
Saas-Fee Advanced Course 31

A-PDF Merger DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com


A. Quirrenbach

Extrasolar Planets
Saas-Fee Advanced Course 31

Swiss Society for Astrophysics and Astronomy
Edited by D. Queloz, S. Udry, M. Mayor and W. Benz

ABC

With 140 Figures, 10 in Color 

T. GuillotP. Cassen



Tristan Guillot
Observatoire de la Côte d’Azur
BP 4229
06304 Nice, France
guillot@obs-nice.fr

Patrick Cassen
SETI Institute
515 N. Whisman Rd.
Mountain View CA 94043 USA
pcassen@mail.arc.nasa.gov

Andreas Quirrenbach
Sterrewacht Leiden
PO Box 9513
2300 RA Leiden, The Netherlands
quirrenbach@strw.leidenuniv.nl

Volume Editors:
Michel Mayor
Didier Queloz
Stephane Udry
Observatoire de Genève,
Chemin des Maillettes 51,
1290 Sauverny, Switzerland
michel.mayor@obs.uige.ch,
didier.queloz@obs.uige.ch,
stephane.udry@obs.uinge.ch

Willy Benz
Universität Bern,
Physikalisches Institut,
Sidlerstrasse 5,
3012 Bern, Switzerland

This series is edited on behalf of the Swiss Society for Astrophysics and Astronomy:
Société Suisse d’Astrophysique et d’Astronomie
Observatoire de Genève, ch. des Maillettes 51, 1290 Sauverny, Switzerland

Library of Congress Control Number:

ISBN-10 3-540-29216-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29216-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

c© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Cover design: design & production, Heidelberg

Printed on acid-free paper SPIN: 11563556 55/SPI 5 4 3 2 1 0

springer.com

Typesetting by authors and SPI Publisher Services using a Springer LT X macro packageA E

2005938665

discovery of the planet. With permission of the artist.
Cover picture: Artwork of 51 Pegasus  made by L.R. Cook shortly after the announcement of the “ ”



Preface

In April 2001 the Swiss Society of Astrophysics and Astronomy (SSAA)
organized its 31st winter “Saas-Fee” course on “Brown Dwarfs and Planets”
in a picturesque resort at Grimentz on the Swiss Alps. The range of topics
mainly focused on extrasolar planets’ science. We entitled these lecture notes
“Extrasolar Planets.”

Research on extrasolar planets is one of the most exciting fields of activity
in astrophysics. In just a decade a huge step has been made from the early
speculations on the existence of planets orbiting “other stars” to the first
discoveries and the characterization of extrasolar planets. This breakthrough
is the result of the growing interest of a large community of researchers as
well as the development of a wide range of new observation techniques and
facilities. We organized the 31st winter course to cover all relevant aspects of
this new field: observation and detection techniques, physics of their interior,
and physics of their formation. We were very happy to have three senior
lecturers, Andreas Quirrenbach, Tristan Guillot, and Patrick Cassen, cover
these three subjects. They provided information to more than 100 participants
and also gave updated comprehensive course materials, which is a challenging
task considering the rapid development of this field of research. We hope that
the level of details and the comprehensive view offered by authors will be
appreciated as a comprehensive detailed introduction to this exciting subject.

We would like to warmly thank our three speakers for the high standard
of their lectures and notes, as well as their discussion with students. We also
thank all participants for their participation, kindness, and enthusiasm in
taking part in the events organized. We thank Dominique Briguet of “A La
Marena” for his hospitality and his help with the local organization. We would
also like to warmly thank Elisabeth Teichamann, our course secretary, who
gave us immense support during the preparation of the meeting as well as
during the course. This course has been made possible thanks to a grant from
the Swiss Academy of Sciences.

Geneva Didier Queloz
June 2005 Stéphane Udry

Willy Benz
Michel Mayor



Our three lecturers: (left) Pat Cassen, (middle) Andreas Quirrenbach, (right) Tristan
Guillot
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Detection and Characterization
of Extrasolar Planets

A. Quirrenbach

1 Methods of Planet Detection

1.1 The Quest for Planets Around Other Stars

The realization that our Sun is just one “average” star amongst billions and
billions in the Sky naturally brings with it the question whether some – or
perhaps most – of the other stars may also harbor planetary systems like
our own. We live in a remarkable epoch, being the first generation that has
obtained an affirmative answer to this question, that is undertaking programs
to characterize the physical properties of planets outside the Solar System, and
that is developing the tools to search for twins of the Earth. For the first time
in human history, we are on the verge of being able to address the questions
whether there are other habitable worlds, and to search for life elsewhere in
the Universe with scientific methods.

The search for extrasolar planets has a long and checkered history (see e.g.,
Boss 1998a for an easily readable overview). Because of the enormous bright-
ness contrast between planets and their parent stars, the direct detection of
planets by taking images of the vicinity of nearby stars would be extremely
difficult. Early searches for planets were therefore mostly carried out with the
astrometric method, which seeks to detect the motion of the star around
the center of mass of the star–planet system (see Sect. 9). First reports on
the detection of massive planets (∼ 10Mjup) were published during World
War II (Strand 1943; Reuyl and Holmberg 1943), but remained controversial,
both with regards to the reality of the results and to the question whether the
detected bodies should be called “planets”. Much painstaking work over the
next few decades lead to the realization that these “detections” were spurious.
Continued improvements in the astrometric accuracy finally culminated in the
announcement of a planet 1.6 times as massive as Jupiter in a 24-year orbit
around Barnard’s Star (van de Kamp 1963). A decade earlier Otto Struve had
written a remarkable paper, in which he noted the possibility that Jupiter-like
planets might exist in orbits as small as 0.02AU, proposed to search for these
Quirrenbach A (2006), Detection and characterization of extrasolar planets. In: Mayor
M, Queloz D, Udry S and Benz W (eds) Extrasolar planets. Saas-Fee Adv Courses
vol 31, pp 1–242
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objects with high-precision radial-velocity measurements, and pointed out the
feasibility of photometric searches for planets eclipsing their parent stars – all
on little more than one journal page (Struve 1952).

By the mid-sixties, the search for extrasolar planets thus appeared to be
a thriving field, with eight planetary companions known from astrometric ob-
servations (two of them classified as “existence not completely established”),
and a number of potentially promising alternative search methods under con-
sideration (O’Leary 1966). By the same time it had also been recognized that
brown dwarfs (termed “black dwarfs” at the time) would form a class of their
own, with properties intermediate between those of stars and planets. Both as-
trometric searches for brown-dwarf companions to low-luminosity stars, and
attempts at finding them directly with high-resolution imaging techniques,
seemed to be successful (Harrington et al. 1983; McCarthy et al. 1985).

Sadly, none of these early claims for detections of planets and brown dwarfs
withstood the test of time. It turned out that systematic instrumental errors
had been mistaken for the “planetary companion” of Barnard’s Star (Gate-
wood and Eichhorn 1973). What appeared to be the most convincing detection
of a brown dwarf, a companion to the star VB8, could never be confirmed
(Perrier and Mariotti 1987; Skrutskie et al. 1987). Other putative planets and
brown dwarfs did not fare better. By the mid-nineties, all that remained was
a candidate brown dwarf companion of HD114762, detected with the radial-
velocity method (Latham et al. 1989).1

This situation changed completely and abruptly with the discovery of
51Peg b, a Jupiter-like planet in a 4-day orbit (Mayor and Queloz 1995),
which has opened a completely new field of astronomy: the study of extraso-
lar planetary systems. About 150 planets outside our own Solar System are
known to date, and new discoveries are announced almost every month. These
developments have revolutionized our view of our own place in the Universe.
We know now that other planetary systems can have a structure that is com-
pletely different from that of the Solar System, and we have set out to explore
their properties and diversity.

The following chapters introduce the most important methods that have
been employed (or proposed) for the detection of extrasolar planets, and for
studies of their physical characteristics. Emphasis is given to observational
techniques, their foundations, limitations, and their practical implementa-
tion. As far as possible, published results are mentioned in the context of
the respective observing techniques, and some outstanding implications for
the astrophysics of planets and planetary systems are discussed. This will
hopefully elucidate the capabilities, strengths, and weaknesses of the many
1 The radial-velocity technique does not allow measuring the companion mass, but
only m sin i, where i is the unknown inclination of the orbit (see Sect. 4). It could
therefore not be excluded that HD114762B is a low-mass star in a nearly face-on
orbit.
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complementary observational approaches. It should be kept in mind, however,
that the study of extrasolar planets is a rapidly expanding field, in which new
and unanticipated results appear almost every month. Technical developments
in fields such as adaptive optics, coronography, and interferometry are also oc-
curring at a staggering pace. Nevertheless, the systematic introduction of the
fundamental principles and methods attempted in this article will hopefully
remain a useful guide for a while to come.

1.2 What is a Planet?

The Definition of “Planet”

Before we can begin to answer the question how planets outside the Solar
System can be detected and characterized, we must first agree on an opera-
tional definition of the term “planet”. The Greek root of the word literally
means “unsteady” or “transient”; it was historically applied to the five known
“wandering stars” Mercury, Venus, Mars, Jupiter, and Saturn. The Coperni-
can Revolution added the Earth to the list, and the discoveries of Neptune,
Uranus, and Pluto completed the census of the large bodies in the Solar Sys-
tem as we know it. The example of Pluto clearly demonstrates the need for
a clean definition of the term “planet”. With the discovery of a large number
of bodies belonging to the Kuiper Belt (Jewitt and Luu 1993; Luu and Jewitt
2002) it has become clear that Pluto is but the largest member of the class
of Trans-Neptunian Objects (TNOs). It has therefore be argued that Pluto
should be demoted from its rank among the planets. I would side with the
majority view, however, that the use of the term “planet” in the Solar System
is based on historical developments and should not be changed retroactively.

The history in our own Solar System thus shows that the use of the term
“planet” has been expanded from the original five members of this class, to
newly discovered objects that shared the most important properties of the
established examples. Two of these additions (Neptune and Uranus) were
rather undramatic, one was based on the realization that the Earth shared
important properties with the planets (it orbits the Sun between Venus and
Mars), and one added a physically distinct and different body to the list
(Pluto). Progress in our knowledge about the planets has also taught us that
our list includes bodies encompassing wide ranges in mass, composition, and
other physical characteristics.

When we look outside our Solar System, we should certainly expect to
find a variety of objects that share many characteristics with our planets, but
that may be different in one or more important ways. It is thus a matter
of definition what we call a “planet” and where we draw the boundaries to
other classes of objects. From a practical point of view, this definition should
be based on properties that are easily verifiable observationally; this favors
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a definition based on mass over a definition based on the formation history.
Nonetheless, we should not expect that we can easily come up with a set
of criteria that will in each case allow an unambiguous classification of a
newly discovered as a “planet” (or not). For example, if a maximum mass is
included among the defining properties, all objects discovered with the radial-
velocity technique – and thus with known m sin i, see Sect. 4.1 – could strictly
speaking only be called “planet candidates” before additional information on
their orbital inclination is secured.

For the purposes of this article, I take a “planet” to be an object that
fulfills the following criteria:

• A planet is an object in orbit around a star or a multiple star system. This
excludes free-floating planet-mass objects. A number of such objects have
been detected with direct-imaging surveys in young clusters (e.g., Zapatero
Osorio et al. 2000, 2002; Béjar et al. 2001; Lucas et al. 2001).2 Free-floating
objects are not considered further here, although it is possible that some
of them originally formed in a circumstellar disk, and were ejected by a
collision with another planet (e.g., Bryden 2001).

• A planet is not in orbit around another planet. This requirement excludes
moons, but one should point out that the distinction between moons and
planets is also somewhat fuzzy. For example, the Pluto–Charon systems
could be called a double planet rather than a planet with a moon.

• A planet has a minimum mass of 1022 kg. This distinguishes planets from
planetesimals, asteroids, and comets.3

• A planet has a maximum mass of 13Mjup. This sets the boundary be-
tween planets and brown dwarfs. The value of 13Mjup has been chosen to
roughly coincide with the Deuterium burning limit (e.g., Burrows et al.
1997a). This criterion will often be applied fairly loosely, as objects with
m sin i < 13Mjup will also be called “planets” even if there is no additional
information on i.

As with the word “planet”, we will use other terms established in the Solar
System and and apply them to analogous bodies and material around other
stars; we can thus speak of “moons” and “rings” around extrasolar planets,
about “exo-planetesimals”, “exo-comets” and “exo-zodiacal dust”.

The Thermal Evolution of Giant Planets

A basic understanding of the evolution of planets is an important prerequisite
for a discussion of detection methods. The fundamental principle is rather
2 Note that a tentative detection of free-floating planet-mass objects in the cluster
M22 (Sahu et al. 2001) has been retracted (Sahu et al. 2002).

3 The value of 1022 kg is quite arbitrary, of course. I have chosen it because it
separates Pluto from the “minor bodies” in the Solar System.
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simple: planets are born hot and are initially self-luminous; they cool during
their evolution until they reach radiative equilibrium with their parent stars.
The age of a planet is therefore an important parameter that determines how
difficult it is to detect its thermal emission.

The luminosity evolution of giant planets, alongside with that of brown
dwarfs and low-mass stars, is shown quantitatively in Fig. 1; it can be seen
from this figure that an old planet is about four orders of magnitude(!) fainter
than it was at an age of 1Myr. Another important conclusion is that lumi-
nosity alone is an extremely poor indicator of the mass of substellar objects
– information about the age is crucial to distinguish between low-mass stars,
brown dwarfs, and planets. (Dynamically determined masses are even better,
of course.) We see, however, that at the same age the luminosity of gaseous
planets increases strongly with mass. Figure 1 thus provides a very useful first
orientation for general considerations about the detectability of giant planets.
For more detailed calculations, one has to take into account the planet’s tem-
perature, which determines the spectral energy distribution, and modifications
to the luminosity evolution due to irradiation by the host star (e.g., Burrows
et al. 2003).

Fig. 1. Evolution of the luminosity (in L�) of solar-metallicity M dwarfs and substel-
lar objects vs. time (in yr) after formation. The stars, “brown dwarfs” and “planets”
are shown as solid, dashed, and dot-dashed curves, respectively. In this figure, we
arbitrarily designate as “brown dwarfs” those objects that burn deuterium, while
we designate those that do not as “planets.” The masses (in M�) label most of the
curves, with the lowest three corresponding to the mass of Saturn, half the mass of
Jupiter, and the mass of Jupiter. From Burrows et al. (1997a)



6 A. Quirrenbach

1.3 Pulsar Planets

The First Extrasolar Planets

While the considerations of the preceding sections appear to give a solid frame-
work for planet searches, the first firm discovery of objects that fulfill the
above definition of a planet came totally unexpected and from a completely
different line of research. The extremely stable rotation of pulsars provides
a high-precision clock, which can be used for the indirect detection of plan-
ets, in a way that is quite similar to the radial-velocity method that will be
discussed in detail below (Sect. 4). High-precision monitoring of the time-of-
arrival (TOA) of the radio pulses can reveal subtle motions of the pulsar,
such as its reflex motion due to the presence of a planetary companion. For
a planet with mass mp in a circular orbit with period P and inclination i,
and a “canonical” neutron star mass of 1.35M�, the amplitude of the timing
residuals τ is

τ = 1.2ms
(
mp

M⊕

)(
P

1 yr

)2/3

sin i . (1)

For millisecond pulsars, TOA measurements are possible with a long-term
precision of a few µs (e.g., Wolszczan 1994). This implies that planets down
to ∼ 0.01M⊕ are detectable around pulsars; this limit is far lower than that
of any other search method currently contemplated.

After a few false starts (e.g., Bailes et al. 1991; Lyne and Bailes 1992), two
planets just a factor of ∼ 3 more massive than the Earth were found orbit-
ing the pulsar PSR B1257+12 (Wolszczan and Frail 1992). The two planets
are in a 3:2 orbital resonance, which leads to accurately predictable periodic
perturbations of the two orbits. The detection of this mutual gravitational at-
traction between the planets provided the final proof of the reality of the first
pulsar planets; the same data set also revealed the presence of a third planet
with even lower mass in the same system (Wolszczan 1994). The properties
of the planets orbiting PSR B1257+12 are listed in Table 1.

Table 1. Parameters of the PSR B1257+12 planetary system

planet A B C

semi-major axis [light-ms] 0.0035 1.3106 1.4121

eccentricity e 0.0 0.0182 0.0264

orbital period [days] 25.34 66.54 98.22

longitude of periastron – 249◦ 106◦

planet mass [M⊕] 0.015/sin i1 3.4/sin i2 2.8/sin i3

distance from pulsar [AU] 0.19 0.36 0.47

After Wolszczan (1999)
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The Keplerian timing residuals (1) depend on mp sin i; this means that
the mass of the planet and its orbital inclination cannot be determined in-
dependently. In contrast, the strength of the mutual interaction between the
planets depends directly on their masses. It has thus become possible to infer
the masses and inclinations of planets B and C from modeling of a long series
of timing data, which now covers more than a decade (Konacki and Wolszczan
2003). The derived masses are 4.3±0.2M⊕ and 3.9±0.2M⊕, respectively, and
the orbital inclinations 53◦ ± 4◦ and 47◦ ± 3◦ (or 127◦ and 133◦), indicating
that the two orbits are nearly co-planar.

Even after taking the three planets and the interaction between planets
B and C into account, there remains a long-term systematic variation of the
TOA residuals (see the lower two panels of Fig. 2). These residuals could
be indicative of the presence of a fourth planet with longer orbital period

m

Fig. 2. Timing residuals for PSR B1257+12 at 430MHz, for three increasingly
detailed models. (a) Residuals after the fit of the standard timing model without
planets. The time-of-arrival variations are dominated by the Keplerian orbital effects
from planets B and C. (b) Residuals for the model including the Keplerian orbits
of planets A, B, and C. Residual variations are determined by gravitational per-
turbations between planets B and C. (c) Residuals for the model including all the
standard pulsar parameters, and the Keplerian and non-Keplerian orbital effects.
From Konacki and Wolszczan (2003)
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(Wolszczan et al. 2000). If the apparent three-year periodicity of the residual
signal can be confirmed, this would point to an origin of the disturbance within
the pulsar planetary system itself. It will probably be difficult to ascertain the
nature of this ionized material – a “coma” ablated from a fourth body or a
warped disk are among the possibilities.

Pulsar planets appear to be rare. Only one other pulsar, PSR B1620−26
near the core of the globular cluster M4, has a confirmed planet (Arzoumanian
et al. 1996; Joshi and Rasio 1997). The B1620−26 system is rather interesting,
too. The planet orbits an inner binary system, which consists of a millisecond
pulsar and a white dwarf companion in a half-year orbit. The most likely mass
of the planet is mp sin ip ≈ 7Mjup, and the semi-major axis and eccentricity of
its orbit are a ≈ 60AU and e ≈ 0.45 (Thorsett et al. 1999; Ford et al. 2000).

The Formation of Pulsar Planets

The theories for the formation of pulsar planets can be broadly divided into
two classes: (a) scenarios, in which the planets were formed together with a
“normal” star, and survived its evolution from the main-sequence to become
a red giant and later a rapidly spinning neutron star; and (b) scenarios in
which the formation of the neutron star precedes the formation or acquisi-
tion of its planets (Podsiadlowski 1993). The first category implies that the
planets must be able to survive the formation of the pulsar, which involves
a violent transformation in a supernova explosion, and the supernova recoil.
This possibility is generally regarded as unlikely, and scenarios of type (b) are
favored.

Consequently, most theories of planet formation around millisecond pul-
sars concern themselves with possible ways to disrupt, evaporate, ablate, or
otherwise dismember the companion star, and thus to transform a fraction of
the companion’s mass into a gaseous disk around the neutron star (Phinney
and Hansen 1993). Such a disk could be formed, for example, by an asym-
metric supernova explosion in a binary system, which kicks the neutron star
into its companion. In this picture, a high-velocity single neutron star with a
planetary system is created from the remains of the former binary companion.
One could thus speculate that the presence of planets around PSR B1257+12
is related to its unusually high proper motion.

Neutron star disks are clearly very different from those commonly found
around pre-main-sequence stars. The disk is exposed to intense radiation and
particle flux, close to or even above the Eddington luminosity of the neutron
star (∼ 1038 erg s−1). The metallicity is very high, but initially there are no
grains, and the temperature is well above the sublimation temperature of even
the most refractory materials. The disk must therefore expand and cool before
planets can be formed. Calculations of the evolution of such disks indicate that
the formation of “terrestrial” planets such as those of the PSR B1257+12
system may indeed by possible, but the more massive and distant planet
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around PSR B1620−26 must have a different origin (Phinney and Hansen
1993).

The location of PSR B1620−26 near the core of the globular cluster M4
suggests that the pulsar acquired its planetary companion through an ex-
change interaction with a cluster star (Sigurdsson 1992, 1995). One plausible
formation scenario begins with an old neutron star in a binary system, which
interacts with a main-sequence star–planet system (Sigurdsson 1993). The
original companion of the neutron star is ejected, while the main-sequence
star and its planet are captured. The planet ends up in a wide orbit around
the inner binary comprised of the neutron star and the main-sequence star.
When the main-sequence star evolves to become a red giant, it transfers mass
to the neutron star, spinning it up to become a millisecond pulsar. The chief
difficulty of this scenario is the requirement that the age of the millisecond
pulsar must be smaller than that of the triple system. However, the expected
lifetime of the triple in the dense cluster core is of order 3 · 107 yr, while the
estimated age of the binary pulsar is >∼ 109 yr (Ford et al. 2000). This scenario
would thus require that the system, currently observed in projection near the
edge of the cluster core, is in fact on an orbit that allows it to spend most of
its lifetime in the far less dense cluster halo, and thus to escape disruption for
a sufficiently long time.

An alternative formation scenario involves a dynamical exchange inter-
action between a pre-existing binary millisecond pulsar and a wide main-
sequence star–planet system, in which the main-sequence star is ejected and
the planet left in a wide orbit around the binary pulsar (Ford et al. 2000).
Numerical simulations show that the probability of retaining the planet in the
encounter is smaller than that of retaining the main-sequence star, but could
still be as high as 10%. . . 30%. It is interesting to note that this scenario pos-
tulates the formation of a giant planet in a wide orbit around a “normal” star
in a globular cluster environment; this is to be contrasted with the apparent
absence of “hot Jupiters” in 47Tucanae (see Sect. 6.4).

1.4 Overview of Planet Detection Methods

The Most Important Detection Techniques

Turning our attention to “normal” stars again, we will now look at the ques-
tion how we might be able to find planets around them. Many different tech-
niques have been proposed, in spite (or perhaps: because) of the difficulty of
the task. The most promising strategies that are used in current detection
efforts, or under development for use in the near future, are:

• Direct imaging of the star–planet system.
• Interferometric imaging of the star–planet system.
• Detection of the planetary spectrum in a composite spectrum of star and

planet.
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• Interferometric detection of the planetary spectrum through the wave-
length dependence of the position of the photocenter of the star–planet
system (“differential phase method”).

• Photometry of planetary transits in front of the star.
• Spectroscopic detection of planetary transits.
• Photometric detection of the light reflected by a planet through its periodic

variation with phase angle.
• Astrometric detection of the stellar motion around the star–planet center

of mass.
• Radial-velocity measurement of the stellar motion around the star–planet

center of mass.
• Imaging of circumstellar disks, which may show signatures of disk–planet

interaction.
• Gravitational microlensing.
• Eclipse timing in binaries.

Each one of these techniques has unique strengths and weaknesses, and they
vary widely in the information they can provide about the properties of the
detected planets. Turning the question the other way around, we can take a
list of characteristics that we would like to know about extrasolar planets, and
ask which techniques can provide the requested information. Table 2 gives an
overview of the most important planetary properties, and how they may be
determined. More detailed discussions about the strengths and limitations of
individual methods will be given in the subsequent sections. For the moment,
the most important observation is that no single approach can give all the
desired information; many complementary techniques will be needed to study
the different aspects of extrasolar planets and planetary systems.

Typical Order-of-Magnitude Estimates

In order to understand the instrumental and observational requirements for
the different planet detection techniques, we need to consider typical values
for the potential observables. The large range in the properties of planets
obviously implies a large difference in the difficulty to detect them. The Earth
and Jupiter provide useful benchmarks (see Table 3), but one should also keep
in mind that there are additional classes of planets, e.g., Uranus and Neptune
in the Solar System, or the “hot Jupiters” orbiting their central stars at very
small orbital radii. The properties of the host star, and the distance from the
observer play important roles, too.

The chief difficulty of direct detection methods is the large contrast be-
tween the planet and its parent star at a very small angular separation. The
reflex motion of the parent star due to the gravitational pull of the planet is
very small, so that astrometry and the radial-velocity technique must reach
extremely high precision to detect this effect. The photometric signature of
transiting planets seems somewhat more easily accessible, at least for giant
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Table 2. Important properties of planets, and techniques that can be used to
determine them

property technique applicability

orbit astrometry ++

radial velocity +

direct imaging ◦
mass astrometry ++

radial velocity +

microlensing ◦
radius transit photometry ++

radius, albedo photometry of reflected light ++

radius, temperature direct detection in mid-IR ++

surface features photometry of reflected light +

atmospheric composition IR or visible spectroscopy ++

transit spectroscopy ◦
presence of moons transit timing +

system multiplicity astrometry +

radial velocity +

The symbols ++, +, and ◦ denote how well the different methods can provide
the required information

planets. However, in this case additional complications arise from the small
probability that the orientation is such that transits actually occur. It is thus
clear from the values listed in Table 3 that there is no “easy” technique for
planet detection – this is the reason, of course, why it was not before 1995
that the first planet around a main-sequence star was discovered.

1.5 “Exotic” Concepts for Planet Detection

The subsequent chapters of this review will be devoted to introductions to
some of the most promising planet detection techniques. Many more interest-
ing approaches have been proposed, which deserve at least a brief description.
It is entirely possible, of course, that one or the other of these “exotic” con-
cepts will turn out to be more fruitful than some of the techniques that are
considered “mainstream” today. The variety of physical effects that could in
principle be observable should illustrate the diverse opportunities for the im-
mediate and more distant future, and stimulate further ideas about possible
ways to obtain more detailed information about planets during various phases
of their life cycles, and about their interaction with the host stars.
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Table 3. Typical values of observables for Jupiter-like and Earth-like planets

observable Jupiter Earth

angular separation 0′′. 5 0′′. 1

brightness contrast at visible λλ 6× 10−7 1.5× 10−10

brightness contrast at 10µm 1.5× 10−7 1.2× 10−7

astrometric amplitude 500 µas 0.3µas

radial-velocity amplitude 13m s−1 0.1m s−1

transit probability 10−3 5× 10−3

transit depth 1% 10−4

transit duration 30 h 13 h

timing residuals 2.5 s 1.5ms

The host star is assumed to be a Sun twin at a distance of 10 pc

Radio Emission from Extrasolar Planets

Five of the planets in the Solar System (Earth, Jupiter, Saturn, Uranus, and
Neptune) produce non-thermal cyclotron radio emission, in a process that
is thought to be driven by the Solar wind interacting with the planetary
magnetospheres. The emission frequency is typically near the electron gyro-
frequency in the magnetic field, i.e., of order 30 kHz . . . 30MHz. The emission
is very intense (at times, Jupiter is brighter than the Sun at frequencies below
20MHz), and there exist fairly simple scaling laws that relate the observed
radio power to the ram pressure of the Solar wind on the cross-sectional
area of the magnetosphere (Zarka et al. 2001). There also exist scaling laws
for the magnetic dipole moment of giant planets (Farrell et al. 1999); these
scaling laws together can be used to predict the emitted radio power and peak
frequency. In a few favorable cases the emission should be observable with
current instruments, but no detections have been made so far (e.g., Bastian
et al. 2000). This may either be due to the intermittent nature of the cyclotron
emission, or to a smaller velocity or density of the stellar wind compared to
the Solar wind, or to a smaller magnetic moment of the planet, due perhaps to
tidal synchronization. In any case, future low-frequency arrays such as LOFAR
or a Square Kilometer Array (Strom et al. 2001) should be able to observe
the radio emission from magnetized giant planets.

Interaction-Induced Stellar Activity

Tidal or magnetic interaction between a giant planet in a short-period orbit
and its host star might also increase the stellar activity, which could lead
to variations in the shape of chromospheric lines in phase with the orbital
period. Hints of systematic modulations of the Ca II H and K lines have been
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found in a few such systems, but they need further confirmation (Cuntz and
Shkolnik 2002). It has also been speculated that very strong flares observed in
some Solar-type stars could be due to magnetic reconnection between fields of
the primary star and a close-in Jupiter-like planet (Rubenstein and Schaefer
2000). A systematic search for unusual flaring stars might thus be a new way of
looking for planets, but a better understanding of the planet–star interaction
would clearly be needed.

Young Planets Heated by Giant Impacts

The formation of planets proceeds through a phase of giant impacts (e.g.,
Wetherill 1990). The largest of these impacts may melt all or most of the
surface of an Earth-size planetary embryo, and heat it to a temperature of
about 1, 500 . . . 2, 500K. This would make its thermal emission detectable with
a large ground-based interferometer (Stern 1994). Giant impacts on giant
planets (such as the event that may have tipped the rotation axis of Uranus)
will likely heat them to similar temperatures, making them even more easily
detectable. The cooling times are of order a few hundred to several thousand
years; this should make the number of impact-heated objects at any given
time large enough to expect one detection per every few hundred pre-main-
sequence stars surveyed. One would then still have to establish the planetary
nature of the detected object, of course, and distinguish it from more massive
companions or other possible interlopers.

Planets Swallowed by Giant Stars

As a Solar-mass star evolves off the main sequence, it expands and ascends
the red giant branch of the Hertzsprung–Russell diagram. During that evo-
lutionary phase, the star develops a large convective envelope with a radius
of up to ∼100R�. Planets within that radius will be accreted by the star,
and thus deposit energy, angular momentum, and elements such as Lithium
in the stellar envelope. It has therefore been argued that the infrared excess
(due to a substantial expansion of the star and ejection of a shell) and high
Li abundance observed in ≈ 5% of the G and K giants could be caused by the
accretion of a giant planet or a brown dwarf (Gratton and D’Antona 1989;
Siess and Livio 1999).

In an even later evolutionary stage, when the star becomes an asymptotic
giant branch (AGB) star, it swells to an even larger size and develops a strong
wind. Planets with even larger orbital radii can then get engulfed in the ex-
tended atmosphere, or interact with the wind flow. Episodic accretion of wind
material on the planet may give rise to optical flashes and affect SiO maser
emission (Struck et al. 2002). The details of these interactions are quite com-
plex and poorly understood at the moment; this limits their potential use as
a diagnostic tool and indicator for the presence of planets.
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Planets Around White Dwarfs

It should be clear from the preceding paragraph that the orbits of planets
can change drastically during the star’s post-main-sequence evolution. Low-
mass companions will spiral into the star due to the viscous and tidal forces
exerted by the bloated atmosphere during the giant phase, but it might also
be possible that some of them may be left in an orbit of radius a <∼ 1AU
around the ensuing white dwarf. This would be a very favorable situation for
detecting the planet, because its radius would be ∼ 10 times larger than that
of the parent star! In the Rayleigh–Jeans portion of the combined spectrum
(i.e., for observations at wavelengths much longer than that corresponding to
the peak of the Planck function), the ratio of the total emission to that of just
the white dwarf is given by

Itot
IWD

= 1 +
R2
pTp

R2
WDTWD

≈ 1 + 100
Tp
TWD

. (2)

For example, a planet with Tp = 200K orbiting a white dwarf with TWD =
10, 000K would dominate the total emission of the system at long wavelengths.

Several groups have conducted near-infrared searches for substellar com-
panions of white dwarfs, and some low-mass companions have been reported,
but no planet has been discovered (e.g., Zuckerman and Becklin 1992). The
above argument suggests, however, that searches should be conducted in the
mid-infrared, where the planet can produce a strong excess over the white
dwarf spectrum (Ignace 2001). The Spitzer (formerly SIRTF) infrared mis-
sion should have sufficient sensitivity to detect such planets out to a distance
of ∼10 pc.

Occultations by the Moon or Artificial Satellites

The planet detection schemes discussed in the previous few paragraphs intend
to take advantage of special situations in which the the signature of the planet
is not swamped by the nearby bright host star. In the general case, one may try
to address the contrast problem by blocking the light from the star. This could
either be achieved by using the dark limb of the Moon as an occulting edge
(Elliot 1978), or by building a spacecraft carrying an occulting screen (Schultz
et al. 1999, 2000; Copi and Starkman 2000). In either case, the observations
would be carried out with a space telescope, which has to maintain alignment
with the occulter to a precision of a fraction of an arcsecond (the typical
angular separation of the planet from its parent star). The main obstacles for
Lunar occultations are the rather large brightness of even the dark side of the
Moon, and the difficulties of maneuvering the telescope. While it is possible
to find orbits that give rather long (∼1 h) occultations of arbitrary stars, an
enormous amount of propellant would have to be used to change targets.

