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Preface

The third Statistical Challenges in Modern Astronomy (SCMA III) con-
ference was held at Penn State University during July 18-21 2001. The
SCMA conferences are intended to bring together scholars in two commu-
nities that have much in common yet relatively little contact with each
other. Astronomers are acquiring enormous (terabyte or larger) datasets
that require sophisticated processing and modeling to arrive at important
astrophysical conclusions. Great advances have similarly occurred in the
development of statistical methodologies in recent decades. The vibrant
atmosphere of the SCMA III conference supports our belief that powerful,
mutually beneficial synergisms can emerge when astronomers and statis-
ticians get together do discuss astrostatistical problems and approaches.
SCMA conferences are designed to foster cross-disciplinary interaction –
talks by scholars in one field are followed by commentaries by scholars
in the other field. We are extremely grateful to the invited speakers for
preparing their talks in advance of the conference to facilitate this valuable
cross-talk.

The conference was kicked off by an historical overview by Virginia Trim-
ble and four extremely useful interactive tutorials: Robin Ciardullo and
Joe Bredekamp introduced statisticians to basic cosmology and NASA ac-
complishments, while Steve Arnold and Alanna Connors introduced as-
tronomers to the principles and practice of Bayesian statistics.

The first research session continued with Bayesian strategies for astro-
physical modeling astronomical data. Eric Kolaczyk provided a valuable
overview of Bayesian methods for Poissonian data, Tom Loredo showed
how to plan astronomical observations with optimal efficiency, David van
Dyk explained sophisticated nested models to deal with instrumental and
Poissonian effects, and Jim Berger provided a convincing analysis of a non-
linear modeling problem.

The rapid growth of astronomical data sets and archives were presented
by Joe Bredekamp. George Djorgovski presented plans for the federation of
such databases into a vast Virtual Observatory during the next decade. An
early glimpse at this database-rich future was provided by Michael Strauss’
talk on the Sloan Digital Sky Survey.

The conference then delved into its principal theme: statistical method-
ologies for modeling fundamental characteristics of the Universe on its
largest scales. The first of these cosmological issues is the large-scale struc-
ture (LSS) in the Universe; the nonlinear, anisotropic clustering of galaxies
in 3-dimenaional space. Vicent Mart́ınez set the stage on the rapid progress
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in this field, and specific issues were then developed by two speakers: Alex
Szalay on the exciting new results from the Sloan Digital Sky Survey using
the Karhunen-Loeve transform; and Rien van de Weygaert on an statisti-
cal approach involving tessellations. The second major cosmological issue is
the modeling of fluctuations of the cosmic microwave background (CMB).
Bayesian, frequentist and nonparametric approaches to CMB studies were
presented by Andrew Jaffe, Chad Schafer and Larry Wasserman, respec-
tively.

The next session investigated statistical methodologies for studying the
clustering of points in p-dimensional space. This could either be galaxy
clustering in 3-space, or any multivariate study of a population in multidi-
mensional parameter space. Three distinguished statisticians introduced
astronomers to recent advances in this area: Leo Breiman on decision
tree methods, Adrian Raftery on Bayesian clustering methods, and Fionn
Murtagh on very-high-dimensionality problems. Dianne Cook showed as-
tronomers developments in data visualization tools, and Bob Nichol pre-
sented new computational tools for clustering very large datasets.

After this deep immersion in cosmology, the conferees turned to some
practical issues in the daily challenges of astronomical data analysis. Jeff
Scargle provided a profound perspective on Bayesian signal detection in
both image and time series analysis. Larry Bretthorst placed a major tool,
the Lomb-Scargle periodogram for unevenly spaced data, upon a general
mathematical footing. We heard from Jean-Luc Starck, Iain Johnstone and
Peter Freeman on advances in wavelet analysis, methods that simultane-
ously treat structure on many scales.

The conference was closed with thoughtful comments by two distin-
guished leaders, Berkeley statistician John Rice and Oxford astrophysicist
Joe Silk. A strong feeling that such astro-statistical interactions are neces-
sary and fruitful for the enrichment of the two fields.

In addition to the invited speakers and discussants, several dozen sci-
entists from many countries presented contributed papers. Many of these
are briefly summarized in the final portion of this volume. We thank all
participants for their labor on this cross-disciplinary frontier.
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y Estad́ıstica, Universidad Politécnica de Cartagena, Pasco Alfonso XIII 52,
Cartagena 30203, Spain

Raftery, Prof. Adrian E., Department of Statistics, University of
Washington, Box 354322, Seattle, WA 98195-4322, USA

Rahman, M. Nurur, Department of Physics and Astronomy, Univer-
sity of Kansas, Lawrence, KS 66045-2151, USA
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Statistical Challenge in
Medieval (and Later)
Astronomy

Virginia Trimble1

ABSTRACT Portions of the history of the interaction between astronomy
and statistics are told in the form of short case studies of a number of
people who appear (or should appear) in books about both. These should be
regarded as notes for a serious discussion of the subject, not the discussion
itself.

In memory of Peter August Georg Scheuer from whom I (and many
others) first heard that N

1
2 is sometimes signal rather than noise.

1.1 A demographic introduction

If one is going to explore the contributions of astronomers to statistics and
of statisticians to astronomy, one ought perhaps to begin by deciding what
is meant by as astronomer, a statistician, and statistics. I will not do so, and
merely call attention to the cases, first, of Roger Boscovich of Dubrovnik,
who rates a whole section in Hald (1998) for extending the method of least
absolute deviations beyond where it had been left by Galileo for application
to astronomical observations of latitude but is known only to the subsets
of astronomers who collect foreign paper money or speak Serbo-Croatian
(in which his name is spelled - and pronounced - quite differently) and,
second, of John Michell, who appears in lots of astronomy treatises for
inventing the concept of black holes, and, occasionally, for the discovery
of binary stars, but does not make it into the statistics histories of Hald
(1998), Stigler (1986), or Pearson (1976), despite his binary task having
been accomplished by a method that most of us would call both statistical
(certainly probabilistic) and innovative.

How large is the overlap between the two communities? Of the 76 as-
tronomers indexed in Abell (1982) who flourished from ancient times up to

1Department of Physics and Astronomy, University of California, Irvine, CA 92697,
and Astronomy Department, University of Maryland, College Park, MD 20742
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about 1850, 49 (from Airy to Zach) appear in one or more of the statistical
histories by Stigler (1986, 1999), Hald (1990, 1998), Pearson (1976) and
Franklin (2001). They, in turn, mention another 27 astronomers (Arago
to Thomas Young) who did not make the Abell cut but who are men-
tioned in Russell, Dugan, and Stewart (1926), in Hoskin (1999) or some
other reasonable place. RDS was the primary introduction astronomy text
in English for about 20 years. George Abell wrote the first of the now-
ubiquitous books for non-science major courses, with the 4th, 1982, edition
the last over which he had control. And Hoskin’s volume is the most recent
attempt to put the entire history of astronomy between two covers.

Closer to the present, scientists become more and more specialized but
in the period from 1850 to 1950 at least the following can reasonably be de-
scribed as having contributed to the astronomy/statistics interface: Simon
Newcomb (1886), Arthur Eddington (1914), and Harold Jeffreys (1939),
noted by Hampel (1998), who also regards the work of Cannon, Flem-
ing, and Leavitt as statistical in nature, Jacobus Kapteyn (1922, ending
his 40+ years of work on the topic), Jerzy Neyman and Elizabeth Scott
(1956), W.M. Smart (...), S. Chandrasekhar (1939), Gunnar Malmquist
(1920, 1924), Col. Frank J.M. Stratton, and Robert Trumpler and Harold
Weaver (1953).

The sign of the contribution is not always clear. Consider the case of
Stratton, who was the last person to have participated officially in every
general assembly of the International Astronomical Union and who was
one of the officers who held the Union together during the very difficult
1939-1945 period, but whose astronomical work most of us would be hard-
pressed to recall. He was also the Cambridge tutor of Ronald Fisher (of the
F-distribution and much else), and I cannot resist quoting the following
from Hald (1998):

The astronomer F.J.M. Stratton (1881-1960), who was Fisher’s
tutor, lectured occasionally on the theory of errors. We do not
know precisely the contents of his course, but in the preface
to a book by D. Brunt (1917), the author thanks Stratton, “to
whose University lectures I owe most of my knowledge of the
subjects discussed in this book, and upon whose notes I have
drawn freely.” There is nothing original in this book.

Not knowing Hald, I cannot be sure whether he means this to be as
mirth-provoking as it is. Stigler (1999), on the other hand, clearly means to
amuse as well as to enlighten when he includes in a section called “Questions
to Discovery” a chapter entitled “Who discovered Bayes’ Theorem?”, one
called “Daniel Bernoulli, Leonhard Euler, and Maximum Likelihood” (to
which a local wit responded, “Oh, yeah. Old Max. He used to drink a
lot.”), and one called “Gauss and the invention of least squares.” The issue
of which items in astro-statistics and statistico-astronomy should be called
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discoveries and which inventions is another issue that I will not resolve
here. Indeed I will say nothing about Gauss and least squares, since his
contributions, the antecedents, and descendants were so well explored by
Rao (1997) in SCMA II.

What will appear in the rest of this paper is a series of case studies, of
what strike me as fruitful interactions between the fields. None is precisely
medieval (how sure are we that the number of cardinal sins falls between
4.65 and 9.35?), though some archeoastronomy items appear at the end.
Just how many of the tales get told will depend on the editor, who will
remove as many as necessary to get below the assigned page limit.

1.2 Giants in the Land

These stories concern scientists of enormous reputation over a range of
disciplines, and I have not consulted the original literature, but retell from
Franklin (2001), Hald (9190, 1998), Hoskin (9199), Stigler (1986), Pearson
(1976), and other sources read too long ago to be honorably recalled.

1.2.1 Galileo and Least Absolute Deviations

In the simplified version of history we hand our students while they are get-
ting settled into their seats at the beginning of a lecture, the Aristotelian-
Aquinian principle of “the immutability of the heavens” was overthrown
by Tycho Brahe (1546-1601), who set an upper limit to the geocentric par-
allax of his nova stellar of 1572 (and also the comet of 1577) placing them
beyond the sphere of the moon. But, not surprisingly, he was not the only
astronomer of the time to look for this parallax. Incidentally, seeing the ge-
ometry of it is rather tricky for modern eyes, but it is a true statement that
the new star, if it is close to the earth and turning in the diurnal motion
about the pole, will show itself more distant from the pole when it is below
the pole on the meridian than when above it (roughly Galileo’s words). A
certain Scipione Chiaramonti (1565-1652) combined some of Tycho’s ob-
servations with those of 11 other astronomers to conclude that what we
now call NS 1572 was at most 32 earth radii away, with similar conclusions
for SB 1604 and the nova stella of 1600 (actually Mira).

This provoked Galileo (1564-1642) in his 1632 Dialogo to look again at
all the reported measurements of upper and lower culmination altitudes of
the 1572 star made by astronomers at latitudes from 38.5 to 56o north. That
is, he is looking for geocentric parallax over a fairly small baseline rather
than for earth rotation parallax which can be measured by a single observer
and, for circumpolar stars (as SN 1572 was for Tycho) has a baseline of 2
Re cos (latitude).

Galileo then compared the sums of the absolute values of the errors of the
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observations implied if the distance was 32 Re vs. sufficiently large to yield
no parallax. Of the more than 100 pairings of the data points available,
Galileo picked 10 most favorable to Chiaramonti’s hypothesis and 10 most
favorable to his (with no overlap). The sums of the absolute errors in the
two cases were 756.9 arc minutes and 83.7 arc minutes respectively. Small
being good in this context, he regarded the result as being strong evidence
for a translunar location for the event. And so do we.

The method then languished until 1755, when Boscovich applied it to
the determination of the lengths of arcs of latitude at various locations
(in connection with the problem of determining the shape of the earth
- prolate had been claimed). Galileo was also the first to figure out the
odds of getting various outcomes from the case of three dice. I checked his
numbers by writing down all the combinations, which is presumably how
he did it. He got it right, and it is left as an exercise for the Gosset to
figure out how the results would change in the case of fermionic or bosonic,
rather than distinguishable, dice.

1.2.2 Edmond Halley and survival rates

Halley (1656-1742) is known to astronomers best for his prediction of the
return of the period comet now bearing his name. On the astronomical side,
he also discovered proper motions of the stars and secular acceleration of the
moon, accurately predicted the path of the eclipse of 1715 over England,
and served as Astronomer Royal from 1720 until his death (succeeding
Flamsteed, who was first).

But he also wrote, in 1694, “... on... degrees of mortality... and prices of
annuities.” The end of the title makes clear why men of practical bent were
concerned with human survival and death rates as a function of age. His
work in this area is an interesting illustration of what our grandmothers
called “making do with what you have.” Since it was English annuities for
which he was trying to set a fair price (or anyhow one that people would
pay an that would not bankrupt the issuers), he would obviously have liked
to have rates of the deaths of English persons (not just men, since annuities
were often purchases for widows) as a function of age. But the methods of
recording births and deaths in England, mostly in parish registers, did not
provide the numbers needed, so he used tables of numbers of births an
deaths and total population for Breslau.

According to Pearson (1976), Halley was probably also the author of a
1699 piece in Philosophical Transactions of the Royal Society (the
first scientific periodical in any language, in case you wondered) called “a
calculation of the credibility of human testimony.” This is also phrased in
the language of how much you should be willing to pay for things. For in-
stance, of someone who is 90% reliable tells you that he has seen your cargo
ship safely into the harbor and unloaded without damage, then you should
be prepared to pay (only) 10% of the value of the cargo to insure against
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the loss of the whole. The paper does not address how you determine the
reliability quotient of your informant, which is the aspect of the problem on
which we most often stumble even today, whether the issue is astronomical
or financial.

1.2.3 Tobias Mayer and the libration of the Moon

Mayer (1723-1762) tackled a problem whose geometry is even more diffi-
cult to see than that of geocentric parallax and solved it, using a method
(called Mayer’s or, more often, the method of averages) that would elude
Euler working on the mathematically rather similar problem of mutual
perturbations in the orbital motion of Jupiter and Saturn. Mayer’s goal
(connected with the use of lunar motion for longitude determination) was
to find three angles: the one between the true rotation axis of the Moon and
the poles of the circumference parallel to the ecliptic, the ecliptic longitude
of the node at which the plane of the lunar rotation equator crosses the
ecliptic, and the true latitude of the crater (Manilius, a suitable choice in
several ways) he had observed. The observations were 27 pairs of angular
positions of the crater parallel and perpendicular to (changing) apparent
equator of the moon (the circumference parallel to the ecliptic), gathered
by him over a couple of years.

Thus he had 27 equations in three unknown. His solution was to group
these in three sets, with large, medium, and small (negative) coefficients of
the first angle mentioned above, which he regarded as the most important.
He then added up the groups (he could alternatively have averaged them)
and solved the resulting triple, concluding that the result would be more
accurate than that from any three data pairs alone (true) by a factor nine
(false; it is at best three if only random errors in the observations are
important). He apparently invented ± as well.

Euler, writing in 1749 (the year before Mayer) was faced with 75 sets of
observations of Saturn and Jupiter, gathered over 163 years, from which
to extract eight unknown describing the orbits and their interactions. He
pulled out the two that were not periodic in the 59-year synodic period
of the two planets, and then ground to a halt, when various combinations
of the equations let to wildly inconsistent results, saying that the errors
had multiplied themselves through combining of observations. Nevertheless,
most of us have heard of Euler, and few of Mayer. Indeed, Stigler (1986)
notes that the method of averaging (or summing) equations discovered
by Mayer is often attributed to Euler. His section heading is, of course,
Saturn, Jupiter, and Euler.
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1.3 Three careful clerics

James Bradley (1693-1762, third Astronomer Royal) and John Michell (c.
1724-1793) turn up in historical astronomy discussions with the words
statistics or statistical attached to their persons. Bradley is known to
Stigler, but not to Hald, and Michell to neither. These are the two sto-
ries for which I returned to the original literature and both remain high on
my list of favorites, even after reading many pages in which f is pronounced
s.

1.3.1 Bradley and the aberration of starlight

Bradley set out to find (as many others before him, and after, did) heliocen-
tric parallax as the definitive demonstration of Copernican cosmography.
He focused initially on Gamma Draconis, chosen by Robert Hooke for the
same purpose, because it comes very close to the London zenith, thus mini-
mizing both atmospheric refraction and flexure of the observing apparatus.
By great good luck, the star is also very close to the ecliptic pole. The crit-
ical papers are Bradley (1728 on nutation). Hirshfeld recounts many more
details than there is space for here.

Aberration is the apparent shift in positions of all stars (independent of
distance) caused by earth’s orbital motion. The maximum displacement is
the ratio of orbit speed of light (10−4 or a half-angle close to 20 arseconds),
and the standard analogy is walking forward into falling rain and needing
to tip your umbrella to keep the drops from hitting you. Bradley seems to
have found geometry easy and does not sketch the situation. Incidentally,
he is able to report observations taken right through the year. You cannot
see stars by daylight from the bottom of a well, but you can with a suitable
(preferably long local-length) telescope.

Aberration shows in a year (or less) of data as our direction of motion
through space changes and a star near the ecliptic pole seems to move north
and south in declination at transit. Bradley continued to follow Gamma
Dra over the years at the same time as he moved on to other stars, seeking
to confirm the effect. After 20 years, it became clear that there was a
systematic residual, with period about 19 years, which we now call nutation
and attribute to lunar tides. His second paper makes use of (at least) the
following ideas that are statistical in nature:

(a) mean values for the rate of precession of the equinoxes and obliquity of
the ecliptic (rather than a favorite, or the most recent, or the oldest);

(b) a weighted mean for the maximum value of aberration for a star ex-
actly at the ecliptic pole, which takes into account data on about 10
stars, giving largest weight to Gamma Dra, which has the longest
data string, the smallest polar and ecliptic polar distances, and the
brightest apparent magnitude; and
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(c) an examination of the distribution of residuals.

He says that, in the comparison between observed declinations (or altitudes
at upper culmination) and ones calculated from his final model, 11 of 300
values differ by 2-3” and none by more than 3”.

Bradley ends by noting that he suspects that some physically meaningful
effect remains to be found (e.g. a secular decrease in the obliquity). In mod-
ern terms, the fact that the distribution of errors is flatter than a Gaussian
with a standard deviation of 1 arc second is confirmation of his suspicion.
He displays a number of tables of observed and model declinations, one of
whose implications is that, in 1748 in England, the autumnal equinox came
about September 9th.

1.3.2 John Michell and binary stars

Michell is also part of the quest for parallax, because his demonstration
that pairs of stars close on the sky are generally bound systems rather
than chance superpositions undid the hopes of William Herschel and oth-
ers to use such pairs for parallax measurement, on the assumption that
the fainter star would always be more distant. He also, of course, thereby
demonstrated that not all stars have the same absolute brightness, enor-
mously complication “star gauging” or “the” problem of statistical astron-
omy (next section).

Michell appears in various contexts as:

(a) the inventor of black holes (“all light emitted from such a body would
be made to return to it, by its own proper gravity.” Michell, 1783);

(b) designer of the Cavendish balance (Cavendish was his executor),

(c) propounder of the idea that earthquake energy travels in waves (based
on times at which Lisbon 1755 shook up other European cities); and

(d) the discoverer of binary stars (though it took Herschel’s measurement
of the first bit of an orbit before all were persuaded).

Michell (1767) began by asking for the probability that any one particular
star should happen to be within a certain distance (as for example one
degree) of any other given star and finding that it is (60)2/(6875.5)2 or
1/13131. And the probability that it is not is 13130/13131. He then extends
to the probability that no one of whole number of stars n would be within
one degree from the proposed star, and its complement, 1−(13130/13131)n

that there is one, and so onward to the probability that no one star should
be within a distance r of any other star, with n to choose from,

P (not) =
(

1− r2

(6875.5)2

)n×n
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and its complement, the probability that one is.
He makes fairly heavy going of the arithmetic, ending up with a style

that resembles that of a modern student whose calculator doesn’t have quite
enough significant figures in its chips. Apparently (1 + n)x = 1 + nx+ . . .
was not part of the standard tool kit, but he gets the right answer, finding,
for instance, that for Beta Cap (n = 230, r = 3.3 arc min) the chances
are 80:1 against its being a chance alignment. For the six brightest Pleiads,
the odds are 496, 000 : 1 against a chance grouping.

If this sort of arithmetic rings a bell, it is probably because you have
met it before as the question of how many non-twins must you have in
the room before it becomes more likely than not that two of them have
the same birthday. The number (about 22) is smaller for Moslems because
their year is shorter. I have no idea whether Michell or his predecessors
knew about the birthday problem or other events described by the same
calculation, but he does seem to have been first to apply it in astronomy.

1.3.3 Nevil Maskelyne and the personal equation

Maskelyne (1732-1811), the fifth Astronomer Royal, like Bradley and Mich-
ell, held orders in the Anglican church and is the member of the trio one
finds it hardest to associate with the concept of charity, perhaps because he
figures as something of a villain in the story of the quest to determine lon-
gitude at see. He was indeed a supporter of the method using the motion of
the Moon (Maskelyne, 1762), mentioned in connection with Mayer’s work.
He was also in some sense the discoverer of the first recognized systematic
error in astronomy, generally known as the personal equation.

Back in 1796, when the right ascensions of stars were determined from
their times of meridian transit, Maskelyne noticed that his assistant, David
Kinnebrook, whose work had formerly been consistent with his own, was
now recording transit times that were systematically 0.8 sec later than
his own. This corresponds to 12 arc seconds or as much as 0.2 miles at
sea, and this 68 years after Bradley had measured the polar distances of
stars to 1 arc second or better. Rather than rejoicing in the discovery that
systematic errors could be much larger than random ones (and that Bradley
had been wise to measure altitudes rather than hour angles), Maskelyne
waxed wroth and fired Kinnebrook. Twenty-some years later, Bessel (who
eventually found the long-sought parallax) looked again at hour angles
measured not only by Maskelyne and Kinnebrook but also ones of his own
and from Struve (another parallax discoverer), Argelander, Walbeck, and
Knorre and found systematic differences up to a second (of time) and more
which could vary from year to year.

His way of writing these, as, for instance, B−S = −0, 799 sec. appears to
have given rise to the name “personal equation” (Stigler, 1986). The magni-
tudes and variations were the sort normally associated with human reaction
times, as per the story of Galileo’s attempt to measure the speed of light
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with dark lanterns on the seven hills of Rome. The name personal equation
became customary and the numerical values dropped only with the adop-
tion of automatic and electrified chronographs. The very large difference
in systematic accuracies of right ascension (with personal equation) and
declination data (without it) propagated through astronomy in the form
of separate analyzes of the two components for many purposes, statistical
and others.

The term was sometimes used for systematic errors of other sorts, for
instance by Russell et al. (1926) to describe the tendency of some Mars
observers to draw thin, straight lines between the dots and others to avoid
this at all costs. Sherlock Holmes uses the phrase to mean something like
general intelligence, remarking at one point that he “need not allow for
what astronomers call the personal equation” since a particular foe is of
first-rate intelligence (like himself, of course).

Any astronomer will be able to come up with other examples of unrec-
ognized systematic errors utterly swamping the recognized random ones.
Stigler’s (1999) Table 20.1 shows 15 successive published values for the
length of the astronomical unit in miles. Only two fall within the error bars
of the previous value, and only two have error bars that take in the present
official number. This is known to 9 significant figures in metric units (from
radar travel times), but only about 6 in miles (owing to disagreement about
the conversion factor). My own favorite is the Hubble constant, which has
declined from 536 km/sec/Mpc (Mpc = megaparsecs) according to Hub-
ble’s initial, 1929, calibration, down to about 65, with 10% error bars at
every stage (Trimble, 1996).

Maskelyne also makes a cameo appearance at the beginning of our next
story, because he provided some of the key proper motion measurements
from which Herschel first charted the motion of the sun relative to its
neighbors. Other numbers came from Tobias Mayer, whom you have now
also met.

1.4 “THE” problem of stellar statistics

Newton thought of, Michell (1767) and undoubtedly many others devel-
oped, and William Herschel is generally given credit for applying the method
of determination of the distances and distributions of the stars in space
based on the assumption that they are as bright as the sun (see Hoskin,
1963, for details of this story). Herschel called the method star gauging
(gaging in his spelling) and by 1785 had put the sun near the center of
a flattened system having sharp edges, a uniform density of stars, and an
extent of a couple of kiloparsecs, stretching furthest in the directions where
we see the most and faintest stars (“the Milky Way”). Even the Cygnus
rift is there.
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From Herschel’s time down to the present, the key problem marching
under the banner statistical astronomy has been to turn counts of numbers
of stars as a function of apparent brightness into, in historical order:

(a) the size and shape of the system;

(b) the real distribution of stellar brightnesses (after Michell et al. showed
that they were not all the same); and

(c) the distribution of the velocities of the stars (as a function of location,
brightness, and so forth) after proper motion data and, later, radial
velocity measurements showed that the system is not a static one.

Trumpler and Weaver (1953) mark the high-point of this endeavor as a core
subject in astronomy.

Why is it a statistical problem? The number of stars you count as a
function of apparent magnitude, A(m), is given by

A(m) = ω

∫ ∞

0

ϕ(M)D(r)r2dr

where ω is the solid angle you are examining, ϕ(M) is the luminosity dis-
tribution, and D(r) is the density of stars as a function of distance in that
direction. The implied assumption that ϕ(M) and D(r) are separable func-
tions is already a fatal error if you propose to look more than about one kpc
in the galactic plane or 100 pc perpendicular to it. Built in is the relation
between apparent and absolute magnitude, M = m + 5 − 5 log r − a(r),
where a(r) is the absorption in magnitudes and constitutes another un-
known function. Kapteyn (1922) was the last to do this for a(r) = 0 every-
where (though he had earlier suggested values of 0.3 and 2.0 mag/kpc in
the galactic plane), and even in this case, one clearly has to go over to sums
rather than integrals, leading to a Mayer- or Euler-like problem of many
equations in many (but fewer) unknowns and the potential for ending up
with nonsense through what Euler called the multiplying of errors (both
Gaussian and Poissonian in this case).

McCuskey (1965) and van Rhijn (1965, Kapteyn’s colleague and succes-
sor) summarize the additional computational difficulties introduced when
a(r) �= 0 and make it clear when the confirmation of spiral arms in the
Milky Way was left for the radio astronomers (for whom a(r) really is 0
most of the time).

Now try to do the dynamical (stellar population) problem, where the
goal is to extract, for instance, N(M,V ) from observations of A1(m,µ)
and A2(m,Vr) in various directions in the sky, subject to the same un-
known a(r, θ, ∅) and the non-separability of the luminosity function, the
density distribution, and the kinematic properties. Apart from everything
else, one simply must have the counts, apparent magnitudes, proper mo-
tions, and radial velocities for the same stars in the same directions in the
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sky. Kapteyn’s (1906) Plan of Selected Areas sought to address this
problem. The IAU Commission (32) on Selected Areas eventually voted
itself out of existence, but this is the one context in which Kapteyn’s name
is remembered today in a positive tone of voice. Binney and Tremaine
(1987), the relatively modern authority, mention neither Kapteyn nor his
star streams, but do make contact with his period via the velocity ellip-
soid of Karl Schwarzschild (which has, among other things, the shape of a
Gaussian normal in two or three dimensions).

“Data products” from the traditional endeavor called statistical astron-
omy include:

(a) the luminosity distribution(s) of stars (which we now immediately try
to turn into the mass distribution;

(b) the solar motion (first found by Herschel, using proper motions from
Mayer and Maskelyne); and

(c) galactic dynamics.

The local distribution of stellar motions was described by Kapteyn as two
star streams and by Schwarzschild as an ellipsoid. Neither means quite
what you might guess, and I recommend Russell et al. (1926) or their
references, Campbell (1913) and Eddington (1914) for clearer expositions
than found in more modern references. All wrote before Trumpler (1929)
forced galactic absorption upon us. Even so, the problem, in the words of
RDS,

The problem of stellar statistics is to deduce from the apparent
distribution of the stars in the heavens with respect to magni-
tude, proper motion, radial velocity, parallax, galactic concen-
tration, etc. ... what is the true distribution of the stars in space
... in terms of three statistical functions: the density function,
which gives the total number of stars per unit volume. ... the lu-
minosity function, which shows what proportions of these stars
have absolute magnitudes lying in successive equal intervals; and
the velocity function, which defines the similar distribution of
their velocities in space.

must be sung as “to invert the impossible matrix”.
Against this background, the discovery of galactic rotation by Bertil

Lindblad and Jan Oort might seem nothing less than miraculous. They did
however, have the rotation of M81 (Max Wolf) and M31 (Vesto Melvin
Slipher) to guide them.
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1.5 A smattering of archeoastronomy

Archeoastronomy includes (at least) two territories - the use of ancient
observations to shed light on current questions (Chinese and other sightings
of comets and supernovae are the classic examples) and the use of modern
astronomy to shed light on ancient cultures (the classic example is the Star
of Bethlehem, which I shall not mention at all, statistical considerations
not often being important for single events, whether or not miraculous, but
this is perhaps as good a place as any to record my prejudice that Bayesian
methods, while excellent for changing your mind by a small amount, are
much less useful on the road to Damascus).

Was Ptolemy to be trusted? Two aspects of this question have a “good-
ness-of-fit” answer. First, it seems that some of his observations are “pre-
dicted” so well by his model that they must have been back-calculated. This
“excessive goodness-of-fit” result is an old one (Newton, 1977). Second, very
recently, Schaeffer (2001) has asked whether Ptolemy borrowed his catalog
from Hipparchus, and, if so, did it leave a statistical trail. Because the two
lived at different latitudes and in different centuries (with precession of the
equinoxes), different stars skimmed their horizons with differing degrees
of visibility (hence opportunities for accurate observations of position and
apparent brightness). The conclusion is that his fourth-quadrant stars are
borrowed, the first three new observations.

Alignments of pre-literate and peri-literate monuments have been scru-
tinized for astronomical significance from the time of Locker to the present
(Krupp, 1988, is a good source.). Conclusion range from, “you can see
the whole of positional astronomy, including precession and changes in the
obliquity at Stonehenge” to “yeah, the door is on the north side.” I have
dabbled in the now very densely populated part of this territory occupied
by the pyramids of Giza (Trimble, 1964). Objectively, one can say things
like

(a) the inclination of the shafts from the King’s chamber of Cheops’ pyra-
mid point (to the accuracy within which they can be determined) to
the north celestial pole (where there was a star when the pyramids
were built) and to the upper culmination of the middle star in Orion’s
belt;

(b) the main exit of the Great Temple of Amon-Ra at Karnak points
northwest, but misses the direction of sunset at summer solstice by
more than the accuracy of the measurement (1.0o at the time temple
was built, Krupp, 1988); and

(c) main axes of 38 other temples built during the Empire period point in
38 other directions, 7 close to the cardinal directions and 6 (NW), 7
(NE), 13 (SE), and 5 (SW) in each of the quadrants (Badawy, 1968,
p.184).
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You could ask a statistical question about how likely this is to be a chance
distribution (and answer it by frequentist or Bayesian methods). But if the
answer is to be a contribution to Archeoastronomy, then you must decide
what hypothesis you are testing. The choices include perpendicular to the
nearby riverbank or to the cliffs behind as well as astronomical orientations.

The next step is supposed to be to test the hypothesis against a new,
independent data set, or, failing that, to attempt to multiply the chance
probability you find (which is always very small or you wouldn’t be doing
this sort of thing) by the number of other hypotheses that would be equally
interesting. In the Empire Temple case, there is no comparable sample, but
lots of hypotheses, and you are left with the usual result, “well, maybe there
is something there.”

Section 3.3 carried the moral that systematic errors are nearly always
larger than random ones. The lesson here is that you must choose a testable
hypothesis and stick with it. “Part of Ptolemy’s catalogue is more consis-
tent with observations made from Hipparchus’ 4-dimensional location than
with observations from Ptolemy’s own 4-location” is such a hypothesis.
“The Egyptians deliberately lined up their temples and pyramids to incor-
porate astronomical information” is not. Investigations of non-cosmological
redshifts (which are now more than 35 years old) seem to me also to suffer
from a surfeit of shifting and untestable hypotheses.

1.6 Ancient statistics in modern astronomy

Recent forays of astronomers into statistical territory come sometimes per-
ilously close to reinventing the wheel and making it square. Nevertheless, I
think each of the following issues is still a live one and still on the interface.

Density of matter (including dark matter) in the galactic plane
This belongs to the tradition territory because the key equation is[

d

dz
ln

N(z)
N(z0)

]
< V 2

z >= −4πGσ0

where < V 2
z > is the component of the velocity ellipsoid perpendicular to

the galactic place and the logarithmic gradient is that of the density of stars
perpendicular to the plane. The desired density is σ0, and the error made
if you choose to take π = 3 will be smaller than other that are unavoidable.
The equation and its application go back to Kapteyn and Jeans, though
Oort often gets credit, and forward into modern models of the galaxy from
Bahcall and Soneira, Kuijken and Gilmore, and others. The main errors
are now recognized as systematic rather than random (though the latter
are not small), because star populations change systematically away from
the galactic plane, rendering color-based parallaxes too large (distance too
small) because the more distant stars will be of lower metallicity, loser
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mass, and more advanced evolutionary stage. Kapteyn and Jeans actually
bracketed modern results, with σ0 = 0.099 to 0.143 M0/pc

3, and we remain
uncertain about whether there is a separate disk dark matter component.

Closely related is the attempt to estimate the contribution of very faint,
low mass stars to the total density. Small scale surveys (like those from the
Hubble Space Telescope) yield a handful of brown and old white dwarfs
(random errors win), and large scale ones suffer calibration errors (one of
which the late Willem Luyten ungenerously dubbed the Weistrop Water-
gate).

Malmquist bias and the Scott effect Wherever two or three cos-
mologists are gathered together, one will say that the others do not under-
stand these: their essence, the difference between them, or how to correct
for them. Adriaan Blaauw even objects to the term Malmquist bias, on the
ground that the concepts are all to be found in earlier papers by Kapteyn.

logN − logS This is a cumulative distribution of source numbers
vs. apparent flux. Errors due to binning are thereby removed, but others
introduced. Early applications in radio astronomy suffered from confusion
(meaning two or more faint sources getting counted as a single brighter
one), though the conclusion that there are more distance radio sources than
nearby ones stands. Giacconi (1972) used it at a time when very few X-ray
sources were yet known or identified to predict that the X-ray background
would eventually be resolvable into many distant sources. He too was right.
P (D) and N

1
2 /N The concept that Poissonian fluctuations in num-

bers of sources within your beam will translate into apparent fluctuations in
background surface brightness has been rediscovered at every wavelength.
Scheuer (1957) used it to add a few points to the logN − logS curve from
the Third Cambridge Catalogue (rousing the wrath of the then-powerful
steady-state community). Applied to optical observations of elliptical galax-
ies, it is one of the newer subrungs on the distance ladder (because you can
pull out the brightness of the individual brightest stars contribution, de-
clare then to be on the red giant tip, and get a spectroscopic parallax).
Applied to the X-ray background, the calculation shows that the number
of sources needed is just about what you would get from a logN − logS
extrapolation, if the background is to be neither more ragged nor smoother
than what we see (these sources have now been resolved by Chandra and
other missions).
V/Vm was Maarten Schmidt’s way of taking into account that he had a

flux limited sample with both radio and optical flux limits so that he could
use measured redshifts of a very small number to conclude that quasars
were commoner in the past. He has said that the basic ideas can again
be found in Kapteyn’s work (Schmidt, 2000). Recently he has suggested
(Schmidt, 2001, personal communication) that the same methodology ap-
plied to gamma ray bursters implies that those of short duration are closer
(and less beamed) than those of long duration (which optical redshifts now
exist).
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The Lutz-Kelker correction is needed when you look at groups of
measured parallaxes encumbered with measurement errors, which are in-
trinsically asymmetric (since no real parallax can be negative; Chiaramonti
had trouble with this!).

Kaplan-Meier survival curves This is my own particular square
wheel, honed when I was trying to figure out how to show (or anyhow
display) data concerning the long-term publication records of astronomers
starting out with Ph.D’s from high and low prestige graduate schools. The
principle end point was, therefore, ceasing to publish. But it seemed to me
(Trimble, 1991) that posthumous publication was an unreasonable expecta-
tion (not true - Lundmark was co-author of a 1999 paper), and it removed
the deceased from the set of those at risk, so that the curves could turn
back up if more people in a cohort died than stopped publishing for other
reasons.

Properties of binary star populations There are at least two is-
sues. First, how do you allow for unresolved binaries when counting stars
as a function of apparent brightness (part of “the” problem of stellar statis-
tics). This cannot be dealt with until you know the answer to the second
issue, what are the real distributions of binary periods, separations, mass
ratios, eccentricities and all as a function of age, chemical composition,
and whatever else matters. These all fold into various attempts to under-
stand chemical, luminosity, and other evolution tracks for galaxies or their
separate stellar populations. Much ink has been expended since Kuiper
(1935) interpolated (correctly) and extrapolated (I thing incorrectly) from
the handful each of visual and spectroscopic binary orbits available to him.
I abandoned the fray in 1990, with the parting shot that the answer you
get will depend on the sample you choose to look at. This remains true.
Complete information could be obtained only by working to sharp limits in
apparent magnitude, magnitude difference and separation (for visual bina-
ries), velocity amplitude and period (for spectroscopic binaries), and light
amplitude and period (for eclipsing binaries) and then carrying out the
equivalent of V/Vm in about six-dimensional space to get a volume limited
sample. This is (marginally) possible for nearby clusters. “all the F V stars
in the Yale Bright Star Catalog” or a few other narrowly circumscribed
classes, but otherwise impossible.

Can we derive any particular lesson from these more complicated cases?
I think so (and it is one that spectroscopists working on stellar structure
and evolution were forced, kicking and screaming, to accept a couple of
decades ago). It is that, when comparing hypothesis and data, it is better
to transform your model into the observed quantities rather than try to
put the data into theoretical bins (star color and effective temperature are
a characteristic pair). For complex situations, a Monte Carlo simulation is
often (not always) the best way to do this - assume a model and calculate
what the observers should see. There will, then, in effect be error bars on
your theory as well as your observations, but this cannot be helped.
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1.7 Conclusions

Statisticians and astronomers have been trespassing on each other’s territo-
ries for as long as the territories have existed. In addition to the discovery
of particular methods and concepts, we can find in this history several
lessons. It is easier to analyze data you have taken yourself than other
peoples (Mayer vs. Euler). Systematic errors generally exceed random ones
(Maskelyne and many more recent examples). It is important to decide
which hypothesis you are testing before you do the arithmetic, ideally even
before you collect the data (archeo-astronomy and non-cosmological red-
shifts). And, finally, if as is nearly always the case, there is not a precise
correspondence between the quantities you can measure and the ones in
your hypothesis, it is best to transform theorists’s units into observers’
units, rather than the converse.

And the most important lesson is that the story is never completely told.
Despite all these pages, I have not mentioned

(1) Oscar Sheynin (1996 and many prior papers), who is the real expert
on early astronomical statistics’

(2) the early recognition of interstellar absorption by King (1914, working,
as usual on “the” problem of stellar statistics);

(3) all the good things that Simon Newcomb did (despite his role as Whit-
man’s “learned astronomer” and opposition to astrophysics), many
of them statistical (corrections of coordinates for refraction, fluctu-
ations of the solar cycle, recognition of the background light of the
night sky as not being due to faint stars); or

(4) Lambert (of the reflector), who despite Stigler’s (1999) discussion of
Bernoulli, Euler, and Old Max, arguably invented Maximum Likeli-
hood (but did not use it for anything).

Acknowledgements: Special thanks to organizers Babu and Feigelson
for finding something for me to do at the meeting and suggesting some ref-
erences. Brenda Corbin of US Naval Observatory was enormously generous
in finding and sending copies of papers not just older than UC Irvine but
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Power from Understanding the
Shape of Measurement:
Progress in Bayesian Inference
for Astrophysics

A. Connors1

ABSTRACT After a review of the historical context of Bayesian inference
in astronomy, we work a tutorial problem involving the search for pulsars
in gamma-ray astronomical data; i.e. the detection of periodicities in a
Poisson point process. We develop a model called Sparse Bayes Blocks for
this purpose. These methods are also effective for estimation of the pulsar
period.
This paper is followed by a commentary by statistician Eric D. Kolaczyk.

2.1 Introduction

2.1.1 WHY: Historical Context (A Personal View)

Overview

From antiquity to modern times (early 1900’s), fundamental advances in
astronomy and statistics had been intertwined (see [4, 2, 5]; and references
therein). In modern times, this was not so: the fields had separated. Hence
for the past few generations progress in astronomical data analysis pro-
ceeded piecemeal, in isolated spurts. Typically, first, one faced a class of
problems which could not be solved, or to which one got silly or inconsistent
answers using previously standard astrophysics methods. Second, one had
access to a lively subcommunity with greater statistical knowledge. Then,
an solitary solution to this specific class of problems was proposed, and
diffused outwards in the astrophysics community. Well–known frequentist
examples include: proper use of confidence intervals and likelihood ratios
for parameter estimation and hypothesis comparison [4, 5, 6, 7]; and clari-
fying linear regressions, esp. in the presence of error bars [8]. Each greatly
improved understanding, but often carried with them only bits and pieces

1Eureka Scientific
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of the wider framework from which they were derived (e.g. [9]).
Bayesian progress followed similar pattern, save that in contrast to “black–

box” methods, the formalism carries with it an overarching probabilistic/
likelihood framework. Learning this was perceived as a barrier; as was the
often high high computation cost. There seemed to be roughly four reser-
voirs of Bayesian statistical knowledge: statisticians applying their special-
ity to astronomical problems; physical scientists from other countries with
more robust statistics education (Spain, South America, Eastern Block
countries); people with some overlap in the engineering/radar/signal pro-
cessing community; and people who discovered the work of Ed Jaynes [10].
Interestingly, the first and last seemed by far the most influential.

Modern pioneers: 1970’s-80’s

Independent thinkerA. Bijaoui [11, 12] was probably first to use Bayes in
modern astrophysics. (He was the first to try many methods; at this con-
ference his influence is represented in the multi–scale sessions.) The second
modern application was the introduction of the EM algorithm (indepen-
dently) by statisticians Richardson [13] and Lucy[14] for “image deconvolu-
tion” in astrophysics. This garnered a sudden increase in popularity after a
high–profile data–analysis problem (Hubble Space telescope’s mirror being
out of focus) could not be fixed by the usual method of building a big-
ger telescope. (See [15, 16] for a modern EM view.) The third application
was the (ill-conditioned) ‘deconvolving’ of spatial images from radio inter-
ferometry (cf. [17]; history in [18]). The researchers discovered Maximum
Entropy; then the work of Ed Jaynes; and became ‘Evangelical Bayesians’.
One of the more spectacular examples was the use of Bayes methods for
COBE limits on fluctuations in the CBR. N. Kaiser (private communica-
tion) writes that for the CBR data, there was much heated discussion of
the silly range of the fluctuations – clearly not supported by common sense,
or by likelihood analyses. For example, one analysis [19] happened to have
an anomalously low χ2; using the then standard [20] approach gave an un-
reasonable low “upper limit” on the fluctuations. At the same time, some
of the collaborators (A. Lasenby) had offices near the “evangelical” Maxi-
mum Entropy group, and so were introduced to lively discussions on how
to form the best likelihood ratio, and what were appropriate priors (see
[21, 22, 23], and references in [24]). Last, independent thinker T. Loredo
[25] also discovered the work of Ed Jaynes, and in turn influenced those at
U. Chicago, LANL, and beyond (e.g. [26, 27, 28]).

1990’s: SCMA I and II

At the first SCMA, broadly speaking, the focus tended to be on the Bayesian
equivalent of standard problems and related ones that could not readily be
handled by frequentist methods [4]. Many of these were physical, para-
metric models; and one did the marginalization either analytically, or via
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simple numerical integration methods (Laplace, quadrature). Some of these
solutions are only now coming into standard use (XSPEC, CIAO), despite
their simplicity. At the second SCMA, [2], there was more focus on com-
puter methods (esp. MCMC), and more formation of “working groups”
and more serious collaboration with statisticians (Duke, CMU, Purdue,
Chicago, Harvard, BU, ...). As Feigelson and Babu had predicted, it took a
great deal of work to “translate” between astrophysics jargon and culture
and that of the statisticians. However this brought not only access to more
advanced computational techniques but also to broader perspectives.

SCMA III: 2001

Now we have reached SCMA III, where we can see fruits of those collab-
orations many built in response to those challenges. What are the new
challenges that will be defined here? Is it time for an era of fundamentally
rethinking how we do measurements? “Data Analysis” (not even “Statis-
tics”) used to be an afterthought. Perhaps now it can be part of how one
phrases the scientific question or designs the experiment.

2.1.2 WHY: Astrophysicists now

Likelihood methods in general and Bayesian methods in particular are es-
pecially well–suited to modern astronomy and astrophysics. First, astro-
physics is unusual in being able to derive reliable quantitative estimates of
our errors and uncertainties, and of the entire measurement process [29].
Second, we have both (literally) millenia’s worth of prior observations —
much of it detailed, quantitative measurements [29]; plus astoundingly pre-
cise quantitative predictive theories, from quantum mechanics to relativity
and beyond. Third, unfortunately, unlike engineers, accountants, biologists,
economists, and others, we — generally speaking — do not have a formal
background in probability and statistics beyond what is in ‘cookbook’ texts
[30, 31]. This isolation often invites misapplication, both from unfamiliar-
ity with the larger probability framework, and from missing out on crucial
advances (e.g. it was clarified in the 1970’s that in certain cases the F-test
does not work; only slowly is this being brought into the astrophysics com-
munity [9]). On the other hand, together these give us an opportunity, now,
to build a more fundamental understanding.

The framework for approaching problems that I advocate here is a ‘like-
lihoodist’ perspective [32]. The method for deriving these is Bayesian.

2.1.3 WHY: Bayesian Inference

A properly constructed Bayesian likelihood ratio is always the best measure
of all the information in one’s data given competing null and interesting
hypotheses, plus one’s prior information. This is not in dispute by either
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classical or Bayesian statisticians. The difficulties lie in: 1) properly incor-
porating prior information into a clear well-specified prior probability; 2)
doing the marginalization (often numerical integration); and 3) parametriz-
ing the model so the first two steps are easier. Recall the Bayes prescription
requires four parts:

1. A set of hypotheses (class of model + parameters) H0...Hn; θn;

2. An appropriate sampling statistic for the data, given the (class of)
model plus parameters p(D | Hn, θn, I); and

3. Previous information I (instrument calibration, background measure-
ments, quantum mechanics, ...), appropriately quantified in prior
probabilities π(Hn | I), π(θn | I). Combining these via Bayes’s The-
orem gives the posterior probability p(θn | D, IH) of the parameters
given the data D, model or hypothesis H, and prior information I,
or p(H | D, I) of the model or hypothesis given the data and prior
information:

p(θn|D,Hn, I) =
π(θn|I)
p(|I) p(D| θnI), or

p(Hn|D, I) =
π(Hn|I)
p(D|I) p(D|Hn, I).

4. The Bayesian formalism then allows another step: Marginalizing over
or averaging over uninteresting (or “nuisance”) parameters, such as
an unknown background rate, unknown continuum flux, pulsar phase,
etc etc.

Hence, a statistic can fail to be the best in four ways. The first two are
perhaps the most common:

1. Wrong sampling statistic (e.g. χ2 or Gauss-Normal when the dis-
tribution is skewed, or multipeaked; using a periodogram or even
traditional wavelets for Poisson data; and so forth.

2. Not the best underlying model class (e.g. using a FT when one does
not have a single stationary sinusoid; or — as in our upcoming ex-
ample! — one expects arbitrarily sharp peaks).

3. More subtle: not the best use of prior information (of which as-
tronomers have lots). It is also is this structure that prescribes how
to successively make use of more complexity:

• imaging / PSF and background information in timing or energy
analysis;

• systematic uncertainty in detection process (deadtime/pile–up;
calibration uncertainties; etc);
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• previous but uncertain measurements from, say, non-simultane-
ous observations (e.g., non-contemporaneous radio ephemerides).

4. More subtle yet: not the best handling of “nuisance” parameters
(background rates, etc).; i.e how best to summarize information on
multidimensional models. This may be the most powerful piece of
Bayesian methods. It defines how to reduce the dimension of one’s
statistic to only the interesting parameters, while still retaining all
of the information about them contained in the data. By contrast,
finding the maximum likelihood or letting some parameters “float
free” while interesting ones are fixed may be more familiar and a
quicker approximation, but it will only work under special circum-
stances. These include relying on underlying Gaussian assumptions
about the probability–space, which may in fact be highly skewed or
even multiply-peaked; and may often be unexpectedly uncalibrated
(e.g. [9]).

BUT this also means: for many astrophysical problems, it can be obvious
how to write down a more correct statistic! This is part of the opportunity
that comes from astrophysicists having ignored basic statistics for so long.

2.1.4 Paper overview

In the next two sections, we work through a single problem (due to [55]).
We show the nuts,bolts and struts of building the best (likelihood) measure
for any problem. The problem is simple enough to be given as an under-
graduate excersise; yet has real potential as a new method (e.g. detection
of unknown pulsars at high energies). We work the examples backwards:
hardest example first (Bayes model selection) then more familiar param-
eter estimation. Finally, we briefly widen our perspective to place it into
context. We conclude with references to more complicated works, and some
challenges.

2.2 Bayes Model Selection: detecting 1D structure

Based on [55], we work through a simple but powerful example of a new
method for detecting structure in a signal: 1D, no instrumental response. It
illustrates both pitfalls and insights relevant for more complex treatments.
For example the process is (almost!) identical to that used for: finding struc-
ture in an energy spectrum (complex solar flare line spectra, [33]); structure
in spatial imaging data (PET images [34]; [36] new Chandra new work);
even higher dimension problems; or even non-periodic timing (detecting a
flare or burst on a variable background: [37].
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2.2.1 WHAT: CGRO sources and γ–ray pulsars

High energy pulsars

The extremely coherent periodic signal characterizing pulsars was first de-
tected in the radio. Since, pulsars have been detected at all wavelengths,
with periods ranging from ms to seconds. Pulsars are thought to be rapidly
rotating neutron stars (about the mass of the sun collapsed into ∼10 km)
with extreme magnetic fields (1012−1014 times that of Earth). These funnel
the radiation into a beam something like that of a rotating beacon from a
lighthouse. The grand sweep of the massive magnetic fields of the youngest
pulsars is thought to power not only the the population of highest energy
particles (cosmic rays) bathing out Galaxy, but also drive the generation of
the highest energy photons (γ-rays). At lower (optical or X–ray) energies
one sees rounded, roughly sinusoidal pulse profiles, or light–curves (bright-
ness as a function of time or phase) suggestive of a larger rounded hot
spot on the pulsar itself rotating in and out of the line of site [38]. At high
energies, these pulse–profiles can be very sharply peaked — more like the
edge of a tightly focused cone of emission swinging in and out of the line
of sight ([39, 40]; and references therein).

Previous detections

As yet only six have been detected in γ-rays, most by the Compton Gamma-
Ray Observatory (CGRO). They are usually detected first in radio ener-
gies (Crab; Vela; etc). However one of the brightest γ-ray sources in the
sky turned out to be a nearby pulsar (Geminga; [13, 14]) and has yet to
be found in radio. One strongly suspects that many of the unidentified
CGRO/EGRET sources are in fact similar γ–ray pulsar neighbors (e.g.
[9, 15]). But detecting them is difficult. In part this is due to the intrin-
sically low number of very high energy photons detected from celestial
sources: a decade’s worth of surveying the sky can result in only a few hun-
dred photons from one source. In part, could it be that previous carefully
crafted and studied pulsar–detecting algorithms aren’t optimal for the low
counts and sharp–edged pulse profiles at the highest energies?

Models for Detection of structure

Broadly, for the most sensitive detection, one wants a model that distills
the essential shape of the structure in the lowest number of parameters.
Of course the best would be a tightly–constrained physical theory (e.g.
in planet detection, modeling the Keplerian orbits; [45]). When that is not
practical, one uses the first few terms of flexible non–parametric multi–scale
models (Fourier components; wavelets; simple binning; etc).

Previous methods have been either Fourier transform–based (Z2
n; [2])

or binning–and–χ2–based (epoch–folding; [17]). In the Z2
n, one takes the

Fourier transform of the pulsar phases indicated by the photon arrival
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times. The sum of the squares of its components (e.g. Rayleigh statistic),
plus those of its n− 1 harmonics, are then tested against flatness using a χ2

distribution. One can show this is similar to assuming the pulsar light–curve
can be represented by an exponentiated Fourier transform (c.f. [48, 4, 6]
and references therein). This is reasonable at lower energies, where more
rounded pulse–profiles may better lend themselves to the standard Fourier
transform based methods (e.g. [38]). However at higher energies the pulse
profile is often expected to be sharply peaked (see [39]).

In classical epoch–folding, the data arrival times are folded on the known
or trial period, then binned into evenly spaced bins (weighted by exposure).
One tests against flatness in the resulting histogram via χ2 [17]. However
some difficulties remain: 1) How does one proceed when χ2 is not appropri-
ate (few counts per bin)? 2) How does one choose the bin size, balancing
fine detail (many small bins) versus good χ2 approximation (larger bins
for more counts/bin)? For a typical unidentified CGRO/EGRET source
the total counts can be low (a few hundred). Hence neither simple FFT or
epoch–folding/χ2 based methods are the best.

In a seminal “how–to” paper on Bayes in astrophysics, P. Gregory and
T. Loredo [18] derived a fully Poisson equivalent of epoch-folding — no
χ2 required. They also used the Bayesian technique of marginalizing (or
averaging, in parameter–probability–space) over unknown parameters to
address the question of the proper number of bins. Still, there is an implicit
penalty in using too many model parameters for detecting a feature. (See
[51] or [9] for the “Ockham’s Razor” that is built into Bayes odds ratios).
So if one could use the minimum number of parameters in one’s model,
yet still capture very sharp features, one could in theory do a better job of
detecting pulsars with very narrow peaks.

2.2.2 HOW: Sparse Bayes Blocks

Overview

For high–energy pulsars, one sees that previous methods may not have
been the best because either the model (Reason 1) or the sampling statistic
(Reason 2) were not the best. Hence, to derive a better statistical tool for
catching sharply–peaked pulsars, we shall use both the correct sampling
statistic (Poisson), and an improved model. With these we step through
the Bayes formalism: specify hypotheses; priors; and sampling statistic;
marginalize; and compare.

For our class of interesting hypotheses, we propose to use an extremely
simple model called “Sparse Bayes Blocks” [55]. It is a distillation of useful
points from epoch–folding ([18] and references therein) and the “Bayes
Blocks” changepoints approach [3]. Long used in other fields, changepoint
models assumes the process to be composed of relatively smooth segments
delineated by discontinuous jumps at the “changepoints”. These smooth
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segments can be constant (as in a histogram), exponential, or any smooth
function. The size of each segment (i.e. the width of each bin) is determined
by the data, rather than assumed to be evenly spaced. This allows a light–
curve with (say) one (or two) very narrow sharp peaks to be described by
only four (or eight) parameters: the positions of the two changepoints per
peak, and the expected average rate in each segment. This is in contrast
to standard epoch–folding binned models, which for our example would
require ∼ 103 bins to properly model a single sharp spike. The “sparseness”
comes from using the fewest possible model parameters. We are interested
in detecting our pulsars first; later we may characterize them with more
complex changepoint models [34],[3].

Simplest Interesting hypothesis H2: two changepoints

The model is piecewise constant, with three segments (0, 1, 2), delineated
by two changepoints (φ0, φ1). The rate at the end of the phase cycle (phase
= 1.) is required to match that at the beginning of the cycle (phase = 0.);
hence the rate of segment 2 is the same as that of segment 0. The model
rate µi above is r1 if that phase bin is between the two changepoints (i.e.
within the peak); and r02 (i.e. background) otherwise.

Simplest Null hypothesis H0: no changepoints

The model is a single constant segment, with model rate µT .

On Priors in Astrophysics, Part I

This is more subtle, and requires some thought. The problem can be ex-
pressed either as: we are looking for evidence of a new piece of structure, a
peak with unknown flux, on top of an existing background; or we already
know a source of approximately this flux exists, and want evidence that
some fraction of this total flux comes from a periodic peak. The first cor-
responds to looking for an extra component in a multi–component model
such as an emission line in an energy spectrum, or a new source in spatial
data. This is in general a hard problem; see [9]. The second is simpler and
corresponds to thinking of structure as fractional “shape parameters” (e.g.
[18]). We will illustrate both methods here.

First, we will work through the first, slightly more conservative assump-
tion: there may be one (or more) extra component(s) on top of a flat back-
ground. This leads to separate priors for the unknown rates in each segment.
If there were no previous measurements of any kind, at any wavelength, of
any similar types of objects; and also absolutely no theoretical predictions
(beyond that they cannot be larger than the maximum the instrument can
detect), one might choose priors based on invariance arguments. For rates
that both must be non–zero and for which one’s lack of prior knowledge is
unchanged, no matter in what units it is expressed (scale invariance) one
can use a log–prior; for rates that can be zero or negative one might use a
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constant prior (See [4] for examples and references). However this is astro-
physics; there is almost always some kind of previous information —- even
if it is only a measurement or prediction of an average rate. In this case,
following [22], we can use an exponential prior on the average rate. It is a
flexible, physical, conjugate prior. With low scale parameter it resembles
the log–prior, and with high average rates it resembles the constant prior.
Ed Jaynes [54] pointed out this was the Maximum Entropy prior when one
knows only a scale for the average rate before the measurement. Also, [37]
found that it worked well for catching bursts. It is informative, yet does
not strongly bias the outcome.

Therefore, for the average rates r1, r02 on each segment n, the prior π is

π(rn | I)drn = e(−βnrn)βndrn

with scale β given by the inverse of the average from prior measurements.
For the changepoints {φn}, we used a prior π that is constant in phase

(that is, one that is invariant with respect to translations in phase):

π(φn | I)dφn = dφn.

Data and sampling statistic

The data are intrinsically Poisson: lists of times (plus energies, positions,
data quality indicators) measured by the instrument as photons (or back-
ground particles) arrive from a distant source. For pulsar (i.e. period)
searches, these arrival times are corrected for the (varying) travel times
between the pulsar and moving instrument (Bari-center corrections [2],
then folded on the (known or trial) period. The data are then in a the form
of a (Poisson–distributed) list of photon (BVC-corrected) arrival times and
associated phases (plus energies, positions, etc..) These X-ray or γ−ray
photons can arrive with mean spacings of seconds to weeks — i.e. many
pulsar revolutions between each detection. Hence high precision is neces-
sary for the calculations. Sometimes these events are binned onboard the
satellite (along with the associated livetime per bin) before being sent to
ground for processing.

If µi is the average rate on the instrument during phase bin i, δti its
livetime, and yi the number of counts measured, then the sampling statistic
is:

p(yi | µiδti) = e(−µiδti)
(µiδti)yi

yI !
.

(This assumes the data are binned counts, but in the limit of very small
bins it takes the usual Poisson Point Process form.)

Turn the crank: Apply Bayes Theorem to get Posterior

With the model and priors specified, we write down their product (divided
by a normalization term) to form the posterior probability. Let Y02 be
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counts in the background piece, with total livetime T02; Y1 be counts in
the peak, with total livetime T1; and YTOT be the total counts in the
observation, with total livetime TTOT . Then, with the (conservative) choice
of the scale factor β being the same for both, the posterior can be written:

p(r1, r02, φ0, φ1 | {yi}, I,H2)dφ0dφ1dr02dr1 =

dφ0dφ1 × βdr02e−(β+T02)r02(r02)Y02 × βdr1e−(β+T1)r1(r1)Y1

×
NTOT∏
i = 0

(δti)
yi

yi!
/p({yj} | I).

After analytically integrating over the rates r02, r1 one obtains the marginal-
ized posterior for the changepoints φ0, φ1:

λ2(φ0, φ1 | H2, I, {yi})dφ0dφ1 = β2 Γ[Y02 + 1]

(β + T02)
(Y02+1)

Γ[Y1 + 1]

(β + T1)
(Y1+1)

×dφ0dφ1 ×
NTOT∏
k = 1

((δtk)yk

yk!

)
/
(
p({yk} | I)

)
.

Null hypothesis, H0

The model is simply one constant segment, with no changepoints. From
above, one can see the marginalized posterior will have the form:

λ0 = β
Γ[YTOT + 1]

(β + TTOT )(YT OT +1)
×

NTOT∏
k = 1

( (δtk)yk

yk!

)
/
(
p({yk} | I)

)
.

Likelihood Ratios

Finally, the payoff: to find the Bayes likelihood ratio as a function of change-
points (φ0, φ1), one divides the likelihood of null hypothesis H0 into that
of the interesting hypothesis H2:

Λ2(φ0, φ1 | H2,H0, I, {yi})dφ0dφ1 = dφ0dφ1

β
Γ[Y1 + 1]Γ[Y02 + 1]

Γ[YTOT + 1]
(β + TTOT )(YT OT +1)

(β + T1)
(Y1+1)(β + T02)

(Y02+1)
.

This maps out the most probable changepoints. To find global (or total)
odds O, or Bayes factor, ofH2 (one peak, two changepoints) versusH0 (flat,
no changepoints) we marginalize (i.e. numerically integrate) the expression
above over all changepoints (φ0, φ1):

O({yi}) | H2,H0, I) =
∫

dφ1dφ2Λ2(φ0, φ1 | H2,H0, I, {yi}).

More complicated models are similar in form: for example, one exponen-
tial piece for the peak versus one constant piece (only background) looks
similar, save for an extra term due to marginalizing over the exponential
slope.
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2.2.3 On Priors in Astrophysics, Part II

Notice the result above has a dependence on the prior parameter β. Al-
though its effect on the likelihoods for the positions of the changepoints
is almost negligible, it has a stronger effect on the Bayes evidence, (i.e.
global odds ratio) comparing the null and interesting hypotheses. This is
not the case when the problem can be formulated as a question of unknown
fractional shapes rather than an unknown extra component: i.e. one knows
that a source exists and tests the hypothesis that it is a pulsar, rather than
testing for the existence of a source at the same time.

Rephrasing the interesting hypothesis H2:

Let the total rate be rT . The fraction of the total counts in the peak is f1,
while the fraction outside the peak is f02, with constraint f1 + f02 = 1.
The expected number of counts in each time (or phase) bin δti is then:

ri = rTTTOT δti
(
f1/T1

)
, for φi ∈ (φ0, φ1];

ri = rTTTOT δti
(
f02/T02

)
otherwise.

As before T1 and T02 represent the livetimes accumulated in the peak and
background sections, respectively.

Rephrasing the priors

The prior on the total rate has the same form as before:

π(rT | I)drT = e(−βT rT )βT drT .

However the prior on the fractional rates is new. It is uniform on [0, 1] with
the constraint that both sum to unity:

π(f1 | I)df1 = df1, π(f1 | I)df1 = df1; with constraint f1 +f02 = 1.

Alternate posteriors

With these changes, the posterior for the interesting hypotheses becomes:

p(rT , f1, f02, φ0, φ1 | {yi}, I,H2)dφ0dφ1drT df1df02 = dφ0dφ1×

βdrT e−(β+TT OT )rT OT (rTOTTTOT )YT OT×

df02
( f02
T02

)Y02 × df1
( f1
T1

)Y1 × δ(f1 + f02 − 1)

×
NTOT∏
i = 0

(δti)
yi

yi!
/p({yj} | I).

The marginalized posterior becomes:

λ2(φ0, φ1 | H2, I, {yi})dφ0dφ1 = dφ0dφ1×
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Preliminary Monte Carlo Results from Connors and Carramiñana 2001
Monte Carlo CLASSIC — Z2

6 BAYES — “Sparse BB” GL92
− log10 log10 log10 log10 log10

Model Cts n=6 Prob πscale O2,E O2,GL O3,GL Odds

spike 134 393.7 76.1 140. 96.6 174. 171. 32.1
spike 74 195.8 34.6 70. 41.2 93.1 91.7 14.2
spike 32 102.4 15.7 35. 12.9 39.7 38.6 6.53
spike 13 32.3 2.91 10. 0.44 9.19 8.5 0.65
Vela 561 467.5 91.8 500. 52.4 52.2 70.0 77.6
Vela 277 279.3 52.0 300. 29.1 28.9 41.1 44.3
Vela 138 165.5 28.4 140. 16.2 16.1 26.6 23.0
Vela 72 73.8 10.21 70. 5.65 5.42 7.4 7.40
flat 538 14.9 0.61 500. -0.431 -0.91 -0.06 -1.92
flat 258 13.4 0.47 300. -0.453 -0.91 -0.3 -1.79
flat 136 9.4 0.17 140. -0.445 -0.89 -0.5 -1.78
flat 71 10.1 0.22 70. -0.0046 -0.40 0.04 -0.95

TABLE 2.1. Note: ”CLASSIC” is classical probability (frequency of occurrence)
of the null hypothesis, rather than a ratio of the probabilities of the null and
interesting hypotheses, as are the others. ‘E’ in O2,E stands for our first choice of
parametrization, with an exponential prior on each separate segment. ‘GL’ stands
for the second parametrization, similar to that from GL92. The number tells the
number of changepoints used in the model (two or three). GL92 Calculations
provided by P. Freeman, private communication; calculated for up to m = 12
bins. ”Vela” means CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as
“template” for source shape.

β
Γ[YTOT + 1]

(β + TTOT )(YT OT +1)

TTOT
YT OT

T1
Y1T02

Y02

Γ[Y1 + 1]Γ[Y02 + 1]
Γ[YTOT + 2]

×
NTOT∏
k = 1

( (δtk)yk

yk!

)
/
(
p({yk} | I)

)
.

The marginalized posterior for the null hypothesis remains the same —
the first four terms from above, plus the last normalization term. The final
likelihood ratio for the changepoints then becomes:

Λ2(φ0, φ1 | H2, I, {yi}) =
TTOT

YTOT

T1
Y1T02

Y02

Γ[Y1 + 1]Γ[Y02 + 1]
Γ[YTOT + 2]

.

Notice any dependence on the scale parameter β for the prior on the flux has
cancelled out. Notice, too, how similar this is to the form in [18] (henceforth
GL92), save that the bins can now have arbitrary width and placement.

One can derive the equivalent marginalized likelihood ratio for three
changepoints (and higher; see [55]):

Λ3(φ0, φ1 | H3, I, {yi}) =
TTOT

YTOT

T1
Y1T2

Y2T03
Y03

Γ[Y1 + 1]Γ[Y2 + 1]Γ[Y03 + 1]
Γ[YTOT + 3]

.
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2.2.4 Comparison Tests

In table 1, we list some of the results of Monte Carlo tests from [55]. They
simulated three kinds of data: 1) flat background; 2) a Vela pulsar–shaped
light–curve, with CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as
a template; and 3) a spike in a single 5× 10−4 wide bin. Each of these was
analyzed with three methods: 1) the current high energy standard, Z2

n with
n = 6; 2) The Bayesian epoch—folding method of GL92; and 3) our new
statistic based on two or three “Bayes Blocks”. We note that the GL92
method would have performed better had we used a much larger cutoff for
number of bins, rather than stopping at the default number m = 12.

The preliminary test of the concept is very encouraging. Notice that both
“One BB’ methods outperformed the classical method on the “single spike”
pulse–profiles. Note further that parametrizing the model with an overall
rate and shape parameters improved the logOdds throughout.

2.3 Bayes for Parameter Estimation

Both [56] and [18] give excellent tutorials in Bayesian parameter estima-
tion. For astrophysicists, “parameter estimation” means either “confidence
intervals” (the % of data that would fall within contours of constant
∆ log(maximum likelihood); [4], [5]); or “credible regions” (the % volume
of parameter space contained in contours of constant
∆ log(marginal likelihood); [18]). (Occasionally, an astrophysicist might
use something simpler such as adding error bars in quadrature, but seldom
for serious problems.)

Bayesian parameter estimation looks much the same as its classical coun-
terpart, but with predictable differences. First, one uses the posterior rather
than the sampling distribution. Second, one marginalizes over uninterest-
ing parameters, and to reduce the dimension of the interesting likelihood
statistic (rather than taking the maximum). Third, one does not use look–
up tables (c.f. [31, 4]). Instead one steps through a grid of the parameters
of interest, directly calculating the appropriate ∆ log(likelihood) for each
% volume of probability space (e.g. 67.23%,95.45%,99.73%, etc).

BENEFITS

1. No problems dealing with multiple peaks, skewed distributions, or
any other non–Gauss–Normal case (no CLT required).

2. Nice summary of highly dimensional models.

3. One can explicitly see the effect of each part (priors, model parame-
ters, model choice) on the final outcome.
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FIGURE 2.1. Parameter limits on the unknown rotation period: Credible regions
delineating 95.45% and 99.73% (equivalent to 2 and 3 σ) of the volume of posterior
probability space.

COSTS

1. Especially when the integrals (marginalization) cannot be done ana-
lytically, it can cost one significant computation time.

2. Although Bayesian parameter estimation is simpler than Bayesian
model comparison, as results do not depend as strongly on the choice
of prior, for weak data constraints it can still be important.

With this in mind, let us work through our brief example. Suppose one
of the parameters that we have assumed to be fixed, in the previous exam-
ple, is in fact unknown. This might be the true source position; the pulsar
rotation frequency (and its derivatives); or any other physical quantity —-
the formalism remains the same. (This also lets us demonstrate the mod-
ular ‘hierarchical form’ one might use for taking into account instrumental
uncertainties; e.g. [5, 6] demonstrate including imaging information.)

Here, we will work through the example of the unknown rotation fre-
quency. As our test data–set, we will use a Monte Carlo one based on the
EGRET > 5GeV histogram of [39]. We assume a rotation period of 1.00
cycles/sec; and period derivative of zero. The simulated observation lasts
for 2 days — enough to accumulate 72 photons.

First, we will form the marginalized posterior likelihood as a function of
the pulsar rotation frequency ν, via the procedure we have done before.
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Prior

Following [18] and [56], we assign a log prior on the unknown frequency:

π(ν | I) = κ
dν
ν
, with κ = 1/ log[

νMAX

νMIN
].

The limits can come either from non-simultaneous radio ephemerides, from
the minimum and maximum imposed by the data sampling; or from the
grand minimum and maximum seen from all observations of similar pulsars.

Marginalized posterior odds.

But from the preceding section, we can already write down the marginalized
posterior likelihood O, given a rotation frequency. Hence the posterior for
the frequency looks like:

Λ(ν | H2, {yi}, I)dν = κ
dν
ν
×O({yi}) | H2,H0, I).

Notice for Bayesian methods it is the range of the trial frequencies and
derivatives that are important; not the total number of trials. Also, this is
usually multi–peaked. Hence, even once one has found the mode (largest
peak), using χ2 tables to tell one what drop in log–likelihood corresponds
to 67.43%, 95.45%, or 99.73% (i.e. 1, 2, and 3σ) will not work. But with
Bayesian inference, we can simply step through a grid of ν values to directly
calculate the drop in log-likelihood that encloses each volume of probability
(see [4, 18, 56]). We show a figure of the log–likelihood vs ν. and delineate
the Credible Regions containing 95.45%, and 99.73% of the total volume
posterior probability.

2.4 Conclusion: Challenges Subtle and Grand

There are many simple, low–dimension problems, of great importance yet
basic enough to give a student, left to be done. (Typically The worst prob-
lem for the student will be data I/O.) For more ambitious, higher dimen-
sional problems one will need more sophisticated computer techniques (such
as the kind of modular EM/DA/MCMC presented here [57]). Familiarity
with Bayesian fundamentals and computation details can also give one a
fresh perspective on frequentist methods (even bootstrapping! [33]). And,
finally, your work, as you collaborate further with experts in statistics,
may open up ways of looking at the data that most of us cannot begin to
visualize yet.
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Commentary by Eric D. Kolaczyk2

The problem selected here by Dr. Connors, that of detecting the presence
of changepoints in Poisson time series data, is somehow both simple and
rich . . . at the same time . . . and thus a wonderful “tutorial” problem.
And the fact that solutions to this problem have the potential for real
scientific impact makes it even more interesting. Reference was made in
the paper to a number of ways in which the basic principles and techniques
outlined may be extended to deal with structures more complex than those
addressed therein. I would like to describe one such extension – multiscale
changepoint detections – and in particular show how it in fact derives from
the same principles and techniques. In doing so, I also expand upon the
summary presented in [1].

Basic Modeling Framework

Implicit in the formulation of Connors is the presence of binned photon
counts. A total of NTOT bins on the unit interval [0, 1] are assumed. With
this condition, one cannot hope to have the data indicate the location of
possible changepoints φ beyond the resolution of these bins. So we introduce
the notion of a model with two parts: (1) a hypothesis Hi that there are
i changepoints, for i = 0, 1, . . . , NTOT − 1, and (2) a set of changepoint
locations φ(i) = (φ1, . . . , φi), restricted to some subset of the bin endpoints.
Our models are thus of the formMi = (Hi, φ

(i)).
Now suppose that one wishes to find simultaneously the most likely num-

ber of changepoints and their location. This then, in the Bayesian paradigm,
becomes a question of maximizing the quantity p(Mi|y) over all models
Mi, where y = (y1, . . . , yNTOT ) are the observed (binned) counts. The
Bayes factor (BF) is often used as a device for comparison of models, and
is defined as the ratio of the posterior to the prior odds. For example, the
Bayes factor for comparingM1 = (H1, φ1) and M0 = H0 is

BF =
p(M1|y) / p(M0|y)
p(M1) / p(M0)

=
p(y|M1)
p(y|M0)

=
p(y|φ1,H1)
p(y|H0)

.

2Department of Statistics, Boston University



2. Bayesian Inference for Astrophysics 37

Note that the last expression above shows that the Bayes factor here is
essentially the statistic Λ2(·|·) in section 2.2 of Connors i.e., without hav-
ing marginalized over the location of the changepoint. [Note too that, for
simplicity, I have adopted a non-periodic model here.]

Re-Parameterizing the Model

Let’s consider our comparison of M1 and M0 in more detail. Suppose
that M1 is true i.e., there is a single changepoint and it is located at φ1.
This leaves the data parameterized simply by two means, say, µL and µR.
And the statistics containing all relevant information in the data for these
two parameters (technically, the sufficient statistics) are simply yL and yR,
say, corresponding to the total counts in the bins to the left and right of
φ1, respectively. Similarly, in the case that M0 instead is true, the data
are parameterized by a single mean µTOT = µL + µR and the sufficient
statistic is just yTOT = yL + yR. Hence our Bayes factor actually has the
form

BF =
p(yL, yR|M1)
p(yTOT |M0)

.

But now consider that the pair (yTOT , yL) clearly contains the same
information as (yL, yR) in model M1 and write the Bayes factor as

BF =
p(yTOT |M1)
p(yTOT |M0)

p(yL|yTOT ,M1) . (2.1)

Writing with respect to our original parameterization (µL, µR), the term
in the numerator of this expression is

p(yTOT |M1) =
∫
p(yTOT |µL, µR,M1) p(µL, µR|M1)dµLdµR .

But p(yTOT |µL, µR,M1) is just the probability mass function of a Pois-
son random variable with mean µTOT i.e., it depends on µL and µR only
through their sum. And certainly the term p(yTOT |M0) in the denomi-
nator of equation (2.1) similarly only depends on µTOT . So if we choose
prior distributions p(µTOT |M1) = p(µTOT |M0) i.e., reflecting a belief that
the total expected counts in the data is unaffected by whether there is a
changepoint or not, then we obtain that p(yTOT |M1) = p(yTOT |M0) and
the Bayes factor becomes

BF = p(yL|yTOT ,M1) .

Finally, writing

p(yL|yTOT ,M1) =
∫
p(yL|µL, µR, yTOT ,M1)p(µL, µL|YTOT ,M1)dµLdµR ,
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and noting that the first probability in the integral above is the probability
mass function of a binomial random variable with parameters yTOT and
f = µL/µTOT , we see that

BF =
∫
p(yL|f, YTOT ,M1)p(f |YTOT ,M1)df .

Which is just to say that our goal of testing for a changepoint at a given
location φ1 reduces to a comparison of two Poisson means, which in turn
reduces to a statistic based on the binomial distribution (which also is the
case, say, in the frequentist-based Neyman-Pearson theory for this reduced
problem).

Comparing the above then to section 2.3 of Connors, we see (1) that the
re-parameterization (µTOT , f) is a very natural one to make, and (2) why
the parameter β in the exponential prior drops out of the statistic Λ2(·|·).
In fact, the prior on µTOT as a whole, whatever it is, will drop out of this
Bayes factor, as long as it chosen to be the same under bothM1 andM0.

Extending the Basic Model

The principles above may be applied in a recursive manner to deal with
multiple changepoint models as well i.e., modelsMi with 2 ≤ i ≤ NTOT−1.
Take the case of two changepoints, withM2 = (H2, (φ1, φ2)). There will be
three intervals of interest, and hence three mean parameters (µL, µC , µR)
and three summary statistics (yL, yC , yR) of relevance. Now, without loss
of generality, we can (exploiting the independence inherent in Poisson sam-
pling) consider just the first two sub-intervals as a sub-problem of our full
problem, and note that it is simply the single changepoint problem from
above. In following our strategy of re-parameterization, we are led to the
alternate statistics (yL,C , yL) in place of (yL, yC), where yL,C = yL + yC .
Then treat the sub-intervals underlying yL,C and yR as a pair and again
apply our results from the single changepoint problem.

Although the above argument is heuristic, one can show formally that,
for example, in comparingM2 toM0 we are led a Bayes factor of

BF2,0 =
p(yTOT |M2) p(yL,C |yTOT ,M2) p(yL|yL,C ,M2)

p(yTOT |M0)
= p(yL,C |yTOT ,M2) p(yL|yL,C ,M2) ,

or in comparingM2 to M1 = (H1, φ2) we get

BF2,1 =
p(yTOT |M2) p(yL,C |yTOT ,M2) p(yL|yL,C ,M2)

p(yTOT |M1) p(yL,C |yTOT ,M1)
= p(yL|yL,C ,M2) .

In both cases we exploit the assumption that priors are chosen for µTOT

and the parameters f (of which there are now two) so as to be independent
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of the underlying M, as in the single changepoint example above. For
example, a natural family to use here is the family of beta distributions
with density function

p(f |γ1, γ2) =
Γ(γ1 + γ2)
Γ(γ1)Γ(γ2)

fγ1−1 (1− f)γ2−1

and positive parameters (γ1, γ2). Included in this family is the special case
γ1 = γ2 = 1, which corresponds to the uniform distribution on [0, 1], which
is the prior used in section 2.3 of Connors.

Multiscale Changepoint Detection

The above arguments generalize to an arbitrary number of changepoints
and it is not hard to see that a comparison of any two nested models
involves a Bayes factor that is a product of conditional probabilities across
various scales or resolutions of aggregations. For non-nested models one
obtains a ratio of such products.

Kolaczyk and Nowak have studied probability models with this sort of
multiscale structure in some detail. Formal links between them and wavelet-
based methods can be made, including an analogue of multiresolution anal-
ysis (MRA) and various efficient computational algorithms for estimation
and testing. See [1] and the references therein.

Here in the present context, in searching for an optimal number of
changepoints and their locations, the product structure of the Bayes factors
and a strong degree of redundancy among candidate intervals over all pos-
sible changepoint locations allows (somewhat surprisingly!) for the search
over all possible models to be solved exactly using a dynamic programming
algorithm of complexity O(N3

TOT ). An example of results from applying
this technique to gamma-ray burst data can be found in [1]. Interestingly,
the same approach also can be derived from the perspective of minimum
description length (MDL).

References
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Hierarchical Models, Data
Augmentation, and Markov
Chain Monte Carlo

David A. van Dyk1

ABSTRACT The ever increasing power and sophistication of today’s high
energy astronomical instruments is opening a new realm of high quality
data that is quickly pushing beyond the capabilities of the “classical” data-
analysis methods in common use. In this chapter we discuss the use of highly
structured models that not only incorporate the scientific model (e.g., for a
source spectrum) but also account for stochastic components of data collec-
tion and the instrument (e.g., background contamination and pile up). Such
hierarchical models when used in conjunction with Bayesian or likelihood
statistical methods offer a systematic solution to many challenging data an-
alytic problems (e.g., low count rates and pile up). Hierarchical models are
becoming increasingly popular in physical and other scientific disciplines
largely because of the recent development of sophisticated methods for sta-
tistical computation. Thus, we discuss such methods as the EM algorithm,
data augmentation, and Markov chain Monte Carlo in the context of high
energy high resolution low count data.
This paper is followed by a commentary by astronomer Michael Strauss.

3.1 Introduction

Today’s highly sophisticated astronomical instruments offer a new window
into the complexities of the visible and invisible universe. As the state of
instrumentation evolves to produce ever finer resolution in spectral, spa-
tial, and temporal data ever more sophisticated statistical techniques are
required to properly handle this data. For example, standard off-the-shelf
methods such as χ2 fitting and background subtraction are ill-equipped
to handle the high resolution low count per bin data available from such
instruments as the Chandra X-ray Observatory. See Siemiginowska et al.
(1997) and van Dyk et al. (2001) for a general discussion of such issues. The
Gaussian assumptions implicit in such methods are not justified with low
counts and the resulting fits and error bars are therefore unreliable. Testing

1Department of Statistics, Harvard University
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for model features such as spectral lines or a source above background is
always a challenging task and standard methods such as the F-test, likeli-
hood ratio test, and Cash statistic though commonly used in practice are
inappropriate (Protassov et al. 2002). An even greater challenge is properly
accounting for pile-up in X-ray detectors, a task that confounds standard
techniques and thus demands more sophisticated statistical methods.

In this chapter, we outline a paradigm for data analysis that we believe
is robust enough to systematically handle these and many other statistical
challenges presented by modern astronomical instruments. It is important
conceptually to break any data analysis scheme into (at least) three com-
ponents, all of which are critical and must be done thoughtfully to ensure
sound inference. These components are model building, statistical inference,
and statistical computation.

The importance of careful model building is evident in the complexity
and subtlety of the physical mechanisms giving rise to the observed data
of modern instrumentation. The instrument response blurs the energy and
sky coordinates of photons, counts are contaminated with background, the
effective area of the instrument and the propensity of photons to be ab-
sorbed vary with energy, pile-up masks the energy and count of incoming
photons, source spectral models are complex and may include emission and
absorption features as well as a continuum. A statistical model should aim
to describe all such components of data generation. Thus, by a model we
mean much more than a parametric description of how the mean source
flux varies with energy and/or sky coordinates. Models that include sta-
tistical descriptions of the processes that degrade the data can guide us
in accounting for these degradations and eliminate the need for ad-hoc
corrections, e.g., for pile-up and background. Because of the complexity
of these models, we organize them into a hierarchical structure, which is
formulated in terms of various unobserved quantities (e.g., counts without
background contamination). Such unobserved quantities are often called
augmented data and play an important role in the computational methods
we suggest.

Once a model is formulated, statistical inference involves drawing infer-
ences (e.g., point estimates and error bars) regarding unobserved quantities
such as the model parameters describing the flux of the source. Important
model-based modes of statistical inference include maximum likelihood and
Bayesian inference. With large samples the asymptotic Gaussian behavior
of the maximum likelihood estimate can be the basis for sound frequen-
tist inference. Nevertheless, we generally take a Bayesian perspective for a
number of practical reasons such as a ready mechanism for combining infor-
mation from multiple sources, mathematical justification in small samples,
and an obvious framework for handling nuisance parameters. Despite the
placement of this chapter in a Bayesian section, we say very little about
the relative merit of Bayesian and frequentist methods; our emphasis is on
model building and statistical computation. Because of the aforementioned
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practical advantages of Bayesian methods, they are often the only tractable
methods available for fitting complex models—which is motivation enough
for many practical minded statisticians to “be Bayesian.” Here we give only
enough details of Bayesian and likelihood methods to motivate the compu-
tational tools, giving somewhat more emphasis to Bayesian methods. For
further reading on Bayesian methods, we recommend one of the several
high-quality recent texts on the subject such as Gelman et al. (1995), Car-
lin & Louis (1996) and Gilks et al. (1996), as well as other chapters in this
volume including those by Connors, Loredo & Chernoff, and Berger et al..

Because of the highly-structured nature of the statistical models that we
propose, sophisticated computational methods (e.g., the EM algorithm, the
data augmentation algorithm, and Markov chain Monte Carlo) are often re-
quired. The methods we suggest are designed to be computationally stable
and generally easy to implement. The details of the algorithm often fol-
low directly from the hierarchical model specification via simple statistical
calculations.

The remainder of this chapter is organized into five sections. In Sec-
tion 3.2 we introduce a simple example, accounting for background con-
tamination of counts. We use this example to motivate hierarchical mod-
eling and the method of data augmentation, which are in turn generalized
and more fully developed in Section 3.3. The computational methods are
introduced and illustrated using the motivating example of background
contamination in Section 3.4. In Section 3.5 we outline how these methods
can be used to tackle the difficult problem of photon pile-up. Concluding
remarks regarding the direction of modern statistical analysis appear in
Section 3.6.

3.2 A Motivating Example

In this section we introduce a simple example that is used throughout the
chapter to motivate ideas and methods. The example is simple so as not to
distract attention from the statistical methods. As illustrated in Section 3.5,
however, hierarchical models, data augmentation, and MCMC can tackle
much more complicated problems.

Suppose we have observed counts, Y , contaminated with background in a
(source) exposure and have observed a second exposure of pure background
resulting in counts, Z. Throughout we assume the source exposure is τS
seconds and the pure background exposure is τB seconds with both expo-
sures using the same area of the detector. To model the source exposure,
we assume Y follows a Poisson distribution2 with intensity λB +λS, where

2Recall Y
d∼ Poisson (λ) (read as Y is distributed as Poisson with intensity λ) in-

dicates that Y follows the Poisson distribution with intensity and expectation λ, i.e.,
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λB and λS represent the expected counts during the source exposure due
to background and source respectively. Thus, the distribution function for
Y given λB and λS is

p(Y |λB , λS) = e−(λB+λS)(λB + λS)Y
/
Y ! for Y = 0, 1, 2, . . . . (3.1)

We wish to estimate λS and treat λB as a nuisance parameter, a parameter
that is of little interest, but must be included in the model. The expected
counts during the background exposure are assumed to be the same as in
the source exposure, but corrected for the exposure time, λBτB/τS . I.e.,

p(Z|λB, λS) = e−(λBτB/τS)(λBτB/τS)Z
/
Z! for Z = 0, 1, 2, . . . . (3.2)

Maximum likelihood estimation involves estimating λB and λS by the
values the maximize the likelihood function, i.e., the product of Equa-
tions 3.1 and 3.2. Under certain regularity conditions (e.g., λB, λS > 0),
maximum likelihood estimates asymptotically follow a Gaussian distribu-
tion. This result leads to confidence intervals and error bars with (asymp-
totic) frequentist properties.

Bayesian inference is based on the posterior distribution,

p(λS , λSB|Y, Z) ∝ p(Y |λB , λS)p(Z|λB , λS)p(λB , λS), (3.3)

where p(λB , λS) is the prior distribution which quantifies information re-
garding the values of the λS and λB available prior to observing the data.
The posterior distribution combines such prior information with the infor-
mation in the observed counts. The posterior distribution is a complete
summary of our information, but if it is similar to Gaussian in shape, it
is often summarized by its mean vector and variance matrix that can be
used as point estimates and to compute error bars. The posterior distri-
bution can also be used to compute a ζ-level credible region, R, such that∫

R p(λS , λB|Y, Z)dλSdλB = ζ. Such probability statements should be re-
garded as summaries of the available information for the model parameters,
in contrast to the frequentist interpretation of a confidence interval.

Implicitly, the counts from the source exposure, Y , are made up of two
components, Y = YS + YB, where YS are counts from the source exposure
due to the source and YB are the counts due to background. Since neither
YS nor YB are observed, we call these counts missing data. We note that
if YS and YB had been observed, our statistical analysis would be greatly
simplified since we could confine attention to YS

d∼ Poisson(λS). Of course,
it is impossible to observe YS and YB. Nonetheless, this “thought experi-
ment” offers insight into computational methods that are useful both for
Bayesian and likelihood-based inference. In particular, the method of data
augmentation is an elegant computational construct allowing us to take

p(Y = y) = e−λyλ/y!.
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advantage of the fact that if it were possible to collect additional data,
statistical analysis could be greatly simplified. This is true regardless of
why the so-called “missing-data” are not observed. There is a large class of
powerful statistical methods designed for “missing-data” problems. These
methods have broad application in astrophysics (and in the physical sci-
ences generally) once we note that quantities observed with measurement
error can be regarded as “missing-data”.

To illustrate the method of data augmentation, we begin by reformulat-
ing our model in terms of YS and YB . In particular, consider the multi-level
or hierarchical model

LEVEL 1: Y |YB , λS
d∼ Poisson(λS) + YB,

LEVEL 2: YB|λB
d∼ Poisson(λB) and Z|λB

d∼ Poisson(λBτB/τS),

LEVEL 3 (optional): specify a prior distribution for λB and λS .

Notice that in each level of the model, we specify the distribution of ran-
dom quantities conditioning on unobserved quantities whose distribution is
specified in lower levels of the model. For example, in LEVEL 1, we condition
on YB , the distribution of which is specified in LEVEL 2. The power of such
a hierarchical model is that it separates a complex model into a number of
easy to handle smaller parts.

If YS and YB were observed, LEVEL 1 specifies the form of the likelihood
for λS , i.e.,

L(λS |YS) = e−λSλYS

S , (3.4)

and LEVEL 2 specified the form of the likelihood for λB, i.e.,

L(λB|YB , Z) = e−λBkλYB+Z
B , (3.5)

where k = (τS + τB)/τS . Notice that Equations 3.1 and 3.2 are relatively
complex functions of λS and λB and are harder to, for example, maximize
than are Equations 3.4 and 3.5.

It is also easy to estimate the “missing data” in this hierarchical model.
In particular, if λB and λS were known, the conditional distribution of YB

given Y can be computed using Bayes Theorem,

p(YB|Y, λS , λB) =
p(Y |YB, λS , λB) p(YB|λS , λB)

p(Y |λS , λB)
(3.6)

=
(
Y

YB

)(
λB

λS + λB

)YB
(

λS

λS + λB

)Y −YB

. (3.7)

That is,
YB|Y, λS , λB

d∼ Binomial3 [Y, λB/(λS + λB)] . (3.8)

3Recall Y
d∼ Binomial(n, P ) indicates that Y follows a binomial distribution with n
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Thus, given the model parameters, we can predict the “missing data”
(e.g., by its conditional expectation with error bars based on its conditional
standard deviation). Likewise, given the “missing data” we can estimate the
model parameters (e.g., using maximum likelihood or a Bayesian estimate).
This leads to an iterative strategy that updates the “missing data” given
the model parameters and then the model parameters given the “missing
data.” Such computational methods include the EM algorithm and the
Data Augmentation (DA) algorithm and are referred to generally as the
method of data augmentation.

In the next two sections we abstract and generalize the important fea-
tures of this example to construct robust tools for analysis of the high res-
olution high quality data available with today’s sophisticated instruments.
In Section 3.4 we show how data augmentation can be used to compute
maximum likelihood estimates, Bayesian posterior modes and means, as
well as error bars. Generally these methods involve maximizing, simulat-
ing, and computing expectations of standard distribution functions. Such
simple distributions often arise naturally from a hierarchical model ex-
pressed in terms of the “missing data,” e.g., Equations 3.4, 3.5, and 3.8.
Details of the computation stability as well as examples which illustrate
the computational simplicity appear in the following sections.

3.3 Data Augmentation and Hierarchical Models

The term “data augmentation” originated with computational methods de-
signed to handle missing data, but as illustrated in Section 3.2, the method
is really quite general and often useful when there is no missing data per
se. In particular, for Monte Carlo integration in Bayesian data analysis we
aim to obtain a sample from the posterior distribution, p(θ|Y). In some
cases, we can augment the model to p(θ,X|Y), where X may be missing
data or any other unobserved quantity (e.g., counts due to background).
With judicious choice of X, it may be much easier to obtain a sample from
p(θ,X|Y) than directly from p(θ|Y). Once we have a sample from p(θ,X|Y),
we simply discard the sample of X to obtain a sample from p(θ|Y). The
notation here is more general, but the idea is exactly that of Section 3.2;
we use statistical insight to construct p(θ,X|Y) so that both p(θ|X,Y) and
p(X|θ,Y) are simple or at least standard distributions.

Absorption Lines. Absorption can be accounted for by supposing the
expected counts in energy bin i are Fiπi, where Fi would be the expected
counts if there were no absorption and πi is the expected proportion of

independent trials each with probability p, i.e., Pr(Y = y) =
(

n
y

)
py(1 − p)n−y . As an

example, Y may be the random number of heads in n independent flips of a (possibly
unfair) coin that has probability p of coming up heads on each flip.
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counts in energy bin i that are not absorbed. (We might, for example,
parameterize Fi as a power law.) In particular, we might model the counts
in energy bin i as Yi

d∼ Poisson (Fiπi). To formulate this model using
data augmentation, we let Y +

i be the unobserved counts that the detector
would have detected if no photons were absorbed. We can then formulate
the hierarchical model,

LEVEL 1: Yi|Y +
i ,Fi, πi

d∼ Binomial (Y +
i , πi),

LEVEL 2: Y +
i |Fi

d∼ Poisson (Fi),

LEVEL 3 (optional): specify prior distributions for Fi and πi.

Again, the power of the data augmentation is the ability to partition the
model complexity into simpler pieces, in this case a binomial absorption
model and a Poisson spectral model with no absorption.

Many standard absorption models (including absorption lines) and con-
tinuum spectral models (e.g., power laws and bremsstrahlung emission)
can be formulated using simple transformations of πi and Fi that are lin-
ear functions of energy. In this case, given the “missing” absorbed photon
counts both LEVEL 1 and LEVEL 2 specify Generalized Linear Models that
are well studied and generally easy to fit. Likewise, given the model param-
eters and the observed data, the absorbed photons follow a simple model,
Y +

i
d∼ Poisson [(1 − πi)Fi] + Yi.

Emission Lines. Spectral models often include emission lines,

Fi = c(Ei) +
K∑

k=1

δik

where c(Ei) is the expected continuum counts in energy bin i and δik is the
expected counts from emission like k in energy bin i. For each photon, we
postulate a variable that specifies whether the photon is due to the contin-
uum or a particular emission line. This unobserved specification variable is
treated as “missing data.” Given this variable we can fit the continuum us-
ing the counts due to the continuum without the complication of emission
lines. Likewise we can fit each of the emission lines (e.g., parameters speci-
fying a Gaussian or Lorenzian distribution) using the counts attributed to
that line. Conversely, given the parameter of continuum and the emission
lines, the specification variable for each photon follows a simple multinomial
distribution.

Multiple Model Components. So far, we have divided the unobserved
quantities into two groups, the model parameters and the “missing data.”
More generally, we may partition θ into θ = (θ1, . . . ,θp), where some
component of θ are model parameters of scientific interest, others may be
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nuisance parameters, and still others may be “missing data” or other un-
observed quantities. The key is that we select the unobserved quantities
and the partition of θ so that p(θk|θ1, . . . ,θk−1,θk+1, . . . ,θp,Y) is a stan-
dard distribution for each k. In this way we partition a complex problem
into a sequence of simpler standard problems which we handle iteratively
and one at a time. Thus, we can easily account for absorption, emission
lines, instrument response, and background, all in the context of a Poisson
model without sacrificing numerical stability, computational simplicity, or
sound statistical inference. Details of such a model appear in van Dyk et
al. (2001); see also van Dyk’s discussion of Strauss (this volume).

3.4 Model Fitting

In Sections 3.2 and 3.3 we emphasize repeatedly that judicious choice of the
“missing data,” X, can lead to simple conditional models, p(θ|X,Y) and
p(X|θ,Y), even when p(θ|Y) is much more complex. In this section we show
how these simple conditional models can be used to construct computation
tools for likelihood-based and Bayesian model fitting. In recent years, these
tools have become popular throughout the social, physical biological and
engineering sciences primarily because of their computational stability and
simplicity.

3.4.1 The EM Algorithm

Dempster et al. (1977) formulated the expectation maximization (EM) al-
gorithm to compute a maximum likelihood estimate, that is

θ̂ = argmaxθ∈Θ
L(θ|Y), (3.9)

where Y is the observed data, θ is a model parameter, L(θ|Y) is the likeli-
hood function, and θ̂ is the maximum likelihood estimate. (More generally,
we can replace L(θ|Y) with a posterior distribution in Equation 3.9 and
use EM to compute the posterior mode, θ̂.) In particular, Dempster et al.
(1977) considered maximum likelihood estimation in the presence of in-
complete data or problems that can be formulated as such (e.g., spectral
imaging with background or degraded counts). In this context, the EM
algorithm builds on the intuitive idea that (i) if there were no “missing
data,” maximum likelihood estimation would be easy, and (ii) if the model
parameters were known, the “missing data” could easily be imputed (i.e.,
predicted) by its (conditional) expectation.

These two steps take on a simple form in the context of the background
example described in Section 3.2. In particular, if YS had been observed,
we could estimate λS with YS . Likewise, if λS and λB were known, YS

could be estimated as the proportion of the observed counts, Y , implied by
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λS and λB , i.e., the conditional expectation of YS , Y λS/(λB + λS). This
leads naturally to a two-step iteration which converges to the maximum
likelihood estimate. It should be noted that this procedure necessarily leads
to a non-negative estimate of λS , whereas the common estimate resulting
from “subtracting background,” Y − ZτS/τB, may be negative.

The two steps in this simple iteration correspond to the M-step (i.e.,
maximization step) and the E-step (i.e., expectation step) of EM respec-
tively, with the proviso that not the missing data, but rather the so-called
augmented-data log likelihood should be imputed by its conditional ex-
pectation. In general, we begin by defining the missing data, X, and the
corresponding loglikelihood, L(θ|Y,X). EM starts with an initial value4

θ(0) ∈ Θ and iterates the following two steps for t = 0, 1, . . .

E-step: Compute the conditional expectation of the loglikelihood corre-
sponding to the augmented data (Y,X), given the observed data and
the current parameter value,

Q(θ|θ(t)) = E
[
logL(θ|Y,X)

∣∣Y,θ(t)
]

; (3.10)

M-step: Determine θ(t+1) by maximizing Q(θ|θ(t)), that is, find θ(t+1)

so that Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) for all θ ∈ Θ;

until convergence. The usefulness of the EM algorithm is apparent when
both of these steps can be accomplished with minimal analytic and com-
putation effort but the direct maximization in Equation 3.9 is difficult. In
many common models (e.g., multivariate Gaussian, Poisson, binomial, ex-
ponential, etc.) logL(θ|Y,X) is linear in a set of simple “augmented-data
sufficient statistics.” Thus, as will be illustrated below, computing Q(θ|θ(t))
involves routine calculations. The M-step then only requires computing the
maximum likelihood estimates as if there were no “missing data,” by using
the predicted augmented-data sufficient statistics from the E-step as data.

To illustrate these ideas, we return to the example of Section 3.2. We set
X = {YS , YB}, Y = {Y, YB}, and θ = (λB , λS). In this case, logL(θ|Y,X) =
logL(λS |YS)+log(λB |YB, Z); see Equations 3.4 and 3.5. Thus, Q(θ|θ(t)) =

−λS + E
(
YS |Y,θ(t)

)
logλS − kλB +

[
Z + E

(
YB |Y,θ(t)

)]
logλB. (3.11)

Elementary calculations show the expectations in Equation 3.11 are given
by Y λS/(λB +λS) and Y λB/(λB +λS), which is the E-step, and Q(θ|θ(t))
is maximized by λ(t+1)

S = E(YS |Y, λ(t)
S ) and λ(t+1)

B = [Z + E(YB |Y, λ(t)
S )]/k,

which is the M-step.

4Parenthetic superscripts indicate iteration number.
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3.4.2 The Data Augmentation Algorithm

In the context of Bayesian data analysis, numerical summaries of the pos-
terior distributions are often computed via numerical integration. Because
of the high dimension of the parameter space in most practical problems,
Monte Carlo integration is really the only useful method. If we can ob-
tain a sample from the posterior distribution, {θ(t), t = 1, . . . , T}, Monte
Carlo integration approximates the posterior mean of any function, g, of
the parameter with

E[g(θ)|Y] =
∫
g(θ)p(θ|Y)dθ ≈ 1

T

T∑
t=1

g(θ(t)), (3.12)

where we assume E[g(θ)|Y] exists. For example, g(θ) = θ and g(θ) = (θ−
E(θ|Y))(θ−E(θ|Y))′ lead to the posterior mean and variance respectively.
Probabilities, such as ζ = Pr(θ ∈ R) can be computed using g(θ) = I{θ ∈
R}, where the function I takes on value 1 if the condition in curly brackets
holds and zero otherwise. Likewise, quantiles of the distribution can be
approximated by the corresponding quantiles of the posterior sample. In
short, a robust data analysis requires only a sample from the posterior
distribution.

In the highly structured models we described in Section 3.3 we must use
sophisticated algorithms to obtain a posterior sample. Here we introduce
the powerful Data Augmentation (DA) algorithm (Tanner & Wong 1987).
A description of the more general Gibbs sampler (Metropolis et al. 1953)
and Metropolis-Hastings algorithms (Hastings 1970) with applications in
astronomy can be found in (van Dyk et al. 2001). All of these algorithms
construct a Markov chain with stationary distribution equal to the posterior
distribution (e.g., Gelfand & Smith 1990); i.e., once the chain has reached
stationarity, it generates samples which are identically (but not indepen-
dently) distributed according to the posterior distribution. These samples
can then be used for Monte Carlo integration; hence these algorithms are
known as Markov chain Monte Carlo or MCMC methods. (See Tierney
[1996] for regularity conditions for using Equation 3.12 with MCMC draws
[11].) From the onset then, it is clear that three important concerns when
using MCMC in practice are (1) selecting starting values for the Markov
chain, (2) detecting convergence of the Markov chain to stationarity, and
(3) the effect of the lack of independence in the posterior draws. Space
does not allow us to address all of these practical issues. Instead we direct
interested readers to van Dyk et al. (2001) and the references therein.

In order to obtain a sample from p(θ,X|Y), the DA algorithm uses an
iterative sampling scheme that samples first X conditional on θ and Y and
second samples θ given (X,Y). Clearly, the DA algorithm is most useful
when both of these conditional distributions are easily sampled from. The
iterative character of the resulting chain naturally leads to a Markov chain,
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which we initialize at some starting value, θ(0). For t = 1, . . . , T , where T
is dynamically chosen, we repeat the following two steps:

Step 1: Draw X(t) from p(X|Y,θ(t−1)),

Step 2: Draw θ(t) from p(θ|Y,X(t)).

Since the stationary distribution of the resulting Markov chain is the desired
posterior distribution, for large t, θ(t) approximately follows p(θ|Y).

To illustrate the utility of the algorithm, we return to the background
contamination model introduced in Section 3.2. Given some starting value,
θ(0) = (λ(0)

B , λ
(0)
S ) the two steps of the algorithm at iteration t become

Step 1: Draw Y
(t)
B using the binomial distribution given in Equation 3.8

and set Y (t)
S = Y − Y (t)

B .

