation (4.5)), and renormalizing. (This is equivalent to doing a new
x? calculation considering all 11 data points at once.) The new posterior,
p(t,e, K|d,t, D, I), will hopefully be more informative about the parame-
ters than the current one. The information in the posterior is given by the
negative Shannon entropy of the posterior distribution,?

Z(d,t) = /dr/de/dK p(r,e,K|d, D, I)log[p(r,e, K|d,t,D,I)]. (4.6)

This is the information gain for a particular datum at time ¢; to account
for prediction uncertainty, we must calculate the ezpected information gain,
averaging over d using the predictive distribution of equation (4.5):

ET(t) = / dd Z(d, )p(dlt, D, ). (A7)

The best sampling time is the one that maximizes the information gain,
so we must evaluate EZ(t) as a function of time. For problems such as this
where the width of the noise distribution does not depend on the value of
the underlying signal, one can show that the expected information gain is
equal to the entropy of the predictive distribution [SW97, SW00],

EI(t) = — / dd p(d|t, D, I) log[p(dlt, D, I)]. (4.8)

Thus the best sampling time is the time at which the entropy (uncertainty)
of the predictive distribution is maximized. This is an eminently reason-
able criterion: Bayesian design is telling us that we will learn the most by
sampling where we know the least.

We use nested Monte Carlo methods to calculate EZ(t) as a function of
time. At each time, we sample a datum from the predictive distribution by
first drawing a set of parameter values from the posterior, and then draw-
ing a data value from the sampling distribution with those parameters. We
then estimate p(d|t, D, I) for that datum using equation (4.5). Repeating
this process and averaging the logarithm of the estimates provides a Monte
Carlo estimate of equation (4.8). The thick solid curve in Figure 2d shows
this estimate of EZ(t), using base-2 logarithms so that the relative infor-
mation gain is measured in bits (with an offset so the smallest EZ(t) is at

3For a Gaussian distribution, Z is proportional to —log(c) and thus increases with
decreasing o as one would expect; but it is a more general measure of spread than
the standard deviation. To be formally correct, the argument of the logarithm in equa-
tion (4.6) should be divided by a measure on the parameter space so the argument is
dimensionless; this has no significant effect on our results. An alternative definition of
information is the cross-entropy or Kullback-Leibler divergence between the posterior
and prior; it gives the same results as the Shannon entropy for this calculation [Mac92].
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0 bits; the raggedness in the curve reflects the Monte Carlo uncertainties).
EZ(t) quantifies the uncertainty that is apparent in the set of thin sampled
v(t) curves. It is maximized near the periastron crossing subsequent to the
available data, at t = 1925 d. Thus the observing strategy produced by this
observation—inference—design cycle is: observe at t = 1925 d.

4.2.4  Cycle 2: Observation and Inference

Figure 3 shows the consequences of following this strategy. Figure 3a shows
the previous data and a new datum obtained by simulating an observation
at t = 1925 d. Incorporating this new datum into the posterior yields poste-
rior samples shown in Figure 3b. We also used these samples to produce 15
predicted v(t) curves in Figure 3a to display the velocity curve uncertainty
after incorporating the new datum. Finally, Figure 3c shows the updated
marginal distribution for the planet’s mass and semimajor axis. Comparing
to the corresponding panels in Figure 2, we see very significant reduction
in uncertainty. In particular, the period uncertainty has decreased by more
than a factor of two and the semi-major axis uncertainty is also drastically
decreased; this was accomplished by incorporating the information from a
single well-chosen datum. This is a dramatically larger increase in preci-
sion than one might have expected using rule-of-thumb “root-n” arguments
based on random sampling. This is typical behavior for this problem; we
have not chosen the simulated data set in any special way to obtain this
behavior. It continues for subsequent cycles.

4.3 Challenges

This simple example illustrates the adaptive exploration methodology and
demonstrates its potential. Several issues need to be addressed to make
adaptive exploration useful in more complicated settings. Befitting a con-
ference on statistical challenges, we close with a list of topics for future
research. The field of experimental design has a wide and diverse litera-
ture spread across several disciplines, and some of these topics are being
addressed in current research under such titles as sequential design, active
data selection, and active, adaptive, or incremental learning.

In our example the goal was inference of the parameters of a system
known to contain a single planet. In reality, the goals of inference may not
be so clear-cut. Observers may not be sure a system has a planetary com-
panion at the start of an exploration, so the goal is initially detection of a
planet. Or if a system is chosen because it is known to have a companion,
the goals may include detection of possible additional planets. At some
point, the goal may shift from detection to estimation. How do design cri-
teria for detection compare to those for estimation? When and how should
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FIGURE 4.3. The beginning of the next cycle of the exploration process for sim-
ulated planet search data. (a) Observation stage, showing original 10 simulated
observations, a new datum at 1925 d. Also shown are predicted velocity curves
from the inference stage. (b,c) Inference stage, showing samples from the poste-
rior distribution for two velocity curve parameters (b) and two derived orbital
parameters (c). The single new datum has greatly increased the precision of in-
ferences due to optimal selection of the observing epoch.

the adaptive methodology shift its goal from detection to estimation? The
work of Toman [Tom96] on Bayesian design for multiple hypothesis testing
provides a starting point for addressing these questions.

Our utility function was simply the information provided by new data.
In some settings, one may wish to incorporate other elements in the utility
function, such as the cost of observing as a function of time or sample
size. How can an observer map such costs to an information scale so that
information and other costs or benefits can be combined into a single utility
function?

We used a simple rejection method for generating posterior samples in
our example. While attractively simple, in our experience such an approach
will not be useful for problems with more than five or six parameters
(even fairly sophisticated envelope functions will waste too many sam-
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ples). The obvious tool for addressing this is MCMC, but the Markov
chain must ultimately sample over both the parameter space and the sam-
ple space (of future observations). Are there MCMC algorithms uniquely
suited to adaptive exploration? Miiller and Parmigiani and their colleagues
[MP95, CMP95, MP96, Mul99] have developed a variety of Monte Carlo
approaches to Bayesian design in various settings that should be helpful
in this regard. Also, since adaptive exploration offers the hope of quickly
reducing uncertainties, at some point it may make sense to linearize about
the best-fit model and use analytic methods. Criteria need to be developed
to identify when this is useful.

Finally, in our example, the observing strategy for the first cycle was
chosen somewhat arbitrarily. Ideally, it would be chosen using design prin-
ciples and prior information. This raises many practical and theoretical
questions. What should the size of a “setup” sample be? Should adaptive
exploration start after a single sample, or are there benefits (perhaps as-
sociated with computational complexity) for starting with larger samples?
Can the algorithms used for analysis when several samples are available
also be used for designing the setup strategy, or are different algorithms
required if prior information is very vague? Clearly, there is overlap be-
tween these issues and those already raised. This kind of design issue has
been addressed informally for planning observations for the Hubble Space
Telescope Cepheid key project [FHMT94]. Can a more formal approach
improve on such a priori designs?

We hope this brief introduction will encourage astronomers and statisti-
cians to explore these issues together in a variety of astronomical contexts.
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Commentary by David A. van Dyk*

Loredo and Chernoff should be congratulated for their thoughtful Monte
Carlo implementation of Bayesian decision analysis. Their proposal promises
to significantly improve the scientific information obtained by Origins and
other programs. Here I offer only some fine tuning of their proposed method.

Loredo and Chernoff suggest choosing an observation time, ¢, by max-
imizing the expected negative Shannon entropy, E [Z(d,t)|t], with d the
observed datum. Here I suggest two potentially useful and easy-to-use gen-
eralizations, namely, to treat the negative entropy as a value function rather
than a wutility function and to consider other functions with more direct sci-
entific interpretation. To clarify these issues, I use Loredo and Chernoff’s
example involving the measurement of an exoplanet orbit.

For any selected t, there is a distribution for the observed d, denoted
p(d|t, D, I). The value of d can be measured by a value function such as the
negative entropy—the larger Z(d,t), the more information that is gained
by d. Since d has a distribution so does Z(d,t)—there is variability in the
information gained from the selected t depending on the observed d. Loredo
and Chernoff suggest selecting ¢ by maximizing the expected information
gained. That is, they treat Z(d,t) as a wutility function—a function whose
expected value determines the preferred choice. A more general strategy is
to consider the full posterior distribution of Z(d, t), namely p(Z(d, t)|t, D, I).
One observation time may maximize the expected information gained but
with a relatively high variance and thus seem more risky; see Figure 4.4.

Shannon entropy is a generic measure of value and somewhat removed
from quantities of scientific interest. When using MCMC, however, it easy
to simulate the distribution of other value functions such as the maximum
or mean error bars on velocity or the error bars on some specific function of
the model parameters. Multivariate value functions can also be considered
which can include the statistical value of the data (e.g., entropy or error
bars), costs of the the data in dollars or satellite time, and waiting time
for the data. Such quantities may be easier to interpret and should be
easy to compute—though computation may be slower because the analytic
simplifications of Loredo and Chernoff are not applicable.

<~
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FIGURE 4.4. The dashed density corresponds to an observation time that may
seem more risky than that of the solid density.
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Bayesian Model Selection and
Analysis for Cepheid Star
Oscillations

James O. Berger!, William H. Jefferys, Peter
Muller and Thomas G. Barnes

ABSTRACT Cepheid variables are a class of pulsating variable stars with
the useful property that their periods of variability are strongly correlated
with their absolute luminosity. Once this relationship has been calibrated,
knowledge of the period gives knowledge of the luminosity. This makes these
stars useful as “standard candles” for estimating distances in the universe.
Available data consists of photometric and velocity information for a num-
ber of Cepheid variables, at unequally spaced points in their periods. Note
that photometry and velocity are connected by nonlinear relations involv-
ing the physical parameters of interest. Bayesian analysis is used to provide
inferences for useful physical features, such as the absolute luminosity of
the star, its distance, its radius, and other parameters.

In the absence of reliable physical models of the pulsation of Cepheid vari-
ables, we model the photometry and velocity curves as (i) a trigonometric
polynomial with an unknown number of terms; or (ii) via a wavelet basis
with an unknown number of terms. Bayesian analysis allows computation of
the posterior probabilities of these varying dimensional models, and results
in inferences on the physical parameters that are based on ‘averaging’ over
the possible models. Computations are done using reversible-jump Markov
chain Monte Carlo methodology.

This paper is followed by a commentary by Thomas J. Loredo.

5.1 Introduction

5.1.1 Bayesian Model Selection and Model Averaging

The Bayesian approach to hypothesis testing and model selection is concep-
tually straightforward. One assigns prior probabilities to all unknown hy-
potheses or models, as well as to unknown parameters or quantities within
models, and uses probability theory to compute the posterior probabilities

Mnstitute of Statistics & Decision Sciences, Duke University
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of the hypotheses or models, given observed data. One attractive feature
of this approach is simplicity of interpretation: stating, at the end of the
analysis, that the only tenable models are Models 5, 6, and 7, and that they
have probabilities 0.34, 0.56 and 0.10, respectively, has appealing clarity.
A second attractive feature of this approach is that one need not choose
a fixed model. One could select Model 6 above (it is the model most likely
to be true), but the data also gives considerable support to Model 5, and
even Model 7 should not be ignored. One deals with this uncertainty by
‘Bayesian model averaging,” in which predictions or desired estimates from
models are averaged according to the model posterior probabilities. Thus if
Models 5, 6, and 7 provided distance estimates (posterior means) to a star
of 750, 790, and 800 parsecs, respectively, the ‘model-averaged’ distance
estimate would be 0.34 x 750 4 0.56 x 790 4+ 0.10 x 800 = 777.4 parsecs.
The accuracy associated with a model-averaged estimate will also in-
corporate the model uncertainty. For instance, suppose Model j yields the
distance estimate d}-, with associated posterior variance V;, and that p;
is the posterior probability of Model j. Then the overall variance of the
model-averaged distance estimate d* = > pjcij is given by

V=3 pilV 4 (dy —d)?).

For the case in the previous paragraph, if the individual model posterior
variances were Vs = Vg = V7 = 400 (corresponding to standard errors of 20
parsecs), then the overall variance of d* = 777.4 would be 795.24, almost
twice the variance that would be associated with any specific model. (In-
deed, it is a general advantage of the Bayesian approach that inaccuracies
in all unknown parameters are incorporated automatically.)

Note, also, that the Bayesian approach to model selection acts as a natu-
ral “Ockham’s razor,” in the sense of favoring a simpler model over a more
complex model if the data provides roughly comparable fits for the models.
And this is without having to introduce any explicit penalty for the more
complex models. (For an interesting historical example of Ockham’s razor,
and general discussion and references, see Jefferys and Berger, 1992.)

5.1.2  Cepheid Star Oscillations

Cepheid variable stars pulsate, varying their luminosity (light output) and
size with a very regular periodic behavior. It is possible to measure both the
velocity of the surface of the star as it pulsates and the variable luminosity
and color of the star. For instance, Figure 1 presents the data concerning
the radial velocity of the surface of the star T Moncerotis, at various phases
of the star’s period. (The actual data are indicated by the x’s.)

There is a mathematical relationship between surface velocity, luminos-
ity and color that enables one to determine the distance to the star. The
considerable uncertainty in these measurements and the limited data that
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FIGURE 5.1. The radial velocity data (the x’s) for T Mon, and their fit to a
fifth-order trigonometric polynomial.

is available for each star suggest that analysis which fully incorporates these
uncertainties is desirable.

5.1.3 Challenges in the Bayesian Approach

There are three significant challenges in implementing the Bayesian ap-
proach for complex problems. The first challenge is common to all statis-
tical analyses, namely the need to find appropriate statistical models for
the data. For a Cepheid star, the most challenging features to model are
the radial velocity and the photometric information. For instance, Figure
1 clearly indicates that the radial velocity of the star is a quite complex
function of its phase, but existing physical theories for Cepheid stars do
not provide guidance as to the form of this function. Hence one must resort
to generic statistical modelling, such as Fourier analysis. Figure 1 shows
that a fifth-order trigonometric polynomial fits this particular data quite
well, but the needed order of the polynomial changes from star to star
and, indeed, there are typically several different orders that fit a particu-
lar star well (without overfitting). The different models that will be under
consideration in our analysis are simply the different possible orders of the
trigonometric polynomials (which will also be used to model the photomet-
ric data). Later we will also consider wavelet models of the radial velocity.

The second challenge in Bayesian analysis is to choose prior distribu-
tions for unknown quantities in the analysis (for instance, for the unknown
Fourier coefficients of the trigonometric polynomial). The most common
choices are noninformative or objective priors; these will be primarily uti-
lized in the analysis here and are discussed in the next subsection.

The third challenge is computational. Bayesian analysis can require the
computation of high-dimensional integrals, and is especially costly when
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model selection is involved. (For instance, when using trigonometric poly-
nomials in the Cepheid modeling, it is necessary to compute up to 50-
dimensional integrals for up to 40 models; in the wavelet version of the
analysis discussed in section 5.4, these numbers increase by orders of magni-
tudes.) The modern approach to such computation is Markov chain Monte
Carlo (MCMC) analysis. This is a computational paradigm that can be
easily described in simple cases, but which requires study and experience
for successful application in complex cases (such as that considered here).
Thus we will content ourselves, in this paper, with only a higher-level de-
scription of the particular steps needed in the Cepheid problem. Recent
general books on the subject are Robert and Casella (1999) and Chen,
Shao, and Ibrahim (2000).

5.2 Objective Bayesian Model Selection

5.2.1 Statistical Notation

The data, Y, is assumed to have arisen from one of several possible mod-
els My,..., M. Under M;, the density of Y is f;(y|0;), where 6, is an
unknown vector of parameters.

The Bayesian approach to model selection begins by assigning prior prob-
abilities, P(M;), to each model; often, equal prior probabilities are used,
i.e. P(M;) = 1/k, and this will be done here. It is also necessary to choose
prior distributions p;(8;) for the unknown parameters of each model; some-
times these can also be chosen in a “default” manner, as will be illustrated
later. The analysis then proceeds by computing the posterior probabilities
of each model, which elementary probability theory (Bayes theorem) shows
to be equal to

P(Mily) = k—, (5.1)

where m;(y) = [ fi(y|0,)p;(0;)d0; is the marginal density of y. See Kass
and Raftery (1995) for a general discussion of Bayesian model selection.

5.2.2  Choice of Prior Distributions

It may well be the case that subjective knowledge about the 6; is available,
and can be incorporated into subjective proper priors for the ;. This is
clearly desirable if it can be done. Indeed, for Cepheid stars we will see that
subjective prior information concerning their distance can be utilized.

For most of the unknown parameters in models it will typically be in-
feasible to utilize subjective prior distributions. Frequently this is because
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subjective information is simply unavailable. (Thus, for Cepheid stars, turn-
ing the physical principles that underlie oscillatory behavior into models
for the velocity and photometric curves is so difficult to accomplish that,
in actuality, there is little subjective information about the Fourier coef-
ficients of the curves.) Even if subjective prior information is available, it
can be very difficult to utilize in high-dimensional problems.

For these and other reasons, the most popular Bayesian methods are de-
fault or ‘objective Bayesian’ methods. For estimation and prediction prob-
lems, objective Bayesian theories are well developed. The most famous of
these are the Jeffreys prior (cf. Jeffreys, 1961), mazimum entropy priors
(cf. Jaynes, 1999), and reference priors (which prove remarkably successful
in higher dimensional problems; cf., Berger and Bernardo, 1992).

Testing and model selection have proved to be much more resistant to
the development of default Bayesian methods. This is because the objec-
tive priors discussed above are typically improper distributions (i.e., their
integrals are infinite). This does not typically pose a problem in estimation
and prediction, but it does for testing and model selection. See Berger and
Pericchi (2001) for discussion of these difficulties and possible solutions.
Here are some guidelines for choosing default priors in model selection.

1. Common Parameters: If all models have certain common parameters (see
Berger and Pericchi, 2001, for discussion of what it means to be ‘common’)
these parameters can typically be assigned the same improper objective
prior. For instance, all the models for Cepheid radial velocity will have a
common unknown mean radial velocity wug, and this can be assigned the
usual objective (improper) prior pf(ug) = 1.

2. Conventional proper priors are sometimes available in the literature.
For instance, in the Cepheid problem, we will model the observed radial
velocities as arising from a trigonometric polynomial subject to error; in
statistical language, the ensuing model can formally be written as a general
linear model of the form

Y:901+X0+€,

where Y = (Y1,...,Y,,) is the vector of observations (radial velocities in
the Cepheid problem), X is the corresponding design matrix of covariates
(sines and cosines evaluated at multiples of the phases of the observations,
corresponding to the trigonometric polynomial in the Cepheid problem),
is an unknown vector of parameters (the Fourier coefficients of the trigono-
metric polynomial in the Cepheid problem), 1 is the column vector of ones,
0o is the unknown mean level of the observations, and € is a multivariate
normal vector of errors with mean zero and covariance matrix 0?G, G a
known matrix (i.e., € is N(0,0°G)).

The recommended prior (from Zellner and Siow, 1980) for the unknown
0o is p(6p) = 1, while that for 8, given 02, can be written in two stages (for
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later convenience) as:

1 1
m exp(— Z)

(5.2)
3. A general default prior for model selection is the “empirical expected pos-
terior prior” (Perez and Berger, 2000). For a given model M; with unknown
parameters 6;, the most convenient form for this prior, when computation
is to be done via the Markov chain Monte Carlo method, arises from intro-
ducing ‘latent’ random variables y*, which can be thought of as random
subsamples of the data with sample size (typically) equal to the dimension
of ;. Then the desired prior distribution is

pi(0i,y*) = fily*|8:)p; (0:)m"” (y*)/m* (y"), (5-3)
E
(

p(0|02,7) is N(O,TnUQ(X'G_lX)_l); p(r) =

where p}(0;) is a standard (improper) objective prior, m™(y*) refers to
the empirical distribution of subsamples (i.e., choose each subsample of
the given size with equal probability), and m*(y*) is the marginal density
of y* under the prior p;. (The actual prior for 8; is the marginal density
found by summing over y* in (5.3), but it is actually more convenient
computationally to work with the ‘latent’ joint distribution.)

5.3 Cepheid Stars

5.83.1 The Model and Likelihood

For a given star, the data consists of m observed radial velocities U;,i =
1,...,m, at unequally spaced phases of the star’s period (cf. Figure 1), to-
gether with n vectors of photometry data consisting of magnitude V;,i =
1,...,n, and color index C;,i = 1,...,n. (It is to be understood that, at-
tached to each observation, is the phase at which it was observed; note that
the radial velocity and photometry data were typically observed at differ-
ent phases of the star’s period.) Each observation has a standard deviation
specified by the observer; denote these by oy, ov;, and o¢,, respectively.
It is generally wise to be somewhat skeptical of such specified standard
errors, and so we take the variances of the data to, instead, be given by
012]1, /Tus O"Q/i /Tus J%«i /Te, where the parameters 7, 7, and 7. are unknown.

To complete the modelling of the data, let u;, v;, and ¢; denote the true
unknown mean velocity, magnitude, and color index, respectively, corre-
sponding to each data point. We assume normality and independence of
the measurement errors, so that

Ui ~ N(UZ‘,O'QUi/Tu), Vz ~ N(Ui,O"Q/i/Tv), and Cz ~ N(Ci,O'%«i/TC). (54)

Since the velocities w and photometry (v,c¢) are periodic functions of
time, an obvious strategy is to model them as trigonometric polynomials.
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For the velocity u at phase ¢, this would lead to the representation

M

u=1ug + Z[@lj cos(j¢) + 25 sin (jo)], (5.5)

where v is the mean radial velocity of the star and M is the (unknown)
order of the trigonometric polynomial. A similar equation holds for the lu-
minosity data v. (We need to do this only for u and v, since the colors ¢
are mathematically related to u and v through (5.7) below.) Let N denote
the (unknown) order of the trigonometric polynomial for v. These polyno-
mials contain 2M + 1 and 2N + 1 terms, respectively, including the leading
constant terms.

Let w and v denote column vectors of the velocity and luminosity data,
respectively; define X, and X, to be the (m x 2M) and (n x 2N) design
matrices consisting of the sines and cosines of multiple angles, evaluated at
the phases of the corresponding data; and let 8,, and 6,, be the correspond-
ing vectors of unknown Fourier coefficients. With the normality assumption
above, we can summarize the model (corresponding to M and N) for the
velocity and luminosity data by the statistical linear models

U=wul+X,0,+ e,
V =vl+ X,0, + &y, (5.6)

where ug and vy are the (unknown) mean radial velocity and luminosity, re-
spectively, and &, and €, are independently N (0, G, /7,) and N(0,G, /)
multivariate errors, with G, and G, being the known diagonal matrices
of the variances O'U and O'V, respectively. (Note that 7, and 7, would
have had to be introduced at this stage of the modeling, in any case, to
account for the fact that v and v cannot be expected to exactly follow a
trigonometric polynomial of finite order.)

The phases in the above likelihoods (entering through the design matri-
ces) were assumed to be known exactly. In practice, however, the velocity
data and photometry data are taken independently, and ‘translated’ to the
same phase scale. The period of the star is not known perfectly, however,
so that there is an unknown phase error A¢ (the difference between the
zero-point of the phase for the velocity data and that for the photometric
data) that is introduced. Thus we include that additional unknown in (say)
the phase for the photometric data.

The (nonlinear) relationship between the radius of the star and the pho-
tometry is given by

¢; = a[—0.1v; — b — 0.51og (¢ + Ar;/5)], (5.7)

where a and b are known constants, ¢9 and s are the angular size and
distance of the star (the latter being of primary interest to us), and Ar,
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the change in radius corresponding to phase ¢, is given by

M
Ar = =gy <[03;sin(i(6 - Ad)) — by eos(i(0 = Ad))) (59

=1

found by integrating the nonconstant part of (5.5) term by term with re-
spect to the phase; here g is another known constant. These expressions
are to be inserted in the likelihood terms arising from the C; in (5.4).

5.3.2  Choice of Prior Distributions
The unknown parameters in the above model are:
(1) The orders of the trigonometric polynomials, M and N.

(2) The parameters 7, 7, and 7., adjusting the measurement standard
errors.

(3) The angular diameter ¢y and the unknown phase error Adg.
(4) The distance s.

(5) The mean velocity and luminosity, up and vy, and the Fourier coeffi-
cients, 8, and 6,,.

Some additional ‘hyperparameters’ will be introduced through the prior
distributions for these unknowns, and the hyperparameters will also require
prior distributions.

The orders of the models are expected to be modest (given the limited
amount of data and the strong Ockham’s razor effect of Bayesian analysis);
we thus chose a uniform prior on the model orders (M, N) up to some cut-
off (e.g., (10, 10)), with zero probability assigned to higher orders.

The parameters 7, T,, T are given the standard objective priors for
‘scale parameters,’ namely the Jeffreys-rule prior p(7) = 1/7. Similarly, the
priors on the ‘location parameters’ ug and vg are chosen to be the standard
objective priors p(ug) = 1 and p(vg) = 1. Note that we are employing Rule 1
of subsection 5.2.2; since these parameters are common scale and location
parameters for all models, they have an essentially fixed interpretation
across models and can be assigned standard objective priors (even though
improper).

For the parameters A¢ and ¢g, we also chose the objective priors p(A¢) =
1 and p(¢o) = 1. While it is unclear if these are ‘optimal’ objective priors
for these parameters, preliminary investigations showed that the choice of
priors for these parameters is almost irrelevant for the Cepheid data sets,
so that additional effort was not expended in their development.

Failure to take the spatial distribution of the stars into account would
result in the so-called Lutz-Kelker bias, which is a bias in the estimated
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distance. Bayesian analysis takes care of such biases through the straight-
forward process of incorporating the cause of the bias in the prior distri-
bution. If Cepheid stars were distributed uniformly over a region, the prior
distribution of distances s from the observer would be proportional to s2.
However, the spatial distribution of Cepheid variables is known to be flat-
tened with respect to the galactic plane. We thus modify the s? prior by
using a spatial distribution of stars that is exponentially stratified as one
moves away from the galactic plane. In particular, the prior distribution
on the distance s, given a hyperparameter zq, is

p(s) o< 57 exp (—|z|/20) ,

where z = ssin 3, with 8 being the galactic latitude of the star (its an-
gle above the galactic plane, another known covariate), and zg being the
imperfectly known ‘scale height.” This ‘hyperparameter’ zy is known to be
zop = 97 = 7 parsecs, so we simply assigned it a gamma prior distribution
with mean 97 and standard deviation 7.

The priors on the Fourier coefficients 8,, and 8, must be chosen carefully,
to avoid overfitting or underfitting. Luckily, the models in (5.6) are exactly
of the form (5.2), so that the conventional priors described there can be
utilized directly. (We are slightly cheating here, in that ,, and ,, also occur
in the likelihood terms arising from the C;, when (5.7) is used in 5.4), and
one could argue that the appropriate default priors should reflect this. We
ignore this complication, in part because we think it would make little
difference and, in part, because it is unclear how to take this into account
in defining a default prior. Also, in the computations reported here, we
utilized the simpler hyperprior p(7) = 1/7%/2.)

A possible alternative prior for the Fourier coefficients would be the
empirical expected posterior prior, also defined in section 5.2.2. Note that,
for the normal linear model, m*(y*) can be found in closed form. Space
precludes our presenting these results here.

5.3.3 Computation

Space limitations preclude a full description of the MCMC computation
that is used to analyze the Bayesian model. We thus limit the discussion
to presentation of the major steps in the analysis, especially those that are
non-standard. Familiarity with MCMC computation is assumed.

A reversible-jump MCMC algorithm of the type reviewed in Dellaportas
et. al. (2000) is used to generate posterior distributions and estimates. The
full conditional distributions for the variance and precision parameters and
hyperparameters are standard y2 distributions and so the sampling of these
parameters can be accomplished with straightforward Gibbs sampling.

For A¢, ¢y and s, we employ a random-walk Metropolis algorithm using,
as the proposal distribution, a multivariate normal distribution centered on
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the currently imputed parameter values and with a covariance matrix that
is proportional to the covariance matrix for the linearized least-squares
problem for just these three parameters. (This means linearizing the loga-
rithm in the expression for ¢; in (5.7)). This proposal distribution leads to
a fast mixing Markov chain, which implies fast convergence of the compu-
tational algorithm.

The Fourier coefficients 8,, and 0,,, as well as ug and vg, are sampled via
an independence-chain Metropolis step. The natural proposal distributions
are found by combining the normal likelihoods in (5.6) with the normal pri-
ors (given 7) in (5.2), leading to conjugate normal posterior distributions.
Note that these are not the actual full conditionals from the posterior, be-
cause of the nonlinear way in which 6,, and 6, appear in the full likelihood.
However, the acceptance probabilities for these proposals are well over 90%,
and the sampling of the Fourier parameter spaces is very effective.

The Metropolis steps for 8, and 68, are included within a step that
proposes a jump between models. Thus, if the current model has a certain
number of parameters, we propose a jump to a model with a (possibly
different) number of parameters, and simultaneously propose new values
for all the Fourier coefficients. To make the sampling efficient, during the
burn-in phase we also estimate the posterior probabilities of the individual
models, and use them as the basis for the proposal probabilities of new
models during the computation phase of the calculation. Thus models of
higher posterior probability are proposed with greater frequency. A total
of 10,000 iterations of the MCMC computation were performed.

5.3.4 Results

Figures 2 and 3 give the posterior probabilities of the orders of the trigono-
metric models for the radial velocity and the photometry, respectively. The
fifth-order model is clearly overwhelmingly preferred for velocity. For the
photometry model, on the other hand, the third and fourth-order mod-
els are nearly equally supported. The MCMC computational strategy dis-
cussed above will automatically perform ‘model-averaging’ over these mod-
els, when computing posterior quantities of interest.

Estimates, standard errors, etc., for any of the unknowns or parameters
in the model are also available from the MCMC computation. Here we
simply show, in Figure 4, the posterior distribution of the distribution
of the parallax (the inverse of the distance) for T Mon. Figure 5 shows
the simulation history of the parallax, i.e., the values of the parallax that
were generated at each trial of the MCMC computation. The very random
appearance of this history strongly indicates that the MCMC computation
was accurate.
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FIGURE 5.2. Posterior marginal distribution of velocity models for T Mon.
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FIGURE 5.3. Posterior marginal distribution of photometry models for T Mon.
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FIGURE 5.4. Posterior marginal distribution of the parallax of T Mon.
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FIGURE 5.5. Simulation history of the parallax of T Mon.

5.4 A Wavelet Approach

Examination of Figure 1 suggests a potential concern. It turns out that the
analysis is quite sensitive to the extent of the ‘dip’ in the velocity curve
that occurs between phases 0 and 0.1. Notice also that there is no data
between 0.9 and 0.1 (phases 1.0 and 0.0 being, of course, considered to be
equal). Because Fourier analysis is non-local (each term in the trigonometric
polynomial influencing the curve over the entire domain), there is concern
that Fourier analysis may over-accentuate or under-accentuate the dip, in
order to find a slightly better fit at points distant from the dip.

An approach that avoids this difficulty is the wavelet approach, since
wavelet bases are local. To date, we have only applied this approach to the
problem of fitting the velocity curve. Space precludes a detailed description
here (see Miiller, Berger, and Jefferys, 2001, for details and results), but
we can, at least, outline the needed steps.

Step 1. A function space prior is needed, i.e., a prior on the space of possi-
ble velocity curves. The idea is to develop the prior in terms of intuitively
accessible features of the function, and then transform this prior into the
wavelet domain (a domain in which it is not as natural to construct pri-
ors). Adapting a suggestion of Vannucci and Corradi (1999), we chose the
function space prior to be a Gaussian process (since this allows easy trans-
formation into the wavelet domain). We actually construct the prior on
differences of the function, since this makes it easier to (i) build periodicity
into the Gaussian process and (ii) build smoothness into the function.

Step 2. One transforms this Gaussian process prior on the function space
into the wavelet domain, using a bivariate wavelet decomposition, as sug-
gested in Vannucci and Corradi (1999). The resulting prior on the wavelet
coefficients is multivariate normal with a non-diagonal covariance matrix
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FIGURE 5.6. Wavelet fit of velocity data for T Mon. Shown are contour lines for
the posterior distribution of the velocity as a function of phase; the thick smooth
line in the center is the posterior mean curve. The grey shaded margins show
central 50% (light grey) and central 90% (dark grey) intervals. The points are
the observed data points, with little error bars showing 2 standard deviations for
the measurement error.

(i.e., the wavelet coefficients are apriori dependent).

Step 3. A model in the wavelet domain is defined by some subset of all the
wavelets in the basis. We specify the prior probability of a model through
the device of allowing each wavelet coefficient to be zero, with specified
probability p(k), where k is the ‘level’ of the wavelet coefficient. (In prac-
tice, we used p(k) = 1 — o**1 and tried various values of a.) Then, with
probability 1 — p(k), the coefficient would be in the model. The prior dis-
tribution of the coefficients in the model is obtained from the multivariate
normal prior found in Step 2, by conditioning on the other coefficients being
ZET0.

Step 4. A Metropolis-Hastings MCMC' analysis is implemented, in which
moves are made to adjacent models (i.e., either a nonzero wavelet coefficient
is set equal to zero, or a zero coefficient is made nonzero). The key is that,
utilizing properties of the multivariate normal distribution, the computa-
tions involved in these ‘small’ steps are of relatively low cost to implement.
(Wavelet models are large enough that it would be prohibitively expensive
to compute, from scratch, the posterior model probabilities.)
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Commentary by Thomas J. Loredo?

The work of Berger et al. reported here is an exciting achievement. In
these comments I highlight a few aspects of their approach that may help
readers new to this kind of Bayesian modeling better appreciate the sig-
nificance of this work and the applicability of elements of the approach to
problems other than the Cepheid calibration problem.

5.6 Uncertain noise levels

A minor detail in the analysis that is nevertheless worth highlighting is the
treatment of uncertainty in measurement errors. It is common in many as-
tronomical disciplines for measurements to have standard errors associated
with them that the analyst may consider to be only rough estimates (typ-
ically underestimates) of the actual standard errors. This is particularly
often the case with cutting-edge observations. An example is high accuracy
stellar radial velocity measurements, as used for detection of extrasolar
planets. These measurements sometimes require spectroscopy capable of
measuring velocities with few m s~! accuracy. The formal standard errors
(estimated, e.g., from photon counting statistics and instrument perfor-
mance in test situations) often underestimate the actual errors because of
unpredictable influences (e.g., stellar activity or atmospheric effects). This
reveals itself by producing unacceptably large minimum x? values in fits
of velocity time series to models believed to be highly reliable (Keplerian
reflex motion models).

The usual approach in such situations is to rescale the errors to make
x2 have its expected value, and then proceed with the errors fixed at this
rescaled value. This procedure is flawed; in general it leads one to underes-
timate the uncertainties in other parameters because it ignores uncertainty
in the standard errors.

Berger et al. handle this by explicitly introducing scale parameters for
the standard errors (their 7 parameters), and treating them on an equal
footing with other parameters. For astrophysical inferences, the 7 param-
eters are uninteresting; the authors’ MCMC calculation marginalizes (in-
tegrates) over them, fully accounting for their uncertainty in inferences of
other parameters of interest.

This is the proper way to handle such uncertainty, and in the limit when
the data allow precise inference of the scaling parameters, it reduces to
the standard practice of simply rescaling the errors. This proper treatment
does not always require the complexity of an MCMC calculation. A simple
example illustrates these points. Suppose data x; measure an unknown

2Department of Astronomy, Cornell University
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constant, i, and suppose that the reported standard errors are all the same,
o. If the true errors are o/, the likelihood for 1 and 7 is the product of N
Gaussians with width o/7,

L(p,T) o (g)N exp l—% Z(xi — u)Q] : (5.9)

We are ultimately interested only in u, so we multiply by a prior for 7 (use
the standard scale-invariant 1/7 prior) and integrate over 7. The result is

_ 21 N2
L(p) [1 + %} ) (5.10)

where Z is the sample mean and s? is the root-mean-square deviation from
the mean. This has the form of Student’s ¢-distribution. This likelihood has
power-law tails, and is broader than the Gaussian likelihood that would
result if we just fixed 7 at some best-fit value. But if IV is very large,
equation (5.10) is well-approximated by

(n —1)°
L —_——. 5.11
(1) xxp | - U5 (5.11)
This is just what one would get from the standard fixed-7 approach. Thus
marginalization accounts for 7 uncertainty by broadening the likelihood;
but when 7 is well-determined, it effectively just plugs in its estimate.