Artificial occulters face similar problems. The diameter of the occulting
screen clearly has to be larger than the telescope aperture, i.e., at least ∼10m.
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To subtend an angle of no more than 0′′. 1, it must therefore be placed at a
separation of at least 20,000 km from the telescope. Furthermore, the intensity
of the starlight in the shadow of the occulter is not zero; it must be computed
with Fresnel’s diffraction theory (e.g., Born and Wolf 1997).4 Application of
Babinet’s Principle gives the approximation (Schultz et al. 1999)

I

I0
≈ 16
π2
· λa
D2

=
16
π2
· λ

ϕD
, (3)

where I and I0 are the intensity in the presence and in absence of the occulting
disk, λ the observing wavelength, a the distance between the occulter and the
telescope, D the diameter of the occulter, and ϕ the angle subtended by the
occulter as seen by the telescope. Equation (3) is valid for D2 � λa. For
the above numbers (D = 10m, a = 20, 000 km) and λ = 500 nm, the on-axis
intensity is still 16% of the value in the absence of an occulter. This shows
that diffraction at the edge is a serious problem. With λ and ϕ fixed, and clear
limits on the potential to increase D and a, the only viable way of obtaining
a better starlight suppression is the use of a tapered occulter, i.e., a screen
which is not completely opaque but has a transmission that continuously
increases from 0 at the center to 1 at the edge (Copi and Starkman 2000).
Manufacturing such a screen with precisely prescribed transmission function
is a considerable technological challenge. This, together with the requirement
of maneuvering the screen and telescope very precisely, has so far prevented
serious consideration of this approach for a planet-detection mission.

A variation of the occultation idea is the use of a coronograph, which in-
cludes an occulting spot in the focal plane of the telescope. Compared to an
external occulter, a coronograph has the disadvantage that the starlight is
blocked only after passage through the telescope optics. The telescope there-
fore has to be built to very stringent specifications on wavefront quality and
light scattering level. Nevertheless, this approach is currently regarded more
promising than that of an external occulting screen.

1.6 The Search for Extraterrestrial Intelligence

The Drake Equation

Speculations about the possibility of life, of conscious beings, and of civiliza-
tions elsewhere in the Universe have a long history (Dick 1982, 1998). The
search for extraterrestrial intelligence (SETI) as a scientific endeavor was born
with the realization that our own technology had advanced to the point that
radio signals could be transmitted and detected over interstellar distances

4 One may recall Poisson’s famous bright spot. Using Fresnel’s theory, Poisson –
who was very critical of that theory – predicted the seemingly absurd appearance
of a bright spot behind a circular obstruction. This spot was almost immediately
found experimentally by Arago, a great triumph of the wave theory of light.
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(Cocconi and Morrison 1959). Soon the question was raised how many civi-
lizations in the Galaxy might be engaged in attempts at communicating with
each other, leading to the formulation of the famous Drake Equation (Drake
1962)

N = R∗ · fp · nh · fl · fi · fc · L . (4)

The individual factors in this equation have the following meanings:

• N : the number of communicating civilizations in Galaxy;
• R∗: the rate of star formation in the Galaxy (expressed in stars per year);
• fp: the fraction of stars that harbor planetary systems;
• nh: the average number of planets (or moons) with conditions that are

suitable for the genesis of life;
• fl: the fraction of habitable planets on which life actually develops;
• fi: the probability that evolution produces intelligent life;
• fc: the fraction of intelligent civilizations that try to communicate over

interstellar distances;
• L: the length of the communication phase (in years).

Unlike the other equations in this book, which (hopefully!) quantify our in-
sights and knowledge, it is the main purpose of the Drake equation to organize
our ignorance. We know that R∗ ≈ 1 yr−1 (Trimble 1999), and we can now
state fairly confidently that fp ≥ 0.01.5 The determination of nh is one of
the great observational challenges for the coming ten to twenty years, as de-
scribed extensively in this overview. With some luck, we might even be able
to obtain an estimate for fl from astronomical observations. This factor may
also be amenable to biochemical experimentation in the tradition of the fa-
mous Miller–Urey experiments (Miller 1953) and modern attempts to generate
synthetic life forms (Szostak et al. 2001). At present, in the absence of any
evidence for extraterrestrial life, we have to admit that fl could be anywhere
between 10−9 and 1.

The next factor, fi, is equally uncertain. Biologists are deeply divided
about the question whether life necessarily evolves towards intelligence once
it gets going. On the one hand, one may point out that a staggeringly im-
probable series of events has lead to the emergence of intelligent life on Earth
(Gould 1989); on the other hand, one can argue that convergence is a ubiqui-
tous property of life, which makes it likely that particular biological properties
and features will sooner or later manifest themselves as part of the evolu-
tionary process (Conway Morris 1998). In addition, we do not understand
the biological basis of intelligence at all. What is the “quantum leap” that
separates homo sapiens from pan troglodytes, the chimpanzee? Would homo
neanderthalensis have become capable of constructing radio telescopes, if he
5 This estimate is based on the number of planets detected in the Solar neigh-
borhood (Sect. 3.1), with a “safety factor” applied for the possibility that the
efficiency of planet formation may vary with the Galactic environment.



Detection and Characterizationof Extrasolar Planets 17

hadn’t been displaced by a more advanced species? Finding an answer to these
questions seems to be a key step towards a better estimate of fi.

The factors fc and L fall into the realm of sociology. It is tempting to
speculate that fc ≈ 1, given the human drive for exploration, but we do not
know with certainty that this extrapolation from our anthropocentric view of
the world is really justified. The value of L depends on external factors such as
global epidemics and giant impacts by comets and asteroids, and on internal
factors that could lead to a quick end of a “semi-intelligent” civilization –
wars or the exhaustion of natural resources. It appears possible that our own
species and our offspring may populate the Earth at least for the remainder
of the main-sequence lifetime of the Sun (L ≈ 5 · 109 yr), but if we are not
careful, we may not live to see Lhomo = 100 yr.

We may thus characterize the emergent fields of exo-planetary astron-
omy and astrobiology as attempts to systematically explore the individual
factors of the Drake Equation, from the left to the right. In contrast, SETI
(which should perhaps better be called “Search for Extraterrestrial Technol-
ogy” or “Search for Interstellar Communication”) is an attempt to bypass
this painstaking process by going directly for the grand prize. The chances of
success are very uncertain, as the above arguments are consistent with esti-
mates that range from an average distance between “neighbors” of ≈ 30 pc,
to a Galaxy that is void of life save that on a lonely, solitary Earth.

The Fermi Paradox

If civilizations are common in the Galaxy, one may ask the question why we
have not found any incontrovertible evidence for their existence yet. More to
the point, it has been argued that the absence of extraterrestrials from the
Solar System implies that we are alone in the Galaxy, and that any searches
for extraterrestrial civilizations are futile. The chain of arguments, which is
known as Fermi’s Paradox, goes as follows:

1. Lets’s assume that our civilization is not the only one in our Galaxy that
has developed technology.

2. Then our civilization must be “typical”. This means that it is not the most
advanced of all, and that other civilizations share our desire to explore.

3. Space travel is not too difficult for civilizations “slightly” more advanced
than ours.

4. The time scale to colonize the whole Galaxy is <∼108 yrs, i.e., small com-
pared to the age of the Galaxy.

5. Then one must conclude that the Solar System should have been colonized
a long time ago. But this is not the case.

So it appears that we have encountered a logical difficulty if we believe in the
ubiquity of life. However, each step in this chain has potential loopholes, some
of them more severe, others less.
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The assumption in step (1.) can certainly be questioned. As explained in
the previous section, we know very little about fi, the likelihood for intelli-
gence to emerge through evolution. If this factor is small, we may indeed be
alone in the Galaxy.

Step (2.) seems to be quite plausible. The development of intelligence on
Earth may have been a singular event, but if we assume that it has occurred
in one other place, it very likely occurred in many other places. Then it is
very unlikely that we are the most advanced civilization, given that there are
many Solar-type stars (i.e., stars with comparable mass and metallicity) that
are several Gyrs older. Life on a terrestrial planet around any of these stars
would have a several-Gyr head start compared to the Earth. And assuming
that none of these earlier civilizations would be interested in exploring the
Galaxy (or that all of them would refrain from doing so for ethical reasons)
seems extremely unlikely, too.

To justify step (3.), we can invoke some physical considerations. Several
methods of attaining speeds necessary for interstellar travel (v >∼ 0.1c) have
been suggested, including pulsed fusion and antimatter-powered rockets, light
sails pushed by lasers, and interstellar ram jets (Crawford 1990). The biggest
hurdle to overcome for interstellar travel are the enormous energy require-
ments; accelerating a spaceship to a substantial fraction of the speed of light
in a reasonable time would require a few times the current global power pro-
duction. This is a staggering power requirement, but it is plausible that it
could be met by humanity very soon. If our power production grows at an
average rate of only ∼1%yr−1, it will take less than 1,000 years, and the
power requirement for interstellar travel will only be a fraction of a per cent
of the global power consumption.6 For comparison, a SaturnV rocket during
lift-off consumed ∼0.5% of the global power production. It thus seems likely
that a civilization that is only slightly more advanced than ours will have the
technical means to travel through interstellar distances.

The argument in step (4.) is based on the assumption that civilizations
will establish colonies, and that each colony will again establish sub-colonies
once it gets firmly established. With reasonable assumptions about the mean
distance between these colonies, and about the time it takes for a colony to
establish itself and to spawn a new settlement, one can estimate that it takes
only a few Myrs to reach every habitable planet in the Galaxy (Crawford
2000).

Step (5.) also contains an assertion that can be questioned. While we have
no scientifically valid evidence for the presence of other life forms in the Solar
System, we do not have strong evidence for their absence, either. Observational
limits on artificial probes within the Solar System are very weak, and small
probes may even be hiding among us (Tough 2000).

6 One should be somewhat careful with arguments based on sustained exponential
growth, of course. At the same growth rate, humanity would need to generate
more than 1L� in less than 10,000 years.
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In summary, all possibilities are still open. Other intelligent forms of life
may be here (within the Solar System), they may be there (within the Galaxy),
or they may be nowhere.

SETI Strategies

The fundamental task of SETI is finding artificially generated signals beamed
towards the Earth, and distinguishing them from the astrophysical and in-
strumental backgrounds. A good strategy is looking for signals whose time-
bandwidth product approaches the limiting value Bτ ≈ 1 set by the uncer-
tainty principle (Tarter 2001). Most SETI experiments have been searches for
narrow-band signals in the radio regime, where stars are comparatively weak
emitters. (FM and TV transmitters are factors 106 to 109 brighter than the
quiet Sun.) The main difficulty of this approach is the enormous search space
that needs to be covered (position, frequency, frequency drift due to relative
acceleration of emitter and receiver, pulse format). One either has to concen-
trate on “magic frequencies”, assuming that the transmitter will choose e.g., a
frequency close to the 1,420MHz hydrogen line, or construct a spectrometer
with many millions of frequency channels, and provide sufficient computer
power for the data processing.

An alternative approach are optical searches for very short laser pulses.
The flux from a Solar-type star at a distance of 300 pc is ∼ 4·105 photm−2 s−1

in a broad-band optical filter. The arrival of two or more photons with in
sub-microsecond time window is thus exponentially suppressed by Poisson
statistics; such events could therefore be attributed to a laser beacon. The
operational optical SETI experiments use two or more fast avalanche photo-
diodes in coincidence to detect nanosecond pulses.

A further choice has to be made regarding the targets of the search. One
can either point the (optical or radio) telescope at selected nearby stars,
thereby maximizing the sensitivity and therefore the chances to detect a
nearby, relatively weak transmitter, or conduct a sky survey, which optimizes
detectability of more distant, very strong emitters. Sometimes an intermedi-
ate solution is chosen, by piggy-backing a SETI receiver to a telescope during
observations taken for a different purpose. This circumvents the difficulty of
obtaining a large amount of dedicated telescope time, but makes the search
somewhat less efficient, depending on the nature of the primary observing
program.

Instead of searching for signals beamed explicitly towards us, one might
also envisage looking for electromagnetic signals generated for the internal
communication needs of extraterrestrial civilizations, leaking more or less
isotropically from their home planet into space. Since we have been using
radio transmitters for the better part of a century, intelligent life on Earth is
now detectable out to a distance of ∼25 pc, but the signal is relatively weak
– current targeted SETI programs can detect the equivalent power of strong
TV transmitters out to ∼0.3 pc, not a very useful distance.
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The Scientific Impact of SETI

SETI projects have always been justified on the basis of the large impact
that a positive result would have. But a well-designed scientific experiment
should also satisfy the criterion that even a null-result constitutes significant
progress, and provides new insight. So far, the failure of all SETI efforts to
pick up a signal does not tell us very much, because the search space that has
been covered is still quite small. To quantify this statement, we can use the
SETI figure of merit (Dreher and Cullers 1997)

S(PT ) ≡ Nstars(PT ) · ln(νh/νl) · ηpol ·Nlooks . (5)

Here PT is the effective isotropically radiated power (EIRP) of the transmit-
ter7, Nstars(PT ) the number of stars observed by a SETI project for which
a transmitter of strength PT is detectable, νh and νl the upper and lower
limits of the frequency range covered, ηpol ∈ {0.5, 1} a polarization efficiency
factor, and Nlooks the number of observations for each target star. In Fig. 3,
S(PT ) is plotted as a function of PT for the most important ongoing sur-
veys. Taking for simplicity all factors on the right-hand side of (5) except the
first to be of order unity,8 we can draw some simple conclusions from this
figure. First of all, there are few (if any) civilizations in the Galaxy transmit-
ting in excess of 1023 W equivalent power to us at the frequencies covered by
the radio surveys (mostly near the 1,420MHz line). Second, we can define a
“reasonable” equivalent transmitter power PT , which we think an advanced
civilization could afford, by multiplying the actual power with the antenna
gain. The curves in Fig. 3 then tell us how many stars have been surveyed to
that depth. Conversely, we can wage a guess the rate of incidence of civiliza-
tions (one per 10x stars, where x is your guess), look up that number on the
y-axis, and infer the equivalent power that these civilizations would have to
use to be detected in our surveys.

In the coming decades, new radio arrays with large collecting area (the
Allen Telescope Array, and perhaps later a Square Kilometer Array) will en-
able much more sensitive all-sky surveys than currently possible. The detec-
tion of artificial signals in these surveys is largely a computational problem;
the extrapolation of Moore’s Law therefore predicts a dramatic increase in
the search capabilities in a relatively short time. By the middle of the 21st
century, it should be possible to search a significant fraction of all stars in the
Galaxy to an interesting limit, comparable to the strongest current man-made
signals. A null result from such a survey would indeed place strong constraints
7 The actual power needed for a directed transmission is much smaller, of course.
Using an optical telescope with a resolving power of 0′′. 1 to send a beacon, for
example, reduces the power requirement by a factor 1014 compared to an isotropic
emitter. This factor is called antenna gain.

8 The logarithmic frequency factor is actually as small as 10−3 for some of the
surveys shown (Tarter 2001).
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Fig. 3. SETI Figure of Merit as defined in (5) for current searches. The power
axis represents the average effective isotropically radiated power for narrow-band
continuous wave searches, but is the peak transmitter power for short optical pulses.
From Tarter (2001)

on the number of civilizations in the Galaxy. On the other hand, we might
be lucky and receive transmissions from intelligent beings even before we can
launch the planned space missions TPF/DARWIN which will be capable of
identifying the chemical signature of primitive life through spectroscopy of
the atmospheres of nearby habitable planets.

2 Planet-Forming Disks

The origin of planetary systems is intimately linked to the formation of their
parent stars. The theory of star formation and observations of young stellar
objects are large fields of astronomy; we will only summarize briefly those
aspects that are relevant for planet detection methods. For excellent intro-
ductions into star formation see e.g. Shu et al. (1987), van Dishoeck and
Blake (1998), and Dutrey (1999). It is now generally accepted that circum-
stellar disks play an important role during the pre-main-sequence phase, and
that planets are formed in these relatively massive disks. The disk hypothesis
for the formation of the Solar System actually dates back to Kant (1755) and
Laplace (1796); it provides a framework in which the following salient features
of the Solar System can be explained:

• The planetary orbits are nearly circular and coplanar.
• The orbital motions and rotations of the Sun, planets, and moons are

predominantly in one sense.
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• The Solar System is differentiated, with systematic trends in the planetary
properties with distance from the Sun.

• The Solar System contains a large number of small bodies (asteroids and
comets), again with properties that vary systematically with distance from
the Sun.

These properties are not prescribed by Kepler’s Laws or other fundamental
laws of physics, but they are a direct consequence of the way the Solar System
formed (e.g., Encrenaz 2001). We may therefore expect that extrasolar plan-
etary systems may share these general characteristics with ours because they
were formed by the same processes and in a similar environment. It should
be pointed out, however, that mechanisms such as orbital migration and two-
body scattering might in many cases have played a more prominent role than
in the Solar System. The detections of massive planets in orbits with small
radii, and of planets in highly eccentric orbits (see Sect. 3) are certainly an
indication that a large range of outcomes is possible from the processes that
shape nascent planetary systems.

2.1 Star Formation: the General Framework

“Bimodal” Star Formation

Stars form in molecular clouds, the coldest (typically 10 . . . 50K) and densest
(n ≈ 103 cm−3) phase of the interstellar medium. Because of the low tem-
peratures and extremely high opacity, the first phases of star formation can
only be observed at radio, millimeter, and mid-infrared wavelengths. These
wavelength ranges contain rich spectral information, which can be used to
diagnose the physical state of the gas, to trace large-scale motions, and to
pinpoint the sites at which stellar embryos are forming. Rotational and vibra-
tional transitions of molecules such as H2, CO, CS, NH3, H2O, CH, OH, and
many others, provide information on gas temperature, density and kinematics,
the far-infrared continuum emission probes the distribution and temperature
of dust, near-infrared images reveal young embedded stars, and infrared fine
structure lines and radio free-free emission trace hot gas that has been ionized
by newborn massive stars (e.g. Genzel 1992).

One can broadly distinguish between two distinct star-forming environ-
ments: cold dark clouds, which form only low-mass stars, and giant molecular
complexes, which are associated with high-mass star formation (Evans 1999).
In giant complexes, of which the OrionA cloud and NGC3603 are promi-
nent examples, high-mass and low-mass stars form in close proximity to each
other (e.g., Eisenhauer et al. 1998); the stellar density in the Orion region
is ∼ 2 · 104 pc−3. In contrast, low-mass star forming regions are much less
dense, and form only stars with masses <∼ 2M�. There are also differences
between individual regions; whereas the Taurus–Auriga clouds have a filamen-
tary structure with isolated star formation, the ρOphiuchi cloud is a cluster
with a higher density of newly born stars.
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The Solar neighborhood is a mix of stars born in different environments.
Roughly 80% of all Solar-mass stars may have originated in dense regions like
Orion, but for any individual old star it is practically impossible to ascertain
whether it formed in this way or in relative isolation. Consequently, we are
looking at planetary systems (or stars without planetary companions!) that
were exposed to widely different environmental influences during their youth.
It is quite possible that the ionizing flux of young massive stars modifies or
even destroys the circumstellar disks in the surrounding cluster before they can
form planets (Armitage 2000); this may indeed be happening near the Orion
Trapezium (Johnstone et al. 1998). In this context one should keep in mind
that all current information on extrasolar planets comes from observations
of low-mass stars (up to ≈1.5M�). It is certainly possible that all known
planets are associated with stars that were born in relative isolation. Massive
stars, which form exclusively in dense clusters, may therefore conceivably have
planetary systems with vastly different properties, or no planets at all. This
interesting question can for example be addressed with astrometric surveys of
high-mass stars and of pre-main-sequence stars (see Sect. 9.7).

Molecular Cloud Collapse, Fragmentation,
and Low-Mass Star Formation

Molecular clouds typically have a clumpy structure; the densest clumps are
associated with star formation. According to the famous Jeans criterion, a
parcel of gas with temperature T , density ρ, and mean molecular mass µ will
collapse under its own gravitational attraction if its mass is above the critical
value

mJ ≡
(

πkT

4GµmH

)3/2

ρ−1/2

≈ 5 · 104
(

T

100K

)3/2 ( ρ

cm−3

)−1/2

M� . (6)

This expression shows that only clumps with masses large compared to indi-
vidual stars can start collapsing. (Even for gas as cold as 10K, a density of
2.5 · 106 cm−3, far in excess of typical values for quiescent molecular clouds,
would be required for a 1M� clump to collapse.) After the collapse has been
initiated, fragmentation will produce sub-clumps, which will then proceed to
form individual stars. Conservation of angular momentum naturally leads to
an increasingly flattened morphology, and finally to the formation of a disk.

Starting with these processes, the formation of a low-mass star can be
described by four main phases (e.g. Shu et al. 1987):

1. A slowly rotating pre-stellar core forms by losing its magnetic and turbu-
lent support.
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2. The core collapses “from the inside out”. A central protostar and disk are
formed, which are deeply embedded within an infalling envelope of dust
and gas. The luminosity of the protostar is derived from accretion.

3. Deuterium ignites in the central region, which becomes convective. A stel-
lar wind develops, primarily perpendicular to the disk. This is the bipolar
outflow phase.

4. Accreting material falls on the disk rather than the star. The opening
angle of the wind widens; it blows away the surrounding gas. This is the
TTauri phase, in which the pre-main-sequence star is surrounded by a
remnant circumstellar disk.

The later two of these phases correspond to four observationally distinct
classes of objects, described in Fig. 4 (André 1994). During the pre-main-
sequence evolution, there is a general trend for the peak of the spectral energy
distribution to move towards shorter wavelengths, partly because of increasing
temperatures, partly because of decreasing opacity towards the central source.
During the same time, the mass of the envelope/disk decreases from nearly a
Solar mass to a small fraction of that value. The formation of planetary sys-
tems must coincide with the phases that are accompanied by a sufficiently
massive disk; the time available for planet formation is therefore limited by
the time scale for disk dispersal.

Observational data on the lifetime of pre-main-sequence disks can most
easily be obtained from a census of the circumstellar disk fraction in young
clusters, spanning a significant range in age (Haisch et al. 2001b). In the
youngest clusters the disk fraction is very high (>∼ 80%); it decreases rapidly
with cluster age. About half of the stars lose their disks within ∼ 3Myr; at and
age of ∼ 6Myr essentially all disks have disappeared. Strictly speaking these
data refer to the hot inner disk that gives rise to the near-infrared excess, but
the lifetime of the outer disk, in which planets can form, seems to be closely
related (Haisch et al. 2001a). We can thus infer that planets must form within
a few Myrs.

2.2 Observations of Dusty Disks

Pre-Main-Sequence Disks

As explained in Sect. 2.1, TTauri stars are new-born Solar-type stars with
ages of 105 to 107 yrs, which have emerged relatively unobscured from their
natal molecular clouds (Bertout 1989). The detection of an infrared excess
around many of these stars, and the subsequent modeling of their spectral
energy distribution, led to the wide acceptance of a circumstellar disk inter-
pretation (Beckwith and Sargent 1993). A key argument in favor of this model
was the realization that a spherical geometry is prohibited, since the dust in
the system would then completely obscure the central star; an axial symmetry
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Fig. 4. The main stages of star formation (from top to bottom). The left column
shows schematic spectral energy distributions. The overall geometry of the protostar
and its immediate environment is sketched in the middle column. The right column
gives approximate ages and disk masses. For details see the text. From André (1994)

is also supported by observations of bipolar optical jets and molecular out-
flows.

Observations of a number of pre-main-sequence disks in the millimeter/sub-
millimeter continuum can be fitted with a λ−1 emissivity law for the dust,
which implies that grain growth is occurring in them (Dutrey 1999). This
is in general agreement with the ideas about grain growth discussed above.
Since the emission is mainly optically thin, it allows measuring the disk mass;
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values in the range 10−3 . . . 10−1M� have been derived.9 The star HLTau is
a good example for a very young (∼0.1Myr) object of mass ∼1M�. Its spec-
tral energy distribution can be fitted by a toroidal circumstellar envelope of
mass ∼0.11M� (Men’shchikov et al. 1999). This model requires the presence
of very large (>∼ 100µm) dust grains in the inner 100AU, and much smaller
grains (<∼1µm) in the outer regions, again in agreement with expectations.

The first resolved images of circumstellar dust disks were obtained in the
mid-eighties with interferometric observations of the millimeter continuum
emission, and a few years later with optical and infrared high-resolution imag-
ing (Koerner 1997). Famous examples are the compact objects seen silhouetted
against the bright H II region associated with the Orion Trapezium Cluster
(O’Dell et al. 1993; McCaughrean and O’Dell 1996; Bally et al. 2000). The ob-
jects closest to the OB stars have a cometary morphology, with a tail pointing
away from the hot stars, and an ionization front towards them. Objects fur-
ther from the OB stars have a more elliptical appearance with a star visible in
the center, as expected for a sample of pre-main-sequence objects surrounded
by disks with diameters of a few hundred AU.

Many other pre-main-sequence disks have been imaged in scattered light at
infrared and visible wavelengths over the past few years, both from the ground
and from space (e.g., Roddier et al. 1996; Potter et al. 2000; Stapelfeldt et al.
1998; Krist et al. 2000, 2002; Schneider et al. 2003; McCaughrean et al. 2000).
The object HH-30 is a particularly interesting case (Burrows et al. 2006). The
dust disk is seen nearly edge-on, and appears as a dark lane with a diameter
of ∼ 500AU. The central star is completely obscured, so that the surface of
the flaring disk can clearly be seen in scattered light. A highly collimated jet
is aligned with the rotation axis of the disk; clumps of gas are ejected along
the jet axis at a speed of ∼ 200 km s−1. The fortuitous orientation of HH-30
thus allows an unusually detailed look at the geometry of the disk and jet,
demonstrating that the collimation must take place within ∼30AU of the star.

The steeply descending radial density and temperature profiles make
the detection of the outer disks (beyond ∼ 200AU) in the mm continuum
very difficult. This region can be probed through its CO emission, however.
Disks around TTauri stars such as GMAur are found to have outer radii of
100 . . . 800AU; velocity gradients along the major axes of the disks clearly
demonstrate Keplerian rotation, as expected (Koerner et al. 1993; Guilloteau
and Dutrey 1998; Dutrey et al. 1998). Many other molecules have been de-
tected in pre-main-sequence disks and provide detailed diagnostics of the
physics and chemistry of the gas. Some molecules (HCN, H2CO) are depleted
by factors ∼ 100 due to condensation onto grains (Aikawa and Herbst 1999;
Dutrey et al. 1997). While large CO disks are common around stars at an age

9 Note that gas masses derived from observations of dust or CO are based on
assumptions about the dust/gas and CO/H2 ratios, respectively. In circumstellar
disks these ratios can be substantially different from the “standard” ISM values.
For details see Dutrey (1999).
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of ∼106 yrs, they have not been found around older stars, at 107 . . . 108 yrs
(Liseau and Artymowicz 1998; Greaves et al. 2000).

Debris Disks

Dusty circumstellar disks around main-sequence stars are quite different in
nature from pre-main-sequence disks, as their dust mass is at least 10 times
higher than their gas mass. The Infra-Red Astronomical Satellite (IRAS) dis-
covered that some bright nearby stars (among them Vega and Fomalhaut)
emit much more strongly at wavelengths between 25µm and 100µm than
expected (Aumann et al. 1984; Backman and Paresce 1993; Lagrange et al.
2000). Coronographic observations of β Pictoris, the star with the strongest
infrared excess, soon showed that this “Vega phenomenon” is due to a circum-
stellar dust disk (Smith and Terrile 1984). A disk- or ring-like morphology has
also been found in several other cases (including Vega, Fomalhaut, εEri, and
HR4796A, Zuckerman 2001), but some more distant Vega-excess stars are
associated with reflection nebulosities reminiscent of the Pleiades, indicating
that their far-IR excess may also be caused by local heating of interstellar
dust (Kalas et al. 2002).

The properties of a few prominent and well-studied main-sequence dust
disks are listed in Table 4. They are all much more luminous than the dust
disk of the Solar System, and they are associated with relatively young stars.
Indeed, there is a clear relation between the fractional dust luminosity fd ≡
Ldust/L∗ with stellar age τ∗; it can be represented by a power law fd ∝ τ−1.76

∗
(Spangler et al. 2001). There is a substantial gap in our knowledge of dust

Table 4. Properties of debris disks

star d rc Tdust sdust Ldust/L∗ τPR τcoll τ∗

[pc] [AU] [K] [µm] [yr] [yr] [yr]

αLyr 8 150 85 10 . . . 100 2 · 10−5 107 107 4 · 108

αPsA 7 150 60 ≈ 10 8 · 10−5 107 106 2 · 108

β Pic 19 75 110 ≈ 1 2 · 10−3 106 104 1.2 · 107

εEri 3 39 50 ≈ 10 7 · 10−5 108 106 8 · 108

Zodiacal dust 280 1 . . . 100 1 · 10−7

Kuiper Belt < 40 > 1 < 10−7

Listed are the distance d, characteristic radii rc (derived from the color temperature),
dust color temperature Tdust, estimated grain sizes sdust, disk luminosity compared
to the star Ldust/L∗, Poynting–Robertson lifetime of typical grains τPR, collisional
time scale τcoll at rc, and estimated age of the star τ∗. Properties of Solar System dust
(Zodiacal dust and dust in the Kuiper Belt) are included for comparison. Adopted
from Mann (2001), with the age of β Pic taken from Zuckerman et al. (2001)
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disks between relatively young stars and the Sun, due to the limited sensitivity
of the IRAS and Infrared Space Observatory (ISO) missions. This gap will
hopefully be closed soon by the Space Infra-Red Telescope Facility (SIRTF),
which should be sensitive down to the mass in small grains inferred for our
present-day Kuiper Belt (6 · 1022 g) surrounding a Solar-type star at 30 pc
(Meyer et al. 2001).

Dust grains spiral into their parent stars due to Poynting–Robertson drag,
and they are destroyed by mutual collisions (Dermott et al. 2001). Typical
time scales for these processes are listed in Table 4 together with the ages of
the stars.10 We see that in all Vega-excess disks the life time of dust particles is
much smaller than the age of the star. This leads to the important conclusion
that the dust disk cannot be a remnant from the star formation process, but
must be replenished by erosion of planetesimals or cometary bodies; hence the
expression debris disk for these objects. The general trend of decreasing disk
mass with age is then consistent with the evolution of the Solar System; the
prominent Vega-excess disks correspond to the time of heavy bombardment
in the early Solar System. If the dust disk of β Pic is generated by collisional
destruction of 1-km planetesimals, a very large mass (∼125M⊕) must reside
in planetesimals (Artymowicz 1997). An alternative scenario, based on the
evaporation of cometary bodies, will be discussed in Sect. 2.3.

The amount and nature of gas in the disks of Vega-excess stars has
been investigated with emission and absorption spectroscopy; the largest
body of data is (not surprisingly) available for β Pic. Radio observations
give an upper limit of ∼ 1.5M⊕ to the atomic hydrogen content from
a non-detection of the 1,420MHz line (Freundling et al. 1995). The data
on H2 seem to be contradictory. Tentative detections of the S(0) and S(1)
rotational transitions with ISO imply an H2 mass of ∼ 0.2MJup (Thi et al.
2001), whereas the lack of H2 absorption against the stellar disk in the
ultraviolet places an upper limit of ∼3 · 10−4MJup on that same quan-
tity (Lecavelier des Etangs et al. 2001). This discrepancy could in prin-
ciple be resolved by a clumpy structure of the molecular hydrogen – the
clumps would show up in emission, but the line-of-sight towards the star
may not be covered. It seems difficult, however, to hide such a large mass
of H2 in this way; more data are clearly required to resolve this issue.
In contrast to H2, many ions and neutral species, as well as CO, have
been found in absorption against β Pic (Vidal-Madjar et al. 1994; Lagrange
et al. 1998; Roberge et al. 2000); the relative abundances of the refrac-
tory elements appear to be close to Solar. The amount of neural gas can
be estimated from Na I emission (Olofsson et al. 2001) and from a ten-
tative detection of the 157.7µm [C II] fine structure transition with ISO

10 Note that the Poynting–Robertson and collisional time scales depend strongly
on the particle size and position in the disk. The tabulated values therefore give
only rough indications on the correct orders-of-magnitude. For more details see
Artymowicz (1997) and Dermott et al. (2001).
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(Kamp et al. 2003); the latter authors conclude that a gas mass in the
range 0.2 . . . 4M⊕ and a gas-to-dust ratio of 0.5 . . . 9 is consistent with
all observations.

Evidence for Planets in Disks?

As we have seen above, the existence of debris disks in itself provides a strong
argument for the existence of solid bodies in these systems, as there must be a
mechanism to replenish the dust such as the erosion of km-sized planetesimals.
This does not tell us anything about the existence of planets, however; for some
reason the later stages of their formation process may simply have failed. It
might be possible, however, to detect planets indirectly by their influence
on the morphology of circumstellar disks. It has been pointed out earlier
that sufficiently massive planets open gaps in disks, which may be observable
directly or indirectly (cf. Fig. 5). After most of the disk material has been

Fig. 5. Numerical simulation of a planet forming in a circumstellar disk. From Kley
et al. (2001)
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cleared, dust rings may remain an provide signposts of recent planet formation
(Kenyon and Bromley 2002).