Step 2: Draw λ
(t)
B and λ(t)

S from independent γ distributions5

λ
(t)
B

∣∣∣Y (t)
B

d∼ γ (αB + YB + Z, βB + k) and λ(t)
S

∣∣∣Y (t)
S

d∼ γ (αS + YS , βS + 1) .
(3.13)

Here αB , βB, αS , and βS are hyperparameters which quantify prior infor-
mation via a prior γ distribution on λS and λB ; see van Dyk et al. (2001)
for guidance in selecting these parameters. In the first step, we stochas-
tically divide the source count into source counts and background counts
based on the current values of λB and λS . In the second step we use this
division to update λB and λS . Markov chain theory tells us the iteration
converges to the desired draws from the posterior distribution.

3.5 Accounting for Pile Up

Pile-up occurs in X-ray detectors when two or more photons arrive in a
single spatial cell during the same time frame (i.e., the discrete time units).
Such coincident events are counted as a single event with energy equal to
the sum of the energies of each of the individual photons. Thus, for bright
sources pile-up can seriously distort both the count rate and the energy
spectrum. Accounting for pile-up is perhaps the most important outstand-
ing data-analytic challenge for Chandra. Conceptually, however, there is
no difficulty in addressing pile-up in a hierarchical Bayesian framework
using MCMC; we must stochastically separate a subset of the observed

5The γ (α, β) distribution is a continuous distribution on the positive real line with
probability density function p(Y ) = βαY α−1e−βY /Γ(α), expected value α/β, and vari-
ance α/β2 for positive α and β.
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FIGURE 3.1. A Typical Energy Spectrum. We plot the expected photon count per
bin per time frame as a function of energy and illustrate the smooth continuum
with three small emission lines. This spectrum is plotted at low resolution (100
energy bins) to reduce the computational burden required for handling pile-up;
see Figures 3.2.

counts into multiple counts of lower energy while conditioning on the cur-
rent iteration of the model being fit. The attraction of hierarchical models
in this setting is that they allow us to handle pile up ignoring all other
model components. That is, when we separate counts into multiple counts
of lower energy, the spectral model is completely specified and all the other
degradations of the data (e.g., instrument response and background con-
tamination) are accounted for by conditioning on the appropriate “missing
data.” Thus, we can attack pile up as an isolated problem.

Unfortunately, even in isolation handling pile up is challenging. The dif-
ficulty lies in computation. Simply enumerating the set of photons that
could result in a particular observed event, let alone their relative proba-
bilities, is an enormous task. Nonetheless, we believe there is great promise
in Monte Carlo techniques which if carefully designed, can automatically
exclude numerous possibilities that have minute probability. As an illustra-
tion, Figure 3.2 plots the conditional distribution of the energy of one of
two photons with energy summing to 10 keV, assuming the energy spectra
is as in Figure 3.1 and the point spread function is uniform across some
area of the detector. The symmetry of the distribution in Figure 3.2 re-
flects the exchangeability of the component photon energies and the modes
arises from the spectral emission lines in Figure 3.1. In practice, an ob-
served energy can be the sum of more than two actual photon energies; in
this case there is an 8% chance that there are three photons (and a 61%
chance of only one photon, 29% chance of two photons, and 1% chance of
four photons).

Care must be taken to efficiently sample from such complex distributions.
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FIGURE 3.2. Un-piling Two Photons. The plot illustrates the conditional dis-
tribution of the energy of one of two photons with energy summing to 10 keV,
assuming the energy spectra is as in Figure 3.1 and a uniform point spread func-
tion. Sophisticated Monte Carlo methods are required to simulate such a highly
multi-modal distribution.

Development of Monte Carlo samplers for this task is an area of current re-
search. Nonetheless, even with substantial simplifying assumptions (e.g., at
most two photons can pile) preliminary results from our hierarchical model
fit via MCMC show great promise. An example is given in the contributed
paper by Kang et al. (this volume).

3.6 The Future of Data Analysis

The highly structured models described in this chapter reflect a new trend
in applied statistics—it is becoming ever more feasible to build applica-
tion specific models which are designed to account for the hierarchical and
latent structures inherent in any particular data generation mechanism.
Such multi-level models have long been advocated on theoretical grounds,
but recently the development of new computational tools such as those
described here has begun to bring such model fitting into routine practice.
Although these methods offer great promise, they are by no means statis-
tical black boxes that will automatically solve any problem. The flexibility
of such models and computational methods require users to be statistically
savvy. We, however, believe the benefits of superior scientific modeling far
outweigh these costs. Indeed the future of data analysis lies in sophisticated
application-specific modeling and methods.
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Commentary by Michael A. Strauss6

Astronomers often find themselves tackling complicated likelihood prob-
lems. With some basic knowledge of the underlying statistics of a given
astronomical problem, and some familiarity with likelihood functions and
Bayesian statistics, we often are able to write down a likelihood function in
closed form. However, if the problem is complicated enough (read “interest-
ing”, as it usually is), we are stymied when it comes time to maximize this
likelihood, especially if there is an interesting and complicated parameter
space to fit for. This paper describes useful techniques for solving exactly
this sort of problem, which are common in astronomy, by a “divide and
conquer” approach, doing the problem iteratively. The very nasty problem
of deconvolving the effects of “pile-up” in X-ray spectra is a particularly
good example of this.

Another problem which may be amenable to this approach is illustrated
in Figure 3.3, which shows the spectrum of a quasar from the Sloan Digi-
tal Sky Survey (see my contribution to these proceedings). The spectrum
shows a blue continuum with strong superposed emission lines. Blueward
(to the left) of the Lyα emission line of hydrogen are superposed a large
number of absorption lines of Lyα, due to filaments and wisps of hydrogen
gas at redshifts between that of the quasar and zero. Astronomers very
much want to measure the statistics of the Lyα forest absorption, but are
stymied in part because of the lack of complete understanding of the unab-
sorbed continuum of the quasar itself. That is, the observations represent
the convolution of two unknowns: the quasar spectrum, and the Lyα for-
est absorption spectrum, and it is not clear how optimally to separate the
two. It would be interesting to know if the methods described in this paper
could allow an optimal solution to this problem.

6Princeton University Observatory
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FIGURE 3.3. The spectrum of a high-redshift quasar from the Sloan Digital Sky
Survey.



4

Bayesian Adaptive Exploration

Thomas J. Loredo1 and David F. Chernoff

ABSTRACT We describe a framework for adaptive astronomical explo-
ration based on iterating an Observation–Inference–Design cycle that allows
adjustment of hypotheses and observing protocols in response to the results
of observation on-the-fly, as data are gathered. The framework uses a uni-
fied Bayesian methodology for the inference and design stages: Bayesian
inference to quantify what we have learned from the available data; and
Bayesian decision theory to identify which new observations would teach
us the most. In the design stage, the utility of possible future observations
is determined by how much information they are expected to add to current
inferences as measured by the (negative) entropies of the probability distri-
butions involved. Such a Bayesian approach to experimental design dates
back to the 1970s, but most existing work focuses on linear models. We use
a simple nonlinear problem—planning observations to best determine the
orbit of an extrasolar planet—to illustrate the approach and demonstrate
that it can significantly improve observing efficiency (i.e., reduce uncertain-
ties at a rate faster than the familiar “root-N” rule) in some situations. We
highlight open issues requiring further research, including dependence on
model specification, generalizing the utility of an observation (e.g., to in-
clude observing “costs”), and computational issues.
This paper is followed by a commentary by David A. van Dyk.

4.1 Introduction

Incremental learning from experience, where one proceeds step by step
to a desired goal, making decisions and asking questions on the basis of
available information, is a basic aspect of human behavior. The classical
paradigm for the scientific method, with its rigid sequence of hypothesis for-
mation, followed by experiment and then analysis, bears little resemblance
to this adaptive, self-adjusting learning behavior. The classical paradigm
has served science well but its limitations are apparent in settings where
data collection and analysis may proceed in concert, where learning pro-
ceeds on-the-fly and what has been learned from past data may be prof-
itably used to alter the collection of future data.

1Department of Astronomy, Cornell University
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FIGURE 4.1. Information flow through one cycle of the adaptive exploration
process. Information (e.g., data) and an observing strategy are input from a
previous cycle on the left; combined information and a new observing strategy
are output to the next cycle on the right.

We describe here an adaptive extension of the scientific method built on
a model for scientific exploration where, after an initial setup phase, ex-
ploration proceeds by iterating a three-stage cycle: Observation–Inference–
Design. Figure 1 depicts the flow of information through one such cycle.
In the observation stage, new data are obtained based on an observing
strategy produced by the previous cycle of exploration. The inference stage
synthesizes the information provided by previous and new observations to
assess hypotheses of interest. This synthesis produces interim results such
as signal detections, parameter estimates, or object classifications. Finally,
in the design stage the results of inference are used to predict future data
for a variety of possible observing strategies; the strategy that offers the
greatest predicted improvement in inferences (subject to any resource con-
straints) is passed on to the next Observation–Inference–Design cycle.

The Bayesian approach to statistics provides ideal tools for developing
a unified framework for adaptive exploration: Bayesian inference for the
inference stage, and Bayesian experimental design for the design stage.
Bayesian inference—using probability theory to combine prior information
and data to produce posterior probabilities for hypotheses of interest—
is a formal description of learning perfectly suited for the tasks of the
inference stage of the exploration cycle. It is now widely used in several
astronomical disciplines and its basic features will be familiar to many
astronomers. In contrast, formal methods for experimental design (Bayesian
or otherwise) will likely be new to most astronomers. Bayesian design—an
application of Bayesian decision theory—identifies an optimal experimental
or observational design by first specifying the purpose for a study, and then
comparing how well candidate designs achieve that purpose by using the
techniques of Bayesian inference to predict and analyze future data. A main
goal of this brief paper is to introduce astronomers to Bayesian design, in
the context of adaptive exploration.

In 1956, Lindley described how one could use tools from information
theory and Bayesian statistics to compare experimental designs when one’s
purpose is simply to gain knowledge about a phenomenon [Lin56]. He later
incorporated these ideas into a more general theory of Bayesian experimen-
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tal design, described in his influential 1972 review of Bayesian statistics
[Lin72]. Although non-Bayesian methods for optimal design predate Lind-
ley’s work (standard references are [Fed72, Che72, AF97]), the Bayesian
approach provides a more fundamental rationale for many earlier methods,
and unifies and generalizes them (see [CV95] for discussion of the relation-
ships between Bayesian and non-Bayesian design). In the three decades
since Lindley’s review, the theory of design has matured significantly. But
as noted in Toman’s recent review, “unfortunately much of the work in
this area remains purely theoretical” [Tom99]. This is largely due to the
computational complexity of Bayesian design, an obstacle noted already in
Lindley’s foundational work. In experimental design, one must account for
both uncertainty regarding the hypotheses under consideration, and uncer-
tainty about the values of future data. For the former, one must perform the
difficult parameter space integrals that are characteristic of Bayesian infer-
ence [Lor99]; for the latter, one must additionally integrate in the sample
space as is typically done in frequentist calculations. In a sense, experimen-
tal design is the arena in which the Bayesian and frequentist outlooks meet,
producing problems with the combined complexity of both approaches.

As a result of this complexity, the vast majority of research in optimal
design (Bayesian or non-Bayesian) has focused on simple models for which
the required integrals can be evaluated analytically, such as linear models
with additive Gaussian errors. Existing work on nonlinear design typically
linearizes about a best-fit model [Mac92, SS98]. But the last decade has
seen enormous strides in Bayesian computation due largely to the develop-
ment of sampling-based methods for evaluating parameter space integrals,
particularly Markov Chain Monte Carlo (MCMC) methods. Such methods
not only facilitate rigorous calculations with complicated models; they also
provide results in a form that can be readily interpreted and processed
by end-users, even when the hypothesis space is of large dimension. We
describe them further below.

Only recently have sampling-based algorithms that combine parame-
ter and data sampling been brought to bear on Bayesian design [MP95,
CMP95, MP96, Mul99]. Here we use simple sampling algorithms to imple-
ment the adaptive exploration strategy outlined above in the context of a
simple but realistic nonlinear astronomical design problem. The sampling
approach not only allows us to evaluate integrals without approximating
the integrands, but also allows straightforward graphical display of all el-
ements of the calculation. We hope this example provides an accessible
introduction to Bayesian experimental design for astronomers, as well as a
demonstration of the potential of adaptive exploration.

The following section describes the motivation for our interest in adaptive
exploration—optimal allocation of observing resources for the Space Inter-
ferometry Mission—and then introduces adaptive exploration by example.
We follow the strategy through one full cycle and through the observation
and inference stages of a second cycle, using as an example radial velocity
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observations of a star with the goal of determining the orbital parame-
ters of an unseen planetary companion. The final section discusses several
directions for future research.

4.2 Example: Measuring an Exoplanet Orbit

Our work on adaptive exploration is motivated by the Space Interferom-
etry Mission, the first main mission of NASA’s Origins program.2 SIM is
designed to measure the directions to astronomical sources with unprece-
dented accuracy. In its highest precision mode it is expected to achieve
1 microarcsecond astrometric accuracy. This will allow detection of the
reflex motion “wobble” of a star with an Earth-like planet at a distance
of several parsecs, or with a Jupiter-like planet at kiloparsecs. But SIM’s
high-accuracy measurements are time consuming, seriously restricting the
number of stars that can be examined in a search for extrasolar planets.
SIM observations are thus a precious resource that must be optimally al-
located (not only for planet searches, but also for other diverse science
SIM will undertake). During the mission, targets with no planets must be
quickly weeded out, and observations of targets with companions must be
scheduled to optimally determine the number of planets and their orbital
parameters so that SIM can characterize as many systems as possible. In
addition, before the launch of the SIM spacecraft in 2009, the SIM project
will undertake extensive preparatory observations in order to carefully se-
lect both science target stars and reference stars against which the motions
of the science targets will be measured. Reference stars must be free of
planetary companions that would complicate their motion. The SIM Ex-
trasolar Planet Interferometric Survey (EPIcS) key project is considering
using binary stars with eccentric orbits as reference stars, since planets will
have been swept from such systems. The preparatory observing campaign
must identify hundreds of such stars and measure their orbits with high
precision. This will require a huge expenditure of observational resources
that must be optimized.

As a simple example of the kind of problem that must be addressed for
optimizing SIM mission and preparatory observing, we consider here the
problem of making radial velocity (RV) measurements of a star in order
to best determine the parameters of the orbit of an unseen Jupiter-mass
companion. Observations of this type will comprise much of SIM prepara-
tory observing; similar ideas will apply to analysis of astrometric data. We
consider observations of a 1 M� star known to have a single planetary
companion; our goal is to choose future observations to best improve our

2For detailed information about SIM, see the SIM web site:
http://sim.jpl.nasa.gov/
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estimates of the planet’s orbital parameters. The function giving the ra-
dial velocity vs. time for a star exhibiting Keplerian reflex motion has six
parameters. To simplify the calculations, we focus here on the three most
important parameters—the orbital period, τ , the eccentricity, e, and the
velocity amplitude, K—and we presume the remaining geometric parame-
ters are known a priori (these include the time of periastron crossing, the
longitude of periastron, and the orbital inclination). We model the value of
each datum di as having additive noise, so that

di = v(ti; τ, e,K) + ei, (4.1)

where v(t; τ, e,K) gives the velocity at time t as a function of the param-
eters, and ei represents the unknown noise contribution for datum i. We
take the noise to have independent Gaussian distributions with standard
deviation σ = 8 m s−1 (typical of current RV surveys).

The first cycle of exploration requires a “setup” strategy specifying the
initial observations. Ideally, such a strategy would be developed using de-
sign theory and predictions based solely on prior information about the pos-
sible orbits (e.g., an assumed period distribution for orbits). For simplicity,
the setup strategy here specifies 10 equally-spaced velocity measurements.

4.2.1 Cycle 1: Observation

Figure 2a shows the results of the observation stage of the first Observation-
Inference-Design cycle. The points with error bars show the results of 10
simulated observations. For reference, the dashed curve shows the true
velocity curve, with τ = 800 d, e = 0.5, and K = 50 m s−1 (typical
parameters for current observations of Jupiter-like extrasolar planets). The
observations span somewhat less than two periods.

4.2.2 Cycle 1: Inference

For the inference stage, we calculate the posterior probability density for
the parameters given the available data. Bayes’s theorem gives this as

p(τ, e,K|D, I) ∝ p(τ, e,K|I)L(τ, e,K), (4.2)

where p(τ, e,K|I) is the prior probability density for the orbital parameters,
L(τ, e,K) is the likelihood function (the probability for the data presuming
τ , e, and K are known), and I denotes the modeling assumptions (Keple-
rian orbit, noise properties, etc.). We assume we have no significant prior
knowledge of the parameters, and take the prior to be a constant. Our
assumption of Gaussian noise probabilities leads to a likelihood propor-
tional to exp[−χ2(τ, e,K)/2], where χ2(τ, e,K) is the familiar goodness-of-
fit statistic given by a weighted sum of squared residuals. Thus,

p(τ, e,K|D, I) ∝ exp[−χ2(τ, e,K)/2]. (4.3)
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FIGURE 4.2. One cycle of the exploration process for simulated planet search
data. (a) Observation stage, showing 10 simulated observations and true velocity
curve (dashed). (b,c) Inference stage, showing samples from the posterior distri-
bution for two velocity curve parameters (b) and two derived orbital parameters
(c). (d) Design stage, showing predicted velocity curves (thin solid curves), true
velocity curve (dashed curve), and the expected information gain for a sample at
each time (thick solid curve, right axis).
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To find best-fit parameters, we could maximize the posterior density
(corresponding to minimizing χ2). To constrain the parameters, we could
locate the constant-χ2 surface that encloses, say, 90% of the posterior prob-
ability for all three parameters; such a region is called a 90% (joint) credible
region. If we were primarily interested in just the period, we could sepa-
rately focus on it by calculating the marginal distribution for τ , given by
integrating out the other parameters;

p(τ |D, I) ∝
∫
de

∫
dK exp[−χ2(τ, e,K)/2]. (4.4)

A 90% credible region for τ alone would be a region of the τ axis containing
90% of this marginal density.

All of these summaries of the posterior distribution could be calculated
with common numerical methods (optimization and quadrature). But for
problems with more dimensions, such calculations can be challenging. A
more flexible approach is to use posterior sampling (see [Lor99] for a brief
introduction and references). In this approach one constructs a random
number generator that samples from the parameter space according to the
posterior distribution (in contrast to more common Monte Carlo methods
that sample from the data space). In this case, each sample would be a
triplet (τ, e,K) drawn from p(τ, e,K|D, I); repeated sampling will produce
a set of values, {τj , ej ,Kj}. Once a set of such samples is available, many
quantities of interest can be found by simple manipulations of the samples.
In addition, posterior samples can be used directly to report results in a
way that is easy to interpret and easy to use in future calculations.

Figures 2b and 2c are examples of interim results from the inference
stage of the exploration cycle based on the observations shown in Figure
2a. We used a simple rejection method [PTVF92] to sample the posterior
distribution; Figure 2b shows the τ and e coordinates of 100 such samples,
displaying the marginal distribution p(τ, e|D, I). In a more careful calcula-
tion, we would use more samples and smoothing to find contours of credible
regions; here it suffices to note that the displayed cloud of points should
conservatively bound a 90% credible region. We see that the period and
eccentricity are usefully constrained by the 10 data points, although signif-
icant uncertainty remains. Also, the posterior distribution is obviously not
well-approximated by a Gaussian. Figure 2c shows how easily a compli-
cated marginal distribution can be found using the samples; it displays the
marginal distribution for the planet’s semimajor axis, a, and m sin i, the
product of its mass and the sine of its orbital inclination. These are each
nonlinear functions of the three model parameters. To produce Figure 2c
we simply evaluated these functions for each of the 100 samples of (τ, e,K)
already produced; this is much simpler than numerically evaluating the
multiple integral defining the marginal distribution over a (m sin i, a) grid.
By reporting the actual sample values, other investigators could use the
results of these observations in their own calculations and fully account for
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the uncertainties simply by evaluating any quantities of interest over the
set of samples.

4.2.3 Cycle 1: Design

For the design stage, we locate the time at which to make the next ob-
servation so that we have the best chance of significantly reducing our
uncertainty in the parameters. We accomplish this in three steps: predict
future data at various times, find the effect of the predicted data on infer-
ences, and then identify the time for which the expected improvement in
precision is greatest. We discuss each step in turn.

To predict the value, d, of a future datum at time t, we calculate the
predictive distribution. To find it, we first predict d assuming we know the
true parameter values, and then account for parameter parameter uncer-
tainty by averaging over the parameter space. For given values of (τ, e,K),
the predictive probability density for d is just the likelihood for d (a Gaus-
sian centered at v(t; τ, e,K)). The averaging weight we must use to account
for parameter uncertainty is the posterior distribution from the inference
stage. The predictive distribution is thus the convolution of the Gaussian
likelihood for d and the posterior from the inference stage;

p(d|t,D, I) =
∫
dτ

∫
de

∫
dK p(τ, e,K|D, I)

× 1
σ
√

2π
exp

(
− [d− v(t; τ, e,K)]2

2σ2

)
≈ 1

N

∑
{τj ,ej ,Kj}

1
σ
√

2π
exp

(
− [d− v(t; τj , ej ,Kj)]2

2σ2

)
(4.5)

where the last line gives a Monte Carlo integration estimate of the predic-
tive distribution using N posterior samples from the inference stage. To
give some sense of what the predictive distribution looks like for various
values of time, Figure 2c shows the v(t) curves for the first 15 sampled
parameter points as thin solid lines; the true curve is again displayed as a
thick dashed curve. The ensemble of thin curves depicts our uncertainty in
v(t). The predicted data values at each time are additionally uncertain due
to the noise which “blurs” the curves by 8 m s−1. The ensemble of blurred
curves represents the predictive distribution as a function of time. The un-
certainty is greatest near times of periastron crossing when the velocity is
changing most quickly (it is minimal at 300 d, the initial time of perias-
tron crossing we assumed was known). Also, the uncertainty in the period
makes the velocity uncertainty at periastron crossing grow with time as
predictions with different periods fall increasingly out of synchronization.

Next we must measure how future data would affect our inferences. If
datum d at time t were available, we could update our inferences simply
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by multiplying the posterior distribution from the previous stage by the
likelihood function based on the single new datum (the Gaussian factor
in equation (4.5)), and renormalizing. (This is equivalent to doing a new
χ2 calculation considering all 11 data points at once.) The new posterior,
p(τ, e,K|d, t,D, I), will hopefully be more informative about the parame-
ters than the current one. The information in the posterior is given by the
negative Shannon entropy of the posterior distribution,3

I(d, t) =
∫
dτ

∫
de

∫
dK p(τ, e,K|d,D, I) log[p(τ, e,K|d, t,D, I)]. (4.6)

This is the information gain for a particular datum at time t; to account
for prediction uncertainty, we must calculate the expected information gain,
averaging over d using the predictive distribution of equation (4.5):

EI(t) =
∫
dd I(d, t)p(d|t,D, I). (4.7)

The best sampling time is the one that maximizes the information gain,
so we must evaluate EI(t) as a function of time. For problems such as this
where the width of the noise distribution does not depend on the value of
the underlying signal, one can show that the expected information gain is
equal to the entropy of the predictive distribution [SW97, SW00],

EI(t) = −
∫
dd p(d|t,D, I) log[p(d|t,D, I)]. (4.8)

Thus the best sampling time is the time at which the entropy (uncertainty)
of the predictive distribution is maximized. This is an eminently reason-
able criterion: Bayesian design is telling us that we will learn the most by
sampling where we know the least.

We use nested Monte Carlo methods to calculate EI(t) as a function of
time. At each time, we sample a datum from the predictive distribution by
first drawing a set of parameter values from the posterior, and then draw-
ing a data value from the sampling distribution with those parameters. We
then estimate p(d|t,D, I) for that datum using equation (4.5). Repeating
this process and averaging the logarithm of the estimates provides a Monte
Carlo estimate of equation (4.8). The thick solid curve in Figure 2d shows
this estimate of EI(t), using base-2 logarithms so that the relative infor-
mation gain is measured in bits (with an offset so the smallest EI(t) is at

3For a Gaussian distribution, I is proportional to − log(σ) and thus increases with
decreasing σ as one would expect; but it is a more general measure of spread than
the standard deviation. To be formally correct, the argument of the logarithm in equa-
tion (4.6) should be divided by a measure on the parameter space so the argument is
dimensionless; this has no significant effect on our results. An alternative definition of
information is the cross-entropy or Kullback-Leibler divergence between the posterior
and prior; it gives the same results as the Shannon entropy for this calculation [Mac92].
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0 bits; the raggedness in the curve reflects the Monte Carlo uncertainties).
EI(t) quantifies the uncertainty that is apparent in the set of thin sampled
v(t) curves. It is maximized near the periastron crossing subsequent to the
available data, at t = 1925 d. Thus the observing strategy produced by this
observation–inference–design cycle is: observe at t = 1925 d.

4.2.4 Cycle 2: Observation and Inference

Figure 3 shows the consequences of following this strategy. Figure 3a shows
the previous data and a new datum obtained by simulating an observation
at t = 1925 d. Incorporating this new datum into the posterior yields poste-
rior samples shown in Figure 3b. We also used these samples to produce 15
predicted v(t) curves in Figure 3a to display the velocity curve uncertainty
after incorporating the new datum. Finally, Figure 3c shows the updated
marginal distribution for the planet’s mass and semimajor axis. Comparing
to the corresponding panels in Figure 2, we see very significant reduction
in uncertainty. In particular, the period uncertainty has decreased by more
than a factor of two and the semi-major axis uncertainty is also drastically
decreased; this was accomplished by incorporating the information from a
single well-chosen datum. This is a dramatically larger increase in preci-
sion than one might have expected using rule-of-thumb “root-n” arguments
based on random sampling. This is typical behavior for this problem; we
have not chosen the simulated data set in any special way to obtain this
behavior. It continues for subsequent cycles.

4.3 Challenges

This simple example illustrates the adaptive exploration methodology and
demonstrates its potential. Several issues need to be addressed to make
adaptive exploration useful in more complicated settings. Befitting a con-
ference on statistical challenges, we close with a list of topics for future
research. The field of experimental design has a wide and diverse litera-
ture spread across several disciplines, and some of these topics are being
addressed in current research under such titles as sequential design, active
data selection, and active, adaptive, or incremental learning.

In our example the goal was inference of the parameters of a system
known to contain a single planet. In reality, the goals of inference may not
be so clear-cut. Observers may not be sure a system has a planetary com-
panion at the start of an exploration, so the goal is initially detection of a
planet. Or if a system is chosen because it is known to have a companion,
the goals may include detection of possible additional planets. At some
point, the goal may shift from detection to estimation. How do design cri-
teria for detection compare to those for estimation? When and how should
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FIGURE 4.3. The beginning of the next cycle of the exploration process for sim-
ulated planet search data. (a) Observation stage, showing original 10 simulated
observations, a new datum at 1925 d. Also shown are predicted velocity curves
from the inference stage. (b,c) Inference stage, showing samples from the poste-
rior distribution for two velocity curve parameters (b) and two derived orbital
parameters (c). The single new datum has greatly increased the precision of in-
ferences due to optimal selection of the observing epoch.

the adaptive methodology shift its goal from detection to estimation? The
work of Toman [Tom96] on Bayesian design for multiple hypothesis testing
provides a starting point for addressing these questions.

Our utility function was simply the information provided by new data.
In some settings, one may wish to incorporate other elements in the utility
function, such as the cost of observing as a function of time or sample
size. How can an observer map such costs to an information scale so that
information and other costs or benefits can be combined into a single utility
function?

We used a simple rejection method for generating posterior samples in
our example. While attractively simple, in our experience such an approach
will not be useful for problems with more than five or six parameters
(even fairly sophisticated envelope functions will waste too many sam-
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ples). The obvious tool for addressing this is MCMC, but the Markov
chain must ultimately sample over both the parameter space and the sam-
ple space (of future observations). Are there MCMC algorithms uniquely
suited to adaptive exploration? Müller and Parmigiani and their colleagues
[MP95, CMP95, MP96, Mul99] have developed a variety of Monte Carlo
approaches to Bayesian design in various settings that should be helpful
in this regard. Also, since adaptive exploration offers the hope of quickly
reducing uncertainties, at some point it may make sense to linearize about
the best-fit model and use analytic methods. Criteria need to be developed
to identify when this is useful.

Finally, in our example, the observing strategy for the first cycle was
chosen somewhat arbitrarily. Ideally, it would be chosen using design prin-
ciples and prior information. This raises many practical and theoretical
questions. What should the size of a “setup” sample be? Should adaptive
exploration start after a single sample, or are there benefits (perhaps as-
sociated with computational complexity) for starting with larger samples?
Can the algorithms used for analysis when several samples are available
also be used for designing the setup strategy, or are different algorithms
required if prior information is very vague? Clearly, there is overlap be-
tween these issues and those already raised. This kind of design issue has
been addressed informally for planning observations for the Hubble Space
Telescope Cepheid key project [FHM+94]. Can a more formal approach
improve on such a priori designs?

We hope this brief introduction will encourage astronomers and statisti-
cians to explore these issues together in a variety of astronomical contexts.
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Commentary by David A. van Dyk4

Loredo and Chernoff should be congratulated for their thoughtful Monte
Carlo implementation of Bayesian decision analysis. Their proposal promises
to significantly improve the scientific information obtained by Origins and
other programs. Here I offer only some fine tuning of their proposed method.

Loredo and Chernoff suggest choosing an observation time, t, by max-
imizing the expected negative Shannon entropy, E [I(d, t)|t], with d the
observed datum. Here I suggest two potentially useful and easy-to-use gen-
eralizations, namely, to treat the negative entropy as a value function rather
than a utility function and to consider other functions with more direct sci-
entific interpretation. To clarify these issues, I use Loredo and Chernoff’s
example involving the measurement of an exoplanet orbit.

For any selected t, there is a distribution for the observed d, denoted
p(d|t,D, I). The value of d can be measured by a value function such as the
negative entropy—the larger I(d, t), the more information that is gained
by d. Since d has a distribution so does I(d, t)—there is variability in the
information gained from the selected t depending on the observed d. Loredo
and Chernoff suggest selecting t by maximizing the expected information
gained. That is, they treat I(d, t) as a utility function—a function whose
expected value determines the preferred choice. A more general strategy is
to consider the full posterior distribution of I(d, t), namely p(I(d, t)|t,D, I).
One observation time may maximize the expected information gained but
with a relatively high variance and thus seem more risky; see Figure 4.4.

Shannon entropy is a generic measure of value and somewhat removed
from quantities of scientific interest. When using MCMC, however, it easy
to simulate the distribution of other value functions such as the maximum
or mean error bars on velocity or the error bars on some specific function of
the model parameters. Multivariate value functions can also be considered
which can include the statistical value of the data (e.g., entropy or error
bars), costs of the the data in dollars or satellite time, and waiting time
for the data. Such quantities may be easier to interpret and should be
easy to compute—though computation may be slower because the analytic
simplifications of Loredo and Chernoff are not applicable.
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FIGURE 4.4. The dashed density corresponds to an observation time that may
seem more risky than that of the solid density.

4Department of Statistics, Harvard University
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Bayesian Model Selection and
Analysis for Cepheid Star
Oscillations

James O. Berger1, William H. Jefferys, Peter
Muller and Thomas G. Barnes

ABSTRACT Cepheid variables are a class of pulsating variable stars with
the useful property that their periods of variability are strongly correlated
with their absolute luminosity. Once this relationship has been calibrated,
knowledge of the period gives knowledge of the luminosity. This makes these
stars useful as “standard candles” for estimating distances in the universe.
Available data consists of photometric and velocity information for a num-
ber of Cepheid variables, at unequally spaced points in their periods. Note
that photometry and velocity are connected by nonlinear relations involv-
ing the physical parameters of interest. Bayesian analysis is used to provide
inferences for useful physical features, such as the absolute luminosity of
the star, its distance, its radius, and other parameters.
In the absence of reliable physical models of the pulsation of Cepheid vari-
ables, we model the photometry and velocity curves as (i) a trigonometric
polynomial with an unknown number of terms; or (ii) via a wavelet basis
with an unknown number of terms. Bayesian analysis allows computation of
the posterior probabilities of these varying dimensional models, and results
in inferences on the physical parameters that are based on ‘averaging’ over
the possible models. Computations are done using reversible-jump Markov
chain Monte Carlo methodology.
This paper is followed by a commentary by Thomas J. Loredo.

5.1 Introduction

5.1.1 Bayesian Model Selection and Model Averaging

The Bayesian approach to hypothesis testing and model selection is concep-
tually straightforward. One assigns prior probabilities to all unknown hy-
potheses or models, as well as to unknown parameters or quantities within
models, and uses probability theory to compute the posterior probabilities

1Institute of Statistics & Decision Sciences, Duke University
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of the hypotheses or models, given observed data. One attractive feature
of this approach is simplicity of interpretation: stating, at the end of the
analysis, that the only tenable models are Models 5, 6, and 7, and that they
have probabilities 0.34, 0.56 and 0.10, respectively, has appealing clarity.

A second attractive feature of this approach is that one need not choose
a fixed model. One could select Model 6 above (it is the model most likely
to be true), but the data also gives considerable support to Model 5, and
even Model 7 should not be ignored. One deals with this uncertainty by
‘Bayesian model averaging,’ in which predictions or desired estimates from
models are averaged according to the model posterior probabilities. Thus if
Models 5, 6, and 7 provided distance estimates (posterior means) to a star
of 750, 790, and 800 parsecs, respectively, the ‘model-averaged’ distance
estimate would be 0.34× 750 + 0.56× 790 + 0.10× 800 = 777.4 parsecs.

The accuracy associated with a model-averaged estimate will also in-
corporate the model uncertainty. For instance, suppose Model j yields the
distance estimate d̂j , with associated posterior variance Vj , and that pj

is the posterior probability of Model j. Then the overall variance of the
model-averaged distance estimate d̂∗ =

∑
pj d̂j is given by

V ∗ =
∑

pj[Vj + (d̂j − d̂∗)2].

For the case in the previous paragraph, if the individual model posterior
variances were V5 = V6 = V7 = 400 (corresponding to standard errors of 20
parsecs), then the overall variance of d̂∗ = 777.4 would be 795.24, almost
twice the variance that would be associated with any specific model. (In-
deed, it is a general advantage of the Bayesian approach that inaccuracies
in all unknown parameters are incorporated automatically.)

Note, also, that the Bayesian approach to model selection acts as a natu-
ral “Ockham’s razor,” in the sense of favoring a simpler model over a more
complex model if the data provides roughly comparable fits for the models.
And this is without having to introduce any explicit penalty for the more
complex models. (For an interesting historical example of Ockham’s razor,
and general discussion and references, see Jefferys and Berger, 1992.)

5.1.2 Cepheid Star Oscillations

Cepheid variable stars pulsate, varying their luminosity (light output) and
size with a very regular periodic behavior. It is possible to measure both the
velocity of the surface of the star as it pulsates and the variable luminosity
and color of the star. For instance, Figure 1 presents the data concerning
the radial velocity of the surface of the star T Moncerotis, at various phases
of the star’s period. (The actual data are indicated by the x’s.)

There is a mathematical relationship between surface velocity, luminos-
ity and color that enables one to determine the distance to the star. The
considerable uncertainty in these measurements and the limited data that
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FIGURE 5.1. The radial velocity data (the x’s) for T Mon, and their fit to a
fifth-order trigonometric polynomial.

is available for each star suggest that analysis which fully incorporates these
uncertainties is desirable.

5.1.3 Challenges in the Bayesian Approach

There are three significant challenges in implementing the Bayesian ap-
proach for complex problems. The first challenge is common to all statis-
tical analyses, namely the need to find appropriate statistical models for
the data. For a Cepheid star, the most challenging features to model are
the radial velocity and the photometric information. For instance, Figure
1 clearly indicates that the radial velocity of the star is a quite complex
function of its phase, but existing physical theories for Cepheid stars do
not provide guidance as to the form of this function. Hence one must resort
to generic statistical modelling, such as Fourier analysis. Figure 1 shows
that a fifth-order trigonometric polynomial fits this particular data quite
well, but the needed order of the polynomial changes from star to star
and, indeed, there are typically several different orders that fit a particu-
lar star well (without overfitting). The different models that will be under
consideration in our analysis are simply the different possible orders of the
trigonometric polynomials (which will also be used to model the photomet-
ric data). Later we will also consider wavelet models of the radial velocity.

The second challenge in Bayesian analysis is to choose prior distribu-
tions for unknown quantities in the analysis (for instance, for the unknown
Fourier coefficients of the trigonometric polynomial). The most common
choices are noninformative or objective priors; these will be primarily uti-
lized in the analysis here and are discussed in the next subsection.

The third challenge is computational. Bayesian analysis can require the
computation of high-dimensional integrals, and is especially costly when
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model selection is involved. (For instance, when using trigonometric poly-
nomials in the Cepheid modeling, it is necessary to compute up to 50-
dimensional integrals for up to 40 models; in the wavelet version of the
analysis discussed in section 5.4, these numbers increase by orders of magni-
tudes.) The modern approach to such computation is Markov chain Monte
Carlo (MCMC) analysis. This is a computational paradigm that can be
easily described in simple cases, but which requires study and experience
for successful application in complex cases (such as that considered here).
Thus we will content ourselves, in this paper, with only a higher-level de-
scription of the particular steps needed in the Cepheid problem. Recent
general books on the subject are Robert and Casella (1999) and Chen,
Shao, and Ibrahim (2000).

5.2 Objective Bayesian Model Selection

5.2.1 Statistical Notation

The data, Y , is assumed to have arisen from one of several possible mod-
els M1, . . . ,Mk. Under Mi, the density of Y is fi(y |θi), where θi is an
unknown vector of parameters.

The Bayesian approach to model selection begins by assigning prior prob-
abilities, P (Mi), to each model; often, equal prior probabilities are used,
i.e. P (Mi) = 1/k, and this will be done here. It is also necessary to choose
prior distributions pi(θi) for the unknown parameters of each model; some-
times these can also be chosen in a “default” manner, as will be illustrated
later. The analysis then proceeds by computing the posterior probabilities
of each model, which elementary probability theory (Bayes theorem) shows
to be equal to

P (Mi|y) =
P (Mi)mi(y)

k∑
j=1

P (Mj)mj(y)
, (5.1)

where mj(y) =
∫
fj(y |θj)pj(θj)dθj is the marginal density of y. See Kass

and Raftery (1995) for a general discussion of Bayesian model selection.

5.2.2 Choice of Prior Distributions

It may well be the case that subjective knowledge about the θi is available,
and can be incorporated into subjective proper priors for the θi. This is
clearly desirable if it can be done. Indeed, for Cepheid stars we will see that
subjective prior information concerning their distance can be utilized.

For most of the unknown parameters in models it will typically be in-
feasible to utilize subjective prior distributions. Frequently this is because



5. Bayesian Model Selection 75

subjective information is simply unavailable. (Thus, for Cepheid stars, turn-
ing the physical principles that underlie oscillatory behavior into models
for the velocity and photometric curves is so difficult to accomplish that,
in actuality, there is little subjective information about the Fourier coef-
ficients of the curves.) Even if subjective prior information is available, it
can be very difficult to utilize in high-dimensional problems.

For these and other reasons, the most popular Bayesian methods are de-
fault or ‘objective Bayesian’ methods. For estimation and prediction prob-
lems, objective Bayesian theories are well developed. The most famous of
these are the Jeffreys prior (cf. Jeffreys, 1961), maximum entropy priors
(cf. Jaynes, 1999), and reference priors (which prove remarkably successful
in higher dimensional problems; cf., Berger and Bernardo, 1992).

Testing and model selection have proved to be much more resistant to
the development of default Bayesian methods. This is because the objec-
tive priors discussed above are typically improper distributions (i.e., their
integrals are infinite). This does not typically pose a problem in estimation
and prediction, but it does for testing and model selection. See Berger and
Pericchi (2001) for discussion of these difficulties and possible solutions.
Here are some guidelines for choosing default priors in model selection.

1. Common Parameters: If all models have certain common parameters (see
Berger and Pericchi, 2001, for discussion of what it means to be ‘common’)
these parameters can typically be assigned the same improper objective
prior. For instance, all the models for Cepheid radial velocity will have a
common unknown mean radial velocity u0, and this can be assigned the
usual objective (improper) prior p∗i (u0) = 1.

2. Conventional proper priors are sometimes available in the literature.
For instance, in the Cepheid problem, we will model the observed radial
velocities as arising from a trigonometric polynomial subject to error; in
statistical language, the ensuing model can formally be written as a general
linear model of the form

Y = θ01 + Xθ + ε,

where Y = (Y1, . . . , Yn)′ is the vector of observations (radial velocities in
the Cepheid problem), X is the corresponding design matrix of covariates
(sines and cosines evaluated at multiples of the phases of the observations,
corresponding to the trigonometric polynomial in the Cepheid problem), θ
is an unknown vector of parameters (the Fourier coefficients of the trigono-
metric polynomial in the Cepheid problem), 1 is the column vector of ones,
θ0 is the unknown mean level of the observations, and ε is a multivariate
normal vector of errors with mean zero and covariance matrix σ2G, G a
known matrix (i.e., ε is N(0, σ2G)).

The recommended prior (from Zellner and Siow, 1980) for the unknown
θ0 is p(θ0) = 1, while that for θ, given σ2, can be written in two stages (for
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later convenience) as:

p(θ |σ2, τ) is N(0, τnσ2(X ′G−1X)−1); p(τ) =
1√

2π τ3/2
exp(− 1

2τ
).

(5.2)

3. A general default prior for model selection is the “empirical expected pos-
terior prior” (Perez and Berger, 2000). For a given model Mi with unknown
parameters θi, the most convenient form for this prior, when computation
is to be done via the Markov chain Monte Carlo method, arises from intro-
ducing ‘latent’ random variables y∗, which can be thought of as random
subsamples of the data with sample size (typically) equal to the dimension
of θi. Then the desired prior distribution is

pi(θi,y∗) = fi(y∗|θi)p∗i (θi)mE(y∗)/m∗(y∗), (5.3)

where p∗i (θi) is a standard (improper) objective prior, mE(y∗) refers to
the empirical distribution of subsamples (i.e., choose each subsample of
the given size with equal probability), and m∗(y∗) is the marginal density
of y∗ under the prior p∗i . (The actual prior for θi is the marginal density
found by summing over y∗ in (5.3), but it is actually more convenient
computationally to work with the ‘latent’ joint distribution.)

5.3 Cepheid Stars

5.3.1 The Model and Likelihood

For a given star, the data consists of m observed radial velocities Ui, i =
1, . . . ,m, at unequally spaced phases of the star’s period (cf. Figure 1), to-
gether with n vectors of photometry data consisting of magnitude Vi, i =
1, . . . , n, and color index Ci, i = 1, . . . , n. (It is to be understood that, at-
tached to each observation, is the phase at which it was observed; note that
the radial velocity and photometry data were typically observed at differ-
ent phases of the star’s period.) Each observation has a standard deviation
specified by the observer; denote these by σUi , σVi , and σCi , respectively.
It is generally wise to be somewhat skeptical of such specified standard
errors, and so we take the variances of the data to, instead, be given by
σ2

Ui
/τu, σ2

Vi
/τv, σ2

Ci
/τc, where the parameters τu, τv, and τc are unknown.

To complete the modelling of the data, let ui, vi, and ci denote the true
unknown mean velocity, magnitude, and color index, respectively, corre-
sponding to each data point. We assume normality and independence of
the measurement errors, so that

Ui ∼ N(ui, σ
2
Ui
/τu), Vi ∼ N(vi, σ

2
Vi
/τv), and Ci ∼ N(ci, σ2

Ci
/τc). (5.4)

Since the velocities u and photometry (v, c) are periodic functions of
time, an obvious strategy is to model them as trigonometric polynomials.
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For the velocity u at phase φ, this would lead to the representation

u = u0 +
M∑

j=1

[θ1j cos(jφ) + θ2j sin (jφ)], (5.5)

where u0 is the mean radial velocity of the star and M is the (unknown)
order of the trigonometric polynomial. A similar equation holds for the lu-
minosity data v. (We need to do this only for u and v, since the colors c
are mathematically related to u and v through (5.7) below.) Let N denote
the (unknown) order of the trigonometric polynomial for v. These polyno-
mials contain 2M +1 and 2N +1 terms, respectively, including the leading
constant terms.

Let u and v denote column vectors of the velocity and luminosity data,
respectively; define Xu and Xv to be the (m× 2M) and (n× 2N) design
matrices consisting of the sines and cosines of multiple angles, evaluated at
the phases of the corresponding data; and let θu and θv be the correspond-
ing vectors of unknown Fourier coefficients. With the normality assumption
above, we can summarize the model (corresponding to M and N) for the
velocity and luminosity data by the statistical linear models

U = u01 + Xuθu + εu

V = v01 + Xvθv + εv, (5.6)

where u0 and v0 are the (unknown) mean radial velocity and luminosity, re-
spectively, and εu and εv are independently N(0,Gu/τu) and N(0,Gv/τv)
multivariate errors, with Gu and Gv being the known diagonal matrices
of the variances σ2

Ui
and σ2

Vi
, respectively. (Note that τu and τv would

have had to be introduced at this stage of the modeling, in any case, to
account for the fact that u and v cannot be expected to exactly follow a
trigonometric polynomial of finite order.)

The phases in the above likelihoods (entering through the design matri-
ces) were assumed to be known exactly. In practice, however, the velocity
data and photometry data are taken independently, and ‘translated’ to the
same phase scale. The period of the star is not known perfectly, however,
so that there is an unknown phase error ∆φ (the difference between the
zero-point of the phase for the velocity data and that for the photometric
data) that is introduced. Thus we include that additional unknown in (say)
the phase for the photometric data.

The (nonlinear) relationship between the radius of the star and the pho-
tometry is given by

ci = a[−0.1vi − b − 0.5 log (φ0 + ∆ri/s)], (5.7)

where a and b are known constants, φ0 and s are the angular size and
distance of the star (the latter being of primary interest to us), and ∆r,
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the change in radius corresponding to phase φ, is given by

∆r = −g
M∑

j=1

1
j
[θ1j sin(j(φ−∆φ)) − θ2j cos(j(φ−∆φ))], (5.8)

found by integrating the nonconstant part of (5.5) term by term with re-
spect to the phase; here g is another known constant. These expressions
are to be inserted in the likelihood terms arising from the Ci in (5.4).

5.3.2 Choice of Prior Distributions

The unknown parameters in the above model are:

(1) The orders of the trigonometric polynomials, M and N .

(2) The parameters τu, τv, and τc, adjusting the measurement standard
errors.

(3) The angular diameter φ0 and the unknown phase error ∆φ.

(4) The distance s.

(5) The mean velocity and luminosity, u0 and v0, and the Fourier coeffi-
cients, θu and θv.

Some additional ‘hyperparameters’ will be introduced through the prior
distributions for these unknowns, and the hyperparameters will also require
prior distributions.

The orders of the models are expected to be modest (given the limited
amount of data and the strong Ockham’s razor effect of Bayesian analysis);
we thus chose a uniform prior on the model orders (M,N) up to some cut-
off (e.g., (10, 10)), with zero probability assigned to higher orders.

The parameters τu, τv, τc are given the standard objective priors for
‘scale parameters,’ namely the Jeffreys-rule prior p(τ) = 1/τ . Similarly, the
priors on the ‘location parameters’ u0 and v0 are chosen to be the standard
objective priors p(u0) = 1 and p(v0) = 1. Note that we are employing Rule 1
of subsection 5.2.2; since these parameters are common scale and location
parameters for all models, they have an essentially fixed interpretation
across models and can be assigned standard objective priors (even though
improper).

For the parameters ∆φ and φ0, we also chose the objective priors p(∆φ) =
1 and p(φ0) = 1. While it is unclear if these are ‘optimal’ objective priors
for these parameters, preliminary investigations showed that the choice of
priors for these parameters is almost irrelevant for the Cepheid data sets,
so that additional effort was not expended in their development.

Failure to take the spatial distribution of the stars into account would
result in the so-called Lutz-Kelker bias, which is a bias in the estimated
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distance. Bayesian analysis takes care of such biases through the straight-
forward process of incorporating the cause of the bias in the prior distri-
bution. If Cepheid stars were distributed uniformly over a region, the prior
distribution of distances s from the observer would be proportional to s2.
However, the spatial distribution of Cepheid variables is known to be flat-
tened with respect to the galactic plane. We thus modify the s2 prior by
using a spatial distribution of stars that is exponentially stratified as one
moves away from the galactic plane. In particular, the prior distribution
on the distance s, given a hyperparameter z0, is

p(s) ∝ s2 exp (−|z|/z0) ,

where z = s sinβ, with β being the galactic latitude of the star (its an-
gle above the galactic plane, another known covariate), and z0 being the
imperfectly known ‘scale height.’ This ‘hyperparameter’ z0 is known to be
z0 = 97 ± 7 parsecs, so we simply assigned it a gamma prior distribution
with mean 97 and standard deviation 7.

The priors on the Fourier coefficients θu and θv must be chosen carefully,
to avoid overfitting or underfitting. Luckily, the models in (5.6) are exactly
of the form (5.2), so that the conventional priors described there can be
utilized directly. (We are slightly cheating here, in that θu and θv also occur
in the likelihood terms arising from the Ci, when (5.7) is used in 5.4), and
one could argue that the appropriate default priors should reflect this. We
ignore this complication, in part because we think it would make little
difference and, in part, because it is unclear how to take this into account
in defining a default prior. Also, in the computations reported here, we
utilized the simpler hyperprior p(τ) = 1/τ3/2.)

A possible alternative prior for the Fourier coefficients would be the
empirical expected posterior prior, also defined in section 5.2.2. Note that,
for the normal linear model, m∗(y∗) can be found in closed form. Space
precludes our presenting these results here.

5.3.3 Computation

Space limitations preclude a full description of the MCMC computation
that is used to analyze the Bayesian model. We thus limit the discussion
to presentation of the major steps in the analysis, especially those that are
non-standard. Familiarity with MCMC computation is assumed.

A reversible-jump MCMC algorithm of the type reviewed in Dellaportas
et. al. (2000) is used to generate posterior distributions and estimates. The
full conditional distributions for the variance and precision parameters and
hyperparameters are standard χ2 distributions and so the sampling of these
parameters can be accomplished with straightforward Gibbs sampling.

For ∆φ, φ0 and s, we employ a random-walk Metropolis algorithm using,
as the proposal distribution, a multivariate normal distribution centered on
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the currently imputed parameter values and with a covariance matrix that
is proportional to the covariance matrix for the linearized least-squares
problem for just these three parameters. (This means linearizing the loga-
rithm in the expression for ci in (5.7)). This proposal distribution leads to
a fast mixing Markov chain, which implies fast convergence of the compu-
tational algorithm.

The Fourier coefficients θu and θv, as well as u0 and v0, are sampled via
an independence-chain Metropolis step. The natural proposal distributions
are found by combining the normal likelihoods in (5.6) with the normal pri-
ors (given τ) in (5.2), leading to conjugate normal posterior distributions.
Note that these are not the actual full conditionals from the posterior, be-
cause of the nonlinear way in which θu and θv appear in the full likelihood.
However, the acceptance probabilities for these proposals are well over 90%,
and the sampling of the Fourier parameter spaces is very effective.

The Metropolis steps for θu and θv are included within a step that
proposes a jump between models. Thus, if the current model has a certain
number of parameters, we propose a jump to a model with a (possibly
different) number of parameters, and simultaneously propose new values
for all the Fourier coefficients. To make the sampling efficient, during the
burn-in phase we also estimate the posterior probabilities of the individual
models, and use them as the basis for the proposal probabilities of new
models during the computation phase of the calculation. Thus models of
higher posterior probability are proposed with greater frequency. A total
of 10,000 iterations of the MCMC computation were performed.

5.3.4 Results

Figures 2 and 3 give the posterior probabilities of the orders of the trigono-
metric models for the radial velocity and the photometry, respectively. The
fifth-order model is clearly overwhelmingly preferred for velocity. For the
photometry model, on the other hand, the third and fourth-order mod-
els are nearly equally supported. The MCMC computational strategy dis-
cussed above will automatically perform ‘model-averaging’ over these mod-
els, when computing posterior quantities of interest.

Estimates, standard errors, etc., for any of the unknowns or parameters
in the model are also available from the MCMC computation. Here we
simply show, in Figure 4, the posterior distribution of the distribution
of the parallax (the inverse of the distance) for T Mon. Figure 5 shows
the simulation history of the parallax, i.e., the values of the parallax that
were generated at each trial of the MCMC computation. The very random
appearance of this history strongly indicates that the MCMC computation
was accurate.
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FIGURE 5.2. Posterior marginal distribution of velocity models for T Mon.
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FIGURE 5.3. Posterior marginal distribution of photometry models for T Mon.
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FIGURE 5.5. Simulation history of the parallax of T Mon.

5.4 A Wavelet Approach

Examination of Figure 1 suggests a potential concern. It turns out that the
analysis is quite sensitive to the extent of the ‘dip’ in the velocity curve
that occurs between phases 0 and 0.1. Notice also that there is no data
between 0.9 and 0.1 (phases 1.0 and 0.0 being, of course, considered to be
equal). Because Fourier analysis is non-local (each term in the trigonometric
polynomial influencing the curve over the entire domain), there is concern
that Fourier analysis may over-accentuate or under-accentuate the dip, in
order to find a slightly better fit at points distant from the dip.

An approach that avoids this difficulty is the wavelet approach, since
wavelet bases are local. To date, we have only applied this approach to the
problem of fitting the velocity curve. Space precludes a detailed description
here (see Müller, Berger, and Jefferys, 2001, for details and results), but
we can, at least, outline the needed steps.
Step 1. A function space prior is needed, i.e., a prior on the space of possi-
ble velocity curves. The idea is to develop the prior in terms of intuitively
accessible features of the function, and then transform this prior into the
wavelet domain (a domain in which it is not as natural to construct pri-
ors). Adapting a suggestion of Vannucci and Corradi (1999), we chose the
function space prior to be a Gaussian process (since this allows easy trans-
formation into the wavelet domain). We actually construct the prior on
differences of the function, since this makes it easier to (i) build periodicity
into the Gaussian process and (ii) build smoothness into the function.
Step 2. One transforms this Gaussian process prior on the function space
into the wavelet domain, using a bivariate wavelet decomposition, as sug-
gested in Vannucci and Corradi (1999). The resulting prior on the wavelet
coefficients is multivariate normal with a non-diagonal covariance matrix
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FIGURE 5.6. Wavelet fit of velocity data for T Mon. Shown are contour lines for
the posterior distribution of the velocity as a function of phase; the thick smooth
line in the center is the posterior mean curve. The grey shaded margins show
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the observed data points, with little error bars showing 2 standard deviations for
the measurement error.

(i.e., the wavelet coefficients are apriori dependent).
Step 3. A model in the wavelet domain is defined by some subset of all the
wavelets in the basis. We specify the prior probability of a model through
the device of allowing each wavelet coefficient to be zero, with specified
probability p(k), where k is the ‘level’ of the wavelet coefficient. (In prac-
tice, we used p(k) = 1 − αk+1, and tried various values of α.) Then, with
probability 1 − p(k), the coefficient would be in the model. The prior dis-
tribution of the coefficients in the model is obtained from the multivariate
normal prior found in Step 2, by conditioning on the other coefficients being
zero.
Step 4. A Metropolis-Hastings MCMC analysis is implemented, in which
moves are made to adjacent models (i.e., either a nonzero wavelet coefficient
is set equal to zero, or a zero coefficient is made nonzero). The key is that,
utilizing properties of the multivariate normal distribution, the computa-
tions involved in these ‘small’ steps are of relatively low cost to implement.
(Wavelet models are large enough that it would be prohibitively expensive
to compute, from scratch, the posterior model probabilities.)
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Commentary by Thomas J. Loredo2

The work of Berger et al. reported here is an exciting achievement. In
these comments I highlight a few aspects of their approach that may help
readers new to this kind of Bayesian modeling better appreciate the sig-
nificance of this work and the applicability of elements of the approach to
problems other than the Cepheid calibration problem.

5.6 Uncertain noise levels

A minor detail in the analysis that is nevertheless worth highlighting is the
treatment of uncertainty in measurement errors. It is common in many as-
tronomical disciplines for measurements to have standard errors associated
with them that the analyst may consider to be only rough estimates (typ-
ically underestimates) of the actual standard errors. This is particularly
often the case with cutting-edge observations. An example is high accuracy
stellar radial velocity measurements, as used for detection of extrasolar
planets. These measurements sometimes require spectroscopy capable of
measuring velocities with few m s−1 accuracy. The formal standard errors
(estimated, e.g., from photon counting statistics and instrument perfor-
mance in test situations) often underestimate the actual errors because of
unpredictable influences (e.g., stellar activity or atmospheric effects). This
reveals itself by producing unacceptably large minimum χ2 values in fits
of velocity time series to models believed to be highly reliable (Keplerian
reflex motion models).

The usual approach in such situations is to rescale the errors to make
χ2 have its expected value, and then proceed with the errors fixed at this
rescaled value. This procedure is flawed; in general it leads one to underes-
timate the uncertainties in other parameters because it ignores uncertainty
in the standard errors.

Berger et al. handle this by explicitly introducing scale parameters for
the standard errors (their τ parameters), and treating them on an equal
footing with other parameters. For astrophysical inferences, the τ param-
eters are uninteresting; the authors’ MCMC calculation marginalizes (in-
tegrates) over them, fully accounting for their uncertainty in inferences of
other parameters of interest.

This is the proper way to handle such uncertainty, and in the limit when
the data allow precise inference of the scaling parameters, it reduces to
the standard practice of simply rescaling the errors. This proper treatment
does not always require the complexity of an MCMC calculation. A simple
example illustrates these points. Suppose data xi measure an unknown

2Department of Astronomy, Cornell University
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constant, µ, and suppose that the reported standard errors are all the same,
σ. If the true errors are σ/τ , the likelihood for µ and τ is the product of N
Gaussians with width σ/τ ,

L(µ, τ) ∝
( τ
σ

)N

exp

[
− τ2

2σ2

∑
i

(xi − µ)2
]
. (5.9)

We are ultimately interested only in µ, so we multiply by a prior for τ (use
the standard scale-invariant 1/τ prior) and integrate over τ . The result is

L(µ) ∝
[
1 +

(µ− x̄)2

s2

]−N/2

, (5.10)

where x̄ is the sample mean and s2 is the root-mean-square deviation from
the mean. This has the form of Student’s t-distribution. This likelihood has
power-law tails, and is broader than the Gaussian likelihood that would
result if we just fixed τ at some best-fit value. But if N is very large,
equation (5.10) is well-approximated by

L(µ) ∝ exp
[
− (µ− x̄)2

2s2

]
. (5.11)

This is just what one would get from the standard fixed-τ approach. Thus
marginalization accounts for τ uncertainty by broadening the likelihood;
but when τ is well-determined, it effectively just plugs in its estimate.

5.7 Systematic error

The most important innovation in the analysis by Berger et al. is their
extensive and rigorous accounting for model uncertainty. It is the uniquely
Bayesian concept of the probability for a model, combined with the abil-
ity to marginalize over unknowns (i.e., model choice), that makes such an
accounting possible. Although they do not use the term in the paper, to
properly understand the significance of their calculation I think it is impor-
tant to use it here: they have shown how to account for an important source
of systematic error (see Drell et al. 2000 for a simpler Bayesian treatment
of systematic error in cosmology).

Systematic error is an embarassment to frequentist statistics. It is not
“random,” and therefore cannot be described with (frequentist) probabili-
ties. It is thus difficult to carry out calculations that account for it. Taylor
(1997) summarizes the situation thus: “No simple theory tells us what to do
about systematic errors. In fact, the only theory of systematic errors is that
they must be identified and reduced until they are much less than the re-
quired precision.” In regard to quantitative accounting for it, he continues,
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“ . . . there are various possible ways to proceed. None can be rigorously
justified. . . . ”

In Bayesian inference, probabilities describe uncertainty, not (necessar-
ily) “randomness” or experiment-to-experiment fluctuations. Systematic
error is thus amenable to probabilistic treatment. This was noted half a
century ago by Jeffreys (1961). In an example concerning estimation of a
location parameter, he wrote:

Systematic error has a meaning only if we understand by the
true value something different from the location parameter. It
is therefore an additional parameter, and requires a significance
test for its assertion. There is no epistemological difference be-
tween the Smith effect and Smith’s systematic error; the differ-
ence is that Smith is pleased to find the former, while he may
be annoyed at the discovery of the latter. Now with a proper
understanding of induction there is no need for annoyance.

Translating to more modern terminology, systematic error can in principle
be accounted for by modifying the model for the data. Uncertainty in such
error can thus be quantified by using Bayesian methods to account for
model uncertainty.

Jeffreys stumbled in cases where Bayesian model comparison (his “signif-
icance test”) could not conclusively determine whether a particular system-
atic effect was present or not: “The problem that remains is, how should
we deal with possible systematic errors that are not yet established and
whose values are unknown?” Today this problem is routinely dealt with
via Bayesian model averaging (rather than choosing a single best model),
the key ingredient of the Cepheid analysis reported here.

Systematic error has been the bane of cosmological research for decades,
leading investigators analyzing similar data to reach discrepant conclusions
due to the influences of modeling assumptions. There may be important
sources of systematic uncertainty in Cepheid calibration beyond the light
curve model uncertainties accounted for in this study. But this approach
should go a long way toward further resolving discrepancies in this field,
and will hopefully motivate further use of Bayesian methods to quantify
systematic uncertainties in astronomy.

5.8 Computational complexity

The authors state that their computational methods are too complicated
to describe in detail in the limited space available here, and indeed the
few details provided indicate that significant effort and not a little artistry
were required to perform the calculations. Many presentations of Bayesian
methods at the conference shared this level of computational complexity,
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leading to the oft-repeated remark in discussion sessions that Bayesian
calculations are much more challenging than frequentist calculations.

This statement is misleading. In problems amenable to both Bayesian
and frequentist analyses with similar models, Bayesian and frequentist cal-
culations typically have similar complexity when carried out at the same
level of approximation (in fact, the Bayesian calculation is sometimes much
simpler in such cases). The key observation here is that in most problems
of realistic complexity, rigorous frequentist calculations are not hard—
they are impossible. Typically, no rigorous frequentist result exists for a
finite sample size, and the analyst must rely on asymptotic approxima-
tions. When such an approximation is adequate, it should be compared in
complexity, not with a full Bayesian calculation, but with an asymptotic
Bayesian calculation. Such calculations are straightforward and involve
quantities and manipulations familiar from standard frequentist analyses
(e.g., locating maxima and finding Hessian matrices). The primary tool is
called the Laplace approximation (see Loredo 1999 for a brief overview and
references). Interestingly, because Bayesian calculations typically require
ratios of probabilities, an asymptotic Bayesian calculation is sometimes ac-
curate to higher order than its frequentist counterpart, because the lowest
order error cancels in the ratio.

The difficult Bayesian calculations described in the work of Berger et al.
and in other presentations are difficult because they implement calculations
that would be difficult or impossible even to frame in frequentist terms—
calculations that are exact for finite sample size, or that rigorously account
for model uncertainty. Instead of bemoaning the complexity of such calcula-
tions, we should be grateful that we are at last able to perform them at all.
Even so, their complexity is a legitimate stumbling block to potential users.
The success of calculations like those reported here will hopefully motivate
the community to support development of software that hides implemen-
tation details from users, and research in Bayesian computation to develop
general-purpose algorithms that reduce the computational complexity of
Bayesian analyses.
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T. J. Loredo. Computational technology for bayesian inference. In D. M.
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Bayesian Multiscale Methods
for Poisson Count Data

Eric D. Kolaczyk1

ABSTRACT We present an overview of recent work on a flexible frame-
work for multiscale modeling of Poisson count data, such as is encountered
regularly in the field of high-energy astrophysics, that allows for intuitive,
easily interpretable, computationally efficient implementations of Bayesian
inference for standard tasks like smoothing, deconvolution, and segmenta-
tion. At the foundation of this approach is a multiscale factorization of the
Poisson likelihood, which can be viewed formally as deriving from a blend-
ing of concepts from the literatures on wavelets, recursive partitioning, and
graphical models.

6.1 Introduction

Astronomers, especially those studying phenomena in the higher energy
levels (e.g., x-ray and γ-ray), are faced with the challenge of analyzing in-
creasingly vast amounts of photon counting data (typically with temporal
and/or spatial labels), whose statistical properties generally are character-
ized as Poisson in nature. Methods of analysis must necessarily be com-
putationally efficient and scalable, particularly those intended to serve as
instrument-based or preliminary ground-based tools. These requirements
can present a significant challenge to the development and adoption of
Bayesian methods in such settings.

Consider, for example, the task of conducting multiscale analyses, stan-
dard methods for which derive typically from some manner of wavelet-
based representation of the data. A multiscale analysis of Poisson data
with wavelets leads to technical statistical challenges not necessarily en-
countered with, say, data following a standard Gaussian (i.e., “signal plus
noise”) model, due to fundamental differences in how the underlying sta-
tistical distributions “interact” with wavelet structures. These challenges
in turn have a direct impact on issues of analytical and computational
tractability of resulting methods.

We present here an overview of recent work on ways to meet these chal-

1Department of Mathematics and Statistics, Boston University
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lenges, based on the use of likelihood factorizations. The resulting statistical
framework allows for the creation of methods for standard tasks such as
smoothing, deconvolution, and segmentation that are intuitive and inter-
pretable, as well as analytically and computationally tractable, even for
posterior-based Bayesian inference. The basic modeling structure is intro-
duced in section 6.2, illustration of how that structure may be used for stan-
dard inferential tasks is given in section 6.3, and some additional discussion
regarding extensions and generalizations can be found in section 6.4.

6.2 The basic multiscale modeling structure

The goal in this paper is to communicate the fundamental usefulness of cer-
tain structural characteristics in multiscale modeling, with less emphasis
being placed on more detailed alterations that would necessarily have to be
made in the context of various specific applications. Hence, we will work
with the following generic modeling structure throughout. Let X(t), t ∈
[0, 1) be a Poisson process with intensity function λ(t) ≥ 0. Additionally,
assume that through convention and/or design the interval [0, 1) is dis-
cretized into N equispaced bins In = [n/N, (n+ 1)/N), n = 0, . . . , N − 1.
There then results from this discretization an N × 1 vector X of indepen-
dent Poisson random variables Xn ∼ Poisson(Λn), where Λn =

∫
In
λ(t)dt

and ‘∼’ is to be read ‘distributed as’. Our focus in this paper will be on “low
level” data processing tasks involving statistical inference on the vector Λ
(i.e., on λ(·) up to the resolution of the binning).

6.2.1 Factorizing the data likelihood

It is more or less commonplace now to have tools in the astronomer’s data
analysis toolbox for doing scale-sensitive inference – that is, inference on
the characteristics of an object(s) (e.g., time series of photon arrivals, image
mapping of point sources, etc.) for which there are potentially structural
components at multiple scales. Wavelet-based methods are by far the most
common such tools, and there have been numerous contributions in this di-
rection. See, for example, the book by Starck, Murtagh, and Bijaoui (1998)
or the chapter by Starck in this volume, for an overview.

Our own approach is intimately related to, yet distinct from, wavelets and
such wavelet-based methods. To better motivate both this connection and
the inherent differences, consider the simple case in which an orthonormal
wavelet transform is computed for data observed from a signal-plus-noise
model i.e., W = WY , where Yn = Λn + Zn and the Zn are independent
and identically distributed Gaussian random variables of mean zero and
unit variance. Because the matrixW is an orthogonal matrix and the data
Y are independent Gaussian, the vector W too is independent Gaussian.
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Hence, from a likelihood based perspective we might write something like

N−1∏
n=0

Pr (Yn|Λn) =
∏
j,k

Pr (Wj,k|ωj,k) , (6.1)

where (j, k) refers to the standard scale-position indexing resulting from
the definition of orthonormal wavelet functions ψj,k(t) = 2j/2ψ(2jt − k)
with respect to a single function ψ, and ω =WΛ.

The key point to note here is that the joint (i.e., N dimensional) likeli-
hood is factorized in both the time (left hand side) and multiscale (right
hand side) domains into a product of N component likelihoods. And fur-
thermore, each component relies on a single pairing of observation and
parameter — Yn with Λn in the time domain and Wj,k with ωj,k in the
multiscale domain. This deceptively simple fact has both analytical and
computational implications. For example, it can be seen to motivate the
standard idea of thresholding individual empirical wavelet coefficients Wj,k

in order to denoise the signal Y as a whole, which is essentially an O(N)
algorithm (e.g., Donoho and Johnstone 1994, but see also Johnstone and
Silverman 1997 for extensions to certain types of correlated data). And
much of the corresponding analysis of the statistical risk of such estimators
boils down to understanding the aggregate behavior of the individual risks
associated with such thresholding. Additionally, most Bayesian methods
in this context consist, for similar reasons, of making a posterior inference
on Λ implicitly through component-wise posterior inferences on the ωj,k

(e.g., Chipman, Kolaczyk, and McCulloch 1997; Clyde, Parmigiani, and
Vidakovic 1998; Abramovich, Sapatinas, and Silverman 1998).

Now consider the case in which the same wavelet transform is applied
to our Poisson observations i.e., W = WX. With the change from Gaus-
sian to Poisson observations, the orthogonality of W is no longer sufficient
to ensure the statistical independence of the components of W . Hence, a
factorization of the form given in (6.1) does not hold. While the effect of
this point on thresholding methods might be simply to adjust the level of
the thresholds used, its impact on the development of Bayesian methodolo-
gies is more substantial, as the full likelihood must be used in an explicit
manner.

Generally speaking, the existence of factorizations of complex probabil-
ity functions involves a delicate combination of issues concerning both the
underlying distribution and its parameterization. The study of such fac-
torizations is of central interest to the area of graphical modeling in the
statistics literature (e.g., Lauritzen 1996), wherein models are formulated
by specifying conditional independence relationships among the relevant
variables through the absence of edges connecting vertices (representing
the variables) on a mathematical graph. From this perspective, one can
view the factorization on the right hand side of (6.1) as a factorization of
the joint distribution of Y with respect to the binary tree graph generated



92 E. D. Kolaczyk

by the index pairs (j, k), for j = 0, 1, . . . , J − 1, k = 0, 1, . . . , 2j − 1, and
J = log2(N).

Although such a factorization does not exist for the Poisson data X when
the Wj,k are the empirical wavelet coefficients, it does exist when instead
the Wj,k are replaced by a certain conditional distribution. Specifically, let
Ij,k ≡ [k/2j, (k+ 1)/2j), for all (j, k), and define Xj,k to be the sum of the
Xn for which In ⊆ Ij,k. Let Λj,k be defined similarly in terms of the Λn. It
can be shown then that the factorization

N−1∏
n=0

Pr (Xn|Λn) = Pr (X0,0|Λ0,0)
J−1∏
j=0

2j−1∏
k=0

Pr (Xj+1,2k|Xj,k, ρj,k) (6.2)

holds, where ρj,k ≡ Λj+1,2k/Λj,k. The marginal distribution of X0,0 is
just Poisson(Λ0,0), while the conditional distributions Xj+1,2k|Xj,k are
binomial(Xj,k; ρj,k). This result may be derived directly using well-known
relations between the binomial and Poisson distributions (Kolaczyk 1999;
Timmerman and Nowak 1999), or more formally using a probabilistic ana-
logue of the type of multiresolution analysis (MRA) that underlies or-
thonormal wavelet bases (Kolaczyk and Nowak 2000).

To better understand how (6.2) compares to (6.1), consider the case
in which W corresponds to the Haar wavelet transform. There the Wj,k

are simply (proportional to) the difference of Xj+1,2k and Xj+1,2k+1 i.e.,
the sums of counts in the left and right “children” intervals Ij+1,2k and
Ij+1,2k+1 of the “parent” interval Ij,k. This difference provides some notion
of the information in the data localized to the scale/position combination
(j, k). However, consideration of the conditional distribution of one of the
children, Xj+1,2k, given the value of the parent Xj,k, provides a similar
notion of such local information. And it is with respect to this latter notion
that a multiscale factorization exists for Poisson data, in which case the
accompanying re-parameterization of Λ is not with respect to its Haar
coefficients ωj,k but rather the ratios ρj,k.

6.2.2 Prior distributions on the multiscale parameters

The factorization of the likelihood in (6.2) may be thought of in analogy
to a wavelet decomposition of a function. In other words, it provides an al-
ternative, position/scale representation of an object of interest. When the
underlying structure of that object is well-captured in this representation,
it may prove beneficial to conduct inference on the Λj,k indirectly through
direct inference on the ρj,k. In order to conduct such inference on the ρj,k

using Bayesian methodologies, an appropriate prior distribution structure
must be specified for these parameters (hence making them random vari-
ables).

In the literature on wavelets and the Gaussian signal-plus-noise model
there is already a sizeable literature on Bayesian approaches. Most begin
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with the observation that, across many contexts, distributions of wavelet
coefficients ωj,k have been observed to be “heavy-tailed” and centered at
zero (e.g., Mallat 1998). Various authors therefore have suggested the use of
zero-mean Laplacian distributions, mixtures of zero-mean Gaussians, and
generalized Gaussian distributions to capture this behavior. Most methods
assume independence among the coefficient distributions, citing the ability
of wavelets to roughly “decorrelate” the structure in an object, but more
sophisticated models attempt to capture weak dependencies through the
use of multivariate distributions or model the persistence of edges across
scales of coefficients through the use of tree-based hidden Markov models.
See Chipman and Wolfson (1999) for a recent survey.

Now consider the nature of the ρj,k. If in a certain region most of the
Λi are roughly equal, then many of the Λj,k will be roughly equal across
locations k for some range of scales j. We will then have ρj,k ≈ 1/2 for
many of the (j, k), which is the analogue of having ωj,k ≈ 0 in the case
of wavelets. Also note that, by definition, ρj,k ∈ [0, 1], for all (j, k). These
observations, combined with the fact that each ρj,k arises as the parameter
of a binomial distribution, suggest the use of the beta distribution

f(ρ) =
1

B(α, β)
ρα−1(1− ρ)β−1, (6.3)

as a prior family (being conjugate to the binomial family), where α, β >
0 and B(α, β) is just the standard beta function. For example, through
choice of α = β a distribution arises with symmetry about the point 1/2,
where α less than, equal, or greater than one yields U-shaped, uniform, and
unimodal distributions, respectively. More flexibility in shape results from
the use of mixtures of such betas, for example, a point mass at 1/2 and a
uniform distribution, where the weight on each of the two components may
be adjusted to reflect a balancing of prior beliefs in relative homogeneity
(i.e., ρj,k ≈ 1/2) and ignorance (i.e., ρj,k ∼ Unif(0, 1)). See Kolaczyk (1999)
and Timmerman and Nowak (1999), for more discussion along these lines.
Additionally, cross-scale dependencies may be incorporated through use of
hidden Markov model tree structures, as in the Gaussian case, as described
in Nowak (1999).

On a final note we mention that, because one often has relevant infor-
mation on the character of λ(·) i.e., of the intensity in the original time
domain, it is important to understand the nature of the prior distribu-
tion induced on the Λj,k through our specification of priors on the ρj,k.
Study of this issue may be found within Kolaczyk (1999), Timmerman and
Nowak (1999), and Nowak and Kolaczyk (2000), and in Louie and Kolaczyk
(2002) in more generality, in which conditions for such characteristics as
(non)stationarity, long-range dependence, and asymptotic convergence are
explored.
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6.3 Illustration of methods

In this section we will consider three common inferential tasks — smooth-
ing, deconvolution, and segmentation – and show how the basic modeling
structure of the previous section may be adapted in each context to obtain
efficient algorithms for posterior-based inference.

6.3.1 Smoothing

Figure 6.1(a) shows a plot of the photon arrival times for a gamma-ray
burst observed by the BATSE instruments, as part of the recently com-
pleted Compton Gamma Ray Observatory (CGRO) mission. Counts for
the first N = 256 64ms time bins are displayed. Norris et al. (1996) fit
this and similar bursts with linear combinations of asymmetric pulse func-
tions, from which aggregate information on number, location, amplitude,
and width of peaks is used to discern commonality across what has been
found to be a highly variable class of signals. Methods such as these are
inherently parametric, of course, and in situations such as this, where re-
liable physical models are lacking, a nonparametric m ethod often can be
employed usefully in a complementary fashion to gain insight into features
perhaps missed by the parametric method.

It is standard to model such observations as Poisson, in the manner
outlined at the start of section 6.2. Recalling the factorization of the Poisson
distribution in (6.2), consider a model for the multiscale parameters ρj,k

that specifies

ρj,k | γj,k ∼ γj,k δ1/2 + (1− γj,k)Bj,k (6.4)
γj,k | pj ∼ Bernoulli(pj) (6.5)
Bj,k |αj ∼ Beta(αj , αj) (6.6)

In other words, each ρj,k is modeled independently of the others as a mix-
ture of a point mass at 1/2 and a beta random variable, where the mixing
parameter pj and the beta parameter αj are indexed by scale j (but not
position).

Under these conditions it is not difficult to show (Kolaczyk 1999, Lemma
2) that the posterior has the factorization

Pr (Λ|X,Λ0,0) =
J−1∏
j=0

2j−1∏
k=0

Pr(ρj,k|Xj+1,2k, Xj+1,2k+1) . (6.7)

That is, the time domain posterior (left hand side) is actually a prod-
uct of local posteriors in the multiscale domain (right hand side), each of
which actually are mixtures of beta distributions like the prior. Therefore,
posterior-based inference on Λ may be accomplished through performing
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FIGURE 6.1. On the top (a) is the GRB BATSE trigger # 1425, with pho-
ton arrival times binned into 256 64ms bins. On the bottom (b) is our transla-
tion-invariant multiscale posterior mean estimate (solid) and an estimate based
on the parametric fitting of asymmetric pulse shapes (dotted). Priors for the mul-
tiscale method were independent mixtures of a point mass at 1/2 and a uniform
distribution (i.e., αj ≡ 1), with the mixing parameters pj fit using an empirical
Bayes method.
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posterior-based inference on each multiscale component ρj,k and then in-
verting the underlying multiscale transformation. For example, if the pos-
terior mean is to be used as an estimate of Λ, this relates to the posterior
means of the ρj,k via the formula

E [Λn|X,Λ0,0] = Λ0,0

J−1∏
j=0

E
[
ρ̃j,j(n) |Xj+1,2j(n), Xj+1,2j(n)+1

]
, (6.8)

where j(n) represents the position index at scale j of the ancestor of the
n-th component of Λ and ρ̃j,j(n) is equal to either ρj,j(n) or 1 − ρj,j(n),
depending on whether these ancestors are left or right children of their
parents, respectively.

In Figure 6.1(b) is shown a translation-invariant version of this posterior
mean estimate (see Kolaczyk 1999) for the intensity underlying BATSE
trigger #1425. Super-imposed upon that is the estimate obtained by the
method of Norris et al., in which seven distinct pulse shapes were fit. Note
that while our nonparametric method confirms the presence and general
form of the first six of those seven, it suggests evidence of there being in fact
two pulses in the region of their seventh. Such sections of the data with no-
table degrees of pulse overlap are particularly difficult to fit parametrically
(J. Norris, personal communication).

6.3.2 Deconvolution

Due to effects associated with the measurement process and instrumenta-
tion, often it is not possible to observe the data X ∼ Poisson(Λ) directly.
Instead it may be more appropriate to model the data as “indirect” obser-
vations Ym ∼ Poisson(µm), for m = 0, . . . ,M − 1, where µ = PΛ and P is
some M ×N transition matrix. That is, we specify a Poisson linear inverse
problem, where the underlying mean vector µ is a “blurred” version of the
object Λ in which our interest truly lies.

Although there are a variety of methods for dealing with inverse prob-
lems, a now-commonplace one for those involving Poisson data is through
use of the Expectation-Maximization (EM) algorithm framework. To re-
view briefly, in the present context one can introduce an auxiliary set of
random variables {Zm,n}, where Zm,n is the number of (e.g., photon)
counts associated with Xn that contribute to the total in Ym. Clearly
Y and X can be obtained as the marginal row/column totals of the
matrix Z and, by properties of the Poisson distribution, we have that
Zm,n ∼ Poisson(Pm,nΛn). Given a prior distribution Pr(Λ) for Λ, the EM
algorithm may be used to iterate to a Bayesian maximum a posteriori
(MAP) estimate by computing the conditional expectation

Q
(
Λ,Λ(i)

)
≡ EΛ(i) [log Pr (Z|Λ) |Y ] + log Pr (Λ) , (6.9)
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as the E-step, and then maximizing Q
(
Λ,Λ(i)

)
as a function of Λ to

produce Λ(i+1), as the M-step. The computational feasibility of such ap-
proaches typically is limited by that of the M-step, which in turn is linked
to the nature of the prior and how it interacts with the likelihood. The
computational complexity of this step may range from calculation of sim-
ple closed-form solutions to running a full Monte Carlo simulation at each
iteration i.

Now consider doing multiscale Bayesian inference on Λ in a manner sim-
ilar to that of section 6.3.1, but based on the observations Y and using the
EM framework. A simple conditioning argument shows that the distribu-
tion of our auxiliary data Z may be expressed as

Pr(Z |Λ) = Pr(X0,0|Λ0,0) ×
J−1∏
j=0

2j−1∏
k=0

Pr(Xj+1,2k |Xj,k, ρj,k) ×

N−1∏
n=0

Pr(Z0,n, . . . , ZM−1,n|Xn, p0,n, . . . , pM−1,n). (6.10)

Two characteristics of the expression in (6.10) are important to note: (i)
the third term (second line) on the right hand side does not involve Λ, and
(ii) the first two terms (first line) on the right hand side are identical to
those in equation (6.2). Hence, with respect to optimizations involving Λ,
only the first two terms are relevant and these instruct us effectively to act
as if we had observed the data X in the first place.

The end result is an EM algorithm in the Bayesian multiscale framework
that is no more computationally intensive than the standard EM algorithm
for maximum likelihood estimation, with closed form expressions for both
E- and M-steps. For example, suppose we choose to induce a prior distribu-
tion on Λ by placing independent beta priors on the multiscale parameters
i.e., ρj,k ∼ beta(αj , αj). Then the E-step in (6.9) boils down to calculating

Z(i)(m,n) =
YmΛ(i)

n pm,n∑N−1
l=0 Λ(i)

l pm,l

, (6.11)

due to the fact that Z|Y is multinomial in distribution and the linearity
of the logarithm of this distribution in the Zm,n. Furthermore, the M-step
results in the (i+ 1)-th iteration estimates

ρ
(i+1)
j,k =

Xj+1,2k + αj − 1
Xj,k + 2(αj − 1)

, (6.12)

from which the estimate Λ(i+1) may be constructed in a manner similar
to that in equation (6.8). A more detailed derivation of these results, as
well as results establishing convergence of the EM algorithm under various
choice of the αj , may be found in Nowak and Kolaczyk (2000).
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FIGURE 6.2. On the top (a) is simulated solar flare data, as might be measured
by the COMPTEL instruments. On the bottom (b) are the Bayesian multiscale
estimate of the underlying energy spectrum (solid) and the spectrum itself (dot-
ted).
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By way of illustration, Figure 6.2(a) shows a collection of counts cor-
responding to a certain theoretical energy spectrum for the production of
gamma rays by energetic particles interacting with the ambient solar atmo-
sphere (Murphy et al. 1991). The counts were simulated from this model
as if having been observed by the COMPTEL instruments (also part of the
the CGRO mission). Due to the underlying physics of the measurement
devices, an arriving photon in fact has a good chance of being recorded at
some lower energy level than that at which it obtains. Figure 6.2(b) shows
an estimate of the underlying energy spectrum Λ resulting from our mul-
tiscale deconvolution algorithm. The true spectrum is super-imposed upon
this plot – although there is the expected attenuation in the heights of the
various spectral peaks, note that the relative number, location, and width
of each are well-recovered.

6.3.3 Segmentation

Our final illustration involves the task of segmentation. For the sake of
simplicity, consider now again the case in which we directly observe the
measurements X ∼ Poisson(Λ). Often it is of interest to divide the domain
of observation, which we have generically taken to be the interval [0, 1], into
disjoint regions within which the vector Λ has some sort of locally similar
behavior. The simplest example is that in which we wish to identify regions
in which Λ is piecewise constant – that is, in which the underlying Poisson
process is locally homogeneous. This problem can also be referred to as one
of finding multiple changepoints in Λ.

One can envision for this problem, in principle at least, the generation
of data X as a three stage process in which (i) a collection of segmenta-
tion points are laid down in [0, 1] at some subset of the locations n/N , for
n = 1, . . . , N − 1, (ii) values for Λ are chosen for the resulting subintervals
of constant intensity, and (iii) X is sampled as Poisson(Λ). This three-step
procedure lends itself naturally to hierarchical modeling in a Bayesian set-
ting. Moreover, if one pictures the segmentation points being laid down
in a recursive fashion, then structural and conceptual connections between
recursive partitioning and our multiscale modeling framework may be ex-
ploited to obtain a Bayesian multiscale method for simultaneously selecting
the most likely number of segmentation points and their locations.

This search for an optimal segmentation of a given dataset X can be
viewed as a Bayesian model selection problem. Specifically, we seek the
most likely member M of, say, the collection L of all possible recursive
partitions, i.e.,

Mopt ≡ arg max
M∈L

Pr (M|X) . (6.13)

Due to similar reasons associated with our factorizations of the likelihood
and choice of priors upon which rested our results in sections 6.3.1 and 6.3.2,
it turns out that the optimization in (6.13) can be solved in an efficient man-
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FIGURE 6.3. Bayesian multiscale segmentation of GRB BATSE trigger #845.

ner. A redundancy among many of the recursive partitions and the preva-
lence of binary tree structures allows a search for Mopt in roughly O(N3)
operations using a type of probability propagation algorithm. Details may
be found in Kolaczyk and Nowak (2001). Figure 6.3 shows an illustration
of this algorithm when applied to a gamma-ray burst of a rather different
character than that encountered in Figure 6.1.

6.4 Discussion

The goal here has been to provide an overview of a general framework for
statistical analysis of Poisson count data, in a manner sensitive to structure
at multiple scales, with an emphasis on Bayesian methods. Of course, in a
specific application there is likely to be additional information beyond that
used in the applications described herein, including data from other instru-
ments, different wavelengths, and physical models. Bayesian methods often
are particularly convenient for incorporating this type of information into
the inferential process. On the other hand, it is common for such methods to
become computationally burdensome, which can be a serious disadvantage
for some of the high data-throughput applications that now characterize
many aspects of modern satellite-based astronomy. Hence the emphasis in
our methods on the use of likelihood factorizations, whose decoupling of
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the underlying probability structure facilitates the development of efficient
computational algorithms.

On a final note, we mention two other related pieces of work. David
Esch and David van Dyk have adapted the deconvolution methodology to
the processing of Chandra x-ray image data, and are exploring the use of
MCMC for adaptively setting the prior parameters (i.e., the αj ’s, in the
notation of this paper). Alex Young is studying the performance of the
same methodology in the context of solar flare data at the γ-ray level, and
is using parametric bootstrapping methods to obtain confidence statements
on the reconstructions. Readers are referred to the papers by these authors
in this volume.

Software for performing analyses like those described in this paper is avail-
able at http://math.bu.edu/people/kolaczyk/astro.html .
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NASA’s Astrophysics Data
Environment

Joseph H. Bredekamp1 and Daniel
A. Golombek

ABSTRACT NASA has a comprehensive space science data management
program to assure that science data assets acquired from space missions are
expediently available and utilized by scientists, educators, and the general
public. This paper will discuss the guiding principles and approach for space
science data archives, and describe the current landscape of astronomical
data centers and services. It will conclude with prospects and opportunities
to mine and exploit the emerging collective ”digital sky” in all wavelengths
for new scientific discoveries.

7.1 Space science data management

NASA’s Office of Space Science (OSS) is committed to the preservation
and utilization of data assets acquired from its space flight missions. Space
science data are ”open” resources as they ultimately belong to the research
community and public at large, and not to individual investigators or in-
strument builders. OSS strives to provide a coherent and coordinated space
science data environment to maximize the quality, accessibility, and usabil-
ity of the vast space science data holdings for scientists, educators, and the
general public.

Data archive and dissemination systems have been established for the
major space science disciplines, guided by the principle of putting the data
holdings under the jurisdiction of active science users in order to provide
science ”wrap- around” expertise and guidance.

The interface and flow of science data products from space flight projects
and experiments to the appropriate discipline data archive system is in-
cluded in a Project Data Management Plan developed by each project at
its onset to address all aspects of data handling through the mission life
cycle. Data management continues to be addressed as a key topic through-
out the implementation and operation phases of the project. Indeed, science

1Office of Space Science, NASA Headquarters
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productivity, along with timely delivery of science data to archives for open
access by the community are two key evaluation criteria for determining
priority for continuing the operation of on-going missions.

The coherent data environment that OSS strives toward is much more
than access to science data assets only, but rather access to the data along
with all ancillary information, software, tools, and capabilities to locate, re-
trieve, and analyze the data and convert it to meaningful information lead-
ing to scientific insight. That environment could thus be more accurately
described as ”data, computing, tools” organic infrastructure to support the
scientific research endeavor. Evolving that robust infrastructure requires a
significant investment in a wide range of computer science and technol-
ogy, ranging from standards, interoperability, and commonality issues, to
database and storage technologies, computational methods and algorithms,
grid technologies, collaborative tools, etc.

7.2 Current astrophysics data landscape

The astrophysics data environment represents perhaps the fullest realiza-
tion of the OSS science data management philosophy and approach. There
is a long history of open archives and sharing in that community. Much of
the current structure can be traced to the 1987 Astrophysics Data System
Workshops. The concept of Science Archive Research Centers (SARC’s)
for astrophysics sub- disciplines organized by wavelength regimes was one
of the recommendations coming out of these workshops and incrementally
implemented by OSS. New software tools, research aids and services, and
other advanced technology capabilities have been developed and infused
over the years, many of them sponsored by the Applied Information Sys-
tems Research Program and/or Astrophysics Data Program open solicita-
tions. There have been significant advances over the past several years in
terms of federation, coordination, interoperability, and sharing across the
various elements of the system, and the system is poised for the next level
toward the concept of a seamless ”digital sky”.

The principal elements of the astrophysics data architecture are mis-
sion science centers, data archive centers, integrating information services,
and the permanent archive. The relationships between these, and the user
communities are depicted in Figure 1.

7.2.1 Mission science centers

The mission science centers are generally responsible for all phases of a
missions science operations, from overseeing the peer-reviewed proposal se-
lection process, to the execution of the observations, to the calibration of the
data, and ultimately, to the dissemination of the data to the professional
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FIGURE 7.1. NASA’s Astrophysics Data and Information Services

community (via high-capacity science archive facilities) and the general
public. The staff of a NASA mission science center will typically consist
of astronomers, technicians, software engineers, administrators, and edu-
cators. Mission centers may also manage Guest Observer grant programs,
sponsor postdoctoral fellowship programs, develop science data analysis
software, and host visiting astronomers from around the world. All science
mission centers have a public outreach office that assures that the publics
interest in astronomy is regularly rewarded with the latest images and
results from the observatories. As part of these outreach efforts, a very suc-
cessful, by its use and the number of students it reaches, education program
is also conducted at these centers.

Space Telescope Science Institute
(STScI): STScI is the science center for the Hubble Space Telescope mis-
sion (http://www.stsci.edu). The HST was the first of NASA’s Great
Observatories and was launched in April 1990. The Institute was estab-
lished in 1981 and is located in Baltimore, MD. In addition to the services
expected of a NASA mission science center, STScI hosts an annual sym-
posium dedicated to HST-based research, manages the prestigious Hubble
Fellow Program, and supports a vigorous research staff. The HST archive
presently contains over 7 TB of data and is growing with 100 new science
exposures every day. The next HST servicing mission will see the instal-
lation of the Advanced Camera for Surveys and the re-activation of the
Near Infrared Camera and Multi-Object Spectrograph. STScI has been se-
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lected as the science center for the Next Generation Space Telescope - a
6 to 8 meter class observatory, slated for launch within the decade, with
instrumentation in the 0.65 micron wavelength range.

Chandra X-ray Center
(CXC): The Chandra X-Ray Observatory is the latest of NASA’s Great
Observatories: a high-resolution imaging and spectrographic telescope op-
erating in the X-ray part of the electro-magnetic spectrum. Chandra was
launched on July 23, 1999. The Chandra Data Archive (CDA) is part of the
Chandra X-Ray Observatory Science Center (CXC; http://cxc.harvard.-
edu) which is operated for NASA by the Smithsonian Astrophysical Ob-
servatory in Cambridge, MA. The current holdings of the CDA amount
to approximately 3 million data products with a total volume of 1 TB, in
addition to an extensive collection of databases that hold mission informa-
tion and metadata on the data products. The Chandra archive volume is
expected to expand by almost 1 TB per year of active mission.

SIRTF Science Center
The Space InfraRed Telescope Facility (SIRTF) is the fourth and final
element in NASA’s family of Great Observatories. SIRTF consists of a 0.85-
meter telescope and three cryogenically cooled science instruments capable
of performing imaging and spectroscopy in the 3-180 micron wavelength
range. Incorporating the latest in large-format infrared detector arrays,
SIRTF offers orders-of-magnitude improvements in capability over existing
programs. While SIRTF’s mission lifetime requirement remains 2.5 years,
recent programmatic and engineering developments have brought a 5-year
cryogenic mission within reach. A fast-track development schedule will lead
to a launch in July 2002. The SIRTF Science Center (http://sirtf.cal-
tech.edu) is co-located with the Infrared Processing and Analysis Center
(IPAC) on the campus of the California Institute of Technology.

7.2.2 Science archive centers

Besides the mission-specific centers listed above NASA also hosts wave-
length-specific data archive centers. All these centers not only provide the
data, but also software tools for its reduction and analysis, documentation
and expert assistance to the user both to the professional astronomer as
well as to educators and students or the public at large

Infrared Science Archive
(IRSA - http://irsa.ipac.caltech.edu) is located at the IPAC at Cal-
tech and houses all the infrared and submillimeter data obtained by NASA-
supported missions. The extracted source catalogs, images and spectra are
available from the Infrared Space Observatory (ISO), the Two Micron All-
Sky Survey (2MASS), the Midcourse Space Experiment (MSX), and the
Infrared Astronomical Satellite (IRAS) missions. IRSA will also host the
science data archives for the SIRTF and Stratospheric Observatory for In-
frared Astronomy (SOFIA) missions when they become operational.
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Multi-mission Archive at STScI
(MAST - http://archive.stsci.edu/index.html) hosts the collection
of optical and UV datasets and catalogs from past and present NASA
missions. In addition to HST data, it includes data from the International
Ultraviolet Explorer (IUE), Far Ultraviolet Explorer (FUSE), Copernicus,
three ASTRO and ORFEUS missions, , the Digitized Sky Survey, and the
VLA FIRST survey. HSTs Guide Star Catalog (GSC) can be queried from
this site as well. Once released, the Sloan Digital Sky Survey (SDSS) images,
spectra and catalogs will be available from the MAST.

High Energy Astronomy Science Archive
(HEASARC - http://heasarc.gsfc.nasa.gov/) is located at NASA’s
Goddard Space Flight Center (GSFC) and includes all gamma-ray, X-
ray, and extreme ultraviolet observations of cosmic (non-solar) sources ob-
tained by currenty operating and past NASA-supported missions. The data
available include those obtained from the Compton Gamma Ray Obser-
vatory (NASA’s second Great Observatory which was decommissioned in
2000)), the Rossi X-Ray Timing Experiment (RXTE), Roentgen Satellite
(ROSAT), Extreme Ultraviolet Explorer (EUVE), Advanced Satellite for
Cosmology and Astrophysics (ASCA), BeppoSAX, and the X-Ray Multi-
Mirror (XMM) missions. HEASARC provides a very large volume of multi-
mission software tools such as the HEAsoft package as well as SkyView and
AstroBrowse tools to search for and obtain multi-wavelength images of the
sky.

7.2.3 Integrating services

To complement the data archives, and to facilitate an even easier dissemi-
nation of the science results, NASA supports several catalog, bibliographic,
and thematic information services.

Astronomical Data Center
(ADC - http://adc.gsfc.nasa.gov) is located within the National Space
Science Data Center at NASA/GSFC and is the custodian of the many hun-
dreds of standard catalogs that astronomers use in support of their research.
The ADC has developed significant search, access, and cross-correlation
software tools (e.g., IMPReSS, CatsEye, Viewer). ADC has played a lead
role in the application of XML (eXtensible Markup Language) technology
to NASA’s needs in astrophysics data management and has, in particular,
developed XML-based tools for the automated ingestion of catalogs and
tables and for facilitating the retrievability of their contents.

NASA Extragalactic Database
(NED - http://nedwww.ipac.caltech.edu) is hosted at the IPAC/Caltech
and provides combined bibliographic and database services. It provides a
thematic view of extragalactic astronomy and contains positions, name
resolution, basic data, and bibliographic references for more than four mil-
lion extragalactic objects. NED also includes almost 4 million photometric



108 Joseph H. Bredekamp and Daniel A. Golombek

measurements, more than three million position measurements, more than
200,000 redshift and radial velocity measurements. Finally, to complement
this impressive catalog, more than 700,000 images from 2MASS and DSS
(generated on-the-fly) are available.

Astrophysics Data System
(ADS- http://adsabs.harvard.edu/abstract service.html)
is an abstract service that includes almost 700,000 abstracts from all the
major astrophysics journals and conference series with links to the whole
paper. It also includes instrumentation, physics and geophysics abstracts
as well as links to the Astrophysics Preprint server. ADS can be searched
by author, title, words in the abstract or object name.

Centre Données de astronomiques de Strasbourg
(CDS - http://cdsweb.u-strasbg.fr) is located in Strasbourg, France
and is a notable international partner for astrophysics information services.
The Set of Identifications, Measurements, and Bibliography for Astronom-
ical Data Basic (SIMBAD) is mirrored in the US at http://simbad.har-
vard.edu/Simbad. SIMBAD includes almost 3 million galactic objects who-
se characteristics and bibliography can be searched from almost 8 million
identifiers or by their positions.

7.2.4 Permanent archive

The National Space Science Data Center
(NSSDC) at the Goddard Space Flight Center serves as the permanent
data archive for all space science disciplines, including astrophysics, space
physics, solar physics, and planetary science. The NSSDC also provides
other multidisciplinary services such as master data catalogs and informa-
tion services, standards support, and photographic resources.

7.2.5 Productivity and interoperability

The astrophysics data centers and services are heavily utilized and pro-
ductive in contributing to new research results. The concept of ”archival
science” has grown in popularity in recent years to where existing archived
data is used for investigations different from the originally proposed inves-
tigations, or combined for interdisciplinary investigations, assimilated into
theoretical models, etc. The archives and information services have also
proved to be very valuable tools and resources for observation planning
and analysis for operating missions as well.

As an example of archive utilization, the daily ingest and retrieval rates
for HST data are shown in Figure 3. Note that retrieval rates now far exceed
the ingest rate. The average retrieval rate of 15 GB/day for HST data is
typically a factor of 4 larger than the ingest rate. Similarly across all the
data centers and services volumes of data are growing rapidly, and expected
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FIGURE 7.2. Content of the NASA Archives and Data Centers

to continue to grow dramatically into the future. And the utilization of
those volumes of data are growing at even a faster rate.

Another productivity measure is the number of scientific publications
that have resulted from the use of the data archives. Figure 4 provides the
number of publications based on data within the MAST and HEASARC
archives for the period 1999-2000. It is estimated that approximately 4000
scientific papers per year are based, at least in part on data and information
services within the astrophysics system.

The astrophysics data and information services operate as a federation
to improve overall productivity and efficiency, and enhance interoperability
and interdisciplinary access to data assets and services. There is strong
coordination and collaboration across the various elements to plan and
evolve an integrated system with the goal to afford users a ”world view” of
consistent interfaces and paths to allow data discovery and exploration as
a whole.

A common front-end user interface which would provide a searchable
web- based browser among the various data centers is a critical element
for such interoperability. ”AstroBrowse” is such an interface layer and was
conceived by R. Hanisch (STScI) and S. Murray (SAO) and implemented
as a prototype at HEASARC, MAST, and CDS. Other efforts are also pro-
ceeding across the broad consortium of astrophysics data providers to build
upon and extend these discovery capabilities to include fuller functionality
for users to locate, retrieve, and correlate data resources.
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FIGURE 7.3. Usage of the HST Data Archive

FIGURE 7.4. Number of publications based on data within HEASARC and
MAST
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7.3 Emerging prospects and opportunities

The trend in data volumes and complexity will only increase into the fu-
ture as we look deeper and with finer resolution into the sky. Refinements
in measuring fluctuations and anisotropies in the cosmic microwave back-
ground with data from missions such as the recently launched Microwave
Anisotropy Probe and the future European Space Agency Planck mission
have exciting prospects for unlocking the structure of the early universe
and more precise estimation of cosmological parameters.

The collective set of digital sky data, both space- and ground-based span-
ning the entire electromagnetic spectrum has enormous potential for data
mining and exploration. The resulting ”digital sky” is now within the venue
of observational astronomy, albeit not altogether easy, straightforward, and
transparent. The basic technologies are in hand to exploit the data archive
as a whole, but to realize the full and enormous potential for scientific
discovery calls for significant advances in our current frameworks, both
technological and scientific. These challenges provide an opportunity to
drive productive interdisciplinary partnerships and collaborations involv-
ing space scientists, computer scientists and technologists , mathematicians
and statisticians.

7.4 Summary

NASA’s Office of Space Science supports a vigorous and robust system of
data and information services which are heavily used by the world-wide
community. This infrastructure enhances the productivity of the research
endeavor, as well as extending utilization to benefit educators and the pub-
lic. The data archive and information services are poised for the next chal-
lenge to exploit the collective and seamless ”digital sky”, and to engage
the broad range of requisite partnerships involving astronomers and as-
trophysicists, computer scientists and technologists, mathematicians, and
statisticians, as well as with international collaborators around the world
to meet the challenge. References

7.5 Appendix A: URL listings

Office of Space Science
NASA Office of Space Science - http://spacescience.nasa.gov/
Space Science Missions - http://spacescience.nasa.gov/missions/

Mission-specific Archives
Chandra X-ray Center - http://cxc.harvard.edu
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SIRTF Science Center - http://sirtf.caltech.edu
Space Telescope Science - Institute - http://www.stsci.edu

Wavelength-specific Archives
High Energy - http://heasarc.gsfc.nasa.gov
Infrared/Sub-mm - http://irsa.ipac.caltech.edu
Optical /UV - http://archive.stsci.edu/index.html

Integrated Services
ADS - http://adsabs.harvard.edu/abstract service.html
NED - http://nedwww.ipac.caltech.edu
NSSDC - http://nssdc.gsfc.nasa.gov
SIMBAD - http://simbad.harvard.edu/Simbad
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Statistical and Astronomical
Challenges in the Sloan Digital
Sky Survey

Michael A. Strauss1

ABSTRACT The Sloan Digital Sky Survey is an ambitious effort to map
the entire Northern sky at high Galactic latitudes, using modern CCD
cameras to take images in five photometric bands, and a pair of multi-
object spectrographs to measure redshifts for 106 galaxies and 105 quasars.
I describe some of the recent scientific results from the survey, focusing on
quasars and galaxies, with an emphasis on the statistical challenges that
they raise. The data are very rich, with potential impact on a large variety
of astronomical problems, but most analyses to date have been carried out
using rather unsophisticated statistical tools. These data are thus ideal to
foster collaboration between astronomers and statisticians.
This paper is followed by a commentary by statistician David A. van Dyk.