5.7 Systematic error

The most important innovation in the analysis by Berger et al. is their
extensive and rigorous accounting for model uncertainty. It is the uniquely
Bayesian concept of the probability for a model, combined with the abil-
ity to marginalize over unknowns (i.e., model choice), that makes such an
accounting possible. Although they do not use the term in the paper, to
properly understand the significance of their calculation I think it is impor-
tant to use it here: they have shown how to account for an important source
of systematic error (see Drell et al. 2000 for a simpler Bayesian treatment
of systematic error in cosmology).

Systematic error is an embarassment to frequentist statistics. It is not
“random,” and therefore cannot be described with (frequentist) probabili-
ties. It is thus difficult to carry out calculations that account for it. Taylor
(1997) summarizes the situation thus: “No simple theory tells us what to do
about systematic errors. In fact, the only theory of systematic errors is that
they must be identified and reduced until they are much less than the re-
quired precision.” In regard to quantitative accounting for it, he continues,
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“ ... there are various possible ways to proceed. None can be rigorously
justified. . . .”

In Bayesian inference, probabilities describe uncertainty, not (necessar-
ily) “randomness” or experiment-to-experiment fluctuations. Systematic
error is thus amenable to probabilistic treatment. This was noted half a
century ago by Jeffreys (1961). In an example concerning estimation of a
location parameter, he wrote:

Systematic error has a meaning only if we understand by the
true value something different from the location parameter. It
1s therefore an additional parameter, and requires a significance
test for its assertion. There is no epistemological difference be-
tween the Smith effect and Smith’s systematic error; the differ-
ence is that Smith is pleased to find the former, while he may
be annoyed at the discovery of the latter. Now with a proper
understanding of induction there is no need for annoyance.

Translating to more modern terminology, systematic error can in principle
be accounted for by modifying the model for the data. Uncertainty in such
error can thus be quantified by using Bayesian methods to account for
model uncertainty.

Jeffreys stumbled in cases where Bayesian model comparison (his “signif-
icance test”) could not conclusively determine whether a particular system-
atic effect was present or not: “The problem that remains is, how should
we deal with possible systematic errors that are mot yet established and
whose values are unknown?” Today this problem is routinely dealt with
via Bayesian model averaging (rather than choosing a single best model),
the key ingredient of the Cepheid analysis reported here.

Systematic error has been the bane of cosmological research for decades,
leading investigators analyzing similar data to reach discrepant conclusions
due to the influences of modeling assumptions. There may be important
sources of systematic uncertainty in Cepheid calibration beyond the light
curve model uncertainties accounted for in this study. But this approach
should go a long way toward further resolving discrepancies in this field,
and will hopefully motivate further use of Bayesian methods to quantify
systematic uncertainties in astronomy.

5.8 Computational complexity

The authors state that their computational methods are too complicated
to describe in detail in the limited space available here, and indeed the
few details provided indicate that significant effort and not a little artistry
were required to perform the calculations. Many presentations of Bayesian
methods at the conference shared this level of computational complexity,
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leading to the oft-repeated remark in discussion sessions that Bayesian
calculations are much more challenging than frequentist calculations.

This statement is misleading. In problems amenable to both Bayesian
and frequentist analyses with similar models, Bayesian and frequentist cal-
culations typically have similar complexity when carried out at the same
level of approzimation (in fact, the Bayesian calculation is sometimes much
simpler in such cases). The key observation here is that in most problems
of realistic complexity, rigorous frequentist calculations are not hard—
they are impossible. Typically, no rigorous frequentist result exists for a
finite sample size, and the analyst must rely on asymptotic approxima-
tions. When such an approximation is adequate, it should be compared in
complexity, not with a full Bayesian calculation, but with an asymptotic
Bayesian calculation. Such calculations are straightforward and involve
quantities and manipulations familiar from standard frequentist analyses
(e.g., locating maxima and finding Hessian matrices). The primary tool is
called the Laplace approzimation (see Loredo 1999 for a brief overview and
references). Interestingly, because Bayesian calculations typically require
ratios of probabilities, an asymptotic Bayesian calculation is sometimes ac-
curate to higher order than its frequentist counterpart, because the lowest
order error cancels in the ratio.

The difficult Bayesian calculations described in the work of Berger et al.
and in other presentations are difficult because they implement calculations
that would be difficult or impossible even to frame in frequentist terms—
calculations that are exact for finite sample size, or that rigorously account
for model uncertainty. Instead of bemoaning the complexity of such calcula-
tions, we should be grateful that we are at last able to perform them at all.
Even so, their complexity is a legitimate stumbling block to potential users.
The success of calculations like those reported here will hopefully motivate
the community to support development of software that hides implemen-
tation details from users, and research in Bayesian computation to develop
general-purpose algorithms that reduce the computational complexity of
Bayesian analyses.
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Bayesian Multiscale Methods
for Poisson Count Data

Eric D. Kolaczyk!

ABSTRACT We present an overview of recent work on a flexible frame-
work for multiscale modeling of Poisson count data, such as is encountered
regularly in the field of high-energy astrophysics, that allows for intuitive,
easily interpretable, computationally efficient implementations of Bayesian
inference for standard tasks like smoothing, deconvolution, and segmenta-
tion. At the foundation of this approach is a multiscale factorization of the
Poisson likelihood, which can be viewed formally as deriving from a blend-
ing of concepts from the literatures on wavelets, recursive partitioning, and
graphical models.

6.1 Introduction

Astronomers, especially those studying phenomena in the higher energy
levels (e.g., x-ray and ~-ray), are faced with the challenge of analyzing in-
creasingly vast amounts of photon counting data (typically with temporal
and/or spatial labels), whose statistical properties generally are character-
ized as Poisson in nature. Methods of analysis must necessarily be com-
putationally efficient and scalable, particularly those intended to serve as
instrument-based or preliminary ground-based tools. These requirements
can present a significant challenge to the development and adoption of
Bayesian methods in such settings.

Consider, for example, the task of conducting multiscale analyses, stan-
dard methods for which derive typically from some manner of wavelet-
based representation of the data. A multiscale analysis of Poisson data
with wavelets leads to technical statistical challenges not necessarily en-
countered with, say, data following a standard Gaussian (i.e., “signal plus
noise”) model, due to fundamental differences in how the underlying sta-
tistical distributions “interact” with wavelet structures. These challenges
in turn have a direct impact on issues of analytical and computational
tractability of resulting methods.

We present here an overview of recent work on ways to meet these chal-
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lenges, based on the use of likelihood factorizations. The resulting statistical
framework allows for the creation of methods for standard tasks such as
smoothing, deconvolution, and segmentation that are intuitive and inter-
pretable, as well as analytically and computationally tractable, even for
posterior-based Bayesian inference. The basic modeling structure is intro-
duced in section 6.2, illustration of how that structure may be used for stan-
dard inferential tasks is given in section 6.3, and some additional discussion
regarding extensions and generalizations can be found in section 6.4.

6.2 The basic multiscale modeling structure

The goal in this paper is to communicate the fundamental usefulness of cer-
tain structural characteristics in multiscale modeling, with less emphasis
being placed on more detailed alterations that would necessarily have to be
made in the context of various specific applications. Hence, we will work
with the following generic modeling structure throughout. Let X (¢),t €
[0,1) be a Poisson process with intensity function A(¢) > 0. Additionally,
assume that through convention and/or design the interval [0,1) is dis-
cretized into N equispaced bins I, = [n/N,(n +1)/N),n=0,...,N — 1.
There then results from this discretization an N x 1 vector X of indepen-
dent Poisson random variables X,, ~ Poisson(A,,), where A,, = [ 1, At)dt
and ‘~’ is to be read ‘distributed as’. Our focus in this paper will be on “low
level” data processing tasks involving statistical inference on the vector A
(i.e., on A(+) up to the resolution of the binning).

6.2.1 Factorizing the data likelithood

It is more or less commonplace now to have tools in the astronomer’s data
analysis toolbox for doing scale-sensitive inference — that is, inference on
the characteristics of an object(s) (e.g., time series of photon arrivals, image
mapping of point sources, etc.) for which there are potentially structural
components at multiple scales. Wavelet-based methods are by far the most
common such tools, and there have been numerous contributions in this di-
rection. See, for example, the book by Starck, Murtagh, and Bijaoui (1998)
or the chapter by Starck in this volume, for an overview.

Our own approach is intimately related to, yet distinct from, wavelets and
such wavelet-based methods. To better motivate both this connection and
the inherent differences, consider the simple case in which an orthonormal
wavelet transform is computed for data observed from a signal-plus-noise
model i.e., W = WY, where Y,, = A,, + Z,, and the Z,, are independent
and identically distributed Gaussian random variables of mean zero and
unit variance. Because the matrix W is an orthogonal matrix and the data
Y are independent Gaussian, the vector W too is independent Gaussian.
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Hence, from a likelihood based perspective we might write something like
N-1
I Prvaldn) = [TPr(Wjklwin), (6.1)
n=0 7.k

where (j, k) refers to the standard scale-position indexing resulting from
the definition of orthonormal wavelet functions t; x(t) = 29/2¢(27t — k)
with respect to a single function ¥, and w = WA.

The key point to note here is that the joint (i.e., N dimensional) likeli-
hood is factorized in both the time (left hand side) and multiscale (right
hand side) domains into a product of N component likelihoods. And fur-
thermore, each component relies on a single pairing of observation and
parameter — Y,, with A, in the time domain and Wj with w; in the
multiscale domain. This deceptively simple fact has both analytical and
computational implications. For example, it can be seen to motivate the
standard idea of thresholding individual empirical wavelet coefficients W j
in order to denoise the signal Y as a whole, which is essentially an O(N)
algorithm (e.g., Donoho and Johnstone 1994, but see also Johnstone and
Silverman 1997 for extensions to certain types of correlated data). And
much of the corresponding analysis of the statistical risk of such estimators
boils down to understanding the aggregate behavior of the individual risks
associated with such thresholding. Additionally, most Bayesian methods
in this context consist, for similar reasons, of making a posterior inference
on A implicitly through component-wise posterior inferences on the wj
(e.g., Chipman, Kolaczyk, and McCulloch 1997; Clyde, Parmigiani, and
Vidakovic 1998; Abramovich, Sapatinas, and Silverman 1998).

Now consider the case in which the same wavelet transform is applied
to our Poisson observations i.e., W = WX. With the change from Gaus-
sian to Poisson observations, the orthogonality of WV is no longer sufficient
to ensure the statistical independence of the components of W. Hence, a
factorization of the form given in (6.1) does not hold. While the effect of
this point on thresholding methods might be simply to adjust the level of
the thresholds used, its impact on the development of Bayesian methodolo-
gies is more substantial, as the full likelihood must be used in an explicit
manner.

Generally speaking, the existence of factorizations of complex probabil-
ity functions involves a delicate combination of issues concerning both the
underlying distribution and its parameterization. The study of such fac-
torizations is of central interest to the area of graphical modeling in the
statistics literature (e.g., Lauritzen 1996), wherein models are formulated
by specifying conditional independence relationships among the relevant
variables through the absence of edges connecting vertices (representing
the variables) on a mathematical graph. From this perspective, one can
view the factorization on the right hand side of (6.1) as a factorization of
the joint distribution of Y with respect to the binary tree graph generated
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by the index pairs (j,k), for j = 0,1,...,J —1, k= 0,1,...,2/ — 1, and
J =log,y(N).

Although such a factorization does not exist for the Poisson data X when
the W are the empirical wavelet coefficients, it does exist when instead
the W; i, are replaced by a certain conditional distribution. Specifically, let
Lk =[k/27,(k+1)/27), for all (j, k), and define X to be the sum of the
Xy, for which I,, C I ;. Let A; ;, be defined similarly in terms of the A,,. It
can be shown then that the factorization

—129i1
1 Pr(XnlAn) = Pr(Xo,0A0.0) H I Pr (X126l Xk, pik)  (6.2)
7=0 k=0

n=0

holds, where p;r = Ajt1,26/Aj k. The marginal distribution of Xg is
just Poisson(Ag,), while the conditional distributions X112z X; 5 are
binomial(X; ; pj,x). This result may be derived directly using well-known
relations between the binomial and Poisson distributions (Kolaczyk 1999;
Timmerman and Nowak 1999), or more formally using a probabilistic ana-
logue of the type of multiresolution analysis (MRA) that underlies or-
thonormal wavelet bases (Kolaczyk and Nowak 2000).

To better understand how (6.2) compares to (6.1), consider the case
in which W corresponds to the Haar wavelet transform. There the Wj
are simply (proportional to) the difference of X1 91 and X1 0r41 i€,
the sums of counts in the left and right “children” intervals I41 25 and
Ij+1,2k+1 of the “parent” interval I; ;. This difference provides some notion
of the information in the data localized to the scale/position combination
(j, k). However, consideration of the conditional distribution of one of the
children, X112k, given the value of the parent X;, provides a similar
notion of such local information. And it is with respect to this latter notion
that a multiscale factorization exists for Poisson data, in which case the
accompanying re-parameterization of A is not with respect to its Haar
coefficients wj , but rather the ratios pj .

6.2.2  Prior distributions on the multiscale parameters

The factorization of the likelihood in (6.2) may be thought of in analogy
to a wavelet decomposition of a function. In other words, it provides an al-
ternative, position/scale representation of an object of interest. When the
underlying structure of that object is well-captured in this representation,
it may prove beneficial to conduct inference on the A; j indirectly through
direct inference on the p; . In order to conduct such inference on the p; i
using Bayesian methodologies, an appropriate prior distribution structure
must be specified for these parameters (hence making them random vari-
ables).

In the literature on wavelets and the Gaussian signal-plus-noise model
there is already a sizeable literature on Bayesian approaches. Most begin
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with the observation that, across many contexts, distributions of wavelet
coefficients w; ; have been observed to be “heavy-tailed” and centered at
zero (e.g., Mallat 1998). Various authors therefore have suggested the use of
zero-mean Laplacian distributions, mixtures of zero-mean Gaussians, and
generalized Gaussian distributions to capture this behavior. Most methods
assume independence among the coefficient distributions, citing the ability
of wavelets to roughly “decorrelate” the structure in an object, but more
sophisticated models attempt to capture weak dependencies through the
use of multivariate distributions or model the persistence of edges across
scales of coefficients through the use of tree-based hidden Markov models.
See Chipman and Wolfson (1999) for a recent survey.

Now consider the nature of the p; . If in a certain region most of the
A; are roughly equal, then many of the A;; will be roughly equal across
locations k for some range of scales j. We will then have p;, ~ 1/2 for
many of the (j, k), which is the analogue of having w;; =~ 0 in the case
of wavelets. Also note that, by definition, p; € [0, 1], for all (4, k). These
observations, combined with the fact that each p; j arises as the parameter
of a binomial distribution, suggest the use of the beta distribution

=" (1= p) " (6.3)

as a prior family (being conjugate to the binomial family), where a, 8 >
0 and B(«, ) is just the standard beta function. For example, through
choice of o = 8 a distribution arises with symmetry about the point 1/2,
where « less than, equal, or greater than one yields U-shaped, uniform, and
unimodal distributions, respectively. More flexibility in shape results from
the use of mixtures of such betas, for example, a point mass at 1/2 and a
uniform distribution, where the weight on each of the two components may
be adjusted to reflect a balancing of prior beliefs in relative homogeneity
(i.e., pjr ~ 1/2) and ignorance (i.e., p; r ~ Unif(0, 1)). See Kolaczyk (1999)
and Timmerman and Nowak (1999), for more discussion along these lines.
Additionally, cross-scale dependencies may be incorporated through use of
hidden Markov model tree structures, as in the Gaussian case, as described
in Nowak (1999).

On a final note we mention that, because one often has relevant infor-
mation on the character of A(+) i.e., of the intensity in the original time
domain, it is important to understand the nature of the prior distribu-
tion induced on the A;; through our specification of priors on the pj .
Study of this issue may be found within Kolaczyk (1999), Timmerman and
Nowak (1999), and Nowak and Kolaczyk (2000), and in Louie and Kolaczyk
(2002) in more generality, in which conditions for such characteristics as
(non)stationarity, long-range dependence, and asymptotic convergence are
explored.
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6.3 Illustration of methods

In this section we will consider three common inferential tasks — smooth-
ing, deconvolution, and segmentation — and show how the basic modeling
structure of the previous section may be adapted in each context to obtain
efficient algorithms for posterior-based inference.

6.3.1 Smoothing

Figure 6.1(a) shows a plot of the photon arrival times for a gamma-ray
burst observed by the BATSE instruments, as part of the recently com-
pleted Compton Gamma Ray Observatory (CGRO) mission. Counts for
the first N = 256 64ms time bins are displayed. Norris et al. (1996) fit
this and similar bursts with linear combinations of asymmetric pulse func-
tions, from which aggregate information on number, location, amplitude,
and width of peaks is used to discern commonality across what has been
found to be a highly variable class of signals. Methods such as these are
inherently parametric, of course, and in situations such as this, where re-
liable physical models are lacking, a nonparametric m ethod often can be
employed usefully in a complementary fashion to gain insight into features
perhaps missed by the parametric method.

It is standard to model such observations as Poisson, in the manner
outlined at the start of section 6.2. Recalling the factorization of the Poisson
distribution in (6.2), consider a model for the multiscale parameters p;
that specifies

Pik | Vig ~ Vi O1/2 + (1 —vjk) Bjk (6.4)
v,k | pj ~ Bernoulli(p;) (6.5)
Bj i |a; ~ Beta(aj, o) (6.6)

In other words, each p; 1, is modeled independently of the others as a mix-
ture of a point mass at 1/2 and a beta random variable, where the mixing
parameter p; and the beta parameter o; are indexed by scale j (but not
position).

Under these conditions it is not difficult to show (Kolaczyk 1999, Lemma
2) that the posterior has the factorization

J—127-1
Pr(AIX,Aoo) = [ TI PrlojrlXjsrom Xjsrok41) - (6.7)
j=0 k=0

That is, the time domain posterior (left hand side) is actually a prod-
uct of local posteriors in the multiscale domain (right hand side), each of
which actually are mixtures of beta distributions like the prior. Therefore,
posterior-based inference on A may be accomplished through performing
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FIGURE 6.1. On the top (a) is the GRB BATSE trigger # 1425, with pho-
ton arrival times binned into 256 64ms bins. On the bottom (b) is our transla-
tion-invariant multiscale posterior mean estimate (solid) and an estimate based
on the parametric fitting of asymmetric pulse shapes (dotted). Priors for the mul-
tiscale method were independent mixtures of a point mass at 1/2 and a uniform
distribution (i.e., a; = 1), with the mixing parameters p; fit using an empirical
Bayes method.
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posterior-based inference on each multiscale component p;; and then in-
verting the underlying multiscale transformation. For example, if the pos-
terior mean is to be used as an estimate of A, this relates to the posterior
means of the p;; via the formula

J—1

E[Aq]| X, Aoo] = Aoy H E 5y | Xj41.2im)> Xjo12jmy41] > (6.8)
j=0

where j(n) represents the position index at scale j of the ancestor of the
n-th component of A and pj ;) is equal to either p; iy or 1 — pj iy,
depending on whether these ancestors are left or right children of their
parents, respectively.

In Figure 6.1(b) is shown a translation-invariant version of this posterior
mean estimate (see Kolaczyk 1999) for the intensity underlying BATSE
trigger #1425. Super-imposed upon that is the estimate obtained by the
method of Norris et al., in which seven distinct pulse shapes were fit. Note
that while our nonparametric method confirms the presence and general
form of the first six of those seven, it suggests evidence of there being in fact
two pulses in the region of their seventh. Such sections of the data with no-
table degrees of pulse overlap are particularly difficult to fit parametrically
(J. Norris, personal communication).

6.3.2 Deconvolution

Due to effects associated with the measurement process and instrumenta-
tion, often it is not possible to observe the data X ~ Poisson(A) directly.
Instead it may be more appropriate to model the data as “indirect” obser-
vations Y,,, ~ Poisson(uy,), for m =0,..., M — 1, where g = PA and P is
some M x N transition matrix. That is, we specify a Poisson linear inverse
problem, where the underlying mean vector wu is a “blurred” version of the
object A in which our interest truly lies.

Although there are a variety of methods for dealing with inverse prob-
lems, a now-commonplace one for those involving Poisson data is through
use of the Expectation-Maximization (EM) algorithm framework. To re-
view briefly, in the present context one can introduce an auxiliary set of
random variables {Z,, .}, where Z,, , is the number of (e.g., photon)
counts associated with X, that contribute to the total in Y,,. Clearly
Y and X can be obtained as the marginal row/column totals of the
matrix Z and, by properties of the Poisson distribution, we have that
Zm.m ~ Poisson(P,, nAy). Given a prior distribution Pr(A) for A, the EM
algorithm may be used to iterate to a Bayesian maximum a posteriori
(MAP) estimate by computing the conditional expectation

Q (A,A@) = Epw [logPr(Z|A) | Y] +logPr(A), (6.9)
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as the E-step, and then maximizing Q (A,A(i)) as a function of A to

produce A(H'l), as the M-step. The computational feasibility of such ap-
proaches typically is limited by that of the M-step, which in turn is linked
to the nature of the prior and how it interacts with the likelihood. The
computational complexity of this step may range from calculation of sim-
ple closed-form solutions to running a full Monte Carlo simulation at each
iteration 1.

Now consider doing multiscale Bayesian inference on A in a manner sim-
ilar to that of section 6.3.1, but based on the observations Y and using the
EM framework. A simple conditioning argument shows that the distribu-
tion of our auxiliary data Z may be expressed as

J—1 271
Pr(Z|A) = Pr(Xoolhoo) x [ [J PrXjsion]Xjm pin) x
=0 k=0
N-1
H Pr(ZO,rm REE) ZM—l,n|meO,m S 7pM—1,n)- (610)
n=0

Two characteristics of the expression in (6.10) are important to note: (i)
the third term (second line) on the right hand side does not involve A, and
(ii) the first two terms (first line) on the right hand side are identical to
those in equation (6.2). Hence, with respect to optimizations involving A,
only the first two terms are relevant and these instruct us effectively to act
as if we had observed the data X in the first place.

The end result is an EM algorithm in the Bayesian multiscale framework
that is no more computationally intensive than the standard EM algorithm
for maximum likelihood estimation, with closed form expressions for both
E- and M-steps. For example, suppose we choose to induce a prior distribu-
tion on A by placing independent beta priors on the multiscale parameters
ie., pjr ~ beta(a;, a;). Then the E-step in (6.9) boils down to calculating

YmAszi)pm,n

Z(i)(m n) = —————
) N—-1 ( ) )
1=0 Alz DPm,

(6.11)

due to the fact that Z|Y is multinomial in distribution and the linearity
of the logarithm of this distribution in the Z,, ,. Furthermore, the M-step
results in the (i + 1)-th iteration estimates

(i+1) _ Xjt126 a5 —1

: = 6.12
ijg Xj,k + 2(043 _ 1) 9 ( )

from which the estimate AGTY) may be constructed in a manner similar

to that in equation (6.8). A more detailed derivation of these results, as
well as results establishing convergence of the EM algorithm under various
choice of the o, may be found in Nowak and Kolaczyk (2000).
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FIGURE 6.2. On the top (a) is simulated solar flare data, as might be measured
by the COMPTEL instruments. On the bottom (b) are the Bayesian multiscale
estimate of the underlying energy spectrum (solid) and the spectrum itself (dot-
ted).
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By way of illustration, Figure 6.2(a) shows a collection of counts cor-
responding to a certain theoretical energy spectrum for the production of
gamma rays by energetic particles interacting with the ambient solar atmo-
sphere (Murphy et al. 1991). The counts were simulated from this model
as if having been observed by the COMPTEL instruments (also part of the
the CGRO mission). Due to the underlying physics of the measurement
devices, an arriving photon in fact has a good chance of being recorded at
some lower energy level than that at which it obtains. Figure 6.2(b) shows
an estimate of the underlying energy spectrum A resulting from our mul-
tiscale deconvolution algorithm. The true spectrum is super-imposed upon
this plot — although there is the expected attenuation in the heights of the
various spectral peaks, note that the relative number, location, and width
of each are well-recovered.

6.3.3 Segmentation

Our final illustration involves the task of segmentation. For the sake of
simplicity, consider now again the case in which we directly observe the
measurements X ~ Poisson(A). Often it is of interest to divide the domain
of observation, which we have generically taken to be the interval [0, 1], into
disjoint regions within which the vector A has some sort of locally similar
behavior. The simplest example is that in which we wish to identify regions
in which A is piecewise constant — that is, in which the underlying Poisson
process is locally homogeneous. This problem can also be referred to as one
of finding multiple changepoints in A.

One can envision for this problem, in principle at least, the generation
of data X as a three stage process in which (i) a collection of segmenta-
tion points are laid down in [0, 1] at some subset of the locations n/N, for
n=1,...,N —1, (ii) values for A are chosen for the resulting subintervals
of constant intensity, and (iii) X is sampled as Poisson(A). This three-step
procedure lends itself naturally to hierarchical modeling in a Bayesian set-
ting. Moreover, if one pictures the segmentation points being laid down
in a recursive fashion, then structural and conceptual connections between
recursive partitioning and our multiscale modeling framework may be ex-
ploited to obtain a Bayesian multiscale method for simultaneously selecting
the most likely number of segmentation points and their locations.

This search for an optimal segmentation of a given dataset X can be
viewed as a Bayesian model selection problem. Specifically, we seek the
most likely member M of, say, the collection £ of all possible recursive
partitions, i.e.,

MPP! = arg max Pr (M|X). (6.13)
MeL

Due to similar reasons associated with our factorizations of the likelihood
and choice of priors upon which rested our results in sections 6.3.1 and 6.3.2,
it turns out that the optimization in (6.13) can be solved in an efficient man-
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FIGURE 6.3. Bayesian multiscale segmentation of GRB BATSE trigger #845.

ner. A redundancy among many of the recursive partitions and the preva-
lence of binary tree structures allows a search for M°P! in roughly O(N?)
operations using a type of probability propagation algorithm. Details may
be found in Kolaczyk and Nowak (2001). Figure 6.3 shows an illustration
of this algorithm when applied to a gamma-ray burst of a rather different
character than that encountered in Figure 6.1.

6.4 Discussion

The goal here has been to provide an overview of a general framework for
statistical analysis of Poisson count data, in a manner sensitive to structure
at multiple scales, with an emphasis on Bayesian methods. Of course, in a
specific application there is likely to be additional information beyond that
used in the applications described herein, including data from other instru-
ments, different wavelengths, and physical models. Bayesian methods often
are particularly convenient for incorporating this type of information into
the inferential process. On the other hand, it is common for such methods to
become computationally burdensome, which can be a serious disadvantage
for some of the high data-throughput applications that now characterize
many aspects of modern satellite-based astronomy. Hence the emphasis in
our methods on the use of likelihood factorizations, whose decoupling of
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the underlying probability structure facilitates the development of efficient
computational algorithms.

On a final note, we mention two other related pieces of work. David
Esch and David van Dyk have adapted the deconvolution methodology to
the processing of Chandra x-ray image data, and are exploring the use of
MCMC for adaptively setting the prior parameters (i.e., the a;’s, in the
notation of this paper). Alex Young is studying the performance of the
same methodology in the context of solar flare data at the ~-ray level, and
is using parametric bootstrapping methods to obtain confidence statements
on the reconstructions. Readers are referred to the papers by these authors
in this volume.

Software for performing analyses like those described in this paper is avail-
able at hitp://math.bu.edu/people/kolaczyk/astro.html .
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NASA’s Astrophysics Data
Environment

Joseph H. Bredekamp' and Daniel
A. Golombek

ABSTRACT NASA has a comprehensive space science data management
program to assure that science data assets acquired from space missions are
expediently available and utilized by scientists, educators, and the general
public. This paper will discuss the guiding principles and approach for space
science data archives, and describe the current landscape of astronomical
data centers and services. It will conclude with prospects and opportunities
to mine and exploit the emerging collective ”digital sky” in all wavelengths
for new scientific discoveries.

7.1 Space science data management

NASA’s Office of Space Science (OSS) is committed to the preservation
and utilization of data assets acquired from its space flight missions. Space
science data are ”open” resources as they ultimately belong to the research
community and public at large, and not to individual investigators or in-
strument builders. OSS strives to provide a coherent and coordinated space
science data environment to maximize the quality, accessibility, and usabil-
ity of the vast space science data holdings for scientists, educators, and the
general public.

Data archive and dissemination systems have been established for the
major space science disciplines, guided by the principle of putting the data
holdings under the jurisdiction of active science users in order to provide
science ”"wrap- around” expertise and guidance.

The interface and flow of science data products from space flight projects
and experiments to the appropriate discipline data archive system is in-
cluded in a Project Data Management Plan developed by each project at
its onset to address all aspects of data handling through the mission life
cycle. Data management continues to be addressed as a key topic through-
out the implementation and operation phases of the project. Indeed, science

LOffice of Space Science, NASA Headquarters
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productivity, along with timely delivery of science data to archives for open
access by the community are two key evaluation criteria for determining
priority for continuing the operation of on-going missions.

The coherent data environment that OSS strives toward is much more
than access to science data assets only, but rather access to the data along
with all ancillary information, software, tools, and capabilities to locate, re-
trieve, and analyze the data and convert it to meaningful information lead-
ing to scientific insight. That environment could thus be more accurately
described as ”data, computing, tools” organic infrastructure to support the
scientific research endeavor. Evolving that robust infrastructure requires a
significant investment in a wide range of computer science and technol-
ogy, ranging from standards, interoperability, and commonality issues, to
database and storage technologies, computational methods and algorithms,
grid technologies, collaborative tools, etc.

7.2 Current astrophysics data landscape

The astrophysics data environment represents perhaps the fullest realiza-
tion of the OSS science data management philosophy and approach. There
is a long history of open archives and sharing in that community. Much of
the current structure can be traced to the 1987 Astrophysics Data System
Workshops. The concept of Science Archive Research Centers (SARC’s)
for astrophysics sub- disciplines organized by wavelength regimes was one
of the recommendations coming out of these workshops and incrementally
implemented by OSS. New software tools, research aids and services, and
other advanced technology capabilities have been developed and infused
over the years, many of them sponsored by the Applied Information Sys-
tems Research Program and/or Astrophysics Data Program open solicita-
tions. There have been significant advances over the past several years in
terms of federation, coordination, interoperability, and sharing across the
various elements of the system, and the system is poised for the next level
toward the concept of a seamless ”digital sky”.

The principal elements of the astrophysics data architecture are mis-
sion science centers, data archive centers, integrating information services,
and the permanent archive. The relationships between these, and the user
communities are depicted in Figure 1.

7.2.1 Mission science centers

The mission science centers are generally responsible for all phases of a
missions science operations, from overseeing the peer-reviewed proposal se-
lection process, to the execution of the observations, to the calibration of the
data, and ultimately, to the dissemination of the data to the professional
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FIGURE 7.1. NASA’s Astrophysics Data and Information Services

community (via high-capacity science archive facilities) and the general
public. The staff of a NASA mission science center will typically consist
of astronomers, technicians, software engineers, administrators, and edu-
cators. Mission centers may also manage Guest Observer grant programs,
sponsor postdoctoral fellowship programs, develop science data analysis
software, and host visiting astronomers from around the world. All science
mission centers have a public outreach office that assures that the publics
interest in astronomy is regularly rewarded with the latest images and
results from the observatories. As part of these outreach efforts, a very suc-
cessful, by its use and the number of students it reaches, education program
is also conducted at these centers.
Space Telescope Science Institute

(STScI): STScl is the science center for the Hubble Space Telescope mis-
sion (http://www.stsci.edu). The HST was the first of NASA’s Great
Observatories and was launched in April 1990. The Institute was estab-
lished in 1981 and is located in Baltimore, MD. In addition to the services
expected of a NASA mission science center, STScl hosts an annual sym-
posium dedicated to HST-based research, manages the prestigious Hubble
Fellow Program, and supports a vigorous research staff. The HST archive
presently contains over 7 TB of data and is growing with 100 new science
exposures every day. The next HST servicing mission will see the instal-
lation of the Advanced Camera for Surveys and the re-activation of the
Near Infrared Camera and Multi-Object Spectrograph. STScl has been se-
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lected as the science center for the Next Generation Space Telescope - a
6 to 8 meter class observatory, slated for launch within the decade, with
instrumentation in the 0.65 micron wavelength range.

Chandra X-ray Center
(CXC): The Chandra X-Ray Observatory is the latest of NASA’s Great
Observatories: a high-resolution imaging and spectrographic telescope op-
erating in the X-ray part of the electro-magnetic spectrum. Chandra was
launched on July 23, 1999. The Chandra Data Archive (CDA) is part of the
Chandra X-Ray Observatory Science Center (CXC; http://cxc.harvard.-
edu) which is operated for NASA by the Smithsonian Astrophysical Ob-
servatory in Cambridge, MA. The current holdings of the CDA amount
to approximately 3 million data products with a total volume of 1 TB, in
addition to an extensive collection of databases that hold mission informa-
tion and metadata on the data products. The Chandra archive volume is
expected to expand by almost 1 TB per year of active mission.

SIRTF Science Center
The Space InfraRed Telescope Facility (SIRTF) is the fourth and final
element in NASA’s family of Great Observatories. SIRTF consists of a 0.85-
meter telescope and three cryogenically cooled science instruments capable
of performing imaging and spectroscopy in the 3-180 micron wavelength
range. Incorporating the latest in large-format infrared detector arrays,
SIRTF offers orders-of-magnitude improvements in capability over existing
programs. While SIRTF’s mission lifetime requirement remains 2.5 years,
recent programmatic and engineering developments have brought a 5-year
cryogenic mission within reach. A fast-track development schedule will lead
to a launch in July 2002. The SIRTF Science Center (http://sirtf.cal-
tech.edu) is co-located with the Infrared Processing and Analysis Center
(IPAC) on the campus of the California Institute of Technology.

7.2.2 Science archive centers

Besides the mission-specific centers listed above NASA also hosts wave-
length-specific data archive centers. All these centers not only provide the
data, but also software tools for its reduction and analysis, documentation
and expert assistance to the user both to the professional astronomer as
well as to educators and students or the public at large
Infrared Science Archive

(IRSA - http://irsa.ipac.caltech.edu) is located at the IPAC at Cal-
tech and houses all the infrared and submillimeter data obtained by NASA-
supported missions. The extracted source catalogs, images and spectra are
available from the Infrared Space Observatory (ISO), the Two Micron All-
Sky Survey (2MASS), the Midcourse Space Experiment (MSX), and the
Infrared Astronomical Satellite (IRAS) missions. IRSA will also host the
science data archives for the SIRTF and Stratospheric Observatory for In-
frared Astronomy (SOFIA) missions when they become operational.
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Multi-mission Archive at STScl
(MAST - http://archive.stsci.edu/index.html) hosts the collection
of optical and UV datasets and catalogs from past and present NASA
missions. In addition to HST data, it includes data from the International
Ultraviolet Explorer (IUE), Far Ultraviolet Explorer (FUSE), Copernicus,
three ASTRO and ORFEUS missions, , the Digitized Sky Survey, and the
VLA FIRST survey. HSTs Guide Star Catalog (GSC) can be queried from
this site as well. Once released, the Sloan Digital Sky Survey (SDSS) images,
spectra and catalogs will be available from the MAST.
High Energy Astronomy Science Archive

(HEASARC - http://heasarc.gsfc.nasa.gov/) is located at NASA’s
Goddard Space Flight Center (GSFC) and includes all gamma-ray, X-
ray, and extreme ultraviolet observations of cosmic (non-solar) sources ob-
tained by currenty operating and past NASA-supported missions. The data
available include those obtained from the Compton Gamma Ray Obser-
vatory (NASA’s second Great Observatory which was decommissioned in
2000)), the Rossi X-Ray Timing Experiment (RXTE), Roentgen Satellite
(ROSAT), Extreme Ultraviolet Explorer (EUVE), Advanced Satellite for
Cosmology and Astrophysics (ASCA), BeppoSAX, and the X-Ray Multi-
Mirror (XMM) missions. HEASARC provides a very large volume of multi-
mission software tools such as the HEAsoft package as well as SkyView and
AstroBrowse tools to search for and obtain multi-wavelength images of the
sky.