The temperature of grains at any given radius in the disk is determined
by radiative equilibrium with the star; the spectral energy density (SED) of
the disk is therefore the superposition of the Planck functions appropriate
for grains at the proper temperatures (neglecting spectral features). If a gap
is opened in the disk, there are no grains in the corresponding temperature
range, which should result in a dip in the SED. Unfortunately, this dip is
not very deep and extremely broad, extending over three orders of magni-
tude in wavelength. Without further information, it is impossible to identify
such a feature, and to distinguish it from variations in the overall disk and
dust parameters (Steinacker and Henning 2003). Interferometric imaging in
the mid-infrared or at mm/sub-mm wavelengths is a better technique for
the detection of gaps in disks (Wolf et al. 2002). An obvious caveat is that
for observations at λ ∼10µm the emission is dominated by dust at ∼1AU,
where the temperature is ∼300K. This means that gaps at larger radii have
to be observed at longer wavelengths. The Atacama Large Millimeter Array
(ALMA) will be very well suited for this task.

Most observational data on gaps in disks come from somewhat older
objects, already close to or in the debris disk phase. A good example is
HD4796A, which is surrounded by a prominent ring-like structure that has
been observed at near- and mid-infrared wavelengths (Schneider et al. 1999;
Telesco et al. 2000). It is tempting to attribute the relatively sharp truncation
at the inner and outer edges of the annulus to the dynamical action of one
or more “shepherd planets”. The inner edge of the bright ring appears to be
slightly asymmetric, which has been interpreted as an indication of a planet
in an eccentric orbit (Wyatt et al. 1999). A similar disk with and apparent
gap at a radius of ∼250AU has been found around HD141569A, a ∼ 5Myr-
old intermediate-mass star (Weinberger et al. 1999, 2000). However, improved
coronographic imaging of this object with the ACS instrument on HST shows
that the previously observed structure in the disk is not a ring but rather
tightly wound spiral, which could be due to tidal interaction with the nearby
binary HD141569BC (Clampin et al. 2003). As this example shows, it is quite
difficult to proof beyond doubt that an observed structure in a disk cannot
be caused by anything but a planet.

Millimeter and sub-millimeter images of the most prominent Vega-excess
stars (αLyr, αPsA, β Pic, and εEri), which probe relatively cool dust on
scales >∼50AU, have consistently revealed surprising morphologies with strong
clumping, quite different from simple smooth disks (Greaves et al. 1998; Hol-
land et al. 1998, 2003; Liseau et al. 2003). Perhaps most intriguing is the dust
disk of εEri, whose morphology has been modeled with a resonant patter
due to a mean-motion resonance with a planet (Ozernoy et al. 2000; Quillen
and Thorndike 2002). These models predict changes of the observed structure
with time. It should simply revolve around the star if the planetary orbit is
circular, or change its shape with orbital phase if the orbit is eccentric. It will
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thus be possible to distinguish between different models on the orbital time
scale of the presumed planet(≈140 yrs).

The disk of β Pic is a special case again, because its brightness has enabled
so much high-quality information to be gathered, and because its edge-on
orientation allows observations of out-of-plane distortions. Large-scale asym-
metries and warps have been reported on all scales accessible to observations
(10 . . . 400AU), both in reflected light and in thermal infrared emission (Heap
et al. 2000; Pantin et al. 1997). The warps could be caused by a planet in
an orbit that is slightly inclined with respect to the disk plane; a fairly large
range of planetary masses and orbital radii would be compatible with the
observations (Mouillet et al. 1997). Substructure in the outer disk, somewhat
reminiscent of Saturn’s rings, has been detected by comparing details in space-
based and ground-based images (Kalas et al. 2000). They might have been
generated by a close stellar encounter in the last ∼ 100, 000 yrs, which could
then also have triggered the outer warps. The planetary hypothesis remains
the best explanation of the recently detected small-scale warp within the inner
∼ 20AU, which is even stronger than the outer distortions (Weinberger et al.
2003; Wahhaj et al. 2003). It is also possible that two planets in orbits that
are inclined with respect to each other and with respect to the disk cause the
complicated warped structure. An unambiguous resolution of this question
will probably have to await observations with even higher spatial resolution.

While imaging observations probe the structure of circumstellar disks on
scales of many AU, photometry is a better tool to diagnose inhomogeneities in
edge-on disks at much smaller radii. Deep periodic occultations of the TTauri
star KH15D have indeed been attributed to eclipses by dust, indicative of
either a clump or warp in the circumstellar disk at a radius of ∼ 0.2AU
(Hamilton et al. 2001; Herbst et al. 2002). It is tempting to speculate that
this distortion is caused by the gravitational action of a planet, but many
alternative explanations are still viable. In any case, continued monitoring of
this star will yield interesting information on the structure of circumstellar
material close to a young star.

2.3 Observations of Infalling Material and Evidence
for Extrasolar Planetesimals

The scenario of planetary system formation outlined above implies that a
large number of planetesimals remain in the circumstellar disk during the
phase when large planet-mass bodies are already there. Scattering of these
small planetesimals by the planets leads to drastic changes of their orbits.
Some of them are thrown out of the system or into bound orbits with very
long periods, others impact one of the planets, and yet others get so close to
the star that they evaporate. These processes correspond to the formation of
the Oort Cloud in the Solar System, and the epoch of “heavy bombardment”
of the terrestrial planets that is still evident in the cratering record of the
Moon.
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Fig. 6. Spectra of β Pic in the region of the Ca II K line. They have been normalized
such that the “continua” (i.e., the stellar line broadened by rotation) coincide. Re-
markably, the variations of the line profile all arise redshifted relative to the stellar
radial velocity. From Ferlet et al. (1987)

There are strong indications that this phase has now been observed spec-
troscopically in several young planetary systems (Grinin 1999; Grady et al.
2000b). Intermittent narrow absorption features have been detected in the
red wings of the UV and visible lines of β Pictoris (Ferlet et al. 1987, see
Fig. 6). These absorption events have time scales from a few hours to many
days. The only explanation consistent with most of the observational material
is that of swarms of evaporating planetesimals; the dense absorbing cloud is
essentially a large cometary coma. The required evaporated mass per event (if
abundances appropriate for planetesimals are adopted) usually corresponds to
km-size planetesimals. The infall episodes occur up to 200 times per year, but
the event rate varies substantially from year to year. This, together with the
large predominance of redshifted over blueshifted features, suggests that the
observed infalling bodies belong to an orbital family (perhaps fragments of a
disintegrated large comet)11 with the mean orbit oriented in such a way that
they approach the star when they are seen against it (Artymowicz 1997, see
Fig. 7). The evaporation of comets could also be the dominant process respon-
sible for replenishing the gas disk of β Pictoris (Lecavelier des Etangs 1998).

Redshifted absorption features have also been detected in the spectra of
Herbig Ae/Be stars, which are pre-main-sequence stars of intermediate mass
and thus the progenitors of objects like β Pictoris. In fact, variations of the

11 Analogous groups of Sun-grazing comets exist also in the Solar System (Sekanina
2002 and references therein).
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Fig. 7. Top panel: Simulated view of falling evaporating bodies (planetesimals or
comets) passing in front of the star (black circle at the origin; the observer is to
the right). Each comet evaporates creating a coma filled with dense gas containing
singly ionized calcium, occulting a fraction of the stellar disk. Bottom panels: The
cometary comae from the top panel cause multiple, redshifted, variable absorption
features superimposed on both the stable narrow circumstellar and the broad stellar
K and H lines of Ca II. From Artymowicz (1997)

line profiles appear to be ubiquitous, in particular in stars that are believed to
be surrounded by an edge-on disk (Grady et al. 1996). The interpretation of
the spectral variability is more difficult for these objects, however. They are
still surrounded by a fairly massive gaseous disk, which makes it more diffi-
cult to distinguish between accretion of relatively unprocessed disk material
and cometary events. Detailed multi-line analyses of UXOrionis have con-
cluded that for this star the infalling (and outflowing) gas cannot be heavily
hydrogen-depleted, as would be expected if it originated from the evaporation
of solid bodies (Natta et al. 2000; Mora et al. 2002). Accretion of material
with Solar-like chemical composition appears to be the dominant process for
most very young stars, giving way to more episodic infall of metal-rich gas at
an age of ∼ 10Myr (Grady et al. 1997, 2000a; Mora et al. 2003). The best
cases of comet evaporation associated with younger stars are 51Oph (Roberge
et al. 2002) and WWVul (Mora et al. 2003).

Our current understanding of the relation between the occurrence of plan-
etesimals/comets and stellar age is limited by the relatively small number
of observed stars, and by the low duty cycle with which they have been
monitored. High-precision photometry from space (see Sect. 6.5) is a much
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more efficient observing technique than high-resolution spectroscopy, and may
lead to the detection of a large number of extrasolar comets (Lecavelier des
Etangs et al. 1999). It will be necessary, however, to discriminate between
eclipses caused by comets, by planets, or by dust clumps.

The information from infalling comets, combined with mid-infrared spec-
tra of Herbig Ae/Be stars, contains important clues about the ways dust is
processed in pre-main-sequence disks. Silicates contained in interstellar dust
are predominantly amorphous, but observations from the ground and with
the Infrared Space Observatory (ISO) have shown that the disks surrounding
β Pic and the Herbig star HD100546 contain significant amounts of crystalline
silicates (Knacke et al. 1993; Malfait et al. 1998). The production of these crys-
tals requires processing at temperatures near 1,000K, which are only reached
in the innermost disk near the star (Hill et al. 2001). Since the disks of these
stars are most likely being replenished by evaporating comets that formed
at radii beyond the snow line, the crystalline material must have been incor-
porated in these comets. One is thus compelled to conclude that there must
have been a large-scale transport process connecting the different regions of
the disk at the epoch of comet formation (see Fig. 8). Similar indicators of
crystalline silicates have also been found in some Solar System comets, and
lead to the suggestions that large-scale mixing has been important here, too
(Hanner et al. 1994). Observations of extrasolar comets can thus help us un-
derstand the chemical and mineralogical evolution of grains and particles from
which planets can form.

Fig. 8. Schematic drawing of a protostellar nebula (distance on a logarithmic scale)
centered on the proto-Sun. The region of dust processing is shown (< 1AU together
with the snow line (≈ 5AU), infalling envelope, bipolar outflow, and less collimated
wind. Comet formation is expected to occur from ≈ 5AU to beyond 40AU. From
Hill et al. (2001)
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The evaporation of comets may be observable not only at a very young
age, but also near the end of the stellar life time. When the star evolves off
the main sequence, it expands and becomes much more luminous; this leads
to the evaporation of icy bodies at increasing radii, up to several hundred AU
(Stern et al. 1990). During the late phase of stellar evolution, convection of
material from the core can enhance the outer layers with carbon. The oxygen
in the winds from such carbon stars will be almost completely locked in CO,
with a predicted H2O abundance <∼10−11 (Willacy and Cherchneff 1998). The
discovery of water vapor around the carbon star IRC+10216 with an implied
abundance ∼ 10−7 can therefore only be explained by an external addition
of H2O to the wind, most plausibly through the evaporation of the Kuiper
Belt around this star (Melnick et al. 2001). The observed rate of H2O mass
loss requires the evaporation of 10M⊕ of ice over the life time of the strong
stellar wind; this is comparable to the original mass of water ice in the Solar
System’s Kuiper Belt. More sensitive future observations with ESA’s Herschel
telescope will be able to probe the presence and mass of Kuiper Belts around
a much larger sample of carbon-rich stars.

3 The Currently Known Extrasolar Planets

The discovery of a planet orbiting the star 51Peg (Mayor and Queloz 1995,
see Fig. 9) has opened a new field of observational astrophysics: the system-
atic study of planetary systems, their dynamical properties, formation, and
evolution. About 150 extrasolar planets have now been detected, giving us a
first glimpse at the diversity of these objects, and allowing the first statistical
inferences. Unexpected discoveries have stimulated interesting new theoretical
developments. Not the least of the big surprises in this field was the discov-
ery of 51Peg b itself, a giant planet with an orbital period of only 4 days!
It probably formed at a much larger distance from its parent star, and mi-
grated subsequently to its current position. In this chapter we will take a look
at this and other phenomena, including orbital eccentricities and dynamical
interaction between planets in multiple systems.

3.1 The First Hundred Planets Around Solar-Type Stars

The Presently Known Planets

The radial-velocity surveys (see in Sect. 4.4 for more details) have discovered
about one hundred planets over the past seven years. One can thus rightfully
speak about extrasolar planets as a new branch of observational astrophysics.
The first discoveries showed that our Sun is not unique in having planetary
companions. The field has progressed very quickly from this exploratory stage
to a phase where it has become possible to perform the first meaningful sta-
tistical analyses of the properties of giant planets, of the distribution of their
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Fig. 9. Discovery plot of 51Peg b, showing radial velocity (corrected for a slow
variation of γ) as a function of orbital phase. The solid line represent an orbital fit
in which the eccentricity was fixed at e = 0. From Mayor and Queloz (1995)

orbits, and of the characteristics of their parent stars. It is certainly necessary
to keep selection effects related to the precision of the Doppler surveys and
the limited time covered so far by systematic monitoring campaigns in mind,
but most main-sequence stars of spectral type F or later within 50 pc and
brighter than V ≈ 8 have now been observed for a few years. This puts statis-
tical inferences on a fairly firm footing, with the cautionary remark that our
knowledge about planets around M dwarfs is still quite incomplete because of
the intrinsic faintness of these stars.

The number of publications announcing new planet detections (and some-
times calling previous announcements into question) is growing rapidly; it
is therefore quite a challenge to keep an authoritative list of the known ex-
trasolar planets. Several groups maintain web pages with such lists, among
them Geoff Marcy and co-workers, (http://exoplanets.org), Michel Mayor
and colleagues (http://obswww.unige.ch/exoplanets), and Jean Schnei-
der (http://www.obspm.fr/planets). The inclusion of a specific claimed
planet detection in these lists is sometimes a matter of personal judgment,
and the underlying philosophies are somewhat different. The International
Astronomical Union has established a Working Group on Extrasolar Plan-
ets (Boss et al. 2003), which is about to publish a list with fairly con-
servative selection criteria (including publication in a refereed journal) at
http://www.ciw.edu/boss/IAU/div3/wgesp. These compilations can serve
as useful starting points for synoptic studies, and as guides to the original
literature on planet detections.
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Fig. 10. Minimum mass mp sin i versus orbital semi-major axis for the known ex-
trasolar planets (circles) and low-mass stellar companions (squares). Hipparcos data
have shown that most of the objects plotted as triangles are low-mass stars in nearly
face-on orbits, i.e., their true mass is above the hydrogen burning limit (0.075M�),
shown as a dashed line (Halbwachs et al. 2000). The four giant planets in the Solar
System are shown as stars. The detection limits of radial-velocity and astrometric
surveys are also shown. Courtesy Stéphane Udry

The Parameter Space Covered by Planet Surveys

The Doppler technique has a strong detection bias in favor of massive plan-
ets in short-period orbits, because the velocity amplitude scales with K∗ ∝
mp ·P−1/3 (19), or equivalently K∗ ∝ mp · a−1/2. With a single-measurement
precision of 3m s−1, planets giving rise to wobbles with K∗ >∼ 10m s−1 can
reliably be detected (Marcy et al. 2000a); this limit is shown in the mass-
separation plane in Fig. 10.12 The lowest-mass planet known, HD49674B.13

12 With a sufficient number of observations it should also be possible to get orbits
for planets with K∗ close to the measurement precision (Cumming et al. 2002).

13 Editor note added in proof: The lowest mass planet know at this time is HD160691
(Santos et al. 2004)
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During the revision of the text (Butler et al. 2003), does indeed occupy the
lower left corner of this diagram, just above the 10m s−1 line. Its parameters
are mp sin i = 0.12Mjup, P = 4.948 days, a = 0.057AU, and K∗ = 14m s−1.
The best sensitivity can of course only be reached for stars that are pho-
tospherically quiet, as discussed in Sect. 4.2. Planets have also been found
around young, more active stars, but more data points are then required for
a reliable orbital solution even for relatively large K∗ (Kürster et al. 2000).

Another limiting factor in the parameter space covered so far is the limited
time over which high-accuracy radial-velocity monitoring has been performed.
It is obvious that the time needed from the first measurement to a secure
detection is of the order of the orbital period; at high signal-to-noise perhaps
half or a quarter of that time may be sufficient (Eisner and Kulkarni 2001a).
Among all currently known planets, the one with the longest period, P =
5, 360 days, and the largest orbital semi-major axis, a = 5.9AU is 55Cancri d
(Marcy et al. 2002). It occupies an orbit with moderate ellipticity, e = 0.16,
and weighs in at mp sin i = 4.05Mjup, thus giving rise to a stellar reflex
motion with amplitude K∗ = 49.3m s−1. As its designation implies, 55Cnc d
is a member of a multiple system (see Sect. 3.5). It is apparent from Fig. 10
that 55Cnc d is the only known extrasolar planet with an orbital semi-major
axis larger than that of Jupiter; this is consistent with the ∼15 years over
which observations with <∼10m s−1 have been performed.

The cutoffs at the bottom and to the right in Fig. 10 can thus easily be
understood as selection effects due to the precision and time coverage limita-
tions of the present radial-velocity data. It is important to point out that no
such limitations exist towards the left and top in this diagram. The paucity
of planets in these areas is a true astrophysical phenomenon, not an obser-
vational artifact; it will be further discussed in Sect. 3.2. One should further
add that there is no very strong detection bias with regard to the other or-
bital elements, with the exception of the inclination. (Nearly face-on orbits
are strongly disfavored, of course, because K∗ ∝ sin i.) It is therefore a rea-
sonable approximation to assume that the observed eccentricity distribution
is representative of the intrinsic one. In fact, a large range of eccentricities
have been observed, from circular orbits up to e = 0.927 (Naef et al. 2001a,
see also Sect. 3.3).

It is certainly noteworthy that a large fraction of the accessible mass –
separation – eccentricity parameter space is actually populated with giant
planets (Figs. 10 and 13). This was not at all anticipated ten years ago, when
it was thought that the orbits of gas giants should be similar to those of
Jupiter and Saturn, with periods of several years and low eccentricities. The
great diversity of giant extrasolar planets is the first big surprise in this field,
which has stimulated a wealth of new ideas about the formation and evolution
of planetary systems.

On the other hand, it is also clear from Figs. 10 and 13 that one cannot
argue that our Solar System is special in any way. A few planets have actually
been detected that are somewhat similar to Jupiter, which is located near
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the corner of the currently accessible parameter space; Saturn analogs are
simply out of reach at the present Doppler accuracy and monitoring time. It
is therefore quite possible that many Jupiter/Saturn analogs will be discovered
by future higher-accuracy Doppler surveys or other detection methods.

The Frequency of Giant Planets Around Solar-Type Stars

About 150 planet detections in a little less than 90 distinct systems, among
∼ 2, 000 stars surveyed, gives a lower limit of ∼5% of all nearby Solar-type
stars that have planets in the detectable parameter range, i.e., with radial ve-
locity variations >∼ 10m s−1 and separations <∼ 3AU. The best-studied sample
comprises 51 stars that have been monitored at Lick Observatory over the past
15 years. Eight planetary systems (two of them triple, one double, and five
single) have been detected among these 51 stars, corresponding to a ∼ 15%
detection rate (Fischer et al. 2003a). This number will probably rise some-
what over the next few years, as more planets close to the detection limits
will be found. On the other hand, we also now that the majority of stars do
not have companions in the currently observable range; about 60% of the stars
observed by the Lick/Keck/AAT team have a radial velocity r.m.s. of 5m s−1

or less (G. Marcy, priv. comm.).
Somewhat stronger statements can be made in those parts of the parameter

space where the observational data give an essentially complete picture. First
of all, brown dwarf companions in orbits of less than 3AU are very rare, with
an incidence well below 1% (Fischer et al. 2002b; Vogt et al. 2002). Second, it
is relatively easy to identify “hot Jupiters”, i.e., planets with orbital periods
<∼ 5 days. 11 such planets are known to date, which means that ∼0.5% of all
stars in the Solar neighborhood are orbited by these objects.

3.2 Distribution of Masses and Orbital Radii

Planetary Masses

Figure 11 shows the histogram of the minimum mass m sin i for all currently
known companions to Solar-type stars. Perhaps the most important conclusion
that can immediately be drawn from this figure is that this distribution is
bimodal, i.e., that there are two distinct populations of companion objects.
This establishes “planets” as a physically distinct class of their own; they are
not just the low-mass tail of the stellar binary population. The bimodal nature
of the minimum mass distribution provides supporting evidence for the view
that planets and stellar companions form through different mechanisms.

It has already been pointed out that the regimes of planets and stellar
companions are separated by the “brown dwarf desert” 10Mjup

<∼ m sin i <∼
80Mjup. Only very few objects have been detected in this mass range, although
they could easily be found by the radial-velocity surveys. In fact, most of the
objects withm sin i in this mass range are actually stellar companions in nearly
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Fig. 11. Left: Distribution of minimum masses from the currently known low-mass
companions to Solar-type stars. Although the radial-velocity method has a higher
sensitivity to higher-mass companions, the observed distribution rises very steeply
towards the low-mass domain. From ∼ 0.01M� up to the stellar regime, only a
few objects have been detected; this region is frequently called the “brown dwarf
desert”. This gap in the mass distribution of low-mass companions to Solar-type
stars supports the view that there are two distinct populations (planets and stars),
with different formation mechanisms. From Santos et al. (2002). Right: Same figure
but with linear mass scale. The dashed line indicates a statistical estimate of the
“true” planetary mass distribution. Updated from Jorissen et al. (2001)

face-on orbits; they produce an astrometric wobble sufficiently large to be
detected with the Hipparcos satellite (Halbwachs et al. 2000). These objects
are marked with triangles in Fig. 10, because their actual mass lies above
the hydrogen burning limit. Conversely, the planet candidates with m sin i <∼
10Mjup have usually not been detected with Hipparcos, which confirms that
they are not stellar companions seen face-on (Zucker and Mazeh 2001a). The
precision of Hipparcos is insufficient to rule out brown dwarf companions in
these cases, but the a priori distribution of sin i (see Sect. 4.1) implies that
the vast majority of the planet candidates really have masses below 10Mjup.
The bottom line is that the brown dwarf desert is even less populated than it
might appear from an m sin i histogram.

The small number of planets in the two lowest mass bins in Fig. 11 is
clearly due to incompleteness close to the detection limit. Aside from this
incompleteness, the number of planets rises somewhat towards lower masses
when a logarithmic x-axis is chosen; this corresponds to a steep increase to-
wards lower masses on a linear scale.

With a sufficiently large sample of detected planets, it is possible to dis-
entangle the sin i projection effects from the observed m sin i histogram on a
statistical basis, and to derive the underlying true mass distribution (Joris-
sen et al. 2001; Zucker and Mazeh 2001b). This is shown as a dashed line
in Fig. 11. The sharp drop-off around 10Mjup, the low-level tail extending to
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∼20Mjup, and the steep rise towards lower masses are again immediately ap-
parent. Zucker and Mazeh (2001b) derive a flat distribution for dN/d logmp,
which corresponds to dN/dmp ∝ m−1

p ; Marcy et al. (2003a) give a similar scal-
ing, dN/dmp ∝ m−0.7

p , for mp < 8Mjup. It appears tempting to extrapolate
these power laws to lower masses, in order to predict the numbers of Neptune-
mass or even smaller planets. This could be misleading, however, because the
formation of massive gas planets may be governed by physical processes that
are different from those determining the frequency of lower-mass planet for-
mation. Any extrapolation should therefore await a better understanding of
the physics of planet formation.

Orbital Semi-Major Axes

With the first few detections of extrasolar planets it became rapidly apparent
that gas giants occur with a large diversity of orbital separations, ranging from
0.05AU (51Peg b, Mayor and Queloz 1995), over 0.23AU (ρCrBB, Noyes
et al. 1997), 0.43AU (70VirB, Marcy and Butler 1996), 2.1AU (47UMab,
Butler and Marcy 1996) to 5.2AU (Jupiter) and 9.6AU (Saturn). The current
statistical basis of ∼150 extrasolar planets allows a much more detailed view
of the distribution of orbits up to a = 3AU. In Fig. 12 the minimum mass of
the known planets is plotted as a function of their orbital semi-major axes,
with a linear mass scale, which shows some trends and features more clearly
than the logarithmic scale of Fig. 10:

• There is a remarkable “pile-up” of planets in orbits with a ≈ 0.05AU, i.e.,
with periods P ≈ 4 days.

Fig. 12. Minimum mass mp sin i versus semi-major axis for the known extrasolar
planets, with a linear mass scale. From Marcy et al. (2003b)
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• Orbits with a ≈ 0.3AU are slightly less common than smaller and larger
orbits.

• There are no planets with m sin i ≥ 4.1Mjup at a ≤ 0.3AU, whereas one
third of all known planets at a > 1AU has a mass above this value.

As pointed out in Sect. 3.1, these findings cannot be due to an observational
bias; they clearly tell us something about the formation and/or orbital evolu-
tion of giant planets.

Orbital Migration

Perhaps the most striking result from the Doppler surveys is the discovery that
there are giant planets in orbits with a < 3AU at all. In fact, because our
understanding of the Solar System implies that the gas giants were formed at
a > 5AU and stayed there over the past 5Gyrs, it was generally expected that
this would also be the case in extrasolar systems. So could planets like 51Peg b
have formed much closer to their parent stars, at the location where they are
found now? Given our general knowledge about star and planet formation
(Sect. 2), there are several arguments why this appears exceedingly unlikely
(Lin et al. 1996):

• At 0.05AU the temperature in the pre-planetary disk is about 2,000K, too
hot for refractory materials to condense. Therefore planetary cores cannot
form there.

• The surface density within ∼ 0.5AU is too small for ∼ 10M⊕ planetary
cores to form.

• Even if a core is present (or if a core is not needed to form a gas giant),
there is likely not enough gas to form a ∼1Mjup planet.

• During their formation phase, young planets have radii up to ∼ 10 times
larger than their present values (Bodenheimer and Pollack 1986). Com-
bined with the high temperature implied by small orbital distances, this
gives very low escape speeds. The planet will thus be susceptible to evap-
oration, and to ablation by the stellar wind.

These arguments do not complete rule out the possibility of in situ formation
at small radii (Bodenheimer et al. 2001), but the much more plausible conclu-
sion is that the planets now found at small orbital radii must have formed at
much larger distances, and subsequently migrated to their present locations.

Planet Survival and “Hot Jupiters”

The realization that orbital migration is an important mechanism for shaping
planetary systems also poses a new question: why are the observed planets
found in their present locations, i.e., why did their migration stop at the
observed semi-major axes? Why did they not spiral all the way into the stel-
lar photosphere? One possible mechanism involves the transfer of angular
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momentum from the spinning star to the planet through tidal interaction.
Young stars rotate fairly rapidly, so that the Keplerian period at a >∼ 0.05AU
is longer than the stellar rotation period. In that case the tides raised on the
star exert an outward torque on the planet; the time scale of the consequent
orbital evolution is (Goldreich and Soter 1966; Lin et al. 1996)

τa ≡ −
a

ȧ
=

P

9π

(
a

R∗

)5
m∗
mp

Q∗ , (7)

whereQ∗ ≈ 1.5·105 is a parameter, which describes how efficiently the tidal en-
ergy is dissipated within the star. It is apparent from (7) that the tidal torque
depends very sensitively on a. The tidal interaction therefore sets in very
suddenly during the inward migration; this could be a possible reason for
the “pile-up” of the observed orbits at ∼0.05AU. An alternative explanation
might be the truncation of the disk by the stellar magnetosphere, which could
also occur at a similar radius (Shu et al. 1994).

Determining the fate of close-in planets is further complicated by the con-
current evolution of the star and the disk. Due to the spin-down of the star
through torquing by the wind, the rotation period will eventually become
longer than the orbital period of hot Jupiters. This reverses the sign of the
orbital evolution, and may cause the planet to spiral into the star. The time
scale for this process is ∝ m−1

p (7), which could explain the absence of mas-
sive planets in short-period orbits (Pätzold and Rauer 2002; Jiang et al. 2003).
In a computation of the orbital and structural evolution of planets that took
into account Roche lobe overflow and consequent mass loss of the planet, three
classes of objects could be identified: the planets with the lowest initial masses
were completely destroyed, intermediate-mass planets lost some of their mass
and ended up in stable orbits at ∼0.04AU, and the most massive planets did
not migrate very far (Trilling et al. 1998). A combination of migration, mass
loss, and the opening of gaps in the disk is thus likely needed to explain the
observed minimum mass – semi-major axis distribution (Zucker and Mazeh
2002; Udry et al. 2003b).

Finally, one can pose the question what consequence the migration of
giant planets has for the formation of terrestrial planets. A migrating gas
giant would certainly destroy already existing small planets, and it would
probably also suppress the subsequent formation of terrestrial planets at
∼1AU (Armitage 2003). This suppression occurs because the gas that flows
into the inner disk behind the migrating planet is depleted of dust as a result
of having already formed planetesimals at larger radii. It is thus likely that
the systems with hot Jupiters were not able to form terrestrial planets, even
if there are dynamically stable orbits for habitable planets in those systems.

Planets with Long Periods

Although the radial-velocity technique selects against planets with a long
orbital period (K∗ ∝ P−1/3), the sensitivity of the current surveys is clearly
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good enough to detect Jupiter analogs (see Fig. 10). Nonetheless, no such
object has been found with certainty yet, and it is hardly possible to make
statistical inferences about the occurrence of planets with periods >∼ 5 yr. This
situation will likely change dramatically within a few years, when the surveys
covering a large number of stars with high precision, which were initiated or
enlarged after the detection of 51Peg b, will reach a sufficient time baseline.
The typical orbital period of the newly announced extrasolar planets is already
shifting towards longer periods, reflecting the increasing time baseline of the
ongoing Doppler surveys. But most of the confirmed long-period planets that
are known today still have relatively high masses (Santos et al. 2001b; Fischer
et al. 2002b; Marcy et al. 2002), with the exception of 47UMa c, the outer
member of a system with two planets (Fischer et al. 2002a).

Planets with long periods first tend to show up as linear trends in radial-
velocity data; deviations from linearity become apparent with continued mon-
itoring, until finally the survey covers a full Keplerian period (e.g., Naef et al.
2001b). Most planet search teams will wait until roughly this time before
announcing a planet detection and publishing an orbital solution. Important
statistical information can be gleaned earlier, however. For example, radial-
velocity variations indicative of distant planets appear to be significantly more
common for stars that are already known to harbor an inner planet than for
single stars (Fischer et al. 2001). Again, only time will tell how the properties
of inner and outer planets are related to each other.

3.3 Orbital Eccentricities

The second big surprise (after the discovery of the “hot Jupiter” 51Peg b) was
the highly eccentric orbit of 70Vir b, with e = 0.40 (Marcy and Butler 1996).
In contrast, Jupiter and Saturn have e ≈ 0.05, and even Mercury’s (e = 0.21)
and Pluto’s (e = 0.25) orbital eccentricities are modest in comparison. It had
generally been expected that extrasolar planets would also be found in nearly
circular orbits, because they form in a circumstellar disk, and dissipation in
that disk should generally lead to the circularization of the orbits. Even more
extreme examples have subsequently been found, such as HD89744 b with
e = 0.7 (Korzennik et al. 2000) and HD80606 b with an astonishing e = 0.927
(Naef et al. 2001a).

The radial-velocity curves of eccentric orbits deviate strongly from the si-
nusoidal variations associated with circular orbits. This characteristic shape
makes it easy to distinguish planetary companions from other sources of
radial-velocity jitter, as in the case of ιDra (Frink et al. 2002). This may
introduce a slight bias towards higher eccentricities in planet samples, but the
effect is probably rather insignificant.

A plot of orbital eccentricity versus period for the known extrasolar planets
is shown in Fig. 13, together with the same quantities for five of the Solar-
System planets and stellar binaries. A few properties of the distribution of
orbital parameters are worth noting:
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Fig. 13. Eccentricity versus orbital period for the known extrasolar planets (pen-
tagons), stellar binaries (filled dots), giant planets in the Solar System (stars), and
the Earth. From Santos et al. (2003b)

• All planets with short-period orbits have small eccentricities (e <∼ 0.1 for
p <∼ 10 days).

• For longer periods, larger eccentricities are fairly common.
• The eccentricity–period diagrams for planets and stellar binaries look re-

markably similar.
• There is also a class of long-period planets with nearly circular orbits (see

also Vogt et al. 2002).
• The giant planets in the Solar System have small eccentricities, but they

are not unusual.

To interpret these observations correctly, we have to consider not only the
original orbit, but also the evolution of the eccentricities after the formation of
the planet. This is a new insight that could only come from data on extrasolar
planets and not from the Solar System, quite analogous to the case of the
evolution of the major axes due to migration.