8.1 Introduction

Astronomy is traditionally done by individuals or small groups of astronom-
ers, who use their handful of telescope nights a year to carry out focussed
projects. However, we need massive datasets gathered uniformly, on a scale
much larger than any small group of workers could collect in the traditional
mode, to answer the big questions which currently face astronomy: How did
the first objects form after the Big Bang? What is the distribution of galax-
ies on the largest scales? What is the full range of properties of galaxies
and stars, and what are the relationships between them? The Sloan Digital
Sky Survey (SDSS) addresses this need. It uses a dedicated 2.5-meter tele-
scope at Apache Point, New Mexico, with a wide-field CCD imaging camera
which operates in drift-scan mode, taking images of 20 square degrees of
sky per hour in five broad photometric bands (u, g, r, i and z) covering the
wavelength range accessible to CCDs from the ground. These data are re-
duced by a series of interconnected software pipelines; from the resulting
lists of detected objects, the brightest galaxies and quasars are chosen to

1Princeton University Observatory
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be observed by a pair of fiber-fed multi-object double spectrographs, which
obtain spectra of 640 objects at a time. The hardware of the project is
summarized by York et al. (2000), while Stoughton et al. (2001) discuss
the outputs of the pipelines. To date, the survey has imaged roughly 2000
of the planned 10,000 square degrees of sky, and has obtained spectra of
200,000 objects. The first of these data are now public, and can be accessed
on the web from links off the project web site, http://www.sdss.org.

The scientific goals of the project are focussed on the large-scale distribu-
tion of galaxies: the survey was designed to obtain as uniform as possible a
sample of galaxies for which to measure spectra and therefore redshifts, thus
obtaining a three-dimensional map of the distribution of galaxies. However,
the data are richer than this scientific goal alone would imply: in the data
obtained thus far, there are over 5 × 107 detected objects with five-color
photometry, allowing investigations of the nature of galaxies, quasars, stars,
the structure of our Milky Way, asteroids, and many other exciting areas
of astronomy.

In this paper, I will outline some of the recent scientific developments
in SDSS (with some emphasis on work in which I personally have been
involved), describing some of the interesting statistical questions that the
data raise. The statistically astute reader will notice that for the most
part, we have not been using the most modern and powerful statistical
methods for our analyses (although see Bob Nichol’s contribution to these
proceedings for a welcome exception to this!); the message is that these
data are rich enough to allow far more sophisticated analyses on a variety
of scientific problems. Thus this is fertile ground for close collaboration
between astronomers and statisticians.

8.2 Stellar photometry: Statistical challenges in
data reduction

There exist a number of software packages in astronomy for analyzing CCD
images, such as IRAF, FOCAS (Jarvis & Tyson 1981), Sextractor (Bertin
& Arnouts 1996), VISTA, and others. Our collaboration has worked more
or less from scratch in developing our image reduction software (Lupton et
al. 2001; Stoughton et al. 2001). The goal is to reliably find and measure
the properties of all statistically significant objects in the imaging data,
self-consistently in the five photometric bands. As we observe through the
Earth’s atmosphere, the light from point sources is smeared to a disk of
diameter typically 1′′−1.5′′. Thus our first challenge is to characterize this
smearing, or Point Spread Function (PSF) accurately. This PSF has a non-
trivial shape, roughly described by the sum of two Gaussians, plus a power-
law tail. Moreover, it can vary appreciably on the scale of arcminutes, due
to the optics of the telescope and camera, and changing conditions in the
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atmosphere. Our approach (Lupton et al. 2001), which seems to work fairly
well, is to expand the measured PSF as a function of position in Karhunen-
Loève eigenmodes, and then fit the coefficients to low-order polynomials in
position. With an accurate model of the PSF, one can then measure the
properties of detected objects quite well. In particular, for point sources,
this allows an optimal measurement of the total flux of the object (once
aperture corrections are applied; see Stoughton et al. 2001).

Galaxies are not point sources, but have radial profiles that can often be
characterized by an exponential (exp[−r/r0]), or the mathematically awk-
ward r1/4 law, exp[−(r/r0)1/4]. The software fits every object to these two
models, convolved with the PSF and allowing for arbitrary ellipticity and
orientation. The difference between this so-called model magnitude and the
PSF magnitude turns out to be a powerful measure of extendedness in the
images (this method can be extended using a Bayesian approach, knowing
the relative numbers of stars and galaxies as a function of magnitude; see
Scranton et al. 2001).

One measure of the accuracy of the resulting photometry can be found
in the distribution of colors of stars. Stellar colors are determined to first
order solely by their surface temperature, so (ordinary) stars lie on a one-
dimensional locus in the four-dimensional color space spanned by our filters
(u− g, g − r, r − i, i− z; Newberg & Yanny 1997; Fan 1999; Finlator et al.
2000). Figure 8.1 illustrates this; notice the thinness of the stellar locus,
and the relatively small number of outliers. The errors are close to those
expected from photon statistics; in particular, we have been successful in
recognizing, flagging, and in some cases, correcting, a wide variety of sys-
tematic errors would would cause stars to scatter from the locus: cosmic
rays, bad columns on the CCDs, bleed trails and diffraction spikes from
saturated stars, overlapping images, and so on.

Incidentally, a full statistical characterization of the stellar locus has
much to teach us about different stellar populations and the structure of
our Galaxy (one is looking at various populations of stars, each with its
own spatial distribution, as one looks in different directions, due to the
different contributions of thin disk, thick disk, and halo). A first stab at
modelling Galactic structure with SDSS data was carried out by Chen et
al. (2001). The Galactic halo turns out not to be smooth, but to show
substructure (Ivezić et al. 2000; Yanny et al. 2000; Newberg et al. 2001),
which is believed to be due to the cannibalization of dwarf galaxies by the
Milky Way. Thus far, this substructure has been seen by simply plotting
the distribution of stars in color-magnitude-position space, and looking for
overdensities by eye; this is an area ripe for a more sophisticated statistical
treatment.
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FIGURE 8.1. A series of projections of the stellar locus in SDSS color space. Stars
brighter than i∗ = 21 are shown. Also shown is the distribution of high-redshift
quasars, the predicted colors of quasars as a function of redshift (line), and the
region of color space in which high-redshift quasars are selected (shaded region).
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8.3 Finding high-redshift quasars

If ordinary stars fall along a one-dimensional sequence in color space, ob-
jects which do not lie on this sequence are inevitably interesting. The most
numerous class of such objects are the quasars. Quasars are the very lumi-
nous nuclei of galaxies which include supermassive black holes into which
material is streaming; this material is heated up so much by viscosity that it
can outshine its parent galaxy by orders of magnitude. The SDSS is finding
these objects in great numbers; they have intrinsically bluer spectra than
do stars, and thus are easy to pick out from their distinctly blue colors.
Indeed, quasars are selected for spectroscopic follow-up with the SDSS by
a conceptually simple algorithm that characterizes the stellar locus as a
1-dimensional sausage in color space (Newberg & Yanny 1997); a quasar
candidate is anything that falls far from this locus. See Bob Nichol’s contri-
bution to these proceedings for a rather different approach to this problem,
based on the mixture model.

At high redshift, the observed colors of quasars change systematically.
Neutral hydrogen along the line of sight to the quasar systematically ab-
sorbs blue light, causing the quasar to appear red; the higher the redshift,
the greater the reddening of the quasar. This effect is shown schematically
in Figure 8.1; the thin line is a model for the median color of quasars at
ever-increasing redshift. High-redshift quasars are intrinsically interesting,
because they are observed at an epoch when the universe was quite a bit
younger than it is today. Thus we have been carrying out a survey of the
very reddest objects in the SDSS imaging database, looking for the very
highest redshift objects (which turn out to be very rare; the quasar number
density drops off dramatically at redshifts above 3 or so; Fan et al. 2001a).
Figure 8.1 shows the colors of some of the quasars we’ve found at red-
shift z > 3.6; we now have discovered over 200 such objects (Anderson et
al. 2001 and references therein), by far the largest sample of high-redshift
quasars that exists. Again, it is worth emphasizing that this is successful
because we’ve managed to keep systematic errors down to a manageable
level, such that outliers in color-color space are there for astrophysical rea-
sons, not due to glitches in the data. Given that the parent sample from
which these quasars were selected contains many million stars, this is a
non-trivial statement.

This technique works well to redshifts somewhat larger than 5. To go still
further requires more work. For z ≥ 5.8, a quasar is so red that it is likely
to be detected only in the z band (not to be confused with the symbol
for redshift!), our longest-wavelength band at 9000 A. These objects are
very rare, and we are dominated by systematics in trying to find them. In
particular, most cosmic rays (high-energy particles which CCD detectors
are quite effective at detecting) are recognized by the fact that they are
confined to a single pixel, thus looking quite different from the PSF. How-
ever, occasionally, cosmic rays splatter over several pixels, and can mimic
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stars. If they hit the z band chips, they will thus appear as a z-band only
object, and thus are candidates for high-redshift quasars.

Even in the absence of glitches like this, selecting the very reddest ob-
jects (as measured by the ratio of the fluxes in the z and i bands) will
preferentially pick up the many sigma positive tail of errors in z. That is, if
an object’s intrinsic magnitude in z is 20.2 with an estimated error of 0.1,
a 4-sigma event (which happens a non-negligible amount even with Gaus-
sian statistics, when one has a parent sample of 107 objects!) will make
this appear to be at 19.8 magnitude, and thus much redder than it really
is. Finally, there is an interesting astrophysical contaminant to our red ob-
jects, namely extremely cool stars (brown dwarfs; Leggett et al. 2001), with
surface temperatures of order 1000 K.

With all of these effects acting, we have had to do a tremendous amount
of sifting to find real quasars (Fan et al. 2001b). We made our rejection
of cosmic ray events much more stringent than under normal processing,
throwing out any object that showed any hint of being a cosmic ray. Eye-
balling the remaining images rejected many more candidates. We then ob-
tained follow-up images in z to determine if the object was really there
(many cosmic rays had still survived all this winnowing), and to check the
photometric measurements. Finally, observations at yet longer wavelengths,
at J (1.3µm) allowed us to distinguish quasars from brown dwarfs. When
all was said and done, we were left with four objects (from a parent sample
of > 107, selected over 1500 square degrees of sky), every one of which
was a high-redshift quasar. Indeed, these four objects are the most distant
quasars known, with redshifts of 5.74, 5.82, 5.99, and 6.28, respectively. For
standard cosmological models, the highest-redshift object is observed only
900 million years after the Big Bang; thus we’re looking back 94% of the
age of the universe. I mention in passing that the z = 6.28 quasar shows
evidence in its spectrum of the Gunn-Peterson (1965) effect, due to neutral
hydrogen in the intergalactic medium between the quasar and us (Becker et
al. 2001; see also Djorgovski et al. 2001). This is evidence that we’re prob-
ing to an epoch before substantial numbers of stars and quasars formed:
stars and quasars emit ultraviolet photons which ionize the intergalactic
medium.

The mere presence of very luminous quasars so soon after the Big Bang
is a challenge to cosmological models, and to statistics as well. One can
estimate a lower limit to the mass of the black hole powering a quasar from
its luminosity (based on an argument originally due to Arthur Eddington,
that says that gravity has to be stronger than radiation pressure to allow
material to fall in); the quasars we’re observing all have inferred black-hole
masses of order a few billion times the mass of the Sun.

However, the universe was very close to homogeneous (to a part in 105)
soon after the Big Bang, as we observe directly from the smoothness of the
Cosmic Microwave Background. The present-day structure of the universe,
from individual galaxies to the largest walls and voids in the galaxy distri-
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bution, is believed to have grown from these 10−5 fluctuations via the pro-
cess of gravitational instability. In modern inflationary models for the Big
Bang, these fluctuations arose from quantum fluctuations, with a Gaussian
distribution by the Central Limit Theorem (Peacock 1999). Astronomers
use this fact to estimate the number of virialized structures of a given scale
at a given redshift, essentially by asking for the fraction of space that is
overdense by a certain amount, given the Gaussian distribution (Press &
Schechter 1974). In these calculations, the high-redshift quasars inevitably
are interpreted as many-sigma fluctuations, which requires that we believe
that the extreme tail of the distribution is accurately Gaussian (cf., the
discussion in Chiu et al. 1998; Willick 2000). It is an interesting statistical
question to ask about the validity of the Central Limit Theorem in pre-
dicting the extreme tail of the distribution under these circumstances (see
the comment by Licia Verde at the end of this paper).

8.4 Describing the manifold of galaxy properties

High-redshift quasars are among the rarest objects in the SDSS database.
But there is a variety of interesting scientific and statistical questions that
arise from the more common objects, such as galaxies. We wish to de-
scribe the properties of galaxies, with the goal of understanding the physi-
cal processes that give rise to the observational properties that they have,
and what the correlations between these properties are. Among the salient
properties of galaxies, one might list their luminosity, color (as measured
in several bands), extent, ellipticity, asymmetry (i.e., deviations from ellip-
tical isophotes), their internal velocity dispersion, their surface brightness
profile, their morphology (relative strength of bulge and disk, strength and
number of spiral arms, etc.), the strength of emission and absorption lines
in the spectra, and the large-scale environment in which these galaxies find
themselves (i.e., are they in clusters? Walls? Filaments? Voids?). This is a
rather complicated multi-parameter space, and we wish to understand the
physical relationships between all these quantities. There is a fair amount
of empirical knowledge in the literature, much of it looking at these various
quantities two at a time: for example, bluer galaxies tend to be of lower sur-
face brightness, and the internal velocity dispersion of an elliptical galaxy is
correlated with its luminosity and size (Djorgovski & Davis 1987; Dressler
et al. 1987; see Bernardi et al. 2001 for a spectacular demonstration of this
with 10,000 SDSS galaxies).

We are still struggling with ways to explore this manifold in its full glory,
however, and most analyses in the literature get no more sophisticated
than using Principle Component Analysis, which will not address questions
such as possible curvature in any relations found between parameters, and
whether galaxies naturally divide up into distinct classes (cf., Kormendy
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& Djorgovski 1989; Strateva et al. 2001). The SDSS data again are very
rich; we already have high-quality spectroscopy for over 105 galaxies with
five-band images, and images alone for literally millions more, and thus
demand more powerful statistical tools to analyze them. This is a field in
which astronomers not only do not have sufficient statistical tools to tackle
these data, but do not yet know what the proper astronomical questions to
ask are; we simply haven’t explored the data in enough detail to formulate
the questions properly.

One of the galaxy attributes mentioned above was their large-scale en-
vironment. We have known for two decades that the galaxy distribution
shows a rich array of structures, the cosmic web (see Rien van de Wey-
gaert’s contribution to these proceedings). We do see correlations between
the nature of galaxies and where they find themselves with respect to this
web; the best-known of these correlations states that elliptical galaxies are
preferentially found in clusters of galaxies (the morphology-density rela-
tion; Dressler 1980). There are also correlations found between the cluster-
ing strength of galaxies and their color, surface brightness, and luminosity
(in the sense that low-luminosity, blue, low surface brightness galaxies are
somewhat more weakly clustered). However, all these attributes are cor-
related with one another. For example, elliptical galaxies tend to be red
and of relatively high surface brightness, thus it isn’t known whether the
fact that blue galaxies are more weakly clustered is just a manifestation of
the morphology-density relation, or whether it has a component indepen-
dent of that. Astronomers have not yet had sufficiently voluminous data
(until now) to address this question, and even now, we struggle with the
somewhat crude statistical techniques we have at our disposal to try to
characterize clustering strength (see the contribution by Vicent Mart́ınez
in these proceedings).

Figure 8.2 shows the distribution of galaxies in the public release of
the SDSS main galaxy sample, showing the now-familiar cosmic web. As
mentioned earlier, astronomers believe that this structure arose from an
initially Gaussian set of fluctuations (that is, the density field on any given
smoothing scale has a Gaussian distribution, and the individual Fourier
modes have random phases). In this picture, one gets a complete statistical
distribution of the density field using two-point statistics, in particular, the
power spectrum (see Zehavi et al. 2001 and Scranton et al. 2001 for first
analyses of the SDSS data along these lines). However, as gravitational
instability continues to work, structures become non-linear, and two-point
statistics are no longer adequate for a full description of the galaxy den-
sity field (Mart́ınez & Saar 2001). We are able to quantify this into the
mildly non-linear regime using perturbation theory. We also have a heuris-
tic model, based on a hierarchical clustering model, to describe the set
of high-order correlation functions, in the very non-linear regime. And we
have a variety of statistical tools, including Minkowski functionals, void
statistics, Voronoi Tessellations, measurements of fractal dimensions, and
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FIGURE 8.2. The distribution of galaxies from the Early Data Release
(Stoughton et al. 2001) of the SDSS galaxy redshift survey. Most of these data
were taken on the Celestial Equator (δ = 0) in a narrow slice, so right ascension
is plotted as the angular coordinate, and redshift as the radial coordinate.
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so on, which attempt to give a handle on various aspects of the non-linear
structures that we see. Unfortunately, the problem of how fully to describe
statistically the beautiful structures that we see still evades us, and we
are still only able to make a qualitative comparison of the observed galaxy
distribution to that predicted in specific cosmological models. This prob-
lem is made more complicated yet by remembering that each of the points
in Figure 8.2 is a galaxy, with its own morphology, luminosity, spectral
properties, etc., and we wish to describe how its physical properties are
related to the large-scale structure in which it is embedded. This is a great
challenge for statisticians and astronomers alike, especially in the face of
datasets like that of the SDSS.
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Commentary by David A. van Dyk2

8.6 Data Mining in Space

Data Mining refers to methods for automatically or semi-automatically
scouring a very large dataset for useful information; see Hand (1998) and
Hand et al. (2000) for good reviews of the statistical perspective. Gener-
ally speaking data mining has a negative connotation to statisticians. The
term conjures up images of automated methods trawling through large
data sets looking for features or patterns with little regard to implicit mul-
tiple testing. Thus, the methods employed have little ability to distinguish
chance fluctuations from real patterns or to uncover underlying structure
in the data. Unfortunately, for my prepared comment, Michael Strauss,
Bob Nichol, and others working on the Sloan Digital Sky Survey (SDSS)
are clearly taking the statistical challenges of this mammoth data anal-
ysis project seriously. They are to be commended for their model-based
approach which is clearly bearing fruit in the form of their impressive as-
tronomical discoveries.

Hand (1998) identifies two basic components that characterize data min-
ing in a wide range of applications, modeling and pattern recognition. Mod-
eling involves looking for large scale structure in the data. In the con-
text of the SDSS, this may include comparing the distribution of stars
with galactic models, empirically characterizing the large scale structure of
the universe, and classification of features (i.e., objects). Although, there
are many standard statistical methods that are designed for such model-
ing tasks, many of the astronomical models which are relevant to SDSS
are highly complex and do not fall into any standard statistical modeling
framework. Nonetheless, statistical model building techniques and highly
structured hierarchical models are potentially useful even in such complex
settings. An example which outlines a model for the large scale structure
of the universe is described below. The approach the SDSS scientists take
to classification is to use model-based classification algorithms (e.g., fitting
finite mixture models using the EM algorithm; Uribe et al. this volume).
Such methods are useful not only in their ability to classify objects but also
in their model-based approach which is designed to shed light on the mech-
anisms and structure underlying the classification. Again the SDSS group is
to be commended for there emphasis on fast computational methods (e.g.,
kd-trees; see Nichol, this volume) that do not sacrifice the model-based
methods.

Searching for local features or patterns in the data, i.e., feature detection,
is the second standard task in data mining. This may include searching for

2Department of Statistics, Harvard University
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faint objects, anomalous objects, or clusters (e.g., of galaxies). This can be
an especially challenging task owing to errors in the data (e.g., contamina-
tion by background, cosmic events, and asteroids as well as measurement
and data recording errors) and the inherent multiple testing problem. As
described by Strauss and Nichol (both in this volume) the SDSS team is
both taking great care in cleaning the data and developing new statisti-
cal methodology (the False Discovery Rate Procedure) for handling the
multiple testing problem.

8.7 Modeling the Large-Scale Structure of the
Universe

In this section I outline a model for the large-scale distribution of galax-
ies in the universe. This model is by no means meant to be a finished
product—it is based on a most rudimentary understanding of the cosmic
structure. Rather, I hope to illustrate how highly structured hierarchical
models (van Dyk, this volume) can be used to model complex structure and
the incompleteness in the observed data. Such a model can be fit directly to
the observed data which leads to direct estimates of parameter uncertain-
ties and standard methods for model adjustment and improvement (e.g.,
Protassov et al. 2002).

In the first levels of the model, we describe the large-scale structure itself.
This could be done in a variety of ways (e.g, using Voroni tessellations as
described by van de Weygaert and Icke, this volume). As a first step, three
dimensional data visualization techniques (e.g., Cook, this volume) should
improve our understanding of the structure and perhaps answer questions
such as whether nodes are connected by filaments or walls (Strauss, this
volume). We use standard statistical models that aim to describe two di-
mensional slices and projections of the galactic distribution.

LEVEL 1: Nodes and Filaments. We might model the nodes as a three
dimensional spatially inhomogeneous Poisson process, the nodes be-
coming more sparse with distance. Given the node locations, filaments
connect pairs of nodes with the probability of a connecting filament
decreasing as the distance between nodes increases.

LEVEL 2: Galactic Locations Along Filaments. Galaxies are placed along
the filaments according to a second inhomogeneous Poisson process
with intensity increasing with proximity to the nodes.

LEVEL 3: Distance and Direction from Filaments. Given the location along
the filament the center of the galaxies are distributed according to a
bivariate Gaussian or Lorentzian distribution.
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Additional modeling of the distribution of galaxy type or other galactic
specifications can easily be added to such a model.

The final two levels of the model account for the data collection process.

LEVEL 4: Stochastic Censoring of Data. The likelihood that a particular
galaxy is observed depends on its distance, direction (e.g., relative
to our own galaxy), and magnitude as well as observation patterns.
Such censoring can be modeled to account for the missing data.

LEVEL 5: Errors in Variables. The distance to galaxies is generally mea-
sured with error bars which can easily be taken into account by such
a model. If the distance is not observed (i.e., the spectrum is not
observed/analyzed) the observed direction can still be accounted for
by such a model.

Such a hierarchical model can be fit in a Bayesian paradigm via Markov
chain Monte Carlo. Although this would be a demanding computational
task the rewards could be great. Typically such complex systems are mod-
eled using computer simulations which try to mimic patterns in the ob-
served data. Unfortunately, error bars and model improvement techniques
are not generally forthcoming. Fitting a model to the data in Bayesian
setting yields not only (model-dependent) error bars on fitted parameters
but also ready methods to check the model which offer advice as to how to
improve the model which can then be refitted and rechecked.
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Challenges for Cluster Analysis
in a Virtual Observatory

S. G. Djorgovski1, R. Brunner, A. Mahabal,
R. Williams, R. Granat and P. Stolorz

ABSTRACT There has been an unprecedented and continuing growth in
the volume, quality, and complexity of astronomical data sets over the past
few years, mainly through large digital sky surveys. Virtual Observatory
(VO) concept represents a scientific and technological framework needed
to cope with this data flood. We review some of the applied statistics and
computing challenges posed by the analysis of large and complex data sets
expected in the VO-based research. The challenges are driven both by the
size and the complexity of the data sets (billions of data vectors in pa-
rameter spaces of tens or hundreds of dimensions), by the heterogeneity of
the data and measurement errors, the selection effects and censored data,
and by the intrinsic clustering properties (functional form, topology) of the
data distribution in the parameter space of observed attributes.
Examples of scientific questions one may wish to address include: objective
determination of the numbers of object classes present in the data, and the
membership probabilities for each source; searches for unusual, rare, or even
new types of objects and phenomena; discovery of physically interesting
multivariate correlations which may be present in some of the clusters; etc.
This paper is followed by a commentary by statistician Dianne Cook.

9.1 Towards a Virtual Observatory

Observational astronomy is undergoing a paradigm shift. This revolution-
ary change is driven by the enormous technological advances in telescopes
and detectors (e.g., large digital arrays), the exponential increase in com-
puting capabilities, and the fundamental changes in the observing strategies
used to gather the data. In the past, the usual mode of observational astron-
omy was that of a single astronomer or small group performing observations
of a small number of objects (from single objects and up to some hundreds
of objects). This is now changing: large digital sky surveys over a range of
wavelengths, from radio to x-rays, from space and ground are becoming the

1Palomar Observatory, Caltech
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dominant source of observational data. Data-mining of the resulting digital
sky archives is becoming a major venue of the observational astronomy. The
optimal use of the large ground-based telescopes and space observatories is
now as a follow-up of sources selected from large sky surveys. This trend is
bound to continue, as the data volumes and data complexity increase. The
very nature of the observational astronomy is thus changing rapidly. See,
e.g., Szalay & Gray (2001) for a review.

The existing surveys already contain many Terabytes of data, from which
catalogs of many millions, or even billions of objects are extracted. For each
object, some tens or even hundred parameters are measured, most (but
not all) with quantifiable errors. Forthcoming projects and sky surveys are
expected to deliver data volumes measured in Petabytes. For example, a
major new area for exploration will be in the time domain, with a number
of ongoing or forthcoming surveys aiming to map large portions of the sky
in a repeated fashion, down to very faint flux levels. These synoptic surveys
will be generating Petabytes of data, and they will open a whole new field
of searches for variable astronomical objects.

This richness of information is hard to translate into a derived knowl-
edge and physical understanding. Questions abound: How do we explore
datasets comprising hundreds of millions or billions of objects each with
dozens of attributes? How do we objectively classify the detected sources
to isolate subpopulations of astrophysical interest? How do we identify cor-
relations and anomalies within the data sets? How do we use the data
to constrain astrophysical interpretation, which often involve highly non-
linear parametric functions derived from fields such as physical cosmology,
stellar structure, or atomic physics? How do we match these complex data
sets with equally complex numerical simulations, and how do we evaluate
the performance of such models?

The key task is now to enable an efficient and complete scientific ex-
ploitation of these enormous data sets. The problems we face are inherently
statistical in nature. Similar situations exist in many other fields of science
and applied technology today. This poses many technical and conceptual
challenges, but it may lead to a whole new methodology of doing science
in the information-rich era.

In order to cope with this data flood, the astronomical community started
a grassroots initiative, the National (and ultimately Global) Virtual Ob-
servatory (NVO). The NVO would federate numerous large digital sky
archives, provide the information infrastructure and standards for inges-
tion of new data and surveys, and develop the computational and analysis
tools with which to explore these vast data volumes. Recognising the ur-
gent need, the National Academy of Science Astronomy and Astrophysics
Survey Committee, in its new decadal survey Astronomy and Astrophysics
in the New Millennium (McKee, Taylor, et al. 2001) recommends, as a first
priority, the establishment of a National Virtual Observatory (NVO).

The NVO would provide new opportunities for scientific discovery that
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were unimaginable just a few years ago. Entirely new and unexpected scien-
tific results of major significance will emerge from the combined use of the
resulting datasets, science that would not be possible from such sets used
singly. In the words of a “white paper” 2 prepared by an interim steering
group the NVO will serve as an engine of discovery for astronomy.

Implementation of the NVO involves significant technical challenges on
many fronts, and in particular the data analysis. Whereas some of the
NVO science would be done in the image (pixels) domain, and some in the
interaction between the image and catalog domains, it is anticipated that
much of the science (at least initially) will be done purely in the catalog
domain of individual or federated sky surveys. A typical data set may be
a catalog of ∼ 108− 109 sources with ∼ 102 measured attributes each, i.e.,
a set of ∼ 109 data vectors in a ∼ 100-dimensional parameter space.

Dealing with the analysis of such data sets is obviously an inherently
multivariate statistical problem. Complications abound: parameter corre-
lations will exist; observational limits (selection effects) will generally have
a complex geometry; for some of the sources some of the measured param-
eters may be only upper or lower limits; the measurement errors may vary
widely; some of the parameters will be continuous, and some discrete, or
even without a well-defined metric; etc. In other words, analysis of the NVO
data sets will present many challenging problems for multivariate statistics,
and the resulting astronomical conclusions will be strongly affected by the
correct application of statistical tools.

We review some important statistical challenges raised by the NVO.
These include the classification and extraction of desired subpopulations,
understanding the relationships between observed properties within these
subpopulations, and linking the astronomical data to astrophysical models.
This may require a generation of new methods in data mining, multivariate
clustering and analysis, nonparametric and semiparametric estimation and
model and hypothesis testing.

9.2 Clustering analysis challenges in a VO

The exploration of observable parameter spaces, created by combining of
large sky surveys over a range of wavelengths, will be one of the chief scien-
tific purposes of a VO. This includes an exciting possibility of discovering
some previously unknown types of astronomical objects or phenomena (see
Djorgovski et al. 2001a, 2001b, 2001c for reviews).

A complete observable parameter space axes include quantities such as
the object coordinates, velocities or redshifts, sometimes proper motions,

2Available at http://www.arXiv.org/abs/astro-ph/0108115, and also published in
Brunner, Djorgovski, & Szalay (2001), p. 353.
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fluxes at a range of wavelength (i.e., spectra; imaging in a set of band-
passes can be considered a form of a very low resolution spectroscopy), sur-
face brightness and image morphological parameters for resolved sources,
variability (or, more broadly, power spectra) over a range of time scales,
etc. Any given sky survey samples only a small portion of this grand
observable parameter space, and is subject to its own selection and mea-
surement limits, e.g., limiting fluxes, surface brightness, angular resolution,
spectroscopic resolution, sampling and baseline for variability if multiple
epoch observations are obtained, etc.

A major exploration technique envisioned for the NVO will be unsu-
pervised clustering of data vectors in some parameter space of observed
properties of detected sources. Aside from the computational challenges
with large numbers of data vectors and a large dimensionality, this poses
some highly non-trivial statistical problems. The problems are driven not
just by the size of the data sets, but mainly (in the statistical context) by
the heterogeneity and intrinsic complexity of the data.

A typical VO data set may consist of ∼ 109 data vectors in ∼ 102 di-
mensions. These are measured source attributes, including positions, fluxes
in different bandpasses, morphology quantified through different moments
of light distribution and other suitably constructed parameters, etc. Some
of the parameters would be primary measurements, and others may be de-
rived attributes, such as the star-galaxy classification, some may be “flags”
rather than numbers, some would have error-bars associated with them, and
some would not, and the error-bars may be functions of some of the pa-
rameters, e.g., fluxes. Some measurements would be present only as upper
or lower limits. Some would be affected by “glitches” due to instrumental
problems, and if a data set consists of a merger of two or more surveys, e.g.,
cross-matched optical, infrared, and radio (and this would be a common
scenario within a VO), then some sources would be misidentified, and thus
represent erroneous combinations of subsets of data dimensions. Surveys
would be also affected by selection effects operating explicitly on some pa-
rameters (e.g., coordinate ranges, flux limits, etc.), but also mapping onto
some other data dimensions through correlations of these properties; some
selection effects may be unknown.

Physically, the data set may consist of a number of distinct classes of ob-
jects, such as stars (including a range of spectral types), galaxies (including
a range of Hubble types or morphologies), quasars, etc. Within each ob-
ject class or subclass, some of the physical properties may be correlated,
and some of these correlations may be already known and some as yet un-
known, and their discovery would be an important scientific result by itself.
Some of the correlations may be spurious (e.g., driven by sample selection
effects), or simply uninteresting (e.g., objects brighter in one optical band-
pass will tend to be brighter in another optical bandpass). Correlations of
independently measured physical parameters represent a reduction of the
statistical dimensionality in a multidimensional data parameter space, and
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their discovery may be an integral part of the clustering analysis.
Typical scientific questions posed may be:

• How many statistically distinct classes of objects are in this data
set, and which objects are to be assigned to which class, along with
association probabilities?

• Are there any previously unknown classes of objects, i.e., statisti-
cally significant “clouds” in the parameter space distinct from the
“common” types of objects (e.g., normal stars or galaxies)? An ap-
plication may be separating quasars from otherwise morphologically
indistinguishable normal stars.

• Are there rare outliers, i.e., individual objects with a low probability
of belonging to any one of the dominant classes? Examples may in-
clude known, bur relatively rare types of objects such as high-redshift
quasars, brown dwarfs, etc., but also previously unknown types of ob-
jects; finding any such would be a significant discovery.

• Are there interesting (in general, multivariate) correlations among
the properties of objects in any given class, and what are the optimal
analytical expressions of such correlations? An example may be the
“Fundamental Plane” of elliptical galaxies, a set of bivariate correla-
tions obeyed by this Hubble type, but no other types of galaxies (see,
e.g., Djorgovski 1992, 1993, and Djorgovski et al. 1995, for reviews).

The complications include the following:

1. Construction of these complex data sets, especially if multiple sky
surveys, catalogs, or archives are being federated (an essential VO
activity) will inevitably be imperfect, posing quality control prob-
lems which must be discovered and solved first, before the scientific
exploration starts. Sources may be mismatched, there will be some
gross errors or instrumental glitches within the data, subtle system-
atic calibration errors may affect pieces of the large data sets, etc.

2. The object classes form multivariate “clouds” in the parameter space,
but these clouds in general need not be Gaussian: some may have a
power-law or exponential tails in some or all of the dimensions, and
some may have sharp cutoffs, etc.

3. The clouds may be well separated in some of the dimensions, but
not in others. How can we objectively decide which dimensions are
irrelevant, and which ones are useful?

4. The topology of clustering may not be simple: there may be clusters
within clusters, holes in the data distribution (negative clusters?),
multiply-connected clusters, etc.
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5. All of this has to take into the account the heterogeneity of measure-
ments, censored data, incompleteness, etc.

The majority of the technical and methodological challenges in this quest
derive from the expected heterogeneity and intrinsic complexity of the data,
including treatment of upper an lower limits, missing data, selection effects
and data censoring, etc. These issues affect the proper statistical description
of the data, which then must be reflected in the clustering algorithms.

Related to this are the problems arising from the data modeling. The
commonly used mixture-modeling assumption of clusters represented as
multivariate Gaussian clouds is rarely a good descriptor of the reality.
Clusters may have non-Gaussian shapes, e.g., exponential or power-law
tails, asymmetries, sharp cutoffs, etc. This becomes a critical issue in eval-
uating the membership probabilities in partly overlapping clusters, or in
a search for outliers (anomalous events) in the tails of the distributions.
In general, the proper functional forms for the modeling of clusters are
not known a priori, and must be discovered from the data. Applications
of non-parametric techniques may be essential here. A related, very inter-
esting problem is posed by the topology of clustering, with a possibility
of multiply-connected clusters or gaps in the data (i.e., negative clusters
embedded within the positive ones), hierarchical or multi-scale clustering
(i.e., clusters embedded within the clusters) etc.

The clusters may be well separated in some of the dimensions, but not
in others. How can we objectively decide which dimensions are irrelevant,
and which ones are useful? An automated and objective rejection of the
“useless” dimensions, perhaps through some statistically defined entropy
criterion, could greatly simplify and speed up the clustering analysis.

Once the data are partitioned into distinct clusters, their analysis and
interpretation starts. One question is, are there interesting (in general, mul-
tivariate) correlations among the properties of objects in any given cluster?
Such correlations may reflect interesting new astrophysics (e.g., the stellar
main sequence, the Tully-Fisher and Fundamental Plane correlations for
galaxies, etc.), but at the same time complicate the statistical interpreta-
tion of the clustering. They would be in general restricted to a subset of
the dimensions, and not present in the others. How do we identify all of
the interesting correlations, and discriminate against the “uninteresting”
observables?

Here we describe some of our experiments to date, and outline some
possible avenues for future exploration.

9.3 Examples and some possible approaches

Separation of the data into different types of objects, be it known or un-
known in nature, can be approached as a problem in automated classifi-
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cation or clustering analysis. This is a part of a more general and rapidly
growing field of Data Mining (DM) and Knowledge Discovery in Databases
(KDD). We see here great opportunities for collaborations between as-
tronomers and computer scientists and statisticians. For an overview of
some of the issues and methods, see, e.g., Fayyad et al. (1996b) .

If applied in the catalog domain, the data can be viewed as a set of n
points or vectors in an m-dimensional parameter space, where n can be in
the range of many millions or even billions, andm in the range of a few tens
to hundreds. The data may be clustered in k statistically distinct classes,
which could be modeled, e.g., as multivariate Gaussian clouds, and which
hopefully correspond to physically distinct classes of objects (e.g., stars,
galaxies, quasars, etc.). This is schematically illustrated in Figure 1.

If the number of object classes k is known (or declared) a priori, and
training data set of representative objects is available, the problem reduces
to supervised classification, where tools such as Artificial Neural Nets or
Decision Trees can be used. This is now commonly done for star-galaxy
separation in sky surveys (e.g., Odewahn et al. 1992, or Weir et al. 1995).
Searches for known types of objects with predictable signatures in the pa-
rameter space (e.g., high-z quasars) can be also cast in this way.

However, a more interesting and less biased approach is where the num-
ber of classes k is not known, and it has to be derived from the data
themselves. The problem of unsupervised classification is to determine this
number in some objective and statistically sound manner, and then to as-
sociate class membership probabilities for all objects. Majority of objects
may fall into a small number of classes, e.g., normal stars or galaxies.
What is of special interest are objects which belong to much less populated
clusters, or even individual outliers with low membership probabilities for
any major class. Some initial experiments with unsupervised clustering al-
gorithms in the astronomical context include, e.g., Goebel et al. (1989),
Weir et al. (1995), de Carvalho et al. (1995), and Yoo et al. (1996), but a
full-scale application to major digital sky surveys yet remains to be done.
Intriguing applications which addressed the issue of how many statistically
distinct classes of GRBs are there (Mukherjee et al. 1998, Rogier et al. 2000,
Hakkila et al. 2000).

In many situations, scientifically informed input is needed in designing
the clustering experiments. Some observed parameters may have a highly
significant, large dynamical range, dominate the sample variance, and nat-
urally invite division into clusters along the corresponding parameter axes;
yet they may be completely irrelevant or uninteresting scientifically. For
example, if one wishes to classify sources of the basic of their broad-band
spectral energy distributions (or to search for objects with unusual spec-
tra), the mean flux itself is not important, as it mainly reflects the distance;
coordinates on the sky may be unimportant (unless one specifically looks
for a spatial clustering); etc. Thus, a clustering algorithm may divide the
data set along one or more of such axes, and completely miss the really
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FIGURE 9.1. A schematic illustration of the problem of clustering analysis in
some parameter space. In this example, there are 3 dimensions, p1, p2, and p3
(e.g., some flux ratios or morphological parameters), and most of the data points
belong to 3 major clusters, denoted dc1, dc2, and dc3 (e.g., stars, galaxies, and or-
dinary quasars). One approach is to isolate these major classes of objects for some
statistical studies, e.g., stars as probes of the Galactic structure, or galaxies as
probes of the large scale structure of the universe, and filter out the “anomalous”
objects. A complementary view is to look for other, less populated, but statis-
tically significant, distinct clusters of data points, or even individual outliers, as
possible examples of rare or unknown types of objects. Another possibility is to
look for holes (negative clusters) within the major clusters, as they may point to
some interesting physical phenomenon – or to a problem with the data.
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scientifically interesting partitions, e.g., according to the colors of objects.
One method we have been experimenting with (applied on the various

data sets derived from DPOSS) is the Expectation Maximisation (EM)
technique, with the Monte Carlo Cross Validation (MCCV) as the way of
determining the maximum likelihood number of the clusters.

This may be a computationally very expensive problem. For the simple
K-means algorithm, the computing cost scales as K × N × I × D, where
K is the number of clusters chosen a priori, N is the number of data vectors
(detected objects), I is the number of iterations, and D is the number of
data dimensions (measured parameters per object). For the more powerful
Expectation Maximisation technique, the cost scales as K × N × I × D2,
and again one must decide a priori on the value of K. If this number has
to be determined intrinsically from the data, e.g., with the Monte Carlo
Cross Validation method, the cost scales as M × K2

max × N × I × D2

where M is the number of Monte Carlo trials/partitions, and Kmax is the
maximum number of clusters tried. Even with the typical numbers for the
existing large digital sky surveys (N ∼ 108 − 109, D ∼ 10 − 100) this
is already reaching in the realm of Terascale computing, especially in the
context of an interactive and iterative application of these analysis tools.
Development of faster and smarter algorithms is clearly a priority.

One technique which can simplify the problem is the multi-resolution
clustering. In this regime, expensive parameters to estimate, such as the
number of classes and the initial broad clustering are quickly estimated
using traditional techniques, and then one could proceed to refine the
model locally and globally by iterating until some objective statistical
(e.g., Bayesian) criterion is satisfied.

One can also use intelligent sampling methods where one forms “proto-
types”of the case vectors and thus reduces the number of cases to process.
Prototypes can be determined from simple algorithms to get a rough esti-
mate, and then refined using more sophisticated techniques. A clustering
algorithm can operate in prototype space. The clusters found can later re-
fined by locally replacing each prototype by its constituent population and
reanalyzing the cluster.

Techniques for dimensionality reduction, including principal component
analysis and others can be used as preprocessing techniques to automati-
cally derive the dimensions that contain most of the relevant information.

9.4 Concluding comments

Given this computational and statistical complexity, blind applications of
the commonly used (commercial or home-brewed) clustering algorithms
could produce some seriously misleading or simply wrong results. The clus-
tering methodology must be robust enough to cope with these problems,
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and the outcome of the analysis must have a solid statistical foundation.
In our experience, design and application of clustering algorithms must

involve close, working collaboration between astronomers and computer
scientists and statisticians. There are too many unspoken assumptions,
historical background knowledge specific to the given discipline, and opaque
jargon; constant communication and interchange of ideas are essential.

The entire issue of discovery and interpretation of multivariate correla-
tions in these massive data sets has not really been addressed so far. Such
correlations may contain essential clues about the physics and the origins
of various types of astronomical objects.

Effective and powerful data visualization, applied in the parameter space
itself, is another essential part of the interactive clustering analysis. Good
visualisation tools are also critical for the interpretation of results, espe-
cially in an iterative environment. While clustering algorithms can assist in
the partitioning of the data space, and can draw the attention to anoma-
lous objects, ultimately a scientist guides the experiment and draws the
conclusions. It is very hard for a human mind to really visualise clustering
or correlations in more than a few dimensions, and yet both interesting
clusters and multivariate correlations with statistical dimensionality > 10
or even higher are likely to exits, and possibly lead to some crucial new
astrophysical insights. Perhaps the right approach would be to have a good
visualisation embedded as a part of an interactive and iterative clustering
analysis.

Another key issue is interoperability and reusability of algorithms and
models in a wide variety of problems posed by a rich data environment
such as federated digital sky surveys in a VO. Implementation of clustering
analysis algorithms must be done with this in mind.

Finally, scientific verification and evaluation, testing, and follow-up on
any of the newly discovered classes of objects, physical clusters discovered
by these methods, and other astrophysical analysis of the results is essential
in order to demonstrate the actual usefulness of these techniques for a VO or
other applications. Clustering analysis can be seen as a prelude to the more
traditional type of astronomical studies, as a way of selecting of interesting
objects of samples, and hopefully it can lead to advances in statistics and
applied computer science as well.
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Commentary by Dianne Cook3

This paper provides a detailed description of the development of a vir-
tual observatory. The objective is to build an archive that coordinates large
quantities of digital sky survey data from a variety of sources, and ul-
timately make new discoveries that improve our society’s understanding
about the universe.

The paper raises several questions from the perspective of a non-astron-
omer: Is there any data currently available? Where should one look to
monitor the activity of the National Virtual Observatory?

A main focus of the paper is outlining the tasks for cluster analysis in
extracting information from the virtual observatory data. My commentary
focused on this aspect of the paper.

As it is commonly practiced, cluster analysis is a fuzzy science, that is of-
ten thought to magically extract structure. Cluster analysis is a collection of
algorithms that group observations into similarity groups. All depend on an
interpoint (intercluster) distance metric that defines the proximity of two
observations (clusters). The way observations are then grouped together
varies from algorithm to algorithm: hierarchical methods work sequentially
through from closest neighbors to most distant; k-means requires an initial
choice of k and then iteratively assigns observations to the nearest mean,
and then recalculates the means; model-based hierarchical clustering over-
lays a probability distribution on the data and then estimates parameters
to the distribution. Many types of cross-validation methods are available
to ascertain the “best” results. But ultimately they may all produce inade-
quate results. The issue underlying the fuzziness is that the term “cluster”
is itself a fuzzy concept. Ideally the analyst has a precise definition of “clus-
ter”. In practice, this information needs to be extracted from the data too,
and the analyst begins a cluster analysis with little idea of what is being
sought.

3Department of Statistics, Iowa State University



9. Cluster Analysis in a Virtual Observatory 139

FIGURE 9.2. Schematic diagram of the crabs data.

Here is a simple example of the complications with clustering using Aus-
tralian crabs data. There are 5 variables and 200 observations, and 4 real
clusters in the data corresponding to males and females in two species. The
5 variables are strongly linearly dependent, and the cluster structure lies
parallel to the linear dependency. And the clusters corresponding to the
sexes are joined at the smallest values (Figure 9.2). The cluster structure
can be intuitively modeled using 4 pencils, where pairs of the pencils are
joined at one end, then diverge from each other at the other end. In Fig-
ure 53.1 the top left plot shows a pairwise plot of two variables (CL vs
RW) where the sex separation can be seen. The right plot shows a tour
projection where the 4 cluster can be seen reasonably distinctly, rather
like looking down the “barrels of the pencil clusters”. Assuming that the
variables are standardized to have zero mean and unity variance, virtu-
ally all cluster algorithms will carve data up into clusters along the line
of correlation (bottom left plot). Hence if we were to use cross-validation
or comparison of results between several algorithms we might mistakenly
believe that we have produced a consistent, and useful result. But it can-
not be further from the truth. Now, an astute analyst might expect that
model-based clustering using equal elliptical variance-covariance structure
might extract the 4 real clusters, but alas it also fails (bottom right plot).
The BIC criterion for model-based clustering does indeed suggest equal el-
liptical variance-covariance but the number of cluster is predicted to be 3,
not 4.

This data is a strong candidate for clustering in the principal compo-
nents space. And indeed the results are somewhat better. Figure 9.4 shows
the true groups (left) and the results from hierarchical clustering in the
principal components (right). The sexes of one species of crabs (“x” and
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“+”) gets seriously confused but generally clusters corresponding to the
two species are extracted and the sexes of one species are reasonably well-
extracted. The cluster algorithm was run in the space of the first 3 principal
components. The first 3 principal components capture the variation and
the cluster structure due to the species and sexes quite adequately: the 4
“joined-pencils” shape is visible in the first 3 principal components rather
than the more awkward 5D space of the original data. This somewhat un-
usual.

FIGURE 9.3. Clustering difficulties in even a simple data set.

In general, reducing data to a small number of principal components can
throw the cluster structure to the wind. Often the cluster structure can
be found in the lower principal components. The reason is that principal
components is a linear structure extractor, but cluster structure is often
non-linear. This is an observation made by Donnell et al (1994). So beware
of using principal components analysis as a dimension reduction technique.

Some additional background to clustering with the k-means can be found
in Tarpey et al (1995). In this paper is a careful study of the way the
algorithm works under several data distribution assumptions. A interest-
ing clustering method that is not well-known can be found in Osbourne
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et al (1995). Ultimately good cluster analysis benefits from a heavy use of
graphics and a good subject matter knowledge. We used the software ggobi
(www.ggobi.org) to generate the plots in this paper. GGobi includes tour
methods which help delineate the shape of clusters in high-dimensional Eu-
clidean space. Cook et al (1995) contains another cluster analysis example
on 7D particle physics data. This data lies in a neat geometric shape that
can be extracted using tour methods.

FIGURE 9.4. Clustering in principal components.

In summary, my challenge to astronomers is this: How do you quan-
titatively define what is interesting in astronomical data? When you say
“outlier” what do you mean mathematically? When you say “cluster” what
do you mean mathematically?
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Statistics of Galaxy Clustering

Vicent J. Mart́ınez1 and Enn Saar

ABSTRACT In this introductory talk we will establish connections be-
tween the statistical analysis of galaxy clustering in cosmology and recent
work in mainstream spatial statistics. The lecture will review the meth-
ods of spatial statistics used by both sets of scholars, having in mind the
cross-fertilizing purpose of the meeting series. Special topics will be: de-
scription of the galaxy samples, selection effects and biases, correlation
functions, nearest neighbor distances, void probability functions, Fourier
analysis, and structure statistics.
This paper is followed by a commentary by Rien van de Weygaert.

10.1 Introduction

One of the most important motivations of these series of conferences is to
promote vigorous interaction between statisticians and astronomers. The
organizers merit our admiration for bringing together such a stellar cast of
colleagues from both fields. In this third edition, one of the central subjects
is cosmology, and in particular, statistical analysis of the large-scale struc-
ture in the universe. There is a reason for that — the rapid increase of the
amount and quality of the available observational data on the galaxy dis-
tribution (also on clusters of galaxies and quasars) and on the temperature
fluctuations of the microwave background radiation.

These are the two fossils of the early universe on which cosmology, a sci-
ence driven by observations, relies. Here we will focus on one of them — the
galaxy distribution. First we briefly review the redshift surveys, how they
are built and how to extract statistically analyzable samples from them,
considering selection effects and biases. Most of the statistical analysis of
the galaxy distribution are based on second order methods (correlation
functions and power spectra). We comment them, providing the connection
between statistics and estimators used in cosmology and in spatial statis-
tics. Special attention is devoted to the analysis of clustering in Fourier
space, with new techniques for estimating the power spectrum, which are
becoming increasingly popular in cosmology. We show also the results of

1Observatori Astronòmic, Universitat de València
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applying these second-order methods to recent galaxy redshift surveys.
Fractal analysis has become very popular as a consequence of the scale-

invariance of the galaxy distribution at small scales, reflected in the power-
law shape of the two-point correlation function. We discuss here some of
these methods and the results of their application to the observations,
supporting a gradual transition from a small-scale fractal regime to large-
scale homogeneity. The concept of lacunarity is illustrated with some detail.

We end by briefly reviewing some of the alternative measures of point
statistics and structure functions applied thus far to the galaxy distribu-
tion: void probability functions, counts-in-cells, nearest neighbor distances,
genus, and Minkowski functionals.

10.2 Cosmological datasets

Cosmological datasets differ in several respects from those usually studied
in spatial statistics. The point sets in cosmology (galaxy and cluster sur-
veys) bear the imprint of the observational methods used to obtain them.

The main difference is the systematically variable intensity (mean den-
sity) of cosmological surveys. These surveys are usually magnitude-limited,
meaning that all objects, which are brighter than a pre-determined limit,
are observed in a selected region of the sky. This limit is mainly deter-
mined by the telescope and other instruments used for the program. Ap-
parent magnitude, used to describe the limit, is a logarithmic measure of
the observed radiation flux.

It is usually assumed that galaxies at all distances have the same (uni-
versal) luminosity distribution function. This assumption has been tested
and found to be in satisfying accordance with observations. As the observed
flux from a galaxy is inversely proportional to the square of its distance, we
can see at larger distances only a bright fraction of all galaxies. This leads
directly to the mean density of galaxies that depends on their distance from
us r.

This behaviour is quantified by a selection function φ(r), which is usu-
ally found by estimating first the luminosity distribution of galaxies (the
luminosity function).

One can also select a distance limit, find the minimum luminosity of
a galaxy, which can yet be seen at that distance, and ignore all galaxies
that are less luminous. Such samples are called volume-limited. They are
used for some special studies (typically for counts-in-cells), but the loss of
hard-earned information is enormous. The number of galaxies in volume-
limited samples is several times smaller than in the parent magnitude-
limited samples. This will also increase the shot (discreteness) noise.

In addition to the radial selection function φ(r), galaxy samples also are
frequently subject to angular selection. This is due to our position in the
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Galaxy — we are located in a dusty plane of the Galaxy, and the window in
which we see the Universe, also is dusty. This dust absorbs part of galaxies’
light, and makes the real brightness limit of a survey dependent on the
amount of dust in a particular line-of-sight. This effect has been described
by a φ(b) ∼ (sin b)−1 law (b is the galactic latitude); in reality the dust
absorption in the Galaxy is rather inhomogeneous. There are good maps of
the amount of Galactic dust in the sky, the latest maps have been obtained
using the COBE and IRAS satellite data [Schlegel et al. 1998].

Edge problems, which usually affect estimators in spatial statistics, also
are different for cosmological samples. The decrease of the mean density
towards the sample borders alleviates these problems. Of course, if we se-
lect a volume-limited sample, we select also all these troubles (and larger
shot noise). From the other side, edge effects are made more prominent by
the usual observing strategies, when surveys are conducted in well-defined
regions in the sky. Thus, edge problems are only partly alleviated; maybe
it will pay to taper our samples at the side borders, too?

Some of the cosmological surveys have naturally soft borders. These are
the all-sky surveys; the best known is the IRAS infrared survey, dust is
almost transparent in infrared light. The corresponding redshift survey is
the PSCz survey, which covers about 85% of the sky [Saunders et al. 2000].
A special follow-up survey is in progress to fill in the remaining Galactic
Zone-of-Avoidance region, and meanwhile numerical methods have been
developed to interpolate the structures seen in the survey into the gap
[Schmoldt et al. 1999, Saunders & Ballinger 2000].

Another peculiarity of galaxy surveys is that we can measure exactly only
the direction to the galaxy (its position in the sky), but not its distance.
We measure the radial velocity vr (or redshift z = vr/c, c is the velocity of
light) of a galaxy, which is a sum of the Hubble expansion, proportional to
the distance d, and the dynamical velocity vp of the galaxy, vr = H0d+ vp.
Thus we are differentiating between redshift space, if the distances simply
are determined as d = vr/H0, and real space. The real space positions
of galaxies could be calculated if we exactly knew the peculiar velocities
of galaxies; we do not. The velocity distortions can be severe; well-known
features of redshift space are fingers-of-God, elongated structures that are
caused by a large radial velocity dispersion in massive clusters of galaxies.
The velocity distortions expand a cluster in redshift space in the radial
direction five-ten times.

For large-scale structures the situation is different, redshift distortions
compress them. This is due to the continuing gravitational growth of struc-
tures. These differences can best be seen by comparing the results of nu-
merical simulations, where we know also the real-space situation, in redshift
space and in real space.

The last specific feature of the cosmology datasets is their size. Up to
recent years most of the datasets have been rather small, of the order of
103 objects; exceptions exist, but these are recent. Such a small number of
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points gives a very sparse coverage of three-dimensional survey volumes,
and shot noise has been a severe problem.

This situation is about to change, swinging to the other extreme; the
membership of new redshift surveys already is measured in terms of 105

(160,000 for the 2dF survey, quarter of a million planned) and million-
galaxy surveys are on their way (the Sloan Survey). More information about
these surveys can be found in their Web pages: http://www.mso.anu.edu.au/
2dFGRS/ for the 2dF survey and http://www.sdss.org/ for the Sloan sur-
vey. This huge amount of data will force us to change the statistical meth-
ods we use. Nevertheless, the deepest surveys (e.g., distant galaxy cluster
surveys) will always be sparse, so discovering small signals from shot-noise
dominated data will remain a necessary art.

10.3 Correlation analysis

There are several related quantities that are second-order characteristics
used to quantify clustering of the galaxy distribution in real or redshift
space. The most popular one in cosmology is the two-point correlation
function, ξ(r). The infinitesimal interpretation of this quantity reads as
follows:

dP12 = n̄2[1 + ξ(r)]dV1dV2 (10.1)

is the joint probability that in each one of the two infinitesimal volumes
dV1 and dV2, with separation vector r, lies a galaxy. Here n̄ is the mean
number density (intensity). Assuming that the galaxy distribution is a ho-
mogeneous (invariant under translations) and isotropic (invariant under
rotations) point process, this probability depends only on r = |r|. In spa-
tial statistics, other functions related with ξ(r) are commonly used:

λ2(r) = n̄2ξ(r) + 1, g(r) = 1 + ξ(r), Γ(r) = n̄(ξ(r) + 1), (10.2)

where λ2(r) is the second-order intensity function, g(r) is the pair cor-
relation function, also called the radial distribution function or structure
function, and Γ(r) is the conditional density proposed by Pietronero (1987).

Different estimators of ξ(r) have been proposed so far in the litera-
ture, both in cosmology and in spatial statistics. The main differences
are in correction for edge effects. Comparison of their performance can
be found in several papers [Pons-Bordeŕıa et al. 1999, Kerscher et al. 2000,
Stoyan & Stoyan 2000]. There is clear evidence that ξ(r) is well described
by a power-law at scales 0.1 ≤ r ≤ 10 h−1 Mpc where h is the Hubble
constant in units of 100 km s−1 Mpc−1:

ξ(r) =
(
r

r0

)−γ

,
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with γ � 1.8 and r0 � 5.4 h−1 Mpc. This scaling behavior is one of the rea-
sons that have lead some astronomers to describe the galaxy distribution as
fractal. A power-law fit for g(r) ∝ r3−D2 permits to define the correlation
dimension D2. The extent of the fractal regime is still a matter of debate in
cosmology, but it seems clear that the available data on redshift surveys in-
dicate a gradual transition to homogeneity for scales larger than 15–20 h−1

Mpc [Mart́ınez 1999]. Moreover, in a fractal point distribution, the corre-
lation length r0 increases with the radius of the sample because the mean
density decreases [Pietronero 1987]. This simple prediction of the fractal
interpretation is not supported by the data, instead r0 remains constant
for volume-limited samples with increasing depth [Mart́ınez et al. 2001].

Several versions of the volume integral of the correlation function are also
frequently used in the analysis of galaxy clustering. The most extended one
in spatial statistics is the so-called Ripley K-function

K(r) =
∫ r

0

4πs2(1 + ξ(s))ds (10.3)

although in cosmology it is more frequent to use an expression which pro-
vides directly the average number of neighbors an arbitrarily chosen galaxy
has within a distance r, N(< r) = n̄K(r) or the average conditional density

Γ∗(r) =
3
r3

∫ r

0

Γ(s)s2ds

Again a whole collection of estimators are used to properly evaluate these
quantities. Pietronero and coworkers recommend to use only minus–esti-
mators to avoid any assumption regarding the homogeneity of the process.
In these estimators, averages of the number of neighbors within a given dis-
tance are taken only considering as centers these galaxies whose distances
to the border are larger than r. However, caution has to be exercised with
this procedure, because at large scales only a small number of centers re-
main, and thus the variance of the estimator increases.

Integral quantities are less noisy than the corresponding differential ex-
pressions, but obviously they do contain less information on the clustering
process due the fact that values of K(r1) and K(r2) for two different scales
r1 and r2 are more strongly correlated than values of ξ(r1) and ξ(r2). Scal-
ing of N(< r) ∝ rD2 provides a smoother estimation of the correlation
dimension. If scaling is detected for partition sums defined by the moments
of order q of the number of neighbors

Z(q, r) =
1
N

N∑
i=1

ni(r)q−1 ∝ rDq/(q−1),

the exponents Dq are the so-called generalized or multifractal dimensions
[Mart́ınez et al. 1990]. Note that for q = 2, Z(2, r) is an estimator of
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FIGURE 10.1. Comparison of a Las Campanas survey slice (upper left panel)
with the Rayleigh-Lévy flight model (upper right panel). The fractal dimensions
of both distributions coincide, as shown by the ln M–ln R curves in the lower left
panel, but the lacunarity curves (in the lower right panel) differ considerably.
The solid lines describe the galaxy distribution, dotted lines – the model results.
From (Mart́ınez & Saar 2002).

N(< r) and therefore Dq for q = 2 is simply the correlation dimension.
If different kinds of cosmic objects are identified as peaks of the contin-
uous matter density field at different thresholds, we can study the corre-
lation dimension associated to each kind of object. The multiscaling ap-
proach [Jensen et al. 1991] associated to the multifractal formalism pro-
vides a unified framework to analyze this variation. It has been shown
[Mart́ınez et al. 1995] that the value of D2 corresponding to rich galaxy
clusters (high peaks of the density field) is smaller than the value corre-
sponding to galaxies (within the same scale range) as prescribed in the
multiscaling approach.

Finally we want to consider the role of lacunarity in the description
of the galaxy clustering [Mart́ınez & Saar 2002]. In Fig. 10.1, we show the
space distribution of galaxies within one slice of the Las Campanas redshift
survey, together with a fractal pattern generated by means of a Rayleigh-
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Lévy flight [Mandelbrot 1982]. Both have the same mass-radius dimension,
defined as the exponent of the power-law that fits the variation of mass
within concentric spheres centered at the observer position.

M(R) = FRDM . (10.4)

The best fitted value for both point distributions is DM � 1.6 as shown
in the left bottom panel of Fig. 10.1. The different appearance of both
point distributions is a consequence of the different degree of lacunarity.
Blumenfeld & Mandelbrot (1997) have proposed to quantify this effect by
measuring the variability of the prefactor F in Eq. 10.4,

Φ =
E{(F − F̄ )2}

F̄ 2

The result of applying this lacunarity measure is shown in the right bottom
panel of Fig. 10.1. The visual differences between the point distributions
are now well reflected in this curve.

10.4 Power spectra

The current statistical model for the main cosmological fields (density, ve-
locity, gravitational potential) is the Gaussian random field. This field is
determined either by its correlation function or by its spectral density, and
one of the main goals of spatial statistics in cosmology is to estimate those
two functions.

In recent years the power spectrum has attracted more attention than
the correlation function. There are at least two reasons for that — the
power spectrum is more intuitive physically, separating processes on differ-
ent scales, and the model predictions are made in terms of power spectra.
Statistically, the advantage is that the power spectrum amplitudes for dif-
ferent wavenumbers are statistically orthogonal:

E
{
δ̃(k)δ̃�(k′)

}
= (2π)3δD(k− k′)P (k).

Here δ̃(k) is the Fourier amplitude of the overdensity field δ = (ρ−ρ̄)/ρ̄ at a
wavenumber k, ρ is the matter density, a star denotes complex conjugation,
E{} denotes expectation values over realizations of the random field, and
δD(x) is the three-dimensional Dirac delta function. The power spectrum
P (k) is the Fourier transform of the correlation function ξ(r) of the field.

Estimation of power spectra from observations is a rather difficult task.
Up to now the problem has been in the scarcity of data; in the near future
there will be the opposite problem of managing huge data sets. The de-
velopment of statistical techniques here has been motivated largely by the
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analysis of CMB power spectra, where better data were obtained first, and
has been parallel to that recently.

The first methods developed to estimate the power spectra were direct
methods — a suitable statistic was chosen and determined from observa-
tions. A good reference is Feldman et al. (1994).

The observed samples can be modeled by an inhomogeneous point pro-
cess (a Gaussian Cox process) of number density n(x):

n(x) =
∑

i

δD(x− xi),

where δD(x) is the Dirac delta-function. As galaxy samples frequently have
systematic density trends caused by selection effects, we have to write the
estimator of the density contrast in a sample as

D(x) =
∑

i

δD(x− xi)
n̄(xi)

− 1,

where n̄(x) ∼ ρ̄(x) is the selection function expressed in the number density
of objects.

The estimator for a Fourier amplitude (for a finite set of frequencies ki)
is

F (ki) =
∑

j

ψ(xj)
n̄(xj)

eiki·x − ψ̃(ki),

where ψ(x) is a weight function that can be selected at will. The raw
estimator for the spectrum is

PR(ki) = F (ki)F �(ki),

and its expectation value

E
{
〈|F (ki)|2〉

}
=
∫
G(ki − k′)P (k′)

d3k′

(2π)3
+
∫

V

ψ2(x)
n̄(x)

d3x,

where G(k) = |ψ̃(k)|2 is the window function that also depends on the
geometry of the sample volume. Symbolically, we can get the estimate of
the power spectra P̂ by inverting the integral equation

G⊗ P̂ = PR −N,

where ⊗ denotes convolution, PR is the raw estimate of power, and N is
the (constant) shot noise term.

In general, we have to deconvolve the noise-corrected raw power to get
the estimate of the power spectrum. This introduces correlations in the
estimated amplitudes, so these are not statistically orthogonal any more.
A sample of a characteristic spatial size L creates a window function of
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width of ∆k ≈ 1/L, correlating estimates of spectra at that wavenumber
interval.

As the cosmological spectra are usually assumed to be isotropic, the
standard method to estimate the spectrum involves an additional step of
averaging the estimates P̂ (k) over a spherical shell k ∈ [ki, ki+1] of thick-
ness ki+1 − ki > ∆k = 1/L in wavenumber space. The minimum-variance
requirement gives the FKP [Feldman et al. 1994] weight function:

ψ(x) ∼ n̄(x)
1 + n̄(x)P (k)

,

and the variance is
σ2

P (k)
P 2

R(k)
≈ 2
N ,

where N is the number of coherence volumes in the shell. The number
of independent volumes is twice as small (the density field is real). The
coherence volume is Vc(k) ≈ (∆k)3 ≈ 1/L3 ≈ 1/V .

As the data sets get large, straight application of direct methods (espe-
cially the error analysis) becomes difficult. There are different recipes that
have been developed with the future data sets in mind. A good review of
these methods is given in Tegmark et al. (1998).

The deeper the galaxy sample, the smaller the coherence volume, the
larger the spectral resolution and the larger the wavenumber interval where
the power spectrum can be estimated. The deepest redshift surveys presently
available are the PSCz galaxy redshift survey (15411 redshifts up to about
400h−1 Mpc, see Saunders et al. (2000), the Abell/ACO rich galaxy clus-
ter survey, 637 redshifts up to about 300 h−1 Mpc [Miller & Batuski 2001]),
and the ongoing 2dF galaxy redshift survey (141400 redshifts up to 750h−1

Mpc [Peacock et al. 2001]). The estimates of power spectra for the two lat-
ter samples have been obtained by the direct method [Miller et al. 2001,
Percival et al. 2001]. Fig. 10.2 shows the power spectrum for the 2dF sur-
vey.

The covariance matrix of the power spectrum estimates in Fig. 10.2 was
found from simulations of a matching Gaussian Cox process in the sample
volume. The main new feature in the spectra, obtained for the new deep
samples, is the emergence of details (wiggles) in the power spectrum. While
sometime ago the main problem was to estimate the mean behaviour of the
spectrum and to find its maximum, now the data enables us to see and study
the details of the spectrum. These details have been interpreted as traces
of acoustic oscillations in the post-recombination power spectrum. Similar
oscillations are predicted for the cosmic microwave background radiation
fluctuation spectrum. The CMB wiggles match the theory rather well, but
the galaxy wiggles do not, yet.

Thus, the measurement of the power spectrum of the galaxy distribution
is passing from the determination of its overall behaviour to the discovery
and interpretation of spectral details.
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FIGURE 10.2. Power spectrum of the 2dF redshift survey, divided by a smooth
model power spectrum. The spectrum is not deconvolved. Error bars are deter-
mined from Gaussian realizations; the dotted lines show the wavenumber region
that is free of the influence of the window function and of the radial velocity
distortions and nonlinear effects. (Courtesy of W. J. Percival and the 2dF galaxy
redshift survey team.)

10.5 Other clustering measures

To end this review we briefly mention other measures used to describe the
galaxy distribution.

10.5.1 Counts-in-cells and void probability function

The probability that a randomly placed sphere of radius r contains ex-
actly N galaxies is denoted by P (N, r). In particular, for N = 0, P (0, r)
is the so-called void probability function, related with the empty space
function or contact distribution function F (r), more frequently used in
the field of spatial statistics, by F (r) = 1 − P (0, r). The moments of the
counts-in-cells probabilities can be related both with the multifractal anal-
ysis [Borgani 1993] and with the higher order n-point correlation functions
[White 1979, Stoyan et al. 1995, Szapudi et al. 1999].

10.5.2 Nearest-neighbor distributions

In spatial statistics, different quantities based on distances to nearest neigh-
bors have been introduced to describe the statistical properties of point
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processes. G(r) is the distribution function of the distance r of a given
point to its nearest neighbor. It is interesting to note that F (r) is just the
distribution function of the distance r from an arbitrarily chosen point in
IR3 — not being an event of the point process — to a point of the point
process (a galaxy in the sample in our case). The quotient

J(r) =
1−G(r)
1− F (r)

introduced by van Lieshout & Baddeley (1996) is a powerful tool to analyze
point patterns and has discriminative power to compare the results of N -
body models for structure formation with the real distribution of galaxies
[Kerscher et al. 1999].

10.5.3 Topology

One very popular tool for analysis of the galaxy distribution is the genus
of the isodensity surfaces. To define this quantity, the point process is
smoothed to obtain a continuous density field, the intensity function, by
means of a kernel estimator for a given bandwidth. Then we consider the
fraction of the volume f which encompasses those regions having density
exceeding a given threshold ρt. The boundary of these regions specifies an
isodensity surface. The genus G(S) of a surface S is basically the num-
ber of holes minus the number of isolated regions plus 1. The genus curve
shows the variation of G(S) with f or ρt for a given window radius of the
kernel function. An analytical expression for this curve is known for Gaus-
sian density fields. It seems that the empirical curve calculated from the
galaxy catalogs can be reasonably well fitted to a Gaussian genus curve
[Canavezes et al. 1998] for window radii varying within a large range of
scales.

10.5.4 Minkowski functionals

A very elegant generalization of the previous analysis to a larger family
of morphological characteristics of the point processes is provided by the
Minkowski functionals. These scalar quantities are useful to study the shape
and connectivity of a union of convex bodies. They are well known in spatial
statistics and have been introduced in cosmology by Mecke et al. (1994).
On a clustered point process, Minkowski functionals are calculated by gen-
eralizing the Boolean grain model into the so-called germ-grain model. This
coverage process consists in considering the sets Ar = ∪N

i=1Br(xi) for the
diagnostic parameter r, where {xi}Ni=1 represents the galaxy positions and
Br(xi) is a ball of radius r centered at point xi. Minkowski functionals
are applied to sets Ar when r varies. In IR3 there are four functionals: the
volume V , the surface area A, the integral mean curvature H , and the
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Euler-Poincaré characteristic χ, related with the genus of the boundary of
Ar by χ = 1−G. Application of Minkowski functionals to the galaxy clus-
ter distribution can be found in Kerscher et al. (1997). These quantities
have been used also as efficient shape finders by Sahni et al. (1998).
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Commentary by Rien van de Weygaert

10.7 Spatial Statistics and the Galaxy Distribution

Following the contribution by V. Mart́ınez providing a nice and extensive
overview of the large variety of statistical methods, along the lines of the
excellent textbook he and E. Saar have just published2 on methods that
have been developed over the years to describe and characterize the evi-
dently nontrivial patterns in the spatial distribution of galaxies, it may be
worthwhile to add some additional characteristic issues on spatial statistics
within a cosmological context. I want to point out two (and a half) issues
– or, rather, details – concerning the study of cosmological point processes.

The first issue concerns the very motivation behind the cosmologists’
diligence in studying the aspects of the spatial clustering of galaxies and
other cosmologically relevant objects. What answer do we expect to extract
from the spatial point distribution mapped out by galaxies ? How can it

2Statistics of the Galaxy Distribution, V. Maŕınez & E. Saar, 2002, Chapman & Hall
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be applied towards discrimation between cosmological theories ? The basic
reason behind this brings us to the ergodic theorem.

The second issue concerns the issue that physical theories in general make
predictions on continuous physical fields. In order to mould the data into
a readily interpretable form the usual practice involves the use of filtering
the discrete distribution of measurements. The choice and technique of the
filtering, however, is critical for this process to produce valid answers.

10.7.1 The Ergodic Theorem

The overriding reason for cosmologists to spend a large degree of attention
on the spatial statistics of the galaxy distribution is that the theory of
structure and galaxy formation provides us with statistical predictions,
ensemble expectations, instead of predictions on the formation of particular
objects. No structure formation theory will ever be able to predict an object
like the Virgo or Coma cluster; they are mere realizations arisen from a
primordial density field which itself is a stochastic sample from a given
stochastic distribution. The latter is what a viable cosmological theory will
be able to predict on the basis of appropriate physical laws and primordial
cosmological processes.

A principal stumbling block for any cosmological theory therefore might
be the fact that we only have one sole realization of the relevant physical
system at hand. Unlike the experimental physicist testing his/her probe
under the conditional circumstances of the laboratory, the cosmologist must
settle for this one realization.

To solve the dilemma of comparing theoretical predictions in terms of
stochastic distributions with the one realization we have at our disposal,
the Universe in which we live, the ERGODIC THEOREM is the necessary
condition. Stating that we may equate Spatial Averages with the Ensemble
Averages predicted by the physical theories as long as we can probe a suffi-
cient amount of representative spatial volumes in the observable Universe
provides us with the means of testing cosmological theories.

In this sense it may be good to realize that it is only with the advent of
major systematic redshift surveys like the Las Campanas redshift survey,
the 2dF redshift survey and the SDSS survey that we can hope to compare
the spatial patterns in the Universe with those of theoretical predictions,
or those of numerical simulations. Uniform sky surveys like the APM sur-
vey (Maddox et al. 1990) did provide us already with sufficient information
to assure ourselves of the condition of having probed a representative vol-
ume of the Universe – on the basis of the depth scaling of the two-point
correlation function – for inferring statistically meaningful measures of the
underlying power spectrum.

On the other hand, the interpretation of the Cosmic Microwave Back-
ground fluctuations on the largest available scales still does pose us with
issues concerning “cosmic variance”.
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2dF redshift survey

FIGURE 10.3. The Delaunay Tesselation Field Estimator reconstruction of the
2dF survey field south. The DTFE reconstruction shows, more clearly than the
galaxy distribution, the coherence of the cosmic foam discretely “sampled” by
the galaxy distribution. Notice the detailed and refined structure which appears
to be specifically strengthened by this fully adaptive method (from Schaap & van
de Weygaert 2002b). Data courtesy: the 2dF consortium.
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10.7.2 Phaedo

Once we have assured ourselves of the sensibility of testing cosmological
theories through statements on the probability of the realizations we find
in nature, we also have to be aware of the limitations of such considerations.
As cosmological theory is often concerned with “Statements of Truth” on
the workings of the Universe, yet we are confined to assessments in terms
of statistics, we should always be aware of possible pitfalls. It will be very
hard to extract information on influences which are not taken into account
in the theories being tested. That is, missing out in possibly significant
parameters discarded from the statistical tests.

In this sense, the statement by Plato (≈ 380 BC) might be a sobering
one for claims too audacious:
“any statement about Truth based on likelihood considerations
cannot be held as decisive” (freely transcribed).

10.7.3 Continuous Cosmological Fields versus Discrete Data
Samples

An important aspect of spatial statistical analyses in cosmology is the
fact that cosmological data quite often concern discretely sampled datasets
while theoretical predictions concern statements on the basis of continuous
physical fields.

The most frequent example is the galaxy distribution itself. It is sup-
posed to reflect an underlying continuous density field. Another example
concerns the measurement of cosmic flow fields, almost exclusively on the
basis determined on the basis of galaxy peculiar velocities. The latter is
then supposed to be a measurement of the continuous matter flow field at
a few (galaxy site) discrete cosmic locations.

Discarding major overriding questions concerning the fact whether the
galaxy distribution may indeed be regarded as a genuine reflection of the
underlying matter field – given the fact that we still lack a convincing
theory of galaxy formation and are therefore condemned to taking into
account a possible “biasing” on the basis of a mere ad-hoc and heuristic
description – we are still posed with the question how to infer objectively
information on a continuous underlying field.

Many approaches base themselves on filtering the measured data onto
some previously defined grid, which then can be processed by often sophis-
ticated procedures yielding well-defined answers. One problem with these
filtering procedures, a well-known issue, is that one usually incurs consid-
erable loss of information through artificially defined filters which do not
adapt to the inherent properties of the discrete point distribution. A telling
example is how isotropically defined filters manage to dilute the signals of
anisotropic features like filaments or walls. Another one is that by lack on
information on inherent spatial scales in the distribution, the filter tends
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to erase signatures of substructures at spatial scales lower than the filter
characteristic scale. This is in particular worrisome once it gets towards dis-
tributions involving a hierarchy of scales. Precisely the latter is supposedly
the case for most popular theories of structure formation.

In this comment I therefore would like to point out the virtues of a
new technique that has been developed by Schaap & Van de Weygaert
(2000), the Delaunay Tessellation Field Estimator (DTFE) of the corre-
sponding spatial point process. Based on the earlier work by Bernardeau
& Van de Weygaert (1996) for reconstruct complete volume-covering and
volume-weighted velocity fields from a set of point-sampled velocities –
which proved to yield a significant improvement in reproducing the statis-
tics of the underlying continuous velocity field – the DTFE reconstructs the
full and cohesive density field of which the discrete galaxy distribution is
supposed to be a sparse sample. Without invoking any artificial and often
structure diluting filter it is able to render both the ANISOTROPIC nature
of the various foam elements as well as the HIERARCHICAL character of
the distribution in full contrast (see Schaap & van de Weygaert 2002 and
in this volume).

The potential promise of the DTFE may be amply appreciated from
its succesful reconstruction of a density field from the galaxy distribution
in the southern part of the 2dF survey (see Figure, data courtesy: 2dF
consortium). Evidently, it manages to bring out any fine structural detail of
the intricate and often tenuous filamentary structures. Notice the frequently
razor-sharp rendition of thin edges surrounding void-like regions. Hence, it
defines a volume-covering density field reconstruction that retains every
structural detail, which will enable us to study in a much improved fashion
the statistical and geometric properties of the foam. Indeed, it even appears
to “clean” the original discrete galaxy distribution map by suppressing its
shot noise contribution.

Bernardeau F., van de Weygaert R., 1996, MNRAS, 279, 693

Mart́ınez V., Saar E., 2002, Statistics of the Galaxy Distribution, Chapman
& Hall

Maddox S.J., Sutherland W.J., Efstathiou G., and Loveday J., 1990, MN-
RAS, 243, 692

Plato, ≈ 380BC, Phaedo, (Penguin version)

Schaap W., van de Weygaert R., 2000, A&A, 363, L29

Schaap W., van de Weygaert R., 2002b, MNRAS, in prep.
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Analyzing Large Data Sets in
Cosmology

Alexander S. Szalay1 and Takahiko
Matsubara

ABSTRACT We describe the issues related to the analysis of the large
scale distribution of galaxies. The emerging huge data sets from wide field
sky surveys pose interesting issues, both statistical and computational. One
needs to reconsider the notion of optimal statistics. We discuss the power
spectrum analysis of wide area galaxy surveys using the Karhunen-Loeve
transform as a case study.

11.1 Introduction

There is a very distinct trend in astronomy today, driven by the develop-
ment in instrumentation, in particular detector size. The result is that the
size of astronomy data is growing exponentially, doubling every year. This
even exceeds the rate of Moore’s law describing the speedup of computer’s
CPUs. This trend is resulting in the emergence of large scale surveys, like
2MASS (Two Micron Sky Survey), SDSS (Sloan Digital Sky Survey) or
2dFGRS (Two Degree Field Galaxy Redshift Survey). Soon there will be
almost all-sky data in more than ten wavebands. These large scale surveys
have another important characteristics: they are done by a single group,
with sound statistical plans and well-controlled systematics.

As a result, the data are becoming increasingly more homogeneous, and
approach a fair sample of the Universe. This trend has brought a lot of
advances in the analysis of the large scale galaxy distribution. Our goal
today is to reach an unheard-of level of accuracy in measuring both the
global cosmological parameters and the shape of the power spectrum of
primordial fluctuations.

These large, homegenous datasets are also changing the way we are ap-
proaching their analysis. Traditionally, statistics in cosmology has been
primarily dealing with how to extract the most information from the small
samples of galaxies we had. This is no longer the case: redshift surveys are

1Department of Physics and Astronomy, Johns Hopkins University
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approaching the 300,000 mark today and will soon exceed a million galaxies,
while angular catalogs today have samples in excess of 50 million galaxies
and are soon approaching 10 billion (the proposed Large-aperture Syn-
optic Survey Telescope, http://www.lssto.org). Whereas the cosmic back-
ground radiation (CMB) observations of the COBE satellite had a few
thousand pixels on the sky, the recently launched Microwave Anisotropy
Probe (MAP, http://map.gsfc.nasa.gov) will have a million and the forth-
coming Planck satellite (http://astro.estec.esa.nl/Planck) will have more
than 10 million. Thus, shot noise and sample size is not an issue any more.
The limiting factor in these data sets are the systematic uncertainties like
photometric zero points, effects of seeing, uniformity of filter, and so forth
(Eisenstein et al. 2001).

The statistical issues related to this are also changing accordingly: it is
increasingly important to find techniques that can be de-sensitized to cer-
tain systematic uncertainties. Many of the traditional statistical techniques
in astronomy have been focusing on ‘optimal’ techniques. It was generally
understood, that these minimized the statistical noise in the result, but
they mey have been quite sensitive to various systematics.

Statistical considerations also often assume infinite computational re-
sources. This was not an issue in the past, when sample sizes were in the
thousands. But, many of these techniques involve matrix diagonalizations
or inversions, with computations scaling as the 3rd power of matrix size,
so that computing costs are a billion times higher for as data samples in-
crease thousand times. Even if the speedup of our computers keeps up with
the growth of our data volumes, it cannot keep of with traditional matrix
calculations. We need to find algorithms which scale more gently. In the
near future, we hypothesize that only algorithms with N logN scaling will
remain feasible.

As the statistical noise is going down, due to the larger samples, another
effect is emerging: ’cosmic variance’. This error term reflects the fact that
our observing position is fixed at the Earth, and at any time we can only
study a fixed – albeit ever increasing – region of the Universe. This provides
an ultimate bound on the accuracy of any astronomical measurement. We
should carefully keep this effect in mind where designing new experiments.

In this paper we will discuss our goals, and the current state-of-the-art
techniques in extracting cosmological information from our large data sets.
In particular, we use the Karhunen-Loeve (KL) transform as a case study,
showing step by step improvements needed to turn an optimal method into
a useful one.
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11.2 Precision Cosmology

Today we are entering the era of precision cosmology. The large new surveys
with their well-defined systematics are key to this transition. There are
many different measurements we can make which each constrain various
combinations of the cosmological parameters. For example, the fluctuations
in the CMB around multipole l values of a few hundred are very sensitive
to the overall curvature of the Universe, determined by both dark matter
and dark energy (de Bernardis et al. 2001, Netterfield et al. 2001).

Due to the expansion of the Universe, we can use redshifts to measure
distances of galaxies. Since galaxies are not at rest in the frame of the
expanding Universe, their motions cause an additional distortion in the
line-of-sight coordinate. This property can be used to study the dynamics
of galaxies, inferring the underlying mass density. Local redshift surveys can
measure the amount of gravitating dark matter, but they are insensitive to
the dark energy. Combining these different measurements (CMB + redshift
surveys), each with their own degeneracy can yield considerably tighter
constraints than either of them.

We know most cosmological parameters to an accuracy of about 10%
or somewhat better today. Soo we will be able to reach the regime of
2-5% relative errors, through both better data but also better statistical
techniques.

11.2.1 The Global Parameters

The relevant parameters include the age of the Universe, t0, the expansion
rate of the Universe, also called as Hubble’s constant H0, the deceleration
parameter q0, the density parameter Ω, and its components, the dark en-
ergy, or cosmological constant ΩΛ, the dark matter Ωm, the baryon fraction
fB, and the curvature Ωk. These are not independent from one another, of
course. Together, they determine the dynamic evolution of the Universe,
assumed to be homogeneous and isotropic, described by a single scale factor
a(t): (

ȧ

a

)2

= H2
0

[
Ωm

a3
+ ΩΛ +

Ωk

a2

]
(11.1)

Today, at t = t0 the three components of the density add up to 1,

Ωm + ΩΛ + Ωk = 1, (11.2)

thus for a Eucledian (flat) Universe Ωm + ΩΛ = 1.
One can use the both dynamics, luminosities and angular sizes of objects

observable at high redshift to constrain the cosmological parameters. Dis-
tant supernovae have been used as standard candles to get the first hints
about a large cosmological constants. The angular size of the Doppler-peaks
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in the CMB fluctuations gave the first conclusive evidence for a flat uni-
verse, using the angular diameter-distance relation. The gravitational infall
manifested in redshift-space distortions of galaxy surveys has been used to
constrain the amount of dark matter.

These all seem to add up to a remarkably consistent picture today: a flat
Universe, with

ΩΛ = 0.65± 0.05, Ωm = 0.35± 0.05. (11.3)

It would be nice to have several independent measurements for the above
quantities.

Recently, new interpretations have emerged about the nature of the
cosmological constant – it appears that there are many possibilities, like
quintessence, that can be the dark energy. Now we are facing the challenge
of coming up with measuremnts and statistical techniques to distinguish
among them.

11.2.2 The Fluctuation Spectrum

There are several parameters used to specify the shape of the fluctua-
tion spectrum. These include: the amplitude σ8, the rms value of the den-
sity fluctuations in a sphere of 8 Mpc radius; the shape parameter Γ; the
redshift-distrotion parameter β; the bias parameter b; and the baryon frac-
tion fB = ΩB/Ωm. Other quantites like the neutrino mass also affect the
shape of the fluctuation spectrum, although in more subtle ways than the
ones above (Seljak and Zaldarriega 1996).

The shape of the fluctuation spectrum is another sensitive measure of the
Big Bang at early times. Galaxy surveys have traditionally measured the
fluctuations over much smaller scales (below 100 Mpc) where the fluctua-
tions are nonlinear, and even the shape of the spectrum has been altered by
gravitational infall and the dynamics of the Universe. The expected spec-
trum on very large spatial scales (over 200 Mpc) is revealed by precision
CMB measurements. COBE showed that the spectrum is scale-invariant,
reflecting the primordial initial conditions, remarkably close to the pre-
dicted Zeldovich-Harrison shape. There are several interesting physical ef-
fects that will leave an imprint on the fluctuations: the scale of the horizon
at recombination, the horizon at matter-radiation equality, and the sound-
horizon — all between 100-200 Mpc (Eisenstein and Hu 1998).

These scales have been rather difficult to measure: they used to be too
small for CMB and too large for redshift surveys. This is rapidly changing
as new higher-resolution CMB experiments are now covering sub-degree
scales, corresponding to less than 100 Mpc comoving, and redshift surveys
like 2dF and SDSS are reaching scales well above 300 Mpc.

We have yet to measure the overall contribution of baryons to the mass
content of the Universe. We expect to find the counterparts of the CMB
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Doppler bumps in galaxy surveys as well, since these are the remnants of
horizon scale fluctuations in the baryons at the time of recombination. The
Universe behaved like a resonant cavity at the time. Due to the dominance
of the dark matter over baryons the amplitude of these fluctuations is sup-
pressed, but with high precision measurements they should be detectable.

A small neutrino mass of a few electron volts is well within the realm of
possibilities. Due to the very large cosmic abundance of relic neutrinos, even
such a small mass would have an observable effect on the shape of the power
spectrum of fluctuations. It is likely that the sensitivity of current redshift
surveys will enable us to make a meaningful test of such a hypothesis.

One can also use large angular catalogs, projections of a 3-dimensional
random field to the sphere of the sky, to measure the projected power
spectrum. This technique has the advantage that dynamical distortions
due to the peculiar motions of the galaxies do not affect the projected
distribution. The first such analyses show a lot of promise.

11.3 Large Redshift Surveys

As mentioned in the introduction, some of the issues related to the sta-
tistical analysis of large redshift surveys, like 2dF (Percival et al. 2001) or
SDSS (York et al. 2000) are quite different from their predecessors with
only a few thousand galaxies. The foremost difference is that shot-noise,
the usual hurdle of the past is irrelevant.

Astronomy is different from laboratory science in that we cannot change
the position of the observer at will. Our experiments in studying the Uni-
verse will never approach an ensemble average, there will always be an
unavoidable cosmic variance in our analysis. By studying a larger region
of the Universe (going deeper and/or wider) can decrease this term, but it
will always be present in our statistics.

The dominant source of uncertainties in large redshift surveys today is in
the systematics, like photometric calibrations, or various instrumental and
natural foregrounds and backgrounds. There are also effects, like nonlinear-
ities on smaller scales or redshift space distortions, which turn an otherwise
homogeneous and isotropic random process into a non-isotropic one. As a
result, it is increasingly important to find statistical techniques which can
reject or incorporate some of these effects into the analysis.

11.3.1 Statistical Techniques Used

The most frequent techniques used in analyzing data about spatial clus-
tering are the two-point correlation functions and various power spectrum
estimators. There is an extensive literature about the relative merits of
each of the techniques. For an infinitely large data set, in principle both
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techniques are equivalent. In practice, however, there are subtle differences:
finite sample size affects the two estimators somewhat differently, edge ef-
fects show up in a slightly different fashion, and practical issues about
computability and hypothesis testing differ for the two techniques.

The most often used estimator for the two point correlations is the LS
estimator (Landy & Szalay 1992),

ξ(r) =
DD − 2DR+RR

RR
(11.4)

which has a minimal variance for a Poisson process. Here DD, DR and RR
describe the respective normalized pair count in a given distance range. For
this estimator, and for correlation functions in general, hypothesis testing
is somewhat cumbersome. If the correlation function is evaluated over a
set of differential distance bins, these values are not independent, and their
correlation matrix depends also on the three and four-point correlation
functions which are less known than the two-point function itself. The
brute-force technique involves the computation of all pairs and binning
them up, so it would scale as O(N2). In terms of modelling systematic
effects, it is very easy to comoute the two-point correlation function between
two points.

Another popular second order statistic is the power spectrum P (k), usu-
ally measured by using the FKP estimator (Feldman et al. 1994). This is
the Fourier-space equivalent of the LS estimator for correlation functions.
It has both advantages and disadvantages over correlation functions. Hy-
pothesis testing is much easier, since in Fourier space the power spectrum
at two different wavenumbers are correlated, but the correlation is com-
pact. It is determined by the ‘window-function’, the Fourier transform of
the sample volume, which is usually very well-understood. For most re-
alistic surveys the window function is rather anisotropic, making angular
averaging of the three-dimensional power spectrum estimator somewhat
complicated. During hypothesis testing one is using the estimated values
of P (k), either directly in 3D Fourier space, or compressed into quadratic
sums binned by bands. Again, the 3rd and 4th order terms are appearing
in the correlation matrix. The effects of systematic errors are much harder
to estimate.

Hypothesis testing is usually performed in a parametric fashion, with the
assumption that the underlying random process is Gaussian. We evaluate
the log likelihood as

lnL(π) = −1
2
xTC−1x− 1

2
ln |C| (11.5)

where x is the data vector, and C is its correlation matrix, dependent on the
parameter vector π. There is a fundamental lower bound on the statistical
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error, given by the Fisher matrix F, defined by

Fαβ =
∫
dP (x)

(
∂L

∂πα

)(
∂L

∂πβ

)
. (11.6)

The famous Cramer-Rao bound states that Var πα ≥ 1/
√
Fαα. The Fisher

matrix can be easily computed. This is a common tool used these days to
evaluate the sensitivity of a given experiment to measure various cosmo-
logical parameters. For more detailed comparisons of these techniques, see
Tegmark et al. (1998).

What would an ideal method be? It would be useful to retain much of
the advantages of the 2-point correlations where the systematics are easy
to model, and those of the power spectra where the modes are only weakly
correlated. Third, we would like to have a hypothesis testing method where
the correlation matrix does not involve 3rd and 4th order quantitites. Inter-
estingly, there is such a method given by the Karhunen-Loeve transform.
In the following subsection we describe the method, and show why does it
provide such a useful framework for the analysis of the galaxy distribution,
and then we discuss some of the detailed issues we had to deal with over
the years to turn this into a practical tool.

One can also argue about parametric and non-parametric techniques, like
using bandpowers to characterize the shape of the fluctuation spectrum. We
would like to postulate, that for the specific case of redshift surveys it is
not possible to have a purely non-parametric analysis. While the shape of
the power spectrum itself can be described in a non-parametric way, the
distortions along the redshift direction are dependent on a physical model
(gravitational infall), thus without an explicit parametrization or ignoring
this effect no analysis is possible.

11.4 Karhunen-Loeve Analysis of Redshift Surveys

The Karhunen-Loève (KL) eigenfunctions (Karhunen 1947, Loève 1948)
provide a basis set in which the distribution of galaxies can be expanded.
These eigenfunctions are computed for a given survey geometry and fidu-
cial model of the power spectrum. For a Gaussian galaxy distribution, the
KL eigenfunctions provide optimal estimates of model parameters, i.e. the
resulting error bars are given by the inverse of the Fisher matrix for the
parameters (Vogeley & Szalay 1996). This is achieved by finding the or-
thonormal set of eigenfunctions that optimally balance the ideal of Fourier
modes with the finite and peculiar geometry and selection function of a
real survey. In this section, we present the formalism for the KL analysis
following the notation of Vogeley & Szalay (1996) who introduced this ap-
proach to galaxy clustering. The KL method has been applied to the Las
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Campanas redshift survey by Matsubara, Szalay & Landy (2000) and to
the PSCz survey by Hamilton, Tegmark & Padmanabhan (2001).

11.4.1 Details of the Method

The distribution of galaxies is pixelized by dividing the survey volume into
a set of N cells. The data vector can then be defined as

di = n
−1/2
i (mi − ni) (11.7)

wheremi is the number of galaxies in the i-th cell, ni = 〈mi〉 is the expected
number of galaxies and the factor n−1/2

i is included to whiten the shot
noise as explained below. The data vector d is expanded into the set of KL
eigenfunctions Ψn as

d =
∑

n

BnΨn. (11.8)

The eigenfunctions Ψn are obtained by solving the eigenvalue problem
(Vogeley & Szalay 1996):

RΨn = λnΨn, (11.9)

where λn = 〈B2
n〉 and

Rij = 〈didj〉 = n
1/2
i n

1/2
j ωij + δij . (11.10)

The second term is the whitened shot noise correlation matrix. The corre-
lation matrix R is computed for a fiducial model using the cell-averaged
angular correlation function

ωij ≡
1

ViVj

∫ ∫
d2θi d

2θj ω(|θi − θj |) , (11.11)

where the integral extends over the i-th and j-th cells, and Vi and Vj are the
corresponding cell volumes. Forming the eigenmodes Ψn requires assuming
an a priori model for ω(θ) but, as discussed by Vogeley & Szalay (1996),
this choice does not bias the estimated parameters below.

The KL eigenmodes defined above satisfy the conditions of orthonormal-
ity Ψn · Ψm = δnm, and statistical orthogonality, 〈BnBm〉 = 〈B 2

n 〉δnm.
Further, they sort the data in decreasing signal-to-noise ratio if they are
ordered by the corresponding eigenvalues (Vogeley & Szalay 1996). What
this means in the measurement of model parameters will be clarified below.

The KL expansion is used to estimate model parameters by computing
the covariance matrix C of the KL coefficients. We use the first Nmode of
the KL eigenmodes and choose to parameterize the model. The theoretical
covariance matrix is then given by

Cmn = 〈BmBn〉model = ΨT
mRmodelΨm . (11.12)
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11.4.2 Advantages of the KL Transform

The KL transform is often called optimal subspace filtering (Therrien 1992)
describing the fact that during the analysis some of the modes are dis-
carded. This does offer distinct advantages. If the measurement is composed
of a signal of interest (gravitational clustering) superposed on various back-
grounds (shot-noise, selection effects, photometric errors, etc.) which have
slightly different statistical properties, the diagonalization of the correla-
tion matrix can potentially segregate these different types of processes into
their own subspaces. If we select our subspace carefully, we can actually
improve on the signal to noise of our analysis.

The biggest advantage is that hypothesis testing is very easy and elegant.
First of all, all KL modes are orthogonal to one another, even if the survey
geometry is extremely anisotropic. Of course, none of the KL modes can be
narrower than the survey window, and they shape is clearly affected by the
survey geometry. The orthogonality of the modes represents a repulsion
between the modes; they cannot get too close, otherwise they could not
be orthogonal. As a result, the KL modes are dense-packed into Fourier-
space, thus optimally representing the information enabled by the survey
geometry.

Secondly, the KL transform is a linear transformation. If we do our like-
lihood testing over the KL-transform of the data, the correlation matrix
involved in the likelihood computation contains only second order quan-
tities. Thus the problems with 3 and 4-point correlation functions do not
apply at all. All these advantages became very apperent when we applied
the KL method to real data.

11.4.3 Redshift Space Distortions

Since galaxies are observed in redshift space, it is essential that we ac-
count for the redshift space distortions. This is straight-forward for surveys
of small angular extent (plane-parallel case, see Kaiser 1987). It is much
harder to derive a similar expression for wide-angle surveys although finally
several alternative formulations, leading to identical results, have been pro-
posed. These expressions involve the redshift-space distortion parameter β
which describes the relation between the large scale gravitational infall and
the overdensity.

The calculation has been extended by Matsubara and Suto (1996) to the
case of higher redshifts. The SDSS survey will have about 100,000 galaxy
redshift for luminous ellipticals, with a typical redshift of about 0.4. At
this distance the effects of cosmological curvature are becoming important
(light propagates along geodesics) and this may result in a distortion of the
transverse coordinates since we can only observe angles. Interstingly, it was
possible to derive a closed expression for the two-point correlation function
in curved spacetime, when the two lines-of-sight are separated at an arbi-
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trary angle. This expression can only be integrated numerically, but luckily
a very accurate numerical fitting formula has been found (Matsubara &
Suto 1996, Matsubara 2001).

The forward computation of the KL transform is very advantageous in
this respect; if we have an analytic expression for the two-point correlation
function in redshift space, the problem is solvable numerically. If we tried
to evaluate the same expression in Fourier space, we get considerably more
complicated expressions. We experimented with different pixel shapes, from
the tophat window to higher order Epanichnikov kernels.

11.4.4 Pixelization

The detailed calculation of the likelihood can be quite demanding. A typical
likelihood fit will involve the computation of the correlation matrix at a few
hundred thousand values of the parameter vector. Our first computations
could easily take several days on relatively fast computers. In the beginning,
we used a contiguous layout of rectangular pixels on the sky and slightly
elongated splits along the radial direction. The calculation of the correlation
matrix was rather complex, since it involved Monte-Carlo integration for
the expectation of ξ(r) over the finite sized cells. For more distant cells, it
was enough to use the correlation function evaluated at the center of the
pair of cells. In order to speed up the calculation for these ‘hard’ pixels, we
have built a lookup table indexed by the relative geometry of the two cells.
This resulted in a 100-fold speedup in our computations.

The next breakthrough came with the introduction of spherical pixels. If
we use pixels with spherical symmetry, the computation of the average of
the correlation function when its two endpoints are drawn from the pixels
can be written as a convolution with the kernel corresponding to the pixel
shape. This means that, by including a multiplicative factor in the power
spectrum, we can directly evaluate the expectation value of the correlation
function. We have created a lookup table for the correlation function with
this kernel, and then used a cubic spline interpolator to get the precise
values. This has yielded another order of magnitude speedup. Now we have
a toolbox where we can easily run a full analysis of a given data set in a
matter of a few hours.

11.4.5 Survey Design and Accuracy

It is interesting to consider how different choices, like the intrinsic cluster-
ing strength and abundance of objects in a cosmological sample, affect the
accuracy of how the cosmological parameters can be determined. In the
maximum-likelihood method, one can easily evaluate the expected param-
eter estimation errors in any sample from the Fisher information matrix.
We have used our KL technique to consider the seven-dimensional Fisher
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FIGURE 11.1. The marginalized concentration ellipses for three cosmological
parameters (Matsubara & Szalay 2002)

matrix for three types of objects in the SDSS survey: main galaxies, lu-
minous red galaxies (LRGs) and quasars. To illustrate the behavior of the
multi-dimensional Fisher matrix, we have used concentration ellipses in
marginalized two-dimensional parameter space.

In a recent paper (Matsubara a& Szalay 2002), we divided the survey
volume into generic boxes in order to simplify the Fisher matrix estimation.
We ignored the correlations between these sub-regions, so the constraints
will improve somewhat if those correlations are properly included. However,
the inversion of the resulting huge matrices can become extremely time-
consuming. The use of the KL transform is a practical strategy in this case.
Such methods can also be used in a targeted data-compression role to find
linear combinations of counts which retain as much information about the
parameters as possible.

The choice of the cell radius is somewhat arbitrary in this work. We
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choose the spherical cell with radius of 10 Mpc for galaxies and LRGs,
which is the border of the linear regime. With a larger cell radius, the
validity of the linear theory increases and the shot noise is reduced. The
cosmic variance, however, increases with cell radius. The parameter estima-
tion is dominated by the highest signal-to-noise modes which are at large
wavelengths, in particular for the case of the LRG sample. The high fre-
quency modes close to pixel scales mostly contain shot noise after the KL
transformation. As a result, we believe our conclusions are not sensitive to
the choice of the cell radius. A fully accurate determination of the optimal
choice of the cell radius depends on the behavior of the nonlinear effects, so
that a comparison with numerical simulation is needed, beyond the scope
of the current work.

We have considered three subsets of the SDSS redshift data, spanning
a wide range of depth, sampling density and intrinsic clustering strength.
We found, that for measuring cosmological parameters in the linear regime
there is a clear optimum, represented by the intermediate-redshift LRG’s.
The low spatial density of quasars is not overcome by their much larger
depth, and the relatively small depth of the main SDSS galaxies is not com-
pensated by their high sampling density – the redshift is not high enough
to test curvature, and their cosmic variance is too large. The LRG sample,
much smaller in numbers than the main sample and much shallower than
the quasars, is an excellent compromise between sampling density and cos-
mological depth. The constraints derived from the LRGs are much tighter
than for the other two samples.

The advantage of these intermediate-redshift objects, and the logic be-
hind this optimum goes beyond the SDSS. In designing future redshift
surveys, it is important to find the right balance between the density of
objects and the survey depth. Their interplay can be quite complex, as we
have shown here. The relation between accuracy and sky coverage is simple
and can be estimated analytically.

11.5 Trends and Computational Issues

The problems we are facing with the exponentially growing astronomy data
are serious. Most statistical techniques labeled as ‘optimal’ are based on
several assumptions which have been correct in the past but not necessarily
in the near future. The assumptions include that the dominant contribution
to the variance is statistical, and that the computational resources are
infinite compared to the cost of computation, and they ignore the cosmic
variance.

Many of these optimal algorithms are based upon maximum likelihood
estimators, and thus they involve inversions of large matrices, an approxi-
mately N3 operation. The increase in CPU power will not be able to keep
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up with such a scaling.
What are the possibilities? We can use clever data structures, borrowed

from computer science to pre-organize our data into a tree-hierarchy, and
having the computational cost dominated by the cost of sorting, anN logN
process. This is the approach taken by A. Moore and collaborators in their
tree-code (see paper by R. Nichol et al. in this volume).