7.2.3 Integrating services

To complement the data archives, and to facilitate an even easier dissemi-
nation of the science results, NASA supports several catalog, bibliographic,
and thematic information services.

Astronomical Data Center
(ADC - http://adc.gsfc.nasa.gov) is located within the National Space
Science Data Center at NASA /GSFC and is the custodian of the many hun-
dreds of standard catalogs that astronomers use in support of their research.
The ADC has developed significant search, access, and cross-correlation
software tools (e.g., IMPReSS, CatsEye, Viewer). ADC has played a lead
role in the application of XML (eXtensible Markup Language) technology
to NASA’s needs in astrophysics data management and has, in particular,
developed XML-based tools for the automated ingestion of catalogs and
tables and for facilitating the retrievability of their contents.

NASA Ezxtragalactic Database
(NED - http://nedwww. ipac.caltech.edu)is hosted at the IPAC/Caltech
and provides combined bibliographic and database services. It provides a
thematic view of extragalactic astronomy and contains positions, name
resolution, basic data, and bibliographic references for more than four mil-
lion extragalactic objects. NED also includes almost 4 million photometric
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measurements, more than three million position measurements, more than
200,000 redshift and radial velocity measurements. Finally, to complement
this impressive catalog, more than 700,000 images from 2MASS and DSS
(generated on-the-fly) are available.

Astrophysics Data System
(ADS- http://adsabs.harvard.edu/abstract_service.html)
is an abstract service that includes almost 700,000 abstracts from all the
major astrophysics journals and conference series with links to the whole
paper. It also includes instrumentation, physics and geophysics abstracts
as well as links to the Astrophysics Preprint server. ADS can be searched
by author, title, words in the abstract or object name.

Centre Données de astronomiques de Strasbourg
(CDS - http://cdsweb.u-strasbg.fr) is located in Strasbourg, France
and is a notable international partner for astrophysics information services.
The Set of Identifications, Measurements, and Bibliography for Astronom-
ical Data Basic (SIMBAD) is mirrored in the US at http://simbad.har-
vard.edu/Simbad. SIMBAD includes almost 3 million galactic objects who-
se characteristics and bibliography can be searched from almost 8 million
identifiers or by their positions.

7.2.4  Permanent archive

The National Space Science Data Center

(NSSDC) at the Goddard Space Flight Center serves as the permanent
data archive for all space science disciplines, including astrophysics, space
physics, solar physics, and planetary science. The NSSDC also provides
other multidisciplinary services such as master data catalogs and informa-
tion services, standards support, and photographic resources.

7.2.5  Productivity and interoperability

The astrophysics data centers and services are heavily utilized and pro-
ductive in contributing to new research results. The concept of ”archival
science” has grown in popularity in recent years to where existing archived
data is used for investigations different from the originally proposed inves-
tigations, or combined for interdisciplinary investigations, assimilated into
theoretical models, etc. The archives and information services have also
proved to be very valuable tools and resources for observation planning
and analysis for operating missions as well.

As an example of archive utilization, the daily ingest and retrieval rates
for HST data are shown in Figure 3. Note that retrieval rates now far exceed
the ingest rate. The average retrieval rate of 15 GB/day for HST data is
typically a factor of 4 larger than the ingest rate. Similarly across all the
data centers and services volumes of data are growing rapidly, and expected
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to continue to grow dramatically into the future. And the utilization of
those volumes of data are growing at even a faster rate.

Another productivity measure is the number of scientific publications
that have resulted from the use of the data archives. Figure 4 provides the
number of publications based on data within the MAST and HEASARC
archives for the period 1999-2000. It is estimated that approximately 4000
scientific papers per year are based, at least in part on data and information
services within the astrophysics system.

The astrophysics data and information services operate as a federation
to improve overall productivity and efficiency, and enhance interoperability
and interdisciplinary access to data assets and services. There is strong
coordination and collaboration across the various elements to plan and
evolve an integrated system with the goal to afford users a ”world view” of
consistent interfaces and paths to allow data discovery and exploration as
a whole.

A common front-end user interface which would provide a searchable
web- based browser among the various data centers is a critical element
for such interoperability. ” AstroBrowse” is such an interface layer and was
conceived by R. Hanisch (STScI) and S. Murray (SAO) and implemented
as a prototype at HEASARC, MAST, and CDS. Other efforts are also pro-
ceeding across the broad consortium of astrophysics data providers to build
upon and extend these discovery capabilities to include fuller functionality
for users to locate, retrieve, and correlate data resources.
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7.3 Emerging prospects and opportunities

The trend in data volumes and complexity will only increase into the fu-
ture as we look deeper and with finer resolution into the sky. Refinements
in measuring fluctuations and anisotropies in the cosmic microwave back-
ground with data from missions such as the recently launched Microwave
Anisotropy Probe and the future European Space Agency Planck mission
have exciting prospects for unlocking the structure of the early universe
and more precise estimation of cosmological parameters.

The collective set of digital sky data, both space- and ground-based span-
ning the entire electromagnetic spectrum has enormous potential for data
mining and exploration. The resulting ” digital sky” is now within the venue
of observational astronomy, albeit not altogether easy, straightforward, and
transparent. The basic technologies are in hand to exploit the data archive
as a whole, but to realize the full and enormous potential for scientific
discovery calls for significant advances in our current frameworks, both
technological and scientific. These challenges provide an opportunity to
drive productive interdisciplinary partnerships and collaborations involv-
ing space scientists, computer scientists and technologists , mathematicians
and statisticians.

7.4 Summary

NASA’s Office of Space Science supports a vigorous and robust system of
data and information services which are heavily used by the world-wide
community. This infrastructure enhances the productivity of the research
endeavor, as well as extending utilization to benefit educators and the pub-
lic. The data archive and information services are poised for the next chal-
lenge to exploit the collective and seamless ”digital sky”, and to engage
the broad range of requisite partnerships involving astronomers and as-
trophysicists, computer scientists and technologists, mathematicians, and
statisticians, as well as with international collaborators around the world
to meet the challenge. References

7.5 Appendix A: URL listings

Office of Space Science
NASA Office of Space Science - http://spacescience.nasa.gov/
Space Science Missions - http://spacescience.nasa.gov/missions/

Mission-specific Archives
Chandra X-ray Center - http://cxc.harvard.edu
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SIRTF Science Center - http://sirtf.caltech.edu
Space Telescope Science - Institute - http://www.stsci.edu

Wavelength-specific Archives

High Energy - http://heasarc.gsfc.nasa.gov
Infrared/Sub-mm - http://irsa.ipac.caltech.edu
Optical /UV - http://archive.stsci.edu/index.html

Integrated Services

ADS - http://adsabs.harvard.edu/abstract_service.html
NED - http://nedwww.ipac.caltech.edu

NSSDC - http://nssdc.gsfc.nasa.gov

SIMBAD - http://simbad.harvard.edu/Simbad
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Statistical and Astronomical
Challenges in the Sloan Digital
Sky Survey

Michael A. Strauss!

ABSTRACT The Sloan Digital Sky Survey is an ambitious effort to map
the entire Northern sky at high Galactic latitudes, using modern CCD
cameras to take images in five photometric bands, and a pair of multi-
object spectrographs to measure redshifts for 10° galaxies and 10° quasars.
I describe some of the recent scientific results from the survey, focusing on
quasars and galaxies, with an emphasis on the statistical challenges that
they raise. The data are very rich, with potential impact on a large variety
of astronomical problems, but most analyses to date have been carried out
using rather unsophisticated statistical tools. These data are thus ideal to
foster collaboration between astronomers and statisticians.

This paper is followed by a commentary by statistician David A. van Dyk.

8.1 Introduction

Astronomy is traditionally done by individuals or small groups of astronom-
ers, who use their handful of telescope nights a year to carry out focussed
projects. However, we need massive datasets gathered uniformly, on a scale
much larger than any small group of workers could collect in the traditional
mode, to answer the big questions which currently face astronomy: How did
the first objects form after the Big Bang? What is the distribution of galax-
ies on the largest scales? What is the full range of properties of galaxies
and stars, and what are the relationships between them? The Sloan Digital
Sky Survey (SDSS) addresses this need. It uses a dedicated 2.5-meter tele-
scope at Apache Point, New Mexico, with a wide-field CCD imaging camera
which operates in drift-scan mode, taking images of 20 square degrees of
sky per hour in five broad photometric bands (u, g, r,¢ and z) covering the
wavelength range accessible to CCDs from the ground. These data are re-
duced by a series of interconnected software pipelines; from the resulting
lists of detected objects, the brightest galaxies and quasars are chosen to
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be observed by a pair of fiber-fed multi-object double spectrographs, which
obtain spectra of 640 objects at a time. The hardware of the project is
summarized by York et al. (2000), while Stoughton et al. (2001) discuss
the outputs of the pipelines. To date, the survey has imaged roughly 2000
of the planned 10,000 square degrees of sky, and has obtained spectra of
200,000 objects. The first of these data are now public, and can be accessed
on the web from links off the project web site, http://www.sdss.org.

The scientific goals of the project are focussed on the large-scale distribu-
tion of galaxies: the survey was designed to obtain as uniform as possible a
sample of galaxies for which to measure spectra and therefore redshifts, thus
obtaining a three-dimensional map of the distribution of galaxies. However,
the data are richer than this scientific goal alone would imply: in the data
obtained thus far, there are over 5 x 107 detected objects with five-color
photometry, allowing investigations of the nature of galaxies, quasars, stars,
the structure of our Milky Way, asteroids, and many other exciting areas
of astronomy.

In this paper, I will outline some of the recent scientific developments
in SDSS (with some emphasis on work in which I personally have been
involved), describing some of the interesting statistical questions that the
data raise. The statistically astute reader will notice that for the most
part, we have not been using the most modern and powerful statistical
methods for our analyses (although see Bob Nichol’s contribution to these
proceedings for a welcome exception to this!); the message is that these
data are rich enough to allow far more sophisticated analyses on a variety
of scientific problems. Thus this is fertile ground for close collaboration
between astronomers and statisticians.

8.2 Stellar photometry: Statistical challenges in
data reduction

There exist a number of software packages in astronomy for analyzing CCD
images, such as IRAF, FOCAS (Jarvis & Tyson 1981), Sextractor (Bertin
& Arnouts 1996), VISTA, and others. Our collaboration has worked more
or less from scratch in developing our image reduction software (Lupton et
al. 2001; Stoughton et al. 2001). The goal is to reliably find and measure
the properties of all statistically significant objects in the imaging data,
self-consistently in the five photometric bands. As we observe through the
Earth’s atmosphere, the light from point sources is smeared to a disk of
diameter typically 1” — 1.5”. Thus our first challenge is to characterize this
smearing, or Point Spread Function (PSF) accurately. This PSF has a non-
trivial shape, roughly described by the sum of two Gaussians, plus a power-
law tail. Moreover, it can vary appreciably on the scale of arcminutes, due
to the optics of the telescope and camera, and changing conditions in the
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atmosphere. Our approach (Lupton et al. 2001), which seems to work fairly
well, is to expand the measured PSF as a function of position in Karhunen-
Loeve eigenmodes, and then fit the coefficients to low-order polynomials in
position. With an accurate model of the PSF, one can then measure the
properties of detected objects quite well. In particular, for point sources,
this allows an optimal measurement of the total flux of the object (once
aperture corrections are applied; see Stoughton et al. 2001).

Galaxies are not point sources, but have radial profiles that can often be
characterized by an exponential (exp[—r/79]), or the mathematically awk-
ward /% law, exp[—(r/r)'/4]. The software fits every object to these two
models, convolved with the PSF and allowing for arbitrary ellipticity and
orientation. The difference between this so-called model magnitude and the
PSF magnitude turns out to be a powerful measure of extendedness in the
images (this method can be extended using a Bayesian approach, knowing
the relative numbers of stars and galaxies as a function of magnitude; see
Scranton et al. 2001).

One measure of the accuracy of the resulting photometry can be found
in the distribution of colors of stars. Stellar colors are determined to first
order solely by their surface temperature, so (ordinary) stars lie on a one-
dimensional locus in the four-dimensional color space spanned by our filters
(u—g,9—r,r —i,1— z; Newberg & Yanny 1997; Fan 1999; Finlator et al.
2000). Figure 8.1 illustrates this; notice the thinness of the stellar locus,
and the relatively small number of outliers. The errors are close to those
expected from photon statistics; in particular, we have been successful in
recognizing, flagging, and in some cases, correcting, a wide variety of sys-
tematic errors would would cause stars to scatter from the locus: cosmic
rays, bad columns on the CCDs, bleed trails and diffraction spikes from
saturated stars, overlapping images, and so on.

Incidentally, a full statistical characterization of the stellar locus has
much to teach us about different stellar populations and the structure of
our Galaxy (one is looking at various populations of stars, each with its
own spatial distribution, as one looks in different directions, due to the
different contributions of thin disk, thick disk, and halo). A first stab at
modelling Galactic structure with SDSS data was carried out by Chen et
al. (2001). The Galactic halo turns out not to be smooth, but to show
substructure (Ivezié et al. 2000; Yanny et al. 2000; Newberg et al. 2001),
which is believed to be due to the cannibalization of dwarf galaxies by the
Milky Way. Thus far, this substructure has been seen by simply plotting
the distribution of stars in color-magnitude-position space, and looking for
overdensities by eye; this is an area ripe for a more sophisticated statistical
treatment.



116 Michael A. Strauss

~

4;A‘HH‘HH‘HH‘HH‘HH
I

—

@)

—

AV}

w

2 TTTT [ TTTT [T T TT [T TT T [TTTT T TT
a)

TTTT T

. A,;{ar
| Iv\vrq L1l ‘ Ll ‘ L1l ‘ L1
0 1 2 3

u—-g° g —r

H4“”“HH“H“HH“H‘

¥ D> O
B0
o,
AAA
N N N
A A
NS

FIGURE 8.1. A series of projections of the stellar locus in SDSS color space. Stars
brighter than ¢* = 21 are shown. Also shown is the distribution of high-redshift
quasars, the predicted colors of quasars as a function of redshift (line), and the
region of color space in which high-redshift quasars are selected (shaded region).
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8.3 Finding high-redshift quasars

If ordinary stars fall along a one-dimensional sequence in color space, ob-
jects which do not lie on this sequence are inevitably interesting. The most
numerous class of such objects are the quasars. Quasars are the very lumi-
nous nuclei of galaxies which include supermassive black holes into which
material is streaming; this material is heated up so much by viscosity that it
can outshine its parent galaxy by orders of magnitude. The SDSS is finding
these objects in great numbers; they have intrinsically bluer spectra than
do stars, and thus are easy to pick out from their distinctly blue colors.
Indeed, quasars are selected for spectroscopic follow-up with the SDSS by
a conceptually simple algorithm that characterizes the stellar locus as a
1-dimensional sausage in color space (Newberg & Yanny 1997); a quasar
candidate is anything that falls far from this locus. See Bob Nichol’s contri-
bution to these proceedings for a rather different approach to this problem,
based on the mixture model.

At high redshift, the observed colors of quasars change systematically.
Neutral hydrogen along the line of sight to the quasar systematically ab-
sorbs blue light, causing the quasar to appear red; the higher the redshift,
the greater the reddening of the quasar. This effect is shown schematically
in Figure 8.1; the thin line is a model for the median color of quasars at
ever-increasing redshift. High-redshift quasars are intrinsically interesting,
because they are observed at an epoch when the universe was quite a bit
younger than it is today. Thus we have been carrying out a survey of the
very reddest objects in the SDSS imaging database, looking for the very
highest redshift objects (which turn out to be very rare; the quasar number
density drops off dramatically at redshifts above 3 or so; Fan et al. 2001a).
Figure 8.1 shows the colors of some of the quasars we’ve found at red-
shift z > 3.6; we now have discovered over 200 such objects (Anderson et
al. 2001 and references therein), by far the largest sample of high-redshift
quasars that exists. Again, it is worth emphasizing that this is successful
because we’ve managed to keep systematic errors down to a manageable
level, such that outliers in color-color space are there for astrophysical rea-
sons, not due to glitches in the data. Given that the parent sample from
which these quasars were selected contains many million stars, this is a
non-trivial statement.

This technique works well to redshifts somewhat larger than 5. To go still
further requires more work. For z > 5.8, a quasar is so red that it is likely
to be detected only in the z band (not to be confused with the symbol
for redshift!), our longest-wavelength band at 9000 A. These objects are
very rare, and we are dominated by systematics in trying to find them. In
particular, most cosmic rays (high-energy particles which CCD detectors
are quite effective at detecting) are recognized by the fact that they are
confined to a single pixel, thus looking quite different from the PSF. How-
ever, occasionally, cosmic rays splatter over several pixels, and can mimic
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stars. If they hit the z band chips, they will thus appear as a z-band only
object, and thus are candidates for high-redshift quasars.

Even in the absence of glitches like this, selecting the very reddest ob-
jects (as measured by the ratio of the fluxes in the z and ¢ bands) will
preferentially pick up the many sigma positive tail of errors in z. That is, if
an object’s intrinsic magnitude in z is 20.2 with an estimated error of 0.1,
a 4-sigma event (which happens a non-negligible amount even with Gaus-
sian statistics, when one has a parent sample of 107 objects!) will make
this appear to be at 19.8 magnitude, and thus much redder than it really
is. Finally, there is an interesting astrophysical contaminant to our red ob-
jects, namely extremely cool stars (brown dwarfs; Leggett et al. 2001), with
surface temperatures of order 1000 K.

With all of these effects acting, we have had to do a tremendous amount
of sifting to find real quasars (Fan et al. 2001b). We made our rejection
of cosmic ray events much more stringent than under normal processing,
throwing out any object that showed any hint of being a cosmic ray. Eye-
balling the remaining images rejected many more candidates. We then ob-
tained follow-up images in z to determine if the object was really there
(many cosmic rays had still survived all this winnowing), and to check the
photometric measurements. Finally, observations at yet longer wavelengths,
at J (1.3 pm) allowed us to distinguish quasars from brown dwarfs. When
all was said and done, we were left with four objects (from a parent sample
of > 107, selected over 1500 square degrees of sky), every one of which
was a high-redshift quasar. Indeed, these four objects are the most distant
quasars known, with redshifts of 5.74, 5.82, 5.99, and 6.28, respectively. For
standard cosmological models, the highest-redshift object is observed only
900 million years after the Big Bang; thus we’re looking back 94% of the
age of the universe. I mention in passing that the z = 6.28 quasar shows
evidence in its spectrum of the Gunn-Peterson (1965) effect, due to neutral
hydrogen in the intergalactic medium between the quasar and us (Becker et
al. 2001; see also Djorgovski et al. 2001). This is evidence that we’re prob-
ing to an epoch before substantial numbers of stars and quasars formed:
stars and quasars emit ultraviolet photons which ionize the intergalactic
medium.

The mere presence of very luminous quasars so soon after the Big Bang
is a challenge to cosmological models, and to statistics as well. One can
estimate a lower limit to the mass of the black hole powering a quasar from
its luminosity (based on an argument originally due to Arthur Eddington,
that says that gravity has to be stronger than radiation pressure to allow
material to fall in); the quasars we’re observing all have inferred black-hole
masses of order a few billion times the mass of the Sun.

However, the universe was very close to homogeneous (to a part in 10°)
soon after the Big Bang, as we observe directly from the smoothness of the
Cosmic Microwave Background. The present-day structure of the universe,
from individual galaxies to the largest walls and voids in the galaxy distri-
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bution, is believed to have grown from these 10~ fluctuations via the pro-
cess of gravitational instability. In modern inflationary models for the Big
Bang, these fluctuations arose from quantum fluctuations, with a Gaussian
distribution by the Central Limit Theorem (Peacock 1999). Astronomers
use this fact to estimate the number of virialized structures of a given scale
at a given redshift, essentially by asking for the fraction of space that is
overdense by a certain amount, given the Gaussian distribution (Press &
Schechter 1974). In these calculations, the high-redshift quasars inevitably
are interpreted as many-sigma fluctuations, which requires that we believe
that the extreme tail of the distribution is accurately Gaussian (cf., the
discussion in Chiu et al. 1998; Willick 2000). It is an interesting statistical
question to ask about the validity of the Central Limit Theorem in pre-
dicting the extreme tail of the distribution under these circumstances (see
the comment by Licia Verde at the end of this paper).

8.4  Describing the manifold of galaxy properties

High-redshift quasars are among the rarest objects in the SDSS database.
But there is a variety of interesting scientific and statistical questions that
arise from the more common objects, such as galaxies. We wish to de-
scribe the properties of galaxies, with the goal of understanding the physi-
cal processes that give rise to the observational properties that they have,
and what the correlations between these properties are. Among the salient
properties of galaxies, one might list their luminosity, color (as measured
in several bands), extent, ellipticity, asymmetry (i.e., deviations from ellip-
tical isophotes), their internal velocity dispersion, their surface brightness
profile, their morphology (relative strength of bulge and disk, strength and
number of spiral arms, etc.), the strength of emission and absorption lines
in the spectra, and the large-scale environment in which these galaxies find
themselves (i.e., are they in clusters? Walls? Filaments? Voids?). This is a
rather complicated multi-parameter space, and we wish to understand the
physical relationships between all these quantities. There is a fair amount
of empirical knowledge in the literature, much of it looking at these various
quantities two at a time: for example, bluer galaxies tend to be of lower sur-
face brightness, and the internal velocity dispersion of an elliptical galaxy is
correlated with its luminosity and size (Djorgovski & Davis 1987; Dressler
et al. 1987; see Bernardi et al. 2001 for a spectacular demonstration of this
with 10,000 SDSS galaxies).

We are still struggling with ways to explore this manifold in its full glory,
however, and most analyses in the literature get no more sophisticated
than using Principle Component Analysis, which will not address questions
such as possible curvature in any relations found between parameters, and
whether galaxies naturally divide up into distinct classes (cf., Kormendy
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& Djorgovski 1989; Strateva et al. 2001). The SDSS data again are very
rich; we already have high-quality spectroscopy for over 10° galaxies with
five-band images, and images alone for literally millions more, and thus
demand more powerful statistical tools to analyze them. This is a field in
which astronomers not only do not have sufficient statistical tools to tackle
these data, but do not yet know what the proper astronomical questions to
ask are; we simply haven’t explored the data in enough detail to formulate
the questions properly.

One of the galaxy attributes mentioned above was their large-scale en-
vironment. We have known for two decades that the galaxy distribution
shows a rich array of structures, the cosmic web (see Rien van de Wey-
gaert’s contribution to these proceedings). We do see correlations between
the nature of galaxies and where they find themselves with respect to this
web; the best-known of these correlations states that elliptical galaxies are
preferentially found in clusters of galaxies (the morphology-density rela-
tion; Dressler 1980). There are also correlations found between the cluster-
ing strength of galaxies and their color, surface brightness, and luminosity
(in the sense that low-luminosity, blue, low surface brightness galaxies are
somewhat more weakly clustered). However, all these attributes are cor-
related with one another. For example, elliptical galaxies tend to be red
and of relatively high surface brightness, thus it isn’t known whether the
fact that blue galaxies are more weakly clustered is just a manifestation of
the morphology-density relation, or whether it has a component indepen-
dent of that. Astronomers have not yet had sufficiently voluminous data
(until now) to address this question, and even now, we struggle with the
somewhat crude statistical techniques we have at our disposal to try to
characterize clustering strength (see the contribution by Vicent Martinez
in these proceedings).

Figure 8.2 shows the distribution of galaxies in the public release of
the SDSS main galaxy sample, showing the now-familiar cosmic web. As
mentioned earlier, astronomers believe that this structure arose from an
initially Gaussian set of fluctuations (that is, the density field on any given
smoothing scale has a Gaussian distribution, and the individual Fourier
modes have random phases). In this picture, one gets a complete statistical
distribution of the density field using two-point statistics, in particular, the
power spectrum (see Zehavi et al. 2001 and Scranton et al. 2001 for first
analyses of the SDSS data along these lines). However, as gravitational
instability continues to work, structures become non-linear, and two-point
statistics are no longer adequate for a full description of the galaxy den-
sity field (Martinez & Saar 2001). We are able to quantify this into the
mildly non-linear regime using perturbation theory. We also have a heuris-
tic model, based on a hierarchical clustering model, to describe the set
of high-order correlation functions, in the very non-linear regime. And we
have a variety of statistical tools, including Minkowski functionals, void
statistics, Voronoi Tessellations, measurements of fractal dimensions, and
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FIGURE 8.2. The distribution of galaxies from the Early Data Release
(Stoughton et al. 2001) of the SDSS galaxy redshift survey. Most of these data
were taken on the Celestial Equator (6 = 0) in a narrow slice, so right ascension
is plotted as the angular coordinate, and redshift as the radial coordinate.
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so on, which attempt to give a handle on various aspects of the non-linear
structures that we see. Unfortunately, the problem of how fully to describe
statistically the beautiful structures that we see still evades us, and we
are still only able to make a qualitative comparison of the observed galaxy
distribution to that predicted in specific cosmological models. This prob-
lem is made more complicated yet by remembering that each of the points
in Figure 8.2 is a galaxy, with its own morphology, luminosity, spectral
properties, etc., and we wish to describe how its physical properties are
related to the large-scale structure in which it is embedded. This is a great
challenge for statisticians and astronomers alike, especially in the face of
datasets like that of the SDSS.
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Commentary by David A. van Dyk?

8.6 Data Mining in Space

Data Mining refers to methods for automatically or semi-automatically
scouring a very large dataset for useful information; see Hand (1998) and
Hand et al. (2000) for good reviews of the statistical perspective. Gener-
ally speaking data mining has a negative connotation to statisticians. The
term conjures up images of automated methods trawling through large
data sets looking for features or patterns with little regard to implicit mul-
tiple testing. Thus, the methods employed have little ability to distinguish
chance fluctuations from real patterns or to uncover underlying structure
in the data. Unfortunately, for my prepared comment, Michael Strauss,
Bob Nichol, and others working on the Sloan Digital Sky Survey (SDSS)
are clearly taking the statistical challenges of this mammoth data anal-
ysis project seriously. They are to be commended for their model-based
approach which is clearly bearing fruit in the form of their impressive as-
tronomical discoveries.

Hand (1998) identifies two basic components that characterize data min-
ing in a wide range of applications, modeling and pattern recognition. Mod-
eling involves looking for large scale structure in the data. In the con-
text of the SDSS, this may include comparing the distribution of stars
with galactic models, empirically characterizing the large scale structure of
the universe, and classification of features (i.e., objects). Although, there
are many standard statistical methods that are designed for such model-
ing tasks, many of the astronomical models which are relevant to SDSS
are highly complex and do not fall into any standard statistical modeling
framework. Nonetheless, statistical model building techniques and highly
structured hierarchical models are potentially useful even in such complex
settings. An example which outlines a model for the large scale structure
of the universe is described below. The approach the SDSS scientists take
to classification is to use model-based classification algorithms (e.g., fitting
finite mixture models using the EM algorithm; Uribe et al. this volume).
Such methods are useful not only in their ability to classify objects but also
in their model-based approach which is designed to shed light on the mech-
anisms and structure underlying the classification. Again the SDSS group is
to be commended for there emphasis on fast computational methods (e.g.,
kd-trees; see Nichol, this volume) that do not sacrifice the model-based
methods.

Searching for local features or patterns in the data, i.e., feature detection,
is the second standard task in data mining. This may include searching for

2Department of Statistics, Harvard University
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faint objects, anomalous objects, or clusters (e.g., of galaxies). This can be
an especially challenging task owing to errors in the data (e.g., contamina-
tion by background, cosmic events, and asteroids as well as measurement
and data recording errors) and the inherent multiple testing problem. As
described by Strauss and Nichol (both in this volume) the SDSS team is
both taking great care in cleaning the data and developing new statisti-
cal methodology (the False Discovery Rate Procedure) for handling the
multiple testing problem.

8.7 Modeling the Large-Scale Structure of the
Universe

In this section I outline a model for the large-scale distribution of galax-
ies in the universe. This model is by no means meant to be a finished
product—it is based on a most rudimentary understanding of the cosmic
structure. Rather, I hope to illustrate how highly structured hierarchical
models (van Dyk, this volume) can be used to model complex structure and
the incompleteness in the observed data. Such a model can be fit directly to
the observed data which leads to direct estimates of parameter uncertain-
ties and standard methods for model adjustment and improvement (e.g.,
Protassov et al. 2002).

In the first levels of the model, we describe the large-scale structure itself.
This could be done in a variety of ways (e.g, using Voroni tessellations as
described by van de Weygaert and Icke, this volume). As a first step, three
dimensional data visualization techniques (e.g., Cook, this volume) should
improve our understanding of the structure and perhaps answer questions
such as whether nodes are connected by filaments or walls (Strauss, this
volume). We use standard statistical models that aim to describe two di-
mensional slices and projections of the galactic distribution.

LEVEL 1: Nodes and Filaments. We might model the nodes as a three
dimensional spatially inhomogeneous Poisson process, the nodes be-
coming more sparse with distance. Given the node locations, filaments
connect pairs of nodes with the probability of a connecting filament
decreasing as the distance between nodes increases.

LEVEL 2: Galactic Locations Along Filaments. Galaxies are placed along
the filaments according to a second inhomogeneous Poisson process
with intensity increasing with proximity to the nodes.

LevVEL 3: Distance and Direction from Filaments. Given the location along
the filament the center of the galaxies are distributed according to a
bivariate Gaussian or Lorentzian distribution.
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Additional modeling of the distribution of galaxy type or other galactic
specifications can easily be added to such a model.
The final two levels of the model account for the data collection process.

LeEVEL 4: Stochastic Censoring of Data. The likelihood that a particular
galaxy is observed depends on its distance, direction (e.g., relative
to our own galaxy), and magnitude as well as observation patterns.
Such censoring can be modeled to account for the missing data.

LEVEL 5: Errors in Variables. The distance to galaxies is generally mea-
sured with error bars which can easily be taken into account by such
a model. If the distance is not observed (i.e., the spectrum is not
observed/analyzed) the observed direction can still be accounted for
by such a model.

Such a hierarchical model can be fit in a Bayesian paradigm via Markov
chain Monte Carlo. Although this would be a demanding computational
task the rewards could be great. Typically such complex systems are mod-
eled using computer simulations which try to mimic patterns in the ob-
served data. Unfortunately, error bars and model improvement techniques
are not generally forthcoming. Fitting a model to the data in Bayesian
setting yields not only (model-dependent) error bars on fitted parameters
but also ready methods to check the model which offer advice as to how to
improve the model which can then be refitted and rechecked.
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Challenges for Cluster Analysis
in a Virtual Observatory

S. G. Djorgovski!, R. Brunner, A. Mahabal,
R. Williams, R. Granat and P. Stolorz

ABSTRACT There has been an unprecedented and continuing growth in
the volume, quality, and complexity of astronomical data sets over the past
few years, mainly through large digital sky surveys. Virtual Observatory
(VO) concept represents a scientific and technological framework needed
to cope with this data flood. We review some of the applied statistics and
computing challenges posed by the analysis of large and complex data sets
expected in the VO-based research. The challenges are driven both by the
size and the complexity of the data sets (billions of data vectors in pa-
rameter spaces of tens or hundreds of dimensions), by the heterogeneity of
the data and measurement errors, the selection effects and censored data,
and by the intrinsic clustering properties (functional form, topology) of the
data distribution in the parameter space of observed attributes.

Examples of scientific questions one may wish to address include: objective
determination of the numbers of object classes present in the data, and the
membership probabilities for each source; searches for unusual, rare, or even
new types of objects and phenomena; discovery of physically interesting
multivariate correlations which may be present in some of the clusters; etc.
This paper is followed by a commentary by statistician Dianne Cook.

9.1 Towards a Virtual Observatory

Observational astronomy is undergoing a paradigm shift. This revolution-
ary change is driven by the enormous technological advances in telescopes
and detectors (e.g., large digital arrays), the exponential increase in com-
puting capabilities, and the fundamental changes in the observing strategies
used to gather the data. In the past, the usual mode of observational astron-
omy was that of a single astronomer or small group performing observations
of a small number of objects (from single objects and up to some hundreds
of objects). This is now changing: large digital sky surveys over a range of
wavelengths, from radio to x-rays, from space and ground are becoming the

1Palomar Observatory, Caltech
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dominant source of observational data. Data-mining of the resulting digital
sky archives is becoming a major venue of the observational astronomy. The
optimal use of the large ground-based telescopes and space observatories is
now as a follow-up of sources selected from large sky surveys. This trend is
bound to continue, as the data volumes and data complexity increase. The
very nature of the observational astronomy is thus changing rapidly. See,
e.g., Szalay & Gray (2001) for a review.

The existing surveys already contain many Terabytes of data, from which
catalogs of many millions, or even billions of objects are extracted. For each
object, some tens or even hundred parameters are measured, most (but
not all) with quantifiable errors. Forthcoming projects and sky surveys are
expected to deliver data volumes measured in Petabytes. For example, a
major new area for exploration will be in the time domain, with a number
of ongoing or forthcoming surveys aiming to map large portions of the sky
in a repeated fashion, down to very faint flux levels. These synoptic surveys
will be generating Petabytes of data, and they will open a whole new field
of searches for variable astronomical objects.

This richness of information is hard to translate into a derived knowl-
edge and physical understanding. Questions abound: How do we explore
datasets comprising hundreds of millions or billions of objects each with
dozens of attributes? How do we objectively classify the detected sources
to isolate subpopulations of astrophysical interest? How do we identify cor-
relations and anomalies within the data sets? How do we use the data
to constrain astrophysical interpretation, which often involve highly non-
linear parametric functions derived from fields such as physical cosmology,
stellar structure, or atomic physics? How do we match these complex data
sets with equally complex numerical simulations, and how do we evaluate
the performance of such models?

The key task is now to enable an efficient and complete scientific ex-
ploitation of these enormous data sets. The problems we face are inherently
statistical in nature. Similar situations exist in many other fields of science
and applied technology today. This poses many technical and conceptual
challenges, but it may lead to a whole new methodology of doing science
in the information-rich era.

In order to cope with this data flood, the astronomical community started
a grassroots initiative, the National (and ultimately Global) Virtual Ob-
servatory (NVO). The NVO would federate numerous large digital sky
archives, provide the information infrastructure and standards for inges-
tion of new data and surveys, and develop the computational and analysis
tools with which to explore these vast data volumes. Recognising the ur-
gent need, the National Academy of Science Astronomy and Astrophysics
Survey Committee, in its new decadal survey Astronomy and Astrophysics
in the New Millennium (McKee, Taylor, et al. 2001) recommends, as a first
priority, the establishment of a National Virtual Observatory (NVO).

The NVO would provide new opportunities for scientific discovery that
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were unimaginable just a few years ago. Entirely new and unexpected scien-
tific results of major significance will emerge from the combined use of the
resulting datasets, science that would not be possible from such sets used
singly. In the words of a “white paper” 2 prepared by an interim steering
group the NVO will serve as an engine of discovery for astronomy.

Implementation of the NVO involves significant technical challenges on
many fronts, and in particular the data analysis. Whereas some of the
NVO science would be done in the image (pixels) domain, and some in the
interaction between the image and catalog domains, it is anticipated that
much of the science (at least initially) will be done purely in the catalog
domain of individual or federated sky surveys. A typical data set may be
a catalog of ~ 10% — 10° sources with ~ 10? measured attributes each, i.e.,
a set of ~ 10° data vectors in a ~ 100-dimensional parameter space.

Dealing with the analysis of such data sets is obviously an inherently
multivariate statistical problem. Complications abound: parameter corre-
lations will exist; observational limits (selection effects) will generally have
a complex geometry; for some of the sources some of the measured param-
eters may be only upper or lower limits; the measurement errors may vary
widely; some of the parameters will be continuous, and some discrete, or
even without a well-defined metric; etc. In other words, analysis of the NVO
data sets will present many challenging problems for multivariate statistics,
and the resulting astronomical conclusions will be strongly affected by the
correct application of statistical tools.

We review some important statistical challenges raised by the NVO.
These include the classification and extraction of desired subpopulations,
understanding the relationships between observed properties within these
subpopulations, and linking the astronomical data to astrophysical models.
This may require a generation of new methods in data mining, multivariate
clustering and analysis, nonparametric and semiparametric estimation and
model and hypothesis testing.