Tidal Circularization

The small eccentricities of the short-period orbits are generally attributed to
tidal circularization, due to dissipation within the planet. The tidal bulges
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raised on a planet in an eccentric orbit lead to a decay of the eccentricity on
a time scale (Goldreich and Soter 1966; Bodenheimer et al. 2001)

τe ≡ −
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where Qp is the tidal dissipation parameter for the planet (analogous to Q∗
defined above), and n = 2π/P the mean motion of the planet. Very little is
known about plausible values for Qp, but indirect arguments indicate that
105 <∼ Qp

<∼ 106 for Jupiter (Goldreich and Soter 1966). Assuming that ex-
trasolar gas giant planets possess similar Qp values (which is a bit of a wild
guess, see Marcy et al. 1997), the orbits of old hot Jupiters should be circular-
ized according to (8). This equation also shows that the circularization time
scale depends steeply on the orbital distance, both directly (τe ∝ a13/2) and
indirectly, because strongly irradiated planets are somewhat bloated, which
leads to a further shortening of τe at small a. The tidal circularization sce-
nario provides thus a fairly natural explanation of steep decrease in the upper
envelope for e at P <∼ 10 days.

Origin of Eccentric Orbits

The poor efficiency of tidal circularization for longer-period orbits is a nec-
essary, but clearly not a sufficient condition for the existence of planets with
high-eccentricity orbits. A rather common mechanism (or even several mecha-
nisms) that can induce large values of e either during the formation of planets
or thereafter through interactions is obviously needed to explain the obser-
vations (Fig. 13). A special case are planets orbiting a component of a wide
stellar binary, such as the companion of 16CygB (Cochran et al. 1997). Such
systems can oscillate between high- and low-eccentricity states, if the inclina-
tion of the orbital plane of the planet with respect to that of the stellar binary
is appreciable (Kozai 1962).

For those planets that are not found in wide stellar pairs (which is the large
majority), gravitational interaction of planets in multiple systems is the most
plausible way to generate a large value of e. If several giant planets form in a
massive disk, their mutual perturbations induces a gradual increase in their
orbital eccentricities (Lin and Ida 1997). The orbits may eventually become
unstable and cross each other, so that several planets can merge and form a
very massive planet, which tends to end up in an orbit with high eccentricity
(0.2 <∼ e <∼ 0.9) and relatively small semi-major axis (0.5AU<∼ a <∼ 1AU).
Alternatively, if a large number of massive planets form nearly simultaneously
through fragmentation in a disk or protostellar envelope, dynamical relaxation
leads to the ejection of most of the planets, while the remaining ones end up
in highly eccentric orbits (Papaloizou and Terquem 2001). The distribution of
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eccentricities (and of the orbital inclination with respect to the stellar equator,
and of the mutual inclinations of orbits in multiple systems) thus encapsulate
information on the dynamical history of planetary systems, which are in turn
directly related to the formation mechanism.

3.4 Properties of the Parent Stars

In addition to the properties of the known planets themselves, we may ask the
questions whether there is a direct relation between these properties and the
characteristics of the host stars, and whether the population of stars harboring
planets is in any way different from their parent population of stars in the Solar
neighborhood.

Stellar Metallicities

The most striking observation related to the properties of planet host stars
is that they are more metal-rich on average than comparison stars without
known planets in the Solar neighborhood (see Fig. 14). Another way of stating
this is saying that the probability of finding a giant planet increases with
metallicity, as seen clearly in the right panel of Fig. 14. This is an interesting
physical relationship between planets and their parent stars.

Fig. 14. Left panel: Metallicity (i.e., [Fe/H]) distributions for stars with planets
(shaded histogram) compared with the same distribution for field dwarfs in the Solar
neighborhood (open histogram). In this panel, both distributions are normalized by
the respective number of data points. Most planet hosts are more metal rich than our
Sun. Right panel: The percentage of stars that have been found to harbor a planet,
for each metallicity bin. This plot shows clearly that the probability of finding a
giant planet increases with metallicity. Updated from Santos et al. (2001a)
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In establishing the metallicity–planet correlation, one has to be a bit
careful about selection biases (Butler et al. 2000). In this context it is im-
portant that the targets of the large radial-velocity surveys have not been
pre-selected on the basis of metallicity; stellar type (FGKM dwarf) and appar-
ent brightness have indeed been the main selection criteria. Nonetheless, the
rate of planet detections might be modified by some more subtle metallicity-
dependent effects. Metal-rich stars have deeper absorption lines, which im-
proves the attainable Doppler precision. Furthermore, metal-rich stars are
brighter than metal-poor stars of the same spectral type, which leads to a
Malmquist-type bias that could enrich magnitude-limited samples with metal-
rich stars. However, while present to a certain degree, these selection effects
are too small to explain the observed metallicity enhancement among planet
host stars. A number of studies with somewhat different approaches therefore
all come to the conclusion that the metallicity–planet correlation is a well-
established physical fact (Gonzalez et al. 2001b; Santos et al. 2001a, 2003a;
Reid 2002).

Why are Planets Found Preferentially around Metal-Rich Stars?

Two main hypotheses have been advanced to explain the enhanced metallicity
of planet host stars: either planets form preferentially in the disks of metal-
rich stars, or the atmospheres of planet-bearing stars have been polluted with
high-Z material, perhaps from planets that have migrated all the way into the
star, or from planetesimals scattered into star-impacting orbits by migrating
planets (Quillen and Holman 2000). In the first scenario, the higher metallic-
ity is the cause of the enhanced occurrence of planets, in the latter scenario,
the presence of planets causes an enhanced metallicity. Several tests have been
devised to distinguish between these two hypotheses, with somewhat mixed
results.

One test consists of comparing the metallicity enhancement separately for
stars with different kinematic properties (Barbieri and Gratton 2002). If high
metallicity is the cause for the presence of planets, there should be no correla-
tion between the occurrence of planets and galactocentric distance. It is only
the overall metallicity that is important, and within each metallicity bin the
distribution of stars with perigalactic distance should be the same for stars
with and without planets. If on the other hand the presence of planets causes
enhanced metallicities, one should expect that at any galactocentric distance
planet host stars should be more metal-rich than average, and in each metal-
licity bin, stars with planets should tend to have smaller perigalactic distances.
Barbieri and Gratton (2002) find precisely this effect from a reconstruction
of Galactic orbits of planet hosts and comparison stars without planets, and
conclude that scenarios in which the presence of planets is the cause of higher
metallicities are strongly favored.

A different class of tests is based on more direct attempts to determine
the effect of planet engulfment on the atmospheric composition of the parent
star. Hydrodynamic simulations show that Jupiter-like planets spiraling into
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stars with 1.0M� ≤ m∗ ≤ 1.3M� are partially or totally dissolved within
the convection zone, and can thus indeed enhance the metallicity significantly
(Sandquist et al. 1998). This would in particular deposit the isotope 6Li in the
atmosphere, which is normally destroyed during the early phases of stellar evo-
lution.14 The detection of 6Li in the planet host star HD82943 has therefore
been interpreted as evidence for planet engulfment (Israelian et al. 2001).

The strongest argument for the alternative explanation, i.e., that planet
engulfment does not play a dominant role, comes from an analysis of metallic-
ity with stellar temperature. More massive stars (within the range of interest)
have much shallower convective envelopes (Murray et al. 2001); adding a given
amount of planetary material should thus have a much stronger effect on their
surface composition. No such trend of metallicity with mass of the convection
zone is observed, which means that a “primordial” source of the metallicity ex-
cess is much more likely (Santos et al. 2001a, 2003a). The “standard” model
of giant planet formation through planetesimal formation and runaway gas
accretion actually predicts that low-metallicity systems are much less likely
to form planets than their high-metallicity counterparts, because the surface
density of solid material in the pre-planetary disk plays a critical role for
planet formation (Youdin and Shu 2002). One could thus even argue that the
enhanced metallicities of planet hosts provide an empirical argument for this
planet formation scenario over the disk instability model, in which no strong
dependence on metallicity is expected (Boss 2002).

With arguments for either interpretation, the question about the cause of
the planet–metallicity correlation has not been completely settled yet. It is
certainly possible, that accretion of iron-rich material, high primordial metal-
licity, and selection effects all play a certain role (Murray and Chaboyer 2002).

Stellar Rotation Rates

Among the effects of tidal interaction between the star and planet in a small
orbit is a spin-up of the star, which ultimately leads to synchronization of the
stellar rotation rate with the orbital motion of the planet. The time scale of
this spin-up is given by (Goldreich and Soter 1966; Trilling 2000)
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14 6Li is destroyed at relatively low temperatures (∼ 1.6 · 106K) through (p,α) re-
actions. During the early evolutionary phases, the proto-star is completely con-
vective, so that the cool surface material is mixed with the hot stellar interior,
which leads to the destruction of all 6Li.
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where ω is the angular velocity of the stellar rotation, and Q∗ the tidal dissi-
pation parameter of the star defined already in the context of (7). The scaling
parameters in the second line of (10) have been chosen to match estimates for
the 51Peg system; the time scale for rotational synchronization is in that case
somewhat longer (by a factor of a few) than the age of the system. Among
the known “hot Jupiters” τ Boo has by far the shortest synchronization time
(τs ≈ 0.8Gyr, Trilling 2000). This star is the also the only one in a sample
of planet hosts for which the rotation period is almost identical to the orbital
period of the planet (Barnes 2001). This strongly suggests that tidal spin-up
has indeed occurred in the case of τ Boo.

Planets in Multiple Stellar Systems

To explore the factors that influence the formation and evolution of plane-
tary systems, one should clearly look for planets in diverse environments, i.e.,
around as large a variety of parent stars as possible. In this respect, binaries
and multiple stellar systems provide rich opportunities, because in such sys-
tems the stability of pre-planetary disks and of planet orbits is restricted to
limited distance ranges. In a binary system with component separation aB ,
stable regions exist at small radii around each component (up to <∼0.3aB , de-
pending on the mass ratio), and around the binary system at radii >∼2aB . The
statistics of planets in binaries could therefore hold important clues to issues
related to the formation and migration process. Furthermore, the relative ori-
entation of the stellar rotation axes, the binary orbit, and the planetary orbits
could help us understand the processes that govern the distribution of angu-
lar momentum during the early phases of star and planet formation. While
the mass of the Solar System is dominated by the Sun, most of its angular
momentum resides in the orbital angular momenta of the planets – it would
certainly be interesting to investigate the angular momentum distribution in
more complicated systems.

The first planet orbiting a component of a wide binary was found around
16CygB; it has already been mentioned that in this case the stellar compan-
ion might be responsible for pumping up the eccentricity of planetary orbit
(Cochran et al. 1997). Meanwhile it has been discovered that 16CygA is a
binary with separation 3′′. 4 itself (Patience et al. 2002), and another planet
has been found in a similar hierarchical triple system (HD178911, Zucker
et al. 2002). The statistics have been improved both by searching for planets
in known stellar binaries, and by searching for stellar companions to known
planet hosts with speckle and adaptive optics techniques (Patience et al. 2002;
Luhman and Jayawardhana 2002). Progress has also been made on the theo-
retical front; for example, numerical simulations indicate that terrestrial plan-
ets can actually form in systems like αCen (Barbieri et al. 2002; Quintana
et al. 2002). Much needs still to be done, however, before we can link the
potential information content of planets in binary systems to the pressing
current questions about the physical processes that shape planetary systems
in general.
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3.5 Systems with Multiple Planets

The Zoo of Planetary Systems

The story of extrasolar planetary systems – in the sense of multiple planets
orbiting one and the same star – began with the discovery of a second and
third planet around υAnd (Butler et al. 1999). Because of the analogy with
the Solar System we might expect that different types of planets (Earth-
like, gas, and ice giants) might form and evolve together. We can study the
general architecture of multiple systems and ask questions such as: What is
the spread in the planetary masses? Do the masses increase from the inside
out, or the other way round? Are the orbits (nearly) coplanar? In addition,
the gravitational interaction between the planets can be so strong that orbital
resonances play a dominant role for their dynamical behavior (see Sect. 3.6),
providing a rich new field of investigation.

The most important parameters of the ten known multiple systems are
summarized in Table 5. (Note that the star HD83443 was also believed to
harbor two planets, but recent measurements demonstrated that the existence
of the outer planet is not firmly established (Butler et al. 2002) Two stars
(υAnd and 55Cnc) are known to harbor three planets each; pairs of two
planets have been detected in the other 8 systems. The notation (b, c, d, . . .)
follows the sequence in which the planets have been discovered; there is no
specific ordering with respect to semi-major axis or mass.

Since all planets in Table 5 have been discovered with radial-velocity mea-
surements, it is clear that they are drawn from the part of the parameter
space accessible to this method (see Sect. 3.1). In addition to the general se-
lection bias favoring massive planets and short-period orbits, this means that
the present sample should be biased towards systems in which the masses in-
creasing with the orbital semi-major axes. A good example is υAnd, in which
all three planets give rise to roughly equal radial-velocity amplitudes K, be-
cause the loss of sensitivity with a is compensated by the increase in mp (see
Table 5 and Fig. 15). A system with masses decreasing from the inside out
would be much harder to detect, because the outermost planet would be hard
to detect by virtue of its low mass combined with large a.

Another shortcoming of the radial-velocity method is that it does not
provide any information about the inclinations of the planets’ orbits. Knowing
these would be important for several reasons:

• If the individual planets in a system have different inclinations, we may
misinterpret the overall architecture of the system. (The planet with the
largest mp sin i is not necessarily the one with the largest mass.)

• The relative inclination of the orbits is an important diagnostic for the
dynamical evolution of the system, see Sect. 3.3.

• The gravitational interaction between a pair of planets depends on their
masses. Knowing these only modulo factors sin i limits the ability to model
perturbations of the orbits due to these interactions.
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Table 5. Parameters of multiple planetary systems, derived from Keplerian fits to
the radial-velocity curves

star m∗ P K e mp sin i a comment

[M�] [days] [m s−1] [Mjup] [AU]

υAndb 4.617 70.15 0.01 0.64 0.058

υAnd c 1.30 241.16 53.93 0.27 1.79 0.805

υAndd 1276.15 60.62 0.25 3.52 2.543
apsidal lock

55Cnc b 14.653 71.5 0.03 0.83 0.115

55Cnc c 1.03 44.3 11.2 0.40 0.18 0.241
3:1 resonance

55Cnc d 4400 50.2 0.34 3.69 5.2

GJ 876 b 61.020 210.0 0.10 1.89 0.207 2:1 mean motion and
GJ 876C

0.32
30.120 81.0 0.27 0.56 0.130 secular resonance

47UMab 1079.2 55.6 0.05 2.86 2.077

47UMa c
1.03

2845.0 15.7 0.00 1.09 3.968
7:3 resonance?

HD168443 b 58.1 470.0 0.53 7.64 0.295

HD168443 c
1.01

1770.0 289.0 0.20 16.96 2.873

HD37124 b 153.3 35.0 0.10 0.86 0.543

HD37124 c
0.91

1942.0 19.0 0.60 1.00 2.952

HD12661 b 263.6 74.4 0.35 2.30 0.823

HD12661 c
1.07

1444.5 27.6 0.20 1.57 2.557
secular resonance

HD38529 b 14.309 54.2 0.29 0.78 0.129

HD38529 c
1.39

2174.3 170.5 0.36 12.7 3.68

HD82943 b 444.6 46.0 0.41 1.63 1.159

HD82943 c
1.05

221.6 34.0 0.54 0.88 0.728
2:1 resonance

HD74156 b 51.6 112.0 0.65 1.61 0.278

HD74156 c
1.05

> 2650 125.0 0.35 > 8.21 > 3.82

From Marcy et al. (2003b)

It will thus be very important to develop techniques that can measure these
inclinations, such as astrometry (see Sect. 9). For the moment, keeping the
limitations of the Doppler method in mind, we can still learn a lot from the
available data.

Individual Systems

In the following we will take a closer look at each of the systems from Table 5
in turn, highlighting some of the important features and peculiarities. This
will provide the observational backdrop for the discussion of gravitational
interactions and dynamical resonances in Sect. 3.6.
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Fig. 15. Lick Observatory residual velocities for υAnd after removal of the Kep-
lerian wobble caused by the inner companion, using best-fit orbital parameters of
P = 4.6171 days and K = 75m s−1. Two time scales are apparent in the residuals at
3 and 0.7 yr. The solid line shows the theoretical velocity curve caused by the outer
two companions. Updated from Butler et al. (1999)

υAndromedae.

Among the early results from the radial-velocity survey at Lick Observatory
was the discovery of a planet orbiting the F8V star υAnd with a 4.6-day period
(Butler et al. 1997). The real claim to fame for this star came somewhat later
with the identification of two additional companions with orbital periods of
241 and ∼ 1, 280 days (Butler et al. 1999, see Figs. 15 and 16). Since this
original detection, the observed radial velocities have followed the predictions
from a triple Keplerian fit without any indication for gravitational interaction
between the planets, or for a fourth planet in the system (Marcy et al. 2003b).
However, the apsidal lines of the outer two orbits are nearly aligned with each
other (entries for ω in Table 6), hinting at a secular resonance involving these
planets (see Sect. 3.6).

As demonstrated in Fig. 16, there are three massive planets in the υAnd
system in a volume that in the Solar System is populated only by the much
smaller terrestrial planets. It is thus not surprising that gravitational interac-
tion between the planets plays a much more significant role systems such as
υAnd than in the Solar System. Since these interactions depend directly on
the masses of the planets, it would be interesting to get limits on their orbital
inclinations. The astrometric signature expected from the outermost planet,
υAndD, is just at the threshold of being detectable at the precision of the
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Fig. 16. Orbits of υAndb, c, and d, compared to the inner Solar System. The orbits
of the three planets are shown co-planar and face-on; the actual relative orbital
inclinations are not known, however. Because of the existence of multiple massive
planets close to each other, dynamical interactions are much more important in the
υAnd system than in the Solar System

Table 6. Parameters of the planets of υAndromedae, derived from Keplerian fits
to the radial-velocity curve

parameter planet B planet C planet D

P [days] 4.6170 241.5 1284

T [JD - 2,450,000] 2.093 160.5 64

e 0.012 0.28 0.27

ω [deg] 73 250 260

K∗ [m s−1] 70.2 53.9 61.1

ap [AU] 0.059 0.83 2.53

mp sin i [Mjup] 0.69 1.89 3.75

Updated from Butler et al. (1999)

Hipparcos data (see also Sect. 9.2). The χ2 of the Hipparcos measurements is
indeed minimized by mp = 10.1Mjup, but a mass as low as 4.1Mjup (which
corresponds to i = 90◦) or as high as 19.6Mjup would also be allowed at the
2σ level (Mazeh et al. 1999).

55Cancri.

The same paper that announced the discovery of the first planet around
υAnd also reported a planet orbiting the star 55Cnc with a period of 14.65
days (Butler et al. 1997). The velocity residuals after subtracting the best-fit
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Keplerian orbit showed a clear long-term trend, suggesting a possible second
companion. Continued monitoring of 55Cnc did indeed reveal two additional
periodicities, with P = 44.3 d and P = 12 yr, respectively (Marcy et al. 2002).
While the latter can clearly be attributed to another planet in the system, the
former is close to the rotation period of the star, and might thus be caused
by surface inhomogeneities. There are a number of arguments against the ro-
tational modulation hypothesis (including the requirement that the surface
structure would have to be stable over at least 14 years), and thus it seems
likely that there are indeed three planets around 55Cnc, with a 3:1 orbital
resonance between the inner two.

Significant excess emission at 60µm was observed towards 55Cnc with the
Infrared Space Observatory (ISO), suggesting that this star may be a Vega-
excess object (Dominik et al. 1998). This interpretation gained support by
the putative detection of a scattered-light disk in ground-based near-infrared
observations (Trilling and Brown 1998). Observations with the NICMOS in-
strument on the Hubble Space Telescope failed to detect this disk, however,
indicating that the ground-based result is probably spurious (Schneider et al.
2001). From a non-detection at λ = 850µm, Jayawardhana et al. (2002) ob-
tain an upper limit of less than 10−3M⊕ in small dust grains associated
with 55Cnc; they suggest that the 60µm excess results from a nearby sub-
millimeter source within the ISO beam.

Gliese 876.

A planet with mp sin i = 2Mjup in a 60-day orbit around the M4 dwarf star
GJ 876 was independently discovered by the Swiss and Californian planet
search teams (Delfosse et al. 1998; Marcy et al. 1998). This planet is remark-
able because of the low mass of its host star, which offers interesting opportu-
nities for follow-up observations. The astrometric wobble of GJ 876 caused by
the gravitational pull of this planet has indeed been detected with the Fine
Guidance Sensors on the Hubble Space Telescope; this marks the first secure
astrometric detection of an extrasolar planet (Benedict et al. 2002, see also
Sect. 9.2). The inferred inclination i = 84◦ implies that the mass of the planet
mp is close to its minimum mass mp sin i.

Continued observations of GJ 876 soon revealed that the radial-velocity
data could not be modeled with a single Keplerian orbit; a second planet with
a period of 30 days is needed to obtain a satisfactory fit (Marcy et al. 2001a,
see Fig. 17). The two orbits have a 2:1 period ratio, and their axes appear to
be nearly aligned (see Table 7); this is strong evidence that the two planets are
locked in an orbital resonance. Taking the planet–planet interaction into ac-
count actually improves the χ2 of a fit to the radial-velocity data considerably
compared to a fit with two Keplerians (Marcy et al. 2003b).

47UMa.

The two planets orbiting 47UMa (Butler et al. 1996; Fischer et al. 2002a)
have nearly circular orbits, with periods that are not close to any small-integer
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Fig. 17. Top: Combined Lick and Keck Observatory velocities for GJ 876, fitted
with a model containing two planets in Keplerian orbits. The filled circles represent
Keck velocities, and filled squares represent those from Lick. Residuals are shown
below the radial-velocity curve. Bottom: Zoom on the time interval between 1998.4
and 1999.1, with velocities from Keck. The inflections in the velocities are due to
the “beating” between the two planets. From Marcy et al. (2001a)

ratio. There is some resemblance to Jupiter and Saturn, which have similar
period and mass ratios as the 47UMa planets. Modeling the formation of the
two planets in the 47UMa system within the core accretion – gas capture
model leads to the conclusion that they can both have formed through this
mechanism within ∼ 3Myr at their present distances from the star (Kornet
et al. 2002).
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Table 7. Parameters of the two planets orbiting GJ 876, derived from Keplerian fits
to the radial-velocity curve

parameter inner planet outer planet

P [days] 30.12± 0.02 61.02± 0.03

T [JD - 2,450,000] 31.4± 1.2 106.2± 1.9

e 0.27± 0.04 0.10± 0.02

ω [deg] 330± 12 333± 12

K∗ [m s−1] 81± 5 210± 5

a∗ sin i [AU] 0.00022 0.00117

ap [AU] 0.130 0.208

mp sin i [Mjup] 0.56± 0.09 1.89± 0.3

From Marcy et al. (2001a)

HD37124.

Systems like HD37124 (Vogt et al. 2000; Marcy et al. 2003b) have be called
“hierarchical”, because the two planets have widely spaced orbits, which
makes them structurally and dynamically reminiscent of hierarchical stellar
systems. A slightly puzzling aspect of the HD37124 system is the large eccen-
tricity of the outer planet, whose origin is unknown.

HD12661.

The planets orbiting HD12661 have periods of 260 and 1440 d (Fischer
et al. 2001, 2003b). Although this means that this system is also hierarchical
(P1/P2 = 5.48), it has been argued that it resides in a secular resonance (Lee
and Peale 2003).

HD168443.

The HD168443 system is interesting because it contains two very massive com-
panions, withmp sin i = 7.7Mjup andmp sin i = 17M jup, respectively (Marcy
et al. 2001b; Udry et al. 2002). Beyond the somewhat irrelevant question
whether these objects should legitimately be called “planets” or something
else, one may ask whether they likely formed in the same way as their lower-
mass analogs. If one is willing to speculate that some planets form through
core accretion and gas capture, while others form through gravitational insta-
bilities in a gas disk, the planets around HD168443 would be prime candidates
for the second process.
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HD38529.

With periods of 14.3 d and 6.0 yr, the two planets of HD38529 form an ex-
tremely hierarchical system (Fischer et al. 2001, 2003b). The host star has
spectral type G4IV and m∗ = 1.39M�, making it the most massive planet-
bearing star known. The main sequence progenitor of HD38529 was probably
of spectral type F5V; it would have been difficult to obtain the radial-velocity
precision during that stage that can now be obtained for the subgiant.

HD82943.

The two planets orbiting HD82943 have periods of 220 and 440 d, respectively,
indicating a likely 2:1 mean motion resonance (Santos et al. 2003b; Mayor et al.
2004).

HD74156.

The parameters of the outer planet in the system HD74156 are not known
precisely yet; the period is at least 6 yr and mp sin i >∼ 8Mjup (Marcy et al.
2003b). Since the period of the inner planet is only 51.6 d, this is also a very
hierarchical system (Naef et al. 2004).

3.6 Interactions Between the Planets in Multiple Systems

General Formalism

As a first approximation, it is normally assumed that planets orbit their par-
ent stars in Keplerian orbits; gravitational interactions between the planets
and tidal effects can be treated as small perturbations. It has been pointed out
already that in some extrasolar systems these perturbations are much stronger
than in the Solar System, because they contain massive planets in close prox-
imity to the parent star and to each other. This situation is somewhat similar
to the ring and moon systems of the giant planets in the Solar System, which
also exhibit a wealth of phenomena due to tidal and mutual gravitational
interaction (e.g., De Pater and Lissauer 2001; Murray and Dermott 1999).

It is well known that there is no analytic solution to the general three-
body problem. Various simplifications have therefore been studied, including
the restricted three-body problem, in which one of the bodies is assumed to
have negligible mass, and Hill’s problem in which the mass of one body is
much larger than the other two. One usually stars by writing the potential as
the sum of a part that describes the Keplerian motion of the bodies about the
central star, plus a part called disturbing function, which contains the direct
terms accounting for the pairwise interactions among the planets and the
indirect terms associated with the back-reaction of the planets on the central
star. The gradient of the disturbing function describes the additional forces
on the planets. One can then proceed by expanding the disturbing function
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in terms of small parameters; depending on the system under consideration
one can consider expansions in the eccentricities, inclinations, or ratios of the
planets’ masses to the mass of the star. This expansion can now be inserted
into Lagrange’s planetary equations, which form a set of differential equations
that express the time derivatives of the orbital elements by partial derivatives
of the disturbing function (e.g., Murray and Dermott 1999).

Using this formalism, one thus arrives at a system of coupled differen-
tial equations for the orbital elements. To study the long-term evolution of
the orbits, one can ignore all short-period terms of the disturbing function;
these will average out to zero over sufficiently long time intervals. Solving the
simplified set of differential equations, which contains only the secular (i.e.,
long-period) terms, one typically obtains solutions that are periodic in a and
e, and contain linear terms for (orbital precession) and ω (precession of the
periastron). Additional complications occur, however, if the e orbital periods
of the two planets are nearly commensurate, i.e., if their ratio is close to a ra-
tio of two small integers. The terms in the disturbing function corresponding
to such a mean motion resonance do not average to zero, because the distur-
bance occurs always at approximately the same orbital phase. The situation
is analogous to a simple harmonic oscillator

mẍ+mω2
0x = F cosωdt (10)

driven at a forcing frequency ωd near the natural frequency ω0. For ωd �= ω0

the solution to (10) is

x =
F

m(ω2
0 − ω2

d)
cosωdt+ C1 cosω0t+ C2 sinω0t . (11)

We see that for ωd ≈ ω0 the response can be very large even for a small driving
force F . A famous example in the Solar System is the 3:2 mean motion reso-
nance between the orbits of Pluto and Neptune. The angle φ ≡ 3λP−2λN−ωP ,
where λP and λN are the mean longitudes of Pluto and Neptune, and ωP
Pluto’s longitude of perihelion, librates about 180◦ with a period of 19,670
years (Cohen and Hubbard 1965). This mechanism prevents close encounters
of Pluto with Neptune and thus stabilizes the orbit of Pluto. A second type
of resonance, called secular resonance arises if one of the precession rates (ω̇
or ˙) equals an eigenfrequency of the system.

A slightly different general formalism for calculations of the tidal, rota-
tional, and dynamical evolution of planetary systems has been developed by
Mardling and Lin (2002). It involves calculating the evolution of the orbital
angular momentum vector and of the Runge–Lenz vector15 of the inner orbit.
Since these vectors are constant for unperturbed orbits, their components vary
slowly compared to the orbital period. The secular evolution of the orbital
elements can therefore be obtained by time-averaging the rates of change of

15 The Runge–Lenz vector points in the direction of periastron and has a magnitude
equal to the eccentricity.
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the orbital angular momentum and Runge–Lenz vectors over the inner orbit.
The resulting equations are quite complicated, but they can be used to imple-
ment fairly efficient and flexible computer programs for dynamical simulations
of extrasolar planet systems.

Long-Term Stability

An important question about a multiple planetary system is its long-term
stability. It is very difficult to prove that a system is stable in the sense that
all planets remain bound for all time. One therefore frequently restricts the
analysis to the weaker Hill stability, which means that the planets cannot
undergo close approaches, which otherwise might disrupt the system. It can
be shown that two planets in initially circular co-planar orbits cannot enter
each other’s Hill spheres for definition) if (Gladman 1993)

∆ ≡ (a2 − a1)/a1 > 2 6
√
3(µ1 + µ2)1/3 ≈ 2.4(µ1 + µ2)1/3 , (12)

where µ1 and µ2 are the ratios of the planetary masses to the mass of the
central star, and a1 and a2 the orbital radii. This criterion gives a useful first
indication that systems such as HD168443 and 47UMa are stable, unless their
inclinations are extremely small, which would make µ1 and µ2 much larger
than their minimum values (Marcy et al. 2001b; Fischer et al. 2002a). One
caveat is that for a large relative inclination between the two planets a more
stringent criterion than (12) would have to be applied (Ida and Makino 1993).

Orbital Resonances

More detailed studies of the stability of the known multiple systems make use
of the analytic formalism sketched above, and of numerical integrations of the
orbits. Orbital resonances of different types play an important role in at least
five systems (υAnd, 55Cnc, GJ 876, HD12661, and HD82943), as indicated
in Table 5. Orbital dynamics of extrasolar planets has thus become a rich
field, in which many new results can be expected as more multiple systems
are discovered, and as improved data become available for the systems that
are already known.

Soon after the discovery of υAnd c and υAndd, the first stability analy-
ses of this system were carried out (Laughlin and Adams 1999; Lissauer and
Rivera 2001). More recent studies have made use of updated planetary para-
meters from continued monitoring observations. They indicate that the outer
two planets occupy nearly edge-on orbits with low relative inclination (Lis-
sauer and Rivera 2001; Chiang et al. 2001; Chiang and Murray 2002). The two
planets seem to inhabit a secular resonance, in which ∆ω ≡ ωD − ωC librates
about 0◦. It is worth pointing out that a detailed analysis is needed to find
this possible resonance mechanism in υAnd.
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The 2:1 mean motion resonance in the GJ 876 system is more obvious, as
it is directly reflected in the orbital periods of the two planets. The resonance
certainly helps to stabilize the system; stable configurations can be found
with both high and low values of the relative inclinations of the two orbits
(Rivera and Lissauer 2001; Ji et al. 2002). This is quite remarkable in view
of the relatively large orbital eccentricities, but the configuration of GJ 876
remains in fact stable even at much larger eccentricities (Lee and Peale 2003).
It has already been pointed out that the interaction between the two planets
in the GJ 876 system is sufficiently strong to produce a detectable deviation
from a model with two Keplerian orbits (see Sect. 4.1). It should thus be
possible to determine the true planet masses (without the sin i factor) from
the strength of this interaction, but this procedure does not yet lead to reliable
results, even under the assumption of coplanarity (Laughlin and Chambers
2001; Nauenberg 2002a).

In some cases, the current uncertainties of the orbital parameters prevent
clear statements on the dynamical state of a given system, because regular
and chaotic orbits can be located close to each other in parameter space (e.g.
HD12661, Kiseleva-Eggleton et al. 2002; Lee and Peale 2003; Goździewski
and Maciejewski 2003). In the HD82943 system, which contains two planets
in a 2:1 mean motion resonance, the nominal best-fit Keplerian orbits rep-
resent an unstable system, which should self-destruct quickly (Goździewski
and Maciejewski 2001). An ad-hoc adjustment of the argument of periastron
ω of the inner by about 30◦ leads to a stable system, however, with a model
radial-velocity curve that is nearly indistinguishable from the original one.
Similarly, the stability of the 47UMa system depends critically on the eccen-
tricity of the outer planet, which is poorly constrained by the current data,
and on the relative inclination of the two planets, which cannot be determined
with radial-velocity measurements (Laughlin et al. 2002; Goździewski 2002).

It has been speculated that planets could also be found in a 1:1 resonance,
similar to Jupiter’s Trojan asteroids (Laughlin and Chambers 2002; Nauen-
berg 2002b). For an exact 1:1 resonance the radial-velocity signature would
be indistinguishable from that of a single planetary companion, but if there
are slight deviations from the exact resonance, the pair of planets can exe-
cute horseshoe-type orbits around the Lagrangian points. A good example for
this type of motion in the Solar System is given by Saturn’s moons Janus
and Epimetheus (see e.g. Murray and Dermott 1999). In that case, deviations
from the single-planet radial-velocity curve can become quite significant over
a few orbital periods. If planets in a 1:1 resonance exist, they could therefore
be detected in the near future; it is even possible that one or the other of the
known “single” planets will over time turn out to be a Trojan pair.