Another approach might be to use approximate statistics, as advocated
by I. Szapudi (2001). In the presence of a cosmic variance term, an alorithm
that spends an enormous amount of CPU time to minimize the statistical
variance to a level substantially below the cosmic variance can be very
wasteful. One can define a cost function that includes all terms in the
variance and a computational cost Q(ε), as a function of the accuracy ε of
the estimator. Minimizing this cost-function C(ε) will give the best possible
results, given the nature of the data and our finite computational resources.

C(ε) = σ2
cosmic + σ2

stat(ε) +Q(ε) (11.13)

We expect to see more and more of these algorithms emerging over the
next few years. One nice example of these these ideas is the fast CMB anal-
ysis developed by Szapudi et al. (2002) which will reduce the computations
for a survey of the size expected from the Planck satellite from 10 million
years to approximately 1 day!

11.6 Summary

Several important new trends are becoming apparent in modern cosmol-
ogy and astrophysics: the amount of data available is doubling every year,
the data are well understood, and much of the low level processing is al-
ready done by the time the data is published. This makes it much easier
to perform additional statistical analyses.

At the same time many of the current outstanding problems in cosmol-
ogy are inherently statistical, either studying the distributions of typical
objects (in parametric or non-parametric fashion) or finding the atypical
objects: extremes and/or outliers. Many of the necessary algorithms are
scaling with powers of N , the size of the data. Today, we find that more
and statistical tools use advanced data structures and/or approximate tech-
niques to achive fast computability.

In the not too distant future, when our data sets are going through
another order of magnitude growth, only N logN algorithms will remain
feasible — the cost of computation will become a very important ingredient
of an optimal algorithm. Such an evolution in our approach to astrostatis-
tics can only be accomplished with an active and intense collaboration of
astronomers, statisticians and computer scientists.
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Loève, M. 1948, Processes Stochastiques et Mouvement Brownien, (Her-
mann, Paris France)

Matsubara, T., Szalay, A. S., Landy, S. D., 2000, ApJ, 535, L1

Matsubara, T. & Suto, Y. 1996, ApJ, 470, L1

Matsubara, T. 2000, ApJ, 535, 1

Matsubara, T. & Szalay, A. S. 2001, ApJ, 556, L67

Matsubara, T. & Szalay, A. S. 2002, ApJ, 556, 67, also astro-ph/0203358

Netterfield, C.B. et al. 2001, submitted to ApJ, astro-ph/0104460

Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Prince-
ton: Princeton University Press)

Percival, W.J., et al. 2001, MNRAS, 327, 1297, astro-ph/0105252

Seljak, U. & Zaldarriaga, M. 1996, ApJ, 469, 437

Szapudi, I., Prunet, S. & Colombi, S. 2001, ApJ, 561, L11, also astro-
ph/0107383

Tegmark, M., Taylor, A. N., & Heavens, A. F. 1997, ApJ, 480, 22

Tegmark,M. et al 1998, ApJ, 499, 555

Therrien, C. W. 1992, Discrete Random Signals and Statistical Signal Pro-
cessing, (New Jersey: Prentice-Hall).

Vogeley, M.S., Szalay, A.S., 1996, ApJ, 465, 34

York, D. G. et al. 2000, AJ, 120, 1579



12

The Cosmic Foam: Stochastic
Geometry and Spatial
Clustering across the Universe

Rien van de Weygaert1

ABSTRACT Galaxy redshift surveys have uncovered the existence of a
salient and pervasive foamlike pattern in the distribution of galaxies on
scales of a few up to more than a hundred Megaparsec. The significance of
this frothy morphology of cosmic structure has been underlined by the re-
sults of computer simulations. These suggest the observed cellular patterns
to be a prominent and natural aspect of cosmic structure formation for a
large variety of scenarios within the context of the gravitational instability
theory of cosmic structure formation.
We stress the importance of stochastic geometry as a branch of mathemat-
ical statistics particularly suited to model and investigate nontrivial spatial
patterns. One of its key concepts, Voronoi tessellations, represents a ver-
satile and flexible mathematical model for foamlike patterns. Based on a
seemingly simple definition, Voronoi tessellations define a wealthy stochas-
tic network of interconnected anisotropic components, each of which can
be identified with the various structural elements of the cosmic galaxy dis-
tribution. The usefulness of Voronoi tessellations is underlined by the fact
that they appear to represent a natural asymptotic situation for a range of
gravitational instability scenarios of structure formation in which void-like
regions are prominent.
Here we describe results of an ongoing thorough investigation of a variety of
aspects of cosmologically relevant spatial distributions and statistics within
the framework of Voronoi tessellations. Particularly enticing is the recent
finding of a profound scaling of both clustering strength and clustering ex-
tent for the distribution of tessellation nodes, suggestive for the clustering
properties of galaxy clusters. This is strongly suggestive of a hitherto un-
expected fundamental and profound property of foamlike geometries. In a
sense, cellular networks may be the source of an intrinsic “geometrically
biased” clustering.

1Kapteyn Institute, University of Groningen
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12.1 Introduction

Macroscopic patterns in nature are often due the collective action of basic,
often even simple, physical processes. These may yield a surprising array
of complex and genuinely unique physical manifestations. The macroscopic
organization into complex spatial patterns is one of the most striking. The
rich morphology of such systems and patterns represents a major source
of information on the underlying physics. This has made them the sub-
ject of a major and promising area of inquiry. However, most such studies
still reside in a relatively youthful state of development, hampered by the
fact that appropriate mathematical machinery for investigating and solidly
characterizing the geometrical intricacies of the observed morphologies is
not yet firmly in place.

In an astronomical context one of the most salient geometrically complex
patterns is that of the foamlike distribution of galaxies, revealed by a variety
of systematic and extensive galaxy redshift surveys. Over the two past
decades, these galaxy mapping efforts have gradually established the frothy
morphology as a universal aspect of the spatial organization of matter in
the Univers. Comprising features on a typical scale of tens of Megaparsec,
it offers a direct link to the matter distribution in the primordial Universe.
The cosmic web is therefore bound to contain a wealth of information on
the cosmic structure formation process. It will therefore represent a key to
unravelling one of the most pressing enigmas in modern astrophysics, the
rise of the wealth and variety of structure in the present-day Universe from
a almost perfectly smooth, virtually featureless, pristine cosmos.

However, a lack of straightforward quantitative measures of such pat-
terns has yet prevented a proper interpretation, or indeed identification, of
all relevant pieces of information. Quantitative analysis of matter distribu-
tion has been largely restricted to first order galaxy clustering measures,
useful in evaluating gross statistical properties of the matter distribution
but inept for characterizing the intricate foamlike morphologies observed
on Megaparsec scales.

Here we will address the meaning and interpretation of the cellular mor-
phology of the cosmic matter distribution. Prominent as it is, its assessment
rarely exceeds mere qualitative terminology, seriously impeding the poten-
tial exploitation of its content of significant information. One of the most
serious omissions concerns a proper appreciation and understanding of the
physical and statistical repercussions of the nontrivial cellular geometry.
This propelled us to focus on this important aspect, for which we were im-
pelled to invoke ideas and concepts from the relevant field of mathematics,
stochastic geometry. Particularly fruitful has been our application and in-
vestigation of Voronoi tessellations, a central concept in this mathematical
branch addressing the systematics of geometrical entities in a stochastic
setting. The phenomenological similarity of Voronoi foams to the cellular
morphology seen in the galaxy distribution justifies further exploration of
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its virtues as a model for cosmic structure. In the following we will indicate
that such similarity is a consequence of the tendency of gravity to shape and
evolve structure emerging from a random distribution of tiny density devi-
ations into a network of anisotropically contracting features. Its application
gets solidly underpinned by a thorough assessment of the implications for
spatial clustering, vindicating the close resemblance of Voronoi foams to the
frothy patterns in the observed reality. It is within the context of testing
its spatial statistical properties that unexpected profound ‘scaling’ symme-
tries were uncovered, shedding new light on the issue of “biased” spatial
clustering.

12.2 Patterns in the Galaxy Distribution: the
Cosmic Foam

One of the most striking examples of a physical system displaying a salient
geometrical morphology, and the largest in terms of sheer size, is the Uni-
verse as a whole. The past few decades have revealed that on scales of a
few up to more than a hundred Megaparsec, galaxies conglomerate into
intriguing cellular or foamlike patterns that pervade throughout the ob-
servable cosmos. A dramatic illustration is the map of the 2dF Galaxy
Redshift Survey and the newest results of the SDSS survey (see contribu-
tion M. Strauss). The recently published map of the distribution of more
than 150,000 galaxies in a narrow region on the sky yielded by the 2dF –
two-degree field – redshift survey. Instead of a homogenous distribution, we
recognize a sponge-like arrangement, with galaxies aggregating in filaments,
walls and nodes on the periphery of giant voids.

This frothy geometry of the Megaparsec Universe is evidently one of
the most prominent aspects of the cosmic fabric, outlined by galaxies pop-
ulating huge filamentary and wall-like structures, the sizes of the most
conspicuous one frequently exceeding 100h−1 Mpc. The closest and best
studied of these massive anisotropic matter concentrations can be identi-
fied with known supercluster complexes, enormous structures comprising
one or more rich clusters of galaxies and a plethora of more modestly sized
clumps of galaxies. A prominent and representative nearby specimen is
the Perseus-Pisces supercluster, a 5h−1 wide ridge of at least 50h−1 Mpc
length, possibly extending out to a total length of 140h−1 Mpc. In addition
to the presence of such huge filaments the galaxy distribution also contains
vast planar assemblies. A striking example of is the Great Wall, a huge
planar assembly of galaxies with dimensions that are estimated to be of
the order of 60h−1 × 170h−1 × 5h−1 Mpc (Geller & Huchra 1989). Within
and around these anisotropic features we find a variety of density condensa-
tions, ranging from modest groups of a few galaxies up to massive compact
galaxy clusters. The latter stand out as the most massive fully collapsed
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FIGURE 12.1. A full 3-D tessellation comprising 1000 Voronoi cells/polyhedra
generated by 1000 Poissonian distributed nuclei. Courtesy: Jacco Dankers
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and virialized objects in the Universe. In nearby representatives like the
Virgo and Coma cluster typically more than a thousand galaxies have been
identified within a radius of a mere 1.5h−1 Mpc around the core. They may
be regarded as a particular population of cosmic structure beacons as they
typically concentrate near the interstices of the cosmic web, nodes forming
a recognizable tracer of the cosmic matter distribution out to vast distances
(e.g. Borgani & Guzzo 2001). Complementing this cosmic inventory leads
to the existence of large voids, enormous regions with sizes in the range of
20−50h−1 Mpc that are practically devoid of any galaxy, usually roundish
in shape. The earliest recognized one, the Boötes void (Kirshner et al. 1981,
1987), a conspicuous almost completely empty spherical region with a di-
ameter of around 60h−1Mpc, is still regarded as the canonic example. The
role of voids as key ingredients of the cosmic matter distribution has since
been convincingly vindicated in various extensive redshift surveys, up to
the recent results produced by 2dF redshift survey and the Sloan redshift
surveys.

Of utmost significance for our inquiry into the issue of cosmic struc-
ture formation is the fact that the prominent structural components of the
galaxy distribution – clusters, filaments, walls and voids – are not merely
randomly and independently scattered features. On the contrary, they have
arranged themselves in a seemingly highly organized and structured fash-
ion, the cosmic foam. They are woven into an intriguing foamlike tapestry
that permeates the whole of the explored Universe. Voids are generically as-
sociated with surrounding density enhancements. In the galaxy distribution
they represent both contrasting as well as complementary components in-
gredients, the vast under-populated regions, (the voids), being surrounded
by walls and filaments. At the intersections of the latter we often find
the most prominent density enhancements in our universe, the clusters of
galaxies.

12.3 Gravitational Foam Formation and Bubble
Dynamics.

Foamlike patterns have not only been confined to the real world. Equally
important has been the finding that foamlike patterns do occur quite natu-
rally in a vast range of structure formation scenarios within the context of
the generic framework of gravitational instability theory. Prodded by the
steep increase in computing power and the corresponding proliferation of
ever more sophisticated and extensive simulation software, a large range of
computer models of the structure formation process have produced telling
images of similar foamlike morphologies. They reveal an evolution proceed-
ing through stages characterized by matter accumulation in structures with
a pronounced cellular morphology.

The generally accepted theoretical framework for the formation of struc-
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ture is that of gravitational instability. The formation and moulding of
structure is ascribed to the gravitational growth of tiny initial density- and
velocity deviations from the global cosmic density and expansion. An im-
portant aspect of the gravitational formation process is its inclination to
progress via stages in which the cosmic matter distribution settles in strik-
ing anisotropic patterns. Aspherical overdensities, on any scale and in any
scenario, will contract such that they become increasingly anisotropic, as
long as virialization has not yet set in. At first they turn into a flattened
‘pancake’, possibly followed by contraction into an elongated filament. Such
evolutionary stages precede the final stage in which a virialized object, e.g.
a galaxy or cluster, will emerge. This tendency to collapse anisotropically
finds its origin in the intrinsic primordial flattening of the overdensity, aug-
mented by the anisotropy of the gravitational force field induced by the
external matter distribution, i.e. by tidal forces. Naturally, the induced
anisotropic collapse has been the major agent in shaping the cosmic foam-
like geometry.

Inspired by early computer calculations, Icke (1984) pointed out that for
the understanding of the formation of the large coherent patterns pervading
the Universe it may be more worthwhile to direct attention to the comple-
mentary evolution of underdense regions. By contrast to the overdense fea-
tures, the low-density regions start to take up a larger and larger part of the
volume of the Universe. Icke (1984) then made the interesting observation
that the arguments for the dynamics and evolution of slightly anisotropic
– e.g. ellipsoidal – primordial overdensities are equally valid when consid-
ering the evolution of low -density regions. The most important difference
is that the sense of the final effect is reversed. The continuously stronger
anisotropy of the force field in collapsing ellipsoidal leads to the charac-
teristics tendency for slight initial asphericities to get amplified during the
collapse, the major internal mechanism for the formation of the observed
filaments in the galaxy distribution. By contrast, a void is effectively a
region of negative density in a uniform background. Therefore, they will
expand as the overdense regions collapse, while slight asphericities decrease
as the voids become larger. This can be readily appreciated from the fact
that with respect to an equally deep spherical underdensity, an ellipsoidal
void has a decreased rate of expansion along the longest axis of the ellip-
soid and an increased rate of expansion along the shortest axis. Together
with the implied Hubble-type velocity field, voids will thus behave like low-
density ‘super-Hubble’ expanding patches in the Universe. To describe this
behaviour we coined the term “Bubble Theorem” (Icke 1984).

Evidently, we have to be aware of the serious limitations of the ellipsoidal
model. It grossly oversimplifies in disregarding important aspects like the
presence of substructure in and the immediate vicinity of peaks and dips
in the primordial density field. Still, it is interesting to realize that in many
respects the homogeneous model is a better approximation for underdense
regions than it is for overdense ones. Voids expand and get drained, and
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the interior of a (proto)void rapidly flattens out, which renders the valid-
ity of the approximation accordingly better. Such behaviour was clearly
demonstrated in circumstances of voids embedded in a full complex gen-
eral cosmic density field (see e.g. Van de Weygaert & van Kampen 1993,
their Fig. 16). Their systematic study also showed how voids in general
will evolve towards a state in which they become genuine “Superhubble
Bubbles”.

In realistic circumstances, expanding voids will sooner or later encounter
their peers or run into dense surroundings. The volume of space available
to a void for expansion is therefore restricted. Voids will also be influenced
by the external cosmic mass distribution, and substructure may represent
an additional non-negligible factor within the void’s history. In general, we
deal with a complex situation of a field of expanding voids and collapsing
peaks, of voids and peaks over a whole range of sizes and masses, expanding
at different rates and at various stages of dynamical development. For the
purpose of our geometric viewpoint, the crucial question is whether it is
possible to identify some characteristic and simplifying elements within
such a complex. Indeed, simulations of void evolution (e.g. Dubinski et al.
1993) represent a suggestive illustration of a hierarchical process akin to the
void hierarchy seen in realistic simulations (e.g. Van de Weygaert 1991b).
It shows the maturing of small-scale voids until their boundaries would
reach a shell-crossing catastrophe, after which they merge and dissolve into
a larger embedding void. This process gets continuously repeated as the
larger parent voids in turn dissolve into yet larger voids. For a primordial
Gaussian density field, corresponding analytical calculations (Sheth & Van
de Weygaert 2002) then yield a void size distribution (broadly) peaked
around a characteristic void size.

A bold leap then brings us to a geometrically interesting situation. Tak-
ing the voids as the dominant dynamical component of the Universe, and
following the “Bubble Theorem”, we may think of the large scale structure
as a close packing of spherically expanding regions. Then, approximating a
peaked void distribution by one of a single scale, we end up with a situation
in which the matter distribution in the large scale Universe is set up by
matter being swept up in the bisecting interstices between spheres of equal
expansion rate. This ASYMPTOTIC description of the cosmic clustering
process leads to a geometrical configuration that is one of the main concepts
in the field of stochastic geometry: VORONOI TESSELLATIONS.

12.4 Voronoi Tessellations: the Geometric Concept

A Voronoi tessellation of a set of nuclei is a space-filling network of poly-
hedral cells, each of which delimits that part of space that is closer to its
nucleus than to any of the other nuclei. In three dimensions a Voronoi foam
consists of a packing of Voronoi cells, each cell being a convex polyhedron
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FIGURE 12.2. Wireframe illustration of interrelation between various Voronoi
tessellation elements. The central “Voronoi cell” is surrounded by its wire-frame
depicted “contiguous” Voronoi neighbours. The boundaries of the cells are the
polygonal “Voronoi walls”. The wire edges represent the Voronoi edges. The
“Voronoi vertices”, indicated by red dots, are located at each of the 2 tips of
a Voronoi edge, each of them located at the centre of the circumsphere of a
corresponding set of four nuclei. Courtesy: Jacco Dankers.

enclosed by the bisecting planes between the nuclei and their neighbours.
A Voronoi foam consists of four geometrically distinct elements: the poly-
hedral cells (voids), their walls (pancakes), edges (filaments) where three
walls intersect, and nodes (clusters) where four filaments come together.

Formally, each Voronoi region Πi is the set of points which is nearer
to nucleus i than to any of the other nuclei j in a set Φ of nuclei {xi}
in d-dimensional space �d, or a finite region thereof, Πi = {�x|d(�x, �xi) <
d(�x, �xj) , ∀ j �= i}, where �xj are the position vectors of the nuclei in Φ, and
d(�x, �y) the Euclidian distance between �x and �y (evidently, one can extend
the concept to any arbitrary distance measure). From this basic defini-
tion, we can directly infer that each Voronoi region Πi is the intersection
of the open half-spaces bounded by the perpendicular bisectors (bisecting
planes in 3-D) of the line segments joining the nucleus i and any of the
the other nuclei. This implies a Voronoi region Πi to be a convex polyhe-
dron (or polygon when in 2-D), a Voronoi polyhedron. The complete set of
{Πi} constitute a space-filling tessellation of mutually disjunct cells in d-
dimensional space �d, the Voronoi tessellation V(Φ) relative to Φ. A good
impression of the morphology of a complete Voronoi tessellation can be seen
in figure 1, a tessellation of 1000 cells generated by a Poisson distribution
of 1000 nuclei in a cubic box.

Taking the three-dimensional tessellation as the archetypical representa-
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tion of structures in the physical world, we can identify four constituent
elements in the tessellation, intimately related aspects of the full Voronoi
tessellation. In addition to (1) the polyhedral Voronoi cells Πi these are (2)
the polygonal Voronoi walls Σij outlining the surface of the Voronoi cells,
(3) the one-dimensional Voronoi edges Λijk defining the rim of both the
Voronoi walls and the Voronoi cells, and finally (4) the Voronoi vertices
Vijkl which mark the limits of edges, walls and cells. While each Voronoi
cell is defined by one individual nucleus in the complete set of nuclei Φ,
each of the polygonal Voronoi walls Σij is defined by two nuclei i and j,
consisting of points �x having equal distance to i and j. The Voronoi wall
Σij is the subregion of the full bisecting plane of i and j which consists of
all points �x closer to both i and j than other nuclei in Φ. In analogy to
the definition of a Voronoi wall, a Voronoi edge Λijk is a subregion of the
equidistant line defined by three nuclei i, j and k, the subregion consisting
of all points �x closer to i, j and k than to any of the other nuclei in Φ.
Evidently, it is part of the perimeter of three walls as well, Σij , Σik and
Σjk. Pursuing this enumeration, Voronoi vertices Vijkl are defined by four
nuclei, i, j, k and l, being the one point equidistant to these four nuclei
and closer to them than to any of the other nuclei belonging to Πi. Note
that this implies that the circumscribing sphere defined by the four nuclei
does not contain any other nuclei. To appreciate the interrelation between
these different geometric aspects, figure 2 lifts out one particular Voronoi
cell from a clump of a dozen Voronoi cells. The central cell is the one with
its polygonal Voronoi walls surface-shaded, while the wire-frame represen-
tation of the surrounding Voronoi cells reveals the Voronoi edges defining
their outline and the corresponding vertices as red dots. Notice, how the
distribution of vertices, generated by the stochastic point process of nuclei,
is in turn a new and uniquely defined point process, that of the vertices !!!

12.5 Voronoi Tessellations: the Cosmological
Context

In the cosmological context Voronoi Tessellations represent the Asymp-
totic Frame for the ultimate matter distribution distribution in any cosmic
structure formation scenario, the skeleton delineating the destination of
the matter migration streams involved in the gradual buildup of cosmic
structures. The premise is that some primordial cosmic process generated
a density fluctuation field. In this random density field we can identify a col-
lection of regions where the density is slightly less than average or, rather,
the peaks in the primordial gravitational potential perturbation field. As
we have seen, these regions are the seeds of the voids. These underdense
patches become “expansion centres” from which matter flows away until it
runs into its surroundings and encounters similar material flowing out of
adjacent voids. Notice that the dependence on the specific structure forma-
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tion scenario at hand is entering via the spatial distribution of the sites of
the density dips in the primordial density field, whose statistical properites
are fully determined by the spectrum of primordial density fluctuations.

Matter will collect at the interstices between the expanding voids. In the
asymptotic limit of the corresponding excess Hubble parameter being the
same in all voids, these interstices are the bisecting planes, perpendicu-
lary bisecting the axes connecting the expansion centres. For any given set
of expansion centres, or nuclei, the arrangement of these planes define a
unique process for the partitioning of space, a Voronoi tessellation (Voronoi
1908, see Fig. 1 and 2). A particular realisation of this process (i.e. a spe-
cific subdivision of N -space according to the Voronoi tessellation) may be
called a Voronoi foam (Icke & Van de Weygaert 1987). Within such a cel-
lular framework the interior of each “VORONOI CELL” is considered to
be a void region. The planes forming the surfaces of the cells are identified
with the “WALLS” in the galaxy distribution (see e.g. Geller & Huchra
1989). The “EDGES” delineating the rim of each wall are to be identified
with the filaments in the galaxy distribution. In general, what is usually
denoted as a flattened “supercluster” or cosmic “wall” will comprise an
assembly of various connecting walls in the Voronoi foam. The elongated
“superclusters” or “filaments” will usually consist of a few coupled edges
(Fig. 3 clearly illustrates this for the Voronoi kinematic model). Finally,
the most outstanding structural elements are the “VERTICES”, tracing
the surface of each wall, outlining the polygonal structure of each wall and
limiting the ends of each edge. They correspond to the very dense compact
nodes within the cosmic network, amongst which the rich virialised Abell
clusters form the most massive representatives.

Cosmologically, the great virtue of the Voronoi foam is that it provides a
conceptually simple model for a cellular or foamlike distribution of galax-
ies, whose ease and versatility of construction makes it an ideal tool for
statistical studies. By using such geometrically constructed models one is
not restricted by the resolution or number of particles. A cellular structure
can be generated over a part of space beyond the reach of any N-body ex-
periment. Even though the model does not and cannot address the galaxy
distribution on small scales, it is nevertheless a useful prescription for the
spatial distribution of the walls and filaments themselves. This makes the
Voronoi model particularly suited for studying the properties of galaxy
clustering in cellular structures on very large scales, for example in very
deep pencil beam surveys, and for studying the clustering of clusters in
these models.

12.6 Voronoi Galaxy Distributions

Having established the cosmological context for Voronoi tessellations in
the form of, approximate and asymptotic, skeletal template for the large-
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scale mass distribution we set about to generate the corresponding matter
distributions. Matter is supposed to aggregate in and around the various
geometrical elements of the cosmic frame, such as the walls, the filaments
and the vertices.

It is the stochastic yet non-Poissonian geometrical distribution of the
walls, filaments and clusters embedded in the cosmic framework which gen-
erates the large-scale clustering properties of matter and the related galaxy
populations. The small-scale distribution of galaxies, i.e. the distribution
within the various components of the cosmic skeleton, will involve the com-
plicated details of highly nonlinear small-scale interactions of the gravitat-
ing matter. N-body simulations are preferred for treating that problem.
For our purposes, we take the route of complementing the large-scale cellu-
lar distribution induced by Voronoi patterns by a user-specified small-scale
distribution of galaxies. Ideally, well-defined and elaborate physical models
would fill in this aspect. A more practical alternative approach involves the
generation of either tailor-made purely heuristic “galaxy” distributions in
and around the various elements of a Voronoi tessellation (e.g. pure uni-
form distributions). Alternatively, we can generate distributions that more
closely resemble the outcome of dynamical simulations, and represent an
idealized and asymptotic description thereof. Such a model is the kinematic
model defined by Van de Weygaert & Icke (1989).

Particular emphasis should be put on that fact that this Voronoi strat-
egy has the unique and fundamental feature of studying galaxy distribu-
tions around geometrical features that themselves have some distinct and
well-defined stochastic spatial distribution. The galaxies are residing in
walls, filaments and vertices which are distributed themselves as an inte-
gral component of the Voronoi spatial network. Their distribution is not a
pure random, but instead one in which these components themselves are
spatially strongly correlated, connecting into coherent “super”structures
!!! This background frame of spatially clustered geometrical elements not
only determines the overall clustering properties of its galaxy population,
it also represents and distinguishes it from from less physically motivated
stochastic toy models (e.g. the double Poisson process).

12.6.1 Voronoi galaxy distributions: the Kinematic Model

The kinematic Voronoi model is based on the notion that when matter
streams out of the voids towards the Voronoi skeleton, cell walls form
when material from one void encounters that from an adjacent one. In the
original “pancake picture” of Zel’dovich and collaborators, it was gaseous
dissipation fixating the pancakes (walls), automatically leading to a cellu-
lar galaxy distribution. But also when the matter is collisionless, the walls
may be hold together by their own self-gravity. Accordingly, the structure
formation scenario of the kinematic model proceeds as follows. Within a
void, the mean distance between galaxies increases uniformly in the course
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FIGURE 12.3. A sequel of consecutive timesteps within the kinematic Voronoi
cell formation process. The depicted boxes have a size of 100h−1Mpc. Within
these cubic volumes some 64 Voronoi cells with a typical size of 25h−1Mpc de-
lineate the cosmic framework around which some 32000 galaxies have aggregated
(corresponding roughly to the number density of galaxies yielded by a Schechter
luminosity function with parameters according to Efstathiou, Ellis & Peterson
1988), where we restricted ourselves to galaxies brighter than Mgal = −17.0. In
the full “simulation box” of 200h−1Mpc, this amounts to 268,235 galaxies.

of time. When a galaxy tries to enter an adjacent cell, the gravity of the
wall, aided and abetted by dissipational processes, will slow its motion
down. On the average, this amounts to the disappearance of its velocity
component perpendicular to the cell wall. Thereafter, the galaxy contin-
ues to move within the wall, until it tries to enter the next cell; it then
loses its velocity component towards that cell, so that the galaxy continues
along a filament. Finally, it comes to rest in a node, as soon as it tries to
enter a fourth neighbouring void. Of course the full physical picture is ex-
pected to differ considerably in the very dense, highly nonlinear regions of
the network, around the filaments and clusters. Nonetheless, the Voronoi
kinematic model produces a structural morphology containing the reve-
lant characteristics of the cosmic foam, both the one seen in large redshift
surveys as the one found in the many computer model N-body simulations.

The evolutionary progression within our Voronoi kinematic scheme, from
an almost featureless random distribution, via a wall-like and filamentary
morphology towards a distribution in which matter ultimately aggregates
into conspicuous compact cluster-like clumps can be readily appreciated
from the sequence of 6 cubic 3-D particle distributions in Figure 3. The
steadily increasing contrast of the various structural features is accom-
panied by a gradual shift in topological nature of the distribution. The
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virtually uniform particle distribution at the beginning (upper lefthand
frame) ultimately unfolds into the highly clumped distribution in the lower
righthand frame. At first only a faint imprint of density enhancements and
depressions can be discerned. In the subsequent first stage of nonlinear
evolution we see a development of the matter distribution towards a wall-
dominated foam. The contrast of the walls with respect to the general field
population is rather moderate (see e.g. second frame), and most obviously
discernable by tracing the sites where the walls intersect and the galaxy
density is slightly enhanced. The ensuing frames depict the gradual pro-
gression via a wall-like through a filamentary towards an ultimate cluster-
dominated matter distribution. By then nearly all matter has streamed
into the nodal sites of the cellular network. The initially almost hesitant
rise of the clusters quickly turns into a strong and incessant growth towards
their appearance as dense and compact features which ultimately stand out
as the sole dominating element in the cosmic matter distribution (bottom
righthand frame).

12.7 Superclustering: the clustering of clusters

Maps of the spatial distribution of clusters of galaxies show that clusters
themselves are not Poissonian distributed, but turn out to be highly clus-
tered (see e.g. Bahcall 1988). They aggregate to form huge supercluster
complexes. For the sake of clarity, it is worthwhile to notice that such su-
perclusters represent moderate density enhancements on a scale of tens of
Megaparsec, typically in the order of a few times the average. They are
still co-expanding with the Hubble flow, be it at a slightly decelerated rate,
and are certainly not to be compared with collapsed, let alone virialized,
identifiable physical entities like clusters.

The first characteristic of superclustering is the finding that the clus-
tering of clusters is considerably more pronounced than that of galaxies.
According to most studies the two-point correlation function ξcc(r) of clus-
ters is consistent with it being a scaled version of the power-law galaxy-
galaxy correlation function, ξcc(r) = (r◦/r)γ . While most agree on the
same slope γ ≈ 1.8 and a correlation amplitude that is significantly higher
than that for the galaxy-galaxy correlation function, the estimates for the
exact amplitude differ considerably from a factor � 10 − 25. The original
value found for the “clustering length” ro for rich R ≥ 1 Abell clusters was
ro ≈ 25h−1Mpc (Bahcall & Soneira 1983), up to a scale of 100h−1 Mpc
(Bahcall 1988). Later work favoured more moderate values in the order of
15− 20h−1Mpc (e.g. Sutherland 1988, Dalton et al. 1992, Peacock & West
1992).

A related second characteristic of superclustering is that the differences in
estimates of ro are at least partly related to the specific selection of clusters,
i.e. the applied definition of clusters. Studies dealt with cluster samples of
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FIGURE 12.4. Two-point correlation function analysis of a selection of galaxies in
a Voronoi kinematic model realization. Top frame: depiction of a galaxy sample in
a 150h−1Mpc box at the present cosmic epoch σ(8h−1Mpc ≈ 1. Note the cellular
morphology of walls and filaments with a few conspicuously dense cluster “nodes”.
Bottom left: a log-log plot of the ξ(r), with distance r in units of the basic cellsize
λcell. The power-law character of ξ up to r ∼ 0.5λc is evident. Bottom right: a
lin-lin plot of ξ showing ringing behaviour out to scales r ∼ 2λcell. From: Van de
Weygaert 2002.

rich R ≥ 1 Abell clusters, others also included poorer clusters, or employed
a physically well-founded criterion on the basis of X-ray emission. On the
basis of such analyses we find a trend of an increasing clustering strength
as the clusters in the sample become more rich (≈ massive). On the basis
of the first related studies, Szalay & Schramm (1985) even put forward the
(daring) suggestion that samples of clusters selected on richness would dis-
play a ‘fractal’ clustering behaviour, in which the clustering scale ro would
scale linearly with the typical scale L of the cluster catalogue. This typical
scale L(R) is then the mean separation between the clusters of richness
higher than R: ξcc(r) = β (L(r)/r)γ where L(R) = n−1/3. While the exact
scaling of L(r) with mean number density n is questionable, observations
follow the qualitative trend of a monotonously increasing L(R). It also
seems to adhere to the increasing level of clustering that selections of more
massive clusters appear to display in large-scope N-body simulations (e.g.
Colberg 1998), given some telling detailed differences.
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A third aspect of superclustering, one that often escapes emphasis but
which we feel is important to focus attention on, is the issue of the spatial
range over which clusters show positive correlations, the “coherence” scale
of cluster clustering. Currently there is ample evidence that ξcc(r) extends
out considerably further than the galaxy-galaxy correlation ξgg , possibly
out to 50h−1− 100h−1Mpc. This is not in line with conventional presump-
tion that the stronger level of cluster clustering is due to the more clustered
locations of the (proto)cluster peaks in the primordial density field with re-
spect to those of (proto)galaxy peaks. According to this conventional “peak
bias” scheme we should not find significant non-zero cluster-cluster correla-
tions on scales where the galaxies no longer show any significant clustering.
If indeed ξgg is negligible on these large scales, explaining the large scale
cluster-cluster clustering may be posing more complications than a simple
interpretation would suggest.

12.8 Superclustering: the Voronoi Vertex
Distribution

In the Voronoi description vertices are identified with the clusters of galax-
ies, a straightforward geometric identification without need to invoke ad-
ditional descriptions. Like genuine clusters, these vertices then act as the
condensed and compact complexes located at the interstices in the cosmic
framework. The immediate and highly significant consequence is that – for
a given Voronoi foam realization – the spatial distribution of clusters is
fully and uniquely determined. The study of the clustering of these vertices
can therefore be done without any further assumptions, fully set by the
geometry of the tessellation. When doing this, we basically use the fact
that the Voronoi node distribution is a topological invariant in co-moving
coordinates, and does not depend on the way in which the walls, filaments,
and nodes are populated with galaxies. The statistics of the nodes should
therefore provide a robust measure of the Voronoi properties.

A first inspection of the spatial distribution of Voronoi vertices (Fig. 4,
top frame) immediately reveals that it is not a simple random Poisson dis-
tribution. The full spatial distribution of Voronoi vertices in the 150h−1Mpc
cubic volume involves a substantial degree of clustering, a clustering which
is even more strongly borne out by the distribution of vertices in a thin slice
through the box (bottom lefthand frame) and equally well reflected in the
sky distribution (bottom righthand frame). The impression of strong clus-
tering, on scales smaller than or of the order of the cellsize λC, is most ev-
idently expressed by the corresponding two-point correlation function ξ(r)
(Fig. 4, log-log plot lefthand frame, lin-lin plot in the righthand frame). Not
only can we discern a clear positive signal but – surprising at the time of its
finding on the basis of similar computer experiments (van de Weygaert &
Icke 1989) – out to a distance of at least r ≈ 1/4λc the correlation function
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appears to be an almost perfect power-law,

ξvv(r) =
(ro
r

)γ

; γ = 1.95; ro ≈ 0.3λc . (12.1)

The solid line in the log-log diagram in Fig. 4 represents the power-law with
these parameters, the slope γ ≈ 1.95 and “clustering length” ro ≈ 0.3λc.
(the solid line represents the power-law with these parameters). Beyond
this range, the power-law behaviour breaks down and following a gradual
decline the correlation function rapidly falls off to a zero value once dis-
tances are of the order of (half) the cellsize. Assessing the behaviour of
ξ(r) in a linear-linear plot, we get a better idea of its behaviour around
the zeropoint “correlation length” ra ≈ 0.5λc (bottom righthand frame fig.
4). Beyond ra the distribution of Voronoi vertices is practically uniform.
Its only noteworthy behaviour is the gradually declining and alternating
quasi-periodic ringing between positive and negative values similar to that
we also recognized in the “galaxy” distribution, a vague echo of the cel-
lular patterns which the vertices trace out. Finally, beyond r ≈ 2λc any
noticeable correlation seems to be absent.

The above 2pt correlation function of Voronoi vertices is a surprisingly
good and solid match to the observed world. It sheds an alternative view
on the power-law clustering with power law γ ≈ 2 found in the cluster
distribution. Also, the observed cluster clustering length ro ≈ 20h−1 Mpc
can be explained within the context of a cellular model, suggesting a cellsize
of λc ≈ 70h−1 Mpc as the basic scale of the cosmic foam.

On the other hand, the latter also reveals a complication. The suggested
cell scale is surely well in excess of the 25h−1−35h−1 Mpc size of the voids
in the galaxy distribution. In addition, it appears to point to an internal
inconsistency within the Voronoi concept. We saw above that if we tie the
observed galaxy-galaxy correlation to the clustering of objects in the walls
and filaments of the same tessellation framework, it suggests a cellsize λc ≈
25h−1Mpc. This would conflict with the cellsize that would correspond to a
good fit of the Voronoi vertex clustering to cluster clustering. The solution
to this dilemma lead to an intriguing finding (for a complete description of
this result see Van de Weygaert 2001).

12.8.1 Biased Voronoi Vertex Selections

We first observe that the vertex correlation function of eqn. (2) concerns the
full sample of vertices, irrespective of any possible selection effects based
on one or more relevant physical aspects. In reality, it will be almost in-
evitable to invoke some sort of biasing through the definition criteria of
the involved catalogue of clusters. Interpreting the Voronoi model in its
quality of asymptotic approximation to the galaxy distribution, its vertices
will automatically comprise a range of “masses”.

Brushing crudely over the details of the temporal evolution, we may
assign each Voronoi vertex a “mass” estimate by equating that to the total
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FIGURE 12.5. Selections of vertices from a full sample of vertices. Depicted are
the (100%) full sample (top left), and subsamples of the 25%, 10%, 5% and 1%
most massive vertices (top centre, top right, bottom left, bottom right). Note
how the richer vertices appear to highlight ever more pronounced a filamentary
superstructure running from the left box wall to the box centre. From: Van de
Weygaert 2002a.

amount of matter ultimately will flow towards that vertex. When we use
the “Voronoi streaming model” as a reasonable description of the clustering
process, it is reasonably straightforward if cumbersome to calculate the
“mass” or “richness”MV of each Voronoi vertex by pure geometric means.
Evidently, vertices surrounding large cells are expected to be more massive.
The details, turn out to be challengingly complex, as it concerns the (purely
geometric) calculation of the volume of a non-convex polyhedron centered
on the Voronoi vertex. The related nuclei are the ones that supply the
Voronoi vertex with inflowing matter.

To get an impression of the resulting selected vertex sets, Figure 5 shows
5 times the same box of 250h−1Mpc size, each with a specific subset of
the full vertex distribution (top lefthand cube). In the box we set up a
realization of a Voronoi foam comprising 1000 cells with an average size of
25h−1Mpc. From the full vertex distribution we selected the ones whose
“richness” MV exceeds some specified lower limit. The depicted vertex
subsets correspond to progressively higher lower mass limits, such that
100%, 25%, 10%, 5% and 1% most massive vertices are included (from top
lefthand to bottom righthand). The impression is not the one we would
get if the subsamples would be mere random diluted subsamples from the
full vertex sample. On the contrary, we get the definite impression of a
growing coherence scale !!! Correcting for a possibly deceiving influence of
the dilute sampling, and sampling an equal number of vertices from each
“selected” sample only considerably strengthens this impression. There is
an intrinsic effect in changing clustering properties as a function of (mass-
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FIGURE 12.6. Scaling of the two-point correlation function of Voronoi vertices,
for a variety of subsamples selected on the basis of “richness”, ranging from
samples with the complete population of vertices down to subsamples containing
the 2.5% most massive vertices. Left: log-log plot of ξ(r) against r/λc, with λc

the basic tessellation cellsize (≡ intranucleus distance). Notice the upward shift of
ξ(r) for subsamples with more massive vertices. Right: lin-lin plot of ξ(r) against
r/λc. Notice the striking rightward shift of the “beating” pattern as richness of
the sample increases. From: Van de Weygaert 2002a.

defined) cluster sample.

12.8.2 Vertex clustering: Geometric Biasing?

All in all, Fig. 5 provides ample testimony of a profound largely hidden
large-scale pattern in foamlike networks, a hithero entirely unsuspected
large-scale coherence over a range exceeding many cellsizes.

To quantify the impression given by the distribution of the biased vertex
selections, we analyzed the two-point correlation function for each vertex
sample. We computed ξ(r) for samples ranging From the complete sample
down to the ones merely containing the 2.5% most massive ones. As the
average distance λv(R) = n(R)−1/3 between the sample vertices increases
monotonously with rising subsample richness, in the following we will fre-
quently use the parameter λv for characterizing the richness of the sample,
ranging from λv ≈ 0.5λc up to λv ≈ 1.5λc for vertex samples comprising
all vertices up to samples with the 10% most massive vertices (the basic
cellsize λc functions objective distance unit).

The surprising finding is that all subsamples of Voronoi vertices do retain
a two-point correlation function displaying the same qualitative behaviour
as the ξvv(r) for the full unbiased vertex sample (Fig 6). Out to a certain
range it invariably behaves like a power-law (lefthand frame), while beyond
that range the correlation functions all show the decaying oscillatory be-
haviour that already has been encountered in the case of the full sample.
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FIGURE 12.7. Scaling of Voronoi vertex two-point correlation function parame-
ters for vertex subsamples over a range of “richness”/“mass”. Left: the clustering
length r0 (red, ξ(r0) ≡ 1.0) and the correlation (coherence) length ra (blue,
ξ(ra) ≡ 0) as a function of average spatial separation between vertices in (mass)
selected subsample, λv/λc. Centre: the ratio between clustering length r0 and
coherence length ra as function of subsample intravertex distance λv/λc. Right:
the power-law slope γ as function of λv/λc.

While all vertex ξvv(r) convincingly confirm the impression of clustered
point distributions, merely by the fact that it is rather straightforward to
disentangle the various superposed two-point correlation functions we can
immediately infer significant systematic differences.

First observation is that the amplitude of the correlation functions in-
creases monotonously with rising vertex sample richness. Expressing the
amplitude in terms of the “clustering length” ro and plotting this against
the λv between the sample vertices (both in units of λc), a striking almost
perfectly linear relation is resulting (Fig. 7, lefthand frame, lower line). In
other words, almost out of the blue, the “fractal” clustering scaling descrip-
tion of Szalay & Schramm (1985) appears to be stealthily hidden within
foamy geometries. Although in the asymptotic Voronoi model we may be
partially beset by the fact that we use an asymptotic measure for the ver-
tex “mass” – the total amount of mass that ultimately would settle in the
nodes of the cosmic foam – it may have disclosed that ultimately it reflects
the foamy structured spatial matter distribution. Overall, the scaling of
the clustering strength explains the impression of the increasingly compact
clumpiness seen in the “biased” vertex distributions in Fig. 5. Summariz-
ing, we can conclude that the foamy geometry is the ultimate ground for
the observed amplified levels of cluster clustering.

A second significant observation is that the lin-lin large-scale behaviour
of the ξvv seems to extend to larger and larger distances as the sample
richness is increasing. The oscillatory behaviour is systematically shifting
outward for the richer vertex samples, which reflects the fact that cluster-
ing patterns extend increasingly outward. Even though the basic cellular
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pattern had a characteristic scale of only λc, the sample of the 5% richest
nodes apparently seem to set up coherent patterns extending at least 2
to 3 times larger. This is clearly borne out by the earlier shown related
point distributions (Fig. 5). Foamlike geometries seemingly induce coher-
ent structures significantly larger than their basic size !!! This may hint at
another tantalizing link between the galaxy and the cluster distribution.
To elucidate this behaviour further, in Fig. 7 (lefthand frame, higher line)
we also plotted the “correlation (coherence) scale” ra versus the average
sample vertex distance λv. And yet again, as in the case of ro, we find an
almost perfectly linear relation !!!

Combining the behaviour of ro and ra we therefore find a remarkable ‘self-
similar’ scaling behaviour, in which the ratio of correlation versus clustering
length is virtually constant for all vertex samples, ra/ro ≈ 1.86 (see Fig. 7,
central frame). Foamlike networks appear to induce a clustering in which
richer objects not only cluster more strongly, but also further out !!!

A final interesting detail on the vertex clustering scaling behaviour is
that a slight and interesting trend in the behaviour of power-law slope.
The richer samples correspond to a tilting of of the slope. Interestingly,
borne out by the lower righthand frame in Fig. 7, we see a gradual change
from a slope γ ≈ 1.95 for the full sample, to a robust γ ≈ 1.8 for the
selected samples.

12.9 Conclusions: Bias, Cosmic Geometry and
Self-Similarity

The uncovered systematic trends of vertex clustering have uncovered a
hidden ‘self-similar’ clustering of vertices. This may be appreciated best
from studying a particular realization of such behaviour (see Fig. 8)

The above results form a tantalizing indication for the existence of self-
similar clustering behaviour in spatial patterns with a cellular or foamlike
morphology. It might hint at an intriguing and intimate relationship be-
tween the cosmic foamlike geometry and a variety of aspects of the spatial
distribution of galaxies and clusters. One important implication is that with
clusters residing at a subset of nodes in the cosmic cellular framework, a
configuration certainly reminiscent of the observed reality, it would explain
why the level of clustering of clusters of galaxies becomes stronger as it con-
cerns samples of more massive clusters. In addition, it would successfully
reproduce positive clustering of clusters over scales substantially exceeding
the characteristic scale of voids and other elements of the cosmic foam.
At these Megaparsec scales there is a close kinship between the measured
galaxy-galaxy two-point correlation function and the foamlike morphology
of the galaxy distribution. In other words, the cosmic geometry apparently
implies a ‘geometrical biasing” effect, qualitatively different from the more
conventional “peak biasing” picture (Kaiser 1984).
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FIGURE 12.8. A depiction of the meaning of ‘self-similarity’ in the vertex distri-
bution. Out of a full sample of vertices (top left) in a central slice, (top right) the
20.0% richest vertices. Similarly, (bottom left) the 2.5% richest vertices. When
lifting the central 1/8th region out of the 20% vertex subsample in the (top right-
hand) frame and sizing it up to the same scale as the full box, we observe the
similarity in point process between the resulting (bottom righthand) distribution
and that of the 2.5% subsample (bottom lefthand). Self-similarity in pure form !
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Statistics and the Cosmic
Microwave Background

Andrew H. Jaffe1

ABSTRACT We discuss the statistics of fluctuations in the Cosmic Mi-
crowave Background, and the statistical analysis of CMB experiments. Us-
ing Bayesian techniques, we proceed from the time-ordered data through
maps of the sky, to power spectra, and to cosmological parameters. We dis-
cuss computational problems encountered along the way, and review recent
results.
This paper is followed by a commentary by the Pittsburgh Institute for
Computational Astrostatistics.

13.1 Introduction

The Cosmic Microwave Background (CMB) is made up of photons that
last interacted with ordinary matter when the Universe was 100,000 years
old and had a temperature, T , corresponding to kT � 1 eV, where k
is Boltzmann’s constant and eV are units of energy. At this epoch, the
protons and electrons that had been kept ionized by the high tempera-
ture were able to form neutral hydrogen for the first time. Prior to this,
the charged proton/electron plasma was opaque to photons; thereafter the
Universe was transparent. Hence, the CMB photons we see today have
been streaming freely for the subsequent 15 billion years, redshifting by a
factor of 1,000 to the microwave band, only to be captured finally in one
of the several detectors we have designed to do just that. Starting with
Penzias and Wilson’s 1967 radio telescope, through the COBE satellite [5]
launched in the late 80s, today’s MAXIMA[13, 19], BOOMERANG[8, 3]
and DASI[21, 12, 28] experiments, the just-launched MAP satellite[23], and
the Planck satellite[27], planned for 2007, we observe the CMB with increas-
ing sensitivity and higher resolution. The results are a two-dimensional
snapshot of the Universe at this epoch of “Last Scattering” or “Recom-
bination” filtered through the physics of the baryons, electrons, photons
and Dark Matter making up the Universe. As there have been many fine
reviews of these physical processes and what we can hope to learn from

1Department of Astronomy, University of California Berkeley
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them about the Universe as a whole, I will simply commend the interested
reader to them (e.g., [17, 15]), here concentrating on statistical issues. Much
of this material is necessarily review of various more technical references
(e.g., [3, 32]).

13.2 The statistics of CMB anisotropies

Unlike many other areas of astronomy, here we are concerned with an un-
derlying physical phenomenon that is itself statistical in nature, rather
than deterministic. That is, we are not interested in the long run in the
details of the temperature distribution, but rather in its overall statisti-
cal properties. Within the inflationary paradigm of structure formation,
perturbations to the otherwise-smooth matter density are laid down via
a quantum-mechanical mechanism; these three-dimensional perturbations
are described by a power spectrum, P (k) ∝ kns (possibly with small cor-
rections) and in most inflationary models with a Gaussian distribution, so
that the power spectrum is the only information needed to describe them.
Because they are extremely small (fractionally less than 10−5 at the time of
last scattering), we can use linear perturbation theory to determine the im-
pact on the CMB. Any linear transformation of a Gaussian field is another
Gaussian field, and hence the CMB fluctuations are themselves described
by a 2d power spectrum, C�, where � is spherical harmonic wavenumber. We
start with the temperature pattern on the sky, ∆T (x̂)/T = [T (x̂)− T̄ ]/T̄ ,
where T̄ is the average temperature and x̂ is a unit vector, and expand this
in spherical harmonic multipoles:

∆T
T

(x̂) =
∑
�m

a�mY�m(x̂) (13.1)

Under the assumptions of Gaussianity and an isotropic distribution on
the sky, we can treat the components a�m as if they were drawn from a
multivariate (but uncorrelated) Gaussian distribution with variance

〈a�ma�′m′〉 = C�δ�,�′δm,−m′ . (13.2)

Then, our task will be to determine C� from an actual noisy realization of
some part of the sky.

13.3 The Bayesian paradigm

We will start with a statement of Bayes’ Theorem:

P (θ|DI) =
P (θ|I)P (D|θI)

P (D|I) , (13.3)
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where P (a|b) is the probability (or density) for a given b. The parameters
of the theory we are testing are θ, the data is D, and the “background
information,” is I. We mix “propositions” like I, with parameter values,
like θ. P (θ|I) is the prior, P (D|θI) is the likelihood, and

P (D|I) =
∫
dθ P (θ|I)P (D|θI) (13.4)

is a normalization factor, occasionally referred to as the evidence.
We will in the end wish to report some limits on the parameters, other-

wise known as “credible regions.” These are defined as

P (θmin < θ < θmax|DI) ≡
∫ θmax

θmin

P (θ|DI) dθ = C . (13.5)

That is, the probability that the parameter is within the given region is C.
In CMB experiments, the data we start with is a timestream,

dt = AtpTp + nt (13.6)

where dt is the data taken at time t = 1 . . .Nt, Tp is the sky temperature
at pixel p = 1 . . .Np with center located at position x̂p, nt is the value of
the noise (instrumental and otherwise) at t, and finally Atp is the matrix
operator converting the temperature on the sky labeled by positions p to
that observed at time t (so Atp = 1 if pixel p is observed at time t, and 0
otherwise). We will take Tp to be already smeared by the effects of beam and
pixel: Tp =

∫
d2xB(x̂p, ŷ)S(ŷ), where B gives the response of the beam at

position x̂p from a signal at ŷ and S is the underlying temperature on the
sky. In the following, we will freely mix matrix notation and the summation
convention: AT ≡ (AT )t ≡ AtpTp ≡

∑
pAtpTp.

What are the parameters, θ, in which we are interested? The most obvi-
ous appear directly in Eq. 13.6: the underlying CMB sky, Tp. But we can
also ask about the power spectrum, C�, which is responsible for correlations
in Tp between different positions, or even the cosmological parameters un-
derlying the spectrum. It is most efficient to ask each of these questions in
turn, reducing the amount of data at each step. There is nothing to stop us
from calculating P (Ω|dtI), and finding the value of the density parameter Ω
directly from the timestream. We will see that this would give us the same
answer as calculating it from the power spectrum: P (Ω|dtI) = P (Ω|C�I).

13.3.1 From the timestream to a map

We will take the noise to be described by a Gaussian with correlation
function

〈ntnt′〉 = Ntt′ . (13.7)

We will further take the noise to be stationary, at least over short periods
of time, so that Ntt′ = N(|t− t′|). In practice the noise needs to be solved
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for iteratively[11, 30]. Here, we will assume that N(t) is known exactly.
Given these definitions, we can write down the likelihood function for T ,
which we will call the map:

P (d|TI) = |2πN |−1/2 exp
[
−1

2
(d−AT )†N−1(d−AT )

]
. (13.8)

(Note that d and T refer to the full vectors dt and Tp.) We can now ask,
what is the most probable map, T̂p, given the data? To do this we must
specify a prior, which we shall take to be uniform: P (T |I) = const.

Our problem then becomes simple least-squares, albeit with large dimen-
sionality and complicated correlations. By completing the square, we can
rewrite the likelihood as

P (dt|TpI) ∝ P (T̂ |TI) = |2πCN |−1/2 exp
[
−1

2
(T̂ − T )†C−1

N (T̂ − T )
]
.

(13.9)
where

T̂ = (A†N−1A)−1A†N−1d and CN = (A†N−1A)−1 . (13.10)

The posterior distribution for T is just proportional to Eq. 13.9: the un-
derlying map, Tp, is distributed around T̂p as a Gaussian with correlation
matrix CNpp′ .

We also see that irrespective of the form of the prior, the likelihood can
be written as a function of T̂ and CN , rather than d and N ; T̂ and CN

are sufficient statistics. If we retain this information, we can throw out the
original timestream data for any further inference we might wish to make
from the data.

As an important aside, we note that the calculation of the maximum-
likelihood map and its covariance matrix requires O(N3

pix) operations (the
map-making itself can be reduced to O(N2

pix), but the correlation matrix is
required for further operations). This becomes suitable for supercomputers
at the current Npix � 50, 000 of MAXIMA and BOOMERANG. A parallel
implementation of the full calculation exists in the MADCAP package[22],
as do various implementations of O(N2

pix) map-making[9].
We can assign a more informative prior distribution for the sky tempera-

ture. If we assume that the temperature itself is distributed as a zero-mean
Gaussian with some covariance matrix CTpp′ = 〈TpTp′〉, we can combine
the two Gaussian distributions by the usual complete-the-square mechan-
ics, and find that the posterior for T is once again a Gaussian, now with
mean TW = CT (CT + CN )−1T̂ and variance CW = CT (CT + CN )−1CT .
This is just the Wiener filter which can also be derived on minimum-
variance grounds. Note that a particular prior power spectrum, C�, defines
a particular prior CT , and hence a particular Wiener filter.

In Figure 13.1 we show an example, the map made from the MAXIMA-1
data[19].
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FIGURE 13.1. Maps, T̂ , made from the MAXIMA data. The left panel shows a
Wiener filtered 5 arcminute-square pixel map (using a Best-fit power spectrum to
define CT ), and the right shows the 3 arcminute-square-pixel maximum-likelihood
map from [19].

13.3.2 From maps to power spectra

How do we then determine the power spectrum of our data? For the data
to have some power spectrum is to say that we can describe the underlying
data as being drawn from a distribution with a variance given by

CTpp′ ≡ 〈TpTp′〉 =
∑

�m,�′m′
B2

�Y�m(x̂p)Y�′m′(x̂p′)〈a�ma�′m′〉

=
∑

�

2�+ 1
4π

B2
�C�P� (x̂px̂p′ ) (13.11)

where the x̂p is the position of pixel p, B� is the spherical harmonic trans-
form of the beam and pixelization function (see [35] for details and a full
description of complications associated with asymmetric beams). The a�m

are the spherical harmonic components of T , which we have eliminated us-
ing the definition of the power spectrum, Eq. 13.2 above, and the addition
formula for spherical harmonics. The P� are the Legendre polynomials, for
integer � = 0, 1, 2, . . ., although we usually concentrate on � ≥ 2 as the
lower multipoles arise from different physical mechanisms. Beam-smearing
cuts off our observations at some maximum � and the physically processes
themselves usually take C� → 0 smoothly for �more than about a thousand.

We can use this information to write the joint likelihood for the under-
lying map and the power spectrum. First, we assign a prior for T based
on Eq. 13.11. If we only have the mean and variance of T , the maximum
entropy prior (and hence in some sense the least informative prior) is a
Gaussian distribution, giving

P (T |C�I) = |2πCT |−1/2 exp
[
−1

2
T †C−1

T T

]
. (13.12)
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The posterior is thus

P (T,C�|T̂ ) ∝ P (C�|I)P (T |C�I)P (T |T̂ I). (13.13)

This requires the specification of a prior for C�, but we can defer that
decision until later. We first marginalize over T , which takes on the role
of a nuisance parameter. We can perform this integral by (once again)
completing the square, giving

P (C�|T̂ ) ∝ P (C�|I)|2π (CT + CN )|−1/2 exp
[
−1

2
T̂ † (CT + CN )−1 T

]
.

(13.14)
As we would expect, T̂ is distributed as a zero-mean Gaussian with vari-
ance CT + CN ; equivalently, it is the sum of two independent zero-mean
Gaussian-distributed quantities with variances CT and CN .

The question now becomes a computational one: given T̂ and CN , how
do we characterize this as a function of C�? Unlike when solving for T̂ itself,
we cannot do this analytically. Because we can calculate derivatives of the
likelihood function, we use a modified form of the Newton-Raphson method
to find where dP (C�)/dC� = 0 and the curvature around that point.[2, 31]
Experience shows that the likelihood space is well-structured, with a single
maximum, so this procedure is sufficient.

As in the map-making procedure, this calculation unfortunately scales
overall as O(N3

pix), making it difficult even for current experiments, and
effectively impossible for high-resolution full-sky experiments such as MAP
and Planck. The MADCAP package[22] contains a parallel implementation
of the likelihood maximization.

Note that we traditionally bin the power spectrum in �. We assume that
C� has a particular shape in some bins, and estimate the amplitude. Because
we measure a finite amount of sky, overly-fine bins would be oversampled
(as in fourier-analysis on the plane, where you can only get information for
frequency intervals > O(1/length). Put another way, narrower bins would
be very strongly correlated. Of course, these correlations would be encoded
in the likelihood function, but the calculation also scales with the number
of bins, another reason to keep this down to a reasonable number.

In Figure 13.2 we show the results of this and related procedures per-
formed on the map of Figure 13.1, as well as data from BOOMERANG[3]
and DASI[12]. The error bars are typically given by the inverse curvature
of the posterior, but that is numerically very similar to the marginalized
likelihood, or in fact any other standard measure of 1sigma uncertainty.

13.3.3 Alternate approaches

Because of the O(N3
pix) scaling of this C� estimation algorithm, other ap-

proaches have been suggested. One abandons the map as the input data,
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FIGURE 13.2. MAXIMA[19], BOOMERANG[3], DASI[12] and COBE/DMR[5]
power spectra. The MAXIMA, CBI and DASI spectra were calculated with vari-
ants of the maximum-likelihood method described here; the BOOMERANG spec-
trum was calculated using a monte-carlo method[2], with modifications to approx-
imate the maximum likelihood. The smooth curve was chosen from the space of
cosmologicals discussed here to fit only a subset of the data, but remains a good
fit to the entire data.

using instead quadratic combinations of the data, in particular the squared
spherical-harmonic components—i.e., the naive power spectrum of the map,
sometimes referred to as pseudo-C�s.[34] In some simple cases, one can ex-
actly calculate the likelihood function for these quadratics as a function of
C�, in analogy to Eq. 13.14. The use of this approach with real, complicated
data has yet to be investigated.

Another speedup takes advantage of the notion that one can smooth a
map to investigate power at large scales (low �), and conversely consider
small sub-maps for small-scale (high �) information. This has recently been
formalized in the context of an approximation to the iterative Newton-
Raphson likelihood maximization.[10]

Yet another possibility involves taking advantage of the structure of the
noise and signal correlations in certain experimental configurations. The
MAP satellite is expected to have noise correlations that are uncorrelated
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and approximately azimuthally symmetric. The noise and signal correla-
tions are then both highly structured in the spherical harmonic basis, and
this fact can be used to provide matrix preconditioners for operations in-
volved in likelihood maximization.[25]

13.3.4 From power spectra to parameters

Until now, we have left off the prior probability for the power spectrum.
However, within the context of adiabatic inflationary models, we can write
C� = C�(Ωi, ns, h, τC , . . .) ≡ C�(θ), where now θ represents the (7-10 or
so) cosmological parameters we wish to determine. Thus, we again defer
assigning a prior for the cosmological parameters themselves, just writing
P (C�|θI) = δ [C� − C�(θ)]. But we do have one problem: above, we deter-
mined the location of the peak of the likelihood as a function of C�, and
the curvature around that peak, but nothing else about the shape. In par-
ticular, this shape is not well-described as that of a Gaussian. With enough
computing power at our disposal, we could just calculate the value of the
likelihood directly using Eq. 13.14; the O(N3

pix) scaling rears its head, and
this quickly becomes prohibitive.

However, the likelihood is well-approximated as a Gaussian in ln(C�+x�),
where x� is related to the noise properties of the experiment[4]. Hence, once
we have found the peak of the likelihood, the curvature at the peak, and
this x, we can use simple χ2 techniques. (Note that this ansatz describes
the likelihood as a function of the theoretical spectrum, C�, the quantity
of interest to Bayesians. It does not describe the likelihood as a function
of the data (or any statistic of the data) which would be of interest in a
frequentist analysis; see other contributions to this volume.)

Now, however, we are finally forced to confront the problem of assigning
a prior probability to our cosmological parameters. This is complicated by
several factors:

1. For computational reasons, and because we do not fully understand
the offset log-normal ansatz in the presence of strong correlations,
we bin the power spectrum. That is, we calculate the most probable
amplitude of the power spectrum in some band, assuming some known
shape. Since we are in general not comparing to theories with the
same shape that we have assumed, there is subtlety in calculating
the likelihood function. This is addressed through the use of “filter
functions” with a formalism developed in Ref. [18].

2. The dependence of C� upon the parameters is highly nonlinear.

3. For most of the parameters, there is no natural measure to define a
non-informative prior. Moreover, because the parameters enter the
cosmological physics in different ways and different combinations in
different problems, we cannot make a simple prior choice such as
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using uniform priors in all cases. (For example, we could choose to
parameterize in terms of the densities Ωi, along with the Hubble
parameter, h. Alternately, we could parameterize in terms of physical
densities ∝ Ωih

2 which control the physics.

4. There are several approximate degeneracies in the parameter space.
That is, there are loci of parameters that give practically indistin-
guishable spectra.

5. Because of this, we cannot define a compact subspace of the full
parameter space for which the likelihood goes to nearly-zero at the
boundary. Hence, the results will always depend on the parameter
volume over which we choose to calculate models to compare to data.

6. Even if we wish to use informative priors for the cosmological param-
eters, different experiments measure different parameters, and indeed
different experiments disagree.

Given all of these issues, the most practical advice is simply to be sure to
enumerate the explicit and implicit priors used. Moreover, it is important
to check that the results are not too strongly dependent on the form of the
prior, or at least that the dependence is physically understood.

There are other considerations when reporting such results. If we are
interested in a single parameter, it is traditional to marginalize over all
others. In this case, however, we are interested in the parameters both
together and separately. That is, we would like to know what value the
CMB gives for ΩBh

2 (say) and so it may be appropriate to marginalize
over the other parameters. However, because the parameter space is quite
large, we would also like to know where in terms of the other parameters
the marginalized distribution picks up most of its mass. In problems with
a more simply-structured likelihood space, this is accomplished by just re-
porting the likelihood maximum and some version of the covariance matrix
around the maximum. In this case, the likelihood is not well-fit by a Gaus-
sian (especially when the aforementioned degeneracies show their presence)
and our intuition may be misguided. As the data improve we will indeed
hone in on at least the non-degenerate parameters; we have seen this in the
past few years as we have passed to the latest vintages of data.[20, 16]

For example, we find that somewhat generically, current C� data can
be well fit by models in two very different regimes. One is a “standard”
model with reasonable parameters, but another has several of the param-
eters which control the location and relative height of the peaks changed
considerably to “unphysical” values. However, adding a very simple prior
requiring h > 0.45 eliminates this unphysical regime.

Similarly, it is well known that the CMB is sensitive largely to the overall
curvature, and thus to the total mass density, of the Universe, but not to the
way in which it is apportioned among matter and a cosmological constant.
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We cannot make any a priori obvious cuts on the parameter space to break
this degeneracy. Hence, in Figure 13.3, we see the likelihood function in two
dimensions (marginalized over all other parameters) for a subset of CMB
data.

FIGURE 13.3. Likelihood in the Ωm, ΩΛ plane from the combined COBE/DMR,
MAXIMA and BOOMERANG data as of late 2000. Blue contours along the
Ωm + ΩΛ = 1 line are from the CMB alone, perpendicular orange contours are
from an ’orthogonal’ dataset of Supernovae distances[29, 26], and the heavy con-
tours are for the combination of the two. Contours are 1-, 2- and 3-sigma as
defined by the equivalent likelihood ratio for a 2-d Gaussian. From ref. [16]

13.3.5 Non-Gaussianity?

So far, we have used a Gaussian distribution to describe both the distribu-
tion of noise and of the signal. Perhaps foremost, we do this for simplicity:
we can write down all of the above equations! Physically, a Gaussian arises
when the “Central Limit Theorem” obtains: when we are concerned with
something like the sum of very many small contributions. This holds for
many sources of instrumental noise. It is also appropriate for the quantum-
mechanical fluctuations produced in most models of inflation.
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The specificity of the Gaussian distribution has led to much worry that
our methods may be incorrect if the “actual signal isn’t distributed as a
Gaussian.” Within the Bayesian paradigm, the Gaussian form for the like-
lihood arises when we assign a Gaussian prior to both the noise (Eq. 13.8)
and the signal (Eq. 13.12). A Gaussian has the property that it is the
maximum-entropy distribution given a known mean and variance. Hence,
as long as our signal is described by a variance like Eq. 13.2, the Gaussian
assumption is, in fact, the most conservative assignment that can be made.
(Note, however, that the particular Gaussian we have chosen is not com-
pletely general: we require by Eq. 13.2 that the different a�m at a given �
have the same variance—i.e., isotropy.)

Conversely, if we somehow knew that the distribution had a particular
non-Gaussian distribution (as predicted by, for example, certain classes
of inflationary models [6, 33, 7]), we could use that instead of Eq. 13.12,
although it may not be possible in that case to marginalize analytically
over the map in the joint distribution of C� and the map (Eq. 13.13).

13.4 Alternatives: frequentist measures

The community so far has taken a largely Bayesian approach to the anal-
ysis of CMB data. Philosophical issues aside, there are alternatives, the
so-called “frequentist” or “orthodox” approach, some of whose aspectes
were explored at this meeting in the contributions of Schafer & Stark and
Wasserman et al. In the former work, they attempt to characterize the ’dis-
tance’ between cosmological models in terms of the ability of CMB data to
discriminate between them. This arises as a problem because of the highly
nonlinear relationship between the physical cosmological variables of inter-
est and the measurable quantity, the power spectrum of CMB fluctuations.
Such a characterization will prove useful not only in frequentist analyses
of CMB data but also in any use of CMB power spectra which require a
greater understanding of the mapping between parameters and spectra.

In the following, we wish to comment further on the Bayesian and Fre-
quentist approaches to the CMB data analysis problem in general. Without
caricaturing it too much, we can summarize the frequentist approach as fol-
lows. Just as in the Bayesian approach, we start with the likelihood func-
tion. Then, we choose an “estimator”, some function of the data, chosen
to somehow represent an estimate of the parameter we wish to determine.
We then calculate the sampling distribution of this estimator, under the
assumption of some fixed value of the theoretical parameters. If the likeli-
hood is P (d|θ), and our estimator is θ̂(d), we need P (θ̂|θ). If the estimator
is some simple function of the data, then we can just use the usual trans-
formations P (x)dx = P (y)dy and do this analytically, otherwise we can
perform Monte Carlo sampling of P (d|θ). Armed with this distribution, we
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define a confidence interval in the usual way. To do this, we will need

P (θmin < θ̂ < θmax|θI) ≡
∫ θmax

θmin

P (θ̂|θI) dθ̂ = C . (13.15)

(cf. Eq. 13.5.) The art of frequentist statistics is in the choice of the esti-
mator. Often, it is chosen to be unbiased,

∫
dθ̂ θ̂P (θ̂|θ) = θ, and have some

appropriately small or minimum variance under the same distribution.
It is worth belaboring the point that these intervals are a priori com-

pletely distinct from Bayesian intervals. These intervals say that, if you
repeated the experiment many times, each time drawing from the same
sampling distribution, in some fraction C of the trials you would get the
answer within the stated limits.

This is in contrast to the Bayesian credible region, although the form is
similar. Even in the simplest case, we are dealing with two very different
functions: the Bayesian uses P (θ|θ̂I) for fixed data, θ̂, whereas the frequen-
tist uses P (θ̂|θI) for fixed θ. Even for a uniform prior when these functions
are proportional to one another, the two approaches are concerned with it as
a function of different variables! Of course, we whet our teeth on problems
in which θ and θ̂ appear symmetrically in the likelihood—estimation with
linear, Gaussian models. In this case, then, the frequentist and Bayesian
results are agreement, but in general they will not be so. In particular,
even if these correspondances do obtain (at least approximately), they do
not help us understand other aspects of the frequentist distribution — for
example, the offset-lognormal ansatz of Sec. 13.3.4 above applies to the
likelihood as a function of C�, not as a function of some estimator Ĉ�.

13.4.1 Monte-Carlo power spectra

Nonetheless, intuition and longstanding practice suggest that such frequen-
tist measures have a place. Indeed, for the estimation of Power Spectra in
particular, there is a deeper reason to use them, even within the Bayesian
paradigm. Consider the very simplest spectrum estimation problem, an all-
sky experiment with uniform noise, and a pixel scale negligible compared to
that of the sky signal. Then, there are exact correspondences between the
(uniform prior) Bayesian and Frequentist results: The Bayesian maximum-
likelihood is the same as the frequentist mean, and the “error bars” as
calculated from the Bayesian curvature are the same as the Frequentist
variance. [These correspondences are not strictly true if the noise is com-
parable to the signal, since the frequentist mean and variance are calculated
for (signal + noise) > 0 rather than for signal > 0.] These are well-known
to hold asymptotically, but this is a case in which they hold for finite data
as well.

Unfortunately, these correspondences do not remain exact for realistic
experiments. Nonetheless, experience has thus far shown that we can indeed
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extract useful approximate Bayesian information from Monte Carlo power
spectra[2, 3]; this is an ongoing area of research, especially as the era of
experiments with Npix � 100, 000 approaches. In the regime to be probed
by MAP and Planck, with millions of pixels covering the whole sky, some
alternative to the brute-force matrix manipulation will be necessary. For
a full-sky experiment, we can take advantage of fast spherical-harmonic
transforms to speed up some of the Monte Carlo calculations[2].

13.4.2 Cosmological parameter estimates

We must nonetheless take some care in interpreting such frequentist results.
In particular, how do we use them in the next step of the calculation? If
we take them to be approximations to the Bayesian solution, then the pro-
cedure is clear, assuming, at least, that we also have access to parameters
like x� (Sec. 13.3.4 above) in order to compute the posterior distribution.
However, a fully-fledged frequentist analysis in this case is somewhat more
involved, since there clearly are no good sufficient statistics for the cosmo-
logical parameters given the data.

One can still imagine an entirely frequentist algorithm for calculating
not just the power spectrum, but the cosmological parameters themselves,
directly from the data. In practice, it is found that the limits are not very
different from the Bayesian intervals[1], although this is a subject of ongoing
research, and not immune to technical problems.

13.5 Conclusions

The cosmic microwave background has become one of the primary tools
for exploring the early Universe. The simple, linear physics describing the
phenomena make it relatively straightforward to connect the measurement
process to the underlying cosmological phenomena. Conversely, the highly
accurate measurements of the cosmological parameters that this data will
allow requires that we understand our measurement and analysis procedure
in great detail. This brings to the fore both computational issues in manip-
ulating highly-correlated multivariate distributions and philosophical issues
regardin the underlying analysis methods.

Acknowledgments The author would like to especially thank Lloyd
Knox, Dmitri Pogosyan, Dick Bond, Julian Borrill, Pedro Ferreira and
Radek Stompor for their work and innumerable discussions, as well as the
whole MAXIMA, BOOMERANG and COMBAT teams. Portions of this
work were supported by NASA LTSA Grant NAG5-6552 and by NSF KDI
grant 9872979.



210 Andrew H. Jaffe

13.6 References

[1] M. Abroe et al, Frequentist Estimation of Cosmological Parameters
from the MAXIMA-I data.

[2] J. R. Bond, A. H. Jaffe, and L. Knox, Phys Rev D 57, 2117 (1998).

[3] J. R. Bond, R. G. Crittenden, A. H. Jaffe, and L. E. Knox, Computers
in Science and Engineering 1, 21 (1999).

[4] J. R. Bond, A. H. Jaffe, and L. Knox, Astrophys J 533, 19 (2000).

[5] http://space.gsfc.nasa.gov/astro/cobe/.

[6] C. R. Contaldi, R. Bean, and J. Magueijo, Physics Letters B 468, 189
(1999).

[7] C. R. Contaldi and J. . Magueijo, Phys Rev D 63, 3512+ (2001).

[8] P. de Bernardis et al., Nature 404, 955 (2000).
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Commentary by The Pittsburgh Institute for
Computational Astrostatistics2

Andrew Jaffe has given a nice summary of challenges in analyzing the
Cosmic Microwave Background (CMB). Jaffe seems to prefer a Bayesian
analysis though he notes that such an analysis does have some problems. In
our discussion we review the statistical model, we highlight some challenges
and we suggest a new approach.

13.7 The Statistical Model

A simplified version of the problem that Jaffe states is as follows. We ob-
serve

T ∼ Normal(0, CT )
d|T ∼ Normal(AT,N)

where T is the vector of unobserved temperatures and d is the vector
of observed data. In this simplified form, the matrices N and A are as-
sumed known. The matrix CT = CT (ω) contains unknown parameters
ω = (ω1, ω2 . . .). We use ω� where Jaffe uses C� to avoid confusion with CT

and CN (defined below).
The least squares estimate of T is T̂ = (ATN−1A)−1ATN−1d with vari-

ance CN = (ATN−1A)−1. We may then re-express the model as

T ∼ Normal(0, CT )
T̂ |T ∼ Normal(T,CN ). (13.16)

The marginal distribution of T̂ is d ∼ Normal(0, CN +CT ). The likelihood
function is

L(ω) ∝ 1
|CN + CT (ω)|1/2

exp
{
−1

2
T̂ T (CT (ω) + CN )−1T̂

}
. (13.17)

A more direct route to the likelihood is to note that, from (13.16), d ∼
Normal(0, ATCT (ω)A + N) and thus L(ω) = f(d|ω) which is identical to
(13.17).

The likelihood L(ω) depends on parameters ω = (ω1, ω2, . . . , ) which
are, essentially, the values of the true power spectrum at each multipole
moment. For a variety of reasons, evaluating L(ω) directly is hard. Instead,

2The members of PICA, in reverse order of seniority, are: Woncheol Jang, Chris
Miller, Andy Connolly, Jeff Schneider, Chris Genovese, Bob Nichol, Andrew Moore and
Larry Wasserman.
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one extracts point estimates ω̂� of the parameters for subset of values of �.
Apparently, ω̂� is something like the maximum likelihood estimate obtained
using either a profile or marginal likelihood. At least approximately, one
has

ω̂� = ω� + ε� (13.18)

where ε� ∼ Normal(0, σ2
� ) and the ε′�s are approximately uncorrelated. We

then have the approximate likelihood

L̂(ω) ∝ exp

{
−1

2

∑
�

(ω� − ω̂�)2

σ2
�

}
.

Each cosmological parameters κ can be viewed as a nonlinear function of
the ω′

�s. Thus we may write κ = U(ω) for some function U . The Bayesian
approach is to place a prior on ω which, together with the likelihood yields
a posterior π(ω|d). ¿From the posterior, we may compute the marginal
posterior π(κ|d) for any quantity of interest κ.

The conceptual simplicity of the Bayesian approach is appealing. Jaffe
notes, however, that there are some complications. We now discuss some
of these complications.

13.8 Identifiability

Jaffe points out that there are “... approximate degeneracies in the parame-
ter space.” In statistical parlance, we say that the model is under-identified
or that some parameters are non-identifiable. Basically, this means that the
data are not highly informative about all the parameters. For example, if
X ∼ Normal(a+b, 1) then we can estimate µ = a+b but we cannot estimate
a and b separately. In the Bayesian framework, we could still put a prior
on (a, b) and find marginal posteriors for a and b. But lack of identifiability
is a warning flag that standard Bayesian or even likelihood methods may
not be satisfactory. The lack of identifiability implies that the posterior
will be highly sensitive to the prior. Further complications occur when we
integrate out many parameters as we now explain.

13.9 Dangers of Integrating out Nuisance
Parameters

Inferring a parameter of interest in the presence of nuisance parameters
is conceptually simple in the Bayesian approach. One merely integrates
out the nuisance parameters. But there are dangers. Integrating out many
parameters can lead to a posterior distribution with strange properties. In
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particular, the 95 per cent posterior interval may contain the true value of
the parameter with very low frequency. Put another way, the posterior may
be badly biased. Here is an extreme example due to Stein (1959). Observe
independent observations Xi ∼ N(θi, 1) i = 1, . . . , n and suppose we want
to estimate ψ =

∑
i θ

2
i . Suppose we use a flat prior on θ = (θ1, . . . , θn).

Let A = [a,∞) where a is defined by P (Z > a) = 1 − α and Z has a
non-central χ2 distribution with n degrees of freedom and non-centrality
parameter

∑
iX

2
i . It can be shown that A is a 1−α posterior interval, i.e.

P (ψ ∈ A|X1, . . . , Xn) = 1−α. However, Stein showed that P (ψ ∈ A|θ) ≈ 0
so the interval will rarely contain the true value in the frequency sense.

13.10 An Approach Based on Nonparametric
Regression

In our contribution to this volume, we took a different approach to the
problem. We review the main idea here. Let f(�) denote the true power
spectrum at multipole moment �. We can write (13.18) as

Y� = f(�) + ε�

where Y� = ω̂�. Written this way, we see that this is really a regression
problem. Our approach is to nonparametrically estimate the regression f
and find a nonparametric 1 − α confidence set Cn for f . Then we express
cosmological parameters as functions of f : κ = U(f). A confidence interval
for κ is given by (

min
f∈Cn

U(f), max
f∈Cn

U(f)
)
.

If the parameter κ is under-identified this will show up automatically as
a wide confidence interval. Moreover, the intervals have correct frequency
coverage, simultaneously over all parameters of interest. This approach
sidesteps many of the problems, gives correct confidence intervals and
avoids any need for integration.

13.11 Reference

Stein, C. (1959). An example of wide discrepancy between fiducial and
confidence intervals. Ann. Math. Statist., 30, 877-880.
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Inference in Microwave
Cosmology: A Frequentist
Perspective

Chad M. Schafer and Philip B. Stark

ABSTRACT Estimating cosmological parameters using measurements of
the Cosmic Microwave Background (CMB) is scientifically important and
computationally and statistically challenging. Bayesian methods and blends
of Bayesian and frequentist ideas are common in cosmology. Constructing
purely frequentist confidence intervals raises questions about the probabil-
ity that the intervals falsely contain incorrect values. A computable bound
on this false coverage probability can help find optimal confidence intervals.
This paper is followed by a commentary by astronomy Andrew H. Jaffe.

14.1 The Problem

Key cosmological parameters are related to tiny temperature fluctuations
among photons released during the last scattering, when the universe had
cooled enough for photons to travel freely. These photons form the Cosmic
Microwave Background (CMB). Many cosmological models treat the ob-
served CMB temperature anisotropy as a realization of a random n−vector
X that has a Gaussian distribution with mean zero and covariance matrix
Σθ, where θ is the vector of cosmological parameters. For example, in the
initial analysis of the MAXIMA data [1] θ consisted of six numerical pa-
rameters, θ = (Ω,ΩΛ,Ωbh

2,Ωch
2, ns, τc). Henceforth here the parameter

space Θ ⊂ Rp is the collection of feasible models.
For any θ ∈ Θ, the matrix Σθ is a linear combination of known matrices,

but the mapping from Θ into the vector of weights is highly nonlinear,
and does not have a closed-form expression. This makes it computationally
challenging to find the distribution of a statistic for different values of θ,
which is at the heart of frequentist approaches to estimation. Moreover,
two points θ, θ′ in Θ may differ greatly in the value of one or more of their
components, but still yield covariance matrices Σθ,Σθ′ that are “close” in
the sense that the L1-distance between the two probability distributions is
small.
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14.2 False Coverage Probability

Write θ = (θ1, θ2, . . . , θp) ∈ �p, and consider estimating θ1, treating the
other components of θ as nuisance parameters. An interval estimator for
θ1 is a function C that maps the space of possible observations into a set
of real numbers. The false coverage probability γC(θ, a) = Pθ(C(X) � a) is
the probability that the interval includes (covers) a when θ is the truth—
a fundamental measure of accuracy. A 1 − α confidence interval for θ1
must have γC(θ, θ1) ≥ 1 − α whatever be θ ∈ Θ. Subject to that coverage
constraint, it is desirable that C minimize γC(θ, a) for all θ and all a �= θ1,
but such uniformity is rarely possible.

If C is a 1− α confidence interval estimator, then

γC(θ′, a) ≥ sup
{θ∈Θ: θ1=a}

(
1− 1

2
∆1(θ′, θ)− α

)
,

where ∆1 is the L1-distance between the probability distribution for X
when the cosmological parameter vector equals θ and the probability dis-
tribution for X when the cosmological parameter vector equals θ′. The
affinity between θ′ and θ,

ρ(θ′, θ) =
∫

(fθ′(x) fθ(x))
1/2

dx,

can be easier to calculate than the L1-distance. The L1-distance and the
affinity are related [2]:

γC(θ′, a) ≥ sup
{θ∈Θ: θ1=a}

(
1−
[
1−ρ2(θ′, θ)

]1/2−α
)
.

For the Gaussian case at hand,

ρ(θ′, θ) =
2n/2

∣∣Σ−1
θ + Σ−1

θ′
∣∣−1/2

|Σθ|1/4 |Σθ′ |1/4
.

This lets one bound the false coverage probability through the pixel co-
variance matrix Σθ, a natural representation of the cosmology. Currently,
computing the affinity is tractable only for small experiments, but better
algorithms might allow large experiments to be analyzed.

14.3 References

[1] Jaffe, A., et. al. (2001) “Cosmology from MAXIMA-1, BOOMERANG
& COBE/DMR CMB Observations,” Phys. Rev. Lett., 86, 3475-3479,
astro-ph/000733

[2] LeCam, L.M. and Yang, G.L. (1990) Asymptotics in Statistics: Some
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14.4 Alternatives: frequentist measures

The community so far has taken a largely Bayesian perspective to the
analysis of CMB data. Philosophical issues aside, there are alternatives,
the so-called “frequentist” or “orthodox” approach, some of whose aspects
are explored in this contribution by Schafer and Stark. In this work, they
attempt to characterize the ’distance’ between cosmological models in terms
of the ability of CMB data to discriminate between them. This arises as a
problem because of the highly nonlinear relationship between the physical
cosmological variables of interest and the measurable quantity, the power
spectrum of CMB fluctuations. Such a characterization will prove useful not
only in frequentist analyses of CMB data but also in any use of CMB power
spectra which require a greater understanding of the mapping between
parameters and spectra.

In the following, we wish to comment further on the Bayesian and Fre-
quentist approaches to the CMB data analysis problem in general. Without
caricaturing it too much, we can summarize the frequentist approach as fol-
lows. Just as in the Bayesian approach, we start with the likelihood func-
tion. Then, we choose an “estimator”, some function of the data, chosen
to somehow represent an estimate of the parameter we wish to determine.
We then calculate the sampling distribution of this estimator, under the
assumption of some fixed value of the theoretical parameters. If the likeli-
hood is P (d|θ), and our estimator is θ̂(d), we need P (θ̂|θ). If the estimator
is some simple function of the data, then we can just use P (x)dx = P (y)dy
and do this analytically, otherwise we can perform Monte Carlo sampling
of P (d|θ). Armed with this distribution, we define a confidence interval in
the usual way. To do this, we will need

P (θmin < θ̂ < θmax|θI) ≡
∫ θmax

θmin

P (θ̂|θI) dθ̂ = C . (14.1)

The art of frequentist statistics is in the choice of the estimator. Often, it
is chosen to be unbiased,

∫
dθ̂ θ̂P (θ̂|θ) = θ, and have some appropriately

small or minimum variance under the same distribution.
It is worth belaboring the point that these intervals are a priori com-

pletely distinct from Bayesian intervals. These intervals say that, if you
repeated the experiment many times, each time drawing from the same
sampling distribution, in some fraction C of the trials you would get the
answer within the stated limits.

This is in contrast to the Bayesian credible region, although the form is
similar. Even in the simplest case, we are dealing with two very different
functions: the Bayesian uses P (θ|θ̂I) for fixed data, θ̂, whereas the frequen-
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tist uses P (θ̂|θI) for fixed θ. Even for a uniform prior when these functions
are proportional to one another, the two approaches are concerned with it as
a function of different variables! Of course, we whet our teeth on problems
in which θ and θ̂ appear symmetrically in the likelihood—estimation with
linear, Gaussian models. In this case, then, the frequentist and Bayesian
results are agreement, but in general they will not be so.

14.4.1 Monte-Carlo power spectra

Nonetheless, intuition and longstanding practice suggest that such frequen-
tist measures have a place. Indeed, for the estimation of Power Spectra in
particular, there is a deeper reason to use them, even within the Bayesian
paradigm. Consider the very simplest spectrum estimation problem, an all-
sky experiment with uniform noise, and a pixel scale negligible compared to
that of the sky signal. Then, there are exact correspondences between the
(uniform prior) Bayesian and Frequentist results: The Bayesian maximum-
likelihood is the same as the frequentist mean, and the “error bars” as
calculated from the Bayesian curvature are the same as the Frequentist
variance. [These correspondences are not strictly true if the noise is com-
parable to the signal, since the frequentist mean and variance are calculated
for (signal + noise) > 0 rather than for signal > 0.] These are well-known
to hold asymptotically, but this is a case in which they hold for finite data
as well.

Unfortunately, these correspondences do not remain exact for realistic
experiments. Nonetheless, experience has thus far shown that we can indeed
extract useful approximate Bayesian information from Monte Carlo power
spectra [2, 3]; this is an ongoing area of research, especially as the era of
experiments with Npix � 100, 000 approaches. In the regime to be probed
by MAP and Planck, with millions of pixels covering the whole sky, some
alternative to the brute-force matrix manipulation will be necessary. For
a full-sky experiment, we can take advantage of fast spherical-harmonic
transforms to speed up some of the Monte Carlo calculations [2].

14.4.2 Frequentist parameter estimates

Finally, one can imagine an entirely frequentist algorithm for calculating
not just the power spectrum, but the cosmological parameters themselves,
directly from the data. In practice, it is found that the limits are not very
different from the Bayesian intervals [1], although this is a subject of on-
going research, and not immune to technical problems.

14.5 References
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Nonparametric Inference in
Astrophysics

The Pittsburgh Institute for Computational
Astrostatistics (PICA)1

ABSTRACT We discuss nonparametric density estimation and regression
for astrophysics problems. In particular, we show how to compute nonpara-
metric confidence intervals for the location and size of peaks of a function.
We illustrate these ideas with recent data on the Cosmic Microwave Back-
ground. We also briefly discuss nonparametric Bayesian inference.
This paper is followed by commentaries by astronomers Michael A. Strauss
and Jeffrey D. Scargle, and a rejoinder by the authors.

15.1 Nonparametric inference

The explosion of data in astrophysics provides unique opportunities and
challenges. The challenges are mainly in data storage and manipulation.
The opportunities arise from the fact that large sample sizes make non-
parametric statistical methods very effective. Nonparametric methods are
statistical techniques that make as few assumptions as possible about the
process that generated the data. Such methods are inherently more flexi-
ble than more traditional parametric methods that impose rigid and often
unrealistic assumptions. With large sample sizes, nonparametric methods
make it possible to find subtle effects which might otherwise be obscured
by the assumptions built into parametric methods. We begin by discussing
two prototypical astrostatistics problems.

Problem 1. Density Estimation. Let X1, . . . , Xn denote the posi-
tions of n galaxies in a galaxy survey. Let f(x)dx denote the probability
of finding a galaxy in a small volume around x. The function f is a prob-
ability density function, satisfying f(x) ≥ 0 and

∫
f(x)dx = 1. We regard

X1, . . . , Xn as n random draws from f . Our goal is to estimate f(x) from
the data (X1, . . . , Xn) while making as few assumptions about f as possi-
ble. Figure 15.1 shows redshifts from a pencil beam from the Sloan Digital

1The members of PICA, in reverse order of seniority, are: Woncheol Jang, Chris
Miller, Andy Connolly, Jeff Schneider, Chris Genovese, Bob Nichol, Andrew Moore and
Larry Wasserman.
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Sky Survey. The figure shows several nonparametric density estimates that
will be described in more detail in Section 3. The structure in the data is
evident only if we smooth the data by just the right amount (lower left
plot).2

Problem 2. Regression. Figures 15.2 and 15.3 show cosmic microwave
background (CMB) data from BOOMERaNG (Netterfield et al. 2001),
Maxima (Lee et al. 2001) and DASI (Halverson 2001). The data consist
of n pairs (X1, Y1), . . . , (Xn, Yn). Here, Xi is multipole moment and Yi

is the estimated power spectrum of the temperature fluctuations. If f(x)
denotes the true power spectrum then

Yi = f(Xi) + εi

where εi is a random error with mean 0. This is the standard regression
model. We call Y the response variable and X the covariate. Other com-
monly used names for X include predictor and independent variable. The
function f is called the regression function. The goal in nonparametric re-
gression is to estimate f making only minimal smoothness assumptions
about f .

The main messages of this paper are: (1) with large data sets one can
estimate a function f nonparametrically, that is, without assuming that f
follows some given functional form; (2) one can use the data to estimate
the optimal amount of smoothing; (3) one can derive confidence sets for
f as well as confidence sets for interesting features of f . The latter point
is very important and is an example of where rigorous statistical methods
are a necessity; the usual confidence intervals of the form “estimate plus or
minus error” will not suffice.

The outline of this paper is as follows. Section 2 discusses some concep-
tual issues. Section 3 discusses kernel density estimation. Section 4 discusses
nonparametric regression. Section 5 explains something that might be less
familiar to astrophysicists, namely, nonparametric estimation via shrink-
age. Section 6 discusses nonparametric confidence intervals. In Section 7
we briefly discuss nonparametric Bayesian inference. We make some con-
cluding remarks in Section 8. Other examples of nonparametric methods
in the astronomical literature can be found in Merritt (1997) and Merritt
& Tremblay (1994).

Notation: We denote the mean of a random quantity X by E(X), often
written as 〈X〉 in physics. The variance of X is denoted by σ2 ≡ V ar(X) =
E(X − E(X))2. A random variable X has a Normal (or Gaussian) distri-
bution with mean µ and variance σ2, denoted by X ∼ N(µ, σ2), if

Pr(a < X < b) =
∫ b

a

1
σ
√

2π
exp

{
− 1

2σ2
(x − µ)2

}
dx.

2The data involve selection bias since we can only observe brighter objects for larger
redshifts. However, the sampling is fairly complete out to about z = 0.2.
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FIGURE 15.1. Redshift data. Histogram and three kernel density estimates based
on three different bandwidths. The bandwidth for the estimate in the lower left
panel was estimated from the data using cross-validation.
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FIGURE 15.2. CMB data. Section 4 explains the methods. The first fit is under-
smoothed, the second is oversmoothed and the third is based on cross-validation.
The last panel shows the estimated risk versus the bandwidth of the smoother.
The data are from BOOMERaNG, Maxima and DASI.
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nonparametric fit and Wang-Tegmark-Zaldarriaga fit
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FIGURE 15.3. Best nonparametric fit together with parametric fit from Wang,
Tegmark and Zaldarriaga (2001).

We use f̂ to denote an estimate of a function f .

15.2 Some conceptual issues

15.2.1 The Bias-Variance tradeoff

In any nonparametric problem, we need to find methods that produce esti-
mates f̂ of the unknown function f . Obviously, we would like f̂ to be close
to f . We will measure closeness with squared error:

L(f, f̂) =
∫

(f(x)− f̂(x))2dx.

The average value of the error is called the risk or mean squared error
(MSE) and is denoted by:

R(f, f̂) = Ef

[
L(f, f̂)

]
.
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FIGURE 15.4. The Bias-Variance tradeoff. The bias increases and the variance
decreases with the amount of smoothing. The optimal amount of smoothing,
indicated by the vertical line, minimizes the risk = bias2 + variance.

A simple calculation shows that

R(f, f̂) =
∫

Bias2x dx+
∫

Varx dx

where Biasx = E[f̂(x)]− f(x) is the bias of f̂(x) and Varx = V ar[f̂(x)] =
E[(f̂(x)− E[f̂(x)])2] is the variance of f̂(x). In words:

RISK = BIAS2 + VARIANCE.

Every nonparametric method involves some sort of data-smoothing. The
difficult task in nonparametric inference is to determine how much smooth-
ing to do. When the data are over-smoothed, the bias term is large and the
variance is small. When the data are under-smoothed the opposite is true;
see Figure 15.4. This is called the bias-variance tradeoff. Minimizing risk
corresponds to balancing bias and variance.
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15.2.2 Nonparametric confidence sets

Let f be the function of interest, for example, the true power spectrum in
the CMB example. Assume that f ∈ F where F is some very large class of
functions. A valid (large sample) 1 − α confidence set Cn is a set Cn ⊂ F
such that

lim inf
n→∞ inf

f∈F
Pr(f ∈ Cn) ≥ 1− α

where n is sample size. In words, Cn traps the true function f with prob-
ability approximately 1− α (or greater). In parametric models, confidence
intervals take the form θ̂±2 se where θ̂ is an estimate of a parameter θ and
se is the standard error of the estimate θ̂. Bayesian interval estimates take
essentially the same form. Nonparametric confidence sets are derived in a
different way as we shall explain later in the paper.

If prior information is available on f then it can be included by restricting
Cn. For example, if it is thought that f has at most three peaks and two
dips, we replace Cn with Cn ∩ I where I is the set of functions with no
more than three peaks and two dips.

Having constructed the confidence set we are then in a position to give
confidence intervals for features of interest. We express features as functions
of f , written T (f). For example, T (f) might denote the location of the first
peak in f . Then (

inf
f∈Cn

T (f), sup
f∈Cn

T (f)

)
is a 1−α confidence interval for the feature T (f). In fact, we can construct
valid, simultaneous confidence intervals for many features of interest this
way, once we have Cn. In section 6, we report such intervals for the CMB
data.

Let us dispel a common criticism about confidence intervals. An oft cited
but useless interpretation of a 95 per cent confidence interval is: if we
repeated the experiment many times, the interval would contain the true
value 95 per cent of the time. This interpretation leads many researchers to
find confidence sets to be irrelevant since the repetitions are hypothetical.
The correct interpretation is: if the method for constructing Cn is used
on a stream of (unrelated) scientific problems, we will trap the true value
95 per cent of the time. The latter interpretation is correct and is more
scientifically useful than the former.

15.2.3 Where is the likelihood?

The likelihood function, which is a familiar centerpiece of statistical in-
ference in parametric problems, is notably absent in most nonparametric
methods. It is possible to define a likelihood and even perform Bayesian
inference in nonparametric problems. But for the most part, likelihood and
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Bayesian methods have serious drawbacks in nonparametric settings. See
section 7 for more discussion on this point.

15.3 Kernel density estimation

We now turn to problem 1, density estimation. Let us start this section with
its conclusion: the choice of kernel (smoothing filter) is relatively unimpor-
tant; the choice of bandwidth (smoothing parameter) is crucial; the optimal
bandwidth can be estimated from the data. Let us now explain what this
means.

Let X1, . . . , Xn denote the observed data, a sample from f . The most
commonly used density estimator is the kernel density estimator defined
by

f̂(x) =
1
n

n∑
i=1

1
h
K

(
x−Xi

h

)
where K is called the kernel and h is called the bandwidth. This amounts to
placing a smoothed out lump of mass of size 1/n over each data point Xi.
Excellent references on kernel density estimation include Silverman (1986)
and Scott (1992).

The kernel is usually assumed to be a smooth function satisfying K(x) ≥
0,
∫
xK(x)dx = 0 and τ ≡

∫
x2K(x)dx > 0. A fact that is well known in

statistics but appears to be less known in astrophysics is that the choice of
kernel K is not crucial. The optimal kernel that minimizes risk (for large
samples) is called the Epanechnikov kernel K(x) = .75(1 − x2/5)/

√
5 for

|x| <
√

5. But the estimates using another other smooth kernel are usually
numerically indistinguishable. This observation is confirmed by theoretical
calculations which show that the risk is very insensitive to the choice of
kernel. In this paper we use the Gaussian kernel K(x) = (2π)−1/2e−x2/2.

What does matter is the choice of bandwidth h which controls the
amount of smoothing. Figure 15.1 shows the density estimate with four dif-
ferent bandwidths. Here we see how sensitive the estimate f̂ is to the choice
of h. Small bandwidths give very rough estimates while larger bandwidths
give smoother estimates. Statistical theory tells us that, in one dimensional
problems,

R(f, f̂) = BIAS2 + VARIANCE

≈ 1
4
h4c1A(f) +

c2
nh

where c1 =
∫
x2K(x)dx, c2 =

∫
K(x)2dx and A(f) =

∫
(f ′′(x))2dx. The

risk is minimized by taking the bandwidth equal to

h∗ = c
−2/5
1 c

1/5
2 A(f)−1/5n−1/5.
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This is informative because it tells us that the best bandwidth decreases at
rate n−1/5 and leads to risk of order O(n−4/5). Generally, one cannot find a
nonparametric estimator that converges faster than O(n−4/5). This rate is
close to the rate of parametric estimators, namely, O(n−1). The difference
between these rates is the price we pay for being nonparametric.

The expression for h∗ depends on the unknown density f which makes
the result of little practical use. We need a data-based method for choosing
h. The most common method for choosing a bandwidth h from the data is
cross-validation. The idea is as follows.

We would like to choose h to minimize the squared error
∫
(f(x) −

f̂(x))2dz =
∫
f̂2(x)dz − 2

∫
f̂(x)f(x)dx+

∫
f2(x)dx. Since

∫
f2(x)dx does

not depend on h, this corresponds to minimizing

J(h) =
∫
f̂2(x)dz − 2

∫
f̂(x)f(x)dx.

It can be shown that

Ĵ(h) =
∫
f̂2(x)dz − 2

1
n

n∑
i=1

f̂−i(Xi).

is an unbiased estimate of E[J(h)], where f̂−i is the “leave-one-out” esti-
mate obtained by omitting Xi. Some algebra shows that

Ĵ(h) ≈ 1
hn2

∑
i

∑
j

K∗
(
Xi −Xj

h

)
+

2
nh
K(0) (15.1)

where K∗(x) = K(2)(x) − 2K(x) and K(2) is the convolution of K with
itself. Hence, it is not actually necessary to compute f̂−i. We choose the
bandwidth ĥ that minimizes Ĵ(h). The lower left panel of Figure 15.1 was
based on cross-validation. An important observation for large data bases is
that (15.1) can be computed quickly using the fast Fourier transform; see
Silverman (1986, p 61-66).

15.4 Nonparametric kernel regression

Returning to the regression problem, consider pairs of points (X1, Y1), . . . ,
(Xn, Yn) related by

Yi = f(Xi) + εi.

The kernel method for density estimation also works for regression. The
estimate f̂ is a weighted average of the points near x: f̂(x) =

∑n
i=1 wiYi

where the weights are given by wi ∝ K
(

x−Xi

h

)
. This estimator is called

the Nadaraya-Watson estimator. Figure 15.2 shows that estimator for the
CMB data. Note the extreme dependence on the bandwidth h.
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Once again, we use cross-validation to choose the bandwidth h. The risk
is estimated by

Ĵ(h) =
1
n

n∑
i=1

(Yi − f̂−i(Xi))2.

The first three panels in Figure 15.2 show the regression data with dif-
ferent bandwidths. The second plot is based on the cross-validation band-
width. The final plot shows the estimated risk Ĵ(h) from cross validation.
Figure 15.3 compares the nonparametric fit with the fit by Wang, Tegmark
and Zaldarriaga (2001).

Given the small sample size and the fact that we have completely ignored
the cosmological models (as well as differential error on each data point) the
nonparametric fit does a remarkable job. It “confirms,” nonparametrically,
the existence of three peaks, their approximate positions and approximate
heights. Actually, the degree to which the fit confirms the three peaks
requires confidence statements that we discuss in section 6.

15.5 Smoothing by shrinking

There is another approach to nonparametric estimation based on expand-
ing f into an orthogonal series. The idea is to estimate the coefficients of
the series and then “shrink” these estimates towards 0. The operation of
shrinking is akin to smoothing. These methods have certain advantages
over kernel smoothers. First, the problem of estimating the bandwidth is
replaced with the problem of choosing the amount of shrinkage which is,
arguably, supported by better statistical theory than the former. Second, it
is easier to construct valid confidence sets for f in this framework. Third, in
some problems one can choose the basis in a well-informed way which will
lead to improved estimators. For example, Donoho and Johnstone (1994,
1995) and Johnstone (this volume) show that wavelet bases can be used to
great advantage in certain problems.

Suppose we observe Yi = f(xi)+ εi where, for simplicity, we assume that
x1 = 1/n, x2 = 2/n, . . . , xn = 1. Further suppose that εi ∼ N(0, σ2). Let
φ1, φ2, . . . be an orthonormal basis for [0, 1]:∫ 1

0

φ2
j (x)dx = 1 and

∫ 1

0

φi(x)φj(x)dx = 0 when i �= j.

For illustration, we consider the cosine basis: φ1(x) ≡ 1, φ2(x) =
√

2cos(πx),
φ2(x) =

√
2cos(2πx), . . .. Expand f in this basis: f(x) ∼

∑∞
j=1 βjφj(x) ≈∑n

j=1 βjφj(x). Estimating f then amounts to estimating the βj ’s. Let Zj =
n−1/2

∑n
i=1 Yiφj(i/n). It can be shown that Zj ≈ N

(
θj , σ

2
)
, j = 1, . . . , n

where θj =
√
nβj. Once we have estimates θ̂j , we set β̂j = n−1/2θ̂j and

f̂(x) =
∑n

j=1 β̂jφj(x).
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How do we estimate θ = (θ1, . . . , θn) from Z = (Z1, . . . , Zn)? A crude
estimate is θ̂j = Zj , j = 1, . . . , n. This leads to a very noisy (unsmoothed)
estimate of f . Better estimates can be found by using shrinkage estima-
tors. The idea – which goes back to James and Stein (1961) and Stein
(1981) – is to estimate θ by shrinking the vector Z closer to the origin.
A major discovery in mathematical statistics was that careful shrinkage
leads to estimates with much smaller risk. Following Beran (2000) we con-
sider shrinkage estimators of the form θ̂ = (α1Z1, α2Z2, . . . , αnZn) where
1 ≥ α1 ≥ α2 ≥ · · · ≥ αn ≥ 0 which forces more shrinkage for higher
frequency cosine terms.

