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Practical Statistics for Astronomers

Astronomy, like any experimental subject, needs statistical methods to
interpret data reliably. This practical handbook presents the most rele-
vant statistical and probabilistic machinery for use in observational as-
tronomy. Classical parametric and non-parametric methods are covered,
but there is a strong emphasis on Bayesian solutions and the importance
of probability in experimental inference. Chapters cover basic probabil-
ity, correlation analysis, hypothesis testing, Bayesian modelling, time
series analysis, luminosity functions and clustering. The book avoids the
technical language of statistics in favour of demonstrating astronomi-
cal relevance and applicability. It contains many worked examples and
problems that make use of databases which are available on the Web. It
is suitable for self-study at advanced undergraduate or graduate level,
as a reference for professional astronomers, and as a textbook basis for
courses in statistical methods in astronomy.
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Preface

Peter Scheuer started this. In 1977 he walked into JVW’s office in
the Cavendish Lab and quietly asked for advice on what further ma-
terial should be taught to the new intake of Radio Astronomy graduate
students (that year including the hapless CRJ). JVW, wrestling with
simple chi-square testing at the time, blurted out ‘They know nothing
about practical statistics’. Peter left thoughtfully. A day later he re-
turned. ‘Good news! The Management Board has decided that the
students are going to have a course on practical statistics.’ Can I sit
in, JVW asked innocently. ‘Better news! The Management Board has
decided that you’re going to teach it’.

So, for us, began the notion of practical statistics. A subject that be-
gan with gambling is not an arcane academic pursuit, but it is certainly
subtle as well. It is fitting that Peter Scheuer was involved at the be-
ginning of this (lengthy) project; his style of science exemplified both
subtlety and pragmatism. We hope that we can convey something of
both. If an echo of Peter’s booming laugh is sometimes heard in these
pages, it is because we both learned from him that a useful answer is
often much easier – and certainly much more entertaining – than you at
first think.

After the initial course, the material for this book grew out of various
further courses, journal articles, and the abundant personal experience
that results from understanding just a little of any field of knowledge
that counts Gauss and Laplace amongst its originators. More recently,
the invigorating polemics of Jeffreys and Jaynes, authors of standard
works on probability, have been a great stimulus; although we have tried
in this book not to engage too much with ‘old, unhappy, far-off things /
and battles long ago.’

xi



xii Preface

Amongst today’s practioners of practical statistics, we have had val-
ued discussions with Mark Birkinshaw, Phil Charles, Eric Feigelson,
Pedro Ferreira, Paul Francis, Dave Jauncey, Ofer Lahav, Steve Gull,
Tony Lynas-Gray, Donald Lynden-Bell, Robert Laing, Louis Lyons,
Andrew Murray, John Peacock, Chris Pritchett, Prasenjit Saha and
Adrian Webster. We are very grateful to Chris Blake, whose excellent
D.Phil. thesis laid out clearly the interrelation of 2D descriptive statis-
tics; and who has allowed us to borrow extensively from this opus. CRJ
particularly acknowledges the Bayesian convictions of the Real Time
Decisions group at Schlumberger; Dave Hargreaves, Iain Tuddenham and
Tim Jervis. Try betting lives on your interpretation of the Kolmogorov
axioms.

JVW is indebted to the Astrophysics Department of the University of
Oxford for the enjoyable environment in which much of this was pulled
together. The hospitality of the Department Heads – Phil Charles and
then Joe Silk – is greatly appreciated; the stimulation, kindness, tech-
nical support and advice of colleagues there has been invaluable. Jenny
Wall gave total support and encouragement throughout; the writing
benefited greatly from the warmth and happiness of her companionship.

CRJ wishes to acknowledge the support of Schlumberger Cambridge
Research for the writing of this book, as part of its ‘Personal Research
Time’ initiative. The encouragement of the lab’s director, Mike
Sheppard, catalysed its completion. Program manager Ashley Johnson
created the necessary space in a busy research group. Fiona Hall lis-
tened, helped with laughter and wise words through the long period of
gestation, and took time out from many pressing matters to support
that final burst of writing.



Notation

Here are some of the symbols used in the mathematical parts of this
book. The list is not complete, but does include notation of more than
localized interest. Some symbols are used with different meanings in
different parts of the book, but in context there should be no possibility
of confusion.

alm: the coefficients of a spherical harmonic expansion.
C: usually the covariance (or error) matrix, characterizing a

multivariate Gaussian.
cl: the coefficients of the angular power spectrum.
cov[x, y]: the covariance of two random variables x and y.
D: the Kolmogorov-Smirnov test statistic.
E[X]: the expectation or ensemble average. Also denoted <X>.
f, F : Probability density distributions and cumulative

probability density distributions, respectively; in Chapter 8,
Fourier pairs.

F : a variable distributed according to the F distribution.
H: the Hessian matrix.
H0, H1: the null hypothesis and alternative hypothesis.
K: the Kaplan-Meier estimator.
L: intrinsic luminosity.
L: the likelihood.
N(S): the flux density distribution, or source count.
N,n: usually the number of data.
P (N): the counts-in-cells probability of finding N objects in a cell.
Pl: the Legendre polynomials.

xiii



xiv Note on notation

prob(. . .): the probability of the indicated event. In the case of a
continuous variable, the probability density.

prob(A | B): the probability of A, given B.
R: distance.
r: the product-moment coefficient.
R: the Rayleigh test statistic.
S: the mean square deviation of a set of data; in

Chapter 7, flux density.
S: the test statistic for a particular orientation of the

principal axis of the orientation matrix.
Se: the sample cumulative distribution, as used in the

Kolmogorov–Smirnov test.
t: a variable distributed according to the t distribution.
U : the Wilcoxon–Mann–Whitney test statistic.
V, Vmax: the volume contained within R; the maximum volume,

corresponding to the greatest distance consistent with
an object still appearing in a catalogue.

var[x]: the variance of a random variable x.
w(θ): the two-point angular correlation function.
X: the sample average of a set of data.
X1, X2, . . .: usually a specific set of data; instances of possible data,

denoted x. We try to keep to this distinction by using
upper case for particular values and lower case for
algebraic variables (although not with Greek letters, or
statistics like t where lower-case is standard).

y, z: the excess variance and skewness of clustered
counts-in-cells.

Ylm: the spherical harmonics.
�α: a vector, usually a vector of parameters.
Γ: the Gehan test statistic.
η: the luminosity distribution.
κ: the Kendall test statistic.
µ, σ: usually the mean and standard deviation of a Gaussian

distribution; µ may also be the parameter of a Poisson
distribution.

µn: the nth central moment of a distribution.



Note on notation xv

ρ: the covariance coefficient of a bivariate Gaussian; in
Chapter 7, the luminosity function.

ς(θ, φ): the surface density of objects on the sky.
σs: the sample standard deviation.
φ: the space distribution.
χ2: a variable distributed according to the chi-square

distribution.
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Decision

If your experiment needs statistics, you ought to have done
a better experiment.

(Ernest Rutherford)

Science is about decision. Building instruments, collecting data, reduc-
ing data, compiling catalogues, classifying, doing theory – all of these
are tools, techniques or aspects which are necessary. But we are not
doing science unless we are deciding something; only decision counts.
Is this hypothesis or theory correct? If not, why not? Are these data
self-consistent or consistent with other data? Adequate to answer the
question posed? What further experiments do they suggest?

We decide by comparing. We compare by describing properties of an
object or sample, because lists of numbers or images do not present
us with immediate results enabling us to decide anything. Is the faint
smudge on an image a star or a galaxy? We characterize its shape,
crudely perhaps, by a property, say the full-width half-maximum, the
FWHM, which we compare with the FWHM of the point-spread func-
tion. We have represented a dataset, the image of the object, by a
statistic, and in so doing we reach a decision.

Statistics are there for decision and because we know a background
against which to take a decision. To this end, every measurement we
make, and every parameter or value we derive, requires an error estimate,
a measure of range (expressed in terms of probability) that encompasses
our belief of the true value of the parameter. We are taught this by our
masters in the course of interminable undergrad lab experiments. Why?
It is because no measured quantity or property is of the slightest use in

1
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decision and therefore in science unless it has a ‘range quantity’ attached
to it.

A statistic is a quantity that summarizes data; it is the ultimate data
reduction. It is a property of the data and nothing else. It may be a
number, a mean for example, but it doesn’t have to be. It is a basis
for using the data or experimental result to make a decision. We need
to know how to treat data with a view to decision, to obtain the right
statistics to use in drawing statistical inference. (It is the latter which
is the branch of science; at times the term statistics is loosely used to
describe both the descriptive values and the science.)

Rutherford’s message appears uncompromisingly clear, but it can only
hold in some specialized circumstances. For a start, astronomers are not
always free to do better experiments. The laboratory is the big stage; the
Universe is an experiment we cannot rerun. Attempting to understand
astrophysics and cosmology from one freeze-frame in the spacetime con-
tinuum requires some reconsideration of the classical scientific method.
This scientific method of repetition of experimentally reproduced results
does not apply. We cannot reroll the dice, and anyway, repetition implies
similar conditions. We are never at the same coordinates in spacetime.

There is thus need for a certain rigour in our methodology. The in-
ability to reroll dice has led and still leads astronomers into some of the
greatest errors of inference. It becomes tempting to the point of irre-
sistibility to use the data on which a hypothesis was proposed to verify
that hypothesis.

EXAMPLE The Black Cloud (Hoyle 1958). The Black Cloud appears to
be heading for the Earth. The scientific team suggests that this proves
the cloud has intelligence. Not so, says the dissenting team member.
Why? A golf ball lands on a golf course which contains 107 blades of
grass; it stops on one blade; the chances are 1 in 107 of this event occur-
ring by chance. This is not so amazing – the ball had to land somewhere.
It would only be amazing if the experiment were repeated to test the
newly formulated hypothesis (e.g. the blade being of special attractive
character; the golfer of unusual skill) so that the event were repeated.
However, the importance of deciding if the Black Cloud knew about the
Earth cannot await the next event or the sequence of events, and tempts
the rush to judgement in which initial data, hypothesis and test data
are combined; so in many instances in astronomy and cosmology.
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A second difference for astronomers stems from the first – the remote-
ness of our objects and the inability to ‘rerun our experiments’ means
that we do not necessarily know the underlying distributions of the vari-
ables measured. The essence of classical statistical analysis is (i) the
formulation of a hypothesis, (ii) the gathering of hypothesis-test data
via experiment, and (iii) the construction of a test statistic. But making
a decision on the basis of the test statistic may demand that the sam-
pling distribution or expectation of the statistic must be known before a
decision can be made. To calculate this it is frequently essential to know
the frequency distribution of the test statistic; how else could we decide
if the value we got was normal or abnormal? It may well be the case that
no one, physicist, sociologist, botanist, ever does know these underlying
distributions exactly; but astronomers are worse off than most because
of our necessarily small samples and our inability to control experiments,
leading to poor definitions of the underlying distributions.

It is thus the case that astronomers cannot avoid statistics and there
are the following reasons at least for this unfortunate situation.

(i) Error (range) assignment – ours, and the errors assigned by
others: what do they mean?

(ii) How can data be used best? Or at all?
(iii) Correlation, hypothesis-testing, model fitting; how do we

proceed?
(iv) Incomplete samples, samples from an experiment which cannot

be rerun, upper limits; how can we use these to best advantage?
(v) Others describe their data and conclusions in statistical terms.

We need some self-defence.
(vi) But above all, we must decide. The decision process cannot be

done without some methodology, no matter how good the
experiment. Rutherford may not have known when he was us-
ing statistics.

This is not a book about statistics, the values or the science. It is
about how to get results in astronomy, using statistics, data analysis
and statistical inference.

Consider first how we do science in order to see at what point ‘statis-
tics’ enter(s) the process.

1.1 How is science done?

In simplest terms, each experiment goes round a loop which can be
characterized by five stages:
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(1) Observe: record the data, or obtain the data.
(2) Reduce: clean up the data to remove experimental effects, i.e.

flat-field it, calibrate it.
(3) Analyse: obtain the numbers from the clean data – intensities,

positions. Produce from these summary descriptors of the data
which enable comparison or modelling – descriptors which lead
to reaching the decision which governed the design of the exper-
iment; and which are statistics.

(4) Conclude: carry through a process to reach a decision. Test the
hypothesis; correlate; model, etc.

(5) Reflect: what has been learnt? Is the decision plausible? Is it
unexpected? At which experimental stage must re-entry be made
to check? What is required to confirm this unexpected result? Or,
what was inadequate in the experimental design? How should
the next version be defined? Is an extended or new hypothesis
suggested? Back to point (1).

This process is a loop and ‘experiments’ may begin at different points.
For instance, we disbelieve someone else’s conclusions based on their
published dataset. We enter at point (3) or even (4); and we may then
go around the data-gathering cycle ourselves as a result. Or we look at
an old result in the light of new and complementary ones from other
fields – and enter at (5).

All too often we use (3) to set up the tests at (4). This carries the
charge of mingling hypothesis and data, as in the Black Cloud example.

Table 1.1 summarizes the process. Points in Table 1.1 at which re-
course to statistics or to statistical inference is important have been
indicated by Stats; a T appears when the issue applies to theorists as
well as to experimentalists. Few are the regions in which we can ignore
statistics and statistical inference. Experiment design needs to consider
from the start what statistic or summarized data form is required to
achieve the desired outcome. There are then checks throughout the ex-
periment, and finally there is analysis in which the measured statistics
are used in inference.

1.2 Probability; probability distributions

The concept of probability is crucial in decision processes, and there is
a commonly accepted relationship between probability and statistics.
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Table 1.1. Stages in astronomy experimentation

Stage How Examples Considerations

Observe Carefully Experiment design: What is wanted?
calibration, Number of objects

integration time
Stats Stats

Reduce Algorithms Flat field Data integrity
Flux calibration Signal-to-noise

T Stats

Analyse Parameter Intensity measurements Frequentist,
estimation, Positions Bayesian?
Hypothesis

testing
T Stats T Stats T Stats

Conclude Hypothesis- Correlation tests Believable,
testing Distribution tests Repeatable,

Understandable?
T Stats T Stats T Stats

Reflect Carefully Mission achieved? The next
A better way? observations

‘We need more data’?
T Stats T Stats

In a world in which our statistics are derived from finite amounts of
data, we need probabilities as a basis for inference. For example, limited
data yields only a partial idea of the point-spread function, such as the
FWHM; we can only assign probabilities to the range of point-spread
functions roughly matching this parameter.

We all have an inbuilt sense of probability. We know for example that
the height of adults is anything from say 1.5 to 2.5 metres. We know
this from the totality of the population, all adults. But we know what
a tall person is – and it is not necessarily somebody who is 2.5 m tall.
The distribution is not flat; it peaks at around 1.7 m. The distribution
of the heights of all adults, normalized to have an area of 1.0, is the
measured probability density function, often called the probability dis-
tribution. (We meet them in a more rigorous context in Chapter 2.) The
tails contain little area; and it is the tails that give us the decision: we
probably call somebody tall when they are taller than 75 per cent of
us.
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We have made a decision based on a statistic, by relating that statistic
to a probability distribution; we have decided that the person in question
was tall. Note also what we did – observe, reduce, analyse, conclude,
probably all in one glance. We did not do this rigorously in making
a quantitative assessment of just how tall, which would have required
a detailed knowledge of the distribution of height and a quantitative
measurement. And reflect? Context of our observation? Why did we wish
to register or decide that the person was tall? What next as a result?
How was this person selected from the population? The brain has not
only done the five steps but has also set the result into an extensive
context; and this in processing the single glance.

This is an example of a probability distribution for which there is
unlikely to be a mathematical description, one determined by counting
most of the population, or at least so much of it as to leave no doubt
that it is well defined. There are distributions for which mathematical
description is very precise, such as the Poisson and Gaussian (Normal)
distributions, and there are many cases in which we have good reason
to believe that these must represent the underlying distributions well.

This is also an example of a ‘ruling-out’; here we ruled out the hyp-
othesis that the person is of ‘ordinary’ height. There is a different type
of statistical inference, the ‘ruling-in’ process, in which we compute the
probability of getting a given result, and if it is ‘probable’, we accept
the original hypothesis. It is also an example of ‘counting’ to find the
probabilities, the frequency distribution. There are other ways of as-
signing probabilities, including opinion and states of knowledge; and in
fact there are instances in which we are moderately comfortable with
the paradoxical notion of assigning probabilities to unique events. It is
essential that our view of statistics and statistical inference be broad
enough to take such probability concepts on board.

1.3 Probability and statistics in inference

What is the relationship between these two notions? Statistics, to antic-
ipate later definitions, are combinations of the data that do not depend
on any unknown parameters. The average is a common example. When
we calculate the average of a set of data, we expect that it will bear some
relation to the true, underlying mean of the distribution from which our
data were drawn. In the classical tradition, we calculate the sampling
distribution of the average, the probabilities of the various values it may
assume as we (hypothetically) repeat our experiment many times. We
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then know the probability that some range around our single measure-
ment will contain the true mean. This is information that we can use to
take decisions.

This is precisely the utility of statistics – they are laboriously discov-
ered combinations of observations which converge, for large sample sizes,
to some underlying parameter we want to know (say, the mean). Useful
statistics are actually rather few in number.

There is another, radically different way of making inferences – the
Bayesian approach. This focuses on the probabilities right away, without
the intermediate step of statistics. In the Bayesian tradition, we invert
the reasoning just described. The data, we say, are unique and known;
it is the mean that is unknown, that should have probability attached
to it. Without using statistics, we instead calculate the probability of
various values of the mean, given the data we have. This also allows us
to make decisions. In fact, as we shall see, this approach comes a great
deal closer to answering the questions that scientists actually ask.

1.4 Non-parametric or distribution-free statistical inference

There are four reasons why statistical inference based on known proba-
bility distributions does not work, or limits our possibilities severely.

(i) We are measuring in experiments being run out there in the
Universe, not by us. The underlying distributions may be far
from known or understood; no averaging may be going on to lead
us towards the central limit theorem and Gaussian distributions
(see Chapter 2); yet we still wish to draw inferences about the
underlying population. We only do so safely with non-parametric
statistics, methods that do not require knowledge of the under-
lying distributions.

(ii) We may have to deal with small-number samples, such as N = 3.
Non-parametric techniques have the power to do this.

(iii) The range of observation scales available to us is given in Table 1.2.
Each such scale has a formal definition and formal properties.
Each has admissible operations. Suffice it to say here that use of
scales other than numerical (‘interval’) requires in most (but not
all) cases that we use non-parametric methods. We may wish to
make statistical inference without recourse to numerical scales.

(iv) Others use such methods to draw inference. We need to under-
stand what they are doing.
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Table 1.2. Measurement scales

Scale type Also called Example and measurement

Nominal/ Bins Psychiatric types: schizophrenic, paranoid,
Categorical manic-depressive, neurotic, psychopathic

Ordinal/ Order Army ranks: private, corporal, sergeant, major
Ranking

Interval Measures Temperature: degrees Celsius

Non-parametric methods thus enormously increase the possibilities
in decision-making and form an essential part of our process. They are
described in the course of this book.

1.5 How to use this book

This is not a textbook of statistical theory, a guide to numerical analysis,
or a review of published work. It is a practical manual, which assumes
that proofs, numerical methods and citation lists can easily be found
elsewhere. This book sets out to tell it from an astronomer’s perspective,
and our main objective is to help in gaining familiarity with the broad
concepts of statistics and probability, to understand their usefulness, and
to feel confident in applying them. Work through the examples and exer-
cises; they are drawn from our experience and have been chosen to clarify
the text. They vary in difficulty, from one-page calculations to mini-
projects. Some need data; this may be simulated. If preferred, example
datasets are available on the book’s website – as are the solutions to the
exercises. Aim to become confident in the use of Monte Carlo simula-
tions to check any calculations, and to try out ideas. Remember, in this
subject we can do useful and revealing experiments – in the computer.
Don’t be ashamed to let simulations guide your mathematical intuition!

For further details on statistical methods and justification of theory,
there is no substitute for a proper textbook. None of our topics is arcane
and they will be found in the index of any elementary statistics book. We
have found several particularly helpful: Mood, Graybill & Boes (1974),
Lyons (1986), Barlow (1989), Lee (1997) and Bevington & Robinson
(2002). Feigelson & Babu (1992a) and Babu & Feigelson (1996) cover
many useful astronomical applications from a more rigorous point of
view than we do.
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There is little algebra in this book; it would have greatly lengthened
and cluttered the presentation to have worked through details. Likewise,
we have not explained how various integrals were done or eigenvalues
found. These things can be done by computers; packages such as the
superb MATHEMATICA, used for many of the calculations in this book,
can deal swiftly with more mathematical technology than most of us
know. Using these packages frees us all up to think about the problem
to hand, rather than searching in vain for missing minus signs or delving
into handbooks for integrals which never seem to be there in quite the
needed form.

The other source is the indispensable Numerical Recipes (Press et al.
1992), which points the way for numerical solution of an enormous va-
riety of problems, plus providing humorous and wise advice.

We have not attempted exhaustive referencing. Rather, we have given
enough key references to provide entry points to the literature. Online
bibliographic databases provide excellent cross-referencing, showing who
has cited a paper and who it cites; it is the work of minutes to collect
a comprehensive reading list on any topic. The lecture notes for many
excellent university courses are now on the Web; a well-phrased search
may yield useful material to help with whatever is puzzling you.

Finally, use this book as you need it. It can be read from front to
back, or dipped into. Of course, no interesting topic is self-contained,
but we hope the cross-referencing will connect all the technology needed
to explore a particular topic.

Exercises

1.1 At first sight, discovery of a new phenomenon may not read as
an experiment as described in section 1.1. But it is. Describe
the discovery of pulsars (Hewish et al. 1968) in terms of the five
experimental stages.

1.2 The significance of a certain conclusion depends very strongly
on whether the most luminous known quasar is included in the
dataset. The object is legitimately in the dataset in terms of pre-
stated selection criteria. Is the conclusion robust? Believable?
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Probability

God does not play dice with the Universe.
(Albert Einstein)

Whether He does or not, the concepts of probability are important in
astronomy for two reasons.

(1) Astronomical measurements are subject to random measurement
error, perhaps more so than most physical sciences because of our in-
ability to rerun experiments and our perpetual wish to observe at the
extreme limit of instrumental capability. We have to express these errors
as precisely and usefully as we can. Thus when we say ‘an interval of
10−6 units, centred on the measured mass of the Moon, has a 95 per cent
chance of containing the true value’, it is a much more quantitative state-
ment than ‘the mass of the Moon is 1±10−6 units’. The second statement
really only means anything because of some unspoken assumption about
the distribution of errors. Knowing the error distribution allows us to
assign a probability, or measure of confidence, to the answer.

(2) The inability to do experiments on our subject matter leads us to
draw conclusions by contrasting properties of controlled samples. These
samples are often small and subject to uncertainty in the same way
that a Gallup poll is subject to ‘sampling error’. In astronomy we draw
conclusions such as ‘the distributions of luminosity in X-ray-selected
Type I and Type II objects differ at the 95 per cent level of significance’.
Very often the strength of this conclusion is dominated by the number of
objects in the sample and is virtually unaffected by observational error.

This chapter begins with a discussion of what probability is, and
proceeds to introduce the concepts of conditionality and independence,
providing a basis for the consequent discussion of Bayes’ theorem, with

10
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prior and posterior probabilities. Only at this point is it safe to con-
sider the concept of probability distributions; some common probability
distributions are compared and contrasted. This sets the stage for the
following chapter, dealing with statistics themselves, the penultimate
product of data reduction – if conclusions/discoveries are considered as
the ultimate product. The issues of expectation and errors, dependent
on the distributions and statistics, are discussed in the final section of
the following chapter.

2.1 What is probability?

For a fascinating historical study of probability, see the books by Hald
(1990; 1998). The ideas in this chapter draw heavily on the writings of
Jaynes (1976; 1983; 2003). Another fundamental reference, rather heavy
going, is Jeffreys (1961).

The study of probability began with the analysis of games of chance
involving cards or dice. Because of this background we often think of
probabilities as a kind of limiting case of a frequency. Many textbook
problems are still about dice, hands of cards, or coloured balls drawn
from urns; in these cases it seems obvious to take the probabilities of
certain events according to the ratio

number of favourable events
total number of events

and the probability of throwing a six with one roll of the dice is ‘obvi-
ously’ 1/6.

This probability derives from what Laplace called the ‘principle of
indifference’, which in effect tells us to assign equal probabilities to events
unless we have any information distinguishing them. In effect we have
done the following calculation:

probability of one spot = x

probability of two spots = x

probability of three spots = x

and so on; this is the principle of indifference step. Further, we believe
that we have identified all the cases; with the convention that the prob-
ability of a certain event (anything between one and six spots) is unity,
we have

6x = 1.
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This calculation, apparently trivial as it is, shows a vitally important
feature: we cannot usefully define probability by this kind of ratio. We
have had to assume that each face of the die is equally probable to start
with – thus the definition of probability becomes circular.

If we can identify equally likely cases, then calculating probabilities
amounts simply to enumerating cases – not always easy, but straight-
forward in principle. However, identifying equally likely cases requires
more thought.

Many interesting and useful calculations can be done using the prin-
ciple of indifference, either directly or by exploiting its applicability to
aspects of the problem. For example, we may know that a die is biased,
the faces are not ‘equally likely’. However, given some details of, say, the
mass distribution of the die, we may be able to calculate the probabil-
ities of the faces using an assumption that the initial direction of the
throw is isotropic – in which case the principle of indifference applies to
throw-directions.

Sometimes we estimate probabilities from data. The probability of our
precious observing run being clouded out is estimated by

number of cloudy nights last year
365

but two issues arise. One is the limited data – we suspect that 10 years’
worth of data would give a different, more accurate result. The second
issue is simply the identification of the ‘equally likely’ cases. Not all
nights are equally likely to be cloudy, some student of these matters
tells us; it’s much more likely to be cloudy in winter. What is ‘winter’,
then? A set of nights equally likely to be cloudy?

We can only estimate the probabilities correctly once we have iden-
tified the equally likely cases, and this identification is the subjective,
intuitive step that is built into our reasoning about data from apparently
malevolent instrumentation in an increasingly uncertain world.

It is common to define probabilities as empirical statements about
frequencies, in the limit of large numbers of cases – our 10 years’ worth
of data. But, as we have seen, this definition must be circular because
selecting the data depends on knowing which cases are equally likely.
Defining probabilities in this way is sometimes called ‘frequentist’. It is
sometimes the only way; but the risks must be recognized.

So what is probability? The notion we adopt for the present is that
probability is a numerical formalization of our degree or intensity of
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belief. In everyday speech we often refer to the probability of unique
events, showers of rain or election results. In the desiccated example of
throwing dice, x measures the strength of our belief that any face will
turn up. Provided that the die is not loaded, this belief is 1/6, the same
for each face.

Ascribing an apparently subjective meaning to probability in this way
needs careful justification. After all, one person’s degree of belief is an-
other person’s certainty, depending on what is known. We can only rea-
son as best we can with the information we have; if our probabilities turn
out to be wrong, the deficiency is in what we know, not the definition
of probability. We just need to be sure that two people with the same
information will arrive at the same probabilities. It turns out that this
constraint, properly expressed, is enough to develop a theory of proba-
bility which is mathematically identical to the one often interpreted in
frequentist terms.

A useful set of properties of probability can be deduced by formalizing
the ‘measure of belief’ idea. The argument is originally due to Cox (1946)
and goes as follows: if A, B and C are three events and we wish to have
some measure of how strongly we think each is likely to happen, then
for consistent reasoning we should at least apply the rule if A is more
likely than B, and B is more likely than C, then A is more likely than
C. Remarkably, this is sufficient to put constraints on the probability
function which are identical to the Kolmogorov axioms of probability,
proposed some years before Cox’s paper:

• Any random event A has a probability prob(A) between zero and
one.

• The sure event has prob(A) = 1.
• If A and B are exclusive events, then prob(A or B) = prob(A) +

prob(B).

The Kolmogorov axioms are a sufficient foundation for the entire
development of mathematical probability theory, by which we mean the
apparatus for manipulating probabilities once we have assigned
them.

EXAMPLE Before 1987, four naked-eye supernovae had been recorded
in ten centuries. What, before 1987, was the probability of a bright
supernova happening in the twentieth century?
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There are three possible answers.
(1) Probability is meaningless in this context. Supernovae are phys-

ically determined events and when they are going to happen can, in
principle, be accurately calculated. They are not random events.

From this God’s-eye viewpoint, probability is indeed meaningless;
events are either certain or forbidden. ‘God does not play dice . . . ’

(2) From a frequentist point of view our best estimate of the proba-
bility is 4/10, although it is obviously not very well determined.

This assumes supernovae were equally likely to be reported throughout
10 centuries, which may well not be true. Eventually some degree of
belief about detection efficiency will have to be made explicit in this kind
of assignment.

(3) We could try an a-priori assignment. In principle we might know
the stellar mass function, the fate and lifetime as a function of mass,
and the stellar birth rate. We would also need a detection efficiency.
From this we could calculate the mean number of supernovae expected
in 1987, and we would put some error bars around this number to reflect
the fact that there will be variation caused by factors we do not know
about – metallicity, perhaps, or location behind a dust cloud, and so
on.

The belief-measure structure is more complicated in this detailed model
but it is still there. The model deals in populations, not individual stars,
and assumes that certain groups of stars can be identified which are
equally likely to explode at a certain time.

Suppose now that we sight supernova 1987A. Is the probability of
there being a supernova later in the twentieth century affected by this
event?

Approach (1) would say no – one supernova does not affect another.
Approach (2), in which the probability simply reflects what we know,
would revise the probability upward to 5/10. Approach (3) might need
to adjust some aspects of its models in the light of fresh data; predicted
probabilities would change.

Probabilities reflect what we know – they are not things with an
existence all of their own. Even if we could define ‘random events’
(approach 1), we should not regard the probabilities as being proper-
ties of supernovae.
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2.2 Conditionality and independence

Two events A and B are said to be independent if the probability of
one is unaffected by what we may know about the other. In this case, it
follows (not trivially!) from the Kolmogorov axioms that

prob(A and B) = prob(A)prob(B). (2.1)

Sometimes independence does not hold, so that we would also like
to know the conditional probability: the probability of A, given that we
know B. The definition is

prob(A | B) =
prob(A and B)

prob(B)
. (2.2)

If A and B are independent, knowing that B has happened should
not affect our beliefs about the probability of A. Hence prob(A | B) =
prob(A) and the definition reduces to prob(A and B) = prob(A)prob(B)
again.

If there are several possibilities for event B (label them B1, B2, . . .)
then we have that

prob(A) =
∑
i

prob(A | Bi)prob(Bi). (2.3)

A might be a cosmological parameter of interest, while the Bs are
not of interest. They might be instrumental parameters, for example.
Knowing the probabilities prob(Bi) we can get rid of these ‘nuisance
parameters’ by a summation (or integration). This is called marginal-
ization.

EXAMPLE Take the familiar case in astronomy where some ‘remark-
able’ event is observed, for example two quasars of very different red-
shifts close together on the sky. The temptation is to calculate an a-
priori probability, based on surface densities, of two specified objects
being so close. However, the probability of the two quasars being close
together is conditional on having noticed this fact in the first place. Thus
the probability of the full event is simply prob(A | A) = 1, consistent
with how we should expect to measure our belief in something that we
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already know. We can say nothing further, although we might be able
to formulate a hypothesis to carry out an experiment.

Consider now the very different case in which we wish to know the
probability of finding two objects of different types, say a galaxy and
a quasar, within a specified angular distance r of each other. To be
specific, we plan to search some fixed solid angle Ω. The surface densities
in question are ςG and ςQ. On finding a galaxy, we will search around it
for a quasar. We need

prob(G in field and Q within r)

= prob(Q within r | G in field)prob(G in field).

This assumes that the probabilities are independent, obviously what we
would like to test. A suitable model for the probabilities is the Poisson
distribution (Section 2.4.2.2), and in the interesting case where the prob-
abilities are small we have

prob(G in field) = ςGΩ

and

prob(Q within r) = πr2ςQ.

The answer we require is therefore

prob(G in field and Q within r) = ςGςQΩπr2.

This is symmetrical in the quasar and galaxy surface densities as we
would expect; it should not matter whether we searched first for a galaxy
or for a quasar. Note the strong dependence on the search area that is
specified before the experiment; if there is obscurity about this then the
probabilities are not well determined.

As an extension of this example, it is possible to calculate the probabil-
ity of finding triples of objects aligned to some small tolerance
(Edmunds & George 1985). If the objects are all the same, the prob-
ability of a linear triple depends on the cube of the surface density and
search area.
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2.3 . . . and Bayes’ theorem

Bayes’1 theorem is a simple equality, derived by equating prob (A and B)
with prob (B and A). This gives the ‘theorem’:

prob(B | A) =
prob(A | B)prob(B)

prob(A)
. (2.4)

In this, the denominator is a normalizing factor. The theorem is particu-
larly useful when interpreted as a rule for induction; the data, the event
A, are regarded as succeeding B, the state of belief preceding the exper-
iment. Thus prob(B) is the prior probability which will be modified by
experience. This experience is expressed by the likelihood prob(A | B).
Finally prob(B | A) is the posterior probability, the state of belief after
the data have been analysed.

Bayes’ theorem by itself is a perfectly innocent identity, a mathemat-
ical truism. It acquires its force from its interpretation. To see what this
force is, we return to the familiar and simple problem of drawing those
coloured balls from urns. It is clear, even automatic, what to calculate;
if there are M red balls and N white balls, the probability of drawing
three red balls and two white ones is . . .

As a series of brilliant scientists realized, and as a series of brilliant
scientists did not, this is generally not the problem we face. As scientists,
we more often have a datum (three red balls, two white ones) and we
are trying to infer something about the contents of the urn. This is
sometimes called the problem of ‘inverse probability’. How does Bayes’
theorem help? We interpret it to be saying

prob(contents of urn | data) ∝ prob(data | contents of urn)

and of course we can calculate the right-hand side, given some assump-
tions.

The urn example illustrates the principles involved; these are far more
interesting than coloured balls.

1 Who was Bayes? Thomas Bayes (1702–61) was an English vicar, mathematician
and statistician. His bibliography consisted of three works: one (by the vicar) on
divine providence, the second (by the mathematician) a defence of the logical bases
of Newton’s calculus against the attacks of Bishop Berkeley, and the third (by the
statistician and published posthumously) the famous Essay Towards Solving a
Problem in the Doctrine of Chances. There is speculation that it was published
posthumously because of the controversy which Bayes believed would ensue. This
must be an a-posteriori judgement. Surely Bayes could never have imagined the
extent of this controversy without envisaging the nature and extent of modern
scientific data.
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EXAMPLE There are N red balls and M white balls in an urn; we
know the total N + M = 10, say. We draw T = 3 times (putting the
balls back after drawing them) and get R = 2 red balls. How many red
balls are there in the urn?

Our model (hypothesis) is that the probability of a red ball is
N

N + M
.

We assume that the balls are not stratified, arranged in pairs, or anything
else ‘peculiar’. The probability of getting R red balls, the likelihood,
is (

T

R

) (
N

N + M

)R (
M

N + M

)T−R

.

This is the number of permutations of the R red balls amongst the T

draws, multiplied by the probability that R balls will be red and T −R

will not be red. (This is a Binomial distribution; see section 2.4.2.1.)
Thus we have the probability (data, given the model) part of the right-

hand side of Bayes’ theorem. We also need probability (model), or the
prior. We assume that the only uncertain bit of the model is N , which
to start with we take as being uniformly likely between zero and N +M .
Without bothering with the details at the moment, we plot up the left-
hand side of Bayes’ theorem (the posterior probability) as a function of
N – see Fig. 2.1. For a draw of, say, three red balls in five tries, the
posterior probability peaks at 6; for 30 out of 50, the peak is still at 6
but other possibilities are much less likely.
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Fig. 2.1. The probability distribution of the number of red balls in the urn,
for five (solid curve) and 50 drawings (dashed curve).
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This seems unsurprising and in accord with common sense – but notice
that we are speaking now of the probability of there being 1, 2, 3, . . . red
balls in a unique urn that is the subject of our experiment. We are
describing our state of belief about the contents of the urn, given what
we know (the data, and our prior information).

The key point of this example is that we have succeeded in answering
our scientific question: we have made an inference about the contents of
the urn, and can make probabilistic statements about this inference. For
example, the probability of the urn containing three or fewer red balls
is 11 per cent. We are assigning probabilities to these statements to N

because we are using probability to reflect our degree of certainty. Our
concern, as experimental scientists, is with what we can infer about the
world from what we know.

Bayes’ theorem allows us to make inferences from data, rather than
compute the data we would get if we happened to know all the relevant
information about our problem.

This may seem academic; but suppose we had data from two popu-
lations and wanted to know if the means were different. Many chapters
of statistics textbooks answer the opposite question for us: given popu-
lations with two different means, what data would you get? The combi-
nation of interpreting probability as a consistent measure of belief, plus
Bayes’ theorem, allows us to answer the question we wish to pose: given
the data, what are the probabilities of the parameters contained in our
statistical model?

Another very significant point about this example is the use of prior
information; again, we assigned probabilities to N to reflect what we
know. Notice that although the word ‘prior’ suggests ‘before the exper-
iment’ it really means ‘what we know apart from the data’. Sometimes
this can have a dramatic, even disconcerting effect on our inferences:

EXAMPLE Suppose we make an observation with a radio telescope
at a randomly selected position in the sky. Our model of the data (an
event labelled D, consisting of the single measured flux density f) is that
it is distributed in a Gaussian way (Section 2.4.2.3) about the true flux
density S with a variance (Section 2.4.2) σ2. The extensive body of radio
source counts also tells us the a-priori distribution of S; for the purposes
of this example, we approximate this information by the simple prior

prob(S) = KS−5/2
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describing our prior state of knowledge. K normalizes the counts to
unity; there is presumed to be one source in the beam at some flux-
density level. The probability of observing f when the true value is S

we take to be

exp
[
− 1

2σ2
(f − S)2

]
.

Bayes’ theorem then tells us

prob(S | D) = K ′ exp
[
− 1

2σ2
(f − S)2

]
S−5/2,

with the normalizations condensed into the single parameter K ′. If we
were able to obtain n independent flux measurements fi then the result
would be

prob(S | D) = K ′′ exp

[
− 1

2σ2

n∑
i=1

(fi − S)2
]
S−5/2.

Suppose, for specific example, that the source counts were known to
extend from 1 to 100 units, the noise level was σ = 1, and the data
were 2, 1.3, 3, 1.5, 2 and 1.8. In Fig. 2.2 are the posterior probabilities
for the first two, then four, then six measurements. The increase in
data gradually overwhelms the prior but the prior affects conclusions
markedly (as it should) when there are few measurements.
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Fig. 2.2. Measurement of flux density given a power-law prior (source count)
and a Gaussian error distribution. The posterior probability distribution for
flux density is plotted for two, four and then six of the measurements listed
in the text; the form of the curve approaches Gaussian as numbers increase.
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If subsequently we looked at a survey plate of the region we had
observed, and found that the radio emission was from some category
of object (say, a quasar) with different source counts, our prior would
change and so would the posterior probability. In turn, our idea of the
most probable flux density would also change.

In this example, the prior seems to be well determined. However, in
some cases we wish to estimate quantities where the argument is not
so straightforward. What would we take as the prior in the previous
example if we were making the first ever radio measurements? Or if we
needed an estimate of the mean of a Gaussian, then we have to ask how
we interpret the prior probability of the mean. Sometimes we even need
a probability of a probability:

EXAMPLE Return to the question of supernova rate per century and
consider how to estimate this; call this ρ. Our data are four super-
novae in ten centuries. Our prior on ρ, expressing our total ignorance,
is uniform between 0 and 1; we have no preconceptions or information
about ρ. A suitable model for prob(data | ρ) is the Binomial distribution
(Section 2.4.2.1), because in any century we either get a supernova or we
do not (neglecting here the possibility of two supernovae in a century).
Our posterior probability is then

prob(ρ | data) ∝
(

10
4

)
ρ4(1 − ρ)6 × prior on ρ.

We follow Bayes and Laplace in taking the prior to be uniform in the
range 0 to 1. Then, to normalize the posterior probability properly we
need ∫ 1

0

prob(ρ | data) dρ = 1,

resulting in the normalizing constant∫ 1

0

(
10
4

)
ρ4(1 − ρ)6 dρ,

which happens to be
Γ(10)Γ(4)

Γ(14)
= B[5, 7],
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Fig. 2.3. The posterior probability distribution for ρ, given that we have four
supernovae in ten centuries.

where B is the (tabulated) beta function. In general, for n supernovae
in m centuries, the distribution is

prob(ρ | data) =
ρn(1 − ρ)m−n

B[n + 1,m− n + 1]
.

Our distribution (n = 4, m = 10) peaks – unsurprisingly – at 4/10, as
shown in Fig. 2.3.

As the sample size increases the distribution becomes narrower so
that the peak posterior probability is more and more closely defined
by the ratio of successes (supernovae, in our example) to sample size.
This result is sometimes called the law of large numbers, expressing as
it does the frequentist idea of a large number of repetitions resulting in
a converging estimate of probability.

The key step in this example is ascribing a probability distribution to
ρ, in itself a probability. This makes no sense in a frequentist approach,
nor indeed in any interpretation of probabilities as objective. Even if
we are prepared to leap this metaphysical hurdle, in very many cases
the assignment of a prior probability is much more difficult than in this
example. Indeed, it is certain that the assignment of priors in the current
example has been greatly oversimplified.

Both Jeffreys (1961) and Jaynes (1968) discuss the prior on ρ, arguing
that in many cases a uniform prior is far too agnostic. By intricate
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arguments, they arrive at other possibilities:

prob(ρ) =
1

ρ(1 − ρ)

and the ‘Haldane prior’

prob(ρ) =
1√

ρ(1 − ρ)
.

These are intended to reflect the fact that in most experiments we are
expecting a yes or no answer.

Assigning priors when our knowledge is rather vague can be quite
difficult, and there has been a long debate about this. Some ‘obvious’
priors (such as the one we might use for location, simply uniform from
−∞ to ∞) are not normalizable and can sometimes get us into trouble.
Out of the enormous literature on this subject, try Lee (1997) for an
introduction, and Jaynes’s writings for some fascinating arguments. One
of the ways of determining a prior is the maximum entropy principle; we
will see an example of such a prior later (Section 6.7). A common prior
for a scale factor σ is Jeffrey’s prior, uniform in log σ.

EXAMPLE Finally, the use of Bayes’ theorem as a method of induc-
tion can be neatly illustrated by our supernova example. For simplicity,
imagine that we establish our posterior distribution at the end of the
nineteenth century, so that it is ρ4(1 − ρ)6/B[5, 7], as shown earlier. At
this stage, our data are four supernovae in ten centuries. Reviewing the
situation at the end of the twentieth century, we take this as our prior.
The available new data consist of one supernova, so that the likelihood
is simply the probability of observing exactly one event of probability ρ,

namely ρ. The updated posterior distribution is

prob(ρ | data) =
ρ5(1 − ρ)6

B[6, 7]

which peaks at ρ = 5/11 as we might expect.

In these examples we have focused on the peak of the posterior prob-
ability distribution. This is one way amongst many of attempting to
characterize the distribution by a single number. Another choice is the
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posterior mean, defined by

< ρ > =
∫ 1

0

ρprob(ρ | data) dρ. (2.5)

If we have had N successes and M failures, the posterior mean is given
by a famous result called Laplace’s rule of succession:

< ρ > =
N + 1

N + M + 2
.

In our example, at the end of the nineteenth century Laplace’s rule would
give 5/12 as an estimate of the probability of a supernova during the
twentieth century. This differs from the 4/10 derived from the peak of
the posterior probability, and it will do so in general.

Unless posterior distributions are very narrow, attempting to charac-
terize them by a single number is frequently misleading. How best to
characterize the distribution depends on what is to be done with the
answer, which in turn depends on having a carefully posed question in
the first place.

2.4 Probability distributions

2.4.1 Concept

We have referred several times to probability distributions. The basic idea
is intuitive; here is a little more detail.

Consider the fascinating experiment in which we toss four ‘fair’ coins.
The probability of no heads is (1/2)4; of one head 4×(1/2)4; of two heads
6× (1/2)4, etc. The sum of the possibilities for getting no heads to four
heads is readily seen to be 1.0. If x is the number of heads (0, 1, 2, 3, 4),
we have a set of probabilities prob(x) = (1/16, 1/4, 3/8, 1/4, 1/16); we
have a probability distribution, describing the expectation of occurrence
of event x. This probability distribution is discrete; there is a discrete
set of outcomes and so a discrete set of probabilities for those outcomes.

In this sort of case we have a mapping between the outcomes of the
experiment and a set of integers. Sometimes the set of outcomes maps
onto real numbers instead, the set of outcomes no longer containing
discrete elements. We deal with this by the contrivance of discretizing
the range of real numbers into little ranges within which we assume
the probability does not change. Thus if x is the real number that
indexes outcomes, we associate with it a probability density f(x); the
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probability that we will get a number ‘near’ x, say within a tiny range
δx, is prob(x) δx. We loosely refer to probability ‘distributions’ whether
we are dealing with discrete outcomes or not.

Formally: if x is a continuous random variable, then f(x) is its proba-
bility density function, commonly termed probability distribution, when

(i) prob(a < x < b) =
∫ b

a
f(x) dx,

(ii)
∫ ∞
−∞ f(x) dx = 1, and

(iii) f(x) is a single-valued non-negative number for all real x.

The corresponding cumulative distribution function is F (x) =∫ x

−∞ f(y) dy. Probability distributions and distribution functions may
be similarly defined for sets of discrete values of x; and distributions
may be multivariate, functions of more than one variable.

2.4.2 Some common distributions

The better-known probability density functions appear in Table 2.1 to-
gether with location (where is the ‘centre’?) and dispersion (what is the
‘spread’?) quantifiers. These quantifiers can be given by the first two
moments of the distributions (Section 3.1):

µ1(mean) = µ =
∫ ∞

−∞
xf(x) dx (2.6)

µ2(variance) = σ2 =
∫ ∞

−∞
(x− µ1)2f(x) dx. (2.7)

σ is known as the standard deviation. Three of them are of prime impor-
tance, the Binomial, Poisson, and Gaussian or Normal, and we discuss
these in turn.

2.4.2.1 Binomial distribution

There are two outcomes – ‘success’ or ‘failure’. This common distribution
gives the chance of n successes in N trials, where the probability of a
success at each trial is the same, namely ρ, and successive trials are
independent. This probability is then

prob(n) =
(
N

n

)
ρn(1 − ρ)N−n. (2.8)
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The leading term, the combinatorial coefficient, gives the number of
distinct ways of choosing n items out of N :(

N

n

)
=

N !
n!(N − n)!

. (2.9)

This coefficient can be derived in the following way. There are N ! equiv-
alent ways of arranging the N trials. However there are n! permutations
of the successes, and (N − n)! permutations of the failures, which cor-
respond to the same result – namely, exactly n successes, arrangement
unspecified. Since we require not just n successes (probability pn) but ex-
actly n successes, we need exactly N−n failures, probability (1−p)(N−n)

as well. The Binomial distribution follows from this argument. The
Binomial distribution has a mean value given by

N∑
n=0

n prob(n) = Np

and a variance or mean square value of
N∑

n=0

(n−Np)2prob(n) = Np(1 − p).

EXAMPLE Suppose we know, from a sample of 100 galaxy clusters
selected by automatic pattern-recognition techniques, that ten contain
a dominant central galaxy. We plan to check a different sample of 30
clusters, now selected by X-ray emission. How many of these clusters do
we expect to have a dominant central galaxy?

If we assume that the 10 per cent probability holds for the X-ray
sample, then the chance of getting n dominant central galaxies is

prob(n) =
(

30
n

)
0.1n0.930−n.

For example, the chance of getting 10 is about 1 per cent; if we found this
many we would be suspicious that the X-ray cluster population differed
from the general population.

Suppose we made these observations and did find 10 centrally domi-
nated clusters. What can we do with this information?

The Bayesian thing to do is a calculation that parallels the supernova
example. Assuming the X-ray galaxies are a homogeneous set, we can
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Fig. 2.4. The posterior probability distribution for the fraction of X-ray-
selected clusters that are centrally dominated. The black line uses a uni-
form prior distribution for the fraction; the dashed line uses the prior derived
from an assumed previous sample in which 10 out of 100 clusters had domi-
nant central members. The light curve shows the distribution for this earlier
sample.

deduce the probability distribution for the fraction of these galaxies that
have a dominant central galaxy. A relevant prior would be the results
for the original larger survey. Figure 2.4 shows the results, making clear
that the data are not really sufficient to alter our prior very much. For
example, there is only a 10 per cent chance that the centrally dominant
fraction exceeds even 0.2; and indeed Fig. 2.4 shows that the possibility
of it being as high as 33 per cent is completely negligible. Our X-ray
clusters have a different prior from the general population.

The Binomial distribution is the parent of two other famous distribu-
tions, the Poisson and the Gaussian.

2.4.2.2 Poisson distribution

The Poisson distribution derives from the Binomial in the limiting case
of very rare events and a large number of trials, so that although p → 0,
Np → a finite value. Calling the finite mean value µ1 = µ, the Poisson
distribution is

prob(n) =
µn

n!
e−µ. (2.10)

The variance of the Poisson distribution, µ2, is also µ.



2.4 Probability distributions 29

EXAMPLE A familiar example of a process obeying Poisson statistics
is the number of photons arriving during an integration. The probabil-
ity of a photon arriving in a fixed interval of time is (often) small. The
arrivals of successive photons are independent (apart from small corre-
lations arising because photons obey Bose–Einstein statistics, negligible
for our purposes). Thus the conditions necessary for the Poisson distri-
bution are met. Hence, if the integration over time t of photons arriving
at a rate λ has a mean of µ = λt photons, then the fluctuation on this
number will be σ =

√
µ. (In practice we usually only know the number

of photons in a single exposure, rather than the mean number; obviously
we can then only estimate the µ. This case is the subject of an exercise
in the next chapter.)

For photon-limited observations, such as CCD images or spectra,
µ = λt while σ =

√
λt. If we ‘integrate’ more,

σ ∝
√
t, while signal ∝ t.

Thus Signal/Noise ∝
√
t, the sky-limited case.

There are the following further cases:

(i) Photon-limited, e.g. CCD observations of faint objects:

S/N ∝ µ√
µ
, or ∝

√
t.

(ii) Readout-limited, e.g. CCD observations of bright objects:

S/N ∝ µ

σccd
, or ∝ t

for CCD of readout noise σccd.
(iii) Receiver-limited, e.g. radio astronomy:

S/N ∝ S

σrec/
√
t
, or ∝

√
t

for a receiver of thermal noise σrec.

2.4.2.3 Gaussian (Normal) distribution

Both the Binomial and the Poisson distributions tend to the Gaussian
distribution (Fig. 2.5), large N in the case of the Binomial, large µ in
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Fig. 2.5. The Normal (Gaussian) distribution. The area under the curve is
1.00; the area between ±1σ is 0.68; between ±2σ is 0.95; and between ±3σ is
0.997.

the case of the Poisson. The (univariate) Gaussian (Normal) distribution
is

prob(x) =
1

σ
√

2π
exp

[
− 1

2σ2
(x− µ)2

]
(2.11)

from which it is easy to show that the mean is µ and the variance is σ2

(Section 3.1). How this comes about for the Binomial distribution is the
subject of an exercise.

For the Binomial when the sample size is very large, the discrete
distribution tends to a continuous probability density

prob(n) =
1

σ
√

2π
exp

[
− 1

2σ2
(n− µ)2

]

in which the mean µ = Np and variance σ2 = Np(1 − p) are still given
by the parent formulae for the Binomial distribution. Here is an instance
of the discrete changing to the continuous distribution: in this approx-
imation we can treat n as a continuous variable (because n changes by
one unit at a time, being an integer, and so the fractional change 1/n is
small).