9.2 Clustering analysis challenges in a VO

The exploration of observable parameter spaces, created by combining of
large sky surveys over a range of wavelengths, will be one of the chief scien-
tific purposes of a VO. This includes an exciting possibility of discovering
some previously unknown types of astronomical objects or phenomena (see
Djorgovski et al. 2001a, 2001b, 2001c¢ for reviews).

A complete observable parameter space axes include quantities such as
the object coordinates, velocities or redshifts, sometimes proper motions,

2Available at http://www.arXiv.org/abs/astro-ph/0108115, and also published in
Brunner, Djorgovski, & Szalay (2001), p. 353.
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fluxes at a range of wavelength (i.e., spectra; imaging in a set of band-
passes can be considered a form of a very low resolution spectroscopy), sur-
face brightness and image morphological parameters for resolved sources,
variability (or, more broadly, power spectra) over a range of time scales,
etc. Any given sky survey samples only a small portion of this grand
observable parameter space, and is subject to its own selection and mea-
surement limits, e.g., limiting fluxes, surface brightness, angular resolution,
spectroscopic resolution, sampling and baseline for variability if multiple
epoch observations are obtained, etc.

A major exploration technique envisioned for the NVO will be unsu-
pervised clustering of data vectors in some parameter space of observed
properties of detected sources. Aside from the computational challenges
with large numbers of data vectors and a large dimensionality, this poses
some highly non-trivial statistical problems. The problems are driven not
just by the size of the data sets, but mainly (in the statistical context) by
the heterogeneity and intrinsic complexity of the data.

A typical VO data set may consist of ~ 10° data vectors in ~ 102 di-
mensions. These are measured source attributes, including positions, fluxes
in different bandpasses, morphology quantified through different moments
of light distribution and other suitably constructed parameters, etc. Some
of the parameters would be primary measurements, and others may be de-
rived attributes, such as the star-galaxy classification, some may be “flags”
rather than numbers, some would have error-bars associated with them, and
some would not, and the error-bars may be functions of some of the pa-
rameters, e.g., fluxes. Some measurements would be present only as upper
or lower limits. Some would be affected by “glitches” due to instrumental
problems, and if a data set consists of a merger of two or more surveys, e.g.,
cross-matched optical, infrared, and radio (and this would be a common
scenario within a VO), then some sources would be misidentified, and thus
represent erroneous combinations of subsets of data dimensions. Surveys
would be also affected by selection effects operating explicitly on some pa-
rameters (e.g., coordinate ranges, flux limits, etc.), but also mapping onto
some other data dimensions through correlations of these properties; some
selection effects may be unknown.

Physically, the data set may consist of a number of distinct classes of ob-
jects, such as stars (including a range of spectral types), galaxies (including
a range of Hubble types or morphologies), quasars, etc. Within each ob-
ject class or subclass, some of the physical properties may be correlated,
and some of these correlations may be already known and some as yet un-
known, and their discovery would be an important scientific result by itself.
Some of the correlations may be spurious (e.g., driven by sample selection
effects), or simply uninteresting (e.g., objects brighter in one optical band-
pass will tend to be brighter in another optical bandpass). Correlations of
independently measured physical parameters represent a reduction of the
statistical dimensionality in a multidimensional data parameter space, and
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their discovery may be an integral part of the clustering analysis.
Typical scientific questions posed may be:

e How many statistically distinct classes of objects are in this data

set, and which objects are to be assigned to which class, along with
association probabilities?

Are there any previously unknown classes of objects, i.e., statisti-
cally significant “clouds” in the parameter space distinct from the
“common” types of objects (e.g., normal stars or galaxies)? An ap-
plication may be separating quasars from otherwise morphologically
indistinguishable normal stars.

Are there rare outliers, i.e., individual objects with a low probability
of belonging to any one of the dominant classes? Examples may in-
clude known, bur relatively rare types of objects such as high-redshift
quasars, brown dwarfs, etc., but also previously unknown types of ob-
jects; finding any such would be a significant discovery.

Are there interesting (in general, multivariate) correlations among
the properties of objects in any given class, and what are the optimal
analytical expressions of such correlations? An example may be the
“Fundamental Plane” of elliptical galaxies, a set of bivariate correla-
tions obeyed by this Hubble type, but no other types of galaxies (see,
e.g., Djorgovski 1992, 1993, and Djorgovski et al. 1995, for reviews).

The complications include the following:

1.

Construction of these complex data sets, especially if multiple sky
surveys, catalogs, or archives are being federated (an essential VO
activity) will inevitably be imperfect, posing quality control prob-
lems which must be discovered and solved first, before the scientific
exploration starts. Sources may be mismatched, there will be some
gross errors or instrumental glitches within the data, subtle system-
atic calibration errors may affect pieces of the large data sets, etc.

. The object classes form multivariate “clouds” in the parameter space,

but these clouds in general need not be Gaussian: some may have a
power-law or exponential tails in some or all of the dimensions, and
some may have sharp cutoffs, etc.

. The clouds may be well separated in some of the dimensions, but

not in others. How can we objectively decide which dimensions are
irrelevant, and which ones are useful?

The topology of clustering may not be simple: there may be clusters
within clusters, holes in the data distribution (negative clusters?),
multiply-connected clusters, etc.
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5. All of this has to take into the account the heterogeneity of measure-
ments, censored data, incompleteness, etc.

The majority of the technical and methodological challenges in this quest
derive from the expected heterogeneity and intrinsic complexity of the data,
including treatment of upper an lower limits, missing data, selection effects
and data censoring, etc. These issues affect the proper statistical description
of the data, which then must be reflected in the clustering algorithms.

Related to this are the problems arising from the data modeling. The
commonly used mixture-modeling assumption of clusters represented as
multivariate Gaussian clouds is rarely a good descriptor of the reality.
Clusters may have non-Gaussian shapes, e.g., exponential or power-law
tails, asymmetries, sharp cutoffs, etc. This becomes a critical issue in eval-
uating the membership probabilities in partly overlapping clusters, or in
a search for outliers (anomalous events) in the tails of the distributions.
In general, the proper functional forms for the modeling of clusters are
not known a priori, and must be discovered from the data. Applications
of non-parametric techniques may be essential here. A related, very inter-
esting problem is posed by the topology of clustering, with a possibility
of multiply-connected clusters or gaps in the data (i.e., negative clusters
embedded within the positive ones), hierarchical or multi-scale clustering
(i.e., clusters embedded within the clusters) etc.

The clusters may be well separated in some of the dimensions, but not
in others. How can we objectively decide which dimensions are irrelevant,
and which ones are useful? An automated and objective rejection of the
“useless” dimensions, perhaps through some statistically defined entropy
criterion, could greatly simplify and speed up the clustering analysis.

Once the data are partitioned into distinct clusters, their analysis and
interpretation starts. One question is, are there interesting (in general, mul-
tivariate) correlations among the properties of objects in any given cluster?
Such correlations may reflect interesting new astrophysics (e.g., the stellar
main sequence, the Tully-Fisher and Fundamental Plane correlations for
galaxies, etc.), but at the same time complicate the statistical interpreta-
tion of the clustering. They would be in general restricted to a subset of
the dimensions, and not present in the others. How do we identify all of
the interesting correlations, and discriminate against the “uninteresting”
observables?

Here we describe some of our experiments to date, and outline some
possible avenues for future exploration.

9.3 Examples and some possible approaches

Separation of the data into different types of objects, be it known or un-
known in nature, can be approached as a problem in automated classifi-
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cation or clustering analysis. This is a part of a more general and rapidly
growing field of Data Mining (DM) and Knowledge Discovery in Databases
(KDD). We see here great opportunities for collaborations between as-
tronomers and computer scientists and statisticians. For an overview of
some of the issues and methods, see, e.g., Fayyad et al. (1996b) .

If applied in the catalog domain, the data can be viewed as a set of n
points or vectors in an m-dimensional parameter space, where n can be in
the range of many millions or even billions, and m in the range of a few tens
to hundreds. The data may be clustered in k statistically distinct classes,
which could be modeled, e.g., as multivariate Gaussian clouds, and which
hopefully correspond to physically distinct classes of objects (e.g., stars,
galaxies, quasars, etc.). This is schematically illustrated in Figure 1.

If the number of object classes k is known (or declared) a priori, and
training data set of representative objects is available, the problem reduces
to supervised classification, where tools such as Artificial Neural Nets or
Decision Trees can be used. This is now commonly done for star-galaxy
separation in sky surveys (e.g., Odewahn et al. 1992, or Weir et al. 1995).
Searches for known types of objects with predictable signatures in the pa-
rameter space (e.g., high-z quasars) can be also cast in this way.

However, a more interesting and less biased approach is where the num-
ber of classes k is not known, and it has to be derived from the data
themselves. The problem of unsupervised classification is to determine this
number in some objective and statistically sound manner, and then to as-
sociate class membership probabilities for all objects. Majority of objects
may fall into a small number of classes, e.g., normal stars or galaxies.
What is of special interest are objects which belong to much less populated
clusters, or even individual outliers with low membership probabilities for
any major class. Some initial experiments with unsupervised clustering al-
gorithms in the astronomical context include, e.g., Goebel et al. (1989),
Weir et al. (1995), de Carvalho et al. (1995), and Yoo et al. (1996), but a
full-scale application to major digital sky surveys yet remains to be done.
Intriguing applications which addressed the issue of how many statistically
distinct classes of GRBs are there (Mukherjee et al. 1998, Rogier et al. 2000,
Hakkila et al. 2000).

In many situations, scientifically informed input is needed in designing
the clustering experiments. Some observed parameters may have a highly
significant, large dynamical range, dominate the sample variance, and nat-
urally invite division into clusters along the corresponding parameter axes;
yet they may be completely irrelevant or uninteresting scientifically. For
example, if one wishes to classify sources of the basic of their broad-band
spectral energy distributions (or to search for objects with unusual spec-
tra), the mean flux itself is not important, as it mainly reflects the distance;
coordinates on the sky may be unimportant (unless one specifically looks
for a spatial clustering); etc. Thus, a clustering algorithm may divide the
data set along one or more of such axes, and completely miss the really
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A Generic Machine-Assisted Discovery Problem:
Data Mapping and a Search for Outliers

p2

FIGURE 9.1. A schematic illustration of the problem of clustering analysis in
some parameter space. In this example, there are 3 dimensions, pl, p2, and p3
(e.g., some flux ratios or morphological parameters), and most of the data points
belong to 3 major clusters, denoted dcl, dc2, and de3 (e.g., stars, galaxies, and or-
dinary quasars). One approach is to isolate these major classes of objects for some
statistical studies, e.g., stars as probes of the Galactic structure, or galaxies as
probes of the large scale structure of the universe, and filter out the “anomalous”
objects. A complementary view is to look for other, less populated, but statis-
tically significant, distinct clusters of data points, or even individual outliers, as
possible examples of rare or unknown types of objects. Another possibility is to
look for holes (negative clusters) within the major clusters, as they may point to
some interesting physical phenomenon — or to a problem with the data.
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scientifically interesting partitions, e.g., according to the colors of objects.

One method we have been experimenting with (applied on the various
data sets derived from DPOSS) is the Expectation Maximisation (EM)
technique, with the Monte Carlo Cross Validation (MCCV) as the way of
determining the maximum likelihood number of the clusters.

This may be a computationally very expensive problem. For the simple
K-means algorithm, the computing cost scales as K x N x I x D, where
K is the number of clusters chosen a priori, N is the number of data vectors
(detected objects), I is the number of iterations, and D is the number of
data dimensions (measured parameters per object). For the more powerful
Expectation Maximisation technique, the cost scales as K x N x I x D2,
and again one must decide a priori on the value of K. If this number has
to be determined intrinsically from the data, e.g., with the Monte Carlo
Cross Validation method, the cost scales as M x K2, x N x I x D?
where M is the number of Monte Carlo trials/partitions, and K4, is the
maximum number of clusters tried. Even with the typical numbers for the
existing large digital sky surveys (N ~ 10% — 10°, D ~ 10 — 100) this
is already reaching in the realm of Terascale computing, especially in the
context of an interactive and iterative application of these analysis tools.
Development of faster and smarter algorithms is clearly a priority.

One technique which can simplify the problem is the multi-resolution
clustering. In this regime, expensive parameters to estimate, such as the
number of classes and the initial broad clustering are quickly estimated
using traditional techniques, and then one could proceed to refine the
model locally and globally by iterating until some objective statistical
(e.g., Bayesian) criterion is satisfied.

One can also use intelligent sampling methods where one forms “proto-
types”of the case vectors and thus reduces the number of cases to process.
Prototypes can be determined from simple algorithms to get a rough esti-
mate, and then refined using more sophisticated techniques. A clustering
algorithm can operate in prototype space. The clusters found can later re-
fined by locally replacing each prototype by its constituent population and
reanalyzing the cluster.

Techniques for dimensionality reduction, including principal component
analysis and others can be used as preprocessing techniques to automati-
cally derive the dimensions that contain most of the relevant information.

9.4 Concluding comments

Given this computational and statistical complexity, blind applications of
the commonly used (commercial or home-brewed) clustering algorithms
could produce some seriously misleading or simply wrong results. The clus-
tering methodology must be robust enough to cope with these problems,
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and the outcome of the analysis must have a solid statistical foundation.

In our experience, design and application of clustering algorithms must
involve close, working collaboration between astronomers and computer
scientists and statisticians. There are too many unspoken assumptions,
historical background knowledge specific to the given discipline, and opaque
jargon; constant communication and interchange of ideas are essential.

The entire issue of discovery and interpretation of multivariate correla-
tions in these massive data sets has not really been addressed so far. Such
correlations may contain essential clues about the physics and the origins
of various types of astronomical objects.

Effective and powerful data visualization, applied in the parameter space
itself, is another essential part of the interactive clustering analysis. Good
visualisation tools are also critical for the interpretation of results, espe-
cially in an iterative environment. While clustering algorithms can assist in
the partitioning of the data space, and can draw the attention to anoma-
lous objects, ultimately a scientist guides the experiment and draws the
conclusions. It is very hard for a human mind to really visualise clustering
or correlations in more than a few dimensions, and yet both interesting
clusters and multivariate correlations with statistical dimensionality > 10
or even higher are likely to exits, and possibly lead to some crucial new
astrophysical insights. Perhaps the right approach would be to have a good
visualisation embedded as a part of an interactive and iterative clustering
analysis.

Another key issue is interoperability and reusability of algorithms and
models in a wide variety of problems posed by a rich data environment
such as federated digital sky surveys in a VO. Implementation of clustering
analysis algorithms must be done with this in mind.

Finally, scientific verification and evaluation, testing, and follow-up on
any of the newly discovered classes of objects, physical clusters discovered
by these methods, and other astrophysical analysis of the results is essential
in order to demonstrate the actual usefulness of these techniques for a VO or
other applications. Clustering analysis can be seen as a prelude to the more
traditional type of astronomical studies, as a way of selecting of interesting
objects of samples, and hopefully it can lead to advances in statistics and
applied computer science as well.
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Commentary by Dianne Cook?®

This paper provides a detailed description of the development of a vir-
tual observatory. The objective is to build an archive that coordinates large
quantities of digital sky survey data from a variety of sources, and ul-
timately make new discoveries that improve our society’s understanding
about the universe.

The paper raises several questions from the perspective of a non-astron-
omer: Is there any data currently available? Where should one look to
monitor the activity of the National Virtual Observatory?

A main focus of the paper is outlining the tasks for cluster analysis in
extracting information from the virtual observatory data. My commentary
focused on this aspect of the paper.

As it is commonly practiced, cluster analysis is a fuzzy science, that is of-
ten thought to magically extract structure. Cluster analysis is a collection of
algorithms that group observations into similarity groups. All depend on an
interpoint (intercluster) distance metric that defines the proximity of two
observations (clusters). The way observations are then grouped together
varies from algorithm to algorithm: hierarchical methods work sequentially
through from closest neighbors to most distant; k-means requires an initial
choice of k and then iteratively assigns observations to the nearest mean,
and then recalculates the means; model-based hierarchical clustering over-
lays a probability distribution on the data and then estimates parameters
to the distribution. Many types of cross-validation methods are available
to ascertain the “best” results. But ultimately they may all produce inade-
quate results. The issue underlying the fuzziness is that the term “cluster”
is itself a fuzzy concept. Ideally the analyst has a precise definition of “clus-
ter”. In practice, this information needs to be extracted from the data too,
and the analyst begins a cluster analysis with little idea of what is being
sought.

3Department of Statistics, Iowa State University
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FIGURE 9.2. Schematic diagram of the crabs data.

Here is a simple example of the complications with clustering using Aus-
tralian crabs data. There are 5 variables and 200 observations, and 4 real
clusters in the data corresponding to males and females in two species. The
5 variables are strongly linearly dependent, and the cluster structure lies
parallel to the linear dependency. And the clusters corresponding to the
sexes are joined at the smallest values (Figure 9.2). The cluster structure
can be intuitively modeled using 4 pencils, where pairs of the pencils are
joined at one end, then diverge from each other at the other end. In Fig-
ure 53.1 the top left plot shows a pairwise plot of two variables (CL vs
RW) where the sex separation can be seen. The right plot shows a tour
projection where the 4 cluster can be seen reasonably distinctly, rather
like looking down the “barrels of the pencil clusters”. Assuming that the
variables are standardized to have zero mean and unity variance, virtu-
ally all cluster algorithms will carve data up into clusters along the line
of correlation (bottom left plot). Hence if we were to use cross-validation
or comparison of results between several algorithms we might mistakenly
believe that we have produced a consistent, and useful result. But it can-
not be further from the truth. Now, an astute analyst might expect that
model-based clustering using equal elliptical variance-covariance structure
might extract the 4 real clusters, but alas it also fails (bottom right plot).
The BIC criterion for model-based clustering does indeed suggest equal el-
liptical variance-covariance but the number of cluster is predicted to be 3,
not, 4.

This data is a strong candidate for clustering in the principal compo-
nents space. And indeed the results are somewhat better. Figure 9.4 shows
the true groups (left) and the results from hierarchical clustering in the

[T

principal components (right). The sexes of one species of crabs (“x” and
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“+7) gets seriously confused but generally clusters corresponding to the
two species are extracted and the sexes of one species are reasonably well-
extracted. The cluster algorithm was run in the space of the first 3 principal
components. The first 3 principal components capture the variation and
the cluster structure due to the species and sexes quite adequately: the 4
“joined-pencils” shape is visible in the first 3 principal components rather
than the more awkward 5D space of the original data. This somewhat un-
usual.
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FIGURE 9.3. Clustering difficulties in even a simple data set.

In general, reducing data to a small number of principal components can
throw the cluster structure to the wind. Often the cluster structure can
be found in the lower principal components. The reason is that principal
components is a linear structure extractor, but cluster structure is often
non-linear. This is an observation made by Donnell et al (1994). So beware
of using principal components analysis as a dimension reduction technique.

Some additional background to clustering with the k-means can be found
in Tarpey et al (1995). In this paper is a careful study of the way the
algorithm works under several data distribution assumptions. A interest-
ing clustering method that is not well-known can be found in Osbourne
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et al (1995). Ultimately good cluster analysis benefits from a heavy use of
graphics and a good subject matter knowledge. We used the software ggobi
(www.ggobi.org) to generate the plots in this paper. GGobi includes tour
methods which help delineate the shape of clusters in high-dimensional Eu-
clidean space. Cook et al (1995) contains another cluster analysis example
on 7D particle physics data. This data lies in a neat geometric shape that
can be extracted using tour methods.
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FIGURE 9.4. Clustering in principal components.

In summary, my challenge to astronomers is this: How do you quan-
titatively define what is interesting in astronomical data? When you say
“outlier” what do you mean mathematically? When you say “cluster” what
do you mean mathematically?
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Statistics of Galaxy Clustering

Vicent J. Martinez! and Enn Saar

ABSTRACT In this introductory talk we will establish connections be-
tween the statistical analysis of galaxy clustering in cosmology and recent
work in mainstream spatial statistics. The lecture will review the meth-
ods of spatial statistics used by both sets of scholars, having in mind the
cross-fertilizing purpose of the meeting series. Special topics will be: de-
scription of the galaxy samples, selection effects and biases, correlation
functions, nearest neighbor distances, void probability functions, Fourier
analysis, and structure statistics.

This paper is followed by a commentary by Rien van de Weygaert.

10.1 Introduction

One of the most important motivations of these series of conferences is to
promote vigorous interaction between statisticians and astronomers. The
organizers merit our admiration for bringing together such a stellar cast of
colleagues from both fields. In this third edition, one of the central subjects
is cosmology, and in particular, statistical analysis of the large-scale struc-
ture in the universe. There is a reason for that — the rapid increase of the
amount and quality of the available observational data on the galaxy dis-
tribution (also on clusters of galaxies and quasars) and on the temperature
fluctuations of the microwave background radiation.

These are the two fossils of the early universe on which cosmology, a sci-
ence driven by observations, relies. Here we will focus on one of them — the
galaxy distribution. First we briefly review the redshift surveys, how they
are built and how to extract statistically analyzable samples from them,
considering selection effects and biases. Most of the statistical analysis of
the galaxy distribution are based on second order methods (correlation
functions and power spectra). We comment them, providing the connection
between statistics and estimators used in cosmology and in spatial statis-
tics. Special attention is devoted to the analysis of clustering in Fourier
space, with new techniques for estimating the power spectrum, which are
becoming increasingly popular in cosmology. We show also the results of

LObservatori Astronomic, Universitat de Valéncia
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applying these second-order methods to recent galaxy redshift surveys.

Fractal analysis has become very popular as a consequence of the scale-
invariance of the galaxy distribution at small scales, reflected in the power-
law shape of the two-point correlation function. We discuss here some of
these methods and the results of their application to the observations,
supporting a gradual transition from a small-scale fractal regime to large-
scale homogeneity. The concept of lacunarity is illustrated with some detail.

We end by briefly reviewing some of the alternative measures of point
statistics and structure functions applied thus far to the galaxy distribu-
tion: void probability functions, counts-in-cells, nearest neighbor distances,
genus, and Minkowski functionals.

10.2 Cosmological datasets

Cosmological datasets differ in several respects from those usually studied
in spatial statistics. The point sets in cosmology (galaxy and cluster sur-
veys) bear the imprint of the observational methods used to obtain them.

The main difference is the systematically variable intensity (mean den-
sity) of cosmological surveys. These surveys are usually magnitude-limited,
meaning that all objects, which are brighter than a pre-determined limit,
are observed in a selected region of the sky. This limit is mainly deter-
mined by the telescope and other instruments used for the program. Ap-
parent magnitude, used to describe the limit, is a logarithmic measure of
the observed radiation flux.

It is usually assumed that galaxies at all distances have the same (uni-
versal) luminosity distribution function. This assumption has been tested
and found to be in satisfying accordance with observations. As the observed
flux from a galaxy is inversely proportional to the square of its distance, we
can see at larger distances only a bright fraction of all galaxies. This leads
directly to the mean density of galaxies that depends on their distance from
us 7.

This behaviour is quantified by a selection function ¢(r), which is usu-
ally found by estimating first the luminosity distribution of galaxies (the
luminosity function).

One can also select a distance limit, find the minimum luminosity of
a galaxy, which can yet be seen at that distance, and ignore all galaxies
that are less luminous. Such samples are called volume-limited. They are
used for some special studies (typically for counts-in-cells), but the loss of
hard-earned information is enormous. The number of galaxies in volume-
limited samples is several times smaller than in the parent magnitude-
limited samples. This will also increase the shot (discreteness) noise.

In addition to the radial selection function ¢(r), galaxy samples also are
frequently subject to angular selection. This is due to our position in the
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Galaxy — we are located in a dusty plane of the Galaxy, and the window in
which we see the Universe, also is dusty. This dust absorbs part of galaxies’
light, and makes the real brightness limit of a survey dependent on the
amount of dust in a particular line-of-sight. This effect has been described
by a ¢(b) ~ (sinb)~! law (b is the galactic latitude); in reality the dust
absorption in the Galaxy is rather inhomogeneous. There are good maps of
the amount of Galactic dust in the sky, the latest maps have been obtained
using the COBE and IRAS satellite data [Schlegel et al. 1998].

Edge problems, which usually affect estimators in spatial statistics, also
are different for cosmological samples. The decrease of the mean density
towards the sample borders alleviates these problems. Of course, if we se-
lect a volume-limited sample, we select also all these troubles (and larger
shot noise). From the other side, edge effects are made more prominent by
the usual observing strategies, when surveys are conducted in well-defined
regions in the sky. Thus, edge problems are only partly alleviated; maybe
it will pay to taper our samples at the side borders, too?

Some of the cosmological surveys have naturally soft borders. These are
the all-sky surveys; the best known is the IRAS infrared survey, dust is
almost transparent in infrared light. The corresponding redshift survey is
the PSCz survey, which covers about 85% of the sky [Saunders et al. 2000].
A special follow-up survey is in progress to fill in the remaining Galactic
Zone-of-Avoidance region, and meanwhile numerical methods have been
developed to interpolate the structures seen in the survey into the gap
[Schmoldt et al. 1999, Saunders & Ballinger 2000].

Another peculiarity of galaxy surveys is that we can measure exactly only
the direction to the galaxy (its position in the sky), but not its distance.
We measure the radial velocity v, (or redshift z = v, /¢, ¢ is the velocity of
light) of a galaxy, which is a sum of the Hubble expansion, proportional to
the distance d, and the dynamical velocity v, of the galaxy, v, = Hod+ vp.
Thus we are differentiating between redshift space, if the distances simply
are determined as d = v,/Hy, and real space. The real space positions
of galaxies could be calculated if we exactly knew the peculiar velocities
of galaxies; we do not. The velocity distortions can be severe; well-known
features of redshift space are fingers-of-God, elongated structures that are
caused by a large radial velocity dispersion in massive clusters of galaxies.
The velocity distortions expand a cluster in redshift space in the radial
direction five-ten times.

For large-scale structures the situation is different, redshift distortions
compress them. This is due to the continuing gravitational growth of struc-
tures. These differences can best be seen by comparing the results of nu-
merical simulations, where we know also the real-space situation, in redshift
space and in real space.

The last specific feature of the cosmology datasets is their size. Up to
recent years most of the datasets have been rather small, of the order of
103 objects; exceptions exist, but these are recent. Such a small number of
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points gives a very sparse coverage of three-dimensional survey volumes,
and shot noise has been a severe problem.

This situation is about to change, swinging to the other extreme; the
membership of new redshift surveys already is measured in terms of 10°
(160,000 for the 2dF survey, quarter of a million planned) and million-
galaxy surveys are on their way (the Sloan Survey). More information about
these surveys can be found in their Web pages: http: //www.mso.anuv.edu.au/
2dFGRS/ for the 2dF survey and hittp://www.sdss.org/ for the Sloan sur-
vey. This huge amount of data will force us to change the statistical meth-
ods we use. Nevertheless, the deepest surveys (e.g., distant galaxy cluster
surveys) will always be sparse, so discovering small signals from shot-noise
dominated data will remain a necessary art.

10.3 Correlation analysis

There are several related quantities that are second-order characteristics
used to quantify clustering of the galaxy distribution in real or redshift
space. The most popular one in cosmology is the two-point correlation
function, &(r). The infinitesimal interpretation of this quantity reads as
follows:

dPig = 221 + &(r)]dVidVa (10.1)

is the joint probability that in each one of the two infinitesimal volumes
dVy and dV;, with separation vector r, lies a galaxy. Here 7 is the mean
number density (intensity). Assuming that the galaxy distribution is a ho-
mogeneous (invariant under translations) and isotropic (invariant under
rotations) point process, this probability depends only on r = |r|. In spa-
tial statistics, other functions related with £(r) are commonly used:

Xo(r) =n%€(r) +1,  g(r)=1+&(r),  T(r)=n((r) +1), (10.2)

where A2(r) is the second-order intensity function, g(r) is the pair cor-
relation function, also called the radial distribution function or structure
function, and I'(r) is the conditional density proposed by Pietronero (1987).

Different estimators of £(r) have been proposed so far in the litera-
ture, both in cosmology and in spatial statistics. The main differences
are in correction for edge effects. Comparison of their performance can
be found in several papers [Pons-Borderia et al. 1999, Kerscher et al. 2000,
Stoyan & Stoyan 2000]. There is clear evidence that £(r) is well described
by a power-law at scales 0.1 < r < 10h~' Mpc where h is the Hubble
constant in units of 100 km s~ Mpc~1:

&) = (—)
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with v ~ 1.8 and 7y ~ 5.4 h~! Mpc. This scaling behavior is one of the rea-
sons that have lead some astronomers to describe the galaxy distribution as
fractal. A power-law fit for g(r) oc r>~P2 permits to define the correlation
dimension Ds. The extent of the fractal regime is still a matter of debate in
cosmology, but it seems clear that the available data on redshift surveys in-
dicate a gradual transition to homogeneity for scales larger than 15-20 A !
Mpc [Martinez 1999]. Moreover, in a fractal point distribution, the corre-
lation length 7y increases with the radius of the sample because the mean
density decreases [Pietronero 1987]. This simple prediction of the fractal
interpretation is not supported by the data, instead ry remains constant
for volume-limited samples with increasing depth [Martinez et al. 2001].

Several versions of the volume integral of the correlation function are also
frequently used in the analysis of galaxy clustering. The most extended one
in spatial statistics is the so-called Ripley K-function

K(r) = /0 4ms?(1 + £(s))ds (10.3)

although in cosmology it is more frequent to use an expression which pro-
vides directly the average number of neighbors an arbitrarily chosen galaxy
has within a distance r, N(< r) = K (r) or the average conditional density

r*(r) = %/OT I'(s)s%ds

Again a whole collection of estimators are used to properly evaluate these
quantities. Pietronero and coworkers recommend to use only minus—esti-
mators to avoid any assumption regarding the homogeneity of the process.
In these estimators, averages of the number of neighbors within a given dis-
tance are taken only considering as centers these galaxies whose distances
to the border are larger than r. However, caution has to be exercised with
this procedure, because at large scales only a small number of centers re-
main, and thus the variance of the estimator increases.

Integral quantities are less noisy than the corresponding differential ex-
pressions, but obviously they do contain less information on the clustering
process due the fact that values of K (r1) and K (r2) for two different scales
r1 and 7o are more strongly correlated than values of £(r1) and £(rz). Scal-
ing of N(< r) o< rP2 provides a smoother estimation of the correlation
dimension. If scaling is detected for partition sums defined by the moments
of order ¢ of the number of neighbors

N
1
Z(g,r) = 5 S onilr)1H oc P/,
=1

the exponents D, are the so-called generalized or multifractal dimensions
[Martinez et al. 1990]. Note that for ¢ = 2, Z(2,r) is an estimator of
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FIGURE 10.1. Comparison of a Las Campanas survey slice (upper left panel)
with the Rayleigh-Lévy flight model (upper right panel). The fractal dimensions
of both distributions coincide, as shown by the In M—In R curves in the lower left
panel, but the lacunarity curves (in the lower right panel) differ considerably.
The solid lines describe the galaxy distribution, dotted lines — the model results.
From (Martinez & Saar 2002).

N(< r) and therefore D, for ¢ = 2 is simply the correlation dimension.
If different kinds of cosmic objects are identified as peaks of the contin-
uous matter density field at different thresholds, we can study the corre-
lation dimension associated to each kind of object. The multiscaling ap-
proach [Jensen et al. 1991] associated to the multifractal formalism pro-
vides a unified framework to analyze this variation. It has been shown
[Martinez et al. 1995] that the value of Ds corresponding to rich galaxy
clusters (high peaks of the density field) is smaller than the value corre-
sponding to galaxies (within the same scale range) as prescribed in the
multiscaling approach.

Finally we want to consider the role of lacunarity in the description
of the galaxy clustering [Martinez & Saar 2002]. In Fig. 10.1, we show the
space distribution of galaxies within one slice of the Las Campanas redshift
survey, together with a fractal pattern generated by means of a Rayleigh-
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Lévy flight [Mandelbrot 1982]. Both have the same mass-radius dimension,
defined as the exponent of the power-law that fits the variation of mass
within concentric spheres centered at the observer position.

M(R) = FRP™, (10.4)

The best fitted value for both point distributions is Djy; ~ 1.6 as shown
in the left bottom panel of Fig. 10.1. The different appearance of both
point distributions is a consequence of the different degree of lacunarity.
Blumenfeld & Mandelbrot (1997) have proposed to quantify this effect by
measuring the variability of the prefactor F' in Eq. 10.4,

_B{(F - F)})

P 72

The result of applying this lacunarity measure is shown in the right bottom
panel of Fig. 10.1. The visual differences between the point distributions
are now well reflected in this curve.

10.4 Power spectra

The current statistical model for the main cosmological fields (density, ve-
locity, gravitational potential) is the Gaussian random field. This field is
determined either by its correlation function or by its spectral density, and
one of the main goals of spatial statistics in cosmology is to estimate those
two functions.

In recent years the power spectrum has attracted more attention than
the correlation function. There are at least two reasons for that — the
power spectrum is more intuitive physically, separating processes on differ-
ent scales, and the model predictions are made in terms of power spectra.
Statistically, the advantage is that the power spectrum amplitudes for dif-
ferent wavenumbers are statistically orthogonal:

E {g(k)g*(k’)} = (27)%0p(k — K)P(K).

Here 6(k) is the Fourier amplitude of the overdensity field § = (p—p)/pat a
wavenumber k. p is the matter density, a star denotes complex conjugation,
E{} denotes expectation values over realizations of the random field, and
dp(x) is the three-dimensional Dirac delta function. The power spectrum
P(k) is the Fourier transform of the correlation function £(r) of the field.

Estimation of power spectra from observations is a rather difficult task.
Up to now the problem has been in the scarcity of data; in the near future
there will be the opposite problem of managing huge data sets. The de-
velopment of statistical techniques here has been motivated largely by the
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analysis of CMB power spectra, where better data were obtained first, and
has been parallel to that recently.

The first methods developed to estimate the power spectra were direct
methods — a suitable statistic was chosen and determined from observa-
tions. A good reference is Feldman et al. (1994).

The observed samples can be modeled by an inhomogeneous point pro-
cess (a Gaussian Cox process) of number density n(x):

= Z(FD(X*XZ-),

where 0p(x) is the Dirac delta-function. As galaxy samples frequently have
systematic density trends caused by selection effects, we have to write the
estimator of the density contrast in a sample as

D(X)ZZ%—L

where 7i(x) ~ p(x) is the selection function expressed in the number density
of objects.
The estimator for a Fourier amplitude (for a finite set of frequencies k;)

ko) = Y SRR (),

where ¥(x) is a weight function that can be selected at will. The raw
estimator for the spectrum is

Pr(ki) = F(k;)F*(k;),

and its expectation value

3 1./ 2
E{(F0)P)} = [ Gl —1)P(K) dk /w

where G(k) = |1 (k)|? is the window function that also depends on the
geometry of the sample volume. Symbolically, we can get the estimate of
the power spectra P by inverting the integral equation

G®P=Pg— N,

where ® denotes convolution, Pg is the raw estimate of power, and N is
the (constant) shot noise term.

In general, we have to deconvolve the noise-corrected raw power to get
the estimate of the power spectrum. This introduces correlations in the
estimated amplitudes, so these are not statistically orthogonal any more.
A sample of a characteristic spatial size L creates a window function of
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width of Ak ~ 1/L, correlating estimates of spectra at that wavenumber
interval.

As the cosmological spectra are usually assumed to be isotropic, the
standard method to estimate the spectrum involves an additional step of
averaging the estimates P(k) over a spherical shell k € [k;, k; 1] of thick-
ness k;y1 — k; > Ak = 1/L in wavenumber space. The minimum-variance
requirement gives the FKP [Feldman et al. 1994] weight function:

n(x)

and the variance is

o% (k) 2

Pi(k) ~ N7
where N is the number of coherence volumes in the shell. The number
of independent volumes is twice as small (the density field is real). The
coherence volume is V. (k) =~ (Ak)® ~ 1/L3 ~ 1/V.

As the data sets get large, straight application of direct methods (espe-
cially the error analysis) becomes difficult. There are different recipes that
have been developed with the future data sets in mind. A good review of
these methods is given in Tegmark et al. (1998).