Let α = (α1, . . . , αn) and let R(α) denote the risk of θ̂ using shrink-
age vector α. An estimate of R(α), called Stein’s unbiased risk estimate
(SURE), is

R̂(α) =
∑

j

[
σ̂2α2

j + (Z2
j − σ̂2)(1− αj)2

]
where σ2 has been estimated by σ̂2 = 1

k

∑n
i=n−k+1 Z

2
i with k < n. Using

appropriate numerical techniques, we minimize R̂(α) subject to the mono-
tonicity constraint. The minimizer is denoted by α̂ and the final estimate
is θ̂ = (α̂1Z1, α̂2Z2, . . . , α̂nZn). Beran (2000) shows that the estimator ob-
tained this way has some important optimality properties. Beran calls this
approach REACT (Risk Estimation, Adaptation, and Coordinate Trans-
formation). The estimated function f̂ turns out to be similar to the kernel
estimator; due to space limitations we omit the plot.

15.6 Confidence sets

When estimating a scalar quantity θ with an estimator θ̂, it is common to
summarize the uncertainty for the estimate by reporting θ̂±2se where se ≈√
V ar(θ̂) is the standard error of the estimator. Under certain regularity

conditions, this interval is a 95 per cent confidence interval, that is,

Pr
(
θ̂ − 2 se ≤ θ ≤ θ̂ + 2 se

)
≈ .95.

This follows because, under the conditions alluded to above, θ̂ ≈ N(θ, se2).
But the “plus or minus 2 standard errors” rule fails in nonparametric

inference. Consider estimating a density f(x) at a single point x with a
kernel density estimator. It turns out that

f̂(x) ≈ N
(
f(x) + bias,

c2f(x)
nh

)
(15.2)

where
bias =

1
2
h2f ′′(x)c1 (15.3)
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is the bias, c1 =
∫
x2K(x)dx and c2 =

∫
K2(x)dx. The estimated standard

error is

se =

{
c2f̂(x)
nh

}1/2

. (15.4)

Observe from (15.2) that (f̂(x)− f(x))/se ≈ N(bias/se, 1). If use the “es-
timate plus/minus 2 se” rule then

Pr
(
f̂(x) − 2 se ≤ f(x) ≤ f̂(x) + 2 se

)
= Pr

(
−2 ≤ f̂(x)− f(x)

se
≤ 2

)

≈ Pr

(
−2 ≤ N

(
bias
se

, 1
)
≤ 2
)
.

If bias/se → 0 then this becomes Pr(−2 < N(0, 1) < 2) ≈ .95. As we
explained in Section 2, the optimal bandwidth is of the form h = cn−1/5.
If you plug h = cn−1/5 this into (15.3) and(15.4) you will see that bias/se
does not tend to 0. The confidence interval will have coverage less than
.95. In summary, “estimate plus/minus 2 standard errors” is not appropri-
ate in nonparametric inference. There are a variety of ways to deal with
this problem. One is to use kernels with a suboptimal bandwidth. This
undersmooths the estimate resulting in a reduction of bias.

Another approach is based on the REACT method (Beran and Dumbgen,
1998). We construct a confidence set Cn for the vector of function values
at the observed data, fn = (f(X1), . . . , f(Xn)). The confidence set Cn

satisfies: for any c > 0,

lim sup
n→∞

sup
||fn||≤c

|Pr(fn ∈ Cn)− (1 − α)| → 0

where ||a|| =
√
n−1

∑
i a

2
i . The supremum is important: it means that the

accuracy of the coverage probability does not depend on the true (unknown)
function.

The confidence set, expressed in terms of the coefficients θ, is

Cn =

θ : n−1
∑

j

(θj − θ̂j)2 ≤ R̂r + n−1/2τ̂ zα


where zα is such that P (Z > zα) = α where Z ∼ N(0, 1) and τ̂ is a
quantity computed from the data whose formula we omit here. Finally, the
confidence set for f is

Dn =

f : f =
∑

j

βjφj : βj = n−1/2θj , θ ∈ Cn

 .
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Let us return to the CMB example. We constructed a 95 per cent con-
fidence set Cn, then we searched over Cn and found the possible number,
location and heights of the peaks. We restricted the search to functions
with no more than three peaks and two dips as it was deemed unlikely
that the true power spectrum would have more than three peaks. Curves
with one or two peaks cannot be ruled out at the 95 per cent level. The
confidence intervals, restricted to three peak models, are as follows.

Peak Location Height
1 (118,300) (4361,8055)
2 (377,650) (1822,4798)
3 (597,900) (1839,4683)

The 95 per cent confidence interval for the ratio of the height of the
second peak divided by the height of the first peak is (.21, 1.4). The 95
per cent confidence interval for the ratio of the height of the third peak
divided by the height of the second peak is (.22, 2.82). Not surprisingly, the
intervals are broad because the data set is small. In a further work by our
group (Miller et al 2001) we investigate the improvements in measurement
error that are needed to get more precise confidence sets.

15.7 Nonparametric Bayes

There seems to be great interest in Bayesian methods in astrophysics. The
reader might wonder if it is possible to perform nonparametric Bayesian
inference. The answer is, sort of.

Consider estimating a density f assumed to belong to some large class
of functions such as F = {f :

∫
(f ′′(x))2dx ≤ C}. The “parameter” is the

function f and the likelihood function is Ln(f) =
∏n

i=1 f(Xi). Maximizing
the likelihood leads to the absurd density estimate that puts infinite spikes
on each data point. It is possible to put a prior π over F . The posterior
distribution on F is well defined and Bayes theorem still holds:

Pr(f ∈ C | X1, . . . , Xn) =

∫
C
Ln(f)dπ(f)∫

F Ln(f)dπ(f)
.

Lest this seem somewhat abstract, take note that much recent work in
statistics lately has led to methods for computing this posterior.

However, there is a problem. The parameter space F is infinite dimen-
sional and, in such cases, the prior π is extremely influential. The result is
that the posterior may concentrate around the true function very slowly.
Worse, the 95 per cent Bayesian credible sets will contain the true function
with very low frequency. In many cases the frequency coverage probability
of the Bayesian 95 per cent credible set is near 0! Since high dimensional
parametric models behave like nonparametric models, these remarks should
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give us pause before casually applying Bayesian methods to parametric
models with many parameters.

The results that make these comments precise are fairly technical. The
interested reader is referred to Diaconis and Freedman (1986), Barron,
Schervish and Wasserman (1999), Ghosal, Ghosh and van der Vaart (2000),
Freedman (2000), Zhao (2000) and Shen and Wasserman (2001). The bot-
tom line: in nonparametric problems Bayesian inference is an interesting
research area but is not (yet?) a practical tool.

15.8 Conclusion

Nonparametric methods are at their best when the sample size is large.
The amount and quality of astrophysics data have increased dramatically
in the last few years. For this reason, we believe that nonparametric meth-
ods will play an increasingly important role in astrophysics. We have tried
to illustrate some of the key ideas and methods here. But we have really
only touched on a few main points. We hope through our continued in-
terdisciplinary collaboration and through others like it elsewhere, that the
development of nonparametric techniques in astrophysics will continue in
the future.
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Commentary by Michael A. Strauss3

I enjoyed this paper a lot; this is one statistics talk where as an as-
tronomer, I could immediately see application to problems that I tackle
every day. I would point out that for the problems used to illustrate the
talk, it was not always clear what the scientific question that was being ad-
dressed actually was, and therefore the statistical methods used were not
necessarily optimal. For example, the example of the large-scale distribu-
tion of galaxies was given to show how one can choose an optimal filter. In
fact, astronomers are interested in the structures on a range of scales. As
Figure 15.2 in my contribution to these proceedings makes clear, there is
a great deal of information for a variety of smoothing lengths, all of which
is useful in trying to come to a physical understanding of galaxy clustering
(see also the contributions by V. Mart́ınez and R. van de Weygaert). One
should also keep in mind that the galaxy distribution data become nois-
ier as one goes further out (galaxies further away are fainter than those
closer in), and astronomers have used methods like the Wiener filter and
its variants to come up with optimal smoothing of the data.

I was quite impressed by the demonstration of techniques for demon-
strating the validity of certain features in the data (such as the third bump
in the power spectrum of the Cosmic Microwave Data) without fitting ex-
plicit models; that is quite an important advance. Nevertheless, it is worth
emphasizing that the fitting of physical models to data continues to have
its place in analyses of these data; it is these fits which allow us to constrain
cosmological models directly from the CMB observations.

Finally, let me echo one of the more important messages of this paper,
namely that the shape of one’s filter is not nearly as important as its width.
This is a non-trivial, and sometimes non-intuitive fact, but understanding it
makes life quite a bit simpler for astronomers when faced with a bewildering
variety of different filtering techniques for their data.

3Princeton University Observatory
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Commentary by Jeffrey D. Scargle4

15.10 Nonparametric Inference

The excellent overview by the Pittsburgh Institute for Computational As-
trostatistics (PICA) group (Jang, Miller, Connolly, Schneider, Genovese,
Nichol, Moore, and Wasserman) begins with the statement

“Nonparametric methods are statistical techniques that make
as few assumptions as possible about the process that gener-
ated the data. Such methods are inherently more flexible than
more traditional parametric methods that impose rigid and of-
ten unrealistic assumptions.”

The informality of this definition is warranted by the fact that the terms
parametric and nonparametric are used somewhat loosely, and in different
ways in a variety of contexts.

A few additional comments may help astronomers. Parametric methods
typically use models in specific functional forms containing one or more
parameters. Example: a Gaussian form for a distribution, where the pa-
rameters are the mean and variance. In contrast, nonparametric methods
use generic models in which the number of parameters depends on the
number of data points (Rissanen 1989). Example: Fourier and wavelet rep-
resentations, in which the number of coefficients in is equal to the number
of data points. Polynomial fitting is another example, where the number
of parameters is one of the parameters of the problem; in such cases de-
termining the optimum order of the model is often the hardest part of the
problem.

Paradoxically, then, nonparametric methods do not avoid the use of pa-
rameters. The distinction is between generic models and those with spe-
cialized, explicit forms – not the use of parameters. Unfortunately, through
long usage we are stuck with this misleading terminology.

15.11 Smoothing and the Bias-Variance Tradeoff

PICA gives a very clear picture of nonparametric inference, emphasizing
the trade-off between bias and variance of estimators. They discuss density
estimation and regression, both of which can be viewed as determination of
an unknown function f of some independent variable, say X , using noisy
observations Y :

Y = f(X) + ε , (15.5)

4NASA Ames Research Center
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where ε is the noise, here assumed additive. They treat the estimation
procedure as a smoothing of the observations. The key point is that the
optimum amount of smoothing, which is unknown, can be determined by
finding the smoothing parameter that minimizes the mean squared error.

This analysis implicitly assumes that the function f is relatively smooth,
so that the roughness of the samples Y is due to observational noise. Re-
moving noise and smoothing are thus viewed as essentially synonymous.
This viewpoint is expressed in the statement (PICA §2):

“Every nonparametric method involves some sort of data-smoothing.”

In astronomical and other exploratory data analysis where one is searching
for a signal of unknown smoothness, this assumption may not be desirable.
That wavelet denoising (Iain Johnstone’s paper in these proceedings) and
Bayesian Blocks (my paper in these proceedings) can detect structure on
any scale, as long as it is supported by the data, are counterexamples to
PICA’s statement above.

That this is a real issue is exemplified by the extremely short spike found
within a gamma-ray burst (Scargle, Norris, and Bonnell 1998). This very
real and interesting ≈ 100µ-sec-scale feature would have been completely
lost in any histogram with bin size indicated by the ≈ second to millisec-
ond time scale suggested by other bursts – and not contradicted by the
appearance of the raw data for this one. More to the point, it would be
washed away by almost any known smoothing technique.

15.12 Nonparametric Bayesian Methods

PICA espouses a rather pessimistic view of Bayesian methods for nonpara-
metric inference (§7). I disagree.

First, the well-studied smoothness priors for f allow one to express in a
precise way assumptions of the kind discussed above. Second, consider the
discussion in §7 that takes the model space to be functions with square-
integrable second derivatives, and concludes:

“Maximizing the likelihood leads to the absurd density estimate
that puts infinite spikes on each data point.”

There are several problems here. One is that the usefulness of a density
estimate depends on how you look at it and what you are going to do with
it. Consider the cumulative distribution function (CDF)

F =
∫ x

−∞
f(x′)dx′. (15.6)

The CDF corresponding to placing δ-functions in f at each datum has some
nice features, and is far from absurd. F could be quite useful for computing
estimates of other quantities, such as moments of the distribution.
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FIGURE 15.5. PICA’s SDSS Redshift data. Top: Bayesian Blocks (solid lines)
compared to the PICA binning of the data (dashed lines). Bottom: Crude local
density estimator; the vertical scale is as in the top panel, so many spikes are
off-scale.

A more fundamental problem has to do with the specification of the
model space, which can be seen by studying the redshift data from the
Sloan Digital Sky Survey discussed by PICA and replotted here in Figure
15.5 with an expanded redshift scale.

Astronomical data is always discrete in nature. Not only are the data
recorded with finite precision, but usually there is an inherent quantization
imposed by the measurement apparatus. Hence use of results based on
continuous variables is dangerous.

Of course, the PICA argument has a discrete version, in which f is
allowed to have arbitrary values at the discrete grid of allowed values of X .
It would be more reasonable to model f as piecewise constant on intervals
centered on the data points – ı.e. assign to xn the interval from 1

2 (xn−1+xn)
to 1

2 (xn +xn+1). The local estimate obtained by maximizing the likelihood
for each such interval separately, is shown in the bottom panel of Figure
15.5. While this could be described as undersmoothed, it is definitely not
an absurd estimate of the true density.

A more complete Bayesian solution, based on a model space consisting of
functions piece-wise constant on arbitrary intervals (Scargle, 1998, 2001),
is plotted in the top panel, superimposed on an evenly spaced binned his-
togram more or less the same as the upper-left panel of PICA’s Figure
15.1. Within the assumptions of this model, this algorithm aims at finding
the optimum such piecewise constant representation. No smoothness crite-
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rion has been imposed, the goal being to provide an estimate expressing
all of the structure, regardless of scale, that is supported by the data. One
accordingly avoids the dependence of the solution on the smoothing pa-
rameter (since there is none!), or on the sizes and locations of preselected
bins.

The rather sharp features present in the Bayesian Block solution are
consistent with the emerging picture of the Universe consisting of sheets
of galaxies. Of course we are handicapped by not knowing what the true
density is. Studies with simulated data of known properties are indicated.

Piecewise constant representations, although surprisingly useful (my and
Alanna Connors’s papers in these proceedings), are restrictive. A fully
Bayesian solution, with carefully applied smoothness priors, awaits future
work.

I thank the PICA group for providing me the data shown here.
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We thank Michael Strauss and Jeff Scargle for their comments. We com-
pletely agree that the parametric/nonparametric terminology is less than
satisfactory and we are grateful that he added further clarification on this
points.
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We wrote that every nonparametric method involves smoothing and Jeff
is correct to point out that this is not true. First, as Jeff notes, the cumu-
lative distribution function can be estimated by the empirical distribution
functions that put mass 1/n at each data point. This involves no smoothing
at all and the resulting estimator is consistent. But for estimating regres-
sion functions and density functions, the raw data cannot be used ‘as is’.
Perhaps we used the word smoothing too loosely. We meant that some
processing step inevitably involves some sort of bias-variance tradeoff. We
refer to this process broadly as smoothing.

Wavelet denoising and Bayesian Blocks do require smoothing in this
broader sense. For example, wavelet denoising involves setting a threshold
for the wavelet coefficients. Larger thresholds lead to more bias and less
variance and smaller thresholds lead to more variance and less bias. The
reason wavelets detect finer structure is because they form an unconditional
basis for a larger class of function speces than a Fourier basis, and because
of the non-linear nature of the thresholding rule.

Similarly, a smoothness assumption is implicitly build into the prior for
Bayesian Blocks. If the prior does not induce a smoothness restriction than
the posterior will not be consistent (Barron et al. 1999).

We did not mean to sound so pessibistic about nonparametric Bayesian
methods. Currently, we know of no nonparametric Bayesian methods whose
95 percent confidence sets actually contain the true function approximately
95 percent of the time in the frequency sense. But we hope one will be found
and we encourage Jeff and others to keep developing such tools.

Barron, A., Schervish, M. & Wasserman, L., 1999. The consistency of
posterior distributions in nonparametric problems, Annals of Statistics, 14,
536-561.
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Random Forests: Finding
Quasars

Leo Breiman1, Michael Last and John Rice

ABSTRACT
The automatic classification of objects from catalogues or other sources
of data is a common statistical problem in many astronomical surveys.
We describe an effective method, Random Forests, in which votes for class
membership are polled from a large random ensemble of tree classifiers.
This procedure is illustrated by the problem of identifying quasars from
the FIRST survey.
This paper is followed by a commentary by astronomer Eric D. Feigelson.

16.1 Introduction

The automatic classification of objects from catalogues is a common statis-
tical problem encountered in many surveys. From a list of values of variables
(e.g. color, magnitude) associated with an object, it is desired to identify
the object’s type (e.g. star, galaxy). In the last section of this paper, we
discuss an example in which we classify objects as quasars or non-quasars
using the combined results of a radio survey and an optical survey. Such
classification helps guide the choice of which objects to follow up with rel-
atively expensive spectroscopic measurements.

The last five years of research in the Machine Learning field has produced
classification methods with significantly higher accuracies than previous
methods. There have been two lines of productive research. One estimates
the border between classes by increasing the dimensionality of the input
predictor space. The classifiers produced by this method are called Support
Vector Machines [Vapnik(1995)], [Vapnik(1998)].

The other creates a varied ensemble of classifiers, lets each classifier vote
for the class it favors, and then outputs the classification that has the
plurality of votes. The most accurate classifier of this type is called Random
Forests [Breiman 1999], abbreviated RF. We will describe the construction
of RF, and compare its performance with single CART trees. RF can also
quantify which variables are important to the class and this procedure is
described as well.

1Department of Statistics, University of California, Berkeley
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16.2 Construction of Random Forests (RF)

Recall the steps in constructing an ordinary CART tree: A node is a subset
of the data. The root node contains all data. At each node, search through
all variables to find the best split into two children nodes. Split all the way
down and then prune the tree up to get minimal test set error.

The construction of RF differs:

1. The root node contains a bootstrap sample from the original data. A
different bootstrap sample is drawn for each tree to be grown.

2. An integer K is fixed, K is much smaller than the number of variables.
K is the only parameter that needs to be specified. The default is the
square root of number of variables.

3. At each node, K of the variables are selected at random. Only these
variables are searched through for the best split. The largest tree
possible is grown and is not pruned.

4. The forest consists of N trees. To classify a new object having coordi-
nates x, put x down each of the N trees. Each tree gives a classification
for x.

5. The forest chooses that classification having the most votes out of
the N votes cast

Code for random forests is publicly available. 2

16.3 Accuracy of RF Compared to CART

Accuracy of single trees (CART) to random forests is compared using data
sets from the UCI repository (ftp.ics.uci.edu/pub/MachineLearningDataba-
ses).

For the five smaller data sets above the line, the test set error was esti-
mated by leaving out a random 10% of the data, then running CART and
the forest on the other 90%.

The left-out 10% was run down the tree and the forest and the error on
this 10% computed for both. This was repeated 100 times and the errors
averaged. The larger data sets below the line came with a separate test set.

2http://www.stat.Berkeley.EDU/users/breiman/
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TABLE 16.1. Data Set Descriptions

Data Set Training Test Variables Classes
cancer 699 - 9 2
ionosphere 351 - 34 2
diabetes 768 - 8 2
glass 214 - 9 6
soybean 683 - 35 19
letters 15,000 5000 16 26
satellite 4,435 2000 36 6
shuttle 43,500 14,500 9 7
DNA 2,000 1,186 60 3
digit 7,291 2,007 256 10

TABLE 16.2. Test Set Misclassification Error (%)

Data Set Forest Single Tree
breast cancer 2.9 5.9
ionosphere 5.5 11.2
diabetes 24.2 25.3
glass 22.0 30.4
soybean 5.7 8.6
letters 3.4 12.4
satellite 8.6 14.8
shuttle 7.0 62.0
DNA 3.9 6.2
digit 6.2 17.1
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The reductions in test set error are dramatic–often over 50%, and almost
always, over 30%. RF achieves state-of-the-art accuracy and on the syn-
thetic data sets it has been tested on, where the lowest possible error rate
can be analytically computed, gets close to this lower limit.

16.4 RF Byproducts

A wealth of information can be obtained in a single run of Random Forests,
including test set error rate and variable importance. This information
comes from using the “out-of-bag” cases in the training set that have been
left out of the bootstrapped training set.

Each tree is constructed using a different bootstrap sample from the
original data. About one-third of the cases are left out of the bootstrap
sample and not used in the construction of the k-th tree.

Test Set Error Rate: Put each case left out in the construction of the
k-th tree down the k-th tree to get a classification. In this way, a test set
classification is gotten for each case in about one third of the trees. Let the
final test set classification of the forest be the class having the most votes.
Compare this classification with the classification given in the data to get
an estimate of the test set error.

Variable Importance: To estimate the importance of variable #4: In
the left out cases for the k-th tree, randomly permute all values of variable
#4. Put these new covariate values down the tree and get classifications.
Proceed as though computing a new test set error. The amount by which
this new error exceeds the original test set error is defined as the importance
of variable #4.

16.5 Application: Automatic Identification of
Quasars

In [White et al.(2000)] decision trees were used to automatically identify
quasars, combining information from the FIRST survey and from POSS-
I plates. The aim was to construct a radio-selected sample of optically
bright quasars, and in particular to bridge the gap between radio-loud and
radio-quiet quasars. Continuing that effort with an enlarged set of data,
we trained classifiers on 2127 objects (1366 quasars) identified from their
spectra.

The following variables were used in constructing the classifiers:

1. The result of a star/galaxy classifier for the red plate
2. Another star/galaxy classifier for the red plate
3. Red magnitude
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4. A star/galaxy classifier for the blue plate
5. Another star/galaxy classifier for the blue plate
6. Blue magnitude
7. Color (blue magnitude minus red magnitude)
8. Separation between radio and optical sources in arcseconds
9. Another estimate of separation between radio and optical sources

10. Radio peak flux
11. Radio integrated flux

On the basis of their spectra, the objects were classified in the following
categories:

1. A: Narrow line Active Galactic Nucleus
2. B: BL Lac (a kind of blazar)
3. G: Galaxy without emission lines
4. H: H/II star forming galaxy
5. Q: Quasar
6. S: Star

The task was thus to use the measurements of the variables listed above
to automatically classify objects into these categories and in particular to
discriminate quasars from other types of objects. As would be expected,
there is a substantial amount of information available from color and mag-
nitude, as shown in Figure 16.1.

An automatic classifier carves up the 11 dimensional space defined by
the variables into regions corresponding to different types of objects. This
is illustrated in Figure 16.2 which shows a projection of the data onto a
plane determined by several of the variables. The figure indicates that one
should be able to achieve fairly good separation.

When objects were classified as either quasars or non-quasars, random
forests had misclassification rate of 14.3%. For baseline comparison, a stan-
dard classification tree had an error rate of 19.7%. A support vector ma-
chine had an error rate of 13.9%, comparable to that of random forests. It
might be thought that basically only color and magnitude are informative,
but this is not the case: when only these variables are used as classifiers, the
error rate is 19.2%. When the categories of blazars and quasars were merged
so that one does not try to distinguish between them, the error rate for
random forests dropped to 10.5% (Examination of figures like those above
makes it clear that it is quite difficult to discriminate quasars from blazars.)

Figure 16.3 shows that the misidentified quasars tended to be bluer and
brighter. The quasar fraction increases for fainter objects (because the num-
ber of quasars per square degree rises very rapidly as we go fainter), which
makes fainter samples easier to classify.

Variables were scored for importance, as discussed above: Color is thus
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FIGURE 16.1. Color versus red magnitude. Quasars are lighter.

TABLE 16.3. Variable importance

Variable Importance
red star/gal classifier 1 .99
red star/gal classifier 2 .33
red magnitude 4.95
blue star/gal classifier 1 .33
blue star/gal classifier 2 2.64
blue magnitude .9
color 33.0
radio-optical separation 1 5.61
radio-optical separation 2 1.53
radio peak flux 1.98
radio integrated flux .33
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TABLE 16.4. Confusion matrix

True Class Assigned Class
A B G H Q S

A 36 5 15 26 9 7
B 4 10 2 2 5 0
G 10 1 1 9 90 0
H 59 9 28 159 40 18
Q 36 85 3 59 1292 58
S 1 2 2 8 20 88

by far the most important variable for determining the classification, but
as we have seen above adding variables other than color and magnitude
increases predictive performance.

Random forests produce an estimate of the probability, P (Q), that an
object is a quasar. Examination of the results shows that these probabilities
are “calibrated,” i.e. of those objects for which the estimated probability
of being a quasar is 90%, about 90% are in fact quasars, etc. The decision
of whether to follow up an object with spectroscopic observations can thus
be guided by its probability P (Q).

An object can be declared to be a quasar if P (Q) > p, for a given p
(in the results quoted above we used the threshold p = 0.5). Varying p
produces a tradeoff between two types of errors – false positives (calling an
object a quasar when it is not) and false negatives (failing to identify a real
quasar as such). Equivalently we can define completeness as the fraction
of actual quasars included and reliability as the fraction selected that are
in fact quasars and view completeness and reliability as functions of p, as
shown in Figure 16.4. From this figure we see that completeness of 90% can
be achieved with about 87% reliability.

The classification errors can be examined to find those for which misiden-
tified quasars were badly misidentified, i.e. P (Q) is small. The quasar frac-
tion increases for fainter objects (because the number of quasars per square
degree rises very rapidly as we go fainter), which makes fainter samples eas-
ier to classify. You can see this effect in your plot that shows the misclas-
sified objects (as large colored dots) in a plot of color vs. red magnitude–
misclassifications are much more common for quasars brighter than 16th
magnitude. Also, bluer quasars tend to be more likely to be misidentified.

More ambitiously, we attempted to classify each object into each of the
categories above, not merely as quasar or non-quasar. The results are shown
in the following “confusion matrix,” shown in Table 16.5. The columns
give the true classes and the rows give the guessed classes. Thus 59 of
the 1366 quasars were misidentified as H , etc. It is interesting that the
completeness-reliability curve for classifying quasars when attempting to
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FIGURE 16.4. Completeness-reliability curve

identify all objects is virtually identical to that when quasars are merely
discriminated from all other objects, so that little is lost in being more
ambitious.
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Commentary by Eric D. Feigelson3

A typical astronomical problem in multivariate classification requires the
separation of objects into distinct classes (or outlier status) from a database
with N rows and p columns/properties. Common difficulties include:

1. Number of clusters may be unknown
2. Shape of clusters in p−space unknown (not multinormal?)
3. Redundancy of variables present but not understood
4. Reliability of derived classification unknown
5. Heteroscedastic (i.e. different for each object) measurement errors

with known variances are available for many variables
6. Many variables can suffer censoring (i.e. upper limits due to nonde-

tections)

Many existing statistical methodologies often treat the first four problems
but rarely confront the last two.

I list here just a few of the myriad examples of such problems:

• Quasars vs. stars from SDSS photometry (N ∼ 108, p ∼ 10)
• Galaxies vs. stars on POSS plates (N ∼ 109, p ∼ 10)
• Morphology of radio galaxies from FIRST (N ∼ 106, p ∼?)
• Morphology of galaxies from ESO/HST (N ∼ 105, p ∼ 10− 20)
• Dusty stars in Milky Way from IRAS (N ∼ 105, p = 6)
• Spectral classification of stars (N ∼ 104, p = 102)
• Gamma-ray bursts from BATSE (N ∼ 103, p ∼ 10)
• Ty1/Ty2/BAL quasars from optical spectra (N ∼ 103, p ∼ 102)

Astronomers approach such problems from a variety of directions. From
an examination of the astronomical literature (http://absads.harvard.edu/-
abstract service.html) and adding my own brief impressions, the methods
in order of most to least frequently used are:

Neural networks (∼ 150 studies, 1990–)
Often effective but ‘black box’ results: not easily reproduced and poor
insights into important variables

Principal component analysis (∼ 80 studies, 1980–)
Often inappropriate for this purpose, as the astronomer typically as-
trophysical relationships between properties within a class after clas-
sification. For very-high dimensional datasets or those with redundant
variables, it is useful to perform classification on principal components
rather than the original dataset.

3Department of Astronomy & Astrophysics, Pennsylvania State University
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Bayesian classifiers (∼ 30 studies, 1985–)
Often effective but may be difficult to reproduce. AutoClass is com-
monly used.

Decision trees (∼ 20 studies, 1994–)
Often effective, computationally simple. Oblique decision trees rec-
ommended by White (1997) in the Statistical Challenges in Modern
Astronomy II conference.

CART Classification and Regression Trees developed by Breiman (1984).
(0 studies)
The absence of CART in the astronomical literature, and rarity of
decision tree methods in general, is quite remarkable given then very
heavy usage in other fields.

The reported capabilities of Professor Breiman’s latest development of
the decision tree approach, Random Forests, appear to be exceptional
Breiman (1999). He says it gives a classification of a multivariate dataset
which does not overfit the data, is not highly sensitive to noise, and gives
accurate classifications for known data. In addition to the classification, it
indicates which variables are most important, provides proximity measures
and measures of outlyingness for existing and future future data points,
and gives density estimation (a smoothed p-dimensional surface).

A major disadvantage of the method is its computationally intensive
Monte Carlo approach. Astronomers are not daunted by numerically inten-
sive calculations, although this precludes application to very large datasets
as envisioned, for example, by the forthcoming Virtual Observatories (Brun-
ner, Djorgovski & Szalay 2001). Many standard methods are not used by
astronomers because they suffer a cultural aversion to commercial statis-
tical packages. But Prof. Breiman has deftly circumvented this problem
with Random Forests by providing on-line Fortran-77 and R freeware (see
http://www.stat.berkeley.edu/users/breiman). Astronomers should know
that R, based on S-Plus, is a powerful, UNIX-friendly, public domain, sta-
tistical computing environment available at htp://www.R-project.org.

A final important message from this paper is that astronomers are gen-
erally ignorant of the developments in decision tree methodology during
the past several years such as arcing, bagging and boosting. Few of us read
the relevant machine learning and neural computation literature. There is
little doubt in my mind that Random Forests and similar methods should
be applied to many astronomical problems.
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Interactive and Dynamic
Graphics for Data Analysis: A
Case Study On Quasar Data

Dianne Cook1

ABSTRACT This paper describes the use of interactive and dynamic
statistical graphics for a classification task of separating quasars from non-
quasars, using measurements on red and blue plates, radio and optical
values. Multivariate plotting techniques used are the scatterplot matrix,
parallel coordinate plot and tours, an extension of 3D rotation to arbitrary
dimensional rotation.
This paper is followed by a commentary by statistician Fionn D. Murtagh.

17.1 Introduction

This paper gives a brief introduction to interactive and dynamic graphics
methods that may be useful in studying astronomical measurements. The
reader can interpret it as a short literature review of existing graphics
methodology, focusing on how some of these methods can be applied to
gain insight about an astronomical data set: quasars. One word of caution
(or preemptive apology) to the reader: the analysis is done by a statistician
with little knowledge of astronomy. It should be used as a potential guide to
the use of general graphical tools for astronomical data and not a definitive
explanation of the study of quasars.

17.2 Methods

In statistics we typically think of data as meaning information that has been
processed into a table or a list. The simplest format of data is a matrix
where columns correspond to variables, and rows correspond to replications
or objects on which the variables are measured. Variables may be generated
by recoding raw measurements into quantitative values. The goal of data
visualization is to examine the abstract relationships between variables or
columns of the table, in order to quantify the joint distribution between
the variables. The number of variables in arbitrary. In the general field of

1Department of Statistics, Iowa State University
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computer-generated visualizations emphasis is placed on generating graph-
ics of 2D or 3D objects. This is not sufficient for data visualization because
data rarely comes with just 2 or 3 variables. Hence a critical aspect of data
visualization is the use of abstract graphics such as histograms, scatter-
plots, time series. There are several good references for these techniques
(see for example Cleveland (1983), Tufte (1983), Wilkinson (1999)).

Graphics provides a complement to numerical techniques. The primary
advantage is that they can reveal overlooked structure in data due the
the ability of the human eye to recognize complex structure. For example,
graphics are traditionally used to assess goodness-of-fit of models, to check
for such structure as unmodeled non-linear relationships. Graphics are very
helpful in uncovering the unexpected in exploratory data analysis, or data
mining.

The current state of fast computing allows for a high level of interac-
tion and rapid redrawing of plots. Much of the current research in data
visualization is producing direct manipulation of graphical elements and
dynamic graphics. There are many examples of these environments (for ex-
ample, see Cleveland et al (1988), Swayne et al (1998), Buja et al (1996),
Carr et al (1996), Cook et al (1996), Hofmann et al (2000), Buja et al
(1991), Sutherland et al (2000)).

17.3 Example

The data used here comes from a study on quasars (Breiman et al, 2001).
There are 2101 cases with 12 variables:

star_class_red = star/gal classifier for red plate
star_class_red2 = another star/gal classifier for red plate
red_magnitude = red magnitude
star_class_blue = star/gal classifier for blue plate
star_class_blue2 = another star/gal classifier for blue plate
blue_magnitude = blue magnitude
color = blue mag minus red mag
sep_radio_optic = separation between radio and optical in arcsec
sep_radio_optic2 = another estimate of separation between

radio and optical in arcsec
radio_peak_flux = radio peak flux
radio_integ_flux = radio integrated flux
spectral_type = spectral type (H, Q, A, S, B, G, Unknown)
where the values for spectral type
5=Q: quasar
2=B: BL Lacs (a kind of blazer)
1=A: narrow-line AGN
4=H: H II/star forming galaxies
6=S: stars
3=G: galaxies without emission lines
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0=unknown
Our understanding is that we are interested in distinguishing between

quasars (spectral type 5) and non-quasars, based on the other variables.
To approach this visually we use color to code categorical class informa-
tion, that is, points corresponding to quasars differently from the other
points (we use red solid circles for quasars and navy blue crosses for non-
quasars). Then we use the typical array of multivariate plotting techniques
to examine the quantitative variables.

Figure 17.1 shows univariate textured dot plots (Tukey et al, 1990) for
variables where there appears to be some difference between quasars and
non-quasars: red magnitude, blue magnitude, color, sep radio optic, radio
peak flux, radio integrated flux. In each case the horizontal axis displays the
indicator variable for quasar or not, and these values are jittered, randomly
spread in a horizontal space. Most of the variables have highly skewed dis-
tributions. Normally one might consider transforming the skewed variables
to spread the values more evenly. This is often as useful in visual dis-
plays, as it is essential in statistical analysis. However in the presence of
cluster structure, as we have here, transforming to spread values out does
not assist in finding differences between the two classes. The variables’ red
magnitude and blue magnitude seem to display the most difference in val-
ues for quasars as opposed to non-quasars. But the difference is mostly in
the variation of the measurements: quasars have more concentrated higher
values of red magnitude than non-quasars. The exception is that there are
two points classed as quasars which have unusually low values. Probing
these values indicates they correspond to cases 1247 and 1365. Blue mag-
nitude has a similar pattern between quasars and non-quasars, and the
same two unusual cases. The variable color shows some distributional dif-
ference between quasars and non-quasars. Quasars have a more “normal”
or “bell-shaped” shaped distribution, whereas non-quasars have a more
skewed distribution. Both classes are centered around similar values and
have similar ranges, with quasars perhaps having slightly higher average
values. So it is difficult to distinguish the two groups. There is very little
difference between the two classes on sep radio optic. The two radio flux
variables have more spread in the quasar class than in non-quasars.

Figure 17.2 shows a scatterplot matrix display of 4 of the seemingly im-
portant variables, red and blue magnitudes, color and and sep radio optic.
A scatterplot matrix is a multi-layout plot displaying pairwise views of the
included subset of variables in a convenient matrix format. Red and blue
magnitudes are strongly linearly related so it may be that it’s not useful
to include both variables to obtain the best classification. Red magnitude
and color are not linearly related, and it looks like there is a small in-
crease in the difference between the two classes when these two variables
are used: the difference occurs at high values on both variables. In contrast
the plot of red magnitude against sep radio optic shows little advantage to
including the additional variable: the difference between the classes on this
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a

FIGURE 17.1. Univariate plots of quasar data: red magnitude, blue magnitude,
color, sep radio optic, radio peak flux, radio integrated flux.
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second variable is due to a few high values. Again this is corroborated with
the plot of color and sep radio optic: little is gained in separating the two
classes by including the second variable.

FIGURE 17.2. Scatterplot matrix of four variables in the quasar data: red mag-
nitude, blue magnitude, color, sep radio optic.

Figure 17.3 shows a parallel coordinate plot (Inselberg, 1985; Wegman,
1990) of 5 of the seemingly important variables: red magnitude, blue mag-
nitude, color, sep radio optic, radio peak flux. A parallel coordinate plot
displays the variable axes parallel to each other rather than orthogonal to
each other. Values for a particular row (case) in the data are connected by
lines, so each line trace corresponds to a single case. Line traces correspond-
ing to quasars are colored red and non-quasars are navy blue. The values on
the axes are also represented with the solid circles for quasars and crosses
for non-quasars. In reading parallel coordinate plots, for classification tasks
like this one, look for several patterns: separations between points on the
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FIGURE 17.3. Parallel coordinate plot of five variables in the quasar data: red
magnitude, blue magnitude, color, sep radio optic, radio peak flux.

axes, or lines between axes, crossing of lines between the axes. In the paral-
lel coordinate plot of the quasar data we see mostly parallel traces for both
quasars and non-quasars for the first 3 variables, with quasar traces higher
and more concentrated in comparison to non-quasar traces. Between color
and sep radio optic there is some crossing of lines and a block of non-quasar
traces can be seen higher than non-quasars mid-way between the two vari-
able axes. This corresponds to a distributional difference between quasars
and non-quasars that can be seen in the pairwise scatterplot (Figure 17.2):
the shape of non-quasars is boxy, or square in the high values of these
two variables as opposed to quasar rounded shape. This means it would be
possible to construct a non-linear boundary that carves off a group of non-
quasars in the high values for these two variables. There is also crossing of
lines between sep radio optic and radio peak flux as which corresponds to
the high values of non-quasar sep radio optic dropping to have low values
on radio peak flux, and the reverse pattern for some quasars. In general
to extract more information from a parallel coordinate plot it would be
necessary to permute the order of the axes.

Figure 17.4 shows views from a tour of the data. Tours are dynamic
graphics which extend 3D rotation to arbitrary dimensional rotations (for
example, see Asimov (1985), Cook et al (1995), Cook et al (1997), Buja et
al (1997)). There are several different types of algorithms for generating the
rotations through high-dimensional space. Here we make use of a manual
tour, for the most part, and a grand (random) tour. All tours are based on
taking projections of the variable axes. Here we use 2D projections of the
11D space. The manual tour allows the user to manually rotate a variable
into and out of an existing projection. We start with a projection of two
variables: (top left) 3 (red magnitude) and 7 (color). Then we manually
rotate in additional variables into this view to examine the effect of sepa-
rating the quasars from non-quasars. The top right plot shows the effect of
rotating variable 8 (sep radio optic) into the projection. Some advantage
is gained from this combination of variables in that there is a marginally
improved difference between quasars and non-quasars. The bottom left plot
shows the effect of rotating a fourth variable, radio peak flux into the pro-
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FIGURE 17.4. Tour views of quasar data: (top left) red magnitude (3) vs color (7),
(top right) sep radio optic (8) is manually rotated into the projection, (bottom
left) radio peak flux (10) is rotated into the projection, and (bottom right) another
projection of these four variables.
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jection: the few cases with extreme values on this variable are now visible,
but perhaps little is gained in separating the two classes. The bottom right
view shows a random combination of these 4 variables which reveals some
difference between the two classes.

In summary, based on the available selection of 11 variables it doesn’t ap-
pear that quasars are clearly distinct from non-quasars. Rather the quasar
class is embedded within the non-quasar class. If the goal is to classify
new observations the best that could be done would be to confidently state
that a new observation was not a quasar given particular combinations of
red magnitude, color and sep radio optic. It is also not a particularly high-
dimensional problem, in that little additional classification power is gained
by using more than 3 of the 11 variables.

17.4 Conclusion

In this paper we have naively worked through an astronomical data set
collected to classify quasars from non-quasars to demonstrate the use of
statistical graphics techniques in the analysis process. Several recently de-
veloped graphical techniques were included. There is new work on extending
the current methods to extremely large datasets in progress, with reports
at http://www.public.iastate.edu/∼dicook/Limn/index.html.
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Commentary by Fionn D. Murtagh2

A person with much influence in the area of interactive and dynamic
statistical graphics, as described by Dianne Cook, is John Tukey. Tukey
had a long career at Bell Labs and Princeton University, and died on July
26, 2000. He was a major figure, who contributed to the English language
(and other languages besides!) words such as “software”, and “bit”. He
was also instrumental in developing the Fast Fourier Transform algorithm,

2School of Computer Science, Queen’s University Belfast
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robust statistics, and of course exploratory data analysis.
The PRIM-9 system to which he contributed was an early 1970s hardware

and software platform for interactive display of statistical data. It was
developed at the Stanford Linear Accelerator Center (SLAC). A video of
Tukey talking about PRIM-9 is available from Bell Labs (James, 1998).
With acknowledgement to the Bell Labs/Lucent Video Library, I now show
this video each year in the multivariate data analysis course I teach in the
doctoral program at Strasbourg Observatory.

Dianne Cook also has a number of tapes in the Bell Labs/Lucent Video
Library. There is much that is very exciting in this collection, not least
on the XGobi system, the precursor of GGobi discussed by Dianne. From
PRIM-9 to GGobi is a journey over three decades, and the progress has
been immense.

GGobi (GGobi, 2001) offers many nice features. It is in the public do-
main, available for Linux and Windows, it supports an XML data in-
put format, it is compatible with the R statistical language and environ-
ment (Leisch, 2001) – which in turn makes it compatible with the closely-
related S-Plus language and environment – and it interfaces to Postgres
and MySQL database management systems.

The work surveyed by Dr Cook is visually exciting. It occupies a center
stage slot, in taking data analysis and interpretation forward. As we have
seen with PRIM-9, even three decades ago it was known that such software
and/or hardware environments are necessary for data interpretation. The
natural home of Dianne Cook’s work lies midway between human factors
and human computer interaction, on the one hand, and statistical inference
and modeling, on the other. Current evolution in astronomy towards the
virtual observatory, and towards the astronomical data grid, both ensure
that interactive statistical graphics will remain very central to astronomical
data analysis and interpretation.

To borrow a phrase from an earlier publication by Dianne Cook, this
work is all about “calibration of one’s eyes”, as one tackles the problem of
seeing in high-dimensional data spaces.

1. GGobi Data Visualization System, 2001. http://www.ggobi.org

2. D.A. James, “The Statistical Graphics Section’s Video Lending Li-
brary”, Graphics Section Library, Bell Labs, Lucent Technologies,
Murray Hill, NJ, 1998.
http://cm.bell-labs.com/cm/ms/departments/sia/video-library/libr-
ry.html

3. F. Leisch, “The Comprehensive R Archive Network”, 2001.
http://cran.r-project.org
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ABSTRACT I present here a review of past and present multi–disciplinary
research of the Pittsburgh Computational AstroStatistics2 (PiCA) group.
This group is dedicated to developing fast and efficient statistical algorithms
for analysing huge astronomical data sources. I begin with a short review
of multi–resolutional kd-trees which are the building blocks for many of our
algorithms. For example, quick range queries and fast N–point correlation
functions. I will present new results from the use of Mixture Models (Con-
nolly et al. 2000) in density estimation of multi–color data from the Sloan
Digital Sky Survey (SDSS). Specifically, the selection of quasars and the au-
tomated identification of X–ray sources. I will also present a brief overview
of the False Discovery Rate (FDR) procedure (Miller et al. 2001a) and
show how it has been used in the detection of “Baryon Wiggles” in the
local galaxy power spectrum and source identification in radio data. Fi-
nally, I will look forward to new research on an automated Bayes Network
anomaly detector and the possible use of the Locally Linear Embedding
algorithm (LLE; Roweis & Saul 2000) for spectral classification of SDSS
spectra.
This paper is followed by a commentary by statisticians Fionn D. Murtagh
and Dianne Cook.

1Department of Physics, Carnegie Mellon University
2See http://www.picagroup.org for a full list of PiCA members and our latest papers,

research and software
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18.1 Introduction

In this paper, I present an update on the past and present work of the Pitts-
burgh Computational AstroStatistics (PiCA) group; a multi–disciplinary
group of researchers from Computer Science, Statistics, and Astrophysics
dedicated to developing fast and efficient algorithms for the analysis of
huge astronomical datasets (see Nichol et al. 2000 a previous review of our
work). The work presented by Larry Wasserman in this volume is part of
the PiCA group research but is not discussed herein for obvious reasons.

The motivation for this work is two–fold. First, the quantity of data being
collected is increasing rapidly and we stand on the threshold of the so-called
“data flood”. By the end of this decade, we will have collected petabytes
of astronomical data e.g. LSST & Planck. The sheer size and dimensional-
ity of these datasets will restrict our ability to navigate and analyse these
huge data sources and we will need new techniques to help us. The pro-
posed “Virtual Observatory” (VO; see papers by Alex Szalay and George
Djorgovski in this volume) is designed to address the issues of management,
distribution and manipulation of such huge, multi–dimensional astronomi-
cal datasets. In this paper, we focus on the need for new analysis algorithms
since an N2 or N3 algorithm – where N is the number of data points – will
no work any longer.

Second, we are entering the realm of high precision astrophysics where
the need to make measurements with higher and higher accuracy will in-
crease (see recent review by Turner 2001). In cosmology, for example, the
next decade will see the drive to measure the cosmological parameters to
an accuracy of a few percent as well as confidently map the distribution of
mass in both the local and distant universe. The drive for higher precision
will greatly benefit from new statistical tools like those discussed herein and
by others in this volume. In general, these new statistical techniques are
computationally intense – e.g. the non-parametric techniques discussed by
Larry Wasserman (this volume) – and therefore, to gain their potential, we
will need to develop fast and efficient implementations of such algorithms.
In this paper, I present some examples of such implementations.

In Section 18.2, I present a brief review of multi–resolutional KD–trees
which are at the heart of much of our technology. In Section 18.3, I provide
some examples of how such trees can speed–up simple counting queries. In
Section 18.4, I will review Mixture Models and their use in Astrophysics.
In Section 18.5, I will quickly present a new statistical tool called False
Discovery Rate (FDR) and show two recent applications of this technique.
In Section 18.6, I will outline our new work on a Bayes Network anomaly
detector, while in Section 18.7, I present initial results from our research
of algorithms for mapping high dimensional spaces.
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18.2 Multi–Resolutional KD–trees

A multi–resolutional KD–tree (kd-tree) is a way of organizing a set of data-
points in k-dimensional space in such a way that once built, whenever a
query arrives requesting a list of all points in a neighborhood, the query
can be answered quickly without needing to scan every single point.

The root node of the kd-tree owns all the data points. Each non-leaf-node
has two children, defined by a splitting dimension n.SplitDim and a splitting
value n.SplitValue. The two children divide their parent’s data points be-
tween them, with the left child owning those data points that are strictly
less than the splitting value in the splitting dimension, and the right child
owning the remainder of the parent’s data points.

kd-trees are usually constructed top-down, beginning with the full set of
points and then splitting in the center of the widest dimension. It has been
shown that this splitting criteria – instead of, say, splitting at the median
of the widest dimension – produces a more balanced tree which is thus
closer to obtaining the desired O(log N) performance (see Moore 1991).
This produces two child nodes, each with a distinct set of points. This is
then repeated recursively on each of the two child nodes.

A node is declared to be a leaf, and is left unsplit, if the widest dimension
of its bounding box is≤ some threshold, MinBoxWidth. A node is also left
unsplit if it denotes fewer than some threshold number of points, rmin. A leaf
node has no children, but instead contains a list of k-dimensional vectors:
the actual data-points contained in that leaf. The values MinBoxWidth =
0 and rmin = 1 would cause the largest kd-tree structure because all leaf
nodes would denote single data points. In practice, we set MinBoxWidth
to 1% of the range of the data point components and rmin to around 10.
The tree size and construction thus cost considerably less than these bounds
because in dense regions, tiny leaf nodes are able to summarize dozens of
data points. The operations needed in tree-building are computationally
trivial and therefore, the overhead in constructing the tree is negligible.
Also, once a tree is built it can be re-used for many different analysis
operations.

18.3 Example Uses of kd-trees

18.3.1 Range Counting and Cached Sufficient Statistics

One of the most common queries made in Astronomy is: how many objects
are within 1 arcminute (or distance r) of a given position. As discussed
below, such a query can be performed very quickly using a kd-tree.

The key to the speed of such a query is the decorations of the kd-tree
with extra information which we refer to as cached sufficient statistics (see
Moore & Lee 1998). Specifically, we can store for each node the bounding
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box of all the points it contains (call this box n.BoundBox). The implication
of this is that every node must contain two new k dimensional vectors to
represent the lower and upper limits of each dimension of the bounding box.
The range search operation takes two inputs. The first is a k-dimensional
vector q called the query point. The second is a separation distance shi. The
operation returns the complete set of points in the kd-tree that lie within
distance shi of q. Also, we can store n.NumPoints, which is the number of
points contained in each node. Furthermore, we also store the centroid of
all points in a node and their covariance matrix.

Once we have n.NumPoints and n.BoundBox, it is trivial to write an op-
eration that exactly counts the number of data-points within some range
without explicitly visiting all the data-points. .

• RangeCount(n,q, shi)
Returns an integer: the number of points that are both inside the n
and also within distance shi of q.

• Let MinDist := the closest distance from q to n.BoundBox.

• If MinDist ≥ shi then it is impossible that any point in n can be
within range of the query. So simply return 0.

• Let MaxDist := the furthest distance from q to n.BoundBox.

• If MaxDist ≤ shi then every point in n must be within range of the
query. So simply return n.NumPoints.

• Else, if n is a leaf node, we must iterate through all the data-points
in its leaf list. Start a counter at zero. For each point, find if it is
within distance shi of q. If so, increment the counter by one. Return
the count once the full list has been scanned.

• Else, n is not a leaf node. Then:

– Let Cleft := RangeCount(n.Left, query, shi)

– Let Cright := RangeCount(n.Right, query, shi)

– Return Cleft + Cright.

18.3.2 Fast N–point Correlation Functions

N–point correlation functions have a rich history in Astrophysics and have
been extensively used to characterize the large–scale distribution of matter
in the Universe. Moreover, higher–order correlation functions will become
critically important in this new era of high precision cosmology as they are
important tests of biasing and gaussianity (see Szapudi et al. 2001).
N–point correlation functions are however, computationally intensive to

compute especially for large databases and high values of N . We have used
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a dual kd-tree approach to help solve this problem and provide substantial
speed–ups for calculating the N–point correlation functions (see Moore
et al. 2000 & 2001). We note here that substantial speed–ups can also
be achieved by binning the data into cells and performing the calculation
directly on that grid. This is fine for separations larger than the grid size
but fails as one approaches the resolution of the bin size. Our method is
equivalent to an “all–pairs” calculation i.e. if one had visited all possible
pairs of points in the dataset and binned them appropriately.

For more details on our N–point correlation function code, the reader is
referred to Moore et al. (2000 & 2001) as well as our website http://www.-
autonlab.org/. We note here that the tree structures discussed herein are
optimal for relatively low dimensional spaces (e.g. a few tens of dimensions)
and other tree structures like Ball–trees and AD–trees are better for higher–
dimensional spaces (see Moore & Lee 1998)

18.4 Using Mixture Models in Astrophysics

In Connolly et al. (2000), we presented the use of Mixture Models of Gaus-
sians to model the probability density function of multi–dimensional astro-
nomical data. The reader is referred to Connolly et al. (2000) for a detailed
review of Mixture Models including our fast implementation of the algo-
rithm based upon the kd-tree technology discussed above. In this section,
we provide two recent applications of this technology to the Sloan Digital
Sky Survey (SDSS).

18.4.1 Finding X–ray Sources

Even after years of hard work, the number of detected X–ray sources
with an optical identification remains small. For example, the WGACAT3,
SHARC (Romer et al. 2000) & RASS (Voges et al. 1999) X–ray catalogs,
which contain hundreds of thousands of X–rays sources, are still mostly
unidentified. This is due to the laborious nature of the optical follow–up.

This will hopefully change soon primarily due to new optical surveys of
the sky and the approaching VO era which will provide new, automated
tools to assist the user. As a pilot study, we are using the SDSS data and
the mixture model algorithm to help automate the optical identification of
X–ray sources.

This is achieved as follows. We first obtain photometric multi–color
data (u′,g′,r′,i′,z′) within 15 arcseconds of 7300 WGACAT and SHARC
sources within the boundaries of the SDSS EDR data (see Stoughton et
al. 2001). This results in 377 matches between an SDSS and X–ray source.

3http://wgacat.gsfc.nasa.gov
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Using these data, we cluster the sources in 4D color–space and thus de-
termine the probability density function for these sources (the best fit
mixture model contains 33 gaussians). This pdf is then used to deter-
mine the likelihood of any new source being an X–ray source. We plan
to extend this work to include further optical and X–ray information e.g.
the optical morphology and the ratio of the optical and X–ray fluxes (see
Stocke et al. 1991). This will facilitate a robust and automatic identifica-
tion for a large number of X–ray sources presently lying undiscovered in
catalogs like WGACAT. A preliminary version of this system is available
at http://ranger.phys.cmu.edu/users/xray/.

Figure 1: Relative Likelihood of a SDSS source being a star or quasar
based on their observed colors. The 45 degree separation line is shown.

18.4.2 Quasar Target Selection

We have also begun to use the Mixture Model algorithm to help in the
selection of quasars in multi-color space. In Figure 1, we show a preliminary
implementation of such an algorithm using the SDSS data. Here, we have
clustered 8833 spectroscopically–confirmed SDSS quasars and 9999 SDSS
stars (selected to be point–like objects) in 4D color–space (u′−g′,g′−r′,r′−
i′,i′− z′) to obtain two pdf’s; one for quasars and the other for stars. Then
given a new SDSS source with measured colors, one can easily compute the
relative likelihood that it is a star or quasar. As illustrated in Fig. 1, we
can achieve a high success rate with 96% of the quasars having a quasar
probability density larger than stellar probability densities and 99% of the
stars having a stellar probability density higher than quasar probability
densities i.e. the dashed lines in these figures.

We plan several major improvements to this technique. This includes i)
the addition of other parameters like star–galaxy separation probability,
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magnitudes, radio and X–ray fluxes etc.; ii) the use of synthetic quasar
and star SDSS colors to ensure we are not biasing ourselves since the ob-
served data clearly includes the survey selection function; iii) increased
testing using significantly more spectroscopic and photometric data from
the SDSS.

In addition, these applications of the mixture model algorithm have high-
lighted the need for improvements to the core technology, specifically the
need for the algorithm to incorporate observational errors on the data
points being clustered to obtain the pdf’s. This is traditionally ignored
in such computer science orientated algorithms but is vital when analysing
real astronomical data. We also need to develop and improve the visualiza-
tion of the mixture model. At present, this is woefully inadequate and is be-
ginning to hinder our ability to quickly interpret the results of our mixture
model. These improvements to the algorithm will require new computer
science and statistical research.

18.5 False Discovery Rate

In a recent paper by Miller et al. (2001a), we introduced the False Discovery
Rate (FDR) to the astronomical community. This is a new statistical pro-
cedure for performing multiple hypothesis tests on data and has three key
advantages over more traditional methods like a “3–sigma” threshold or
the Bonferroni method: i) It has a higher probability of correctly detecting
real deviations between the model and the data; ii it controls a scientifically
relevant quantity – the average fraction of false discoveries over the total
number of discoveries; iii) it can be trivially adapted to handle correlated
data.

We have recently used FDR to solve two astronomical problems. The first
is the detection of the acoustic oscillations (“Baryon Wiggles”) in the power
spectrum of matter in the local universe (see Miller et al. 2001a,b,c for the
full details of this discovery). In Figure 2, we show our detection of the
“Baryon Wiggles” along with a comparison of our work with the recently
released CMB Balloon data (MAXIMA & BOOMERANG). The agreement
between these two measurements is impressive and it is re-assuring that our
detection of the “Baryon Wiggles” is fully consistent with the CMB at a
z ∼ 1000. In summary, the FDR procedure is a less conservative procedure
than the more traditional multiple hypothesis testing methodologies (like
“2 sigma” thresholding) commonly used in Astronomy. This has allowed
us to detect the “Baryon Wiggles” in the local universe with much fewer
data. This illustrates the power of using new statistical tools in this era of
high precision cosmology as we attempt to extract the maximum amount
of information from these future surveys.
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Figure 2: Figure 5 taken from Miller et al. (2001a). The figure shows
the amplitude–shifted power spectra for the three samples of uncorrelated
data (see Miller et al. 2001b for details). The points highlighted with a
circle denote rejections with α = 0.25 (e.g. a quarter of the rejections may
be mistakes). The points highlighted by squares are for α = 0.10 (e.g. a
tenth of the rejections may be mistakes). The analysis utilizes our best-fit
model with the baryon wiggles removed as the null hypothesis. By control-
ling the false discovery rate, we can say with statistical confidence that the
two “valleys” are detected as features in the power spectra.

A second application of FDR is given in Hopkins et al. (2001) as part
of a new source detection algorithm for radio data. Specifically, Hopkins
et al. (2001) use FDR to determine which pixels in their radio telescope
images are consistent with sky noise or are part of a source. Traditionally,
this is done by apply a “5 sigma” threshold which, as discussed by Hopkins
et al. (2001) and Miller et al. (2001a), is a very conservative test. Hop-
kins et al. (2001) compare the FDR method with Imsad and Sextractor
(two traditional methods of detecting sources in imaging data) and find it
is significantly better than these methods in detecting more, real sources
without increasing the false source detection rate.
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18.6 Bayes Network Anomaly Detector

Bayes Networks are a popular method for representing joint probability
distributions over many variables. The Bayes Nets have the advantage that
instead of using a single joint probability function (which can be prohibitive
since it may require a large number of parameters to fit the data), they
factor the distribution into a smaller number of conditional probability
functions for only a subset of the important variables. In practical terms,
Bayes Nets have two limitations. They are computationally slow to learn
and traditionally only work for discrete data. We have tackled both of these
issues using a new implementation of Bayes Networks called Mix-Nets (see
Davies & Moore 2000) which uses the mixture model of Gaussians to fit the
data quickly over different subsets of the domain variables which can then
be combined into a coherent joint probability model for the entire domain.
Once learned, the Bayes Net offers the ability to isolate sources with a low
likelihood of being produced by the model and this identifies those sources
as anomalies. Moreover, the Bayes Net provides the variables in the joint
probability model which cause this source to be anomalous.

We have used this technology to search for anomalies within the SDSS
photometric archive. Specifically, we have used 1.5 million SDSS detected
sources, each with 25 variables (magnitudes, sizes and shape parameters
in all 5 of the SDSS passbands), to build a Bayes Network. We derive the
overall probability of each source (using the learned network) and rank
the sources by this probability. The bottom 1000 sources are flagged as
anomalies and visually inspected as they are unusual objects, within the
data, based on the joint probability model of these 25 attributes.

One of the major problems with this present approach is the existence of
errors within the data. At present, the most unusual objects are diffraction
spikes (around stars), asteroids and de–blending errors. This is understand-
able since these errors have unphysical colors and shapes making them gross
outliers to many of the joint conditional probability distributions.

We plan to tackle this problem – which is an issue of productivity – using
an iterative loop where the scientist helps the Bayes Network focus on the
interesting astronomical anomalies. First, we will initially learn the Bayes
Network with all attributes and all data points of interest. The scientist
will be presented the bottom 1000 sources (the anomalies with the low-
est probability) and will interactively highlight obvious errors (like those
mentioned above). As the Bayes Networks also stores the conditional prob-
abilities that caused this anomaly, we can use this information to suppress
further examples of such an error when we re–learn the Bayes Network
i.e. if diffraction spikes are always “long” and “red” we can use that infor-
mation to ignore further examples of this error. After a few iterations, we
should have interactively suppressed obvious errors based on this feed–back
loop and the scientist will be presented with a higher percentage of physical
anomalies. This is research in progress.
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Figure 3: The LLE algorithm is applied to a sample of 500 galaxy spectra
(each of 2000 wavelength elements) in order to determine if galaxy spectra
occupy a lower dimensional subspace (i.e. if strong correlations are present
between the individual spectra). Using LLE to compress this 500x2000
space down to a 3 dimensional subspace (see left panel for the distribution
of the coefficients for the 500 spectra in this 3D space). We find that the
position of a galaxy within this subspace is directly correlated with its
spectral type (or, mean age of the galaxy). The right panel shows the typical
spectra associated with those points highlighted in the left panel. This
simple example demonstrates how new computational techniques might
enable a radical compression in the dimensionality of physical data sets.

18.7 Very High Dimensional Data

The next generation of astronomical data will contain many thousands
of dimensions. This presents a new paradigm for data analysis techniques
since present algorithms and tools do not scale–up into such regimes. The
handling of very high dimensional data is an active research area in com-
puter science and statistics e.g. Isomap (Tenenbaum, de Silva & Langford
2000) and LLE (Roweis & Saul 2000). In Fig. 3, we show the power of
such algorithms through the use of LLE to non–parametrically study the
classification of SDSS spectra.
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18.8 Conclusions

In this paper, I have outlined an array of fast and efficient statistical al-
gorithms we are developing as part of the Pittsburgh Computational As-
troStatistics (PiCA) Group. This is a balanced, multi–disciplinary research
effort where all parties gain substantially from this cross–discipline collab-
oration. For example, the fast algorithms enable new astrophysics to be
done and conceived (N–point functions), while the astrophysics problems
drive new computer science and statistics e.g. the incorporation of errors
into Bayes Networks and Mixture Models as well as new statistical the-
ory in extending FDR to slightly correlated data. Therefore, it is a rich
collaboration with many possibilities to simulate new and cutting–edge re-
search in computer science, statistics and astrophysics. This work is funded
in part through the NSF KDI and ITR programs and the NASA AISRP
program and makes use of SDSS data (see www.sdss.org). We acknowledge
Don York for carefully reading this manuscript.
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Commentary by Fionn D. Murtagh

Computational efficiency in Nichol et al. comes from use of the kd-tree
or multidimensional binary search tree. This generalization of the binary
search tree was developed a quarter of a century ago. Some important
references include the following.

1. J.H. Friedman, J.L. Bentley and R.A. Finkel, “An algorithm for find-
ing best matches in logarithmic expected time”, ACM Transactions
on Mathematical Software, 3, 209–226, 1977. The feature space di-
mensionality used here is from 2 to 8.

2. J.L. Bentley and J.H. Friedman, “Fast algorithms for constructing
minimal spanning trees in coordinate spaces”, IEEE Transactions on
Computers, C-27, 97–105, 1978.

3. A.J. Broder, “Strategies for incremental nearest neighbor search”,
Pattern Recognition, 23, 171-178, 1990. Lisp code is contained in this
article.

4. An approach to using the multidimensional binary search tree in
higher dimensional spaces was by means of batching the features.
Then search is based on a rule such as the following: Take the left
subtree if some one of the node-defining features is present. This ap-
proach lends itself to boolean data, e.g. keyword presence-absence
data in an information retrieval context. It was used in C.M. East-
man and S.F. Weiss, “Tree structures for high dimensionality nearest
neighbor searching”, Information Systems, 7, 115-122, 1982.
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5. More recent related work includes B. Thiesson, C. Meek and D. Heck-
erman, “Accelerating EM for large databases”, Microsoft Research
technical report, 1999.

6. Work on external memory algorithms, when data sets are too large to
fit in memory and therefore must be stored in slower external mem-
ory, includes of course kd-trees. See J.S. Vitter, “External memory
algorithms and data structures”, ACM Computing Surveys, 2001, in
press.

Bob colorfully described the recent developments in the kd-tree area as
“decorating [the kd-tree] with cache statistics”. Needed are covariances and
centroids for mixture model clustering, and bounding box information for
range queries.

For efficient clustering, or searching, or other analysis of large data col-
lections, many other approaches have been developed over the last decades.
Stochastic approximation is used, for example, to carry out eigen-reduction.
This is dealt with under the heading of “direct reading algorithms” in L.
Lebart, A. Morineau and K.M. Warwick, Multivariate Descriptive Statis-
tical Analysis, Wiley, 1984. In neural networks, analogous work is charac-
terized as on-line or real-time.

A review of much state of the art work on the processing of large data sets
is to be found in J. Abello, P.M. Pardalos and M.G.C. Resende, Handbook
of Massive Data Sets, Kluwer, 2001. This book has approximately 1250
pages, – a massive book to deal with massive data set problems!

On the different topic of mixture models in astronomy, the work of
S. Mukherjee, E.D. Feigelson, G.J. Babu, F. Murtagh, C. Fraley and A.
Raftery, “Three types of gamma ray bursts”, The Astrophysical Journal,
508, 314-327, 1998, was a first application in astronomy of the use of a
Bayes factor approach to answer the question: how many mixtures are ap-
propriate?

In conclusion, Bob Nichol in presenting this work is to be thanked for the
range of important astronomy-motivated computing and statistical prob-
lems raised.

Commentary by Dianne Cook

This paper describes the variety of research directions being conducted
at Carnegie Mellon University. This is a powerful cross-disciplinary team.

It would be helpful to have more detailed references to web site and
literature for multi-resolutional KD-trees. A google search produces these
links: http://hissa.nist.gov/dads/HTML/kdtree.html has definitions,
http://www.rolemaker.dk/nonRoleMaker/uni/algogem/kdtree.htmhas
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a 2D java applet demo, http://www-hpcc.astro.washington.edu/facul-
ty/marios/papers/perform/node2.html an application to astrophysical
data. KD-trees appear to be useful and may be useful for visualization work
for constructing indices for fast linking between multiple views.

For high-dimensional problems, there are several other approaches to re-
ducing dimensionality than those mentioned in the paper. Projection pur-
suit (Huber, 1985) is a technique developed in statistics that finds inter-
esting projections of the p variables. Principal component analysis can be
considered a subset of projection pursuit. Independent component analysis
(http://www.cnl.
salk.edu/∼tony/ica.html) from the signal processing community is also
strongly related to projection pursuit. Other methods include local princi-
pal components analysis (http://lib.stat.cmu.edu/general/
xnavigation), sliced inverse regression (Li, 1991), and prosection views
(Furnas et al, 1994).
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Clustering in High-Dimensional
Data Spaces

Fionn D. Murtagh1

ABSTRACT By high-dimensional we mean dimensionality of the same or-
der as the number of objects or observations to cluster, and the latter in the
range of thousands upwards. Bellman’s “curse of dimensionality” applies
to many widely-used data analysis methods in high-dimensional spaces.
One way to address this problem is by array permuting methods, involving
row/column reordering. Such methods are closely related to dimensionality
reduction methods such as principal components analysis. An imposed or-
der on an array is beneficial not only for visualization but also for use of a
vast range of image processing methods. For example, clustering becomes
in this context image feature detection.

19.1 Introduction

Bellman’s (1961) [1] “curse of dimensionality” refers to the exponential
growth of hypervolume as a function of dimensionality. Many problems be-
come tougher as the dimensionality increases. Nowhere is this more evident
than in problems related to search and clustering.

In [2] (see also [3]), a constant computational time or O(1) approach
to cluster analysis was described. The computational complexity was, as
is usual, defined in terms of the number of observations. This work re-
lated to problem spaces of dimensionality 2, with generalization possible
to 3-dimensional spaces [4]. Byers and Raftery [5] proposed another very
competitive approach.

It may be helpful to distinguish this work from clustering understood
as mixture distribution modeling. A characterization follows which will
describe the broad picture. Banfield and Raftery [6] discuss algorithms
for optimal cluster modeling and fitting. On the other hand, the work on
clustering of Murtagh and Starck [2], and Byers and Raftery [5], is based
on noise modeling. Mixture modeling and cluster modeling are essentially
signal modeling. Given that observed data can be considered as a mixture
of signal and of noise, one can approach data analysis from either of two

1School of Computer Science, Queen’s University Belfast
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perspectives: accurately model the signal, as in mixture modeling, with
perhaps noise components included in the mixture; or accurately model
the noise.

The latter lends itself well to the problem representation to be described
in this article. In general, it lends itself well to situations when we consider
data arrays as images. We will next look at when and how we can do this.

19.2 Matrix sequencing

We take our input object-attribute data, e.g. document-term or hyperlink
array, as a 2-dimensional image. In general, an array is a mapping from
the Cartesian product of observation set, I, and attribute set, J , onto the
reals, f : I × J −→ IR, while an image (single frame) is generally defined
for discrete spatial intervals X and Y , f : X × Y −→ IR. A table or array
differs from a 2-dimensional image, however, in one major respect. There
is an order relation defined on the row- and column-dimensions in the case
of the image. To achieve invariance we must induce an analogous ordering
relation on the observation and variable dimensions of our data table.

A natural way to do this is to seek to optimize contiguous placement of
large (or nonzero) data table entries. Note that array row and column per-
mutation to achieve such an optimal or suboptimal result leaves intact each
value xij . We simply have row and column, i and j, in different locations
at output compared to input. Methods for achieving such block clustering
of data arrays include combinatorial optimization ([7, 8, 9]) and iterative
methods ([10, 11]). In an information retrieval context, a simulated anneal-
ing approach was also used in [12]. Further references and discussion of
these methods can be found in [13, 14, 15]. Treating the results of such
methods as an image for visualization purposes is a very common practice
(e.g. [16]).

We now describe briefly two algorithms which work well in practice.

Moments Method [10] Given a matrix, a(i, j), for i = 1, 2, . . . , n, and
j = 1, 2, . . . ,m. Define row moments as m(i) = (

∑
j ja(i, j))/(

∑
j

a(i, j)). Permute rows in order of nondecreasing row moments. De-
fine column moments analogously. Permute columns in order of non-
decreasing column moments. Reiterate until convergence.

This algorithm results (usually) in large matrix entries being reposi-
tioned close to the diagonal. An optimal result cannot be guaranteed.

Bond Energy Algorithm [7] Permute matrix rows and columns such
that a criterion, BEA =

∑
i,j a(i, j)(a(i− 1, j) + a(i+ 1, j) + a(i, j −

1) + a(i, j + 1)) is maximized.

An algorithm to implement the BEA is as follows: Position a row
arbitrarily. Place the next row such that the contribution to the BEA
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criterion is maximized. Place the row following that such that the
new contribution to the BEA is maximized. Continue until all rows
have been positioned. Then do analogously for columns. No further
convergence is required in this case. This algorithm is a particular
use of the traveling salesperson problem, TSP, which is widely used
in scheduling. In view of the arbitrary initial choice of row or column,
and more particularly in view of the greedy algorithm solution, this
is a suboptimal algorithm.

Matrix reordering rests on (i) permuting the rows and columns of an
incidence array to some standard form, and then data analysis for us
in this context involves (ii) treating the permuted array as an image,
analyzed subsequently by some appropriate analysis method.

19.2.1 Matrix permutation and singular value decomposition

Dimensionality reduction methods, including principal components analy-
sis (suitable for quantitative data), correspondence analysis (suitable for
qualitative data), classical multidimensional scaling, and others, is based
on singular value decomposition. It holds:

AU = ΛU

where we have the following. A is derived from the given data – in the
case of principal components analysis, this is a correlation matrix, or a
variance/covariance matrix, or a sums of squares and cross products matrix.

Zha et al. [17] formalize the reordering problem as the constructing of a
sparse rectangular matrix

W =
(
W11 W12

W21 W22

)
so that W11 and W22 are relatively denser than W12 and W21. Permuting
rows and columns according to projections onto principal axes achieves this
pattern for W . Proceeding recursively (subject to a feasibility cut-off), we
can further increase near-diagonal density at the expense of off-diagonal
sparseness.

19.2.2 Lerman’s theorem for ultrametric matrices

As is well-known, a geometric space has an induced metric. The Euclidean
metric is widely used. The Euclidean metric (L = 2) is just one of the
Minkowski metrics, with others including the Hamming or city-block metric
(L = 1), and the Chebyshev metric (L =∞):

dp(x, y) = p

√∑
j

| xj − yj |p p ≥ 1.
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A metric satisfies the property of triangular inequality d(x, y) ≤ d(y, z)+
d(z, y). The ultrametric inequality is a more restrictive condition: d(x, y) ≤
max (d(y, z), d(z, y)). Consider a classification hierarchy defined on the
object set. We can represent the tree with the objects at the base, and the
embedded clusters extending upwards. If one defines the distance between
objects as the lowest level in the tree in which the two objects first find
themselves associated with the same cluster, then the resulting distance is
an ultrametric one. Inducing a tree on an object-set is the transforming of
a metric space into an ultrametric one.

Ultrametric distance matrices can be represented, subject to an appro-
priate ordering of objects, with quite particular relations between values as
we move away from the diagonal. Lerman [18] discusses ultrametric spaces
in detail. Lerman’s Theorem 2 ([18], p. 45) describes properties of ultra-
metric distance matrices. The result we are most interested in is in regard
to matrix reordering: an order can be found such that array elements are
necessarily non-increasing as we move away from the diagonal, and row
and column array elements have a number of such inequality properties.

Lerman’s Theorem for the Form of Ultrametric Matrices: An n×n matrix
of positive reals, symmetric with respect to the diagonal, is a matrix of
distances associated with an ultrametric on the object-set iff a permutation
can be applied to the matrix such that the matrix has the following form:

1. Beyond the diagonal term equaling 0, values in the same row are
non-decreasing.

2. For each index k, if (condition b1) d(k, k + 1) = d(k, k + 2) = . . . =
d(k, k + l + 1) then (implication b2) d(k + 1, j) ≤ d(k, j) for k + 1 <
j ≤ k+l+1 and (implication b3) d(k+1, j) = d(k, j) for j > k+l+1.

Therefore l ≥ 0 is the length of the section starting, beyond the principal
diagonal, the interval of columns containing equal values in row k.

We will exemplify Lerman’s theorem using the Fisher iris data. The iris
data of Anderson used by Fisher [19] is a very widely-used benchmark
dataset. The data consists of 3 varieties of iris flower, each providing 50
samples. There are measurements on 4 variables, petal and sepal length
and breadth. The data matrix is therefore one of dimensions 150 × 4.

To derive ultrametric distances, we took the Fisher iris data, in its orig-
inal 150× 4 form. We constructed a complete link hierarchical clustering,
using the Euclidean distance between the observation vectors. We read
off the 150 × 150 ultrametric distances (ranks were used, rather than ag-
glomeration criterion values) from this dendrogram. Fig. 1 (left) shows this
ultrametric matrix. (The greyscale values have been histogram-equalized
for better contrast.) When we reorder the rows and columns (the matrix
is symmetric of course) in accordance with the ordering of singletons used
by the dendrogram representation we get the visualization shown in Fig. 1
(right). Again contrast stretching through histogram-equalization was used.
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Note that the origin is in the lower left, i.e., following the image convention
rather than the matrix convention.

FIGURE 19.1. Left: ultrametric matrix of 150 observations, in given order – clus-
ters 1, 2 and 3 correspond to sequence numbers 1–50, 51–100, 101–150. Right:
ultrametric matrix of these same observations, with the rows and columns per-
muted in accordance with a non-crossover representation of the associated den-
drogram.

19.2.3 Permuting large sparse arrays

A few comments on the computational aspects of array permuting methods
when the array is very large and very sparse follow [20]. Gathering larger
(or nonzero) array elements to the diagonal can be viewed in terms of
minimizing the envelope of nonzero values relative to the diagonal. This can
be formulated and solved in purely symbolic terms by reordering vertices
in a suitable graph representation of the matrix. A widely-used method for
symmetric sparse matrices is the Reverse Cuthill-McKee (RCM) method.

The complexity of the RCM method for ordering rows or columns is
proportional to the product of the maximum degree of any vertex in the
graph represented by the array and the total number of edges (nonzeroes
in the matrix). For hypertext matrices with small maximum degree, the
method would be extremely fast. The strength of the method is its low
time complexity but it does suffer from certain drawbacks. The heuristic
for finding the starting vertex is influenced by the initial numbering of
vertices and so the quality of the reordering can vary slightly for the same
problem for different initial numberings. Next, the overall method does not
accommodate dense rows (e.g., a common link used in every document),
and if a row has a significantly large number of nonzeroes it might be best
to process it separately; i.e., extract the dense rows, reorder the remaining
matrix and augment it by the dense rows (or common links) numbered last.
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One alternative approach is based on linear algebra, making use of the
extremely sparse incidence data which one is usually dealing with. The
execution time required by RCM may well require at least two orders of
magnitude (i.e., 100 times) less execution time compared to such methods.
However such methods, including for example sparse array implementations
of correspondence analysis, appear to be more competitive with respect to
bandwidth (and envelope) reduction at the increased computational cost.

Elapsed CPU times for a range of arrays are given in [20], and as an
indication show performances between 0.025 to 3.18 seconds for permuting
a 4000× 400 array.

19.3 Incidence data and image models

Consider co-occurrence data, or document-term dependence data. Conti-
guity of links, or of data values in general, is important if we take the 2-way
data array as a 2-dimensional image. It is precisely this issue which distin-
guishes a data array from an image: in the latter data type, the rows and
columns are permutation invariant.

We can define permutation invariance by some appropriate means. We
can use the output of some matrix permuting method, such as the bond
energy algorithm [7] or a permuting method related to singular value de-
composition [20].

The non-uniqueness of such solutions is not unduly important in this
article and will not be discussed in detail. However we must justify our ap-
proach since it does rely on an array permutation method selected by the
user. The resulting non-unique solution is acceptable because our ultimate
goals are related to data visualization and exploratory data analysis. Our
problem-solving approach is unsupervised rather than supervised, to use
terms which are central in pattern recognition. We seek an interpretation
of our data, rather than the unique interpretation. Of course, the unsuper-
vised data analysis may well precede or be otherwise very closely coupled
to supervised analysis (discriminant analysis, statistical estimation, exact
database match, etc.) in practice.

19.4 Clustering of document-term data

Experiments were carried out on a set of bibliographical data – documents
in the literature crossed by user-assigned index terms. This bibliographic
data is from the journal Astronomy and Astrophysics. It is used currently
to provide a cluster-based graphical user interface to further information on
these articles, and in many cases (if one’s library subscribes to the journal)
to the full online articles themselves. This document map can be accessed
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at URL http://cdsweb.u-strasbg.fr/Abstract.html. Further information on
the construction and maintenance of these document maps is available in
[21, 22]. We looked at a set of such bibliography relating to 6885 articles
published in Astronomy and Astrophysics between 1994 and early 1999. A
sample of the first 3 records is as follows.

1994A&A...284L...1I 102 167
1994A&A...284L...5W 4 5 14 16 52 69
1994A&A...284L...9M 29

A 19-character unique identifier (the bibcode) is followed by the sequence
numbers of the index terms. There are 269 of the latter. They are specified
by the author(s) and examples will be seen below in this section. The
experiments to follow were based on the first 512 documents in order to
facilitate presentation of results. Fig. 2 shows the 512×269 incidence array
used. We investigated the row and column permuting of this array, based
on the ordering of projections on the principal component, but limited
clustering was brought about. This was due to the paucity of index term
“overlap” properties in this dataset, i.e. the relatively limited numbers of
index terms shared by any given pair of documents. For this reason, we
elected to base subsequent work on the contingency table. Fig. 3 shows
this.

A principal components analysis of the 512×269 dataset is dominated by
the O(m3), m = 269 diagonalization requirement. Calculating the principal
component projections for the rows takes linear (in document space) time.
We used the order of principal component projections to provide a standard
permutation of rows and columns of the document contingency table. The
resulting permuted contingency table is shown in Fig. 4.

We can interpret clusters on the basis of their most highly associated
index terms. This in turn relates to the ordering of index terms on the
first principal component axis in this case. Applying an arbitrary cut-off to
principal component projections, we find the index terms most associated
with the two ends of the first principal component as follows (first three
shown):

stars:circumstellar matter
X-rays:stars
stars:abundances

The other extremity of the first principal component axis is associated
with the following index terms (limited to three):

galaxies:redshifts
galaxies:luminosity function,mass function
galaxies:compact
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FIGURE 19.2. Rows: 512 documents, columns: 269 index terms.

The distinction is clear – between stars, and stellar topics of inquiry,
on the one hand, and interstellar matter (ISM) and galaxies, i.e. topics in
cosmology, on the other hand.

19.5 Application to hypertext

From the Concise Columbia Encyclopedia (1989 2nd ed., online version)
a set of data relating to 12025 encyclopedia entries and to 9778 cross-
references or links was used. We took the first 1203 × 977 values, based on
the correspondence analysis reordering. About the lower half of this array
was close to diagonal, and was therefore relatively straightforward to ana-
lyze. (The clusters in fact formed a one-dimensional ordering or seriation,
and therefore were particularly easy to process.) The upper part of the
array was more dispersed and this is what we analyzed using our method.
Fig. 5 shows this 500 × 450 array.

This part of the encyclopedia data was filtered in wavelet transform space
using a Poisson noise model. [23] contains further details of the procedure
followed. The result is shown in Fig. 6. The first relatively long “hori-
zontal bar” was selected – it corresponds to column index (link) 1733 =
geological era. The corresponding row indices (articles) are, in sequence:
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FIGURE 19.3. Contingency table of 512 documents.

SILURIAN PERIOD, PLEISTOCENE EPOCH, HOLOCENE EPOCH,
PRECAMBRIAN TIME, CARBONIFEROUS PERIOD, OLIGOCENE-
EPOCH, ORDOVICIAN PERIOD, TRIASSIC PERIOD, CENOZOIC ERA,
PALEOCENE EPOCH, MIOCENE EPOCH, DEVONIAN PERIOD, PA-
LEOZOIC ERA, JURASSIC PERIOD, MESOZOIC ERA, CAMBRIAN
PERIOD, PLIOCENE EPOCH, CRETACEOUS PERIOD

19.6 Conclusion

The methodology developed here is fast and effective. It is based on the
convergence of a number of technologies: (i) data visualization techniques;
(ii) data matrix permuting techniques; and (iii) appropriate image anal-
ysis methods, if feasible of linear computational cost. We have discussed
its use for large incidence arrays. We introduced noise modeling of such
data, and showed how noise filtering can be used to provide as output a set
of significant clusters in the data. Such clusters may be overlapping. Fur-
ther development of this work would be to investigate hierarchical clusters,
possibly overlapping, derived from the multiple scales.

We have also discussed this innovative methodology using a number of
different datasets. It is clearly related to other well-established data analysis
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FIGURE 19.4. Row/column-permuted contingency table of 512 documents, based
on projections onto first principal component.

methods, such as seriation (one-dimensional ordering of observations), and
nonparametric density estimation (the wavelet transform can be viewed as
performing such density estimation).

We can note also the potential use of our new methodology for use in
graphical user interfaces. The Kohonen self-organizing feature map, by now
quite widely used for support of clickable user interfaces ([21, 22]), presents
a map of the documents (say), but not as explicitly of the associated in-
dex terms. Our maps cater equally for both documents and index terms.
Furthermore, the way is open to the exploration of what can be offered
by recent developments in client-server based image storage and delivery
(see some discussion in Chapter 7 of [3]) e.g. progressive transmission and
foveation (i.e. progressive transmission in a local region) strategies. This
perspective opens up onto a line of inquiry which could be characterized as
multiple resolution information storage, access and retrieval. This is par-
ticularly relevant in the context of current international initiatives on the
computational and data Grid infrastructure of the future.
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FIGURE 19.5. Part (500 × 450) of original encyclopedia incidence data array.
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FIGURE 19.6. End-product of the filtering of the array shown in the previous
Figure.
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Advanced Tools for
Astronomical Time Series and
Image Analysis

Jeffrey D. Scargle1

ABSTRACT The algorithms described here, which I have developed for
applications in X-ray and γ-ray astronomy, will hopefully be of use in other
ways, perhaps aiding in the exploration of modern astronomy’s data cor-
nucopia. The goal is to describe principled approaches to some ubiquitous
problems, such as detection and characterization of periodic and aperiodic
signals, estimation of time delays between multiple time series, and source
detection in noisy images with noisy backgrounds. The latter problem is
related to detection of clusters in data spaces of various dimensions. A goal
of this work is to achieve a unifying view of several related topics: signal
detection and characterization, cluster identification, classification, density
estimation, and multivariate regression. In addition to being useful for anal-
ysis of data from space-based and ground-based missions, these algorithms
may be a basis for a future automatic science discovery facility, and in turn
provide analysis tools for the Virtual Observatory. This chapter has ties to
those by Larry Bretthorst, Tom Loredo, Alanna Connors, Fionn Murtagh,
Jim Berger, David van Dyk, Vicent Mart́ınez & Enn Saar.
The paper is followed by commentaries by Thomas J. Loredo and Peter E.
Freeman.

“The unconscious goal of the scientific philosopher is the au-
tomation of science.”
Irving John Good, The Estimation of Probabilities, 1965

“Automate or die.”
Silicon Valley Billboard, June, 2001

20.1 Statistical challenges in modern astronomy

One of the most important statistical challenges in science today is the
effective analysis of data from NASA’s observational astronomy programs.
The work discussed here is meant to provide algorithms of general appli-
cability in the framework of automated science analysis. It is hoped that

1NASA Ames Research Center
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they will be useful in addressing various challenges in astronomy – such as
mining information from the Sloan Digital Sky Survey (see presentation by
Michael Strauss) and other cosmological datasets (presentations by Vincent
Martinez and Enn Saar, and A. H. Jaffe).

Automated processing already plays a large role in astronomical data
analysis, and will be increasingly important as astronomy progresses into
the Century of Data. How far along the path to the final scientific out-
put can automatic processing be taken? I feel artificially intelligent data
analysis will soon become surprisingly practical. See (Glymour et al. 1997,
Glymour and Cooper 1999, Heckerman 1997, and Shalizi and Crutchfield
1999) for modern approaches to automatic analysis of data.

20.2 Periodic signals

Definitive presentations of the modern approach to detection of a sinusoidal
signal in the presence of noise appear in (Bretthorst, 1988, 2001). A key
result that we will need for future reference is that the posterior probability
density for the frequency ω of a single component is

P (ω) ∝ e
C(ω)

σ2 , (20.1)

[Bretthorst, 1988, Eq. (2.7)] where C(ω) is the ordinary Schuster peri-
odogram, and σ is the variance of the noise, here assumed known. This
equation shows that the periodogram is a sufficient statistic for this prob-
lem, and contains all information needed to compute frequency estimates
and their uncertainties. (Bretthorst 2001) shows that the Lomb-Scargle
periodogram serves the same role for unevenly spaced data.

The situation just described is an instructive case study in the relation
between the frequentist approach employing a statistic and the Bayesian
computation of a posterior distribution:

• As initially introduced, the periodogram is an ad hoc frequentist
statistic. Since it is the inner product of a sinusoid and the data,
it is reasonable that the periodogram will be large at frequencies at
which a harmonic signal is present, small otherwise. But otherwise it
is “pulled out of a hat” – an interesting quantity offered with minimal
motivation, no justification2 for preferring it over other possibilities,
and only an indirect connection to detection probabilities.

• The Bayesian approach, so eloquently expounded in (Bretthorst, 1988),
computes directly and straightforwardly the probability of sinusoidal

2Of course the periodogram’s statistical behavior more or less validates its choice,
after the fact. Indeed, the reason for constructing a modified periodogram for unevenly
spaced data was to make its statistical behavior the same simple behavior shown by the
Schuster periodogram for even spacing (Scargle 1982, 1989).
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signal being present. It devolves that the resulting expression con-
tains the periodogram, nicely clarifying its meaning – but this was
by no means guaranteed.

Which of these two approaches is more satisfying is a matter of some debate.

20.3 Time delays and scaling

One often wants to determine the lag between two time series. That is,
we picture the process generating the second time series as a delayed and
possibly scaled version of that generating the first, and we wish to esti-
mate the value of the delay. The approach here follows closely Bretthorst’s,
mentioned in §20.2. Only results are given here; see (Scargle 2001b) for
details.

Assume that the underlying process is a signal, S, superimposed on a
background, B. Take as given the two background rates, BX and BY . We
seek to characterize the signals that rise above these backgrounds. In some
applications the backgrounds should be treated as unknown nuisance pa-
rameters, assigned a prior probability distribution, and then marginalized.
In one case of special interest (gamma-ray bursts), the background levels
are well determined by other data, and can properly be fixed at known
constant values. Even here the ideal procedure is to represent this extrinsic
data with a prior distribution for the background and marginalize it.

The complete model, expressing delay and scaling between the two sig-
nals, is:

XModel
m = Sm + BX (20.2)

YModel
m = aSm−τ + BY , (20.3)

where the lag is τ , and the Y -signal is an overall factor a times the X-signal.
For TTE data, m is measured is quantized units – here called time ticks,

as defined by the electronics of the data acquisition system – and the above
equations give the probability of a photon being detecting during tick m.
The observed values, Xm, Ym have values 1 or 0, depending on whether or
not an event was recorded at tick m. After the usual procedure of writing
down the likelihoods and marginalizing3 the signal amplitudes, we find the
posterior probability density for τ and a is

Gtotal(τ, a) = G0(a) e
γX,Y (τ)

Σ2 (20.4)

where

γX,Y (τ) =
M∑

m=1

Xm+τYm (20.5)

3That is, integrating out.
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is the cross-correlation function of X and Y , and M is the length of the
observation interval in ticks. This function arises naturally in the develop-
ment, and is not introduced in an ad hoc manner. It can be readily and
rapidly computed using the fast Fourier transform, representing X and Y
as arrays of zeros punctuated by unit amplitude δ-functions at the values
of m at which photons were detected. The coefficients G0 and Σ (given in
Scargle 2001b) depend on a and the backgrounds, but not on τ . The pos-
terior for evenly binned count data (Scargle 2001b), at least for the case
where the variances are independent of time, has exactly the same form.

Note that Eq. (20.4) has a clear similarity to the probability density for
ω quoted above, Eq. (20.1) in §20.2. The cross correlation function,
γ is a sufficient statistic for lags, just as the periodogram is for
frequencies. The maximum likelihood value of the lag is just the value of
τ that maximizes the cross-correlation function, so the main added feature
is the ability to compute the full distributions of τ and a.

20.4 Signal structure: Segmentation yields
structure

Now turn to the problem of detecting and characterizing signal structure,
from time series data. This section described a very practical representa-
tion of time-domain structures corrupted by observational noise4, namely
partitioning of the data space into subsets in which the signal is assumed
constant.

20.4.1 Data

We consider data consisting of signal measurements, corrupted by noise,
blurring, or other instrumental effects. These measurements may be in
spaces of one dimension (e.g., time series, energy spectra, etc.), two di-
mensions (images), or more (galaxy redshift/position catalogs).

I distinguish three types of measurement. The first is event data5. One
measures positions of discrete points in the data space under consideration.
Examples from the Compton Gamma Ray Observatory are time-tagged
photon data from BATSE and sky-image data from EGRET, consisting
of lists of photon positions, energies and times. While the usual coordi-

4An important point, often leading to confusion, is that noise in astronomy has two
quite distinct meanings: random observational errors, and random variability intrinsic
to the source. The latter, part of the signal, is often just what one is studying, whereas
observational noise is a corruption, to be eliminated as much as possible.

5This term is appropriate to the context of 1D time series; point data is used in the
context of 2D images.
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nate representation of such points uses real numbers, in practice the corre-
sponding infinite accuracy or resolution is not achievable. The coordinate is
quantized in some small unit. In time series from high energy astrophysics,
e.g., the points are the times of detection of individual photons, and the
corresponding quantum is the resolution of the spacecraft clock, typically
somewhere in the range of microseconds to milliseconds.

In the second type of measurement, the entire observation interval (or
area, or volume) is partitioned into pre-specified bins (or pixels, or cells),
and one records the number of events in each. Event data can be converted
to this mode, by adopting a set of bins and counting the points that fall
in each bin. This process discards information, diminishes the resolution to
that of the bins, and makes the results dependent on the sizes and locations
of the bins.

The third type of sequential measurement does not involve explicit count-
ing of events, but some other measurement of a quantity at a set of times
or points in space. Here the statistical distribution of the observational
errors is not tied to the Poisson distribution, as for the other two types,
but can in principle be anything – most commonly normal (Gaussian).
The values of the independent variable can be points, intervals, or defined
by a spread-out sampling function. For example, spatial power spectra
of cosmic microwave background measurements are typically reported in
terms of window functions with various shapes; Bharat Ratra and Tarun
Souradeep maintain a WWW site (http://www.phys.ksu.edu/~tarun/
CMBwindows/wincomb/wincomb_tf.html) that gives details for many CMB
experiments.

20.4.2 The model

A key step in any likelihood analysis is definition of a model representing
the underlying process (i.e., the true signal) and the corruption process ob-
scuring the true signal. We must compute the probability that the observed
data would be obtained, given the model and its parameters. This function,
called the likelihood, depends on the data mode, the sampling process, and
the nature of the signal, the noise and other corruption processes.

A big advantage of point data is that they are efficiently described by a
single, very simple model. The Poisson process is appropriate whenever the
events are independent of each other. By this is meant that the occurrence
of one event does not change the probability of any others. A common
example of dependence is dead time in time series data: each photon is fol-
lowed by an interval in which the detection of a second photon is inhibited.
See (Stoyan, Kendall and Mecke 1995) for an excellent discussion of point
processes in general, Poisson point processes in particular, and a number
of ways that real world data can depart from being Poisson.

Independence implies that the probability an event will occur in any
element of data space is proportional to the volume of that element. The
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proportionality coefficient is the local event rate, often called the Poisson
parameter λ. It need not be constant, but can vary in an arbitrary way over
the data space.

If λ varies randomly, the process is said to be a Cox process, or more
descriptively a doubly-stochastic process. In such cases it is important to
distinguish the two random processes at play. (The usual assumption is that
these two are independent of each other.) Keeping this distinction clearly
in mind, one can show that events occurring at two different locations
are independent6, even if the event rates at the two points are strongly
correlated.

It is remarkable that the seemingly highly special Poisson model is in
reality quite general – and surprisingly appropriate for most astronomical
processes. All that is required is that the events are independent of each
other, and their rate is described by an unrestricted function of position in
the data space. Even dependences can be accounted for by incorporating
them into the likelihood.

This function representing λ’s dependence on location can be either para-
metric or nonparametric7. Since we do not want to impose an explicit signal
shape, we use a nonparametric model, namely piecewise constant functions.
This very convenient model class has the following properties:

• nonparametric

• general: capable of representing any reasonable signal

• simple, easy to compute: rate constant on finite intervals

• useful, i.e. easy computation of physically significant properties:

– pulse peak times, widths, rise times, and decay times

– pulse amplitudes

– background level

• extendible to 2D and higher data spaces

• data adaptive, i.e. can respond to local features

This representation is also useful in domains such as classification, clus-
ter detection, regression, and density estimation. One can think of it as
implementing density estimation with blocks taking on the role of bins.

6I.e., their joint probability is the product of the individual probabilities.
7Somewhat paradoxically, the number of parameters of a nonparametric model de-

pends on the number of data points (Rissanen 1989). Examples are polynomial fitting,
Fourier analysis, and wavelets. The basic idea is that one is really representing the
structure in terms of elementary basis functions, whose number depends on how much
information is present – rather than fitting a predefined shape to the signal.
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Importantly, bin locations and sizes are determined by the data, through
the condition that the blocks represent the statistically significant varia-
tions in the signal.

Note that we don’t really assert that the underlying physical process has
a rate that changes in this blocky, discontinuous way. The true signal is no
doubt relatively smooth. We represent it as piecewise constant in the same
spirit as step-function approximations of a smooth curve. The idea is not
that this representation is exact in some limit (often the justification for
blocky models; cf. wavelet theory, especially the innovative ideas of Donoho
1994a,b), but simply that the blockiness reflects the statistical uncertainty
of the data.

One could consider more accurate, e.g. piecewise linear, representations.
But if continuity is imposed, the number of free parameters is almost the
same as for piecewise constant models. For the most part the added accu-
racy is illusory and merely serves to complicate model interpretation.

Another issue has to do with what use the model will be put to. Often
we are not really interested in the true shape itself, but in more generic
information. For example, in the study of impulsive phenomena, such as
Gamma ray bursts, one is interested in rise times, decay times, and other
pulse properties. Since there are convenient ways to estimate these pa-
rameters directly from the blocks, our seemingly crude representation may
adequately encode all usable shape information.

20.4.3 Algorithms

Three algorithms for implementing this Bayesian approach to modeling
time series have been described elsewhere (Scargle 1998, 2001a), so only a
brief sketch will be given here. The basic component of the model, called a
block and denoted Bi, comprises a time interval of length Ti and ascribes
the Ni data points within this interval to a Poisson process with event rate
λi. The posterior for this model is

P ( Bi) = Φ(Ni, Ti) =
Γ(Ni + 1)Γ(Ti −Ni + 1)

Γ(Ti + 2)
=
Ni!(Ti −Ni)!

(Ti + 1)!
. (20.6)

Note that λi does not appear, since it has been marginalized. P ( Bi) de-
pends on only the size of the block and the number of data points in it.
The posterior for the whole model is just

∏
i=1 P ( Bi), where i ranges over

all elements of the partition.
Broadly, the three approaches are:

• Divide and Conquer: model comparison specifies the optimum
changepoint at which to subdivide the interval; apply iteratively to
all sub-intervals

• Markov Chain Monte Carlo (MCMC): sum the posterior proba-
bility by expeditiously exploring changepoint space
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• Cell Coalescence: start from an ultra-fine representation assigning
one block to each datum; merge block pairs based on model compar-
ison

The first and last can be thought of as top-down and bottom-up approaches,
respectively. Consider two adjacent intervals, described byN1, V1 andN2, V2.
The corresponding Bayes merge factor is computed using Eq. (20.6) to give
the ratio of posteriors for the two regions merged and not merged, respec-
tively:

P (Merged)
P (Not Merged)

=
Φ(N1 +N2, V1 + V2)
Φ(N1, V1)Φ(N2, V2)

. (20.7)

In both cases one iterates until subdivision or merge operations no longer
improve the posterior probability of the model. They are greedy algorithms,
meaning that they choose the greatest gain possible at each step of the nu-
merical optimization. This is sometimes called myopic optimization – a
“take what you can now, with no regard for the future” strategy. On ter-
mination, the result may be a local optimum, perhaps a good approximate
solution – but not guaranteed to be the global optimum. Cell Coalescence
is easily generalizable to higher dimensions, as we will soon see.

MCMC (e.g., Gilks, Richardson and Spiegelhalter 1996) is the most rigor-
ous approach, as it solves for all changepoints simultaneously. Convergence
of MCMC algorithms is a subtle issue.

20.5 High dimensional structure: Cluster analysis
and classification

Cluster analysis in data spaces of higher dimension faces many vexing prob-
lems (Backer 1995, Gordon 1999), including determination of the number
of clusters, a bewildering variety of proposed methods, loss of information
due to restricted data modes, incorporation of prior information, nuisance
parameters, and post facto validation of clusters. The Bayesian approach
deals effectively with all of these issues. This section sketches an extension
of the cell coalescence version of Bayesian Blocks to higher dimensions. The
posterior in Eq. (20.6) applies unchanged in a space of any dimension, and
the principles of the algorithm are identical to those in 1D.

Happily use of the Voronoi tessellation (Okabe, Boots, Sugihara, and
Chiu 2000)8 unravels the only real complication that arises in higher di-
mension – namely the geometry. The Voronoi tessellation partitions the

8Due to their importance in computer graphics, fast algorithms yielding the unique
Voronoi cell partition of a space of arbitrary dimension are readily available. MatLab
( c© The MathWorks, Inc.), e.g., has one that represents the resulting data structures in
a form very convenient for present purposes.
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data space into cells: cell i is that region of the data space closer to datum
i than to any other datum.

The Voronoi tessellation is an excellent representation of the data. It
contains all relevant information in the raw data. It reduces the search
space from the hugely infinite space of all possible partitions to the quite
finite space of all possible Voronoi cell subsets which form a partition. It
provides a simple generalization of the notion of adjacent intervals: blocks
containing cells that touch at one or more points. And it even provides a
crude but effective density estimation right off the bat, through the relation
that the local point density is the reciprocal of the volume of the Voronoi
cell.

The greedy cell coalescence algorithm collects Voronoi cells into larger
and larger blocks by iteratively merging the pair of blocks with the largest
merge factor from Eq. (20.7). In many applications it is both required and
efficient to permit only blocks touching each other to merge. The iteration
halts if the maximum merge factor falls below 1, at which point the data
space has typically been partitioned into blocks much fewer in number than
the original data points. Each block has a density equal to the number of
data points in it divided by its volume. Then, if desired, high-density blocks
adjacent to each other can be collected into clusters.

A slightly more detailed discussion of this work in progress is in (Scargle
2001c).

I am greatly indebted to Larry Bretthorst, Alanna Connors, Ayman Fara-
hat, Karl Young, Tom Loredo, Jay Norris, Peter Cheeseman, and Peter
Sturrock for comments and suggestions.
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Commentary by Thomas J. Loredo9

Scargle’s contribution provides both algorithms that are of immediate
practical use, and much food for thought to inspire future research. In this
commentary, I focus on his segmented Poisson process approach to mod-
eling signal structure, known colloquially as “Bayes blocks” (BB). I first
point out an important astrostatistical problem on which his work could
have immediate impact, and then discuss the rationale and generality of
the BB approach to modeling signal structure. I offer some brief comments
on Scargle’s lag estimation work in my commentary on Bretthorst’s paper.

20.6 A mundane application

Scargle forsees wide application of his BB approach to modeling signal
structure, spanning many disciplines and data sets of varying dimension.
Many of these applications will require significant innovation in compu-
tational tools for implementing BB. Here I describe a more mundane ap-
plication for which current algorithms are likely adequate. Despite being
mundane, the application is of broad applicability and significant impor-
tance; successful application of BB to this problem would be very valuable.

The problem concerns accounting for background rates in binned count-
ing data, such as that produced by X-ray spectrometers. Typically, astro-
physical or space-based sources of background dominate the background
rate, and so must be measured as part of one’s observation of an interesting
source. One points the instrument off-source to measure the background,
and on-source to measure the background plus source; joint analysis of
these data allow one to infer the source spectrum.

Underlying most current methods for analysis of “on/off” binned spec-
tra is a bin-by-bin background model. Off-source, the expected number of
counts in bin i is modeled as n̄i = biToff , where bi is the background rate
in the bin, and Toff is the off-source data interval (which may have units
of time, time × area, etc.). On-source, the expected number of counts is
n̄i = [bi+si(θ)]Ton, where si(θ) is the source rate in bin i according to some
spectrum model with parameters θ, and Ton is the on-source interval. This
model underlies both the traditional background-subtracted χ2 approach
to fitting, and more recent Bayesian approaches that rigorously account for
the Poisson nature of the data.