The true importance of the Gaussian distribution and its dominant
position in experimental science, however, stems from the central limit
theorem. A non-rigorous statement of this is as follows.
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Form averages Mn from repeatedly drawing n samples from a popu-
lation with finite mean µ, variance σ2. Then the distribution of[

(Mn − µ)
σ/

√
n

]
→ Gaussian distribution

with mean 0, variance 1, as n → ∞.
This is a remarkable theorem. What it says is that provided certain

conditions are met – and they are in almost all physical situations –
a little bit of averaging will produce a Gaussian distribution of results
no matter what the shape of the distribution from which the sample is
drawn. Even eyeball integration counts. It means that errors on averaged
samples will always look ‘Gaussian’. The reliance on Gaussian distribu-
tions, made valid by the unsung hero of statistical theory and indeed
experimentation, the central limit theorem, shapes our entire view of
experimentation. It is this theorem which leads us to describe our errors
in the universal language of sigmas, and indeed to argue our results in
terms of sigmas as well, which we explicitly or implicitly recognize as
describing our place within or at the extremities of the Gaussian distribu-
tion. Figure 2.6 demonstrates the compelling power of the central limit
theorem. Here we have brutally truncated an exponential, clearly an
extremely non-Gaussian distribution. The histogram obtained in draw-
ing 200 random samples from the distribution follows it closely. When
200 values resulting from averaging just four values have been formed,
the distribution is already becoming symmetrical; by the time 200 values
of 16 long averages have been formed, it is virtually Gaussian.

Before leaving the central limit miracle and Gaussian distributions, it
is important to emphasize how tight the tails of the Gaussian distribution
are (Table A2.2). The range ±2σ encompasses 95.45 per cent of the area.
Thus the infamous 2σ result has a less than 5 per cent chance of occurring
by chance. But we scoff – because the error estimates are difficult to
make, and observers are optimistic. Things upset the distribution; there
are outlying points. Thus astronomers feel it necessary to quote results in
the range 3σ to even 10σ, casting inevitable doubt on belief in their own
error estimates. In fact, experimentalists are aware of another key feature
of the central limit theorem: the convergence to a Gaussian happens
fastest at the centre of the distribution, but the wings may converge
much more slowly to a Gaussian form. Interesting results (the 10σ ones)
of course acquire their probabilistic interpretation from knowing the
shape of the tails to high accuracy.
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Fig. 2.6. An indication of the power of the central limit theorem. The panels
show successive amounts of ‘integration’: in the upper left panel, a single
value has been drawn; in the upper right, 200 values have been formed from
an average of two values; lower left, 200 values from an average of four; lower
right, 200 values from an average of 16.

2.5 Inferences with probability

What can we do with Bayesian probability calculations? We will use
these many times in the rest of this book, but here is a summary of the
method.

First, we may estimate parameters. This is closely related to the
field of data modelling (Section 6.1). We have a probability distribu-
tion f(data | �α) and we wish to know the parameter vector �α. The
Bayesian route is clear; compute the posterior distribution of �α, as we
have shown in several examples in this chapter.

EXAMPLE Suppose we have N data Xi, drawn from a Gaussian of
known variance σ2 but unknown mean µ. The parameter we want is µ.
To proceed, we need a prior on µ; we take the so-called ‘diffuse’ prior,
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where

prob(µ) = constant

over some wide range of µ, the range defined by our knowledge of the
problem. Of course we might have more precise information available.

From Bayes, the posterior distribution follows at once:

f(µ | data) ∝ exp

[
−

∑N
i=1(Xi − µ)2

2σ2

]

and with some simplification we get

f(µ | data) ∝ exp

[
−

1
N

∑N
i=1(Xi − µ)2

2σ2

N

]

so that the average of the data is distributed around µ, with variance
σ2/N . One of the exercises is to find the distribution of the variance,
knowing the mean.

This method is related to the classical technique of maximum like-
lihood. If the prior is ‘diffuse’, as in the example, then the posterior
probability is proportional to the likelihood term f(data | �α). Maximum
likelihood picks out the mode of the posterior, the value of �α which maxi-
mizes the likelihood. This amounts to characterizing the posterior by one
number, an approach which is often useful because of powerful theorems
on maximum likelihood. We consider this in more detail in Section 6.1;
some exercises at the end of this chapter illustrate the procedure.

Often knowing the posterior distribution of the parameter of interest
is enough; we might be making a comparison with an exactly known
quantity, perhaps derived from some theory. However we may wish to
compare with an experimental determination of some other parameter
�β. A typical case, for scalar parameters α and β, would be to ask for the
probability that, say, α is bigger than β.

Suppose therefore we have derived two distributions prob(α) = pA(α)
and prob(β) = pB(β) from independent samples. The probability that
α is larger than β is

p(α > β) =
∫ ∞

−∞
pB(y) dy

∫ ∞

y

pA(x) dx
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and the double integral simplifies to

p(α > β) =
∫ ∞

−∞
(1 − CA(x)pB(x) dx

in which CA is the cumulative distribution corresponding to pA. If pA
and pB are the same distribution, this becomes p(α > β) = 1/2, as
expected. Usually these integrals have to be done numerically case by
case, but are worth the effort.

We may express posterior probabilities by using the notion of odds, a
handy way of expressing probabilities when we have only two possibili-
ties. The odds on event A are just

prob(A)
prob(notA)

.

For instance, the odds on throwing a 6 with a fair die are 5 to 1 (prob-
ability of 1/6 for throwing a six, 5/6 for anything else). From a betting
point of view, the odds on a bet give the profit that might be made on
a stake; in the case of our example with dice, being offered 5 to 1 odds
for a 6 means we would get $5 profit ($6 payout) on a stake of $1, if a
6 comes up. Of course a bookie will offer slightly different odds, to be
sure of a profit in the long run. If we have two exclusive possibilities for
a prior, say A and not A, then the posterior odds are given by the ratio
of the posterior probabilities with each prior, and give an indication of
which prior to bet on, given the available data.

Exercises

2.1 A warm-up on coin-tossing. This is not an astronomical
problem but does provide a warm-up exercise on probability
and random numbers. Every computer has a way of produc-
ing a random number between zero and one. Use this to sim-
ulate a simple coin-tossing game where player A gets a point
for heads, player B a point for tails. Guess how often in a
game of N tosses the lead will change; if A is in the lead at
toss N , when was the previous change of lead most likely to
be? And by how much is a player typically in the lead? Try to
back these guesses up with calculations, and then simulate the
game. For many more game-based illustrations of probability,
see Haigh (1999).
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2.2 Efficient choosing. Imagine you are on a 10-night observing
run with a colleague, in settled weather. You have an agreement
that one of the nights, of your choosing, will be for your exclusive
use. Show that, if you wait for five nights and then choose the
first night that is better than any of the five, you have about
a 25 per cent chance of getting the best night of the ten. For
a somewhat harder challenge, find the optimum length of the
‘training sample’.

2.3 Bayesian inference. Consider the proverbial bad penny, for
which prior information has indicated that there is a probabil-
ity of 0.99 that it is unbiased (‘ok’); or a probability of 0.01
that it is double-headed (‘dh’). What is the (Bayesian) poste-
rior probability, given this information, of obtaining seven heads
in a row? In such a circumstance, how might we consider the
fairness of the coin? Or of the experimenter who provided us
with the prior information? What are the odds on the penny
being fair?

2.4 Laplace’s rule and priors. Laplace’s rule (Section 2.3)
ρ = (N + 1)/(N + M + 2) depends on our prior for ρ. If we
have one success and no failures, consider what the rule im-
plies, and discuss why this is odd. How is the rule changed for
alternative priors, for example Haldane’s?

2.5 Bayesian reasoning in an everyday situation. The proba-
bility of a certain medical test being positive is 90 per cent, if
the patient has disease D. If your doctor tells you the test is
positive, what are your chances of having the disease? If your
doctor also tells you that 1 per cent of the population have the
disease, and that the test will record a false positive 10 per cent
of the time, use Bayes’ theorem to calculate the chance of having
D if the test is positive.

2.6 Inverse Chi-squared statistic. For a Gaussian of known mean
(say zero), show that the posterior distribution for the vari-
ance is “inverse” χ2. Use the ‘Jeffreys prior’ for the variance:
prob(σ) = 1/σ. Comment on the differences between this re-
sult, and the one obtained by using a uniform prior on σ.

2.7 Maximum likelihood and the Poisson distribution. Sup-
pose we have data which obey a Poisson distribution with pa-
rameter µ, and in successive identical intervals we observe n1,

n2, . . . events. Form the likelihood function by taking the product
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of the distributions for each ni, and differentiate to find the
maximum-likelihood estimate of µ. Is it what you expect?

2.8 Maximum likelihood and the exponential distribution.
Suppose we have data X1, X2, . . . from the distribution
1/2a exp(−|x|/a). Compute the posterior distribution of a for
a uniform prior, and Jeffreys’s prior prob(a) ∝ 1/a. Do the dif-
ferences seem reasonable? Which prior would you choose? If a
were known, but the location µ was to be found, what would be
the maximum-likelihood estimate?

2.9 Birth control. Imagine a society where boys and girls were
(biologically) equally likely to be born, but families cease pro-
ducing children after the birth of the first boy. Are there more
males than females in the population? Attack the problem in
three ways: pure thought, by a simulation, and by an analytic
calculation.
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Statistics and expectations

Lies, damned lies and statistics.

(Benjamin Disraeli)

In embarking on statistics we are entering a vast area, enormously
developed for the Gaussian distribution in particular. This is classical
territory; historically, statistics were developed because the approach
now called Bayesian had fallen out of favour. Hence direct probabilis-
tic inferences were superseded by the indirect and conceptually different
route, going through statistics and intimately linked to hypothesis test-
ing. The use of statistics is not particularly easy. The alternatives to
Bayesian methods are subtle and not very obvious; they are also as-
sociated with some fairly formidable mathematical machinery. We will
avoid this, presenting only results and showing the use of statistics, while
trying to make clear the conceptual foundations.

3.1 Statistics

Statistics are designed to summarize, reduce or describe data. The formal
definition of a statistic is that it is some function of the data alone. For a
set of data X1, X2, . . . , some examples of statistics might be the average,
the maximum value or the average of the cosines. Statistics are therefore
combinations of finite amounts of data. In the following discussion, and
indeed throughout, we try to distinguish particular fixed values of the
data, and functions of the data alone, by upper case (except for Greek
letters). Possible values, being variables, we will denote in the usual
algebraic spirit by lower case.

37
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The summarizing aspect of statistics is exemplified by those describing
(1) location and (2) spread or scatter.

(1) The location of the data can be indicated by various combinations:
Average, denoted by overlining: X = 1/N

∑N
i=1 Xi.

Median: arrange Xi according to size; renumber. Then Xmed = Xj

where j = N/2 + 0.5, N odd, Xmed = 0.5(Xj + Xj+1) where j = N/2,
N even.

Mode: Xmode is the value of xi occurring most frequently; it is the
location of the peak in the histogram of Xi.

(2) Statistics indicating the scale or amount of scatter in the data are,
for example,

Mean deviation: ∆X = (1/N)
∑N

i=1 |Xi −X|.
Mean square deviation: S2 = (1/N)

∑N
i=1(Xi −X)2.

Root mean square deviation: rms = S.

We are so familiar with statistics like these that a result such as ‘D =
8.3 ± 0.1 Mpc’ provokes no questions. But what does it mean? It does
not tell us the probability that the true value of D is between 8.2 and
8.4. We usually assume that a Gaussian distribution applies, placing
our faith in the central limit theorem. Knowing the distribution of the
errors allows us to make probabilistic statements, which are what we
need. After all, if there were only a 1 per cent chance that the interval
[8.2, 8.4] contained the true value of D, we might not regard the stated
error as being very useful.

So this is one key aspect of statistics; they are associated with dis-
tributions. In fact they are most useful when they are estimators of the
parameters of distributions. In quoting our measurement of D, we are
hoping that 8.3 is an estimate of the parameter µ of some Gaussian,
while 0.1 is an estimate of σ.

The other key aspect of statistics is that they are to be interpreted in
a classical, not Bayesian framework. We need to look carefully at this
distinction; it parallels our discussion of those coloured balls in the urn.
Assuming a true distance D0, a classical analysis tells us that D is (say)
Normally distributed around D0, with a standard deviation of 0.1. So we
are to imagine many repetitions of our experiment, each yielding a value
of the estimate D which dances around D0. We might form a confidence
interval (such as [8.2, 8.4]) which will also dance around randomly, but
will contain D0 with a probability we can calculate. Just as in the case
of the coloured balls, this approach assumes the thing we want to know,
and tells us how the data will behave.
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A Bayesian approach circumvents all this; it deduces directly the prob-
ability distribution of D0 from the data. It assumes the data, and tells
us the thing we want to know. There are no imagined repetitions of the
experiment. Conceptually it is clearer than classical methods, but these
are so well developed and established (particularly for the Gaussian)
that we will give some explanation of classical statistics now, and indeed
use classical results in many places in this book.

It is worth remembering, however, that statistics of known useful-
ness are quite rare; the intensive development of statistics based on the
Gaussian should not blind us to this fact. In many cases of astronomical
interest we may need to derive useful statistics for ourselves. By far the
easiest method for doing this is maximum likelihood (Section 6.1) and
this is so close to a Bayesian method that we may expect to be doing
Bayesian, not classical, inference in any new case where we cannot draw
immediately on classical results.

To repeat, statistics are properties of the data and only of the data;
they summarize, reduce, or describe the data. Variables such as µ and
σ of the Poisson and Gaussian distributions define these distribution
functions and are not statistics. But we may anticipate that our data do
follow these or other distributions and we may therefore wish to relate
statistics from the data to parameters describing the distributions.

This is done through expectations or expectation values, long-run av-
erage properties depending on distribution functions. The expectation
E[f(x)] of some function f of a random variable x, with distribution
function g, is defined as

E[f(x)] =
∫

f(x)g(x) dx (3.1)

i.e. the sum of all possible values of f , weighted by the probability of
their occurrence. We can think of the expectation as being the result
of repeating an experiment many times, and averaging the results. We
might, for example, compute an average X; if we repeat the experiment
many times, we will find that the average of X will converge to the true
mean value, the expectation of the function f(x) = x:

E[x] =
∫

xg(x) dx. (3.2)

Note that the expectation is not to be understood as referring to a
very large sample; we can ask for the expectation value of a combination
of a finite number of data.



40 Statistics and expectations

The statistic S2 should likewise converge to the variance, defined by

var[x] = E[(x− µ)2] (3.3)

=
∫

(x− µ)2g(x) dx. (3.4)

However, as we shall see, we do have to take some care that the inte-
grals actually exist.

EXAMPLE Take our favourite distribution, the Gaussian. The proba-
bility density of getting a datum x near µ is

g(x | µ, σ) =
1√
2πσ

exp
[−(x− µ)2

2σ2

]

but what are these parameters µ and σ? It’s not difficult to show (chang-
ing variables and using standard identities) that

E[x] =
∫

xg(x | µ, σ) dx = µ, (3.5)

and

E[(x− µ)2] =
∫

(x− µ)2g(x | µ, σ) dx = σ2. (3.6)

We would therefore expect that the average X and mean square de-
viation S2 would be related to µ and σ2. As any statistics text will
show, indeed X and S2, although they are functions only of the data
and therefore show random variation, will converge to µ and σ2 when
we have a lot of data.

Other distributions give different results. Take the exponential distri-
bution

f(x) =
1
2a

exp
(
−|x|

a

)

where the expectation of |x| is the width parameter a.
The pathological Cauchy distribution

f(x) =
1

π(1 + x2)

has the alarming property that the expectation of the average of N data
is, again, the same Cauchy distribution; the location can apparently just
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as well be estimated with one datum. The difficulty arises because the
distribution has such wide wings. In astronomy, broad or even open-
ended (power-law) distributions are common. It is worth checking any
piece of remembered statistics, as it is almost certain to be based on the
Gaussian distribution.

Other expectations of theoretical importance are known as the nth
central moments:

µn =
∫

(x− µ)ng(x) dx (3.7)

where g is some probability distribution. They are estimated analo-
gously by suitable averages to the way in which mean and variance were
estimated in the previous example. They are sometimes useful for char-
acterizing the shape of distributions, although they are very sensitive to
outliers. Two descriptors using moments are common: skewness, β1 =
µ2

3, indicates deviation from symmetry (= 0 for symmetry about µ); and
kurtosis, β2 = µ4/µ

3
2, indicates degree of peakiness (= 3 for the Gaussian

distribution).
The Chebyshev inequality is sometimes useful: for any positive integer

n, and data X drawn from a distribution of mean µ and variance σ2,

prob[|X − µ| > nσ] ≤ 1
n
. (3.8)

This is very conservative but is sometimes better than nothing as an
estimate.

3.2 What should we expect of our statistics?

We have but a few of the data Xi but we want to know how all of
them are organized; we want their probability or frequency distribution
and we want it for as little effort as we can get away with (efficiently)
and as accurately as possible (robustly). Suppose, for instance, that we
are drawing samples from a population obeying a Gaussian defined by
µ = 0, σ = 1. Figure 3.1 conveys some indication of how the size of
sample would affect estimates of these parameters.

There are, then, at least four requirements for statistics.

(i) They should be unbiased, meaning that the expectation value of
the statistic turns out to be the true value. For the Gaussian
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Fig. 3.1. Xi drawn at random from a Gaussian distribution of σ = 1: (a) 20
values, (b) 100 values, (c) 500 values, (d) 2500 values. The average values of xi

are 0.003, 0.080, −0.032 and −0.005; the median values 0.121, 0.058, −0.069
and −0.003; and the rms values 0.968, 1.017, 0.986, and 1.001. Solid curves
represent Gaussians of unit area and standard deviation.

distribution (Section 2.4.2.3), for data Xi, X is indeed an unbi-
ased estimate of the mean µ, but the unbiased estimate of the
variance σ2 is

σ2
s =

1
N − 1

N∑
i=1

(Xi −X)2

which differs from the expectation value of S2 by the factor
N/(N − 1). The factor is confusing: σ2

s , sometimes referred to
as the sample variance, is the estimator for the population vari-
ance σ2. (The difference is understandable as follows. The Xi of
our sample are first used to get X, an estimate of µ, and although
this is an unbiased estimate of µ it is the estimate which yields a
minimum value from the sum of the squares of the deviations of
the sample, and thus a low estimate of the variance. The theory
provides the appropriate correction factor N/(N − 1); of course
the difference disappears as N → ∞.)
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(ii) They should be consistent, the case if the descriptor for an arbi-
trarily large sample size gives the true answer. As we have seen,
the rms is a consistent measure of the standard deviation of a
Gaussian distribution in that it gives the right answer for large
N ; but it is a biased estimator for small N unless modified by the
factors just discussed.

(iii) The statistic should obey closeness, yielding the smallest possible
deviation from the truth. The Cauchy distribution (Section 3.1)
looks innocent enough, somewhat similar to a Gaussian, even.
But with infinite variance, trying to estimate dispersion via the
standard deviation would yield massive scatter and little infor-
mation.

(iv) The statistic should be robust. For example, if we have a funda-
mentally symmetric distribution of data but a few experimental
errors creep in, outliers appearing at the ends of the distribu-
tion, then as a measure of central location the median is far more
robust than the average – it is less affected by the outliers.

3.3 Simple error analysis

3.3.1 Random or systematic?

The average is a very common statistic; it is what we are doing all the
time, for example, in ‘integrating’ on a faint object. The variance on the
average is

S2
m = E




(
1
N

N∑
i=1

Xi − µ

)2



which, after some manipulation, is

S2
m =

σ2

N
+

1
N2

∑
i �=j

E[(Xi − µ)(Xj − µ)]. (3.9)

Neglecting the last term for the moment, the first term expresses
generally held belief – the error on the mean of some data diminishes,
like

√
N , as the amount of data is increased. This is one of the most

important tenets of observational astronomy.
Now for the last term: apart from infinite variances (e.g. the Cauchy

distribution), the familiar and comforting
√
N result holds only when

this last term is zero. The term contains the covariance, defined as

cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)]; (3.10)
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it is closely related to the correlation coefficient between xi and xj

(Section 4.2). We are keeping the subscripts now because of the pos-
sibility that the data from the ith pixel, spectral channel, or time slot,
are not independent of the data from the jth position. In the simplest
cases, the data are independent and identically distributed (probability
of Xi and Xj = probability of Xi × probability of Xj) and then the
covariance is zero. This is a condition (probably the likeliest) for the
familiar

√
N averaging away of noise; our assumption is that noise from

one datum to the next or one pixel to the next is independent.

EXAMPLE Suppose we had a time series, say of photometric measure-
ments Xi. Here the i’s index time of observation. It might be a reasonable
assumption that the measurements were identically distributed and in-
dependent of each other. In this case, the probability distribution would
be the same for each time, and so can just be written g(x | parameters).
The covariance term is then just

cov[Xi, Xj ] = E[(Xi − µi)(Xj − µj)]

=
∫

(xi − µi)g(xi | . . .) dxi

∫
(xj − µj)g(xj | . . .) dxj

= 0 (3.11)

because, by definition of µ, each integral must separately be zero.

Often this simple situation does not apply. One possibility is that
cov[xi, xj ] depends only on a ‘distance’ (i− j). If the data are indexed
in some meaningful way, for example as a time series, the data are called
stationary. As a second possibility, in photometric work it is quite likely
that if one measurement is low, because of cloud, then the next few
will be low too. (We speak of the dreaded 1/f noise; more of this in
Section 8.8.) Then the probability distribution becomes multivariate and
the simple factorizations do not apply:

E[(Xi − µi)(Xj − µj)] =
∫ ∫

(xi − µi)(xj − µj)g(xi, xj | . . .) dxi dxj

so that we need to know more about the observational errors – in other
words, how to write down g(xi, xj | . . .) – before we can assess how the
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average of the data will behave. In these more complicated cases, the
averaging away is almost certain to be slower than

√
N .

A common distinction is made in experimental subjects between
random and systematic errors, random errors being considered as those
showing the

√
N diminution. In reality there is a continuum, with the

covariance frequently non-zero. At the other far extreme, systematic
errors persist no matter how much data are collected. If you are observ-
ing Arcturus when you should be observing Vega, the errors will never
average away no matter how persistent you are. Systematic errors can
only be reduced by thorough understanding of the experimental equip-
ment and circumstances; ‘random’ errors may be more or less random,
depending on how correlated they are with each other.

3.3.2 Error propagation

Often the thing we need to know is some more or less complicated func-
tion of the measured data. Knowing data error, how do we estimate error
in the desired quantity?

If the errors are small, by far the easiest way is to use a Taylor expan-
sion. Suppose we measure variables x, y, z, . . . with independent errors
δX, δY, δZ, . . . and we are interested in some function f(x, y, z, . . .). The
change in f caused by the errors is, to first order,

δF =
∂f

∂x

∣∣∣∣
x=X

δX +
∂f

∂y

∣∣∣∣
y=Y

δY +
∂f

∂z

∣∣∣∣
z=Z

δZ + · · ·

The variance on a sum is the sum of the variances of the individual terms
(because the errors are assumed to be independent) so we get

var[f ] =
(
∂f

∂x

)2
∣∣∣∣∣
x=X

σ2
x +

(
∂f

∂y

)2
∣∣∣∣∣
y=Y

σ2
y +

(
∂f

∂z

)2
∣∣∣∣∣
z=Z

σ2
z + · · ·

(3.12)
where the σ represent the variances in each of the variables.

These considerations lead to a well-known result for combining mea-
surements: if we have n independent estimates, say Xj , each having an
associated error σj , the best combined estimate is the weighted mean,

Xw =

∑n
j=1 wjXj∑n
j=1 wj

where the weights are given by wj = 1/σ2
j , the reciprocals of the sample
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variances. The best estimate of the variance of Xw is

σ2
w =

1∑n
j=1 1/σ2

j

.

EXAMPLES Suppose (i) f(x, y) = x/y. Then the rule gives us imme-
diately

var[f ]
f2

=
(σx

x

)2

+
(
σy

y

)2

;

we simply add up the relative errors in quadrature. If (ii) f(x) = log x
then the rule gives

var[f ] =
(σx

x

)2

and the error in the log is just the relative error in the quantity we have
measured.

3.3.3 Combining distributions

Often this method is not good enough – we may need to know details of
the probability distribution of the derived quantity. The simplest case
is a transformation from the measured x, with probability distribution
g, to some derived quantity f(x) with probability distribution h. Since
probability is conserved, we have the requirement that

h(f) df = g(x) dx (3.13)

so that h involves the derivative df/dx. Some care may be needed in
applying this simple rule if the function f is not monotonic.

EXAMPLE Suppose we are taking the logarithm of some exponentially
distributed data. Here g(x) = exp(−x) for positive x, and f(x) = log(x).
Applying our rule gives

h(f) = exp(− exp(f)) exp(f)

which, as we might expect (Fig. 3.2) has a pronounced tail to negative
values and is correctly normalized to unity. Our simpler methods would
give us δh = δx/x, which evidently cannot give a good representation of
the asymmetry of h. Quoting ‘h± δh’ is clearly not very informative.
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Fig. 3.2. The probability distribution of the logarithm of data drawn from an
exponential distribution.

This technique rapidly becomes difficult to apply for more than one
variable, but results for some useful cases are as follows.

(1) Suppose we have two identically distributed independent variables
x and y, both with distribution function g. What is the distribution of
their sum z = x + y? For each x, we have to add up the probabilities
of all the numbers y = z − x that yield the z we are interested in. The
probability distribution h(z) is therefore

h(z) =
∫

g(z − x)g(x) dx (3.14)

where the probabilities are simply multiplied because of the assumption
of independence. h is therefore the autocorrelation (Section 8.2) of g.
The result generalizes to the sum of many variables, and is often best
calculated with the aid of the Fourier transform (Section 8.2) of the dis-
tribution g. This transform is sometimes called the characteristic func-
tion.

(2) Quite often we need the distribution of the product or quotient
of two variables. Without details, the results are as follows. For z = xy,
the distribution of z is

h(z) =
∫

1
|x|g(x)g(z/x) dx (3.15)

and of z = x/y is

h(z) =
∫

|x|g(x)g(zx) dx. (3.16)

In almost any case of interest, these integrals are too hard to do analyt-
ically.
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EXAMPLES One exception of interest is the product of two Gaussian
variables of zero mean; this has applicability for a radio-astronomical
correlator, for instance. Leaving out the mathematical details, the result
emerges in the form of a modified Bessel function. The input Gaussians
are of zero mean and variance σ2. The distribution of the product is

h(z) =
2

πσ2
K0

( |z|
σ2

)

which as Fig. 3.3 shows is quite unlike a Gaussian. It has a logarithmic
singularity at zero but is normalized to unity.
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Fig. 3.3. The probability distribution of the product of two identical
Gaussians – the original Gaussian is the dashed curve.

The case of the ratio is equally instructive. Here we get

h(z) =
1
π

1
1 + z2

,

a Cauchy distribution. It has infinite variance and, as we see in Fig. 3.4,
the variance of the original Gaussian surprisingly does not appear in the
answer.

This is a somewhat unrealistic case – it corresponds to forming the
ratio of data of zero signal-to-noise ratio – but illustrates that ratios
involving low signal-to-noise are likely to have very broad wings. The
Bessel function distribution will, on average, succumb to the central limit
theorem; this is not the case for the Cauchy distribution. In general,
deviations from Normality will occur in the tails of distributions, the
outliers that are so well known to all experimentalists.
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Fig. 3.4. The probability distribution of the ratio of two identical Gaussian
variables the original Gaussian is the dashed curve.

3.4 Some statistics, and their distributions

For N data Xi, some useful statistics are the average, the sample vari-
ance, and the order statistics. We have already met the first two; they
acquire their importance because of their relationship to the parameters
of the Gaussian. If the Xi are independent and identically distributed
Gaussian variables, where the original Gaussian has mean µ and variance
σ2, then:

(i) The average X obeys a Gaussian distribution around µ, with
variance σ2/N . We have met this result before (Section 2.5).

(ii) The sample variance σ2
s is distributed like σ2χ2/(N − 1), where

the chi-square variable has N−1 degrees of freedom (Table A2.6).
(iii) The ratio

√
N(X − µ)

σ2
s

is distributed like the t statistic, with N − 1 degrees of freedom.
This ratio has an obvious usefulness, telling us how far our average
might be from the true mean (Table A2.3).

(iv) If we have two samples (size N and M) drawn from the same
Gaussian distribution, then the ratio of the sample variances
σ2

s1 and σ2
s2 follows an F distribution. This allows us to check

if the data were indeed drawn from Gaussians of the same width
(Section 5.2 and Table A2.4).
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The order statistics are simply the result of arranging the data Xi

in order of size, relabelled as Y1, Y2, . . . So Y1 is the smallest value of
X, and YN the largest. Maximum values are often of interest, and the
median YN/2 (N even) is a useful robust indicator of location. We might
also form robust estimates of widths by using order statistics to find the
range containing, say, 50 per cent of the data. Both the density and the
cumulative distribution are therefore of interest.

Suppose the distribution of x is f(x), with cumulative distribution
F (x). Then the distribution gn of the nth order statistic is

gn(y) =
N !

(n− 1)!(N − n)!
[F (y)]n−1[1 − F (y)]N−nf(y) (3.17)

and the cumulative distribution is

Gn(y) =
N∑

j=n

(
N

j

)
[F (y)]j [1 − F (y)]N−j . (3.18)

EXAMPLE The Schechter luminosity function xγ exp(−x/x∗) is a use-
ful model of the luminosity function for field galaxies. The observed value
of γ is close to unity, but we will take γ = 1/2 for convenience in ensur-
ing the distribution can be normalized over the range zero to infinity;
we also take x∗ = 1. If we select 10 galaxies from this distribution, the
maximum of the 10 will follow the distribution shown in Fig. 3.5. We
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Fig. 3.5. The Schechter luminosity function (solid curve) and the distribution
of the maximum of 10 and 100 samples from the distribution, plotted as short-
and long-dash curves respectively.
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see that the distribution is quite different from the Schechter function,
with a peak quite close to x∗. If we choose 100 galaxies, then of course
the distribution moves to brighter values.

3.5 Uses of statistics

So far, we have concentrated on defining statistics and noticing that
they (a) may estimate parameters of distributions and (b) will be dis-
tributed in some more or less complicated way themselves. Their use
then parallels the Bayesian method.

First, we may use them to estimate parameters; but the way in which
they do this is more subtle than the Bayesian case. We do not get a prob-
ability distribution for the parameter of interest, but a distribution of
the statistic, given the parameter. As noted in the introductory section
of this chapter, the confidence interval is the usual way of making use
of a statistic as an estimator.

Second, we may test hypotheses. This again parallels the Bayesian
case, but the methods are much further apart conceptually. Recall the
case discussed in Section 2.5, where we have estimated parameters α

and β. Using statistics, we would have two data combinations A (esti-
mating α) and B (estimating β). How would we answer a question like
‘is α > β’ in this approach? The classical method entails finding some
new combination, say t = A − B, and then computing its distribution
on the hypothesis that α − β = 0. We then find the probability of the
observed value of t, or bigger, occurring on this hypothesis; and if the
probability is small, we would conclude that the data were unlikely to
have occurred by chance. The hint, of course, is that indeed α > β, but
we do not know the probability of this.

This classical approach is the basis of numerous useful tests, and we
discuss some of them in detail in later Chapters 4 and 5. However, there
is no doubt that the method does not quite seem to answer the ques-
tion we had in mind, although often its results are indistinguishable
from the more intelligible Bayesian approach. The same decisions get
taken.

Perhaps the most difficult part of this testing procedure is the implicit
use of data corresponding to events that did not occur – the ‘observed
value of t, or bigger’ referred to. Jeffreys (1961) wrote ‘. . . a
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hypothesis that may be true may be rejected because it has predicted
observable results that have not occurred. This seems a remarkable
procedure.’

However, using large but unobserved values of the test statistic usually
does not matter much; in cases of interest, our statistic will be unlikely
anyway, and larger values will be even less likely.

Exercises

3.1 Means and variances. Find the mean and variance of a
Poisson distribution and of a power law; find the variance (= ∞)
of a Cauchy distribution.

3.2 Simple error analysis. Derive the well-known results for error
combining, for two products, and the sum and difference of two
quantities, from the Taylor expansion of Section 3.3.2.

3.3 Combining Gaussian variables. Use the result of
Section 3.3.2 for errors on z when z = x + y to find the dis-
tribution of the sum of two Gaussian variables.

3.4 Average of Cauchy variables. Show that the average value
of Cauchy-distributed variables has the same distribution as the
original data. Use characteristic functions and the convolution
theorem. Find a better location estimator.

3.5 Poisson statistics. Draw random numbers from Poisson dis-
tributions (Section 6.5) with µ = 10 and µ = 100. Take 10 or
100 samples, find the average and the rms scatter. How close is
the scatter to

√
average?

3.6 Robust statistics. Make a Gaussian with outliers by combin-
ing two Gaussians, one of unit variance, one three times wider.
Leave the relative weight of the wide Gaussian as a parameter.
Compare the mean deviation with the rms, for various rela-
tive weights. How sensitive are the two measures of scatter to
outliers? Repeat the exercise, with a width derived from order
statistics.

3.7 Change of variable. Suppose that φ is uniformly distributed
between zero and 2π. Find the distribution of sinφ. How could
you find the distribution of a sum of sines of independent ran-
dom angles?

3.8 Order statistics. We record a burst of N neutrinos from a su-
pernova, and the probability of recording a neutrino at time t
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is, in suitable units, exp(t − t0) where t0 is the time of emis-
sion. The maximum-likelihood estimate of t0 is just T1, the
time of arrival of the first neutrino. Use order statistics (Sec-
tion 3.4) to show that the average value of T1 is just t0 + 1

N .

Is this MLE biased, but consistent (i.e. the correct answer as
N → ∞)?
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Correlation and association

Arguing that the trial judge had failed to explain clearly the
use of Bayes’ theorem, the defence lodged an appeal. But
in a bizarre irony, the Appeal Court last month upheld the
appeal and ordered a retrial – on the grounds that the orig-
inal judge had spent too much time explaining the sci-
entific assessment of evidence. In their ruling, the Appeal
judges said: ‘To introduce Bayes’ theorem, or any sim-
ilar method, into a criminal trial plunges the jury into
inappropriate and unnecessary realms of theory and com-
plexity’.

(Robert Matthews, New Scientist 1996)

When we make a set of measurements, it is instinct to try to corre-
late the observations with other results. One or more motives may be
involved in this instinct: for instance we might wish (1) to check that
other observers’ measurements are reasonable, (2) to check that our mea-
surements are reasonable, (3) to test a hypothesis, perhaps one for which
the observations were explicitly made, or (4) in the absence of any hy-
pothesis, any knowledge, or anything better to do with the data, to find
if they are correlated with other results in the hope of discovering some
new and universal truth.

4.1 The fishing trip

Take the last point first. Suppose that we have plotted something against
something, on a fishing expedition of this type. There are grave dangers
on this expedition, and we must ask ourselves the following questions.

(1) Does the eye see much correlation? If not, calculation of a formal
correlation statistic is probably a waste of time.

54
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Fig. 4.1. Radio luminosities of 3CR radio sources versus distance modulus.
The curved line represents the survey limit, the limit imposed by forming a
catalogue from a flux-limited sample (Section 7.2).

(2) Could the apparent correlation be due to selection effects? Con-
sider for instance the beautiful correlation in Fig. 4.1, in which Sandage
(1972) plotted radio luminosities of sources in the 3CR catalogue as a
function of distance modulus. At first sight, it proves luminosity evolu-
tion for radio sources. Are the more distant objects (at earlier epochs)
clearly not the more powerful? In fact, as Sandage recognized, it proves
nothing of the kind. The sample is flux- (or apparent intensity) limited;
the solid line shows the flux-density limit of the 3CR catalogue. The
lower right-hand region can never be populated; such objects are too
faint to show above the limit of the 3CR catalogue. But what about the
upper left? Provided that the luminosity function (the true space density
in objects per megaparsec3) slopes downward with increasing luminos-
ity, the objects are bound to crowd towards the line. This is about all
that can be gleaned immediately from the diagram – the space density
of powerful radio sources is less than the space density of their weaker
brethren.

Astronomers produce many plots of this type, and will describe pur-
ported correlations in terms such as ‘The lower right-hand region of the
diagram is unpopulated because of the detection limit, but there is no
reason why objects in the upper left-hand region should have escaped
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Fig. 4.2. Dodgy correlations: in each case formal calculation will indicate that
a correlation exists to a high degree of significance.

detection’. True, but nor can they escape probability; the upper left of
Sandage’s diagram is not filled with QSOs and radio galaxies because
we need to sample large spheres about us to have a hope of encountering
a powerful radio source. Small spheres, corresponding to small redshifts
and distance moduli, will yield only low-luminosity radio sources because
their space density is so much the higher. The lesson applies to any pro-
posed correlation for variables with steep probability density functions
dependent upon one of the variables plotted.

(3) If we are happy about (2), we can try formal calculation of the
significance of the correlation as described in Section 4.2. Further, if
there is a correlation, does the regression line (Section 6.2) make sense?

(4) If we are still happy, we must return to the plot to ask if the
formal result is realistic. A rule of thumb: if 10 per cent of the points are
grouped by themselves so that covering them with the thumb destroys
the correlation to the eye, then we should doubt it, no matter what
significance level we have found. Beware in particular of plots which
look like those of Fig. 4.2, plots which strongly suggest selection effects,
data errors, or some other form of statistical conspiracy.

(5) If we are still confident, we must remember that a correlation
does not prove a causal connection. The essential point is that corre-
lation may simply indicate a dependence of both variables on a third
variable. Cigarette manufacturers said so for years; but finding the phys-
ical attribute which caused heart/lung disease and the desire to smoke
proved difficult. But there are many famous instances, e.g. the correlation
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between quality of children’s handwriting and their height, and between
the size of feet in China and the price of fish in Billingsgate Market. For
the former the hidden variable is age (Are tall children cleverer? No, but
older), while for the latter it is time.

There are in fact ways of searching for intrinsic correlation between
variables when they are known to depend mutually upon a third variable.
The problem, however, when on the fishing trip, is how to know about
a third variable, how to identify it when we might suspect that it is
lurking. We consider it further in Sections 4.3 and 4.5.

Finally we must not get too discouraged by all the foregoing. Consider
Fig. 4.3, a ragged correlation if ever there was one, although there are
no nasty groupings of the type rejected by the rule of thumb. It is in fact
one of the earliest ‘Hubble diagrams’ – the discovery of the recession of
the nebulae, and the expanding universe (Hubble 1936).

Fig. 4.3. (a) An early Hubble diagram (Hubble 1936); recession velocities of a
sample of 24 galaxies versus distance measure. (b) The same plot but with data
normalized by standard deviation; the lines represent principal components,
as described in Section 4.5.

4.2 Testing for correlation

In dealing with correlations we encounter in detail many important as-
pects of the use of probability and statistics. The foregoing problem
appears simple: we have a set of N measurements (Xi, Yi) and we ask
(formally) if they are related to each other.

To make progress we have to make ‘related’ more precise. The best-
developed way of doing this – although not necessarily relevant – is to
model our data as a bivariate or joint Gaussian of correlation
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coefficient ρ:

prob(x, y | σx, σy, ρ) =
1

2πσxσy

√
1 − ρ2

(4.1)

× exp
{ −1

2(1 − ρ2)

[
(x− µx)2

σ2
x

+
(y − µy)2

σ2
y

− 2ρxy
σxσy

]}
.

This model is so well developed that ‘correlation’ and ‘ρ �= 0’ are nearly
synonymous; if ρ → 0 there is little correlation, while if ρ → 1 the
correlation is perfect; see Fig. 4.4.

Fig. 4.4. Linear contours of the bivariate Gaussian probability distribution;
the near-circular contours represent ρ = 0.01, a bivariate distribution with
little connection between x and y, while the highly elliptical contours represent
ρ = 0.99, indicative of a strong correlation between x and y. Negative values
of ρ reverse the tilt, and indicate what is loosely referred to as anticorrelation.

The parameter ρ is the correlation coefficient, and in the above form-
ulation, it is given by

ρ =
cov[x, y]
σxσy

(4.2)

where cov is the covariance (Section 3.3.1) of x and y, and σ2
x and σ2

y
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are the variances. The correlation coefficient can be estimated by

r =
∑N

i=1(Xi −X)(Yi − Y )√∑N
i=1(Xi −X)2

∑N
i=1(Yi − Y )2

. (4.3)

r is known as the Pearson product-moment correlation coefficient (Fisher
1944).

The contours of Fig. 4.4 will have dropped by 1/e from the maximum
at the origin when

1
1 − ρ2

(
x2

σ2
x

+
y2

σ2
y

− 2ρxy
σxσy

)
= 1, (4.4)

or in matrix notation, when

(x y)
1

1 − ρ2

(
1
σ2
x

− ρ
σxσy

− ρ
σxσy

1
σ2
y

)(
x

y

)
= 1. (4.5)

The inverse of the central matrix is known as the covariance matrix or
error matrix

C =
(

σ2
x cov[x, y]

cov[x, y] σ2
y

)
. (4.6)

The off-diagonal elements of the covariance matrix can be estimated by

1
N − 1

(Xi −Xi)(Xj −Xj).

The matrix is particularly valuable in calculating propagation of errors,
but there are numerous applications, for example in principal component
analysis (Section 4.5) and in maximum-likelihood modelling (Section
6.1).

The multivariate Gaussian is one example of a class of multivariate
distribution functions that depend only on the data vector �x via a so-
called quadratic form

�xTC �x.

The multivariate Gaussian is the most familiar of these.
To return to the point at issue: what we really want to know is whether

or not ρ = 0; it is this condition for which we are testing. Using the
bivariate Gaussian is a very specific model; a Gaussian is assumed, it
allows only two variances, and assumes that both x and y are random
variables. Thus σx and σy include both the errors in the data, and their



60 Correlation and association

intrinsic scatter – all presumed Gaussian. The model does not apply,
for example, to data where the x-values are well defined and there are
‘errors’ only in y, perhaps different at different x. In such cases we would
use model fitting, perhaps of a straight line (Sections 6.1 and 6.2). This
is a different problem. These effects mean that we have to approach the
correlation coefficient with caution, as the way we set up our experiment
may result in graphs like those of Figs. 4.1 or 4.2.

As always, there are two quite different ways of proceeding from this
point, Bayesian and non-Bayesian.

4.2.1 Bayesian correlation testing

The Bayesian approach is to use Bayes’ theorem to extract the probabil-
ity distribution for ρ from the likelihood of the data and suitable priors.
Since we want to know about ρ independently of any inference about
the means and variances, we have to integrate these ‘nuisance variables’
out of the full posterior probability prob(ρ, σx, σy, µx, µy | data). For the
bivariate Gaussian model, the result is given by Jeffreys (1961) as

prob(ρ | data) ∝ (1 − ρ2)(N−1)/2

(1 − ρr)N−3/2

(
1 +

1
n− 1/2

1 + rρ

8
+ . . .

)
. (4.7)

The Bayesian test for correlation is thus simple: compute r from the
(Xi, Yi), and calculate prob(ρ) for the range of ρ of interest.

EXAMPLE We generated 50 samples from a bivariate t distribution
with three degrees of freedom. The true correlation coefficient was 0.5.
The large tails of the distribution produce outliers, not accounted for
by the assumed Gaussian used in interpreting the r statistic. Figure 4.5
shows what equation (4.7) gives: the distribution of ρ peaks at around
0.2. If now we remove the samples outside 4σ, the distribution peaks at
around 0.5 and is appreciably narrower. The method is thus fairly robust,
although obviously affected by being used with the ‘wrong’ distribution.

Given this probability distribution for ρ, we can answer questions like
‘what is the probability that ρ > 0.5?’ or (perhaps more usefully) ‘what
is the probability that ρ from dataset A is bigger than ρ from dataset
B?’ (see Section 2.5). As is often the case, the utility of the Bayesian
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Fig. 4.5. Fifty Xi, Yi chosen at random from a bivariate Gaussian with ρ =
0.5, with some outliers added. The Jeffreys probability distribution of the
correlation coefficient ρ is shown, peaking at around 0.2 for the upper panel.
The data have been restricted to ±4σ in the lower panel; the distribution now
peaks at 0.44.

approach is not that prior information is accurately incorporated, but
rather that we get an answer to the question we really want to ask.

Jeffreys used a uniform prior for ρ – not obviously justifiable, and
certainly not correct if ρ is close to 1 or −1, as he points out. But in
these cases a statistical test is a waste of time anyway.

EXAMPLE An interesting use of Jeffreys’s distribution is to calculate
the probability that ρ is positive, as a function of sample size (Fig. 4.6.)
This tells us how much data we need to be confident of detecting corre-
lations.

4.2.2 The classical approach to correlation testing

The alternative approach to the correlation problem starts by regarding
ρ as a fixed quantity, not a variable about which probabilistic statements
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Fig. 4.6. The probability of ρ being positive, as a function of sample size, for
r-values of 0.25 (lowest curve), 0.5 and 0.75 (uppermost curve).

might be made. This approach therefore arrives at the probability of the
data, given ρ (and of course the background hypothesis that a bivariate
Gaussian is adequate). The result (Fisher 1944) is

prob(r | ρ,H) ∝ (1 − ρ2)(N−1)/2(1 − r2)(N−4)/2

(1 − ρr)N−3/2

×
(

1 +
1

N − 1/2
1 + rρ

8
+ · · ·

)
. (4.8)

What can we do with this answer? The standard approach is to pick
the easy ‘null hypothesis’ ρ = 0, compute r, and then compute the
probability, under the null hypothesis, of r being this big or bigger. If
this probability is very small, we may feel that the null hypothesis is
rather unlikely.

The standard parametric test is to attempt to reject the hypothesis
that ρ = 0 and we do this by computing r. The standard deviation in r is

σr =
(1 − r2)√
N − 1

. (4.9)

Note that −1 < r < 1; r = 0 for no correlation. To test the significance
of a non-zero value for r, compute

t =
r
√
N − 2√
1 − r2

(4.10)

which obeys the probability distribution of the ‘Student’s’ t statistic1

1 After its discoverer W. S. Gosset (1876–1937), who developed the test while work-
ing on quality control sampling for Guinness. For reasons of industrial secrecy,
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with N − 2 degrees of freedom. (The transformation simply allows us
to use tables of t.) We are hypothesis testing now, and the methodology
is described more systematically in Section 4.1. Consult Table A2.3,
the table of critical values for t; if t exceeds that corresponding to a
critical value of the probability (two-tailed test), then the hypothesis
that the variables are unrelated can be rejected at the specified level
of significance. This level of significance (say 1 per cent, or 5 per cent)
is the maximum probability which we are willing to risk in deciding to
reject the null hypothesis (no correlation) when it is in fact true.

This approach has probably not answered the question – we embark
on this sort of investigation when it is apparent that the data contain
correlations; we merely want some justification by knowing ‘how much’.
Also, the inclusion in the testing procedure of values of r that have not
been observed poses the usual difficulties.

The test is widely used, and is formally powerful. But as one statistics
book says ‘There are data to which this kind of correlation method can-
not be applied.’ This is a gross understatement. The data must be on
continuous scales, obviously. The relation between them must be linear.
(How would we know this? In many cases in astronomy we change the
scales at will (log–log, log–linear, etc.) to give a roughly linear appear-
ance to our plots.) The data must be drawn from Normally distributed
populations. (How would we know this? Certainly if we have changed
our data axes to log form, there must be doubt.) They must be free from
restrictions in variability or groupings. There are parametric tests that
help: the F test for non-linearity and the correlation ratio test which
gets around non-linearity. However, to circumvent the problems it is far
better to go to a non-parametric test. These permit additional tests on
data which are not numerically defined (binned data, or ranked data),
so that in some instances they may be the only alternative.

4.2.3 Correlation testing: classical, non-parametric

The best-known non-parametric test consists of computing the Spearman
rank correlation coefficient (Conover 1999; Siegel & Castellan 1988):

rs = 1 − 6

N∑
(Xi − Yi)2

N3 −N
(4.11)

Gosset was required to publish under a pseudonym; he chose ‘Student’, which
he used for years in correspondence with his (former) professor at Oxford, Karl
Pearson.
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where there are N data pairs, and the N values of each of the two
variables are ranked so that (Xi, Yi) represents the ranks of the variables
for the ith pair, 1 < Xi < N , 1 < Yi < N .

The range is 0 < rs < 1; a high value indicates significant correlation.
To find how significant, refer the computed rs to Table A2.5, a table
of critical values of rs applicable for 4 ≤ N ≤ 30. If rs exceeds an
appropriate critical value, the hypothesis that the variables are unrelated
is rejected at that level of significance. If N exceeds 30, compute

tr = rs

√
N − 2
1 − r2

s

, (4.12)

a statistic whose distribution for large N asymptotically approaches that
of the t statistic with N−2 degrees of freedom. The significance of tr may
be found from Table A2.3, and this represents the associated probability
under the hypothesis that the variables are unrelated.

How does use of rs compare with use of r, the most powerful para-
metric test for correlation? Very well: the efficiency is 91 per cent. This
means that if we apply rs to a population for which we have a data pair
(xi, yi) for each object and both variables are Normally distributed, we
will need on average 100 (xi, yi) for rs to reveal that correlation at the
same level of significance which r attains for 91 (xi, yi) pairs. The moral
is that if in doubt, little is lost by going for the non-parametric test.

The Kendall rank correlation coefficient does the same thing as rs,
and with the same efficiency (Siegel & Castellan 1988).

EXAMPLE A ‘correlation’ at the notorious 2σ level is shown in Fig. 4.7.
Here, rs = 0.28, N = 55, and the hypothesis that the variables are
unrelated is rejected at the 5 per cent level of significance. Here we
have no idea of the underlying distributions; nor are we clear about the
nature of the axes. The assumption of a bivariate Gaussian distribution
would be rash in the extreme, especially in view of a uniformly filled
Universe producing a V/Vmax statistic uniformly distributed between 0
and 1 (Schmidt 1968). The Vmax method is discussed in Section 7.3.

There is yet another way, the permutation test. In the case of corre-
lation analysis, we have data (X1, Y1), (X2, Y2), . . . and we wish to test
the null hypothesis that x and y are uncorrelated. In this regard if we
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Fig. 4.7. V/Vmax as a function of high-frequency spectral index for a sample
of radio quasars selected from the Parkes 2.7-GHz survey.

have some home-made test statistic η, we can calculate its distribution,
on the assumption of the null hypothesis, by simply calculating its value
for many permutations of the x’s amongst the y’s. For any reasonable
dataset there will be far more possible permutations than we can reason-
ably explore, but choosing a random set will give an adequate estimate
of the distribution of the test statistic.

If it turns out that the observed value of η is very improbable, under
the null hypothesis, we may be interested in estimating the distribution
for non-zero correlation. This is a route to useful Bayesian analysis, of
the kind we described for the correlation coefficient ρ. Here Monte Carlo
simulation (Section 6.5) will come into its own, allowing us to explore a
wide range of parameter space, so building up the posterior distribution
prob(parameters/η).

These methods can be used to derive distributions of statistics such
as Spearman’s or Kendall’s correlation coefficients in cases when a cor-
relation is apparently present.

4.2.4 Correlation testing: Bayesian versus

non-Bayesian tests

Let us be clear: the non-parametric tests circumvent some of the issues
involved in the non-Bayesian approach, but they have no bearing on the
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fundamental issue – what was the real question? However, the Bayesian
approach, strong in answering the real question, forces reliance on a
model.

There is rather little difference, in practice, between the Fisher test
and results from Jeffreys’s distribution. We can show this with some
random Gaussian data with a correlation of zero. In the standard way,
we can use the r distribution to find the probability of r being as large, or
larger, than we observe, on the hypothesis that ρ = 0. If this probability
is small, the test is hinting at the possibility that the correlation is
actually positive. Therefore we compare with the probability, from the
Jeffreys distribution, that ρ is positive. If the probability from Fisher’s
r distribution is small we expect the probability from ρ to be large; and
in fact we can see, either from simulations or from the algebraic form
of the distributions, that the sum of these two probabilities is close to
1. In other words, interpreting the standard Fisher test (illegally!) to be
telling us the chance that ρ is positive, actually works very well.

4.3 Partial correlation

The ‘lurking third variable’ can be dealt with (provided that its influ-
ence is recognized in the first place) by partial correlation, in which the
‘partial’ correlation between two variables is considered by nullifying the
effects of the third (or fourth, or more) variable upon the variables being
considered. Partial correlation is a science in itself; it is covered in both
parametric and non-parametric forms by Stuart & Ord (1994), Macklin
(1982), and Siegel & Castellan (1988).