The deeper the galaxy sample, the smaller the coherence volume, the
larger the spectral resolution and the larger the wavenumber interval where
the power spectrum can be estimated. The deepest redshift surveys presently
available are the PSCz galaxy redshift survey (15411 redshifts up to about
400h~! Mpc, see Saunders et al. (2000), the Abell/ACO rich galaxy clus-
ter survey, 637 redshifts up to about 300 h~! Mpc [Miller & Batuski 2001]),
and the ongoing 2dF galaxy redshift survey (141400 redshifts up to 750h~!
Mpc [Peacock et al. 2001]). The estimates of power spectra for the two lat-
ter samples have been obtained by the direct method [Miller et al. 2001,
Percival et al. 2001]. Fig. 10.2 shows the power spectrum for the 2dF sur-
vey.

The covariance matrix of the power spectrum estimates in Fig. 10.2 was
found from simulations of a matching Gaussian Cox process in the sample
volume. The main new feature in the spectra, obtained for the new deep
samples, is the emergence of details (wiggles) in the power spectrum. While
sometime ago the main problem was to estimate the mean behaviour of the
spectrum and to find its maximum, now the data enables us to see and study
the details of the spectrum. These details have been interpreted as traces
of acoustic oscillations in the post-recombination power spectrum. Similar
oscillations are predicted for the cosmic microwave background radiation
fluctuation spectrum. The CMB wiggles match the theory rather well, but
the galaxy wiggles do not, yet.

Thus, the measurement of the power spectrum of the galaxy distribution
is passing from the determination of its overall behaviour to the discovery
and interpretation of spectral details.
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FIGURE 10.2. Power spectrum of the 2dF redshift survey, divided by a smooth
model power spectrum. The spectrum is not deconvolved. Error bars are deter-
mined from Gaussian realizations; the dotted lines show the wavenumber region
that is free of the influence of the window function and of the radial velocity
distortions and nonlinear effects. (Courtesy of W. J. Percival and the 2dF galaxy
redshift survey team.)

10.5  Other clustering measures

To end this review we briefly mention other measures used to describe the
galaxy distribution.

10.5.1 Counts-in-cells and void probability function

The probability that a randomly placed sphere of radius r contains ex-
actly N galaxies is denoted by P(N,r). In particular, for N = 0, P(0,r)
is the so-called void probability function, related with the empty space
function or contact distribution function F(r), more frequently used in
the field of spatial statistics, by F(r) = 1 — P(0,r). The moments of the
counts-in-cells probabilities can be related both with the multifractal anal-
ysis [Borgani 1993] and with the higher order n-point correlation functions
[White 1979, Stoyan et al. 1995, Szapudi et al. 1999].

10.5.2  Nearest-neighbor distributions

In spatial statistics, different quantities based on distances to nearest neigh-
bors have been introduced to describe the statistical properties of point
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processes. G(r) is the distribution function of the distance r of a given
point to its nearest neighbor. It is interesting to note that F(r) is just the
distribution function of the distance r from an arbitrarily chosen point in
IR? — not being an event of the point process — to a point of the point
process (a galaxy in the sample in our case). The quotient

1-G(r)
J(r) = ———=
") =1=Fm
introduced by van Lieshout & Baddeley (1996) is a powerful tool to analyze
point patterns and has discriminative power to compare the results of N-
body models for structure formation with the real distribution of galaxies
[Kerscher et al. 1999].

10.5.3 Topology

One very popular tool for analysis of the galaxy distribution is the genus
of the isodensity surfaces. To define this quantity, the point process is
smoothed to obtain a continuous density field, the intensity function, by
means of a kernel estimator for a given bandwidth. Then we consider the
fraction of the volume f which encompasses those regions having density
exceeding a given threshold p;. The boundary of these regions specifies an
isodensity surface. The genus G(5) of a surface S is basically the num-
ber of holes minus the number of isolated regions plus 1. The genus curve
shows the variation of G(S) with f or p; for a given window radius of the
kernel function. An analytical expression for this curve is known for Gaus-
sian density fields. It seems that the empirical curve calculated from the
galaxy catalogs can be reasonably well fitted to a Gaussian genus curve
[Canavezes et al. 1998] for window radii varying within a large range of
scales.

10.5.4 Minkowski functionals

A very elegant generalization of the previous analysis to a larger family
of morphological characteristics of the point processes is provided by the
Minkowski functionals. These scalar quantities are useful to study the shape
and connectivity of a union of convex bodies. They are well known in spatial
statistics and have been introduced in cosmology by Mecke et al. (1994).
On a clustered point process, Minkowski functionals are calculated by gen-
eralizing the Boolean grain model into the so-called germ-grain model. This
coverage process consists in considering the sets A, = UY, B,.(x;) for the
diagnostic parameter r, where {x;} ; represents the galaxy positions and
B, (x;) is a ball of radius r centered at point x;. Minkowski functionals
are applied to sets A, when r varies. In IR® there are four functionals: the
volume V| the surface area A, the integral mean curvature H, and the
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Euler-Poincaré characteristic y, related with the genus of the boundary of
A, by x =1— G. Application of Minkowski functionals to the galaxy clus-
ter distribution can be found in Kerscher et al. (1997). These quantities
have been used also as efficient shape finders by Sahni et al. (1998).
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Commentary by Rien van de Weygaert

10.7 Spatial Statistics and the Galaxy Distribution

Following the contribution by V. Martinez providing a nice and extensive
overview of the large variety of statistical methods, along the lines of the
excellent textbook he and E. Saar have just published? on methods that
have been developed over the years to describe and characterize the evi-
dently nontrivial patterns in the spatial distribution of galaxies, it may be
worthwhile to add some additional characteristic issues on spatial statistics
within a cosmological context. I want to point out two (and a half) issues
— or, rather, details — concerning the study of cosmological point processes.

The first issue concerns the very motivation behind the cosmologists’
diligence in studying the aspects of the spatial clustering of galaxies and
other cosmologically relevant objects. What answer do we expect to extract
from the spatial point distribution mapped out by galaxies ? How can it

2Statistics of the Galaxy Distribution, V. Marinez & E. Saar, 2002, Chapman & Hall
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be applied towards discrimation between cosmological theories 7 The basic
reason behind this brings us to the ergodic theorem.

The second issue concerns the issue that physical theories in general make
predictions on continuous physical fields. In order to mould the data into
a readily interpretable form the usual practice involves the use of filtering
the discrete distribution of measurements. The choice and technique of the
filtering, however, is critical for this process to produce valid answers.

10.7.1  The Ergodic Theorem

The overriding reason for cosmologists to spend a large degree of attention
on the spatial statistics of the galaxy distribution is that the theory of
structure and galaxy formation provides us with statistical predictions,
ensemble expectations, instead of predictions on the formation of particular
objects. No structure formation theory will ever be able to predict an object
like the Virgo or Coma cluster; they are mere realizations arisen from a
primordial density field which itself is a stochastic sample from a given
stochastic distribution. The latter is what a viable cosmological theory will
be able to predict on the basis of appropriate physical laws and primordial
cosmological processes.

A principal stumbling block for any cosmological theory therefore might
be the fact that we only have one sole realization of the relevant physical
system at hand. Unlike the experimental physicist testing his/her probe
under the conditional circumstances of the laboratory, the cosmologist must
settle for this one realization.

To solve the dilemma of comparing theoretical predictions in terms of
stochastic distributions with the one realization we have at our disposal,
the Universe in which we live, the ERGODIC THEORFEM is the necessary
condition. Stating that we may equate Spatial Averages with the Ensemble
Averages predicted by the physical theories as long as we can probe a suffi-
cient amount of representative spatial volumes in the observable Universe
provides us with the means of testing cosmological theories.

In this sense it may be good to realize that it is only with the advent of
major systematic redshift surveys like the Las Campanas redshift survey,
the 2dF redshift survey and the SDSS survey that we can hope to compare
the spatial patterns in the Universe with those of theoretical predictions,
or those of numerical simulations. Uniform sky surveys like the APM sur-
vey (Maddox et al. 1990) did provide us already with sufficient information
to assure ourselves of the condition of having probed a representative vol-
ume of the Universe — on the basis of the depth scaling of the two-point
correlation function — for inferring statistically meaningful measures of the
underlying power spectrum.

On the other hand, the interpretation of the Cosmic Microwave Back-
ground fluctuations on the largest available scales still does pose us with
issues concerning “cosmic variance”.
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2dF redshift survey

FIGURE 10.3. The Delaunay Tesselation Field Estimator reconstruction of the
2dF survey field south. The DTFE reconstruction shows, more clearly than the
galaxy distribution, the coherence of the cosmic foam discretely “sampled” by
the galaxy distribution. Notice the detailed and refined structure which appears
to be specifically strengthened by this fully adaptive method (from Schaap & van
de Weygaert 2002b). Data courtesy: the 2dF consortium.
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10.7.2 Phaedo

Once we have assured ourselves of the sensibility of testing cosmological
theories through statements on the probability of the realizations we find
in nature, we also have to be aware of the limitations of such considerations.
As cosmological theory is often concerned with “Statements of Truth” on
the workings of the Universe, yet we are confined to assessments in terms
of statistics, we should always be aware of possible pitfalls. It will be very
hard to extract information on influences which are not taken into account
in the theories being tested. That is, missing out in possibly significant
parameters discarded from the statistical tests.

In this sense, the statement by Plato (= 380 BC) might be a sobering
one for claims too audacious:
“any statement about Truth based on likelihood considerations
cannot be held as decisive” (freely transcribed).

10.7.3  Continuous Cosmological Fields versus Discrete Data
Samples

An important aspect of spatial statistical analyses in cosmology is the
fact that cosmological data quite often concern discretely sampled datasets
while theoretical predictions concern statements on the basis of continuous
physical fields.

The most frequent example is the galaxy distribution itself. It is sup-
posed to reflect an underlying continuous density field. Another example
concerns the measurement of cosmic flow fields, almost exclusively on the
basis determined on the basis of galaxy peculiar velocities. The latter is
then supposed to be a measurement of the continuous matter flow field at
a few (galaxy site) discrete cosmic locations.

Discarding major overriding questions concerning the fact whether the
galaxy distribution may indeed be regarded as a genuine reflection of the
underlying matter field — given the fact that we still lack a convincing
theory of galaxy formation and are therefore condemned to taking into
account a possible “biasing” on the basis of a mere ad-hoc and heuristic
description — we are still posed with the question how to infer objectively
information on a continuous underlying field.

Many approaches base themselves on filtering the measured data onto
some previously defined grid, which then can be processed by often sophis-
ticated procedures yielding well-defined answers. One problem with these
filtering procedures, a well-known issue, is that one usually incurs consid-
erable loss of information through artificially defined filters which do not
adapt to the inherent properties of the discrete point distribution. A telling
example is how isotropically defined filters manage to dilute the signals of
anisotropic features like filaments or walls. Another one is that by lack on
information on inherent spatial scales in the distribution, the filter tends
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to erase signatures of substructures at spatial scales lower than the filter
characteristic scale. This is in particular worrisome once it gets towards dis-
tributions involving a hierarchy of scales. Precisely the latter is supposedly
the case for most popular theories of structure formation.

In this comment I therefore would like to point out the virtues of a
new technique that has been developed by Schaap & Van de Weygaert
(2000), the Delaunay Tessellation Field Estimator (DTFE) of the corre-
sponding spatial point process. Based on the earlier work by Bernardeau
& Van de Weygaert (1996) for reconstruct complete volume-covering and
volume-weighted velocity fields from a set of point-sampled velocities —
which proved to yield a significant improvement in reproducing the statis-
tics of the underlying continuous velocity field — the DTFE reconstructs the
full and cohesive density field of which the discrete galaxy distribution is
supposed to be a sparse sample. Without invoking any artificial and often
structure diluting filter it is able to render both the ANISOTROPIC nature
of the various foam elements as well as the HIERARCHICAL character of
the distribution in full contrast (see Schaap & van de Weygaert 2002 and
in this volume).

The potential promise of the DTFE may be amply appreciated from
its succesful reconstruction of a density field from the galaxy distribution
in the southern part of the 2dF survey (see Figure, data courtesy: 2dF
consortium). Evidently, it manages to bring out any fine structural detail of
the intricate and often tenuous filamentary structures. Notice the frequently
razgor-sharp rendition of thin edges surrounding void-like regions. Hence, it
defines a volume-covering density field reconstruction that retains every
structural detail, which will enable us to study in a much improved fashion
the statistical and geometric properties of the foam. Indeed, it even appears
to “clean” the original discrete galaxy distribution map by suppressing its
shot noise contribution.

Bernardeau F., van de Weygaert R., 1996, MNRAS, 279, 693

Martinez V., Saar E., 2002, Statistics of the Galaxy Distribution, Chapman
& Hall

Maddox S.J., Sutherland W.J., Efstathiou G., and Loveday J., 1990, MN-
RAS, 243, 692

Plato, ~ 380BC, Phaedo, (Penguin version)
Schaap W., van de Weygaert R., 2000, A& A, 363, L.29
Schaap W., van de Weygaert R., 2002b, MNRAS;, in prep.
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Analyzing Large Data Sets in
Cosmology

Alexander S. Szalay' and Takahiko
Matsubara

ABSTRACT We describe the issues related to the analysis of the large
scale distribution of galaxies. The emerging huge data sets from wide field
sky surveys pose interesting issues, both statistical and computational. One
needs to reconsider the notion of optimal statistics. We discuss the power
spectrum analysis of wide area galaxy surveys using the Karhunen-Loeve
transform as a case study.

11.1 Introduction

There is a very distinct trend in astronomy today, driven by the develop-
ment in instrumentation, in particular detector size. The result is that the
size of astronomy data is growing exponentially, doubling every year. This
even exceeds the rate of Moore’s law describing the speedup of computer’s
CPUs. This trend is resulting in the emergence of large scale surveys, like
2MASS (Two Micron Sky Survey), SDSS (Sloan Digital Sky Survey) or
2dFGRS (Two Degree Field Galaxy Redshift Survey). Soon there will be
almost all-sky data in more than ten wavebands. These large scale surveys
have another important characteristics: they are done by a single group,
with sound statistical plans and well-controlled systematics.

As a result, the data are becoming increasingly more homogeneous, and
approach a fair sample of the Universe. This trend has brought a lot of
advances in the analysis of the large scale galaxy distribution. Our goal
today is to reach an unheard-of level of accuracy in measuring both the
global cosmological parameters and the shape of the power spectrum of
primordial fluctuations.

These large, homegenous datasets are also changing the way we are ap-
proaching their analysis. Traditionally, statistics in cosmology has been
primarily dealing with how to extract the most information from the small
samples of galaxies we had. This is no longer the case: redshift surveys are

IDepartment of Physics and Astronomy, Johns Hopkins University
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approaching the 300,000 mark today and will soon exceed a million galaxies,
while angular catalogs today have samples in excess of 50 million galaxies
and are soon approaching 10 billion (the proposed Large-aperture Syn-
optic Survey Telescope, http://www.lssto.org). Whereas the cosmic back-
ground radiation (CMB) observations of the COBE satellite had a few
thousand pixels on the sky, the recently launched Microwave Anisotropy
Probe (MAP, http://map.gsfc.nasa.gov) will have a million and the forth-
coming Planck satellite (http://astro.estec.esa.nl/Planck) will have more
than 10 million. Thus, shot noise and sample size is not an issue any more.
The limiting factor in these data sets are the systematic uncertainties like
photometric zero points, effects of seeing, uniformity of filter, and so forth
(Eisenstein et al. 2001).

The statistical issues related to this are also changing accordingly: it is
increasingly important to find techniques that can be de-sensitized to cer-
tain systematic uncertainties. Many of the traditional statistical techniques
in astronomy have been focusing on ‘optimal’ techniques. It was generally
understood, that these minimized the statistical noise in the result, but
they mey have been quite sensitive to various systematics.

Statistical considerations also often assume infinite computational re-
sources. This was not an issue in the past, when sample sizes were in the
thousands. But, many of these techniques involve matrix diagonalizations
or inversions, with computations scaling as the 3rd power of matrix size,
so that computing costs are a billion times higher for as data samples in-
crease thousand times. Even if the speedup of our computers keeps up with
the growth of our data volumes, it cannot keep of with traditional matrix
calculations. We need to find algorithms which scale more gently. In the
near future, we hypothesize that only algorithms with N log N scaling will
remain feasible.

As the statistical noise is going down, due to the larger samples, another
effect is emerging: 'cosmic variance’. This error term reflects the fact that
our observing position is fixed at the Earth, and at any time we can only
study a fixed — albeit ever increasing — region of the Universe. This provides
an ultimate bound on the accuracy of any astronomical measurement. We
should carefully keep this effect in mind where designing new experiments.

In this paper we will discuss our goals, and the current state-of-the-art
techniques in extracting cosmological information from our large data sets.
In particular, we use the Karhunen-Loeve (KL) transform as a case study,
showing step by step improvements needed to turn an optimal method into
a useful one.
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11.2  Precision Cosmology

Today we are entering the era of precision cosmology. The large new surveys
with their well-defined systematics are key to this transition. There are
many different measurements we can make which each constrain various
combinations of the cosmological parameters. For example, the fluctuations
in the CMB around multipole [ values of a few hundred are very sensitive
to the overall curvature of the Universe, determined by both dark matter
and dark energy (de Bernardis et al. 2001, Netterfield et al. 2001).

Due to the expansion of the Universe, we can use redshifts to measure
distances of galaxies. Since galaxies are not at rest in the frame of the
expanding Universe, their motions cause an additional distortion in the
line-of-sight coordinate. This property can be used to study the dynamics
of galaxies, inferring the underlying mass density. Local redshift surveys can
measure the amount of gravitating dark matter, but they are insensitive to
the dark energy. Combining these different measurements (CMB + redshift
surveys), each with their own degeneracy can yield considerably tighter
constraints than either of them.

We know most cosmological parameters to an accuracy of about 10%
or somewhat better today. Soo we will be able to reach the regime of
2-5% relative errors, through both better data but also better statistical
techniques.

11.2.1 The Global Parameters

The relevant parameters include the age of the Universe, ¢y, the expansion
rate of the Universe, also called as Hubble’s constant Hy, the deceleration
parameter qo, the density parameter {2, and its components, the dark en-
ergy, or cosmological constant 25, the dark matter €2,,, the baryon fraction
/B, and the curvature ;. These are not independent from one another, of
course. Together, they determine the dynamic evolution of the Universe,
assumed to be homogeneous and isotropic, described by a single scale factor
a(t):
a\’ Q Q
(5) = H2 [Q—Z+QA+G—§} (11.1)

Today, at t =ty the three components of the density add up to 1,
Qo + Q0 + Q= 1, (11.2)

thus for a Eucledian (flat) Universe €2,,, + Q = 1.

One can use the both dynamics, luminosities and angular sizes of objects
observable at high redshift to constrain the cosmological parameters. Dis-
tant supernovae have been used as standard candles to get the first hints
about a large cosmological constants. The angular size of the Doppler-peaks
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in the CMB fluctuations gave the first conclusive evidence for a flat uni-
verse, using the angular diameter-distance relation. The gravitational infall
manifested in redshift-space distortions of galaxy surveys has been used to
constrain the amount of dark matter.

These all seem to add up to a remarkably consistent picture today: a flat
Universe, with

Q) =0.65+0.05, Q= 0.35+0.05. (11.3)

It would be nice to have several independent measurements for the above
quantities.

Recently, new interpretations have emerged about the nature of the
cosmological constant — it appears that there are many possibilities, like
quintessence, that can be the dark energy. Now we are facing the challenge
of coming up with measuremnts and statistical techniques to distinguish
among them.

11.2.2 The Fluctuation Spectrum

There are several parameters used to specify the shape of the fluctua-
tion spectrum. These include: the amplitude og, the rms value of the den-
sity fluctuations in a sphere of 8 Mpc radius; the shape parameter I'; the
redshift-distrotion parameter (3; the bias parameter b; and the baryon frac-
tion fp = Qp/Qy,. Other quantites like the neutrino mass also affect the
shape of the fluctuation spectrum, although in more subtle ways than the
ones above (Seljak and Zaldarriega 1996).

The shape of the fluctuation spectrum is another sensitive measure of the
Big Bang at early times. Galaxy surveys have traditionally measured the
fluctuations over much smaller scales (below 100 Mpc) where the fluctua-
tions are nonlinear, and even the shape of the spectrum has been altered by
gravitational infall and the dynamics of the Universe. The expected spec-
trum on very large spatial scales (over 200 Mpc) is revealed by precision
CMB measurements. COBE showed that the spectrum is scale-invariant,
reflecting the primordial initial conditions, remarkably close to the pre-
dicted Zeldovich-Harrison shape. There are several interesting physical ef-
fects that will leave an imprint on the fluctuations: the scale of the horizon
at recombination, the horizon at matter-radiation equality, and the sound-
horizon — all between 100-200 Mpc (Eisenstein and Hu 1998).

These scales have been rather difficult to measure: they used to be too
small for CMB and too large for redshift surveys. This is rapidly changing
as new higher-resolution CMB experiments are now covering sub-degree
scales, corresponding to less than 100 Mpc comoving, and redshift surveys
like 2dF and SDSS are reaching scales well above 300 Mpc.

We have yet to measure the overall contribution of baryons to the mass
content of the Universe. We expect to find the counterparts of the CMB
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Doppler bumps in galaxy surveys as well, since these are the remnants of
horizon scale fluctuations in the baryons at the time of recombination. The
Universe behaved like a resonant cavity at the time. Due to the dominance
of the dark matter over baryons the amplitude of these fluctuations is sup-
pressed, but with high precision measurements they should be detectable.

A small neutrino mass of a few electron volts is well within the realm of
possibilities. Due to the very large cosmic abundance of relic neutrinos, even
such a small mass would have an observable effect on the shape of the power
spectrum of fluctuations. It is likely that the sensitivity of current redshift
surveys will enable us to make a meaningful test of such a hypothesis.

One can also use large angular catalogs, projections of a 3-dimensional
random field to the sphere of the sky, to measure the projected power
spectrum. This technique has the advantage that dynamical distortions
due to the peculiar motions of the galaxies do not affect the projected
distribution. The first such analyses show a lot of promise.

11.3 Large Redshift Surveys

As mentioned in the introduction, some of the issues related to the sta-
tistical analysis of large redshift surveys, like 2dF (Percival et al. 2001) or
SDSS (York et al. 2000) are quite different from their predecessors with
only a few thousand galaxies. The foremost difference is that shot-noise,
the usual hurdle of the past is irrelevant.

Astronomy is different from laboratory science in that we cannot change
the position of the observer at will. Our experiments in studying the Uni-
verse will never approach an ensemble average, there will always be an
unavoidable cosmic variance in our analysis. By studying a larger region
of the Universe (going deeper and/or wider) can decrease this term, but it
will always be present in our statistics.

The dominant source of uncertainties in large redshift surveys today is in
the systematics, like photometric calibrations, or various instrumental and
natural foregrounds and backgrounds. There are also effects, like nonlinear-
ities on smaller scales or redshift space distortions, which turn an otherwise
homogeneous and isotropic random process into a non-isotropic one. As a
result, it is increasingly important to find statistical techniques which can
reject or incorporate some of these effects into the analysis.

11.3.1 Statistical Techniques Used

The most frequent techniques used in analyzing data about spatial clus-
tering are the two-point correlation functions and various power spectrum
estimators. There is an extensive literature about the relative merits of
each of the techniques. For an infinitely large data set, in principle both
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techniques are equivalent. In practice, however, there are subtle differences:
finite sample size affects the two estimators somewhat differently, edge ef-
fects show up in a slightly different fashion, and practical issues about
computability and hypothesis testing differ for the two techniques.

The most often used estimator for the two point correlations is the LS
estimator (Landy & Szalay 1992),

_ DD—-2DR+RR
- RR

&(r) (11.4)

which has a minimal variance for a Poisson process. Here DD, DR and RR
describe the respective normalized pair count in a given distance range. For
this estimator, and for correlation functions in general, hypothesis testing
is somewhat cumbersome. If the correlation function is evaluated over a
set of differential distance bins, these values are not independent, and their
correlation matrix depends also on the three and four-point correlation
functions which are less known than the two-point function itself. The
brute-force technique involves the computation of all pairs and binning
them up, so it would scale as O(N?). In terms of modelling systematic
effects, it is very easy to comoute the two-point correlation function between
two points.

Another popular second order statistic is the power spectrum P(k), usu-
ally measured by using the FKP estimator (Feldman et al. 1994). This is
the Fourier-space equivalent of the LS estimator for correlation functions.
It has both advantages and disadvantages over correlation functions. Hy-
pothesis testing is much easier, since in Fourier space the power spectrum
at two different wavenumbers are correlated, but the correlation is com-
pact. It is determined by the ‘window-function’, the Fourier transform of
the sample volume, which is usually very well-understood. For most re-
alistic surveys the window function is rather anisotropic, making angular
averaging of the three-dimensional power spectrum estimator somewhat
complicated. During hypothesis testing one is using the estimated values
of P(k), either directly in 3D Fourier space, or compressed into quadratic
sums binned by bands. Again, the 3rd and 4th order terms are appearing
in the correlation matrix. The effects of systematic errors are much harder
to estimate.

Hypothesis testing is usually performed in a parametric fashion, with the
assumption that the underlying random process is Gaussian. We evaluate
the log likelihood as

1 1
InL(r) = f§xTC_1x — 3 |C| (11.5)

where x is the data vector, and C is its correlation matrix, dependent on the
parameter vector w. There is a fundamental lower bound on the statistical
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error, given by the Fisher matrix F, defined by

e o) (22) (), o

The famous Cramer-Rao bound states that Var m, > 1/ V'F o0 The Fisher
matrix can be easily computed. This is a common tool used these days to
evaluate the sensitivity of a given experiment to measure various cosmo-
logical parameters. For more detailed comparisons of these techniques, see
Tegmark et al. (1998).

What would an ideal method be? It would be useful to retain much of
the advantages of the 2-point correlations where the systematics are easy
to model, and those of the power spectra where the modes are only weakly
correlated. Third, we would like to have a hypothesis testing method where
the correlation matrix does not involve 3rd and 4th order quantitites. Inter-
estingly, there is such a method given by the Karhunen-Loeve transform.
In the following subsection we describe the method, and show why does it
provide such a useful framework for the analysis of the galaxy distribution,
and then we discuss some of the detailed issues we had to deal with over
the years to turn this into a practical tool.

One can also argue about parametric and non-parametric techniques, like
using bandpowers to characterize the shape of the fluctuation spectrum. We
would like to postulate, that for the specific case of redshift surveys it is
not possible to have a purely non-parametric analysis. While the shape of
the power spectrum itself can be described in a non-parametric way, the
distortions along the redshift direction are dependent on a physical model
(gravitational infall), thus without an explicit parametrization or ignoring
this effect no analysis is possible.

11.4 Karhunen-Loeve Analysis of Redshift Surveys

The Karhunen-Loeve (KL) eigenfunctions (Karhunen 1947, Loeve 1948)
provide a basis set in which the distribution of galaxies can be expanded.
These eigenfunctions are computed for a given survey geometry and fidu-
cial model of the power spectrum. For a Gaussian galaxy distribution, the
KL eigenfunctions provide optimal estimates of model parameters, i.e. the
resulting error bars are given by the inverse of the Fisher matrix for the
parameters (Vogeley & Szalay 1996). This is achieved by finding the or-
thonormal set of eigenfunctions that optimally balance the ideal of Fourier
modes with the finite and peculiar geometry and selection function of a
real survey. In this section, we present the formalism for the KL analysis
following the notation of Vogeley & Szalay (1996) who introduced this ap-
proach to galaxy clustering. The KL method has been applied to the Las
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Campanas redshift survey by Matsubara, Szalay & Landy (2000) and to
the PSCz survey by Hamilton, Tegmark & Padmanabhan (2001).

11.4.1 Details of the Method

The distribution of galaxies is pixelized by dividing the survey volume into
a set of IV cells. The data vector can then be defined as

d; =n; 2 (m; —n;) (11.7)

where m;; is the number of galaxies in the i-th cell, n; = (m;) is the expected
number of galaxies and the factor n, /2 is included to whiten the shot
noise as explained below. The data vector d is expanded into the set of KL
eigenfunctions ¥,, as

d=> B,¥,. (11.8)
n

The eigenfunctions ¥, are obtained by solving the eigenvalue problem
(Vogeley & Szalay 1996):

RU, =\, T, (11.9)
where \,, = (B2) and

1/2 1/2
Rij = (didj) = n*n}Pwij + 85 . (11.10)
The second term is the whitened shot noise correlation matrix. The corre-
lation matrix R is computed for a fiducial model using the cell-averaged
angular correlation function

1 200
e i i i —0j]), 11.11
wij V;Vj//de d“0; w(|6;, — 6;|) ( )

where the integral extends over the ¢-th and j-th cells, and V; and V; are the
corresponding cell volumes. Forming the eigenmodes ¥,, requires assuming
an a priori model for w(f) but, as discussed by Vogeley & Szalay (1996),
this choice does not bias the estimated parameters below.

The KL eigenmodes defined above satisfy the conditions of orthonormal-
ity ¥, - ¥,, = 8,m, and statistical orthogonality, (B, B..) = (B2)dnm.
Further, they sort the data in decreasing signal-to-noise ratio if they are
ordered by the corresponding eigenvalues (Vogeley & Szalay 1996). What
this means in the measurement of model parameters will be clarified below.

The KL expansion is used to estimate model parameters by computing
the covariance matrix C of the KL coefficients. We use the first N,,oq4e of
the KL eigenmodes and choose to parameterize the model. The theoretical
covariance matrix is then given by

Cm’n = <BmBn>model = ‘Ilz;y,Rmodel‘Ilm . (1112)
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11.4.2 Advantages of the KL Transform

The KL transform is often called optimal subspace filtering (Therrien 1992)
describing the fact that during the analysis some of the modes are dis-
carded. This does offer distinct advantages. If the measurement is composed
of a signal of interest (gravitational clustering) superposed on various back-
grounds (shot-noise, selection effects, photometric errors, etc.) which have
slightly different statistical properties, the diagonalization of the correla-
tion matrix can potentially segregate these different types of processes into
their own subspaces. If we select our subspace carefully, we can actually
improve on the signal to noise of our analysis.

The biggest advantage is that hypothesis testing is very easy and elegant.
First of all, all KL. modes are orthogonal to one another, even if the survey
geometry is extremely anisotropic. Of course, none of the KI. modes can be
narrower than the survey window, and they shape is clearly affected by the
survey geometry. The orthogonality of the modes represents a repulsion
between the modes; they cannot get too close, otherwise they could not
be orthogonal. As a result, the KL. modes are dense-packed into Fourier-
space, thus optimally representing the information enabled by the survey
geometry.

Secondly, the KL transform is a linear transformation. If we do our like-
lihood testing over the KL-transform of the data, the correlation matrix
involved in the likelihood computation contains only second order quan-
tities. Thus the problems with 3 and 4-point correlation functions do not
apply at all. All these advantages became very apperent when we applied
the KL method to real data.

11.4.8 Redshift Space Distortions

Since galaxies are observed in redshift space, it is essential that we ac-
count for the redshift space distortions. This is straight-forward for surveys
of small angular extent (plane-parallel case, see Kaiser 1987). It is much
harder to derive a similar expression for wide-angle surveys although finally
several alternative formulations, leading to identical results, have been pro-
posed. These expressions involve the redshift-space distortion parameter (8
which describes the relation between the large scale gravitational infall and
the overdensity.

The calculation has been extended by Matsubara and Suto (1996) to the
case of higher redshifts. The SDSS survey will have about 100,000 galaxy
redshift for luminous ellipticals, with a typical redshift of about 0.4. At
this distance the effects of cosmological curvature are becoming important
(light propagates along geodesics) and this may result in a distortion of the
transverse coordinates since we can only observe angles. Interstingly, it was
possible to derive a closed expression for the two-point correlation function
in curved spacetime, when the two lines-of-sight are separated at an arbi-
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trary angle. This expression can only be integrated numerically, but luckily
a very accurate numerical fitting formula has been found (Matsubara &
Suto 1996, Matsubara 2001).

The forward computation of the KL transform is very advantageous in
this respect; if we have an analytic expression for the two-point correlation
function in redshift space, the problem is solvable numerically. If we tried
to evaluate the same expression in Fourier space, we get considerably more
complicated expressions. We experimented with different pixel shapes, from
the tophat window to higher order Epanichnikov kernels.

11.4.4 Pizelization

The detailed calculation of the likelihood can be quite demanding. A typical
likelihood fit will involve the computation of the correlation matrix at a few
hundred thousand values of the parameter vector. Our first computations
could easily take several days on relatively fast computers. In the beginning,
we used a contiguous layout of rectangular pixels on the sky and slightly
elongated splits along the radial direction. The calculation of the correlation
matrix was rather complex, since it involved Monte-Carlo integration for
the expectation of £(r) over the finite sized cells. For more distant cells, it
was enough to use the correlation function evaluated at the center of the
pair of cells. In order to speed up the calculation for these ‘hard’ pixels, we
have built a lookup table indexed by the relative geometry of the two cells.
This resulted in a 100-fold speedup in our computations.

The next breakthrough came with the introduction of spherical pixels. If
we use pixels with spherical symmetry, the computation of the average of
the correlation function when its two endpoints are drawn from the pixels
can be written as a convolution with the kernel corresponding to the pixel
shape. This means that, by including a multiplicative factor in the power
spectrum, we can directly evaluate the expectation value of the correlation
function. We have created a lookup table for the correlation function with
this kernel, and then used a cubic spline interpolator to get the precise
values. This has yielded another order of magnitude speedup. Now we have
a toolbox where we can easily run a full analysis of a given data set in a
matter of a few hours.

11.4.5 Survey Design and Accuracy

It is interesting to consider how different choices, like the intrinsic cluster-
ing strength and abundance of objects in a cosmological sample, affect the
accuracy of how the cosmological parameters can be determined. In the
maximume-likelihood method, one can easily evaluate the expected param-
eter estimation errors in any sample from the Fisher information matrix.
We have used our KL technique to consider the seven-dimensional Fisher
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FIGURE 11.1. The marginalized concentration ellipses for three cosmological
parameters (Matsubara & Szalay 2002)

matrix for three types of objects in the SDSS survey: main galaxies, lu-
minous red galaxies (LRGs) and quasars. To illustrate the behavior of the
multi-dimensional Fisher matrix, we have used concentration ellipses in
marginalized two-dimensional parameter space.

In a recent paper (Matsubara a& Szalay 2002), we divided the survey
volume into generic boxes in order to simplify the Fisher matrix estimation.
We ignored the correlations between these sub-regions, so the constraints
will improve somewhat if those correlations are properly included. However,
the inversion of the resulting huge matrices can become extremely time-
consuming. The use of the KL transform is a practical strategy in this case.
Such methods can also be used in a targeted data-compression role to find
linear combinations of counts which retain as much information about the
parameters as possible.

The choice of the cell radius is somewhat arbitrary in this work. We
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choose the spherical cell with radius of 10 Mpc for galaxies and LRGs,
which is the border of the linear regime. With a larger cell radius, the
validity of the linear theory increases and the shot noise is reduced. The
cosmic variance, however, increases with cell radius. The parameter estima-
tion is dominated by the highest signal-to-noise modes which are at large
wavelengths, in particular for the case of the LRG sample. The high fre-
quency modes close to pixel scales mostly contain shot noise after the KL
transformation. As a result, we believe our conclusions are not sensitive to
the choice of the cell radius. A fully accurate determination of the optimal
choice of the cell radius depends on the behavior of the nonlinear effects, so
that a comparison with numerical simulation is needed, beyond the scope
of the current work.

We have considered three subsets of the SDSS redshift data, spanning
a wide range of depth, sampling density and intrinsic clustering strength.
We found, that for measuring cosmological parameters in the linear regime
there is a clear optimum, represented by the intermediate-redshift LRG’s.
The low spatial density of quasars is not overcome by their much larger
depth, and the relatively small depth of the main SDSS galaxies is not com-
pensated by their high sampling density — the redshift is not high enough
to test curvature, and their cosmic variance is too large. The LRG sample,
much smaller in numbers than the main sample and much shallower than
the quasars, is an excellent compromise between sampling density and cos-
mological depth. The constraints derived from the LRGs are much tighter
than for the other two samples.