The problem with the model is its presumption of no connection between
the background rates in adjacent bins. This assumption was probably ad-
equate in the past when bin widths were large, so adjacent bins might in
fact be dominated by different features of the background spectrum. But

9Department of Astronomy, Cornell University
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with improved instrument resolution and telemetry bandwidth, bin widths
are becoming ever finer, and the assumption is sacrificing precision. A sim-
ple calculation (left to the reader!) illustrates the problem: Let si = s, a
constant, and consider, say, 5 or 10 bins of data. Generate the data with a
constant background rate, and infer s with standard methods. Then infer
s again, using a model with bi = b, a constant. The latter model effectively
pools the background data from all the bins, leading to a more accurate
background estimate, and thus a more accurate s estimate. In real data,
the problem is that we do not know in advance which bins to pool to-
gether. Scargle’s cell coalescence BB algorithm seems tailor-made to this
purpose, and could significantly improve the precision of inferences made
with such data without requiring complicated parametric modeling of the
background.

20.7 Rationale

Scargle anticipates application of the BB approach to disciplines as diverse
as X-ray astronomy and galaxy clustering. Here I raise a few issues re-
garding justification of the approach in various domains, answering some
questions but leaving others open for future research.

A stumbling block for some potential BB users may be its Poisson process
foundations. In particular, in a Poisson model counts in disjoint regions are
independent, yet typical models for phenomena such as galaxy clustering
use tools such as correlation functions that show counts to be correlated.
Does this rule out BB for such processes? Perhaps. But it may be a sur-
prise to some readers that the answer isn’t simply “yes.” Answering the
question reveals some features of Poisson processes that many astronomers
are unaware of; the answer presented here also shows how a Bayesian look
at the process offers a particularly clear insight into the question.

The key to this question is noting that the probability distribution for
counts in disjoint regions is independent for a Poisson process when one
conditions on the underlying intensity parameter(s) (Scargle’s λ). When the
intensity is unknown, the (unconditioned) joint distribution for the counts
can exhibit correlations. This is perhaps obvious conceptually once stated;
if the underlying rate over a region is constant but of unknown magnitude,
then obviously the number of counts I expect in one part of the region will
depend on what I have observed elsewhere. To show this mathematically,
Bayesian probability theory is especially appropriate. Let n1 and n2 denote
the number of counts in two disjoint regions, and suppose the expected
number in each region is the same and given by λ. Then conditional on λ,
the joint distribution is

p(n1, n2|λ,M) =
λn1e−λ

n1!
× λn2e−λ

n2!
, (20.8)
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where M denotes the Poisson modeling assumptions. This is the product
of two independent Poisson distributions. But now suppose that λ is un-
known. For concreteness, describe the uncertainty in λ with an exponential
prior density, p(λ|M) ∝ exp(−λ/λ0) (so larger λ0 corresponds to greater
uncertainty about λ). The unconditioned joint distribution is then

p(n1, n2|M) =
∫
dλ p(λ|M) p(n1, n2|λ,M) (20.9)

=
1

λ0(2 + λ−1
0 )n1+n2+1

(n1 + n2)!
n1!n2!

. (20.10)

This is clearly not a product of independent distributions. One can use
Bayes’s theorem to find the conditional distribution for n2 given n1,

p(n2|n1,M) =
(1 + λ−1

0 )n1+1

(2 + λ−1
0 )n1+n2+1

(n1 + n2)!
n1!n2!

. (20.11)

This distribution peaks at n2 ≈ n1 for large λ0, just the type of correlation
one might expect.

This simple exercise shows that a Poisson model can account for cor-
related counting structure, and thus provides motivation for broad use of
the BB approach. But can one account for any kind of correlation within
the Poisson framework? Here the answer appears to be “no.” To explore
this, we again study the two-bin case, but let the expected values for n1

and n2 be given by two separate parameters, λ1 and λ2. The most general
joint distribution for the counts within the Poisson framework can then be
written

p(n1, n2|M) =
∫
dλ1

∫
dλ1

λn1
1 λn2

2

n1!n2!
e−(λ1+λ2) p(λ1, λ2|M), (20.12)

where the final factor is a joint prior density for the Poisson intensity pa-
rameters. Now change variables so we can separately focus on the total
intensity and the “shape” (relative bin-to-bin variation). Replace λ1 and
λ2 with the total amplitude λ = λ1 + λ2 and the fractions fi = λi/λ,
constrained by definition so f1 + f2 = 1. Also, let N = n1 + n2. Rewrite
the prior as p(λ1, λ2|M) = h(λ)g(f1, f2|λ)δ(1 − f1 − f2), with h the prior
for the amplitude and gδ the (conditional) prior for the shape. Then using
equation (20.12) one can show that the joint distribution for n1 and n2

conditioned on N can be written

p(n1, n2|N,M) =
∫
df1

∫
df2

N !
n1!n2!

fn1
1 fn2

2 GN (f1, f1)δ(1− f1 − f2),
(20.13)

where GN (f1, f1)δ(1 − f1 − f2) is just the joint distribution for the shape
parameters given N , p(f1, f2|N,M), and of course n1+n2 = N throughout
(so p(n1, n2|N,M) is really 1-dimensional). This exercise is useful because
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joint distributions of the form of equation (20.13) arise both in statistics
(in studies of exchangeable sequences) and in statistical mechanics, and
are thus well-studied. For the Poisson model to be completely general, it
must be capable of producing any possible p(n1, n2|N,M). However, in a
study of the N -representability problem in statistical mechanics, Jaynes
showed that some such joint distributions can be expressed in the form of
equation (20.13) only if one allows GN (f1, f1) to be negative (Jaynes 1986).
This is not possible in the Poisson framework, so some forms of correlation
cannot be accurately modeled with Poisson processes.

A more general issue is the adequacy of piecewise-constant (PC) model-
ing when one knows the underlying process is continuous. That is, a priori
one knows the model is certainly false. Some comfort can perhaps be found
in the realization that, on some level, this is probably true of all statistical
models, yet many seem to succeed regardless, presumably because model-
ing errors are small compared with uncertainties due to limited data. But
the discrepancy between the model and reality seems especially stark with
PC models (I say this despite having helped introduce such models into
astrostatistics in work with Phil Gregory).

Fortunately, the adequacy of similar histogram and changepoint models
has been well-studied in statistics, and some interesting theorems offer so-
lace. Since the underlying “true model” is unknown, the theorems require
use of measure theory to work in the infinite-dimensional spaces required for
nonparametric modeling and are challenging for nonexperts. Lavine (1994)
provides a concise and readable summary of some key results, which he
summarizes as showing that “good priors are those that are approximately
right for most densities; parametric priors [e.g., histograms] are often good
enough.” Unfortunately, the theorems all invoke some limiting process (e.g.,
proof of consistency, i.e., the right result when the number of data tends
to ∞). Theorems that provide more practical criteria for model adequacy
are desirable. Also, one should note that results in nonparametric statistics
can depend on one’s choice of distance measure between distributions in
infinite-dimensional spaces, and there is some controversy over the appro-
priate measure. Finally, the theorems all concern estimation; but one is also
interested in detection. This is where I am personally most concerned. A
signal with smooth but varying structure may require many PC segments to
model, but Bayesian model comparison penalizes models according to the
number of parameters, so one may pay a high penalty to model smoothly
varying signals, high enough to prevent detection. For the same data, an in-
herently smooth model with fewer parameters might succeed. More work is
needed on this issue; continuous segmented models studied in the Bayesian
literature (e.g., piecewise linear or quadratic splines) may help circumvent
any problems while retaining some of the virtues of the discontinuous PC
basis.

In summary, Scargle’s BB approach has greater generality than may first
be apparent; combined with its conceptual simplicity and straightforward
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algorithms, this should help motivate its wider use. But it also has some
limitations. Scargle’s intriguing presentation will hopefully motivate both
applications of this new tool and generalizations using other underlying
point processes and segment types.
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Commentary by Peter E. Freeman10

This paper provides an excellent overview of “algorithms of general ap-
plicability,” showing how relatively simple Bayesian-based methods can be
used to perform an array of fundamental analyses. I will not comment
upon the details of the algorithms themselves,11 but rather use this space
as a bully pulpit from which to exhort meeting participants and interested
readers to follow the path that Scargle is currently following, by creating
advanced tools that typical astronomers will understand and more impor-
tantly will want to use.

It sounds simple, but I must sound a cautionary note: winning the hearts
and minds of typical astronomers, whose knowledge of statistics may ex-
tend no further than a perusal of Bevington,12 will not necessarily be an
easy task. In my current position as a scientist and programmer devel-
oping tools for the Chandra Interactive Analysis of Observations (CIAO)
software package (http://cxc.harvard.edu/ciao/) I have observed first-
hand that comfort and speed, rather than rigor, dictates how many analy-

10Harvard-Smithsonian Center for Astrophysics
11I will mention, however, that in addition to the work of Bretthorst on the detection

of sinusoidal signals, readers should be aware of the Bayesian-based Gregory & Loredo
method (ApJ 398:146 1992 and Gregory’s brief article in this volume) which tests for
the presence of stepwise periodic signals, an elegant algorithm that I have used in my
own work and plan to code in C/C++ for general use.

12P. R. Bevington & D. K. Robinson, Data Reduction and Error Analysis for the Phys-
ical Sciences (New York: McGraw-Hill, 2nd edition updated from the first 1969 edition)
provided the first, incomplete statistics education for many astronomers, including me.
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ses are performed. This is true even when users know better. For instance,
many astronomers continue to group data in adjacent bins of counts spec-
tra and use the χ2 statistic in fits to these data, rather than use the Pois-
son likelihood, because this is what they were taught to do and/or they
are most comfortable using reduced χ2 as a measure of model acceptabil-
ity. And many continue to subtract observed background (off) data from
source (on) data before performing spectral fits, rather than fitting the
background and source data with separate models simultaneously, because
the former is faster and “it won’t make any difference in the final results
anyway.”

Thus creating a better algorithm is but the first step. You must strive
to make the user interface as simple as possible, and to produce more than
enough documentation. This is more than just how to use your tool−you
should provide examples, threads, test cases, anything to make the learn-
ing curve less steep. You should strive to make it fast (although with the
constant improvement in computing power, this is becoming less impor-
tant). And you should be prepared for rejection, as some astronomers will
still resist what is new and exotic. But many others, especially graduate
students and post-docs, will come around, and astronomy as a whole will
benefit.

I will end this sermon by mentioning that the fight for the hearts and
minds of astronomers would be considerably easier if someone (or some
group) were to write a basic applied astrostatistics text. In 2001, I gave
two lectures on the use of statistics in X-ray astronomy at the First X-ray
Astronomy School,13 and afterwards it became quite clear that the students
had learned much from these lectures, and that were hungry to learn more.
A textbook would help these and future astronomy students immensely.

13Organized by Keith Arnaud and the High Energy Astrophysics Sci-
ence Archive Research Center at NASA-Goddard Space Flight Center; see
http://heasarc.gsfc.nasa.gov/docs/xrayschool/index.html.
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Frequency Estimation and
Generalized Lomb-Scargle
Periodograms

G. Larry Bretthorst1

ABSTRACT Using Bayesian probability theory we demonstrate that the
Lomb-Scargle periodogram may be generalized in a straightforward manner
to nonuniformly nonsimultaneously sampled quadrature data when the si-
nusoid has arbitrary amplitude modulation. This generalized Lomb-Scargle
periodogram is the sufficient statistic for single frequency estimation in a
wide class of problems ranging from stationary frequency estimation in real
uniformly sampled data, to frequency estimation for a single sinusoid hav-
ing exponential, Gaussian, or arbitrary amplitude modulation. In addition
we define the bandwidth of a nonuniformly sampled data set and show
that the phenomenon of aliases exists in both uniformly and nonuniformly
sampled data and that the phenomenon has the same cause in both types
of data. Finally, we show that nonuniform sampling does not affect the
accuracy of the frequency estimates; although it may affect the accuracy of
the amplitude estimates.
This paper is followed by a commentary by Thomas J. Loredo.

21.1 Introduction

The problem of estimating the frequency or period of a sinusoid arises in
an a host of contexts in the sciences. For example, in nuclear magnetic
resonance (NMR) the signals are sinusoidal with exponential decay. In me-
teorology, temperature data obviously fluctuate sinusoidally on a daily and
yearly basis. In astrophysics, the period of variable stars may be on the
order of days to years with nonstationary nonsinusoidal oscillations about
a trend. The data gathered by the different sciences are almost as varied
as phenomena being observed. In NMR, the quadrature data are almost
always uniformly sampled (a quadrature measurement is one in which a
measurement of both the real and imaginary components of the sinusoids
has been made). In astrophysics, the data may be magnitudes or velocities
sampled at unevenly spaced intervals.

1School of Medicine, Washington University
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The standard way to deal with such data is to compute a discrete Fourier
transform of the data and then view the transform as an absorption spec-
trum, a power spectrum, a Schuster periodogram (Schuster 1905), or a
Lomb-Scargle periodogram (Lomb 1976, and Scargle 1982 and 1989). See
Priestley (1981) and Marple (1987) for reviews of classical spectral estima-
tion techniques. The problem with all such techniques is that they have
not be derived from any single set of unifying principles that indicate the
optimal way to estimate the period. In this paper we change that by using
Bayesian probability theory to deriving the discrete Fourier transform, the
power spectrum, the weighted power spectrum, the Schuster periodogram
and the Lomb-Scargle periodogram as special cases of a generalized Lomb-
Scargle periodogram, and show that the generalized Lomb-Scargle peri-
odogram is a sufficient statistic for single frequency estimation. (A suffi-
cient statistic summarizes all of the information in the data relevant to the
question being asked.)

In Bayesian probability theory, there are two basic rules for manipulating
probabilities: the product rule and the sum rule. All other rules may be
derived from these. If A, B, and C stand for three arbitrary hypotheses,
then the product rule states

P (AB|C) = P (A|C)P (B|AC), (21.1)

where P (AB|C) is the joint probability that “A and B are true given that
C is true,” P (A|C) is the probability that “A is true given C is true,” and
P (B|AC) is the probability that “B is true given that both A and C are
true.”

In Aristotelian logic, the hypothesis “A and B” is the same as “B and
A,” so the numerical value assigned to the probabilities for these hypothe-
ses must be the same. The order may be rearranged in the product rule,
Eq. (21.1), to obtain:

P (BA|C) = P (B|C)P (A|BC), (21.2)

which may be combined with Eq. (21.1) to obtain a seemingly trivial result

P (A|BC) =
P (A|C)P (B|AC)

P (B|C)
. (21.3)

This is Bayes’ theorem. It is named after Rev. Thomas Bayes, an 18th
century mathematician who derived a special case of this theorem. Bayes’
calculations were published in 1763, two years after his death. This theorem,
as generalized by Laplace, is the basic starting point for inference problems
using probability theory as logic.

The second rule of probability theory, the sum rule, relates to the prob-
ability for “A or B.” The operation “or” is indicated by a + inside a
probability symbol. The sum rule states that given three hypotheses A, B,
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and C, the probability for “A or B given C” is

P (A+B|C) = P (A|C) + P (B|C)− P (AB|C). (21.4)

If the hypotheses A and B are mutually exclusive, that is the probability
P (AB|C) is zero, the sum rule becomes:

P (A+B|C) = P (A|C) + P (B|C). (21.5)

The sum rule is especially useful because it allows one to investigate an in-
teresting hypothesis while removing an uninteresting or nuisance hypothesis
from consideration.

To illustrate how to use the sum rule to eliminate nuisance hypotheses,
suppose D stands for the data, f the hypothesis “the frequency of a si-
nusoidal oscillation was f ,” and B the hypothesis “the amplitude of the
sinusoid was B.” Now suppose one wishes to compute the probability for
the frequency given the data, P (f |D), but the amplitude B is present and
must be dealt with. The way to proceed is to compute the joint proba-
bility for the frequency and the amplitude given the data, and then use
the sum rule to eliminate the amplitude from consideration. Suppose, for
argument’s sake, the amplitude B could take on only one of two mutu-
ally exclusive values B ∈ {B1, B2}. If one computes the probability for the
frequency and (B1 or B2) given the data one has

P (f |D) ≡ P (f [B1 +B2]|D) = P (fB1|D) + P (fB2|D). (21.6)

This probability distribution summarizes all of the information in the data
relevant to the estimation of the frequency f . The probability P (f |D) is
called the marginal probability for the frequency f given the data D.

The marginal probability P (f |D) does not depend on the amplitudes
at all. To see this, the product rule is applied to the right-hand side of
Eq. (21.6) to obtain

P (f |D) = P (B1|D)P (f |B1D) + P (B2|D)P (f |B2D) (21.7)

but
P (B1|D) + P (B2|D) = 1 (21.8)

because the hypotheses are exhaustive. So the probability for the frequency
f is a weighted average of the probability for the frequency given that one
knows the various amplitudes. The weights are just the probability that
each of the amplitudes is the correct one. Of course, the amplitude could
take on more than two values; for example if B ∈ {B1, · · · , Bm}, then the
marginal probability distribution becomes

P (f |D) =
m∑

j=1

P (fBj |D), (21.9)
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provided the amplitudes are mutually exclusive and exhaustive. In many
problems, the hypotheses B could take on a continuum of values, but as
long as only one value of B is realized when the data were taken the sum
rule becomes

P (f |D) =
∫
dBP (fB|D). (21.10)

Note that the B inside the probability symbols refers to the hypothesis;
while the B appearing outside of the probability symbols is a number or
index. A notation could be developed to stress this distinction, but in most
cases the meaning is apparent from the context.

21.2 Frequency estimation: The generalized
Lomb-Scargle periodogram

The problem addressed is the estimation of the frequency, f , of a sinusoid
having known arbitrary amplitude modulation given nonuniformly non-
simultaneously sampled quadrature data. To apply Bayesian probability
theory to any problem one must relate the parameter of interest, here the
frequency, to the measured data. This is done through a model. For a sinu-
soid having arbitrary amplitude modulation, the frequency may be related
to the real data by

dR(ti) = A cos(2πfti − θ)Z(ti) +B sin(2πfti − θ)Z(ti) + nR(ti) (21.11)

where dR(ti) denotes the real data measured at time ti, A and B are the
cosine and sine amplitudes of the sinusoid, and nR(ti) denotes the noise
at time ti. Following Lomb’s example, θ will be defined in such a way as
to make the cosine and sine functions orthogonal on the discretely sam-
pled times. The function Z(ti) specifies the amplitude modulation of the
sinusoid; Z(t) could be an exponential, a Gaussian, or any other function
appropriate to the signal being modeled. If Z(t) is a function of any pa-
rameters, these parameters are presumed known; for example, if Z(t) is a
decaying exponential, then we assume the decay rate constant is known.
Of course, in any Bayesian analysis we could turn our attention to the pa-
rameters in Z(f) and estimate them, but for this problem we will consider
them as known and suppress them from the notation.

In a quadrature data set one also has a measurement of the imaginary
or quadrature part of the signal. The imaginary data are 90◦ out of phase
with the real data. Here this means that model for the imaginary data is
90◦ out of phase with the model for the real data:

dI(t′j) = −A sin(2πft′j−θ)Z(t′j)+B cos(2πft′j−θ)Z(t′j)+nI(t′j). (21.12)

We have labeled the times at which the imaginary data were acquired with
a prime superscript to distinguish them from the times at which the real
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data were acquired and we have added a subscript, I, to several quantities
to indicate that these quantities refer to the imaginary part of the signal.
The total number of data values will be designated as N = NR + NI ,
where NR and NI are the number of data values in the real and imaginary
channels respectively; NR and NI need not be equal and can be zero.

In Bayesian probability theory all of the information in the data relevant
to the problem being solved is summarized in a probability density function.
For the problem of estimating the frequency, this probability is denoted as
P (f |DRDII), where this should be read as the posterior probability for the
frequency f given the real data DR, the imaginary data DI and the prior
information I. In this probability all of the arguments are hypotheses. For
example f stands for a hypotheses of the form “at the time the data were
take the value of the frequency was f .” Thus probability theory is ranking
a whole series of models, one for each value of f , and the width of the
posterior probability is a natural measure of how uncertain one is of the
frequency. The hypotheses I appearing in P (f |DRDII) refers to all of our
prior information—including the model equations—and does not refer to
the imaginary data; rather it refers to the general background information
that goes into making this a well posed problem.

Using the sum rule of probability theory, Eq. (21.5), the posterior prob-
ability for the frequency is computed from the joint posterior probability
for all of the parameters:

P (f |DI) =
∫
dAdBdσP (fABσ|DRDII) (21.13)

where σ is the standard deviation of the Gaussian noise prior probability.
The right-hand side of this equation may be factored using Bayes’ theorem,
Eq. (21.3), and the product rule, Eq. (21.1); one obtains

P (f |DRDII) ∝
∫
dAdBdσP (f |I)P (A|I)P (B|I)P (σ|I)

× P (DR|fABσI)P (DI |fABσI)
(21.14)

where we have assumed logical independence of the parameters, and that
the standard deviation of the noise prior probability is the same for both
the real and imaginary data; i.e., our prior information indicate that real
and imaginary data have the same noise levels.

If we assign uniform prior probabilities to P (f |I), P (A|I), P (B|I), a Jef-
freys’ prior (1/σ) to P (σ|I), and assign the two likelihoods using Gaussian
noise prior probabilities, one obtains:

P (f |DI) ∝
∫ ∞

−∞
dA

∫ ∞

−∞
dB

∫ ∞

0

dσσ−(N+1) exp
{
− Q

2σ2

}
(21.15)

where

Q ≡ Nd2 − 2AR(f)− 2BI(f) +A2C(f) +B2S(f). (21.16)
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The mean-square data value, d2, is defined as

d2 =
1
N

NR∑
i=1

dR(ti)2 +
NI∑
j=1

dI(t′j)
2

 . (21.17)

The function R(f) is defined as

R(f) ≡
NR∑
i=1

dR(ti) cos(2πfti − θ)Z(ti)

−
NI∑
j=1

dI(t′j) sin(2πft′j − θ)Z(t′j)

(21.18)

which for uniformly sampled data reduces to the real part of a weighted
discrete Fourier transform of the complex data. The function Z(t) plays
the role of the weight or apodizing function. Similarly, the function I(f) is
defined as

I(f) ≡
NR∑
i=1

dR(ti) sin(2πfti − θ)Z(ti)

+
NI∑
j=1

dI(t′j) cos(2πft′j − θ)Z(t′j)

(21.19)

which for uniformly sampled data reduces to the imaginary part of a
weighted discrete Fourier transform of the complex data. The function C(f)
is defined as

C(f) ≡
NR∑
i=1

cos2(2πfti − θ)Z(ti)2 +
NI∑
j=1

sin2(2πft′j − θ)Z(t′j)
2 (21.20)

and is an effective number of data items in the real data, see Bretthorst
2000 for more on this. Similarly the function S(f) is defined as

S(f) ≡
NR∑
i=1

sin2(2πfti − θ)Z(ti)2 +
NI∑
j=1

cos2(2πft′j − θ)Z(t′j)
2 (21.21)

and is the effective number of data items in the imaginary data. Finally,
the condition that the cross terms cancel, i.e., that the model functions are
orthogonal, is used to determine the value of θ. This condition is given by:

0 =
NR∑
i=1

cos(2πfti − θ) sin(2πfti − θ)Z(ti)2

−
NI∑
j=1

sin(2πft′j − θ) cos(2πft′j − θ)Z(t′j)
2.

(21.22)
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Note that if the data are simultaneously sampled, ti = t′i, Eq. (21.22) is
automatically satisfied, so θ may be defined to be zero. Otherwise, θ is
given by

θ =
1
2

tan−1

[∑NR

i=1 sin(4πfti)Z(ti)2 −
∑NI

j=1 sin(4πft′j)Z(t′j)
2∑NR

i=1 cos(4πfti)Z(ti)2 −
∑NI

j=1 cos(4πft′j)Z(t′j)2

]
. (21.23)

The triple integral in Eq. (21.15) may be evaluated as follows: First,
the integrals over the two amplitudes are uncoupled Gaussian quadrature
integrals and are easily done. One needs only complete the square in the
exponent, and a simple change of variables to evaluate them. The remaining
integral over the standard deviation of the noise prior probability may be
transformed into a Gamma integral and is also easily evaluated. We do not
give the details of these evaluations; rather we simply give the results:

P (f |DI) ∝ 1√
C(f)S(f)

[
Nd2 − h2

] 2−N
2

(21.24)

where the sufficient statistic h2 is given by

h2 =
R(f)2

C(f)
+
I(f)2

S(f)
(21.25)

and is a generalization of the Lomb-Scargle periodogram.
The generalized Lomb-Scargle periodogram, Eq. (21.25), has a number

of very interesting features. First, when the data are real and the sinu-
soid is stationary, the sufficient statistic for single frequency estimation
is the Lomb-Scargle periodogram; not the Schuster periodogram, i.e., not
the power spectrum. Second, when the data are real, but Z(t) is not con-
stant, then Eq. (21.25) generalizes the Lomb-Scargle periodogram in a very
straightforward manner to account for the amplitude modulation of the
signal. Third, for uniformly sampled quadrature data when the sinusoid
is stationary, Eq. (21.25) reduces to a Schuster periodogram or the power
spectrum of the data. So while the Schuster periodogram is not a sufficient
statistic for frequency estimation in real nonquadrature data, it is a suffi-
cient statistic for quadrature data. Fourth, for uniformly sampled quadra-
ture data when the sinusoid is not stationary, Eq. (21.25) reduced to a
weighted power spectrum of the data. Thus the weighted power spectrum
is the sufficient statistic for single frequency estimation when the data are
quadrature. Fifth, when the quadrature data are nonuniformly but simul-
taneously sampled, Eq. (21.25) generalizes the weighted power spectrum to
account for the nonuniform samples, but otherwise is the exact analogue of
a weighted power spectrum. Finally, when the data are nonuniformly and
nonsimultaneously sampled, Eq. (21.25) generalizes to a functional form
that is formally identical to a Lomb-Scargle periodogram but adapted to
an amplitude modulated quadrature detected sinusoid.
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21.3 Aliasing

Now that we have finished deriving the generalized Lomb-Scargle peri-
odogram, we would like to investigate some of its properties, in particular
the aliasing phenomenon. First, it is easy to show that the parameter θ
appearing in the generalized Lomb-Scargle model does not change the lo-
cation of the peak in the Lomb-Scargle periodogram; fixing θ only changes
the estimated phase of the sinusoid. Consequently, fixing θ simplifies the
functional form of the sufficient statistic to formally resemble a power spec-
trum and indeed the generalized Lomb-Scargle periodogram reduces to a
power spectrum for simultaneously sampled quadrature data. Now a pow-
ers spectrum, i.e,. the discrete Fourier transform, is a periodic function of
frequency. The period is called the bandwidth, and the bandwidth is the
largest frequency interval free of repeats or aliases. Because the generalized
Lomb-Scargle periodogram reduces to a power spectrum under appropriate
conditions, the bandwidth of the generalized Lomb-Scargle periodogram is
exactly the same as the bandwidth of the discrete Fourier transform. The
question we would like to investigate in this section, is what happens to
these repeats or aliases when the data are nonuniformly nonsimultaneously
sampled? Are the aliases still there? If not, where did they go?

First, the discrete Fourier transform may be defined as

F(fk) ≡
N−1∑
j=0

d(tj) exp {2πifktj} (21.26)

where the complex data d is given by d ≡ dR(ti) + idR(ti). For uniformly
sample data the times are given by

tj = j∆T (21.27)

and if the fast discrete Fourier transform is used to perform this calculation,
the frequencies fk are given by

fk =
k

N∆T
k ∈

{
−N

2
,−N

2
+ 1, · · · , N

2

}
. (21.28)

The time ∆T is the time interval between data samples and can be used
to define the Nyquist critical frequency,

fNc = ± 1
2∆T

. (21.29)

The Nyquist critical frequency may be used to define the bandwidth:

bandwidth ≡ (−fNc ≤ f ≤ fNc) . (21.30)

It is the largest frequency interval over which the discrete Fourier transform
is not a periodic function of frequency.
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To understand why the discrete Fourier transform is a periodic function
of frequency, suppose we wish to evaluate the discrete Fourier transform at
the frequencies outside the bandwidth:

fk =
k

N∆T
, k = mN + k′, k′ ∈

{
−N

2
,−N

2
+ 1, · · · , N

2

}
. (21.31)

The index k′ specifies the nonaliased frequency interval of a discrete Fourier
transform. The integer m shifts this frequency interval up or down by an
integer multiple of the total bandwidth. If m = 0, we are in the interval
(−fNc ≤ fk ≤ fNc); ifm = 1, we are in the interval (fNc ≤ fk ≤ 3fNc), etc.
If we now substitute Eqs. (21.31, and 21.27) into Eq. (21.26), the reason
the discrete Fourier transform is periodic becomes readily apparent

F(fk′) ≡
N−1∑
j=0

d(tj) exp
{

2πi(mN + k′)j
N

}
, (21.32)

=
N−1∑
j=0

d(tj) exp {2πimj} exp
{

2πik′j
N

}
, (21.33)

=
N−1∑
j=0

d(tj) exp
{

2πik′j
N

}
, (21.34)

=
N−1∑
j=0

d(tj) exp {2πifk′tj} . (21.35)

In going from Eq. (21.33) to (21.34) a factor, exp{i(2πmj)}, was dropped
because both m and j are integers, so (2πmj) is an integer multiple of
2π, and the complex exponential is one. Aliases occur because the complex
exponential canceled leaving behind a discrete Fourier transform on the
interval (−fNc ≤ fk ≤ fNc). The integer m specifies which integer multiple
of the bandwidth is being evaluated and will always be an integer no matter
how the data are collected. However, the integer j came about because the
data were uniformly sampled. If the data had not been uniformly sampled
the relationship, tj = j∆T , would not hold, the complex exponential would
not have cancelled, and aliases would not have been present.

In the present problem, nonuniformly nonsimultaneously sampled data,
there is no ∆T such that all of the acquisition times are integer multiples
of this time; not if the times are truly sampled randomly. However, all data
and times must be recorded to finite accuracy. Consequently, there must
be a largest effective dwell time, ∆T ′, such that all of the times (both the
real and imaginary) must satisfy

tl = kl∆T ′ tl ∈ {Real ti or Imaginary t′j} (21.36)

where kl is an integer. The subscript l was added to k to indicate that each
of the times tl requires a different integer kl to make this relationship true.
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Of course, this was also true for uniformly sampled data: its just that for
uniformly sampled data the integers were consecutive, kl = 0, 1, · · ·N − 1.
The effective dwell time is always less than or equal to the smallest time
interval between data items, and is the least common denominator for all of
the times. Additionally, the effective dwell time is the dwell time at which
one would have had to acquire data in order to obtain a uniformly sampled
data set with data items at each of the times ti and t′j . The effective dwell
time, ∆T ′, can be used to define a Nyquist critical frequency

fNc =
1

2∆T ′ . (21.37)

Aliases must appear for frequencies outside this bandwidth.
The reason that aliases must appear for frequencies outside this band-

width can be made apparent in the following way. Suppose we have a hypo-
thetical data set that is sampled at ∆T ′. Suppose further, the hypothetical
data are zero everywhere except at the times we actually have data, and
there the data are equal to the appropriate dR(ti) or dI(t′j). If we now com-
pute the discrete Fourier transform of this hypothetical data set, then by
the analysis done in Eqs. (21.32)-(21.35) the Nyquist critical frequency of
this data set is 1/2∆T ′ and frequencies outside the bandwidth are aliased.
Now look at the definitions of R(f) and I(f), Eqs. (21.18) and (21.19).
You will find that these quantities are just the real and imaginary parts of
the discrete Fourier transform of our hypothetical data set. The zeros in
the hypothetical data cannot contribute to the sums in the discrete Fourier
transform: they act only as place holders, and so the only part of the sums
that survive are just where we have data. By construction that is just what
Eqs. (21.18) and (21.19) are computing. So aliases must appear at frequen-
cies greater than this Nyquist critical frequency. For much more on aliases
see Bretthorst 2000.

21.4 Parameter estimates

The generalize Lomb-Scargle periodogram is a sufficient statistic for the
estimation of a frequency in nonuniformly nonsimultaneously sample data.
However, the frequency is not the only parameter appearing in the model;
the model also implicitly contains an amplitude, phase and possible one or
more parameters associated with amplitude modulation of the signal. In
this section we would like to investigate what happens to the parameter
when the data are nonuniformly nonsimultaneously sampled. In particular
we would like to know if the parameter estimates change when the data
are nonuniformly nonsimultaneously sampled.

In this discussion we are going to estimate the parameters using the
data shown in Fig. 21.1(A) and (B). These two data sets contain exactly
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FIGURE 21.1. Uniformly and Nonuniformly Sampling
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Fig. 21.1. Panel (A) and (B) are simulated data, each data set has exactly the

same signal having exactly the same signal-to-noise. The data sets differ only

because panel (A) has been uniformly sampled, while (B) has been nonuniformly

sampled. Note the nonuniform samples were taken exponentially, thus there are

more samples at the beginning of the data and exponentially fewer at the end of

the data.

the same signal and have exactly the same signal-to-noise, they differ from
each other only in that panel (A) has been uniformly sampled while panel
(B) has been randomly sampled. These random samples are distributed
exponentially. We mention this only because it will become important later
when we consider amplitude estimation. The noise realizations in each data
set are different, and this will result in slightly different parameter estimates
for each data set.

We will discuss estimation of the frequency, decay rate constant and
the amplitude. We will not discuss estimation of the phase and standard
deviation of the noise prior probability as these are of less importance. The
model we will use is given by

dR(ti) = A cos(2πfti + φ) exp {−αti} (21.38)

for the real channel. This model is of the general form of the Lomb-Scargle
model, but now we have suppressed the extra phase parameter, as its re-
dundant, we have added an exponential decay rate constant to describe
the amplitude modulation, and we have written the model in terms of an
amplitude and phase rather than sine and cosine amplitudes.

Markov chain Monte Carlo was used to compute the marginal poste-
rior probability for each parameter. All of the parameters appearing in
the model were simulated simultaneously, thus the target distribution of
Markov chain Monte Carlo simulation was the joint posterior probability
for all the parameters. We targeted the joint posterior probability for all
of the parameters for computational convenience; i.e., it was easier to do a
single Markov chain Monte Carlo simulation than to do five separate calcu-
lations, one for each parameter appearing in the model. Because the prob-
ability density functions shown in Fig. 21.2(A), (B) and (D) were formed
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FIGURE 21.2. Estimating The Parameters
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Fig. 21.2. The posterior probability of the parameters was computed for the uni-

formly and nonuniformly nonsimultaneously sampled data, open characters and

solid lines respectively. Panel (A) is the posterior probability for the frequency,

(B) the decay rate constant, (D) the amplitude. Panel (C) is the absolute-value

spectrum computed for the two data sets. The extra curve in panel (D), the plus

signs, was computed from a nonuniformly nonsimultaneously sample data set

having uniformly sampled times, see text for details.

by computing a histogram of the Markov chain Monte Carlo samples, there
are small, irrelevant, artifacts in these plots that are related to the number
of samples drawn from the simulation. For more on Markov chain Monte
Carlo methods and how these can be used to implement Bayesian calcula-
tions see Neal 1993 and Gilks, et. al. 1996.

The posterior probability for the frequency, decay rate constant, and
amplitude are shown in Fig. 21.2(A), (B) and (D) respectively. Each of
these plots is the fully normalized marginal posterior probability for the
parameter of interest independent of all of the other parameters appear-
ing in the model. Panel (C) contains the absolute-value spectra computed
from these two data sets and will be used to compare Fourier transform
estimation procedures to the Bayesian calculations. The curves drawn with
open characters were computed using the uniformly sampled data shown
in Fig. 21.1(A); while the solid lines in these plots were computed from the
nonuniformly nonsimultaneously sampled data shown in Fig. 21.1(B).

The marginal posterior probability for the frequency is shown in Fig. 21.2(A).
This is the fully normalized marginal posterior probability for the frequency
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independent of all of the other parameters, Eq. (21.24). Note that the true
frequency, 10 Hz, is well covered by the posterior probability computed
from both the uniformly (open characters) and nonuniformly nonsimulta-
neously (sold line) sampled data. Also note that these distributions are
almost identical in height and width. Consequently, both the uniform and
nonuniformly nonsimultaneously sampled data have given the same param-
eter estimates to within the uncertainty in these estimates. Of course the
details for each estimated differ, because the noise realizations in each data
set differ. Consequently, the frequency estimate is not strongly dependent
on the sampling scheme. Indeed this can be derived from the rules of prob-
ability theory with the following proviso: the two sampling schemes must
cover the same total sampling time and must sample the signal in a reason-
ably dense fashion so that sums may be approximated by integrals. Having
said this, we must reemphasize that this is only true for frequency estimates
using data having sampling schemes covering the same total sampling time;
it is not true if the sampling times differ nor is it necessarily true of the
other parameters appearing in the model. Indeed one can show that for a
given number of data values, the precision of the frequency estimate for
a stationary sinusoid is inversely proportional to the total sampling time.
Thus, sampling 10 times longer will result in frequency estimates that are
10 times more precise. As noted in Bretthorst 1988 this is equivalent to
saying that for frequency estimation data values at the front and back of
the data are most important in determining the frequency, because it is in
these data that small phase differences are most highly magnified by the
time variable.

We have also plotted the absolute-value spectra computed from these
two data sets, Fig. 21.2(C). Note that the peaks of these two absolute-
value spectra are at essentially the same frequency as the corresponding
peaks in panel (A); although they are plotted on differing scales. If the
absolute value spectrum is used to estimate the frequency, one would typ-
ically use the peak frequency as the estimate, and then claim roughly the
half-width-at-half-height as the uncertainty in this estimate. For these two
data sets that is about 10 plus or minus 2 Hz. The two fully normalized
posterior probabilities shown in panel (A) span a frequency interval of only
0.2 Hz. This frequency interval is roughly 6 standard deviations. Thus the
frequency has been estimated to roughly 10 Hz with an uncertainty of
0.2/6 ≈ 0.03 Hz; a 60 fold reduction in the uncertainty in the frequency
estimate.

One last note before we begin the discussion of estimating the decay rate
constant, we note that all of the details in the wings of the absolute-value
spectrum shown in panel (C) are irrelevant to the frequency estimation
process. The posterior probability for the frequency has peaked in a region
that is very small compared to the scale of these wings, all of the informa-
tion about the frequency estimate is contained in a very small region around
the single largest peak in the spectrum. In the discrete Fourier transform,
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the presence of multiple peaks may or may not be an indication of multi-
ple resonances. Indeed it is easy to show that the generalize Lomb-Scargle
periodogram may have peaks that are related to the sampling scheme. The
only way to be certain that multiple resonances are presence, is to postu-
late a model containing multiple resonances and then compute the posterior
probability for the number of resonances.

The marginal posterior probability for the decay rate constant is shown
in Fig. 21.2(B). Here we again find that the parameter estimates from
both data sets are essentially identical in all of there relevant details. Both
probabilities peak at nearly the same value of the decay rate constant, both
have nearly the same width, and therefore the same standard deviation;
thus like frequency estimates, the estimates for the decay rate constants do
not strongly dependent on the sampling scheme. In principle the accuracy
of the estimates for the decay rate constants scale with time just like the
frequency estimates, of course, with decaying signals this is of little practical
importance. Note that the decay rate constant has been estimated to be
about 3.2±0.3 Sec.−1 at one standard deviation. The true value is 3 Sec.−1,
so both sampling schemes give reasonable estimates of the decay rate. If one
were to try and estimate the decay rate constant from the absolute-values
spectrum, the half-width-at-half-height would normally be used, here that
is about 2 Sec.−1 and no claim about the accuracy of the estimate would
be made.

The marginal posterior probability for the amplitude of the sinusoid is
shown in Fig. 21.2(D). In this paper we did not directly talk about am-
plitude estimation (see Bretthorst 1992 for a discussion of this subject),
rather we treated the amplitudes of the sine and cosine model functions
as nuisance parameters and removed them from the posterior probability
for the other parameters. We did this because we wished to explore the
relationships between frequency estimation using Bayesian probability the-
ory and the discrete Fourier transform. However, the Markov chain Monte
Carlo simulation used Eq. (21.38) as the model for the real data, so it was
a trivial matter to compute the posterior probability for the amplitude. If
you examine Fig. 21.2(D) you will note that now we do have a difference
between the uniform (open characters) and the nonuniformly nonsimul-
taneously sampled data (solid lines). The amplitude estimates from the
nonuniformly nonsimultaneously sampled data are a good factor of 2 more
precise than the estimates from the uniformly sampled data. One might
think that this is caused by the nonuniform nonsimultaneous sampling and
this would be correct, but not for the obvious reasons. If you examine
panel (D) you will note that we have plotted a third curve (plus signs).
This curve is the posterior probability for the amplitude computed from
data with the exact same signal and signal-to-noise ratio, but having times
that are nonuniformly nonsimultaneously sampled where the times were
generated from a uniform random number generator. We will call this data
set the uniform-randomly sampled data. Note that the height and width
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of the posterior probabilities computed from both the uniformly and the
uniform-randomly sampled data are essentially the same, so by itself the
nonuniform nonsimultaneous sampling did not cause the amplitude esti-
mates to improve. The amplitude estimate improved because exponential
sampling gathered more data where the signal was large. The accuracy of
the amplitude estimate is proportional to the standard deviation of the
noise and inversely proportional to square root of the effective number of
data values. Because exponential sampling gathered more data where the
signal was large, its effective number of data values was larger and so the
amplitude estimate improved. In this case, the improvement was about a
factor of 2, so the exponential sampling had an effective number of data
values that was about a factor of 4 larger than for the uniformly or uniform-
randomly sampled data. This fact is also reflected in differing heights of
the absolute value spectra plotted in Fig. 21.2(C). The peak height of an
absolute value spectrum is proportional to the square root of the effective
number of data values. In panel (C) the spectra computed from the uni-
formly sampled data set, open characters, is roughly a factor of 2 lower
than the height of the spectrum computed from the exponentially sampled
data set, solid line.

21.5 Summary and conclusions

Probability theory generalizes the Lomb-Scargle periodogram roughly as
follows: in uniformly or nonuniformly sampled real data, the sufficient
statistic for estimating the frequency of a single stationary sinusoid is the
Lomb-Scargle periodogram. When the function Z(ti) is not a constant,
probability theory generalized the Lomb-Scargle periodogram to include
this modulation. For a stationary sinusoid, when the data are quadrature
simultaneously sampled, probability theory simplifies the Lomb-Scargle pe-
riodogram to a Schuster periodogram. When the sinusoid is not station-
ary, the sufficient statistic becomes a weighted power spectrum where the
weighting function is given by Z(t). Finally, when the data are nonuni-
formly nonsimultaneously sampled, the sufficient statistic is the generalized
Lomb-Scargle periodogram.

In a literal sense, probability theory does no such thing as generalize the
discrete Fourier transform or the Lomb-Scargle periodogram. Probability
theory simply tells one how to analyze a particular problem optimally. For
estimation of a sinusoidal frequency, the sufficient statistics turn out to be
related to the discrete Fourier transform. This was, for us, a happy coin-
cidence because it enabled us to interpret the results of the analysis in a
way that sheds light on the discrete Fourier transform and how it should
be used. In the appropriate limits, the discrete Fourier transform power
spectrum, the Schuster periodogram, the Lomb-Scargle periodogram and
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the generalizations presented in this paper are all optimal frequency esti-
mators for the single sinusoidal case. However, when the true signal deviate
from this model, for example when there are multiple sinusoids or the data
contain a trend, then these statistics are never optimal frequency estima-
tors, and there are always other statistics that will improve the resolution
of the multiple frequencies or properly account for trend in the data, see
Bretthorst 1988, and 2000.

Aliasing is a general phenomenon and exists in both uniformly and
nonuniformly nonsimultaneously sampled data for exactly the same rea-
son. It is the fact that all of the times may be expressed as an integer
multiple of an effective dwell time that is the cause of aliasing. Two data
sets differing only in how precisely the times are recorded generally have
different Nyquist critical frequencies.

The analysis in this paper generalized the concept of bandwidth and
showed that uniformly simultaneously sampled data have the smallest pos-
sible bandwidth. The addition of any nonuniformly nonsimultaneously sam-
pled data always increases the Nyquist critical frequency and thus increases
the bandwidth. The Nyquist critical frequency for nonuniformly nonsimul-
taneously sampled data may be many orders of magnitude greater than
that for uniformly simultaneously sampled data having similar acquisition
parameters. Consequently, nonuniformly nonsimultaneously sampled data
can have tremendous advantages over uniformly sampled data because the
critical time is not how fast one can sample data, but how accurately one
can vary the acquisition of each data item. This opens up the possibil-
ity of measuring very high frequencies with bandwidths much larger than
previously possible.
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Commentary by Thomas J. Loredo2

The Bayesian and frequentist approaches to statistical inference differ
in many ways. Two differences are of special importance for the construc-
tion of algorithms. The first concerns the choice of statistic (the function
of the data on which to base inferences). In frequentist statistics, spec-
ifying a good statistic for a nontrivial problem is a difficult art. In the
Bayesian approach, once a hypothesis space is specified, probability theory
automatically identifies what functions of the data to use to discriminate
between the hypotheses (i.e., the functions that appear in the likelihood).
This automatic behavior comes at the cost of having to specify alternative
hypotheses (some frequentist calculations can proceed without specifying
an alternative to the null hypothesis, e.g., goodness-of-fit tests). Second,
the two approaches use the sampling distribution for the data (i.e., the
likelihood for the hypotheses) very differently to calculate probabilities as-
sociated with inferences. In frequentist calculations, the hypothesis is fixed,

2Department of Astronomy, Cornell University
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and sums and integrals are calculated in the sample space of hypothetical
data. In Bayesian calculations, the data are fixed to the observed values,
and sums and integrals are calculated in the hypothesis or parameter space.
Consequently, even when the same statistics are used in both approaches,
qualitatively different results can be found.

Bretthorst’s work provides a rich source of examples of how both of these
key differences manifest themselves in real-world calculations. In the limited
space of his presentation here, he has emphasized the first difference: how
Bayesian probability theory can be used as a “machine” for generating
useful statistics. In this commentary I will highlight a few aspects of this
difference, but I will dwell on the second difference: how, once the statistic
has been identified, adopting the Bayesian approach leads one to use it in
ways that can produce results that differ dramatically from those found in
frequentist calculations with the same statistic.

21.7 Choosing a statistic

Bretthorst describes a Bayesian calculation that identifies the Lomb-Scargle
periodogram as the sufficient statistic for frequency estimation, and then
generalizes this, adding to a growing list of Bayesian results that appear
almost obvious once stated, but which have somehow escaped notice de-
spite decades of work on time series. These results include the earlier
demonstration by Jaynes and Bretthorst that the Schuster periodogram
is the sufficient statistic for frequency estimation with uniformly sampled
data, as well as Scargle’s discovery, reported in these proceedings, that the
cross-correlation function is a sufficient statistic for inferring lags between
time series. It is worth emphasizing that the mathematics underlying these
results is quite simple; these discoveries eluded previous researchers, not
because the calculations were difficult, but because a different conceptual
approach was required. They demonstrate that careful consideration of con-
ceptual issues is not a merely philosophical exercise, concerned only with
matters of interpretation, but opens the doors to new results of practical
significance.

Of course, periodograms and cross-correlation functions are tools that
have been used by time series analysts for many decades. What is new in
the Bayesian calculations is a clarified connection between the statistics and
time-domain model structure, and a precise “recipe” for using the statis-
tics to calculate probabilities for hypotheses of interest. The former points
the way to powerful generalizations. These include statistics developed by
Bretthhorst for estimating multiple frequencies and frequency multiplets
(which can be resolved even when they are much closer together than the
width of a periodogram peak), and for estimating frequencies of decaying
sinusoids. Further generalizations follow simply by changing the sinusoid
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basis in Bretthorst’s calculations. For example, Scargle, Bretthorst, and
I have independently developed “Kepler periodogram” approaches for de-
tecting planets in radial velocity and astrometric data by using the periodic
functions desribing Keplerian reflex motions as the basis functions.

21.8 Sample space vs. parameter space

The second new aspect of the Bayesian calculations—new recipes for how
to use the statistics—is of equally great significance. I believe this aspect,
which underlies a truly revolutionary new understanding of periodograms,
is little appreciated by astronomers. To highlight it, consider frequency
detection and estimation for uniformly sampled time series over a time T ,
with data di at times ti, for i = 1 to N . The periodogram is

I(f) =
1
N

[∑
i

di cos(2πfti)

]2

+
1
N

[∑
i

di sin(2πfti)

]2

, (21.39)

viewed as a continuous function of the frequency, f . Since there are only N
data, there must be at most N “pieces of information” in I(f). Actually,
there are N/2 + 1 (nearest integer if N is odd) values of I(f) at equally
spaced frequencies that determine the entire function. These values can be
found using the discrete Fourier transform (DFT) of the data to calculate
the power spectrum at N/2 + 1 Fourier frequencies, Ij = I(fj), where
fj = 2πj/T , with j = 0 to N/2. The Fourier power spectral density (PSD)
familiar to astronomers is Ij , with a possible subtraction of an average term
from di, and with various normalizations adopted (to simplify its statistical
properties). For simplicity, we here call Ij the PSD.

In frequentist analyses, the PSD is typically viewed as an estimator of
the signal’s power spectrum, albeit corrupted by the finite and discrete na-
ture of the data and the presence of noise. The statistical properties of
this estimator follow from how the PSD values vary as the values of the N
data vary through repeated observation. Attention is focused on the PSD
rather than the continuous I(f) because the PSD values are statistically
independent under the null hypothesis of a constant (e.g., zero) signal (plus
noise). But an unfortunate consequence of there only being N/2+1 Fourier
frequencies is that the expected behavior of the PSD when a periodic signal
is present differs depending on whether the period of the signal lies exactly
on or away from a Fourier frequency. This is illustrated in Figure 21.3. Fig-
ure 21.3a shows the PSD calculated from data with a signal at a Fourier
frequency and a signal-to-noise of 10; Figure 21.3b shows the PSD calcu-
lated from similar data, but with the signal frequency midway between two
Fourier frequencies. Spectral leakage is apparent; when the true frequency
is not a Fourier frequency, power “leaks” to neighboring frequencies, reduc-
ing the amplitude of the PSD peak, and broadening it. This complicates
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FIGURE 21.3. Leakage in the PSD. (a) The PSD (up to 2 kHz) for data simulated
with a weak sinusoidal signal and added Gaussian noise; S/N = 5, with 1024
samples at a 48 kHz sampling rate. The sinusoid frequency is at the Fourier
frequency nearest 1 kHz (1031.25 Hz). (b) As in (a), but the frequency (1008 Hz)
is between two Fourier frequencies.

the interpretation and use of the PSD for both detection and estimation.
Conventional remedies for leakage use windowing or tapering of the data
(essentially a linear averaging process) to reduce leakage at non-Fourier
frequencies, at the expense of spreading the signal power when the signal
is at or near a Fourier frequency.

In the Bayesian approach of Bretthorst, one does not address frequency
detection and estimation through the intermediary of a spectrum estimator.
Instead, one simply calculates the probability that a sinusoidal signal of a
specified frequency is present. The continuous periodogram is “handed” to
the analyst in the course of this calculation, not as a spectrum estimator,
but (roughly) as the logarithm for the (marginal) posterior probability for
the unknown frequency. Probabilities for hypotheses of interest are found
by integrating the exponentiated periodogram over frequency (a parame-
ter space integral). In such calculations, evaluating I(f) between Fourier
frequencies is important.

Figure 21.4 illustrates some aspects of the Bayesian procedure. Figure
21.4a shows the continuous periodogram for the same data used to produce
Figure 21.3a (signal at a Fourier frequency). Dots highlight the values at
Fourier frequencies (the values plotted in Fig. 21.3a). Figure 21.4b shows
a similar plot, corresponding to Figure 21.3b (signal at a non-Fourier fre-
quency). Although the values at Fourier frequencies exhibit very different
behavior in Figures 21.3a and 21.3b, the continuous periodograms are qual-
itatively very similar for both data sets. The insets in the figures show the
marginal posterior distributions for the frequency in each case, found by
nonlinear processing of I(f). These distributions are extremely sharp and
narrow in both cases, and very accurately pinpoint the correct frequency.
The sidelobes and other structure evident in I(f) are exponentially atten-
uated. Detection probabilities (for determining whether a periodic signal
is present), found by integrating the exponentiated periodogram over all
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FIGURE 21.4. Details of the continuous periodogram. (a) Periodogram near its
peak, for the data used for Fig. 21.3a (at a Fourier frequency); dots show values
of the (discrete) PSD. Inset shows the posterior distribution for the frequency
found by exponentiating the periodogram scaled by the noise variance. (b) As
in (a), but for the data used for Fig. 21.3b (signal frequency between Fourier
frequencies).

f , similarly exhibit comparable performance for Fourier and non-Fourier
frequencies.

From the Bayesian viewpoint, there is no spectral leakage problem as-
sociated with non-Fourier frequencies, which have no special role to play
when one is calculating parameter space (rather than sample space) inte-
grals. The continuous periodogram has a complicated shape for all possible
signal frequencies; the complications are merely hidden in some cases if
one examines only Fourier frequencies. The complicated shape of the pe-
riodogram results from the finite and discrete nature of the data, but is
not viewed as distortion of a “spectrum estimate” due to convolution of
with window and sampling functions. Rather, the shape conveys informa-
tion about how the finite and discrete nature of the data can confuse one’s
inferences about a single sinusoid when noise is significant (in which case
the sidelobes will not be as attenuated as in the examples above), and is
similar for data generated by signals at or between Fourier frequencies.

This is but one example of how adopting the Bayesian approach greatly
changes how periodograms are used to make inferences. I urge readers in-
trigued by this brief discussion to further study Bretthorst’s book and
papers, where more important differences will be found (e.g., use of the
periodogram peak to infer the noise amplitude, rather than the PSD “back-
ground” level; and nonlinear processing of the real and imaginary parts of
the DFT to resolve closely spaced frequencies).
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Multiscale Methods in
Astronomy

Jean-Luc Starck1

ABSTRACT Wavelets have been used extensively for several years now in
astronomy for many purposes, ranging from data filtering and deconvolu-
tion, to star and galaxy detection or cosmic ray removal. We review in this
paper a range of methods and applications. A recent method, the ridgelet
transform is also described, and we show its interest when the data present
anisotropic features.

22.1 Introduction

The wavelet transform has been extensively used in astronomical data anal-
ysis during the last ten years. A quick search with ADS shows that around
500 papers contain the keyword ”Wavelet” in their abstract, and all astro-
physical domains were concerned, from the sun study to the CMB analysis.
This large success of the wavelet transform (WT) is due to the fact that
astronomical data presents generally complex hierarchical structures, of-
ten described as fractals. Using multiscale approaches such as the wavelet
transform (WT), an image can be decomposed into components at different
scales, and the WT is therefore well-adapted to astronomical data study.

The following section presents the different WT algorithms which can
be used. In section 22.3, we discuss how noise, which is always present in
astronomical images, is managed. In section 22.4, we review some wavelet
based applications. A recent multiscale method, the ridgelet transform, is
described in section 22.5, and we show its interest when the data present
anisotropic features.

22.2 The Wavelet Transform

There are many WT algorithms [MF98, SMB98]. The (bi-) orthogonal
wavelet transform [Mal89], often referred to as the Fast Wavelet Transform

1Centre d’Études Atomique, Paris
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(FWT), is certainly the most widely used among available discrete wavelet
transform algorithms. It is a non-redundant representation of the informa-
tion. An introduction to this type of transform can be found in [Dau92].
The famous Haar transform belongs to this class. Using the FWT, a signal
s can be decomposed by:

s(l) =
∑

k

cJ,kφJ,l(k) +
∑

k

J∑
j=1

ψj,l(k)wj,k (22.1)

with φj,l(x) = 2−jφ(2−jx− l) and ψj,l(x) = 2−jψ(2−jx− l), where φ and
ψ are respectively the scaling function and the wavelet function. J is the
number of resolutions used in the decomposition, wj the wavelet (or details)
coefficients at scale j, and cJ is a coarse or smooth version of the original
signal s.

Another well known algorithm is the à trous wavelet transform. The
wavelet transform of an image by this algorithm produces, at each scale j,
a set {wj}. This has the same number of pixels as the input data set. The
original data c0 can be expressed as the sum of all the wavelet scales and
the smoothed array cp by c0 = cJ +

∑J
j=1 wj and a pixel at position k can

be expressed also as the sum of all the wavelet coefficients at this position,
plus the smoothed array: c0,k = cJ,k +

∑J
j=1 wj,k.

In astronomical images, there are generally no edges, and objects are rel-
atively diffuse. For this reason, an isotropic or symmetric analysis produces
better results. This is the reason why the à trous algorithm is often pre-
ferred. Furthermore, for the most usual applications (detection, filtering,
deconvolution, etc.), undersampling leads to severe artifacts which can be
easily avoided by non-orthogonal transforms such the à trous algorithm.
For these reasons, the FWT is rarely used in the astronomical domain.

22.3 Significant wavelet coefficients

Astronomical data are always contaminated by a noise, and it is important
to detect the wavelet coefficients which are “significant”, i.e. the wavelet
coefficients which have an absolute value too large to be due to noise. We
defined the multiresolution MD of the data set D by:

MD
j,k =

{
1 if wj,k is significant
0 if wj,k is not significant (22.2)

where j is the scale, k the pixel position, and wj,k the wavelet coefficient of
D at scale j and at position k. We need now to determine when a wavelet
coefficient is significant. For Gaussian noise, it is easy to derive an estima-
tion of the noise standard deviation σj at scale j from the noise standard
deviation, which can be evaluated with good accuracy in an automated way
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[SM98]. To detect the significant wavelet coefficients, it suffices to compare
the wavelet coefficients wj,k to a threshold level tj . tj is generally taken
equal to kσj , and k is chosen between 3 and 5. The value of 3 corresponds
to a probability of false detection of 0.27%. If wj,k is small, then it is not
significant and could be due to noise. If wj,k is large, it is significant:

if | wj,k | ≥ tj then wj,k is significant
if | wj,k | < tj then wj,k is not significant (22.3)

Other thresholding approaches have been proposed, like the universal thresh-
old [DJ93], or the SURE method [CD95], but they generally do not produce
as good results as the k-sigma method.

When the noise is not Gaussian, many strategies have been developed
depending on the nature of the noise or directly from simulations [SMB98].

22.4 Wavelet based Methods in Astronomical Data
Processing

22.4.1 Filtering

The most used filtering method is the hard thresholding, which consists of
setting to 0 all wavelet coefficients which have an absolute value lower than
a threshold tj

w̃j,k =
{
wj,k if wj,k > tj
0 otherwise (22.4)

We define the function T as the function which set to zero all wavelet
coefficients outside a given multiresolution support M :

F(M,x) = cJ,k +
J∑

j=1

Mj,kwj,k (22.5)

where cJ,k and wj,k are obtained from the à trous wavelet transform of x.
The filtered version s̃ of the input signal s is obtained by s̃ = F(M s, s),
M s being the multiresolution support of s. This solution can be refined by
the following iterative scheme:

s̃n+1(k) = sn(k) + F(M s, rn) (22.6)

where rn = s − s̃n. This algorithm allows us to constraint the residual to
have a zero value inside the the multiresolution support of s [SMB98]. For
astronomical image filtering, iterating improves significantly the results,
especially for the photometry, i.e. the integrated intensity of a source.
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22.4.2 Image Deconvolution

Observed data Y in the physical sciences are generally corrupted by noise,
which is often additive and which follows in many cases a Gaussian dis-
tribution, a Poisson distribution, or a combination of both. Using Bayes’
theorem to evaluate the probability of the realization of the original signal
X , knowing the data Y , we have

Prob(X |Y ) =
Prob(Y |X).P rob(X)

Prob(Y )
(22.7)

Prob(Y |X) is the conditional probability of getting the data Y given an
original signal X , i.e. it represents the distribution of the noise.

The denominator in equation (22.7) is independent of X and is consid-
ered as a constant (stationary noise). Prob(X) is the a priori distribution
of the solution X . In the absence of any information on the solution X
except its positivity, a possible course of action is to derive the probability
of X from its entropy. Several definitions of entropy has been proposed,
and the main ones are: i) Burg [Bur78]: Hb(X) = −

∑
pixels ln(X), ii)

Frieden [Fri78]: Hf (X) = −
∑

pixels X ln(X), iii) Gull and Skilling [GS91]:
Hg(X) =

∑
pixels X − M − X ln(X |M). Each of these entropies can be

used, and they correspond to different probability distributions that one
can associate with an image [NN86]. It was shown in [NN86] that results
vary strongly with the background level, and that these entropy functions
produce poor results for negative structures, i.e. structures under the back-
ground level, and compact structures in the signal. The Gull and Skilling
entropy gives rise to the difficulty of estimating a model. Furthermore it
was shown in [BKK94] that the solution is dependent on this choice.

Many studies [BKK94, PS96] have been carried out in order to improve
the functional to be minimized. But the question which should be raised
is: what is a good entropy measure for signal restoration?

In [SMG98], the benchmark properties for a good “physical” definition
of entropy were discussed. Assuming that a signal X is the sum of several
components: X = S + B + N , where S is the signal of interest, B the
background, andN the noise, we proposed that the following criteria should
be verified:

1. The information in a flat signal is zero (S = 0, N = 0 and B = Cst).

2. The amount of information in a signal is independent of the back-
ground (i.e., H(X) is independent of B).

3. The amount of information is dependent on the noise (i.e., H(X)
is dependent on N). A given signal X does not furnish the same
information in the different cases where the noise N is high or small.

4. The entropy must work in the same way for a pixel which has a value
B + ε, and for a pixel which has a value B − ε. H(X) must be a
function of the absolute value of S instead of S.
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5. The amount of information is dependent on the correlation in the sig-
nal. If the signal S presents large features above the noise, it contains
a lot of information. By generating a new set of data from S, by ran-
domly taking the pixel values in S, the large features will evidently
disappear, and this new signal will contain less information. But the
pixel values will be the same as in S.

The Burg and Frieden entropy functions do not verify any of these criteria,
and the Skilling one verifies only point 2. Using the wavelet transform, it has
been shown [SMG98, SM99, SMQB01] that an entropy function verifying
all cited properties can be obtained, which produces very good results.

22.4.3 Interferometric Image Reconstruction

In interferometric imaging, measurements are carried out in Fourier space
but the (u, v) plane is not completely covered. The image, called the dirty
map, is obtained by a simple inverse Fourier transform of the data and the
PSF, called the dirty beam, by an inverse Fourier transform of the (u, v)
plane coverage. The presence of secondary lobes in the dirty beam creates
very serious artifacts in the dirty map and a deconvolution is necessary.
By applying the CLEAN method at each scale of the wavelet transform
using the FFT, we can localize significant structures, and an iterative re-
construction algorithm allows solutions to be found which satisfy the posi-
tivity constraint, and the constraint of fidelity to measurements (i.e. at each
measured Vm(u, v) +/– ∆m(u, v), we require that the solution O satisfies
| Ô(u, v)−Vm(u, v) | < ∆m(u, v)). More details can be found in [SBLP94].

22.4.4 Object detection

Using the à trous algorithm, an image I can be expressed as the sum of all
the wavelet scales and the smoothed array cJ by the expression

I(k, l) = cJ,k,l +
J∑

j=1

wj,k,l. (22.8)

Hence, we have a multiscale pixel representation, i.e. each pixel of the input
image is associated to a set of pixels of the multiscale transform. A further
step is to consider a multiscale object representation, which would associate
to an object contained in the data, a volume in the multiscale transform.
Such a representation obviously depends on the kind of image we need to
analyze. A Multiscale Vision Model (MVM) has been developed [BR95] for
astronomical data. Using the MVM, an image I can be decomposed, from
its wavelet transform, into a set of components:

I(k, l) =
No∑
i=1

Oi(k, l) +B(k, l) +N(k, l) (22.9)
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where No is the number of object, Oi are the objects contained in the
data (stars galaxies, etc), B is the background image, and N is the noise.
Furthermore, it has been shown [SBVM00] that a deconvolution can be
introduced in this decomposition, and the set of components verifies:

I(k, l) =
No∑
i=1

(Pi ∗Oi)(k, l) +B(k, l) +N(k, l) (22.10)

where Pi is the Point Spread Function (PSF) associated to the object i.
We have therefore an elegant solution for the deconvolution with a spatially
variant PSF.

22.5 The Ridgelet Transform

The application of the à trous algorithm has lead to impressive results,
compared to previous methods, for data restoration and object detection.
As it was discussed before, this wavelet transform is well adapted to the
analysis of isotropic features. However, all features included in 2D and 3D
astronomical data set are not isotropic (filaments, elongated galaxies, plan-
etary images, arclet, ...). The FWT may be better than the à trous for such
data set, but still presents some limitations which may impact in some ap-
plications. Indeed, if the FWT performs better than the FFT to represent
edges in an image, it is still not optimal. There is only a fixed number of di-
rectional elements independent of scales, and there is no highly anisotropic
elements. For instance, the Haar 2D wavelet transform is optimal to find
features with a ratio length/width = 2, and a horizontal,vertical, or di-
agonal orientation. This problem have lead to the development of other
multiscale representations, like the ridgelet [CD99] or the curvelet trans-
form [DD00].

The two-dimensional continuous ridgelet transform in R2 can be defined
as follows [CD99]. We pick a smooth univariate function ψ : R → R with
sufficient decay and satisfying the admissibility condition∫

|ψ̂(ξ)|2/|ξ|2 dξ <∞, (22.11)

which holds if, say, ψ has a vanishing mean
∫
ψ(t)dt = 0. We will suppose

that ψ is normalized so that
∫
|ψ̂(ξ)|2ξ−2dξ = 1.

For each a > 0, each b ∈ R and each θ ∈ [0, 2π), we define the bivariate
ridgelet ψa,b,θ : R2 → R2 by

ψa,b,θ(x) = a−1/2 · ψ((x1 cos θ + x2 sin θ − b)/a); (22.12)

Figure 22.5 (upper left) shows an example ridgelet function. Figure 22.5
upper right, and bottom left shows the the same function after rotation and



22. Multiscale Methods in Astronomy 337

FIGURE 22.1. Example of ridgelet function.

rescaling. This function is constant along lines x1 cos θ + x2 sin θ = const.
Transverse to these ridges it is a wavelet (see figure 22.5 bottom right).

Given an integrable bivariate function f(x), we define its ridgelet coeffi-
cients by

Rf (a, b, θ) =
∫
ψa,b,θ(x)f(x)dx.

We have the exact reconstruction formula

f(x) =
∫ 2π

0

∫ ∞

−∞

∫ ∞

0

Rf (a, b, θ)ψa,b,θ(x)
da

a3
db
dθ

4π
(22.13)

valid a.e. for functions which are both integrable and square integrable.
It has been shown [CD99] that the ridgelet transform is precisely the

application of a 1-dimensional wavelet transform to the slices of the Radon
transform where the angular variable θ is constant and t is varying. More
details on the implementation of the digital ridgelet transform can be found
in [SCD01].
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22.6 Combined Transform

If 2D or 3D astronomical data set may contain anisotropic features, they
certainly will also contains isotropic ones. Hence, a perfect multiscale de-
composition should benefit of both the à trous algorithm advantages and
that of the ridgelet transform as well. More generally, we can imagine that
we have T1, ..., TNt transform operators, each one being optimal to detect
one kind of structure. A solution α is obtained by minimizing a functional
of the form:

J(α) =‖ s−
Nt∑

k=0

T −1
k αk ‖22 +λ

∑
k

‖ αk ‖0 (22.14)

where s is the original signal, and αk are the coefficient obtained with the
transform Tk.

An algorithm to perform such a minimization has been presented in
[Sta01]. It consists in hard thresholding the residual successively on the
different bases.

1. Initialize Lmax and the number of iterations Ni. For noise filtering, estimate

the noise standard deviation σ, and set Lmin = k. Otherwise, set σ = 1

and Lmin = 0.

2. Set δλ = 1
Ni

(Lmax − Lmin), λ = Lmax, and all coefficients αk to 0.

3. While λ ≥ Lmin do

4. for k = 1, .., Nt do

• Calculate the residual R = s −
∑

k
T −1

k αk.

• Calculate the transform Tk of the residual: rk = TkR.

• For all coefficients rk,i do

– Update the coefficients: if αk,i �= 0 or | rk,i |> λσ then αk,i =

αk,i + rk,i.

5. λ = λ − δλ, and goto 6.

For an exact representation of the data, k must be set to 0. Choosing
k > 0 introduces a filtering. If a single transform is used, it corresponds to
the standard kσ hard thresholding.

22.6.1 Example 1: Simulation

Figure 22.2 illustrates the result in the case where the input image contains
only lines and Gaussians. In this experiment, we have initialized Lmax to
20, and δ to 2 (10 iterations). Two transform operators were used, the
à trous wavelet transform and the ridgelet transform. The first is well
adapted to the detection of Gaussian due to the isotropy of the wavelet
function [SMB98], while the second is optimal to represent lines [CD99].
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FIGURE 22.2. Top, original image containing lines and gaussians. Botton left, re-
constructed image for the à trous wavelet coefficient, bottom right, reconstructed
image from the ridgelet coefficients.

Figure 22.2 top, bottom left, and bottom right represents respectively the
original image, the reconstructed image from the à trous wavelet coefficient,
and the reconstructed image from the ridgelet coefficient. The addition of
both reconstructed images reproduces the original one.

22.6.2 Example 2: Elongated - point like object

Figure 22.3 shows the result of a decomposition of a spiral galaxy (NGC2997).
This image (figure 22.3 top left) contains many compact structures (stars
and HII region), more or less isotropic, and large scale elongated fea-
tures (NGC2997 spiral part). Compact objects are well represented by
isotropic wavelets, and the elongated features are better represented by a
ridgelet basis. In order to benefit of the optimal data representation of both
transforms, the image has been decomposed on both the à trous wavelet
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FIGURE 22.3. Top left, galaxy NGC2997, top right reconstructed image from
the à trous wavelet coefficients, bottom left, reconstruction from the ridgelet
coefficients, and bottom right addition of both reconstructed images.

transform and on the ridgelet transform by using the combined transform
method. When the functional is minimized, we get two images, and their
coaddition is the filtered version of the original image. The reconstructions
from the à trous coefficient, and from the ridgelet the ridgelet coefficient
can be seen in figure 22.3 top right and bottom left. The addition of both
images is presented in figure 22.3 bottom right.
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Threshold Selection in
Transform Shrinkage

Iain Johnstone1

ABSTRACT
The transform shrinkage paradigm is reviewed, of which wavelet denoising
is a key example, with a focus on the blockwise approach to processing of
transform coefficients. Thresholding approaches are surveyed, with special
emphasis is placed on an empirical Bayes approach, which promises to
adapt well to the demands of both ’dense’ and ’sparse’ signals. Since the
author has no significant experience with problems in astronomy, discussion
and examples (denoising of signals, images and deconvolution) are alas
generic.
This paper is followed by a commentary by astronomer Jean-Luc Starck.

23.1 The transform shrinkage paradigm

A familiar strategy in data analysis is to (a) transform the data, via Fourier,
wavelet, or some other transform, (b) process the transform coefficients in
some way (compression, denoising,...) and finally (c) back transform the
processed coefficients to the original domain.

Although much of what we have to say will apply quite generally to trans-
form coefficient processing, for definiteness we begin with a one dimensional
signal processing setting, with data

yi = f(ti) + zi, i = 1, . . . , n, (23.1)

observed atN = 2J equally spaced time points ti in the presence of additive
noise {zi}. The goal is to estimate, or reconstruct, f from the data y. The
process may then be represented diagrammatically as follows:

(yi)
W−−−−→ ((djk))1η(

f̂(ti)
) W−1

←−−−− ((d̂jk))

(23.2)

1Department of Statistics, Stanford University
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Figure 23.1 illustrates this strategy on an NMR signal - we emphasize here
that the values of the (hard) thresholds used are estimated separately at
each level j from the data at that level.

23.1.1 General remarks

The thresholding estimate in Figure 1 takes O(n) operations to compute,
and is based on simple coordinatewise operations in the transform do-
main. Yet it demonstrates the possibility of “denoising without smoothing”
in that the reconstruction is close to noise-free, without any concomitant
broadening of peaks. In statistical terms, one might say that the estimate
is automatically spatially adaptive – with more averaging done in regions
of low signal variability. Processing methods that are linear in the data,
such as Wiener filtering, can not have this property.

A heuristic explanation for the success of the method runs as follows:
the wavelet transform produces a representation of the signal that is sparse
(few large signal coefficients). On the other hand, the (orthogonal) wavelet
transform carries white noise into white noise. Consequently, thresholding
is a good strategy for harvesting the few large signal coefficients that emerge
from the noise.

23.1.2 The transform step

W might be a discrete orthogonal wavelet transform, in which case there
are exactly N output coefficients. [For an expanded discussion of wavelet
ideas, along with references to the primary literature, we refer throughout
to now standard references such as [Mal99] and [Dau92].]

The cascade algorithm (e.g. [Mal99, Ch. 7.3]) begins with cJ = y, and
at successive steps j = J − 1, ..., L applies fixed filters H (high-pass) and
G (low-pass) followed by downsampling D, yielding “decimated” vectors

cj = DGcj+1, dj = DHcj+1,

each of length 2j . The process is stopped at some coarse scale L ≥ 0,
yielding vectors of wavelet coefficients dJ−1, dJ−2, ..., dL supplemented by
a coarse vector of scaling coefficients cL. There are 2J−1 +2J−2 + · · ·+2L +
2L = 2J = N coefficients in all, so the transform is one-to-one, and in fact
the algorithm runs in O(N) time.

If the filter coefficients in H and G are carefully chosen (see e.g. [Mal99,
Chapter 7]), the transform is orthogonal, so that the inverse W−1 is just
the same as the transpose W t. A further advantage of the orthogonal trans-
form is that it preserves white noise: if the noise z in the time domain is
uncorrelated and of constant variance, then the same will be true of the
transform coefficients d (both within and across scales).
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FIGURE 23.1. (a) A noisy NMR signal, N = 1024 (from A. Maudsley via C.
Raphael) . (c) Discrete orthogonal wavelet transform coefficients, displayed by
resolution level (d9, d8, ..., d4) and location within level. Note that the fraction of
large coefficients within level decreases as scale becomes finer. (d) result of ap-
plying level-dependent hard thresholding (at threshold σ

√
2 log N) to individual

coefficients, (b) reconstruction by inverse wavelet transform.
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Redundant vs. Non-redundant transform A significant drawback of the
orthogonal or non-redundant transform is that it is not translation-invariant:
the dyadic decimation process means that different results will be produced
if the original signal is shifted, for example by an odd number of time points.
A translation-invariant, or stationary, transform can be obtained by not
decimating: this á trous algorithm (e.g. [Mal99, Sec. 5.5.2]) produces N
coefficients at each scale, for a total N log2N . The transform is then “re-
dundant”, and has slightly greater algorithmic complexity O(N logN). In
addition the transform coefficients, being oversampled, are now correlated.
However, the increased quality of the (now shift-invariant) reconstructions
is such that this transform is almost always to be preferred in practice.
While the theoretical properties of the orthogonal transform coefficients
are easier to understand and analyze, it has frequently been found that
insights – such as prescriptions for threshold choices – derived from anal-
ysis of the orthogonal transform yield even better results when used in
conjunction with the stationary transform.

Choice of wavelet filters The orthogonality and multiscale properties of
wavelets constrain the choice of the filters H and G severely, as does the
desire that the filters have finite length (leading to wavelets of compact
support.) Nevertheless, there are still some degrees of freedom, leading to
the existence of several families of frequently used filters in addition to the
family initially constructed by Daubechies. Among the factors

(a) support length: longer filters lead to smoother wavelets, but have more
coefficients,

(b) symmetry: a real orthonormal wavelet of compact support cannot be
exactly symmetric, but the Symmlet family comes close,

(c) number of vanishing moments: more lead to better approximation
properties for smooth signals.
Space precludes detailed discussion: see [Dau92] or [Mal99, Chapter 7].

23.1.3 Processing Step

A major goal of the transform paradigm is that relatively simple processing
should suffice in the transform coefficient domain. In Figure 23.1, for exam-
ple, hard thresholding d̂jk = djkI{|djk| ≥ t̂j} is applied to each coefficient,
with the threshold t̂j estimated from the coeffficients dj at level j. More
generally, a block processing strategy might be represented simply

η = (ηj), ηj : dj → d̂j .

[Note that in the wavelet setting, these blocks need not necessarily corre-
spond exactly to levels of the discrete wavelet transform - they might be
composed of spatially related groups of coefficients within a single level, for
instance.]
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The focus of this paper will be on simple methods of processing by blocks,
so we pause to address some of the attendant pros and cons. In general,
the hope is that within a block the data has a degree of homogeneity. For
example, within blocks the noise structure may be close to uncorrelated
(or even independent, with Gaussian data) with common variance. At the
same time, within blocks, some sort of exchangeability assumption about
the signal components may be more nearly justified.

A major advantage of treating block processing as a modular subprob-
lem is that solutions can be used in a broad class of transform problems
beyond the initial setting of wavelet shrinkage (see the next subsection). A
corresponding disadvantage is that we ignore cross block dependence (such
as occurs between wavelet coefficients at different scales near the same
location). A number of authors have addressed this issue in the wavelet
shrinkage setting (e.g. [CNB98, PS00]).

We briefly mention two further advantages of block processing. It will
often happen that the noise variance varies between blocks. However, it is
often fairly straightforward to estimate the noise variance within a block if
it is believed that less than half of the coefficients contain any signal, using
the resistant estimate

σ̂2
j = MAD{dj}/0.6745, (23.3)

where MAD stands for “median absolute deviation”, and the factor 0.6745
calibrates for standard Gaussian noise.

In the noisy signal setting (23.1), if the noise is stationary and correlated,
it often happens that the effect of the wavelet transform is decorrelating,
so that within scales, the coefficients k → djk are nearly uncorrelated, with
level dependent variances σ2

j .
Example Figure 23.2 shows an extract of 2048 data points from a sample

generated by physiologist Rick Eisenberg to represent relevant challenges
in processing data measuring the picoamp ion currents that flow in single
membrane channels. (More details are in [JS97]). The data consists of a step
function switching between values 0 (“off”) and 1 (“on”) at random in the
presence of additive, non-white noise of a form known to be representative
of laboratory data. Although the signal to noise ratio is low, level-dependent
variances of the wavelet coefficients may be estimated using (23.3).

Translation-invariant denoising with the Haar wavelet and hard thresh-
olds σ̂j

√
2 logn leads to oversmoothing. The use of smaller, appropriately

chosen data dependent thresholds leads to a more satisfactory fit (for ex-
ample, after thresholding the reconstruction to the known values 0 or 1 in
the time domain.) How this is done is the subject of Section 23.2.

23.1.4 Block structure in many transform problems

For one-dimensional signals (23.1), we have so far discussed using blocks
formed from the 2j coefficients at each scale of the discrete wavelet trans-
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FIGURE 23.2. Ion channel data. Panel (a) sample trace of length 2048. Panel
(b) Dotted line: true signal, Dashed line: reconstruction using (translation invari-
ant) thresholding at σ̂j

√
2 log n. Solid line: reconstruction using TI thresholding

at data determined thresholds (a combination of SURE and universal).Further
details in [JS97].

form. One may wish to use smaller blocks of spatially contiguous coefficients
with each level, say of size of order logn - see for example [CS99, HKP99].
Using the Fourier transform instead, one might form blocks of contiguous
frequencies, see [EP84, CT01] where blocks of geometrically, polynomially
or logarithmically growing size have been considered.

For images, when using separable wavelet bases (see e.g. [Mal99, Chapter
7.7]), it is natural to treat the horizontal, vertical and diagonal channels as
separate blocks within each scale j. Candès and Donoho ([CD99b, CD99a])
have argued that other multiresolution systems based on ridgelets are bet-
ter adapted to the representation of images: there are natural blocks of
coefficients within these representations to which the thresholding meth-
ods described here may be applied. Finally, there are other orthonormal
systems, such as brushlets ([MC97]) and members of wavelet or cosine
packet libraries, within which blocking can be used.

We may consider in addition certain indirect data settings, y = Kf + z
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in which a (linear) operator K acts on the signal or image of interest
before (noisy) observations y are taken. Typical examples for K include
(fractional) integration, or Radon transformation, or convolution(blurring).

In certain cases, there exists an exact or near diagonalization in some
transform domain

yJk = αJθJk + zJk, k ∈ BJ , J ∈ J (23.4)

Traditional examples include (a) the Fourier transform, which diagonalizes
deconvolution problems and (b) the singular value decomposition (SVD).
Exploiting multiresolution ideas, one might have a wavelet-vaguelette de-
composition (WVD) [Don95], with multiresolution representing systems
{vJk}, {wJk} for the domain and range ofK respectively, such thatKvJk =
αJwJk, so that equation (23.4) is the coefficient level representation. Fi-
nally, for certain deconvolution problems involving “hyperbolic noise”, Kalifa
and Mallat ([KM99]) have argued that a “mirror wavelet” basis (actually a
particular basis from the wavelet packet library) leads to better reconstruc-
tions. In all of these systems, there are obvious ways of blocking coefficients
in order to apply thresholding methods discussed here.

23.1.5 Choice of basis/transform

An appropriate choice of basis or representing system is often crucial to the
success of the associated transform shrinkage method. In particular, it is
desirable that the signal coefficients be “sparse” in the transform domain,
in the sense that most of the energy in the signal is concentrated in a few
components. If it is also the case that the noise is relatively white within
blocks, a (block-specific) thresholding strategy can hope to remove the bulk
of the noise while leaving intact most of the signal.

For example, smooth signals will often have a sparse representation in
the Fourier basis, since most energy is concentrated in low frequencies.
Oscillatory signals (such as speech) on the other hand may be better rep-
resented in wavelet or cosine packet bases. Wavelet bases are particularly
suited to representing functions with point discontinuities or other singu-
larities, while ridglet and curvelet systems are designed for singularities in
images that occur across straight (or slowly curving) lines.

23.2 The single sequence problem

In this key section, we focus on the apparently special problem of estimating
µ = (µi) from observations xi = µi + zi, i = 1, ..., n where the noise
variates zi are assumed to be i.i.d. N(0, 1). This is a natural model for the
coefficients within a block of the sort just discussed. It is assumed that the
variance is known, and by rescaling, taken as equal to one.
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We concentrate on co-ordinatewise thresholding strategies, in which the
estimate of the i-th co-ordinate of the signal µ̂i(x) = η(xi, t̂) depends only
on xi, the i-th component of the data, and a threshold t̂, where the hat
indicates that the choice of t may depend on the full data (xi). The classical
(and extreme) examples of thresholding are:

Hard : η(xi, t) = xiI{|xi| > t}
Soft : η(xi, t) = sign(x)(|xi| − t)+

These may be regarded as special cases of a more general class of threshold
shrinkage rules, which are defined by the properties

odd: η(−x, t) = −η(x, t),
shrinks: η(x, t) ≤ x if x ≥ 0,
bounded: x− η(x, t) ≤ t+ b if x ≥ 0, (some b <∞),
threshold: η(x, t) = 0 iff |x| ≤ t.

Two examples (among many) of threshold shrinkage rules are provided by
a) η(x, t) = (1 − t2/x2)+x which arises in the study of the non-negative
garrote [Bre95], and b) the posterior median, to be discussed further below.

The choice of the threshold shrinkage rule η and the selection of thresh-
old t are somewhat separate issues. The choice of η is problem dependent.
For example, hard thresholding exactly preserves the data values above the
threshold, and as such can be good for preserving peak heights (say in spec-
trum estimation), whereas soft thresholding forces a substantial shrinkage.
The latter leads to smoother visual appearance of reconstructions, but this
property is often at odds with that of good fidelity – as measured for exam-
ple by average squared error between estimate and truth. In the remainder
of this paper, we will focus mainly on the question of threshold selection
once the non-linearity class η has been chosen.

Remark: In the statistics literature, there has been considerable study of
James-Stein shrinkage and its variants. In simplest form, this is given by

µ̂i(x) = (1− ŝ)+xi ŝ =
(n− 2)σ2∑

x2
i

.

While this estimator does threshold the entire signal to zero if the total
energy is small enough,

∑
x2

i < (n− 2)σ2, it otherwise applies a common,
data-determined linear shrinkage to all co-ordinates. When the true signal
is sparse, this is less effective than thresholding, because either the shrink-
age factor either causes substantial error in the large components, or fails to
shrink the noise elements - it cannot avoid both problems simultaneously.

23.2.1 Threshold choice

Often, one may know from previous experience or subjective belief that a
particular choice of threshold (say 3σ or 5σ) is appropriate. On the other
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hand, one may seek an automatic method for setting a threshold, and this
will be the focus of subsequent discussion.

The simplest automatic methods set a fixed threshold in advance of ob-
serving data. One may use a fixed number of standard deviations kσ, or a
more conservative limit, such as the universal threshold t = σ

√
2 logn. This

choice is motivated by the observation that in pure noise Z1, . . . , Zn
i.i.d.∼

N(0, 1)
P{ max

1≤i≤n
|Zi| >

√
2 logn} → 0.

When combined with the soft thresholding non-linearity, the universal
threshold leads to visually smooth reconstructions, but at the cost of con-
siderable bias and relatively high mean squared error (cf. [DJKP95]).

As seen already in Figure 23.2, it is often desirable to choose thresholds
from the data, in such a way that blocks, or levels, with sparse signal lead
to high thresholds, and blocks with relatively “dense” signal lead to lower
choices.

This can be made more explicit with an example. Consider two signals:
µ(1) is relatively “dense”: 18% of its components equal 3σ with the re-
mainder zero, while µ(2) is “sparse”: only 0.2% of its components equal 3σ.
For a fixed configuration µ, the mean squared error of hard thresholding
MSE(t, µ) = n−1

∑n
1 Eµ[η(xi, t)− µi]2 depends on t, and we can evaluate

the optimizing threshold t∗. For the dense signal µ(1) the optimal thresh-
old is t∗1 = 2σ, while for the sparse signal it is higher, namely t∗2 = 4σ.
Furthermore, there is a significant penalty to using the wrong threshold:
using the 4σ threshold on the dense signal increases the MSE by a factor
of 2.46 over using the optimal 2σ. For the sparse signal, using 2σ instead
of 4σ increases MSE by a factor of 15!

Finding a numerically simple and stable method satisfying these desider-
ata has proven to be elusive. A plethora of methods for choosing thresh-
olds has been proposed (see for example [Vid99, Chapter 6]). The empirical
Bayes approach sketched below appears promising, having both empirical
and theoretical support. As background, we present two other methods
which have been accompanied by some theoretical analysis of their prop-
erties.

a) SURE In principle, it would seem attractive to choose t to minimize
the mean squared error of reconstruction. Since this depends on the signal
and so is unknown, one can try instead to use instead Stein’s Unbiased Risk
Estimate (SURE) for the mean squared error of soft thresholding. Thus,
we choose t̂SURE as the minimizer (within the range [0,

√
2 logn]) of

Û(t) = n+
n∑
1

x2
k ∧ t2 − 2

n∑
1

I{x2
k ≤ t2}.

This does indeed have some good theoretical properties [DJ95], but the
same theoretical analysis, combined with simulation and practical experi-
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ence, shows that the method can be unstable (see [DJ95, JS]) and that it
does not choose thresholds well in sparse cases.

b) FDR This method is derived from the principle of controlling the
False Discovery Rate in simultaneous hypothesis testing [BH95] and has
been studied in detail in the estimation setting [ABDJ99]. Order the data
by decreasing magnitudes: |x|(1) ≥ |x|(2) ≥ . . . ≥ |x|(n)., and compare to
a quantile boundary: tk = σz(q/2 · k/n), where the false discovery rate
parameter q ∈ (0, 1/2]. Define a crossing index k̂F = max{k : |x|(k) ≥
tk}, and use this to set the threshold t̂F = tk̂F

. Although FDR threshold
selection adapts very well to sparse signals [ABDJ99], it does less well on
dense signals of moderate size.

23.2.2 Empirical Bayes thresholding

We now describe, in a little more detail, an approach which has some of
the good properties of both SURE and FDR thresholding and transitions
between the two in a stable manner.

We adopt a Bayesian formulation, in which the components (µi) are
drawn i.i.d. from a prior distribution. The notion that the signal might be
sparse is captured by requiring that the prior distribution have a mixture
form

fprior(µ) = (1− w)δ0(µ) + waγ(aµ). (23.5)

Thus, it is assumed that with probability 1−w, there is no signal: µi = 0,
while with probability w, the value of µi is obtained by a draw from the
density γ(µ), with scale parameter a. In principle, the density γ could be
quite general, but for purposes of implementation, we have found advan-
tages in using a heavy-tailed density for γ, for example the Laplace density

γ(u) = 1
2 exp(−|u|) (23.6)

or the mixture density given by

µ|Θ = θ ∼ N(0, θ−1 − 1) with Θ ∼ Beta(α, 1). (23.7)

The latter density for µ has tails that decay as µ−2α−1, so that, in par-
ticular, if α = 1

2 then the tails will have the same weight as those of the
Cauchy distribution.

To get a point estimate µ̂i we might use the posterior mean (which min-
imizes posterior expected squared or L2 error) or the posterior median
(which minimizes the posterior expected absolute or L1 error). We pre-
fer the use of the posterior median, since it leads to a genuine threshold
shrinkage rule, with threshold zone [−t(w), t(w)], – the posterior mean is
close to, but not exactly zero throughout this range. It turns out that the
threshold t(w) varies inversely with w: for w small, the threshold is large
and vice versa.
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Integrating out the prior distribution, the marginal density of the data
{Xi} is given by the density (1 − w)φ(x) + wg(x), where g = γ � φ is the
convolution of γ with the Gaussian density φ. To estimate the threshold
from data, we treat w as a parameter which can be estimated by marginal
maximum likelihood (MML). Thus the MML estimate ŵ is obtained by
maximizing

�(w) =
n∑

i=1

log{(1− w)φ(Xi) + wg(Xi)} w ∈ [wn, 1], (23.8)

where t(wn) =
√

2 logn. Finding the zero of the univariate function w →
∂l/∂w is easily accomplished numerically.

In both cases (23.6) and (23.7) the posterior distribution of µ given
an observed X , and the marginal distribution of X are tractable, so that
the choice of w by marginal maximum likelihood, and the estimation of µ
by posterior mean or median, can be performed in practice. (see [JS] for
software information).

The method automatically adjusts to sparsity: if a considerable number
of ‘large’ Xi are present then ŵ will be large and vice versa. It is also
possible to extend the method to estimate other parameters in γ such as
the scale a. In practice, with prior (23.6), the fixed choice a = 0.2 works
well.

Table 23.1 shows one summary of a simulation designed to test the per-
formance of threshold selection methods over a range of models for sparse
behavior. Further details may be found in [JS]. Twelve configurations were
created giving the first K components µ1 = · · · = µK = µ0 a signal
strength µ0, and the remaining components µK+1 = . . . = µn = 0 are
designated as “noise”. The parameter K ∈ {5, 50, 500} controls sparsity,
while µ0 ∈ {3, 4, 5, 7} controls signal strength. The average squared error
of method µ̂meth on configuration µc is measured (over 100 replications of
the experiment)by

ASE(µ̂meth, µc) = N−1
∑

i

[µ̂m,i − µc,i]2.

We may compare such an ASE to the best possible ASE observed among
all methods of Table 23.1 for that configuration:

Inefficiency(µ̂meth, µc) = 100×
[ ASE(µ̂meth, µc)
minmeth ASE(µ̂meth, µc)

− 1
]

Small inefficiencies mean that µ̂meth is not much worse than the best among
the methods tried for that configuration. Table 23.1 summarizes the inef-
ficiences of various methods over the 12 configurations ( 3 sparsities × 4
signal strengths).
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TABLE 23.1. Inefficiencies of methods showing the median, mean, maximum and
tenth largest inefficiency over the 12 cases considered. Exphard refers to the EB
choice of thresholds with exponential prior and use of the hard thresholding rule.
More detail on the other methods is in [JS].

median mean 10th max
exponential(a = 0.2) 19 19 30 48

cauchy 20 25 42 48
postmean 25 28 40 96
exphard 37 45 62 95

SURE 35 121 151 676
adapt 104 224 303 1283

FDR q=0.01 44 56 91 210
FDR q=0.1 20 35 39 140
FDR q=0.4 74 170 214 848

universal soft 529 643 1283 1367
universal hard 50 101 159 359

It is striking how the empirical Bayes method outperforms the various
SURE and FDR variants, to say nothing of the fixed “universal” threshold
choices.

While the simulations lend support to the idea that empirical Bayes
threshold choice adapts well to both sparse and dense signals, they are
necessarily selective, and so it is reassuring that theoretical analysis points
to similar conclusions. The goals for a theoretical analysis are to capture
two properties. Firstly flexible adaptation to sparsity: specifically if the �p
norm n−1

∑
|µi|p of the signal is small, then we hope for correspondingly

small estimation error. Secondly, a robustness property that the error of
µ̂EB be bounded, no matter what the configuration µ.

Such properties are not a priori obvious for the MML estimated thresh-
old t(ŵ), since for general configurations µ the mixture prior (23.5) is in
general wrong!

To describe briefly the results established in [JS], introduce the mean �q
error Rq(µ̂, µ) = n−1

∑n
1 E|µ̂i − µi|q for q ≤ 2. In the sparse case, where

for p < 2 and η small we have n−1
∑
|µi|p < ηp, it is shown that with high

probability t̂ is large (and of rough order
√

2 log η−p), and that the mean
error

Rq(µ̂EB , µ) ≤ C1η
p∧q(log η−p)(q−p)+/2 + C2n

−1 log3 n. (23.9)
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The first term on the right side is (up to constants) the best possible esti-
mation error attainable by any method subject only to the given sparsity
information. The point of the inequality is that without having to know
either p, or more importantly, the degree of sparsity η, the empirical Bayes
method chooses a threshold with the best possible order of estimation er-
ror. By comparison, such a result is not known at this level of generality
for either the FDR or SURE methods of threshold estimation.

For the “robustness” property, assume that the tails of the prior γ are
exponential or heavier, as in the two examples (23.6) and (23.7). It is shown
that if the number of large components: n−1#{|µi| ≥ τ} is large, then the
estimated threshold t(ŵ) is ’small’, and then for all µ and n large that

Rq(µ̂EB, µ) ≤ C3. (23.10)

It should be noted that both results (23.9) and (23.10) hold true for any
bounded shrinkage threshold rule so long as the Empirical Bayes threshold
t(ŵ) is used. They also hold for the posterior mean (not a threshold rule)
so long as q > 1 (but are false if q < 1!).

23.3 Consequences for wavelet thresholding

In the basic wavelet shrinkage settings of (23.2) and Figures 23.1 and 23.2,
EB thresholding is applied level by level. We illustrate on the ion channel
data in Figure 3. The thresholds chosen by SURE (dashed line) are reason-
able at the coarse scales 6, 7 and 8, but are too small at the fine scales 9 - 11
where the signal is sparse. [The reconstruction of Figure 23.2 was obtained
by manually replacing SURE by universal thresholds at these fine scales].
By contrast, the empirical Bayes threshold choices increase monotonically
with scale in a reasonable manner. In particular, the universal thresholds at
levels 9-11 are found automatically. Two reconstructions using the same EB
thresholds are shown in panel (b): one using the posterior median shrink-
age rule, and the other using hard thresholding rule. The hard threshold
choice tracks the true signal better, echoing the earlier remark that choice
of threshold shrinkage rule is problem dependent, and somewhat separate
from the issue of setting threshold values.

Theoretical results and simulations support the conclusions seen in this
example. We summarize results for model (23.1) described in detail in [JS].
Suppose, first, that mean squared error is used to assess a reconstruction f̂ :
RN (f̂ , f) = N−1

∑
E[f̂(ti)−f(ti)]2. Then, if the empirical Bayes threshold

choices are used (in conjunction with any threshold shrinkage rule), then
we might say that f̂ attains the right (minimax) rate of convergence over
all the right function classes. Specifically, if f ∈ Bα

p,∞(C), a Besov function
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FIGURE 23.3. (a) dashed line: SURE thresholds, solid line: EB thresholds. (b)
Both solid lines use EB-thresholds, but one uses a hard thresholding rule and
tracks the true signal better, while the other uses posterior median shrinkage.

class of smoothness index α, with α > 1/p− 1/2 and 0 < p < 2, then

sup
f∈B

RN (f̂ , f) ≤ cC2α/(2α+1)N−2α/(2α+1) + c log4N/N. (23.11)

In other words, the EB threshold based estimator automatically (i.e. with-
out knowledge of the function class) adapts to obtain the best possible rate
of convergence for that function class. This rate adaptivity holds over a
wider range of function classes than has been established for any other im-
plemented estimator. The fact that corresponding generality has not been
shown for SURE based thresholds is a theoretical reflectoin of its practical
shortcomings. Finally, we note that the bounded shrinkage property of the
threshold rule is essential for the validity (23.11) – for example, a linear
shrinkage rule (such as yielded by a Gaussian prior) would have excessive
bias on some signals.

A simulation, reported in [JS], compared TI versions of E-Bayes, SURE
and
√

2 logn thresholding on samples of size N = 1024 from model (23.1)
using the four test functions of [DJ94] and two noise levels. Also included
were two default non-wavelet based smoothing methods from the SPlus
package: spline smoothing with GCV choice of regularization parameter,
and Tukey’s 4(3RSR)2H. In summary, empirical Bayes threshold choice
leads to better MSE than the other methods (and the posterior median
with the double exponential prior usually beats other variants of the EB
method included in the test). Empirical Bayes also wins out in a comparison
using the orthogonal (non-redudant) transform.

Turning briefly to images, Figure 23.4 shows the effect of applying em-
pirical Bayes thresholds – computed separately in each channel within level
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– to a standard image with Gaussian noise added. Nine realizations were
generated, and the signal to noise ratio (SNR = 20 log10(‖f̂ − f‖2/‖f‖2))
calculated for both thresholding at 3σ and for the EB-thresholds. The ac-
tual images shown correspond to the median of the nine examples (ordered
by increase in signal to noise ratio SNR).

As shown in the table below, the EB thresholds increase monotonically
as the scale becomes finer (SNR = 33.83). They are somewhat smaller in
the vertical channel, as the signal is stronger there in the peppers image.
Fixing the threshold at 3σ in all channels leads to small noise artifacts
at fine scales (SNR = 33.74), while fixing the threshold at σ

√
2 logn (not

shown) leads to a marked increase in squared error (i.e. reduced signal-to-
noise ratio). Of course, the quantitative SNR measure does not necessarily
correspond to visual perception of relative quality.

Channel/Level 3 4 5 6 7
Horizontal 0 1.1 2.3 3.2 4.4
Vertical 0 0 2.0 3.0 4.4
Diagonal 0 1.7 2.7 4.1 4.4

23.4 Concluding remarks

We have focused on a class of problems which after transformation take
the form already indicated in (23.4), namely

yJk = αJθJk + zJk, k ∈ BJ , J ∈ J .

On the assumption that the data within individual blocks, {yJk, k ∈ BJ}
are approximately exchangeable, and possibly sparse, we have described
various approaches to thresholding. In particular, the mixture prior (23.5)
is a reasonably simple codification of this assumption. An empirical Bayes
approach leads to threshold choices (and bounded shrinkage rules) that are
easy to compute from data, and show a reasonable response to varying spar-
sity of signal across levels. Furthermore, these rules have good performance
both in theory and simulations.
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FIGURE 23.4. Translation invariant hard thresholding applied to a noisy version
of the “peppers” image. For original image and noisy version see, e.g. [Mal99,
Figure 10.6]. Panel (a) uses fixed threshold at 3σ, Panel (b): Level and channel
dependent EB thresholds as shown in table.
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[Dau92] I. Daubechies. Ten Lectures on Wavelets. Number 61 in CBMS-
NSF Series in Applied Mathematics. SIAM, Philadelphia, 1992.

[DJ94] D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation via
wavelet shrinkage. Biometrika, 81:425–455, 1994.

[DJ95] D. L. Donoho and I. M. Johnstone. Adapting to unknown
smoothness via wavelet shrinkage. J. Amer. Statist. Assoc.,
90:1200–1224, 1995.

[DJKP95] D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Pi-
card. Wavelet shrinkage: Asymptopia? Journal of the Royal
Statistical Society, Series B, 57:301–369, 1995. With Discus-
sion.



360 Commentary by Jean-Luc Starck

[Don95] D.L. Donoho. Nonlinear solution of linear inverse problems by
wavelet-vaguelette decomposition. Applied Computational and
Harmonic Analysis, 2:101–126, 1995.

[EP84] S.Yu. Efroimovich and M.S. Pinsker. A learning algorithm for
nonparametric filtering. Automat. i Telemeh., 11:58–65, 1984.
(in Russian), translated in Automation and Remote Control,
1985, p 1434-1440.

[HKP99] P. G. Hall, G. Kerkyacharian, and D. Picard. On block thresh-
olding rules for curve estimation using kernel and wavelet meth-
ods. Annals of Statistics, 26:922–942, 1999.

[JS] I. M. Johnstone and B. W. Silverman. Empirical bayes es-
timates of sparse sequences, with applications to transform
shrinkage. manuscript in preparation.

[JS97] I. M. Johnstone and B. W. Silverman. Wavelet threshold es-
timators for data with correlated noise. Journal of the Royal
Statistical Society, Series B., 59:319–351, 1997.

[KM99] J. Kalifa and S. Mallat. Minimax deconvolution in mirror
wavelet bases. Technical report, Ecole Polytechnique, Palaiseau,
1999.
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Commentary by Jean-Luc Starck2

Iain Johnstone has provided, from a statistician point of view, a very
interesting talk about data filtering using wavelets, including some ideas

2Centre d’Études Atomique, Paris
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from the recent statistical literature. In the following, I will quickly describe
a few points which I believe to be important to astronomers and I will
provide some examples which illustrate different restoration strategies on
astronomical data.

Wavelet Filtering of Astronomical Images

In order to remove the noise contained in the data using wavelets, we need
to answer the three following questions:

1. Which wavelet function is the best for astronomical data ?

2. Is it really necessary to use an undecimated wavelet transform instead
of a decimated one which is faster and needs less memory ?

3. Which thresholding method should be used ?

And the goal of the filtering is to detect the faintest objects with the min-
imum of false detection, and to estimate accurately the photometry (i.e.,
integrated intensity) of the detected objects. The residual image (i.e. noisy
image minus filtered one) gives us a good idea how well the photometry
is preserved. Indeed, if the sources can still be distinguished by eye in the
residual image, it means that a part of their flux has been lost during the
filtering process.

Fig. 23.5 shows a simulation. Bottom, the simulated objects (15 sources)
and the noisy data. Middle left and right shows the haar filtered image and
its residual. Bottom left and right shows the undecimated haar filtered im-
age and its residual. We see in this example the importance of the wavelet
function. In the Haar filtered image, all features look like square, which is
the shape of the Haar wavelet function. Using an undecimated Haar trans-
form, these artifact have partially disappeared. However, in both cases, the
residual is not very clean, and the faintest source is not detected.