In the parametric form, consider a sample of N objects for which
parameters x1, x2, and x3 have been measured. The first-order partial
correlation coefficient between variables x1 and x2 is

r12.3 =
r12 − r13r23√

(1 − r2
13)(1 − r2

23)
(4.13)

where the r are the product-moment coefficients defined in Section 4.2.2.
If there are four variables, then the second-order partial correlation
coefficient is

r12.34 =
r12.3 − r14.3r24.3√

(1 − r2
14.3)(1 − r2

24.3)
(4.14)

where the correlation is being examined between x1 and x2 with x3
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and x4 held constant. Examination of the correlation between the other
variables requires manipulation of the subscripts in the foregoing.

And so forth for higher-order partial correlations between more than
four variables, with the standard error of the partial correlation coeffi-
cients being given by

σr12.34...m =
1 − r2

12.34...m√
N −m

where m is the number of variables involved. The significance then comes
from the ‘Student’s’ t test as above.

EXAMPLE Consider data from a sample of lads aged 12–19. The cor-
relation between height and weight will be high because the older boys
are taller on average. But with age held constant, the correlation would
still be significantly positive because at all ages, taller boys tend to
be heavier. In such a sample of 10, the correlation between height and
weight (r12) is calculated as 0.78; between height and age (r13), 0.52, and
between weight and age, r23 = 0.54. The first-order partial coefficient of
correlation (Equation 4.13) is thus r12,3 = 0.69; σr12.3 = 0.198; and the
correlation is significant at the level of 0.2 per cent.

Consider further a measure of strength for each lad. The correlation
between strength and height (r41) is 0.58; between strength and weight
(r42) 0.72. Will lads of the same weight show a dependence of strength
upon height? The answer is given by r41.2 = 0.042; the correlation be-
tween strength and height essentially vanishes and we would conclude
that height as such has no bearing on strength; only by virtue of its
correlation with weight does it show any correlation at all.

As for second-order partials, is there a correlation between strength
and age if height and weight are held constant? The raw correlation
between age and strength was 0.29; the second-order partial also yields
0.29. It seemingly makes little difference if height and weight are allowed
to vary; the relation between age and strength is the same.

4.4 But what next?

If we have demonstrated a correlation, it is logical to ask what the
correlation is, i.e. what is the law which relates the variables. It is
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common practice to dash off and fit a regression2 line, usually apply-
ing the method of least squares (Section 6.2). It is essential to note that
this is model fitting now; the distinction between data modelling (Chap-
ter 6) and hypothesis testing (here; and Chapter 5) is important.

Before doing so, there are several considerations, most of which are
addressed in more detail in Section 6.2. Are there better quantities to
minimize than the squares of deviations? What errors result on the
regression-line parameters? Why should the relation be linear? And –
most crucial of all – what are we trying to find out? If we have found
a correlation between x and y, which variable is dependent; do we want
to know x on y or y on x? The coefficients are generally completely
different.

As an argument against blind application of correlation testing and
line fitting, consider the famous Anscombe (1973) quartet, shown in
Fig. 4.8. Anscombe’s point is the essential role of graphs in good statis-
tical analysis. However, the examples illustrate other matters: the rule of
thumb (Section 4.1), and the distinction between independence of data
points and correlation. In more than one of Anscombe’s datasets the
points are clearly related. They are far from independent, while not show-
ing a particularly strong (formal) correlation. The upper right example
in Figure 4.8 is a case in which a linear fit is of indifferent quality, while
the choice of the ‘right’ relation between X and Y would result in a
perfect fit. The quartet further emphasizes how dependent our analyses
are on the assumption of Gaussianity: the covariance matrix, which intu-
itively we might expect to reflect some of the structure in the individual
plots, is identical for each.

Note that X independent of Y means prob(X,Y ) = prob(X)prob(Y ),
or prob(X | Y ) = prob(X); while X correlated with Y means prob(X,Y )
�= prob(X) prob(Y ) in a particular way, giving r �= 0. It is perfectly
possible to have prob(X,Y ) �= prob(X)prob(Y ) and r = 0, the standard
example being points distributed so as to form the Union Jack.

If we simply wish to map the dependence of variables on each other
with minimal judgemental input, it strongly suggested, here and in

2 Galton (1889) introduced the term regression; it is from his examination of the
inheritance of stature. He found that the sons of fathers who deviate x inches from
the mean height of all fathers themselves deviate from the mean height of all sons
by less than x inches. There is what Galton termed a ‘regression to mediocrity’. The
mathematicians who took up his challenge to analyse the correlation propagated
his mediocre term, and we’re stuck with it.
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Fig. 4.8. Anscombe’s quartet: four fictitious sets of 11 (Xi, Yi), each with the

same (X, Y ), identical coefficients of regression, regression lines, residuals in
Y and estimated standard errors in slopes.

Section 6.2, that principal component analysis is the appropriate tech-
nique.

4.5 Principal component analysis

Principal component analysis (PCA) is the ultimate correlation searcher
when many variables are present. Given a sample of N objects with n

parameters measured for each of them, how do we find what is corre-
lated with what? What variables produce primary correlations, and what
produce secondary, via the lurking third (or indeed n− 2) variables?

PCA is one of a family of algorithms (known as multivariate statistics;
see e.g. Manly (1994), Kendall (1980), Joliffe (2002)) designed for this
situation. Its task is the following: given a sample of N objects with n

measured variables xn for each, find a new set of ξn variables that are
orthogonal (independent), each one a linear combination of the original
variables:

ξi =
n∑

j=1

aijxj (4.15)
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with values of aij such that the smallest number of new variables ac-
counts for as much of the variance as possible. The ξi are the principal
components. If most of the variance involves just a few of the n new
variables, we have found a simplified description of the data. Finding
which of the variables correlate (and how) may lead to that successful
fishing expedition – we may have caught new physical insight.

PCA may be described algebraically, through covariance matrices
(Section 4.2), or geometrically. Taking the latter approach, consider the
N objects represented by a large cloud in n-dimensional space. If two of
the n parameters are correlated, the cloud is elongated along some di-
rection in this space. PCA identifies these extension directions and uses
them as a sequential set of axes, sequential in the sense that the most
extended direction is identified first by minimizing the sums of squares of
deviations. This direction forms the first principal component (or eigen-
vector 1), accounting for the largest single linear variation amongst the
object properties. Then the (n− 1)-dimensional hyperplane orthogonal
to the first principal component is considered and searched for the di-
rection representing the greatest variance in (n− 1)-space; and so forth,
defining a total of n orthogonal directions.

EXAMPLE As an elementary PCA example via geometry, let us return
to the early Hubble diagram of Fig. 4.3, 24 galaxies with two measured
variables, velocity of recession v and distance d. It is standard practice
to normalize by subtracting the means from each variable and to di-
vide by the standard deviation, i.e. to plot v′i = (vi− < v >)/σv versus
d′i = (di− < d >)/σd, as shown in Fig. 4.3(b). Then we find the first
principal component by simply rotating the axis through the origin to
align with maximum elongation, the direction of apparent correlation,
and we do this with least squares (Section 6.2) – maximizing the variance
along PC1 is equivalent to minimizing the sums of the squares of the
distances of the points from this line through the origin. The distance of
a point from the direction PC1 (shown dotted in Fig. 4.3b) represents
the value (score) of PC1 for that point. PC1 is clearly a linear combi-
nation of the two original variables; in fact it is v′ = d′. Because the
new coordinate system was found by simple rotation, distances from the
origin are unchanged; the total variance of v′ and d′ is unchanged and is
2.0. The variance of PC1, the normalized distances squared from PC2,
is 1.837. The remaining variance of the sample must be accounted for by
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Table 4.1. Principal components from Fig. 4.3

PC1 PC2

Eigenvalue 1.837 0.163
Proportion 0.918 0.082
Cumulative 0.918 1.000

Variable PC1 PC2

d (Mpc) 1.0 1.0
v (km s−1) 1.0 −1.0

the projection of data points onto the axis PC1, perpendicular to PC2;
the length of these projections are the object’s values or scores of the
second principal component, and this is verified as 0.163, with the sum
of these variances 2.0 as expected. Table 4.1 sets out the results in the
standard way of PCA.

Now consider the matrix approach. In the process of PCA the usual
methodology is to construct the error matrix (Section 4.2), e.g. for the
two-variable case of the example, a(1, 1) =

∑
d′2, a(1, 2) = a(2, 1) =∑

v′d′, a(2, 2) =
∑

v′2. We then seek a principal axis transformation
that makes the cross-terms vanish; we seek an axis transformation to ro-
tate the ellipses of Fig. 4.4 so that the axes of the ellipses coincide with
the principal axes of the coordinate system. This of course is simply done
in matrix notation. We determine the eigenvalues of the error matrix
and form its eigenvectors (readily shown for the example to be v′ = d′

and v′ = −d′ as seen in Fig. 4.3b). These eigenvectors then form the
transpose matrix T , for variable transformation and axis rotation. The
axis rotation diagonalizes the matrix, i.e. in the new axis system,
the cross-terms are zero; we have rotated the axes until there is no x, y

covariance.
Note that for the purpose our set of data has been reduced from

48 numbers for the 24 galaxies to four numbers, a 2 × 2 matrix. How
did this happen? PCA assumes that the covariance (or error) matrix
suffices to describe the data; this is the case if the data are drawn from
a multivariate Gaussian (Section 4.2, Fig. 4.4), or in general when a
simple quadratic form, using the covariance matrix, can describe the
distribution of the data. It is far from generally true that the clouds of
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points in most n-variate hyperspaces will be so simply distributed – see
the following example. The distribution need not be symmetrical, for
example.

In multivariate datasets, the disparate units are taken care of by nor-
malizing as in the above example: subtracting mean values and dividing
by variances. This is not a prescription, however. For example, the vari-
ance for any particular variable might be dominated by a monstrous
outlier which there are good grounds to reject. The choice of weights
does therefore depend on familiarity with the data and preferences –
there is plenty of room for subjectivity. It should also be noted that
PCA is a linear analysis and tests need to be performed on the linear-
ity of the principal components. For example, plotting the scores of PC1
versus PC2 should show a roughly Gaussian distribution consistent with
ρ = 0. It may be apparent how to reject outliers or to transform coordi-
nates to reduce the problem to a linear analysis. In large datasets such
processes can reveal unusual objects.

EXAMPLE Some PCA problems have a larger number of variables
than input observables, p > n, resulting in singular matrices requiring
modifications to standard techniques to solve the eigenvector equations
(Wilkinson 1978; Mittaz, Penston & Snijders 1990). This situation occurs
in spectral PCA for which the p variables are fluxes in p wavelength or
frequency bins (Francis et al. 1992; Wills et al. 1997). The technique
is ideal for dealing with a huge sample and was therefore adopted in
the 2dF survey which aims to measure 250 000 galaxy spectra to pro-
vide a detailed picture of the galaxy distribution out to a redshift of
0.25. The PCA approach to 2dF galaxy classification is discussed in
detail by Folkes et al. (1999). Figure 4.9, drawn from this paper, shows
examples of 2dF spectra prepared for PCA, the mean spectrum, and the
first three principal components. These three components represent the
eigenvectors of the covariance matrix of these prepared spectra. In this
example, the first PC accounts for 49.6 per cent of the variance; the first
three components account for 65.8 per cent of the variance. Much of the
remainder is due to noise.

The key aspect Folkes et al. (1999) wished to address was how the
luminosity function depends on galaxy type. The objects in the PC1–
PC2 plane form a single cluster (Fig. 4.9, blue emission-line objects
to the left, red objects with absorption lines to the right, and strong
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Fig. 4.9. Top left: examples of 2dF spectra prepared for PCA. Instrumental
and atmospheric features have been removed, with the spectra transformed to
the rest frame, resampled to 4Å bins and normalized to unit mean flux. Top
right: the mean spectrum and first three principal components; the sign of the
PCs is arbitrary. Below: distribution of 2dF galaxy spectra in the PC1–PC2
plane. Slanted lines divide the plane into the five spectral classes adopted by
Folkes et al.

emission-line objects straggling downward). Five spectral classes were
then adopted, shown by the slanted lines in this figure. Confirmation that
these spectral classes correspond to morphological classification came
from placing the 55 Kennicut (1992) standard galaxies into this plot; the
five classes are roughly E/SO, Sa, Sb, Scd and Irr. The way ahead to use
the PCA classes to work out luminosity functions for each is clear, and
the punch line is that significantly different Schecter functions emerged
for each class.
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Note how asymmetrical the distribution looks. This need not invali-
date the analysis – here primarily one of classification – but the effec-
tiveness must in general be reduced. Asymmetrical shapes in the PC
planes must result in unquantifiable errors in the classification.

In addition to spectral classification and analysis, spectral time vari-
ability is amenable to PCA (Mittaz, Penston & Snijders 1990; Turler &
Courvoisier 1998).

Of course we would like to know if the PCs are ‘real’ and so some
indication of the distribution of each one would be useful. This can be
computed by a bootstrap (Section 6.6) on the original dataset. This
will show how stable the eigenvectors and eigenvalues actually are, in
particular whether the largest eigenvector is reliably detected.

Exercises

In the exercises denoted by (D), datasets are provided on the book’s
website; or create your own.

4.1 Correlation testing (D). Consider the Hubble plot of Fig. 4.3.
What is (a) the most likely value for ρ via the Jeffreys test, (b)
the significance of the correlation via the standard Fisher test
and (c) the significance via the Spearman rank test? Estimate
distributions for these statistics with a bootstrap (Section 6.6),
and compare the results with the standard tests.

4.2 Permutation tests (D). (a) Take a small set of uncorrelated
pairs (X,Y ), preferably non-Gaussian. By permutation methods
on the computer, derive distributions of Fisher r, Spearman’s
and Kendall’s statistics. (b) Try the same numerical experiment
with correlated data, using the bootstrap and the jackknife to
estimate distributions (Sections 6.6). Correlated non-Gaussian
data are provided for the multivariate t distribution, which is
Cauchy-like for one degree of freedom and becomes more Gaus-
sian for larger degrees of freedom. How robust are the conclu-
sions against outliers?

4.3 Principal component analysis (D). Carry through a PCA
on the data of the quasar sample given in Francis & Wills (1999).
Compute errors with a bootstrap analysis or jackknife (Section
6.6).
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4.4 Lurking third variables. Consider the following correlations,
and speculate on how a third variable might be involved. (a)
During the Second World War, J.W. Tukey discovered a strong
positive correlation between accuracy of high-altitude bombing
and the presence of enemy fighter planes. (b) There is a well-
known correlation between stock market indices and the sunspot
cycle. (c) The apparent angular size of radio sources shows a
strong inverse correlation with radio luminosity.
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Hypothesis testing

How do our data look?
I’ve carried out a Kolmogorov–Smirnov test . . .
Ah. That bad.

(interchange between Peter Scheuer and his then student, CRJ)

It is often the case that we need to do sample comparison: we have
someone else’s data to compare with ours; or someone else’s model to
compare with our data; or even our data to compare with our model.
We need to make the comparison and to decide something. We are doing
hypothesis testing – are our data consistent with a model, with somebody
else’s data? In searching for correlations as we were in Chapter 4, we were
hypothesis testing; in the model fitting of Chapter 6 we are involved in
data modelling and parameter estimation.

Classical methods of hypothesis testing may be either parametric
or non-parametric, distribution-free as it is sometimes called. Bayesian
methods necessarily involve a known distribution. We have
described the concepts of Bayesian versus frequentist and parametric
versus non-parametric in the introductory Chapters 1 and 2. Table 5.1
summarizes these apparent dichotomies and indicates appropriate
usage.

That non-parametric Bayesian tests do not exist appears self-evident,
as the key Bayesian feature is the probability of a particular model in
the face of the data. However, it is not quite this clear-cut, and there
has been consideration of non-parametric methods in a Bayesian context
(Gull & Fielden 1986). If we understand the data so that we can model
its collection process, then the Bayesian route beckons (see Chapter 2
and its examples).

76
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Table 5.1. Usage of Bayes/frequentist/parametric/non-parametric
testing

Parametric Non-parametric

Bayesian Model known. Such tests do not exist.
testing Data gathering and

uncertainty understood.

Classical Model known. Small numbers.
testing Underlying distribution Unknown model.

of data known. Unknown underlying
Large enough numbers. distributions or errors.
Data on ordinal or Data on nominal or
interval scales. categorical scales.

And yet there are situations when classical methods are essential:

• If we are comparing data with a model and we have very few of
these data; or if we have poorly defined distributions or outliers
then we do not have an adequate model for our data. We need
non-parametric methods.

• Classical methods are widely used. We therefore need to understand
results quoted to us in these terms.

The classical tests involve us in ‘rejecting the null hypothesis’, i.e. in
rejecting rather than accepting a hypothesis at some level of significance.
The hypothesis we reject may not be one in which we have the slightest
interest. This is a process of elimination. A classical test works with
probability distributions of a statistic while the Bayesian method deals
with probability distributions of a hypothesis.

5.1 Methodology of classical hypothesis testing

Classical hypothesis testing follows these steps.

(1) Set up two possible and exclusive hypotheses, each with an asso-
ciated terminal action:

H0, the null hypothesis or hypothesis of no effect, usually
formulated to be rejected, and

H1, an alternative, or research hypothesis.
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(2) Specify a priori the significance level α; choose a test which
(a) approximates the conditions and (b) finds what is needed;
obtain the sampling distribution and the region of rejection, whose
area is a fraction α of the total area in the sampling distribution.

(3) Run the test; reject H0 if the test yields a value of the statistic
whose probability of occurrence under H0 is ≤ α.

(4) Carry out the terminal action.

It is vital to emphasize (2). The significance level has to be chosen
before the value of the test statistic is glimpsed; otherwise some arbi-
trary convolution of the data plus the psychology of the investigator is
being tested. This is not a game; you must be prepared to carry out
the terminal action on the stated terms. There is no such thing as an
inconclusive hypothesis test!

There are two types of error involved in the process, traditionally
referred to (surprisingly enough) as Types I and II. A Type I error occurs
when H0 is in fact true, and the probability of a Type I error is the
probability of rejecting H0 when it is in fact true, i.e. α. The Type II
error occurs when H0 is false, and the probability of a Type II error is
the probability β of the failure to reject a false H0; β is not related to
α in any direct or obvious way. The power of a test is the probability of
rejecting a false H0, or 1 − β.

The sampling distribution is the probability distribution of the test
statistic, i.e. the frequency distribution of area unity including all values
of the test statistic under H0. The probability of the occurrence of any
value of the test statistic in the region of rejection is less than α, by
definition; but where the region of rejection lies within the sampling
distribution depends on H1. If H1 indicates direction, then there is a
single region of rejection and the test is one-tailed; if no direction is
indicated, the region of rejection is comprised of the two ends of the
distribution and we are dealing with a two-tailed test. This is the only
use we make of H1; the testing procedure can only convince us to accept
H1 if it is the sole alternative to H0. The procedure of elimination serves
to reject H0, not prove H1. Beware – it is human nature to think that
your H1 is the only possible alternative to H0.

Both parametric and non-parametric (classical) tests follow this proce-
dure; both use a test statistic with a known sampling distribution. The
non-parametric aspect arises because the test statistic does not itself
depend upon properties of the population(s) from which the data were
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drawn. There are persuasive arguments for following non-parametric
testing in using classical methods, as outlined at the head of Section 1.4.
But first we consider the parametric route in some detail in order to
establish methodology.

5.2 Parametric tests: means and variances, t and F tests

A very common question arises when we have two sets of data (or one
set of data and a model) and we ask if they differ in location or spread.
The best-known parametric tests for such comparisons concern samples
drawn from Normally distributed parent populations; these tests are
of course the ‘Student’s’ t test (comparison of means) and the F test
(comparison of variances), and are discussed in most books on statistics,
e.g. Martin (1971), Stuart & Ord (1994). The t and F statistics have
been introduced in Section 3.4.

To contrast the classical and Bayesian methods for hypothesis testing,
we look at the simple case of comparison of means. We deal with a
Gaussian distribution, because its analytical tractability has resulted in
many tests being developed for Gaussian data; and then, of course, there
is the central limit theorem.

Let us suppose we have n data Xi drawn from a Gaussian of mean
µx, and m other data Yi, drawn from a Gaussian of identical variance
but a different mean µy. Call the common variance σ2.

The Bayesian method is to calculate the joint posterior distribution

prob(µx, µy, σ) ∝ 1
σn+m+1

exp
[
−

∑
i(xi − µx)2

2σ2

]
exp

[
−

∑
i(yi − µy)2

2σ2

]
(5.1)

in which we have used the Jeffreys prior (Exercise 2.6 of chapter 2) for
the variance. Integrating over the ‘nuisance’ parameter σ, we would get
the joint probability prob(µx, µy) and could use it to derive, for example,
the probability that µx is bigger than µy.

From this we can calculate the probability distribution of (µx − µy)
(see e.g. Lee 1997, Chapter 5). The result depends on the data via a
quantity

t′ =
(µx − µy) − (X − Y )

s
√
m−1 + n−1

(5.2)

where

s2 =
nSx + mSy

ν
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with the usual mean squares Sx =
∑

(Xi −X)2/n, similarly for Sy, and
ν = n + m− 2.

The distribution for t′ is

prob(t′) =
Γ

[
ν+1
2

]
√
πνΓ

[
ν
2

] (
1 +

t′2

ν

)−(ν+1)/2

. (5.3)

We regard the data as fixed and (µx − µy) as the variable, simply
computing the probability of any particular difference in the means. We
might alternatively work out the range of differences which are, say,
90 per cent probable, or we might carry the distribution of (µx −µy) on
into a later probabilistic calculation.

If we instead follow the classical line of reasoning, we do not treat
the µ’s as random variables. Instead we guess that the difference in
the averages X − Y will be the statistic we need; and we calculate its
distribution on the null hypothesis that µx = µy. We find that

t =
X − Y

s
√
m−1 + n−1

(5.4)

follows a t distribution with n + m − 2 degrees of freedom. This is the
classical Student’s t. Critical values are given in Table A2.3.

This gives the basis of a classical hypothesis test, the t test for means.
Assuming that (µx − µy) = 0 (the null hypothesis), we calculate t. If it
(or some greater value) is very unlikely, we think that the null hypothesis
is ruled out.

The t statistic is heavy with history and reflects an era when ana-
lytical calculations were essential. The penalty is the total reliance on
the Gaussian. However, with cheap computing power we may expect to
be able to follow the basic Bayesian approach outlined above for any
distribution.

By analogous calculations, we can arrive at the F test for variances.
Again, Gaussian distributions are assumed. The null hypothesis is σx =
σy, the data are Xi (i = 1, . . . , n) and Yi (i = 1, . . . ,m) and the test
statistic is

F =
∑

i(Xi −X)/(n− 1)∑
i(Yi − Y )/(m− 1)

. (5.5)

This follows an F distribution with n−1 and m−1 degrees of freedom
(Table A2.4) and the testing procedure is the same as for Student’s t.
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Clearly this statistic will be particularly sensitive to the Gaussian as-
sumption.

EXAMPLE Suppose we have two small sets of data, from Gaussian
distributions of equal variance: −1.22, −1.17, 0.93, −0.58, −1.14 (mean
−0.64), and 1.03, −1.59, −0.41, 0.71, 2.10 (mean 0.37), with a pooled
standard deviation of 1.2. The standard t statistic is 1.12. If we do a
two-tailed test (so being agnostic about whether one mean is larger than
another), we find a 30 per cent chance that these data would arise if the
means were the same. The one-tailed test (testing whether one mean is
larger) gives 16 per cent. From a Bayesian point of view, we can calculate
the distribution of (µx − µy) for the same data. In Fig. 5.1 we can see
clearly that one mean is smaller; the odds on this being so are about
10 to 1, as can be calculated by integrating the posterior distribution of
the difference of means.
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Fig. 5.1. The distribution of the difference of means for the example data.

5.2.1 The Behrens–Fisher test

Relaxing the assumption of equal variances may be important. It is in-
deed possible to derive the distribution of the difference in means with-
out the assumption of equal variances in the two samples; the resulting
distribution is called the Behrens–Fisher distribution. It is of great in-
terest in statistics because it is a rare example of a Bayesian analysis
having no classical analogue; there is no classical test for the case of
possibly unequal variances. Lee (1997) discusses this in some detail.
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The analytical form of the Behrens–Fisher distribution is complicated
and involves a numerical integration anyway, so we may as well resort to
a computer right away to calculate it from Bayes’ theorem. We suppose
that our data are drawn from Gaussians with means µ and standard
deviations σ. The joint posterior distribution (using the Jeffreys prior
on the σ) is

prob(µx, µy, σx, σy) ∝
1

σn+1
x

exp
[
−

∑
i(xi − µx)2

2σ2
x

]

× 1
σn+1
y

exp
[
−

∑
i(yi − µy)2

2σ2

]
. (5.6)

We have a multidimensional integration to do in order to get rid of the
two nuisance parameters (σx and σy) and to ensure that the result-
ing joint distribution prob(µx, µy) is properly normalized. This is now
not much of a problem, although until recently these integrations (for
anything other than Gaussians) were a formidable obstacle to Bayesian
methods. The analytical derivation of the Behrens–Fisher distribution
eliminates all the numerical integrations bar one.

Given the joint distribution of µx and µy, we would like the distribu-
tion of µy − µx. By changing variables we can easily see that

prob(u = µy − µx) =
∫ ∞

∞
prob(v, v + u) dv.

(Another integration!)

EXAMPLE Consider the same example data as before, relaxing the
assumption that the variances are equal. So although we cannot tell
(classically) that the variances differ, we will obtain somewhat different
results by not assuming that they are the same. We see from Fig. 5.2
that the distributions of µy−µx are very similar in either case, although
as we might expect the distribution is a little wider if we do not assume
that the variances are equal. The wings are broader and so tests are a
little weaker (but may be more honest).

This general sort of Bayesian test can be followed for any distribution –
as long as we know what it is, and can do the integrations.
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Fig. 5.2. Distribution of the difference of means assuming equal variances
(dashed) and without this assumption (solid).

5.2.2 Non-Gaussian parametric testing

In astronomy we frequently have little or no information about the distri-
butions from which our data are drawn, yet we need to test whether they
are the same or not. Since there is only one way in which two unknown
distributions can be the same, but a multitude in which they may dif-
fer, it is not surprising that we currently have to work with classical
hypothesis tests – ones which assume the distributions are the same.

If we have some information about the distributions, we can use
Bayesian methods. The trick here is to use a multiparameter generaliza-
tion of a familiar distribution, where we carry the extra parameters to
allow distortions in the shape. Eventually we can marginalize out these
extra nuisance parameters, integrating over our prior assumptions about
their magnitude.

The most common example of this sort of generalization is the Gram–
Charlier series:

exp
(
− x2

2σ2

) (
1 +

∑
i

aiHi(x)

)
(5.7)

in which the H’s are the Hermite polynomials. The coefficients ai are
the free parameters we need. (Because the Hermite polynomials are or-
thogonal with respect to Gaussian weights, these coefficients are also
related to the moments of the distribution we are trying to create.) The
effect of these extra terms is to broaden and skew a Gaussian, and so
for some data a few-term Gram–Charlier series may give quite a useful
basis for a parametric analysis. Priors on the coefficients have to be set
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Fig. 5.3. Various distributions resulting from using just two terms in a Gram–
Charlier distribution; the solid curve is a pure Gaussian.

by judgment. The even Hermite polynomials have the effect of changing
scale, and so should follow the same Jeffreys prior as the standard de-
viation. The odd polynomials will change both scale and location and
here setting the prior is less obvious.

There are two other variants on the Gram–Charlier series. For a
distribution allied to the exponential exp(−x/a), a Laguerre series will
function in the same way as a Gram–Charlier series, except the dis-
torting functions are the Laguerre polynomials. The Gamma series is
based on the distribution xα(1 − x)β , defined on the interval from 0 to
1; the distorting functions are the even less familiar Jacobi polynomi-
als. However, computer algebra packages such as MATHEMATICA give
comprehensive support for special functions and make the application
of these series rather straightforward (Reinking 2002).

This approach clarifies the workings of non-parametric tests. Suppose
we fix on a two-term Gram–Charlier expansion as a realistic representa-
tion of our data; the versatility is demonstrated in Fig. 5.3. For dataset
1, we then get the posterior prob(µ(1), σ(1), a

(1)
1 , a

(1)
2 ), and similarly for

dataset 2. If we ask the apparently innocuous question ‘are these data
drawn from different distributions?’ we see that there are many possi-
bilities (in fact, 24) of the form, for instance, µ(1) > µ(2) and σ(1) < σ(2)

and a
(1)
1 > a

(2)
1 and a

(1)
2 < a

(2)
2 . Working through these possibilities

could be quite tedious. A different question might be ‘are these distri-
butions at different locations, regardless of their widths?’, in which case
we could marginalize out the σ’s and a2’s (Section 2.2); the location, in
a Gram–Charlier expansion, is a simple combination of µ and a1.
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5.2.3 Which model is better?

This does suggest that comparison of models in the sense ‘are these data
drawn from the same distribution?’ might be a more tractable question.
Notice that we are not asking if µ(1) = µ(2), etc., as the probability of
this event is zero.

A useful way of answering this involves something called the Bayes
factor or weight of evidence. Suppose we try to describe all of the data
Xi, Yi with just one distribution G. This distribution may have pa-
rameters so let us denote this hypothesis by (G, θ). Alternatively (and
by hypothesis exhaustively) we may use (Gx, θx) for the data Xi and
(Gy, θy) for the data Yi. This hypothesis is (Gx, θx, Gy, θy). Note we
need prior probabilities for our two options, G or GxGy.

Bayes’ theorem then tells us that

prob(G, θ | X,Y )

=
prob(X,Y | G, θ)prob(G, θ)(∫

prob(G, θ | X,Y ) dθ +
∫

prob(Gx, θx | X) dθx

∫
prob(Gy, θy | Y ) dθy

)
(5.8)

in which the second term of the denominator arises because our alterna-
tive to (G, θ) is that the data are described as the product of two distinct
distributions. The odds on the distinct distributions are (see Section 2.5)

∫
prob(Gx, θx | X) dθx

∫
prob(Gy, θy | Y ) dθy∫

prob(G, θ | X,Y ) dθ
, (5.9)

and this ratio is closely related to the Bayes factor (see Lee 1997 for more
details). To work out these odds we integrate the likelihood functions,
weighted by the priors, over the range of parameters of the distributions.

EXAMPLE Suppose we have the following two datasets: Xi = −0.16,
0.12, 0.44, 0.60, 0.70, 0.87, 0.88, 1.44, 1.74, 2.79 and Yi = 0.89, 0.99, 1.29,
1.73, 1.96, 2.35, 2.51, 2.79, 3.17, 3.76. The means differ by about one
standard deviation. We consider two a-priori equally likely hypotheses.
One is that all 20 data are drawn from the same Gaussian. The other
is that they are drawn from different Gaussians. In the first case, the
likelihood function is

1
(
√

2πσ)20
exp

[
−

∑
i(Xi − µ)2 +

∑
(Yi − µ)2

2σ2

]
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and we take the prior on σ to be 1
σ . We also assume a uniform prior for

the µ’s. In the second case, the likelihood is

1
(
√

2πσx)10
exp

[
−

∑
i(Xi − µx)2

2σ2
x

]
1

(
√

2πσy)10
exp

[
−

∑
i(Yi − µy)2

2σ2
y

]

and the prior is 1
σxσy

. Integrating over the range of the µ’s and σ’s, the
odds on the data being drawn from different Gaussians are about 40 to
1 – a good bet. In the exercises we suggest following classical t and F

tests on these data, and contrasting to the Bayes factor approach.

5.3 Non-parametric tests: single samples

We now leave Bayesian methods and return to classical territory for the
remainder of this chapter.

‘Non-parametric tests’ implies that ‘no distribution is assumed’. But
let us not kid ourselves: something must be assumed, to make any
progress. What is it? Various tests exploit different things, but a com-
mon method is to use counting probabilities. Take as an example the
chi-square test (Section 5.3.1). The number of items in bin i is Ni, and
we expect Ei. For smallish numbers, Poisson statistics tell us that the
variance is also Ei. So (Ni−Ei)2/Ei should be roughly a squared Gaus-
sian variable, of unit variance. As another example, the runs test (Section
5.3.3) is just using the assumption that each successive observation is
equally likely to be ‘up’ or ‘down’, so a Binomial distribution applies.
The assumptions underlying non-parametric tests are weaker, and so
more general, than for parametric tests.

It is worth emphasizing again why we are going to advocate the non-
parametric tests.

• These make fewer assumptions about the data. If indeed the under-
lying distribution is unknown, there is no alternative.

• If the sample size is small, probably we must use a non-parametric
test.

• The non-parametric tests can cope with data in non-numerical
form, e.g. ranks, classifications. There may be no parametric equiv-
alent.

• Non-parametric tests can treat samples of observations from several
different populations.
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What are the counter-arguments? The main one concerns binning –
binning is bad; it loses information and therefore loses efficiency. The
power of non-parametric tests may be somewhat less, but typically no
more than 10 per cent less than their parametric equivalents.

5.3.1 Chi-square test

Pearson’s (1900) paper in which chi-square was introduced is a founda-
tion stone of modern statistical analysis1; a comprehensive and readable
review (plus bibliography) is given by Cochran (1952).

Consider observational data which can be binned, and a model/
hypothesis which predicts the population of each bin. The chi-square
statistic describes the goodness-of-fit of the data to the model. If the
observed numbers in each of k bins are Oi, and the expected values from
the model are Ei, then this statistic is

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
. (5.10)

The null hypothesis H0 is that the number of objects falling in each cate-
gory is Ei; the chi-square procedure tests whether the Oi are sufficiently
close to Ei to be likely to have occurred under H0. The sampling distri-
bution under H0 of the statistic χ2 follows the chi-square distribution
(Fig. 5.4) with ν = (k− 1) degrees of freedom. One degree of freedom is
lost because of the constraint that ΣiOi = ΣiEi. The chi-square distri-
bution is given by

f(x) =
2−ν/2

Γ[ν/2]
xν/2−1e−x/2 (5.11)

(for x ≥ 0), the distribution function of the random variable Y 2 =
Z2

1 + Z2
2 + . . . + Z2

ν where the Zi are independent random variables of
the standard Normal distribution. Table A2.6 presents critical values; if
χ2 exceeds these values, H0 is rejected at that level of significance.

1 Pearson’s paper is entitled On the criterion that a given system of deviations
from the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling. It is wonderful
polemic and gives several examples of the previous abuse of statistics, covering
the frequency of buttercup petals to the incompetence of Astronomers Royal.
(‘Perhaps the greatest defaulter in this respect is the late Sir George Biddell Airy.’)
He demonstrates, for extra measure, that a run of bad luck at his roulette wheel,
Monte Carlo, in July 1892 had one chance in 1029 of arising by chance; he avoids
libel by phrasing his conclusion ‘. . . it will be more than ever evident how little
chance had to do with the results . . . ’
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Fig. 5.4. The chi-square distribution: (a) f(χ2, df), the probability density
function of χ2 for df degrees of freedom; (b) the distribution function

∫ ∞
χ2 f(χ2,

df) d χ2 of Table A2.6, consulted to determine if χ2 is ‘large enough’ to reject
H0.

The premise of the chi-square test then is that the deviations from Ei

are due to statistical fluctuations from limited numbers of observations
per bin, i.e. ‘noise’ or Poisson statistics, and the chi-square distribution
simply gives the probability that the chance deviations from Ei are as
large as the observations Oi imply. As we shall see, we need enough
data per bin to ensure that each term in the chi-square summation is
approximately Gaussian.

There is good news and bad news about the chi-square test. First the
good: it is a test of which most scientists have heard, with which many
are comfortable, and from which some are even prepared to accept the
results. Moreover because χ2 is additive, the results of different datasets
which may fall in different bins, bin sizes, or which may apply to different
aspects of the same model, may be tested all at once. The contribution
to χ2 of each bin may be examined and regions of exceptionally good or
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bad fit delineated. In addition, χ2 is easily computed, and its significance
readily estimated as follows. The mean of the chi-square distribution
equals the number of degrees of freedom, while the variance equals twice
the number of degrees of freedom; see the plots of the function in Fig. 5.4.
So as another rule of thumb, if χ2 should come out (for more than four
bins) as ∼ (number of bins −1) then accept H0. But if χ2 exceeds twice
(number of bins − 1), probably H0 will be rejected. Finally minimizing
χ2 is an exceptionally common method of model fitting (see Section 6.4);
and an example of the chi-square test (and model fitting) is shown as
Fig. 6.6.

Now the bad news: the data must be binned to apply the test, and
the bin populations must reach a certain size because it is obvious that
instability results as Ei → 0. As another rule of thumb then: > 80 per
cent of the bins must have Ei > 5. Bins may have to be combined
to ensure this, an operation which is perfectly permissible for the test.
However, the binning of data in general, and certainly the binning of
bins, results in loss of efficiency and information, resolution in particular.

Thus the advantages of the chi-square test are its general acceptance,
the ease of computation, the ease of guessing significance, and the fact
that model testing is for free. The disadvantages are the loss of power and
information via binning, and the lack of applicability to small samples, in
particular the serious instability at < 5 counts per bin. Moreover, the chi-
square test cannot tell direction, i.e. it is a ‘ two-tailed’ test; it can only
tell whether the differences between sample and prediction exceed those
which can be reasonably expected on the basis of statistical fluctuations
due to the finite sample size. There must be something better, and indeed
there is:

5.3.2 Kolmogorov–Smirnov one-sample test

The test is extremely simple to carry out:

(i) Calculate Se(x), the predicted cumulative (integral) frequency dis-
tribution under H0.

(ii) Consider the sample of N observations, and compute So(x), the
observed cumulative distribution, the sum of all observations to
each x divided by the sum of all N observations.

(iii) Find

D = max|Se(x) − So(x)| (5.12)
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(iv) Consult the known sampling distribution for D under H0, as given
in Table A2.7, to determine the fate of H0. If D exceeds a critical
value at the appropriate N , then H0 is rejected at that level of
significance.

Thus, as for the chi-square test, the sampling distribution indicates
whether a divergence of the observed magnitude is ‘reasonable’ if the
difference between observations and prediction is due solely to statistical
fluctuations.

The Kolmogorov–Smirnov test has some enormous advantages over
the chi-square test. Firstly it treats the individual observations separately,
and no information is lost because of grouping. Secondly, it works for
small samples; for very small samples it is the only alternative. For inter-
mediate sample sizes it is more powerful. Finally, note that as described
here, the Kolmogorov–Smirnov test is non-directional or two-tailed, as
is the chi-square test. However, a method of finding probabilities for the
one-tailed test does exist (Birnbaum & Tingey 1951; Goodman 1954),
giving the Kolmogorov–Smirnov test yet another advantage over the
chi-square test.

Then why not always use it? There are perhaps two valid reasons,
in addition to the invalid one (that it is not so well known). Firstly
the distributions must be continuous functions of the variable to apply
the Kolmogorov–Smirnov test. The chi-square test is applicable to data
which can be simply binned, grouped, categorized – there is no need
for measurement on a numerical scale. Secondly, in model fitting and
parameter estimation, the chi-square test is readily adapted (Section
6.4) by simply reducing the number of degrees of freedom according
to the number of parameters adopted in the model. The Kolmogorov–
Smirnov test cannot be adapted in this way, since the distribution of D
is not known when parameters of the population are estimated from the
sample.

5.3.3 One-sample runs test of randomness

This delightfully simple test is contingent upon forming a binary (1–0)
statistic from the sample data, e.g. heads-tails, or the sign of the resid-
uals about the mean, or a best-fit line. It is to test H0 that the sample
is random; that successive observations are independent. Are there too
many or too few runs?
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Determine m, the number of heads or 1’s; n, the number of tails or
0’s, N = n + m; and r, the number of runs.

Look up the level of significance from the tabled probabilities
(Table A2.8) for a one- or two-tailed test, depending on H1, which
can specify (as the research hypothesis) how the non-randomness might
occur. In general we are concerned simply with the one-tail test, asking
whether or not the number of runs is too few, the issue being indepen-
dence or otherwise of data in a sequence. Situations giving rise to too
many runs are infrequent; but if indeed there are significantly too many
runs it does say something serious about the data structure – probably
in the sense that we do not understand it.

In fact for m ‘heads’ and n ‘tails’ with N data, the expectation value
of the number of runs is

µr =
2mn

m + n + 1
(5.13)

and in the large N approximation this is asymptotically Gaussian with

σr =

√
2nm(2nm−N)

N2(N − 1)
. (5.14)

For large samples, then, it is possible to use the Normal distribution in
the standard way by forming

z =
r − µr

σr

and consulting Table A2.1, the integral Gaussian or erf function. This
is the procedure when the numbers exceed 20 and run off the end of
Table A2.8.

EXAMPLE Figure 5.5 shows the optical spectrum of quasar 3C207.
The baseline has been estimated by the method of minimum Fourier
components (Section 8.4.2). Does it fit properly? Is there low-level sig-
nal present in broad emission lines? Carefully selected regions of the
spectrum are examined with the runs test.

The runs test is applied by using one-bit digitization – is the da-
tum above or below the fitted baseline? The lower-wavelength region
has enhanced continuum, a quasar ‘blue bump’, where the likelihood of
line emission is significantly reduced. The runs test yields concordance,
36 positive deflections, 29 negative, 31 runs against an expectation of
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Fig. 5.5. A spectrum of the quasar 3C207, taken with the 4.2-m William
Herschel Telescope. The solid curve is a baseline fitted by a Fourier minimum-
component technique. The regions considered for the runs test are shown in
the separated sections, each with the baseline subtracted and magnified by a
factor of 3.

32.1 runs, z = −0.28. The second region lies in the range of the hydrogen
Balmer-line series, and several members are clearly present in emission.
The result, a foregone conclusion here, is rejection of randomness by
the runs test at about 4σ: 31 positives, 32 negatives, 16 runs against an
expectation of 31.5, z = −3.94. The broad emission lines yield the con-
tiguous regions that decrease the number of runs to a highly significant
degree.

The test is at its most potent in looking for independence between
adjacent sample members, e.g. in checking sequential data of scan or
spectrum type as in the above example. It is frequently used for checking
sequences of residuals, scatter of data about a model line, and in this
guise it can give a straightforward answer as to whether a model is a
good representation of the data.

5.4 Non-parametric tests: two independent samples

Now suppose we have two samples; we want to know whether they
could have been drawn from the same population, or from different
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populations, and if the latter, whether they differ in some predicted di-
rection. Again assume we know nothing about probability distributions,
so that we need non-parametric tests. There are several.

5.4.1 Fisher exact test

The test is for two independent small samples for which discrete binary
data are available, e.g. scores from the two samples fall in two mutually
exclusive bins yielding a 2 × 2 contingency table as shown in Table 5.2.

Table 5.2. 2 × 2 contingency table

Sample = 1 2

Category = 1 A C
= 2 B D

H0: the assignment of ‘scores’ is random.
Compute the following statistic:

p =
(A + B)!(C + D)!(A + C)!(B + D)!

N !A!B!C!D!
. (5.15)

This is the probability that the total of N scores could be as they are
when the two samples are in fact identical. But in fact the test asks:
What is the probability of occurrence of the observed outcome or one
more extreme under H0? Hence by the laws of probability (see e.g. Stu-
art & Ord 1994), ptot = p1 + p2 + · · · ; computation can be tedious.
Nevertheless this is the best test for small samples; and if N < 20, it is
probably the only test to use.

5.4.2 Chi-square two-sample (or k-sample) test

Again the much-loved chi-square test is applicable. All the previous
shortcomings apply, but for data which are not on a numerical scale,
there may be no alternative. To begin, each sample is binned in the
same r bins (a k × r contingency table) – see Table 5.3.

H0 is that the k samples are from the same population.
Then compute

χ2 =
r∑

i=1

k∑
j=1

(Oij − Eij)2

Eij
. (5.16)



94 Hypothesis testing

Table 5.3. Multi-sample contingency table
Sample: j = 1 2 3

Category: i = 1 O11 O12 O13

2 O21 O22 O23

3 O31 O32 O33

4 O41 O42 O43

5 O51 O52 O53

. ... ... ...

The Eij are the expectation values, computed from

Eij =

k∑
j=1

Oij .
r∑

i=1

Oij

r∑
i=1

k∑
j=1

Oij

. (5.17)

Under H0 this is distributed as χ2, with (r−1)(k−1) degrees of freedom.
Note that there is a modification of this test for the case of the

2 × 2 contingency table (Table 5.2) with a total of N objects. In this
case,

χ2 =
N(| AD −BC | −N/2)2

(A + B)(C + D)(A + C)(B + D)
(5.18)

has just one degree of freedom.
The usual chi-square caveat applies – beware of the lethal count of 5,

below which the cell populations should not fall in any number. If they
do, combine adjacent cells, simulate the distribution of the test statistic
under the null hypothesis or abandon the test. And if there are only
2 × 2 cells, the total (N) must exceed 30; if not, use the Fisher exact
probability test.

There is one further distinctive feature about the chi-square test (and
the 2 × 2 contingency-table test); it may be used to test a directional
alternative to H0, i.e. H1 can be that the two groups differ in some pre-
dicted sense. If the alternative to H0 is directional, then use
Table A2.6 in the normal way and halve the probabilities at the heads
of the columns, since the test is now one-tailed. For degrees of freedom
> 1, the chi-square test is insensitive to order, and another test thus
may be preferable.
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5.4.3 Wilcoxon–Mann–Whitney U test

This test is usually preferable to χ2, mostly because it avoids binning.
There are two samples, A (m members) and B (n members); H0 is
that A and B are from the same distribution or have the same parent
population, while H1 may be one of three possibilities:

(i) that A is stochastically larger than B;
(ii) that B is stochastically larger than A;
(iii) that A and B differ in some other way, perhaps in scatter or

skewness.

The first two hypotheses are directional, resulting in one-tailed tests;
the third is not and correspondingly results in a two-tailed test. To
proceed, first decide on H1 and of course the significance level α. Then

(i) Rank in ascending order the combined sample A + B, preserving
the A or B identity of each member.

(ii) (Depending on the choice of H1) Sum the number of A-rankings to
get UA, or vice versa, the B-rankings to get UB. Tied observations
are assigned the average of the tied ranks. Note that if N = m+n,

UA + UB =
N(N + 1)

2
,

so that only one summation is necessary to determine both – but
a decision on H1 should have been made a priori.

(iii) The sampling distribution of U is known (of course, or there would
not be a test). Table A2.9, columns labelled cu (upper-tail proba-
bilities), presents the exact probability associated with the occur-
rence (under H0) of values of U greater than that observed. The
table also presents exact probabilities associated with values of
U less than those observed; entries correspond to the columns
labelled cl (lower-tail probabilities). The table is arranged for
m ≤ n, which presents no restriction in that group labels may
be interchanged. What does present a restriction is that the table
presents values only for m ≤ 4 and n ≤ 10. For samples up to
m = 10 and n = 12, see Siegel & Castellan (1988). For still larger
samples, the sampling distribution for UA tends to Normal with
mean µA = m(N+1)/2 and variance σ2

A = mn(N+1)/12. Signif-
icance can be assessed from the Normal distribution, Table A2.1,
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by calculating

z =
UA ± 0.5 − µA

σA

where +0.5 corresponds to considering probabilities of U ≤ that
observed (lower tail), and −0.5 for U ≥ that observed (upper
tail). If the two-tailed (‘the samples are distinguishable’) test is
required, simply double the probabilities as determined from ei-
ther Table A2.9 (small samples) or the Normal distribution ap-
proximation (large samples).

EXAMPLE An application of the test is shown in Fig. 5.6, which
presents magnitude distributions for flat and steep (radio) spectrum
quasars from a complete sample of quasars in the Parkes 2.7-GHz sur-
vey (Masson & Wall 1977). H1 is that the flat-spectrum quasars ex-
tend to significantly lower (brighter) magnitudes than do the steep-
spectrum quasars, a claim made earlier by several observers. The eye
agrees with H1, and so does the result from the U test, in which we
found U = 719, t = 2.69, rejecting H0 in favour of H1 at the 0.004 level
of significance.

In addition to this versatility, the test has a further advantage of be-
ing applicable to small samples. In fact it is one of the most powerful
non-parametric tests; the efficiency in comparison with the ‘Student’s’
t test is ≥ 95 per cent for even moderate-sized samples. It is therefore
an obvious alternative to the chi-square test, particularly for small sam-
ples where the chi-square test is illegal, and when directional testing is
desired. An alternative is the

5.4.4 Kolmogorov–Smirnov two-sample test

The formulation parallels the Kolmogorov–Smirnov one-sample test; it
considers the maximum deviation between the cumulative distributions
of two samples with m and n members. H0 is (again) that the two sam-
ples are from the same population, and H1 can be that they differ (two-
tailed test), or that they differ in a specific direction (one-tailed test).

To implement the test, refer to the procedure for the one-sample test
(Section 5.3.2); merely exchange the cumulative distributions Se and So
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Fig. 5.6. Magnitude histograms for a complete sample of quasars from the
Parkes 2.7-GHz survey, distinguished by radio spectrum. H0, that the magni-
tude distributions are identical, is rejected using the Mann–Whitney–Wilcoxon
U test at the 0.004 level of significance.

for Sm and Sn corresponding to the two samples. Critical values of D are
given in Tables A2.10 and A2.11. Table A2.10 gives the values for small
samples, one-tailed test, while Table A2.11 is for the two-tailed test.
For large samples, two-tailed test, use Table A2.12. For large samples,
one-tailed test, compute

χ2 = 4D2 mn

m + n
, (5.19)

which has a sampling distribution approximated by chi-square with two
degrees of freedom. Then consult Table A2.6 to see if the observed D
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results in a value of χ2 large enough to reject H0 in favour of H1 at the
desired level of significance.

The test is extremely powerful with an efficiency (compared to the t

test) of > 95 per cent for small samples, decreasing somewhat for larger
samples. The efficiency always exceeds that of the chi-square test, and
slightly exceeds that of the U test for very small samples. For larger
samples, the converse is true, and the U test is to be preferred.

Note that the Kolmogorov–Smirnov test can also be used to compare
two-dimensional distributions (Peacock 1983).

EXAMPLES Two examples, drawn from an investigation of flattening
and radio emission among elliptical galaxies (Disney, Sparks & Wall
1984), are shown in Fig. 5.7. The upper diagrams compare the axial
ratio b/a (minor to major axis) for (a) 102 bright ellipticals for which
no radio emission was detected and (b) 30 ellipticals for which emission
was detected. The Kolmogorov–Smirnov test rejects H0, that the two
distributions are from the same parent population, at the 1 per cent level
of significance. The lower pair, to do with ascertaining whether seeing is
affecting measurement of axial ratio (the radio ellipticals are on average
more distant), shows some difference by eye, but no significant difference
when the Kolmogorov–Smirnov test is carried out.

These and tests on additional subsamples were used to show that there
is a strong correlation between radio activity and flattening, in the sense
that radio ellipticals are both inherently and apparently rounder than
the average elliptical.

5.5 Summary, one- and two-sample non-parametric tests

Tables 5.4, 5.5 and 5.6, adapted from Siegel & Castellan (1988), attempt
a summary, demonstrating an apparent wide world of non-parametric
tests available for sample comparison. But is this really so? In deciding
which test(s), the following points should be noted; the decision may be
made for you.

(i) The two-sample and k-sample cases each contain columns of tests
for related samples, i.e. matched-pair samples, or samples of paired
replicates. This is common experimental practice in biological and
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Fig. 5.7. Kolmogorov–Smirnov tests on subsamples of ellipticals from the
Disney–Wall (1977) sample of bright ellipticals. Upper panels – distribution
functions in b/a, minor to major axis, for (a) the 102 undetected and (b) the
30 radio-detected ellipticals in the sample. The Kolmogorov–Smirnov two-
sample test rejects H0, that the subsamples are drawn from the same pop-
ulation, at a significance level of < 1 per cent. Lower panels – distribution
functions in log a/b for (c) the 51 ellipticals closer than 30 Mpc, (d) 76 bright
ellipticals in the sample more distant than this. The Kolmogorov–Smirnov test
indicates no significant difference between these latter subsamples.

behavioural sciences, where the concept of the control sample is
highly developed. It is not so common in astronomy for obvious
reasons, but has been exploited on occasion. The powerful tests
available to treat such experiments are listed in Table 5.4, and
are described by Siegel & Castellan.