The advantage of these intermediate-redshift objects, and the logic be-
hind this optimum goes beyond the SDSS. In designing future redshift
surveys, it is important to find the right balance between the density of
objects and the survey depth. Their interplay can be quite complex, as we
have shown here. The relation between accuracy and sky coverage is simple
and can be estimated analytically.

11.5 Trends and Computational Issues

The problems we are facing with the exponentially growing astronomy data
are serious. Most statistical techniques labeled as ‘optimal’ are based on
several assumptions which have been correct in the past but not necessarily
in the near future. The assumptions include that the dominant contribution
to the variance is statistical, and that the computational resources are
infinite compared to the cost of computation, and they ignore the cosmic
variance.

Many of these optimal algorithms are based upon maximum likelihood
estimators, and thus they involve inversions of large matrices, an approxi-
mately N2 operation. The increase in CPU power will not be able to keep
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up with such a scaling.

What are the possibilities? We can use clever data structures, borrowed
from computer science to pre-organize our data into a tree-hierarchy, and
having the computational cost dominated by the cost of sorting, an N log N
process. This is the approach taken by A. Moore and collaborators in their
tree-code (see paper by R. Nichol et al. in this volume).

Another approach might be to use approximate statistics, as advocated
by I. Szapudi (2001). In the presence of a cosmic variance term, an alorithm
that spends an enormous amount of CPU time to minimize the statistical
variance to a level substantially below the cosmic variance can be very
wasteful. One can define a cost function that includes all terms in the
variance and a computational cost Q(e), as a function of the accuracy e of
the estimator. Minimizing this cost-function C'(¢) will give the best possible
results, given the nature of the data and our finite computational resources.

C(G) - o—gosmic + O—gtat (6) + Q(E) (1113)

We expect to see more and more of these algorithms emerging over the
next few years. One nice example of these these ideas is the fast CMB anal-
ysis developed by Szapudi et al. (2002) which will reduce the computations
for a survey of the size expected from the Planck satellite from 10 million
years to approximately 1 day!

11.6 Summary

Several important new trends are becoming apparent in modern cosmol-
ogy and astrophysics: the amount of data available is doubling every year,
the data are well understood, and much of the low level processing is al-
ready done by the time the data is published. This makes it much easier
to perform additional statistical analyses.

At the same time many of the current outstanding problems in cosmol-
ogy are inherently statistical, either studying the distributions of typical
objects (in parametric or non-parametric fashion) or finding the atypical
objects: extremes and/or outliers. Many of the necessary algorithms are
scaling with powers of N, the size of the data. Today, we find that more
and statistical tools use advanced data structures and/or approximate tech-
niques to achive fast computability.

In the not too distant future, when our data sets are going through
another order of magnitude growth, only N log N algorithms will remain
feasible — the cost of computation will become a very important ingredient
of an optimal algorithm. Such an evolution in our approach to astrostatis-
tics can only be accomplished with an active and intense collaboration of
astronomers, statisticians and computer scientists.
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The Cosmic Foam: Stochastic
Geometry and Spatial
Clustering across the Universe

Rien van de Weygaert!

ABSTRACT Galaxy redshift surveys have uncovered the existence of a
salient and pervasive foamlike pattern in the distribution of galaxies on
scales of a few up to more than a hundred Megaparsec. The significance of
this frothy morphology of cosmic structure has been underlined by the re-
sults of computer simulations. These suggest the observed cellular patterns
to be a prominent and natural aspect of cosmic structure formation for a
large variety of scenarios within the context of the gravitational instability
theory of cosmic structure formation.

We stress the importance of stochastic geometry as a branch of mathemat-
ical statistics particularly suited to model and investigate nontrivial spatial
patterns. One of its key concepts, Voronoi tessellations, represents a ver-
satile and flexible mathematical model for foamlike patterns. Based on a
seemingly simple definition, Voronoi tessellations define a wealthy stochas-
tic network of interconnected anisotropic components, each of which can
be identified with the various structural elements of the cosmic galaxy dis-
tribution. The usefulness of Voronoi tessellations is underlined by the fact
that they appear to represent a natural asymptotic situation for a range of
gravitational instability scenarios of structure formation in which void-like
regions are prominent.

Here we describe results of an ongoing thorough investigation of a variety of
aspects of cosmologically relevant spatial distributions and statistics within
the framework of Voronoi tessellations. Particularly enticing is the recent
finding of a profound scaling of both clustering strength and clustering ex-
tent for the distribution of tessellation nodes, suggestive for the clustering
properties of galaxy clusters. This is strongly suggestive of a hitherto un-
expected fundamental and profound property of foamlike geometries. In a
sense, cellular networks may be the source of an intrinsic “geometrically
biased” clustering.

IKapteyn Institute, University of Groningen
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12.1 Introduction

Macroscopic patterns in nature are often due the collective action of basic,
often even simple, physical processes. These may yield a surprising array
of complex and genuinely unique physical manifestations. The macroscopic
organization into complex spatial patterns is one of the most striking. The
rich morphology of such systems and patterns represents a major source
of information on the underlying physics. This has made them the sub-
ject of a major and promising area of inquiry. However, most such studies
still reside in a relatively youthful state of development, hampered by the
fact that appropriate mathematical machinery for investigating and solidly
characterizing the geometrical intricacies of the observed morphologies is
not yet firmly in place.

In an astronomical context one of the most salient geometrically complex
patterns is that of the foamlike distribution of galaxies, revealed by a variety
of systematic and extensive galaxy redshift surveys. Over the two past
decades, these galaxy mapping efforts have gradually established the frothy
morphology as a universal aspect of the spatial organization of matter in
the Univers. Comprising features on a typical scale of tens of Megaparsec,
it offers a direct link to the matter distribution in the primordial Universe.
The cosmic web is therefore bound to contain a wealth of information on
the cosmic structure formation process. It will therefore represent a key to
unravelling one of the most pressing enigmas in modern astrophysics, the
rise of the wealth and variety of structure in the present-day Universe from
a almost perfectly smooth, virtually featureless, pristine cosmos.

However, a lack of straightforward quantitative measures of such pat-
terns has yet prevented a proper interpretation, or indeed identification, of
all relevant pieces of information. Quantitative analysis of matter distribu-
tion has been largely restricted to first order galaxy clustering measures,
useful in evaluating gross statistical properties of the matter distribution
but inept for characterizing the intricate foamlike morphologies observed
on Megaparsec scales.

Here we will address the meaning and interpretation of the cellular mor-
phology of the cosmic matter distribution. Prominent as it is, its assessment
rarely exceeds mere qualitative terminology, seriously impeding the poten-
tial exploitation of its content of significant information. One of the most
serious omissions concerns a proper appreciation and understanding of the
physical and statistical repercussions of the nontrivial cellular geometry.
This propelled us to focus on this important aspect, for which we were im-
pelled to invoke ideas and concepts from the relevant field of mathematics,
stochastic geometry. Particularly fruitful has been our application and in-
vestigation of Voronoi tessellations, a central concept in this mathematical
branch addressing the systematics of geometrical entities in a stochastic
setting. The phenomenological similarity of Voronoi foams to the cellular
morphology seen in the galaxy distribution justifies further exploration of
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its virtues as a model for cosmic structure. In the following we will indicate
that such similarity is a consequence of the tendency of gravity to shape and
evolve structure emerging from a random distribution of tiny density devi-
ations into a network of anisotropically contracting features. Its application
gets solidly underpinned by a thorough assessment of the implications for
spatial clustering, vindicating the close resemblance of Voronoi foams to the
frothy patterns in the observed reality. It is within the context of testing
its spatial statistical properties that unexpected profound ‘scaling’ symme-
tries were uncovered, shedding new light on the issue of “biased” spatial
clustering.

12.2  Patterns in the Galaxy Distribution: the
Cosmic Foam

One of the most striking examples of a physical system displaying a salient
geometrical morphology, and the largest in terms of sheer size, is the Uni-
verse as a whole. The past few decades have revealed that on scales of a
few up to more than a hundred Megaparsec, galaxies conglomerate into
intriguing cellular or foamlike patterns that pervade throughout the ob-
servable cosmos. A dramatic illustration is the map of the 2dF Galaxy
Redshift Survey and the newest results of the SDSS survey (see contribu-
tion M. Strauss). The recently published map of the distribution of more
than 150,000 galaxies in a narrow region on the sky yielded by the 2dF —
two-degree field — redshift survey. Instead of a homogenous distribution, we
recognize a sponge-like arrangement, with galaxies aggregating in filaments,
walls and nodes on the periphery of giant voids.

This frothy geometry of the Megaparsec Universe is evidently one of
the most prominent aspects of the cosmic fabric, outlined by galaxies pop-
ulating huge filamentary and wall-like structures, the sizes of the most
conspicuous one frequently exceeding 100h~! Mpc. The closest and best
studied of these massive anisotropic matter concentrations can be identi-
fied with known supercluster complexes, enormous structures comprising
one or more rich clusters of galaxies and a plethora of more modestly sized
clumps of galaxies. A prominent and representative nearby specimen is
the Perseus-Pisces supercluster, a 5h~! wide ridge of at least 50h~1 Mpc
length, possibly extending out to a total length of 140h~! Mpc. In addition
to the presence of such huge filaments the galaxy distribution also contains
vast planar assemblies. A striking example of is the Great Wall, a huge
planar assembly of galaxies with dimensions that are estimated to be of
the order of 60h~! x 170h~1 x 5h~! Mpc (Geller & Huchra 1989). Within
and around these anisotropic features we find a variety of density condensa-
tions, ranging from modest groups of a few galaxies up to massive compact
galaxy clusters. The latter stand out as the most massive fully collapsed
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FIGURE 12.1. A full 3-D tessellation comprising 1000 Voronoi cells/polyhedra
generated by 1000 Poissonian distributed nuclei. Courtesy: Jacco Dankers
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and virialized objects in the Universe. In nearby representatives like the
Virgo and Coma cluster typically more than a thousand galaxies have been
identified within a radius of a mere 1.5h~! Mpc around the core. They may
be regarded as a particular population of cosmic structure beacons as they
typically concentrate near the interstices of the cosmic web, nodes forming
a recognizable tracer of the cosmic matter distribution out to vast distances
(e.g. Borgani & Guzzo 2001). Complementing this cosmic inventory leads
to the existence of large voids, enormous regions with sizes in the range of
20 — 50h~! Mpc that are practically devoid of any galaxy, usually roundish
in shape. The earliest recognized one, the Bootes void (Kirshner et al. 1981,
1987), a conspicuous almost completely empty spherical region with a di-
ameter of around 60h~'Mpc, is still regarded as the canonic example. The
role of voids as key ingredients of the cosmic matter distribution has since
been convincingly vindicated in various extensive redshift surveys, up to
the recent results produced by 2dF redshift survey and the Sloan redshift
surveys.

Of utmost significance for our inquiry into the issue of cosmic struc-
ture formation is the fact that the prominent structural components of the
galaxy distribution — clusters, filaments, walls and voids — are not merely
randomly and independently scattered features. On the contrary, they have
arranged themselves in a seemingly highly organized and structured fash-
ion, the cosmic foam. They are woven into an intriguing foamlike tapestry
that permeates the whole of the explored Universe. Voids are generically as-
sociated with surrounding density enhancements. In the galaxy distribution
they represent both contrasting as well as complementary components in-
gredients, the vast under-populated regions, (the voids), being surrounded
by walls and filaments. At the intersections of the latter we often find
the most prominent density enhancements in our universe, the clusters of
galaxies.

12.3 Gravitational Foam Formation and Bubble
Dynamics.

Foamlike patterns have not only been confined to the real world. Equally
important has been the finding that foamlike patterns do occur quite natu-
rally in a vast range of structure formation scenarios within the context of
the generic framework of gravitational instability theory. Prodded by the
steep increase in computing power and the corresponding proliferation of
ever more sophisticated and extensive simulation software, a large range of
computer models of the structure formation process have produced telling
images of similar foamlike morphologies. They reveal an evolution proceed-
ing through stages characterized by matter accumulation in structures with
a pronounced cellular morphology.

The generally accepted theoretical framework for the formation of struc-
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ture is that of gravitational instability. The formation and moulding of
structure is ascribed to the gravitational growth of tiny initial density- and
velocity deviations from the global cosmic density and expansion. An im-
portant aspect of the gravitational formation process is its inclination to
progress via stages in which the cosmic matter distribution settles in strik-
ing anisotropic patterns. Aspherical overdensities, on any scale and in any
scenario, will contract such that they become increasingly anisotropic, as
long as virialization has not yet set in. At first they turn into a flattened
‘pancake’; possibly followed by contraction into an elongated filament. Such
evolutionary stages precede the final stage in which a virialized object, e.g.
a galaxy or cluster, will emerge. This tendency to collapse anisotropically
finds its origin in the intrinsic primordial flattening of the overdensity, aug-
mented by the anisotropy of the gravitational force field induced by the
external matter distribution, i.e. by tidal forces. Naturally, the induced
anisotropic collapse has been the major agent in shaping the cosmic foam-
like geometry.

Inspired by early computer calculations, Icke (1984) pointed out that for
the understanding of the formation of the large coherent patterns pervading
the Universe it may be more worthwhile to direct attention to the comple-
mentary evolution of underdense regions. By contrast to the overdense fea-
tures, the low-density regions start to take up a larger and larger part of the
volume of the Universe. Icke (1984) then made the interesting observation
that the arguments for the dynamics and evolution of slightly anisotropic
— e.g. ellipsoidal — primordial overdensities are equally valid when consid-
ering the evolution of low-density regions. The most important difference
is that the sense of the final effect is reversed. The continuously stronger
anisotropy of the force field in collapsing ellipsoidal leads to the charac-
teristics tendency for slight initial asphericities to get amplified during the
collapse, the major internal mechanism for the formation of the observed
filaments in the galaxy distribution. By contrast, a void is effectively a
region of negative density in a uniform background. Therefore, they will
expand as the overdense regions collapse, while slight asphericities decrease
as the voids become larger. This can be readily appreciated from the fact
that with respect to an equally deep spherical underdensity, an ellipsoidal
void has a decreased rate of expansion along the longest axis of the ellip-
soid and an increased rate of expansion along the shortest axis. Together
with the implied Hubble-type velocity field, voids will thus behave like low-
density ‘super-Hubble’ expanding patches in the Universe. To describe this
behaviour we coined the term “Bubble Theorem” (Icke 1984).

Evidently, we have to be aware of the serious limitations of the ellipsoidal
model. It grossly oversimplifies in disregarding important aspects like the
presence of substructure in and the immediate vicinity of peaks and dips
in the primordial density field. Still, it is interesting to realize that in many
respects the homogeneous model is a better approximation for underdense
regions than it is for overdense ones. Voids expand and get drained, and



12. The Cosmic Foam 181

the interior of a (proto)void rapidly flattens out, which renders the valid-
ity of the approximation accordingly better. Such behaviour was clearly
demonstrated in circumstances of voids embedded in a full complex gen-
eral cosmic density field (see e.g. Van de Weygaert & van Kampen 1993,
their Fig. 16). Their systematic study also showed how voids in general
will evolve towards a state in which they become genuine “Superhubble
Bubbles™.

In realistic circumstances, expanding voids will sooner or later encounter
their peers or run into dense surroundings. The volume of space available
to a void for expansion is therefore restricted. Voids will also be influenced
by the external cosmic mass distribution, and substructure may represent
an additional non-negligible factor within the void’s history. In general, we
deal with a complex situation of a field of expanding voids and collapsing
peaks, of voids and peaks over a whole range of sizes and masses, expanding
at different rates and at various stages of dynamical development. For the
purpose of our geometric viewpoint, the crucial question is whether it is
possible to identify some characteristic and simplifying elements within
such a complex. Indeed, simulations of void evolution (e.g. Dubinski et al.
1993) represent a suggestive illustration of a hierarchical process akin to the
void hierarchy seen in realistic simulations (e.g. Van de Weygaert 1991b).
It shows the maturing of small-scale voids until their boundaries would
reach a shell-crossing catastrophe, after which they merge and dissolve into
a larger embedding void. This process gets continuously repeated as the
larger parent voids in turn dissolve into yet larger voids. For a primordial
Gaussian density field, corresponding analytical calculations (Sheth & Van
de Weygaert 2002) then yield a void size distribution (broadly) peaked
around a characteristic void size.

A bold leap then brings us to a geometrically interesting situation. Tak-
ing the voids as the dominant dynamical component of the Universe, and
following the “Bubble Theorem”, we may think of the large scale structure
as a close packing of spherically expanding regions. Then, approximating a
peaked void distribution by one of a single scale, we end up with a situation
in which the matter distribution in the large scale Universe is set up by
matter being swept up in the bisecting interstices between spheres of equal
expansion rate. This ASYMPTOTIC description of the cosmic clustering
process leads to a geometrical configuration that is one of the main concepts
in the field of stochastic geometry: VORONOI TESSELLATIONS.

12.4  Voronoi Tessellations: the Geometric Concept

A Voronoi tessellation of a set of nuclei is a space-filling network of poly-
hedral cells, each of which delimits that part of space that is closer to its
nucleus than to any of the other nuclei. In three dimensions a Voronoi foam
consists of a packing of Voronoi cells, each cell being a convex polyhedron
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FIGURE 12.2. Wireframe illustration of interrelation between various Voronoi
tessellation elements. The central “Voronoi cell” is surrounded by its wire-frame
depicted “contiguous” Voronoi neighbours. The boundaries of the cells are the
polygonal “Voronoi walls”. The wire edges represent the Voronoi edges. The
“Voronoi vertices”, indicated by red dots, are located at each of the 2 tips of
a Voronoi edge, each of them located at the centre of the circumsphere of a
corresponding set of four nuclei. Courtesy: Jacco Dankers.

enclosed by the bisecting planes between the nuclei and their neighbours.
A Voronoi foam consists of four geometrically distinct elements: the poly-
hedral cells (voids), their walls (pancakes), edges (filaments) where three
walls intersect, and nodes (clusters) where four filaments come together.

Formally, each Voronoi region II; is the set of points which is nearer
to nucleus i than to any of the other nuclei j in a set ® of nuclei {x;}
in d-dimensional space R?, or a finite region thereof, II; = {&|d(Z, ;) <
d(Z,%;), V j # i}, where &; are the position vectors of the nuclei in ®, and
d(Z,¥) the Euclidian distance between ¥ and ¢ (evidently, one can extend
the concept to any arbitrary distance measure). From this basic defini-
tion, we can directly infer that each Voronoi region II; is the intersection
of the open half-spaces bounded by the perpendicular bisectors (bisecting
planes in 3-D) of the line segments joining the nucleus ¢ and any of the
the other nuclei. This implies a Voronoi region II; to be a convex polyhe-
dron (or polygon when in 2-D), a Voronoi polyhedron. The complete set of
{II;} constitute a space-filling tessellation of mutually disjunct cells in d-
dimensional space &%, the Voronoi tessellation V(®) relative to ®. A good
impression of the morphology of a complete Voronoi tessellation can be seen
in figure 1, a tessellation of 1000 cells generated by a Poisson distribution
of 1000 nuclei in a cubic box.

Taking the three-dimensional tessellation as the archetypical representa-
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tion of structures in the physical world, we can identify four constituent
elements in the tessellation, intimately related aspects of the full Voronoi
tessellation. In addition to (1) the polyhedral Voronoi cells II; these are (2)
the polygonal Voronoi walls 3J;; outlining the surface of the Voronoi cells,
(3) the one-dimensional Voronoi edges A;ji; defining the rim of both the
Voronoi walls and the Voronoi cells, and finally (4) the Voronoi vertices
Vijri which mark the limits of edges, walls and cells. While each Voronoi
cell is defined by one individual nucleus in the complete set of nuclei @,
each of the polygonal Voronoi walls ¥;; is defined by two nuclei ¢ and j,
consisting of points Z having equal distance to i and j. The Voronoi wall
>i; is the subregion of the full bisecting plane of 7 and j which consists of
all points Z closer to both ¢ and j than other nuclei in ®. In analogy to
the definition of a Voronoi wall, a Voronoi edge A;;j; is a subregion of the
equidistant line defined by three nuclei 7, j and k, the subregion consisting
of all points & closer to i, j and k than to any of the other nuclei in ®.
Evidently, it is part of the perimeter of three walls as well, ¥;;, 3, and
Y jk. Pursuing this enumeration, Voronoi vertices Vj;i; are defined by four
nuclei, i, j, k and [, being the one point equidistant to these four nuclei
and closer to them than to any of the other nuclei belonging to II;. Note
that this implies that the circumscribing sphere defined by the four nuclei
does not contain any other nuclei. To appreciate the interrelation between
these different geometric aspects, figure 2 lifts out one particular Voronoi
cell from a clump of a dozen Voronoi cells. The central cell is the one with
its polygonal Voronoi walls surface-shaded, while the wire-frame represen-
tation of the surrounding Voronoi cells reveals the Voronoi edges defining
their outline and the corresponding vertices as red dots. Notice, how the
distribution of vertices, generated by the stochastic point process of nuclei,
is in turn a new and uniquely defined point process, that of the vertices !!!

12.5  Voronoi Tessellations: the Cosmological
Context

In the cosmological context Voronoi Tessellations represent the Asymp-
totic Frame for the ultimate matter distribution distribution in any cosmic
structure formation scenario, the skeleton delineating the destination of
the matter migration streams involved in the gradual buildup of cosmic
structures. The premise is that some primordial cosmic process generated
a density fluctuation field. In this random density field we can identify a col-
lection of regions where the density is slightly less than average or, rather,
the peaks in the primordial gravitational potential perturbation field. As
we have seen, these regions are the seeds of the voids. These underdense
patches become “expansion centres” from which matter flows away until it
runs into its surroundings and encounters similar material flowing out of
adjacent voids. Notice that the dependence on the specific structure forma-
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tion scenario at hand is entering via the spatial distribution of the sites of
the density dips in the primordial density field, whose statistical properites
are fully determined by the spectrum of primordial density fluctuations.

Matter will collect at the interstices between the expanding voids. In the
asymptotic limit of the corresponding excess Hubble parameter being the
same in all voids, these interstices are the bisecting planes, perpendicu-
lary bisecting the axes connecting the expansion centres. For any given set
of expansion centres, or nuclei, the arrangement of these planes define a
unique process for the partitioning of space, a Voronoi tessellation (Voronoi
1908, see Fig. 1 and 2). A particular realisation of this process (i.e. a spe-
cific subdivision of N-space according to the Voronoi tessellation) may be
called a Voronoi foam (Icke & Van de Weygaert 1987). Within such a cel-
lular framework the interior of each “VORONOI CELL” is considered to
be a void region. The planes forming the surfaces of the cells are identified
with the “WALLS’ in the galaxy distribution (see e.g. Geller & Huchra
1989). The “EDGES” delineating the rim of each wall are to be identified
with the filaments in the galaxy distribution. In general, what is usually
denoted as a flattened “supercluster” or cosmic “wall” will comprise an
assembly of various connecting walls in the Voronoi foam. The elongated
“superclusters” or “filaments” will usually consist of a few coupled edges
(Fig. 3 clearly illustrates this for the Voronoi kinematic model). Finally,
the most outstanding structural elements are the “VERTICES’, tracing
the surface of each wall, outlining the polygonal structure of each wall and
limiting the ends of each edge. They correspond to the very dense compact
nodes within the cosmic network, amongst which the rich virialised Abell
clusters form the most massive representatives.

Cosmologically, the great virtue of the Voronoi foam is that it provides a
conceptually simple model for a cellular or foamlike distribution of galax-
ies, whose ease and versatility of construction makes it an ideal tool for
statistical studies. By using such geometrically constructed models one is
not restricted by the resolution or number of particles. A cellular structure
can be generated over a part of space beyond the reach of any N-body ex-
periment. Even though the model does not and cannot address the galaxy
distribution on small scales, it is nevertheless a useful prescription for the
spatial distribution of the walls and filaments themselves. This makes the
Voronoi model particularly suited for studying the properties of galaxy
clustering in cellular structures on very large scales, for example in very
deep pencil beam surveys, and for studying the clustering of clusters in
these models.

12.6  Voronoi Galaxy Distributions

Having established the cosmological context for Voronoi tessellations in
the form of, approximate and asymptotic, skeletal template for the large-
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scale mass distribution we set about to generate the corresponding matter
distributions. Matter is supposed to aggregate in and around the various
geometrical elements of the cosmic frame, such as the walls, the filaments
and the vertices.

It is the stochastic yet non-Poissonian geometrical distribution of the
walls, filaments and clusters embedded in the cosmic framework which gen-
erates the large-scale clustering properties of matter and the related galaxy
populations. The small-scale distribution of galaxies, i.e. the distribution
within the various components of the cosmic skeleton, will involve the com-
plicated details of highly nonlinear small-scale interactions of the gravitat-
ing matter. N-body simulations are preferred for treating that problem.
For our purposes, we take the route of complementing the large-scale cellu-
lar distribution induced by Voronoi patterns by a user-specified small-scale
distribution of galaxies. Ideally, well-defined and elaborate physical models
would fill in this aspect. A more practical alternative approach involves the
generation of either tailor-made purely heuristic “galaxy” distributions in
and around the various elements of a Voronoi tessellation (e.g. pure uni-
form distributions). Alternatively, we can generate distributions that more
closely resemble the outcome of dynamical simulations, and represent an
idealized and asymptotic description thereof. Such a model is the kinematic
model defined by Van de Weygaert & Icke (1989).

Particular emphasis should be put on that fact that this Voronoi strat-
egy has the unique and fundamental feature of studying galaxy distribu-
tions around geometrical features that themselves have some distinct and
well-defined stochastic spatial distribution. The galaxies are residing in
walls, filaments and vertices which are distributed themselves as an inte-
gral component of the Voronoi spatial network. Their distribution is not a
pure random, but instead one in which these components themselves are
spatially strongly correlated, connecting into coherent “super”structures
Il This background frame of spatially clustered geometrical elements not
only determines the overall clustering properties of its galaxy population,
it also represents and distinguishes it from from less physically motivated
stochastic toy models (e.g. the double Poisson process).

12.6.1 Voronoi galaxy distributions: the Kinematic Model

The kinematic Voronoi model is based on the notion that when matter
streams out of the voids towards the Voronoi skeleton, cell walls form
when material from one void encounters that from an adjacent one. In the
original “pancake picture” of Zel’dovich and collaborators, it was gaseous
dissipation fixating the pancakes (walls), automatically leading to a cellu-
lar galaxy distribution. But also when the matter is collisionless, the walls
may be hold together by their own self-gravity. Accordingly, the structure
formation scenario of the kinematic model proceeds as follows. Within a
void, the mean distance between galaxies increases uniformly in the course
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FIGURE 12.3. A sequel of consecutive timesteps within the kinematic Voronoi
cell formation process. The depicted boxes have a size of 100h~'Mpc. Within
these cubic volumes some 64 Voronoi cells with a typical size of 25k~ Mpc de-
lineate the cosmic framework around which some 32000 galaxies have aggregated
(corresponding roughly to the number density of galaxies yielded by a Schechter
luminosity function with parameters according to Efstathiou, Ellis & Peterson
1988), where we restricted ourselves to galaxies brighter than Mg, = —17.0. In
the full “simulation box” of 200h~*Mpc, this amounts to 268,235 galaxies.

of time. When a galaxy tries to enter an adjacent cell, the gravity of the
wall, aided and abetted by dissipational processes, will slow its motion
down. On the average, this amounts to the disappearance of its velocity
component perpendicular to the cell wall. Thereafter, the galaxy contin-
ues to move within the wall, until it tries to enter the next cell; it then
loses its velocity component towards that cell, so that the galaxy continues
along a filament. Finally, it comes to rest in a node, as soon as it tries to
enter a fourth neighbouring void. Of course the full physical picture is ex-
pected to differ considerably in the very dense, highly nonlinear regions of
the network, around the filaments and clusters. Nonetheless, the Voronoi
kinematic model produces a structural morphology containing the reve-
lant characteristics of the cosmic foam, both the one seen in large redshift
surveys as the one found in the many computer model N-body simulations.

The evolutionary progression within our Voronoi kinematic scheme, from
an almost featureless random distribution, via a wall-like and filamentary
morphology towards a distribution in which matter ultimately aggregates
into conspicuous compact cluster-like clumps can be readily appreciated
from the sequence of 6 cubic 3-D particle distributions in Figure 3. The
steadily increasing contrast of the various structural features is accom-
panied by a gradual shift in topological nature of the distribution. The
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virtually uniform particle distribution at the beginning (upper lefthand
frame) ultimately unfolds into the highly clumped distribution in the lower
righthand frame. At first only a faint imprint of density enhancements and
depressions can be discerned. In the subsequent first stage of nonlinear
evolution we see a development of the matter distribution towards a wall-
dominated foam. The contrast of the walls with respect to the general field
population is rather moderate (see e.g. second frame), and most obviously
discernable by tracing the sites where the walls intersect and the galaxy
density is slightly enhanced. The ensuing frames depict the gradual pro-
gression via a wall-like through a filamentary towards an ultimate cluster-
dominated matter distribution. By then nearly all matter has streamed
into the nodal sites of the cellular network. The initially almost hesitant
rise of the clusters quickly turns into a strong and incessant growth towards
their appearance as dense and compact features which ultimately stand out
as the sole dominating element in the cosmic matter distribution (bottom
righthand frame).

12.7 Superclustering: the clustering of clusters

Maps of the spatial distribution of clusters of galaxies show that clusters
themselves are not Poissonian distributed, but turn out to be highly clus-
tered (see e.g. Bahcall 1988). They aggregate to form huge supercluster
complexes. For the sake of clarity, it is worthwhile to notice that such su-
perclusters represent moderate density enhancements on a scale of tens of
Megaparsec, typically in the order of a few times the average. They are
still co-expanding with the Hubble flow, be it at a slightly decelerated rate,
and are certainly not to be compared with collapsed, let alone virialized,
identifiable physical entities like clusters.

The first characteristic of superclustering is the finding that the clus-
tering of clusters is considerably more pronounced than that of galaxies.
According to most studies the two-point correlation function &..(r) of clus-
ters is consistent with it being a scaled version of the power-law galaxy-
galaxy correlation function, &..(r) = (ro./r)Y. While most agree on the
same slope v & 1.8 and a correlation amplitude that is significantly higher
than that for the galaxy-galaxy correlation function, the estimates for the
exact amplitude differ considerably from a factor ~ 10 — 25. The original
value found for the “clustering length” r, for rich R > 1 Abell clusters was
ro &~ 25h~!Mpc (Bahcall & Soneira 1983), up to a scale of 100h~! Mpc
(Bahcall 1988). Later work favoured more moderate values in the order of
15— 20h~'Mpc (e.g. Sutherland 1988, Dalton et al. 1992, Peacock & West
1992).

A related second characteristic of superclustering is that the differences in
estimates of r, are at least partly related to the specific selection of clusters,
i.e. the applied definition of clusters. Studies dealt with cluster samples of
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FIGURE 12.4. Two-point correlation function analysis of a selection of galaxies in
a Voronoi kinematic model realization. Top frame: depiction of a galaxy sample in
a 150k~ "Mpc box at the present cosmic epoch o(8h~"Mpc = 1. Note the cellular
morphology of walls and filaments with a few conspicuously dense cluster “nodes”.
Bottom left: a log-log plot of the £(r), with distance 7 in units of the basic cellsize
Acell- The power-law character of € up to r ~ 0.5\, is evident. Bottom right: a
lin-lin plot of £ showing ringing behaviour out to scales r ~ 2Acen. From: Van de
Weygaert 2002.

rich R > 1 Abell clusters, others also included poorer clusters, or employed
a physically well-founded criterion on the basis of X-ray emission. On the
basis of such analyses we find a trend of an increasing clustering strength
as the clusters in the sample become more rich (=~ massive). On the basis
of the first related studies, Szalay & Schramm (1985) even put forward the
(daring) suggestion that samples of clusters selected on richness would dis-
play a ‘fractal’ clustering behaviour, in which the clustering scale r, would
scale linearly with the typical scale L of the cluster catalogue. This typical
scale L(R) is then the mean separation between the clusters of richness
higher than R: £..(r) = 3 (L(r)/r)” where L(R) = n~'/3. While the exact
scaling of L(r) with mean number density n is questionable, observations
follow the qualitative trend of a monotonously increasing L(R). It also
seems to adhere to the increasing level of clustering that selections of more
massive clusters appear to display in large-scope N-body simulations (e.g.
Colberg 1998), given some telling detailed differences.
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A third aspect of superclustering, one that often escapes emphasis but
which we feel is important to focus attention on, is the issue of the spatial
range over which clusters show positive correlations, the “coherence” scale
of cluster clustering. Currently there is ample evidence that £..(r) extends
out considerably further than the galaxy-galaxy correlation {y4, possibly
out to 50h~! — 100~h~'Mpc. This is not in line with conventional presump-
tion that the stronger level of cluster clustering is due to the more clustered
locations of the (proto)cluster peaks in the primordial density field with re-
spect to those of (proto)galaxy peaks. According to this conventional “peak
bias” scheme we should not find significant non-zero cluster-cluster correla-
tions on scales where the galaxies no longer show any significant clustering.
If indeed 44 is negligible on these large scales, explaining the large scale
cluster-cluster clustering may be posing more complications than a simple
interpretation would suggest.

12.8 Superclustering: the Voronoi Vertex
Distribution

In the Voronoi description vertices are identified with the clusters of galax-
ies, a straightforward geometric identification without need to invoke ad-
ditional descriptions. Like genuine clusters, these vertices then act as the
condensed and compact complexes located at the interstices in the cosmic
framework. The immediate and highly significant consequence is that — for
a given Voronoi foam realization — the spatial distribution of clusters is
fully and uniquely determined. The study of the clustering of these vertices
can therefore be done without any further assumptions, fully set by the
geometry of the tessellation. When doing this, we basically use the fact
that the Voronoi node distribution is a topological invariant in co-moving
coordinates, and does not depend on the way in which the walls, filaments,
and nodes are populated with galaxies. The statistics of the nodes should
therefore provide a robust measure of the Voronoi properties.

A first inspection of the spatial distribution of Voronoi vertices (Fig. 4,
top frame) immediately reveals that it is not a simple random Poisson dis-
tribution. The full spatial distribution of Voronoi vertices in the 150h~*Mpc
cubic volume involves a substantial degree of clustering, a clustering which
is even more strongly borne out by the distribution of vertices in a thin slice
through the box (bottom lefthand frame) and equally well reflected in the
sky distribution (bottom righthand frame). The impression of strong clus-
tering, on scales smaller than or of the order of the cellsize ¢, is most ev-
idently expressed by the corresponding two-point correlation function &(r)
(Fig. 4, log-log plot lefthand frame, lin-lin plot in the righthand frame). Not
only can we discern a clear positive signal but — surprising at the time of its
finding on the basis of similar computer experiments (van de Weygaert &
Icke 1989) — out to a distance of at least r &~ 1/4 A the correlation function
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appears to be an almost perfect power-law,

T Y
Eun(r) = (70) : =195 1o~ 0.3\. (12.1)
The solid line in the log-log diagram in Fig. 4 represents the power-law with
these parameters, the slope v ~ 1.95 and “clustering length” r, =~ 0.3 A..
(the solid line represents the power-law with these parameters). Beyond
this range, the power-law behaviour breaks down and following a gradual
decline the correlation function rapidly falls off to a zero value once dis-
tances are of the order of (half) the cellsize. Assessing the behaviour of
&(r) in a linear-linear plot, we get a better idea of its behaviour around
the zeropoint “correlation length” r, ~ 0.5\, (bottom righthand frame fig.
4). Beyond r, the distribution of Voronoi vertices is practically uniform.
Its only noteworthy behaviour is the gradually declining and alternating
quasi-periodic ringing between positive and negative values similar to that
we also recognized in the “galaxy” distribution, a vague echo of the cel-
lular patterns which the vertices trace out. Finally, beyond r =~ 2\. any
noticeable correlation seems to be absent.

The above 2pt correlation function of Voronoi vertices is a surprisingly
good and solid match to the observed world. It sheds an alternative view
on the power-law clustering with power law v = 2 found in the cluster
distribution. Also, the observed cluster clustering length r, ~ 20h~! Mpc
can be explained within the context of a cellular model, suggesting a cellsize
of Ae &~ 70h~! Mpc as the basic scale of the cosmic foam.