Fig. 23.6 top shows the undecimated WT filtering using 7/9 filters (An-
tonini et al, 1992). The quality of the filtered image is much better than
using the Haar filters. The residual is still not perfect. Fig. 23.6 bottom
shows the restoration using the à trous algorithm and an iterative method
(Starck et al, 1998). We can see that the faintest source has been detected,
and the residual is much better. This is due to the fact that the à trous
WT is an isotropic transform, while the undecimated WT has three privi-
leged directions. Therefore the à trous is better adapted to detect gaussians.
Iterating allows us also to better clean the residual.

To answer the two first questions, we could say that a non decimated
transform should always be preferred to a decimated one, except in cases
where we have strong computation time constraints. The à trous wavelet
wavelet transform is very well suited to most astronomical images, which
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contains more or less gaussians of different sizes, or diffuse structures with-
out edges. For planetary images, or images with very anisotropic features,
an undecimated wavelet transform with the 7/9 filters should be better.

Thresholding methods

Many thresholding methods have been presented in this paper. For as-
tronomers, the important point is to know what is the probability that a
feature in the restored data is true. Therefore, for a given wavelet coefficient
wj,k, we need to know the probability that the noise produces a coefficient
of the same amplitude:{

Prob(W > wj,k) ifwj,k > 0
Prob(W < wj,k) ifwj,k < 0 (23.12)

Depending on the noise modeling, a detection threshold T can be derived,
corresponding to a given confidence interval ε. For example, in case of
Gaussian noise, a 3σ detection level corresponds to a probability of false
detection of 0.27%. All coefficients with an absolute value lower than T are
set to zero (hard thresholding).

Our experiments have shown that for astronomical data, this simple ap-
proach is better than the universal thresholding, the soft thresholding, the
SURE method, the Wiener method and the hidden Markov field. Further-
more, it can easily be generalized to other kind of noise, which is not the
case of the others. The noise in astronomical data is often not Gaussian.
For CCD images, it is a mixture of Gaussian and Poisson noise, for X-
ray image, it is a Poisson noise, and very often we have the error (or the
noise standard deviation) for each pixel. This error map must be taken into
account for a correct restoration.

Two other thresholding methods, FDR and Adaptive thresholding, have
also been presented in this paper. They seem very attractive, but have not
yet been tested for astronomical data. This should be investigated in the
future.
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FIGURE 23.5. Top, simulated sources and simulated noisy image. Middle, haar
filtered image and residual image. Bottom, undecimated Haar filtered image and
residual image.
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FIGURE 23.6. Top, undecimated wavelet filtering (7/9 filters) and residual. Bot-
tom, filtering using the à trous algorithm and an iterative method, and residual.
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The Statistical Challenges of
Wavelet-Based Source
Detection

Peter E. Freeman1, V. Kashyap, R. Rosner
and D. Q. Lamb

ABSTRACT Wavelet functions are proving extremely useful for detecting
sources in binned, two-dimensional photon counts images. In this chapter,
we describe the mission-independent source detection algorithm WAVDETECT,
part of the Chandra Interactive Analysis of Observations (CIAO) software
package, and discuss the statistical challenges we have faced in its devel-
opment, such as: what is the best way to estimate the local background in
each pixel, if it is a priori unknown? What is the best way to eliminate false
detections caused by instrumental variations? And what is the significance
of a detected source?

24.1 Introduction

Wavelets are scaleable, oscillatory functions with finite support (i.e. they
are non-zero within a limited spatial regime) and an overall normalization
zero.2 They provide a superior means by which to analyze data in binned,
two-dimensional photon count images, as their properties allow the simul-
taneous characterization of the locations, strengths, and dominant length-
scales of astronomical sources.

Aside from source characterization, wavelet-based algorithms are being
shown to outperform the standard “sliding cell” algorithm [2], which is
rapidly being supplanted as the algorithm of choice in the field of source
detection. Damiani et al. [3] were the first to present a general wavelet-based
source detection algorithm, one appropriate for analyzing data observed by
telescopes with nearly Gaussian point-spread functions (PSFs) in the high-
background-count limit (B >∼ 0.1

σ2 ct pix−1, where σ is the scale size of the
analyzing wavelet). This algorithm is also the first to use exposure maps
to mitigate the effect that exposure variations (caused by, e.g., support-

1Harvard-Smithsonian Center for Astrophysics
2For an introduction to the theory of wavelet functions, see, e.g., Mallat [1].
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rib shadows and the edge of the FOV) have upon the rate of false source
detections, although their treatment of features must be altered to suit
differect detectors (see, e.g., Micela et al. [4]).

In Freeman et al. [5], we describe a more general source-detection al-
gorithm that has been implemented as the Chandra Interactive Analysis
of Observations (CIAO) application WAVDETECT.3 Our algorithm can: (1)
operate effectively in the low background counts regime, which is crucial
because of the low particle and cosmic background count rates for the
Chandra detectors (the overall rate being ∼ 10−6 and 10−7 ct sec−1 pix−1

for the Chandra ACIS and HRC detectors, respectively); and (2) operate
effectively regardless of the PSF shape, also crucial because of the (non-
Gaussian) nature of the off-axis Chandra PSFs. It also (3) treats exposure
variations in a general, non-detector-specific manner. Thus our algorithm
may be immediately adapted for the analysis of data from virtually any
other photon-counting detector.

In this chapter, we provide a minimalist introduction to the WAVDETECT
source detection and characterization algorithm (§24.2), then discuss the
statistical challenges that we have faced (and continue to face) in its devel-
opment. We ask the reader to consider the following questions:

Are our solutions to statistical problems, when indeed we have them, op-
timal solutions? And are there better methods, approximations, etc., which
we should use that are completely (or nearly) independent of detector de-
tails, and that do not excessively increase computation time or the use of
computational resources?

24.2 Algorithm

24.2.1 Source Detection

A typical analysis of a counts image involves correlating it with a sequence
of wavelet functions. In WAVDETECT, the Marr, or “Mexican Hat” (MH)
wavelet function is used:4

W (
x

σ
,
y

σ
) =

[
2− x2

σ2
− y2

σ2

]
e−

x2

2σ2 − y2

2σ2 (24.1)

This function, which has a positive kernel (PW ) surrounded by a nega-
tive annulus (NW ) and which differs significantly from zero only within a
radius of ≈ 5σ (see Figure 24.1), has several advantages which motivate
its use for source detection: (1) the Gaussian-like PW has a shape similar

3WAVDETECT is composed of WTRANSFORM, a source detector, and WRECON, a source list
generator. The CIAO package is available at http://cxc.harvard.edu.

4Our algorithm allows the use of asymmetric MH wavelets (σx �= σy) but for sim-
plicity we assume rotational symmetry in this work.
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FIGURE 24.1. Left: The two-dimensional Marr, or “Mexican Hat,” wavelet func-
tion (eq. 24.1). Right: The negative annulus of the Mexican Hat function, used
in background estimation.

to a canonical PSF; (2) it is insensitive to both flat and constant gradient
components of any underlying function in the image; and (3) its Fourier
transform has limited extent in Fourier space, so that limited, discrete sam-
pling of values of σ (e.g., at values separated by factors of two) is sufficient
to sample the entire frequency domain.

In the simplest case, where the background amplitude at each pixel,
Bi,j , is known a priori and where the exposure map5 is constant (or varies
linearly), source detection at a given scale σ proceeds in two steps. First,
there is the computation of the correlation map

Ci,j =
∑
i′

∑
j′
Wi−i′,j−j′Di′,j′ (24.2)

≡ < W�D >i,j .

where i and j are pixel indices and i−i′ and j−j′ are the discrete equivalents
of x and y in eq. (24.1).6 Second, Ci,j is compared with a source detection
threshold Co,i,j(So, Bi,j) (the computation of which is described in §24.3.1),
where So is a user-defined significance value (e.g. the inverse of the number
of analyzed pixels, for one false source detection in the image); if Ci,j >
Co,i,j , we associate the pixel (i, j) with a source.

5If an exposure map is not provided, a flat one is assumed in order to account for the
edge of the FOV.

6Our notation deviates from that of Mallat, in which < W�D >i,j would be writ-
ten W�D[i, j]; however, we feel our notation makes complicated expressions involving
transforms more easily interpretable.
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FIGURE 24.2. Illustration of how sources located within the negative annulus of
the wavelet cause “rings” in an initial background estimate.

24.2.2 Background Estimation

If a background map B is not provided, then background maps are com-
puted at each scale σ by averaging the raw data around each pixel, using the
exposure map E and wavelet negative annulus NW as weighting functions:

Bi,j = Ei,jBnorm,i,j = Ei,j
< NW�D >i,j

< NW�E >i,j
.

(See Figure 24.1.) Bnorm is the normalized (i.e. flat-fielded) number of ex-
pected background counts.7 Our method of background estimation is inde-
pendent of the details of the PSF and allows WAVDETECT to detect sources
of arbitrary size.

In Freeman et al., we discuss the ways in which sources in the FOV
can bias the local background estimate. In particular, the local background
amplitude will be overestimated in rings of radius ≈ 2σ around sources
(this being the radius at which NW achieves its minimum value), ad-
versely affecting the detection of weak sources, and the estimation of source
properties (see Figure 24.2). To mitigate their effect, we employ an “iter-
ative cleansing” algorithm, in which WAVDETECT: (1) identifies pixels to
be cleansed using the probability sampling distribution (PSD) p(C|B1),
where B1 is the initial background map; (2) replaces the data D (or D1) in
these pixels with B1, creating a new image, D2; (3) estimates B2(D2); (4)
computes p(C2|B2) and identifies pixels to be cleansed; etc. The resulting
background is then used to make the final determination of source pixels.

24.2.3 Treating the Effect of Exposure Variations

To be effective, a source detection algorithm must distinguish between as-
tronomical and instrumental sources, the latter of which are detected at or

7Note that the distinction between vignetted and non-vignetted components of the
background (e.g., the particle background) is ignored in our estimate.
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near regions where the exposure varies greatly (e.g. support rib shadows
or chip boundaries). One way to exclude instrument sources is to gener-
ate the PSD p(C|Bi,j , E) for each and every observation; however, this is
computationally impractical. Instead, WAVDETECT attempts to remove the
effect of the variation from the observed correlation coefficient:

Ci,j = < W∗B >i,j + < W∗S >i,j + ∆Ci,j .

B is the estimated (i.e. noise-free) background amplitude, S is the source
counts amplitude, and ∆C is the noise contribution. While < W∗B >i,j=<
W∗EBnorm >i,j is affected by variations in exposure, Ei,j < W�Bnorm >i,j

is not, thus we correct the correlation coefficient as follows:

Ccor,i,j = Ci,j − < W�(EBnorm) >i,j +Ei,j < W�Bnorm >i,j .

Ccor,i,j should only contain information of astrophysical value, thus we use
it to compute source detection thresholds. We ignore the effect of exposure
variations upon < W∗S >i,j , while noting that it is not affected by ex-
posure variations if the source counts are from a point source, since point
source count rates depend only upon the exposure at the center of the PSF.
We also ignore the effect of variations upon the quantity ∆Ci,j ; we return
to this point below, in §24.3.4.

24.2.4 Source Characterization

Final Background Map. To determine source properties (e.g. net counts),
we need to construct a final background map B′

norm from those that were
generated during the detection process:

B′
norm,i,j =

∑N
k=1 εi,j,kσ

2
kBnorm,i,j,k∑N

k=1 εi,j,kσ
2
k

. (24.3)

N is the number of scales at which the data were analyzed, and ε is 1 if
σk

>∼ rPSF,i,j and 0 otherwise. This factor helps eliminate bumps caused
by source counts in background maps: at scales σ <∼ rPSF (the PSF “size”),
source counts will unavoidably overlap the NW , causing “bumps” in the
background map which peak at the source centroid.

Source Cells. Source properties are estimated within a source cell, a
collection of pixels which we will associate with the source. A source cell is
created using a source counts image:

SCi,j = max
(
< PW�D >i,j

< PW�E >i,j
− B′

norm,i,j , 0
)
.

The PSF size rPSF,i,j is used to determine the appropriate smoothing scale
for a given source. For an isolated source, the extent of the source cell is
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FIGURE 24.3. Illustration of how source cells are created for two nearly overlap-
ping sources. Left: the raw counts data. Middle: the source counts image, created
smoothing the counts data with a PW function of size σx = σy = 2 pixels, then
subtracting the estimated background. Right: the source cells defined using the
source counts image data. The saddle point seen in the middle image defines the
boundary between the cells.

determined by the smallest zero-amplitude contour surrounding its loca-
tion; tests indicate this contour will encompass nearly 100% of counts. In
a crowded field, saddle points in the source counts image are also used to
determine cell boundaries (e.g. Figure 24.3).

Once a source cell is created, the source location, etc., are computed
using the raw data (and estimated background) in the cell. Most compu-
tations involve straightforward summations. Of particular interest is the
computation of location; for instance, the x-coordinate of a source is es-
timated using the equation

∑
SC Di,ji/

∑
SC Di,j , where the summation

occurs over all pixels in the source cell. This estimate is not optimal in
some situations, a point which we will return to below.

24.3 Statistical Challenges

24.3.1 Calculation of Source Detection Thresholds

The fundamental question in source detection is: should an image pixel
be associated with a source, or with the background? To answer this, we
compare the value of the statistic Ci,j with a PSD that is a function of
the local background Bi,j in each pixel: p(C|qi,j = 2πσ2Bi,j). The test
significance (or Type I error) Si,j would then be calculated by computing
the tail integral of this PSD from Ci,j to infinity:

Si,j =
∫ ∞

Ci,j

dCp(C|qi,j) . (24.4)

However, WAVDETECT does not compute Si,j directly, because while this
distribution tends asymptotically to a zero-mean Gaussian with width σ =√
qi,j as qi,j →∞, the PSDs are no longer smooth in the low-counts limit
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and cannot be approximated by analytic functions. Instead, we performed a
sufficient number of simulations (involving ≈ 5×1010 pixels) so that source
detection thresholds Co,i,j could be determined directly for user-defined
threshold significances So

>∼ 10−7, for -7 <∼ log qo <∼ 3 (where the data in
each 1024×1024 simulation are sampled from a Poisson distribution with
expectation value qo/2πσ2). Note that each simulated image was analyzed
with a MH wavelet function of scale σ = 4 pixels, since, for instance, the
threshold for σ = 4 pixels and Bi,j = 1 count is the same as the threshold
for σ = 2 pixels and Bi,j = 4 counts.

We learned a number of lessons when carrying out these simulations.
(1) One must record the distribution p(Ci,j |qi,j), and not p(Ci,j |qo). The
relationship between the two distributions is

p(Ci,j |qi,j) =
∫
dqop(C|qo)p(qo|qi,j)

and they only become asymptotically equivalent in the high-count limit.
Threshold values estimated from the distributions p(Ci,j |qi,j) are more
conservative than those derived from p(Ci,j |qo), markedly so in the low-
count limit. (2) We found that we could determine thresholds for small
significance values (i.e. beyond S = N−1, where N is the total number of
simulated pixels for a particular value of q) by fitting two-dimensional func-
tions to the observed data Co(So, q) (see Freeman et al. for more details
on the functional forms). We took 25 observed values of Co(So, q) from
25 sets of simulations and used the mode and central 68% of the values
to determine each data point and one-sigma error. The fit functions can
then be arbitrarily extrapolated (and tested for validity). (3) While Dami-
ani et al. determine that analytic representations of the PSDs work well if
log qi,j >∼ 3, we find our threshold functions to be more conservative and
thus we use them even in the high-counts limit.

We also note two threshold computation issues that we have yet to fully
explore. (1) The computation p(C|2πσ2Bi,j) does not take into account
variations in the background amplitude that may occur within the PW ,
say at the edge of a region in which X-ray shadowing is evident. (2) The
threshold correlation values do not take into account uncertainties in the
threshold function parameters, i.e. the error in a given threshold estimate
is currently not computed.

24.3.2 What is the Significance of a Source?

The question posed above is not answered by WAVDETECT,8 since while we
can in principle determine significances on a pixel-by-pixel basis in cor-

8Current program output includes the src significance for each source, but this
value should be ignored: it assumes that the estimated total background counts B in the
source cell are sampled from a PSD with “Gehrels variance” [1 +

√
B + 0.75]2 (Gehrels
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relation space, we cannot easily determine the significance of a group of
pixels. This is because correlation values in adjacent pixels are not inde-
pendently sampled (see eq. 24.2). While covariance terms can be estimated,
the computational cost is prohibitive (see §24.3.7). Is there a computation-
ally inexpensive way to determine the significance using correlation maps?
Or is using correlation maps to determine source significances the wrong
way to proceed?

24.3.3 Background Estimation

What is the best PSF-independent approach to determining the local back-
ground amplitude in each image pixel, if it is unknown a priori? Note that
our motivation for a multi-scale PSF-independent approach is not neces-
sarily that we may more easily apply it to data from different detectors,
but rather to avoid introducing a bias against the detection of extended
objects (e.g. clusters) into our algorithm (cf. Damiani et al., who estimate
background once, and not once per scale, using a sliding box whose width
is dependent upon the PSF size). However, an even more fundamental
question which we must raise is, is our approach of determining the back-
ground on a scale-by-scale basis during the detection process the wrong
approach? Should we first estimate a scale-independent background map,
then use that map during the source detection phase? If so, what is the
best way to compute that map? While we do create a “final” background
map (eq. 24.3), it is used for only for source characterization and it may
not be sufficiently accurate for source detection. In particular, the weight-
ing used to create the “final” map, which is meant to minimize the effect
of systematic overestimates in the background at small scales, is certainly
not optimal for determining the local background at a given pixel.

A second fundamental question is: even if our scale-by-scale approach
is theoretically sound, is our iterative approach to determining the back-
ground at each scale the best approach to use? Should the same significance
criterion be used for cleansing data as for detecting sources? To minimize
the effect of weak undetectable sources on the background estimate, we
advocate an aggressive approach to iterative cleansing: So should be set
high during cleansing, e.g. to So = 10−2. Should the data in a pixel to
be cleansed be replaced with the estimated background amplitude, as it
is now, or some other quantity? (We cannot simply mask out the affected
pixel, since then we cannot use FFTs in our algorithm.) Last, we note that
there are no rigorous quantitative rules governing how one should specify
the number of iterations, as that can depend on the crowdedness of the

[6]). This variance is generally (much) larger than the background variance derived by
WAVDETECT, thus the src significance can be (very much) an underestimate of the true
significance.
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field, the source distribution, the source strengths, and the wavelet scale
size, etc. Thus, we leave the stipulation of stopping rules to the user.

24.3.4 Treating the Effect of Exposure Variations

Our exposure correction algorithm successfully reduces the number of de-
tected instrument “sources.”9 However, there are still a number of issues
with this algorithm which have yet to be fully explored.

First, Ccor,i,j cannot be directly compared with the PSD p(C|qi,j) be-
cause the noise term ∆Ci,j is itself uncorrected. Concentrating on the issue
of false positives, the important question here is: is the asymptotic width
of the distribution from which the unknown quantity ∆Ccor,i,j is sampled
smaller than the width of the distribution from which ∆Ci,j is sampled?
If so, then the rate of false detections will still be greater than expected.
Given that this width is, at least in the high-counts limit, proportional
to the observed number of background counts (a number affected by ex-
posure), this should be a problem if and only if Ei,j is smaller than the
average exposure over the spatial extent of the wavelet centered at (i, j),
i.e. this is only a problem within troughs or beyond the edge of the FOV.
Thus we suggest that one should carefully scrutinize all sources detected
in lightly exposed regions.

Second, by using Bnorm to adjust correlation values, we “contaminate”
Ccor,i,j with low-frequency information. As a passband filter, NW is most
sensitive to constant components of the data,10 while W is, as advertised,
most sensitive to variations in the data at length-scales similar to the scale
size of W itself. The user must keep this contamination in mind if the anal-
ysis goal is to characterize detected sources by examining their properties
in correlation space.

24.3.5 Source Property Estimation

When computing source properties, we use the raw data Di,j as the weight-
ing function, instead of the source fluence Di,j − Ei,jB

′
norm,i,j . We do this

because using the latter quantity can greatly complicate the estimation of
variances, since values of B′

norm,i,j in adjacent bins are correlated. How-
ever, using Di,j does not always lead to optimal results; for instance, when
a source cell is large and/or asymmetric, and the number of background
counts is large compared with the number of source counts, the background

9This is not an easily quantified statement, since the reduction depends upon the
accuracy of the background map and the specifics of the exposure map, in particular
the energy spectrum that is assumed when it is created.

10As it should be: we are not seeking a scale-by-scale decomposition of the background,
but rather simply to determine its local (presumably constant-component-dominated)
amplitude in each pixel.
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counts can unduly bias the source properties. This issue has been observed
in analyses of Chandra data, where estimated source positions for weak
sources are not well-determined far off-axis (N. Brandt, F. Bauer, private
communications).

Is there a better, more robust and PSF-independent method to determine
source properties? Should source locations, e.g., be determined using the
fluence, even if the errors cannot be computed rigorously? Should they be
determined using some other function of D, or using the mode of the data’s
distribution?

24.3.6 Extended Source Identification

The ability to detect extended sources in part drives WAVDETECT’s design,
but the actual algorithm for identifying them is not robust. A source “size”
s is computed using the number of pixels in the source cell n (listed in the
column npixsou of the WAVDETECT output file): s =

√
n/2π. The ratio of s

to rPSF (psf size) is then listed in the WAVDETECT output file as psfratio.
While a large psfratio indicates that a source is extended, the PSD for it
is unknown (and may in general be unknowable considering the number of
factors that can influence it), so we do not currently calculate a significance.

Is there a robust method for identifying extended sources using the raw
data and minimal (or no) information about the PSF, and which does not
involve actual fits of the PSF to the data? Or is extended source identifi-
cation best done outside of WAVDETECT entirely?

24.3.7 Computation of Variances

We conclude our discussion of statistical challenges by touching upon the
issue of error estimation. In principle, we would like to estimate variances
using the formula (Eadie et al. [7], p. 23)

V [Y ] = V [
∑

i

∑
j

ai,jXi,j ]

=
∑

i

∑
j

a2
i,jV [Xi,j ] + 2

∑
i

∑
i′>i

∑
j

∑
j′>j

ai,jai′,j′cov[Xi,j , Xi′j′ ]

where Y is the quantity of interest andXi,j are the random variables (i.e. ei-
ther Di,j or functions ofDi,j , with each datum Di,j assumed to be indepen-
dently sampled from a Poisson distribution with variance Di,j). However,
an exact computation has a staggeringly high computational cost, as we
will demonstrate by deriving the variance for the two-iteration background
map B2:

V [B2,i,j ] =
∑
i′

∑
j′

(Ni,jNWi−i′,j−j′ )2V [D2,i′,j′ ]
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+ 2
∑
i′

∑
i′′>i′

∑
j′

∑
j′′>j′

(Ni,jNWi−i′,j−j′ )(Ni,jNWi−i′′,j−j′′ )×

cov[D2,i′,j′ , D2,i′′,j′′ ] ,

where Ni,j = Ei,j/ < NW∗E >i,j .
First, V [D2,i′,j′ ] is

V [D2,i,j ] =
{
Di,j uncleansed pixel∑

i′
∑

j′(Ni,jNWi−i′,j−j′ )2Di′,j′ cleansed pixel

(Note that in the actual computation of V [B2,i,j ] carried out by WAVDETECT,
however, V [D2,i,j ] is approximated as D2,i,j .)

The estimation of cov[D2,i′,j′ , D
′
2,i′′,j′′ ] is, not surprisingly, more compli-

cated. For the two-iteration background case, there are three possibilities:
D2,i′,j′ = Di′,j′ and D2,i′′,j′′ = Di′′,j′′ ; D2,i′,j′ = Di′,j′ and D2,i′′,j′′ =
B1,i′′,j′′ (or vice-versa); and D2,i′,j′ = B1,i′,j′ and D2,i′′,j′′ = B1,i′′,j′′ . In
the first case, the covariance is zero. We can estimate the covariance in the
second case using the approximation (Eadie et al. p. 27):

cov[Di′,j′ , B1,i′′,j′′ ]

≈
∑

k

∑
l

∑
k′

∑
l′

(
∂Di′,j′

∂µk,l

)(
∂B1,i′′,j′′

∂µk′,l′

)
cov[Dk,l, Dk′,l′ ]

= Di′,j′Ni′′,j′′NWi′′−i′,j′′−j′ ,

where µ represents the expectation value of the sampling distribution for
D. (We assume µ = D.) Making a similar calculation, we find in the third
case that

cov[B1,i′,j′ , B1,i′′,j′′ ]

=
∑

k

∑
l

Ni′,j′NWi′−k,j′−lNi′′,j′′NWi′′−k,j′′−lDk,l .

A rigorous estimate of V [B2] takes a factor of ∼ O(dxdyσ
2
xσ

2
y) longer

to compute than WAVDETECT’s current approximate estimate (where the
image size is dx × dy). We find that including covariance terms increases
the variance by <∼ 10%, with the maximum increase adjacent to (but not at)
the location of strong sources. We stress that this is a source-strength- and
source-geometry-dependent result that obviously cannot be blindly applied
to all fields.

24.4 A Concluding Question: Can WAVDETECT
Be Completely PSF-Independent?

The current algorithm is not completely independent of detector details,
as the source list generator relies on knowledge of the PSF size at a given
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pixel in order to: (1) compute the “final” background map, (2) determine
the appropriate source-counts image to use to generate source cells, and
(3) identify extended sources. The necessity of coding this knowledge into
the algorithm prevents, e.g., WAVDETECT in CIAO 2.1 from being using used
effectively with XMM-Newton data: the algorithm will run to completion,
but the PSF size will be assumed to be the smallest input scale, severely
affecting the determination of source properties. While an experienced user
of WAVDETECT could work around this issue by running it multiple times with
different input values to compute one source list, or while WAVDETECT could
be altered to allow the user to read in a map of PSF sizes, it is worth asking
if the PSF is needed at all. Could the three calculations mentioned above,
or even just the first two, be done effectively using just the raw data? We
leave that as an exercise for the reader.
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Reflections on SCMA III

John Rice1

25.1 Introduction

It has been a great privilege to participate in this fascinating meeting and
a great challenge to be asked to comment on the wide variety of issues
that have arisen. I will try to place the papers we have heard here in
some perspective and to outline some current and future challenges and
opportunities lying in the intersection of statistics and astronomy. I ask
the reader to bear in mind that the ”seeing conditions” are poor.

25.2 A spectrum of statistical methodology

In considering the wide variety of statistical methodology relevant to as-
tronomy, it may be helpful to view it on a spectrum ranging from pro-
cedurally based methods to methods based on highly specified stochastic
models. Different regions on this spectrum are relevant to different types of
problems and individual statisticians often have “personal equations” that
influence where their contributions fall.

The following example is illustrative: Smoothing splines were first pro-
posed as a procedure for passing a smooth curve through a noisy scatter
plot of observations (yi, xi), i = 1, . . . , n. It was desired that the curve not
be of any simple parametric form, such as a low degree polynomial, but
merely be “smooth.” No explicit stochastic structure was assumed for the
data. In Reinsch (1967) proposed choosing the curve, g() as the minimizer
of

n∑
i=1

(yi − g(xi))2 (25.1)

subject to the constraint
∫
[g′′(x)]2dx ≤ Ω. (This basic idea had been

around for some time—see Wahba 1990 for more complete references). Us-
ing a Lagrange multiplier, the problem can be written as that of choosing

1Department of Statistics, University of California, Berkeley
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g() to minimize
n∑

i=1

(yi − g(xi))2 + λ

∫
[g′′(x)]2dx. (25.2)

Although this optimization problem has some heuristic appeal, the proposal
would not have had much impact were it not the case that the minimizing
g() is a cubic spline and that there are fast and stable numerical algorithms
for its computation. The solution depends upon the choice of the smoothing
parameter, λ: small values of λ give rise to highly oscillatory functions and
large values to very smooth ones. It was left to the user to interactively
determine a satisfactory choice.

The next stage in the study of this method was an examination of its
properties by statisticians with frequentist personal equations. Thus, an ex-
plicit stochastic element was added to the structure to produce a statistical
model: it was assumed that the data were of the form yi = g0(xi)+εi where
the εi are independent random variables with E(εi) = 0 and V ar(εi) = σ2.
Note that this itself is quite an idealization. Frequentist properties of the
spline estimate were the subject of intensive theoretical and numerical re-
search and are now quite well understood.

If the random errors are modeled as Gaussian, the procedure can be
viewed as an example of penalized likelihood in which the log likelihood
is the first term in (25.2) and the second term penalizes rough solutions.
It is a canonical example of nonparametric regression, in which there is a
tradeoff between bias and variance that does not typically occur in para-
metric models. (It could of course be argued that any parametric model
is an approximation and hence may well give rise to bias, so that the dis-
tinction between parametric and nonparametric models is illusory). One of
the widely used ways of selecting λ in a data-driven way to achieve this
balance is cross-validation (Wahba & Wold 1975).

Finally, a statistician with a Bayesian personal equation examining (25.2)
will see the sum of a log likelihood and the log of a prior. Wahba (1993)
identified the prior as a doubly integrated Brownian motion where λ is
the variance parameter of this stochastic process. Now another layer of
idealization has been introduced and can be formally used to construct
posterior credible regions, for example.

The bottom line: what really matters is how well a method works. Are
there efficient and stable computational algorithms? How well does it work
on a suite of simulated data? On a variety of real data sets? How is it
affected by outliers? How is it affected by spacings in the xi? How does it
compare to alternative methods for doing nonparametric regression? Such
assessments are made in a variety of ways, and not only with respect to a
single figure of merit, such as integrated squared error. Whether procedu-
rally or model generated, a method must be assessed by its effectiveness.

I find it helpful to think about statistical contributions to astronomy as
being arranged along this spectrum as well. At the risk of oversimplifica-
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tion, this can be exemplified by many of the presentations at this meeting.
At the procedural end there was the presentation of Cook, showing us
some wonderful tools for exploring multivariate data. The presentations of
Breiman, Freeman, Murtagh, and Starck showed us some widely applicable
procedures that are based on rather minimal modeling structures. Similarly
Djogorvski and Nichols were primarily interested in procedures rather than
models. The papers of Shafer, Szalay, Wasserman, and Martinez were pri-
marily at frequentist wavelengths, while the Bayesian frequency band was
occupied by the presentations of Berger, Bretthorst, Connors, van Dyk,
Jaffe, Kolaczyk, Loredo, and Scargle.

The presentations of Raftery and Johnstone contained a mix of Bayesian
and frequentist perspectives. Johnstone’s exemplified how these two per-
spectives can enrich each other. In the smoothing spline example above, the
Bayesian formulation was rather an afterthought, but in Johnstone’s use
of priors on different resolution levels we see the Bayesian formalism be-
ing adopted for the purpose of generating smoothing procedures which can
be explored from a frequentist perspective or merely viewed as empirical
procedures. Clearly, no one would take these priors seriously as quantifi-
cation of personal belief in a game with a bookie; rather, they are devices
that hopefully generate useful methods of averaging (what statistics is all
about). The procedures presented by Kolaczyk stemmed from a Bayesian
formalism and can be viewed in a similar way—his parameters α and β are
quite analogous to the λ for a smoothing spline and I can imagine turning a
(α, β) knob to explore differing degrees of smoothing without introspection
as to the state of my “belief” about (α, β).

Statistical models may be viewed as filters through which data are an-
alyzed, and, as William James wrote, “We must be careful not to confuse
data with the abstractions we use to analyze them.” But we need these fil-
ters/abstractions: as George Box wrote, “All models are wrong, but some
are useful.” Models are useful and effective to the degree that they provide a
mechanism for accurately extracting information of scientific interest from
the data. As one moves towards the Bayesian end of the spectrum, models
become more detailed and highly specified, as can be seen in the contribu-
tions to this meeting.

We really need to be careful in using models, especially in situations in
which there is such a large quantity of data that model accuracy cannot
be readily checked visually. More elaborate models tend to be more fragile.
Despite extensive effort, “de-glitching” may be incomplete. Even beyond
glitches, there may be sources of noise not properly accounted for in the
model—do the Gaussian or Poisson variables in the model really reflect all
the sources of noise, such as cosmic rays, image motion, and crowding, for
example?

For these reasons, robustness has a long and honorable tradition in statis-
tics and is increasingly relevant in this age of data floods. Figure 25.1 shows
light curves in the form of fourth order trigonometric polynomials fit to
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FIGURE 25.1. Weighted least squares fit (left panel) and robust fit (right panel)
to phased data from an RR Lyrae with period 0.46 days.

phased observations at the fundamental frequency (0.46 days) of an RR
Lyrae of type “d.” The individual observations of magnitude were accom-
panied by error bars and, for one particular point, the error bars were far
too small. The weighted least squares fits of the light curves are formed in
accord with the model, but are very sensitive to deviations from it. The
outlying point (just one observation out of 845!) pulls the curve locally
and causes global rippling. The robust fitting procedure is designed to do
reasonably well if the model holds and to be resistant to outliers.

Even without such phenomena, one needs to be concerned about the bi-
ases that are incurred by analyzing the data only through the filters of the
model. One needs to ask how crucial the assumptions are. Are the impor-
tant conclusions sensitive to distributional assumptions and assumptions
of independence in a frequentist model? In the case of a Bayesian analysis,
one should seriously examine the consequences of the choice of a prior. This
is not easy for complex hierarchical models and often receives only cursory
attention. In his contribution to this meeting, Jaffe makes some references
to the difficulty of choosing a prior and the influence the prior has on in-
ferences about key cosmological constants. The smoothed lightcurves that
Berger displays resulting from priors on wavelet coefficients produce rather
suspicious structure precisely in the regions where there is no data (near
zero).

25.3 Challenges and opportunities

The meeting has been very exciting in illustrating many opportunities for
application of existing statistical methodology and challenges for the de-
velopment of new approaches. Let me highlight a few:
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25.3.1 Large scale structure:

I suspect that there are real opportunities for going beyond two-point and
higher order correlation functions for both characterizing structure and
discriminating amongst theories. Might not other functionals offer sharper
characterization and discrimination? The size of the data, the complexity of
coverage patterns, and the presence of selection biases makes this endeavor
even more challenging.

25.3.2 Separation of source and background

This problem is omnipresent in astronomical data and we heard about some
very interesting developments in the presentations of Freeman and Starck.
The problem of removing foreground in studies of the CMB was alluded to
by Jaffe. Perhaps because of its high dimensionality and spatial aspects, this
problem does not seem to me to fit very well into our standard paradigms
of statistical inference and decision theory. I suspect that some gains can be
made by taking more advantage of the fact that the same kind of problem
is often faced repeatedly (see the section on empirical Bayes below).

25.3.3 Parameter estimation from massive data sets

Jaffe’s paper gave us a hint of the kinds of problems of this type that will
be faced in the near future. How will we meet the corresponding computa-
tional challenges? As mentioned by Djorgovski, one possibility is to forgo
computing estimates with high precision and/or to forgo notions of sta-
tistical optimality (the best may be the enemy of the good). Algorithms
derived from the literature on stochastic approximation and on-line gradi-
ent methods may turn out to be important. There are close relationships
between parameter estimation, coding, information theory and data com-
pression (Rissanen & Yu 2002). A sufficient statistic provides marvelous
data compression, but these rarely exist. We may need a notion of an “al-
most sufficient” statistic. Nichol’s use of KD trees is in this spirit. For some
current developments on using compression of astronomical data also see
Bond et al. (2000) and Tegmark et al. (1997). There has always been a
strong coupling of between inference and computation and the prevalance
of massive data sets coupled with the computational power of “the grid”
will have profound effects on the nature of the discipline of statistics.

25.3.4 Massive data sets and multivariate analysis

Here we have heard of data sets which would seem to correspond to a
multivariate statistician’s dream: enormous n and bounded p. But are we
really ready to live out our dreams? The challenges were exhilaratingly
described in Djorgorvski’s and Strauss’ presentations. The staggering size
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of the data sets begs for multiscale procedures, for adaptive stratification,
for adaptive sequential procedures, and for new methodology.

Although we have heard of some very promising developments from
Murtagh and Raftery, I think that there remains a great deal to be done in
finding clusters of widely varying morphology and other structures in mas-
sive data sets. The complexity and heterogeneity of astronomical data offers
further challenges. The structures are likely to be quite different from those
encountered in generic market-basket data mining: the strong physical con-
straints operative in astronomical data and good precision measurements
should result in concentrations along low dimensional (nonlinear) mani-
folds. Local linear embedding (Roweis & Saul 2000) and ISOMAP (Tenen-
baum et al. 2000) are two interesting recent developments along these lines
that may be relevant. Both of these exploit the fact that although nearest
neighbors are generically quite distant in high dimensions, they are not if
the points lie on relatively low dimensional manifolds. Thus other methods
based on nearest neighbors may turn out to be important, too.

How can rare objects be spotted? Can serendipity, so important in the
history of astronomy, be automated? This is not just a matter of identifying
outliers, although that’s important, too.

25.3.5 Time series analysis

The fascinating irregularly spaced time series found in astronomy have
have been a stimulus for time series analysis for a long time and challenges
remain. The large statistical literature on non-linear time series is rather
thin in compelling examples and scientifically plausible analyses and could
be enriched and stimulated by confronting such series as those of Miras
archived by the AAVSO—see the poster sessions of Foster, Hawkins, and
Mattei. Although not discussed in this meeting, I think that the large
collections of irregularly spaced time series, such as those of variable stars
gathered by micro-lensing surveys (Ferlet et al. 1997) pose methodological
challenges for time series. The challenges we have heard in this meeting go
beyond one dimensional time series to random fields. How to diagnose or
test for non-Gaussianity in the CMB is one example.

25.3.6 Empirical Bayes

Astronomers often do the same type of analysis repeatedly: sources are
separated from backgrounds, periods and light curves of variable stars are
fit, spectra of similar objects are measured. A basic intent of empirical
Bayes procedures (Carlin & Louis 2002) is to “borrow strength” across
objects rather than treating each object de novo. Large ensembles of similar
objects are being measured and astronomers are often more interested in
properties of the ensemble than in the individuals. When interested in
better estimating individuals, strength can be borrowed from the ensemble.
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The “empirical” in “empirical Bayes” refers to the fact that these proce-
dures attempt to estimate the prior distribution of the ensemble. Estimates
of individuals are then constructed using this prior. Suppose one has a noisy
measurement of an object of interest: Y = O+N , that a collection of tem-
plates, Ti, have been empirically constructed for such objects, and that the
templates have a priori probabilities P (Ti). Then an estimate of the object
of interest would be

E(O|Y ) =
∑

i TiP (Y |Ti)P (Ti)∑
i P (Y |Ti)P (Ti)

. (25.3)

To make these notions more concrete, consider an idealized version of the
problem of estimating a periodic function from noisy data, where the period
is effectively known. The function might be the light curve of a Cepheid,
as in the presentation of Berger et al. Suppose that there is a whole collec-
tion of Cepheid light curves of interest. For simplicity of notation, suppose
that there are n time points equally spaced over phase and corresponding
observations Y = (Y1, . . . , Yn). (For a more general setup see Rice & Wu
2001). Consider fitting the function as a Fourier series

f(x) =
∑

k

[Ak cos(2πkx) +Bk sin(2πkx)] (25.4)

where the series is truncated at some point (for simplicity, the mean is
taken to be 0). If the measurement errors are modeled as independent
with means zero and variances σ2

e , the ordinary least squares estimate of a
Fourier coefficient is

Âk =
1
n

n∑
j=1

Yj cos(2πkj/n). (25.5)

Taking the point of view that the light curve at hand is drawn from the
ensemble, one could estimate Ak by E(Ak|Y ), the computation of which
would involve the distribution of Ak over the ensemble. Alternatively, one
might consider the best linear approximation to this quantity. In a linear
empirical Bayes analysis, the variance parameters σ2

e and σ2
k are estimated

from the entire collection of light curves. The linear empirical Bayes esti-
mate of Ak is then

E(Ak|Y ) = Âk
nσ2

k

nσ2
k + σ2

e

. (25.6)

The ordinary least squares estimate is thus damped by the ratio of vari-
ances, so that high frequency terms with small variances (i.e. those that are
typically small) will not contribute much the the estimate of f(), especially
if n is small The amount of damping, or tapering, of the Fourier series is
determined empirically by the collection of curves at hand.
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25.3.7 Contemporary nonparametrics

There is a large literature on nonparametric function estimation: the point
of view of this area is that the parameter to be estimated is infinite dimen-
sional, typically a function. Wasserman et al. gave some examples in their
presentation. There has been extensive work on how to choose smoothing
parameters automatically.

There has been an explosion of research in high dimensional nonparamet-
ric function estimation, discrimination, and clustering, often referred to as
“machine learning” in the computer science literature. See the contribution
of Breiman to this meeting. Astronomers are generally aware of neural nets
and decision trees, but there have been other interesting recent develop-
ments, such as support vector machines, bagging, boosting, and graphical
models.

I would also like to note developments in semi-parametric estimation
(Bickel et al. 1993) in which one is interested in estimating both infinite
dimensional and scalar parameters. For example, the problem of estimating
the period light curve of a variable star can be viewed in this way—the light
curve is infinite dimensional and the period is a scalar parameter. See Hall
et al. (2000) for a detailed analysis.

25.3.8 Model selection

The recent statistical literature is marked by an increasingly explicit recog-
nition that models are approximate and not given a priori. Rather, there
is typically a subtle interplay between data analysis and a set of potential
models. Model selection and model averaging (George 2002) are active areas
of research in statistics that are likely to have an impact in astronomy. It is
interesting that in this meeting we heard about the use of model averaging
from two quite different perspectives, those of Berger and Breiman. (Of
course, the fundamental activity across the spectrum of statistical method-
ology is figuring out how to average effectively.)

25.3.9 Statistical computing

There have been recent interesting developments in statistical computing
which may well be useful for astronomers. We heard about ggobi from
Diane Cook. I recommend that astronomers also check out two open-source
projects: R (http://www.r-project.org/) and Omega (http://www.omega-
hat.org/). The computational demands posed by modern astronomy will
also hopefully act as an impetus for further developments in statistical
computing. Are we ready to compute on “the grid?”

This list is hardly exhaustive. For wider coverage see the recent collection
of very readable vignettes (Raftery et al. 2002) which covers a number of
areas of current research in statistics.
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In summary, the data revolution in modern astronomy offers a rich feast
for statisticians, of whom there are relatively few working in the area. It
is essential for statisticians to be open-minded, flexible, and creative since,
in the words of Leo Breiman, “To a man who only has a hammer, every
problem looks like a nail.” There are lots of problems out there, spread
over the entire statistical spectrum, and not many of them are best viewed
as nails.

25.4 Conclusion

Contributions of statistics to the analysis of astronomical data are not likely
to be limited to straight technology transfer. The discipline of statistics
thrives on being confronted with new problems and there are fundamen-
tal perspectives underlying statistical methodology that can hopefully be
brought to bear to address the exciting challenges of modern astronomy.

The most important and enduring contributions of statistics to astron-
omy, and of astronomy to statistics, are likely to flow from long, close
collaborations. It takes a long time for a statistician to appreciate the un-
derlying theory, the measurement process, the vocabulary, the contexts of
particular problems, what is really important to the science of astronomy,
and thus what statistical approaches will be most fruitful. Similarly it takes
a long time for an astronomer to understand the language of statistics and
the intuition and heuristics underlying contemporary statistical methods.
Establishing such collaboration is not easy, however: it takes a great deal
of time and patience, and time is scarce in our too-busy professional lives.

There is a strong basis for collaboration. The two disciplines have been
linked for centuries during which probabilistic ideas have been central to
astronomy. They continue to evolve in parallel: now both are confronting
the world of massive data sets. The institution of the National Virtual
Observatory (Brunner et al. 2001) will hopefully bring us closer together.
I hope that we also have more meetings like this one!
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An Astronomer’s Perspective
on SCMA III

Joseph Silk1

26.1 Introduction

This has been a remarkable conference. Statisticians and astronomers have
addressed each other and explored some of the current issues at the frontiers
of their respective fields. It is clear that the two communities have much
to learn from each other, and that now is an especially opportune time to
explore more extensive collaborations.

I am somewhat of a novice in statistics, and it has been a revelation
to hear the continuing vigorous and occasionally acrimonious debate be-
tween schools of statisticians that centers on rival methodologies. The only
comparable battle in physics is that between the rival interpreters of quan-
tum theory. Here the debate becomes especially shrill when it focuses on
Schrodinger’s cat which has a 50 percent probability of being alive or dead,
when exposed to a radioactive decay-induced trigger of poison gas. The
macroscopic world is unhappy with a zombie-like cat that is neither alive
nor dead, and this dilemma has led to a still-unresolved ontological and
metaphysical crisis in the interpretation of the quantum theory. I spent
restless nights at this meeting grappling with the discords between the fre-
quentists and the Bayesians. When I did succeed in sleeping, I had the
following dream.

A controlled experiment was being performed to elucidate the reactions
of a carefully selected representative group of statisticians and astronomers.
An image of a swan was flashed on a giant screen. The swan was white but
covered with large black spots. The audience was then interviewed on their
reactions.

The astronomers present divided into two groups. The theorists said: let
us adopt a model of a spherical swan. A gaussian-distributed field of ex-
panding black dots is added to the swan. The swan is now evolved forwards
in time. We conclude that swans are borne white and die black. The ob-
servers took a different tack. They were quite conservative. At least one side
of one swan has black spots, they said. We need a much larger sample. We

1Astrophysics, Oxford University
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will write a proposal to our funding agency to provide us with the resources
to conduct a full-multidimensional survey of all the swans in Pennsylvania.

The statisticians also divided into two groups. The frequentists concluded
that based on the one swan sample, there was at least a fifty percent prob-
ability that all swans had black spots. The Bayesians, on the other hand,
began with the prior that swans are white, since this confirmed to their
previous experience, and concluded that either this is a very sick swan,
or someone has been playing a joke by painting black spots on the swan.
Curiously, the one ornithologist in the audience was in complete agreement
with the Bayesians.

In fact there is a sociological analogy between the communities of statis-
ticians and astronomers. Astronomers divide into three types: observers,
theorists and data analysts. The observers also occasionally but too rarely
build instruments. The theorists further subdivide into fundamentalists and
phenomenologists. The data analysts are a relatively recent breed of theo-
rist who are having a difficult time in being accepted into the traditional
community of physics and astronomy departments, being neither fish nor
foul, not completely acceptable as either observer or theorist.

Similarly, statisticians divide into frequentists, for whom theory is rela-
tively unimportant or even abhorrent, and Bayesians, who begin by laying
down subjective priors that are essentially of theoretical or empirical ori-
gin. There are also the data analysts, who despair with the rival philoso-
phies, and adopt a hybrid approach. I cannot tell whether the latter class
of statisticians is meeting similar resistance in their own community as are
their astronomer counterparts, but I can assure them that the astronomical
community would welcome them with open arms.

There is another philosophical difference between the fields of astronomy
and statistics. To an astronomer, a statistician seeks the most efficient
method of joining up the dots in multidimensional parameter space. To a
statistician, the astronomer is diverted by his obsessions with the urge to
answer fundamental questions such as how and why the observed structures
originated and evolved. There is clearly fertile ground to be ploughed in
the terrain that separates the two communities.

26.2 Sociology

I classified the abstracts of papers presented at this meeting into the follow-
ing categories: galaxy surveys (23) predominated, followed by x-ray sources
(11) and stars (7). The cosmic microwave background radiation had 4, and
there were a half dozen that I classified as generic. The moral is clear:
statisticians are about 5 years behind the ”hot” areas that the astronomers
are currently developing. There is progress of course: if we had had this
meeting a decade ago, stars would have been the dominant category. One
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decade from now, the cosmic microwave background will be the dominant
field, but the more astute statisticians may wish to move more quickly.
They should jump now!

26.3 Highlights

I can best summarize some key points that emerged from the meeting by
quoting the proponents. Bayesians have to be careful about their choice
of priors. It is by no means obvious that, for example, a smooth prior is
suitable for spiky data, in which only rare spikes may actually be real. The
use of improper priors was summarised thus by Eric Kolaczyk: ”Garbage
in, garbage out.”

Astronomers historically have been obsessed by classification, from Charl-
es Messier onwards. But astronomers must not follow too closely the exam-
ple of the botanists, as Jeffery Scargle stressed in his talk: ”Classification
is not an end in itself.”

Galaxy clusters are a modern example of intensively studied astronomical
objects that are confusingly rich in morphology. The more wavelengths that
are studied, from the optical (galaxy counts and gravitational shear maps),
to x-ray and microwave (intracluster gas) and radio (high energy electrons
and intracluster magnetic fields), the more complex a picture emerges. Rien
van de Weygaert reminded us: ”don’t take any one cluster seriously.” And
when it came to structural analysis of clusters, substructure is prominent.
This means, as emphasised by Adrian Raftery, that counting the space
density of clusters is a non-trivial problem for the Bayesians: one has to
incorporate ”the peas versus the pod: priors on shape affect the cluster
density.”

26.4 Cosmic Microwave Background Radiation

Vast data sets are envisioned from future surveys of the cosmic microwave
sky. The science is quickly summarized. We are studying temperature fluc-
tuations on the sky. These are the fossil seeds of large-scale structure. The
universe was opaque for the first 100,000 years, during which the cosmic
blackbody radiation thermalized and inflation generated quantum fluc-
tuations on the macroscopic scales that characterize galaxies and large-
scale structures. Linear gravity amplified the fluctuations once the uni-
verse was matter-dominated, and gravitational instability generated the
observed structures during the ensuing transparent phase of the expan-
sion. Imprinted on the ”surface” of last scattering of the cosmic microwave
photons are the fossil fluctuations which later seeded structure formation.
Detection of these fluctuations is an immense challenge: the amplitude is
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only 0.001 percent of the 2.736 Kelvin cosmic blackbody radiation that
one observes as a weak all-sky glow in a terrestrial environment at 300
Kelvin, in competition with dominant atmospheric, solar system, galactic
and extragalactic backgrounds.

Satellites have provided all-sky maps that are essential for adequate sep-
aration of the foregrounds, beginning with the discovery of the fluctuations
by the COBE satellite in 1992 in an experiment that had some 6000 pixels.
Current data sets such as that of the BOOMERANG balloon experiment
have some 105 pixels with coverage of at most a few percent of the sky.
The near future will see release of all-sky data by the MAP satellite in Jan
2003 on some 107 pixels on the sky, to culminate with the Planck satellite,
to be launched in 2007 and with 108 pixels on the sky.

Such massive data sets require an unprecedented analysis effort. Map
analysis requires inversion of a correlation matrix, since the pixels are cor-
related on the sky, and the computing time scales as N3, where N is the
number of pixels. One has to work in at least a 10-dimensional data space
for extraction of the cosmological parameters that are the principal goal of
these experiments. Even here, the input prior is highly simplified. For ex-
ample a gaussian random field is adopted for the initial density fluctuations
as is a smooth power spectrum. The cosmological model imprints gaussian
ripples due to the effect of sound waves in the primordial baryonic plasma,
and these manifest themselves as a series of peaks and troughs. The prior
must necessarily be structured if one wants to optimize one’s input from
basic physics.

Non-gaussianity gets us further away from known models. Very few spe-
cific models are available that incorporate nongaussian initial conditions.
This is non-trivial: it is all very well to search for a lost dog, but how do we
locate a non-dog? Four of the posters were devoted to cosmic microwave
background radiation issues, and nongaussianity was a key theme. I draw
your attention to discussions of a neural net approach to the search for
patterns on the sky, and to detection algorithms based on wavelet decom-
position on the sphere.

To search for non-gaussianity, one needs to utilize information both on
the power spectrum and on the phases of the Fourier decomposition of
the sky map. In effect, one is looking for patterns on the sky. Consider the
following example of a non-gaussian pattern on the sky that is motivated by
the possible topology of the universe. Cosmology theory says nothing about
topology. Nor does quantum gravity address global issues such as topology.
Space is known to be approximately Euclidean, from determination of the
angular scale of the first peak in the cosmic microwave background at � =
210±15. The total density is inferred to be close to critical: Ω = 1.00±0.04,
and the universe is flat to within a few percent uncertainty.

The inferences for topology are remarkable. Naively, we approximate the
geometry of a flat universe by the 2-d analogy of an infinite sheet. In two
dimensions, there are five topologies for flat space: the sheet, cylinder, torus,
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Mobius strip and Klein bottle. In fact, in a flat 3-d universe there are 18
possible global topologies. Some are compact in only one direction, such as
the surface of a cylinder. Others are fully compact, such as the hypertorus.
In fact, only 10 of these allowed flat 3-d topologies are compact. Of these
10, only 6 are orientable.

Now orientability is a necessary condition for physical cosmology, as it
guarantees conservation of parity under time translation. The universe has
also been argued to be compact from considerations of quantum cosmology,
as might be required by invoking the probability of universe creation from
a principle of least action or of 3-space generation via higher dimensional
compactification. With a relatively limited number of motivated options,
one can begin to test the hypothesis of compactness via its signature in the
sky.

In a topologically small universe, light rays circumnavigate the universe,
so that ghost images are generated. More generally, light rays can take
different paths in different directions between any two points. This leads
to anisotropy patterns in the microwave sky as viewed on the surface of
last scattering of the photons. Consider the surface of a torus, the two-
dimensional analogue of one of the flat topologies. This is a compact surface
that is globally anisotropic, unlike an infinite sheet. A pattern on the sky
is inevitable even if the radius of the torus is large compared with the
horizon. There are a limited number of flat, compact topologies to explore.
Each induces a characteristic and distinct pattern on the microwave sky.
Pattern searches will require the high resolution of future experiments.
Sophisticated statistical techniques will be needed to pick out patterns
from the noise, both foreground and cosmological.

26.5 Large-scale structure

Analysis of galaxy surveys was the dominant theme of the posters at this
meeting. The aim is to discern the pattern of the evolution of the universe.
Structure develops inexorably with time, as correlations grow stronger be-
twen neighbouring fluctuations. As one looks back into the universe, one
should be able to distinguish, via the correlations, between the rival cos-
mological models. For example, in a low density universe, gravity is less
important at recent times than in a universe at critical density. Hence, for
example, the correlation length is expected to change less, as is the number
of rich clusters, with epoch as one surveys the universe back to a redshift
of 1 or 2.

The first question one might ask is whether gravity is necessary. Can
purely geometrical models account for large-scale structure? Fractal mod-
els have been tried, and they fail. We see homogeneity on a scale of 100
Mpc and beyond, in complete contradiction to a fractal universe of mean
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density zero, as explained at the meeting by Martinez. Another promis-
ing direction that merits exploration is that of Voronoi foam models for
the galaxy distribution. Van de Weygaert produced some impressive maps
of large-scale clustering of galaxies. The jury remains out however until
predictions of higher order correlations are forthcoming.

If the 3-point correlation of Voronoi foam matches what is observed, I
will be amazed. All indications are that the universe is assembled under
the action of gravity. Simulations demonstrate that gravity is capable of
reproducing the observed structure, and have had excellent success at ac-
counting for the data. All indications are that gravity is responsible for the
observed structure. To paraphrase one eminent Princeton cosmologist, if it
looks like a duck and quacks like a duck, it surely is a duck.

The results that have most stirred up cosmologists in recent years centre
on the observations of high redshift supernovae. At redshift unity, SNIa
are about 20 percent dimmer than expected if they have the same intrinsic
luminosities as their nearby counterparts. The only interpretation to date
has been that the universe is accelerating due to the current domination of
dark energy, usually interpreted as the cosmological constant.

In practice, the SNIa measure acceleration via the difference between
the mean density of accelerating dark energy ΩΛ and decelerating dark
matter Ωm. The observations require ΩΛ − Ωm ≈ 0.4. In practice, one
needs independent information to proceed further. Type Ia supernovae,
while excellent standard candles, are poorly understood in terms of physics.
Hence alternative probes of acceleration are important.

From large-scale structure surveys, one can infer Ωm, and thereby derive
the cosmological constant. One such approach was presented in the poster
by Matsubara and Szalay. Their idea is to use the 105 bright red galaxies
in the Sloan Digital Sky Survey to look at the differential evolution of the
clustering of galaxies to z ∼ 1. The cosmic microwave background provides
complementary information, since the curvature of space is the sum of ΩΛ

and Ωm. This has been measured, as already mentioned. The onus is then
on large-scale structure to come up with equally convincing evidence for
Ωm, so that one would have redundancy and presumably greater confidence
in the result.

One approaches this goal via the large redshift surveys. These provide
a three-dimensional probe of the universe. With precise redshifts, one can
map out the peculiar velocity field and thereby determine a combination of
Ωm and the amplitude of the power spectrum, Ω0.65

m σ8, where σ8 is the ratio
of the dark matter to luminous matter fluctuation variance, normalized to
a fiducial scale.

The difficulty one immediately encounters is that galaxies are complex
systems, whose fundamental properties and correlations are not well un-
derstood. One has to decide whether galaxies are indeed mass tracers. If
so, then what type of galaxy is most reliable? The clustering length is
empirically found to depend on galaxy luminosity, dwarfs being less clus-
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tered. Galaxy classification may be influenced by local parameters, includ-
ing age and gas content as well as morphology, and on non-local parameters
such as environment and distance. This means one has to work in a multi-
dimensional parameter space.

There are already known trends in the three-dimensional space of lu-
minosity, size and rotation velocity (for spirals) or velocity dispersion (for
ellipticals). Optimal projections lead to dispersions as low as 15 percent.
Clearly this is merely the tip of the iceberg. The existing correlations utilize
catalogues containing tens of thousands of galaxies. Surveys underway are
obtaining much larger samples: 250,000 for 2DF and 106 for SDSS out to
a redshift of 0.2. These surveys will have the spectral quality and depth
to probe a higher-dimensional parameter space than hitherto attempted.
Future surveys of 100,000 galaxies or more are imminent for the distant uni-
verse at z ∼ 1, so that evolution of galaxy properties will also be studied
in detail.

Hitherto, the large galaxy redshift surveys have mostly been restricted to
the optical wavelength band. Infrared surveys have typically include 10,000
galaxies to date. The optical SDSS of 106 galaxies will have a data volume of
0.2GB. However the VISTA telescope, under construction, will map the en-
tire Southern sky in the near infrared and have an anticipated data volume
of 10TB. Data visualization and data mining are areas where astronomers
will have much to learn from the statistics community in analyzing the
anticipated data flood.

26.6 Stars

While galaxies are the building blocks of the universe, stars are the indis-
pensable building blocks of galaxies. The nature of stars and their statistics
are reasonably well understood. However astrometric data, thanks to the
Hipparcos satellite, gives adequate coverage only of the solar vicinity, out
to 100 pc or so. This situation will change dramatically in 2010 when the
GAIA satellite will be launched. Over five years, GAIA will repeatedly ob-
serve a billion stars with 5µarc-second precision. GAIA will measure the
systemic and random components of star motions throughout the Milky
Way galaxy. GAIA will provide an unprecedented data resource. Armed
with precise measurements of the locations and motions of stars through-
out our galaxy, we will be able to reconstruct our past and predict our
future.

An important secondary project for GAIA will be the search for near–
Earth asteroids. These could potentially be life-threatening to the Earth.
Quick-look data from GAIA will provide an unexcelled means of locating
near–Earth asteroids and determining their orbits while they are still far
from the Earth. The data archives are immense. The GAIA data volume is
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100TB. Statisticians are needed now to bring in novel ways of addressing
this data mining challenge via applications to simulated data sets.

26.7 The future

Now is the time to prepare for the new confrontations posed by the astro-
nomical data anticipated over the next decade. The microwave background
maps hold clues to our origins, the large redshift surveys will shed light
on our evolution. Analysis requires not only immense dedicated compu-
tational power, but development of novel algorithms and statistical ap-
proaches. Multidimensional parameter space confronts us, and we have to
learn how to project this into digestible forms. Multiwavelength analysis is
essential for optimising our cosmological parameter extraction procedures.
For example, correlating the CMB and galaxy reshift surveys will remove
degeneracies that would otherwise plague our analysis.

New ideas are urgently needed. Several were presented at this meeting.
Non-parametric Bayesian modelling of data was described by Scargle, as
well as by Wasserman. New approaches to multicale methods were discussed
by Starck and Kolaczyk. New tools for visualizing multi-dimensional data
were presented by Cook. These are just a few of the ideas going the rounds.

What is also clear is that scalability is going to be an issue. For SCMA
IV, I suggest that the computer scientists be brought in, as they are best
equipped to show us how to surmount this important hurdle, an essen-
tial step before we plunge into some of the truly massive data sets that
astronomers can simulate now and are soon to appear. Astronomers are
proposing ever more grandiose data-taking devices. One under discussion
for the VLT will involve the data flow in one or two nights that is equivalent
to the entire five year SDSS data volume. The statistical issues that need
to be addressed involve visualization, compression, and mining of massive
data sets. Within a year of data taking, most data is released into the
public domain, so that the opportunity is there for all. The challenges are
immense, but so are the potential rewards. This is an opportune moment
for statisticians to be exploiting astronomers, and vice versa.
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Ensembles of Classifiers

D. Bazell1

27.1 Introduction

Neural networks and decision trees are the two most commonly used clas-
sification methods in astronomy. With both of these methods classification
is performed by presenting the algorithm with a training data set consist-
ing of a set of objects that have been previously labelled with a class. The
algorithm then tries to produce classifications of the training set objects
that agree with the predefined class labels. Once the algorithm classifica-
tions and the class labels agree to a certain level of accuracy the learning
process is halted and the internal state of the algorithm is saved. We call
this a classifier. New objects which have never been seen by the classifier
can be labelled using this classifier.

The neural network and decision tree approaches to morphological galaxy
classification that have been used to date all rely upon using a single clas-
sifier to predict the class of an unknown object. However, ensembles of
classifiers can be used to combine the predictions of several individual clas-
sifiers to produce a new classifier that often has lower classification error
than the individual constituents. In this paper we examine the creation
of ensembles using bootstrap aggregation [Breiman1996] of three types of
classifiers: neural networks trained with backpropagation, and two decision
tree induction algorithms.

27.2 Methods

An ensemble of classifiers can be implemented in a variety of ways. One is to
train several individual classifiers whose output decisions can be combined
(typically by voting or averaging) to allow classification of new inputs.
Bagging is one of the easiest ensemble methods to implement since it only
involves resampling of the original data. This algorithm creates the different
classifiers by training them on bootstrap replicates of the original training
set. Each classifier’s training set is created by randomly sampling, with
replacement, N examples from the original training set, where N is the

1Eureka Scientific, Inc.
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number of examples in the original training set. Some examples will appear
more than once in the bootstrap replicates while others will not appear at
all. When an individual classifier is trained, its overall error may be higher
than for a classifier trained on the original training set. However, because
the ensemble is created by voting the predictions of each classifier for each
test set example, if a plurality of the classifiers make the correct predictions
the ensemble will make the correct prediction. In this manner the voting
can overcome the increased overall error on the part of individual classifiers.

AdaBoosting [Freund and Schapire 1996] also starts by resampling the
data with replacement. However, each input example also has an assigned
weight, with all weights initally being uniform. After each training itera-
tion, AdaBoost looks at each example and determines if it was correctly
or incorrectly classified. If a given example was incorrectly classified, then
its weight is increased for the next iteration. This is effectively the same
as increasing the number of times this example is presented to the training
algorithm compared to the other examples. This reweighting and retrain-
ing takes place of a number of iterations, until the overall training error is
reduced below a preset threshold or the maximum number of iterations is
reached.

Both bagging and AdaBoosting can be applied to any training algorithm.
We have implemented a Perl script for each ensemble method that takes
the training algorithm as an input parameter and produces output files
in a common format for each algorithm. These scripts are available upon
request.

27.3 Results

We ran tests with two data sets created previously by [Naim et al. 1995]
and [Storrie-Lombardi et al. 1992] using three classifiers. Our tests using
bagging show that we can reduce the classification error by up to 16% for
decision tree classifiers but only a few percent for the neural network. The
results for AdaBoost were less spectacular, with only a 12% decrease in clas-
sification error. Preliminary results were reported in [Bazell and Aha 2001]
with a more detailed exposition in preparation.
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A Model for Brightest Galaxies
Using Extreme Value Statistics

S. P. Bhavsar1 and J. P. Bernstein

ABSTRACT We contend that neither a Normal nor a Gumbel distribution
describes the brightest cluster galaxy (BCG) magnitudes. A two-population
model fits recent data. This model has a physical basis.

28.1 BCG Magnitude Distributions

BCG magnitudes are highly uniform, with a dispersion of only 0.32 mag-
nitudes [4]. Are BCGs a single population, the statistical tail of ordinary
galaxies, or a class of special galaxies; or do they consist of two populations
comprising a mix of these [2]? We consider five models (A, B, C, D, and E)
that include both one-pop and two-pop hypotheses. One-pop models (like
A and B below) may have Gaussian or Gumbel distributions depending on
whether the BCGs are special or statistical extremes.

A : fsp(M) = fg =
1

σ
√

2π
e−

(M−Mg )2

2σ2 . (28.1)

B : fstat(M) = fG = aea(M−M∗)−ea(M−M∗)
, (28.2)

where the symbols have their usual meaning. For compactness M∗ =
MG + 0.577

a . For two-pop models [2], we consider models C, D, and E com-
prising the three possible combinations of fG and fg, where d represents
the fraction of clusters that contain both types of BCGs.

C : fGg(M) = d · [fg · IG + fG · Ig] + (1− d)fG (28.3)

D : fgg(M) = d · [fg2 · Ig1 + fg1 · Ig2] + (1− d)fg1 (28.4)

E : fGG(M) = d · [fG2 · IG1 + fG1 · IG2] + (1− d)fG1, (28.5)

where IG =
∫∞

M fG(M ′)dM ′ = F (M); and Ig =
∫∞

M fg(M ′)dM ′ = (1 ±
erf |M −Mg|)/2.

1Department of Physics and Astronomy, University of Kentucky
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28.2 Results and Conclusion

We used data from Lauer and Postman [5] to fit the models [3]. Figure
1 shows the results. Parameters were determined by maximum-likelihood.
The P values determined by the K-S test for rejection of models A, B, C,
D, E are 16.2%, 92.6%, 15.8%, 9.8% and 1.4%, respectively. We reject the
pure Gumbel (model B), the hypotheses that BCGs are statistical extremes.
Two-pop modelsD and E describe the data adequately, but model E stands
out as giving the best overall fit. A second population could evolve from
bright ordinary galaxies [1,6]. Model E particularly, has a physical basis.
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FIGURE 28.1. data and fits for the models, cumulative and histograms

When galaxies with an exponential luminosity function undergo a random
boost in magnitude, a Gumbel distribution results [3].
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New Statistical
Goodness-of-Fit Techniques in
Noisy Inhomogeneous
Regression Problems with an
Application to the Problem of
Recovering of the Luminosity
Density of the Milky Way from
Surface Brightness Data

Nicolai B. Bissantz1 and Axel Munk

ABSTRACT Fitting models to regression data is an important part of
astronomers everyday work. A common proceeding is based on the as-
sumption, that a parametric class of functions describes the data structure
sufficiently well. We present a new method which is applicable in noisy
versions of Fredholm integral equations of the first kind, and an associ-
ated goodness of fit measure, which works under the assumption that the
parametric model in question holds for the data. For this we suggest a
bootstrap algorithm which allows an approximation of the distribution of
the suggested test statistic.
Then we switch to the assumption that the model under consideration does
not hold, and present a method to compare parametric models under this
assumption. This second method is based on the same bootstrap algorithm
as the first method.
As an example we finally apply our methods to the problem of recovering
the luminosity density of the Milky Way from data of the DIRBE exper-
iment on board of the COBE satellite. We present statistical evidence for
flaring of the stellar disk inside the solar circle.
Details on our methods can be found in Bissantz & Munk 2001a, 2001b.
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Measuring the Galaxy Power
Spectrum with Multiresolution
Decomposition

Yaoquan Chu1, XiaoHu Yang, Long-Long
Feng, Li-Zhi Fang

The power spectrum is one of the most important statistical measures
to quantify the clustering features of large scale mass density distribu-
tion traced by galaxies. Observational data of galaxy redshift survey are
rapidly increasing in both quantity and quality, bringing new challenges
to data analysis. The standard method for power spectrum estimation is
Fourier decomposition of the density field in term of discrete plane wave
modes. Here we present an alternative method of measuring galaxy power
spectrum based on the multiresolution analysis using the discrete wavelet
transformation (DWT). Besides the technical advantages of the computa-
tional feasibility for data sets with large volume and complex geometry, the
DWT space-scale decomposition provides a physical insight into the clus-
tering behavior in phase space, which are hardly revealed using the Fourier
decomposition.

The DWT power spectrum estimator is constructed as following[1][2]. Let
δ(x) be the density fluctuations, the projection onto the multiresolution
space spanned by a wavelet basis {ψj,l(x)} gives the wavelet function coef-
ficients (WFCs) ε̃lj = 〈δ(x)|ψj,l(x)〉. The estimator of power on the j scale
is obtained by averaging over the 2j1+j2+j3 measurements in the disjoint
volume elements,

Pj =
1

2j1+j2+j3

∑
l

|ε̃lj|2

which is related to the Fourier power spectrum power by

Pj =
∑
n

Wj(n)P (n)

with the filter

Wj(n) =
3∏

i=1

1
2ji
|ψ̂(ni/2ji)|2

1Center for Astrophysics, University of Science and Technology of China
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The function ψ̂(n) is the Fourier transform of the basic wavelet ψ(x), where
n labels wavenumber by k = 2πn/L. Obviously, Pj represents band aver-
aged power spectrum in the logarithmic spacing of n. For a galaxy distri-
bution, the Poisson sampling effect should be corrected for by subtracting
the shot noise contribution.

The DWT estimator can provide two types of power spectra: (1) diagonal
power spectrum given by the powers on cubically symmetric modes (j1 =
j2 = j3 = j); (2) off-diagonal power spectrum given by the powers on other
modes, which are more flexible for dealing with complex survey geometry.

We applied the DWT power spectrum estimator to analyze the cata-
logues of the Las Campanas redshift survey (LCRS)[3]. To assess the ac-
curacy to which the DWT power spectrum is recovered from the LCRS,
we performed an analysis for mock LCRS samples extracted from N-body
simulation in the CDM family of models. We showed that (1) the slice-like
survey geometry in the LCRS does not affect the estimation of the DWT
power spectrum in off-diagonal modes. (2) the perturbation powers in the
peculiar velocity field which results in redshift distortion are approximately
scale-independent. (3) the difference between the diagonal and off-diagonal
DWT power spectrum could be employed for measuring the anisotropic
velocity fields in galaxy redshift surveys.

Moreover, we measured the DWT power spectrum in the six strips of
the LCRS, which is then compared with those from the SCDM, τCDM
and ΛCDM models including the effects of non-linear evolution of density
perturbations and redshift distortion. We estimated the one-dimensional
peculiar velocity dispersion σv and redshift distortion parameter β using
the least square fitting. It is found that, for instance, in the ΛCDM model,
β = 0.46 ± 0.06 and σv = 250 ± 72kms−1, which are comparable with
other estimations using different techniques. The similar results have been
found for the IRAS Point Source Catalog Redshift Survey (PSCz)[4]. To
account for the redshift distortion effect in DWT representation, we also
develop a method of analyzing cosmic velocity fields with a multiresolution
decomposition [5].

A full report of this series of works are in Yang et al., references [2]-[5].
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Finding Gamma-Ray Pulsars
with Sparse Bayes Blocks

A. Connors1 and A. Carramiñana

ABSTRACT Beamed radiation from rapidly spinning (periods ∼ 1 −
100ms), highly magnetized (∼ 1012 gauss fields) neutron stars, or pul-
sars, is notoriously difficult to find in γ-rays. First, one may have to wait
> 10 minutes between photons even with a large gamma-ray telescope
like CGRO-EGRET viewing a bright source like the Vela pulsar. Second,
these γ-ray light-curves (brightness versus time or phase) are very sharply
peaked. Current methods (Z2

n – [1, 2] and references therein) are carefully
studied and well understood but use Fourier components — a bad match
to this shape of light curve. Binning a light-curve into increasingly nar-
row bins then testing for flatness can introduce many free parameters and
hence lower detection thresholds. So, why not use a statistic that more
directly represents the sharp changes in a pulsar lightcurve? Why not let
the data themselves (plus any prior knowledge) set the optimal size of a
very few bins? This is what we have done. We test a modified ”Bayesian
Block” [3] method on simulated light-curves with a variety of signal–to–
noise–ratios. Preliminary results are encouraging, showing the ”Sparse-BB”
method more powerful for detecting very ”spiky” light-curves.

31.1 Introduction

Given any (class of) models, Bayesian Inference prescribes how to derive
the statistic with the best measure of all the information in the data. Con-
versely, any likelihood statistic can be thought of as embodying the infor-
mation in a class of models (e.g. Lomb-Scargle periodograms and Fourier
series; or Z2

n and n-component exponentiated Fourier series [4, 5, 6, 7]. In
this paper, we introduce a new method derived specifically for γ−ray pulsar
detection. The underlying model is extraordinarily simple: one (or a very
few) blocks of arbitrary width, phase, and rate (“Bayes Blocks”[3]).

The extremely coherent periodic signals characterizing pulsars (rotating
neutron stars with over the mass of the sun compressed into ∼10 km and
magnetic fields compressed to ∼ 1012−14× that of the Earth) have been

1Eureka Scientific



404 A. Connors and A. Carramiñana

detected at all wavelengths, with periods ranging from ms to seconds. The
massive, rapidly spinning fields of younger pulsars are thought to power
not only the most energetic photons (γ-rays), but also the most energetic
of the particles (cosmic rays) bathing the galaxy.

31.2 EGRET sources and γ-ray pulsars

Only a handful of pulsars have been detected in γ-rays, most by the EGRET
telescope on board of the Compton Gamma-Ray Observatory (CGRO). It
performed the first all-sky survey at photon energies above 100 MeV [8],
and the most complete database for γ-ray astronomy for years to come. Of
the 271 objects included in the 3rd EGRET catalog, five are identified with
radio pulsars, 93 with blazars (about a third with low-confidence), and 163
remain unidentified. The distribution of this unknown source population
indicates that most belong to the Milky Way [9]. Although most pulsars
are first found at radio wavelengths [8, 10, 11, 12]. the discovery that one of
the brightest (Geminga) is a nearby radio-quiet γ-ray loud pulsar [13, 14].
strongly suggests that others may be the same (e.g. [15]).

In all cases timing of the γ-ray data has been performed using Fourier
based analysis. It is conceivable that some tentative associations have not
been confirmed because the light curve has very narrow components. As
Z2

n analysis of EGRET data gets close to exhaustion, fresh methods to test
for narrow peaks in light curves might give new light to γ-ray pulsars.

31.3 Methods: Sparse Bayes Blocks

Ideally, intuitively, one seeks the simplest method that captures the signifi-
cance of one (or two) peaks (plus perhaps a bridge) of arbitrary narrowness
and height. But this ‘intuition’ is straightforward to quantify via change-
points: one (or a very few) ‘Bayes Blocks’ of arbitrary placement, width,
and height [3]. Once this class of models is specified, it is straightforward
to derive an optimum statistic (likelihood ratio) via Bayesian probability
theory. We restrict it to a very sparse number of ‘Bayes Blocks’ for speed,
simplicity, and greater detection power (see [16] for a discussion of the “Ock-
ham’s Razor” penalty built into Bayes Odds ratios). This new method we
propose, ‘Sparse Bayes Blocks’, then includes both the high resolution of
finely-binned epcoh–folding [17, 18] and the fewer (implicit) parameters of
Z2

n [2, 1]), in a fully Poisson way.
We step through the Bayesian procedure (data; null and interesting hy-

potheses; priors; posteriors; likelihood ratios) below (see [19] for details).
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31.3.1 Bayes Applied to Sparse bayes Blocks

Data. The data are intrinsically Poisson: lists of arrival times (plus ener-
gies, positions, data quality indicators, etc) measured by the instrument.
For pulsar (i.e. period) searches, each arrival time is carefully mapped back
to the geometric phase φ of the known rotating pulsar [1, 2].

Null hypothesis: Zero changepoints, H0 . For the null hypothesis
we assume the rate ro is constant. Hence the expected total number of
counts µ0 is given by: µ0 = rTOTTTOT , where TOT designates the total
instrumental livetime during the observattion.

Priors, 0. We used an exponential prior on the overall rate rT , using
the inverse of the expected average rate (from previous measurements) as
the scale factor β [22, 19].

Simplest Interesting hypothesis, H2 . The model rate rn is piecewise
constant. For a single block (i.e. two changepoints, φ1, φ2) the expected
counts µ(φ) in each are: µ(φ) = r1T1, φ ∈ (φ0, φ1]; = r0T0 otherwise.

Priors, I. We used individual exponential priors on the model rate for
each component (again with scale factor β the inverse of the previously
measured average rate). This is a fairly conservative assignment: equiva-
lent to testing for a new component. (In the next subsection we compare
it with a different prior: assuming beforehand that a source of this flux
exists, but that the shape of its (periodic) light-curve is unknown.) For the
changepoints, we used a prior π(φ) that is constant in phase (that is, one
that is invariant with respect to translations in phase): π(φn|I)dφn = dφn.

Posterior likelihoods, I. Now it is straightforward (if tedious) to ‘turn
the crank’ to obtain the posterior for the null and interesting hypothesis
(see [19] for explicit details). Marginalizing over the unknown rates and
taking their ratio produces a nice form for the Bayes likelihood ratio as a
function of changepoints (φ0, φ1):

Λ(φ0, φ1|H2,H0, I, {yi}) =
Γ[Y1 + 1]Γ[Y02 + 1]

Γ[YTOT + 1]

β(β + TTOT )(YT OT +1)

(β + T1)
(Y1+1)(β + T02)

(Y02+1)
.

This maps out the likelihood of the changepoints. To find global (or total)
odds O, or Bayes factor, ofH2 (one peak, two changepoints) versusH0 (flat,
no changepoints) we marginalize (i.e. numerically integrate) the expression
above over all changepoints (φ0, φ1):

O({yi}) | H2,H0, I) =
∫

dφ1dφ2Λ(φ0, φ1 | H2,H0, I, {yi}).

Priors, II. This first result has a dependence on the prior parameter
β (the inverse of the average rate determined from prior measurements).
This is not the case when the problem can be formulated as a question of
unknown fractional shapes rather than an unknown extra component.

Rephrasing the interesting hypothesis H2: Let the total rate be rT .
The fraction of the total counts in the peak is f1, while the fraction outside
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the peak is f02, with constraint f1 + f02 = 1. The expected number of
counts in each time (or phase) bin δti is then:

ri = rTTTOT δti
(
f1/T1

)
, for φi ∈ (φ0, φ1]; = rTTTOT δti

(
f02/T02

)
otherwise.

As before T1 and T02 represent the livetimes accumulated in the peak and
background sections, respectively.

Rephrasing the priors. The prior on the total rate has the same form
as before: π(rT | I)drT = e(−βT rT )βT drT . However the prior on the
fractional rates is new. It is uniform on [0, 1] with the constraint that both
sum to unity: p(f1|I)df1 = df1, p(f1|I)df1 = df1; with f1 + f02 = 1.

Alternate Posterior Likelihoods. Marginalizing and taking a ratio
gives our second likelihood ratio:

Λ(φ0, φ1 | H2, I, {yi}) =
TTOT

YT OT

T1
Y1T02

Y02

Γ[Y1 + 1]Γ[Y02 + 1]
Γ[YTOT + 2]

.

Notice any dependence on the scale parameter β for the prior on the flux
has cancelled out. Notice, too, how similar this is to the form in [18] save
that the bins can now have arbitrary width and placement.

One can derive the equivalent marginalized likelihood ratio for three
changepoints (and higher):

Λ(φ0, φ1 | H3, I, {yi}) =
TTOT

YT OT

T1
Y1T2

Y2T03
Y03

Γ[Y1 + 1]Γ[Y2 + 1]Γ[Y03 + 1]
Γ[YTOT + 3]

.

31.4 Results on Monte Carlo Data

In tables 1–3, we list the results of our tests on Monte Carlo data. We
simulated three kinds of data: 1) flat background; 2) a Vela pulsar–shaped
light–curve, with CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as a
template; and 3) a spike in a single 5×10−4 wide bin. We approximated the
signal to noise ratios one would expect from CGRO/EGRET observations.
We analyzed each of these simulated datasets with three methods: 1) the
current high energy standard, Z2

n with n = 6; 2) The Bayesian epoch—
folding method of GL92; and 3) our new statistic using 1–3 “Bayes Blocks”,
with both versions of prior (exponential, and similar to GL92). We note
‘GL92’ would have performed better had we used a much larger cutoff for
m (number of bins), rather than stopping at the default m = 12.

Notice that both “One BB’ methods outperformed the classical method
on the “single spike” pulse–profiles, but not on the double–peaked 100 MeV
Vela light-curve. Parametrizing the model with an overall rate and shape
parameters improved the logOdds throughout. Indeed, on Vela the “Three
BB” statistic appeared to be roughly as good as Z2

6 .
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Monte CLASSIC — Z2
6 BAYES — “Sparse BB” GL92

Carlo − log10 log10 log10 log10 log10 log10

Cts n=6 Prob O2,E O2,GL O3,GL O4,GL Odds

134 393.7 76.1 96.6 174. 171. 172. 32.1
74 195.8 34.6 41.2 93.1 91.7 92.3 14.2
32 102.4 15.7 12.9 39.7 38.6 39.0 6.53
13 32.3 2.91 0.44 9.2 8.5 8.5 0.65

TABLE 31.1. Preliminary Monte Carlo Results: Single Spike. “CLASSIC” is clas-
sical probability (frequency of occurence) of the null hypothesis, rather than a ratio
of the probabilities of the null and interesting hypotheses, as are the others. ‘E’
in O2,E stands for our first choice of parametrization, with an exponential prior
on each separate segment. ‘GL’ stands for the second parametrization, similar
to that from [18]; here, ‘GL92’. The number tells the number of changepoints
used in the model (two, three, or four). GL92 Caclulations provided by P. Free-
man, private communication; calculated for up to m = 12 bins. ”Vela” means
CGRO/EGRET 100 MeV - 10 GeV Obs 00 data used as “template” for source
shape.

Monte CLASSIC — Z2
6 BAYES — “Sparse BB” GL92

Carlo − log10 log10 log10 log10 log10 log10

Cts n=6 Prob O2,E O2,GL O3,GL O4,GL Odds

561 467.5 91.8 52.4 52.2 70.0 85.2 77.6
277 279.3 52.0 29.1 28.9 41.1 50.0 44.3
138 165.5 28.4 16.2 16.1 26.6 32.1 23.0
72 73.8 10.21 5.65 5.42 7.4 9.9 7.40

TABLE 31.2. Preliminary Monte Carlo Results: CGRO/EGRET Vela. See notes
for Table 31.1.

Monte CLASSIC — Z2
6 BAYES — “Sparse BB” GL92

Carlo − log10 log10 log10 log10 log10 log10

Cts n=6 Prob O2,E O2,GL O3,GL O4,GL Odds

538 14.9 0.61 -0.431 -0.91 -0.06 0.9 -1.92
258 13.4 0.47 -0.453 -0.91 -0.3 0.5 -1.79
136 9.4 0.17 -0.445 -0.89 -0.5 -0.01 -1.78
71 10.1 0.22 -0.0046 -0.40 0.04 0.4 -0.95

TABLE 31.3. Preliminary Monte Carlo Results: flat background (null). See notes
for Table 31.1.
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31.5 Prospects and Conclusions

We found this preliminary test of the concept very encouraging. We look
forward to applying it to actual data. The possibility of being sensitive to
different kinds of light-curves could be very interesting.
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Analysis of the Fractal
Structure of the Horsehead
Nebula

Srabani Datta1

32.1 Introduction
The Horsehead Nebula is 2 x 2 deg in size at a distance of 450 kpc, centered
at 5h 40m 59.0s , 50 27’ 29.99”. The Horsehead Nebula was studied in the
optical wavelengths using the Hα (6560 A).

The nebula is found to be evolving with a virial mass of 35 M� and radius
0.17 pc with average density 3 x 104 / cm 3. Kramer et. al. (1996) have
reported that HH objects , IR point sources, condensations in NH3 and 13

CO are found within B 33. 13 CO emssion spectra show that a clump exists
in the centre of the Horsehead of radius 0.22 pc and mass 95.4 M�, average
density 2 x 103 / cm3 , column density N(H2) / ∆ v approximately 1.3 x
1021 / cm2 km/s−1. These values imply that B 33 is in virial equilibrium.

32.2 Method
Analysis of B33 consists of estimating the fractal dimensions of the main
head and trunk structure (fig.1 of ([1]). To do this, B 33 is considered as
a non-empty compact set of a metric space ([3]). Then the Kolmogorov
dimension ( also known as Minkowski dimension ) of B33 is defined it’s di-
mension. However, since such a definition is difficult for practical measure-
ment, an alternative dimension called the grid dimension or box counting
dimension is used ([3]).

The grid dimension is equivalent to the Kolmogorov dimension since B33
is a non-empty set. The grid dimension of B 33 was measured using an au-
tomated fractal dimension analysis software , Benoit 1.3, procured from
Trusoft International Inc., St. Petersburg, USA. Benoit has been reviewed
in Science ( 1999, vol. 285, 1228). For the analysis, a set of ten measure-
ments were taken ([1]). Normality of the sample populations were tested
by the Shapiro-Wilkes test ([8]).The value of W is 0.01065 and so the pop-
ulation is normal. Then the Students’s t test of significance was applied
to the sample population to test for their deviation from the value of the
dimension for a Euclidean shape ( dimension 1 ). A further test was made

1Department of Applied Mathematics, University of Calcutta
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for the fluctuations of the cloud dimension values from that of the Julia set
(1.679594 ).

32.3 Discussion
The structure of molecular clouds have been observed to follow a power-
law relation ([7] ;[2]; [9]). Kramer et.al. ([5] ) carried out an analysis on the
images of the Orion B region, among others, using automated software and
found that the clump mass spectra was consistent with a power-law, dN/dM
α M −α , with α =3D 1.72± 0.09, M being the mass of the clump and N
is the number of clumps with connection between the power-law index of
the above, as also the fact that the region studied is around the Horsehead
nebula, it is significant that it’s observed dimension(1.6965725 ) is within
the error limits of Kramer et. al. ([5] ). As the Horsehead is physically
attached to it’s parent, it implies that the index applies to it as well and so
it can be postulated that the fractal dimension of the parent cloud is also
1.6965725. Results also show that the dimension of the Horsehead is not
significantly different from that of the Julia set and so it can be assumed
that the structure of the Horsehead is identical to that of the Julia set. This
assumption has consequences for the dynamics of cloud formation ([1]).
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On the Statistics of the
Gravitational Field

A. Del Popolo1

ABSTRACT In this paper we extend Chandrasekhar and von Neumann’s
analysis of the statistics of the gravitational field to systems in which par-
ticles (e.g. stars, galaxies) are not homogeneously distributed. We derive a
distribution function W (F, dF/dt) giving the joint probability that a test
particle is subject to a force F and an associated rate of change of F given
by dF/dt. We calculate the first moment of dF/dt to study the effects of
inhomogeneity on dynamical friction.

33.1 Introduction

The study of the statistics of the fluctuating gravitational force in infinite
homogeneous systems was pioneered by Chandrasekhar & von Neumann in
two classical papers (Chandrasekhar & von Neumann 1942, 1943 hereafter
CN43). The analysis of the fluctuating gravitational field, developed by the
quoted authors, was formulated by means of a statistical treatment in the
case of uniform systems, and with no correlations.

Two distributions are fundamental for the description of the fluctuating
gravitational field:

1. W (F) which gives the probability that a test star is subject to a force
F in the range F, F+ dF;

2. W (F, f) which gives the joint probability that the star experiences a
force F and a rate of change f, where f = dF/dt.

From a pure theoretical ground we expect that inhomogeneity affects all the
aspects of the fluctuating gravitational field (Antonuccio & Colafrancesco
1994; Del Popolo 1996a, b; Del Popolo & Gambera 1998).

1Catania Astrophysical Observatory
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33.2 W (F, f) and f in inhomogeneous systems

Assuming that the system density is described by a power law of index p,
the expression of W (F, f) is given following Markoff’s method by (CN43):

W (F, f) =
1

64π6

∫ ∞

0

∫ ∞

0

A(k,Σ) ·

{exp [−i(kΦ + ΣΨ)]} dkdΣ (33.1)

A lengthy calculation leads us (see Del Popolo & Gambera 1998 for a
derivation and the meaning of symbols) to find the function A(k,Σ):

A(k,Σ) = e−ãk
3−p
2 {1− igp(k,Σ)

+ b̃k
−(3+p)

2 ] · [Q(Σ) + kR(Σ)]} (33.2)

This last equation introduced into Eq. (33.1) solves the problem of finding
the distributionW (F, f) and makes it possible to find the moments of f that
give information regarding the dynamical friction. Using this last expression
for A(k,Σ) and performing a calculation similar to that by CN43 the first
moment of f is given by:

f = −
(

1
2

) 3
3−p

·A(p) · B(p)
p

3−p

·α
3

3−pGML(β)

πH(β)β
2−p
2

·
[
v − 3F · v

|F|2 ·F
]

(33.3)

where

L(β) = 6
∫ ∞

0

[
e(x/β)

(3−p)
2

] [
sinx

x(2−p)/2
− cosx
xp/2

]
dx

− 2
∫ ∞

0

[
e(x/β)

(3−p)
2

]
· sinx
x(p−2)/2

dx (33.4)

As shown by Eq. (33.3), in a inhomogeneous system, differently from ho-
mogeneous ones, f is a function of the inhomogeneity parameter p.

At this point we may show how dynamical friction changes due to inho-
mogeneity. From Eq. (33.3) we see that dF

dt differs from that obtained in
homogeneous system only for the presence of a dependence on the inhomo-
geneity parameter p. If we divide Eq. (33.3) for the correspondent of CN43
we obtain:(

dF
dt

)
Inh.(

dF
dt

)
Hom.

= −
(

1
2

) 6−p
3−p

· 3α
3

3−pL(β)B(p)
p

3−p ·A(p)

n · π2H(β)B(β)β
2−p
2

(33.5)
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This last equation is an increasing function of p. This means that for in-
creasing values of p the star suffers an even greater amount of acceleration
in the direction −v (when v · F ≤ 0) than in the direction +v (when
v · F ≥ 0), with respect to the homogeneous case. This is due to the fact
that the difference between the amplitude of the decelerating impulses and
the accelerating ones is, as in homogeneous systems, statistically negative,
but now larger, being the scale factor greater. This finally means that, for
a given value of n, the dynamical friction increases with increasing inhomo-
geneity in the space distribution of stars. In addition, by increasing n the
dynamical friction increases, just like in the homogeneous systems, but the
increase is larger than the linear increase observed in homogeneous ones.
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Cross-identification of Very
Large Catalogues

S. Derriere1, F. Ochsenbein, D. Egret

ABSTRACT Modern astronomy has entered the era of very large cata-
logues, gathering information for over 108 sources. Dedicated methods have
been developed at the CDS to handle the huge amounts of data involved:
powerful lossless compression, keeping direct access to the data on the basis
of celestial position, allow fast queries on those very large catalogues.
We present the use of these very large datasets in the context of a data min-
ing project undertaken by CDS and ESO. The challenge of cross-matching
very large catalogues with other data sets is discussed. The question of like-
lihood of cross-identifications, using a statistical approach for large samples,
is also addressed.

34.1 Accessing very large catalogues

Very large catalogues (containing over 108 objects) represent huge amounts
of data if stored in ASCII tables. In order to handle these large volumes,
dedicated tools have been developed at CDS [1].

Reducing I/O (with a lossless binary compression scheme) and keeping
direct access to relevant data for positional requests (by indexing com-
pressed data on celestial positions) allow fast queries.

Those very large catalogues are fully integrated in CDS services such
as VizieR or Aladin (and are also used by OASIS). Various standardized
output (including XML-Astrores [3]) are available.

Available very large catalogues include USNO A2.0, UCAC1, GSC 2.2
and the current DENIS and 2MASS releases. The average query time is a
few µs per source (on the CDS server).

34.2 Cross identification

There is a strong interest in performing cross-matching between catalogues
of sources observed at various epochs and wavelengths, as well as with

1Observatoire Astronomique de Strasbourg
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user’s own data.
ESO and CDS have been developing data-mining tools to access and

combine the data available in those two Centers (ESO-CDS Data Mining
Project, [4]). For all catalogues in the VizieR catalogue service (nearly 105

columns in August 2001), the contents of heterogeneous datasets is precisely
described by meta-data, attached to each column of a catalogue, and named
UCD’s (Unified Content Descriptor).

In a first step, a prototype positional cross-correlator was developed for
cross-matching VizieR catalogues, or user’s data. Using the UCD structure,
cross-matching by criteria other than position will be made possible soon.

34.3 Statistical approach

For very large catalogues, the task of cross-identifications must be auto-
mated, with statistical validation of the associations, as it is no longer
possible to perform identifications “by eye”.

Considering the case of positional association between two catalogues,
one can build, for the first catalogue, the distribution of distances to the
nearest neighbor in the second catalogue. Under simple assumptions (source
density locally constant, gaussian errors on position), it is possible to pre-
cisely fit this histogram with a statistical distribution law, and to derive,
for each source, a likelihood that it has been properly associated [2].

This statistical validation will serve forthcoming cross-identification tools
at CDS. With the use of meta-data such as UCD’s for multi-criteria cross-
matching, this should be an element of the upcoming Virtual Observatory.
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Minimal Spanning Tree
Technique

A. Doroshkevich1

ABSTRACT The application of the Minimal Spanning Three technique
to the description of large scale galaxy distribution shows that it can be
roughly described as a network of high density 1D filaments and 2D wall-
like condensations.

35.1 Minimal Spanning Tree

The MST is an unique network associated with a given point sample and
connects all points of the sample to a tree in a special and unique manner
which minimizes the full length of the tree. Cosmological implications of
this technique were firstly discussed in [1], [2], and recently in [3].

The probability distribution function of MST edge lengths, (PDF MST),
WMST (l), depend on the correlation functions (or cumulants) of all orders.
For larger point separations, however, when correlations become small and
the cumulants tend to constants, the Poisson-like point distribution can be
expected and the PDF MST characterizes the geometry of a point distri-
bution. For the 1D and 2D Poissonian distributions analytical expressions
for the PDF MST [4] are:

WMST (l) =
1
〈l〉e

−l/〈l〉, WMST (l) = 2
l

〈l2〉e
−(l2/〈l2〉). (1)

The PDFs MST for 1D, 2D and 3D Poissonian samples are plotted in
Figure 35.1 together with fits (1). For 3D Poissonian point distribution the
cutoff of the PDF MST at l ∼ 2〈l〉 decribes the percolation process.

The PDFs MST plotted in Figure 35.2 for the SDSS catalogue is well
fitted by the superposition of Rayleigh and exponential functions. This
fact indicates that this distribution can be described as a network of 1D
filaments and 2D sheets (or walls).

Basically, the MST contains within it all ‘friends-of-friends’ cluster cata-
logues for all linking lengths. The set of clusters for a given linking length is
extracted by the process of separating the MST – i.e., removing any edges

1Theoretical Astrophysics Center, Copenhagen
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FIGURE 35.1. The PDFs MST for 1D, 2D and 3D Poissonian point distributions.
Fits (1) (top and middle panels) and W ∝ l2 exp(−l3/〈l3〉) (bottom panel) are
plotted by solid lines.

FIGURE 35.2. The PDFs MST for south (top panel) and north (bottom panel)
samples of the SDSS. Rayleigh and exponential fits (1) are plotted by long dashed
and dashed lines.

from the MST whose length exceeds that linking length. This approach
allows to separate wall-like high density and low density regions which are
occupied by filaments and poorer clusters.

The morphology of separate clusters can also be characterized by a ratio
of the full length of tree, Lsum, builded for each cluster with the length
of its trunk, Ltr, what is the maximal path of the tree. Evidently, for a
filamentary-like cluster this ratio ε = Ltr/Lsum ∼1 can be expected while
for walls a value ε�1 is more typical.
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A Statistical Chromatic Study
of Nearby Galaxies

Michel Fioc1

The synthesis of the spectral energy distribution (sed) of nearby galaxies
puts constraints on their stellar populations, age, metallicity and dust con-
tent, but suffers from degeneracies. To break these degeneracies, previous
studies in the optical must be extended to the infrared.

In the near-infrared (nir), most observations are obtained in small aper-
tures and are not comparable to optical data because of the blue-outwards
color gradient. Fioc & Rocca-Volmerange (1999) solved this problem by
building magnitude vs. aperture growth curves. Using statistical estima-
tors taking into account the intrinsic scatter of colors within one given
type, they showed that

1. total optical-to-nir colors are significantly bluer than the small-aper-
ture colors of Aaronson (1978);

2. they follow a well-defined sequence as a function of type;

3. the dependence of colors on inclination is an efficient tool to deter-
minate the optical depth and the dust content of galaxies;

4. the color-magnitude relation (cmr) of elliptical galaxies – a major
constraint on galaxy formation models – is nearly flat, in contra-
diction with previous studies (Bower et al. 1992) based on aperture
colors and thus biased by the small-aperture–color-gradient problem.
The cmr is also strongly dependent on the morphological type; so,
both the mass and the type characterize the star formation history.

This work is currently extended to the mid- and far-infrared (mfir) us-
ing iras data (Fioc & Dwek, in prep.). To avoid the bias of ir-selected
samples towards starbursts and active galaxies, “normal” galaxies were
selected from the leda optical database (Paturel et al. 1997) and their
ir counterparts were identified in the Faint Source Survey (Moshir et al.
1992). Because many galaxies are not detected in the ir, survival analysis
techniques (Feigelson & Nelson 1985) have been used to compute standard

1Institut d’Astrophysique de Paris
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FIGURE 36.1. Template seds as a function of type.

mfir-to-optical flux ratios as a function of morphological type. An impor-
tant result is that, despite a stronger and harder radiation field in later
types, the ratios peak for Sbc (Milky Way-like) galaxies, indicating that
early-type spirals contain more dust than late-type ones and irregulars.

Template optical-to-ir seds (see Fig. 36.1) derived from this work will
be analyzed with the spectral evolution model pégase (Fioc & Rocca-
Volmerange 1997) to derive the star formation history of normal galaxies.
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Detection of Non-Gaussianity
on the Sphere Using Spherical
Wavelets

J. Gallegos1, E. Mart́ınez-González,
F. Argüeso, L. Cayón and J. L. Sanz

ABSTRACT We present results showing the efficiency of the spheri-
cal Mexican Hat wavelet in detecting non-Gaussian CMB features on the
sphere. We compare its performance with that of the spherical Haar wavelet
for two families of non-Gaussian fields, both generated using the Edge-
worth expansion to introduce skewness and kurtosis respectively. Analyz-
ing the skewness and kurtosis of the wavelet coefficients in contrast to
Gaussian simulations, the Mexican Hat is more efficient in detecting non-
Gaussianity than the spherical Haar wavelet for all the different levels of
non-Gaussianity introduced. The Mexican Hat can detect levels of the skew-
ness and kurtosis of ≈ 1% for 33′ resolution. These results are relevant to
test the Gaussian character of the CMB data and therefore the standard
inflationary scenario.

37.1 The Spherical Mexican Hat Wavelet for
Non-Gaussianity analysis

Wavelets have demonstrated to be a very useful tool for data analysis due
to its space-frequency localization. Recently the Spherical Haar Wavelet,
SHW, (Barreiro et al. 2000) and the Spherical Mexican Hat Wavelet, SMHW,
(Cayón et al. 2001) have been used to test the non-Gaussianity of the
COBE-DMR data. In this work we compare the performance of the two
spherical wavelet bases (SHW and SMH) proposed for discriminating be-
tween Gaussian (e.g. Standard Inflation) and non-Gaussian models.

The non-Gaussian simulations have been obtained by perturbations of a
Gaussian distribution using the Edgeworth expansion. We generate CMB
maps from the Gaussian and non-Gaussian distributions, and convolve
them with a 33′ beam. In Figure 37.1, we show the deviations from Gaus-
sianity for two non-Gaussian models for the first five resolution levels of

1Instituto de Fisica de Cantabria
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TABLE 37.1. Power of the Fisher discriminant at 1% significance level

Moment SMHW SHW Temperature

×10−2 P(%) P(%) P(%)
0.9(2.4) 66.8 1.51 2.51
1.6(2.3) 100 7.09 4.67

SKEWNESS 4.6(2.4) 100 36.12 36.85
6.9(2.4) 100 78.46 73.60
0.3(2.6) 15.35 3.00 1.42
0.8(2.7) 86.89 9.00 3.40

KURTOSIS 1.1(2.7) 98.10 16.11 4.90
1.4(2.6) 99.90 28.43 3.50
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FIGURE 37.1. Comparison of Spherical Mexican Hat wavelet (black circle) and
the Spherical Haar Wavelet details. Each point represents the number of sigmas
deviated from the Gaussian model.

the wavelets. It is clear that the performance of the SMHW is much better
than that of the SHW. The Fisher discriminant t have been applied to
distinguish between the non-Gaussian and Gaussian models; its power p is
presented in Table 37.1, constructed from the skewness and kurtosis of the
SMHW, SHW and temperature. For a more complete description of the
method and results see Mart́ınez-González et al. 2001.

Barreiro, R.B., Hobson, M.P., Lasenby, A.N, Banday, A.J., Górski, K.M.
& Hinshaw, G. 2000, MNRAS, 318, 475
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Characterising Anomalous
Transport in Accretion Disks
from X-ray Observations

J. Greenhough1, S. C. Chapman, S. Chaty,
R. O. Dendy & G. Rowlands

ABSTRACT We examine the time variation of the total X-ray flux from
three sources and find that the signal from the Crab (non-accreting) is
uncorrelated, the Cygnus X-1 signal is correlated on timescales up to three
years, and in the GRS1915+105 signal correlation may extend to only a few
days. The method we use also quantifies the distributions of fluctuations
and hence constrains turbulence/instability models of accretion disks.

38.1 Introduction and technique

Non-Gaussianity and non-trivial temporal scaling together are strong indi-
cations of correlated processes such as turbulence (Bohr 1998). Applying
the differencing and rescaling technique explained below to RXTE data2,
we show how trivial scaling of near-Gaussian fluctuations in the Crab X-
ray signal – evidence of diffusive transport – contrasts with non-trivial
scaling of non-Gaussian fluctuations in the X-ray signals from Cygnus X-1
and GRS1915+105. The functional forms of these fluctuations can then be
used to constrain turbulence/instability models of the accretion disks.

From the raw time-series y we form a set of differenced series Z for
a range of time-lags τ , and thence a set of probability density functions
(PDFs) P (Z, τ). If these PDFs belong to a stable distribution, rescaling
the axes by a single parameter α collapses them onto one curve whose
functional form is characterised by α. For a full discussion of this technique
see Greenhough et al. (2001).