(ii) Table 5.4 runs downward in order of increasing sophistication of
measurement level, from Nominal (in which the test objects are
simply dumped into classes or bins) through Ordinal (by which
objects are ranked or ordered) to Interval (for which objects are
placed on a scale, not necessarily numerical, in which distance
along the scale matters). None of the tests requires measurement
on a Ratio scale, the strongest scale of measurement in which to
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Table 5.4. Non-parametric tests for comparison of samples

Two–sample case k–sample case
Level of One-sample

measurement case Related Independent Related Independent

Nominal Binomial McNemar ∗Fisher exact Cochran ∗Chi-square
or test change test test for Q test test for
categorical 2 × 2 tables r × k tables

∗Chi-square
test ∗Chi-square

test for
r × 2 tables

Ordinal ∗Kolmogorov– Sign test Median test Friedman Extension of
or Smirnov one- two-way median test
ordered sample test Wilcoxon ∗U (Wilcoxon– analysis of

signed-ranks Mann–Whitney) variance by Kruskal–
∗One-sample test test ranks Wallis one-
runs test Page test way analysis

Robust rank- for ordered of variance
Change-point order test alternatives
test Jonckheere

∗Kolmogorov– test for
Smirnov two- ordered
sample test alternatives

Siegel–Tukey
test for scale
differences

Interval Permutation Permutation
test for test for two
paired independent
replicates samples

Moses rank-
like test
for scale
differences

∗Described in this chapter; Siegel & Castellan (1988) discuss the other tests.

the properties of the interval scale a true zero point is added.
(Degrees Celsius for temperature measurement represents an in-
terval scale, and Kelvins a ratio scale.) An important feature of
test selection lies in the level of measurement required by the test;
the table is cumulative downward in the sense that at any level
of measurement, all test above this level are applicable.

(iii) The efficiency of a particular test depends very much on the in-
dividual application. Is the search for goodness-of-fit and general
difference, i.e. is this sample from a given population? Are these
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Table 5.5. Single-sample non-parametric tests

Test Applicability† N < 10? Comment

Binomial Goodness-of-fit Yes Appropriate for two-category
test (N) (dichotomous) data; do not

dichotomize continuous data.

∗Chi-square Goodness-of-fit No For testing categorized,
test (N) pre-binned, or classified

data; choose categories with
expected frequencies 6–10.

∗Kolmogorov– Goodness-of-fit Yes The most powerful test for
Smirnov one- (O) data from a continuous
sample test distribution; may always be

more efficient than the
chi-square test.

∗One-sample Randomness of Yes Does not estimate differences
runs test event sequences between groups.

(O)

Change-point Change in the Yes Robust with regard to
test distribution of an changes in distributional

event sequence form; efficient.
(O)

∗Described in this chapter; Siegel & Castellan (1988) discuss the other tests.
†Goodness-of-fit indicates general testing for any type of difference, i.e. H0 is

that the distribution is drawn from the specified population. The level of
measurement required is indicated by N – Nominal, O – Ordinal, or I –

Interval.

samples from the same population? Or is it a particular property
of the distribution which is of interest, such as the location, e.g.
central tendency, mean or median; or the dispersion, e.g. ex-
tremes, variance, rms. For instance in the two-sample case, the
chi-square and the Kolmogorov–Smirnov (two-tailed) tests are
both sensitive to any type of difference in the two distributions,
location, dispersion, skewness, while the U test is reasonably sen-
sitive to most properties, but is particularly powerful for location
discrimination. To aid the process of choice, Tables 5.5 (single
samples) and 5.6 (two samples) summarize the attributes of the
one- and two-sample tests.
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Table 5.6. Two-sample non-parametric tests

Test Applicability† N < 10? Comment

∗Fisher exact Difference Yes The most powerful test for
test for (N) dichotomous data.
2 × 2 tables

∗Chi-square Difference No Best for pre-binned, classified,
test for (N) or categorized data.
r × 2 tables

Median test Location Yes Best for small numbers;
(O) efficiency decreases with N .

∗U (Wilcoxon– Location Yes One of the most efficient non-
Mann–Whitney) (O) parametric tests.
test

Robust rank- Location Yes Efficiency similar to U test.
order test (O)

∗Kolmogorov– Two-tailed: Yes The most powerful test for data
Smirnov two- Difference from a continuous distribution.
sample test One-tailed:

Location
(O)

Siegel–Tukey Dispersion Yes The medians must be the same
test for scale (O) (or known) for both
differences distributions. Low efficiency.

Permutation Location Yes Very high efficiency.
test (I)

Moses rank-like Dispersion (No) Does not require identical
test for scale (I) medians; valid for small samples,
differences but increases with sample size.

∗Described in this chapter; Siegel & Castellan (1988) discuss the other tests.
†Difference signifies sensitivity to any form of difference between the two
distributions, i.e. H0 is that the two distributions are drawn from the same

population; Location indicates sensitivity to the position of the distributions,
e.g. means or medians; and Dispersion indicates sensitivity to the spread of

the distributions, i.e. variance, rms, extremes. The level of measurement
required is indicated by N – Nominal, O – Ordinal, or I – Interval.
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The choice of test may thus come down to Hobson’s. However, if it
does not, and two (or more) alternatives remain, beware of this plot of
the Devil. It might be possible to ‘test the tests’ in searching for support
of a point of view. If such a procedure is followed, quantification of
the amount by which significance is reduced must be considered: for a
chosen significance level p in a total of N tests, the chance that one
test will (randomly) come up significant is Np(1 − p)N−1 � Np for
small p. The application of efficient statistical procedure has power; but
the application of common sense has more.

Exercises

In the exercises denoted by (D), datasets are provided on the book’s
website; or create your own.

5.1 Kolmogorov–Smirnov (D). Use the data provided, two
datasets, one with a total of m = 290 observations, the other
with 385 measurements. The former is of flux densities measured
at random positions in the sky; the latter of flux densities at the
positions of a specified set of galaxies. Using the Kolmogorov–
Smirnov two-sample test, examine the hypothesis that there is
excess flux density at the non-random positions.

5.2 Wilcoxon–Mann–Whitney (D). Repeat the test with the
Wilcoxon–Mann–Whitney statistic. Is the significance level dif-
ferent? How would you combine the results from these two tests,
plus the chi-squared test in the text?

5.3 t test and outliers (D). Create two datasets, one drawn from
a Gaussian of unit variance, the other drawn from a variable
combination of two Gaussians, the dominant one of unit variance
and the other three times wider. All Gaussians are of zero mean.
Perform a t test on sets of 10 observations and investigate what
happens as contamination from the wide Gaussian is increased.
Compare the effect on the posterior distribution of the difference
of the means. Now shift the narrow Gaussian by half a unit, and
repeat the experiment. What effect do the outliers have on our
ability to refute the null hypothesis? How does the Bayesian
approach compare?

5.4 F test (D). Create some random data, as in the first part of
Exercise 3. Investigate the sensitivity of the standard F test to
a small level of contamination by outliers.
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5.5 Non-parametric alternatives (D). Repeat the analysis of
the last two exercises, using a non-parametric test; the Wilcoxon–
Mann–Whitney test for the location test, and the Kolmogorov–
Smirnov test for the variance test. How do the results compare
with the parametric tests? Can you detect genuine differences
in variance, apart from the outliers?

5.6 Several datasets, one test. Suppose you have N independent
datasets, and with a certain test you obtain a significance level
of pi for each one. A useful overall significance is given by the
W statistic (Peacock 1985) which is

W =
N∏
i=1

pi.

Find the distribution of logW and describe how it could be used.
Note this contrasts to the case discussed in the text, where we
might perform several different tests on the same dataset. (Each
pi will be uniformly distributed between zero and one, under the
null hypothesis. The distribution of logW is the sum of these
uniformly distributed numbers, and tends to a Gaussian of mean
N and variance N .)

5.7 Gram–Charlier (D). Take some data drawn from a Gaussian
and investigate the posterior likelihood if just one term (the
quadratic) is used in a Gram-Charlier expansion as an assump-
tion for the ‘true’ distribution. Take the location as known. Find
the distribution of the variance, marginalizing out the Gram–
Charlier parameter. Also, find the odds on including the pa-
rameter in the model. What does this tell you about assuming
a Gaussian distribution when the amounts of data are limited?

5.8 Odds versus classical tests. Use the small dataset from the
example in Section 5.2.3. Perform a classical analysis, using t

and F tests. Compare and contrast to the odds calculated in
the text. Does the Behrens–Fisher distribution give a better an-
swer than either or both? See Jaynes’s comments on confidence
intervals (Jaynes 1983).
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But what are the errors on your errors?

(Graham Hine at a Mark Birkinshaw colloquium, Cambridge 1979)

Many pages of statistics textbooks are devoted to methods of estimating
parameters, and calculating confidence intervals for them. For example,
if our N data Zi follow a Gaussian distribution

prob(z) =
1√
2πσ

exp

[
−

(
z − µ

2σ2

)2
]
,

then the statistic

m =
1
N

∑
i

Zi

is a good estimator for µ and has a known distribution (a Gaussian
again) which can be used for calculating confidence limits. Or, from the
Bayesian point of view, we can calculate a probability distribution for
µ, given the data.

Any data-modelling procedure is just a more elaborate version of this,
assuming we know the relevant probability distributions. Suppose our
data Zi were measured at various values of some independent variable
Xi, and we believed that they were ‘really’ scattered, with Gaussian
errors, around the underlying functional relationship

µ = µ(x, α1, α2, . . .),

in which α1, α2, . . . are unknown parameters (slopes, intercepts, . . . ) of
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the relationship. We then have

prob(z | α1, α2 . . .) =
1√
2πσ

exp
[
− (z − µ(x, α1, α2, . . .))2

2σ2

]

and, by Bayes’ theorem, we have the posterior probability distribution
for the parameters

prob(α1, α2, . . . | Zi, µ) ∝ Πi
1√
2πσ

× exp
[
− (Zi − µ(x, α1, α2, . . .))2

2σ2

]
prob(α1, α2, . . .) (6.1)

including as usual our prior information. We have included µ as one of
the ‘givens’ to emphasize that everything depends on it being the correct
model.

This, at least formally, completes our task; we have a probability dis-
tribution for the parameters of our model, given the data.

This is a very general approach. In the limiting case of uninformative
or diffuse priors, it is very closely related to the method of maximum
likelihood; if the distribution of the residuals from the model is indeed
Gaussian, it is closely related to the method of least squares. Moreover, it
can be used in a clear way to update models as new data arrive; the pos-
terior from one stage of the experiments becomes the prior for the next.

We can also deal nicely with unwanted parameters (‘nuisance’ pa-
rameters). Typically we will end up with a probability distribution for
various parameters, some of interest (say, cosmological parameters) and
some not (say, instrumental calibrations). We can marginalize out the
unwanted parameters by an integration, leaving us with the distribution
of the variable of interest that takes account of the range of plausible val-
ues of the unwanted variables. Later examples will develop these ideas.

Modelling can be a very expensive part of any investigation. Analytic
approximations were developed in past years for very good reasons. Mod-
elling processes always involve finding an extreme value, a maximum or
minimum, of some merit function. Without help from an analytic solu-
tion, this means evaluating the function, and perhaps its derivatives,
many times. The model itself may be the result of a complex and time-
consuming computation, so evaluating it over a range of parameters is
even worse.

Another difficulty that arises in the Bayesian approach is numerical
integration. Interesting problems have many parameters; marginalizing
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these out, or calculating evidences for discriminating between models, in-
volves multidimensional integrals. These are often very time-consuming,
and laborious to check. Any analytical help we can get is especially wel-
come in doing integrations. We will see the relevance of this in the next
section, where powerful theorems may allow great simplifications.

Perhaps the most important thing to remember about models is blind-
ingly obvious; they may be wrong. The most insidious case of this is
a mistake in the assumed distribution of residuals about the model.
Inevitably, the parameters deduced from the model will be wrong. Worse,
the inferred errors on these parameters will be wrong too, often giv-
ing a quite false sense of security. It is important to have a range of
models available, and always to check optimized models against the
data, inspecting the residuals for strange outliers or clusters of posi-
tive or negative residuals. The runs test (Section 5.3.3) is helpful in this
respect.

6.1 The maximum-likelihood method

Maximum likelihood (ML) has a long history: it was derived by
Bernoulli in 1776 and Gauss around 1821, and worked out in detail
by Fisher in 1912.

We have met the likelihood function several times already; together
with the prior probabilities, it makes up the posterior probability from
Bayes’ theorem. Suppose our data are described by the probability den-
sity function f(X;α), where x is a variable, and α is a parameter (maybe
many parameters) characterizing the known form of f . We want to es-
timate α. If X1, X2, . . . , XN are data, presumed independent and all
drawn from f , then the likelihood function is

L(X1, X2, . . . , XN ) = f(X1, X2, . . . , XN | α)

= f(X1 | α)f(X2 | α) . . . f(XN | α)

=
N∏

f(Xi | α). (6.2)

From the classical point of view this is the probability, given α, of ob-
taining the data. From the Bayesian point of view it is proportional to
the probability of α, given the data and assuming that the priors are
‘diffuse’. Practically speaking, this means that they change little over
the peaked region of the likelihood function. Finding the constant of
proportionality involves the troublesome integrals we referred to before.
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If the priors are not diffuse, this means they are having as strong an eff-
ect on our conclusions as the data. This is not an unlikely situation, but it
does rule out the handy analytical approximations we will describe later.

From either point of view, more intelligibly from the Bayesian, the
peak value of L seems likely to be a useful choice of the ‘best’ estimate
of α. This does rather depend on what we want to do next with our
estimate, however.

Formally, the maximum-likelihood estimator (MLE) of α is α̂ = (that
value of α which maximizes L(α) for all variations of α). Often we can
find this from

∂

∂α
lnL(α)

∣∣∣∣
α=α̂

= 0 (6.3)

but sometimes we cannot – an example of this will be given later.
Maximizing the logarithm is often convenient, both algebraically and

numerically. The MLE is a statistic – it depends only on the data, and
not on any parameters.

EXAMPLE Consider our old friend the regression line, for which we
have values of Yi measured at given values of the independent variable
Xi. Our model is

y(a, b) = ax + b

and assuming that the Yi have a Gaussian scatter, each term in the
likelihood product is

Li(y|(a, b)) = exp
[
− (Yi − (aXi + b))2

2σ2

]

i.e. the residuals are (Yi−model), and our model has the free parameters
(a, b). Maximising the log of the likelihood products then yields

∂Σ
∂a

= −2Σ(Yi − a− bXi) = 0

∂Σ
∂b

= −2ΣXi(Yi − a− bXi) = 0

from which two equations in two unknowns we get the well-known

a =
ΣYi(Xi −X)

Σ(Xi −X
2
)

b = Y − aX.
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With this simple maximum-likelihood example, we have accidentally
derived the standard OLS, the ordinary least squares estimate of y on the
independent variable x. But note how this happened: we were given the
fact that the Yi were Normally distributed with their scatter described
by a single deviation σ; and of course we were given the fact that a
straight-line model was correct. It need not be this way: we could have
started knowing that each Yi had an associated σi, or even that the
distribution in y about the line was not Gaussian, perhaps say uniform,
or dependent on |Yi−model| rather than (Yi−model)2. The formulation
is identical, although the algebra may not work out as neatly as it does
for an OLS regression line. But this of course is another advantage of
maximum likelihood – the likelihood function can be computed and the
maximum found without recourse to algebra.

EXAMPLE Jauncey (1967) showed that maximum likelihood was an
excellent way of estimating the slope of the number–flux-density relation,
the dependence of source surface density on intensity, for extragalactic
radio sources. The source count is assumed to be of the power-law form

N(> S) = kS−γ

where N is the number of sources on a particular patch of sky with flux
densities greater than S, k is a constant, and −γ is the exponent, or
slope in the log N – log S plane, which we wish to estimate; see Fig. 6.1.

The probability distribution for S (the chance of getting a source with
a flux density near S) is then

prob(S) = γkS−(γ+1)

and k is determined by the normalization to unity∫ ∞

S0

prob(S) dS = 1.

(We have taken the maximum possible flux density to be infinity, with
small error for steep counts.) k is then γ/Sγ

0 and the log-likelihood is,
dropping constants,

lnL(γ) = M ln γ − γ
∑
i

ln
Si

S0

where we have observed M sources with flux densities S brighter than
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Fig. 6.1. A maximum-likelihood application. The figures show differential
source counts generated via Monte Carlo sampling with an initial uniform
deviate (see Section 6.5) obeying the source-count law N(> S) = kS−1.5.
The straight line in each shows the anticipated count with slope −2.5: left,
k = 1.0, 400 trials; right, k = 10.0, 4000 trials. The ML results for the slopes
are −2.52 ± 0.09 and −2.49 ± 0.03, the range being given by the points at
which the log likelihood function has dropped from its maximum by a factor
of 2. The anticipated errors in the two exponents, given by |slope|/

√
trials (see

the next-but-one example), are 0.075 and 0.024.

S0. Differentiating this with respect to γ to find the maximum then gives
the equation for γ̂, the MLE of γ:

γ̂ =
M∑
i ln

Si

S0

a nicely intuitive result. This application of ML makes optimum use of
the data in that the sources are not grouped and the loss of power which
always results from binning is avoided.

The MLE cannot always be obtained by differentiation, as the follow-
ing example shows.
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EXAMPLE A supernova produces an intense burst of neutrinos. The
intensity of this burst decays exponentially after the core collapse of the
precursor star. A handful of neutrinos (say N in number) were detected
from supernova 1987, with arrival times (in order) T1, T2, . . . The prob-
ability of a neutrino arriving at time t is

prob(t) = exp[−(t− t0)]

for t > t0 and zero otherwise. Times are measured in units of the half-life
and t0 is the parameter we want, the start of the burst.

The log-likelihood is just

lnL(t0) = Nt0 −
∑
i

Ti

and this doesn’t appear to have a maximum. However, clearly t0 < T1

and so the likelihood is maximized, within the allowable range of t0, at
t̂0 = T1.

After the MLE estimate has been obtained, it is essential to perform
a final check: does the MLE model fit the data reasonably? If it does not
then the data are erroneous when the model is known to be right; or,
the adopted or assumed model is wrong; or (most commonly) there has
been a blunder of some kind. There are many ways of carrying out such
a check; two of these, the chi-square test and the Kolmogorov–Smirnov
test, were described in Sections 5.3.1 and 5.3.2, respectively.

If the deviations between the best-fit model and the data (the
residuals) are Gaussian, the log-likelihood function becomes a sum of
squares of residuals and we have the famous method of least squares.
More on this later.

Now for those theorems. The strongest reason for picking the MLE of
a parameter is that it has desirable properties – it has minimum variance
compared to any other estimate, and it is asymptotically Normally
distributed around the true value. An MLE is not always unbiased,
however.

If we estimate a vector �̂α by the maximum-likelihood method, then
the components of the estimated vector are asymptotically distributed
around the true value like a multivariate Gaussian (Section 4.2). ‘Asymp-
totically’ means when we have lots of data, strictly speaking infinite
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amounts. The covariance matrix that describes this Gaussian can be
derived from the second derivatives of the likelihood with respect to the
parameters. This involves a famous matrix called the Hessian, which
is

H =




∂2 lnL
∂α2

1

∂2 lnL
∂α1∂α2

∂2 lnL
∂α1∂α3

. . .
∂ lnL

∂α2∂α1

∂2 lnL
∂α2

2

∂2 lnL
∂α2∂α3

. . .
∂2 lnL
∂α3α1

∂2 lnL
∂α3∂α2

∂2 lnL
∂α2

3
. . .

...
...

...


 . (6.4)

This matrix of course depends on the data. Taking its expectation
value (the ‘average’ value of each component of the matrix, E[H] for
short, Section 3.1), we have a simple expression for the covariance matrix
of the multivariate Gaussian distribution of the maximum-likelihood
estimators of the parameters:

C = (E[H])−1, (6.5)

the (. . .)−1 signifying the inverse matrix.
The probability distribution of our N MLEs �̂α is then

prob(α̂1, α̂2, . . .) =
1√

(2π)N | C |
exp

[
−1

2
(�̂α− α) · C−1 · (�̂α− α)T

]
(6.6)

so that, as stated, the MLE (�̂α) is distributed around the true value �α

with a spread described by the covariance C. | C | is the determinant of
C.

Taking the expectation value is obviously important, as otherwise the
matrix would be different for each set of data. Sometimes we can carry
out the expectation, or averaging, operation analytically in terms of �α,
the parameters of the original model. Sometimes the matrix does not
involve the data at all. Most commonly, we just have to take the single
matrix, given by our one set of data, as the best estimate we can make
of the average value.

Why should the maximum-likelihood estimators obey this theorem?
Take a simple case, a Gaussian of true mean µ and variance σ2. If we
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have N data Xi, the log likelihood is (dropping constants)

logL =
−1
2σ2

∑
i

(Xi − µ)2 −N log σ

and
−∂2 logL

∂µ2
=

N

σ2
.

This is the Hessian ‘matrix’ for our simple problem. Taking its expecta-
tion and then inverse, not too hard in this case, gives us the variance on
the estimate of the mean as σ2/N , the anticipated result.

This example provides some justification for the theorem. In the ex-
ercises we set the somewhat more complicated case of estimating µ and
σ together. This gives a matrix problem rather than a scalar one, and
some real expectations have to be performed.

EXAMPLE In the source-count example, we have just one parameter.
The variance on γ̂ is then

−1

E
[∂2L(γ)

∂γ2

]
which is γ2/M , the expectation is easy in this case. However, we see that
the error is given in terms of the thing we want to know, namely γ. As
long as the errors are small we can approximate them by γ̂2/M.

6.2 The method of least squares: regression analysis

Least squares is a famous old method of dealing with noisy data; it was
invented, for astronomical use, by Gauss and Laplace at the beginning of
the nineteenth century. There is a huge literature, e.g. Williams (1959);
Linnik (1961); Montgomery & Peck (1992). The justification for the
method follows immediately from the method of maximum likelihood; if
the distribution of the residuals is Gaussian, then the log likelihood is a
sum of squares of the form

logL = constant −
N∑
i=1

ξi(Xi − µ(α1, α2, . . .))2 (6.7)
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where the ξ are the weights, obviously inversely proportional to the
variance on the measurements. Usually the weights are assumed equal for
all the data, and least squares is just that; we seek the model parameters
which minimize

logL = constant − 1
2σ2

N∑
i=1

(Xi − µ(α1, α2, . . .))2.

These will just be the maximum-likelihood estimators, and everything
we have said before about them carries over. In particular, they are
asymptotically distributed like a multivariate Gaussian. If we do not
know the error level (the σ) we do not need to use it, but we will not
be able to infer errors on the MLE; we will get a model fit, but we will
never know how good or bad the model is.

The matrix of second derivatives defining the covariance matrix of
the estimates, the Hessian matrix (Section 6.1), takes on a particular
significance in the method of least squares because it is often used by the
numerical algorithms which find the minimum. There are many powerful
variations on these algorithms – see Numerical Recipes (Press et al. 1992)
for details. Typically the value of the Hessian matrix, at the minimum,
pops out as a by-product of the minimization. We can use this directly
to work out the covariance matrix, as long as our model is linear in the
parameters; in this case, the expectation operation is straightforward
and the matrix does not depend on any of the parameters. We saw
before why this is a problem (in the source-count example) – we want to
find the parameters, and using the estimates in the covariance matrix is
not an ideal procedure.

The notion of a linear model is worth clarifying. Suppose our data
Xi are measured as a function of some independent variable Zi. Then
a linear model – linear in the parameters – might be αz2 + β exp(−z),
whereas α exp(−βz) is not a linear model. Of course a model may be
approximately linear near the MLE. However, how close must it be?
This illustrates again the general feature of the asymptotic Normality
of the MLE – we can use the approximation, but we can’t tell how
good it is. Usually things will start to go wrong first in the wings
of the inferred distributions (we have seen this in a previous exam-
ple) and so high degrees of significance usually cannot be trusted un-
less they have been calculated exactly, or simulated by Monte Carlo
methods.
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EXAMPLE In the notation we used before, suppose our model is

µ(α, β) = αz + βz2,

a simple polynomial. The covariance matrix can be calculated from H,
the matrix of derivatives of the log likelihood; it is just

C =
1
σ2

[∑
i Z

2
i 0

0
∑

i Z
4
i

]

so the variance on β, for example, is σ2/
∑

i Z
4
i . Evidently where we

make the measurements (the Zi) will affect the variance. The effects are
obvious enough in this simple case, but in more complicated cases it may
be worth examining the experimental design, via the covariance matrix,
to minimize the expected errors.

Quite often we will not be confident that we are dealing with Gaussian
residuals, and usually this is because of outliers – residuals which are ex-
tremely unlikely on the Gaussian hypothesis. One convenient distribution
which has ‘fat’ tails, and is a useful contrast to a Gaussian, is the simple
exponential

prob(x) =
1
2a

exp
[
−| x− µ |

a

]
.

If the residuals are distributed in this way, then it is easy to see that
maximum likelihood leads to the minimization of the sum of the abso-
lute values of the residuals. A t distribution may also be a helpful model.
Working out a MLE in this way will give some indication of whether out-
liers are driving the answer. The only problem may be that relatively
slow numerical routines have to be used; least squares minimization rou-
tines are highly developed by comparison.

Let us return for the last time to our simple regression line, the least
squares fit of the model y = ax + b through N pairs of (Xi, Yi) by
minimizing the squares of the residuals. This yields the well-known ex-
pressions for slope and intercept (differing slightly from those in the first
example of Section 6.1, but readily shown to be equivalent):

a =
N

N∑
XiYi −

N∑
Xi

N∑
Yi

N
N∑

X2
i −

(
N∑

Xi

)2 (6.8)



116 Data modelling; parameter estimation

and

b =

(
N∑

Yi − a

N∑
Xi

)
/N. (6.9)

In the absence of knowledge of the how and why of a relation between the
Xi and the Yi (Section 4.4), any two-parameter curve may be fitted to
the data pairs just with simple coordinate transformations; for example

(i) an exponential, y = b exp a requires Yi to be changed to lnYi in
the above expressions,

(ii) a power-law, y = bxa; change Yi to lnYi and Xi to lnXi;
(iii) a parabola, y = b + ax2; change Xi to

√
Xi.

Note that the residuals cannot be Gaussian for all of these transforma-
tions (and may not be Gaussian for any): of course it is always possible
to minimize the squares of the residuals, but it may well not be possible
to retain the formal justification for doing so. The tests of Chapter 4 can
be revealing as to which (if any) model fits, particularly the runs test.

This simple formulation of the least squares fit for y on x represents
the tip of an iceberg – there is an enormous variety of least squares
linear regression procedures. Amongst the issues involved in choosing a
procedure:

• Are the data to be treated weighted or unweighted?
• (And the related question) Do all the data have the same properties,

e.g. in the simple case of y on x, is one σ2
y applicable to all y? Or

does σ2
y depend on y? In the uniform σ case, the data are described

as homoskedastic, and in the opposite case, heteroskedastic.
• Is the right fit the standard ordinary least squares solution y on

x (OLS(Y /X)) or x on y (OLS(X/Y )? Or something different, as
discussed below?

• If we know we have heteroskedasticity, with the uncertainty different
but known in each yi and perhaps also in each xi, how do we use
this information to estimate the uncertainty in the fit?

• Are the data truncated or censored; do we wish to include upper
limits in our fit? This is perfectly possible; see Section 7.5.

The thorough papers of Feigelson and collaborators (Isobe et al. 1990;
Babu & Feigelson 1992; Feigelson & Babu 1992b) consider these issues,
describe the complexities, indicate how to find errors with bootstrap
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and jackknife resampling (Section 6.6), and identify appropriate soft-
ware routines. In the astronomical context, Feigelson & Babu (1992b)
emphasize that much of the proliferation of linear regression methods in
the cosmic distance-scale literature is due to lack of precision in defining
the scientific question. The question defines the statistical model. The
serious fitter must consult the Feigelson references. In the interim and
as an indication of why you must, consider the following example.

EXAMPLE Return to our bivariate Gaussian of Section 4.2 and
Fig. 4.4, and now consider random variates (xi, yi) selected (a) in accord
with ρ = 0.05 (little correlation) and ρ = 0.95 (strongly correlated). The
ellipses of the contours are shown in Fig. 6.2. For the case of little cor-
relation, the two OLS lines are stunningly different, almost orthogonal;
for the relatively strong correlation, the lines are very similar.

Fig. 6.2. Linear contours of the bivariate Gaussian probability distribution.
Left: ρ = 0.05, a bivariate distribution with weak connection between x and y;
right: ρ = 0.95, indicative of a strong connection between x and y. In each case
5000 (x, y) pairs have been plotted, selected at random from the appropriate
distribution as described in Section 6.5. Two lines are shown as fits for each
distribution, the OLS(X/Y ) and the OLS(Y /X).

The point is that we know the answer here for the relation: it is a
line of slope unity, 45◦. With little (yet formally significant) correlation,
the OLS lines mislead us dramatically. Of course the so-called bisector
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line (the average of the two OLSs) would get it right, as would the
orthogonal regression line which minimizes the perpendicular distances.
But for the former, if the points were not Gaussian in distribution, would
you trust it? A few outliers (mistakes?) would soon wreck it. The latter
is principal component analysis (Section 4.5) precisely. It has already
been emphasized that when the dependences of variables on each other
are not understood, PCA is the way to go. It gives the right answer in
this example; it tells us what the relation between y and x is, without us
assuming which variable is in control. It is the right answer if we want
to describe a relation between x and y.

So far, we have followed classical lines in our discussion of likelihood.
The method is attractive and very useful; the main limitation is the
difficulty in calculating the parameters of the asymptotic distribution of
the MLE. And, of course, without an exact solution it is difficult to be
sure how useful this asymptotic distribution is anyway.

6.3 Bayesian likelihood analysis

Bayes’ theorem says, for model parameters (a vector, in general) �α and
data Xi,

prob(�α | Xi) ∝ L(�α | Xi)prob(�α) (6.10)

so the likelihood function is important here too. However, given the
posterior probability of �α, we may choose to emphasize properties other
than the most probable �α – we may only be interested in the probability
that it exceeds a certain value, for example.

Two great strengths of the Bayesian approach are the ability to deal
with nuisance parameters via marginalization, and the use of the evi-
dence or Bayes factor to choose between models. Another useful prod-
uct of the Bayesian approach is the asymptotic distribution of the like-
lihood function itself. L(�α) is asymptotically a multivariate Gaussian
distributed around the MLE �̂α, with covariance matrix given by the
inverse of

−




∂2 lnL
∂α2

1

∂2 lnL
∂α1∂α2

∂2 lnL
∂α1∂α3

. . .
∂ lnL

∂α2∂α1

∂2 lnL
∂α2

2

∂2 lnL
∂α2∂α3

. . .
∂2 lnL
∂α3α1

∂2 lnL
∂α3∂α2

∂2 lnL
∂α2

3
. . .

...
...

...


 . (6.11)

evaluated at the peak, namely the MLE of �α.
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We will illustrate this approach by developing a simple two-parameter
example, fitting a power law to some radio flux-density data. This example
will appear in various guises in this chapter, but each time we will assume
Gaussian statistics and uniform, or diffuse priors. These assumptions do
not simplify the calculations, which were all done numerically in any
case; they do simplify the presentation. Use the error distribution and
prior that fits your problem.

EXAMPLE Let us suppose we have flux density measurements at 0.4,
1.4, 2.7, 5 and 10 GHz. The corresponding data are 1.855, 0.640, 0.444,
0.22 and 0.102 flux units – see Fig. 6.3.

Let us label the frequencies as fi and the data as Si. These follow a
power law of slope −1, but have a 10 per cent Gaussian noise added.
The noise level is denoted ε, and the model for the flux density as a
function of frequency is kf−γ . Assuming we know the noise level and
distribution, each term in the likelihood product is of the form

1√
2πεkf−γ

i

exp

[
−

(
Si − kf−γ

i

)2

2
(
εkf−γ

i

)2

]
.

The likelihood is therefore a function of k and γ. A contour map of the log
likelihood is in Fig. 6.4. We can calculate the Gaussian approximation
to the likelihood, also shown in Fig. 6.4. At this point, there are at
least two possibilities for further analysis. We may wish to know which
pairs of (k, γ) are, say, 90 per cent probable. This in general involves a
very awkward integration of the posterior probabilities. The multivariate
Gaussian approximation to the likelihood is much easier to use; it is
automatically normalized and there are analytic forms for its integral
over any number of its arguments (see, for example, Jaynes 2003). As
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Fig. 6.3. The two experimental spectra we will examine; the right-hand one
contains an offset error as well as random noise.
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Fig. 6.4. Top left, a contour plot of the log likelihood function; bottom left,
the Gaussian approximation; right panels, the marginal distributions of k and
γ, comparing the Gaussian approximation to the full likelihood.

can be seen in the figure, the areas defined by a particular probability
requirement are simple ellipses.

Another possibility is to ask for the probability of, say, k regardless of
γ. So we have a posterior probability prob(k, γ | Si) and we form

prob(k | Si) =
∫

prob(k, γ | Si) dγ.

The probability distributions for k and γ are also shown in Fig. 6.4,
along with the distributions deduced from the Gaussian approximation.
As we can see the agreement is quite good.
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Marginalization (Section 2.2) can be a very useful technique. Often
we are not interested in all the parameters we need to estimate to make
a model. If we were investigating radio spectra, for instance, we would
want to marginalize out k in our example. We may also have to esti-
mate instrumental parameters as part of our modelling process, but at
the end we marginalize them out in order to get answers which do not
depend on these parameters. Of course, the marginalization process will
always broaden the distribution of the parameters we do want, because
it is absorbing the uncertainty in the parameters we don’t want – the
nuisance parameters.

EXAMPLE In our radio spectrum example (Fig. 6.3) we will add (some-
what artificially) an offset of 0.4 flux units to each measurement. This
has the effect of flattening the spectrum quite markedly. We will cal-
culate two possibilities. Model A is the simple one we assumed before,
with no offsets built in. Model B uses a model for the flux densities of
the form β + kf−γ . Each likelihood term is then

1√
2πεkf−γ

i

exp

[
−

(
Si −

(
β + kf−γ

i

))2

2(εkf−γ
i )2

]
.

We also suppose that we have some suspicion of the existence of this
offset, so we place a prior on β of mean 0.4, standard deviation ε. Model
B therefore returns a posterior distribution for k, γ and β. We are not
actually interested in β (although an instrumental scientist might be) so
we marginalize it out. The likelihoods from the two models are shown
in Fig. 6.5, and it is clear that the more complex model does a better
job of recovering the true parameters. The procedure works because
there is information in the data about both the instrumental and the
source parameters, given the model of the spectrum. If our model for
the spectrum had a ‘break’ in it, we would not be able to recover much
information about β, if any. If our fluxes had a pure scale error, we would
not have been able to recover this either.

In the real world, of course, we do not have the truth available to
guide us as to our choice of model A or model B. As remarked before,
we ought to check the ‘fit’ of the two models. In one dimension there are



122 Data modelling; parameter estimation

0.4 0.6 0.8 1 1.2 1.4
0.6

0.8

1

1.2

1.4

K

Fig. 6.5. The log likelihoods for the two models; the black contours are for
model A and the dashed contours are for model B.

various ways to do this, as discussed in Chapter 4. In many dimensions
things are harder. At the risk of repetition, let’s look again at the use of
evidence (the Bayes factor).

Suppose we are choosing between model A and model B and we believe
they are the only possibilities. The prior probability of A is, say, pA and
of B is pB. The posterior probability of the parameters α, given data Xi,
is

prob(α | Xi,A,B)

=
pAL(Xi | α,A)prob(α | A) + pBL(Xi | α,B)prob(α | B)

prob(Xi)
(6.12)

where we are emphasizing which model enters the various likelihoods.
prob(Xi) is the normalizing factor which ensures that the posterior
distribution is properly normalized; its calculation usually involves a
multidimensional integral. prob(α | A) is the prior on α in model A, and
similarly for B.

The posterior odds on model A, compared to model B, are then simply∫
α
pAL(Xi | α,A)prob(α | A)∫

α
pBL(Xi | α,B)prob(α | B)

(6.13)

in which we have to integrate over the range of parameters appropriate
to each model. This is worth the effort because we get a straightforward
answer to the question: which of A or B would it be better to bet on?
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EXAMPLE In the previous two examples we have worked out the like-
lihood functions, which we abbreviate L(Xi | k, γ,A) for model A and
similarly for model B. In model B we also have a prior on the offset β,
which is

prob(β | B) =
1√
2π ε

exp
[−(β − 0.4)2

2(ε)2

]
.

We then form the ratio of the integrals

pA

∫
dk

∫
dγL(Xi | k, γ,A)

and

pB

∫
dk

∫
dγ

∫
dβL(Xi | k, γ,B)prob(β | B).

Let’s take pA = pB, an agnostic prior state; note we have implicitly
assumed uniform priors on k and γ. Cranking through the integrations
numerically, we get:

odds on B compared to A: about 8 to 1.

Another way of looking at this is that we would have had to have been
prepared to offer prior odds of 8:1 against the existence of the offset, for
the posterior odds to have been even.

6.4 The minimum chi-square method

Yet of course there are occasions when Bayesian methods fail us – per-
haps we have been given the data in binned form, or indeed somebody
else has used classical modelling methods which we wish to examine. A
dominant classical modelling process is minimum chi-square, a simple
extension of the chi-square goodness-of-fit test described in Section 4.2.
It will be seen that it is closely related to least squares and weighted
least squares methods, and in fact the minimum chi-square statistic has
asymptotic properties similar to ML.

Consider observational data which can be (or are already) binned,
and a model and hypothesis which predicts the population of each bin.
The chi-square statistic describes the goodness-of-fit of the data to the
model. If the observed numbers in each of k bins are Oi, and the expected
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values from the model are Ei, then this statistic is

χ2 =
k∑

i=1

(Oi − Ei)2

Ei
. (6.14)

(The parallel with weighted least squares is evident: the statistic is the
squares of the residuals weighted by what is effectively the variance if the
procedure is governed by Poisson statistics.) The minimum chi-square
method of model fitting consists of minimizing the chi-squared statistic
by varying the parameters of the model. The premise on which this tech-
nique is based is simply that the model is assumed to be qualitatively
correct, and is adjusted to minimize (via χ2) the differences between the
Ei and Oi which are deemed to be due solely to statistical fluctuations.
In practice, the parameter search is easy enough as long as the number
of parameters is less than four; if there are four or more, then sophisti-
cated search procedures may be necessary. The appropriate number of
degrees of freedom to associate with χ2 for k bins and N parameters is
ν = k−1−N . The essential issue, having found appropriate parameters,
is to estimate confidence limits (Section 3.1) for them. The answer is
as given by Avni 1976; the region of confidence (significance level α) is
defined by

χ2
α = χ2

min + ∆(ν, α)

where ∆ is from Table 6.1. (It is interesting to note that (a) ∆ depends
only on the number of parameters involved, and not on the goodness of
fit (χ2

min) actually achieved, and (b) there is an alternative answer given
by Cline & Lesser (1970) which must be in error: the result obtained
by Avni has been tested with Monte Carlo experiments by Avni himself
and by M. Birkinshaw (personal communication).)

Table 6.1. Chi-square differences (∆) above minimum

Significance Number of parameters
α

1 2 3

0.68 1.00 2.30 3.50
0.90 2.71 4.61 6.25
0.99 6.63 9.21 11.30
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EXAMPLE The model to describe an observed distribution (Fig. 6.6,
left) requires two parameters, γ and k. Contours of χ2 resulting from the
parameter search are shown in Fig. 6.6 (right). When the Avni prescrip-
tion is applied, it gives χ2

0.68 = χ2
min + 2.30, for the value corresponding

to 1σ (significance level = 0.68); the contour χ2
0.68 = 6.2 defines a re-

gion of confidence in the (γ, k) plane corresponding to the 1σ level of
significance. (Because the range of interest for γ was limited from other
considerations to 1.9 < γ < 2.4, the parameter search was not extended
to define this contour fully.)

Fig. 6.6. An example of model fitting via minimum χ2. The object of the ex-
periment was to estimate the surface-density count [N(S) relation; see Section
6.1, Fig. 6.1] of faint extragalactic sources at 5 GHz, assuming a power-law

N(> S) = KS−(γ−1), γ and K to be determined from the distribution of back-
ground deflections, the so-called P(D) method, Section 7.6. The histogram of
measured deflections is shown left, together with the curve representing the
optimum model from minimizing χ2. Contours of χ2 in the γ − K plane are
shown right, with χ2 indicated for every second contour.

There are three good features of the minimum chi-square method, and
two bad and ugly ones. The good:

(i) Because χ2 is additive, the results of different datasets that may
fall in different bins, bin sizes, or that may apply to different
aspects of the same model, may be tested all at once.

(ii) The contribution to χ2 of each bin may be examined and regions
of exceptionally good or bad fit delineated.

(iii) One of the finest features of the method is that you get model
testing for free. Table A2.6 indicates probabilities of χ2 for given
degrees of freedom. It is to be hoped that the model comes out
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with a value of order 0.50; indeed the peak of the χ2 distribution
is ∼ (number of degrees of freedom) when ν ≥ 4 (Fig. 5.4). In
the example above, there are seven bins, two parameters, and
the appropriate number of degrees of freedom is therefore 4. The
value of χ2

min is about 4, just as one would have hoped, and the
optimum model is thus a satisfactory fit.

The bad and downright ugly:

(i) Low bin-populations in the chi-square sums will cause severe
instability. As a rule of thumb, 80 per cent of the bins must have
Ei > 5. As for the chi-square test, it does not work for small
numbers.

(ii) Finally it is important to repeat the mantra: data binning is bad.
In general, it loses information and efficiency. What is worse is
the bias it can cause. Just consider a skewed distribution with
rather few data defining it – the consequent need for wide bins
may ‘erase’ the skewness entirely.

6.5 Monte Carlo modelling

6.5.1 Monte Carlo generators

By now one truth will have dawned – there are many occasions in hy-
pothesis testing and model fitting when it is essential to have simple
recourse to a set of numbers distributed perhaps how we guess the
data might be. We may wish to test a test to see if it works as ad-
vertised; we might need to test efficiency of tests; we might wish to de-
termine how many iterations we require; or we might even want to test
that our code is working. We need random numbers, either uniformly
distributed, or drawn randomly from a parent population of known
frequency distribution.

It is vital not to compromise the tests with bad random data.
Numerical Recipes (Press et al. 1992) presents a number of methods,
from single expressions to powerful routines. A key issue is cycle length;
how long is it before the pseudo-random cycle is repeated? (Or, how
many random numbers do you need?) In these respects it is very necessary
to understand the characteristics of the generator. Moreover it is es-
sential to follow the prescribed implementation precisely. It may be
tempting to try some ‘extra randomizing’, for example by combining
routines or by modifying seeds. Be very scared of any such process.
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Finally it is easy to forget that the routines generate pseudo-random
numbers. Run them again from the same starting point and you’ll get
the same set of numbers. With these points in mind for the random-
number generator for uniform deviates over the range 0−1, consider the
following four aspects of random-number generation.

1. How do we draw a set of random numbers following a given fre-
quency distribution? Suppose we have a way of producing random num-
bers that are uniformly distributed, in say the variable α; and we have
a functional form for our frequency distribution dn/dx = f(x). We need
a transformation x = x(α) to distort the uniformity of α to follow f(x).
But we know that

dn
dx

=
dn
dα

dα
dx

=
dα
dx

(6.15)

and as dn/dα is uniform, thus

α(x) =
∫ x

f(x) dx, (6.16)

from whence the required transformation x = x(α).

EXAMPLE Thus the example in Section 6.1: the source-count random
distribution is f(x) dx = −1.5x−2.5 dx, a ‘Euclidean’ differential source
count. Here dα = −1.5x−2.5 dx, α = x−1.5, and the transformation is
x = f−1(α) = α1/1.5.

2. The very same procedure works if we do not have a functional
form for f(x) dx. If this is a histogram, we need simply to calculate the
integral version, and perform the reverse function operation as above.

EXAMPLE Fig. 6.7 shows an example of choosing uniformly distributed
random numbers and transforming them to follow the frequency distri-
bution prescribed by a given histogram.

3. How do we draw numbers obeying a Gaussian distribution? The
prescription above is all very well, and works when integration of the
function can be done; it can’t in many cases, the Gaussian being an
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Fig. 6.7. An example of generating a Monte Carlo distribution following a
known histogram. Left: the step-ladder histogram, with points from 2000 trials,
produced by (a) integrating the function (middle) and (b) transforming the
axes to produce f−1 of the integrated distribution (right). The points with√
N error bars in the left diagram are from drawing 2000 uniformly distributed

random numbers and transforming them according to the right diagram.

obvious one. Of course we could evaluate the integral for example by
Monte Carlo methods as described below, but computationally this is
ridiculous should we want a large number of deviates. There is thus
another method, the rejection method, of generating random numbers
to a prescription starting with uniform deviates. The method is compu-
tationally expensive relative to the integral transform method; but for
something like a Gaussian, not prohibitively so; and it can be coded in
just a few lines. Details are described in Lyons (1986) and Press et al.
(1992).

4. How do we generate numbers obeying a bivariate (or even multi-
variate) Gaussian, with given σi and ρi? This is crucial for testing many
tests or model-fitting routines (or for generating Fig. 6.2); and thanks
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to our discussion of error matrices in Section 4.2 and PCA in Section
4.5, quite simple to formulate:

• Set up the covariance matrix. (For the bivariate case, the error
matrix is e1,1 = σ2

x, e2,1 = e1,2 = cov[x, y] = ρσxσy, e2,2 = σ2
y, as

we have seen.)
• Find the eigenvalues and eigenvectors of the covariance matrix.
• Combine the eigenvectors, the column vectors, into the transforma-

tion matrix T , the matrix that diagonalizes the covariance matrix.
• Then draw (x′, y′) Gaussian pairs, uncorrelated, with variances

equal to the two eigenvalues. Compute the (x, y) pairs according to(
x

y

)
= [T ]

(
x′

y′

)
. (6.17)

The points in Fig. 6.2 were obtained in this manner.

6.5.2 Monte Carlo integration

One very important use of Monte Carlo is integration. This is a technical
subject, well covered in Evans & Swartz (1995) and Chib &
Greenberg (1995). A more technical reference is O’Ruanaidh & Fitzgerald
(1996). Many-dimensional numerical integration is a big problem for
Bayesian methods and so we will introduce some terminology and ideas
here very briefly.

Suppose we have a probability distribution f(x) defined for a ≤ x ≤ b.
If we draw N random numbers X, uniformly distributed between a and
b, then we have ∫ b

a

f(x) dx � 1
N

∑
i

f(Xi). (6.18)

This is Monte Carlo integration.
If the Xi are drawn from the distribution f itself, then obviously they

will sample the regions where f is large and the integration will be more
accurate. This technique is called importance sampling.

So, in a Bayesian context, we would like to be able to generate random
numbers from a probability distribution f/C where C is an unknown
normalizing factor. Further, f will in general be a multivariate distribu-
tion (if it wasn’t, we could use deterministic numerical integration).

The workhorse method for obtaining random numbers in this situa-
tion is the Metropolis algorithm or its cousin, the Metropolis–Hastings
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algorithm. This is a very simple method, which copies the way in which
physical systems, in thermal equilibrium, will populate their distribu-
tion function. It produces a string of related random numbers called a
Markov chain. The enormous advantage of the method is that it works
when we do not know the normalization. Indeed, we nearly always want
to find the normalization.

The simplest implementation of the Metropolis algorithm is one-
dimensional. What if we want random numbers from a multivariate
f(α1, α2, γ, . . .)? This is a much more likely application in a Bayesian
context.

Here we use the Gibbs sampler. This is actually one version of a multi-
dimensional Metropolis algorithm (Chib & Greenberg 1995). We guess a
starting vector (α0, β0, γ0, . . .) and then draw α1 from f(α0, β0, γ0, . . .).
Next we draw β1 from (α1, β0, γ0, . . .) and then γ1 from (α1, β1, γ0, . . .);
and so on. After we have cycled through all the variables once, we have
our first multivariate sample.

Obviously the first sample will be strongly influenced by the initial
guess, and a number of iterations are necessary before burn-in is com-
plete and the procedure is in a stationary state. The same applies to the
Metropolis algorithm, which starts from a ‘seed’ value. The combination
of the Metropolis algorithm and the Gibbs sampler equips us to perform
the multidimensional integrations we often need in Bayesian problems.

You should be aware that there is considerable technical debate around
the question of how long burn-in will last in particular cases. If you want
to use Monte Carlo Markov chain integration, check the references and
make sure you have tested your random numbers in all the standard
ways.

6.6 Bootstrap and jackknife

In some data-modelling procedures, confidence intervals for the param-
eters fall out of the procedure. But are these realistic? And what about
the procedures where they do not? Computer power can provide the
answer, with the bootstrap method invented by Efron (1979); see also
Diaconis & Efron (1983) and Davison & Hinkley (1997). It apparently
gives something for nothing, and Efron so named it from the image of
lifting oneself up by one’s own bootstraps.

The method is so blatant (described, for example, in Numerical
Recipes as ‘quick-and-dirty Monte Carlo’) that it took some time to gain
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respectability, but the foundations are now secure (see, e.g. LePage &
Billiard 1993; Efron & Tibshirani 1993). Suppose the sample consists
of N data points, each consisting of one or more numbers (e.g. single
measurements, or x, y pairs), and we wish to ascertain the error on a
parameter estimated from these data points (e.g. mean, or slope of a
best-fit). We calculate the parameter using a modelling process such as
one of those described above. We then ‘bootstrap’ to find its uncertainty,
as follows:

(i) Label each data point;
(ii) Draw at random a sample of N with replacement (simply done

by computer with a random-number generator);
(iii) Recalculate the parameter.
(iv) Repeat this process as many times as possible.

That’s it. Provided that the data points are independent (in distri-
bution and in order), the distribution of these recalculated parameters
maps the uncertainty in the estimate from the original sample.

EXAMPLE Bhavsar (1990) described how ideally suited the bootstrap
is to estimating uncertainty in measuring the slope of the angular two-
point correlation function for galaxies. This function w(θ) (Section 9.4)
measures the excess surface density over that expected from a uniform in-
dependent and random distribution at angular scales θ. The data points
are the (x, y) pairs of galaxy coordinates on the sky, and the difficulty in
estimating the accuracy of this slope is even more notorious than that of
estimating the slope of the counts of radio sources. The reason is similar:√
N error bars are readily assigned, but they are not independent; and

unlike the case of source counts for which a differential version is possi-
ble, there is no ready way of assessing the significance of the correlated
errors in a correlation function. Figure 6.8 shows an example of such a
two-point correlation function estimate, part of a search for clustering in
the distribution of radio sources on the sky (Wall, Rixon & Benn 1993).

The bootstrap is ideal for computing errors in a PCA analysis. It is
a good way of telling you if any of the principal components has been
detected above the sampling error.
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Fig. 6.8. A bootstrap application. (a) The two-point correlation function for
2812 radio sources with extended radio structure, from the White–Becker cat-
alogue of the NRAO 1.4-GHz survey of the northern sky. A least-squares fit
gives a slope of −0.19. (b) The distribution of slopes obtained in bootstrap-
testing the sample with 1000 trials. The mean slope is −0.157, while the rms
scatter is ±0.082; the slope is less than zero (i.e. signal is present) for 96.8
per cent of the trials.

The bootstrap takes us back to the quotation starting this chapter.
If errors are not well known, it is still possible to ascertain errors on
a model. Moreover the errors may be known well; but as in the above
example, their significance in terms of defining a model may not be
understood. In either case it is possible to bootstrap one’s way to safety.

The jackknife is a rather similar technique to the bootstrap, but much
older, first described by Tukey (one of the inventors of the FFT) in 1958.

The algorithm is again quite simple. Suppose we are interested in
some function f(X1, X2, . . .) which depends on the N observations Xi.
Usually this will be because f is a useful estimator of a parameter α.
Thus we have

α̂ = f(X1, X2, . . .).