Commensurabilities between orbital periods can be set up during the early
evolution of a planetary system, through orbital migration (see Sect. 3.2).
If both planets open a gap in the disk, the outer planet migrates more
quickly and approaches the inner planet, until it becomes locked in a 2:1
resonance (Snellgrove et al. 2001). This resonance can be maintained through
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the subsequent evolution of the system. It is also possible that the planets get
locked up in other resonances (e.g., 3:1, 4:1, 5:1, or 5:2), depending on their
masses, initial eccentricities, and the time scale for eccentricity damping in
the disk (Nelson and Papaloizou 2002). Gathering sufficient statistical infor-
mation about the incidence of these different resonances might thus provide
a useful diagnostic tool of the migration process and of the interactions be-
tween the protoplanets and the disk during the formation phase of planetary
systems.

4 Radial-Velocity Surveys

The radial-velocity technique has without doubt been the most success-
ful planet detection method so far. In fact, all known extrasolar planets
around main-sequence stars were discovered in this way16. The basis of the
radial-velocity method is relatively simple: one obtains a time series of high-
resolution spectra of the target star, and searches for periodic variations of the
absorption line Doppler shift due to the motion of the star around the center of
mass of the star–planet system. It is the exquisite precision of radial-velocity
measurements achieved during the past decade that has made the plethora
of recent planet detections possible. In this chapter we will discuss the foun-
dations of the method, the design principles of the spectrographs used, and
astrophysical limitations of the radial-velocity technique. The properties of
the currently known extrasolar planets will be the subject of Sect. 3.

4.1 The Radial-Velocity Technique

Planetary Orbits from Radial Velocities

The orbit of a binary system is defined by seven parameters, the so-called
orbital elements (see e.g. Batten 1973):

1. P , the orbital period;
2. i, the inclination of the orbital plane with respect to the tangent plane of

the sky;
3. Ω, the position angle (measured from North through East) of the line of

nodes, which is the intersection of the orbital and tangent planes;
4. ω, the angle between the direction of the ascending node (at which the

star crosses the tangent plane while receding from the observer) and the
periastron;

5. a, the semi-major axis of the orbit;
6. e, the eccentricity of the orbit;
7. T , the time of passage through periastron.
16 Editor note added in proof: It is not true anymore, recently, planets have been

detected by transit observations (see 6.4)
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The radial velocity curve V of the primary star in a spectroscopic binary can
be expressed as

V = γ +K1 [cos(ν + ω) + e cosω] , (13)

where γ is the radial velocity of the center of mass of the system, K1 the veloc-
ity amplitude, and ν the true anomaly, i.e., the position angle measured from
periastron. The time dependence of ν(t) is given implicitly by the relations
(see e.g. Heintz 1971; Murray and Dermott 1999)

2π
P

(t− T ) = E − e sinE (14)

and

tan
ν

2
=

√
1 + e

1− e tan
E

2
; (15)

the quantity E in these equations is called the eccentric anomaly. It is thus
clear that the parameters P , T , e, and ω can be determined directly from
the shape of the velocity time series. Ω and i, on the other hand, cannot be
determined from spectroscopic observations alone. The semi-major axis of the
primary around the center of mass is related to K1 by

a1 sin i =
P

2π

√
1− e2K1 . (16)

According to Kepler’s Third Law,

a3 =
(
P

2π

)2

G (m1 +m2) , (17)

where a ≡ a1 + a2 is the semi-major axis of the relative orbit of the two
components. Usingm1a1 = m2a2 and (16) and (17), we can derive the relation

(m2 sin i)3

(m1 +m2)2
=

P

2πG
K3

1 (1− e2)3/2 . (18)

The left-hand side of this equation is called the mass function of the system.
If the secondary is a planet, we can use m2 � m1 to simplify (18). This gives

mp sin i ≈
(

P

2πG

)1/3

K∗m
2/3
∗
√

1− e2 , (19)

i.e., we can derive mp sin i from the radial-velocity data provided that the
mass of the central star m∗ is known. In more convenient units one can write

mp sin i [Mjup] ≈ 3.5 · 10−2K∗[m s−1]P 1/3[yr] ; (20)

this means that Jupiter causes a 12.5m s−1 wobble in the radial velocity of
our Sun.
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The quantity mp sin i is frequently referred to as the “minimum mass”
of the planet. In each individual case, the actual mass of the planet may
be considerably larger than this lower limit inferred from the radial-velocity
technique. In a statistical sense, however, this uncertainty is not as severe
as one might think. In a set of randomly oriented orbits cos i is uniformly
distributed between 0 and 1. (It is more likely to observe an object nearly
equator-on than nearly pole-on.) This means that in 87% of all cases sin i ≥
0.5, and that in only 0.5% of all cases sin i ≤ 0.1. Therefore distributions
of mp sin i from radial velocity surveys are fairly representative of the true
distribution of planetary masses (see also Sect. 3.2).

Multiple Systems

To first approximation, systems with several planets can be represented by a
linear superposition of the individual Keplerian orbits. This approximation is
a good one if the planetary masses are small, so that their mutual interaction
can be neglected. In the case of massive planets, however, this approximation
can break down on time scales that are not very long compared to the or-
bital periods, so that a treatment of the full many-body problem including
dynamical resonances is required. In practice, this is best done in several steps
(Laughlin and Chambers 2001; Rivera and Lissauer 2001). The starting point
is a set of Keplerian fits for each planet; the corresponding orbital elements
are called the osculating elements at the starting epoch. One can then perform
a self-consistent integration of the many-body problem, compute a synthetic
radial-velocity curve of the central star from the solution, compare this syn-
thetic curve to the observations, and calculate the corresponding χ2 value.
This procedure can be repeated for different sets of osculating elements; the
Levenberg–Marquardt method (e.g. Press et al. 1992) can be used to find the
osculating elements that minimize the χ2.

In this context, it is important to realize that the interaction between the
planets depends on their masses and the relative inclination of their orbital
planes. If sufficiently precise radial-velocity data are available, it is therefore
possible to derive these parameters from dynamical analyses of multiple sys-
tems. The uncertainties are fairly large, however, because the parameter space
to be searched has many dimensions, especially if the planets are not assumed
a priori to be in coplanar orbits. Direct measurements of the relative orien-
tations of the orbits with astrometric methods (see Sect. 9) can provide much
better constraints on the dynamical evolution of multiple systems.

4.2 Limitations of the Radial-Velocity Precision

The Principle of Precise Doppler Spectroscopy

To detect the reflex motion of stars orbited by extrasolar planets, it is nec-
essary to determine their radial velocity variations with stunning precision:
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a measurement error of 3m s−1 means that the wavelength shift of the stel-
lar absorption spectrum has to be determined to one part in 108. The re-
solving power of modern high-resolution spectrographs is typically of order
R ≡ λ/∆λ <∼ 100, 000; a precision of 1/1,000 resolution element is therefore
required. This is possible only by taking spectra with high signal-to-noise, and
averaging over many spectral lines. Several conditions must be met to reach
the desired precision of a few m s−1:

• The target star must have a sufficient number of absorption lines. This
excludes main-sequence stars of spectral earlier than roughly F5V, which
have fewer lines than the cooler stars.

• The stellar absorption lines must be narrow. This again excludes stars
with early spectral types and young stars, because they show too much
rotational broadening.17

• The stellar photosphere must be sufficiently stable. This excludes active
(e.g., flaring) stars and pre-main-sequence objects.

• The spectrograph used must be extremely stable, or a suitable calibration
technique has to be applied.

For the first three reasons, radial-velocity surveys have concentrated mostly
on F, G, and K main-sequence stars. M dwarfs and even brown dwarfs are
now also attracting much interest for searches of low-mass planets, because
the detection limit for mp scales with m

2/3
∗ (19). Many K giants are also

suitable for precise radial-velocity monitoring, and giant planets have been
found orbiting some of them (Frink et al. 2002; Sato et al. 2003).

Photon Noise, the Fundamental Limit

To understand the fundamental limit of the attainable radial-velocity preci-
sion, consider first one pixel on the detector of the spectrograph. The intensity
change ∆N (measured in detected photo-electrons) in this pixel due to a small
variation of the radial velocity ∆V can be written as (Connes 1985; Bouchy
et al. 2001)

∆N ≡ N −N0 =
∂N0

∂λ
∆λ =

λ

c

∂N0

∂λ
∆V . (21)

Solving for ∆V , we obtain

∆V =
c

λ

N −N0

∂N0/∂λ
. (22)

17 The rotation rate of main-sequence stars is linked to their structure. Stars with
m <∼ 1.4M� have outer convection zones; the interplay of convection with rotation
leads to differential rotation and drives a dynamo. Magnetic breaking reduces the
stellar rotation rate. This leads to a drastic difference in the typical rotation rates
between stars earlier and later than F5V.
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In the photon noise-limited case the measurement error on N is propor-
tional to

√
N ; the Doppler precision is therefore inversely proportional to

|∂N0/∂λ|λ/
√
N0, which can be taken as a “figure of merit” of the pixel in

the stellar spectrum under consideration. When we combine the data from all
pixels i in the spectrum, they should get weights w(i) that are proportional
to the square of this figure of merit:

w(i) ≡ λ2(i)[∂N0(i)/∂λ(i)]2

N0(i) + σ2
D

, (23)

where we have also included a potential contribution to the noise from the
detector σD. The radial-velocity change computed from the full spectrum is
then

∆V =
∑

∆V (i)w(i)∑
w(i)

= c

∑
[N(i)−N0(i)]

√
w(i)

N0(i)+σ2
D∑

w(i)
. (24)

One can easily verify that the associated measurement uncertainty σ∆V can
be expressed as

σ∆V =
c√∑
w(i)

. (25)

It is now convenient to introduce a “quality factor” Q defined by

Q ≡
√∑

w(i)√∑
N0(i)

=

√∑
w(i)√

Ntot

, (26)

where Ntot is the total number of detected photons. In the high-flux limit,
where detector noise is negligible, Q in independent of the stellar flux; it
represents the sharpness and richness in spectral lines of the spectrum. With
this definition we can finally write

σ∆V =
c

Q
√
Ntot

. (27)

This formulation is well suited for modeling the influence of stellar spec-
tral type, rotational line broadening, and spectrograph resolution on the at-
tainable velocity precision (see Fig. 18). For v sin i <∼ 6 km s−1 the line pro-
files are broadened by the rotation, which leads to a linear decrease of the
average ∂N0/∂λ and therefore of Q (see (23) and (26)). For larger values
of v sin i, neighboring spectral lines start to become blended, which leads to
Q ∝ (v sin i)−1. At low spectral resolution (R <∼ 50, 000) all lines are blended
and Q ∝ R. When the resolution is increased to match the intrinsic (broad-
ened) line width, Q reaches a constant value. Better spectral resolution is
therefore beneficial, but only up to R ≈ 100, 000.

Limitations due to Stellar Variability

For radial-velocity measurements with a precision of a small fraction (of order
1/1,000) of the line width, physical processes in the stellar photosphere or
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Fig. 18. Quality factor for radial-velocity measurement in the spectral range
3800 Å to 6800 Å. Left panel: Dependence on rotational broadening v sin i for K5V,
F9V, and F2V stars, for infinite spectral resolution. Right panel: Dependence
on spectrograph resolution for K5V, F9V, and F2V stars with v sin i = 0 and
v sin i = 10 km s−1. From Bouchy et al. (2001)

Fig. 19. Illustration of the effect of star spots on line profiles of a rotating star.
From Queloz (1999)

chromosphere that affect the line profiles have to be considered carefully. An
obvious example are starspots (Fig. 19). When a starspot (or group of spots)
rotates into view, it hides part of the approaching side of the star. This causes
a bump in the blue wings of absorption lines, which corresponds to a redward
shift of the line centroid. When the spot rotates across the meridian, the
bump moves from the blue wing to the red wing of the line, now causing
a blueshift of the line. If the spot or spot group is long-lived, it will rotate
periodically into and out of view, thus mimicking the periodic signal of a
planet. To avoid this kind of misinterpretation, one should not rely on the line
centroid (or on cross-correlating the observed spectra with a template) alone,
but also check for variations of the line depths and shapes. Only if all lines
vary synchronously and without changing their profiles is the interpretation
of radial-velocity variations as the signature of a planet tenable.
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Another indicator for the presence of star spots is of course photometric
variability. A case in point is the G0V star HD166435 (Queloz et al. 2001).
Observations with the ELODIE spectrograph at the Observatoire de Haute
Provence revealed low-amplitude radial velocity variations with a period of
3.7987 days, suggestive of a possible planetary companion. Photometric ob-
servations uncovered variations with the same period and a one-quarter cycle
phase shift, however, as expected for dark photospheric spots. This interpre-
tation is also supported by a detailed analysis of the spectroscopic data, which
revealed variations of the line profiles and a loss of coherence of the radial-
velocity signal on time scales longer than ∼30 days (which gives an indication
of the time over which star spots are stable). Photometric variability has also
been observed in HD192263 (Henry et al. 2002), which had been thought to
host a 0.75Mjup planet in a 24-day orbit18. With a careful analysis it is thus
frequently possible to separate true planetary companions from photospheric
effects.

There remain difficult cases, however, in which the planetary hypothesis
is plausible, but very hard to establish beyond reasonable doubt. A good
example for this category is εEridani, which shows radial-velocity variations
with amplitudeK = 19ms−1 and period P = 6.9 yr (Hatzes et al. 2000). These
variations can be fit reasonably well with a Keplerian orbit, but the star also
displays variations of the Ca II H and K lines indicative of magnetic activity.
Further observations will be required to attribute the seven-year variations to
either a companion or stellar activity.

In any case, even low-level stellar variability produces background noise,
which limits the ultimate precision that can be attained with Doppler ob-
servations. The activity of cool stars is directly related to their rotation rate
and thus to their age. A high rotation rate usually implies a stronger dynamo
and thus stronger magnetic activity (spots, X-ray emission, chromospheric
lines, . . . ). Magnetic breaking reduces the rotation rate and thus the activity.
The time scale for this process depends on the mass of the star; low-mass
stars (spectral type M) take the most time to slow down and thus show pro-
nounced activity even at fairly old ages. The typical radial-velocity noise due
to spots in G dwarfs decreases from ≈ 30 . . . 50m s−1 at the age of the Hyades
(∼ 625Myr) to <∼ 5m s−1 at the age of the Sun; convective perturbations of
the radial velocity can have a similar magnitude (Saar and Donahue 1997).

Good indicators for activity in cool stars are the profiles of the Ca II H
and K resonance lines at 3968.5 Å and 3933.7 Å, which consist of a narrow
chromospheric emission component (in active stars) superposed on a very
broad photospheric absorption line (see Fig. 20, left panels). For a quantitative
analysis of these line profiles, one usually uses an “activity index” R′

HK, which
is defined as the ratio of the chromospheric emission in the cores of the Ca II
H and K lines to the total bolometric emission of the star (Noyes et al. 1984).

18 Note of the Editor added in proof: Santos et al. 2003a,b claims that the photo-
metric and line profile are not synchronized and that the planet interpretation
still hold.
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Fig. 20. Plots of the reduced radial-velocity rms, σ′(Vr), as a function of the activity
index R′

HK for F, G, and K dwarfs (for details see text). The solid lines represent
the best linear least-squares fit to the data; the rms around the fit is indicated by
the dashed lines. Open squares represent stars with planetary systems with σ′(Vr)
computed without subtracting the orbital solution. From Santos et al. (2000)

Plots of the radial-velocity jitter in F, G, and K dwarfs versus R′
HK show

that these quantities are indeed correlated (Saar et al. 1998; Santos et al.
2000, see also the right panels in Fig. 20). The same plots also demonstrate
that those stars for which planetary companions have been announced clearly
stand out from the general distribution; this is another argument that the
observed radial-velocity variations cannot be explained by stellar activity.

In addition to this clearly established general correlation of chromospheric
activity with radial-velocity variability, the activity indices themselves show
temporal variations. Saar and Fischer (2000) find that in 30% of the stars
observed in the Lick survey the activity measured in the Ca II λ8662 line
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(which is one of the lines of the Ca II infrared triplet) is correlated with simul-
taneously measured radial velocities, i.e., the level of activity itself produces
a shift of the radial velocity. They argue that the main cause of these ef-
fects is modification of the mean line bisector shape brought on by long-term,
magnetic activity-induced changes in the surface brightness and convective
patterns. Taking out this trend before analyzing the radial velocities thus
reduces the residual scatter. On the other hand, Paulson et al. (2002) find a
similar correlation between R′

HK and the radial velocity in only five of 82 stars
in the Hyades. It thus remains to be seen to which extent activity indices can
be used not only to pre-select intrinsically “quiet” stars, but also to remove
activity-induced systematic effects from radial-velocity data.

Stellar pulsations can also produce radial-velocity variations that could be
mistaken for the signature of a planet. Again, photometry is a good way of
double-checking whether this may be the case. For radial pulsations, there is
a straightforward relation between the amplitude ∆R of the radius changes
and the radial-velocity curve,

∆R =
∫ T/4

0

V dt . (28)

Using this relation and

∆L
L

= 2
∆R
R

+ 4
∆T
T

, (29)

which follows directly from the Stefan–Boltzmann Law L = 4πR2T 4
eff , it is pos-

sible to predict the photometric variability from the observed radial-velocity
variations. For example, in the case of 51Peg, the amplitude of the radial-
velocity curve (59m s−1, Mayor and Queloz 1995) implies ∆R/R = 0.5% and
thus ∆L/L = 1% (for ∆T/T = 0). The observed photometric stability of
better than 0.1% therefore rules out radial pulsations; the assumption that
∆R would be compensated by ∆T such that ∆L/L ≤ 0.1% is too contrived.
No such direct case can be made against non-radial pulsations, which do not
necessarily imply detectable photometric variations. However, several strong
arguments are also available against this interpretation:

• Only modes with very low amplitudes (� 1m s−1) and periods <∼ 1 h are
detected in the Sun, and expected for Sun-like stars.

• Mechanisms that could excite a high-order non-radial pulsation mode
should also excite many other similar modes. There is no plausible mech-
anism that could selectively excite one single mode, and thus mimic a
planetary signal.

• Detailed studies of stars for which planets have been published have not
revealed any changes of the line shapes (e.g. Gray 1998).

Taken together, these arguments rule out pulsations as a plausible explanation
for the observed radial-velocity variations.
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The situation is somewhat more complicated in the case of giant stars. All
evolved stars exhibit intrinsic variability to some degree. A well-known exam-
ple is the K2 giant αBootis, which has a complicated variability pattern with
an amplitude of ∼ 200m s−1 on time scales down to a few days (Hatzes and
Cochran 1994). Giant stars have therefore not been targeted by the planet
surveys. A survey of nearby K giants aimed at assessing their suitability as
astrometric reference stars has shown, however, that many of these stars have
fairly stable radial velocities (Frink et al. 2001). In fact, about 2/3 of the
stars observed are drawn from a distribution with a mean radial velocity scat-
ter of ∼20m s−1. There is also a correlation with color, which implies that a
suitable color selection criterion can reduce the contamination by photospher-
ically unstable targets. The companion of the K2 III giant ιDraconis with a
minimum mass of 8.9AU discovered serendipitously in the survey mentioned
demonstrates that detecting planets around giants is indeed possible (Frink
et al. 2002).

4.3 Spectrograph Design

Cross-Dispersed Echelle Spectrographs

Precise radial-velocity measurements require a large spectral range covered
with high spectral resolution ((27), Fig. 18). These requirements are met
best with cross-dispersed echelle spectrographs (Schroeder 2000; Vogt 1987;
Baranne 1999). This type of instrument takes its name from the arrange-
ment of two separate dispersing elements. The first is a grating used in high
orders, which is responsible for the spectral resolution. To avoid that the
overlapping orders of the main grating fall on the same pixel on the de-
tector, a second low-dispersion element (prism, grism or combination of the
two) is used in the orthogonal direction. This leads to a format which uses
most of the real estate on a CCD chip for a long high-resolution (typically
R ≡ λ/∆λ = 50, 000 . . . 100, 000) spectrum.

Extraordinary measures have to be taken, of course, to obtain a long-term
reproducibility of order 1/1,000 pixel for measurements with these instru-
ments. The first requirement is to build the spectrograph as stable as possible.
Changes in the spectrograph point spread function (i.e., the observed profile
of an infinitely narrow line) due to flexure or thermal expansion can signifi-
cantly alter the measured position of line centroids, and thus introduce noise
in the radial-velocity measurements. In an air-filled spectrograph one also has
to take into account changes of the observed “air” wavelength with pressure
(90m s−1 mbar−1) and temperature (200 . . . 300m s−1 K−1, depending on the
observatory elevation). The key to success is referencing all observations to
a stable standard, and to eliminate all systematic errors that can enter this
process.

When a stellar radial-velocity measurement has been obtained, it must be
transformed from the observatory reference system into an inertial reference
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frame. Getting a sufficiently precise ephemeris for the motion and rotation of
the Earth is no problem, but timing the observation requires some care. As the
radial velocity of the Earth can change significantly (up to 2.4m s−1 min−1)
while the shutter is open, we need to know the photon-weighted midpoint of
the exposure. Taking this simply as the midpoint between opening and closing
the shutter can produce a very significant error if the weather is partly cloudy;
it is therefore advisable to monitor the photon flux during the exposure with
a separate high-speed photometer.

The Simultaneous Thorium Technique

The classical way of providing good wavelength calibration of astronomical
spectra is the simultaneous observation of the star and an emission spec-
trum from an arc lamp. Spectrographs based on this principle have been used
for many years by the Swiss planet search team (ELODIE and CORALIE,
Baranne et al. 1996). The new HARPS spectrograph to be installed at ESO’s
3.6m telescope on La Silla has been designed to reach a Doppler precision
of 1m s−1 (Pepe et al. 2000)19. These instruments use two optical fibers
to couple both the star light and the light from the Thorium lamp to the
spectrograph input; each “science exposure” thus contains truly simultaneous
calibration information. The observable quantities are thus the wavelength
differences λs(f1, t1)−λT (f2, t1) between stellar absorption features and Tho-
rium lines. (The argument indicate which fiber was used and the time of the
exposure.) In addition, a “calibration exposure” is taken in which Thorium
light is coupled into both fibers. The observed Doppler shift between the
two Thorium spectra λT (f1, t2)−λT (f2, t2) reflects systematic effects induced
by the two different paths through the spectrograph. The double difference
[λs(f1, t1)−λT (f2, t1)]− [λT (f1, t2)−λT (f2, t2)] therefore provides a reference
of the stellar spectrum to the Thorium lines, which is free of both tempo-
ral drifts and systematic differences between the two fibers. Advantages of
the Thorium technique are a large usable spectral range and relatively high
transmission (∼80% for a well-adjusted fiber).

In addition to providing a convenient way of coupling the telescope to
the spectrograph, the optical fibers fulfill the important role of stabilizing the
stellar light on the spectrograph slit. In a classical spectrograph, which is at-
tached directly to the telescope, slight displacements of the star with respect
to the spectrograph slit can lead to serious shifts of the observed wavelength
(see Fig. 21). Keeping the star centered on the slit with the precision required
for planet surveys is beyond the capabilities of telescope guide systems. In a
fiber-fed spectrograph this problem is reduced substantially by the “scram-
bling” effect of the fiber: an off-axis illumination of the fiber input still leads to

19 Editor note added in proof: HARPS is installed and available to the community
since October 2003
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Fig. 21. Stars well-centered (top) and poorly centered (bottom) on the spectrograph
slit. It is apparent that motion of the light centroid perpendicular to the slit (along
the dispersion direction) leads to an apparent shift of the observed wavelength

a circularly symmetric output from the fiber (see e.g., Fig. 7 in Queloz 1999).
If this azimuthal averaging of the fiber is insufficient, one can further improve
the uniformity of the slit illumination by employing a double scrambler, which
also performs some radial redistribution of the light (Queloz et al. 1999).

The Iodine Absorption Method

An alternative approach to coping with long-term drifts of the spectrograph
and unstable illumination of the slit is passing the starlight through an ab-
sorbing medium before entry into the spectrograph, thereby superimposing
reference absorption lines that experience the same instrumental shifts as the
stellar spectrum. It was first suggested to use telluric absorption lines (i.e.,
absorption lines originating in the Earth’s atmosphere) as wavelength refer-
ences (Griffin and Griffin 1973); modern versions of this technique use an
absorption cell in front of the spectrograph slit (Campbell and Walker 1979).
A long-term precision of ∼15m s−1 has been achieved with an absorption cell
filled with hydrogen fluoride gas (Campbell et al. 1988). The main drawbacks
of the HF molecule are the fairly small wavelength range covered by the ab-
sorption band (∼100 Å), its corrosive nature, and its lethal effect on humans.

After an extensive search for a better absorbing medium, Marcy and But-
ler (1992) concluded that gaseous iodine is the molecule of choice. It combines
the advantages of strong line absorption coefficients (requiring only a short
absorption length and low pressure), large wavelength coverage (from 5,000 to
6,300 Å), chemical stability, and low risk to human health. A 10 cm long cell
filled with gaseous I2 at a pressure of 1/100 atm was built for the Hamilton
Echelle Spectrograph (Marcy and Butler 1992); similar cells have also been
installed at other telescopes. Observations with an iodine cell produce a spec-
trum in which stellar and iodine lines are heavily blended with each other.
The data analysis therefore requires sophisticated modeling of the observed
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Fig. 22. Modeling of a spectrum observed through an iodine cell. Top: The tem-
plate iodine spectrum. Second: The template stellar spectrum (in this case τ Ceti,
G8V). Note how rich this spectrum is; the figure shows only ∼1.6 Å of the ∼850 Å
range used for the Doppler analysis. Third: The points are in observation of τ Ceti
made through the iodine absorption. The solid line is a model of the observation,
composed of the template iodine and stellar spectra. The free parameters consist of
the spectrograph point spread function and the Doppler shift of the template star
relative to the template iodine. Bottom: 10 times the difference between the model
and the observation. The model and the observation differ by 0.4% rms. From Butler
et al. (1996)

spectrum (see Fig. 22). The data reduction software needs three inputs: the
observed spectrum Iobs, a high-resolution iodine template spectrum TI2 , and
a high-resolution spectrum IS of the target star (obtained by deconvolving a
spectrum with very high signal-to-noise, taken without the iodine cell). The
spectra taken through the iodine cell are then modeled as (Butler et al. 1996)

Iobs(λ) = k [TI2(λ)IS(λ+ ∆λ)] ∗ PSF , (30)

where k is a normalization constant and PSF the spectrograph point spread
function. The operator ∗ denotes convolution as defined in (238). The Doppler
shift ∆λ is obtained by a χ2 minimization procedure that adjusts this parame-
ter together with twelve others describing the wavelength scale and the shape
of the spectrograph point spread function. This technique has consistently
produced Doppler measurements with a long-term stability of 3m s−1 (Butler
et al. 1996).
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Absolute Astronomical Accelerometry

The simultaneous Thorium and Iodine absorption methods rely on the “ran-
dom” positions of absorption or emission lines in the spectrum of a molecule
or atom. In comparison, it should in principle be advantageous to use the reg-
ular transmission comb of an interferometer as a wavelength reference (e.g.,
Ge et al. 2002). A variation of this concept is the “Absolute Astronomical
Accelerometer” proposed by Connes (1985). This instrument is based on two
control loops. First, the variable path difference of a tunable Fabry–Perot in-
terferometer is adjusted such that its transmission maxima track the variable
Doppler shift of a star. This tracking ability is the main advantage of this con-
cept over the methods described above; it eliminates systematic errors due to
the relative shifts of stellar and calibration lines caused by the annual and
diurnal variation of the observatory velocity in an inertial reference frame.
The second loop involves a tunable laser, which tracks one of the Fabry–Perot
transmission peaks. The net result is that the wavelength of the laser line
tracks the radial velocity of the star. The beam from the tunable laser is then
mixed with a stabilized laser; the change in the beat frequency is the signal
that contains the desired information about changes in the stellar Doppler
shift. A prototype instrument has been built and tested in the laboratory. It
remains to be seen whether wavelength references based on interferometric
approaches can reach or surpass the long-term radial-velocity stability that
has been demonstrated with gas cells and lamps.

4.4 Radial-Velocity Surveys

The First Planet Detections

In the August 1, 1995 issue of Icarus appeared a paper summarizing the
results from a 12-year search for Jupiter-mass companions to 21 nearby stars.
No planets were found, with limits in the range m sin i ≤ 1 . . . 3Mjup for any
possible planets with orbital periods up to 15 years (Walker et al. 1995). In
retrospect this team was remarkably unlucky; as we now know, their precision
and sample size gave them a > 50% chance to actually discover the first
planet around a Solar-type star. But because the sample picked by Walker
et al. happened to contain no massive short-period planet, the honor of the
first discovery went to Mayor and Queloz (1995), who announced the planet
orbiting 51Peg only three months later. The radial-velocity variations of this
star were almost immediately confirmed by Marcy and Butler (1995), who
had also started a long-term planet search. This survey soon uncovered two
additional planets (Marcy and Butler 1996; Butler and Marcy 1996), providing
a first glimpse of the unanticipated diversity of giant planets.
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Recent Surveys

Fueled by the unexpected discoveries of giant planets with short orbital pe-
riods, the ongoing surveys intensified their efforts, and several new radial-
velocity projects were started. More than 2,000 stars are now being monitored
with Doppler precisions in the range 3 . . . 15m s−1. Among the projects that
have contributed to the list of known planets are: ELODIE at the Observa-
toire de Haute Provence (Udry et al. 2001); its improved sister CORALIE
at the Swiss Euler Telescope on La Silla (Udry et al. 2000); the Hamilton
Echelle Spectrograph at Lick Observatory (Marcy and Butler 1998; Cumming
et al. 1999); HIRES at the Keck Observatory (Vogt et al. 2000); the Advanced
Fiber-Optic Echelle at Whipple Observatory (Nisenson et al. 1999); the Anglo-
Australian Telescope (Butler et al. 2001); the Coudé Echelle Spectrometer at
ESO’s 3.6m Telescope on La Silla (Endl et al. 2002); the McDonald Obser-
vatory (Cochran et al. 2000); and the Lick bright K giant survey (Frink et al.
2002).

Several attempts have been made to analyze the combined published re-
sults from all surveys, in order to obtain statistical information on the dis-
tribution of planet masses and periods, and to assess the fraction of stars
that have planetary companions (e.g., Nelson and Angel 1998; Tabachnik and
Tremaine 2002; Lineweaver and Grether 2002). While such compilations can
provide much useful information, of course, one has to keep in mind that it is
extremely difficult to estimate the completeness of the underlying data. Many
of the long-term surveys have improved their observing techniques over the
years, which leads to complicated sensitivity limits as a function of orbital
period. Furthermore, the temporal sampling may vary widely from star to
star, because “interesting” targets were followed much more frequently than
others. A slightly enhanced level of stellar activity may also have an adverse
influence both on the detection threshold for planets and on the enthusiasm
of the observers to obtain many data points. One finally has to keep in mind
that a star without a published planet is not necessarily a star without a
detected planet – the observers may just have chosen to wait with the publi-
cation until they can get a satisfactory orbital fit. In spite of all these caveats,
the amount of information on extrasolar planets that has been gathered with
the radial-velocity method is now large enough to enable interesting statistical
conclusions. We will come back to this point in the following chapter.

5 Gravitational Microlensing

The detection and monitoring of gravitational microlensing events towards
the Galactic bulge and the Large Magellanic Cloud has been used success-
fully as a tool to study the composition and mass distribution of the Galaxy
(Paczyński 1986, 1996; Alcock 2000). The light curves of lensing events involv-
ing the linear motion of a point-like lens in front of a point-like source have a
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characteristic shape; any deviations from this shape can be used to infer para-
meters not described by this simple geometry: parallax (affecting the relative
path of source and lens), resolution of the stellar disk, or the presence of com-
panions to the source or lens. In the present context, we are mostly interested
in the last of these effects: the detection of “binary lenses” with low-mass
secondaries.

The monitoring of gravitational microlensing events is arguably the only
method that is capable of detecting Earth-like planets from the ground; this is
the most important driver behind the further development of this technique.
So far, however, no secure planet detection has been made in this way (Sackett
2000). This chapter introduces the theory of gravitational microlensing, first
for a single lens, then for the more complicated case of binary lenses. We
will then discuss the available results from current microlensing monitoring
experiments.

5.1 Theory of Gravitational Microlensing

Gravitational Lensing by a Single Pointlike Lens

According to the General Theory of Relativity, light from a background source
passing by a foreground star of mass M with an impact parameter (minimum
distance) r � RS is deflected by an angle

α =
4GM
c2r

=
2RS

r
, (31)

where we have introduced the Schwarzschild radius RS ≡ 2GM/c2. Deriva-
tions of (31) can be found in any textbook on General Relativity.20 It was
realized soon that light bending could lead to multiple images of the same
source (Eddington 1920; Chwolson 1924; Einstein 1936); this effect is called
“gravitational lensing”.