38.2 Results and conclusions

Figure 38.1 shows the result of differencing and rescaling the Cygnus X-
1 time-series. We find the PDFs of the differenced Crab data are near-

1University of Warick
2http://xte.mit.edu/XTE/asmlc/ASM.html
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FIGURE 38.1. Unscaled (left) and rescaled (right) PDFs of differenced time-series
for Cygnus X-1, 1996 Sep. – 1999 Dec. (mean timestep 77 minutes); dashed line
Gaussian. τ in half-integer powers of timesteps to maximum 104; α ≈ 8.
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FIGURE 38.2. Rescaled PDFs of differenced time-series for GRS1915+105, 1996
Feb. – 2001 Mar. (mean timestep 96 minutes); dashed line Gaussian. Left: τ
in half-integer powers of timesteps to maximum 104. Right: τ in single integer
timesteps to maximum 101.5; α ≈ 6.

Gaussian and independent of τ , whereas for GRS1915+105 the PDFs rescale
approximately for τ up to only a few days as seen in Fig. 38.2. Thus we
have evidence that the two accreting objects display a degree of correlation
in their X-ray time-series, which is absent from the nonaccreting Crab.
This is a quantitative, observational, and model-independent measure of
anomalous transport in accretion disks.

References:
Bohr, T. et al. 1998, Dynamical Systems Approach to Turbulence (Cam-

bridge)
Greenhough, J. et al. 2001, astro-ph/0107074
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A Bayesian Analysis of the
Radio Binary LS I +61◦303

P. C. Gregory1

ABSTRACT Bayesian hypothesis testing and parameter estimation has
played a central role in deciphering the complex radio properties of a re-
markable radio emitting binary star. We briefly summarize the steps and
present a recent confirmation of our earlier conclusions based on more ex-
tensive data.

39.1 Introduction

The luminous, massive X-ray binary, LS I +61◦303 is remarkable for its
periodic radio outbursts every 26.496 days. The optical, infrared, X-ray and
γ-ray properties indicate the presence of a neutron star in a highly eccentric
orbit, embedded within an equatorial wind from a rapidly rotating massive
star of spectral class Be. Orbital variations in wind accretion by the neutron
star are thought to be responsible for the periodic radio emission. A 23 year
time series of radio measurements exists for this object.

In 1998, armed with 21 years of data, we carried out two sophisticated
Bayesian hypothesis testing studies (Gregory 1999, Gregory et al. 1999)
of competing models to account for the observed variability (time scale
of years) in both the peak flux density and phase of the outbursts. Only
the phase behavior is discussed here. The outburst phase is derived from
the time of the outburst peak and the assumed orbital period (P ), and
expressed as a timing residual in days. The 45 outburst timing residuals,
available at the time of the 1998 study, are shown in figure 39.1(a), based
on an orbital period of 26.496 days.

The four hypotheses considered are indicated in table 39.1. The outburst
phase is dependent on the assumed value of P , which is unknown indepen-
dent of the radio data, so P was itself treated as a parameter in each of
the four models. Model H4 assumed a periodic modulation of the outburst
phase and we employed a special version of the Bayesian GL method (Gre-
gory and Loredo 1992) applicable to the case where the noise sampling

1Department of Physics and Astronomy, University of British Columbia
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distribution is independent Gaussian (Gregory 1999). The GL method ad-
dresses the problem of the detection and characterization of a periodic
signal in a time series when we have no specific prior knowledge of the
existence of such a signal or of its characteristics, including shape.

TABLE 39.1. Hypothesis Space

Hypotheses Odds Ratio
H1 Outburst times are consistent with a single period P . 1

The timing residuals are assumed to be independent
Gaussian random with an unknown sigma.

H2 Sudden period change from PA to PB sometime during the 5.2 × 107

data gap between day ∼ 5500 − 6000) in figure 1(a),
just prior to start of Green Bank monitoring program.

H3 Outburst times are consistent with a single period P 100

and a period derivative Ṗ .
H4 Single period P for all outbursts plus a periodic 1.4 × 1011

modulation (P2) of the timing residuals of unknown
shape.

The probability of each model was obtained by application of Bayes
theorem, and involved marginalizing over all the model parameters with
suitably chosen priors. The final probability of each hypothesis compared
to the probability of H1 is expressed as an odds ratio in the last column.
The odds ratio, Oi,1, for model Hi compared to model H1 can be factored
according to

Oi,1 =
p(Hi | I)
p(H1 | I)

p(D | Hi)
p(D | H1)

≡ p(Hi | I)
p(H1 | I)

Bi,1, (39.1)

where D represents the new data, and I, the prior information. The first
term, the prior model odds ratio, was assumed = 1. The Bayes factor
Bi,1, is the ratio of the global likelihoods of the models and automatically
includes a quantified Occam’s razor that penalizes the more complicated
model for its extra complexity. The resulting odds ratios strongly support
the case for a periodic phase modulation of the radio outbursts. The next
step was to estimate the H4 model parameters. This consisted of computing
the marginal probabilities of the orbital period, modulation period and the
mean and standard deviation of the modulation shape.

This parameter estimation problem has recently been redone using all
the radio outbursts measurements available up to October 2000, when the
Green Bank interferometer monitoring program (Ray et al., 1997) ceased
operation. Figure 39.1(b) shows the full timing residual data set based on
the most probable orbital period of 26.496 days, together with two solid
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FIGURE 39.1. Panel (a) shows the initial outburst timing residuals. Panel (b)
compares the Bayesian estimate of the light curve with the full set of timing
residuals. The new data is indicated by a shaded box. The solid curves are the
estimated mean light curve, ±1 standard deviation. Panel (c) shows the marginal
posterior of the modulation period.

curves which are the Bayesian estimate of the mean light curve ±1 stan-
dard deviation. The additional outbursts are indicated by the solid squares.
Clearly the timing residuals are well fit by a roughly saw tooth shaped mod-
ulation and the new data confirm the periodic pattern discovered on the
basis of the smaller data set.

Figure 39.1(c) shows the modulation period marginal probability for only
the small portion of the prior period search range (which extended from 800
to 2500 days) that contained significant probability 2. The new estimate
for the modulation period is 1667+14

−11 days.
This research was supported in part by grants from the Canadian Natural

Sciences and Engineering Research Council at the University of British
Columbia.
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Accounting for Absorption
Lines in High Energy Spectra

Christopher Hans1 and David A. van Dyk

40.1 Overview

The increasing popularity of Markov chain Monte Carlo (MCMC) methods
and the limitations of “classical” astrophysical data analysis in the face of
a new class of instruments (e.g. the Chandra X-Ray Observatory) make
Bayesian analysis of high-resolution low-count energy spectra both feasi-
ble and attractive. van Dyk et al. (2001) and Sourlas et al. (this volume)
describe a Bayesian hierarchical model which directly models counts as a
Poisson process, avoiding problems resulting from Gaussian assumptions
of standard chi square fitting. We extend this model to account for absorp-
tion lines. Parameter estimation is accomplished via an MCMC algorithm
whose latent conditional structure allows us to concentrate on the problem
of absorption lines outside of other complications such as background con-
tamination, photon pile-up, etc. For specific computational details, see van
Dyk et al. (2001).

40.2 Statistical Model and Data Augmentation

To simplify our presentation, we assume there is no instrument response,
background contamination, effect of the effective area of the instrument,
and that the source model is a simple continuum model with a single ab-
sorption line. These assumptions can easily be relaxed within the framework
of the Bayesian hierarchical model (see van Dyk et al. 2001). In the absence
of the absorption line we model the true counts at energy Ej as indepen-
dent observations from a Poisson distribution with intensity f(Ej , θ), where
f(Ej , θ) is the expected counts at energy Ej from a continuum model with
parameters θ. If an absorption line is present, some of the photons emitted
by the source are absorbed before they reach the detector, meaning that the
observation is “incomplete” in the sense that there is a set of photons that

1Institute of Statistics and Decision Sciences, Duke University
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was emitted but not observed. We can therefore define an “augmented”
data set, Y aug

j = {Y obs
j , Y mis

j }, where Y obs
j is the number of photons de-

tected at energy Ej and Y mis
j is the number of photons absorbed by the

line at energy Ej . With this notation in hand, we can explicitly model

Y obs
j |θ, φ indep.∼ Poisson

(
f(Ej , θ)π(Ej , φ)

)
,

where π(Ej , φ) is the probability that a photon is not absorbed by a line
with parameters φ. We allow f(Ej , θ) to represent any continuum model
but restrict π(Ej , φ) to be the double exponential absorption line model
used by Freeman et al. (1999),

π(Ej , φ) = exp
{
−λ̃ exp

{
−(Ej − µ)2

2σ2

}}
,

where the parameters φ = (µ, σ2, λ̃) are the location, width and intensity of
the line, respectively. Estimation of φ is simplified by noting that under a
log-log link function, π(Ej , φ) is linear in Ej and E2

j , reducing the problem
to the standard statistical problem of estimation of parameters for a gener-
alized linear model (GLM). To formalize the Bayesian model specification,
we can assign flat (non-informative) priors, proper (informative) priors,
or a combination of both. This model can be easily expanded to account
for multiple lines in the continuum, and algorithms to compute maximum
likelihood estimates (MLEs) of the parameters are readily available.

Acknowledgments: The authors gratefully acknowledge funding for this
project partially provided by NSF grant DMS-01-04129 and by NASA con-
tract NAS8-39073 (CXC). This work is a result of a joint effort of the
members of the Astro-Statistics working group at Harvard University.
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χ2-method: An Automatic
Classification Technique

Evanthia Hatziminaoglou1 and the EIS team

ABSTRACT An automatic classification technique for separating the dif-
ferent astronomical objects in classes based on multi-colour photometry
only, is presented. The technique consists of a standard fitting procedure,
where the observed spectral energy distributions are compared to a tem-
plate library. This method is applied on the point-like source catalogue of
the Chandra Deep Field South. The spectral library consists of a series of
quasar, white dwarf, low-mass star, brown dwarf and main sequence star
theoretical templates and/or observed spectra. Over an area of 0.25 square
degrees a total of 234 quasar candidates, 48 low-mass star and brown dwarf
and 100 white dwarf candidates have been selected.

χ2-technique, Data and Spectral Library

The χ2-technique consists of a standard fitting procedure, where the ob-
served spectral energy distributions are compared to a template library.
Thus, the traditional multi-dimensional method (2 × N dimensions, with N
the number of the colour-colour diagrams) is reduced to a one-dimensional
technique.

The technique is applied on the point-source multi-colour data of the
Chandra Deep Field South (CDF-S) provided by the ESO Imaging Survey.
The CDF-S (0.25 square degrees) has been covered in U , B, V , R, and I,
while its central region of 0.1 square degrees has also been observed in J
and Ks ([1]; [8]). In the present analysis objects detected in at least three
passbands have been considered, and the sub-samples examined comprise
1494 point sources in five passband and 605 in seven passband.

The spectral library currently in use consists of series of model quasar
(0 < z < 6), white dwarf (6000K < Teff < 105K; log g = 7− 9; [3], [4]), and
brown dwarf spectra (500K < Teff < 2800K corresponding roughly to M
< 0.1 M�, for log g = 4.5; [2]), three empirical cool white dwarf observed
spectra ([5], [6]) and a set of synthetic stellar templates [7].

1European Southern Observatory
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Selected Targets

Combining the data from the five and seven passband catalogues, one finds
a total of 234 quasar candidates with estimated photometric redshifts up to
z ∼ 5, among which 16 have z > 3.5. In addition, 48 low-mass star/brown
dwarf candidates and 100 white dwarf candidates were identified, including
nine with Teff < 4000K.

If the classifications are confirmed, samples comprising over 100 high-
z quasars, ∼ 200 low-mass stars/brown dwarves and over 1000 white
dwarves will become available at the end of the survey, expected to cover
3 square degrees. It is worth emphasizing the contribution of the near-
infrared data: it increases the accuracy of the determination of the photo-
metric redshifts and significantly increases the number of quasar candidates
in the redshift interval 2.5 < z < 3.5. Infrared photometry is also important
for tracking very low-mass stars and brown dwarves.
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[4] Homeier D., Köster, D., Hagen, H.-J. et al., 1998, A&A, 338, 563

[5] Ibata, R., Irwin, M., Bienaymé, O. et al., 2000, ApJ, 532, L41
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Wavelet Analysis of a Large
Period Change in the Mira
Variable R Cen

G. Hawkins1, J. A. Mattei1, and G. Foster1

R Centauri (R Cen) is an oxygen-rich Mira variable with a period of 546
days, range of variation of 5.3 - 11.8 magnitude at V, and spectral type of
M4e-M8IIe as listed in the General Catalog of Variable Stars (Kholopov
1985). Visual observations from 1918 to 2001 from the AAVSO Interna-
tional Database show the familiar pattern of double maxima in the light
curve of R Cen (Figure 1). The light curve also shows two other unusual
properties: 1) the pulsational amplitude has decreased by 3 magnitudes
since about 1950, (Figure 1) and 2) the period of the dominant mode has
been steadily decreasing from 550 days at JD 2434000 (1951) to its present
value of 505-510 days (Figure 2). The decrease in period and pulsational
amplitude are probably caused by a He-shell flash in the interior of R Cen,
as the period decrease of 1 day/yr is similar to that of other Miras thought
to be undergoing a He-shell flash, such as R Hya and R Aql (Wood and
Zarro 1981), and T UMi (Mattei and Foster 1995; Gál and Szatmáry 1995).

For our wavelet analysis in Figure 2, we use the Weighted Wavelet Z
Transform (WWZ) of Foster (1996), which gives better results than a tra-
ditional wavelet transform when the data are unevenly sampled or have
seasonal gaps. Further details of our analysis of R Cen are given in Hawkins,
Mattei and Foster (2001).

We gratefully acknowledge the dedicated observations of hundreds of
variable star observers since 1918 that made this study possible.
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FIGURE 42.1. AAVSO light curve of R Cen from 1918-2000. 10 day averages of
the data have been connected by a solid line for visual clarity.

FIGURE 42.2. Wavelet plot (solid line) showing the period change in the primary
mode (510-550 days) from 1918 to 2000. The squares show a Fourier analysis of
the data in 2000 day segments using the Cleanest algorithm of Foster (1995).
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Nonparametric Statistical
Models of Astronomical
Systems

William D. Heacox1

Nonparametric statistical modeling is a useful tool for estimation of the
statistical distribution of a property characterizing a population of astro-
nomical objects, when that property is observed only in combination with
some other properties of a priori unknown individual values, but of known
or estimated distribution. A trivial and well known example is the integral
relation between the distributions of true velocities V and their observed
radial components VR = V sin i, among objects of uniformly distributed
but otherwise unknown orientations (e.g., ref. [1]). The technique used to
derive this relation can be extended to more complex and interesting such
problems in observational astronomy; this is what is meant by the phrase
“nonparametric statistical modeling”.

As a simple example, the relation of the observed mass function Y
to the underlying mass ratio q of a single-lined spectroscopic binary is
Y = q3 sin3 i/ (1 + q)2, where i is the (a priori unknown) inclination of
the orbital pole to the line of sight. The resulting statistical model, for a
presumed uniform distribution of orbital orientations, is (ref. [2]):

f (Y ) =
∫
f (q)

 (1 + q)4/3

3qY 1/3

√
q2 − Y 2/3 (1 + q)4/3

 dq,

where by f (x) is meant the pdf of random variable x. This model is
typical in that it takes the form of an integral equation whose kernel
K (Y, q) = Pr [Y observed, given q] is the quantity in braces. Models such
as these can be unambiguously derived from the identification of the ker-
nel as a conditional probability, and have the essential character of an
accounting technique: one adds up all the probabilities of arriving at the
observed distribution of the disguised quantity (Y ) in order to deduce the
only possible distribution of the underlying variable (q) of interest. The
resulting integral equation may be inverted to infer the desired underlying
distribution from the observed one.

1University of Hawaii
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This type of statistical modeling is described in more detail, including
kernel derivation, in references [4] & [5]; it may readily be applied to a wide
variety of problems, including multivariate ones. Its principal limitations
are the need to reasonably model the statistical behavior of obscuring vari-
ables (e.g., inclination i in the above examples), and the often encountered
poor numerical conditioning of the models, leading to inaccuracies in inte-
gral equation inversion. To date it has been usefully applied (in non-trivial
forms) to the following areas of observational astronomy:

• The inference of the distributions of orbital parameters and primary-
secondary mass ratios among the entire population of binary stars
with (roughly) solar-like primaries (refs. [2], [4], [7]), including the
discovery that all binary orbital dynamical quantities (semi-major
axis, angular momentum, binding energy) are distributed approxi-
mately as f (x) ∝ x−1 over wide ranges, a result with probable (if
not currently understood) consequences for formation theory. These
models have been extended to extrasolar planets (ref. [6]) to demon-
strate that, within observable limits, extrasolar planet orbital char-
acteristics are statistically indistinguishable from those of binary star
systems with stellar-mass secondaries, with some consequences for the
proper interpretation of the nature and formation of these low-mass
objects.

• The modeling of observable kinematics within globular clusters and
other spherically symmetric, multi-body systems to determine inter-
nal mass distributions and the statistical distributions of stellar or-
bital energies and angular momenta (refs. [3], [5]). Such models re-
quire no a priori assumptions of total mass or its sources, nor of
orbital angular momenta and energies; but employ stellar proper mo-
tions (available for some clusters) to unambiguously determine dis-
tributions of these quantities, and total cluster mass, from the data
themselves. To date this has been used to demonstrate that tradi-
tional models employing only radial velocities and central separations
cannot constrain the overall mass of globular clusters to within a fac-
tor of 3 without inclusion of a priori untestable assumptions, such
as velocity isotropy or that mass follows light. Application of these
models to actual clusters is a computationally intensive task that is
currently being undertaken with a parallel-processing supercomputer.

• The modeling of the mass distributions of populations of microlensing
objects, in terms of the observed lensing timescale distributions and
presumed kinematics of the lensing population. Preliminary appli-
cation to Galactic halo microlenses observed against the Magellanic
Clouds seems to require an asymmetrical mass distribution with sig-
nificant numbers of lens masses near or below the minimum hydrogen-
burning mass limit. This work – and application to the recently dis-
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covered low-mass lenses in the globular cluster M22 (ref. [8]) – are
ongoing projects.
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Likelihood Estimation of
Gamma Ray Bursts Duration
Distribution

Istvan Horváth1

Two classes of Gamma Ray Bursts have been identified so far, charac-
terized by T90 durations shorter and longer than approximately 2 seconds.
It was shown that the BATSE 3B data allow a good fit with three Gaus-
sian distributions in logT90 [4]. In the same Volume in the Astrophysics
Journal another paper suggested that the third class of GRBs is may exist
[11]. Using the full BATSE catalog here we present the maximum likelihood
estimation, which gives us 0,5% probability to having only two subclasses.
The MC simulation confirms this probability.

In the BATSE current catalog [8] there are 2702 Gamma-Ray Bursts
(GRBs), of which 2041 have duration information. [6] have identified two
types of GRB based on durations, for which the value of T90 (the time
during which 90% of the fluence is accumulated) is respectively smaller or
larger than 2 s. This bimodal distribution has been further quantified in
other papers [7], [5] where a two-Gaussian fit were made. Previously we have
published an article [4], where two and three Gaussian fits were made using
the χ2 method, which gave us app. 0,02% significance the third group is
needed. This is an agreement with the [11] result, who used a multivariate
analysis and find that the probability of existence of two clusters rather
than three is less than 10−4. [1] also confirmed this result by statistical
clustering analysis, however they suggested the third group was caused by
instrumental biases [1], [2]. Recently, remarkable anisotropy was found in
the angular distribution of this third group [10]. In this paper we take
another attempt at the trimodal distribution, evaluating the probability
that the two populations are independent using the maximum likelihood
estimation.

For this investigation we have used a smaller set of 1929 burst durations
in the current catalog, because these have peak flux information as well.
Firstly we take a two Gaussian fit for the duration which gives us a best
parameters of the two Gaussian fit, which are very similar than previously
was published [4]. Secondly we take a three Gaussian fit. The means are -

1Bolyai Military University, Budapest
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.25; .63; 1.55 in lgs. These fits gives us the best logarithm’s of the likelihoods
12320.11 and 12326.25. Twice of the difference of these numbers follows
the χ2 distribution with three degree of freedom because the new fit has
three more parameters [12]. The difference is 6.14 which gives us a 0.5%
probability. Therefore the third Gaussian fit is much better and there is a
0.005 chance the third Gaussian is caused by statistical fluctuation.

One can check the probability using the Monte-Carlo (MC) simulation.
Generate 1929 numbers for T90 whose distribution follow the sum of two
Gaussian distributions. Find the best likelihood with five free parameters
(two means two sigmas and two weights, but the sum of the last two must be
1929). Secondly made a fit with three Gaussian (eight free parameters, three
means, sigmas and weights). Take a difference between the two logarithm’s
of the maximum likelihoods, which gives one number. We do the process
100 times and have a hundred MC simulated numbers. Only one of these
numbers is bigger than which the BATSE data has (6.14). Therefore the
MC simulation confirm the mathematical low statement and gives us a
similar probability if the third group is a statistical fluctuation.

The BATSE on-board software tests for the existence of bursts by com-
paring the count rates to the threshold levels for three separate time inter-
vals: 64, 256, 1024 ms. The efficiency changes in the region of the middle
area because the 1024 ms trigger is becoming less sensitive as burst dura-
tions fall below about one second. This means that at the “intermediate”
timescale a large systematic deviation is possible. To reduce the effects of
trigger systematics in this region we truncated the dataset to include only
GRBs that would have triggered BATSE on the 64 ms timescale. Using the
Current BATSE catalog CmaxCmin table [9] we choose the GRBs, which
numbers larger than one in the second column (64 ms scale maximum
counts divided by the threshold count rate). Although this process reduced
the bursts numbers very much (only 857 GRBs remain) the significance
level still stay below 1%.

It is possible that the three log-normal fit is accidental, and that there
are only two types of GRB. However, if the T90 distribution of these two
types of GRBs is log-normal, then the probability that the third group of
GRBs is an accidental fluctuation is less than 0.5-1.0 %.

This research was supported in part through OTKA F029461 and T34549.
Useful discussions with M. Briggs, E. Fenimore, J. Hakkila, P. Mészáros,
are appreciated.
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Nonparametric Density
Estimation and Galaxy
Clustering

Woncheol Jang1

ABSTRACT We estimate the number density of galaxy clusters as a func-
tion of z, redshift. Nonparametric density estimation is used to estimate
the galaxy density f given z and then the connected components of the
level set {f(·|z) > δc} are extracted as clusters. The parameter δc is esti-
mated by matching the number density to the Press-Schechter model using
a goodness-of-fit criterion. Since δc is itself a function of a cosmological
parameter, this leads to a confidence interval for the parameter.

45.1 Introduction

Clusters of galaxies provide powerful tools from tracing the large scale
structure of the universe to determining the amount of dark matter. More-
over, the mass distribution function of these large scale structures plays a
key rule to the nature of primitive density fluctuations. In addition to these
observational advantages, clusters can be understood via relatively simple
theory, the Press-Schechter model.

Our goals are (1) to estimate the galaxy density f given z, redshift, and
extract the connected components of the level set {f(·|z) > δc} as clusters.
Then, (2) one can find a confidence interval for Ωm, density parameter for
matter, using a goodness-of-fit criterion since δc is itself a function of Ωm

and z, therefore it can be estimated by matching the number density to
the Press-Schechter model as well.

45.2 Density Estimation and Clustering

Suppose X1, . . . , Xn are the locations of n galaxies in a sky survey where
Xi = (Xi1, Xi2, Xi3)=(RA, DEC, redshift). Since we are interested in the
evolution of galaxies, we want to estimate the joint distribution of RA

1The Pittsburgh Institute for Computational Astrostatistics(PICA)
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and DEC given redshift. To do so, we slice the data by redshift and fit a
bivariate kernel density estimation. See PICA (2002) for details.

For clustering, a modified version of Cuevas et al. (1998) is proposed.
The detail steps are as follows.

Given z and Ωm, use the Fast Fourier Transform(FFT) to calculate f̂
at grid points tj = (tj1.tj2), j = 1, . . . ,m. Then, extract contiguous grid
points such as {t|f̂(t) > δc} as a cluster. Here δc is a function of z and
Ωm. See Reichart (1999) for details. After clustering, one assign the data
to closest grid points. If the grid point belongs to a cluster, so do the data.
Define Nk, k = 1, . . . ,K be the number of galaxies in each cluster and use
it as the mass of cluster.

45.3 Goodness-of Fit test

By Press-Schechter theory, the number density is,

n(M) =

√
2
π

δcα

σM

ρ

M2
exp

(
− δ2c

2σ2
M

)
∝Mα−2 exp

(
−δ

2
c

2

(
M

M0

)2α
)
,

which is proportional to generalized gamma distribution (Johnson et al.
1994).

Given zi and Ωm, we calculate δc(zi,Ωm), then fit generalized gamma
distribution on Nk and get a p-value using a goodness-of-fit test.

Repeat the previous steps for every zi and Ωm and use Fisher’s meta
analysis (Fisher 1932) to combine ”p”-values over z:

χ2 = −2
L∑

i=1

log pi ∼ χ2(2L)

where pi is p-value for the goodness-of-fit test given zi and Ωm. After, one
calculates p-value of χ2 then converts it into confidence interval for Ωm.

45.4 Future Work

We proposed a clustering method via density estimation and estimating
confidence interval for Ωm with goodness-of -fit test. Once the Sloan Digital
Sky Survey is available, it will be addressed. A long version of this docu-
ment (Jang 2001) will be available at PICA’s website (www.picagroup.org)
Double truncation and measurement error need to be considered.
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Teaching Bayesian Statistics
Through Simulation

William H. Jefferys1

ABSTRACT I describe an introductory graduate course on Bayesian
statistics taught in the Spring of 2001 at the University of Texas. The course
made extensive use of simulation through Markov Chain Monte Carlo, with
students completing a number of projects to introduce them to the basic
ideas of MCMC simmulation and Bayesian reasoning.

46.1 Course Description

The course was designed primarily for physical scientists with no statisti-
cal background who wished to learn practical Bayesian inference and tech-
niques. It actually attracted a wider audience: students from astronomy,
mathematics, statistics, aerospace engineering, biology, management, and
public affairs. The main idea of the course design was to concentrate on
the ideas behind Bayesian inference, to get the students “thinking like
Bayesians.” I decided to deemphasize exact results and special situations
such as conjugate priors and normal distributions, in favor of Markov Chain
Monte Carlo (MCMC) as a generalized tool for practical solution of com-
plex problems not amenable to specialized techniques.

Markov Chain Monte Carlo (MCMC) simulation techniques have been
developed over the past 10–15 years into a powerful tool for producing a
draw from the full posterior distribution, which can then be used to pro-
vide marginal distributions, medians and quantiles, and averages of various
sorts to summarize the results of a statistical investigation. Essentially any-
thing of interest can be calculated from the sample. Therefore, in keeping
with the philosophy of the course, MCMC simulation techniques were in-
troduced early; students were assigned a sequence of problems of increasing
sophistication which, though simple, illustrated the application of MCMC
in various useful contexts, and which could be generalized to more complex
problems in obvious ways. Students were encouraged to work in teams and
to program their solutions in a language of their choice.

1Department of Astronomy, University of Texas
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Many MCMC examples were run in class using a computer attached to
an LCD projector. This allowed us to experiment as we varied parameters.
For in-class examples, I used the free statistical language R. I introduced
it early in the course in order to give students a practical tool for solving
problems. Most students also used R for their assignments.

46.2 Evaluation of the Course

Although I had used them before, I was not completely satisfied with my
texts (Sivia 1996, Schmitt 1969). They are are good books, but I had a
very different audience from what I had expected. Also, the books don’t
discuss MCMC (I had to present this de novo). I am looking seriously at
Gelman et. al. (1996) when I teach the course again.

I would have liked to have assigned even more simulations but ran out of
time. The next time I teach the course I will introduce R and the ideas of
simulation even earlier and in parallel with the initial topics on probability
theory, and reduce the discussion of some theoretical issues, to allow more
time for such assignments.

I felt that the emphasis on simulation as a tool improved the students’
connection with and understanding of Bayesian inference. I believe that
they came out of the course with confidence that they would be able to
attack even complex problems in their own field of interest effectively. The
strategy to de-emphasize special situations like normal errors in favor of
early examples using Cauchy and Poisson data worked well. I wanted to
make it clear to the students that they need to examine the fundamentals
of their problems rather than automatically to assume normality, and also
to show them that they had the tools to attack such problems.

The students were enthusiastic and class participation was excellent. Stu-
dents asked challenging questions, and several are already applying what
they learned to their own research. Course reviews were excellent. Detailed
information about the course, including assignments and presentation ma-
terials, may be found at http://bayesrules.net/ast383.2001.html
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New MCMC Methods to
Address Pile-up in the
Chandra X-ray Observatory

Hosung Kang 1, David A. van Dyk, Yaming
Yu, Aneta Siemiginowska, Alanna Connors,
and Vinay L. Kashyap

47.1 Pile Up

Pile-up occurs in X-ray detectors when two or more photons arrive in an
event detection island during the same frame. Such coincident events are
counted as a single higher energy event or lost altogether if the total energy
goes above the on-board discriminatory. Thus, for bright sources pile-up can
seriously distort both the count rate and the energy spectrum. Accounting
for pile-up is perhaps the most important outstanding data-analytic chal-
lenge for Chandra. Here, we outline how Bayesian hierarchical models can
be designed to account for pile-up in X-ray detectors and how they can be
fit via Markov chain Monte Carlo. Model fitting is accomplished using the
Gibbs Sampler. Roughly speaking, this method sequentially fits one model
component at a time conditionally on all the others. The power of this
approach is that it allows us to ignore other model components when we
account for pile-up. Specifically, we stochastically separate a subset of the
observed counts into multiple counts of lower energy based on the current
iteration of the particular spectral/spatial model being fit. The spectrum
is then updated given the ‘unpiled’ counts. Because of the complexity of
the pile-up process this is a challenging statistical task requiring simulation
of highly structured multi-modal distributions. Nonetheless, the Bayesian
framework is promising because it allows the inclusion of other sources of
information. For example, event grades (i.e, a description of the likelihood
of the degree of pile-up based on the spatial distribution of the charge) can
be used to improve the fit.

1Department of Statistics, Harvard University
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Table 1: Summaries of fitted models.

Pile Up Model Fita

Data in model? Γ < 2keV Γ > 2keV % piled
ACIS-S/HETG no 1.70± 0.06 1.05± 0.05 n/a
ACIS-S/HETG yes 1.70± 0.05 1.07± 0.05 00.6%

ACIS-S no 1.53± 0.03 1.12± 0.04 n/a
ACIS-S yes 1.69± 0.03 1.29± 0.05 14.3%

ACIS-S (to 15 keV) yes 1.74± 0.03 1.07± 0.04 15.1%

aError bars are one posterior standard deviation; Γ is the powerlaw parameter.

47.2 Unpiling 3C273 ACIS-S spectrum

We have applied our method2 to the Chandra ACIS-S/HETG and ACIS-
S observation of 3C273, a strong X-ray point source. We exclude the core
from the analysis of ACIS-S data, because piled events exceed the threshold
and have been removed from the telemetry signal (there are no counts in
the core region). We do not consider any corrections to the readout streaks
in this analysis. CIAO 2.0 software and the recent calibration data are used
to construct the RMF and ARF files for this observation.

A broken power law model (break at 2keV) is assumed to fit the data
within energies 0.5-8 keV. We fit the model to both data sets as is sum-
marized in Table 1. We expect little pile-up in the ACIS-S/HETG grating
data. Thus, accounting for pile-up has little effect on the fit; see Table 1.

The ACIS-S Spectrum is fit three ways: (1) without accounting for pile
up, using data with energies 0.5-8.0 keV; (2) accounting for pile up, using
data with energies 0.5-8.0 keV; and (3) accounting for pile up, using data
with energies 0.5-15.0 keV. The three fits are compared with the ACIS-
S/HETG fit in Table 1. In a heavily piled observation, photons may be
recorded as events with significantly higher energy. For a proper fit, we
must include these high energy events in our analysis. Thus, all of the pile
up corrected analyses do well below 2 keV but for higher energies we need
to include events of higher energy, as in fit (3), which does a remarkable
job of reproducing the ACIS-S/HETG fit3.

Acknowledgments: This project is funded in part by NSF grant DMS-01-
04129 and by NASA contract NAS8-39073 (CXC) and is a joint effort of
the members of the Astro-Statistics group at Harvard University.

2For simplicty, we further assume each event corresponds to either one or two photons
and that the PSF is flat. i.e., we observe a point source whose photons are spread evenly
across a region of the detector.

3The fit to ACIS-S data up to 15 keV included a large count in the highest energy
channel (32 counts at 15 keV). Although some of these counts are undoubtable mis-
recorded higher energy events they were included in the analysis. This strategy seems
likely to induce less bias than removing these counts from the data.
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Modeling Stellar Microflares

Vinay Kashyap1, Jeremy J. Drake, Manuel
Güdel, and Marc Audard

48.1 Overview

An open question in the field of Solar and stellar astrophysics is the source
of heating that causes stellar coronae to reach temperatures of millions of
degrees. One possibility is that the coronae are heated by a large number
of small flares (see Audard et al. 2000 and Drake et al. 2000). On the
Sun, microflares are distributed with energy as a power-law of the form
dN
dE = k · Eα, with α = 1.8, and α appears to increase to values 2.2-2.9 for
flares of lower energy (cf. Asch et al. 2000). If the slope exceeds the critical
value of 2, then in principle the entire coronal energy input may be ascribed
to flares that are increasingly less energetic, but are more numerous. We
have developed a new method to model these weak flares in photon arrival-
time data.

48.2 Method

Model: Because flare onset is stochastic in nature, the light curves can-
not be modeled directly. Instead we compare the distribution of arrival-
time differences between the data and the model. We consider a 3-
parameter model M = {α, rF , rB} where α is the index of the power-law,
rF is the average count rate due to flares, and rB is a constant “back-
ground” component. The Poisson-distributed model counts in an interval
dt, c(t) dt ∼ φ(t) Poisson[ rB(t) dt + f(t) dt ], where φ(t) is a correc-
tion factor that takes into account Primbsch, dead-time, and GTIs, and
the flare component, f(t) =

∑Nf

j=1 Θ(t − tj)Fje
−(t−tj)/τ . Here τ is a fixed

flare decay timescale, Fj are flare peak intensities sampled from the power-
law distribution, and Θ(x) is a step function to represent instantaneous
flare onset. Note that not only will the placement tj and intensity Fj of
the flares vary for each simulation, but so will the total number of flares
Nf . Within the bounds of Poisson statistics, we expect that for any given

1Harvard-Smithsonian Center for Astrophysics
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simulation,
∑Nf

j=1 Fj τ ≈ rF · ∆T where ∆T is the total duration of the
observation. The model parameter rF fixes the normalization k by equating
the total counts due to the flare component with the counts expected from
the power-law distribution.
Algorithm: We follow a Bayesian formalism and derive the joint posterior
probablity of the model parameters, p(M|D, I) ∝ p(α|I)p(rF |I)p(rB |I) ·
p(D|M, I) where D represents the data. The prior distributions are taken
to be non-informative and flat over the limited parameter ranges consid-
ered. The likelihood is computed as the probability density of obtaining
the observed χ2 value for N degrees of freedom (see Eadie et al. 1971,

Equation 4.22), p(D|M) =
1
2 (χ

2 )
N
2 −1

e− χ
2

Γ(N/2) . The basic steps of the algo-
rithm are: First, derive the distribution of photon arrival-time differences
fD(δ t) ∝

∑
i ρiλie

−λiδ t, where ρi is the fraction of the time that a source
spends at the intensity λi; then obtain realizations of the photon event list
over a grid of parameter values; and compare the simulated fM (δ t) with
fD(δ t).
Limitations: Unlike existing methods that rely on detection of flares, this
method is best-suited to investigate the effects of very weak flares on stellar
coronal emission. However, in the process of deriving f(δ t), the sequential
information inherent in the light-curve is lost. For example, we cannot take
advantage of the known fact that flares decay in intensity. Further, because
the model is stochastic, a large number of simulations are necessary to
obtain a stable result, leading to very lengthy computations. Finally, the
method loses sensitivity for α ∼ 3 as the model approaches the limiting
case of constant emission.
Results: We find strong evidence in favor of the slope of the flare dis-
tribution to be greater than 2 for active stars such as FKAqr, Wolf 630,
ADLeo, β Per. We find that αFKAqr = 2.68±0.25, αV 1054Oph = 2.62±0.21,
αADLeo = 2.17− 2.3, and αβ Per = 2.84(> 2.41) The flare component con-
tributes to 70%, 85%, 80%, and 75% respectively.

Acknowledgments: We would like to thank David van Dyk, Alanna Con-
nors, and Eric Kolaczyk for useful discussions. VK was supported by NASA
AISRP grants during the course of this research. JJD was supported by the
Chandra X-Ray Center NASA contract NAS8-39073.

Aschwanden, M.J., et al. 2000, ApJ, 535, 1047
Audard, M., Güdel, M., Drake, J.J., & Kashyap, V.L. 2000, ApJ, 541,

396
Drake, J. J., Peres, G., Orlando, S., Laming, J. M., & Maggio, A. 2000,
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Canaries in the Data Mine:
Improving Trained Classifiers

V. G. Laidler1 and R. L. White

ABSTRACT Supervised classification uses a training set to construct a
classifier such as a decision tree. Normally, the training set is discarded
once the training process is complete. By imprinting information about
the training population onto the classifier, we can make use of the ex-
trema at each node as “canaries”, warning us that we have left the well
explored area of parameter space and have crossed into a domain where
the classifier is unreliable. This technique can identify training set defi-
ciencies; provide reliability estimates for decision tree classifiers; improve
the results of multi-tree voting; and provide helpful visualization tools. See
http://www-gsss.stsci.edu/PublishedPapers/Canaries SCMA.htm for the
poster version of this paper.

Motivation

All supervised classification techniques begin with the construction of a
training set that is to be representative of the test population. A good
training set must be of sufficient size and extent in parameter space to
probe the entire domain occupied by the test population. The construction
of the training set is of critical importance in supervised classification, for
a bad training set will mislead even the best classification algorithm.

Defining the technique

This work was done with the GSC2 classification problem, which uses an
oblique decision tree, OC1 (Murthy et al. 1994), to classify astronomical
images into stars, nonstars, and plate artifacts based on ranked values of
30 image features (Laidler et al. 1996, White 1997). Recall that a decision
tree operates by determining a set of decision surfaces that best separate
classes of objects in the training set.

The imprinting technique records the minimum and maximum values
of each feature for all the training set objects at each node, along with
the actual coefficients defining the decision surface. Thus, it “imprints” a

1Computer Sciences Corporation at Space Telescope Science Institute
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bounding box (hypercube) of the training set at each node.
When the decision tree is applied to a new object, the object’s (normal-

ized) distance outside this bounding box is computed, producing a Training
Set Domain Distance (TSDD). Objects that resemble the training set will
lie within the bounds, and have a TSDD of zero. Objects that lie in parts of
parameter space that were not probed by the training set will have nonzero
values for the TSDD. The distance increases as the object moves further
away from known (training set) space.

Results

Imprinting successfully identified a known deficiency of bright objects in
the original GSC2 training set: most bright objects in several test sets had
high values of the TSDD. When tested against another subpopulation of
deblended, or “child” objects, it confirmed our previous suspicion that these
objects were not well represented in the training set, and that deblended
objects occupied a different part of parameter space than clean single ob-
jects. External software can select training set candidate objects based on
the TSDD, resulting in directed improvement of an existing training set.

The TSDD can also be used as a reliability measure. Since the decision
surface is defined over the domain of the training set, any part of the surface
that falls outside this domain is extrapolated, and the classifications derived
therefrom are similarly unreliable. The TSDD indicates how far the test
object is from the well defined (interpolated) zone.

Classification can be improved by voting (Heath et al. 1996). The GSC2
classifier votes a committee of 5 trees independently grown from the same
training set. When the TSDD is used as a suitably scaled weighting func-
tion for the voting, the outcome changes for 2-3% of the objects on a plate.
Of these changed objects, 70-80% of the changes result in a correct classi-
fication of objects that were previously misclassified.
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FIGURE 49.1. The cartoon illustrates the imprinting technique in a two dimen-
sional, two class problem. The diagonal line is the decision surface that separates
squares from circles. Inside the rectangle marking the training set domain, this
line results in a good separation of classes. In the extrapolated domain outside
the box, the separation breaks down in some areas. The training set domain dis-
tance (TSDD) is the normalized distance of an object from the bounding box. It
is defined to be zero inside the box.
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Wavelet Analysis of
Heteroscedastic, Unevenly
Spaced Data: The Case of OJ
287 Revisited

Harry Lehto1

ABSTRACT We present a method for calculating the statistical signif-
icance in a wavelet transform and apply it to the optical light curve of
OJ 287. The original data is heteroscedastic and unevenly spaced and it
appears to show transient oscillations. The statistical significance of the
detection of these kind of variabilities have remained elusive in previous
studies.

OJ 287 is a blazar showing rapid and quite extreme variations in intensity.
The data of such intensity measurements are characterized by following
properties:

1) Sampling in uneven
2) Quality of data varies from point to point
3) Variance of the measurement is known at each point.
We have applied a Morelet wavelet transform to the data. The transform

for evenly spaced data can be defined as

W (f, t) = f
(
(Sk)2 + (Ck)2

)
, where

Ck + iSk(f, t) =
∑

k

mk exp i(2πf(tk − t)) exp(−1
2
f2(tk − t)),

wheremk and tk refer to the intensity and the time of the kth measurement.
Let us assume that each observed datapoints can be expressed as a sum

of a noiseless signal term and a noise term and that the noise is uncorrelated
from one point to another, i.e. white noise. Note that there is no assumption
of gaussianity is made at this point. If we further assume that the expected
value of the data point is the unknown true value of the noiseless signal
(with a delta function distribution) and that there is no correlation between
the signal term and the noise term, then we can write

1Tuorla Observatory, University of Turku



458 Harry Lehto

Wobs(f, t) = Wsignal(f, t) +Werror(f, t)

Since the distribution of the error in a single data point is known, one
can in principle calculate the second term in the above equation and obtain
an estimate of the true wavelet transform of the signal.

To determine the distribution function of Werror(f, t), consider

Sk = (
∑

k

nk sin(φk)wk).

Here φk = 2πf(tk − t) and wk = exp(− 1
2f

2(ti − t)) depend only on the
sampling and not on the values of the noise. Let’s combine the two terms
and write our equation as

Sk = (
∑

k

nkak).

If the noise in individual measurements nk have a Gaussian N(0, σ2
k) dis-

tribution then Sk will have a distribution equal to N(0,
∑

k σ
2
k). This means

that S2
k will have a χ2

1-like distribution suitably scaled in variance. Simi-
larly C2

k will also have a χ2
1-like distribution. The probability distribution is

then the convolution of these two distributions. If these two distributions
happen to have similar variances then the resulting distribution mimics
closely a χ2

2-like distribution.
Even if the noise in individual points is non-gaussian, we may proceed as

above, expect that the χ2
1 distribution has to be replaced with a suitable

distribution before convolution of the two distributions.
This scheme provides us with a quantitative estimate for the full dis-

tribution function of the noise terms in a wavelet transform enabling the
calculation of the significance of actual signal’s transform. The point that
may need further investigation in this approach is the independence of S2

k

and C2
k when calculating the combined distribution.

Nearly all the peaks in the transform of OJ 287 turned out to be highly
significant (p > 0.001). The details of the analysis will be published in a
forthcoming paper.

Acknowledgements The data for this experiment was provided by an
international collaboration OJ-94. The work was funded by grants number
71355 and 44011 from the Finnish Academy.
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Estimating Large-Scale
Structure From QSO
Absorbers: Using Across-Line
Information

J. M. Loh1, J. M. Quashnock and M. L. Stein

The clustering of QSO absorption-line systems, or absorbers, is on the
same comoving scale as that traced by the voids and walls of galaxy redshift
surveys of the local universe (see e.g. [2]). Thus it appears that the absorbers
are effective probes of very large scale structure of the universe ([1]).

Previous investigations of clustering using QSO absorbers have, on large
scales, been confined to considering absorbers occurring on the same lines
of sight (see e.g. [4] and [6]). Absorber pairs lying on different lines of sight
contain information about the clustering of absorbers. The use of such
across-line-of-sight absorber pairs may improve the efficiency of estimates
of clustering. Furthermore, lines of sight are generally about 400 h−1 Mpc
long, limiting the distance at which clustering can be investigated using
only absorber pairs lying on the same lines. With estimates that also use
pairs of absorbers on different lines, there is no such limitation.

We have developed an estimator K̂(r) of the reduced second moment
function K(r) for QSO absorbers observed on a set of lines of sight using
all possible absorber pairs. The main assumptions are that the absorbers
are spheres of small constant radius and that the process of absorber centers
is stationary and isotropic. The full details of this procedure can be found
in [3]. Here, we describe the main results of using this estimation procedure.

We performed a simulation study to compare the new estimator K̂(r)
with K̂‖(r), an estimator that uses only absorber pairs on the same lines.
We defined a conic section with half-angle of 450 and Earth at its tip,
bounded by comoving distance 2000 to 3300 h−1 Mpc from the Earth. This
region is similar to the region in which the Sloan Digital Sky Survey (SDSS)
will find QSO lines of sight. We placed m lines uniformly and randomly in
this region, with m = 100, 1000, 10,000 and 100,000. With each simulation
of a Poisson process on these lines, we calculated K̂(r) and K̂‖(r). The
ratio of the standard errors of the two estimators is shown in the figure.

Our simulations show that, with 100,000 lines of sight, using K̂(r) instead

1Department of Statistics, Columbia University
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FIGURE 51.1. Ratio of standard errors of K̂(r) to K̂‖(r) for m = 100 (dotted
line), 1000 (short-dashed line), 10,000 (long-dashed line) and 100,000 (solid line).
Also shown is the same ratio, for m = 100, but with 10 times (long-dashed and
dotted line) and 100 times (short-dashed and dotted line) higher angular line
density.

of K̂‖(r) results in a reduction in standard error by a factor of 2 to 20 on
scales of 30 to 200 h−1 Mpc. This is effectively an increase in sample size
by an extra factor of 4 to 400 on large distances.

Vanden Berk and Quashnock (private communication) provide an ex-
tensive absorber catalog consisting of 276 lines of sight and 345 Carbon
iv absorbers drawn from the literature. Using the new estimator with this
catalog, we find strong evidence for clustering on scales up to 100 h−1 Mpc,
and possibly up to 150 h−1 Mpc, similar to that found by [5]. We also cal-
culated K̂(r) for r up to 1000 h−1 Mpc and do not find any evidence of
clustering for r > 150 h−1 Mpc.
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Point Source Detection on the
Sphere Using Wavelets and
Optimal Filters

E. Mart́ınez-González1, P. Vielva,
D. Herranz, J. Gallegos and J. L. Sanz

ABSTRACT We present an analysis of simulated microwave data to detect
point sources using wavelets and optimal filters. We search for point sources
in the Time Order Data (TOD), using optimal adaptive filters, and in the
map using the Spherical Mexican Hat Wavelets (SMHW). The SMHW
provides a whole sky point source catalogue at 30 GHz of ≈ 900 sources
with a flux limit detection of 0.53 Jy and a mean error of 16%. The optimal
filter is able to detect ≈ 250 sources from the TOD reaching a flux limit of
0.97 Jy and a mean error of 20%.

52.1 Introduction

A critical issue in the analysis of microwave data is the component sepa-
ration process. Microwave data consist in a mixture of emissions coming
from different sources: Cosmic Microwave Background (CMB), the Galaxy
and extragalactic sources. Several methods have been proposed to disen-
tangle those emissions, based on Maximum Entropy, Bayes Theory, neural
netwoks, ... Generically they are relatively good in dealing with the sep-
aration of the diffuse emissions (CMB, Galactic). On the other hand, it
has been shown that compact sources are better identified with adaptive
filters/wavelets more optimal for localised objects (Tegmark and Oliveira-
Costa 1998, Cayón et al. 2000, Sanz et al. 2001). Following this last ap-
proach we search for point sources in microwave data both in the TOD
and in the whole sky map. The data has been simulated with the Planck
Pipeline Simulator and represents 6 months run of the 30 GHz LFI28 chan-
nel of the Planck mission. The simulations include all relevant Galactic and
extragalactic emissions from both diffuse and compact sources. Also white
and 1/f noises are present in the data and the antenna response has a
FWHM of 33′ and slightly differs from a circular Gaussian one. The sim-

1Instituto de Fisica de Cantabria
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TABLE 52.1. Results of point source detections in the TOD and in the map.

Data Number Spurious Mean error Bias Min. flux(Jy)
TOD 257 5% 20.4% -8.4% 0.97
Map 926 5% 19.2% -4.1% 0.53

ulated data cover the whole sky except for two circles of 1◦.82 around the
ecliptic poles.

52.2 Results

Details about the detection of point sources in the TOD using optimal fil-
ters have been given in Herranz et al. (2001). As it is shown in that paper
optimal adaptive filters are efficient in detecting and extracting sources
with a given profile embedded in a background of known statistical prop-
erties. In particular they could be used to obtain a real-time preliminary
catalogue of extragalactic sources which would have a great scientific in-
terest, e.g. for follow-up observations. The method based on the Mexican
Hat wavelet has been shown to perform very well detecting point sources
on maps representing small patches of the sky and also complementing the
Maximum Entropy Method for the separation of all components (Vielva et
al. 2001a,b). Here we demonstrate the performance of the method using the
SMHW on all sky maps and for more realistic simulations which takes into
account deviations from the ideal case of a perfect circular Gaussian an-
tenna response and pure white noise. The results of detecting point sources
in the TOD, using optimal filters, and in the whole sky map, using the
SMHW, are given in the table.
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mitted to MNRAS.
Sanz J.L., Herranz D. and Mart́ınez-González E. 2001, ApJ, 512, 484
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Constraining the Cosmological
Constant from Large-Scale
Redshift-Space Clustering

Takahiko Matsubara1 and Alexander
S. Szalay

ABSTRACT We show how the cosmological constant can be estimated
from cosmological redshift distortions, using maximum-likelihood techniques.
Using a simple idealized survey geometry, we compute the Fisher matrix
for ΩM and ΩΛ. We also estimate confidence contours for real survey ge-
ometries, using the SDSS LRG as an specific examples.

53.1 From Correlations to Fisher Matrix

To generically investigate how a given redshift survey can constrain the
cosmological constant, we construct a rectangular box, in which the Gaus-
sian smoothed cells are placed on lattice sites i in the box so as to have
the smoothed density fluctuation vector di = ρi/〈ρi〉 − 1. A correlation
matrix, Cij = 〈didj〉, theoretically specifies all the statistical information
for a given data set. First, the theoretical form of the correlation matrix is
calculated from Matsubara & Suto (1996) with smoothing effect taken into
account.

Once the correlation matrix is theoretically calculated in any cosmolog-
ical model, the Fisher information matrix is used to estimate how well the
model parameters can be measured:

Fαβ = −〈∂2 lnL/∂θα∂θβ〉 = Tr(C−1C ,αC−1C ,β)/2,

where L(d; θ) is a probability distribution for the data vector d, which
depends on a vector of model parameters θ. The Cramér-Rao bound states
that the maximal likelihood estimate constrains the model parameters with
a minimum variance 〈θαθβ〉 ≥ (F−1)αβ .

1Department of Physics and Astrophysics, Nagoya University
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FIGURE 53.1. Concentration ellipses corresponding to 1σ, 2σ, 3σ confidence
levels for approximate geometries of the 100,000 galaxies in the SDSS LRG (Lu-
minous Red Galaxy) sample. Dotted lines assume a bias factor of b = 1.5, solid
lines has b = 2.

53.2 Results

In this work, the power spectrum P (k) and the bias parameter b are fixed
throughout. The power spectrum is a CDM-type with Γ = 0.2, σ8 = 1. We
consider the cosmological constant parameter ΩΛ and the density parame-
ter ΩM to be estimated.

We have considered several different survey layouts for both galaxies
and quasars. The best survey to perform these tests seems to be the Lumi-
nous Red Galaxy (LRG) sample of the Sloan Digital Sky Survey (SDSS).
We simulate the geometry of LRG sample as a composite of the generic
200 h−1Mpcz boxes at the mean redshift z = 0.3. The shot noise is approx-
imately given by (20 h−1Mpcz)3n̄ = 0.5.

The resulting concentration ellipses are shown in Figure 53.1. This shows
that the shot noise level and the depth of the survey volume are suitably
balanced to constrain the geometry of the universe in the SDSS LRG survey.

The Cramér-Rao bound for ΩΛ is only [(F−1)ΛΛ]1/2 = 0.04 for b = 1.5,
and [(F−1)ΛΛ]1/2 = 0.03 for b = 2. This shows that the shot noise level
and the depth of the survey volume are suitably balanced to constrain
the geometry of the universe in the SDSS LRG survey. Unfortunately, the
currently ongoing QSO redshift surveys, like Sloan Digital Sky Survey and
2dF QSO redshift survey, have too low sampling rates for QSOs, n̄ ∼
10−3/(40 h−1Mpcz)

3, to obtain comparable constraints.

Matsubara, T. & Suto, Y. 1996, ApJ, 470, L1
Matsubara, T. & Szalay, A. S. 2001, ApJ, 556, L67
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Multivariate Monte Carlo
Methods with Clusters of
Galaxies

J. R. Peterson1, J. G. Jernigan, S. M. Kahn,
F. B. S. Paerels, J. S. Kaastra, A. Miller,
J. Carlstrom

ABSTRACT We describe a novel Monte Carlo approach to both spec-
tral fitting and spatial/spectral inversion of X-ray astronomy data, and
illustrate its application in the analysis of observations of clusters of galax-
ies. The X-ray events are directly compared with simulations using mul-
tivariate generalizations of the Kolmogorov-Smirnov and the Cramér-von
Mises statistic. We demonstrate this method in studying the soft X-ray
spectra of cooling-flow clusters with the Reflection Grating Spectrometers
(RGS) on the XMM-Newton observatory. We also show preliminary results
on simultaneously inverting X-ray and interferometric microwave Sunyaev-
Zeldovich cluster data using a Monte Carlo technique. Various techniques
are applied to simulate radiative transfer effects, model spatially-resolved
sources, and simulate instrument response. We then apply statistical tests
in the multi-dimensional data space.

Clusters of galaxies contain large amounts of X-ray emitting plasma. It
can be used to study important physical processes and answer many cosmo-
logical questions concerning the chemical and thermodynamical evolution
of dense regions of the universe. The analysis of X-ray data from clusters
poses interesting data analysis problems. X-ray photons are detected with
three measurements related to two spatial positions and the intrinsic pho-
ton energy. This makes the data multi-dimensional. Additionally, only 104

to 105 photons sparsely fill the multi-dimensional data space.
We have employed a number of Monte Carlo techniques to study X-ray

clusters of galaxies to attempt to reproduce the detected data (Peterson,
Jernigan, and Kahn, in preparation). A spectral model that varied spatially
was used along with an instrument Monte Carlo of the Reflection Grating
Spectrometers on the XMM-Newton observatory to study the soft X-ray
spectrum of the galaxy cluster Abell 1835 (Peterson et al. 2001, A&A 365).

1Department of Astronomy, Columbia University
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FIGURE 54.1. Three projections of the data from the galaxy cluster, A S 1101.
The two curved lines in the upper right plot are the first and second order dis-
persed spectrum. The three detected values are the dispersion angle, the CCD
energy, and the sky angle perpendicular to the spectrometer (x-dispersion).

FIGURE 54.2. Simulation of the cluster in Figure 1.1 using a spectral-spatial
model for the X-ray emission. It is compared globally using multivariate statistics
and then details of the astrophysical model can be compared to find inconsisten-
cies in the model. Spatial variations of emission lines can also be studied.

Figures 1.1 and 1.2 shows the detected photons and simulated photons of
a galaxy cluster. A Monte Carlo approach also naturally handles difficult
radiative transfer problems (Xu et al., ApJ submitted, 2001).

X-ray data and measurements of the distortion of the cosmic microwave
background through the Sunyaev-Zeldovich (SZ) effect can give joint con-
straints on the density, temperature, and clumping of the intracluster med-
ium at each projected spatial position. Figure 2 shows the inversion of
interferometric SZ data through Monte Carlo techniques. Future analy-
sis may allow us to place further constraints on the complex thermal and
spatial structures in the cluster plasma.
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FIGURE 54.3. Inverted SZ image of the galaxy cluster Abell 1835 using Monte
Carlo techniques.
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A New Tool for Automated
Classification of Astronomical
Images

Ninan Sajeeth Philip1, Yogesh Wadadekar,
Ajit Kembhavi and K. Babu Joseph

Difference Boosting Neural Network (DBNN) is a variant of the Naive
Bayesian Neural Network that assume parameter independence for comput-
ing the Bayesian Probability. Parameter independence is generally uncom-
mon in practice and the performance of Naive Bayesian Networks degrades
when the condition is not satisfied. DBNN, however, does not strictly re-
quire the parameters to be independent.

The underlying principle used by DBNN is that even when the parame-
ters are correlated, there always exist some range of allowed values for each
parameter given the range of the other parameters. DBNN uses a lookup
table and a window function to make fast and robust guesses about the
parameters while predicting the class of an example. The lookup table is
generated during the training of the network. The table holds the lowest
and the highest values allowed for each parameter given the class of the ob-
ject. While computing the Bayesian Probability for membership to a class,
the computed value is reduced to one fourth its value if the range of the pa-
rameter happens to be outside the value specified in the lookup table. This
is the job of the window function. There could exist situations in which
such a window function alone is not able to make adequate classification
of objects. DBNN handles this situation by assigning a weight function to
each of the parameters given the class of the object. The weight function
is updated during the training cycle in such a way that the differences in
the parameters are highlighted to make the classification.

We constructed our training set from the R band image of the publicly
available NOAO Deep Wide Field Survey (NDWFS) images. We chose to
use this data because it has a high dynamic range, large area coverage
and high sensitivity that allowed us to maintain uniformity between the
moderately large training set and numerous test sets. The training set
was carefully constructed from a randomly selected subimage of 2001x2001
pixel region in the R-band image. This image has the best seeing conditions

1Cochin University of Science and Technology
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among the data currently released. The objects were largely in the Kron-
Cousins magnitude range 20-26.

For classification we used three derived parameters from the parameters
extracted by the SExtractor package.

• Elongation measure: This is the logarithm of the ratio of second
order moments along the major and minor axis of the lowest isophote
of the object. For a star, the ratio should be near unity. For our
training set, this ratio is different from unity because of the slightly
elliptical point spread function.
• Standardized FWHM measure: This is the logarithm of the ratio

of the full width half maximum (FWHM) of the object (obtained
from a Gaussian fit to the intensity profile) to the FWHM of the
point spread function for the image.
• Gradient Parameter: This is the logarithm of the ratio of the cen-

tral peak count to the standardized FWHM measure of the object.

Our training procedure on the ∼ 400 objects in the training dataset took
0.23 seconds on an Intel Pentium III processor running at a clock speed
of 700 MHz. Such short training times are invaluable when one has to op-
timally deal with large datasets that are collected and processed over a
significantly wide span of time, demanding repeated retraining of the clas-
sifier to account for variations in observing conditions and the parameters
chosen for classification. Data from large surveys fall into this category.

The performance of the network was tested on two sub regions of the
NDWFSJ1426p3456 field. The object catalogs for the test sets were con-
structed using the same SExtractor configuration as for the training set.
The results are shown in Table 1. The classification accuracy is seen to be
marginally better than that of SExtractor.

TABLE 55.1. Comparison of classification accuracy of the DBNN and SExtractor
on the NDWFS data.
Label Stars Galaxies Total Accuracy Accuracy

SExtractor DBNN
Training 87 321 408 97.55 %
Test 1 72 233 305 97.05 % 97.38 %
Test 2 99 289 388 97.94 % 98.45 %

The source code and the full documentation for the DBNN software
described here may be downloaded from the URL:

http://www.iucaa.ernet.in/∼ nspp/dbnn.html
This work made use of images and data products provided by the NOAO

Deep Wide-Field Survey (Jannuzi and Dey 1999).
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Parameter Estimation via
Neural Networks

Nicholas G. Phillips1 and A. Kogut

ABSTRACT We use neural networks for astrophysical parameter estima-
tion in the context of models of the cosmic microwave background (CMB).
Our method allows for a Bayesian analysis and recovers results comparable
to standard maximum likelihood methods when tested on simulated CMB
anisotropy maps. We find the computational cost for this method scales
with the map size as NCPU ∼ N1.5

pix .

Neural nets can estimate parameters even from stochastic models where
the input patterns are intrinsically random. We use Multi-Layer Perceptron
neural networks with back propagation training [1]. There is one input
neuron per input pixel, a single hidden layer and one output unit. The
details of this work can be found in [2].

Focusing on estimating a single parameter, we start by choosing a pair of
parameter values that bracket the range to test. We generate realizations
of the model at each value and train networks to differentiate between the
two sets. The networks are then presented with sets of realizations drawn
on a grid of parameter values spanning values between the training values
above. By using a committee of 50 networks, we determine the parameter
probability distributions for any given committee consensus on the network
output. Once this process is completed, we have all the priors necessary to
conduct a Bayesian analysis of an unknown input pattern.

To test our method, we simulate COBE-DMR full-sky maps of the CMB
anisotropy, parameterized by the spectral index n [3]. Instrumental effects
are accounted for by including noise [4] and excluding the pixels dominated
by foreground galaxy emission [5]. galaxy cut. patterns, the networks the
pixels spectral indices for 1000 patterns for n = 1.40. The mean recovered
value is n = 1.30 and from a Bayesian analysis, we find we have a 68%
confidence interval of [0.94, 1.66], an uncertainty similar to an maximum
likelihood analysis [6].

We determine how the computational needs scale with the problem size
by presenting our networks with different size patterns. Our patterns are
circular patches of our CMB maps, with the range of patch size covering 1.5

1RITSS, NASA Goddard Space Flight center
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FIGURE 56.1. Sample outputs for given input maps

orders of magnitude of pattern size. For each patch size, we determine how
many hidden units and number of training passes are needed to achieve
a preset level of discrimination. The results are shown in Figure 2, from
which we find the CPU cost scales with the patch size as NCPU ∼ N1.5

pixel.
We expect our method to readily scale to anticipated mega-pixel datasets.

56.1 References

[1] Rumelhart, D.E., Hinton, G.E., and McClellend, J.L. 1986, in
Parallel Distributed Processing, Eds. D.E. Rumelhart, J.L. Mc-
Clellend and the PDP Research Group (MIT Press: Cambridge)

[2] Phillips, N. G. and Kogut A., submitted to ApJ; preprint astro-
ph/0108234

[3] Bond, J. R., and Efstathiou, G. 1987, MNRAS, 226, 655

[4] Bennett, C. L., et al. 1996, ApJ, 464, L1

[5] Banday, A. J., et. al 1997, ApJ, 475, 393

[6] Górski, K. M., et. al 1994, ApJL, 430, L89



56. Parameter Estimation via Neural Networks 473

FIGURE 56.2. Scaling of computational cost for CMB data
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Correlations at Large Scale

M. J. Pons–Bordeŕıa1, V. J. Mart́ınez,
B. López–Mart́ı and S. Paredes

ABSTRACT We show point processes generated in different ways and hav-
ing different structure, presenting very similar power-law two–point corre-
lation functions at small scales and quite different shapes at large scales.

The two-point correlation function ξ(r) measures the excess probability
—with respect to a Poisson distribution— of, given a point of a process,
finding another point at a distance r of the first one ([2]). It is well-known
that ξ(r), for the galaxy distribution, fits well a power law at small scales
(r < 10h−1Mpc). Here we analyze several point processes having similar
power-law shapes at small scales, but different visual aspect. The differences
are encapsulated in the behavior of the correlation function at large scales
as well as in other statistical measures ([3]). The analyzed point processes
are the following:

1. COX A segment Cox process has been produced by randomly scatter-
ing segments of length l = 10h−1Mpc with a density λs = 0.0013
within a cube of side 100h−1 Mpc, and then randomly distributing
points on the segments with density λl = 0.76923 per unit length.
An analytical expression for ξ(r) depending on these parameters is
known ([4]).

2. VORONOI We have considered the vertices of a Voronoi tessellation
([5]) constructed from a binomial field with 1500 nuclei. There are
10085 vertices (events of the point process) within a cube of sidelength
100
√

2h−1Mpc.

3. VIRGO From a Λ-CDM N-body simulation of the Virgo Consortium, a
sample of simulated galaxies has been constructed by the GIF project
([1]). The sample contains N = 15445 galaxies within a cube of side-
length 141.3h−1Mpc.

At small scale the behavior of ξ(r) is very similar for the three clustering
models — power-law functions with comparable exponents. The differences

1Department Matemática Aplicada y Estad́ıstica, Univ. Politécnica de Cartagena
(Spain)
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FIGURE 57.1. Top: from left to right, the COX, VORONOI and VIRGO point
processes described in the text. Bottom: ξ for the three processes at small scales
(left panel) and at large scales (right panel).

of the clustering properties of the three point processes are better appre-
ciated at large scale. For the Cox process ξ(r) = 0 for r ≥ l whereas for
the N-body simulation ξ(r) approaches zero more gradually, taking place
the first zero crossing at ∼ 30h−1Mpc. For the Voronoi vertices model, ξ(r)
behaves with damping oscillations around the zero value.

We conclude by stressing that the behavior of ξ at large scales provides us
with crucial information about the clustering properties of point processes
presenting similar power-law shapes at small scales. Appropriate estimators
had to be used to obtain this information, that can be complemented with
other statistical measures ([3]).

Acknowledgments This work was supported by the Spanish MCyT
project AYA2000-2045.
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Constraining Cosmological
Models by the Cluster Mass
Functions

Nurur Rahman1 and Sergei F. Shandarin

Cluster abundance test puts strong constraints on the cosmological pa-
rameters such as matter density (Ω0 = Ωb + Ωcdm + Ωhdm) in the Universe
and the amplitude of the mass density fluctuations (σ8). We present a com-
parison between two observational and three theoretical mass functions
for eight cosmological best-fit models suggested by the data from recently
completed BOOMERANG-98, MAXIMA-1 Cosmic Microwave Background
anisotropy experiments as well as Peculiar Velocities and type Ia Super-
novae observations. Further details of this work can be found in the Astro-
physical Journal Letters 550:L121 (2001).

Analytical mass functions are obtained from three sources: Press & Sche-
chter (ApJ, 187, 425 1974), Lee & Shandarin (ApJ 500, 14 1998) and Sheth
& Torman (MNRAS 308, 119 1999).

Our results are shown in the accompanying table and figures. The find-
ings may be summarized as follows:

1. We find that no model is in agreement with the X-ray clusters abun-
dance at ∼ 1014.7h−1M�.

2. The BOOM+MAX+COBE:I, Refined Concordance and ΛMDM mod-
els are in good agreement with the optical clusters abundance.

3. The P11 and Concordance models predict slightly lower cluster abun-
dances than observed at ∼ 1014.6h−1M�.

4. The BOOM+MAX+COBE:II and PV+CMB+SN models predict sli-
ghtly higher cluster abundances than observed at ∼ 1014.9h−1M�.

5. The non-flat MAXIMA-1 model is inconsistent with the observation
at the entire mass range.

Our analysis shows that: 1) the Universe has low matter density (0.3 <
Ω0 < 0.4) and high dark energy (Ωdark > 0.6) density; 2) a small amount
of neutrino density (Ων ∼ 0.03) can be reconciled with the observation; 3)

1Department of Physics and Astronomy, University of Kansas
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a relatively low normalization, 0.8 < σ8 < 1.0, suggesting a slight galaxy
formation bias value (b = 1

σ8
). The analysis justifies the present notion of

the low matter density (Ω0 ∼ 0.40) Universe dominated by some unknown
dark energy density (Ωdark ∼ 0.60).

Table of the Cosmological Models

Models Parameters
Ωb Ωcdm ΩΛ ns h σ8

1 0.045 0.255 0.7 0.95 0.82 0.92
2 0.045 0.255 0.7 0.975 0.82 0.97
3 0.036 0.314 0.65 0.95 0.80 1.06
4 0.035 0.245 0.72 1.0 0.74 1.17
5 0.03 0.27 0.7 1.0 0.68 0.85
6 0.05 0.33 0.62 0.91 0.63 0.83
7 0.07 0.61 0.23 1.0 0.60 1.05
8 0.037 0.303 0.69 1.02 0.71 0.92

1) P11: Lange et al. 2001, Phys. Rev. D., 63, 042001;
2) BOOM+MAX+COBE I: Jaffe et al. 2001, Phys. Rev. Lett. 86, 3475;
3) BOOM+MAX+COBE II : Hu et al. 2001, ApJ, 549, 669;
4) PV+CMB+SN: Briddle et al. 2001,MNRAS, 321, 333;
5) Concordance: Ostriker & Steinhardt 1995, Nature, 377, 600;
6) Refined Concordance: Tegmark et al. 2001, Phys. Rev. D, 63, 04007;
7) MAXIMA-1(Ωtot = 0.91):Balbi et al. 2000, ApJ, 545, L1;
8) ΛMDM (Ωtot = 1.06): Durrer & Novosyadlyj 2001, MNRAS, 324, 560.

FIGURE 58.1. (following page) Observational cmfs (cumulative mass functions)
measured for virial mass are compared with different theoretical predictions. Top
panel: (a) P11, (b) BOOM+MAX+COBE: I, (c) BOOM+MAX+COBE: II and
(d) PV+CMB+SN. Bottom panel: (a) Concordance, (b) Refined Concordance,
(c) MAXIMA-1 and (d) ΛMDM. The short dash line is nPS , long dash line is
nλ3 and solid line is nST . The filled circles are the observational data points
corresponding to virial masses determined by Girardi et al. (ApJ, 506, 45, 1998).
The open squares are those determined by Reiprich et al. (X-Ray Astronomy
2000, R. Giacconi et al. eds, ASP Conf. 234, 405, 2001) The error bars are in
1σ limit along the vertical direction. Horizontal bars indicate the bin size. The
open triangle is the value of the cmf for masses estimated within the 1.5h−1 Mpc
radius by Girardi et al. (1998).
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Analysing Cosmic Large Scale
Structure using Surrogate Data

C. Räth1, W. Bunk, P. Schuecker, J. Retzlaff,
M. Huber, G. Morfill

ABSTRACT Methods derived from nonlinear time series analyses are ap-
plied to three-dimensional point distributions as they are typical in the
analysis of the cosmic large scale structure. Using the technique of con-
strained randomisation we generate for a given data set surrogate data
sets which have the same linear properties (power spectrum) as well as the
same density amplitude distribution but different morphological features.
It is shown that the original data set can be discriminated from the surro-
gates by analysing the local scaling properties of the point sets as measured
by weighted scaling indices.

With the method of constrained randomisation (Theiler et al. 1992) an
ensemble of surrogate data sets, which share properties of a given point
distribution, is generated. The analysis of the original and surrogate data
sets with measures, which are sensitive to nonlinearities, yields valuable
information about the existence of nonlinear correlations in the data. On
the other hand one can test whether given statistical measures are able to
account for higher order and/or nonlinear correlations by applying them to
original and surrogate data sets. In this work we want the surrogate data
sets to have the same power spectrum and the same amplitude distribution
as a given data set. A refined approach which fulfills these requirements
quiet well is called iteratively refined surrogates (Schreiber & Schmitz
2000). It consists of alternating fourier transformation and rescaling steps.
By construction, the data sets have the same two-point correlation function
whereas their topological features are very different. Nonlinear structural
measures (e.g.Halsey et al. 1986) can account for these morphological differ-
ences in point sets. In this study weighted scaling indices are calculated for
characterising the local scaling properties of a point set. Consider a set of N
points P = {�ri}, i = 1, . . . , N . For each point the local weighted cumulative
point distribution ρ is calculated. With a class of exponentials as weighting
functions it can be written as ρ(�ri, R) =

∑N
j=1 e

−(dij/R)n

, dij = ‖�ri − �rj‖,

1Centre for Interdisciplinary Plasma Sciences, Max-Planck-Institut für extrater-
restrische Physik
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where we use n = 2. The weighted scaling indices α(�ri, R) are defined as
the logarithmic derivation of ρ(�ri, R) with respect to the length scale R,
α(�ri, R) = ∂ log ρ(�ri,R)

∂ log R . Structural components of a point distribution are
characterised by the values of α of each point belonging to a certain kind
of structure (e.g. α ≈ 0: cluster, α ≈ 1: filaments, α ≈ 2: sheets, etc.). The
scaling indices for the whole point set under study are comprised in the
probability distribution P (α).

FIGURE 59.1. Spectrum of scaling indices for R = 4 Mpc/h (black line) of the
original data set (open cold dark matter model) and the 1σ-error region (gray
area) as derived from 20 surrogate data sets with the same power spectrum and
amplitude distribution. The original data set can clearly be discriminated against
the surrogates.

The results of our work yield further evidence that the linear global mea-
sures like the two-point correlation function and power spectrum are only
of limited use characterising the morphology of a given structure. This is
due to the fact that these second order statistical measures are insensitive
to the distributions of Fourier phases which are responsible for the fine de-
tails of cosmic structures. The development of more sophisticated nonlinear
local descriptors which are based on the analysis of the scaling behaviour of
the point distribution can offer new possibilities to refine statistical meth-
ods so that previously ignored subtle but important features can now be
both detected and quantitatively characterised. This may allow for a bet-
ter discrimination between models with very similar power spectrum. In
this context the method of surrogate data is a vital tool with which the
quality of newly developed measures can be assessed in terms of sensitivity
to different topological features and in terms of discriminative power.

Theiler J., Eubank S., Longtin A. et al., 1992, Testing for Nonlinearity in
Time Series: The Method of Surrogate Data, Physica D 58, 77.

Schreiber T., Schmitz A., 2000, Surrogate Time Series, Phys D 142, 346.

Halsey T.C., Jensen M.H., Kadanoff L.P. et al., 1986, Fractal Measures and
their Singularities: The Characterization of Strange Sets, Phys. Rev. A 33,
1141.
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Delaunay Recovery of Cosmic
Density and Velocity Probes

W. E. Schaap1 and R. van de Weygaert

ABSTRACT Optimally resolved one-dimensional density and velocity pro-
files through cosmological N-body simulation are constructed by means of
the Voronoi-Delaunay tessellation reconstruction technique. In a fully self-
adaptive fashion a strikingly detailed view of the density features and the
corresponding cosmic motions is recovered.

In essence, N-body simulations of cosmic structure formation are sup-
posed to represent a discrete sampling of underlying continuous density
and dynamical fields. The recovery of the corresponding continuous fields
is a less than trivial exercise. They are often distorted by manipulated,
user-dependent and therefore biased reconstruction schemes. This makes
it in particular cumbersome to deal self-consistently with the character-
istically multi-scale hierarchical nature of cosmological density fields. As
significant is the failure to recover crucial structural aspects of the salient
and frequently sharply defined anisotropic – filamentary and wall-like –
patterns in the cosmic matter distribution.

Recently, Schaap & van de Weygaert [3] have developed a fully self-
adaptive and unbiased method to reconstruct density and related dynamic
fields from a discrete and in general nonuniformly sampled set of point loca-
tions. It is based on the stochastic geometric concept of Voronoi/Delaunay
tessellations and forms an elaboration on the formalism first proposed by
Bernardeau & van de Weygaert [1] for the case of assessing the statistical
properties of cosmic velocity fields.

The application of the method to a large 2563 GIF N-body simulation
(LCDM, 141.3h−1Mpc, courtesy: S. White) [2, 3] provides a beautiful illus-
tration of its sizeable promise. The top panel of fig. 1 presents the particle
distribution in a slice through this simulation. The corresponding density
field determined through the Delaunay technique is shown in the adjacent
panel. Notice how much better than the saturated particle plot this den-
sity field manages to elucidate the wealthy and detailed structural features
present in this cosmic volume, superbly rendering its high density contrasts.

While the image of the density field already provides evidence of its oper-

1Kapteyn Institute, University of Groningen
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FIGURE 60.1. Slice through a GIF N-body simulation (top), the Delaunay re-
covered density (center) and density and velocity profiles along the central line
(bottom). (We are grateful to S. White for initiating these calculations.)

ation, it is through the objective assessment of the density profile along the
central axis of the slice that the success of the method is fully manifested
(solid line, lower panel). Evidently, the Delaunay technique yields a faith-
ful representation of the density field over an impressive dynamic range,
encompassing gently varying and extended low-density regions as well as
the high density contrasts found in compact objects, be it either condensed
clumps or the flattened dimension(s) of filaments and walls. Even more
compelling is the correlation with the corresponding velocity field along
the same line (dashed line). Largely superseding the poor velocity resolu-
tion in the conventionally shotnoise-dominated void regions it succeeds in
reproducing the matter depleting super-Hubble like peculiar velocity flows
(e.g. void at ≈ 123h−1Mpc). Even more striking are the sharp velocity
transitions encountered at the location of high density peaks, indicating
the large induced infall motions along various directions towards these fea-
tures (e.g. the peak at ≈ 7h−1Mpc).
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A Large Proper Motion Survey
of the Pleiades Cluster

J. Souchay1 and E. Aleshkina

61.1 Introduction

The accurate determination of proper motions of the stars can be achieved
through the analysis of Schmidt photographic plates, at the condition that
these plates have been obtained at epochs covering a relatively large time
span. Applied to the Pleiades cluster, this kind of analysis can drastically
improve the knowledge of the cluster, noticeably with respect to two points
: the first one is that it can lead to a very trustable evaluation of the
membership probability of a given star of the field to the cluster. At sec-
ond, when this probability has been evaluated, photometric information
obtained through various filters, can lead to fundamental astrophysical in-
formation. For this purpose, we have gathered at all 51 plates: 25 of them
have been taken from the Tautenburg Schmidt telescope (134/203/401) in
Germany, 13 of them with the CERGA Schmidt telescope (90/152/316) in
France , and 13 with the Kizo Schmidt telescope in Japan.

61.2 Procedures for astrometric measurements

For each plate the first step of our analysis consists in identifying, as far
as it is possible, any star of the field with its corresponding counterpart in
a master plate.The recognition of the common stars is made possible by
the intermediary of PPM astrometric standards (Roser and Bastian,1988).
Then one of the plates, selected among the set of 51 ones according to ap-
propriate criteria (colour, deepness, center, intermediate time), is selected
as a master plate.

Each of the plates has been scanned with the Machine Automatique
a Mesurer pour l’Astronomie (MAMA) located at Paris observatory. The
pixel size of each of the 1024 photodiodes representing the linear scanning
bar of the MAMA is 10µm. According to technical tests, the precision

1Observatoire de Paris/DANOF
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of the measurements is of the order of 0.1 µas, which corresponds to a
few milliarcseconds as given the scale of the plates (around 60”/mm). For
further details concerning the specific characteristics and performance of
the MAMA, we can refer to Berger et al. (1991).

Once the recognition of common stars with those of the master plate has
been done, the reduction consists in converting the bi-dimensional coordi-
nates xi, yi of a given star of the i-th plate into fictitious equivalent coor-
dinates on the master plate, symbolized by Xpm

i , Y pm
i . The corresponding

algorithm has the following form:

Xmp
i =

∑
1<j,k<n

ajk
i x

j
iy

k
i Y mp

i =
∑

1<j,k<n

bjk
i x

j
iy

k
i (1)

The coefficients ajk
i and bjk

i are chosen by a least-square algorithm in such
a way that the coordinatesXmp

i and Y mp
i calculated through (1) become as

closest as possible to the corresponding respective positions Xmp
0 and Y mp

0

in the master plate. In other words
∑

(Xmp
i −Xmp

0 )2 and
∑

(Y mp
i −Y mp

0 )2

are set to their minimum values by the judicious choice of the coefficients
ajk

i and bjk
i . Practically we choose: n=4 as the maximal degree of our

polynomials.
In order to optimize the quality of the plate-to-plate transformations,

we adopt an iterative procedure consisting in eliminating step by step any
star whose the absolute difference

[
Xmp

i −Xmp
0

]
or
[
Y mp

i −Y mp
0

]
between

the converted coordinate and the reference coordinate in the master plate,
exceeds a threshold value, which has been set to 2.0σX and 2.0σY , where
σX and σY represent respectively the following r.m.s.:

σX =

√∑
i=1,N

(
Xmp

i −Xmp
0

)2
N

σY =

√∑
i=1,N

(
Y mp

i − Y mp
i

)2
N

(2)

N being the total number of stars. The iteration stops when no rejection
occurs. Then, we can notice the evolution w.r.t. the time and a unique
reference frame, of the positions Xti

mp and Y ti
mp of a given star at a time ti

(ti being the date when the ith. plate has been taken), that is to say its
proper motion, which is not absolute but evaluated with respect to a zero
value which characterizes the average proper motions of all the stars of the
field, each of them being dragged by galactic rotation.

61.3 Proper motion determinations

To accept a given star in our proper motions survey this star has to be
identified in 3 different plates separated by a large time span. When this
constraint is satisfied, we gather all the positions (X l

mp, Y
l
mp) of the given

star, l ranging between 1 and m, m having a value between m = 3 and
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m = 50 according to the star, tl being the corresponding epoch. Then each
of the time series X l

mp(tl) and Y l
mp(tl) is fitted independently by a straight

line whose the slope gives directly the proper motion according to the Y
axis (µα cos δ) and the X axis (µδ). Here also the fit is carried out by the
intermediary of least-square analysis, the two parameters to be determined
for each axis being the original value ((X0

mp or Y 0
mp) at t0 = 1961.05, and

the value of the proper motion µα cos δ or µδ. As it was the case for the
plate-to-plate correspondence (last section) the procedure is iterative. Two
tests have been carried out, the first one with a rejection threshold at 2σ
and the second one with a rejection threshold at 1.5σ.

61.4 Membership probability

We have plotted the VPD (Vector Point Diagram) for the proper motions
of the Pleiades field stars respectively with a 2.0 ×σ rejection threshold and
a 1.5 ×σ rejection threshold, after fitting the locations on the master plate
with a straight line, by the means of least-square analysis. We notice exactly
the same kind of pattern that was already shown and analyzed by Schilbach
et al.(1995) and Meusinger et al.(1996), which consists in a large clustering
of the proper motions around the origin, which represents the motions of
the field stars, and a compact secondary clustering, centered on the point
with coordinates [µα cos δ]m = +17.0mas/y and [µδ]m = −39.3mas/y. The
statistical way to evaluate the membership probability Ppm of a given star
to the cluster of a star inside the clustering VPD zone is described in detail
by Meusinger et al. (1996)

Ppm = exp
[
−1

2
( ∆µ
σµ(V )

)2]with

(∆µ)2 = (µα cos δ − [µα cos δ]m)2 + (µδ − [µδ]m)2 (3)

assuming a non-correlated bi-dimensional Gaussian distribution, with dis-
persions: σ2

µ = σ2
µ,meas + σ2

µ,intr where σµ,intr is the intrinsic velocity dis-
persion, and σµ,meas represents the accuracy of the proper motion mea-
surement. According to the law above, a star is considered as a cluster
member if the distance of its locus on the VPD from the center of the
Pleiades is smaller than a prescribed distance limit, ∆µlim = kσµ(V )
so that the selection of the Pleiades stars set is given by the condition:
PPleiades

pm > exp(−k2/2) the value of k being empirically determined. In a
previous study, Souchay and Schilbach (1995) have found that 332 probable
Pleiades stars are located inside a circle with a radius of 4 mas/year around
the center of the clustering whose the coordinates have been determined
above.
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Bayesian Spectral Analysis of
“MAD” Stars

Nondas Sourlas1, David A. van Dyk, Vinay
Kashyap, Jeremy Drake and Deron Pease

62.1 Overview

Computing reliable estimates of coronal metallicity (Z) from X-ray spectra
obtained with instruments such as ASCA/SIS and Chandra/ACIS is very
difficult, because the sole determinant of Z is the ratio of line to continuum
fluxes, which is not well-determined for low-resolution spectra. Here we
propose new Bayesian methods which directly model the Poisson nature of
the data. Our model also accounts for the Poisson nature of background
contamination, blurring due to instrument response, and the absorption
of photons in space. The resulting highly structured hierarchical model is
fit using the Gibbs sampler, data augmentation, and Metropolis-Hasting.
We demonstrate our methods with the X-ray spectral analysis of several
apparently coronal metal abundance deficient (”MAD”) stars.

62.2 A Poisson Spectral Model

The model is designed to summarize the relative frequency of the energy
of photons arriving at a detector. We model the photon counts in each
bin as independent Poisson random variables. Specifically, we model the
high energy tail of the ASCA spectrum (2.5-7.5 keV) as a combination
of a Bremsstrahlung continuum and ten narrow emission lines, included
at positions of known strong lines. This source model is combined with
instrument response, the effective area of the instrument, and background
contamination to model actual observed counts [12].

Statistical analysis is based on two observations of the same source and
two of the same background. We use sequential Bayesian analysis for the
two source observations; the posterior distribution from the first analysis
is used to construct an informative prior for the second. Non-informative

1Department of Statistics, Harvard University
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priors were used in the first stage. Model fitting proceeds by using the
EM algorithm to check for multimodality in the posterior distribution. A
Markov chain Monte Carlo algorithm is constructed to sample from that
posterior. Three chains are used at each step of the analysis in order to
assess convergence. Posterior inference is based on the second half of the
draws of all the chains. The sensitivity of our results to the choice of prior
was investigated by altering the prior. We used residual plots for both
source and background to diagnose the fit of our models.

62.3 Results

We have measured the coronal metallicity for 4 stars, α Aur (Capella), σ
Gem, YY Gem, and II Peg. Our result for Capella (Z = 0.73<2.4

>0.24) are
consistent with the independently determined value of Z = 0.57 − 0.78
(Brickhouse et al. 2000). Based on our analysis of σ Gem (Z = 0.81<1.1

>0.59),
we find that contrary to classical analyses (Z = 0.25) it is not a MAD star
(photospheric Z = 0.6 (Randich et al. 1994). YY Gem is found to have
sub-Solar metallicity (Z = 0.46<0.71

>0.23) but higher than EUVE/SW measure-
ments (Z ∼ 0.1 (Kashyap et al. 1998). For II Peg, we find Z = 1.1<1.3

>0.88,
higher by a factor ∼ 10 than preliminary results from Chandra/HETG; this
discrepancy may be due to anomalies in the abundances of other elements,
or to a high-temperature component to the emission measure.

Acknowledgments: The author gratefully acknowledges funding for this
project partially provided by NSF grant DMS-01-04129 and by NASA con-
tract NAS8-39073 (CXC). This chapter is a result of a joint effort of the
members of the Astro-Statistics working group at Harvard University.
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Stellar Membership in Open
Clusters Using Mixture
Densities

Antonio Uribe1, Ruth Barrera, Mario A.
Higuera G. and Alvaro Montenegro

ABSTRACT
A view of differrent parametric methods to solve the stellar membership
problem in open clusters is given and a new approach is obtained using the
EM Algorithm.

Different multivariate normal mixtures density models are found in the
literature to discriminate between the open cluster stars and field stars.
These models overlap bivariate normal components as parametric statisti-
cal models of proper motions data. A first one overlaps a circular and an
elliptic normal component (Sanders, 1971; Zhao et al, 1982; Cabrera C.,
Alfaro E., 1985, Uribe A., Brieva E., 1994, Lattanzi et al.,1991) ; a second
one overlaps two elliptic normal components (Sabogal, M. et al., 2001); in
a third one the errors of proper motions are taking into account (Zhao et
al, 1990; Brieva, E., Uribe A., 1996). The maximum likelihood method is
followed in all these cases to find estimates of the parameters of the mixture
density, and membership probabilities are found by Bayes theorem and the
Bayes rule of minimum error rate of missclassification. Certainly another,
nice and precise approach to solve this problem, is found in Dinescu (Di-
nescu et al., 1996).

We now solve the stellar membership in open clusters using the EM al-
gorithm as explained in Dempster, Laird and Rubin 1977, Wolfe 1970, and
mainly using the McLachlan EMMIX software to solve the maximum like-
lihood equations of an incomplete data problem (McLachlan G. et al.1997,
2000, and http://www.maths.uq.edu.au/ gjm/emmix/emmix.html). This
last approach had led to new membership solutions for several galactic
clusters, in good agreement with other results found in the literature, as in
in the case of the Pleyades cluster, and in NGC654, NGC6530, NGC2244

1Observatorio Astronómico Nacional and Departamento de Matemáticas y Es-
tad́ıstica, Universidad Nacional de Colombia
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and NGC6823.

We start, as it is usual, from a mixture of two weighted normal bivariate
heteroscedastic components as a density model of the proper motions data
for the field and the cluster stars in a considerd region of the sky. The fact
that we do not know to which component each star belongs, leads to an in-
complete data problem, and allows the use of the EM algorithm approach to
find estimates of the parameters of the mixture density. This procedure re-
quires to find the maximum likelihood functions L and Lc, respectively, for
the incomplete and the complete data problem. Then, considering log(Lc),
and following the expectation and the maximization steps that define the
EM algorithm, a maximum value of L is found. In the general case of a
mixture of g components this is a local maximum of an unbounded like-
lihood (Hand, 1981). In the case of the mixture of two bivariate normal
heteroscedastic components, the no singularity of the covariances matri-
ces Σ1 and Σ2 implies the continuity of the Likelihood L, and this local
maximum is unique if we restrict the parameters to vary in compact sub
intervals of the real line. The spread of the cloud of proper motions data
allows to hold these restrictions.

The so called Wolfe equations (Cabrera C., Alfaro E., 1985) are gener-
ated by the EM algorithm when we work with a mixture of two normal
components. Its solutions lead to estimates of the parameters of the mix-
ture density, and then to a solution of the membership problem.

It also seems appropiate to say that EMMIX is a powerful software to
find the parameters of a general finite mixture of g normal or t components
following the EM algorithm.

Acknowledgments: We thank for the given support the SCMA III organiz-
ers and the the Observatorio Astronómico Nacional, Universidad Nacional
de Colombia.
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Comparison of Object
Detection Procedures for
XMM-Newton Images

Ivan Valtchanov1

Procedures based on current methods to detect sources in X-ray images
are applied to simulated XMM images. All significant instrumental effects
are taken into account, and two kinds of sources are considered – unresolved
sources represented by the telescope PSF and extended ones represented by
a β-profile model. Different sets of test cases with controlled and realistic
input configurations are constructed in order to analyze the influence of
confusion on the source analysis and also to choose the best methods and
strategies to resolve the difficulties.

In the general case of point-like and extended objects the mixed approach
of multiresolution (wavelet) filtering and subsequent detection by SExtrac-
tor gives the best results. In ideal cases of isolated sources, flux errors are
within 15-20%. The maximum likelihood technique outperforms the others
for point-like sources when the PSF model used in the fit is the same as in
the images.

The classification using the half-light radius and SExtractor stellarity
index is successful in more than 98% of the cases. This suggests that average
luminosity cluster of galaxies (L[2−10]keV ∼ 3×1044 erg s−1) can be detected
at redshifts greater than 1.5 for moderate exposure times in the energy band
below 5 keV, provided that there is no confusion or blending by nearby
sources.

We find also that with the best current available packages, confusion and
completeness problems start to appear at fluxes around 6 × 10−16 erg s−1

cm−2 in [0.5-2] keV band for XMM deep surveys.
Comprehensive analysis of the detection procedures for simulated XMM

images can be found in Valtchanov, Pierre & Gastaud (2001, VPG).
Here we briefly display the application of the procedures over real XMM

data – the XMM deep survey in the Lockman Hole (Hasinger et al. 2001).
Only the best performing procedures were used: cell detection + maximum
likelihood (EMLDETECT in XMM-SAS), wavelet detection (WAVDETECT
in CIAO, see also P. Freeman in these proceedings) and mixed approach

1Service d’Astrophysique, Centre d’Études de Saclay
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consisting of wavelet filtering using Poisson noise model and subsequent
SExtractor detection (MRSE).

The corresponding number of detections and cross-identification with
MRSE catalogue inside 12′ of the FOV are presented in the following table:

Method Ndet Ncross

EMLDETECT 189 141
WAVDETECT 161 146
MRSE 175 175

There is a systematic difference for the bright sources counts with respect
to the MRSE inferred counts: ∼ 15− 20% more flux with EMLDETECT,
while the difference is less than 10% with WAVDETECT. There is no such
difference when using simulated images which can be explained as arising
from the different real PSF shape from the one used in the maximum like-
lihood fits – the image is a composite from three XMM-EPIC instruments
and five different orbits.

Both MRSE and WAVDETECT classification for the two well known
clusters is successful with some more extended sources candidates using
the MRSE criteria.

As a conclusion, for unresolved sources EMLDETECT gives the best
results when the model PSF used in the maximum likelihood fit is the
same as the true one. In realistic situations, if one combine different in-
struments and observations from different orbits, the performance of the
maximum likelihood technique could be worse. Wavelet based techniques
are more robust and do not rely on detailed PSF shape information and
give similar results in terms of positional and photometric accuracy. The
mixed approach of wavelet filtering with Poisson noise model with SEx-
tractor detection is the best procedure when detection, classification and
characterization of extended sources are concerned.

Acknowledgments: We thank G. Hasinger and T. Miyaji for providing
us with calibrated event lists for the XMM observations in the Lockman
hole.
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FIGURE 64.1. XMM observations in the Lockman Hole. Exposure is about 100 ks
in [0.5-2] keV energy band, the three EPIC instruments are taken together. Raw
image (left) and wavelet filtered (right) with Poisson noise model with significance
∼ 10−4 (∼ 4σ). The two well-known clusters of galaxies are indicated by squares.
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Astronomical Aspects of
Multifractal Point-Pattern
Analysis: Application to the
DENIS/2MASS Near-Infrared
and BATSE Gamma-Ray Data

Roland Vavrek1, Lajos G. Balázs, Attila
Mészáros, István Horváth and Zsolt Bagoly

ABSTRACT Two applications of the multifractal (MFR) point pattern
analysis are presented. First, we study the angular distribution of subclasses
of gamma-ray bursts (GRBs), then we analyse the structure of extinction
maps of dark molecular clouds obtained by near-infrared (NIR) star counts.

Multifractality is a generalization of the fractal description of self-similar
objects or point fields. A monofractal set is characterized by a measure,
which is globally self-similar, however, it is possible that self-similarity is
only local and different scaling behaviors are observed at different scales
and locations. Therefore, the MFR description of point sets provides a pow-
erful tool to characterize them on wide range of scales. A MFR on a point
process can be defined as unification of subsets of different (fractal) dimen-
sions [2, 6]. The contribution of this subsets to the whole pattern is not
necessarily equally weighted, practically it depends on the relative abun-
dances of subsets. The functional relationship between the subsets and the
corresponding fractal dimension is called the MFR or Hausdorff spectrum,
f(α). In the vicinity of point i one can measure from the neighborhood
structure a local dimension αi or pointwise dimension giving a possibility
to construct the MFR spectrum which characterizes the whole (finite) pat-
tern. If the pattern is not a fractal, the MFR spectrum remains sensitive
to the inhomogeneities and anisotropies of the point set.

Besides MFR analysis, we carried out several statistical tests [5] to verify
the null-hypothesis of the intrinsic isotropy of the angular distribution of
subclasses of the gamma-ray bursts (GRBs) at BATSE Catalog [3]. In
order to determine the confidence levels pseudo-random samples were also
generated by Monte Carlo simulations taking into account BATSE’s non-

1Konkoly Observatory, Hungarian Academy of Sciences
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uniform exposure function (see Table 65.1) .
The long GRBs are distributed isotropically - the positive result from

two-point angular correlation function is probably an unknown instrumen-
tal effect. There are indications for the anisotropy of short GRBs both
excluding two tests. Note that the shortest ”tail” T90 < 0.1 s is doubtlessly
anisotropic (T90 is the time interval, during which the 90% of gamma rays
from a burst are detected). The intermediate subclass is anisotropic; the
isotropy is rejected on a satisfactorily high confidence level which ”fluctu-
ates” between 92.0− 99.9 %. The character of anisotropy of intermediate
subclass is peculiar, because the ”dimmer” half of this subclass is more
anisotropic [4]. In addition, there is no concentration toward the Galactic
or Supergalactic planes.

TABLE 65.1. Survey of results of the isotropy tests. High confidence level indi-
cates that the subsample significantly differs from the MC simulated patterns,
the null hypothesis of intrinsic randomness in the angular distribution of the
subsample was rejected.

Long T90 > 10s Short T90 ≤ 2s Inter. 2s < T90 ≤ 10s

Multifractal analysis No > 99.9% > 99.9%
Minimal spanning tree No > 96.0% > 92.0%
Voronoi tesselation No > 99.9% > 99.2%
Spherical harmonics No No > 97.0%
Counts in cells No No > 96.4%
Two-point correlation > 98.8% > 99.2% > 99.8%

The most dense regions of the Chamaeleon I and ρ Ophiuchi molecular
clouds were analysed in order to quantify the scaling properties of dust ex-
tinction using multicolour star counts on data provided by DENIS/2MASS
in the I, J,H,KS NIR bands. We draw out the maps of local monofractal
dimensions which refer to lower (∼ 1) projected dimensions in the cloud
cores. This result may related to the assumed initial mass segregation of
young stellar objects [1, 7].

This research was supported by OTKA grants T024027 (L.G.B), F29461
(I.H.) and by Research Grant J13/98: 113200004 (A.M.).
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Higher-order Correlations of
Cosmological Fluctuation
Fields

Licia Verde1

ABSTRACT Traditionally, the standard way to describe the statistics
of cosmological fluctuation fields has been the power spectrum. However,
higher-order correlations (HOC) contain a wealth of information e.g., on the
initial conditions, evolution and clustering properties of cosmic structures.
With the recent observational progress and the advent of new large galaxy
surveys it will be possible to perform high-precision study of HOC.
We developed a generating functional approach that allow one to compute
the expected HOC of cosmological fields, in real and Fourier space. In this
approach it is straightforward to include the effects of discreteness, selec-
tion function and redshift space distortions. This has many applications,
in particular I illustrate possible applications of the bispectrum and the
trispectrum.

In the current cosmological model of the Universe, structures we see to-
day (e.g., the galaxy distribution) grew by gravitational instability from
initial fluctuations. Models of these fluctuations can be divided in two
classes: Gaussian and non-Gaussian. Even if initial conditions were Gaus-
sian, gravitational instability introduces deviations from Gaussianity and
leaves a characteristic signature on higher-order correlations (HOC) and
in particular on the three-point function (or its Fourier space counterpart:
the bispectrum). Moreover, theory predicts the clustering properties of the
mass, while what we can primarily observe is the distribution of luminous
material (e.g. galaxies). The process of galaxy formation is highly compli-
cated and thus galaxies might be biased tracers of the mass. Biasing has
its own effect on HOC, specifically on the bispectrum. Furthermore, con-
vincing evidence against or for Gaussian initial conditions would point us
towards a physical theory for the origin of structures. The 4 point function
(or its Fourier counterpart, the trispectrum) is a particularly suitable tool.

The advent of large three-dimensional galaxy surveys (e.g. SDSS) is now
for the first time making possible to accurately measure HOC. The observed

1Department of Astrophysical Sciences, Princeton University and Department of
Physics & Astronomy, Rutgers University
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a) b)

FIGURE 66.1. a): Forecast of the likelihood analysis of the bispectrum for the
bias parameters from a survey of about 2003 Mpc3 volume. b): χ2 analysis of
the trispectrum from an N-body simulation with Gaussian initial conditions
(τtrue = 0).

galaxy distribution, however, presents additional complications due to dis-
creteness (shot noise), selection function, window function, and redshift
space distortions. We have developed a method that allows us to evaluate
the HOC in real and Fourier space for continuous and discrete fields, and
models the presence of these complicating effects [1,2].

The Bispectrum: Gravitational instability, even from Gaussian initial
conditions, and biasing, both generate a non-zero bispectrum B. This effect
is described by: B(�k1, �k2, �k3) ∝ [c1J(�k1, �k2) + c2)P (k1]P (k2) + cyc.; where
P denotes the galaxy Power spectrum, c1 and c2 are bias parameters, J is
a function which expression can be found in [1] and is modified for redshift
space as in [2], and cyc. stands for two cyclic terms {k2, k3} and {k3, k1}.
Since the galaxy bispectrum and power spectrum are observable quantities
it is possible to measure the bias parameters via a likelihood analysis of the
bispectrum [1]. Fig. (66.1a) shows the forecast of the likelihood contours
for these parameters for a survey of about 2003 Mpc3 volume [2].

The Trispectrum: The trispectrum, being zero for a Gaussian field, is a
particularly useful discriminant between Gaussian and non-Gaussian initial
conditions because is only weakly modified by gravitational instability [3].
In Fig. (66.1b) the deviation from Gaussianity is parameterized by τ . The
figure shows the result of a χ2 analysis on the trispectrum of a N-body
simulation with Gaussian initial conditions (τtrue = 0).

I would like to thank my collaborators in this work A. F. Heavens and S.
Matarrese
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Bayesian Multiscale
Deconvolution Applied to
Gamma-ray Spectroscopy

C. A. Young1, A. Connors, E. Kolaczyk, M.
McConnell, G. Rank, J. M. Ryan, and V.
Schoenfelder

ABSTRACT A common task in gamma-ray astronomy is to extract spec-
tral information, such as model constraints and incident photon spectrum
estimates, given the measured energy deposited in a detector and the de-
tector response. This is the classic problem of spectral ”deconvolution”
or spectral inversion [2]. The methods of forward folding (i.e. parameter
fitting) and maximum entropy ”deconvolution” (i.e. estimating indepen-
dent input photon rates for each individual energy bin) have been used
successfully for gamma-ray solar flares (e.g. [5]). Nowak and Kolaczyk [4]
have developed a fast, robust, technique using a Bayesian multiscale frame-
work that addresses many problems with added algorithmic advantages.
We briefly mention this new approach and demonstrate its use with time
resolved solar flare gamma-ray spectroscopy.

Recent treatments of Poisson inverse problems have augmented the likeli-
hood equations with a regularization or penalization term [4]. This regular-
ization term stabilizes the otherwise ill posed ML problem. The regulariza-
tion term can take the form of a Bayesian prior so that the MLE is replaced
with the Maximum a posteriori (MAP) estimator. Nowak and Kolaczyk [4]
developed a deconvolution technique that uses a Bayesian multiscale frame-
work. The technique uses an Estimator Maximization (EM) algorithm that
has a closed-form step. Under reasonable choice of the multiscale priors,
the EM algorithm converges to a unique, global MAP estimate [4] and is
computationally simple. Unfortunately, errors or confidence intervals in the
traditional sense do not follow [3]. The most straightforward method for
this is to use a parametric bootstrap [1].

Figure 67.1 shows the light curve for a gamma-ray solar flare divided into
3 time intervals and the deconvolved spectra for each of the time intervals.
We have shown this technique to be very useful for the analysis of solar
flare gamma-ray spectra.

1NASA Goddard Space Flight Center
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(a)

(b)

(c) (d)

FIGURE 67.1. The light curve for a gamma-ray solar flare (a). Also shown is the
deconvolved spectra for the time intervals defined in the light curve (b-d). Error
bars extending to the bottom of the plots are 1 σ upper limits.
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