The jth partial estimate is obtained by deleting the jth element of the
dataset:

α̂j = f(X1, X2, . . . , Xj−1, Xj+1, . . . , XN ),

giving N partial estimates. The next step (and the crucial one) is to
define the pseudo-values

α̂∗
j = Nα̂− (N − 1)α̂j ,

and finally the jackknifed estimate of α is the simple average of the
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pseudo-values

α̂∗ =
1
N

N∑
i=1

α̂∗
j . (6.19)

The great merit of the jackknife is that it removes bias. Often the bias
will depend inversely on the sample size (a simple example of this is the
maximum-likelihood estimate for the variance of a normal distribution)
and the jackknifed estimate will not contain this bias. In general, we can
construct an mth-order jackknifed estimate by removing m observations
at a time, and this will eliminate bias that depends on 1/Nm.

For estimators which are asymptotically Normal (e.g. maximum-
likelihood estimators) it is useful to calculate the sample variance on
the pseudo-values, which is

(σ∗)2 =
1

N(N − 1)

∑
j

(α̂∗
j − α̂∗)2. (6.20)

This can be used to give a confidence interval on α − α∗ which is dis-
tributed according to σ∗t with t having N − 1 degrees of freedom. This
works to the extent that Normality has been obtained. In practice it is
easier to use a bootstrap for confidence intervals, because the assump-
tion of Normality is not needed. If the jackknife intervals can be checked
with a bootstrap, they are of course much less computationally intensive
to calculate.

6.7 Models of models, and the combination of datasets

Having the correct model is essential, as otherwise both deduced para-
meters, and errors on them, will be wrong. Frequently, however, we are
in a circular type of reasoning where we guess the model and then try
to assess if the deduced parameters are reasonable. A useful way of ex-
panding the set of models, as an insurance policy against having the
wrong one, is to use hierarchical models. These in turn make use of
the even more impressively named hyperparameters. It turns out that,
in addition to helping with modelling, these notions are useful in the
familiar problem of combining sets of data which have different levels of
error.

The idea of the hierarchical model can be illustrated by our earlier
example, where we needed to include some kind of offset in the model
for each of our flux measurements. Each term in the likelihood function
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took the form

1√
2πεkf−γ

i

exp

[
−

(
Si −

(
β + kf−γ

i

))2

2
(
εkf−γ

i

)2

]
.

We are assuming that the offset error β is the same for each measure-
ment. Before, we supposed that the distribution of β was normal, with a
known mean and standard deviation – quite a strong assumption. Sup-
pose we knew only the standard deviation, but the mean µ was unknown.
The likelihood is then

exp

[
−(β − µ)2

2σ2
β

] ∏
i

1√
2πεkf−γ

i

exp

[
−

(
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(
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))2

2
(
εkf−γ
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)2

]

where µ is now a hyperparameter, described (appropriately enough) by
a hyperprior. So, for hierarchical models, Bayes’ theorem takes the form

prob(α, θ | Xi) ∝ L(Xi | α)prob(α | θ)prob(θ) (6.21)

where as usual Xi are the data and θ is the hyperparameter (and may of
course be a vector). If we integrate out θ, we get a posterior distribution
for the parameter α which includes the effect of a range of models.

EXAMPLE In our radio spectrum example, we make a simple hierar-
chical model as described above. Take the standard deviation σβ = ε

and the prior prob(µ) = constant. We compute the likelihood surface
by marginalizing over both µ and β; these integrations are not too
bad because we have Gaussians, and because we integrate from −∞
to ∞. (More realistic integrations, over finite ranges, get very messy.)
In Fig. 6.9 we see the likelihood surface for K and γ, compared to the
previous ‘strong’ model for which we knew µ. There is a tendency, not
unexpected, for flatter power laws to be acceptable if we do not know
much about µ.

In a more elaborate form of a hierarchical model, we can connect
each datum to a separate model, with the models being joined by an
overarching structural relationship. In symbols, Bayes then reads

prob(αi, θ | Xi) ∝ L(Xi | αi)prob(αi | θ)prob(θ). (6.22)

In a common type of model we may have observations Xi drawn from
Gaussians of mean µi, with a structural relationship that tells us that the
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Fig. 6.9. The log likelihoods for the two models; the black contours are for
the hierarchical model and the dashed contours are for known µ.

µi are in turn drawn from a Gaussian of mean, say, θ. This is a weaker
model than the first sort we considered, because we have allowed many
more parameters, linked only by a stochastic relationship. In the case of
Gaussians there is quite an industry devoted to this type of model; see
Lee (1997) for details.

EXAMPLE Back to our power-law spectrum. If we allow a separate
offset βi at each frequency, then each term in the likelihood product
takes the form

exp

[
−(βi − µ)2

2σ2
β

]
1√

2πε kf−γ
i

exp

[
−

(
Si −

(
βi + kf−γ

i

))2

2
(
ε kf−γ

i

)2

]

and we take again the usual (very weak) prior prob(µ) = constant.
Marginalizing out each βi by an integration is then exactly the same
task for each i, and having done this we can compare the likelihood
contours with the very first model of these data (no offsets allowed).
The likelihood contours of Fig. 6.10 are very instructive. The hierarchical
model, by allowing a range of models, has moved the solution away from
the well-defined (but wrong) parameters of the no-offset model. The
hierarchical likelihood in fact peaks quite close to the true values of
(k, γ) but the error bounds on these parameters are much wider.
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Fig. 6.10. The log likelihoods for the two models; the black contours are for
the simplest model, with no provision for offsets; the dashed contours are for
the weak hierarchical model, allowing separate offsets at each frequency.

This is a general message; allowing uncertainty in our models may
make the answers apparently less precise, but it is an insurance against
well-defined but wrong answers from modelling.

Broadening the range of models is a useful technique in combining
data. To see this, let us revise the idea of weights.

The optimum weight for an observation of standard deviation σ is just
1/σ2 (see the exercises). This weight turns up naturally in modelling
using minimum-χ2.

Suppose we have data Xi, of standard deviation σx, and some other
data Yi of standard deviation σy. Then, to fit to some model function
µ(α1, α2, . . .) we minimize

χ2 =
N∑
i=1

(Xi − µ)2

σ2
x

+
M∑
i=1

(Yi − µ)2

σ2
y

and it is obvious how the different datasets are weighted.
Quite often the quoted error levels on data are wrong; it is no small

task to make accurate error estimates. One simple way of dealing with
this is simply to tinker with the σs in the χ2 so that the minimum value
comes out to be about N + M . This can be a useful technique but of
course it is rather arbitrary how we allocate the tinkering between σx

and σy.
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Let us broaden our model by allocating weights ξx and ξy to these
datasets. This is a hierarchical model, and the weights are hyperparam-
eters (Hobson, Bridle & Lahav 2002). On the assumption of Gaussian
residuals, the likelihood function is then

L(Xi, Yi | α, β, . . . , ξx, ξy) ∝
1

ξ
N/2
x σN

x ξ
M/2
y σM

y

× exp

[
−

N∑
i=1

ξx
(Xi − µ)2

2σ2
x

]

× exp

[
−

M∑
i=1

ξy
(Yi − µ)2

2σ2
y

]
. (6.23)

Bayes’ theorem will now tell us the posterior probability distribution
for the parameters of our model µ, plus the weights. It would be nice
to marginalize out the weights, as in this context they are nuisance
parameters.

The tidy aspect of this approach is that it is one of the rare cases in
which we have a convincing (uncontroversial?) prior to hand. Hobson,
Bridle & Lahav (2002) show that, on the assumption that the mean
value of the weight is unity (perhaps an idealistic assumption), we have
simply

prob(ξ) = exp(−ξ). (6.24)

This is derived by the method of maximum entropy, as described in,
for example, Jaynes (2003). Carrying out the integration over the ξ’s
is easy, and we find the posterior probability for our problem to
be

prob(α1, α2, . . . | Xi, Yi) ∝
1
σN
x

1
σM
y

× 1(
2 +

∑N
i=1

(Xi−µ)2

2σ2
x

)N/2+1

× 1(
2 +

∑M
i=1

(Yi−µ)2

2σ2
y

)M/2+1

×prob(α1, α2, . . .). (6.25)
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EXAMPLE Here (Fig. 6.11) are two noisy spectra of a single line. Both
are alleged to have the same noise level, σ = 5, but one is slightly worse
and is not centred at zero, unlike the better one. For simplicity, let us
assume that we know the line to be Gaussian and only its position is
unknown. Combining the data, taking the quoted errors at face value,
we get a log likelihood for the line centre which peaks some way away
from zero. If our prior on the line centre is diffuse, the posterior prob-
ability is proportional to the likelihood. Including the data weights as
hyperparameters, we get a simple answer after marginalization, shown
in Fig. 6.12; the posterior probability for the line centre shows two clear
peaks, the larger at zero (the good data) and the lesser at 2 units (the
poorer data).

Fig. 6.11. The two synthetic spectra which are our input data.
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Fig. 6.12. The log likelihood function for the combined, unweighted data (left)
and the posterior distribution for the line centre, after marginalizing out the
weights (right).

Since the weights are an amplification of our model, we may want to
know if they ought to be included; this can be calculated in the usual
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way by computing the odds in favour of or against the more complex
model. To do this we need to keep track of all the constants we have
elided so far. Here is the full set of equations, for a multivariate Gaussian
model for the data.

Let us index each (homogeneous) set of Ni data by i, and call the
covariance matrix Ci, the data vector �Xi and the model vector �µi. µi

depends on the parameters of interest. Abbreviating

χ2
i = (Xi − �µi)TC−1

i (�Xi − �µi)

the multivariate Gaussian model for the ith dataset is, as usual,

prob(�Xi | �µi,no weights) =
1

(2π)Ni/2 | Ci |1/2
exp(− 1

2χ
2
i ) prob(�µi).

Introducing a weight simply means multiplying the covariance matrix by
a factor ξi. The multivariate model for the ith dataset, after marginaliz-
ing over the weight parameter with respect to the exponential prior, is
just

prob(�Xi | �µi, weights) =
2Γ

(
Ni

2 + 1
)

πNi/2 | Ci |1/2
(

1
2 + χ2

i

)Ni/2+1

prob(�µi).

(6.26)
Each of these distributions depends on the parameters of the model.
The odds in favour of weighting the data entail integrating over the
parameters (let us abbreviate this by

∫
α
), taking account of any priors

prob(α), and then forming the ratio

∫
α

prob(α)prob(�Xi | �µi, weights)∫
α

prob(α)prob(�Xi | �µi,no weights)
. (6.27)

Exercises

6.1 Covariance matrix. Consider N data Xi, drawn from a
Gaussian of mean µ and standard deviation σ. Use maximum
likelihood to find estimators of both µ and σ, and find the co-
variance matrix of these estimates.

6.2 Weighting data. Show that the optimum weight for an obser-
vation of standard deviation σ is just 1/σ2. This weight turns
up naturally in modelling using minimum-χ2.



140 Data modelling; parameter estimation

6.3 MLE and power laws. In the example in Section 6.1 we fit
a power law truncated at the faint end, and assume we know
where to cut it off. What happens if you try to infer the faint-end
cutoff by ML as well? Formulate this problem at least.

6.4 Univariate random numbers. Work out the inverses of the
integral functions required to generate (a) f(x) = 2x3, (b) a
power law, representative of luminosity functions, f(x) = x−γ .
Use these results to produce random experiments following these
probabilities by drawing 1000 random samples uniformly dis-
tributed between 0 and 1; verify by comparison with the given
functions.

6.5 Multivariate random numbers. (a) Give the justification for
why the prescription (Section 6.5) for generating (x, y) pairs fol-
lowing a bivariate Gaussian of given variances and correlation
coefficient is correct. (b) Using a Gaussian Monte Carlo genera-
tor, find 1000 (x, y) pairs following a given prescription, i.e. σ2

x,
σ2
y and ρ. Plot these on contours of the bivariate probability dis-

tribution, as in Fig. 6.2, to check roughly that the prescription
works. (c) Find the error matrix for the (x, y) pairs to verify
that the prescription works.

6.6 Monte Carlo integration. The Gaussian or Normal distribu-
tion function

1
σ
√

2π
exp

(
− x2

2σ2

)

does not have an analytic integral form. Use Monte Carlo inte-
gration to find erf, the so-called error function of Table A2.1.
Show that (a) approximately 68 per cent of its area lies between
±σ, and (b) that the total area under the curve is unity.

6.7 Maximum likelihood estimates. Find an estimator of µ

when the distribution is (a)

prob(x) = exp(−|x− µ|)

and (b) the Poisson

prob(n) = µn e−µ

n!
.

6.8 Least squares linear fits. Derive the ‘minimum distance’ OLS
for errors in both x and y, assuming Gaussian errors.
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6.9 Marginalization. Using the data supplied, use maximum like-
lihood to find the distribution of the parameters of a fitted
Gaussian plus a baseline. Test to see how the estimates are af-
fected by marginalizing out the baseline parameters.

6.10 The jackknife. Using the MLE for a power-law index (Section
6.1), work out and compare the confidence intervals with the an-
alytic result from that section using the jackknife and bootstrap
tests. Check how the results depend on sample size.
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Detection and surveys

Watson, you are coming along wonderfully. You have really
done very well indeed. It is true that you have missed
everything of importance, but you have hit upon the
method. . .

(Sherlock Holmes in ‘A Case of Identity’, Sir Arthur Conan Doyle)

‘Detection’ is one of the commonest words in the practising astronomers’
vocabulary. It is the preliminary to much else that happens in astronomy,
whether it means locating a spectral line, a faint star or a gamma-ray
burst. Indeed of its wide range of meanings, here we take the location,
and confident measurement, of some sort of feature in a fixed region of
an image or spectrum.

When a detection is obvious to even the most sceptical referee, statis-
tical questions usually do not arise in the first instance. The parameters
that result from such a detection have a signal-to-noise ratio so high that
the detection finds its way into the literature as fact. However, elusive
objects or features at the limit of detectability tend to become the focus
of interest in any branch of astronomy. Then, the notion of detection
(and non-detection) requires careful examination and definition.

Non-detections are especially important because they define how rep-
resentative any catalogue of objects may be. This set of non-detections
can represent vital information in deducing the properties of a popula-
tion of objects; if something is never detected, that too is a fact, and can
be exploited statistically. Every observation potentially contains infor-
mation. If we are resurveying a catalogue at some new wavelength, each
observation constrains the energy from the object to some level. Like-
wise, surveying unmapped regions of sky yields information even when
there are apparently no detections. In both cases population properties

142
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can be extracted, even though individual objects remain obscured in the
fog of low signal-to-noise ratio.

This chapter will examine detection, first in the context of the use to
which we will put detected objects; it moves on to consider the useful-
ness of non-detections in deducing properties of populations; and finally
it examines notions of detection which say little about individual objects,
but which focus instead on population-level properties. In many experi-
ments, we wish to define wide distributions of widely spread parameters:
the initial mass function, luminosity function, and so on. We may ap-
proach these from the point of view of ‘detections’ and ‘non-detections’
(the catalogue point of view) or we may attempt to extract the dis-
tributions directly from the data, without the notion of detection ever
intruding.

7.1 Detection

Detection is a model-fitting process. When we say ‘We’ve got a detec-
tion’ we generally mean ‘We have found what we were looking for’. This
is obvious enough at reasonable signal-to-noise. In examining a digital
image, for example, detection of stars (point-like objects) is achieved
by comparing model point-spread functions to the data. In the case of
extended objects, a wider range of models is required to capture the
possibilities.

In all cases, a clear statistical model is required. The noise level (or
expected residuals from the model) may be expected in many cases to
follow Poisson (

√
N) statistics, or, for large N , Gaussian statistics. The

statistics depend on more than the physical and instrumental model.
How were the data selected for fitting in the first place? We will see
for example that picking out the brightest spot in a spectrum (Section
8.6.1) means that we have a special set of data. The peak pixel, in this
case, will follow the distribution appropriate to the maximum value of a
set of, say, Gaussian variables. Adjacent pixels will follow an altogether
less well-defined distribution; Monte Carlo simulation may be the only
way forward.

Indeed much evaluation of detection is done with simulation. ‘Model
sources’ are strewn on the image or spectrum, and the reduction software
is given the job of telling us what fraction is detected. These essential
large-scale techniques are very necessary for handling the detail of how
the observation was made. Evaluating detection level in radio-astronomy
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synthesis images is an example. The noise level at any point depends
at least on gains of all antennas, noise of each receiver, sidelobes from
whatever sources happen to be in the field of view, map size, weighting
and tapering parameters, the ionosphere, cloud, and so on. Modelling
all this is not just impossible from a computational point of view – vital
input data simply are not known. Although complex and varied issues
are involved, the basic notions and algorithms of detection remain just
as relevant as in apparently simpler cases.

The basic problem from a statistical point of view is the problem of
modelling, as discussed in the last chapter. A full Bayesian approach is
desirable but computationally intensive and certainly not practical in a
surveying application. An entry point to the Bayesian literature on this
subject is Hobson & McLachlan (2003).

We may need a simpler method, and a classical approach is useful.
Firstly, we have to ask: what do we really want from the survey we are
planning? Are we more concerned with detecting as much as possible
(completeness) or are we more worried about false detections
(reliability)? Moreover, we need to know what we want to do with the
‘detections’ once we have them. Perhaps we should publish, in a cata-
logue, the complete set of posterior probabilities, at each location, of the
observed parameters? Or just the covariance matrix, as an approxima-
tion? Or perhaps the marginalized signal-to-noise ratio, integrating away
all nuisance parameters? Scientific judgement must be used to answer
these questions. The more information we catalogue, the better; and in
the Internet age, this is so inexpensive as to be almost mandatory.

From the classical point of view, if we are trying to measure a para-
meter α then the likelihood sums up what we have achieved:
L = prob(data | α).

To be specific, suppose that α is a flux density and we wish to set a flux
limit for a survey. We are only going to catalogue detections when our
data exceed this limit slim. (Other quantities of astrophysical interest
may need a somewhat different formulation, but the essential points
remain the same.) Two properties of the survey are useful to know.

(i) The false-alarm rate is the chance that pure noise will produce
data above the flux limit:

F(data, slim) = prob(data > slim | α = 0). (7.1)

The reliability is 1−F , i.e. F = 5/100 gives 95 per cent reliability.
That may sound good, but note that it is the infamous 2σ result.
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(ii) The completeness is the chance that a measurement of a real
source will be above the flux limit:

C(data, slim, S) = prob(data > slim | α = s). (7.2)

These notions go back as least as far as Dixon & Kraus (1968); an
interesting recent treatment is by Saha (1995).

We would like to set the flux limit to maximize the completeness, and
minimize the false-alarm rate. But higher completeness (or even com-
plete completeness, slim = 0!) comes at the price of an increasing number
of false detections. Moreover this definition of completeness only takes
account of statistical effects. There may be other reasons for missing
objects, poor recognition algorithms in particular.

EXAMPLE Suppose our measurement is of a flux density s and the
noise on the measurement is Gaussian, of unit standard deviation. The
source we are observing has a ‘true’ flux density of s0, measured in units
of the standard deviation. We then have

prob(s | s0) =
1√
2π

exp
[
− (s− s0)2

2

]

for the probability density of the data, given the source; and

prob(s | s0 = 0) =
1√
2π

exp
(
−−s2

2

)

for the probability density of the data when there is no source. Integrat-
ing these functions from 0 to slim (Table A2.1) makes it easy to plot
up the completeness against the false-alarm rate, taking the flux limit
as a parameter (Fig. 7.1). High completeness does indeed go hand in
hand with a high false-alarm rate. However it is apparent that there
are quite satisfactory combinations for flux limits and source intensi-
ties of just a few standard deviations. In real life no one would believe
this, mainly because of outliers not described by the Gaussians assumed.
Exercise 7.4 asks for a repeat of this calculation using an exponential
noise distribution.

The conditional probabilities we have encountered suggest taking a
Bayesian approach. We have

prob(data | a source is present, brightness s)
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Fig. 7.1. Completeness versus false-alarm rate, plotted for source flux densities
in terms of σnoise ranging from 1 unit (right) to 4 units (left). The flux limits
are indicated by the dots, starting at zero on the right and increasing by one
unit at a time. For example, a 4σ source and a 2σ flux limit give a false-alarm
rate of 2 per cent and a completeness of 99 per cent with the Gaussian noise
model.

and

prob(data | no source is present).

Take the prior probability that a source, intensity s, is present in the
measured area to be εN(s), where N(s) is a normalized distribution.
This is the probability that a single source will have a flux density s. The
prior probability of no source is (1 − ε)δ(s); δ is a Dirac delta function.
Then the posterior probability density

prob(a source is present, brightness s | data)

is given by

εprob(data | s)N(s)
ε
∫

prob(data | s)N(s) ds + (1 − ε)
∫

prob(data | s = 0)
.

Integrating this expression over s gives the probability that a source is
present, for given data.

EXAMPLE Pursuing the previous example, take the noise distribution
to be Gaussian and take the prior N(s) to be a simple uniform distribu-
tion from zero to some large flux density – a very uninformative prior!
The value of ε reflects our initial confidence that a source is present at all,
and so in many cases will be small. Figure 7.2 shows that the posterior
distribution of flux density s peaks at the value of the data, as expected;
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Fig. 7.2. The top left panel shows the probability of a detected source of flux
density s; the curves correspond to measurements of 1–4 units (as before, a
unit is one noise standard deviation). A prior ε = 0.05 was used. On the
top right these curves are integrated to give the probability of detection at
any positive flux density, as a function of the data values; the curves are for
ε = 0.5, 0.05 and 0.005. The bottom panels show the results of the calculation
for the power-law prior, truncated at 0.1 unit.

the role of ε is to suppress our confidence of a detection in low signal-to-
noise cases. Again we see that for Gaussian noise, 4σ data points mean
detection with high probability. Real life is more complicated.

Using a power-law prior N(s) ∝ s−5/2 gives results rather similar to
the example of Fig. 2.2, which ignored the possibility that no source
might be present. The rarity of bright sources in this prior now means
that we need a rather better signal-to-noise to achieve the same confi-
dence that we have a detection.

A Bayesian treatment of detection gives a direct result; from the
figures in the previous example, we may read off a suitable flux limit
that will give the desired probability of detection. This is affected by the
prior on the flux densities, but often we will have a robust idea of what
this should be from previous survey parameters such as source counts.
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In many cases, however, the notion of detection of individual objects
is poorly defined. Images or spectral lines crowd together, even overlap
as we reach fainter and fainter. Within the region we measure, several
different objects may contribute to the total flux. Even if only one ob-
ject is present, if the source count N(s) is steep it will be more likely
that the flux we measure results from a faint source plus a large upward
noise excursion, rather than vice versa. In these cases we can expect
only to measure population properties – parameters of the flux-density
distribution N(s). If these parameters are denoted by α then a proba-
bilistic model for the observations, when the average number of sources
per measurement area is less than 1, is

prob(α | data) ∝
∑
s

prob(data | s)prob(s | N,α)prob(α).

(This is an example of a hierarchical model, discussed in Section 6.7.
The quantities α are really hyperparameters.)

The summation in this equation will often denote a convolution be-
tween N(s) and the error distribution; given a prior on the parameters of
s we can obtain a better estimate of the distribution of the flux densities
of sources.

If there are many sources per measurement area (and this will often be
the case for faint sources) then we are in the ‘confusion-limited’ regime.
Now we need to draw a distinction between N(s), the distribution of
flux densities when only one source contributes, and a more complicated
distribution which takes account of the possibility that several sources
may add up to give s. This complicated situation is considered in Section
7.6; the details for the simpler case are left to Exercise 7.2, and they are
very similar to the previous examples.

In summary, detection is a modelling process; it depends on what
we are looking for, and how the answer is expressed depends on what
we want to do with it next. The simple idea of a detection, making a
measurement of something that is really there, only applies when signal-
to-noise is high and individual objects can be isolated from the general
distribution of properties. At low signal-to-noise, measurements can con-
strain population properties, with the notion of ‘detection’ disappearing.

7.2 Catalogues and selection effects

Typically, a body of astronomical detections is published in a catalogue.
On the basis of some clear criterion, objects will either be listed in the
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catalogue, or not. If they are not, usually we know nothing more about
them; they are simply ‘below the survey limit’.

Most astronomical measurements are affected by the distance to the
object. In Euclidean space, a proper motion, for a fixed velocity of the
star, becomes a smaller angle inversely as the distance to that star.
Apparent intensity drops off as the square of the distance. Other effects
may be more subtle; the ellipticity of a galaxy becomes harder to detect,
depending on distance, the blurring effect of seeing, and the detailed
luminosity profile of the galaxy. The common factor in all these examples
is that we measure a so-called apparent quantity X and infer an intrinsic
quantity by a relationship Y = f(X,R) where R is the distance to the
object in question. The function f may be complicated, for observational
reasons and also because it may depend on a distance involving redshift
and details of space-time geometry.

We take a simple and definite case (remembering that the principles
will apply to the whole range of functions f). We observe a flux density
S and infer a luminosity L given by

L = SR2;

we are considering a flat-space problem. The smallest value of S we are
prepared to believe is slim; if a measurement is below this limit, the
corresponding object does not appear in our catalogue. (As before, we
use upper-case letters to denote measured values of the variable written
in lower case.)

Our objects (call them ‘galaxies’) are assumed to be drawn from a
luminosity function ρ(l), the average number of objects near l per unit
volume. Using only our catalogue set of measurements {L1, L2, . . .}, how-
ever, we will not be able to reproduce ρ at all. Instead, we will get the
luminosity distribution η, where

η(l) ∝ ρ(l)V (l). (7.3)

Crucially, V (l) is the volume within which sources of intrinsic brightness
l will be near enough to find their way into our catalogue. We get

η(l) ∝ ρ(l)
(

l

slim

)3/2

. (7.4)

Obviously η will be biased to higher values of luminosity than ρ. This
sort of bias occurs in a multitude of cases in astronomy, and is often
called Malmquist bias.
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EXAMPLE The luminosity function of field galaxies is well approxi-
mated by the Schechter function

ρ(l) ∝
(

l

l∗

)γ

exp
(
− l

l∗

)
,

in which we take γ = 1 and l∗ = 10 for illustration. To obtain the
form of the luminosity distribution in a flux-limited survey, we multiply
the Schechter function by l3/2. The differences between the luminosity
function and luminosity distribution are shown in Fig. 7.3.
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Fig. 7.3. The luminosity function ρ (steep curve) and the (flat-space) lu-
minosity distribution are plotted for the Schechter form of the luminosity
function.

Malmquist bias is a serious problem in survey astronomy. The extent
of the bias depends on the shape of the luminosity function, which may
not be well known. More seriously, the bias will also be present for
objects whose properties correlate with something that is biased. For
example, the luminosity of giant HII regions is correlated with the lu-
minosity of the host galaxy, so that any attempt to use the HII regions
as standard candles will have to consider the bias in luminosity of the
hosts.

Malmquist bias arises because intrinsically bright objects can be seen
within proportionately much greater volumes than small ones. Because
most of the volume of a sphere is at its periphery, it follows that in a
flux-limited sample the bright objects will tend to be further away than
the faint ones – there is an in-built distance–luminosity correlation.
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EXAMPLE We adopt a Schechter function with γ = 1 and l∗ = 10 for
the purposes of illustration. The probability of a galaxy being at distance
R is proportional to R2, in flat space. The probability of it being of
brightness l is proportional to the Schechter function. The probability
of a galaxy of luminosity L, located at distance R being in our sample
is

prob(in sample) =
{

1 L < slimR2

0 otherwise.

The product of these three probability terms is the bivariate distribution
prob(l, r), the probability of a galaxy of brightness l and distance r

being in our sample. This distribution is shown in Fig. 7.4; there is a
clear correlation between distance and luminosity. (It is this effect that
produces diagrams like Fig. 4.1.) A direct check of this is to simulate a
large spherical region filled with galaxies whose luminosities are drawn
from a Schechter function, and then select a flux-limited sample. (The
Schechter function has to be truncated at l > 0 as it otherwise cannot
be normalized.) Figure 7.5 shows the effect indicated by the contours of
Fig. 7.4.
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Fig. 7.4. Contour plots of the bivariate prob(l, r). The contours are at loga-
rithmic intervals; galaxies tend to bunch up against the selection line, leading
to a bogus correlation between luminosity and distance.

The luminosity–distance correlation is widespread, insidious and very
difficult to unravel. It means that for flux-limited samples, intrinsic prop-
erties correlate with distance; thus two unrelated intrinsic properties will
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Fig. 7.5. Results of a simulation of a flux-limited survey of galaxies drawn
from a Schechter function.

appear to correlate because of their mutual correlation with distance.
Plotting intrinsic properties – say, X-ray and radio luminosity – against
each other will be very misleading. Much further analysis is necessary
to establish the reality of correlations, or (more generally) statistical de-
pendence. Such analyses may require detailed modelling of the detection
process. Take the case of measuring the ellipticity of galaxies – distant
ones may well look rounder because of the effects of seeing. As more
distant galaxies seem to be more luminous as well, we are on course
for deducing without evidence that round galaxies are more luminous
or vice versa. A detailed model will be necessary to establish the rela-
tionship between true ellipticity, measured ellipticity, and the size of the
galaxy relative to the seeing disc.

EXAMPLE We take the same simulation as before, but attribute two
luminosities to each galaxy, drawn from different Schechter functions.
These might be luminosities in different colour bands, for example, and
by definition are statistically independent. If we construct a flux-limited
survey in which a galaxy enters the final sample only if it falls above the
flux limit in both bands, we see in Fig. 7.6 that a bogus but convincing
correlation emerges between the two luminosities.

Finally, we should note that an effect that competes with Malmquist
bias is caused by observational error. The number of objects as a function
of apparent intensity N(s), the number counts or source counts, usually
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Fig. 7.6. Results of a simulation of a flux-limited survey of galaxies, where
each galaxy has two statistically independent luminosities associated with it.

rises steeply to small values of s – there are many more faint objects
than bright ones. In compiling a catalogue we in effect draw samples
from the number-count distribution, forget those below slim, and con-
vert the retained fluxes to luminosities. The effect of observational error
is to convolve the number counts with the noise distribution. Because
of the steep rise in the number counts at the faint end the effect is
to contaminate the final sample with an excess of faint objects. (An
object of observed apparent flux density is much more likely to be a
faint source with a positive noise excursion than a bright source with
a negative excursion.) This can severely bias the deduced luminosity
function towards less luminous objects. This effect does not occur if the
observational error is a constant fraction of the flux density, and the
source counts are close to a power law.

Many types of astronomical observations suffer from the range of prob-
lems due to Malmquist bias, parameter–distance correlation and source-
count bias. This discussion has dealt with galaxies and luminosities for
illustration; plenty of other examples could have been chosen.

7.3 Luminosity (and other) functions

In this section we assume that we are dealing with a catalogue of objects,
of high reliability and well-understood limits. If we are interested in some
intrinsic variable l (say a luminosity), then the luminosity function ρ(l)
is often important. In principle we could get an approximation to ρ by
measuring Li for all of the objects in some (large) volume. In practice we
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need another way, because high luminosities are greatly over-represented
in flux-limited surveys, as we have seen.

One of the best methods to estimate ρ(l) is the intuitive Vmax method
(Rowan-Robinson 1968; Schmidt 1968). The quantities Vmax(Li) are the
maximum volumes within which the ith object in the catalogue could lie,
and still be in the catalogue. Vmax thus depends on the survey limits, the
distribution of the objects in space, and the way in which detectability
depends on distance. In the simplest case, a uniform distribution in space
is assumed. Given the Vmax(Li), an estimate of the luminosity function
is

ρ̂(Bj−1 < l ≤ Bj) =
∑

Bj−1<Li≤Bj

1
Vmax(Li)

(7.5)

in which its value is computed in bins of luminosity, bounded by the Bj .
The Vmax method is hard to beat. It is a maximum-likelihood estima-

tor (Marshall et al. 1983), and so has minimum variance for any estimate
based on its statistical model. The errors are uncorrelated from bin to
bin and can easily be estimated – the fractional error in each bin is close
to 1/

√
Nj , where Nj is the number of objects in each bin. More accurate

error estimates can be obtained by a bootstrap. Like any method involv-
ing bins, the estimate is biased because it can only return the average
value over the width of the bin. This bias may be significant in steep
regions of the luminosity function.

The main practical issue is simply the determination of Vmax; as we
have seen, choosing the flux limit of a survey affects the number of
sources that are missed, the number of bogus ones that are included, and
the extent to which faint sources are over-represented. In general these
complicated effects are best examined with Monte Carlo simulations,
as even a rough idea of the thing we want to know (the luminosity
function) suffices to check these biases. In practice the processes of survey
evaluation and calculating the luminosity function are iterative.

With V the volume defined by the distance to the source as its radius,
the distribution of V/Vmax is very useful in estimating the actual limit
of a survey. If the correct flux limit has been used in the calculation
of Vmax for each object, then we would expect V/Vmax to be uniformly
distributed between zero and one. This can easily be checked by, for
example, a Kolmogorov–Smirnov test. In fact this test can be regarded
as a model-fitting procedure to estimate the effective flux limit of a
survey. For large cosmological distances (say those corresponding to
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z > 0.2), this technique is upset by cosmological evolution, the deriva-
tion of which was a driving force behind development of the technique
(Schmidt 1968).

The literature on the Vmax method is, justifiably, vast; Willmer (1997)
provides a summary of recent work, and an entry point.

EXAMPLE Taking the previous simulation based on the Schechter
function, a flux limit of 20 units gives a sample of about 200 objects.
The distribution in luminosity (Fig. 7.7) shows a strong peak at about
5 units, related to the characteristic luminosity l∗ = 10 for the simula-
tion. Faint sources are greatly under-represented, because they are only
above the flux limit for small distances. Applying the Vmax method and
bootstrapping to derive error bars gives Fig. 7.8. Because Vmax is so
small for the faint sources, the few faint sources in the sample give a
large contribution to ρ̂, although the errors are correspondingly large.
For simplicity the luminosity functions have been normalized, so giving
luminosity probability distributions; the two are related by a number
density.

Fig. 7.7. The luminosity distribution for the simulation, in bins 0.5 dex wide,
derived from the Schechter function of the previous example with a flux limit
of 20 units.

A key assumption of the simple form of the Vmax method is that the
objects of interest are uniformly distributed in space. If this is not a good
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Fig. 7.8. The input luminosity function for the simulation (solid line) and
the estimate via Vmax (histogram). The error bars are the interquartile range,
estimated from a bootstrap.

assumption (and it is not in most cosmological investigations) then there
are three ways of making a better estimate.

One simple improvement is to bin the data into narrow ranges of
distance, and estimate the luminosity function within each bin. As we
can see from Fig. 7.5, at large distances we will know nothing about
low luminosities, a consequence of the agnosticism of this approach. The
approach is further limited by the decreasing numbers of objects as the
number of distance bins is increased.

We can further consider spatial dependence by making somewhat
stronger assumptions. Our data is the set of pairs (Ri, Li) and our task
is to compute the bivariate distribution ξ(r, l). Obviously we are not go-
ing to be able to do this without some constraints on the form of ξ. The
usual assumption is that the distribution factorizes, so that

ξ(r, l) = ρ(l)φ(r). (7.6)

This just means that the form of the luminosity function does not change
with distance, but the normalization can. This method will allow us to
extrapolate information from small distances and low luminosities into
the bottom right portion of Fig. 7.5.

In this case, the standard estimator of ρ is the C− method, due origi-
nally to Lynden-Bell (1971) and redeveloped by Cho�loniewski (1987).
This method is not nearly as intuitive as the Vmax method, but it
is important because it is also a maximum-likelihood estimator. The
likelihood function, from which both methods are derived, is given by
Marshall et al. (1983).
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The C− estimator is best described by a piece of pseudo-code:

Arrange the data (Ri, Li) in decreasing order of l

set Ci = 0
for each Lj < Li: add 1 to Ci if this source is within

Vmax(Li)
otherwise, go to the next Lj until finished.

Remarkably, the C-numbers suffice to determine the cumulative lu-
minosity function: ∫ Li

0

ρ(l) dl ∝
∏
k≤i

(
Ck + 1
Ck

)
(7.7)

with
C1 + 1
C1

= 1.

as the starting point. The constant of proportionality is the inverse of the
largest Vmax(Li) in the sample; it can also be obtained by requiring
that the estimated distribution ρ̂ yields a total number of detections
that matches the observed luminosity distribution. If there are ties in
the sample, the simplest remedy is to shuffle the data by small amounts
(say, a tenth of the observational error) so that the C− algorithm can
be applied straightforwardly.

Obtaining the result as a cumulative distribution is slightly incon-
venient, but a conversion to binned form is easy enough. This yields
errors that are more independent from bin to bin, and as usual can
easily be computed by bootstrap. The distance distribution φ (or evolu-
tion function) can also be extracted by similar methods, if required; see
Cho�loniewski (1987) and the cited references.

If parametric forms are known for ρ and φ, then a normal modelling
method can be used. In fact, the C− method obtains an analytic solution
of the form

ξ(l, r) =
∑
i

aiδ(l − Li)
∑
j

bjδ(r −Rj) (7.8)

where distances are denoted by r and R, and the ai and bj are the
parameters of the luminosity distribution and evolution function respec-
tively. The Vmax method is obtained from a similar model via maxi-
mum likelihood, except that the distribution with distance is assumed
to be uniform. Models may be available with far fewer parameters (the
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Schechter function only has three, for example) and then a model fit will
usually give lower random errors. As usual, however, care is needed to
be sure that the model represents reality.

The two approaches we have described are at opposite ends of the
spectrum of assumptions: fitting factorizable functions ξ(r, l), or simply
counting objects in bins of distance. Intermediate between these two are
the ‘free-form’ methods (Peacock 1985; Dunlop & Peacock 1990), which
attempt to fit fairly general functions to the data populating the r-l
plane. Examples of these functions are∑

i,j

ai(log r)i(log l)j ,

where the cross-terms break the factorizability. However, the use of a
relatively small number of terms in the expansion does permit extrapo-
lation into areas of the r-l plane unpopulated by observations.

7.4 Tests on luminosity functions

7.4.1 Error propagation

A luminosity function may be used to derive some other parameter – an
estimate of a contribution to background light, for example. Propagating
the errors, whether from a binned estimate or a model fit, is straightfor-
ward enough, as long as we have a simple analytic relationship between
the desired parameter and the model parameters. If not, a simulation
may be the easiest solution.

If the luminosity function has been derived by maximum likelihood,
then an asymptotic error estimate is available (Section 6.1). Suppose we
have a model, with parameters �α, and we are interested in the error bars
on some function e = f(�α). The ‘unconstrained’ maximum likelihood is
L(�α = �̂α) and the constrained maximum likelihood is L(�α = �̂α, e =
f(�̂α)). The classical theory of the likelihood ratio tells us that

−2 logL
(
�α = �̂α, e = f(�̂α)

)
+ 2 logL

(
�α = �̂α

)
= ∆ (7.9)

is asymptotically distributed as χ2, with one degree of freedom. The
first term may be calculated with numerical routines for constrained
maximization, and so an error bar for e can be obtained. For instance,
a value of ∆ = 4 corresponds to a confidence level of 95 per cent. Avni
(1978) discusses the technique in an astronomical context.
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7.4.2 Luminosity function comparison

We may however have two estimates for different types of objects, and
we may want to know if the luminosity functions are different. Here the
range of possible tests is very wide. Considered as probability
distributions (so normalized to unity) it is possible to apply many of
the tests described in Chapter 5. The chi-square test can be applied
directly to the differences between distributions derived in binned form.
The methodology of other tests may also be applied. For example the
Kolmogorov–Smirnov statistic would be a natural one to use for a cumu-
lant derived by the C− method. In this case, however, the distribution
of the statistic (under the null hypothesis) would have to be derived by
a Monte Carlo simulation of the experiment.

Another type of test is based on the likelihood ratio (Jenkins 1989),
and is applicable to cases where the luminosity functions have been
derived in parametric (or binned) form from a maximum-likelihood anal-
ysis. This idea is discussed further below.

7.4.3 Correlation: multivariate luminosity functions

A further sort of test is correlation, leading on to the subject of mul-
tivariate luminosity functions. If we generate a sample (say from X-ray
observations) we obtain a catalogue which we may then resurvey at, say,
radio wavelengths. Retaining the objects which are detected at both
wavelengths, we can construct a bivariate luminosity function ρ(lX, lR).
The most straightforward way of doing this is by a generalization of the
Vmax method. To obtain the Vmax for each object, compute its Vmax for
each of the variables for a particular object, and take the minimum. The
justification is simply that an object will drop out of the catalogue if it
is below the detection limit in either band (Schmidt 1968).

Multivariate luminosity functions take much effort to construct. How-
ever, they do provide a solution to the problem of bogus luminosity –
luminosity correlations, mentioned earlier in this chapter. The main
problem is the increase in the number of bins: four times as many for
a bivariate function, nine times as many for a trivariate. These bins
become sparsely populated with objects.

If we have an estimator of (say) a bivariate luminosity function of
X-ray and radio luminosity, three possibilities are available to see if lX
and lR are correlated. The easiest is by simple inspection of ρ(lX, lR)
which may show an obvious ‘ridge line’. Another possibility is that some
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statistic, say the median lX, computed from the luminosity function in
narrow slices of lR, will correlate with lR. Here we could use end-to-
end Monte Carlo simulations of a correlation coefficient to establish the
significance of any result.

EXAMPLE Phillips et al. (1986) reported an emission-line survey of an
optical magnitude-limited sample of nearby galaxies. They derived an
emission-line luminosity function, binned into one-magnitude ranges of
absolute magnitude. Dividing by the optical luminosity function gives an
estimate of the fraction of galaxies that are emitting at a given emission-
line power. Moreover, integrating these normalized luminosity functions
gives an estimate of the fraction of galaxies that have emission-line power
anywhere in the range sampled by the survey.
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Fig. 7.9. Top left and right, bottom left: estimates of the normalized emission-
line luminosity function, derived from the Vmax method. Bottom right: the
integral of the normalized functions, plotted against absolute optical magni-
tude. The fraction of galaxies producing emission lines appears to fall with
increasing optical luminosity.

As seen in Fig. 7.9, the emission-line luminosity function shifts to
higher powers at brighter absolute magnitudes. Clearly the Malmquist
bias of the original sample would make it impossible to make an unbiased
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estimate of the emission-line luminosity function, which is why the data
were binned into magnitude ranges.

These data have been corrected, following an erratum to the origi-
nal paper which illustrates the pitfalls of this type of analysis. For the
sample on which the emission-line survey was based, the normalization
of the optical luminosity function depends somewhat on distance. But,
being a flux-limited sample, the emission-line luminosity correlates with
distance too. This means that normalizing the emission-line luminosity
function must take into account ‘which’ optical luminosity function to
use, depending on the spread of distances in each magnitude bin.

Finally we need to remember that correlation is just one case of statis-
tical dependence. Variables may be related non-linearly – for example,
ρ(lX, lR) may be steeper (as a function of lX) at larger lR, without chang-
ing its median. Quite generally, what we want to know is whether

ρ(lX, lR) = ρX(lX)ρR(lR)

is statistically plausible.
Probably the best tests to use in this case are those based on the likeli-

hood ratio. Suppose we fit both factorizable and unfactorizable models of
the luminosity function, using maximum likelihood. Call the maximum
likelihood in each case Lf and Luf . The log likelihood ratio

R = log
Lf

Luf
(7.10)

will give an indication of which model is better – we have encountered
this general idea in a Bayesian context in Chapter 6. If we are fitting
many parameters (and more than one poses difficulties), it is easier to
use the maximum of the likelihood to derive the ratio. Evidently the ra-
tio will depend on how many free parameters we have in the competing
models; classical results tell us that R is distributed asymptotically as
chi-square, with a number of degrees of freedom that depends on the
number of free parameters in each model. As usual, a pragmatic conclu-
sion is not to reach for the tables of chi-square, but rather to regard R
as a potentially useful test statistic, and derive its distribution by Monte
Carlo for the problem to hand. This approach is described by Schmitt
(1985) in the context of survival analysis, but is applicable whenever a
likelihood approach is used.
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7.5 Survival analysis; censored data

When we produce a primary sample of objects in astronomy, we do
so by making a series of measurements and picking out the ones we
regard as detections. The results often find their way into catalogues, of
which venerable examples are the New General Catalogue or the 3CR
Catalogue. Objects which are not in the catalogue – usually because
they are below the flux limit – are simply unknown. Since in general we
do not know if there is anything there at all, quoting an upper limit for
every position or wavelength surveyed is not a useful thing to do.

However, frequently an established primary sample is then resurveyed
in some other way; we may investigate the Hα luminosity of galaxies in
the NGC, for instance. In this case, it is very useful to quote upper limits
for the undetected galaxies, because we know that such limits refer to
real objects. Sometimes a resurvey may yield lower limits as well. If we
were to measure X-ray and radio flux densities for the NGC galaxies we
would probably obtain both upper limits and lower limits for the radio
to X-ray spectral index.

The branch of statistics that deals with limits is called survival ana-
lysis. The term arises in medical statistics, where at the conclusion of
a study some of the subjects may have survived and some died. For
presumably unrelated reasons, measurements which are only limits are
called ‘censored’. The methods of survival analysis were introduced into
astronomy by Avni et al. (1980), Feigelson & Nelson (1985), Schmitt
(1985), and Isobe, Feigelson & Nelson (1986). Other astronomers had
independently discovered aspects of the technique, but these papers offer
the best introductions. A useful text is Kalbfleish & Prentice (2002).

Survival analysis offers (i) estimation of intrinsic distributions (such
as luminosity functions), (ii) modelling and parameter estimation, (iii)
hypothesis testing and (iv) tests for correlation and statistical indepen-
dence, for cases in which some of the available measurements are limits.
The key assumption is that the censoring is random; this means that
the chance of only an upper limit being available for some property is
independent of the true value of that property. This assumption is often
met for flux-limited samples. For an object of true luminosity L and
distance R, the condition for censoring is that

L

R2
< Slim

the flux limit for the survey. If R is a random variable, independent
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of L, and Slim is fixed, then the chance of censoring is independent of
L. Evidently a careful examination of the way in which a sample was
selected is necessary to determine that survival analysis is applicable.

7.5.1 The normalized luminosity function

To be definite, suppose we select a sample of objects at wavelength
A and then resurvey the sample at wavelength B. For some objects,
we will achieve a detection and so have a measurement of luminosity
LB ; for others, we will only have an upper limit LU

B . The methods of
survival analysis use the detections, and upper limits, to reconstruct the
distribution of LB . This will be proportional to the luminosity function
ρB . However, it is vital to remember that the censoring has to be random.
Also, the luminosities LA will have Malmquist bias; if LA and LB are
correlated, then of course the estimate of the distribution of LB will also
be biased. In general it is safest to calculate the estimate in narrow bins
of LA. Indeed this is one way of checking for a relationship between LA

and LB in the sample, as we shall see.
Two equivalent algorithms are available for computing the normalized

luminosity function. If we are happy to bin the data (both the detections,
and the upper limits) into intervals of LB , the estimated probability per
bin p̂k can be derived by a recursive relation due to Avni et al. (1980):

p̂k =
nk

M − ∑k
j=1

(
uj

1 − ∑j−1
i=1 p̂i

) . (7.11)

This intimidating formula in fact results from a straightforward
maximum-likelihood argument. (Avni et al. give an expression for the
likelihood function; it can be useful in various tests.) In the formula nk

is the number of detected objects in bin k; uk is the number of upper
(or lower) limits allocated to bin k; and M is the total number of obser-
vations (detections plus limits). To use the formula with upper limits,
number the bins from large to small values of the observed quantity;
conversely for lower limits. In either case, undetected objects must be
counted in higher-numbered bins than the bin where their limit is allo-
cated. Calculation begins with bin 1, for which the solution is

p̂1 =
n1

M − u1
.

Allocating limits to bins takes a little care. For narrow bins the scheme
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used should not matter, but for wider bins a little experimentation may
be instructive; the problem here is bias, as is usual with wide bins. This
method will produce a normalized distribution as long as the highest-
numbered bin contains detections, not limits. This makes sense; in the
case of upper limits, the highest-numbered bin is the faintest, and if
there are limits in the faintest bin we have no way of using them.

EXAMPLE Here are some data from Avni et al. (1980), giving the
distribution of the X-ray to optical luminosity spectral index for quasars.
In this case the uk are lower limits corresponding to no detections in the
X-ray band and the k are the indices of equation (7.11).

k nk uk p̂k K̂k

1 2 0 0.057 0.057
2 1 1 0.029 0.086
3 4 1 0.122 0.204
4 4 0 0.122 0.326
5 3 1 0.096 0.418
6 6 0 0.191 0.612
7 3 3 0.128 0.709
8 1 1 0.051 0.758
9 2 0 0.102 0.879

10 1 1 0.102 0.939

We see from Fig. 7.10 that inclusion of the upper limits does give a
little more information. Since the method should extract the distribution
that was subject to the censoring, the reconstructed distribution will be
proportional to the luminosity function – in this case, the number of
quasars per unit volume with each spectral index. As Avni et al. discuss
in detail, much depends on the selection of the sample in the first place.
Here an optically selected sample was subsequently surveyed at X-ray
wavelengths, and only at X-rays were upper limits available; the original
selection will therefore have biased the sample to optically luminous
quasars.

Distances were available for all the objects in this sample, so that in
fact a Vmax method could have been used to reconstruct the luminosity
function (or more accurately, the distribution function of spectral index).
The retention of upper limits in the analysis means that no distances
were necessary to reconstruct the distribution. (The spectral index itself
does not require a distance, unless K-corrections are considered.)
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Fig. 7.10. Distribution of spectral indices (optical to X-ray) for a sample of
optically selected quasars, showing the observed distribution (dashed boxes)
and the estimated true distribution (solid boxes) after including the lower
limits.

An alternative estimate of the cumulative distribution is provided
by the Kaplan–Meier estimator. The Kaplan–Meier estimator is better
known in the wider statistical world, and it is a maximum-likelihood
estimator just like the Avni estimator. It has the advantage of not relying
on any binning scheme. However, being cumulative, errors are highly
correlated from one point on the estimate to the next.

K̂(Lk) = 1 −
k−1∏
i=1

(1 − di/ni)δi (7.12)

is the Kaplan–Meier estimator of the cumulative probability distribu-
tion, at the kth observation. As with the Avni estimator, this formula
will work for either upper or lower limits.

For lower limits, arrange the data in increasing order. Then di is the
number of observations of Li, and ni is the number of observations equal
to or larger than Li. By ‘observation’ we here mean either detections or
non-detections. δi is 1 for a detection and zero for an upper limit. For
upper limits, arrange the data in decreasing order. Then di is the number
of observations of Li and ni is the number of observations equal to or
smaller than Li. In both analyses, ties in the detections can be removed
by shuffling the data by amounts small compared to observational error.

EXAMPLE Using the data from the previous example, we can calculate
the Kaplan–Meier estimator for the spectral indices. The results are in
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Fig. 7.11. The Kaplan–Meier estimator (solid line), compared to the cumulant
derived from the Avni estimator (dots).

the ‘K̂k’ column in the data table of the previous example. If we form
a cumulant from the Avni estimator, we find that the two results are
very similar (Fig. 7.11), as expected since both are maximum-likelihood
estimators. The treatment of the upper limit in the last bin follows a
slightly different convention in the two methods.

Since these estimators are derived from a likelihood function, we might
expect that there would be a formula for the variance on the estimate.
This is indeed the case; it is called Greenwood’s formula, and we refer
you to Feigelson & Nelson (1985) for details. But being an asymptotic
formula, it is not terribly useful in practice. Fortunately, we can estimate
errors in other ways – either by a direct Monte Carlo simulation, or by
a bootstrap on the sample we have. Bootstrapping censored data is not
well investigated (Feigelson & Nelson 1985) but we have found it to be
satisfactory. In their review paper on the bootstrap, Efron & Tibshirani
(1986) work through an example of bootstrapping censored data.