On the other hand, the latter also reveals a complication. The suggested
cell scale is surely well in excess of the 25~ — 35h~! Mpc size of the voids
in the galaxy distribution. In addition, it appears to point to an internal
inconsistency within the Voronoi concept. We saw above that if we tie the
observed galaxy-galaxy correlation to the clustering of objects in the walls
and filaments of the same tessellation framework, it suggests a cellsize A, =
25h~'Mpec. This would conflict with the cellsize that would correspond to a
good fit of the Voronoi vertex clustering to cluster clustering. The solution
to this dilemma lead to an intriguing finding (for a complete description of
this result see Van de Weygaert 2001).

12.8.1 Biased Voronoi Vertex Selections

We first observe that the vertex correlation function of eqn. (2) concerns the
full sample of vertices, irrespective of any possible selection effects based
on one or more relevant physical aspects. In reality, it will be almost in-
evitable to invoke some sort of biasing through the definition criteria of
the involved catalogue of clusters. Interpreting the Voronoi model in its
quality of asymptotic approximation to the galaxy distribution, its vertices
will automatically comprise a range of “masses”.

Brushing crudely over the details of the temporal evolution, we may
assign each Voronoi vertex a “mass” estimate by equating that to the total
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FIGURE 12.5. Selections of vertices from a full sample of vertices. Depicted are
the (100%) full sample (top left), and subsamples of the 25%, 10%, 5% and 1%
most massive vertices (top centre, top right, bottom left, bottom right). Note
how the richer vertices appear to highlight ever more pronounced a filamentary
superstructure running from the left box wall to the box centre. From: Van de
Weygaert 2002a.

amount of matter ultimately will flow towards that vertex. When we use
the “Voronoi streaming model” as a reasonable description of the clustering
process, it is reasonably straightforward if cumbersome to calculate the
“mass” or “richness” My of each Voronoi vertex by pure geometric means.
Evidently, vertices surrounding large cells are expected to be more massive.
The details, turn out to be challengingly complex, as it concerns the (purely
geometric) calculation of the volume of a non-convex polyhedron centered
on the Voronoi vertex. The related nuclei are the ones that supply the
Voronoi vertex with inflowing matter.

To get an impression of the resulting selected vertex sets, Figure 5 shows
5 times the same box of 250h~!Mpc size, each with a specific subset of
the full vertex distribution (top lefthand cube). In the box we set up a
realization of a Voronoi foam comprising 1000 cells with an average size of
25h~'Mpc. From the full vertex distribution we selected the ones whose
“richness” My exceeds some specified lower limit. The depicted vertex
subsets correspond to progressively higher lower mass limits, such that
100%, 25%, 10%, 5% and 1% most massive vertices are included (from top
lefthand to bottom righthand). The impression is not the one we would
get if the subsamples would be mere random diluted subsamples from the
full vertex sample. On the contrary, we get the definite impression of a
growing coherence scale !!! Correcting for a possibly deceiving influence of
the dilute sampling, and sampling an equal number of vertices from each
“selected” sample only considerably strengthens this impression. There is
an intrinsic effect in changing clustering properties as a function of (mass-
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FIGURE 12.6. Scaling of the two-point correlation function of Voronoi vertices,
for a variety of subsamples selected on the basis of “richness”, ranging from
samples with the complete population of vertices down to subsamples containing
the 2.5% most massive vertices. Left: log-log plot of £(r) against r/Ac, with Ac
the basic tessellation cellsize (= intranucleus distance). Notice the upward shift of
&(r) for subsamples with more massive vertices. Right: lin-lin plot of {(r) against
r/Xc. Notice the striking rightward shift of the “beating” pattern as richness of
the sample increases. From: Van de Weygaert 2002a.

defined) cluster sample.

12.8.2  Vertex clustering: Geometric Biasing?

All in all, Fig. 5 provides ample testimony of a profound largely hidden
large-scale pattern in foamlike networks, a hithero entirely unsuspected
large-scale coherence over a range exceeding many cellsizes.

To quantify the impression given by the distribution of the biased vertex
selections, we analyzed the two-point correlation function for each vertex
sample. We computed &£(r) for samples ranging From the complete sample
down to the ones merely containing the 2.5% most massive ones. As the
average distance \,(R) = n(R)~/3 between the sample vertices increases
monotonously with rising subsample richness, in the following we will fre-
quently use the parameter )\, for characterizing the richness of the sample,
ranging from A, = 0.5\; up to A, =~ 1.5\, for vertex samples comprising
all vertices up to samples with the 10% most massive vertices (the basic
cellsize A functions objective distance unit).

The surprising finding is that all subsamples of Voronoi vertices do retain
a two-point correlation function displaying the same qualitative behaviour
as the &, (1) for the full unbiased vertex sample (Fig 6). Out to a certain
range it invariably behaves like a power-law (lefthand frame), while beyond
that range the correlation functions all show the decaying oscillatory be-
haviour that already has been encountered in the case of the full sample.
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FIGURE 12.7. Scaling of Voronoi vertex two-point correlation function parame-
ters for vertex subsamples over a range of “richness” /“mass”. Left: the clustering
length ro (red, {(ro) = 1.0) and the correlation (coherence) length 7, (blue,
&(ra) =0) as a function of average spatial separation between vertices in (mass)
selected subsample, \,/\c. Centre: the ratio between clustering length ro and
coherence length r, as function of subsample intravertex distance A, /.. Right:
the power-law slope « as function of A, /.

While all vertex &,v(r) convincingly confirm the impression of clustered
point distributions, merely by the fact that it is rather straightforward to
disentangle the various superposed two-point correlation functions we can
immediately infer significant systematic differences.

First observation is that the amplitude of the correlation functions in-
creases monotonously with rising vertex sample richness. Expressing the
amplitude in terms of the “clustering length” r, and plotting this against
the Ay between the sample vertices (both in units of \A.), a striking almost
perfectly linear relation is resulting (Fig. 7, lefthand frame, lower line). In
other words, almost out of the blue, the “fractal” clustering scaling descrip-
tion of Szalay & Schramm (1985) appears to be stealthily hidden within
foamy geometries. Although in the asymptotic Voronoi model we may be
partially beset by the fact that we use an asymptotic measure for the ver-
tex “mass” — the total amount of mass that ultimately would settle in the
nodes of the cosmic foam — it may have disclosed that ultimately it reflects
the foamy structured spatial matter distribution. Overall, the scaling of
the clustering strength explains the impression of the increasingly compact
clumpiness seen in the “biased” vertex distributions in Fig. 5. Summariz-
ing, we can conclude that the foamy geometry is the ultimate ground for
the observed amplified levels of cluster clustering.

A second significant observation is that the lin-lin large-scale behaviour
of the &,, seems to extend to larger and larger distances as the sample
richness is increasing. The oscillatory behaviour is systematically shifting
outward for the richer vertex samples, which reflects the fact that cluster-
ing patterns extend increasingly outward. Even though the basic cellular
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pattern had a characteristic scale of only A., the sample of the 5% richest
nodes apparently seem to set up coherent patterns extending at least 2
to 3 times larger. This is clearly borne out by the earlier shown related
point distributions (Fig. 5). Foamlike geometries seemingly induce coher-
ent structures significantly larger than their basic size !!! This may hint at
another tantalizing link between the galaxy and the cluster distribution.
To elucidate this behaviour further, in Fig. 7 (lefthand frame, higher line)
we also plotted the “correlation (coherence) scale” r, versus the average
sample vertex distance \,. And yet again, as in the case of r,, we find an
almost perfectly linear relation !!!

Combining the behaviour of r, and r, we therefore find a remarkable ‘self-
similar’ scaling behaviour, in which the ratio of correlation versus clustering
length is virtually constant for all vertex samples, r,/r, ~ 1.86 (see Fig. 7,
central frame). Foamlike networks appear to induce a clustering in which
richer objects not only cluster more strongly, but also further out !!!

A final interesting detail on the vertex clustering scaling behaviour is
that a slight and interesting trend in the behaviour of power-law slope.
The richer samples correspond to a tilting of of the slope. Interestingly,
borne out by the lower righthand frame in Fig. 7, we see a gradual change
from a slope v ~ 1.95 for the full sample, to a robust v ~ 1.8 for the
selected samples.

12.9 Conclusions: Bias, Cosmic Geometry and
Self-Similarity

The uncovered systematic trends of vertex clustering have uncovered a
hidden ‘self-similar’ clustering of vertices. This may be appreciated best
from studying a particular realization of such behaviour (see Fig. 8)

The above results form a tantalizing indication for the existence of self-
similar clustering behaviour in spatial patterns with a cellular or foamlike
morphology. It might hint at an intriguing and intimate relationship be-
tween the cosmic foamlike geometry and a variety of aspects of the spatial
distribution of galaxies and clusters. One important implication is that with
clusters residing at a subset of nodes in the cosmic cellular framework, a
configuration certainly reminiscent of the observed reality, it would explain
why the level of clustering of clusters of galaxies becomes stronger as it con-
cerns samples of more massive clusters. In addition, it would successfully
reproduce positive clustering of clusters over scales substantially exceeding
the characteristic scale of voids and other elements of the cosmic foam.
At these Megaparsec scales there is a close kinship between the measured
galaxy-galaxy two-point correlation function and the foamlike morphology
of the galaxy distribution. In other words, the cosmic geometry apparently
implies a ‘geometrical biasing” effect, qualitatively different from the more
conventional “peak biasing” picture (Kaiser 1984).
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FIGURE 12.8. A depiction of the meaning of ‘self-similarity’ in the vertex distri-
bution. Out of a full sample of vertices (top left) in a central slice, (top right) the
20.0% richest vertices. Similarly, (bottom left) the 2.5% richest vertices. When
lifting the central 1/8'" region out of the 20% vertex subsample in the (top right-
hand) frame and sizing it up to the same scale as the full box, we observe the
similarity in point process between the resulting (bottom righthand) distribution
and that of the 2.5% subsample (bottom lefthand). Self-similarity in pure form !
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Statistics and the Cosmic
Microwave Background

Andrew H. Jaffe!

ABSTRACT We discuss the statistics of fluctuations in the Cosmic Mi-
crowave Background, and the statistical analysis of CMB experiments. Us-
ing Bayesian techniques, we proceed from the time-ordered data through
maps of the sky, to power spectra, and to cosmological parameters. We dis-
cuss computational problems encountered along the way, and review recent
results.

This paper is followed by a commentary by the Pittsburgh Institute for
Computational Astrostatistics.

13.1 Introduction

The Cosmic Microwave Background (CMB) is made up of photons that
last interacted with ordinary matter when the Universe was 100,000 years
old and had a temperature, T, corresponding to k7T ~ 1 eV, where k
is Boltzmann’s constant and eV are units of energy. At this epoch, the
protons and electrons that had been kept ionized by the high tempera-
ture were able to form neutral hydrogen for the first time. Prior to this,
the charged proton/electron plasma was opaque to photons; thereafter the
Universe was transparent. Hence, the CMB photons we see today have
been streaming freely for the subsequent 15 billion years, redshifting by a
factor of 1,000 to the microwave band, only to be captured finally in one
of the several detectors we have designed to do just that. Starting with
Penzias and Wilson’s 1967 radio telescope, through the COBE satellite [5]
launched in the late 80s, today’s MAXIMA[13, 19], BOOMERANG]S8, 3]
and DASI[21, 12, 28] experiments, the just-launched MAP satellite[23], and
the Planck satellite[27], planned for 2007, we observe the CMB with increas-
ing sensitivity and higher resolution. The results are a two-dimensional
snapshot of the Universe at this epoch of “Last Scattering” or “Recom-
bination” filtered through the physics of the baryons, electrons, photons
and Dark Matter making up the Universe. As there have been many fine
reviews of these physical processes and what we can hope to learn from
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them about the Universe as a whole, I will simply commend the interested
reader to them (e.g., [17, 15]), here concentrating on statistical issues. Much
of this material is necessarily review of various more technical references

(e.g., [3, 32]).

13.2 The statistics of CMB anisotropies

Unlike many other areas of astronomy, here we are concerned with an un-
derlying physical phenomenon that is itself statistical in nature, rather
than deterministic. That is, we are not interested in the long run in the
details of the temperature distribution, but rather in its overall statisti-
cal properties. Within the inflationary paradigm of structure formation,
perturbations to the otherwise-smooth matter density are laid down via
a quantum-mechanical mechanism; these three-dimensional perturbations
are described by a power spectrum, P(k) o k™= (possibly with small cor-
rections) and in most inflationary models with a Gaussian distribution, so
that the power spectrum is the only information needed to describe them.
Because they are extremely small (fractionally less than 10~ at the time of
last scattering), we can use linear perturbation theory to determine the im-
pact on the CMB. Any linear transformation of a Gaussian field is another
Gaussian field, and hence the CMB fluctuations are themselves described
by a 2d power spectrum, Cy, where £ is spherical harmonic wavenumber. We
start with the temperature pattern on the sky, AT (X)/T = [T'(x) — T]/T,
where T is the average temperature and X is a unit vector, and expand this
in spherical harmonic multipoles:

218 = Y annYin(®) (13.1)
m

Under the assumptions of Gaussianity and an isotropic distribution on
the sky, we can treat the components as,, as if they were drawn from a
multivariate (but uncorrelated) Gaussian distribution with variance

<a€ma€/m’> = Cééé,é’(sm,—m/ . (13-2)

Then, our task will be to determine Cy from an actual noisy realization of
some part of the sky.

13.3 The Bayesian paradigm

We will start with a statement of Bayes” Theorem:

P(6|1)P(D|6I)

P(0|DI) = PO

(13.3)
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where P(a|b) is the probability (or density) for a given b. The parameters
of the theory we are testing are 6, the data is D, and the “background
information,” is 1. We mix “propositions” like I, with parameter values,
like 6. P(0|I) is the prior, P(D|0I) is the likelihood, and

P(D|I) = /de P(6|T)P(D|6I) (13.4)

is a normalization factor, occasionally referred to as the evidence.
We will in the end wish to report some limits on the parameters, other-
wise known as “credible regions.” These are defined as

Omax
P(Omin < 0 < Omax|DI) = / PO|DI) do =C . (13.5)
Omin
That is, the probability that the parameter is within the given region is C.
In CMB experiments, the data we start with is a timestream,

dt = Atpr + Ny (136)

where d; is the data taken at time ¢ = 1... N, T}, is the sky temperature
at pixel p = 1... 1V, with center located at position %X, n; is the value of
the noise (instrumental and otherwise) at ¢, and finally Ay, is the matrix
operator converting the temperature on the sky labeled by positions p to
that observed at time ¢ (so Ay, = 1 if pixel p is observed at time ¢, and 0
otherwise). We will take T}, to be already smeared by the effects of beam and
pixel: T, = [ d*zB(%,,¥)S(¥), where B gives the response of the beam at
position X, from a signal at § and S is the underlying temperature on the
sky. In the following, we will freely mix matrix notation and the summation
convention: AT = (AT), = AT, = 3, ApTp.

What are the parameters, 0, in which we are interested? The most obvi-
ous appear directly in Eq. 13.6: the underlying CMB sky, 7). But we can
also ask about the power spectrum, Cy, which is responsible for correlations
in T}, between different positions, or even the cosmological parameters un-
derlying the spectrum. It is most efficient to ask each of these questions in
turn, reducing the amount of data at each step. There is nothing to stop us
from calculating P(§2|d;I), and finding the value of the density parameter
directly from the timestream. We will see that this would give us the same
answer as calculating it from the power spectrum: P(Q|d.I) = P(Q|C¢I).

13.3.1  From the timestream to a map

We will take the noise to be described by a Gaussian with correlation
function
(nini) = Ny (13.7)

We will further take the noise to be stationary, at least over short periods
of time, so that Ny = N(|t —t/|). In practice the noise needs to be solved
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for iteratively[11, 30]. Here, we will assume that N(t) is known exactly.
Given these definitions, we can write down the likelihood function for T,
which we will call the map:

1
P(d|TT) = |2aN|""? exp —5(d— AT)'N"}(d ~ AT)| . (13.8)

(Note that d and T refer to the full vectors d; and T,.) We can now ask,
what is the most probable map, fp, given the data? To do this we must
specify a prior, which we shall take to be uniform: P(T'|I) = const.

Our problem then becomes simple least-squares, albeit with large dimen-
sionality and complicated correlations. By completing the square, we can
rewrite the likelihood as

~ 1 ~ ~
P(dy|Ty1) o< P(T|T1) = [2nC| ™/ exp | —5(T = 1) C3M(T — T)]

(13.9)
where

T=(AIN"TA)TATN"'d  and  Cy=(ATN"14)"'.  (13.10)

The posterior distribution for 7" is just proportional to Eq. 13.9: the un-
derlying map, T}, is distributed around 7}, as a Gaussian with correlation
matrix Cnpp .

We also see that irrespective of the form of the prior, the likelihood can
be written as a function of T and Cy, rather than d and V; T and Cn
are sufficient statistics. If we retain this information, we can throw out the
original timestream data for any further inference we might wish to make
from the data.

As an important aside, we note that the calculation of the maximum-
likelihood map and its covariance matrix requires O( plx) operations (the
map-making itself can be reduced to O(Ngix), but the correlation matrix is
required for further operations). This becomes suitable for supercomputers
at the current Npix >~ 50,000 of MAXIMA and BOOMERANG. A parallel
implementation of the full calculation exists in the MADCAP package[22],
as do various implementations of O( plx) map-making[9].

We can assign a more informative prior distribution for the sky tempera-
ture. If we assume that the temperature itself is distributed as a zero-mean
Gaussian with some covariance matrix Crppy = (IT}), we can combine
the two Gaussian distributions by the usual complete-the-square mechan-
ics, and find that the posterior for 7' is once again a Gaussian, now with
mean TW = COr(Cr + Cn) T and variance Cy = Cr(Cr + Cn)~1Cr.
This is just the Wiener filter which can also be derived on minimum-
variance grounds. Note that a particular prior power spectrum, Cy, defines
a particular prior C7, and hence a particular Wiener filter.

In Figure 13.1 we show an example, the map made from the MAXIMA-1
data[19].



13. Statistics and the Cosmic Microwave Background 201

FIGURE 13.1. Maps, T\, made from the MAXIMA data. The left panel shows a
Wiener filtered 5 arcminute-square pixel map (using a Best-fit power spectrum to
define Cr), and the right shows the 3 arcminute-square-pixel maximum-likelihood
map from [19].

13.3.2  From maps to power spectra

How do we then determine the power spectrum of our data? For the data
to have some power spectrum is to say that we can describe the underlying
data as being drawn from a distribution with a variance given by

Crpp = (LTy) = Z B Yo (%p) Yerm: (R ) @emaem)
m 0’ m’
= > %—+1chng (Xp%y ) (13.11)
7 47

where the %, is the position of pixel p, By is the spherical harmonic trans-
form of the beam and pixelization function (see [35] for details and a full
description of complications associated with asymmetric beams). The agy,
are the spherical harmonic components of T, which we have eliminated us-
ing the definition of the power spectrum, Eq. 13.2 above, and the addition
formula for spherical harmonics. The P, are the Legendre polynomials, for
integer £ = 0,1,2,..., although we usually concentrate on ¢ > 2 as the
lower multipoles arise from different physical mechanisms. Beam-smearing
cuts off our observations at some maximum ¢ and the physically processes
themselves usually take Cy — 0 smoothly for £ more than about a thousand.
We can use this information to write the joint likelihood for the under-
lying map and the power spectrum. First, we assign a prior for T based
on Eq. 13.11. If we only have the mean and variance of 7', the maximum
entropy prior (and hence in some sense the least informative prior) is a

Gaussian distribution, giving

1
P(T|CoI) = [21Cr| ™% exp [—§TTCT1T] : (13.12)
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The posterior is thus
P(T,Cy|T) o< P(Cy|T)P(T|CeI)P(T|TT). (13.13)

This requires the specification of a prior for Cp, but we can defer that
decision until later. We first marginalize over T', which takes on the role
of a nuisance parameter. We can perform this integral by (once again)
completing the square, giving

~ _ 1 -
P(CY|T) o P(Ce|D)|2m (Cr + Cx)| ™ exp | =5 T (Cr + On) ™' T|.

(13.14)
As we would expect, T is distributed as a zero-mean Gaussian with vari-
ance Cr + Cy; equivalently, it is the sum of two independent zero-mean
Gaussian-distributed quantities with variances Cr and Cn._

The question now becomes a computational one: given 7" and Cy, how
do we characterize this as a function of C,? Unlike when solving for T itself,
we cannot do this analytically. Because we can calculate derivatives of the
likelihood function, we use a modified form of the Newton-Raphson method
to find where dP(Cy)/dC; = 0 and the curvature around that point.[2, 31]
Experience shows that the likelihood space is well-structured, with a single
maximum, so this procedure is sufficient.

As in the map-making procedure, this calculation unfortunately scales
overall as O(Ngix), making it difficult even for current experiments, and
effectively impossible for high-resolution full-sky experiments such as MAP
and Planck. The MADCAP package[22] contains a parallel implementation
of the likelihood maximization.

Note that we traditionally bin the power spectrum in £. We assume that
Cy has a particular shape in some bins, and estimate the amplitude. Because
we measure a finite amount of sky, overly-fine bins would be oversampled
(as in fourier-analysis on the plane, where you can only get information for
frequency intervals > O(1/length). Put another way, narrower bins would
be very strongly correlated. Of course, these correlations would be encoded
in the likelihood function, but the calculation also scales with the number
of bins, another reason to keep this down to a reasonable number.

In Figure 13.2 we show the results of this and related procedures per-
formed on the map of Figure 13.1, as well as data from BOOMERANG]3]
and DASI[12]. The error bars are typically given by the inverse curvature
of the posterior, but that is numerically very similar to the marginalized
likelihood, or in fact any other standard measure of 1sigma uncertainty.

13.3.3 Alternate approaches

Because of the O(N};,) scaling of this C estimation algorithm, other ap-

proaches have been suggested. One abandons the map as the input data,
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FIGURE 13.2. MAXIMA[19], BOOMERANG](3], DASI[12] and COBE/DMR/[5]
power spectra. The MAXIMA, CBI and DASI spectra were calculated with vari-
ants of the maximum-likelihood method described here; the BOOMERANG spec-
trum was calculated using a monte-carlo method[2], with modifications to approx-
imate the maximum likelihood. The smooth curve was chosen from the space of
cosmologicals discussed here to fit only a subset of the data, but remains a good
fit to the entire data.

using instead quadratic combinations of the data, in particular the squared
spherical-harmonic components—i.e., the naive power spectrum of the map,
sometimes referred to as pseudo-Cps.[34] In some simple cases, one can ex-
actly calculate the likelihood function for these quadratics as a function of
Cy, in analogy to Eq. 13.14. The use of this approach with real, complicated
data has yet to be investigated.

Another speedup takes advantage of the notion that one can smooth a
map to investigate power at large scales (low ¢), and conversely consider
small sub-maps for small-scale (high ¢) information. This has recently been
formalized in the context of an approximation to the iterative Newton-
Raphson likelihood maximization.[10]

Yet another possibility involves taking advantage of the structure of the
noise and signal correlations in certain experimental configurations. The
MAP satellite is expected to have noise correlations that are uncorrelated
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and approximately azimuthally symmetric. The noise and signal correla-
tions are then both highly structured in the spherical harmonic basis, and
this fact can be used to provide matrix preconditioners for operations in-
volved in likelihood maximization.[25]

13.3.4  From power spectra to parameters

Until now, we have left off the prior probability for the power spectrum.
However, within the context of adiabatic inflationary models, we can write
Cy = Co(Qi,ns, h,7c,...) = Cp(#), where now 6 represents the (7-10 or
so) cosmological parameters we wish to determine. Thus, we again defer
assigning a prior for the cosmological parameters themselves, just writing
P(Cyl0I) = 6 [Co — Cy(0)]. But we do have one problem: above, we deter-
mined the location of the peak of the likelihood as a function of Cy, and
the curvature around that peak, but nothing else about the shape. In par-
ticular, this shape is not well-described as that of a Gaussian. With enough
computing power at our disposal, we could just calculate the value of the
likelihood directly using Eq. 13.14; the O(Ngix) scaling rears its head, and
this quickly becomes prohibitive.

However, the likelihood is well-approximated as a Gaussian in In(Cy+xy),
where xz, is related to the noise properties of the experiment[4]. Hence, once
we have found the peak of the likelihood, the curvature at the peak, and
this z, we can use simple x? techniques. (Note that this ansatz describes
the likelihood as a function of the theoretical spectrum, Cy, the quantity
of interest to Bayesians. It does not describe the likelihood as a function
of the data (or any statistic of the data) which would be of interest in a
frequentist analysis; see other contributions to this volume.)

Now, however, we are finally forced to confront the problem of assigning
a prior probability to our cosmological parameters. This is complicated by
several factors:

1. For computational reasons, and because we do not fully understand
the offset log-normal ansatz in the presence of strong correlations,
we bin the power spectrum. That is, we calculate the most probable
amplitude of the power spectrum in some band, assuming some known
shape. Since we are in general not comparing to theories with the
same shape that we have assumed, there is subtlety in calculating
the likelihood function. This is addressed through the use of “filter
functions” with a formalism developed in Ref. [18].

2. The dependence of Cy upon the parameters is highly nonlinear.

3. For most of the parameters, there is no natural measure to define a
non-informative prior. Moreover, because the parameters enter the
cosmological physics in different ways and different combinations in
different problems, we cannot make a simple prior choice such as
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using uniform priors in all cases. (For example, we could choose to
parameterize in terms of the densities {2;, along with the Hubble
parameter, h. Alternately, we could parameterize in terms of physical
densities o< Q;h? which control the physics.

4. There are several approximate degeneracies in the parameter space.
That is, there are loci of parameters that give practically indistin-
guishable spectra.

5. Because of this, we cannot define a compact subspace of the full
parameter space for which the likelihood goes to nearly-zero at the
boundary. Hence, the results will always depend on the parameter
volume over which we choose to calculate models to compare to data.

6. Even if we wish to use informative priors for the cosmological param-
eters, different experiments measure different parameters, and indeed
different experiments disagree.

Given all of these issues, the most practical advice is simply to be sure to
enumerate the explicit and implicit priors used. Moreover, it is important
to check that the results are not too strongly dependent on the form of the
prior, or at least that the dependence is physically understood.

There are other considerations when reporting such results. If we are
interested in a single parameter, it is traditional to marginalize over all
others. In this case, however, we are interested in the parameters both
together and separately. That is, we would like to know what value the
CMB gives for Qgh? (say) and so it may be appropriate to marginalize
over the other parameters. However, because the parameter space is quite
large, we would also like to know where in terms of the other parameters
the marginalized distribution picks up most of its mass. In problems with
a more simply-structured likelihood space, this is accomplished by just re-
porting the likelihood maximum and some version of the covariance matrix
around the maximum. In this case, the likelihood is not well-fit by a Gaus-
sian (especially when the aforementioned degeneracies show their presence)
and our intuition may be misguided. As the data improve we will indeed
hone in on at least the non-degenerate parameters; we have seen this in the
past few years as we have passed to the latest vintages of data.[20, 16]

For example, we find that somewhat generically, current C, data can
be well fit by models in two very different regimes. One is a “standard”
model with reasonable parameters, but another has several of the param-
eters which control the location and relative height of the peaks changed
considerably to “unphysical” values. However, adding a very simple prior
requiring h > 0.45 eliminates this unphysical regime.

Similarly, it is well known that the CMB is sensitive largely to the overall
curvature, and thus to the total mass density, of the Universe, but not to the
way in which it is apportioned among matter and a cosmological constant.
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We cannot make any a priori obvious cuts on the parameter space to break
this degeneracy. Hence, in Figure 13.3, we see the likelihood function in two
dimensions (marginalized over all other parameters) for a subset of CMB
data.
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FIGURE 13.3. Likelihood in the Q,,, QA plane from the combined COBE/DMR,
MAXIMA and BOOMERANG data as of late 2000. Blue contours along the
Qm + Qa4 = 1 line are from the CMB alone, perpendicular orange contours are
from an ’orthogonal’ dataset of Supernovae distances[29, 26], and the heavy con-
tours are for the combination of the two. Contours are 1-, 2- and 3-sigma as
defined by the equivalent likelihood ratio for a 2-d Gaussian. From ref. [16]

13.3.5 Non-Gaussianity?

So far, we have used a Gaussian distribution to describe both the distribu-
tion of noise and of the signal. Perhaps foremost, we do this for simplicity:
we can write down all of the above equations! Physically, a Gaussian arises
when the “Central Limit Theorem” obtains: when we are concerned with
something like the sum of very many small contributions. This holds for
many sources of instrumental noise. It is also appropriate for the quantum-
mechanical fluctuations produced in most models of inflation.
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The specificity of the Gaussian distribution has led to much worry that
our methods may be incorrect if the “actual signal isn’t distributed as a
Gaussian.” Within the Bayesian paradigm, the Gaussian form for the like-
lihood arises when we assign a Gaussian prior to both the noise (Eq. 13.8)
and the signal (Eq. 13.12). A Gaussian has the property that it is the
mazximum-entropy distribution given a known mean and variance. Hence,
as long as our signal is described by a variance like Eq. 13.2, the Gaussian
assumption is, in fact, the most conservative assignment that can be made.
(Note, however, that the particular Gaussian we have chosen is not com-
pletely general: we require by Eq. 13.2 that the different ag,, at a given £
have the same variance—i.e., isotropy.)

Conversely, if we somehow knew that the distribution had a particular
non-Gaussian distribution (as predicted by, for example, certain classes
of inflationary models [6, 33, 7]), we could use that instead of Eq. 13.12,
although it may not be possible in that case to marginalize analytically
over the map in the joint distribution of C; and the map (Eq. 13.13).

13.4 Alternatives: frequentist measures

The community so far has taken a largely Bayesian approach to the anal-
ysis of CMB data. Philosophical issues aside, there are alternatives, the
so-called “frequentist” or “orthodox” approach, some of whose aspectes
were explored at this meeting in the contributions of Schafer & Stark and
Wasserman et al. In the former work, they attempt to characterize the ’dis-
tance’ between cosmological models in terms of the ability of CMB data to
discriminate between them. This arises as a problem because of the highly
nonlinear relationship between the physical cosmological variables of inter-
est and the measurable quantity, the power spectrum of CMB fluctuations.
Such a characterization will prove useful not only in frequentist analyses
of CMB data but also in any use of CMB power spectra which require a
greater understanding of the mapping between parameters and spectra.
In the following, we wish to comment further on the Bayesian and Fre-
quentist approaches to the CMB data analysis problem in general. Without
caricaturing it too much, we can summarize the frequentist approach as fol-
lows. Just as in the Bayesian approach, we start with the likelihood func-
tion. Then, we choose an “estimator”, some function of the data, chosen
to somehow represent an estimate of the parameter we wish to determine.
We then calculate the sampling distribution of this estimator, under the
assumption of some fixed value of the theoretical parameters. If the likeli-
hood is P(d|f), and our estimator is 6(d), we need P(6|6). If the estimator
is some simple function of the data, then we can just use the usual trans-
formations P(x)dx = P(y)dy and do this analytically, otherwise we can
perform Monte Carlo sampling of P(d|¢). Armed with this distribution, we
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define a confidence interval in the usual way. To do this, we will need

Omax
P(Omin < 0 < Onax|01) = / P(6|01) df = C . (13.15)
Omin
(cf. Eq. 13.5.) The art of frequentist statistics is in the choice of the esti-
mator. Often, it is chosen to be unbiased, [ df 6P(A|6) = 6, and have some
appropriately small or minimum variance under the same distribution.

It is worth belaboring the point that these intervals are a priori com-
pletely distinct from Bayesian intervals. These intervals say that, if you
repeated the experiment many times, each time drawing from the same
sampling distribution, in some fraction C' of the trials you would get the
answer within the stated limits.

This is in contrast to the Bayesian credible region, although the form is
similar. Even in the simplest case, we are dealing with two very different
functions: the Bayesian uses P (9|é[ ) for fixed data, 0, whereas the frequen-
tist uses P(0|01) for fixed 6. Even for a uniform prior when these functions
are proportional to one another, the two approaches are concerned with it as
a function of different variables! Of course, we whet our teeth on problems
in which 6 and 0 appear symmetrically in the likelihood—estimation with
linear, Gaussian models. In this case, then, the frequentist and Bayesian
results are agreement, but in general they will not be so. In particular,
even if these correspondances do obtain (at least approximately), they do
not help us understand other aspects of the frequentist distribution — for
example, the offset-lognormal ansatz of Sec. 13.3.4 above applies to the
likelihood as a function of Cy, not as a function of some estimator ég.

13.4.1 Monte-Carlo power spectra

Nonetheless, intuition and longstanding practice suggest that such frequen-
tist measures have a place. Indeed, for the estimation of Power Spectra in
particular, there is a deeper reason to use them, even within the Bayesian
paradigm. Consider the very simplest spectrum estimation problem, an all-
sky experiment with uniform noise, and a pixel scale negligible compared to
that of the sky signal. Then, there are exact correspondences between the
(uniform prior) Bayesian and Frequentist results: The Bayesian maximum-
likelihood is the same as the frequentist mean, and the “error bars” as
calculated from the Bayesian curvature are the same as the Frequentist
variance. [These correspondences are not strictly true if the noise is com-
parable to the signal, since the frequentist mean and variance are calculated
for (signal + noise) > 0 rather than for signal > 0.] These are well-known
to hold asymptotically, but this is a case in which they hold for finite data
as well.

Unfortunately, these correspondences do not remain exact for realistic
experiments. Nonetheless, experience has thus far shown that we can indeed
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extract useful approximate Bayesian information from Monte Carlo power
spectral2, 3]; this is an ongoing area of research, especially as the era of
experiments with Npix > 100,000 approaches. In the regime to be probed
by MAP and Planck, with millions of pixels covering the whole sky, some
alternative to the brute-force matrix manipulation will be necessary. For
a full-sky experiment, we can take advantage of fast spherical-harmonic
transforms to speed up some of the Monte Carlo calculations|2].

18.4.2  Cosmological parameter estimates

We must nonetheless take some care in interpreting such frequentist results.
In particular, how do we use them in the next step of the calculation? If
we take them to be approximations to the Bayesian solution, then the pro-
cedure is clear, assuming, at least, that we also have access to parameters
like z; (Sec. 13.3.4 above) in order to compute the posterior distribution.
However, a fully-fledged frequentist analysis in this case is somewhat more
involved, since there clearly are no good sufficient statistics for the cosmo-
logical parameters given the data.

One can still imagine an entirely frequentist algorithm for calculating
not just the power spectrum, but the cosmological parameters themselves,
directly from the data. In practice, it is found that the limits are not very
different from the Bayesian intervals[1], although this is a subject of ongoing
research, and not immune to technical problems.

13.5 Conclusions

The cosmic microwave background has become one of the primary tools
for exploring the early Universe. The simple, linear physics describing the
phenomena make it relatively straightforward to connect the measurement
process to the underlying cosmological phenomena. Conversely, the highly
accurate measurements of the cosmological parameters that this data will
allow requires that we understand our measurement and analysis procedure
in great detail. This brings to the fore both computational issues in manip-
ulating highly-correlated multivariate distributions and philosophical issues
regardin the underlying analysis methods.
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Commentary by The Pittsburgh Institute for
Computational Astrostatistics?

Andrew Jaffe has given a nice summary of challenges in analyzing the
Cosmic Microwave Background (CMB). Jaffe seems to prefer a Bayesian
analysis though he notes that such an analysis does have some problems. In
our discussion we review the statistical model, we highlight some challenges
and we suggest a new approach.

13.7 The Statistical Model

A simplified version of the problem that Jaffe states is as follows. We ob-
serve

T ~ Normal(0,Cr)
d|IT ~ Normal(AT,N)

where T is the vector of unobserved temperatures and d is the vector
of observed data. In this simplified form, the matrices N and A are as-
sumed known. The matrix Cr = Cr(w) contains unknown parameters
w = (w1,ws...). We use wy where Jaffe uses Cy to avoid confusion with Cp
and Cy (defined below).