To describe the geometry of a gravitational lens, we use the following
notation: θ is the observed position of the source, θS the direction to the
source in the absence of lensing, DS and DL denote the distances of the
source and lens from the observer, and DLS ≡ DS−DL the distance from the
lens to the source. Simple geometry (see Fig. 23) then leads to the relation:

θSDS = r
DS

DL
−DLSα(r) . (32)

20 The famous observational verification of (31) for the bending of light in the gravi-
tational field of the Sun during the total eclipse of 1919 (Dyson et al. 1920) played
an important role for the popularization and acceptance of General Relativity.
Modern precision measurements of light deflection provide tests of extensions and
alternatives of General Relativity.
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Fig. 23. Geometry of gravitational lensing. Rays from the source S are bent in the
lens plane by an angle α, so that the observer O sees two images I1, I2

Using r = DLθ, this can also be written as

θS = θ − DLS

DS
α(r) . (33)

It is now convenient to introduce the characteristic angle

θE ≡
√

4GM
c2

DLS

DLDS
; (34)

the corresponding characteristic length in the lens plane rE ≡ θE ·DL is called
the Einstein radius. Inserting this definition and (31) in (33) gives the lens
equation

θ2 − θSθ − θ2E = 0 . (35)

This quadratic equation has the two solutions

θ1,2 =
1
2

(
θS ±

√
4θ2E + θ2S

)
, (36)

which give the positions of the two images seen by the observer. If the source,
lens, and observer lie on a straight line, θS = 0, and (36) indicates the presence
of two images at positions ±θE . In this case, however, the line containing
source, lens, and observer is a symmetry axis. We can use any plane containing
this line to draw Fig. 23, and get two images at ±θE in that plane. The image
is thus a circle with radius θE around the direction from the observer towards
the lens, the so-called “Einstein ring”. If θS �= 0, the two solutions of (36)
satisfy the inequalities θ1 ≥ θE and −θE < θ2 < 0. This means that the two
images lie on opposite sides of the observer-lens axis, one of them inside and
one of them outside the Einstein ring.
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We will see below (40) that if θS � θE one of the images is very faint, and
the brightness of the other image is hardly affected by the lens. We therefore
expect that the lens has noticeable effects only when θS <∼ θE . Then it follows
immediately from (36) that the separation of the two images is

θ1 − θ2 =
√

4θ2E + θ2S ≈ 2θE . (37)

If we insert typical numbers for observations of stars in the Galactic bulge
into (34), we obtain

θE = 1.1mas ·
(
M

M�

)1/2(7 kpc
DS

)1/2(
DLS

DL

)1/2

. (38)

The separation of the two images is thus of order a few milliarcseconds. This
is usually too small to be resolved, and all we can observe is the combined
brightness of the two images (but see Sect. 5.4). It is this situation that is
usually called “microlensing”.

To compute the observed flux from the images we first note that the surface
brightness is not changed by the lensing process.21 What is affected, though,
is the solid angle of the image ∆Ω subtended on the sky. The flux of an infini-
tesimally small source is simply given by the product of surface brightness and
solid angle. The ratio of the observed flux to the flux in the absence of lensing
(the “amplification” A, which should more aptly be called “magnification”)
is thus simply given by ∆Ω/∆ΩS . Equation (33) defines a mapping from θS
to θ; the area distortion of this mapping is given by the determinant of the
Jacobi matrix J . We therefore get:

A1,2 =
(

∆ΩS

∆Ω1,2

)−1

=
1

|det J |

∣∣∣∣
θ1,θ2

=
∣∣∣∣∂θS∂θ

∣∣∣∣
−1

θ1,θ2

. (39)

For the calculation of this expression, we introduce the quantity u ≡ θS/θE ,
the source-lens separation in units of the Einstein radius. We have to keep the
two-dimensional nature of the lens mapping in mind. Because of the symmetry
of the lens, nothing is changed in the direction perpendicular to the plane of

21 If the curvature radius of space-time is large compared to the wavelength,
it can be shown that the photon phase space density along each photon’s
world line, or equivalently the quantity I(ν)/ν3, is conserved. Among the well-
known direct consequences are that the bolometric surface brightness of galax-
ies Ibol ∝ (1 + z)−4, and that the spectrum emitted by a blackbody (such
as the cosmic microwave background) remains a blackbody spectrum with ob-
served temperature Tobs = Tem/(1+zem). For gravitational lensing in our Galaxy
we are interested in the special case z = 0, i.e., ν is the same for the emit-
ter and observer. For a detailed discussion see Chapter 22 of Misner et al.
(1973).
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Fig. 23, and the Jacobian can easily be evaluated using polar coordinates; it
is given by

A1,2 =
∣∣∣∣θ1,2θS

· dθ1,2
dθS

∣∣∣∣ = u2 + 2
2u
√
u2 + 4

± 1
2
. (40)

That the first equality is true is also obvious from Fig. 24. The total combined
brightness of the two unresolved images is thus

A = A1 +A2 =
u2 + 2

u
√
u2 + 4

. (41)

So far we have dealt with a static configuration of a background source
being lensed by a foreground object at a normalized projected separation u.
Differential Galactic rotation and peculiar motions lead to a relative motion
of source and lens, however, with a typical magnitude

θ̇ =
v

DL
= 12mas yr−1

(
v

200 km s−1

)(
3.5 kpc
DL

)
, (42)

where v is the relative perpendicular velocity of the lens with respect to the
source. The typical time scale tE of a microlensing event is given by the time
needed to move by one Einstein radius

tE ≡
θE

θ̇
= 0.13 yr

(
M

M�

)1/2(
DL

3.5 kpc

)1/2(
DLS

DS

)1/2(
v

200 km s−1

)−1

.

(43)

Fig. 24. Location and shape of the two images in a Schwarzschild lens. In this
drawing, the lensing mass is indicated with a dot at the center of the Einstein ring,
which is marked with a dashed line; the source positions are shown with a series of
small open circles; and the locations and the shapes of the two images are shown
with a series of dark ellipses. At any instant the two images, the source, and the
lens are all on a single line. From Paczyński (1996)
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Fig. 25. Microlensing light curves for five different values of the minimum impact
parameter. From (41) it follows directly that at the time of crossing the Einstein ring
(u = 1) the amplification A = 3/

√
5 = 1.34, and that the maximum amplification

A(umin) ≈ 1/umin

To first order the motion is linear and can thus be parameterized by:

u(t) =
√

(t− tmin)2/t2E + u2min . (44)

Here tmin and umin are the time of closest approach, and the corresponding
impact parameter. Substituting (44) in (41) gives an analytic description of
the amplification as a function of time, i.e., of the light curve of the lensing
event. Such light curves are shown in Fig. 25 for five different values of umin. It
is important to note that the light curves of all microlensing events involving a
point source and a pointlike lens that moves at a constant rate are completely
determined by four parameters: tmin, tE , umin and the brightness of the source
at u → ∞. Of these parameters, only tE is related to the properties of the
lens. It is therefore only possible to derive a combination of lens mass, distance
and transverse velocity in this simple situation.

Lensing Anomalies and Binary Lenses

Real astrophysical sources and lenses are not point sources, of course, and
the relative motion is not necessarily rectilinear. We may thus observe lensing
“anomalies”, i.e., deviations from the simple model described in the previous
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section, and attempt to obtain additional information from them. For planet
searches, we are mostly interested in binary lenses with very small mass ratio
µ ≡ m2/m1. The binary lens equation is a straightforward generalization
of (33):

?θS = ?θ − DLS

DS

(
?α1(?r1) + ?α2(?r2)

)
, (45)

where the two indices 1, 2 refer to the two binary components. We have now
written all two-dimensional quantities explicitly as vectors, because there is
no plane of symmetry anymore. The analysis of binary lenses is considerably
more complicated than that of single lenses. We should expect, however, that
source positions for which the determinant of the Jacobi matrix |detJ | = 0
have special significance: according to (39) the amplification is infinite for
these positions. The locus of the positions for which this condition holds is
called a “caustic”. The caustic of a point source lens consists only of the point
u = 0 (see (40)), corresponding to the appearance of an Einstein ring when
observer, lens, and source are perfectly aligned. In contrast, the caustics of
binary lenses are extended and complicated in shape (Schneider and Weiß
1986; Erdl and Schneider 1993). In the lens plane, the condition |det J | = 0
defines the “critical curves”. When the source crosses a caustic at location θS ,
two new highly amplified images appear with positions θ on the corresponding
critical curve (or two existing images brighten, merge and disappear if the
caustic is crossed in the opposite direction). An example for the case of equal
masses of the two binary components is shown in Fig. 26. The left panel shows
the structure of the caustic and critical curve, and five possible relative paths
of a source with respect to the lens. The source has not been assumed to be
pointlike, but rather a uniform disk of diameter rs = 0.05 rE . The brightness
at any time therefore has to be computed by integrating the amplification as
given by (39) over the area subtended by the disk. For each source position
along the path, the brightness has been calculated in this way, and plotted
versus time in the right panel.

It is apparent from Fig. 26 that a wide variety of light curves are possible
for binary lenses (see also Alcock et al. 2000a). The mass ratio µ, the projected
binary separation b (in units of rE), and the angle of the source trajectory
with the binary axis are additional free parameters that have to be fit to the
observational data. The example of the first binary lens detected, OGLE#7,
shows that this can be done fairly well if observations with good sampling and
signal-to-noise exist, especially when data points close to caustic crossings are
available. OGLE #7 was observed independently by two collaborations (Udal-
ski et al. 1994; Bennett et al. 1995), and the fits to the two disjoint data sets
agree well with each other (Alcock et al. 2000a). Additional “anomalous” ef-
fects can complicate the interpretation, however. Parallax (due to the annual
motion of the Earth around the Sun) leads to a non-linear relative motion of
the source and lens, and the orbital motion of the binary can change the caus-
tic structure itself on a time scale comparable to tE . Confusion, i.e., blending
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Fig. 26. Microlensing by a binary consisting of two identical point masses, m1 =
m2 = 0.5m, separated by one Einstein ring radius, rE . The closed figure drawn with
a thick solid line in the left panel is the caustic located in the source plane. The
closed figure drawn with a thick dashed line is the critical curve. A source placed
on a caustic creates an image located on the critical curve. Five identical sources
are moving along the straight trajectories, as marked. All sources have radii equal
to rs = 0.05rE , as shown with small open circles. The corresponding light curves
are shown in the right panel. The top light curve corresponds to the top trajectory.
The sharp spikes are due to caustic crossings by the source. (The light curves are
shifted by one magnitude for clarity of the display.) From Paczyński (1996)

with unrelated stars, may adversely affect the photometric measurements, or
the source may be a binary star. It is thus necessary to explore the available
parameter space fully to avoid misinterpretations of complicated light curves.

5.2 Planetary Systems as Gravitational Lenses

Typical Sizes and Time Scales

A star that has a planetary companion can act as a binary lens with an ex-
treme mass ratio 10−6 <∼ µ <∼ 10−3. Mao and Paczyński (1991) suggested that
for µ = 10−3 and a projected separation ≈ rE the detection efficiency should
be a few percent, opening the possibility of detecting planets in microlens-
ing surveys. The question about detection thresholds, optimized observing
strategies, and the number of expected planet detections has since attracted
much interest. Most of the simulations have been done for source stars in the
Galactic bulge (DS ≈ 7 . . . 8 kpc) lensed either by bulge (DL ≈ 6 kpc) or disk
(DL ≈ 3 . . . 4 kpc) stars. It is useful to consider first a few typical numbers for
these parameters. The Einstein radius

rE ≈ 4AU
(
M

M�

)1/2

(46)
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is of the order of the orbital radius of Jupiter; this is favorable for the detection
of Solar System analogs. The Einstein radius of the planet is related to θE by
θp =

√
µ θE . One should expect that the influence of the planet is significant

over an area with this radius; this is frequently true (Gould and Loeb 1992),
but there are important exceptions to this rule (Griest and Safizadeh 1998,
see “high-magnification events” below). Assuming for the moment the scaling
with

√
µ, we can derive the planet anomaly duration directly from (43):

tp ≈ 2 days
(

mp

Mjup

)1/2(
v

200 km s−1

)−1

. (47)

This implies that monitoring with good temporal sampling is required, espe-
cially for the detection of Earth-like planets, for which the typical time scale
is only a few hours.

A similar scaling argument can be used to estimate the probability that a
given planet will actually be detected. At any given time, the probability for
amplification by the planet is ∝ (θp/θE)2 = µ, but the total area swept by
the planetary Einstein ring while the source sweeps across the Einstein ring
of the lensing star is ∝ θp/θE =

√
µ. We thus expect detection probabilities

of a few per cent for Jupiter-mass planets (
√
µ ≈ 0.03).

Another important number is the radius of the planetary Einstein ring
projected back to the source plane,

r̃p ≡
√
µ rE

DS

DL
. (48)

Numerical values are r̃p ≈ 50R� forM = M� andmp = Mjup, and r̃p ≈ 3R�
for M = M� and mp = M⊕. These numbers can be compared with the radii
of clump giants (∼ 13R�) and stars near the main-sequence turn-off in the
bulge (∼3R�). We see that the effect of the non-zero source size can be safely
neglected for Jupiter-like planets, because the star is always much smaller than
the planet’s Einstein ring radius. For Earth-like planets, however, the radius of
the background star is comparable or larger than r̃p. This means that turn-off
stars are much better suited for low-mass planet searches than giants, because
in the latter case the planetary anomalies will be strongly smeared out by the
large size of the source (see Fig. 30).

Light Curves and Detection Limits

The complicated caustic structure of binary lenses gives rise to a large variety
of possible light curves, as discussed above (see Fig. 26); the same is true
in the planet case (µ � 1). The binary signature is most obvious during
caustic crossings, as illustrated in Fig. 27. This figure shows the light curve of
a system composed of eight planets with µ = 10−5 located along a straight line,
with a source moving with zero impact parameter along this line. Each peak
corresponds to the crossing of a planetary caustic; the figure thus demonstrates
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Fig. 27. Simulated light curve of a (very artificial) planetary system, which is made
of a star and eight planets, each with mass fraction µ = 10−5, and all located
along a straight line. The source with a radius rS = 10−3rE is moving along the
line defined by the planets, with zero impact parameter. The planets are located
at the distances from the star: b = 0.57, 0.65, 0.74, 0.86, 1.16, 1.34, 1.55, 1.76
in the lens plane, which corresponds to the disturbances in light variations at the
times t/t0 = −1.2,−0.9,−0.6,−0.3, 0.3, 0.6, 0.9, 1.2, as shown in the figure. Note
that planetary disturbances create local light minima for b < 1(t/t0 < 0) and local
maxima for b > 1 (t/t0 > 0). From Paczyński (1996)

the effect of Earth-like planets at different separations from the parent star.
For more massive planets, significant anomalies can occur even if the source
does not cross a caustic (Bolatto and Falco 1994).

To explore the range of possible light curves expected in more realistic
cases, one can compute the magnification for every point in the lens plane,
and consider “random” paths of the source across this magnification pattern.
It is convenient to consider the anomaly δ ≡ (A − A0)/A0, where A0 is the
magnification in the absence of planets. This is frequently better than working
with A itself, because δ is frequently quite small, especially for small µ. The
amplification and corresponding anomaly generated by a Jupiter-like planet
are shown in Fig. 28.

The calculation of the magnification pattern and light curves can be re-
peated for many combinations of the parameters µ (mass ratio), b (projected
separation in units of the Einstein radius) and for different source trajectories
(see Sackett 1999; Wambsganss 1997). Massive planets are easier to detect,
because their anomaly contours cover a larger area on the sky, which makes it
more likely that they are intersected by the source trajectory. For a given mass
ratio µ, the anomalous regions are largest when b ≈ 1, i.e., when the star–
planet separation is of the order of the Einstein radius (see Fig. 2 in Gaudi
and Sackett 2000).
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Fig. 28. A background point source travels along a trajectory that just misses the
caustic caused by a Jupiter-like planet with mass ratio µ = 0.001 located at 1.3 rE

from its parent star. The three panels show the trajectory and the corresponding
amplification A and anomaly δ. The time is given in days. From Sackett (1999)

In the case of planets (µ� 1), and if b �= 1, the structure and location of
the caustics is quite simple (Griest and Safizadeh 1998). The pointlike single-
source caustic becomes a small wedge-shaped caustic still located near the
center of the Einstein ring, and one or two new “planetary” caustics appear
at locations that depend on the position of the planet. For b > 1 there is one
planetary caustic located between the lens and the planet, for b < 1 there are
two planetary caustics on the opposite side of the lens (see Fig. 29).22 The
location xc of the planetary caustics is approximately given by

xc ≈
(
b2 − 1

)
/b . (49)

The caustics are located inside the Einstein ring if |x| < 1, i.e., if 1/2
(√

5− 1
)
<

b < 1/2
(√

5 + 1
)
or 0.618 < b < 1.618. This region for b is called the “lensing

zone”; it has considerable importance for planet searches that are follow-up
observations of microlensing surveys. A microlensing event is recognized when
the amplification A exceeds a certain value; frequently a source position on
the Einstein ring (u = 1) corresponding to A = 1.34 (41) is used as a detec-
tion threshold. If the planetary caustics are located inside the Einstein ring,
there is a chance that they will be crossed by the source during the course
of the event; if they are located far outside the Einstein ring, however, there
will only be a small anomaly during the lensing event. From (46) we therefore

22 We can now also understand Fig. 27 better. For the planets at b < 1, the source
passes between the two planetary caustics, located at the opposite side from the
star. The amplification in this region is negative, leading to the dips. For the
planets at b > 1, the source passes through the planetary caustic, which causes
the peaks.
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Fig. 29. Caustics for µ = 0.003, showing the central caustic near the origin and the
larger planetary caustics. The top panel is for a planet at b = 1.3, the bottom panel
for b = 1/1.3 = 0.769. From Griest and Safizadeh (1998)

see that microlensing is most sensitive to planets with projected separations
in the range 2.5 . . . 6.5AU around Solar-type stars, or at 1.4 . . . 3.5AU from
0.3M� dwarfs. Planets with larger orbital radii may spend some fraction of
their orbital time in the lensing zone, depending on the orbital inclination.

The detection of planets in the lensing zone can be hampered by the
smearing caused by the non-zero source radius RS , as mentioned above. If
the source covers the entire planetary caustic, δ ∝ (r̃p/RS)2. On the other
hand, the typical time scale is longer than given by (47), by a factor RS/r̃p.
The effect of the finite source size is shown in Fig. 30 for a few typical cases.
It is evident from this figure that the ability to detect planets with µ <∼ 10−4

depends critically on the source radius; the peak deviation from the single-lens
light curve is strongly reduced in particular for giant stars.

For each of the light curves in Fig. 30 (and similar light curves for equally
probable orientations and impact parameters) we can now ask the question
whether the planet would be detected by a photometric monitoring program.
The answer will generally be “yes” if |δ| exceeds a certain threshold (set by the
photometric precision) for a minimum time (determined by the time sampling
of the photometry). Representative detection probabilities for a model planet
system with one planet per factor of 2 in distance from the lens star are
listed in Table 8, to illustrate the effect of the source radius. In the real world
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Fig. 30. Theoretical microlensing light curves that show planetary deviations are
plotted for mass ratios µ = 10−4 and 10−5 and separations of b = 0.8 and 1.3. The
main plots are for a normalized stellar radius rS ≡ (RS/rE)·(DL/DS) = 0.003 while
the insets show light curves for radii of 0.006, 0013, and 0.03 as well. The amplitude
of the maximum deviation from the dotted single-source light curve decreases with
increasing rS . For each of these light curves, the source trajectory is at an angle
of arcsin 0.6 = 36.◦9 with respect to the star–planet axis. The impact parameter
umin = 0.27 for the b = 0.8 plots and umin = 0.32 for the b = 1.3 plots. For these
parameters the source trajectory crosses the x-axis near xc. From Bennett and Rhie
(1996)

additional complications are caused by varying seeing conditions, which lead
to night-to-night variations of the photometric precision, and by gaps in the
data during daytime or due to clouds.

Estimation of Planet Parameters from Microlensing

The next question that needs to be addressed is whether it is possible to use
microlensing light curves not only to detect planets, but also to determine
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Table 8. Planetary detection probability during microlensing events

rS µ p(2)% p(4)% p(10%) p(20%)

0.003 10−4 0.188 0.144 0.094 0.052
0.006 10−4 0.238 0.159 0.085 0.043
0.013 10−4 0.201 0.118 0.052 0.014
0.03 10−4 0.120 0.035 0.012 0.000

0.003 10−5 0.060 0.034 0.014 0.004
0.006 10−5 0.052 0.026 0.005 0.002
0.013 10−5 0.019 0.008 0.001 0.000
0.03 10−5 0.002 0.000 0.000 0.000

Probabilities p are shown as a function of the threshold for |δ| and for different
values of the normalized source star radius rS ≡ (RS/rE) · (DL/DS) and the mass
ratio µ. Idealized “factor of 2” planetary systems with one planet per factor of 2 in
distance from the lens star are assumed. A planet is considered to be detected if |δ|
is larger than the threshold for a period of time longer than tE/400. The rS values
of 0.003 and 0.006 correspond to a turn-off source star with disk and bulge lenses,
respectively, while the rS values of 0.013 and 0.03 correspond to a giant source with
disk and bulge lenses. From Bennett and Rhie (1996)

some of their parameters. First of all, the orbital velocity of planets in the
lensing zone is small compared to the typical transverse velocity of the lens
with respect to the source (v ≈ 200 km s−1). This means that their mass ratio
µ = (θp/θE)2 can be estimated roughly from the duration of the planetary
anomaly tp and the duration of the main event tE , namely

µ ≈ (tp/tE)2 . (50)

The time difference between the peak of the anomaly and the main peak
gives an indication of the location of the planetary caustic within the Einstein
ring, and thus an estimate of the projected separation b. It is clear from (49),
however, that planets with separations b and 1/b give rise to caustics at nearly
identical positions. The degeneracy between these two cases can be broken by
high-quality light curves, because the structure of the magnification pattern
near the caustic is different for b < 1 and b > 1 (compare e.g., the left (b = 0.8)
and right (b = 1.3) panels in Fig. 30). A second degeneracy exists because the
source can pass either between the star and the caustic or further from it.
This degeneracy is more difficult to break with observational data, but its
influence on the estimates for b and µ is relatively small (Gaudi and Gould
1997).

Finite-source effects create additional complications, because they make
the duration of the anomaly longer. If we use (50), we will therefore overesti-
mate µ, potentially by a large factor. The differences between the light curves
of a large source crossing the caustic of a low-mass planet and of a point
source crossing a higher-mass caustic can be very subtle; in some cases pho-
tometry with precision much better than 1% (and sufficient time resolution)
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would be needed to distinguish between these cases. If this cannot be done,
µ may be uncertain by a factor ∼ 1/δmax, or as large as a factor of 20 for
anomalies with a maximum deviation δmax = 5% (Gaudi and Gould 1997). If
additional information is available, it can be used, however, to alleviate this
unsatisfactory situation. For example, the typical time tS it takes the source
to cross a caustic is given by its angular diameter, divided by the relative
proper motion of the lens and source. The angular diameter can be estimated
from dereddened colors and magnitudes, so it is possible to determine tS if
the relative proper motion can be measured. If tS < tp, (50) can be used
safely to estimate µ, otherwise not. Another possibility is using multi-color
(e.g., visible and near-IR) light curves to get a handle on finite-source effects.
This idea is based on the fact that stellar limb darkening is generally much
stronger at shorter wavelengths. If the source is large compared to the caustic
structure, one therefore expects noticeable changes in the color as the center
and the limb of the star are amplified by different factors. This color change
may be much larger and easier to measure than the details in the shape of
the light curve (Gaudi and Gould 1997).

The discussion in the previous paragraphs has tacitly assumed that an ob-
served “blip” in a microlensing light curve is due to a planetary companion of
the lens. In practice, it may not at all be easy to establish that this is indeed
the case. For example, if the source is a binary with a magnitude difference
∆V = 5 . . . 10 (such as a clump giant primary with a G . . .M main-sequence
secondary), a single lensing star may produce a light curve mimicking a plan-
etary anomaly. An analysis of the likelihood of such events shows that they
may be a significant contaminant in samples of putative planetary lenses,
unless precautions are taken to distinguish between the two possibilities; bi-
nary sources can be recognized in multi-color light curves, or by spectroscopic
follow-up observations (Gaudi 1998).

If all goes well, it is thus possible to identify planetary microlensing anom-
alies, and to extract µ and b from the observations. What we would really like
to know are the mass of the planet mp and its orbital radius a. With reason-
able statistical assumptions about the distribution and velocities of lenses and
sources and the measured value of tE one can estimate the Einstein radius
rE and the lens mass mL to a factor of ∼ 5. It is thus possible to determine
mp = µ ·mL and a lower limit to a ≥ b · rE with the same uncertainty.

Searching for Planets in High-Magnification Events

We have seen above (Fig. 29) that a binary lens with µ � 1 gives rise to a
small central caustic as well as one or two larger “planetary” caustics. The
size of the central caustic along the x-axis is given to a good approximation
by (Griest and Safizadeh 1998)

uc ≈
µ b

(b− 1)2
, (51)
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provided that b is not close to unity. Since uc is of order µ (and not
√
µ as

the size of the planetary caustics) one should think that the central caus-
tic is rather unimportant for planet searches. The arguments and calcula-
tions discussed in the previous sections were indeed done for the planetary
caustics. Griest and Safizadeh (1998) pointed out, however, that observations
that concentrate on high-magnification events offer a good chance to detect
planets due to the proximity of the source path to the central caustic. The
argument is based on (41): if A � 1, then u ≈ 1/A. If there is a shift or dis-
tortion of the caustic of size du due to a planet, we will observe an anomaly
δ ≡ dA/A ≈ −Adu. For planets in the lensing zone 0.618 ≤ b ≤ 1.618 we thus
expect deviations of order

δ ≈ ucA ≈ µA , (52)

where we have somewhat pessimistically set b/(b − 1)2 ≈ 1. For example,
because all values of umin are equally probable, 5% of all microlensing events
will have umin ≤ 0.05 and Amax ≥ 20. A µ = 10−3 planet will thus produce
a 2% anomaly near the peak of such events, which should not be too hard to
detect. More detailed simulations show indeed that the detection probability
for such planets is close to 1 (Griest and Safizadeh 1998).

The very high detection rate for planets during high-magnification events
has two important consequences. First, if no anomaly is observed in a well-
sampled light curve, the presence of Jupiter-like planets in the lensing zone
can be safely excluded. Monitoring of a modest number of such events can
thus establish the abundance of such planets. Second, if the lensing star has
multiple planets in the lensing zone, each one of them will cause a detectable
distortion of the central caustic. The resulting light curve will likely be com-
plicated and difficult to interpret, but there is a good chance that systems
with multiple planets can be found in this way (Gaudi et al. 1998). This is
not the case in the “traditional” approach, because it would require a fortu-
itous alignment of two planets for the source to cross the planetary caustics
of both of them.

Gravitational Lensing of Planets

We have discussed above that binary sources may be a significant problem
for searches for planetary companions to the lens. We can of course turn the
argument around and ask whether it is possible to take advantage of the sit-
uation if it is not the lens, but rather the source that is accompanied by a
planet. In this case the star and the planet are both amplified by the same
lens, but if there are any caustic crossings, they will occur at different times
for the star and the planet. The peak amplification of the planet is larger
because of the smaller radius of the planet. For Jupiter-size planets in close
orbits (0.05AU) with near-unity albedo, the maximum fractional deviation
of the light curve above that expected when the source star does not have
a planetary companion can get close to 1% (Graff and Gaudi 2000). The
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typical time it takes the planet to cross the caustic is <∼ 1 h. It should be
possible to search for these “blips” near the caustic crossing time of the par-
ent star, but a large amount of observing time on big telescopes would be
needed. Planets with much larger orbital radius a cannot be detected in this
way, because the amount of light reflected by the planet scales with a−2.
(Note that now the anomaly is caused by the light, not the mass of the
planet.)

Observations of lensed planets with future giant telescopes (which are
needed to get good SNR and time resolution for fairly faint sources) could
reveal a number of interesting effects. The shape of the illuminated fraction
of the planet has a strong influence on the light curve; crescents can pro-
duce higher peak amplification than half or full disks, partly offsetting the
smaller fraction of reflected light (Ashton and Lewis 2001). Reflection by con-
densed particles in the planetary atmosphere leads to partial polarization of
the light from the planet (Seager et al. 2000); the amplification of the planet
with respect to the star during a caustic crossing may in favorable cases en-
hance the total polarization to a detectable level (a fraction of a percent,
Lewis and Ibata 2000). Lensing of crescent-shaped planets should also lead
to characteristic polarization signatures. Studies of these phenomena could
provide information on the particles in the planets’ atmospheres and comple-
ment observations of “reflected light” from planets in the Solar neighborhood
(Sect. 6.6).

5.3 Microlensing Planet Searches

Search Strategies

The probability that a given star in the Galactic bulge is being lensed at
a given time is very low (about 10−6). Surveys that monitor a very large
number of stars are therefore necessary to detect the occasional brighten-
ing of a star due to microlensing. Several such projects were launched in the
1990s, and have now detected more than 1,000 microlensing events: EROS
(Aubourg et al. 1993; Derue et al. 2001), OGLE (Udalski et al. 1993, 2000),
MACHO (Alcock et al. 1993, 2000b), and MOA (Bond et al. 2001). The tem-
poral sampling – typically one observation per night – of these surveys is
inadequate to find planetary anomalies directly. They issue alerts of ongo-
ing events, however, allowing more frequent follow-up observations by teams
that have formed specifically for this purpose, for example PLANET (Al-
brow et al. 1998), GMAN (Alcock et al. 1997), and MPS (Rhie et al. 1999).
The PLANET collaboration, for example, uses 1m class telescopes located in
Chile, Tasmania, Australia, and South Africa to achieve round-the-clock cov-
erage of selected ongoing events. It is clear that southern sites are preferred for
the monitoring of fields in the Galactic bulge, but because of the large number
of small telescopes in the northern hemisphere, and their favorable longitude
distribution, searches for Jupiter-like planets from the north are also feasible
(Tsapras et al. 2001).
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As we have seen in Sect. 5.2, even Earth-mass planets produce large anom-
alies under favorable conditions (caustic crossings, small background star).
Monitoring projects that achieve ∼ 1% photometric precision with ∼hourly
sampling therefore have sufficient sensitivity to detect planets over a large
range of masses, but the efficiency depends sensitively on the planet mass, and
on the detailed photometric performance – most detectable planetary anom-
alies result from non-caustic crossing events (Gaudi and Sackett 2000). The
predicted number of planets that should be detected by monitoring projects
depends strongly on the assumptions made, including how planetary masses
and separations vary with lens mass (Peale 1997). Since the detection effi-
ciency for any given event depends strongly on umin, it is important to know
the distribution of this parameter in the observed sample of microlensing
events (Gaudi and Sackett 2000). The chances to find planets with follow-up
monitoring can be substantially increased if the original survey produces a
large number of high-amplification events (Bond et al. 2002a).

The two-step strategy – search for microlensing using wide-field cameras,
and follow-up with targeted observations of “alerted” events – offers cur-
rently the best chances to detect planets through microlensing anomalies. This
approach has the disadvantage that the high-quality follow-up data are
obtained only after the alert; on the rising wing of the event only the monitor-
ing observations are available. The lack of densely sampled data for the first
part of the light curve hampers the ability to discriminate between planets
and other types of anomalies. In the future it may be possible to use one and
the same experiment to detect and monitor microlensing events by conducting
frequent observations of a large sample of stars. In such a survey with uniform
time coverage it is of course possible to reconstruct the past behavior of any
“interesting” star. Next generation of dedicated survey telescopes equipped
with wide-field cameras, such as the VLT Survey Telescope, could conduct an
efficient survey for low-mass planets, whose anomalies last only a few hours.
The largest difficulty of such a project are the gaps in the light curves during
daytime and periods of bad weather.

This problem could be overcome by an orbiting telescope, for example the
proposed Galactic Exoplanet Survey Telescope (GEST), Bennett and Rhie
2000). A diffraction-limited 1.5m telescope with a 1◦ field-of-view and a
gigapixel CCD array could monitor ∼ 2 · 108 stars in the Galactic bulge,
and observe ∼12, 000 microlensing events during a 2.5 yr mission lifetime. A
mission like GEST could detect 10 to 20 Earth-mass planets at 1AU separa-
tion if all stars have such companions. The detection efficiency is even better
at somewhat larger separations, and thousands of gas-giant planets could be
found. A microlensing survey from space would thus be a powerful way to
determine the abundance of terrestrial and giant planets in the Galaxy.

Putative Planet Detections

A few claims of microlensing planet detections have appeared in the literature,
but none of them has stood up to further scrutiny. It is nevertheless instructive
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to take a look at a few examples, because we can see some of the difficulties
that anyone attempting to establish the planetary nature of a microlensing
anomaly will face.

MACHO97-BLG-41 was a very unusual event with a complicated light
curve (see Fig. 31), which clearly indicates a multiple lens, but cannot be mod-
eled with static binary models. Bennett et al. (1999) interpreted the caustic
structure as coming from a triple system consisting of a stellar binary with
∼ 1.8AU separation, orbited by a Jovian planet (m = 3.5 ± 1.8Mjup) at
∼ 7AU. The PLANET collaboration showed, however, that their own data
on this event could be modeled by a normal binary, whose orbital motion
changes the orientation and separation of the two stars between the times of
the two caustic crossings (Albrow et al. 2000b). Furthermore, this model also
provides a stunningly good fit to the MACHO/GMAN data (Fig. 31, right
panel), on which Bennett et al. (1999) had based their claim of a planet de-
tection. This alone does not disprove the existence of a Jovian planet in this
system, but the PLANET data are inconsistent with the particular model of
Bennett et al. (1999), and the existence of a simple, plausible binary model
that explains all data on MACHO 97-BLG-41 strongly suggests that this is
the correct interpretation of this event.