EXAMPLE Returning to our simulated field-galaxy sample selected at
one wavelength, we find on ‘resurveying’ at another wavelength that we
have 67 detections and 317 upper limits. The simulation allocated lumi-
nosities from independent Schechter functions at both wavelengths. Bin-
ning the data gives the histogram shown in Fig. 7.12; note that upper
limits are counted in one bin lower down than would be the case for
equivalent detections. Applying the Avni estimator, we find a luminosity
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Fig. 7.12. The luminosity distribution, and upper limits, for the field-galaxy
simulation; there are 67 detections and 317 upper limits. The bins (dashed)
for the upper limits are slightly displaced for clarity.
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Fig. 7.13. The luminosity probability distribution (black dots), and theoreti-
cal distribution (solid line), together with bootstrapped error estimates (the
interquartile range is shown). The lighter dots are a Vmax estimate, displaced
slightly in luminosity for clarity.

probability distribution (Fig. 7.13) that agrees well with the input theo-
retical distribution. The error bars are derived from a bootstrap, and the
errors are reasonably uncorrelated from one bin to the next. The lumi-
nosity function itself is estimated by finding the constant of proportion-
ality (galaxies per unit volume) which gives the correct total number of
observed galaxies. This means matching the estimated luminosity prob-
ability distribution to the luminosity distribution η. (Do not confuse the
luminosity probability distribution with a luminosity distribution; the
terminology is unhelpful, but is, unfortunately, established.)
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Figure 7.13 also demonstrates that Vmax and survival analysis results
are in close agreement. This is what we should expect; both are maximum-
likelihood estimators, based on rather similar models, and the maximum-
likelihood estimator for a given model is unique. The advantage of sur-
vival analysis is not that it gives better estimates of luminosity functions,
but rather that it will help in correlation analysis, or the reconstruction
of distributions without using distances (such as the spectral index dis-
tribution of Fig. 7.10 and 7.11).

7.5.2 Modelling and parameter estimation

Once we have obtained a luminosity probability distribution (ρ̂(LB) in
our example) we may well want to estimate some other quantity from
it, or decide if it differs from some other distribution. The same remarks
apply as in the case of an ordinary luminosity function, except that we
must never forget the Malmquist bias of the primary sample.

One useful technique, given enough data, is to divide the data into
bins of LA and compute a distribution of LB for each bin; call these
ρ̂(LB | LA). With luck (and enough data) we may be able to estimate a
location parameter, say a median, at each slice of LA. This sort of anal-
ysis may well answer the question of whether LA and LB are correlated.
Error analysis, as usual, can be via bootstrap or direct Monte Carlo. We
may also need to compare estimates, say ρ̂1(LB) and ρ̂2(LB). Perhaps
sample 1 consists of one morphological type, and sample 2 of another.
Again, we have to be extremely careful of Malmquist bias; the samples
may have different distributions of LA, and any difference in the lumi-
nosity distributions of LB may just reflect this, plus LA–LB correlation.

EXAMPLE Sadler, Jenkins & Kotanyi (1989) faced a representative
problem in this area. They had radio and Hα measurements of a sample
that was originally selected at optical wavelengths. Many of the radio-
and Hα measurements were upper limits, and moreover there was good
reason to think that both of these variables were intrinsically correlated
with optical luminosity.

Sadler et al. divided the data into narrow bins of optical absolute
magnitude, and then computed distributions of radio luminosity and
Hα luminosity, using survival analysis.

As can be seen in Fig. 7.14, the 30th percentile of these distribu-
tions correlates well with absolute magnitude in each case. However, it



7.5 Survival analysis; censored data 169

− 22 − 21 − 20 − 19 − 18 − 17 − 16
MB

30

31

32

33

34

lo
g

po
w

er
er

gs
s−1

Fig. 7.14. The sample of Sadler, Jenkins & Kotanyi (1989): the 30th-percentile
radio power (light symbols) and emission-line power (dark symbols), as a func-
tion of absolute magnitude.

is clearly not easy to establish whether radio and Hα luminosity are
correlated, given this mutual correlation. Sadler et al. used Schmitt’s
factorizability test to show that radio and Hα emission did not correlate.

Error estimates on parameters derived from distributions can be cal-
culated analytically, by likelihood ratios, or by simulation, as discussed
for luminosity functions (Section 7.4.1).

7.5.3 Hypothesis testing

If we wish to test two distributions of observations against each other,
using detections as well as limits, we have a number of choices. In all
cases, however, we have to be aware of how our samples were selected in
the first place, in case this forces differences to exist. In general we will
expect a problem whenever the variable of interest is correlated with the
variable used to define the sample. The Malmquist bias of the defining
variable will then be manifest in the other variable. If the bias is not
the same for the two samples (and it depends on observational method)
then a bogus difference will be detected. Feigelson & Nelson (1985) give
a useful introduction to the test statistics available. Distributions for
these are known under the null hypothesis, in the asymptotic limit; it is
probably best for derive small-number distributions by Monte Carlo or
bootstrap simulations.

Some ideas for the test statistic are familiar from the Wilcoxon–Mann–
Whitney test (Section 5.4.3). Suppose our two samples are drawn from
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the same probability distribution. If we combine the two samples we want
to test and order them in size, intuitively we expect the observations
from the two samples to be randomly intermingled. If the ‘rank’ (position
in the sorted list) of observations from one of the samples were to be, say,
systematically low, we would suspect a difference. Evidently a similar
procedure could be used for data containing limits, as we would expect
limits to be randomly intermingled in just the same way. Constructing a
test statistic depends on the penalty we assign for non-random intermin-
gling, and how we distribute this penalty between detections and limits.
Feigelson & Nelson (1985) described two variations on this idea, the
Gehan and log-rank tests. A major concern in using these tests must be
the distribution of the limits, as these are affected both by observational
technique and by intrinsic differences between the samples. As always,
the result of the test will be to give the probability that the differences
between the distributions of the data is due to chance. Asymptotic distri-
butions are known for the statistics, but simulation will be more reliable
for small samples.

The Gehan test is probably the simplest to use. We describe the pro-
cedure for the case of no ties, which can always be arranged for experi-
mental data; the test is somewhat simpler in this case.

Suppose we have two samples of data, labelled A and B, including
both detections and limits. Combine the samples.

Arrange the detections in order; ascending order for data with lower
limits, descending order for data with upper limits. Number the obser-
vations; this gives each datum a rank. Call the ith rank for data from
sample A riA.

For the ith detection from sample A, calculate niA, the number of
observations of A which are to the right. By ‘right’ we mean data that
are greater than or equal to the ith observation (in the case of lower
limits) or less than or equal to the ith observation (in the case of upper
limits). Thus this part of the calculation uses the limits.

The number of limits from sample A between detection i and detection
i + 1 is miA.

The Gehan statistic is then

Γ =
∑

detections in A
(niA − riA) − riAmiA. (7.13)

This is asymptotically distributed as a Gaussian of mean zero and
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variance

σ2 =
∑

detections
niAniB (7.14)

in which the assumption of ‘no ties’ has simplified the formula given in
Feigelson & Nelson.

EXAMPLE We simulated two samples of objects, one drawn from the
field-galaxy Schechter function with a characteristic luminosity L∗ = 10,
and the other with L∗ = 30. In one sample there were 23 detections
and 149 limits; in the other, 45 detections and 167 limits. The estimated
luminosity functions are in Fig. 7.15, and show an appreciable difference.
The Gehan test gives Γ/σ = 3.3, significant at the 0.1 per cent level (if
the asymptotic approximation holds for these small numbers, this far
out in the wings).
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Fig. 7.15. Luminosity functions for two simulated samples drawn from field-
galaxy Schechter functions (see text), estimated by the Avni method with
bootstrap errors. The error bars are the interquartile ranges.

Other possibilities (Feigelson & Nelson 1985) include a species of
Kolmogorov–Smirnov test on the estimated cumulative distributions.
The theoretical (and notational, and naming) situation is very compli-
cated; different tests are sensitive to different things, and the best advice
is to try each on Monte Carlo simulations of the problem to hand.
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One quite simple test (Jenkins 1989) is based on the likelihood func-
tion for the Avni estimator. This test compares the likelihood of two
possibilities. In one, the pooled data from both samples are used to es-
timate a single distribution. In the other, the separate sets of data are
used to derive two distributions. The test takes into account the larger
number of parameters that are available when dealing with the data
separately, and has the same theoretical basis as the methods described
for estimating confidence limits on parameters of luminosity functions
(Avni 1978). In detail, if we have Avni estimates p̂A

k and p̂B
k for two

samples A and B, plus an estimate p̂k for the pooled sample, we can
then compare the log likelihoods with the statistic

−2 log Λ = − 2


 k∑

j=1

nj log p̂j +
k∑

j=1

uj log
k∑

i=j

p̂i




+ 2


 k∑

j=1

nA
j log p̂A

j +
k∑

j=1

uA
j log

k∑
i=j

p̂A
i




+ 2


 k∑

j=1

nB
j log p̂B

j +
k∑

j=1

uB
j log

k∑
i=j

p̂B
i


 (7.15)

in the same notation as before. The test works only if the separate
and pooled data are binned into the same k cells, each with at least
one detection; in this case the distribution of −2 log Λ is asymptotically
χ2 with k − 1 degrees of freedom. Experimentally, it is found that it
can be quite a long way from χ2 with typical amounts of data, and
it is best to simulate the distribution. The test is simple to use if the
Avni estimators have already been computed; the main nuisance is the
need to ensure that the rightmost, or highest-numbered bin, does not
contain only a limit. This can be achieved by making this bin arbi-
trarily large, but it is best to alter the binning scheme in the same
way for all the distribution function estimates that are used in the
test.

7.5.4 Testing for correlation or statistical independence

Testing for correlation or statistical independence is an area in which
survival analysis has something very useful to offer. This is because it
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deals automatically with the pernicious luminosity–distance correlation
that appears in flux-limited samples. Recall that to test for correlation
using survival analysis, we need a primary sample, followed by obser-
vations of two further parameters. As noted, the Malmquist bias of
the primary sample may well affect any conclusions based on resur-
veying the sample. If we can safely focus on correlations of the two
new parameters only, thus assuming that mutual correlations with the
primary selection parameter do not matter, then we may use various
survival-analysis regression techniques. Because these incorporate lim-
its, they deal automatically with mutual correlations with distance –
the bane of any correlation analysis of intrinsic parameters. It remains
crucial that the two sets of data are censored in the same way and
the distribution of the limits amongst the data can affect the results of
tests.

Isobe, Feigelson & Nelson (1986) gave a detailed review, essential read-
ing for application of these types of test. Broadly, we may test for cor-
relation or we may fit regression lines. Isobe et al. carried out tests with
simulations of flux-limited samples and found several methods which do
avoid the trap of the correlation with distance.

Of these methods, the generalized Kendall rank correlation test is
fairly simple to use. We start with n+m observations of pairs (Xi, Yi). In
n of these, both variables are detected and the pair is completely known;
in the remaining m, either or both of the variables may be censored. Each
variable is then ranked. We give a procedure for data with upper limits,
but an obvious alternative will work for lower limits. In pseudo-code:

create a square matrix a of size n + m× n + m

initialize it to zero

for each Xi

if Xj > Xi and Xj is detected, set aij = 1
if Xj < Xi and Xi is detected, set aij = −1

Repeat this procedure to create a matrix b for the y-variable. This
method is assigning a very simple rank, depending on whether a variable
is definitely known to be bigger than, or less than, the one with which
it is being compared.

The Kendall statistic is just

κ =
n+m∑
i=1

n+m∑
j=1

aijbij (7.16)
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and is asymptotically Gaussian, of variance

σ2 =
4

(n + m)(n + m− 1)(n + m− 2)

×


n+m∑

i=1

n+m∑
j=1

n+m∑
k=1

aijajk −
n+m∑
i=1

n+m∑
j=1

a2
ij




×


n+m∑

i=1

n+m∑
j=1

n+m∑
k=1

bijbjk −
n+m∑
i=1

n+m∑
j=1

b2ij




+
2

(n + m)(n + m− 1)

n+m∑
i=1

n+m∑
j=1

b2ij

n+m∑
i=1

n+m∑
j=1

a2
ij . (7.17)

For an extension of this test to partial correlation, see Akritas & Siebert
(1996).

EXAMPLE In our usual simulated galaxy sample, we select at one
wavelength and then observe at two more. Each of the assigned luminosi-
ties is drawn from a Schechter function, and is independent of the others.
Retaining the upper limits only, we obtain the convincing ‘correlation’
between data at the two new wavelengths shown in Fig. 7.16. (There
are 87 detections of both variables, out of a primary sample of 349.)
However, the Kendall rank correlation calculation yields κ/σ = 0.56,
showing that the use of upper limits has automatically retrieved the
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Fig. 7.16. The apparent correlation between two new luminosities in the dou-
bly resurveyed sample.
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true non-correlation. A correlation was never detected in repeated runs
of the simulation. The distribution of κ, for sample sizes of around 30,
was quite markedly non-Gaussian. For samples of typical astronomical
size (= small), it would be worth estimating the distribution of the test
statistic by Monte Carlo.

Quite often in astronomy, intrinsic parameters are so widely scattered
that it is unrealistic to look for a correlation of X with Y , in the sense
of trying to identify some linear relationship plus scatter. It may make
more sense to ask if the variables are statistically independent, a more
agnostic question. This amounts to asking if the probability distribution
ρ(x, y) can be factorized into ρx(x)ρy(y). Schmitt (1985) developed a
useful test for this based on the Avni estimator; it is rather fiddly to
use, and there is a detailed discussion of the practical issues by Sadler,
Jenkins & Kotanyi (1989).

7.6 The confusion limit

In many cases of astronomical interest, we find that faint objects are
much more numerous than bright ones. Faint objects therefore crowd
together; ultimately they start to be unresolved from each other and
our signal becomes a mixture of objects of various intensities, blended
together by the point-spread function of our instrument. Examples in-
clude radio sources, spectral lines in the Lyman-α forest, and faint galax-
ies observed in the optical.

The notion of the confusion limit was first developed during a mem-
orable controversy amongst radio astronomers and cosmologists in the
1950s, the source-count – Big Bang – Steady State controversy – see
Scheuer (1991) for a historical perspective. The root of the problem was
instrumental, wildly different source counts being obtained at Sydney
(Mills Cross; essentially filled aperture) and Cambridge (interferometer).
In an enviable paper written at the heart of the storm, Scheuer (1957)
analysed the statistics of the source counts and showed that the Cam-
bridge results were seriously affected by confusion. Because of the wide
beam of the interferometer, many radio sources were contributing to each
peak in the record; these had erroneously been interpreted as discrete
sources.
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EXAMPLE To show the pronounced effect of confusion, in Fig. 7.17
we show a simulation of a one-dimensional scan of sources obeying a
Euclidean source count N(f) ∝ f−5/2. The beam is a simple Gaussian
and there is, on average, one source per beam. (The source count has to
be truncated at the faint end to avoid infinities, of course.) Even in this
relatively benign case we see that the apparent source count is altered.
A simple count of the peaks in the record gives a maximum-likelihood
slope for the source count of −1.8 with standard deviation 0.3 (Section
6.1), very different from the true value. In the case of an interferometer,
the presence of sidelobes biases the faint counts to much steeper than
true values; the apparent cosmological evolution this implies was the
subject of the original controversy.
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Fig. 7.17. A confusion simulation at a level of one source per beam area. The
input sources are shown as vertical lines, with the solid line representing the
response when observed (convolved) with a Gaussian beam.

The technique developed by Scheuer is known to astronomers as
‘p(D)’, or ‘probability of Deflection’. The word ‘deflection’ refers to the
deflections of the needle of a chart recorder and is now hallowed by long
usage. However the p(D) technique has been used in radio (Wall & Cooke
1975), X-ray (Scheuer 1974), infrared (Jenkins & Reid 1991) and Lyman-
α (Webb et al. 1992) data analysis. The method derives the probability
distribution of measurements in terms of the underlying source count,
which may be recovered by a model-fitting process. Its benefit is that
information is obtained from sources which are much too faint to be
‘detected’ as individuals.

Full details of p(D) are given in the papers of Scheuer (1957), Scheuer
(1974) and Condon (1974). However, the steps in the derivation of the
distribution are interesting and we outline them here.
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Consider a one-dimensional case, for simplicity. A source of brightness
f is observed with a beam, or point-spread function, denoted Ω(x). Here
x is the distance (in angle, wavelength or whatever) from where our
instrument is pointed. We measure an intensity

s(x) = fΩ(x).

If the sources have a source count N(f), so that the number of sources
of intensity near f per beam is∫

N(f)Ω(x) dx

then the observed source count, for just one source in the beam at a time,
is the result of a calculation involving conditional probability. From this
we obtain p1(s), the probability of an intensity s resulting from just one
source somewhere in the beam. Of course, a given deflection D could
arise from many sources adding together in the beam. Therefore we
need not just p1 but p2, p3, . . . If the sources are randomly distributed
we expect their numbers to follow a Poisson distribution and then

p(D) =
∞∑
k=1

pk(s)
µk

k!
e−µ

in which µ is the mean number of sources per beam.
To do this summation we need pk(s); this is the probability distribu-

tion of an intensity s which is the sum of k intensities drawn from the
distribution p1. In Section 3.3.3 we showed that the probability of a
sum was given by the autocorrelation of the distribution of the terms of
the sum, assuming them to be identically distributed. This means that
there is a simple relationship between the Fourier transforms:

Pk(ω) = P1(ω)k.

Here upper case denotes a Fourier transform and ω is the Fourier vari-
able.

Putting all this together, we get Scheuer’s result for the Fourier trans-
form of the p(D) distribution

P (ω) = exp(R(ω) −R(0)) (7.18)

in which

r(s) =
∫

N

(
s

Ω(x)

)
dx

Ω(x)
(7.19)

contains the source count N. R is the Fourier transform of r.
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Analytic solutions are available for r̃(ω) when N(f) is a power law
(Condon 1974), but the inverse transform to get p(D) has to be done
numerically. In real life we often need to take account of differential
measurement techniques in which measurements from two positions are
subtracted to avoid baseline errors (Wall & Cooke 1975; Wall et al. 1982).
In addition the ideal p(D) is always convolved with a noise distribution.
All of this needs to be included in the modelling process which recovers
the parameters of N(f). The derivation of source counts from p(D) is
another technique in which population characteristics are derived from
observations of discrete objects or features without forming an object
list or catalogue.

EXAMPLE Wall & Cooke (1975) applied the p(D) technique for filled-
aperture telescopes to extend the 2.7-GHz radio source counts to much
fainter levels than could be achieved by identifying individual sources;
their results are shown in Fig. 7.18. A more sophisticated version of
the technique was subsequently used at 5 GHz (Wall et al. 1982), and
data from this experiment are shown in the minimum-χ2 model-fitting
example of Fig. 6.6. The technique continues to be used to extend source
counts (for example, Windhorst et al. 1993), and the counts from deeper
survey observations carried through subsequently have invariably shown
agreement with the p(D) estimates.
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Fig. 7.18. The 2.7-GHz counts from Wall & Cooke (1975): the darker line is
derived from ordinary source counts with error bars not much wider than the
line, while the p(D) results are shown in grey, the dashed lines representing
one standard deviation of the fitted parameters.
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Exercises

In the exercises denoted by (D), datasets are provided on the book’s
website; or create your own.

7.1 Source counts and luminosity function. Derive the rela-
tionship between the number count and the luminosity function
for a general luminosity function; show that the result takes a
simple form for a power-law luminosity function.

7.2 Noise and source-count slope. Generate data from a power-
law source count and add noise; by a maximum-likelihood fit,
investigate the effect of the noise level on the inferred source-
count slope. Use the results from Exercise 1 to show the effect
of the noise on the luminosity function.

7.3 Survey completeness and noise. Make a 1D Gaussian sig-
nal plus noise plus baseline, fit a profile, and verify complete-
ness versus signal-to-noise ratio. Do the same for an empty
field.

7.4 Reliability and completeness. Calculate the relationship be-
tween reliability and completeness for an exponential noise dis-
tribution. This shows the effect of wide wings on the noise dis-
tribution. Compare with the result for a Gaussian.

7.5 Vmax method (D). Simulate a flux-limited sample of galaxies
by populating a large volume of space with galaxies drawn from
a Schechter distribution. (The cumulative form of the Schechter
distribution is rather complicated so you may prefer to use a
power law.) Apply the Vmax method and see if you can recover
the input distribution. Check the simple

√
N error bars against

repeated runs of the simulation.
7.6 Error estimates (D). Adapt the simulation of Exercise 5 to

produce bootstrap error estimates. Compare these with
√
N and

Monte Carlo estimates, especially for the case of few objects per
bin.

7.7 Luminosity–distance ‘correlation’ (D). Adapt the simula-
tion of Exercise 5 to the case for which each galaxy has two in-
dependent luminosities assigned to it (at different wavelengths,
say). Check that these luminosities show a bogus correlation
unless upper limits are included in the analysis. Adapt the sim-
ulation to produce intrinsically correlated luminosities and show
that the Kendall test can detect these correlations.
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7.8 Parameter error estimates. Use the X-ray and radio data
from Avni et al., as given in the example in the text, to work
out the mean spectral index in their survey. Using their likeli-
hood function as a starting point, work out error bounds on the
mean, using a likelihood ratio. You will need to use a Lagrange
multiplier in the maximization of the likelihood.

7.9 Source counts from confusion (D). In a confusion-limited
survey where there are potentially several sources per beam, the
apparent source count can be very different from the true one.
On the assumption that sources can lie anywhere in the beam
and are not clustered, derive the result for the source count

r(s) =
∫

N

(
s

Ω(x)

)
dx

Ω(x)

as given in Section 7.6.
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Sequential data – 1D statistics

The stock market is an excellent economic forecaster. It has
predicted six of the last three recessions.

(Paul Samuelson)

In contrast to previous chapters, we now consider data transformation,
how to transform data in order to produce better statistics, either to
extract signal or to enhance signal.

There are many observations consisting of sequential data, such as
intensity as a function of position as a radio telescope is scanned across
the sky or as signal varies across a row on a CCD detector, single-slit
spectra, time-measurements of intensity (or any other property). What
sort of issues might concern us?

(i) baseline detection and/or assessment, so that signal on this base-
line can be analysed;

(ii) signal detection, identification for example of a spectral line or
source in sequential data for which the noise may be comparable
in magnitude to the signal;

(iii) filtering to improve signal-to-noise ratio;
(iv) quantifying the noise;
(v) period-finding; searching the data for periodicities;
(vi) trend-finding; can we predict the future behaviour of subsequent

data?
(vii) correlation of time series to find correlated signal between antenna

pairs or to find spectral lines;
(viii) modelling; many astronomical systems give us our data convolved

with some more-or-less known instrumental function, and we need
to take this into account to get back to the true data.

181
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The distinctive aspect of these types of analysis is that the feature
of interest only emerges after a transformation. Take filtering as a sim-
ple example; after smoothing, we are able easily to see the feature of
interest in a previously noisy spectrum. But what now? Further mod-
elling is suggested after examining the cleaned-up data, and ideally
this will be done following the Bayesian methods of Chapter 6. In this
case, the smoothing may only be used in the exploratory stage of the
analysis.

Alternatively, the transformation may be an integral part of the final
analysis. If we were looking for periodicity in a dataset, the Fourier
transform would be an obvious first step, following by model fitting
to the peaks so revealed. In this case, the statistical properties of the
transform are very important to the modelling step.

In this chapter we discuss by means of examples the statistical and
computational techniques employed. We refer to sequential data as
‘scans’ – they are in many cases, but the sampling may be in the
frequency/wavelength domain (spectra), in the time domain (time series),
or in the spatial domain (true scans).

The computational aspects alone would justify a large textbook, and
we will only give the briefest of outlines; correspondingly, statistical de-
tail here is thinner than in other chapters. Instead, we concentrate on
general advice on the statistical issues involved. An excellent detailed
guide at a graduate level is Bendat & Piersol (1971).

8.1 Data transformations, the Karhunen–Loeve transform,
and others

We are concerned here with expansions in orthogonal functions, a method
most familiar from the Fourier series. Moving from one presentation of
the data to another may have advantages; noise may be isolated, or
features of importance emphasized. Such transformations have a close
affinity with principal component analysis; the main features can be
extracted from a baffling jumble of data. However, what we extract de-
pends entirely on the basis set we use. How to use data transformations
is a craft, with experience playing a large part as guide.

We start with a scan f(t); t is some kind of sequential or ordered
index, time, space, or wavelength perhaps. Invariably f is sampled at
discrete intervals, and so our data are a finite set {f(t1), f(t2), . . .}. From
a statistical point of view, this set will be described by some sort of
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multivariate distribution function; to make much progress, we hope it
will be Gaussian, in which case the covariance matrix of the f ’s will be
a sufficient description.

We start out by ignoring the (vital) differences between finite-length
scans, sampled at discrete intervals, and introduce the ideas with an
idealized case. In certain (mathematical) circumstances, a long scan f(t)
may be represented by

f(t) =
∫ ∞

−∞
F (ω)B(t, ω) dω (8.1)

in which the basis functions are B and the expansion coefficients are F .
For finite lengths of data, we have instead

f(t) =
∑
i

Fωi
B(t, ωi), (8.2)

in which the variable ω changes from continuous to discrete. To be useful,
we need transformations which can be reversed; in these cases we get
equations of the form

Fωj
=

∑
i

ftiB′(ti, ω) (8.3)

with sampling at discrete values of t, and with some simple relationship
between B and B′. If B is the exponential function, we have the familiar
Fourier transforms and series.

Before we specialize to the Fourier case, we should use this notation
to indicate a way of constructing transformations other than the dom-
inant Fourier transforms. If our scan f is a random variable, then the
coefficients F are random too, and will have different values for each of
the (discrete) values of ω, labelled ω1, ω2, . . . .

The covariance matrix of the coefficients

CF =



E[Fω1Fω1 ] E[Fω1Fω2 ] . . .

E[Fω2Fω1 ] E[Fω2Fω2 ] . . .
...

...
. . .


 (8.4)

tells us everything we need to know about F , provided that the statistics
are Gaussian; the components of F are then described by a multivari-
ate Gaussian. It turns out that a basis set which gives a diagonal C is
very efficient at capturing the variance in the data, and then the data
variation is compressed as much as possible into the smallest number
of coefficients Fω. Clearly this has advantages for reducing the volume
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of the data, and may also be useful in isolating noise in some of the
coefficients. Requiring that CF be diagonal leads quite directly to the
Karhunen–Loeve equation (Papoulis & Unnikrishna Pillai 2002) which,
for our discrete case, is an eigenvalue problem:

R�B = λ�B. (8.5)

The matrix R is closely related to the autocorrelation function which we
will encounter soon, and is

Rij = E[ fnfn+(i−j) ]. (8.6)

(In this equation, we are assuming for simplicity that f has been reduced
to zero mean value; we are also assuming that f is stationary, which
means that Rij does not depend on the index n.) R is evidently just the
covariance matrix of the original data components f(ti).

If we have a reasonable model for the statistics of our data, we can
construct R and solve the Karhunen–Loeve equations. Now the rea-
son for introducing this approach: the eigenvectors �B will be discretized
basis functions, the Bω introduced earlier. Depending on the structure
of the data, they may indeed be the familiar sines and cosines of Fourier
analysis; but other, quite ordinary looking assumptions, will yield dif-
ferent basis functions. Fourier analysis is therefore not unique, and if
we are interested in data compression we may well want to construct
tailor-made functions that do a better job.

Apart from the systematic Karhunen–Loeve method, we may try ba-
sis functions from the abundant menagerie of mathematical physics. The
many special functions arising in the solution of standard partial differ-
ential equations generally have suitable orthogonality conditions, and in
some problems may happen to provide just the behaviour needed. An
example is the set of Chebyshev polynomials, which when used as a finite
series to approximate a function will minimize the maximum error. See
Andrews (1985) for further information on special functions.

Wavelets represent another possible source of suitable basis functions.
We introduce these briefly later in this chapter; at this stage we need
only note that this is yet another way of transforming data, which may
work well for the particular problem to hand.

By now it will be apparent that choosing a basis set, and using it, is
a modelling problem. The more we know about our data, the better the
choice we will make, although we may also need specific mathematical
properties that go with certain choices. There is therefore the possibility
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of a thoroughgoing Bayesian approach; we assert equation (8.2), and
with knowledge of the statistics of f , deduce the posterior multivari-
ate distribution of the components F . This, as always, is The Answer;
we may propagate uncertainties in a rigorous way through to the final
results we infer from the transformation (equation 8.2). The limitations,
again, are the usual ones: the computational burden, which may be pro-
hibitive, and the lack of useful prior information. If it is possible to be
Bayesian, then a conceptually simpler analysis is possible than classical
approaches we now describe.

8.2 Fourier analysis

The Fourier transform however, remains king amongst the data trans-
forms, and there are numerous reasons for this. Perhaps the most weighty
is a simple practical one – the existence of the fast Fourier transform
(FFT), perhaps the most-used algorithm on the planet. We will en-
counter the FFT later in this chapter.

Many if not most physical processes at both macro- and micro-levels
involve oscillation and frequency: orbits of galaxies, stars or planets,
atomic transitions at particular frequencies, spatial frequencies on the
sky as measured by correlated output from pairs of telescopes. It is
natural to examine the frequencies composing data streams; the ampli-
tudes of these frequencies may be the answer (as in the case of detection
of a spectral line), or they may be adjusted to find the answer (as in
digital filtering).

In astronomy as in many physical sciences there is frequent need to
measure signal from a data series. In measuring a specific attribute of
this signal, such as redshift, the power of Fourier analysis has long been
recognized (e.g. Sargent et al. 1977; Tonry & Davis 1979). Solutions to
many questions posed of the data lie in taking the one-dimensional scan
to pieces in a Fourier analysis.

Fourier theory (e.g. Bracewell 1999, and note the simple treatment in
the monograph by James 1995) indicates that any continuous function
may be represented as the sum of sines and cosines, i.e.

f(t) =
∫ +∞

−∞
F (ω) e−iωtdt (8.7)

where the function F representing the phased amplitudes of the sinu-
soidal components of f is known as the Fourier transform (FT).
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Fourier transforms have a number of enormously important mathe-
matical properties, and these carry over (with some caveats, described
in Bracewell 1999 and Bendat & Piersol 1971) to the real life of finite-
length, discrete transforms, the province of the FFT.

• The FT of a sine wave is a delta function in the frequency domain.
This is why we use the FT, or its relatives, to look for periodicities
in data.

• The FT of f ⊗ g, the cross-correlation or convolution of functions
f and g, is F × G. Many instruments produce data which result
from a convolution with a stable instrumental function: for example
linewidths in spectra are convolutions of intrinsic line shapes with
velocity dispersion functions.

• The transform of f(t+ τ) is just the transform of f , times a simple
exponential e−iωτ . Use of this shift theorem has measured many
redshifts.

• The Wiener–Khinchine theorem states that the power spectrum
|F (ω)|2 and the autocorrelation function

∫
f(τ)f(t + τ) dτ are

Fourier pairs. The autocorrelation function, as noted earlier, is very
closely related to the covariance matrix and hence is a fundamental
statistical quantity. Its relationship to the power spectrum is the
basis of every digital spectrometer.

• Closely related is Parseval’s theorem; this relates the variance of f ,
and the variance in the mean of f , to the power spectrum. We give
the details later; this theorem is very useful in cases where we have
correlated noise, especially the prevalent and pernicious ‘1/f ’ noise.

• The FT of a Gaussian is another Gaussian. Given the prevalence of
Gaussians in every walk of astronomical and statistical life, this is
a very convenient result.

Most astronomy deals with uniformly sampled functions, spectra at
wavelength intervals, the output of a receiver/bolometer sampled at fixed
time intervals for example. In contrast, time-varying phenomena such as
observations of variable stars or quasars require techniques for dealing
with irregular sampling and gappy data.

The discrete Fourier transform (DFT) has a number of special features.
If the function is sampled N times at uniform intervals ∆t in the spatial
(observed) frame, the total length in the t-direction is L= ∆t× (N − 1),
and the result is the continuous function multiplied by the ‘comb’ func-
tion, producing a function f ′(t) which (with the interval in spatial
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frequency as ∆ν = 2π/∆t) may be represented (e.g. Gaskill 1978) either
as a sum of sines and cosines

f ′(t) = AnΣ sin(n∆ν) + BnΣ cos(n∆ν) ; (8.8)

or as a cosine series

f ′(t) = A′
nΣ cos(n∆ν + Φ′

n) (8.9)

where the amplitudes A′
n and phases φ′

n are given by

A′
n =

√
A2

n + B2
n, φ′

n = arctan
(
An

Bn

)
. (8.10)

In the latter formulation, obtaining the DFT produces – by virtue of
the 2π cyclic nature of sine and cosine – a ‘Fourier-transform plane’ for
f ′(t) which shows the amplitudes mirror-imaged about zero frequency,
with a sampling in spatial frequency at intervals of 2π/[∆t(N − 1)] and
a repetition of the pattern at intervals of 2π/∆t.

There are five criteria for successful discrete sampling.

(1) The Nyquist criterion or Nyquist limit guarantees that there is no
information at spatial frequencies above π/∆t. (Consider the silly
case of a signal which is a spatial sine wave of wavelength 2∆t:
sampling at intervals of ∆t finds points of identical amplitude
and thus does not carry information on amplitude or phase of
this spatial frequency.) Thus the sampling interval ∆t sets the
highest spatial frequency 2π/∆t which can be present; if higher
frequencies are present in the data, this sampling rate loses them.

(2) At the same time, the sampling theorem (Wittaker 1915; Shan-
non 1949) indicates that any bandwidth-limited function can be
specified exactly by regularly sampled values provided that the
sample interval does not exceed a critical length (which corre-
sponds approximately to half the FWHM resolution), i.e. for an
instrumental half-width B, f ′(t) → f(t) if ∆t ≤ B/2. In prac-
tice any physical system is indeed band-pass limited (although
noise added by the subsequent detector is not necessarily so),
and therefore with adequate sampling interval, the signal may be
fully recovered.

(3) To avoid any ambiguity – aliasing – in the reconstruction of the
scan from its DFT, the sampling interval must be small enough
for the amplitude coefficients of components at frequencies as
high as π/∆t to be effectively zero. If A′

n ≥ 0 for components
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of frequency this high, the positive high-frequency tail of the re-
peating A′(ν) tangles up with the negative tail of the symmetric
function repeating about ν = 2π/∆t to produce an indeterminate
transform.

(4) The sampling span or scan length must be long enough. The
lowest frequencies which harmonic analysis can delineate are at
2π/(N∆t). Such low-frequency spatial components may be real as
in the case of a stellar spectrum, or may be instrumental in origin
as for sky scans with a single-beam radio telescope. In either
case, to have any chance of distinguishing the signal from these
low-frequency features, the scan length must exceed the width of
single resolved features by a factor preferably ≥ 10. This issue of
the ‘contaminant’ low frequencies is considered below.

(5) The integration time per sample must be long enough so that the
signal is not lost in the noise.

In practice most data satisfy these properties. By design, sampling
is frequent enough to maintain resolution, to obtain spatial frequencies
beyond those present in signal, and to avoid aliasing. By design we take
spectra or scans over ranges substantially greater than the width of the
features. But despite experiment design, the Universe may not oblige
with enough photons to satisfy (5), while our instruments or sky +
object circumstance may require some analysis to eliminate (4).

8.2.1 The fast Fourier transform

The FFT, discovered by Cooley & Tukey (1965), is a clever algorithm
which does the transform of N points in a time proportional to N logN ,
rather than the N2 timing of a brute-force implementation. It has a
number of quirks, amongst which are its typical arrangement of its out-
put data, and its normalization – see, for example, Bendat & Piersol
(1971), Bracewell (1999), or Press et al. (1992) for details. Although its
discovery defined a generation of signal processing, the algorithm was
apparently known to Gauss – even before Fourier had discovered his
series (Bracewell 1986).

8.3 Statistical properties of Fourier transforms

For data assessment or model fitting in the Fourier domain, we need to
know the probability distribution of the Fourier components and their
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derived properties. There are detailed discussions of these matters in
Bendat & Piersol (1971).

For the comparatively simple case where the ‘data’ f are pure Gaus-
sian noise, of known covariance Cf , there are analytical results for the
Fourier components, as well as for the power spectrum and the auto-
and cross-correlation functions. We will focus on the practical case of
the uniformly spaced DFT, as implemented by a standard fast trans-
form. As usual, we assume that f is of zero mean; also that we have just
one set of data. Our best estimate F̂ is just provided by equation (8.2),
applied to the single set of data we have.

The real and imaginary components of each component F̂ωi are then
independent Gaussian random variables, and each component is uncor-
related with the others; so the covariance matrix CF is diagonal. However
this is a very specific result, and depends on doing the discrete trans-
form on data sampled at uniform intervals, returning exactly as many
components as there are measured data points. Non-uniform sampling,
or embedding the data in zeros to sample the transform more finely, will
result in correlations between the components.

A useful result is the following, a version of Parseval’s theorem: an
estimate of the variance σ2 in our data f(t1), f(t2), . . . is just the integral
of the estimated power spectrum. For a DFT estimate,

σ̂2 =
∑
i

|F̂ωi |2. (8.11)

A related and equally useful result is the variance in the estimated mean
of f :

Var[µ̂] = |F̂0|2. (8.12)

For both relations, one of several possible scaling factors has to be di-
vided out of the answer depending on the FFT implementation. Invari-
ably we do not know the value of the power spectrum at zero (it will
have been artificially set to zero to avoid ringing problems with DFTs)
but we can extrapolate from values of ω where it is known. This is a
very useful check in cases where we have correlated noise in the data,
and the simple 1/

√
N rule for the error in a mean will not apply. We

discuss this point later in the context of 1/f noise.
The components of the estimated power spectrum |F̂ωi |2, in the simple

case, will be distributed like

χ2|Fωi |2

with two degrees of freedom in χ2.
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This leads to a surprising and important result: since this distribution
does not depend on the number of observations f(t1), f(t2), . . . it follows
that the DFT method of estimating the power spectrum is inconsistent;
the signal-to-noise on the components is unity and does not improve,
no matter how much data we have. The reason is simple; longer scans
give finer sampling of the transform, degrading the signal-to-noise at the
same rate as the greater quantity of data tries to improve things for us.
To improve the signal-to-noise we have to average components together,
effectively smoothing the power spectrum. This leads to bias errors, for
example where sharp peaks in the spectrum will be reduced in amplitude
by smoothing. We might try to split the data up into shorter sections,
and average the estimated spectra from the short sections, but then the
same bias problem will resurface because of the reduced spectral reso-
lution that we will get from shorter scans. In fact the only satisfactory
solution is to take more data, and average power spectra at full resolu-
tion.

We also notice from this analysis that the distribution function, for
the power spectrum components, depends on the ‘true’ spectrum |Fωi |2,
usually what we are seeking.

The same problem surfaces in the case of the autocorrelation or cross-
correlation functions; before we can do the error analysis, we need the
answer we are looking for, because the true value of these functions
enters into the distribution function of the estimates. Worse, the discrete
values of the correlations, such as we might obtain via a DFT, are highly
correlated amongst themselves. This means that the error level in a
correlation function is difficult to represent and we certainly cannot use
simple techniques like χ2 to assign confidence levels to fitted parameters.
A typical example of a parameter derived from a correlation function
might be the relative velocity between two objects, as determined from
the peak in the cross-correlation of their spectra. Simulation is really the
only practical way to derive the probability distribution of the measured
position of the peak.

Why do we have these perverse difficulties in estimating power spectra?
The Wiener–Khinchine theorem tells us that if we know the power
spectrum, we know the autocorrelation function, and that means we
know the covariance matrix which defines our data f . In other words,
estimating a power spectrum is closely allied to estimating a probabil-
ity distribution function; and here it is familiar that we have a trade-
off between signal-to-noise and bias. Regarding the distribution as a
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histogram, we can have either large bins (good signal-to-noise but bias)
or narrow bins (the opposite).

A common use of power spectra is the estimation of some instrumental
response function. If we have input test data f(t) and output data g, in
many cases

g(t) = f(t) ⊗ h(t) (8.13)

meaning that the instrument introduces a convolution with some re-
sponse function h. In the Fourier domain we then have

G(ω) = F (ω)H(ω). (8.14)

A prominent example of this technique in astronomy is the ‘Fourier
quotient’, a method which measures velocity dispersion and redshift si-
multaneously in galaxy spectra (Sargent et al. 1977). Here the input g

is a suitable template stellar spectrum, and the output f is the target
galaxy spectrum; a model function, containing a velocity dispersion pa-
rameter and an overall redshift, is then fitted to G/F . While successful, it
turns out that high signal-to-noise is required in the template spectrum,
essentially because of the appearance of its transform in the numerator
of the expression for the response function:

Ĥ(ω) =
Ĝ(ω)
F̂ (ω)

. (8.15)

At values of ω where F (ω) � 0, very wide noise excursions occur in Ĥ.
The method has to be used with some care. The quotient may have a
non-Gaussian distribution so that goodness-of-fit tests with χ2 could be
very misleading.

To estimate the error distribution of Ĥ we need the coherence function

γ2(ω) =
|F (ω)G(ω)∗|2

|F (ω)|2 |G(ω)∗|2 (8.16)

and we will usually have to insert estimates of all the transforms.
Evidently, if there is no noise in the system, we will have H = G/F

and γ = 1. The estimate of H follows an F distribution

|Ĥ(ω) −H(ω)|2 ≤ 2
n− 2

F2,n−2(1 − γ̂2(ω))
|Ĝ(ω)|2
|F̂ (ω)|2

(8.17)

in which F2,n−2 is an F distributed random variable with 2 and n − 2
degrees of freedom. n is twice the number of separate spectral components
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that are averaged to yield a single estimate; a single component has two
degrees of freedom, because of its independent real and imaginary parts.
We can see that this is an approximate result for a confidence interval
on Ĥ, as the right-hand side contains estimates (and may even contain
guesses).

The occurrence of the term n−2 is of importance. It is telling us that
we must smooth the power spectrum before we can use it, since the F
distribution is not defined if one of its degrees of freedom is zero. We can
also see that errors will be very large at frequencies where the spectrum
of the template approaches zero.

The discussion so far has only considered the data f(t1), f(t2), . . . to
be random; we have not yet added in the effects of systematic signal.
In many astronomical problems, matters are a great deal more compli-
cated. The input distribution functions are unlikely to be Gaussian. The
central limit theorem will quickly give a Gaussian core to a distribu-
tion in many cases, but the wings can dominate the results of statistical
testing and will converge slowly to Gaussian form (Newman, Haynes &
Terzian 1992). Most astronomical data are not random; there is a signal,
which does not average to zero. Paper-and-pencil statistical analysis is
very involved. An example is in Jenkins (1987).

In many cases, the only method for obtaining reliable errors on de-
rived parameters is a detailed Monte Carlo simulation, which can build
in all the messy aspects of a real observation. The analytical results we
have sketched do, however, provide valuable guidance; they tell us that
power spectra will have problems of consistency and bias, that corre-
lation functions will contain highly correlated errors, and that we will
probably have to sacrifice detail in estimates of response functions. These
are pointers to the behaviour of Fourier analysis in real cases and indi-
cate that we do need a reasonable idea of basic statistical properties –
the power spectrum or correlation function – to make much progress in
understanding our data when it is in the form of scans.

8.4 Filtering

Filtering is an area in which analysis by Fourier or other techniques can
play a significant role. Before we begin filtering data, however, as usual
we need to ask what we want to achieve.

Filtering always has two related aims: to reduce noise, and to compress
data. Suppose for concreteness we have a noisy spectrum, containing an
emission line. Using a suitable filter (even a running mean will help)
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will usually reduce noise and make the line more prominent. What does
this achieve? If we want to measure some parameter of the line, say the
height, filtering the data may make it possible to make a measurement
‘off the screen’ with a cursor. This kind of real-time, fast data assessment
is a very common application of filtering; it also provides attractive data
for publication. However any more detailed analysis will involve fitting a
model, perhaps a Gaussian, to the line. The usefulness of filtering is less
obvious here. A fitting procedure requires starting estimates (line loca-
tion, width, baseline level) to converge to the correct answer; the filtered
data will provide these. Also, fitting algorithms will be stabilized, and
prevented from converging to wrong answers, if they operate on less
noisy data. Unfortunately, since filtering alters the statistical properties
of data, the analysis of the fitting procedure will probably be more com-
plicated. However it is worth remembering that any instrument will filter
data to some extent and this effect may have to be modelled anyway.

8.4.1 Low-pass filters

Fourier filtering to improve the signal-to-noise ratio can be highly effec-
tive. The reason is simple: if noise is shot noise or photon noise, it is
‘white’, and its spectrum extends flat to the limit given by the sampling
theorem. Provided that the signal is not governed by high-frequency
components, tapering off the amplitudes of high frequencies is a win-
ning strategy. (Recall that the FT of a Gaussian is another Gaussian,
so that if instrumental response or line shape is anything like Gaussian,
there should be little high-frequency information.)

It is simple to manipulate the transform of the data to cut out the
higher frequencies. An example is shown in Fig. 8.1. Whatever we do by
chopping out or reducing the amplitudes at high frequencies is bound to
decrease the noise, but it must decrease some signal as well, particularly
if signal is on small scales in the spatial domain. Chopping is generally a
poor idea, however; square filters produce ringing in the signal, so that a
tapering to high frequencies is desirable. There are many techniques for
assessing how to taper. In fact it is readily shown both by minimizing
the variances and by conditional probabilities that an estimate of the
optimum filter is given by

F (f) =
|S(f)|2

|S(f)|2 + |N(f)|2 (8.18)

where S is the signal spectrum and N the noise spectrum.
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This is Wiener filtering. It requires us to assess or model the FT
of both noise and signal. This is difficult of course if signal and noise
have similar power spectra, but then, no filter can cope under these
circumstances.

EXAMPLE The example of Fig. 8.1 shows a Gaussian sitting on a flat
baseline, with Gaussian random noise added, as in a photon-starved
observation. It is possible to guess at models in the Fourier plane for the

X

X

Fig. 8.1. A Wiener filter in action. The raw data of A is a Gaussian sitting
on a flat baseline, with random Gaussian noise added. The DFT in B shows
the signal and noise components, modelled by the Gaussian and horizontal
curves, respectively. The Wiener filter, applied in the frequency domain, pro-
duces the DFT of C, and the reverse transform produces the greatly improved
signal/noise of D.

noise and signal components. Here we knew how to model this; we knew
the FT of both signal and noise, and as a result, drawing in the separate
components in the Fourier plane, making our Wiener filter according
to equation (8.18) is straightforward, as the diagram shows; and the
result indicates its efficacy. However we generally do know properties
of the signal, from, e.g. instrumental response, so that the signal FT
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model can usually be constructed. Even without this the robustness of
the procedure is impressive. Take away the eye-guiding lines from panel
B of Fig. 8.1 and approximate signal (with a triangle say) and noise
with a straight line at some level, and discover that very similar results
to Panel D are obtainable with minimum a priori knowledge.

There are many types of numerical filters available, most of them
having been developed for real-time applications. Such filters are causal,
that is, they only use ‘past’ data. One of the most famous causal filters is
the Kalman filter. Most astronomical applications are not so restricted
and the main problem is probably the range of choice. Lyons (1997) is
a good source of ideas for filtering.

The Savitsky–Golay filters are worth a separate mention; these operate
by fitting low-order polynomials to a sliding window on the data. Unlike
the filters which operate via the Fourier domain, a Savitsky–Golay filter
need not inevitably broaden features in order to reduce noise. On the
other hand, their effect on data and signal-to-noise is not as simply
visualized. Press et al. (1992) show a nice set of examples of Savitsky–
Golay filters in action, together with code for an algorithm.

8.4.2 High-pass filters

A more difficult issue is presented in removing unwanted low-frequency
components from observations. This is usually known as fitting baselines
in the trade, and it is carried out to assess the continuum in spectra, for
example. There is a long tradition of doing this by eye; but least squares
fits of polynomials, heavy smoothing and spline fitting are common ways
of proceeding. The difficulty is inevitably the signal. Those parts of the
scan with signal must be removed from consideration in order to place
the continuum; and with irregular and a-priori unknown spacing of the
signal, development of a formal technique becomes prejudicial or per-
haps impossible. Moreover, smoothing techniques and polynomial fits
make initial assumptions which the data may not justify. For some types
of signal such as emission or absorption lines with extreme breadth of
wings, the behaviour of the continuum in the regions masked by signal
is critical in measurement of that signal.

There are formal tools to apply. For example Bayesian spectral analysis
(e.g. Sivia & Carlile 1992) is appropriate when some specific prior
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knowledge such as linewidth is available. However the analysis must
be repeated for each different prior-knowledge set and for each different
question posed of the data. The situation frequently arising in spectral
analysis is one in which the prior knowledge is the somewhat unquantifi-
able recognition of which parts of the spectrum are signal-free, while very
general parameter sets (e.g. line shape, linewidth, line flux, equivalent
width, centroid position) may be required from the measurements.

Unlike low-pass filtering in which separation of signal and noise in
the Fourier plane is relatively straightforward, the problem here is the
tangle between the two. Gaussians helped us in the former because their
transforms drain away so fast at high frequencies. But at low frequencies?
This is where Gaussians have most of their harmonic signal. We have to
be cleverer than just staring at the transform.

A simple technique, minimum-component filtering, based on DFT and
harmonic analysis is described by Wall (1997). The key to success is
forming a baseline array by patching across regions in which signal is
clearly present. The sequence to follow is this:

(i) patching: forming a ‘baseline array’ from the original data series
by patching across regions of the scan where signal is evident;

(ii) end matching: subtracting from this baseline array a first approx-
imation to the patched scan, obtained with a linear fit, a very
low-order polynomial or a heavy-smoothing estimate;

(iii) Fourier transforming the resultant baseline array;
(iv) removal of the high frequencies by applying a heavy-tapered mul-

tiplicative filter in the Fourier plane to taper off the higher-
frequency Fourier amplitudes;

(v) reverse transformingusing these minimum remaining components;
and

(vi) gradient restoration, by adding back in the first approximation
(step (ii)) to the baseline.

We are concerned with datasets of the type represented by the optical
spectra in Fig. 8.2. The appearance is dominated by substantial emission
or absorption lines covering more than 30 per cent of the length of the
spectrum; moreover in the second case, the continuum slope is severe.

In addition to its objectivity and its ease of application, a further
advantage of the technique is that an analysis of the error introduced
by the baseline assessment can be carried out (Wall 1997), an aspect



8.4 Filtering 197

Fig. 8.2. Top a spectrum of 3C47 obtained by Laing et al. (1994) with the
Faint Object Spectrograph of the William Herschel Telescope, La Palma. The
redshift is 0.345; broad lines of the hydrogen Balmer series can be seen, to-
gether with narrow lines of [OIII]. Bottom: a spectrum of the a star RZ Cas
(Maxted et al. 1994). The continuum obtained with the minimum-component
technique is shown as the black line superposed on the original data.

seriously lacking in virtually all baseline assessment (and therefore line-
intensity estimation) in the literature. The following points emerge:

• Except for very narrow signal, the baseline difference, i.e. the error
in continuum assessment due to minimum-component fitting, will
not dominate errors.
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• The patch width is critical. For noisy situations in which the signal is
relatively weak, it is imperative to choose a patch width as narrow
as possible. Gaussians cut off quickly and for the weaker signals,
patch and flux measurement should be confined to ±3σs, as deter-
mined from an accurate an estimate of σs (the instrumental stan-
dard deviation). For strong signals, the patch should be significantly
broader.

• For even the weakest apparent signals it is crucial to patch over the
region in which signal measurement is carried out. This may seem
self-evident, but when signal is weak it is tempting to fit a minimum-
component continuum with minimal patching because the fit looks
satisfactory. This is not so; the error introduced in the flux mea-
surement may far exceed the noise uncertainty.

The analysis indicates how rapidly errors in equivalent widths can
escalate with continua which are curved, i.e. which have low-frequency
components present, even when the procedures for continuum assess-
ment and signal measurement are well defined. When yet broader wings
are involved, the errors produced will be substantially greater. The anal-
ysis goes some way to explaining why estimates of line fluxes in the liter-
ature can differ by a factor of two, even with reasonable signal-to-noise.

It should be noted that ‘removal’ of continuum is high-pass filtering,
removal of the lowest frequencies. In conjunction with low-pass filtering,
a band-pass filter has been generated, one which cuts off towards low
frequencies and towards high frequencies.