The least squares estimate of T'is 7' = (AT N1 4)~1 AT N~1d with vari-
ance Cy = (ATN=1A)~!. We may then re-express the model as

T ~ Normal(0,Cr)
T|T ~ Normal(T,Cy). (13.16)
The marginal distribution of 7" is d ~ Normal(0, Ciy + C). The likelihood

function is

1
" 1Cn + Cr(@)]'72

L(w) exp{—%TT(CT(w)—i—C’N)lT} . (13.17)

A more direct route to the likelihood is to note that, from (13.16), d ~
Normal(0, ATCr(w)A + N) and thus £(w) = f(d|w) which is identical to
(13.17).

The likelihood L(w) depends on parameters w = (w1,ws,...,) which

are, essentially, the values of the true power spectrum at each multipole
moment. For a variety of reasons, evaluating £(w) directly is hard. Instead,

2The members of PICA, in reverse order of seniority, are: Woncheol Jang, Chris
Miller, Andy Connolly, Jeff Schneider, Chris Genovese, Bob Nichol, Andrew Moore and
Larry Wasserman.
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one extracts point estimates @y of the parameters for subset of values of ¢.
Apparently, wy is something like the maximum likelihood estimate obtained
using either a profile or marginal likelihood. At least approximately, one
has

Wy =wy + € (13.18)

where ¢y ~ Normal(0, af) and the €,s are approximately uncorrelated. We
then have the approximate likelihood

L(w) ocexp{—%z%}.

L

Each cosmological parameters x can be viewed as a nonlinear function of
the wjs. Thus we may write x = U(w) for some function U. The Bayesian
approach is to place a prior on w which, together with the likelihood yields
a posterior 7(w|d). jFrom the posterior, we may compute the marginal
posterior 7(k|d) for any quantity of interest k.

The conceptual simplicity of the Bayesian approach is appealing. Jaffe
notes, however, that there are some complications. We now discuss some
of these complications.

13.8 Identifiability

Jaffe points out that there are “... approximate degeneracies in the parame-
ter space.” In statistical parlance, we say that the model is under-identified
or that some parameters are non-identifiable. Basically, this means that the
data are not highly informative about all the parameters. For example, if
X ~ Normal(a+b, 1) then we can estimate y = a-+b but we cannot estimate
a and b separately. In the Bayesian framework, we could still put a prior
on (a,b) and find marginal posteriors for @ and b. But lack of identifiability
is a warning flag that standard Bayesian or even likelihood methods may
not be satisfactory. The lack of identifiability implies that the posterior
will be highly sensitive to the prior. Further complications occur when we
integrate out many parameters as we now explain.

13.9 Dangers of Integrating out Nuisance
Parameters

Inferring a parameter of interest in the presence of nuisance parameters
is conceptually simple in the Bayesian approach. One merely integrates
out the nuisance parameters. But there are dangers. Integrating out many
parameters can lead to a posterior distribution with strange properties. In
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particular, the 95 per cent posterior interval may contain the true value of
the parameter with very low frequency. Put another way, the posterior may
be badly biased. Here is an extreme example due to Stein (1959). Observe
independent observations X; ~ N(6;,1) ¢ = 1,...,n and suppose we want
to estimate ¢ = >, 07, Suppose we use a flat prior on 6 = (61,...,0,).
Let A = [a,00) where a is defined by P(Z > a) = 1 — a and Z has a
non-central x? distribution with n degrees of freedom and non-centrality
parameter ) . X2. Tt can be shown that A is a 1 — « posterior interval, i.e.
Py € AlX4,...,X,) = 1—a. However, Stein showed that P(y) € A|f) =~ 0
so the interval will rarely contain the true value in the frequency sense.

13.10 An Approach Based on Nonparametric
Regression

In our contribution to this volume, we took a different approach to the
problem. We review the main idea here. Let f(¢) denote the true power
spectrum at multipole moment £. We can write (13.18) as

Yi=f(l)+e

where Yy = @w,. Written this way, we see that this is really a regression
problem. Our approach is to nonparametrically estimate the regression f
and find a nonparametric 1 — a confidence set C,, for f. Then we express
cosmological parameters as functions of f: k = U(f). A confidence interval
for k is given by

feCn

(juin U0 e v))

If the parameter k is under-identified this will show up automatically as
a wide confidence interval. Moreover, the intervals have correct frequency
coverage, simultaneously over all parameters of interest. This approach
sidesteps many of the problems, gives correct confidence intervals and
avoids any need for integration.

13.11 Reference

Stein, C. (1959). An example of wide discrepancy between fiducial and
confidence intervals. Ann. Math. Statist., 30, 877-880.



14

Inference in Microwave
Cosmology: A Frequentist
Perspective

Chad M. Schafer and Philip B. Stark

ABSTRACT Estimating cosmological parameters using measurements of
the Cosmic Microwave Background (CMB) is scientifically important and
computationally and statistically challenging. Bayesian methods and blends
of Bayesian and frequentist ideas are common in cosmology. Constructing
purely frequentist confidence intervals raises questions about the probabil-
ity that the intervals falsely contain incorrect values. A computable bound
on this false coverage probability can help find optimal confidence intervals.
This paper is followed by a commentary by astronomy Andrew H. Jaffe.

14.1 The Problem

Key cosmological parameters are related to tiny temperature fluctuations
among photons released during the last scattering, when the universe had
cooled enough for photons to travel freely. These photons form the Cosmic
Microwave Background (CMB). Many cosmological models treat the ob-
served CMB temperature anisotropy as a realization of a random n—vector
X that has a Gaussian distribution with mean zero and covariance matrix
Y9, where 0 is the vector of cosmological parameters. For example, in the
initial analysis of the MAXIMA data [1] 6 consisted of six numerical pa-
rameters, 0 = (9, Qp, Qh?, Q.h? ng, 7.). Henceforth here the parameter
space © C RP is the collection of feasible models.

For any 6 € ©, the matrix Yy is a linear combination of known matrices,
but the mapping from © into the vector of weights is highly nonlinear,
and does not have a closed-form expression. This makes it computationally
challenging to find the distribution of a statistic for different values of 6,
which is at the heart of frequentist approaches to estimation. Moreover,
two points 6,60’ in © may differ greatly in the value of one or more of their
components, but still yield covariance matrices Yy, 3¢/ that are “close” in
the sense that the L;-distance between the two probability distributions is
small.
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14.2  False Coverage Probability

Write 6 = (61,02,...,0,) € RP, and consider estimating 6, treating the
other components of 6 as nuisance parameters. An interval estimator for
01 is a function C that maps the space of possible observations into a set
of real numbers. The false coverage probability v¢(0,a) = Pp(C(X) 3 a) is
the probability that the interval includes (covers) a when 6 is the truth—
a fundamental measure of accuracy. A 1 — « confidence interval for 6
must have v¢(6,601) > 1 — a whatever be 6 € ©. Subject to that coverage
constraint, it is desirable that C minimize ¢ (6, a) for all § and all a # 64,
but such uniformity is rarely possible.
If C is a 1 — « confidence interval estimator, then

ve(@,a) > sup (1 — lAl(G', ) — a) ,
{6€0: 6,=a} 2

where A; is the Li-distance between the probability distribution for X

when the cosmological parameter vector equals 6 and the probability dis-

tribution for X when the cosmological parameter vector equals 6. The

affinity between ¢’ and 6,

p(0/.6) = / (o) fol)) " de,

can be easier to calculate than the Li-distance. The L;-distance and the
affinity are related [2]:

7(:(9/, a) > sup (1_ [1—p2(9’, 9)] 1/2_@) .
{0€0: 91=a}
For the Gaussian case at hand,
-1 1 —1/2
o(@.0) = 22 1%0 + %0 ]
AR MR

This lets one bound the false coverage probability through the pixel co-
variance matrix Yy, a natural representation of the cosmology. Currently,
computing the affinity is tractable only for small experiments, but better
algorithms might allow large experiments to be analyzed.

14.3 REFERENCES

[1] Jaffe, A., et. al. (2001) “Cosmology from MAXIMA-1, BOOMERANG
& COBE/DMR CMB Observations,” Phys. Rev. Lett., 86, 3475-3479,
astro-ph/000733

[2] LeCam, L.M. and Yang, G.L. (1990) Asymptotics in Statistics: Some
Basic Concepts. First Edition. New York: Springer-Verlag.
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Commentary by Andrew H. Jaffe

14.4  Alternatives: frequentist measures

The community so far has taken a largely Bayesian perspective to the
analysis of CMB data. Philosophical issues aside, there are alternatives,
the so-called “frequentist” or “orthodox” approach, some of whose aspects
are explored in this contribution by Schafer and Stark. In this work, they
attempt to characterize the 'distance’ between cosmological models in terms
of the ability of CMB data to discriminate between them. This arises as a
problem because of the highly nonlinear relationship between the physical
cosmological variables of interest and the measurable quantity, the power
spectrum of CMB fluctuations. Such a characterization will prove useful not
only in frequentist analyses of CMB data but also in any use of CMB power
spectra which require a greater understanding of the mapping between
parameters and spectra.

In the following, we wish to comment further on the Bayesian and Fre-
quentist approaches to the CMB data analysis problem in general. Without
caricaturing it too much, we can summarize the frequentist approach as fol-
lows. Just as in the Bayesian approach, we start with the likelihood func-
tion. Then, we choose an “estimator”, some function of the data, chosen
to somehow represent an estimate of the parameter we wish to determine.
We then calculate the sampling distribution of this estimator, under the
assumption of some fixed value of the theoretical parameters. If the likeli-
hood is P(d|f), and our estimator is 6(d), we need P(6|6). If the estimator
is some simple function of the data, then we can just use P(z)dz = P(y)dy
and do this analytically, otherwise we can perform Monte Carlo sampling
of P(d|0). Armed with this distribution, we define a confidence interval in
the usual way. To do this, we will need

Omox .
P(Omin < 0 < Omax|01) = / P(0|0I) df = C . (14.1)

Omin

The art of frequentist statistics is in the choice of the estimator. Often, it
is chosen to be unbiased, [ do éP(é|t9) = 0, and have some appropriately
small or minimum variance under the same distribution.

It is worth belaboring the point that these intervals are a priori com-
pletely distinct from Bayesian intervals. These intervals say that, if you
repeated the experiment many times, each time drawing from the same
sampling distribution, in some fraction C' of the trials you would get the
answer within the stated limits.

This is in contrast to the Bayesian credible region, although the form is
similar. Even in the simplest case, we are dealing with two very different
functions: the Bayesian uses P (9|é[ ) for fixed data, 0, whereas the frequen-
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tist uses P(0|01) for fixed #. Even for a uniform prior when these functions
are proportional to one another, the two approaches are concerned with it as
a function of different variables! Of course, we whet our teeth on problems
in which 6 and 0 appear symmetrically in the likelihood—estimation with
linear, Gaussian models. In this case, then, the frequentist and Bayesian
results are agreement, but in general they will not be so.

14.4.1 Monte-Carlo power spectra

Nonetheless, intuition and longstanding practice suggest that such frequen-
tist measures have a place. Indeed, for the estimation of Power Spectra in
particular, there is a deeper reason to use them, even within the Bayesian
paradigm. Consider the very simplest spectrum estimation problem, an all-
sky experiment with uniform noise, and a pixel scale negligible compared to
that of the sky signal. Then, there are exact correspondences between the
(uniform prior) Bayesian and Frequentist results: The Bayesian maximum-
likelihood is the same as the frequentist mean, and the “error bars” as
calculated from the Bayesian curvature are the same as the Frequentist
variance. [These correspondences are not strictly true if the noise is com-
parable to the signal, since the frequentist mean and variance are calculated
for (signal + noise) > 0 rather than for signal > 0.] These are well-known
to hold asymptotically, but this is a case in which they hold for finite data
as well.

Unfortunately, these correspondences do not remain exact for realistic
experiments. Nonetheless, experience has thus far shown that we can indeed
extract useful approximate Bayesian information from Monte Carlo power
spectra [2, 3]; this is an ongoing area of research, especially as the era of
experiments with Npix > 100,000 approaches. In the regime to be probed
by MAP and Planck, with millions of pixels covering the whole sky, some
alternative to the brute-force matrix manipulation will be necessary. For
a full-sky experiment, we can take advantage of fast spherical-harmonic
transforms to speed up some of the Monte Carlo calculations [2].

14.4.2  Frequentist parameter estimates

Finally, one can imagine an entirely frequentist algorithm for calculating
not just the power spectrum, but the cosmological parameters themselves,
directly from the data. In practice, it is found that the limits are not very
different from the Bayesian intervals [1], although this is a subject of on-
going research, and not immune to technical problems.

14.5 REFERENCES
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Nonparametric Inference in
Astrophysics

The Pittsburgh Institute for Computational
Astrostatistics (PICA)!

ABSTRACT We discuss nonparametric density estimation and regression
for astrophysics problems. In particular, we show how to compute nonpara-
metric confidence intervals for the location and size of peaks of a function.
We illustrate these ideas with recent data on the Cosmic Microwave Back-
ground. We also briefly discuss nonparametric Bayesian inference.

This paper is followed by commentaries by astronomers Michael A. Strauss
and Jeffrey D. Scargle, and a rejoinder by the authors.

15.1 Nonparametric inference

The explosion of data in astrophysics provides unique opportunities and
challenges. The challenges are mainly in data storage and manipulation.
The opportunities arise from the fact that large sample sizes make non-
parametric statistical methods very effective. Nonparametric methods are
statistical techniques that make as few assumptions as possible about the
process that generated the data. Such methods are inherently more flexi-
ble than more traditional parametric methods that impose rigid and often
unrealistic assumptions. With large sample sizes, nonparametric methods
make it possible to find subtle effects which might otherwise be obscured
by the assumptions built into parametric methods. We begin by discussing
two prototypical astrostatistics problems.

PROBLEM 1. DENSITY ESTIMATION. Let X,...,X,, denote the posi-
tions of n galaxies in a galaxy survey. Let f(z)dx denote the probability
of finding a galaxy in a small volume around x. The function f is a prob-
ability density function, satisfying f(z) > 0 and [ f(z)dz = 1. We regard
X1,...,X, as n random draws from f. Our goal is to estimate f(z) from
the data (X1,...,X,) while making as few assumptions about f as possi-
ble. Figure 15.1 shows redshifts from a pencil beam from the Sloan Digital

IThe members of PICA, in reverse order of seniority, are: Woncheol Jang, Chris
Miller, Andy Connolly, Jeff Schneider, Chris Genovese, Bob Nichol, Andrew Moore and
Larry Wasserman.
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Sky Survey. The figure shows several nonparametric density estimates that
will be described in more detail in Section 3. The structure in the data is
evident only if we smooth the data by just the right amount (lower left
plot).2

PROBLEM 2. REGRESSION. Figures 15.2 and 15.3 show cosmic microwave
background (CMB) data from BOOMERaNG (Netterfield et al. 2001),
Maxima (Lee et al. 2001) and DASI (Halverson 2001). The data consist
of n pairs (X1,Y1),...,(X,,Y,). Here, X; is multipole moment and Y;
is the estimated power spectrum of the temperature fluctuations. If f(x)
denotes the true power spectrum then

Yi=f(Xi) +e

where €; is a random error with mean 0. This is the standard regression
model. We call Y the response variable and X the covariate. Other com-
monly used names for X include predictor and independent variable. The
function f is called the regression function. The goal in nonparametric re-
gression is to estimate f making only minimal smoothness assumptions
about f.

The main messages of this paper are: (1) with large data sets one can
estimate a function f monparametrically, that is, without assuming that f
follows some given functional form; (2) one can use the data to estimate
the optimal amount of smoothing; (3) one can derive confidence sets for
f as well as confidence sets for interesting features of f. The latter point
is very important and is an example of where rigorous statistical methods
are a necessity; the usual confidence intervals of the form “estimate plus or
minus error” will not suffice.

The outline of this paper is as follows. Section 2 discusses some concep-
tual issues. Section 3 discusses kernel density estimation. Section 4 discusses
nonparametric regression. Section 5 explains something that might be less
familiar to astrophysicists, namely, nonparametric estimation via shrink-
age. Section 6 discusses nonparametric confidence intervals. In Section 7
we briefly discuss nonparametric Bayesian inference. We make some con-
cluding remarks in Section 8. Other examples of nonparametric methods
in the astronomical literature can be found in Merritt (1997) and Merritt
& Tremblay (1994).

Notation: We denote the mean of a random quantity X by E(X), often
written as (X) in physics. The variance of X is denoted by 0% = Var(X) =
E(X — E(X))2. A random variable X has a Normal (or Gaussian) distri-
bution with mean y and variance o2, denoted by X ~ N (u,0?), if

b 1
Pr(a<X<b)=/ mexp{—ﬁ(m—,uf}dm.

2The data involve selection bias since we can only observe brighter objects for larger
redshifts. However, the sampling is fairly complete out to about z = 0.2.
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FIGURE 15.1. Redshift data. Histogram and three kernel density estimates based
on three different bandwidths. The bandwidth for the estimate in the lower left
panel was estimated from the data using cross-validation.
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FIGURE 15.2. CMB data. Section 4 explains the methods. The first fit is under-
smoothed, the second is oversmoothed and the third is based on cross-validation.
The last panel shows the estimated risk versus the bandwidth of the smoother.
The data are from BOOMERaNG, Maxima and DASI.
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FIGURE 15.3. Best nonparametric fit together with parametric fit from Wang,
Tegmark and Zaldarriaga (2001).

We use f to denote an estimate of a function f.

15.2  Some conceptual issues

15.2.1 The Bias-Variance tradeoff

In any nonparametric problem, we need to find methods that produce esti-
mates f of the unknown function f. Obviously, we would like f to be close
to f. We will measure closeness with squared error:

Mﬁﬁ=/0@w$@Wm

The average value of the error is called the risk or mean squared error
(MSE) and is denoted by:

R(f,f) = By [L(f.§)] -
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FIGURE 15.4. The Bias-Variance tradeoff. The bias increases and the variance
decreases with the amount of smoothing. The optimal amount of smoothing,
indicated by the vertical line, minimizes the risk = bias? + variance.

A simple calculation shows that

R(f, f) = /Biasi dr + /Varx dx

where Bias, = E[f(x)] — f(x) is the bias of f(x) and Var, = Var[f(z)] =
E[(f(x) — E[f(x)))?] is the variance of f(z). In words:

RISK = BIAS? + VARIANCE.

Every nonparametric method involves some sort of data-smoothing. The
difficult task in nonparametric inference is to determine how much smooth-
ing to do. When the data are over-smoothed, the bias term is large and the
variance is small. When the data are under-smoothed the opposite is true;
see Figure 15.4. This is called the bias-variance tradeoff. Minimizing risk
corresponds to balancing bias and variance.
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15.2.2  Nonparametric confidence sets

Let f be the function of interest, for example, the true power spectrum in
the CMB example. Assume that f € F where F is some very large class of
functions. A valid (large sample) 1 — « confidence set Cy, is a set C,, C F
such that
hnnilgf;relg_Pr(f eCp)>1-a

where n is sample size. In words, C), traps the true function f with prob-
ability approximately 1 — « (or greater). In parametric models, confidence
intervals take the form 6 -+ 2 se where 6 is an estimate of a parameter 6 and
se is the standard error of the estimate 6. Bayesian interval estimates take
essentially the same form. Nonparametric confidence sets are derived in a
different way as we shall explain later in the paper.

If prior information is available on f then it can be included by restricting
C,,. For example, if it is thought that f has at most three peaks and two
dips, we replace C,, with C,, N Z where Z is the set of functions with no
more than three peaks and two dips.

Having constructed the confidence set we are then in a position to give
confidence intervals for features of interest. We express features as functions
of f, written T'(f). For example, T'(f) might denote the location of the first
peak in f. Then

< inf T(f), sup T(f))

fe€Cn feCn

is a 1 — « confidence interval for the feature T'(f). In fact, we can construct
valid, simultaneous confidence intervals for many features of interest this
way, once we have C),. In section 6, we report such intervals for the CMB
data.

Let us dispel a common criticism about confidence intervals. An oft cited
but useless interpretation of a 95 per cent confidence interval is: if we
repeated the experiment many times, the interval would contain the true
value 95 per cent of the time. This interpretation leads many researchers to
find confidence sets to be irrelevant since the repetitions are hypothetical.
The correct interpretation is: if the method for constructing C,, is used
on a stream of (unrelated) scientific problems, we will trap the true value
95 per cent of the time. The latter interpretation is correct and is more
scientifically useful than the former.

15.2.83 Where is the likelihood?

The likelihood function, which is a familiar centerpiece of statistical in-
ference in parametric problems, is notably absent in most nonparametric
methods. It is possible to define a likelihood and even perform Bayesian
inference in nonparametric problems. But for the most part, likelihood and
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Bayesian methods have serious drawbacks in nonparametric settings. See
section 7 for more discussion on this point.

15.3 Kernel density estimation

We now turn to problem 1, density estimation. Let us start this section with
its conclusion: the choice of kernel (smoothing filter) is relatively unimpor-
tant; the choice of bandwidth (smoothing parameter) is crucial; the optimal
bandwidth can be estimated from the data. Let us now explain what this
means.

Let X;,...,X, denote the observed data, a sample from f. The most
commonly used density estimator is the kernel density estimator defined

by
fo =51k (55
i=1

where K is called the kernel and h is called the bandwidth. This amounts to
placing a smoothed out lump of mass of size 1/n over each data point Xj;.
Excellent references on kernel density estimation include Silverman (1986)
and Scott (1992).

The kernel is usually assumed to be a smooth function satisfying K (x) >
0, [2K(z)dr =0 and 7 = [2?K(z)dz > 0. A fact that is well known in
statistics but appears to be less known in astrophysics is that the choice of
kernel K is not crucial. The optimal kernel that minimizes risk (for large
samples) is called the Epanechnikov kernel K (z) = .75(1 — 22/5)//5 for
|z| < v/5. But the estimates using another other smooth kernel are usually
numerically indistinguishable. This observation is confirmed by theoretical
calculations which show that the risk is very insensitive to the choice of
kernel. In this paper we use the Gaussian kernel K (z) = (27r)_1/26_‘”2/2.

What does matter is the choice of bandwidth h which controls the
amount of smoothing. Figure 15.1 shows the density estimate with four dif-
ferent bandwidths. Here we see how sensitive the estimate f is to the choice
of h. Small bandwidths give very rough estimates while larger bandwidths
give smoother estimates. Statistical theory tells us that, in one dimensional
problems,

R(f,f) = BIAS? + VARIANCE

1 4 Co

%

where ¢; = [22K(z)dz, c; = [ K(x)*dz and A(f) = [(f"(z))?dz. The
risk is minimized by taking the bandwidth equal to

h, = 6;2/565/5A(f)71/5n71/5.



15. Nonparametric Inference in Astrophysics 229

This is informative because it tells us that the best bandwidth decreases at
rate n~/% and leads to risk of order O(n=%/%). Generally, one cannot find a
nonparametric estimator that converges faster than O(n~%/%). This rate is
close to the rate of parametric estimators, namely, O(n~!). The difference
between these rates is the price we pay for being nonparametric.

The expression for h, depends on the unknown density f which makes
the result of little practical use. We need a data-based method for choosing
h. The most common method for choosing a bandwidth A from the data is
cross-validation. The idea is as follows.

We would like to choose h to minimize the squared error [(f —
f()?dz = [ f2(x)dz — 2 [ f(z)f(x)dz + [ f?(z)dz. Since [ f3(z dx does

not depend on h, this corresponds to minimizing

— [ P2 [ f@)ra
It can be shown that

m:/ﬁmwf%Zf

is an unbiased estimate of E[J(h)], where f_; is the “leave-one-out” esti-
mate obtained by omitting X;. Some algebra shows that

) ~ # ZZK (%) + %K(O) (15.1)

where K*(z) = K®(z) — 2K (z) and K® is the convolution of K with
itself. Hence, it is not actually necessary to compute f_i. We choose the
bandwidth / that minimizes J(h). The lower left panel of Figure 15.1 was
based on cross-validation. An important observation for large data bases is

that (15.1) can be computed quickly using the fast Fourier transform; see
Silverman (1986, p 61-66).

15.4 Nonparametric kernel regression

Returning to the regression problem, consider pairs of points (X1,Y7), ..
(X, Y,) related by

)

Y = f(Xi) + e

The kernel method for density estimation also works for regression. The
estimate f is a weighted average of the points near z: f (z) = X", wY;
where the weights are given by w; o« K (x hX ) This estimator is called
the Nadaraya-Watson estimator. Figure 15.2 shows that estimator for the
CMB data. Note the extreme dependence on the bandwidth h.
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Once again, we use cross-validation to choose the bandwidth h. The risk

is estimated by
N 1 n R )
J(h) = n;(Y (X)),

The first three panels in Figure 15.2 show the regression data with dif-
ferent bandwidths. The second plot is based on the cross-validation band-
width. The final plot shows the estimated risk .J (h) from cross validation.
Figure 15.3 compares the nonparametric fit with the fit by Wang, Tegmark
and Zaldarriaga (2001).

Given the small sample size and the fact that we have completely ignored
the cosmological models (as well as differential error on each data point) the
nonparametric fit does a remarkable job. It “confirms,” nonparametrically,
the existence of three peaks, their approximate positions and approximate
heights. Actually, the degree to which the fit confirms the three peaks
requires confidence statements that we discuss in section 6.

15.5 Smoothing by shrinking

There is another approach to nonparametric estimation based on expand-
ing f into an orthogonal series. The idea is to estimate the coefficients of
the series and then “shrink” these estimates towards 0. The operation of
shrinking is akin to smoothing. These methods have certain advantages
over kernel smoothers. First, the problem of estimating the bandwidth is
replaced with the problem of choosing the amount of shrinkage which is,
arguably, supported by better statistical theory than the former. Second, it
is easier to construct valid confidence sets for f in this framework. Third, in
some problems one can choose the basis in a well-informed way which will
lead to improved estimators. For example, Donoho and Johnstone (1994,
1995) and Johnstone (this volume) show that wavelet bases can be used to
great advantage in certain problems.

Suppose we observe Y; = f(z;) +¢; where, for simplicity, we assume that
1 = 1/n,x3 = 2/n,..., 2, = 1. Further suppose that ¢; ~ N(0,02). Let
¢1, b2, ... be an orthonormal basis for [0, 1]:

1 1
/ ¢?($)da? =1 and / ¢i(z)¢j(x)dx = 0 when i # j.
0 0

For illustration, we consider the cosine basis: ¢1 () = 1, ¢2(z) = v/2cos(rx),
b2(x) = V2cos(2mx),. ... Expand f in this basis: f(x) ~ Z]Oil Bid;(x) ~
Z?:l B;¢;(z). Estimating f then amounts to estimating the 8;’s. Let Z; =
n~Y23" | Yig;(i/n). It can be shown that ZZ ~ N (6, 0;2) , j= 11' Sn
where 6; = /n3;. Once we have estimates 0;, we set 3; = n~'/20; and

fla) =30, Bigi(x).
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How do we estimate § = (61,...,0,) from Z = (Z1,...,Z,)? A crude
estimate is éj =Z;, j=1,...,n. This leads to a very noisy (unsmoothed)
estimate of f. Better estimates can be found by using shrinkage estima-
tors. The idea — which goes back to James and Stein (1961) and Stein
(1981) — is to estimate 6 by shrinking the vector Z closer to the origin.
A major discovery in mathematical statistics was that careful shrinkage
leads to estimates with much smaller risk. Following Beran (2000) we con-
sider shrinkage estimators of the form 0 = (121,02, . ..,anZy,) where
1> a1 > a > -+ > a, > 0 which forces more shrinkage for higher
frequency cosine terms.

Let @ = (aq,...,a,) and let R(a) denote the risk of @ using shrink-
age vector a. An estimate of R(«), called Stein’s unbiased risk estimate
(SURE), is

R(a) = Z [6%aF + (27 — 6%)(1 — ;)]
J

where 02 has been estimated by 62 = %Z?:nfkﬂ Z? with k < n. Using

appropriate numerical techniques, we minimize R(«) subject to the mono-
tonicity constraint. The minimizer is denoted by & and the final estimate
is 0 = (121,627, ... ,4n2,). Beran (2000) shows that the estimator ob-
tained this way has some important optimality properties. Beran calls this
approach REACT (Risk Estimation, Adaptation, and Coordinate Trans-
formation). The estimated function f turns out to be similar to the kernel
estimator; due to space limitations we omit the plot.

15.6 Confidence sets

When estimating a scalar quantity 6 with an estimator 9; it is common to
summarize the uncertainty for the estimate by reporting 6 +2se where se ~

1/ Var(é) is the standard error of the estimator. Under certain regularity
conditions, this interval is a 95 per cent confidence interval, that is,

Pr(é—Qse < 0 < é+25e)%.95.

This follows because, under the conditions alluded to above, 0~N (0, se?).

But the “plus or minus 2 standard errors” rule fails in nonparametric
inference. Consider estimating a density f(z) at a single point x with a
kernel density estimator. It turns out that

flz)~ N <f(a:) + bias, %](f)) (15.2)

where )
bias = §h2f”(x)cl (15.3)
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is the bias, ¢; = [2?K(z)dz and ¢2 = [ K*(z)dz. The estimated standard

error is
. 1/2
se = {%}(f)} . (15.4)

Observe from (15.2) that (f(z) — f(z))/se = N(bias/se, 1). If use the “es-
timate plus/minus 2 se” rule then

Pr (f(a:) —2se < f(x) < f(x)—l—Qse) = Pr (—QS M §2>

se

Pr (23N<%,1> §2>.
se

If bias/se — 0 then this becomes Pr(—2 < N(0,1) < 2) ~ .95. As we
explained in Section 2, the optimal bandwidth is of the form h = en~1/5,
If you plug h = en™1/5 this into (15.3) and(15.4) you will see that bias/se
does not tend to 0. The confidence interval will have coverage less than
.95. In summary, “estimate plus/minus 2 standard errors” is not appropri-
ate in nonparametric inference. There are a variety of ways to deal with
this problem. One is to use kernels with a suboptimal bandwidth. This
undersmooths the estimate resulting in a reduction of bias.

Another approach is based on the REACT method (Beran and Dumbgen,
1998). We construct a confidence set C,, for the vector of function values
at the observed data, f, = (f(X1),...,f(Xn)). The confidence set Cp,
satisfies: for any ¢ > 0,

%

limsup sup |Pr(f, €Cp)—(1—a)|—0

n—o0 ||f,|[<c

where |la|| = \/n~1)", a?. The supremum is important: it means that the
accuracy of the coverage probability does not depend on the true (unknown)
function.

The confidence set, expressed in terms of the coefficients 0, is

Cn = 0: nfl 2(9] - éj)Q S Rr + nil/Q’IA'Za
J

where z, is such that P(Z > z,) = a where Z ~ N(0,1) and 7 is a
quantity computed from the data whose formula we omit here. Finally, the
confidence set for f is

Dp=3Sf: [=> Bidj: Bi=n""70;,0€C,
J
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Let us return to the CMB example. We constructed a 95 per cent con-
fidence set C,,, then we searched over C,, and found the possible number,
location and heights of the peaks. We restricted the search to functions
with no more than three peaks and two dips as it was deemed unlikely
that the true power spectrum would have more than three peaks. Curves
with one or two peaks cannot be ruled out at the 95 per cent level. The
confidence intervals, restricted to three peak models, are as follows.

Peak Location Height

1 (118,300) (4361,8055)
2 (377,650)  (1822,4798)
3 (597,900)  (1839,4683)

The 95 per cent confidence interval for the ratio of the height of the
second peak divided by the height of the first peak is (.21,1.4). The 95
per cent confidence interval for the ratio of the height of the third peak
divided by the height of the second peak is (.22,2.82). Not surprisingly, the
intervals are broad because the data set is small. In a further work by our
group (Miller et al 2001) we investigate the improvements in measurement
error that are needed to get more precise confidence sets.

15.7 Nonparametric Bayes

There seems to be great interest in Bayesian methods in astrophysics. The
reader might wonder if it is possible to perform nonparametric Bayesian
inference. The answer is, sort of.

Consider estimating a density f assumed to belong to some large class
of functions such as F = {f : [(f"(z))*dz < C}. The “parameter” is the
function f and the likelihood function is £, (f) = [, f(X;). Maximizing
the likelihood leads to the absurd density estimate that puts infinite spikes
on each data point. It is possible to put a prior m over F. The posterior
distribution on F is well defined and Bayes theorem still holds:

o Lalf)dn(f)
[ La(Fdn(F)

Lest this seem somewhat abstract, take note that much recent work in
statistics lately has led to methods for computing this posterior.
However, there is a problem. The parameter space F is infinite dimen-
sional and, in such cases, the prior 7 is extremely influential. The result is
that the posterior may concentrate around the true function very slowly.
Worse, the 95 per cent Bayesian credible sets will contain the true function
with very low frequency. In many cases the frequency coverage probability
of the Bayesian 95 per cent credible set is near 0! Since high dimensional
parametric models behave like nonparametric models, these remarks should

Pr(feC|Xy,...,Xn)
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give us pause before casually applying Bayesian methods to parametric
models with many parameters.

The results that make these comments precise are fairly technical. The
interested reader is referred to Diaconis and Freedman (1986), Barron,
Schervish and Wasserman (1999), Ghosal, Ghosh and van der Vaart (2000),
Freedman (2000), Zhao (2000) and Shen and Wasserman (2001). The bot-
tom line: in nonparametric problems Bayesian inference is an interesting
research area but is not (yet?) a practical tool.

15.8 Conclusion

Nonparametric methods are at their best when the sample size is large.
The amount and quality of astrophysics data have increased dramatically
in the last few years. For this reason, we believe that nonparametric meth-
ods will play an increasingly important role in astrophysics. We have tried
to illustrate some of the key ideas and methods here. But we have really
only touched on a few main points. We hope through our continued in-
terdisciplinary collaboration and through others like it elsewhere, that the
development of nonparametric techniques in astrophysics will continue in
the future.
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Commentary by Michael A. Strauss®

I enjoyed this paper a lot; this is one statistics talk where as an as-
tronomer, I could immediately see application to problems that I tackle
every day. I would point out that for the problems used to illustrate the
talk, it was not always clear what the scientific question that was being ad-
dressed actually was, and therefore the statistical methods used were not
necessarily optimal. For example, the example of the large-scale distribu-
tion of galaxies was given to show how one can choose an optimal filter. In
fact, astronomers are interested in the structures on a range of scales. As
Figure 15.2 in my contribution to these proceedings makes clear, there is
a great deal of information for a variety of smoothing lengths, all of which
is useful in trying to come to a physical understanding of galaxy clustering
(see also the contributions by V. Martinez and R. van de Weygaert). One
should also keep in mind that the galaxy distribution data become nois-
ier as one goes further out (galaxies further away are fainter than those
closer in), and astronomers have used methods like the Wiener filter and
its variants to come up with optimal smoothing of the data.

I was quite impressed by the demonstration of techniques for demon-
strating the validity of certain features in the data (such as the third bump
in the power spectrum of the Cosmic Microwave Data) without fitting ex-
plicit models; that is quite an important advance. Nevertheless, it is worth
emphasizing that the fitting of physical models to data continues to have
its place in analyses of these data; it is these fits which allow us to constrain
cosmological models directly from the CMB observations.

Finally, let me echo one of the more important messages of this paper,
namely that the shape of one’s filter is not nearly as important as its width.
This is a non-trivial, and sometimes non-intuitive fact, but understanding it
makes life quite a bit simpler for astronomers when faced with a bewildering
variety of different filtering techniques for their data.

3Princeton University Observatory
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Commentary by Jeffrey D. Scargle*

15.10 Nonparametric Inference

The excellent overview by the Pittsburgh Institute for Computational As-
trostatistics (PICA) group (Jang, Miller, Connolly, Schneider, Genovese,
Nichol, Moore, and Wasserman) begins with the statement

“Nonparametric methods are statistical techniques that make
as few assumptions as possible about the process that gener-
ated the data. Such methods are inherently more flexible than
more traditional parametric methods that impose rigid and of-
ten unrealistic assumptions.”

The informality of this definition is warranted by the fact that the terms
parametric and nonparametric are used somewhat loosely, and in different
ways in a variety of contexts.

A few additional comments may help astronomers. Parametric methods
typically use models in specific functional forms containing one or more
parameters. Example: a Gaussian form for a distribution, where