The microlensing event MACHO98-BLG-35, which reached a peak am-
plification factor of almost 80, was monitored intensely by the MOA, MPS,
and PLANET teams. Based on the MPS and MOA data, Rhie et al. (2000)
reported evidence for a planet with mass fraction 4 · 10−5 ≤ q ≤ 2 · 10−4.

Fig. 31. Rotating binary model for MACHO97-BLG-41, with data points from
PLANET (left panel) and from MACHO/GMAN (right panel). The fit was obtained
using only the PLANET data; the MACHO/GMAN data did not enter the fit and
were simply superposed to the model in the right-hand panel. Nevertheless, the
model reproduces the MACHO/GMAN data extremely well even in regions where
no PLANET data are available. From Albrow et al. (2000b)
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A reanalysis of the same observations with an improved photometric algo-
rithm, and inclusion of additional PLANET data, showed, however, that a
planet with these parameters can be ruled out (Bond et al. 2002b). This
reanalysis revealed apparent lower-level anomalies, which can be fitted by
models with one, two or three planets, all with masses q < 3 · 10−5. The fact
that several different models give fits of similar quality raises the suspicion
that they actually fit noise in the data. The problem is that the inclusion of
planets lowers the χ2 by a formally significant amount, but systematic devi-
ations mimicking small planetary anomalies may well be present in the light
curves (Gaudi et al. 2002). The evidence for one or more planets associated
with MACHO 98-BLG-35 therefore remains tentative at best.

A convincing fast anomaly was observed in MACHO 99-BLG-47 (Albrow
et al. 2002). According to (50) the short duration of the anomaly should
indicate small secondary mass, but in this case the light curve can be modeled
better with a binary star, in which both components have nearly equal masses
and either a very small or very large separation (compared to θE). Albrow
et al. (2002) also show that this interpretation is much more likely than a
solution with a planet, which would require rather extreme parameters for
the peak amplification, event duration, and blending.

We are thus led to conclude that the ambiguities and degeneracies men-
tioned in Sect. 5.2 can easily conspire with observational uncertainties to
mimic planetary anomalies. Establishing a secure planet detection will require
an extremely careful analysis. For Jupiter-mass planets, the main challenge
is exhausting the full parameter space in modeling complex light curves (e.g.,
due to rotating binaries). Terrestrial planets tend to produce anomalies at
the threshold of statistical significance, and small random wiggles in the light
curves can easily give rise to spurious detections.

Limits on the Abundance of Planets

Whereas microlensing observations have not been successful yet at making a
convincing planet detection, they can nevertheless be used to establish use-
ful statistical limits on the abundance of massive planets in the Galaxy. The
starting point is the exclusion of planetary anomalies at a certain signifi-
cance level from a well-sampled microlensing light curve. High-magnification
events are well-suited for this purpose: since every planet in the lensing zone
gives rise to an anomaly close to the peak, the absence of any such anom-
aly proves the absence of planets in the lensing zone (to a certain mass
threshold, which depends on the photometric errors). This argument was used
by Rhie et al. (2000) to conclude that there could not be any Jupiter-mass
planets in the lensing zone of the event MACHO 98-BLG-35, which has al-
ready been discussed above. Similar, somewhat weaker constraints could be
placed on the existence of companions in OGLE 1998-BUL-14 (Albrow et al.
2000a).
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This argument can of course be extended from individual cases to a com-
bined analysis of a well-understood sample of microlensing events (Gaudi et al.
2002). The first step in this analysis is the selection of a clean sample of
events, based on criteria that reject events with sparse light curves, poorly
determined parameters, or non-planetary anomalies. For each “good” event,
one then searches for deviations of the light curves from the best-fitting point-
source/point-lens (PSPL) model. This is done through an exhaustive search
of the parameter space of possible binary models and source trajectories, fol-
lowed by a χ2 analysis. For each set of parameters P a synthetic light curve
is computed and compared with the data, giving χ2

P . If χ
2
P was significantly

smaller than χ2
PSPL, i.e., χ

2
P − χ2

PSPL < −∆χ2
thresh, we would conclude that

we have found a planet with parameters P. On the other hand, if χ2
P is sig-

nificantly larger than χ2
PSPL, we can rule out the existence of such a planet.

By integrating over the possible source trajectories we can then determine
the probability with which we would have detected a planet with given pro-
jected separation b and mass ratio µ. After repeating this procedure for each
event in the sample, we can determine the maximum fraction of stars f that
can have planets with parameters b and µ, which is still consistent with the
non-detections at a certain confidence level (see Fig. 32). The reliability of the
result of this procedure clearly depends on the correct modeling of subtleties
like finite-source effects, and on the adoption of a realistic threshold ∆χ2

thresh

at which differences in χ2 are regarded “significant”.
Five years of photometric data collected by the PLANET collaboration

have been analyzed in this way (Albrow et al. 2001; Gaudi et al. 2002). Of all
observed events, 43 fulfill the selection criteria used by the authors and form
the basis of the statistical arguments. At 95% confidence, less than 25% of
the lenses have companions with mass ratio µ = 10−2 in the lensing zone (see
Fig. 32). With the help of a model for the mass, velocity and space distribution
of bulge lenses, this result can be converted to a statement about Jupiter-mass
companions of M dwarfs in the Galactic bulge: less than 33% of the ∼0.3M�
stars have companions with mp ≥Mjup and 1.5AU < a < 4AU.

5.4 Astrometric and Interferometric Observations
of Microlensing Events

The Photocenter of a Single Lens

Our discussion of gravitational microlensing has so far focused on the observ-
able change in the combined brightness from all images. A look at Fig. 24, how-
ever, suggests that the change of position with time may also be detectable.
If the resolution is insufficient to separate the two images, an astrometric ob-
servation will measure the position of the “center of light”. To compute the
deviation ∆θ from a straight-line motion, we add the positions of the two im-
ages, weighted by their respective brightness, and subtract the position of the
source in the absence of lensing, θEu. From (36) and (40) we thus get

∆θ =
1
A

(θ1A1 + θ2A2)− θEu =
u

u2 + 2
θE . (53)
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Fig. 32. Left panel: Exclusion contours (95% confidence level) for the fractions of
primary lenses with a companion derived from the PLANET sample of 43 events,
as a function of the mass ratio and projected separation of the companion. Solid
black lines show exclusion contours for f = 75%, 66%, 50%, 33%, and 25% (outer to
inner). The dotted and dashed vertical lines indicate the boundaries of the lensing
zone and extended lensing zone, respectively. Right panel: Cross sections through the
left panel, showing for three different mass ratios the upper limit to the fraction of
lenses with a companion as a function of projected separation. The solid line is de-
rived from the point-source efficiencies with a threshold of ∆χ2thresh = 60. The dotted
line is derived from the point-source efficiencies with a threshold of ∆χ2thresh = 100.
The dashed line is finite-source efficiencies with a threshold of ∆χ2thresh = 60.
The dotted vertical lines indicate the boundaries of the lensing zone 0.6 ≤
d ≤ 1.6. The dashed vertical lines indicate the extended lensing zone, 0.5 ≤ d ≤ 2.
From Gaudi et al. (2002)

The function u/(u2 + 2) has a maximum for u =
√
2; the corresponding

astrometric deviation is

∆θmax =
1

2
√
2
θE ≈ 0.4mas , (54)

where we have used the numerical estimate from (38). All microlensing events
with umin ≤

√
2 therefore produce astrometric signatures with a peak ampli-

tude that depends only on θE and has a value (∼0.4mas) that is well within
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Fig. 33. Astrometric microlensing of a single star. The solid line shows a simple
single-lens curve with umin = 0.3, and tE = 40days. The curve is plotted over
one year, with x’s marking each week, so only the 5 or so weeks at largest y have
magnification greater than 1.34. The dashed line shows the same with an example
parallax effect included, while the dotted line shows the effect of blending (blend
fraction fb = 60%). From Safizadeh et al. (1999)

reach of precise astrometric methods (see Sect. 9). It is not difficult to show
(e.g. Boden et al. 1998) that the two-dimensional motion ∆?θ is an ellipse with
eccentricity

e =

√
2

u2min + 2
; (55)

for very small umin the motion becomes nearly one-dimensional (e→ 1). The
solid line in Fig. 33 shows this ellipse for the case umin = 0.3; note that the
two axes in this figure have different scales, and that the motion of the pho-
tocenter is fastest at the time of closest approach. Parallax and blending (i.e.,
contributions from the lens or from unrelated nearby stars to the total light)
lead to distortions of this simple shape, as illustrated in Fig. 33. The combined
analysis of photometric an astrometric information can help to resolve some
of the degeneracies between the possible source, lens, and planet parameters
pointed out in Sect. 5.1 and 5.2 (Han 2002).

Planetary Signatures

It is to be expected, of course, that planetary companions of the lens lead to
modifications of the astrometric signature, similar to those of the light curve.



Detection and Characterizationof Extrasolar Planets 99

Fig. 34. Some examples of planetary astrometric and photometric curves. All ex-
amples assume µ = 10−3, with a primary lens angular Einstein radius of 550 µas,
which corresponds to a Saturn-mass planet orbiting a 0.3M� star. Panel (a) has
b = 1.3, panel (b) has b = 0.7, and panel (c) shows a caustic-crossing event with
b = 1.3. In the astrometric panels one square is plotted per week, so the durations
of the deviations are of order a few days. Dots are plotted every 12 h during the
deviation. From Safizadeh et al. (1999)

This is indeed the case, as can be seen in Fig. 34, which displays astrometric
and photometric curves for a Saturn-mass planet. The excursions due to the
planets are much shorter in duration than the overall microlensing events;
this should simplify distinguishing them from the global distortions of the
astrometric motion due to parallax and blending effects. The signature of
the planet is particularly strong if a caustic-crossing occurs.

As for microlensing light curves, finite-source effects tend to smear out the
planetary signal; this is important especially for low-mass planets (Safizadeh
et al. 1999, see Fig. 35). If the source star is not too large, caustic-crossing
events reach peak deviations of a few hundred µas, but only for a very short
time. The peak amplitude of events for which no caustic crossings occur is
much smaller. Still, the detection probability for Saturn-mass planets (for
which finite-source effects are not important) in the lensing zone is quite high,
provided that an astrometric accuracy of a few µas can be achieved. It should
thus be possible in principle to search for planetary events with the Space
Interferometry Mission (Sect. 9.6). The best observing strategy will probably
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Fig. 35. Astrometric motion for Earth-mass caustic crossing. Panel (a) shows the
center-of-light motion for a point source, crossing a caustic associated with an Earth-
mass planet at b = 0.825. The primary lens is 0.3M� at DL = 4kpc, and source
at DS = 8kpc. Panel (b) shows a close-up view of the planetary deviation, with
finite-size source. The dotted line plots the center-of-light motion for a 1R� source.
The solid lines depict the center-of-light motion for more realistic sizes typical of
Galactic bulge stars, namely 3, 5, 9, and 30R�. Note the extreme anisotropy of the
axes on the graph. For tE = 40days the duration of the deviation is about 20 h, with
the center of the source spending roughly 90min inside the caustic. From Safizadeh
et al. (1999)

be obtaining dense temporal sampling close to the peak of high-magnification
events, because this gives a relatively high probability of caustic crossings at
a time that can be predicted several days in advance.

Resolution of the Individual Images

The separation of the two individual images in a microlensing event (37) and
(38) is comparable to the resolution achievable with a long-baseline inter-
ferometer. For example, an interferometer with a baseline length of 200m
operating in the H band (1.6µm) has a fringe spacing λ/B = 1.6mas. It thus
seems possible to fit “binary” models to interferometric data and to deter-
mine the separation and flux ratio of the two images (Delplancke et al. 2001).
The principal challenge of such observations is the relative faintness of the
lensed stars (even while they are being magnified), which necessitates using
a brighter star within the isoplanatic radius to co-phase the interferometer
(see Sect. 9.5). For small impact parameter u, the images become noticeably
distorted (see Fig. 24), approaching the Einstein ring for u → 0. The VLT
interferometer could provide sufficient sensitivity and uv plane coverage to
produce true images showing these effects in favorable cases.

Interferometric imaging could also reveal the appearance and disappear-
ance of image pairs during the crossings of planetary caustics. Measuring the
individual motions and fluxes of the images in planetary microlensing events
could certainly remove most of the ambiguities and uncertainties that arise in
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the interpretation of light curves. Detailed simulations will be needed to de-
termine the resolution, response time, imaging speed, and sensitivity required
for such observations. The capabilities of the present interferometer arrays are
likely not sufficient, but obtaining “movies” of planetary lensing events could
be an interesting addition to the science case for a future large interferometric
facility (e.g., Ridgway and Roddier 2000).

6 Planetary Transits and Searches for Light
Reflected by Planets

If a planetary system happens to be oriented in space such that the orbital
plane is close to the line-of-sight to the observer, the planets will periodically
transit in front of the stellar disk. Photometric or spectroscopic observations
of these eclipses can be used to infer orbital and physical parameters of the
planets. The first part of this chapter deals with the basic parameters of
transits that can be derived from simple geometric considerations. Summaries
of ongoing observing programs, and of photometric space missions that are
currently under development, follow in the next sections. The last part of the
chapter discusses the prospects of detecting the light reflected by extrasolar
planets without spatially resolving them from their parent stars.

6.1 The Geometry of Transits

The Probability of Transits

The first question that we would like to answer is about the probability that
eclipses occur in a set of planetary systems with randomly oriented equatorial
planes. For simplicity, the following discussion is restricted to circular orbits,
although the case of strongly eccentric orbits would certainly be relevant, too
(see Sect. 3.3). It is obvious that eclipses occur if and only if

a cos i ≤ R∗ +Rp , (56)

where a and i are the orbital radius and inclination, and R∗ and Rp the radii
of the star and planet. In a set of randomly oriented orbits cos i is distributed
between 0 and 1, as already mentioned in Sect. 4.1. The probability ptrans that
transits occur therefore follows directly from (56),

ptrans =
R∗ +Rp

a
≈ R∗

a
. (57)

Numerical values of the transit probability for the planets in the Solar System
are listed in Table 9. Typical values range from ≈ 5 · 10−3 for the terrestrial
planets to a few times 10−4 for the gas giants. Together with the time between
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Table 9. Transit probabilities, maximum durations, and depths for the planets in
the Solar System as seen by a distant observer

planet probability duration [h] depth

Mercury 1.2 · 10−2 8 1.2 · 10−5

Venus 6.4 · 10−3 11 7.6 · 10−5

Earth 4.7 · 10−3 13 8.4 · 10−5

Mars 3.1 · 10−3 16 2.4 · 10−5

Jupiter 8.9 · 10−4 30 1.1 · 10−2

Saturn 4.9 · 10−4 40 7.5 · 10−3

Uranus 2.4 · 10−4 57 1.3 · 10−3

Neptune 1.5 · 10−4 71 1.3 · 10−3

Pluto 1.2 · 10−4 82 2.7 · 10−6

successive transits of each planet – which is obviously equal to the orbital pe-
riod P – these numbers elucidate the main difficulty of searches for planetary
occultations: thousands of stars have to be monitored for many years in order
to find a few eclipses, if no prior knowledge about the orbital inclination for
individual systems is available. The two main exceptions to this rule will be
discussed in Sect. 6.4. These are searches for “hot Jupiters”, which have small
a and P and thus high transit probability and short intervals between occul-
tations, and searches in binary systems with known inclination of the binary
orbit, which assume that potential planets may likely be coplanar with the
stellar pair.

Transit Duration

The next question to be addressed is how long transit events for a given planet
last. The transit duration ttrans is given by the expression

ttrans =
P

π
arcsin

(√
(R∗ +Rp)2 − a2 cos2 i

a

)
, (58)

where P is the orbital period of the planet. (The expression within the square
root follows from Pythagoras’ Theorem, the projection of the relevant segment
of the orbit beeing approximately straight.) For a � R∗ � Rp (58) can be
simplified to

ttrans =
P

π

√(
R∗
a

)2

− cos2 i . (59)

The maximum values for the Solar System (corresponding to i = 90◦) are
again tabulated in Table 9; they range from a few hours to a few days, which
is quite favorable for monitoring campaigns.
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Transit Depth and Shape of the Light Curve

The variation of the stellar brightness during the eclipse is clearly very im-
portant because it sets the photometric precision that must be achieved to
detect the transit. To first approximation, in which we can treat the star as a
disk of uniform brightness, the relative change of the observed flux ∆F/F is
given by

∆F
F =

πR2
pB∗

πR2
∗B∗ + πR2

pBp
≈
(
Rp

R∗

)2

, (60)

where B∗ and Bp are the surface brightness of the star and planet, respec-
tively; in almost all cases of interest Bp � B∗. For the secondary eclipse
(when the planet is behind the star), the numerator of (60) has to be replaced
with πR2

pBp. The secondary eclipse is therefore a factor Bp/B∗ shallower than
the primary eclipse, which means that it is normally much more difficult to
observe.

To compute the shape of the light curve during the ingress and egress of
the eclipse, we first define x ≡ d−R∗, where d is the projected separation of
the planet from the star. The time dependence of d is

d(t) = a
√
sin2 ωt+ cos2 i cos2 ωt , (61)

with ω ≡ 2π/P . In the uniform disk approximation, the change of the bright-
ness is proportional to the fraction of the disk covered by the planet. If we
make the additional assumption that Rp � R∗, the segment of the limb of the
star across the planet can be regarded as a straight line. Half of the occulted
area is then given by the “pie slice” with angle α, minus the (approximate)
triangle with sides x and Rp shown in Fig. 36. We therefore get

Acov ≈ 2 ·
(

1
2αR

2
p − 1

2x
√
R2
p − x2

)
= R2

p arccos
(
x

Rp

)
− x
√
R2
p − x2 . (62)

(Note that during ingress and egress −Rp ≤ x ≤ Rp.) Inserting x(t) = d(t)−
R∗ from (61) then gives the desired shape of the light curve.

If the planet cannot be regarded as small compared to the star, or if
the effects of limb darkening are taken into account, one has to perform an
integration over the occulted part of the stellar disk, which is best done in
polar coordinates. So our goal is to integrate twice the length of the dotted
arc in Fig. 36 from d−Rp to R∗. The length of this arc is r∗β. Application of
the Law of Cosines to the triangle formed by Rp, d, and r∗ gives

R2
p = d(t)2 + r2∗ − 2r∗d(t) cosβ . (63)

We can therefore formally write

Acov = 2
∫ min(R∗,d(t)+Rp)

max(0,d(t)−Rp)

r∗dr∗ arccos
[
Θ(t)

]
, (64)



104 A. Quirrenbach

Rp

R*

r* d

x a

b

Fig. 36. The area occulted by a planet and definition of the geometric quantities
used in the computation of transit light curves

where

Θ(t) ≡
{
d2(t)+r2∗−R2

p

2r∗d(t)
for r∗ > Rp − d(t)

−1 otherwise .
(65)

The shape of the “dip” in the light curve can then be computed numerically
from

∆F(t)
F0

= −Acov(t)
πR2

∗
, (66)

where we have still neglected stellar limb darkening. After the initial steep
decline during ingress the brightness remains constant while the whole disk
of the planet transits in front of the star (provided that a cos i ≤ R∗ − Rp);
Equation (60) applies to this phase. Its duration tflat is given by

tflat =
P

π
arcsin

(√
(R∗ −Rp)2 − a2 cos2 i

a

)
. (67)

This expression can be derived in the same way as (58); we just have to move
the planet’s disk such that it touches the stellar disk from the inside. The
brightness increase during egress is symmetric to the drop at the beginning
of the transit.

Stellar Limb Darkening

For a more detailed quantitative analysis of planetary transit light curves it is
important to consider the effects of stellar limb darkening, i.e., the variation
of the brightness from the center of the disk to the edge. Limb darkening is
due to the fact that the light we receive comes from optical depths τ <∼ 1
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in the stellar photosphere. At the center of the disk, the line of sight pene-
trates vertically into the atmosphere; close to the limb it enters at an oblique
angle and therefore reaches a given value of τ at a larger height. The light
from the disk center therefore comes from deeper and – because of the tem-
perature gradient in the photosphere – hotter layers. We thus expect that
the brightness decreases from the center to the limb, and that this decrease
depends on the atmospheric structure and observing wavelength, with a ten-
dency to be stronger at shorter wavelengths. A common parameterization of
limb darkening is

Bλ(µ) = Bλ(0) ·
[
1− c1(λ)(1− µ)− c2(λ)(1− µ)2

]
, (68)

where B is the surface brightness, and µ the cosine of the angle of incidence
of the line of sight on the local stellar surface. µ is related to the separation
r∗ from the center of the disk by

µ ≡

√
1−
(
r∗
R∗

)2

. (69)

Depending on the accuracy needed for a particular application, (68) is fre-
quently used without the quadratic term, or generalized to higher polynomial
orders; other functional forms have also been suggested for the description
of limb darkening (Hestroffer 1997). The numerical coefficients in the limb
darkening laws (c1,2(λ) or equivalent) can be computed from stellar model
atmospheres (e.g., Claret et al. 1995; Dı́az-Cordovés et al. 1995; Van Hamme
1993) or measured with stellar long-baseline interferometry (Quirrenbach et al.
1996). For observations of planet transits, the type of the parent star is usually
fairly well known, so that tabulated limb darkening coefficients can be used
to predict Bλ(µ) quite accurately. Equation (64) can then be modified to read

∆Fλ = 2
∫ min(R∗,d(t)+Rp)

max(0,d(t)−Rp)

r∗dr∗Bλ(r∗) arccos
[
Θ(t)

]
. (70)

For quantitative predictions of transit light curves, this integral has to be
calculated numerically. We can, however, immediately draw a few important
qualitative conclusions. First, the central depth of the light curve depends on
cos i, even if the planetary disk fully eclipses the star. If cos i = 0, the planet
blocks the bright central part of the star in mid-eclipse, which means that
the transit is deeper than expected from a uniform disk model. Conversely, if
the planet transits at a high stellar latitude, the transit is shallower. Second,
the light curves do not have a flat bottom but look more rounded than for
a uniform stellar disk. Third, because of the wavelength-dependence of limb
darkening, the light curves are not achromatic, but show distinct color varia-
tions. It should be emphasized that these effects are by no means negligible;
they can readily be observed with high-precision photometry in transits of
giant planets. An illustrative example is shown in Fig. 37.



106 A. Quirrenbach

D F
 /

 F

-0.010

-0.005

0.000

V band
R band
K band 

Time [hrs]

-10 -5 0 5 10

C
ol

or

0.998

0.999

1.000

1.001

Time [hrs]

-5 0 5 10

V / R 

R / K

Fig. 37. Light curves (top) and color variation (bottom) for the transit of a Jupiter-
like planet in a 1AU orbit around a Solar-type star. The effect of limb darkening is
more pronounced at shorter wavelengths. The transit is longer and deeper for i = 90◦

(left) than for i = 89.8◦ (right). The color curves are defined as (FV /FR)/(FV /FR)0
and (FR/FK)/(FR/FK)0, respectively; the subscript 0 denotes the color outside the
transit. For i = 90◦ the color changes from blue at the beginning of the eclipse to
red at mid-eclipse, and back to blue. For i = 89.8◦ the color is always blue. Note
that the color variations have only about 10% of the amplitude of the photometric
variations. The light curves were computed using the limb darkening coefficients for
Teff = 5750K, log g = 4.5 from Claret et al. (1995) and Dı́az-Cordovés et al. (1995)

Parameter Determination from Transits

Aside from the period, which can easily be measured from observations of
multiple transits, the radius Rp is the most accessible parameter from transit
data. If the stellar radius is known, Rp follows immediately from (60). There
is an important pitfall, however: eclipsing binary stars can mimic transits by
planets in two ways. First, grazing eclipses, in which the projected distance d
always remains substantially larger than R1−R2, can be very shallow because
only a small fraction of the secondary ever covers the primary. This source
of contamination of planet searches can normally be eliminated by photomet-
ric observations with high signal-to-noise, because the transit duration and
shape do not match those expected for planetary transits. The second prob-
lem are eclipsing binaries in triple systems, or blended with unrelated stars
in dense fields. The dilution of the transit depth by the additional light will
lead to an underestimate of Rp, and in extreme cases to mistaking a stellar
secondary for a planet. This problem is very hard to diagnose with photom-
etry alone; spectroscopic follow-ups of candidates from photometric searches
are therefore required to establish that they are indeed of planetary nature.
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A mass measurement with the radial-velocity technique is extremely desirable
in any case, because the size does not change very much over the mass range
1Mjup

<∼ m <∼ 100Mjup.
It has been pointed out that Kepler’s Law and (58), (60), and (67) are four

equations that relate the four observables P , ttrans, tflat, and ∆F to the four
quantities Rp/R∗, a/R∗, a cos i/R∗, and the density of the star ρ∗, which can
therefore be determined directly from high-SNR photometric data (Seager and
Mallén-Ornelas 2002). If in addition a stellar mass-radius relation is assumed,
one can solve for M∗, R∗, a, i, and Rp. This analysis neglects limb darkening
and thus does not provide the best possible estimates of these parameters, but
it can be useful to pre-select candidate planetary transits from photometric
monitoring campaigns for telescope time-consuming radial-velocity follow-up.

Planetary Radii and Transmission Spectra

Planetary transits offer a unique opportunity to obtain information on the
planet’s atmosphere through transmission spectroscopy, i.e., by measuring
the radius of the planet as a function of wavelength. The observable quantity
is R(λ), the ratio of the flux during the transit to that outside of transits:

R(λ) ≡ Ftrans(λ)
F0(λ)

. (71)

The integrated light of a star–planet system consists of three separate con-
tributions: (1) the light from the star that reaches the observer directly, (2)
starlight that is reflected by the illuminated part of the planetary disk, and
(3) thermal emission from the planet. Separating these three components, (71)
can be written as

R =
F0 + δF
F0

= 1 +
δFdirect + Ftherm + Frefl

F0
, (72)

where it is implicitly understood that all quantities depend on λ. Quantitative
estimates of the relative importance of these three contributions show that for
observations of transits of “hot Jupiters” in the visible wavelength range the
second and third term can be neglected; thermal emission from the planet has
to be taken into account only at λ >∼ 2.5µm, and the variation of the reflected
light is small because only a small illuminated crescent is visible around the
time of transit (Brown 2001). Several separate effects contribute to δFdirect,
however, which have to be treated correctly. First of all, the shape of stellar
lines changes during the transit, as the planet blocks light from different parts
of the stellar disk. This effect will be discussed below (Sect. 6.3). Intrinsic
variations of the flux on the time scale of a few hours are only of order 10−5

for the Sun (see Sect. 6.2), but larger effects occur in younger and magnetically
more active stars. It is possible to discriminate against them, however, because
they don’t repeat consistently from one transit to the next, and because they
show a wavelength dependence only in the vicinity of strong stellar lines.
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Fig. 38. Two rays separated by δz passing tangentially through a planetary at-
mosphere with scale height H. The opacity along the higher ray is approximately
exp(−δz/H) smaller than along the lower ray

In regions of the spectrum away from prominent stellar lines, R(λ) is
therefore affected mostly by (δF/F)atmos, the part of the obscuration due
to rays that pass through the atmosphere of the planet. The characteristic
fractional coverage of the atmosphere projected against the stellar disk is
given by the area of an annulus one atmospheric scale height H thick around
the planet, divided by the area of the stellar disk. We therefore have(

δA

A

)
atmos

=
2πRpH

πR2
∗

=
2Rp(kT/gµ)

R2
∗

, (73)

where T and g are the temperature and surface gravity of the planet, and µ the
mean molecular weight of the atmospheric constituents. For an atmosphere
of H2 with g = 103 cm s−2, T = 1, 400K, Rp = 1.4Rjup, and R∗ = R� the
numerical value is δA/A = 2.4 · 10−4.

If we assume that the most important opacity sources are well-mixed in
the atmosphere, we can now estimate the variation of δF/F with wavelength.
If σ1 and σ2 are the opacities per gram of material at λ1 and λ2, the optical
depth at λ1 along a ray 1 will be approximately equal to the optical depth at
λ2 along a ray 2 if these rays are separated by δz = H ln(σ1/σ2) (see Fig. 38).
The difference between the occulted flux at the two wavelengths can therefore
be written as (Brown 2001)(

δF
F

)
1

−
(
δF
F

)
2

≈ ln
(
σ1
σ2

)
×
(
δA

A

)
atmos

. (74)

The opacity in strong molecular or atomic absorption lines may be ∼ 104

times more than in the nearby continuum, which means that the two rays
in Fig. 38 have to be separated by almost ten scale heights to make the line
optical depth along the upper ray equal to the continuum optical depth along
the lower ray. According to (73) and (74) this results in an observed line depth
of ≈ 2 · 10−3 with respect to the stellar flux.

Oblateness, Rings, Moons, and Starspots

With very precise photometry, it should be possible to search for deviations
from the expected shape of the transit light curve given by (70). The giant
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planets in the Solar System are significantly non-spherical because of their
fast rotation rates, and their rotation axes are strongly inclined with respect
to the normal of their orbital planes. The ingress and egress in light curves
of transits by such a planet are asymmetric, unless i = 90◦ exactly (Hui and
Seager 2002; Seager and Hui 2002). The expected deviations from the light
curve of an eclipse by a spherical planet is a few times 10−5, which may be
detectable with photometric space missions (see Sect. 6.5).

The transits of giant extrasolar planets also offer a chance to look for
rings and moons around them. An opaque ring would potentially have a large
cross-section, but its projected area is strongly reduced if it lies in the orbital
plane of the planet. Giant moons would also produce characteristic dips or
discontinuities in transit light curves, depending on their orbital parameters
(Sartoretti and Schneider 1999). The space missions designed to detect transits
by Earth-like planets will by definition also be sensitive to moons with radius
Rs ≈ 1R⊕. An alternative way of looking for moons of transiting planets is
timing of the eclipses. A satellite of mass ms in an orbit with radius as around
a planet with mass mp and orbital radius and period ap and Tp will give rise
to shifts in the occultation times of order

τ ≈ asms

mp

Tp
2πap

. (75)

With sub-second timing of the transit times of a Jupiter-like planet, the
COROT satellite should be capable of detecting satellites similar to the
Galilean moons (Sartoretti and Schneider 1999).

An interesting question thus concerns the dynamical stability of moons
around close-in planets. It is well-known from the Earth–Moon system that
tidal interaction causes a satellite to move inward or outward, depending
on whether its orbital period is shorter or longer than the rotation period
of the planet. For hot Jupiters, the planetary rotation rate is regulated by
tidal interaction with the star (not with the moon), which keeps the torque
on the moon strong. This leads to a loss of moons with masses >∼ 10−6M⊕
around planets with orbital radii a ≤ 0.1AU (Barnes and O’Brien 2002).
These considerations therefore predict that moons should not be found around
those planets that are most easily detected in transit surveys.

Finally, the transit light curves might show bumps if the planet happens
to move across a star spot. This effect will be difficult to detect, however,
because the amplitude cannot exceed the fractional area of the stellar disk
covered by the spot, and because the variations are erratic and do not repeat
from one transit to the next.

6.2 Photometric Error Sources

The precision of photometric observations is ultimately limited by photon
noise and (for fainter stars) by the sky background. These errors can be re-
duced by increasing the exposure time T , because they scale with T−1/2.
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There are a number of systematic effects, however, which frequently prevent
one from reaching the theoretical limit. The most important of these error
sources will be discussed in the following sections.

Stellar Noise

Looking at our own Sun, we can identify many distinct mechanisms that cause
variations of the emitted flux: oscillations, sunspots, flares, prominences, and
variability of the granulation. Stellar activity varies strongly with spectral
type and age; for example, many M dwarfs display flares with amplitudes up
to one magnitude or even more (Allard et al. 1997 and references therein).
Many types of binaries also show periodic brightness variations, either due to
eclipses or to distortions of the stellar shape. Transit searches that monitor
many thousands of stars are therefore very good at detecting variable stars
(e.g., Street et al. 2002), but one has to be able to distinguish these from
the planetary transits one is looking for. Fortunately, transits have a short
duration and a very characteristic shape, so that it is possible to search for
these events in light curves that are otherwise flat within the noise. The Sun
shows variations up to ∼0.15% on time scales close to the rotation period due
to spots, but there is very little power on time scales shorter than a day, which
are typical for planetary transits (Borucki and Summers 1984 and references
therein). Therefore, at least around Solar-type stars, it should be possible to
clearly discriminate transits events from stellar variability, even for planets as
small as ∼1R⊕.