8.4.3 An integrated approach

We see that analysis of a scan will often involve some kind of baseline-
fitting procedure, plus a localized fitting procedure to derive, say,
linewidths and positions. The baseline parameters are only required as
a step on the way to some final answer and so are classical nuisance
parameters.

From a Bayesian point of view, we may be able to formulate the whole
problem as a standard model-fitting procedure. From this we will derive
joint posterior distributions for line parameters (the interesting ones)
�λ and for baseline parameters �β. Since the baseline parameters are not
required, we can marginalize them out with an integration over �β and
its prior. This gives us the distribution of the interesting parameters,
with the effects of the uncertainty in the baseline included.
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It may be difficult to formulate the baseline problem in such a con-
ceptually clear way; as we have seen, a good deal of judgment may
be involved. However in principle each of the human decisions involves a
set of parameters. We should be able to formulate a Bayesian estimation
procedure for these, and this will have benefits in making the procedure
more objective, and reproducible.

Quite often, baselines will be the result of 1/f noise (Section 8.8). This
results in the sort of large, aimless wanderings that are quite difficult to
fit with harmonics. The usual remedy is to fit polynomials to the lowest
frequencies. Another possibility, if the baseline statistics (power spec-
trum or correlation function) are reasonably well known, is to construct
the associated Karhunen–Loeve functions. By definition, using these to
approximate the baseline will do the best possible job with the smallest
number of coefficients.

8.5 Correlating

8.5.1 Redshifts by correlation

We have seen how the shift theorem can be used, in the Fourier quotient
method, to measure a redshift. Redshifts are a common and important
example of an offset between two scans. As we have seen, there are
some disadvantages to the quotient method. Direct cross-correlation be-
tween a template and target spectrum will generally yield a peak in the
cross-correlation function; a modelling procedure can give redshifts and
velocity dispersions (Sargent et al. 1977; Tonry & Davis 1979). This is a
successful and widely used technique. The best method for error analysis
in this case is direct simulation, because of the highly correlated nature
of the errors in a correlation function.

8.5.2 The coherence function

We have met the coherence function briefly before; it is estimated by

γ̂2(ω) =
|F̂ (ω)Ĝ(ω)∗|2

|F̂ (ω)|2 |Ĝ(ω)∗|2
. (8.19)

The estimation is done in the usual way for power spectra: either by
smoothing the power spectrum, or by averaging several power spectra
derived from separate scans. The coherence function is just the correla-
tion coefficient between f and g in frequency space.
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The coherence is extremely useful in cases where we have an input f

and an output g and we want to find out more about the ‘black box’ that
changes f into g. If the box has a purely linear effect (like many simple
physical systems) then f = g⊗h for some h, and γ = 1. More usually, of
course, we have noise ε, not present in the input, so that g = f ⊗ h + ε.
Now, depending on the frequency content of the noise and the input,
we will have structure to γ, which will generally be less than 1. Other
interesting reasons for γ < 1 will be that the causal relationship between
f and g is non-linear, or that there are extra causal factors in play. These
will not be present in the input we know about, and, depending on their
frequency content, will lower the coherence.

EXAMPLE Here is a simple example with some simulated data. We
have a relationship for our synthetic data

g(t) = f ⊗ h + ε(t) + b(t)

in which f is white Gaussian noise, h is a Gaussian filter, ε is noise
added at the output side of the box, and b is an unrelated low-frequency
effect (obtained in this case by vigorous recursive filtering of Gaussian
white noise). In Fig. 8.3 we see the input data, the output (somewhat
filtered, apparently) and the extraneous low-frequency effect. Finally
the coherence function between f and g shows a loss of coherence at low
frequencies (because of the extraneous effect, which is not present in the
input) and the loss at high frequencies (due to noise, which is likewise
not present in the input). At intermediate frequencies there is a region
relatively unaffected by noise, in which our box must be a linear system,
where only the input f affects the output.

This means that we can model our box as a simple convolution of
input data with an instrumental function and we also suspect that there
must be an extra causal effect at low frequencies. This yields the region
of the spectrum which carries the uncontaminated part of the signal that
we can model simply.

8.5.3 The correlator

At radio frequencies, frequency resolution is achieved with a correlator.
The principle is simple, but illustrates some useful statistical points.
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Fig. 8.3. From top to bottom; the input to the system f ; the input, convolved,
with a small amount of noise added f ⊗ h + ε(t), the extraneous effect b(t),
and at bottom, the coherence between f and g.

We start with an incoming stream of sampled data from a receiver,
our usual ft1 , ft2 , . . . . A correlator will take (relatively) short chunks
of these data and form the autocorrelation function (a fast operation
in hardware). The separate estimates of the correlation function are
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averaged, and finally Fourier transformed to obtain (via the Wiener–
Khinchine theorem) the power spectrum of the data.

Why does this work? Physically, our stream of data will consist of a
multitude of wave packets, each corresponding to emission from a single
atom or molecule. Thus the time series of, say, electric field amplitudes
will be

f(t) =
∑
i

w(t + φi) (8.20)

where φi are the random phases of each wave packet w. The Fourier
transform is

F (ω) = W (ω)
∑
i

exp(iωφi) (8.21)

and the average power spectrum will be

|W (ω)|2E
[ ∣∣∣∣ ∑

i

exp(iωφi)
∣∣∣∣
2]
. (8.22)

The exponential term, being an average of positive quantities, will con-
verge to some positive value as more and more chunks of data are av-
eraged, even although the phases are random. By contrast, the average
Fourier transform will contain the term

E

[∑
i

exp(iωφi)
]

which will converge to zero.

EXAMPLE A simulation of this procedure is shown in Fig. 8.4.

A further key feature of the digital correlator is the quantization –
astonishingly little sensitivity is lost by digitizing at the one-bit level,
simply recording whether f is positive or negative. This speeds up data
rates and reduces numbers of operations; for a given processing speed
far higher resolution is possible, dependent on the number of channels
in the shift-and-add register of the correlator, rather than the sampling
speed of the data (as long as this is high enough to exceed the Nyquist
criterion).

Given the correlation coefficient ρ between the data values fti and
ftj , we know that the joint distribution function is a bivariate Gaussian.
It is then a fairly simple marginalization calculation (see Chapter 8 of
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Fig. 8.4. Top left: part of the input data stream for the correlator, con-
sisting of 64 wave packets, randomly located, with on average one per 128
units of time. Top right: the average power spectrum from forming the au-
tocorrelation function over 128 time units. Bottom left: the average Fourier
transform of one-bit quantized data, again from 128-long chunks. Bottom
right: the power spectrum derived from the quantized data with the same
averaging.

Thompson, Moran & Swenson, Jr. 2001) to compute the probabilities of
quantized values like

prob(fti > 0 and ftj > 0)

and so on; from this, the quantized correlation coefficient ρq can be
calculated. The result is beautifully simple:

ρq =
2
π

sin−1 ρ (8.23)

and is called the van Vleck equation. It has the distinction of having
been a classified result during World War II.

8.6 Unevenly sampled data

8.6.1 The periodogram

There are numerous astronomical applications in which scan data are
unevenly sampled. The classical case is the search for periodicities in
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light curves of objects of variable luminosity. Much as we might like to
sample the light output evenly, daytime, bad weather, or telescope time-
assignment committees may intervene. The problem has thus received
extensive treatment and most modern analysis is based on the Lomb–
Scargle method (Lomb 1976; Scargle 1982). A concise description of
the Lomb normalized periodogram is given by Press et al. (1992). The
key feature is that the method weights the data on a ‘per point’ basis
rather than on a ‘per time interval’ basis as does the FFT; an even better
feature is that the null hypothesis can be tested rigorously. Scargle (1982)
showed that in testing for a peak at frequency ω, the height of the peak
at this point, Y (ω), has an exponential probability distribution with
unit mean; the probability that Y (ω) lies between Y (> O) and Y + dY
is exp(−Y )dY . If n independent frequencies are considered, then the
probability that none gives a value > Y is (1 − e−Y )n. Thus

P (> Y ) = 1 − (1 − e−Y )n (8.24)

represents the significance level of any peak Y (ω). But this raises the
embarrassing question of what is n – how many independent frequencies
have we looked at? In the limit of interest, when significance levels are
� 1, P (> Y ) = ne−Y , scaling linearly with the estimate of n, so that
n need not be estimated precisely. Monte Carlo experiments (Horne &
Baliunas 1986) show that if N is the number of scattered but approx-
imately evenly spaced data points which oversample the range up to
the Nyquist frequency, then n ∼ N , and there is little difference for n

between random spacing and equal spacing. When a larger frequency
range is sampled, n increases proportionally.

These points raise two further questions. Firstly, how can we sample
frequencies beyond the Nyquist? Recall that the Nyquist frequency refers
to equally spaced data with sampling interval ∆t; it is 2π/∆t. With
randomly spaced data evenly distributed through the sampling series,
an equivalent (but non-physical) Nyquist frequency can be obtained from
the mean time interval. However, the fundamental limitation of equally
spaced data is avoided by unequally spaced data. It is possible to sample
well above the equivalent Nyquist frequency without significant aliasing;
see the example of Fig. 8.5. A similar situation arises with 2D and 3D
statistics of space distribution, as discussed in Chapter 9; clustering on
scales much smaller than the mean separation between objects can be
sampled if the objects are randomly sampled.
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EXAMPLE Operation of the Lomb–Scargle periodogram, with contin-
uous and gappy data, is implemented in the Numerical Recipes routines
of Press et al. (1992). An example is shown in Fig. 8.5.

Fig. 8.5. The Lomb–Scargle periodogram method. Left: randomly spaced
data generated by a sine wave of amplitude 0.7 and period 1.5 with noise
of unit variance superposed. Right: data taken at the same mean inter-
val but with serious gaps to approximate night-to-night sampling of optical
astronomy.

For the continuous data, even with the sine wave shown as a guide,
the eye cannot pick out the periodicity. The Lomb periodogram has no
doubts whatsoever. For the gappy data, note the reduced significance
of the peak in the periodogram, as well as the serious aliasing resulting
from windowing the data as shown.

Secondly, what about the more usual situation for astronomers with
data seriously clumped, e.g. into night-time observations? Monte Carlo
to the rescue again: generate synthetic datasets by holding fixed the
number of data points and their sampled locations, generate synthetic
sets of Gaussian noise using these, find the largest values of Y (ω), and
find the best fit of the distribution in equation (7.7) to determine n.
The example of Fig. 8.5 shows what happens with gappy data – aliasing
becomes serious. With data of even poorer quality than that shown in
Fig. 8.5 (no problem for astronomers), choosing the right peak amongst
these is the issue; and here, folding techniques come into play. In the
simplest instance, observing a similar data stream some time later will
enable a choice to be made; only one of the frequencies will have the
right phase to give anything like a reasonable fit.
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8.6.2 Times of arrival

A rather different kind of evenly sampled dataset arises in pulsar timing
or gamma-ray astronomy. Here we sometimes have rather small numbers
of events, times of arrival of pulses or photons. Do these times betray a
period?

If we have a period P in mind, we can test as follows. Call the times
of arrival t1, t2, . . . . Assign a phase to each time by the algorithm

φi = 2π (remainder of ti divided by P ) (8.25)

and form the statistic

R2 =

(
n∑

i=1

cosφi

)2

+

(
n∑

i=1

sinφi

)2

(8.26)

and for n > 10, 2R2/n is distributed as χ2 (Table A2.6) with two degrees
of freedom.

This is a classical test (the Rayleigh test). If R is large, it is unlikely
that the phases are random. This will happen if we have guessed the
correct period, so we would then infer (illegally, of course) that the period
is indeed P .

We may also wish to determine P , which we would do simply by
searching for a value of P that maximizes R. Having determined a pa-
rameter from the data, we will lose one degree of freedom from χ2 in the
significance test.

Details of this, and more elaborate tests, are in De Jager, Swanepoel &
Raubenheimer (1989).

8.7 Wavelets

One disadvantage of Fourier analysis, and its relatives, is a loss of in-
formation about where in a scan things may be happening. Take the
spectrum of Fig. 8.1 as an example; the noise level might well be differ-
ent in the spectral line, but a Fourier filter applies the same degree of
smoothing everywhere. This feature is a result of the basis functions, the
sines and cosines, being infinite in extent. In fact their infinite extent is
the cause of many of the difficulties associated with transforms of finite-
length data streams.

In many cases we would like a transform which picks out details of
frequency content while preserving information about where in the scan
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those particular frequencies are prominent. There are approximate ways
of doing this with Fourier transforms, by taking transforms in short
windows which slide along the data, but this has obvious disadvantages.
Wavelets offer a better way.

A wavelet is a short function which, being convolved with the data,
gives some frequency (or scale) information at a particular location in
the scan. By placing the wavelets at different places in the scan (‘trans-
lating’) and changing their widths (‘scaling’) it is possible to obtain
a frequency decomposition which preserves some location information.
Figure 8.6 shows some examples of wavelets in current use; it is worth
noting that there are particular mathematical restrictions on what kind
of function can be a wavelet. As can be seen from the figure, different
wavelets are likely to be sensitive to different things; the asymmetri-
cal wavelet, for example, will be sensitive to local gradients, while the
Mexican hat will be good at picking out oscillations.
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Fig. 8.6. Four possible wavelets; a wavelet decomposition will be in terms
of scaled and translated versions of each of these. Top left, asymmetrical; top
right, Mexican hat; bottom left, Daubechies (this wavelet is actually a fractal);
bottom right, Haar.

Wavelet analysis is a huge and growing area; useful references include
Strang (1994), Koornwinder (1993), Bruce, Donoho & Gao (1996) and
Daubechies (1992). An implementation of a discrete wavelet transform
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is given in Press et al. (1992), along with the usual wise advice. An
excellent recent text is Walker (1999).

Much of the attraction of wavelets is that they can give very effective
filtering and data compression. A well-known triumph for wavelets was
the decision by the FBI to use a wavelet-based technique for the digi-
tization and compression of their fingerprint database. From an astro-
nomical point of view, we often deal with scans where important prop-
erties change from place to place; there are noisy regions in a spectrum,
for instance, or times when a light curve seems to show quasi-periodicity.
Wavelets offer new possibilities in data assessment, and a whole new ar-
moury of filtering techniques, especially those where the filtering may
be different in different parts of a scan.

EXAMPLE In Fig. 8.7 we compare wavelet filtering to the Wiener
filtering of the example spectrum in Fig. 8.1. We chose to filter with
Haar wavelets; others were not as satisfactory. The greyscale plot shows
the strength of the various wavelets, as a function of position in the
spectrum. The finer-scale wavelets are at the top of the plot. From this
plot, dropping the three finest scales of wavelet coefficients is suggested
as a suitable simple filter. The result is quite pleasing as noise is markedly
reduced without much loss of resolution in the spectral line.
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Fig. 8.7. Top left, the original spectrum of Fig. 8.1; top right, the filtered
spectrum; bottom, the wavelet coefficients as a function of location and
scale.
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8.8 Detection difficulties: 1/f noise

The bane of the experimenter’s life is so-called 1/f noise; see the excel-
lent review by Press (1978). It is a major reason why filtering theory,
which looks so good in contrived examples (Fig. 8.1) fails to live up
to promise; why 2σ results are not results; and why increased integra-
tion time fails to produce the expected improvements in signal-to-noise
ratio, the simple 1/

√
N improvements we naively expect from averaging

N samples.
1/f noise is so called because it has a power spectrum which is in-

versely proportional to the Fourier variable – frequency, if we are dealing
with a time series. Hence the name. It is sometimes called flicker noise,
and is a particular case of ‘pink’ noise of various kinds, in which low
frequencies dominate. An even more extreme example is Brownian or
random-walk noise. As the name suggests, this arises when successive
values of the noise are obtained by adding a random number to the
previous value. Random walk noise arises when we integrate a scan; for
example, we may integrate a time series of accelerations to deduce the
velocity time series.

EXAMPLE Figure 8.8 shows two simulations of low-frequency noise
obtained by starting with white noise, multiplying the Fourier transforms
by 1/

√
f or 1/f , and taking the inverse transform of the result.

Despite much theoretical work (it crops up in everything from
Beethoven symphonies to traffic flow), it is not known why 1/f noise
is so common. However, its presence (or the presence of one of its near
relatives) is usually the reason why averaging large amounts of data does
not produce the improvement expected.

1/f noise has the remarkable property of having infinite variance: the
longer you watch it, the larger its excursions become. We can immedi-
ately see that this behaviour follows from the fact that the variance on
a scan is the integral of its power spectrum. For sampled data of finite
length, the variance will depend on the integral of the power spectrum
between the Nyquist frequency and the first frequency above zero – this
will be 1/L if L is the scan length. Thus the variance of sampled 1/f
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Fig. 8.8. Above: flicker (1/f) noise of unit variance. The data are implicitly
band-limited by the finite sampling rate. Below: a random walk of unit vari-
ance.

noise will be proportional to∫ fnyq

1/L

1
f

df = log(Lfnyq) (8.27)

and so will grow logarithmically with scan length. Qualitatively, we see
from the simulations in the example that the noise is highly correlated
from one sample to the next – we expect that averaging will not work
well. In fact it does not work at all for a noise spectrum of 1/f or steeper.

Recall from an earlier result (Section 8.3) that the variance on a mean
µ̂, derived from a scan f of length L, is

var[µ̂] = |F (0)|2/L. (8.28)

For white noise, which is uncorrelated for adjacent or successive samples
of f , we have |F (0)|2 = σ2, the variance on the scan, and the expected
1/
√
L behaviour follows. If, however, we have 1/f noise dominating the

power spectrum at low frequencies, the best idea we have of the power
spectrum at zero is its value at a frequency 1/L. Now we see that the
variance on the mean is independent of L!

Usually we will have white noise dominating the power spectrum for
frequencies greater than some value ω0, in other words for scans shorter
than 1/ω0. As the scans lengthen, however, we will start to uncover the
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1/f noise below ω0. Therefore a general model for the variance on the
mean level of a scan of length L will be

var[µ̂] � a

L
+ b (8.29)

where a and b are parameters which describe the noise levels in white
noise and 1/f noise. Note the analogy to the discussions of low-pass and
high-pass filtering (Section 8.4): dealing with the slowly varying com-
ponent may be considered as a baseline issue. Of course we must hope
that our signal comes at higher frequencies, or it (and our experiment)
is lost.

Because the variance diverges for 1/f noise, another measure of vari-
ation – the Allan variance – is useful. For our scan f it is defined by

σ2
A =

1
2
E[ (fti − fti−1)

2 ] (8.30)

and the differencing of successive samples will help to remove the enor-
mous variance which is carried in long-term drifts. Generalizations can
be made by changing the distance between the two samples involved;
this is the scale of the Allan variance. There is a fascinating connec-
tion between the Allan variance and wavelets: the Allan variance is di-
rectly related to the variance in the Haar wavelet coefficient, at the same
scale.

Exercises

In the exercises denoted by (D), datasets are provided on the book’s
website; or create your own.

8.1 Fourier transform and FFT. Use a direct numerical inte-
gration to do a numerical Fourier transform of an oscillatory
function, say a sine wave or a Bessel function. Compare the
timings with an off-the-shelf FFT routine, checking how many
oscillations you can fit in your region of integration before the
FFT accelerates away from the direct method.

8.2 Wiener filtering and 1/f noise (D). Make some synthetic
data along the lines of the example in Fig. 8.1, and make it
work with a Wiener filter for uncorrelated Gaussian noise. Now
generate some 1/f noise. Add this in to the input spectrum, and
perform the filtering again, without taking account of the extra
low-frequency noise in the form of the Wiener filter. Does the



212 Sequential data – 1D statistics

1/f noise affect (a) the line profile parameters, (b) the baseline
parameters?

8.3 Periodogram (D). Consider the Lomb–Scargle periodogram
method as formulated by Press et al. (1992); use the Numerical
Recipes routines to test the following issues.

(a) If we can sample at much above the pseudo-Nyquist rate,
how much? Where does this run out? Why in practice can we
not realize the sampling at these high frequencies provided by
scattered time measurement?

(b) The lines of probability in Fig. 8.5 are roughly correct for
the random uniform coverage of the left set of data. For the data
on the right, uniformity has been assumed and the probabilities
in the diagram are incorrect. Use the Numerical Recipes routine
and the Monte Carlo technique outlined to determine how they
should be adjusted.

8.4 Properties of the power spectrum of periodic data. From
the maximum–minimum statistics analysis of Section 3.4:

(a) Find the probability density function equivalent to equa-
tion (7.11) for minimum values.

(b) Show that the most likely value of the maximum in the
power spectrum of data N long is lnN .

8.5 Power spectrum of signal + noise. For a signal contain-
ing a deterministic signal S and Gaussian noise x, show that
the noise distribution in each component of the power spec-
trum is in general a non-trivial combination of χ2 and Gaussian
noise.

8.6 1/f noise. Harmonic analysis (sampling, Fourier transforming)
of Beethoven’s symphonies indicates that their power spectra
follow the 1/f law to a good approximation. Consider why this
should be so. See Press (1978) for a few hints.

8.7 Filtering and mean values. Take your favourite implementa-
tion of the FFT, and form the power spectrum of a scan consist-
ing entirely of uncorrelated Gaussian noise. Integrate the power
spectrum. Is the answer the variance of the input data? If not,
why not? Now convolve the data with your favourite (normal-
ized) filter. From the zero frequency of the power spectrum,
what is the variance in the mean? Does it change if you change
the width of the filter? Explain.
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8.8 Baselines (D). Fit a Fourier baseline interactively to a spec-
trum containing a moderately obvious but contaminated line.
Now, separately, fit a Gaussian to the line and give your best
estimate of the uncertainty in the total flux in the line. Compare
this with a complete Bayesian analysis, fitting the same number
of harmonics plus Gaussian ab initio, and then marginalizing
out the baseline parameters.



9

Surface distribution – 2D statistics

An examination of the distribution of the numbers of galax-
ies recorded on photographic plates shows that it does not
conform to the Poisson law and indicates the presence of
a factor causing ‘contagion’.

(Neyman, Scott & Shane 1953)

The distribution of objects on the celestial sphere, or on an imaged patch
of this sphere, has ever been a major preoccupation of astronomers.
Avoiding here the science of image processing, the province of thou-
sands of books and papers, we consider some of the common statistical
approaches used to quantify sky distributions in order to permit con-
tact with theory. Before we turn to the adopted statistical weaponry of
galaxy distribution, we discuss some general statistics applicable to the
spherical surface.

9.1 Statistics on a spherical surface

Abstractly, the distribution of objects on the celestial sphere is simply
the distribution of directions of a set of unit vectors. In this respect, other
three-dimensional spaces may be of interest, like the Poincaré sphere
with unit vectors indicating the state of polarization of radiation.

This is a thriving subfield of statistics and there is an excellent hand-
book (Fisher, Lewis & Embleton 1987). Much of the motivation comes
from geophysical topics (orientation of palaeomagnetism, for instance)
but many other ‘spaces’ are of interest. The emphasis is on statistical
modelling and a variety of distributions is available. The Fisher distribu-
tion, one of the most popular, plays a similar role in spherical statistics
to that played by the Gaussian in ordinary statistics.

214
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In astronomy we usually need different distributions, often those
resulting from well-defined physical processes. The distribution of
galaxies within clusters is an example. These distributions remain poorly
understood and so the emphasis is on non-parametric methods. Here
spherical statistics do have some useful techniques to offer.

If we have a set of directions, defined by n unit vectors {Xi, Yi, Zi}
in a Cartesian system, we can ask if they could have been drawn from a
uniform distribution over a sphere. Rayleigh’s test forms the statistic

R2 =

(
n∑

i=1

Xi

)2

+

(
n∑

i=1

Yi

)2

+

(
n∑

i=1

Zi

)2

(9.1)

and for n > 10, 3R2/n is distributed as χ2 (Table A2.6) with three
degrees of freedom. For n < 25, use the tables of critical values of R in
Table A2.13.

If the directions are not uniformly distributed, a useful estimate of
their direction is the spherical median. This statistic (call it �Ms =
{λ, µ, ν}) minimizes the sum of the arc lengths from each datum. The
sum ∑

arccos(Xiλ + Yiµ + Ziν)

usually has to be minimized numerically to solve for the parameters λ,
µ and ν. There is an asymptotic distribution available for �Ms, but its
calculation is rather complicated. A bootstrap (Section 6.6) will give
prob(Ms) directly.

The next question might well be ‘is the true median some particular
direction?’. Constructing a suitable test statistic in this case requires
some spherical trigonometry. We assume that the distribution of direc-
tions is rotationally symmetric about the assumed median direction. The
angular offset of each datum from the calculated spherical median Ms

is an angle Φi, the longitude with respect to Ms. Calculating Φi is best
done by making use of rotation matrices, as described in textbooks on
spherical trigonometry, e.g. Murray (1983). An estimate of the scatter
in the data is given by the matrix

Σ =
[
σ11 σ12

σ21 σ22

]
(9.2)

with

σ11 = 1 +
1
n

∑
i

cos 2Φi, σ22 = 1 − 1
n

∑
i

cos 2Φi
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and

σ21 = σ12

=
1
n

∑
i

sin 2Φi.

The angular offsets from the hypothesized median are Φ0
i and the total

offset is described by a vector

�V =
1√
n

[∑n
i=1 cos Φ0

i∑n
i=1 sin Φ0

i

]
. (9.3)

The test statistic is then given by the matrix product

χ2 = �V TΣ−1�V (9.4)

and, as the name suggests, this will be asymptotically distributed
(n > 25) as χ2 (with two degrees of freedom). As usual, for astronomi-
cally sized samples, a bootstrap is a good way of deriving the distribution
and doing the test.

Spherical statistics can also deal with ‘undirected lines’ or axes. These
are familiar in astronomy; the normals to orbital planes are an example.
Simple, useful analyses can be made that test against the null hypothesis
of a uniform distribution on the sphere, in favour of the bipolar hypothe-
sis of clustering of axis orientation. These tests are a variant of principal
component analysis (Section 4.5) and depend on the orientation matrix

T =
1
n




∑
i X

2
i

∑
i XiYi

∑
i XiZi∑

i XiYi

∑
i Y

2
i

∑
i YiZi∑

i XiZi

∑
i YiZi

∑
i Z

2
i


 (9.5)

defined for n unit vectors {Xi, Yi, Zi}. The test for the existence of a
principal axis depends simply on the largest eigenvalue E3; critical values
are given in Table A2.14.

This test depends on the principal axis being unspecified. If the prin-
cipal axis is specified, with direction cosines {λ, µ, ν}, then the test
statistic is

S =
1
n

∑
i

(Xiλ + Yiµ + Ziν)2. (9.6)

For smallish n < 100, use Table A2.15 to determine the critical values;
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otherwise,

S ′ =
√
n(S − 1/3)

√
4/45 (9.7)

is approximately normally distributed with zero mean and unit variance.
The direction of the principal axis is given by the eigenvector of the

orientation matrix that corresponds to E3, the largest eigenvalue. This
eigenvector has an asymptotic bivariate Gaussian distribution. For small
samples n < 25 its distribution can be obtained by a bootstrap, and in
fact this may be more convenient even for quite large samples.

Tests are also available to check if distributions are rotationally sym-
metric, and to test for a specific value of the principal axis; see Fisher,
Lewis & Embleton (1987) for details.

Various other familiar statistical questions can be asked about samples
of directions or axes. If we have r distinct samples, we may ask if they all
have the same median direction. To answer this, we compute the medians
for the pooled sample and for each of the r samples. The ith datum in
the jth sample datum has an offset Φ0

ij from the pooled median and an
offset Φ′

ij from the jth median. For sample j we define, by analogy with
a previously used quantity,

Σj =

[
σ

(j)
11 σ

(j)
12

σ
(j)
21 σ

(j)
22

]
(9.8)

with

σ
(j)
11 = 1 +

1
nj

∑
i

cos 2Φ′
ij , σ

(j)
22 = 1 − 1

nj

∑
i

cos 2Φ′
ij

and

σ
(j)
21 = σ

(j)
12

=
1
nj

∑
i

sin 2Φ′
ij .

We also use

�Uj =
1√
nj

[∑
i cos Φ0

ij∑
i sin Φ0

ij

]
. (9.9)

The test statistic is then given by a sum of matrix products

χ2 =
r∑

j=1

�UT
j Σ−1

j
�Uj (9.10)
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which, for nj > 25, is distributed as chi-square with 2r − 2 degrees of
freedom. This test is non-parametric but does require large samples, as is
the case for other non-parametric comparison tests discussed by Fisher,
Lewis & Embleton 1987.

There are some useful methods available for correlation and regres-
sion. If we have sets of measurements of directions (or unit vectors) in
pairs, of the form ( �Xi, �X ′

i), we may wonder if the directions �Xi and
�X ′

i are correlated. The components of these data are {Xi, Yi, Zi} and
{X ′

i, Y
′
i , Z

′
i}. To test, we form a matrix generalization of the product-

moment coefficient, as follows:

Sxx′ =

∣∣∣∣∣∣
∑

i XiX
′
i

∑
i YiX

′
i

∑
i ZiX

′
i∑

i XiY
′
i

∑
i YiY

′
i

∑
i ZiY

′
i∑

i XiZ
′
i

∑
i YiZ

′
i

∑
i ZiZ

′
i

∣∣∣∣∣∣ (9.11)

and Sxx and Sx′x′ are defined analogously. Here we are using the deter-
minant (| . . . |) of the matrices to convert the problem into one involving
only scalars. The generalization of the correlation coefficient is

ρ =
Sxx′√

SxxSx′x′
. (9.12)

To test against the hypothesis of no correlation, the distribution of ρ can
be estimated by the permutation method described in Section 4.2. If �Xi

and �X ′
i are uncorrelated, it should not matter which �Xi goes with which

�X ′
i. Hence, by working through a large number of random permutations

of the data, and sampling many possible pairings, we can estimate the
distribution of ρ.

If ρ is appreciably different from zero, we cannot use this procedure.
The best we can do is to use a jackknife (Section 6.6) to estimate the
standard deviation of ρ. We may then perform a test on the assumption
that ρ is Normally distributed. This is a large-sample approximation.
For a small sample, we could use a bootstrap.

A similar test can be done for undirected lines, or axes. Here we do
not use determinants but the data are combined in similar matrices; for
example

Σxx′ =




∑
i XiX

′
i

∑
i YiX

′
i

∑
i ZiX

′
i∑

i XiY
′
i

∑
i YiY

′
i

∑
i ZiY

′
i∑

i XiZ
′
i

∑
i YiZ

′
i

∑
i ZiZ

′
i


 (9.13)

with Σxx and Σx′x′ similarly defined. A ‘correlation coefficient’ is then
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defined to be

ρ =
1
3

Trace (Σ−1
xxΣxx′Σ−1

x′x′Σxx′), (9.14)

the Trace being the sum of the diagonal elements of the matrix.
To test against the no-correlation hypothesis, we again use a permu-

tation method, or (for large samples, n > 25) we compare 3nρ with
chi-square with nine degrees of freedom. If a correlation is apparent, we
may again use the jackknife or bootstrap to assess significance.

This test leads to a quite general one, where �Xi is a vector (direction)
or axis and �X ′

i is a general object with p components. If p = 1, for
instance, this might be a problem to do with the correlation of directions
with time. We proceed in exactly the same way, noting that Σxx′ will
be a 3 × p matrix, while Σxx will be 3 × 3 and Σx′x′ will be p× p. The
test statistic is

ρ =
1
q

Trace (Σ−1
xxΣxx′Σ−1

x′x′Σxx′), (9.15)

where q is the smaller of 3 and p. The same remarks apply as before,
except that in the large-sample case we compare qnρ with chi-square for
3p degrees of freedom.

As a final example of correlation analysis, suppose we were interested
in the coherence or serial association in a time series of directions or
axes. So our data might be ordered in time and we want to know if �Xi

is correlated with, say, �Xi−1. A test statistic is

C =
n∑

i=2

XiXi−1 + YiYi−1 + ZiZi−1 (9.16)

and its distribution, on the assumption of no correlation, can be esti-
mated by permutations. There is a large-sample approximation but it is
rather laborious to calculate.

Finally, note that regression between unit vectors and linear variables,
or other unit vectors, can be handled by generalizations of least squares;
see Fisher, Lewis & Embleton (1987) for details.

9.2 Sky representation: projection and contouring

We frequently have a sample and we want to draw a sky representation
of it. It is essential to use an equal-area projection to preserve density of
points; we know from schooldays how unsuitable the Mercator projection
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is in this respect. There are many such projections available, and the
following three are perhaps the best known in astronomy, given right
ascension α and declination δ:

(i) The Aitoff projection:

x = 2φ
cos δ sin(α/2)

sinφ
, y = φ

sin δ

sinφ
(9.17)

where φ = cos−1(cos δ cos α
2 ).

(ii) The Hammer–Aitoff projection:

x = 2φ cos δ sin
α

2
, y = φ sin δ, (9.18)

where φ =
√

2/
√

1 + cos δ cos α
2 .

(iii) The Sanson–Flamsteed projection:

x = α cos δ, y = δ. (9.19)

In both the Aitoff and the Hammer–Aitoff projections, with the excep-
tion of the equator, the lines of constant declination curl at the extrem-
ities; those of the Sanson–Flamsteed projection are straight and hori-
zontal. The latter is also very simple arithmetically but this is offset by
the shear and crowded meridians in the polar regions. Take your pick,
noting that many more projections are available.

Now suppose we have a set of points P1, P2, . . . , Pn on our projection
and we wish to map the density of these points. Computing a weighted
average is an appropriate way to do this, and a suitable weighting scheme
for a given map point P is

Wn(P, Pi) =
Cn

4πn sinh(Cn)
exp[Cn cos(θi)] (9.20)

where θi is the angular distance between P and the data Pi. The weight
thus depends only on the angular distance of points from P . Smoothing
is controlled by Cn and varies inversely as Cn; we should choose Cn to
increase with n, as the more data we have the less smoothing we need.
Contouring from here on is a matter of choosing an appropriate grid or
map P , choosing levels or log(levels), and locating a suitable contouring
routine, available in most graphics packages.

9.3 The sky distribution of galaxies

The distribution of galaxies on the sky is a mess. There’s our ∼20-
member Local Group, Andromeda and its gang. There are big clusters
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like Coma and Virgo. There are clearly clusters of clusters, filaments
of clusters and voids. Moreover different galaxies do this differently; the
early types (ellipticals) gregariously dominate rich clusters, with the late
types (spirals) ostracized for the most part to life as hermits in socially
deprived environments. How to quantify all this? It is imperative to do
so if comparison with theory is to be made – essential, as galaxy devel-
opment, their formation and evolution, is central to modern astrophysics
and cosmology. Such quantification has been recognized as vital by the
pioneers, from Zwicky through Holmberg, Abell, De Vaucouleurs, Scott
and Neyman, and, with most impact on modern times, the detailed work,
both analytical and theoretical, by Peebles and co-workers (e.g. Peebles
1980). The current picture – the hierarchical growth of density pertur-
bations in a low-density cold dark matter universe with substantial dark
energy density – has fed critically on studies of galaxy distribution on
the celestial sphere.

The remainder of this chapter takes a fresh look at 2D statistics quan-
tifying the distribution of objects on the celestial sphere. It considers
the commonly used techniques of angular correlation functions, counts
in cells, and power-spectrum analysis. In the course of this the rela-
tions between the quantities are set out and some limitations of these in
describing the distribution are demonstrated. The following notation is
used. For brevity, angle brackets indicate ensemble averages, expectation
values, denoted elsewhere in the text as E[. . . ], while barred quantities
such as N̄ indicate averages over the survey areas in question; ς(θ, φ)
denotes object surface density.

9.4 Two-point angular correlation function w(θ)

The two-point angular correlation function w(θ) is a simple and intuitive
statistic to quantify clustering. Clustering increases the number of close
pairs; w(θ) quantifies this increase as a function of galaxy separation θ.
It is the fractional increase relative to a random distribution in the
probability δP of finding objects in each of two solid angle elements
δΩ1 and δΩ2 separated by angle θ:

δP = ς2 [ 1 + w(θ) ] δΩ1 δΩ2 (9.21)

where ς is the object surface density.
The angular correlation function has many advantages as a clustering

statistic. It is easy and quick to measure and its simplicity makes it easy
to interpret (so that it can reveal systematic effects in the observational
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data). It directly accommodates unusually shaped survey areas with
complicated boundaries and internal masked-out regions. Moreover,
there is a relatively simple way to relate w(θ) to spatial clustering via
the radial distribution of the objects. Hence w(θ) is a convenient statis-
tic to provide comparison both between data and theoretical prediction
and between different observational datasets.

The angular correlation function w(θ) is not a complete description
of the clustering. Phase information is lost. Two different object dens-
ity fields can have identical angular correlation functions – see Fig. 9.1.
A full field description requires a hierarchy of higher-order correlation
functions that are much more difficult to measure and interpret. More-
over w(θ) is very sensitive to shot noise, and may only be measured
accurately at small angles. The error on the measurement of w(θ) is dif-
ficult to compute for small survey areas: edge effects render the simple
‘Poisson error’ incorrect. Furthermore, w(θ) suffers from correlated er-
rors between adjacent ∆θ bins making assessment of true uncertainty in
its determination notoriously difficult (Fig. 6.8). Fitting a parameterized
function to it is thus awkward from the point of view of minimization
and error determination.

The value of w(θ) at given θ depends on density fluctuations on all
angular scales, complicating the interpretation of the angular correlation
function. In contrast, the angular power spectrum (Section 9.6) measures
fluctuations on a specific angular scale. For example, a single sinusoidal
density fluctuation (in one dimension) will have a δ-function angular
power spectrum but a broad angular correlation function. Likewise, long-
wavelength surface density gradients in the data (due to, for example,
calibration problems) will offset the measured w(θ) on all angles (see
Section 9.4.3.1).

EXAMPLE Figure 9.1 shows two generated sky distributions, one
(upper left) simulating low-contrast galaxy clusters in a regular grid on
a random background, the other (upper right) simulating galaxy clusters
on a background with large-scale structure in the form of a quadrupole.
The first ‘sky’ consists of a uniform random background of 8500 points,
with a further 1500 points in 25 equal clusters of Gaussian width 0.4◦

placed on a uniform 2◦ by 2◦grid across the area. The second has a back-
ground of 10 000 points generated from a power-spectrum representation
of the sky with signal in one term only:  = 2. Another 2000 points
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Fig. 9.1. Two sky simulations (see text); left – a uniform 2◦ grid of 25 low-
surface-brightness clusters on a random background, and right – a quadrupole
background with 25 randomly placed clusters. Measured w(θ) and angular
power spectra appear below each. The w(θ) were evaluated with the simple
estimator (crosses – equation 9.22) and the Landy–Szalay estimator (dots with
error bars – equation 9.25).
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were added in 25 equal ‘clusters’ of Gaussian width 0.1◦ at random
positions. Although the eye struggles to discern any features in the first
sky, the two-point correlation function shows a strong signal at small
θ describing the clusters themselves, and a resurgent signal at larger
separations due to the 2◦ by 2◦ grid on which the clusters were placed.
Both the quadrupole and the clusters are very evident in the second sky,
and the correspondingly stronger w(θ) again shows two components; the
signal at the smallest separations describes the galaxy clusters while the
signal on degree scales is due to the dipole. The examples demonstrate
the additive property of w(θ) as well as its ability to ‘see’ signal on all
scales. They also demonstrate how w(θ) can mask sky information –
different scale choices here could easily have resulted in a featureless
w(θ). This is the case for the real sky. We see clusters, superclusters,
filaments, and the result of all these scales is the well-known power-law
form for w(θ) out to scales beyond tens of degrees.

The example illustrates the complementary nature of the power-
spectrum analysis; it is supremely sensitive to the larger structural fea-
tures. For the first sky, the angular power spectrum grabs the grid spac-
ing unambiguously, while showing little evidence of signal on the cluster
scale. Likewise with the second sky, the quadrupole signal dominates all
else, although there is now some significant signal on the cluster scale.

9.4.1 Estimators and errors

In order to estimate w(θ) from a distribution of n objects, we (a) measure
the angular separation θ of all galaxy pairs and (b) bin these separations
to form the data-pair count DD(θ), the number of galaxy separations
having lengths θ to θ + dθ, and (c) calculate RR(θ), the corresponding
number in each of these bins for a random sky knowing the average
surface density of the real sky. (This latter is a simple sum: neglecting
edge effects, the expected number of random pairs in the separation
bin θ → θ + δθ is RR(θ) = 1

2 n ς 2πθ δθ, where ς is the object surface
density.) Hence an estimator for w(θ) – the fractional enhancement in
pairs above random – is

w0(θ) =
DD(θ)
RR(θ)

− 1, (9.22)

and this is w(θ) in its simplest form.



9.4 Two-point angular correlation function w(θ) 225

However, edge effects are important when dealing with a small survey
area or with weak clustering. Thus we need to measure the average
available bin area around a point (≈ 2πθ δθ) using Monte Carlo integra-
tion, by generating a comparison random distribution of r points over
the same survey area. The result of this calculation (Blake 2002) is an
improved estimator for w(θ), the so-called ‘natural’ estimator:

w1 =
r(r − 1)
n(n− 1)

DD

RR
− 1. (9.23)

This estimator too has its shortcomings, the variance in this case, leading
to the development of other estimators for w(θ) involving the cross-pair
separation count between the sets of n data points and r random points.
The following have been constructed:

w2 =
2r

(n− 1)
DD

DR
− 1 (9.24)

w3 =
r(r − 1)
n(n− 1)

DD

RR
− (r − 1)

n

DR

RR
+ 1 (9.25)

w4 =
4n r

(n− 1)(r − 1)
DD ×RR

(DR)2
− 1 (9.26)

with w2, w3 and w4 known as the Peebles (Davis & Peebles 1983), Landy
& Szalay (1993) and Hamilton (1993) estimators.

To reduce statistical fluctuations it is standard practice to use either
a small number of very large random sets, or a large number of relatively
small random sets, and to average over the random pair counts to obtain
DR and RR. Which is better? It is tempting to use a single large random
set. But note that the computation time needed to measure the separa-
tions between n objects scales as n2. For a given computation time (an
important consideration for large samples), this mitigates against using
a few large random datasets and favours the use of a large number of
relatively small ones. If the number of random sets is m and the ratio
of randoms in each set to the data is k = r/n, a reasonable guideline to
adopt is k ∼ 1, m � 1. With m ≥ 10, the excess error is ≤ 10 per cent
and may be ignored.

The best of the above estimators for w(θ) is that with the smallest
bias and variance in the angular range under investigation.

Excess variance comes about primarily but not exclusively through
edge effects, which become more significant with increasing separation
(see Exercise 2). Detailed analysis (Landy & Szalay 1993; Hamilton
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1993) has quantified the non-Poisson variance and showed that for esti-
mators w3 and w4, the non-Poisson terms cancel out and the error in the
measurement of w(θ) is just the Poisson error. Furthermore, estimators
w2 and w4 show small levels of bias. The Landy–Szalay estimator w3 is
thus the best bet.

It is thus possible to measure w(θ) with Poisson variance for an in-
dividual angular separation bin; but this does not mean that the errors
in adjacent separation bins are uncorrelated. They are correlated, sim-
ply because a single object appears in many different separation bins
through the numerous pairs in which it participates. Edge effects cause
further correlation of errors in adjacent separation bins. If there are
fewer objects on average near the boundaries, then there are systemati-
cally more close pairs in small-angle bins, and the numbers per bin are
not independent. These correlations can be significant when assessing
the goodness-of-fit of a model xi to the n data points Xi. The cor-
relations should be incorporated by computing the covariance matrix
(Section 4.2 and Press et al. 1992, Chapter 15).

9.4.2 Integral constraint

A point frequently not appreciated about w(θ) is that positive signal
at small angles demands that the function becomes negative at larger
separations. The total number of pairs over all bins is fixed at 1

2n(n −
1); clustering shifts pairs from larger to smaller separations. This gives
rise to difficulties, the first being the standard method of fitting the
function with a power law. This is secondary to the main problem: if the
surveyed area is sufficiently small, w(θ) appears positive for even the
most distant separations sampled. The pair count cannot be enhanced
in all separation bins while keeping the total number of pairs constant.
The normalization must change, and we can formulate this in terms of
an adjustment factor C as follows:

<DD(θ)>= C × 1
2
n(n− 1) δGp [ 1 + w(θ) ] (9.27)

where δGp is the equal-area fraction of the surface between θ and θ+δθ.
(For a sphere, δGp = 1

2 , satisfying
∫ π

0
dGp = 1 as it must.) It may be

shown (Exercise 3) that if W =
∫
w(θ) dGp, then C = 1/(1 + W ) and

for all cases of interest,

w(θ) ≈ w(θ)est + W, (9.28)
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i.e. the estimated w(θ) is in error by a constant offset, which becomes
negligible when the survey area becomes large.

9.4.3 Instrumental effects

There are two instrumental effects that have a serious impact on w(θ):
large-scale calibration errors and over-resolution.

9.4.3.1 Calibration errors: surface gradients

Large-scale calibration errors in surveys produce gradients or disconti-
nuities in object surface density. Such calibration problems may result
from plate-to-plate calibration errors in a Schmidt-telescope survey or
intensity-calibration changes over the area of a radio survey. Changing
surface densities will spuriously enhance measured values of w(θ). This
is because the number of close pairs of galaxies in any region depends on
the local surface density (DD ∝ ς2), but the number of pairs expected
over the sky by random chance depends on the global average surface
density (RR ∝ (ς)2). Systematic fluctuations mean that ς2 > (ς)2, in-
creasing w(θ) by

∆w(θ) =
ς2

(ς)2
− 1 = δ2 (9.29)

where δ = (ς − ς)/ς is the surface over-density. Equation (9.29) applies
on angular scales less than those on which the surface density is typically
varying; on larger scales the estimate of DD in this model is wrong. As
an indication of the strength of this effect, a simple model in which a
survey is divided into two equal areas with a surface-density change of
20 per cent produces an offset ∆w = 0.01 (see Exercise 4).

There are three approaches. The obvious one is to return to the survey
and to try to minimize surface-density fluctuation with better calibration
or analysis. The second is to restrict analysis to a flux, magnitude or sky
range in which such effects are minimal. The third is to modulate random
comparison sets to have the same surface densities as the data. This is
fraught with difficulty; the gradients must be determined from the data,
and the data must manifest clustering and structure on scales whose
determination is the object of the exercise.

9.4.3.2 Multiple-component objects

If the resolution of the telescope is high enough to break single enti-
ties up into one or more components, there is a serious danger that the
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smallest-angle measurements of w(θ) will be contaminated by an excess
contribution from apparent close pairs due to parts of the same object.
The problem is not particularly serious in the optical regime: galaxy
fields could suffer contamination at small angles from double-nucleus
objects, while the same could be true of stellar fields if a few optical
binaries are present. The problem is acute in the radio regime. Despite
attempts to ‘collapse’ or ‘combine’ the appropriate components of dou-
ble and triple sources catalogued in the FIRST survey (Cress et al.
1996; Magliocchetti et al. 1998), the small-scale region of w(θ) deter-
minations remained dominated by residual effects of resolved multiple-
component sources (Blake & Wall 2002a). The complex morphologies
and large physical sizes of radio sources mean that a single radio galaxy
can be resolved in a radio survey as two or more closely separated com-
ponents of radio emission (for example, the two radio lobes of a ‘classical
double’ radio galaxy). The resultant spurious clustering at small sepa-
rations needs to be quantified before cosmology can result from such
analyses.

To do so, consider turning some members of a distribution of n points
into multiple-component objects – replacing single points by tight groups
of points, with an average of c components per group. Take angles θ

small enough that the pair count is dominated by pairs within individual
groups (rather than between separate groups). If e is the fraction of
original points split into multiple components, and f(θ) δθ is the fraction
of those component separations in the range θ → θ+δθ, then the number
of pair separations in this bin is nef(θ) δθ. The number of pairs expected
by random chance is (c)2 ×nς πθ δθ (neglecting edge effects for small θ),
where ς is the surface density of the original n points. Hence the angular
correlation function at small angles is offset by

∆w(θ) =
e f(θ)

(c)2ςπ θ
. (9.30)

A power-law angular-size distribution, f(θ) ∝ θ−β , implies a power-
law offset to the angular correlation function ∆w(θ) ∝ θ−β−1. w(θ) is
dramatically sensitive to the double-component excess: w(θ) measures
excess pair count, and the cosmological signal will have values typically
below 1 per cent with a relatively flat slope of ∼ −0.8. Thus a few
per cent of multiple-component objects with a steep f(θ) will produce a
non-cosmological enhancement totally dominant at the small scales. This
is what happens in radio surveys, as shown in the following example.
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It is only at small separations that the multiple components affect
w(θ). At separations larger than the maximum component separations,
DD and RR will be identically increased so that w(θ) remains unaf-
fected. Multiple-component objects have no effect on the measured an-
gular correlation function on angular separations bigger than the extent
of individual sources.

EXAMPLE Figure 9.2 shows the sky distribution of radio sources in the
NRAO VLA SKY Survey (NVSS) on an equal-area projection; Fig. 9.3
shows the angular correlation function measured for the survey.

Fig. 9.2. The sources of the NVSS survey; catalogue entries with S1.4GHz >
200 mJy are plotted on an equal-area projection. The Galactic plane and
Galactic latitudes ±5◦ are shown and sources within this region are masked
from large-scale structure analysis as most are Galactic in origin.

Key to the interpretation of the two power laws is that the amplitude
of the small-angle power law decreases with flux-density threshold ex-
actly as predicted (equation 9.30) if this signal is due to multiple source
components. The amplitude of the large-angle power law shows no such
dependence on threshold, as expected to a first approximation if it is
due to true galaxy clustering.

9.5 Counts in cells

A second simple way to quantify clustering is the counts-in-cells (c-in-c)
technique. This is the traditional way, in fact the way of the pioneers in
clustering investigation (e.g. Shane & Wirtanen 1954). We simply grid
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Fig. 9.3. The angular correlation function w(θ) for the source catalogue of the
NVSS survey, at S1.4GHz = 20 mJy (solid circles) and 10 mJy (open circles).
The best-fitting sum of two power laws for the 20 mJy data is shown as the
solid line, with the two power laws shown individually, dashed due to multiple-
component sources, dotted due to galaxy clustering.

the sky into cells of fixed area and shape and count the objects falling
in each cell. This yields the probability distribution P (N) of finding N

objects in a cell; for no clustering this is a Poisson distribution. The
clustering properties are completely characterized by this probability
distribution, and thus counts-in-cells results contain more information
than the angular correlation function. It is convenient to consider the
statistics of the distribution, and in particular the first few moments
(Section 3.1) such as the variance µ2 = (N −N)2 and the skewness
µ3 = (N −N)3.

A clustered distribution produces a higher variance than a random
distribution because cells may cover clusters or voids, broadening P (N).
The clustering pattern can be quantified by measuring the variance µ2

as a function of cell size. In fact a simple relation exists between µ2 and
the angular correlation function w(θ) (see below) and thus consistency
can be verified. The skewness of counts in cells is a useful statistic physi-
cally: skewness in galaxy distributions quantifies non-linear gravitational
clustering.
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Whereas the angular correlation function bins pair separations into
small intervals, a counts-in-cells analysis combines information from a
range of angular scales up to the cell size, effectively measuring an
average w(θ). By avoiding the binning of angular separations, counts
in cells are less affected by ‘shot noise’, the main source of uncertainty
in w(θ). Counts in cells is thus a more sensitive probe of long-range cor-
relations than w(θ). It is, however, harder to make the connection with
spatial clustering, and the values of a moment of the counts distribution
for different cell sizes will be highly correlated.

9.5.1 Counts-in-cells moments

9.5.1.1 The c-in-c variance and w(θ)

Consider a non-clustered distribution of objects with surface density ς.
The expectation value of objects in a cell of area S is <N >= ς × S.
The expected probability distribution P (N) is the Poisson distribution
with mean <N> and variance <N>. We define the following statistic
to quantify the increased variance of a clustered distribution:

y =
µ2 −N

(N)2
. (9.31)

Hence <y> = 0 for no clustering, as <µ2 > = <N > = <N >. For a
given w(θ), the expected value of y (Peebles 1980) is

<y>=

∫
cell

∫
cell

w(θ) dS1 dS2

S2
. (9.32)

Thus < y > may be calculated for an assumed form of the power-law
angular correlation function, but survey resolution needs to be built in
to this analysis. Suppose in fact that the survey has angular resolution
θres; then the power-law form of w(θ) can be expressed as

w(θ) =
{−1 θ < θres

(θ/θ0)−α θ > θres
(9.33)

where θ0 is an alternative parameterization of the amplitude A = (θ0)α

of the angular correlation function. From this a general expression for
<y> in terms of survey resolution and w(θ) power-law parameters may
be derived, general in the sense that it is for varying cell shape and
size. The derivation (Blake & Wall 2002c) is not simple and requires
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numerical integration; it results in an expression of the form

<y(L)> = aL−2 + b L−α (9.34)

where a and b are constants and L is the cell dimension. The detailed
expression for <y > shows that the angular resolution θres reduces the
variance because the existence of an object in a cell limits the available
space in which other objects can appear. This effect varies with cell size
because it depends on the scale of the resolution relative to the cell
size. Thus a non-clustered distribution viewed with non-zero angular
resolution has a variance less than the Poisson value:

< y(L)> = −k

2

(
θres

L

)2

. (9.35)

In fact if a survey has high enough angular resolution then the first
term of equation (9.34) can be neglected (provided that α < 2); then
<y>∝ L−α.

9.5.1.2 The c-in-c skewness

Skewness is of special importance. Skewness quantifies asymmetry in the
non-Poisson clustering, such as a tail in the probability distribution to
high cell counts. Assuming Gaussian primordial perturbations and lin-
ear growth of clustering, the skewness of counts in cells remains zero
(Peebles 1980). Measurement of a non-zero skewness therefore indicates
either non-linear gravitational clustering or non-Gaussian initial condi-
tions. As the growth of cosmic structure moves out of the linear regime,
the expected skewness increases from zero. Using second-order pertur-
bation theory, Peebles (1980) demonstrated that the density field de-
velops a skewness <δ3>/<δ2>2 = 34/7 (where δ is the overdensity, or
dimensionless density contrast) assuming Gaussian initial perturbations
growing purely due to gravity (see also Coles & Frenk 1991). As fluc-
tuations become non-linear, skewness increases because the value of δ

grows large in density peaks but approaches the minimum value δ = −1
in under-dense regions.

Recalling that for a Poisson distribution of mean <N> the expectation
values for the variance µ2 and the skewness µ3 are both equal to <N>,
the following statistic quantifies the increased skewness due to clustering:

z =
µ3 − 3µ2 + 2N

(N)3
. (9.36)
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Hence <z>= 0 for no clustering (neglecting a small bias), as <µ2>=
<µ3>=<N>=<N>. This statistic has the expectation value

<z>=

∫
cell

∫
cell

∫
cell

W (θ12, θ13, θ23) dS1 dS2 dS3

S3
(9.37)

where W (θ12, θ13, θ23) is the three-point angular correlation function,
which quantifies the excess probability (beyond two-point clustering) of
finding objects in each of the solid angle elements δΩ1, δΩ2, δΩ3 with
mutual separations θ12, θ13, θ23:

δP = ς3 [ 1 + w(θ12) + w(θ13) + w(θ23) + W (θ12, θ13, θ23) ] δΩ1 δΩ2 δΩ3.

(9.38)
The statistical error on the estimator of equation (9.36) for a grid of Nc

cells is

σz =

√
6

Nc (N)3
. (9.39)

9.5.2 Measuring counts in cells

The methodology of c-in-c measurement was revolutionized by Szapudi
(1998) who showed that it was valid to throw a very large number of
randomly placed cells over the sky, heavily over-sampling the survey
area. But of course measurement of the variance statistic y remains
subject to statistical error due to averaging over a finite number of
independent cells Nc. Calculating the standard error in the case of a
non-clustered distribution yields

σy =

√
2

Nc (N)2
. (9.40)

The probability distribution of the clustered data does not depart greatly
from a Poisson distribution (i.e. y 	 1) so that equation (9.40) is a good
approximation to the actual statistical error.

Surveys do not encompass the whole sky: there are boundaries and
masked regions. Hence with any form of gridding or random cell place-
ment, some cells are partially filled, the ith cell having a fraction of
useful area fi (say). Populating the survey area with random points is
an obvious way to determine fi for each cell, the number of points falling
in each cell used as a measure of cell area. It is then possible to boost
the data count in the ith cell by a factor 1/fi, unless of course fi turns
out to be so small as to render 1/fi unstable; under this thresholding
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circumstance, reject the cell. The design of the Monte Carlo experiment
requires some work – it is essential not to add spurious variance by
insufficient accuracy in determining cell areas (Blake & Wall 2002c).

When evaluating the moments of the counts-in-cells distribution it is
assumed that all cells are populated independently. This is not strictly
true given that clustered objects have correlated positions, but the
assumption should be a good approximation if the cells are large enough;
a minimum cell size Lmin must be adopted so that N ≥ 1.

EXAMPLE A counts-in-cells analysis of the distribution of radio
sources in the NRAO VLA Sky Survey (see Figure 9.2) was carried
out by Blake & Wall (2002c). The results are shown in Figs. 9.4 and 9.5.
The figures show how close the distributions are to Poissonian; how well
the double power-law interpretation of w(θ) (Fig. 9.3) predicts the c-in-c
variance function y(L); and how good the agreement is for the parame-
ters describing the cosmological portion of w(θ) as derived from direct
measurement and from counts in cells.

Fig. 9.4. Left: counts of NVSS radio sources with S1.4GHz > 20 mJy in cells
of diameter 1◦. Vertical dashed line – expected mean count derived from the
source surface density; solid curve – the corresponding Poisson distribution.
Right: The variance statistic y(L) is plotted for thresholds 20 mJy (solid cir-
cles) and 10 mJy (open circles), with predictions of the double power-law
w(θ) models at 20 mJy and 10 mJy (solid lines). The dashed and dotted lines
show the separate contributions to y(L) at 20 mJy of the steep (multiple-
component) w(θ) and the shallow (cosmological) w(θ).

9.5.3 Instrumental effects

The two instrumental effects described for w(θ) have similar influence
on c-in-c moments.
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Fig. 9.5. Constraints on the clustering parameters A and α, w(θ) = Aθ−α.
Contours of constant χ2 are shown; these are approximate 1σ and 2σ con-
tours for flux-density thresholds 30 mJy (dotted), 20 mJy (dashed) and 10
mJy (solid). The left diagram is derived from fitting the correlation function
(Fig. 9.3) directly; the right diagram from fitting the counts-in-cells variance
function shown in the right panel of Fig. 9.4.

9.5.3.1 Calibration errors: surface gradients

Systematic surface density gradients spuriously offset the counts-in-cells
variance: a spread in the mean surface density across the cells will in-
evitably broaden the overall probability distribution P (N), which is con-
structed from fluctuations about those means. For a cell of area S at local
surface density ς, <N>= ςS and <N2>= ςS + ς2S2 for no clustering;
averaging over many cells produces <N>= ςS and <N2>= ςS + ς2S2.
It follows that the variance statistic y (equation 9.31) is offset by

<∆y>=
ς2

(ς)2
− 1, (9.41)

precisely the same offset as that experienced by w(θ) in the presence of
surface gradients (equation 9.29).

Likewise systematic object surface density gradients offset the skew-
ness by <∆z>= δ3 (where δ is the surface over-density).

9.5.3.2 Multiple-component objects

The presence of multiple-component objects increases the counts-in-
cells moments – the fraction of objects within a cell split into multiple
components varies from cell to cell, which acts to broaden the probabil-
ity distribution of counts in cells. The simplest model is to suppose that
a fraction e of the objects are double (in which case two apparent objects
appear as components of the same object close to the centroid position
of the object), and a fraction f are triple objects. It can be shown (Blake
2002) that the expected offsets in the variance and skewness statistics
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are then

<∆y>=
1
ς S

(
2e + 6f

1 + e + 2f

)
(9.42)

<∆z>=
1

(ς S)2

(
6f

1 + e + 2f

)
(9.43)

where S is the cell area and ς is the surface density of all components.
This result is from a simple model which neglects the range of non-

zero separations that components will have. This will only matter if the
cell size is not much greater than the maximum component separation.
A more sophisticated treatment (Blake 2002) models the separation dis-
tribution by the effective (small-angle) form of w(θ) at small angles,
assuming as in the above example that this is dominated by resolved
components of objects. The effect on the variance statistic y can then
by computed via equation (9.34), with the general expression for y(L)
thus modified to

<y(L)>= aL−2 + b L−α + cL−β (9.44)

where c is a constant and α and β are respectively the slopes of the shal-
low (real clustering) and steep (multiple component) w(θ) power laws.
In the appropriate limit this reduces to the simpler treatment initially
outlined.

The role of multiple components in skewness measurement is more
critical. Equation (9.43) shows that skewness is insensitive to double
objects, but very sensitive to triple objects. When triples are present,
the skewness offset scales with cell size as z ∝ L−4. The point is of
particular importance in the analysis of radio source catalogues; many
radio sources have a triple structure with a compact nuclear component
roughly centred between the extended pair of lobes.

9.6 The angular power spectrum

The angular power spectrum, denoted c�, is the third and final statistic
we describe to quantify a surface or sky distribution. This statistic, in-
voked to look at cluster, galaxy and radio source distributions by Yu &
Peebles (1969), Peebles & Hauser (1974), and Webster (1976) respec-
tively, imagines that the object surface density field over the sky is ex-
pressed as a sum of angular density fluctuations of different wavelengths.
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It is a Fourier analysis (Section 8.2) around the sky. The mathematical
tools involved in this process are the spherical harmonic functions, the
2D analogues of sine and cosine, and the quantity c� expresses the ampli-
tude of the th multipole, which produces fluctuations on angular scales
θ ∼ 180◦/.

In a theoretical sense the c� spectrum is entirely equivalent to the
angular correlation function w(θ) as a description of the galaxy distri-
bution. The two quantities are connected by the well-known relations
(Peebles 1980):

c� = 2π ς20

∫ +1

−1

w(θ)P�(cos θ) d(cos θ), (9.45)

and

w(θ) =
1

4π ς20

∞∑
�=1

(2 + 1) c� P�(cos θ), (9.46)

with ς0 the mean object surface density and P� the Legendre polynomi-
als. However, the angular scales on which the measured signal is highest
are very different for each statistic. w(θ) can only be determined ac-
curately at small angles, beyond which Poisson noise dominates. By
contrast, c� has highest signal at small , corresponding to large angular
scales θ ∼ 180◦/. The two statistics w(θ) and c� are complementary
in this sense. However, note that the two statistics quantify very dif-
ferent properties of the galaxy distribution (Section 9.4). The value of
c� quantifies the amplitude of fluctuations on the angular scale corre-
sponding to . The value of w(θ) is the average of the product of the
galaxy over-density at any point with the over-density at a point at an-
gular separation θ: w(θ) depends on angular fluctuations on all scales
(equation 9.46).

Measurement of the angular power spectrum has practical advantages
in comparison with w(θ). Firstly, it is possible to produce measurements
of c� at different multipoles  that are uncorrelated, whereas the w(θ)
statistic suffers from correlated errors between adjacent separation bins.
Secondly, on small scales the evolution of structure is complicated by
non-linear effects, and thus it can be advantageous to investigate larger
scales where linear theory still applies. Thirdly, there is a natural rela-
tion between the c� spectrum and the spatial power spectrum P (k). This
latter quantity provides a very convenient means of describing structure
in the Universe because its primordial form is produced by models of
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inflation, which prescribe the pattern of initial density fluctuations δρ/ρ.
Furthermore, in linear theory for the growth of perturbations, fluctua-
tions described by different wavevectors k evolve independently. The
angular correlation function w(θ) is more naturally related to the spatial
correlation function ξ(r), the Fourier transform of P (k).

9.6.1 Formalism for c�

A distribution of objects on the sky can be modelled in two statistical
steps. Firstly, a continuous density field ς(θ, φ) is specified; this can be
described in terms of its spherical harmonic coefficients a�,m:

ς(θ, φ) =
∞∑
�=0

+�∑
m=−�

a�,m Y�,m(θ, φ) (9.47)

where Y�,m are the spherical harmonic functions and θ (0 → π) and φ

(0 → 2π) are spherical polar coordinates. Secondly, discrete galaxy posi-
tions are generated in a Poisson process as a realization of this density
field (i.e. the probability of finding a galaxy in an element of solid angle
δΩ at position θ, φ is δP = ς(θ, φ) δΩ).

The angular power spectrum c� prescribes the spherical harmonic co-
efficients in the first step of this model. It is defined by

< |a�,m|2>= c� (9.48)

where the angled brackets imply an averaging over many realizations of
the density field. The assumption of isotropy ensures that < |a�,m|2> is
a function of  alone, and not m.

The Y�,m’s and a�,m’s of equation (9.47) are in general complex quan-
tities. Because the density field ς(θ, φ) is real, a�,−m = a∗�,m. Thus the
independent coefficients describing the density field are a�,0 (which is
real) and the real and imaginary parts of a�,m for m ≥ 1. Hence the th
harmonic is described by 2 + 1 independent coefficients. The assump-
tion is usually made, motivated by inflationary models, that ς(θ, φ) is
a Gaussian random field. In this model the real and imaginary parts of
a�,m are drawn independently from Gaussian distributions such that the
normalization satisfies equation (9.48). Thus <a�,m>= 0 for > 0 and
<a∗�,m a�′,m′ >= 0 unless  = ′ and m = m′.

Consider first a fully surveyed sky. As an initial step we consider the
estimation of the harmonic coefficients a�,m of the density field. The
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orthonormality properties of the Y�,m’s mean that equation (9.47) may
be reversed:

a�,m =
∫

ς(θ, φ)Y�,m
∗(θ, φ) dΩ. (9.49)

Equation (9.49) suggests that the a�,m’s may be estimated by summing
over spherical harmonics at the n object positions (θi, φi):

A�,m =
n∑

i=1

Y�,m
∗(θi, φi). (9.50)

We denote estimators by upper case symbols (e.g. A�,m) and the under-
lying ‘true’ quantities by lower case symbols (e.g. a�,m). It can now be
shown (Blake 2002) that the expectation value of the estimator |A�,m|2
is

< |A�,m|2>= c� + <ς0> (9.51)

and if ς0 is the average surface density in a given realization, the correct
estimator for c� from our original distribution is

C�,m = |A�,m|2 − ς0 (9.52)

such that <C�,m> = c�. The discreteness of the distribution causes the
correction term ‘−ς0’. For a given multipole  there are  + 1 different
estimates of c�, corresponding to m = 0, 1, . . . , . The fact that the den-
sity field is real rather than complex implies that C�,−m = C�,m and
thus negative values of m provide no new information. The statistical
error on the estimator of equation (9.52) is

σ(C�,m) =
√
<C2

�,m> − <C�,m>2 = (ς0 + c�)×
{√

2 m = 0
1 m 
= 0.

(9.53)

The error for the m 
= 0 case is reduced by a factor of
√

2 because there
are two independent measurements built in: the real and imaginary parts
of A�,m. Equation (9.53) illustrates that there are two contributions to
the statistical error:

• Shot noise (ς0), because the number of discrete objects is finite and
does not perfectly sample the underlying density field. The magni-
tude of c� is proportional to ς20 (equation 9.45); hence increasing the
number of objects decreases the fractional error.

• Cosmic variance (c�), because we can only measure a finite number
of fluctuations on a given scale around the sky.
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By considering <C�,m C�′,m′> we can show that the estimates of equa-
tion 9.52 are statistically independent; and we derive a better estimate
of c� for a given multipole  by averaging over m:

C� =
∑�

m=0 C�,m

 + 1
. (9.54)

From equation (9.53), the resulting error on C� is

σ(C�) = (ς0 + c�)
√
 + 2
 + 1

. (9.55)

For an incomplete sky, the requisite modification to the derivation
is given by Peebles (1973). A summary is as follows. Equation (9.52)
becomes

C�,m =
|A�,m − ς0 I�,m|2

J�,m
− ς0 (9.56)

where ς0 = n/∆Ω, ∆Ω is the survey area and

I�,m =
∫

∆Ω

Y�,m
∗ dΩ, J�,m =

∫
∆Ω

|Y�,m|2 dΩ (9.57)

with the integrals being over the survey area. Thus the partial sky is
compensated for by replacing |A�,m|2 with |A�,m − ς0I�,m|2/J�,m: there
is a systematic deviation in each harmonic coefficient and the overall
normalization changes.

We again estimate the angular power spectrum using C� =
(
∑�

m=0 C�,m)/(+1). The partial sky has some important effects on this
estimate. Only for a complete sky does <C� >= c�: for an incomplete
sky there is some ‘mixing’ of harmonics so that the measured angular
power spectrum at multipole  depends on a range of c�′ around ′ = :

<C�>=
∞∑

�′=1

c�′ R�,�′ (9.58)

where
∑

�′ R�,�′ = 1, and R�,�′ can be determined from the geometry
of the survey region (see Hauser & Peebles 1973). In addition, for an
incomplete sky the estimates C�,m are no longer statistically independent
and the error of equation (9.55) is only an approximation. The resulting
measurements of c� at different  are not wholly independent: the co-
variance matrix is no longer diagonal. Maximum likelihood estimation
provides a powerful and general way to take into account the correlations
induced by a partial sky area. In fact this alternative method of deriving
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the c� spectrum has been widely used in recent years for quantifying the
CMB temperature fluctuations (e.g. Lange et al. 2001). These tools can
be exploited to analyse the galaxy distribution by pixellating the sky
into equal-area cells (see Efstathiou & Moody 2001; Huterer, Knox &
Nichol 2001; Tegmark et al. 2002).

If the surveyed area ∆Ω is reduced for a fixed average object density
ς0 then the signal-to-noise of the measurement decreases, as expected.
The statistical error does not change to a first approximation, but the
magnitude of the signal (equation 9.56) is reduced because the numerator
scales as (∆Ω)2 (as it depends on the square of a sum over n = ς0 ∆Ω
objects) and the denominator scales as ∆Ω. The estimation process takes
into account the fact that the surface density ς0 is not known in advance
but is determined from the data (ς0 = n/∆Ω): this is not a source of
systematic error in the estimator.

9.6.2 Instrumental effects

Multiple-component objects spuriously increase the measured angular
power spectrum. The effect (Blake 2002) is once again to produce an
offset, this time in the c� spectrum:

∆c� =
∆

(
< |A�,m|2>

)
J�,m

=

(
c2

c
− 1

)
n < |Y�,m|2>

J�,m
. (9.59)

where c̄ is again the average number of components per object.
But J�,m =<|Y�,m|2> ∆Ω from equation (9.57) and hence this simplifies
to:

∆c� =

(
c2

c
− 1

)
ς0. (9.60)

If a fraction e of objects is split into doubles then c = 1+e and c2 = 1+3e;
thus the quantity in brackets in equation (9.60) is 2e/(1 + e). The fact
that multiple components produce a constant offset in the measured
angular power spectrum makes it very easy to correct for their presence.
The result of equation (9.60) only breaks down at very large  (> 1000)
when the angular scale of the fluctuations probed (θ ∼ 180◦/) becomes
comparable to the overall size of the objects.

The presence of systematic surface gradients also distorts the angular
power spectrum but in a non-straightforward way, because the harmonic
coefficients need to reproduce these gradients as well as the fluctuations
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due to clustering. It is again best to (a) fix the calibration, or (b) stick
to thresholds at which the gradients are insignificant.

EXAMPLE A radio survey in particular maps the galaxy distribution
out to very large distances R > 103 Mpc and is hence able to probe
P (k) on large scales k ∼ 1/R < 10−3 Mpc−1, where the shape of the
power spectrum is unaltered from its initial form. Determination of the
c� spectrum of radio galaxies therefore has the potential to constrain
the primordial pattern of density fluctuations in a manner independent
of measurements of fluctuations in the cosmic microwave background
(CMB) radiation. Such an analysis (Blake 2002) was carried out for the
NVSS (Fig. 9.2).

Fig. 9.6. Measurement of the NVSS c� spectrum. Results at flux-density
thresholds S1.4GHz = 10 mJy (solid circles) and 20 mJy (open circles) are
plotted. The solid and dashed lines show the prediction of equation (9.45)
at these thresholds assuming that w(θ) = (1 × 10−3) θ−0.8. The difference in
amplitude between the two measurements arises from the factor ς20 in equation
(9.45).

The results are shown in Fig. 9.6 together with the predictions
resulting from transforming the angular correlation function using
equation (9.45), assuming that w(θ) = (1 × 10−3) θ−0.8 (see Fig. 9.5).
The predictions turn out to be a good match to the measured c�
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spectrum – with the notable exception of the dipole term  = 1, ‘spuri-
ously’ high due to the cosmic velocity dipole detected in this experiment
(Blake & Wall 2002b). The NVSS angular power spectrum decreases
with  as (roughly) a power law. The offset due to multiple-component
sources is significant. For example, equation (9.60) produces ∆C� ≈
1 × 104 for the 10 mJy threshold.

It is initially surprising that the observed c� spectrum of Fig. 9.6 con-
curs so well with the angular correlation function prediction of equation
(9.45): c� depends on w(θ) at all angles, but w(θ) is only measurable for
θ < 10◦ and will deviate from a power law (and become slightly negative)
at larger angles. The agreement implies that long-wavelength surface
density fluctuations (generated by multipoles at low ) are important in
producing angular correlations at small θ. This is not a contradiction: the
angular correlation function is the average of the product of the galaxy
over-density at any point with the over-density at any other point at
fixed angular separation, and positive contributions to this average are
readily produced by long-wavelength fluctuations.

Mathematically, agreement arises because the dominant contribution
from the integrand of equation (9.45), dc�/dθ ∝ w(θ)P�(cos θ) sin θ,
originates from small angles. As θ → 0, dc�/dθ → θ−0.8 ×1× θ → 0; but
as θ increases, P�(cos θ) falls off and a maximum in dc�/dθ occurs at θ ≈
a few degrees. At larger angles, the oscillations in P�(cos θ) ensure that
subsequent contributions to c� approximately cancel out.

9.7 Galaxy distribution statistics: interpretation

It is important to emphasize that the picture presented by these three
forms of analysis is far from complete. Topology in particular is im-
portant and cannot necessarily be deduced from them; it is known to
be sponge-like. There are many further statistical approaches in ad-
dition to the topological one (Gott et al. 1989) – minimal spanning
trees (Barrow, Bhavsar & Sonada 1985), percolation theory (Zeldovich,
Einasto & Shandarin 1982; Dekel & West 1985; Einasto & Saar 1987),
nearest-neighbour analysis (Bogart & Wagoner 1973), higher-order corre-
lation functions (Peebles & Groth 1975), and fractal analysis (Mart́inez
et al. 1990). Further detail on these approaches together with cosmological
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interpretation may be found in the comprehensive textbooks of Peacock
(1999) and Saslaw (2000).

Exercises

In the exercises denoted by (D), datasets are provided on the book’s
website; or create your own.

9.1 Why should the test statistic for Rayleigh’s test be asymptot-
ically chi-square? Compute the statistic for small numbers, say
< 10; see Section 3.3.3.

9.2 Variance of estimators for w(θ) (D). Generate 20 000 data
points randomly in the region 0◦ < α < 5◦, 0◦ < δ < 5◦. Esti-
mate w(θ) using the natural estimator w1, the Peebles estimator
w2, the Landy–Szalay estimator w3 and the Hamilton estimator
w4. (Average DR and RR over say 10 comparison sets each of
20 000 random points.) Plot the results as a function of δ show-
ing Poisson error bars 1/

√
DD. Comment on the results. Which

estimator is best?
9.3 Integral constraint on w(θ). (a) Show that the factor C in

equation (9.27) is 1/(1+W ) where W =
∫
w(θ) dGp. (b) Derive

an approximate expression for W , assuming a power-law form
for w(θ) = (θ/θ0)−b.

9.4 The effect of surface density changes on w(θ) (D). (a) Es-
timate the magnitude of the offset in w(θ) taking a simple model
in which a survey is divided into two equal areas between which
there is a fractional surface density shift ε (equation 9.29). Find
the expected step in w(θ) as a function of ε; verify that a step
of 20 per cent results in ∆w = 0.01. (b) Confirm this predic-
tion with a toy-model simulation, putting say 100 000 random
points in the region 0◦ < α < 60◦, −20◦ < δ < + 20◦ with a
20 per cent step at δ = 0◦. Then calculate the w(θ) using say
a Landy–Szalay w(θ)4 estimator over the small angular-scale
range θ < 1◦, checking that w(θ) agrees within errors with the
prediction from equation (9.29).

9.5 The effect of surface-density changes on c-in-c (D). (a)
Use the 100 000 random points generated in the region 0◦ <

α < 60◦, −20◦ < δ < + 20◦ for Exercise (4). Generate a set of
10 grid patterns for circular non-overlapping cells over the area,
with diameter θ = 0.03◦ to 3◦, evenly spaced in log θ. Compile
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P (N) for each of these and show that the means and variances
are as expected for Poissonian distributions. Calculate and plot
the variance statistic y(L) (equation 9.31) as a function of cell
size; verify that there is no significant offset from zero. (b) Put in
a 20 per cent step in surface density, dividing the field in half at
δ = 0◦. Recalculate the y(L) and verify that the apparent offset
in y(L) is of the expected magnitude ∆y = 0.01 (equation 9.41).

9.6 w(θ) and the angular power spectrum (D). Simulate a
square piece of sky 10◦ × 10◦, using 10 000 points placed at
random. (a) Verify that there is no significant signal either in
w(θ) and in the angular power spectrum. (b) Build a hierarchy
of galaxy clusters and clusters of clusters using perhaps another
10 000 points, adopting Gaussian shapes for clusters, cluster-
clusters, etc. (c) Show that with a few adjustments to the pa-
rameters (see Fig. 9.1), it is possible to produce an approximate
power law of slope ∼ −1 for a single hierarchy of clustering.
Relate the resultant form of the angular power spectrum and
its information content to this w(θ).



Appendix 1

The literature

There is a vast literature. Here we point to a few works which we have
found useful, binning these into five types: popular, the basic text, the
rigorous text, the data analysis manual, and the books of specialist in-
terest to astronomers.

(1) The classic popular books have legendary titles: How to Lie with
Statistics (Huff 1973), Facts from Figures (Moroney 1965), Statis-
tics in Action (Sprent 1977) and Statistics without Tears
(Rowntree 1981). They are all fun. A modern version with a twist
in the title is Seeing through Statistics (Utts 1996), which enter-
tains, serves as a statistics primer, and is almost a member of the
next group.

(2) Textbooks come in types (a) and (b), both of which cover similar
material for the first two-thirds of each book. They start with
descriptive or summarizing statistics (mean, standard deviation),
the distributions of these statistics, then moving to the concept
of probability and hence statistical inference and hypothesis test-
ing, including correlation of two variables. They then diverge,
choosing from a menu including analysis of variance (ANOVA),
regression analysis, non-parametric statistics, etc. Modern ver-
sions come in bright colours and flavours, perhaps to help pre-
sentation to undergraduates of a subject with which excitement
is not always associated. The value of many such books is ex-
ceptional because of the sales they generate. They are complete
with tables, ready summaries of tests and formulae inside covers
or in coloured insets, and frequently arrive with CDs and floppy
disks including test datasets. Those of type (a) are essentially
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devoid of any calculus but with much arithmetic in the form
of worked examples, and are statistics primers for undergradu-
ates in non-scientific disciplines. Type (b) has basic mathematics
which may run as far as simple calculus. A wonderfully readable
example of the former is Statistics by Freedman et al. (1995),
in which a non-conventional approach is adopted, very success-
fully. Another which gets substantially further, for example to
ANOVA and to non-parametric tests, is Introductory Statistics by
Weiss (1995), entertaining through inclusion of short biographical
sketches of the founding fathers of statistical science. Of type (b),
moreappropriate in the present context but not necessarily so
entertaining, an outstanding example is Mathematical Statistics
and Data Analysis by Rice (1995), basic but erudite and thorough;
it goes so far as to discuss covariance matrices, Bayesian infer-
ence, moment generating functions, multiple linear regression,
and computer-intensive methods such as the bootstrap; it includes
a floppy disk with examples; and all at a bargain price for a
hard-back book. Unfortunately non-parametric tests do not get
a mention. They do in other basic texts of type (b), such as that
by Hogg & Tanis (1993): Probability and Statistical Inference, a
tried-and-true serious textbook with excellent presentation, now
in its fourth edition.

(3) The serious books which go beyond the undergraduate level
include Statistics: Concepts and Applications by Frank & Altheon
(1994), a thorough and well-set out description of classical general
statistics; and Statistical Inference by Casella & Berger (2002),
where the theory is presented in a highly accessible manner.
Kendall’s Advanced Theory of Statistics, the three volumes being
Distribution Theory (Stuart & Ord 1994), Classical Inference
and Relationship (Stuart & Ord 1991), and Bayesian Inference
(O’Hagan 1994), is a complete reference; no easy going, though.
Another very useful classic is Probability, Random Variables and
Stochastic Processes by Papoulis & Unnikrishna Pillai (2002),
strong mathematically and biased towards classic real-time sig-
nal processing issues. Various works by Jaynes (1968; 1976; 1983;
1986; 2003) are indispensable reading on the concepts of proba-
bility. There is an archive of his writings at bayes.wustl.edu.
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(4) The data analysis books are led by the highly practical
Bevington & Robinson (2002), Data Reduction and Error Anal-
ysis for the Physical Sciences. A useful little monograph is A
Practical Guide to Data Analysis for Physical Science Students
by Lyons (1991). Lyons has also written Statistics for Nuclear and
Particle Physicists (1986), an outstandingly practical guide, and
very strong on parameter fitting, hypothesis testing and Monte
Carlo methods. Another useful book, with a strong Bayesian em-
phasis, is Data Analysis: a Bayesian Tutorial by Sivia (1996).
Carlin & Louis (2000) Bayes and Empirical Bayes Methods for
Data Analysis gives a very thorough treatment of Bayesian tech-
niques in data reduction and is excellent on Bayesian integration
problems.

The monographs which simply discuss applying statistical tests
might also be considered in this class, and among these 100 Statis-
tical Tests by Kanji (1993) stands out for the sheer baldness with
which the tests are presented, one page plus a page for the worked
example. A classic in simplicity it may be, but the lethal nature
of the availability of a large number of unconsidered tests must
be emphasized. With regard to applying non-parametric statisti-
cal tests, the books by Conover (1999) Practical Nonparametric
Statistics, and Siegel & Castellan (1988) Nonparametric Statistics
for the Behavioural Sciences are very straightforward, the latter
particularly recommended. Manuals of the now highly developed
statistics program packages, e.g. MINITAB, SPSS, GENSTAT,
S-PLUS, contain much practical advice.

The dominant force in physical analysis books is, however,
Numerical Recipes (Press et al. 1992), which contains unparalled
breadth, much common sense, and subroutines in our favourite
computer languages which invariably work. No scientist should
be without access to this book; it is superb.

Finally note the two books by Tufte, The Visual Display of
Quantitative Information (1983) and Envisaging Information
(1990), magnificent in presentation and representing essential
browsing for anybody wishing to present data in graphical form.

(5) The growth of interest by astronomers in statistical methods,
perhaps driven by the data explosion, is demonstrated by a series
of specialist conferences which have resulted in the collection of
much useful information. The first of these, Statistical Methods
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in Astronomy (Rolfe 1983), contains useful background bibli-
ographies in time-series analysis and in non-parametric statis-
tics. The two later conferences, Errors, Bias and Uncertainties in
Astronomy (Jaschek & Murtagh 1990) and Statistical Challenges
in Modern Astronomy (Feigelson & Babu 1992a) reflect the dra-
matic change in what we consider to be the important datasets
over a 15-year period, and are instructive reading for this alone.
The impressive growth in rigorous statistical methods for astron-
omy is reflected in Astrostatistics (Babu & Feigelson 1996).
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Statistical tables

Table A2.1. Area under the Normal (Gaussian) distribution

∫ z

0
exp

(
− 1

2 z2
)

dz, with z = (x − µ)/σ

z + 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3079 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4430 0.4441
1.6 0.4452 0.4463 0.4474 0.4485 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4700 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4762 0.4767

2.0 0.4773 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4865 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4980 0.4980 0.4981
2.9 0.4981 0.4982 0.4983 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
3.1 0.4990 0.4991 0.4991 0.4991 0.4992 0.4992 0.4992 0.4992 0.4993 0.4993
3.2 0.4993 0.4993 0.4994 0.4994 0.4994 0.4994 0.4994 0.4995 0.4995 0.4995
3.3 0.4995 0.4995 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4996 0.4997
3.4 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4997 0.4998 0.4998
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Table A2.2. The tails of the Gaussian distribution

Percentage area under the Gaussian curve in region:

> mσ < −mσ,> mσ −mσ < mσ
m (one tail) (both tails) (between tails)

0.0 50.0 100.00 0.00
0.5 30.85 61.71 38.29
1.0 15.87 31.73 68.27
1.5 6.681 13.36 86.64
2.0 2.275 4.550 95.45
2.5 0.621 1.24 98.76
3.0 0.135 0.270 99.73
3.5 0.0233 0.0465 99.954
4.0 0.00317 0.00633 99.9937
4.5 0.000340 0.000680 99.99932
5.0 0.0000287 0.0000573 99.999943
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Table A2.3. Critical values of ‘Student’s’ t distribution

Level of significance for one-tailed test
0.100 0.050 0.025 0.010 0.005 0.0005

Level of significance for two-tailed test
0.200 0.100 0.050 0.020 0.010 0.001

ν = 1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.598
3 1.638 2.353 3.182 4.541 5.841 12.941
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.859

6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.405
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587

11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073

16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850

21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725

26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646

40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460

120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.291
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Table A2.4. Critical values of the F distribution

Level of significance = 0.90

n m = 5 10 15 20 25 30 35 40 45 50

5 3.45 2.52 2.27 2.16 2.09 2.05 2.02 2.00 1.98 1.97
10 3.30 2.32 2.06 1.94 1.87 1.82 1.79 1.76 1.74 1.73
15 3.24 2.24 1.97 1.84 1.77 1.72 1.69 1.66 1.64 1.63
20 3.21 2.20 1.92 1.79 1.72 1.67 1.63 1.61 1.58 1.57
25 3.19 2.17 1.89 1.76 1.68 1.63 1.60 1.57 1.55 1.53

30 3.17 2.16 1.87 1.74 1.66 1.61 1.57 1.54 1.52 1.50
35 3.16 2.14 1.86 1.72 1.64 1.59 1.55 1.52 1.50 1.48
40 3.16 2.13 1.85 1.71 1.63 1.57 1.53 1.51 1.48 1.46
45 3.15 2.12 1.84 1.70 1.62 1.56 1.52 1.49 1.47 1.45
50 3.15 2.12 1.83 1.69 1.61 1.55 1.51 1.48 1.46 1.44

Level of significance = 0.95

n m = 5 10 15 20 25 30 35 40 45 50

5 5.05 3.33 2.90 2.71 2.60 2.53 2.49 2.45 2.42 2.40
10 4.74 2.98 2.54 2.35 2.24 2.16 2.11 2.08 2.05 2.03
15 4.62 2.85 2.40 2.20 2.09 2.01 1.96 1.92 1.89 1.87
20 4.56 2.77 2.33 2.12 2.01 1.93 1.88 1.84 1.81 1.78
25 4.52 2.73 2.28 2.07 1.96 1.88 1.82 1.78 1.75 1.73

30 4.50 2.70 2.25 2.04 1.92 1.84 1.79 1.74 1.71 1.69
35 4.48 2.68 2.22 2.01 1.89 1.81 1.76 1.72 1.68 1.66
40 4.46 2.66 2.20 1.99 1.87 1.79 1.74 1.69 1.66 1.63
45 4.45 2.65 2.19 1.98 1.86 1.77 1.72 1.67 1.64 1.61
50 4.44 2.64 2.18 1.97 1.84 1.76 1.70 1.66 1.63 1.60

Level of significance = 0.99

n m = 5 10 15 20 25 30 35 40 45 50

5 10.97 5.64 4.56 4.10 3.85 3.70 3.59 3.51 3.45 3.41
10 10.05 4.85 3.80 3.37 3.13 2.98 2.88 2.80 2.74 2.70
15 9.72 4.56 3.52 3.09 2.85 2.70 2.60 2.52 2.46 2.42
20 9.55 4.41 3.37 2.94 2.70 2.55 2.44 2.37 2.31 2.27
25 9.45 4.31 3.28 2.84 2.60 2.45 2.35 2.27 2.21 2.17

30 9.38 4.25 3.21 2.78 2.54 2.39 2.28 2.20 2.14 2.10
35 9.33 4.20 3.17 2.73 2.49 2.34 2.23 2.15 2.09 2.05
40 9.29 4.17 3.13 2.69 2.45 2.30 2.19 2.11 2.05 2.01
45 9.26 4.14 3.10 2.67 2.42 2.27 2.16 2.08 2.02 1.97
50 9.24 4.12 3.08 2.64 2.40 2.25 2.14 2.06 2.00 1.95
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Table A2.5. Critical values of rs, the Spearman rank correlation
coefficient

Level of significance for one-tailed test
0.250 0.100 0.050 0.025 0.010 0.005 0.0025 0.0010 0.0005

Level of significance for two-tailed test
0.500 0.200 0.100 0.050 0.020 0.010 0.005 0.002 0.001

N = 4 0.600 1.000 1.000 – – – – – –
5 0.500 0.800 0.900 1.000 1.000 – – – –
6 0.371 0.657 0.829 0.886 0.943 1.000 1.000 – –
7 0.321 0.571 0.714 0.786 0.893 0.929 0.964 1.000 1.000
8 0.310 0.524 0.643 0.738 0.833 0.881 0.905 0.952 0.976
9 0.267 0.483 0.600 0.700 0.783 0.833 0.867 0.917 0.933

10 0.248 0.455 0.564 0.648 0.745 0.794 0.830 0.879 0.903
11 0.236 0.427 0.536 0.618 0.709 0.755 0.800 0.845 0.873
12 0.224 0.406 0.503 0.587 0.671 0.727 0.776 0.825 0.860
13 0.209 0.385 0.484 0.560 0.648 0.703 0.747 0.802 0.835
14 0.200 0.367 0.464 0.538 0.622 0.675 0.723 0.776 0.811
15 0.189 0.354 0.443 0.521 0.604 0.654 0.700 0.754 0.786
16 0.182 0.341 0.429 0.503 0.582 0.635 0.679 0.732 0.765
17 0.176 0.328 0.414 0.485 0.566 0.615 0.662 0.713 0.748
18 0.170 0.317 0.401 0.472 0.550 0.600 0.643 0.695 0.728
19 0.165 0.309 0.391 0.460 0.535 0.584 0.628 0.677 0.712
20 0.161 0.299 0.380 0.447 0.520 0.570 0.612 0.662 0.696
21 0.156 0.292 0.370 0.435 0.508 0.556 0.599 0.648 0.681
22 0.152 0.284 0.361 0.425 0.496 0.544 0.586 0.634 0.667
23 0.148 0.278 0.353 0.415 0.486 0.532 0.573 0.622 0.654
24 0.144 0.271 0.344 0.406 0.476 0.521 0.562 0.610 0.642
25 0.142 0.265 0.337 0.398 0.466 0.511 0.551 0.598 0.630
26 0.138 0.259 0.331 0.390 0.457 0.501 0.541 0.587 0.619
27 0.136 0.255 0.324 0.382 0.448 0.491 0.531 0.577 0.608
28 0.133 0.250 0.317 0.375 0.440 0.483 0.522 0.567 0.598
29 0.130 0.245 0.312 0.368 0.433 0.475 0.513 0.558 0.589
30 0.128 0.240 0.306 0.362 0.425 0.467 0.504 0.549 0.580
31 0.126 0.236 0.301 0.356 0.418 0.459 0.496 0.541 0.571
32 0.124 0.232 0.296 0.350 0.412 0.452 0.489 0.533 0.563
33 0.121 0.229 0.291 0.345 0.405 0.446 0.482 0.525 0.554
34 0.120 0.225 0.287 0.340 0.399 0.439 0.475 0.517 0.547
35 0.118 0.222 0.283 0.335 0.394 0.433 0.468 0.510 0.539
36 0.116 0.219 0.279 0.330 0.388 0.427 0.462 0.504 0.533
37 0.114 0.216 0.275 0.325 0.383 0.421 0.456 0.497 0.526
38 0.113 0.212 0.271 0.321 0.378 0.415 0.450 0.491 0.519
39 0.111 0.210 0.267 0.317 0.373 0.410 0.444 0.485 0.513
40 0.110 0.207 0.264 0.313 0.368 0.405 0.439 0.479 0.507
41 0.108 0.204 0.261 0.309 0.364 0.400 0.433 0.473 0.501
42 0.107 0.202 0.257 0.305 0.359 0.395 0.428 0.468 0.495
43 0.105 0.199 0.254 0.301 0.355 0.391 0.423 0.463 0.490
44 0.104 0.197 0.251 0.298 0.351 0.386 0.419 0.458 0.484
45 0.103 0.194 0.248 0.294 0.347 0.382 0.414 0.453 0.479
46 0.102 0.192 0.246 0.291 0.343 0.378 0.410 0.448 0.474
47 0.101 0.190 0.243 0.288 0.340 0.374 0.405 0.443 0.469
48 0.100 0.188 0.240 0.285 0.336 0.370 0.401 0.439 0.465
49 0.098 0.186 0.238 0.282 0.333 0.366 0.397 0.434 0.460
50 0.097 0.184 0.235 0.279 0.329 0.363 0.393 0.430 0.456
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Table A2.7. Critical values of D, the Kolmogorov–Smirnov one-sample
test

Level of significance for D = max[F0(X) − SN (X)]

0.200 0.150 0.100 0.050 0.010

N = 1 0.900 0.925 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.929
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.565 0.669
6 0.410 0.436 0.470 0.521 0.618
7 0.381 0.405 0.498 0.466 0.577
8 0.358 0.381 0.411 0.457 0.543
9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.326 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
15 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.309 0.371
19 0.237 0.252 0.272 0.301 0.363
20 0.231 0.246 0.264 0.294 0.356
25 0.210 0.220 0.240 0.270 0.320
30 0.190 0.200 0.220 0.240 0.290
35 0.180 0.190 0.210 0.230 0.270

>35 1.07/
√

N 1.14/
√

N 1.22/
√

N 1.36/
√

N 1.63/
√

N
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Table A2.8. Critical values of r in the one-sample runs test

r ≤ (smaller value) or ≥ (larger value) indicates significance at α = 0.05

n = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m = 2 – – – – – – – – – – 2 2 2 2 2 2 2 2 2
– – – – – – – – – – – – – – – – – –

3 – – – – 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
– – – – – – – – – – – – – – – – – –

4 – – – 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
– – – 9 9 – – – – – – – – – – – – – –

5 – – 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
– – 9 10 10 11 11 – – – – – – – – – – – –

6 – 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6
– – 9 10 11 12 12 13 13 13 13 – – – – – – – –

7 – 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6
– – – 11 12 13 13 14 14 14 14 15 15 15 – – – – –

8 – 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7
– – – 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17

9 – 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8
– – – – 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18

10 – 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9
– – – – 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20

11 – 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9
– – – – 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21

12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
– – – – 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22

13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
– – – – – 15 16 17 18 19 19 20 20 21 21 22 22 23 23

14 2 2 3 4 5 5 6 7 7 8 8 9 9 9 10 10 10 11 11
– – – – – 15 16 17 18 19 19 20 20 21 21 22 22 23 23

15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12
– – – – – 15 16 18 18 19 20 21 22 22 23 23 24 24 25

16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12
– – – – – – 17 18 19 20 21 21 22 23 23 24 25 25 25

17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13
– – – – – – 17 18 19 20 21 22 23 23 24 25 25 26 26

18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13
– – – – – – 17 18 19 20 21 22 23 24 25 25 26 26 27

19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13
– – – – – – 17 18 20 21 22 23 23 24 25 25 26 26 27

20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14
– – – – – – 17 18 20 21 22 23 24 25 25 26 27 27 28
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Table A2.10. Kolmogorov–Smirnov two-sample test

Critical values for one-tailed rejection region mnDm,n ≥ c.
The upper, middle and lower values are c0.10, c0.05 and c0.01 for each (m,n)

m = 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n = 3 9 10 11 15 15 16 21 19 22 24 25 26 30 30 32 36 36 37

9 10 13 15 16 19 21 22 25 27 28 31 33 34 35 39 40 41
** ** ** ** 19 22 27 28 31 33 34 37 42 43 43 48 49 52

4 10 16 13 16 18 24 21 24 26 32 29 32 34 40 37 40 41 48
10 16 16 18 21 24 25 28 29 36 33 38 38 44 44 46 49 52
** ** 17 22 25 32 29 34 37 40 41 46 46 52 53 56 57 64

5 11 13 20 19 21 23 26 30 30 32 35 37 45 41 44 46 47 55
13 16 20 21 24 26 28 35 35 36 40 42 50 46 49 51 56 60
** 17 25 26 29 33 36 40 41 46 48 51 60 56 61 63 67 75

6 15 16 19 24 24 26 30 32 33 42 37 42 45 48 49 54 54 56
15 18 21 30 25 30 33 36 38 48 43 48 51 54 56 66 61 66
** 22 26 36 31 38 42 44 49 54 54 60 63 66 68 78 77 80

7 15 18 21 24 35 28 32 34 38 40 44 49 48 51 54 56 59 61
16 21 24 25 35 34 36 40 43 45 50 56 56 58 61 64 68 72
19 25 29 31 42 42 46 50 53 57 59 70 70 71 75 81 85 87

8 16 24 23 26 28 40 33 40 41 48 47 50 52 64 57 62 64 72
19 24 26 30 34 40 40 44 48 52 53 58 60 72 65 72 73 80
22 32 33 38 42 48 49 56 59 64 66 72 75 88 81 88 91 100

9 21 21 26 30 32 33 45 43 45 51 51 54 60 61 65 72 70 73
21 25 28 33 36 40 54 46 51 57 57 63 69 68 74 81 80 83
27 29 36 42 46 49 63 61 62 69 73 77 84 86 92 99 99 103

10 19 24 30 32 34 40 43 50 48 52 55 60 65 66 69 72 74 90
22 28 35 36 40 44 46 60 57 60 62 68 75 76 77 82 85 100
28 34 40 44 50 56 61 70 69 74 78 84 90 94 97 104 104 120

11 22 26 30 33 38 41 45 48 66 54 59 63 66 69 72 76 79 84
25 29 35 38 43 48 51 57 66 64 67 72 76 80 83 87 92 95
31 37 41 49 53 59 62 69 88 77 85 89 95 100 104 108 114 117

12 24 32 32 42 40 48 51 52 54 72 61 68 72 76 77 84 85 92
27 36 36 48 45 52 57 60 64 72 71 78 84 88 89 96 98 104
33 40 46 54 57 64 69 74 77 96 92 94 102 108 111 120 121 128

13 25 29 35 37 44 47 51 55 59 61 78 72 75 79 81 87 89 95
28 33 40 43 50 53 57 62 67 71 91 78 86 90 94 98 102 108
34 41 48 54 59 66 73 78 85 92 104 102 106 112 118 121 127 135

14 26 32 37 42 49 50 54 60 63 68 72 84 80 84 87 92 94 100
31 38 42 48 56 58 63 68 72 78 78 98 92 96 99 104 108 114
37 46 51 60 70 72 77 84 89 94 102 112 111 120 124 130 135 142

15 30 34 45 45 48 52 60 65 66 72 75 80 90 87 91 99 100 110
33 38 50 51 56 60 69 75 76 84 86 92 105 101 105 111 113 125
42 46 60 63 70 75 84 90 95 102 106 111 135 120 130 138 142 150

** Statistic cannot achieve this significance level.
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Table A2.12. Critical values of D for the Kolmogorov–Smirnov
two-sample test: large samples, two-tailed

Value of D so large as to require rejection
Level of of H0 at the indicated significance, where
significance D = max[Sm(X) − Sn(X)]

0.100 1.22
√

m+n
mn

0.050 1.36
√

m+n
mn

0.025 1.48
√

m+n
mn

0.010 1.63
√

m+n
mn

0.005 1.73
√

m+n
mn

0.001 1.95
√

m+n
mn
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Table A2.13. Critical values of R in the Rayleigh test
Percentiles of the resultant length R in samples of size n from the uniform

distribution on the sphere; H0 is rejected at significance level α for the
values tabulated (Fisher, Lewis & Embleton 1987).

n α = 10% 5% 2% 1%

4 2.85 3.10 3.35 3.49
5 3.19 3.50 3.83 4.02

6 3.50 3.85 4.24 4.48
7 3.78 4.18 4.61 4.89
8 4.05 4.48 4.96 5.26
9 4.30 4.76 5.28 5.61

10 4.54 5.03 5.58 5.94

11 4.76 5.28 5.87 6.25
12 4.97 5.52 6.14 6.55
13 5.18 5.75 6.40 6.83
14 5.38 5.98 6.65 7.10
15 5.57 6.19 6.90 7.37

16 5.75 6.40 7.13 7.62
17 5.93 6.60 7.36 7.86
18 6.10 6.79 7.58 8.10
19 6.27 6.98 7.79 8.33
20 6.44 7.17 8.00 8.55

21 6.60 7.35 8.20 8.77
22 6.75 7.52 8.40 8.99
23 6.90 7.69 8.59 9.19
24 7.05 7.86 8.78 9.40
25 7.20 8.02 8.96 9.60
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Table A2.14. The eigenvalue test; critical values of E3

Percentiles of E3 for a uniform distribution on the sphere; H0 is rejected at
significance level α for the values tabulated (Fisher, Lewis & Embleton 1987).

n α = 10.0% 5.0% 2.5% 1.0%

5 0.714 0.751 0.784 0.821
6 0.678 0.712 0.743 0.779
7 0.651 0.685 0.712 0.746
8 0.630 0.662 0.687 0.718
9 0.610 0.641 0.667 0.694

10 0.590 0.625 0.650 0.677
12 0.574 0.598 0.621 0.648
14 0.554 0.578 0.599 0.623
16 0.538 0.559 0.581 0.604
18 0.525 0.544 0.566 0.587

20 0.515 0.535 0.553 0.575
25 0.496 0.512 0.530 0.550
30 0.479 0.495 0.510 0.528
40 0.459 0.473 0.487 0.501
50 0.447 0.460 0.471 0.484

60 0.438 0.449 0.458 0.470
70 0.429 0.438 0.448 0.461
80 0.423 0.432 0.441 0.452

100 0.413 0.422 0.430 0.440
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Table A2.15. The eigenvalue test; critical values of S
Percentiles of S for a uniform distribution on the sphere; H0 is rejected at

significance level α for the values tabulated (Fisher, Lewis & Embleton 1987).

n α = 10.0% 5.0% 2.5% 1.0% 0.5%

3 0.569 0.639 0.697 0.761 0.801
4 0.534 0.594 0.641 0.703 0.740
5 0.512 0.565 0.611 0.663 0.697

6 0.495 0.544 0.585 0.633 0.665
7 0.483 0.527 0.566 0.610 0.640
8 0.472 0.514 0.550 0.592 0.620
9 0.464 0.503 0.537 0.577 0.603

10 0.457 0.494 0.526 0.564 0.589

12 0.446 0.480 0.509 0.543 0.566
14 0.438 0.468 0.495 0.527 0.548
16 0.431 0.459 0.485 0.514 0.534
18 0.425 0.452 0.476 0.503 0.522
20 0.420 0.446 0.468 0.494 0.512

25 0.411 0.434 0.454 0.477 0.493
30 0.404 0.425 0.443 0.464 0.479
35 0.399 0.418 0.435 0.454 0.467
40 0.394 0.412 0.428 0.446 0.459
45 0.391 0.408 0.422 0.440 0.451

50 0.388 0.404 0.418 0.434 0.445
60 0.383 0.398 0.410 0.425 0.435
70 0.379 0.393 0.404 0.418 0.427
80 0.376 0.389 0.400 0.412 0.421
90 0.374 0.386 0.396 0.408 0.416

100 0.372 0.383 0.393 0.404 0.412
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