Atmospheric Noise

The Earth’s atmosphere limits the precision that can be reached in ground-
based photometric observations. The most important effects to consider are
scintillation, changes of the extinction with time and zenith angle, and seeing
variations. Scintillation is strongest for small apertures and short integration
times (see Sect. 7.8). Quantitative estimates (e.g., Dravins et al. 1998) scaled
to the parameters relevant for planet transit searches indicate that scintilla-
tion noise is normally not a limiting factor. Variations of the extinction due
to changes in the air mass during the observations, or to non-photometric
conditions, are more difficult to deal with. CCD photometry generally offers
substantial advantages over classical one-channel or two-channel photometers.
If the CCD field is sufficiently large, many stars can be measured simultane-
ously. It is then possible to perform differential photometry by dividing the
observed brightness of each star by that of a set of calibration stars or by the
median of all stars in the field. This eliminates extinction fluctuations and
variations due to changes in the air mass to first order. If there are enough
stars in the field, it it possible to perform an even better photometric cali-
bration by taking color terms into account. Because of the limited dynamic
range of the CCD, the useful range between the brightest and faintest stars
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spans not more than ∼4 magnitudes. Somewhat ironically, CCD photometry
is therefore more difficult for very bright stars, since for these the contrast
to the potential comparison stars within the field-of-view is usually much too
large.

Changes in the width and shape of the point spread function due to short-
term or night-to-night variations of the seeing (see Sect. 7.4) can be a serious
error source, in particular in crowded regions of the sky. Images of stars than
can be cleanly separated in a good night may be blended together when the
seeing is bad, which can introduce severe photometric errors. Three main pho-
tometric methods are currently in use: aperture photometry, which measures
the flux within a circle of specified radius at the location of each star; psf-fitting
photometry, which fits a model of the point spread function with variable in-
tensity at the position of each star (e.g. DAOPHOT, Stetson 1987); and image
subtraction techniques, in which a reference image of the field is subtracted
from each frame before the photometry is carried out (Alard and Lupton
1998). In each technique it is possible to take psf variations into account.
Image subtraction algorithms generally appear to give better results than psf-
fitting (Mochejska et al. 2002). If the stars are well separated from each other,
aperture photometry gives excellent results; a precision of ∼0.2mmag for light
curves of bright stars binned and averaged over 4.5 h has been demonstrated
with this technique (Everett and Howell 2001).

It was suggested early on that it might be easier to look for the charac-
teristic color changes (see Fig. 37) than for the absolute brightness changes;
it was assumed that the most important errors would cancel in a differential
measurement between two filters (Rosenblatt 1971). This is not true, however,
because scintillation and variable extinction are intrinsically chromatic, which
makes it quite difficult to detect the color changes, which are approximately
ten times smaller than the photometric variations.

Instrumental Noise

While modern CCD cameras do not contribute significantly to the noise
of ground-based photometric measurements, instrumental effects have to be
taken into account at the ∼10−5 precision level that can be achieved in space.
The most troublesome difficulty is the effect of intra-pixel variations of the
quantum efficiency; if a point source of constant intensity is scanned across a
pixel, variations in the electron count by several percent may be observed. The
best strategy to mitigate this problem is avoiding steep gradients in the focal
plane illumination by defocusing the telescope, so that the light from each star
is sampled by ∼5× 5 pixels. Laboratory tests have shown that a photometric
precision of 10−5 can indeed be achieved with a careful calibration of system-
atic effects (Robinson et al. 1995). A difficulty of the defocusing approach is
the increased sensitivity to contamination by faint background stars. There is
a requirement on the stability of the telescope pointing to avoid background
stars moving onto and off the pixels used for each target star. In addition,
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faint eclipsing binaries near the target star may mimic planetary transits;
these false detections have to be eliminated by follow-up observations (see
Sect. 6.4).

6.3 HD209458

Light Curve and System Parameters

Photometric follow-up observations of stars with known radial-velocity varia-
tions lead to the discovery of the first transiting planet, HD209458B (Henry
et al. 2000; Charbonneau et al. 2000). This detection of dips in the light
curve with the “right” shape and at the “right” times provides an important
confirmation of the existence of extrasolar planets, dispelling the last doubts
about the interpretation of the radial-velocity variations. In addition, the tran-
sit light curve provides for the first time access to physical parameters of a
planet other than m sin i, as explained in Sect. 6.1. Observations of HD209458
with the STIS spectrograph on the Hubble Space Telescope have produced
an exquisite transit light curve, with typical photometric errors of ∼1.1 · 10−4

for each 60 s data point (Brown et al. 2001, see Fig. 39). This corresponds to
a signal-to-noise of ∼150 for the transit depth of 1.64%.

The mass of HD209458 has been estimated to be m∗ = 1.1± 0.1M� from
its metallicity and location in the HR diagram, using stellar evolutionary
models (Mazeh et al. 2000). With this mass as input value, the transit light
curve can be used to determine the radii R∗ and Rp, and the orbital inclination

Fig. 39. Phased light curve of the transits of HD209458B from observations with
the STIS spectrograph on the Hubble Space Telescope. From Brown et al. (2001)
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Table 10. Parameters of HD209458 and its planet, compiled from Henry et al.
(2000); Mazeh et al. (2000); Queloz et al. (2000a); Robichon and Arenou (2000) and
Brown et al. (2001)

parameter value

m∗ 1.1± 0.1M�

R∗ 1.146± 0.050R�

v sin i∗ 3.7± 0.5

P 3.524739± 0.000014

a 0.046± 0.001AU

iorb 86.◦68± 0.◦14

mp 0.69± 0.05Mjup

Rp 1.347± 0.060Rjup

ψ 0± 30◦

The table lists mass, radius, and projected ro-
tation velocity of the star, period, radius, and
inclination of the orbit, mass and radius of the
planet, and the angle between the equatorial
plane of the star and the planetary orbit

iorb. The orbital period P , orbital radius a, and planetary mass mp are known
from the radial-velocity observations. Values for these parameters are listed
in Table 10, together with the stellar rotation velocity v sin i∗, and the angle
ψ between the equatorial plane of the star and the planet’s orbit (from an
analysis of spectroscopic data during transit, see below).

The Radius of HD209458 b

Knowledge of both the mass and radius of HD209458B is a key for compar-
isons with physical models of planets. A first important conclusion is that
it is made predominantly of hydrogen; a rocky or icy planet with a mass of
mp = 0.69Mjup would have a radius smaller than HD209458B by a factor of
3 to 4 (Burrows et al. 2000). A more detailed analysis shows that the radius of
HD209458B is also larger than that expected for an isolated 0.69Mjup planet;
this is a consequence of the retardation of contraction by the stellar irradi-
ation. An interesting conclusion is that HD209458B must have migrated to
its present position early on (or even been born there); if it had dwelled more
than ∼107 years at a distance >∼ 0.5AU, it would already have contracted dur-
ing that time to a radius smaller than the presently observed value (Burrows
et al. 2000). The exact radius–age relation for a given mass and external irra-
diation depends sensitively on the Bond albedo (for definition see Sect. 6.6);
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uncertainties in this quantity therefore limit our current ability to compare
the observational data to detailed model calculations. The most recent mod-
els that take into account the irradiation of HD209458B by its parent star
predict a radius ∼20% lower than the observed value; an additional source of
energy might therefore be required (Baraffe et al. 2003).

The effective planetary radius is a function of wavelength due to variations
of the atmospheric opacity (see Sect. 6.1). For the parameters of HD209458B,
dramatic variations in the occulted area are expected due to alkali metal
lines in the visible (Seager and Sasselov 2000), and to H2O absorption in
the near-IR (Hubbard et al. 2001). The HST STIS data mentioned above
show indeed that the transit of HD209458 is deeper at the wavelength of the
589 nm Na resonance doublet than in the adjacent continuum; the difference is
(2.32± 0.57) · 10−4 with respect to the stellar flux (Charbonneau et al. 2002).
These measurements constitute the first detection of an extrasolar planet at-
mosphere, and confirm the important role of alkali metal absorption for the
spectra of “hot Jupiters”. A detection of the first overtone band of CO near
2.3µm may also be possible with the same technique (Brown et al. 2002).
A quantitative interpretation of the observed wavelength dependence of the
planetary diameter is only possible with the inclusion of non-LTE effects in
the modeling of the upper atmosphere (Barman et al. 2002).

It has been suggested that even planets that do not show photometric
eclipses could exhibit “transits” of absorption features. Because of the strong
stellar irradiation and interaction with the stellar wind, the mass loss from
planets like 51Peg b may be appreciable and lead to and “exosphere” similar to
the tails of comets. Because of its larger size, this exosphere would periodically
eclipse the star for a larger range of inclinations than the planet itself. A search
toward 51Peg with the Short Wavelength Spectrometer of the ISO satellite
did not result in the detection of any absorption lines from atoms, molecules
or their ionization or dissociation products from a transiting cloud (Rauer
et al. 2000). Similar observations toward 51Peg and HD209458 in the visible
have not lead to any detections, either (Bundy and Marcy 2000; Moutou
et al. 2001). The existence of extended exospheres around strongly irradiated
planets thus remains speculative.

Rossiter–McLaughlin Effect

Planetary eclipses affect not only the observed brightness of the star, but also
the shape of spectral lines. A prograde planet orbiting in the equatorial plane
transits in front of the approaching side of the star during the first half of the
transit, and in front of the receding side during the second half. This causes
successive dips in the blue-shifted and red-shifted wings of the spectral lines
analogous to those due to star spots. If the apparent “radial velocity” of the
star is determined from the centroids of the lines, the selective occultation
causes an anomaly, whose shape and amplitude depend on the stellar rotation
velocity and the geometry of the transit. This effect has been observed in
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HD209458, and used to place an upper limit of 30◦ on the angle between
the orbital plane and the stellar equatorial plane (Queloz et al. 2000a). In
addition to providing information on the transit geometry, observations of the
expected spectroscopic anomalies could also help to confirm future detections
of transiting planets from photometric surveys.

6.4 Photometric Planet Searches

Requirements of Wide-Field Searches

Whereas the detection of transits in the HD209458 system resulted from
follow-up observations of a known planet discovered by radial-velocity sur-
veys, a number of projects are also underway to conduct searches for transiting
planets through photometric monitoring of large numbers of stars. The imme-
diate goal of these surveys is the detection of transiting “hot Jupiters”. The
probability that a planet in a 0.05AU orbit will show transits is ∼10% (57); if
a few percent of all Sun-like stars have such planets, one should therefore ex-
pect a few detections per 1,000 stars monitored. The expected transit depths
(∼1%, (60)), durations (∼3 h, (59)), and repeat rates (once every ∼4 days)
are all favorable for ground-based surveys.

A wide-field search for transiting planets has to accomplish two separate
tasks (1) identification of transit candidates, i.e., stars with regularly spaced
brightness dips that are consistent with planetary transits and (2) confirma-
tion that the features in the light curve are indeed due to a transiting planet.
To identify transit candidates, it is first necessary to obtain a large number
of exposures of the target field, and to perform a careful photometric analysis
as described in Sect. 6.2. Then one has to search for small dips in the many
resulting light curves. The most straightforward approach is performing an
automated search for individual dips that have a depth and duration consis-
tent with the expectations for a planetary transit. If there are least three dips
in the light curve of one star, a candidate has been found, provided also that
the differences between the times at which the dips occur are small multiples
of one common interval (the orbital period). For light curves with only two
dips, one can predict the epochs at which further transits should occur, and
thus establish more candidates with follow-up observations at these times.

If the signal-to-noise ratio in the light curves is too small for a straight-
forward detection of individual transits, it is still possible to search for the
periodic signal of multiple transits. One possibility is folding each light curve
with a set of trial periods, and cross-correlating the folded time series with
a template transit light curve. If the cross-correlation coefficient for a star–
period pair exceeds a certain pre-defined threshold, one has found a transit
candidate. This method has the disadvantage that the sensitivity of the search
is reduced for transits with a duration that is significantly different from the
one assumed in the template. This difficulty can be avoided by using a “box-
fitting” algorithm (Kovács et al. 2002). This algorithm searches for signals
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that alternate periodically between two discrete levels, with much less time
spent at the lower level. This is a fair description of planetary transits for the
purposes of a search algorithm.

Once a sample of transit candidates has been established, careful follow-
up observations have to be performed to discriminate true planets from false
alarms. The most important source of contamination are stellar eclipsing
binaries, which can mimic planetary transits in a number of ways:

• Eclipses at grazing incidence. If the impact parameter dmin is in the range
R1 −R2 < dmin < R1 +R2, the secondary (radius R2) will never be fully
in front of the primary (radius R1). This produces a shallow eclipse, which
could be mistaken for the transit of a smaller object.

• Eclipses of an evolved primary by a main-sequence secondary. The diam-
eter ratio between an evolved star and a low-mass main-sequence star can
be similar to that between a main-sequence star and a giant planet; this
leads to eclipses of identical depth and similar shape for these two types
of systems.

• Eclipses in triple systems. The light curve of a hierarchical triple system,
in which the primary is a Solar-type star, and the secondary an eclipsing
pair of late-type dwarfs can be very similar to that of a Solar-type star
orbited by a giant planet.

In principle, these can all be recognized as false alarms from the light curves
alone, since the details of the transit (total duration, duration of ingress and
egress, limb darkening profile and color variation) differ from those expected
for planets. While this may be a possibility for very accurate photometry
from space missions, observations from the ground will normally not reach the
required precision. It is therefore necessary to follow-up the candidates with
other techniques, which in many cases turns out to be much more difficult than
finding the candidates in the first place. Medium-resolution spectroscopy can
be used to determine the spectral type and luminosity class of the primary for
each candidate event, and thus to weed out eclipses of evolved stars by main-
sequence secondaries. Radial-velocity monitoring with relatively low precision
(a few times 100m s−1) can rule out eclipses by stellar secondaries at grazing
incidence; a null result at this level means that there cannot be a stellar-mass
secondary in an edge-on orbit of a few AU or less. For a clear confirmation
of the planetary nature of the secondary, a positive detection of the radial
velocity variation of the primary is needed. However, this normally requires
radial velocity measurements with a precision of a few times 10m s−1. This is
quite difficult in the case of faint primaries, but necessary to reject cases like
eclipses in triple systems.

Planet candidates from photometric transit data without mass determi-
nations from radial-velocity (or astrometric) measurements are also of very
limited use because the radius carries very little information on the physical
nature of the transiting object (see Fig. 40). For example, a radius of 0.15R�
can correspond to a low-mass star of ∼ 0.1M�, to a brown dwarf, or to a
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Fig. 40. Mass vs. radius for observed low-mass stars and giant planets and theoret-
ical isochrones. Eclipsing binaries are shown as circles (OGLE-TR-122b in black),
interferometric data as open triangles. ? isochrones for masses from 0.06 to 1.4 M�
are plotted for 5 Gyr (solid) and 0.1 Gyr (dash-dotted). Dashed lines represent the
Baraffe et al. (2003) CON models for masses for 0.5, 1 and 5 Gyr, from top to
bottom (Figure added during proof by Editor)

planet with a mass as low as 2Mjup, depending on age. If one assumes that
the companion is several billion years old, the range of possible masses for a
given radius is substantially smaller. Because of the shallowness of the mass–
radius relation, however, observational errors and uncertainties in the radius of
the primary still lead to a very large allowed range for the companion mass.
Follow-up observations are therefore required for a proper interpretation of
planet candidates discovered by photometric surveys.

Searches in the Field and Toward the Galactic Bulge

The best method to look for transiting planets around nearby stars is mon-
itoring with a small wide-angle telescope, which can produce simultaneous
light curves of thousands of stars. The Vulcan project at the Lick Observa-
tory on Mt. Hamilton uses a lens with 12 cm aperture to observe 6,000 stars
brighter than 13th magnitude in a 7◦× 7◦ field with a 4096× 4096 pixel CCD
(Borucki et al. 2001). A similar setup is used by the STARE group (Brown
and Charbonneau 2000). The detection efficiency of these surveys is somewhat
limited because of the unavoidable gaps in the light curves during daytime
and periods of bad weather. It would therefore be highly desirable to establish
a network of small telescopes with good longitude distribution, which could
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perform continuous monitoring of many square degrees over several months.
The planets detected by this network would be relatively nearby (<∼ 300 pc)
and could therefore be studied in detail with follow-up spectroscopy.

An alternative approach to simultaneous monitoring of many stars is using
wide-field cameras on large telescopes (e.g., Mallen-Ornélas et al. 2003). Mod-
ern all-purpose cameras with CCD mosaics typically cover of order 30′ × 30′,
and exposure times of a few minutes at 4m class telescopes are sufficient for
<∼1% photometry on stars between 16th and 18th magnitude. In the Galactic
plane, several 10,000 stars can be monitored in this way. The Galactic bulge
possesses an even higher stellar density, but it is necessary to look at even
fainter stars (19 ≤ mI ≤ 21), because the brighter bulge stars have already
evolved off the main sequence and therefore have diameters that are too large
for planetary transit detection. This means that a 5′ × 5′ field-of-view is suf-
ficient, but a ∼10m aperture is required for an efficient search for planets
transiting bulge stars (Gaudi 2000). However, the microlensing experiments
surveying large fields toward the bulge also observe many thousands of disk
main sequence stars located in the same sky area. Transits of disk stars with
depths of a few percent, corresponding to estimated companion radii down
to ∼1.5Rjup have indeed been identified in the OGLE microlensing data set
(Udalski et al. 2002).

A substantial problem of deep surveys is the difficulty of confirming planet
candidates and measuring their masses, due to the faintness of the primaries
and the potentially very high false alarm rate due to blending and grazing
eclipses of stellar binaries. Spectroscopic observations of a number of the
OGLE candidates from Udalski et al. (2002) have been used to reject most
of them as low-mass stellar companions (Dreizler et al. 2002), but two can-
didates still remained in this study. It has recently been claimed that one of
them (OGLE-TR-3) and another OGLE candidate (OGLE-TR-56) are indeed
transiting extrasolar planets (Dreizler et al. 2003; Konacki et al. 2003), but
these “planet detections” appear to be highly dubious23. In neither case are
the radial-velocity data good enough for a secure detection of the claimed
variations; this leaves many alternative interpretations of the eclipses open.
More importantly, both papers claim a detection in a part of parameter space
where planets are known to be exceedingly rare: the OGLE candidates have
periods of P = 1.1899 d and P = 1.2119 d, respectively, whereas the shortest-
period planet known from radial-velocity surveys has P = 2.5486 d (Udry
et al. 2003a). Since the radial-velocity technique is very sensitive to short-
period planets, the complete absence of planet-mass objects with periods close
to those of OGLE-TR-3 and OGLE-TR-56 from the radial-velocity samples
means that they must be very rare. The probability that the first two objects

23 Editor note added in proof: Several planets on short orbits have been since de-
tected in OGLE fields after submission of the manuscript. OGLE-TR-3 has been
shown to be a grazing binary system
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found with transit searches should reside in a sparsely populated region of
parameter space is exceedingly small.

Searches in Open Clusters

Old open clusters are interesting targets for transit searches, since they con-
tain numerous main-sequence stars with uniform distance, age and metallicity
(Janes 1996; Quirrenbach et al. 2000). The clusters NGC2682, NGC6819, and
NGC7789 were selected for a pilot study with the 1m Nickel Telescope at Lick
observatory and the 1m Jacobus Kapteyn Telescope at La Palma. The rela-
tive small fields of these telescopes (about 6′× 6′) allowed monitoring of only
a few hundred stars, but the possibility of performing relative photometry
at the <∼ 0.3% level in the relatively crowded cluster fields was successfully
demonstrated (Quirrenbach et al. 2000). This project has therefore been con-
tinued at the 2.4m Isaac Newton Telescope, also at La Palma (Street et al.
2000). This survey, and a similar search in NGC6791, have detected large
numbers of variable stars in the cluster fields (Street et al. 2002; Mochejska
et al. 2002). The data reduction has been refined to the point where an accu-
racy at the theoretical limit is reached for the vast majority of all stars. For
more than 10,000 stars in the field of NGC6819, the precision is sufficient to
detect transits down to 1Rjup.

Under the assumption that ∼1% of all stars have “hot Jupiter” compan-
ions, and that ∼10% of these produce transits, several transits should have
been detected by the observations of NGC6819. One apparent transiting ob-
ject with a radius similar to HD209458B has indeed been identified (Street
et al. 2003). Improvements of the transit detection algorithm will be needed
to identify more candidates, to measure the frequency of hot Jupiters in the
cluster, and compare it to that in the Solar neighborhood. Measurements in
a larger sample of open clusters could help to explore the relation of planet
formation to metallicity and other environmental factors.

The Globular Cluster 47Tucanae

The WFPC2 instrument on the Hubble Space Telescope was used in July
1999 to monitor a field in the globular cluster 47Tuc continuously for 8.3
days (Gilliland et al. 2000). The core of the cluster was placed on the PC chip
of WFPC2; a total of ∼34, 000 main-sequence stars with a typical projected
distance from the core of 1′ could thus be monitored. The noise in the light
curves of stars in the magnitude range 17.1 ≤ mV ≤ 21.5 ranged from ∼0.3%
to ∼ 3%. Assuming a frequency of “hot Jupiters” identical to that in the
Solar neighborhood, some 15 . . . 20 transits should have been detected, but
none were actually found. It has thus been established with extremely high
significance that hot Jupiters are much less prevalent in 47Tuc than in the
Solar neighborhood.
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Two possible reasons for this difference come to mind immediately. The
lack of massive close-in planets in 47Tuc could either be a metallicity effect,
or related to the high density of stars in the cluster. 47Tuc is a massive cluster
with a stellar density of n ∼ 105 pc−3 in the core, and n ∼ 104 pc−3 (corre-
sponding to ∼ 103M� pc−3) at 1′ from the core. The metallicity of 47Tuc
is [Fe/H] = −0.7 dex, but the abundance of α elements with respect to Fe
is [α/Fe] = 0.4 dex (Salaris and Weiss 1998). Extrapolating the metallicity
dependence of the incidence of planets (Sect. 3.4) to even lower values, it cer-
tainly appears plausible that “hot Jupiters” are exceedingly rare around stars
as metal-poor as those in 47Tuc. On the other hand, disruption of planet
formation by close stellar encounters should also play an important role. It
is likely that close-in planets with a <∼ 0.3AU survive for a Hubble time
at a density n ∼ 104 pc−3, which corresponds to the “typical” environment
of the stars monitored in the WFPC2 observations (Davies and Sigurdsson
2001). One has to consider the history, of the cluster and the planetary sys-
tem, however. A cluster that starts its life with a certain density will expand
when gas that was not used up by star formation is expelled by the winds
of OB stars or supernova explosions (Goodwin 1997; Kroupa et al. 2001).
This leads to a decrease of the cluster density by a factor of ∼10 or more.
It is thus quite possible that all protoplanetary disks or young planetary sys-
tems were destroyed in an early high-density phase of 47Tuc (Bonnell et al.
2001). It is also possible that the ionizing flux of young massive stars destroys
all circumstellar disks in the cluster before they can form planets (Armitage
2000); this process seems indeed to be at work near θ1 OriC in the Orion
Trapezium (Johnstone et al. 1998). More observations in environments that
cover different combinations of density and metallicity are needed to settle the
question which of these factors is responsible for the lack of close-in planets
in 47Tuc.

Eclipsing Binaries

An interesting way to increase the odds of finding transiting planets are ob-
servations of eclipsing binary systems (Schneider and Chevreton 1990). This
idea is based on the two assumptions that (a) planets form around close bi-
naries with similar properties to those around single stars and (b) the orbital
plane of the planet(s) will be roughly coplanar with the binary orbit. Our cur-
rent understanding of binary star formation is certainly not good enough to
provide compelling arguments either in favor of or against these hypotheses,
and observational data do not exist.24 These uncertainties notwithstanding,

24 Note that planets around members of wide multiple systems have been found by
the radial-velocity method, but close binaries are not suited as targets for this
technique because of the large radial-velocity amplitude of the binary orbit.
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an extensive observing campaign has been carried out to search for plan-
etary transits in the CMDraconis system (Deeg et al. 1998; Doyle et al.
2000). This is arguably the best-suited binary for such a project, because
both components are M4.5 dwarfs, which gives them a combined disk area
of ∼ 12% of the Solar disk (see Lacy 1977 for details). This means that
a transit of a planet with 3.2R⊕ would cause a 1% photometric dip. Fur-
thermore, the inclination is nearly edge-on, i = 89.82◦, which implies that
planets in coplanar orbits with radii up to 0.35AU would actually cause
eclipses (see (56)).

Several 1m class telescopes have been used to obtain a long time series
of photometric measurements of CMDra, which comprises more than 25,000
data points covering over 1,000 h with an rms precision of 0.2% to 0.7%
(Deeg et al. 1998; Doyle et al. 2000). A single transit from a planet signifi-
cantly larger than 3R⊕ would produce a signal that could easily be detected
above the noise. Considering the time coverage of the light curve, the de-
tection probability for such planets with orbital periods between 7 and 60
days is > 90%, but no such events were found. Smaller planets could still be
detected if they transit several times. The search for multiple transits from
the same planet is much more complicated in this case than for a single star,
because the orbital motion of the binary causes distortions of the individual
dips, and a non-periodic signal from the repeated transits. Instead of doing
a periodogram analysis, one therefore has to generate simulated light curves
and cross-correlate them with the data, which is time-consuming and CPU in-
tensive. Doyle et al. (2000) conclude that the detection probability for 2.5R⊕
planets with periods up to 10 days in the CMDra light curve from 1994 to
1998 was 80%. They found a few planet “candidates”, i.e., assumed sets of
planetary radius, orbital period and epoch that would produce several transits
matching observed dips near the noise level. Follow-up observations around
the predicted transit times of seven of the best candidates in 1999 showed that
six of them were not real, however, leaving only one good candidate. Further
unpublished observations of this candidate gave somewhat contradictory re-
sults: two rather convincing transit dips at the right time followed by three
non-transit events that should have been there (L. Doyle, priv. comm.). It is
presently unclear whether this is an inconsistency due to instrumental prob-
lems, or a detection of real transits of a non-coplanar object whose orbital
nodes subsequently precessed from the line-of-sight. One can thus summarize
that a fair part of the parameter space for planets >∼ 2.5R⊕ with periods
between 7 and 60 days in orbits coplanar with the binary has been searched
in CMDra with negative results; no strong statement is currently possible for
similar planets in non-coplanar orbits.

A second way to look for the signature of planets in the CMDra light
curve is by timing the eclipse minima (Deeg et al. 2000). This analysis is
complementary to the search for transits; it is less sensitive to small planets,
but it can detect planets with longer periods and in non-coplanar orbits. The
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amplitude of the timing residuals τ for a planet with mass mp orbiting a
binary with component masses m1,2 at an orbital radius a is given by25

τ =
mpa sin i

(m1 +m2)c
. (76)

The low mass of the components of CMDra (m1+m2 = 0.44M�) is favorable,
and the light curve obtained for the transit search covers more than 80 primary
and secondary eclipses of the binary pair. A periodogram analysis of the 41
eclipses with the best-determined minimum times yields no peak above ∼3 s,
from which the presence of large planets (e.g., mp sin i ≥ 1Mjup for a = 2AU)
can be ruled out according to (76). There is weak evidence for excess power at
periods around 1,000 days, which would correspond to a circumbinary planet
with mp sin i ≈ 1.5 . . . 3Mjup at a ≈ 1.1 . . . 1.45AU (Deeg et al. 2000). The
significance of this feature in the power spectrum is at present uncertain, but
it demonstrates the possibility of using transit timing in eclipsing binaries for
searches of Jupiter-like planets.

6.5 Photometric Space Missions

As we have seen in Sect. 6.2, the Earth’s atmosphere is the most severe source
of photometric noise. Observations from orbiting observatories can thus reach
much better precision, as already demonstrated by the HST light curve of
HD209458 (Fig. 39), obtained with an instrument that was not specifically
built as a precise photometer. A number of photometric space missions will
be launched in the near future; they will provide new opportunities for obser-
vations of extrasolar planets.

COROT, MONS, and MOST

Three small photometric satellites are expected to be launched over the next
few years: the Canadian MOST spacecraft (Matthews et al. 2000), the Danish
MONS (Christensen-Dalsgaard 2002), and the French/ESA project COROT
(Baglin et al. 2002). These missions were initially conceived with the primary
objective of studying the internal structure of stars through asteroseismol-
ogy; they have therefore been designed to perform exquisite photometry of
very bright stars (better than 10−6 for periodic signals like stellar oscillation
modes). With the discovery of hot Jupiters it has become obvious that these
satellites will also be able to perform precise measurements of the light curves
of planetary transits, and to detect their reflected light. Observations of extra-
solar planets have therefore been added to their scientific goals. Two different

25 Note the difference between (75) and (76). In the first case, the invisible body
orbits one component of the eclipsing system, and the second factor in the timing
equation is the inverse of the orbital velocity of the eclipsing body. In the latter
case, the invisible body orbits the eclipsing system at a large distance, and the
velocity in the denominator is the speed of light.
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modes are possible: a survey mode, which uses a wide-field camera to search
for new transiting planets, and a targeted mode to get detailed light curves
for stars that are already known to host planets. COROT, for example, will
monitor about 6,000 to 12,000 stars in the range mV = 11 . . . 16.5. It should
be able to detect planets with radii as small as Rp = 1.6R⊕, provided that
their orbital periods are not longer than 50 days (Rouan et al. 2000). During
the first two years of its lifetime, the planet program of MOST will consist of
pointed observations of εEri, τ Boo, 51Peg, HD38529, and HD209458. More
targets may be added later.

Kepler and Eddington

ESA’s Eddington (Favata 2002) and NASA’s Kepler (Borucki et al. 1997;
Koch et al. 1996, 1998) missions are more ambitious than the relatively small
satellites described in the last section: they will search for transit of Earth-like
planets and thus measure the frequency of other potentially habitable worlds.
This requires both a large field-of-view and a sizeable aperture. Eddington
will cover a field of at least 6 square degrees with a 1.2m telescope. Kepler
will even observe a 12◦ field with a 0.95m aperture; this requires a focal plane
covered with 42 CCD detectors.

If most stars have Earth-like planets, both Kepler and Eddington are ex-
pected to produce many reliable detections. In addition to detecting up to
50 “Earth twins”, each of these missions would be able to measure the re-
flected light from hundreds of hot Jupiters, and observe transits for ∼100 of
them. The success of such an ambitious program clearly depends on a reli-
able data processing pipeline, which has to find the transiting objects and
discriminate them from low-amplitude variables. This is particularly difficult
for small planets in short-period orbits; for these objects many transits will be
observed, but each one will have a very low signal-to-noise. Understanding the
properties of the light curves (after phasing with trial periods and co-adding
of the individual transits), and the statistical significance of low-level transit
detections, is therefore an important task (Deeg et al. 2000; Jenkins et al.
2002). If the Kepler and Eddington missions can be carried out successfully,
they will likely be first to give us an answer to the question whether Earth
analogs are common or rare around stars that are similar to our Sun.

6.6 Searches for the Light Reflected by the Planet

Definition of Albedo

For a discussion of the properties of starlight reflected by a planet, we first
have to clarify the notion of albedo. The best-known concept is that of the
Bond albedo A defined by

A ≡ Prefl

Pincid
, (77)
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where Pincid is the total power of light incident on a surface, and Prefl that
reflected by it. The Bond albedo governs the equilibrium temperature Teff of
a planet heated by its parent star. Balancing radiation losses with internal
energy production and insolation gives

4πR2
pσT

4
eff = Pint + πR2

p(1−A)L∗/(4πa2) , (78)

where Rp is the radius of the planet, a its orbital radius, Pint the internal en-
ergy production per time interval, and L∗ the stellar luminosity. If the inter-
nally generated heat is negligible compared to the insolation, the equilibrium
temperature is given by

Teff =
[
(1−A)L∗
16πσa2

]1/4
. (79)

While the Bond albedo is needed to estimate the temperature of a planet,
the quantity that is most useful to describe the reflected light is the geometric
albedo pλ. It is defined as the reflectivity of a planet at wavelength λ, measured
at full phase, i.e., α = 0, where α is the angle star–planet–observer. (We
neglect the possibility of eclipses in this section.) The observed intensity of
the reflected light Fλ(α) can then be written as

Fλ(α) = pλFincid

(
Rp

d

)2

φλ(α) , (80)

where Fincid is the stellar flux incident on the planet, and φλ(α) the phase
function, which describes the phase dependence of the scattering and is nor-
malized such that φλ(0) = 1. The flux from a star at distance d observed on
the Earth is related to the flux incident on a planet at orbital distance a by
the inverse square law

F∗ = Fincid

(a
d

)2
. (81)

Dividing (80) by (81), we thus obtain an expression for the intensity ratio
ελ(α) between the planetary and stellar spectra:

ελ(α) ≡
Fλ(α)
F∗

= pλ

(
Rp

a

)2

φλ(α) . (82)

For circular orbits, the phase angle α can be computed from

cosα = − sin i sin 2πΦ , (83)

where Φ ∈ [0, 1) is the orbital phase, measured from the time of maximum
recessional velocity of the star.26

26 Note that different definitions of the zero point of the orbital phase are used in the
literature. The one adopted here is customarily used for spectroscopic binaries,
whereas in eclipsing binaries the time of the primary eclipse is normally chosen
as the zero point of the orbital phase. In analogy to the latter definition, some
authors count the phase from the time of inferior conjunction. For circular orbits,
the difference between the two definitions is 0.25.
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The functions pλ and φλ(α) depend on the properties of the planetary at-
mosphere. For reference purposes, it is useful to consider the case of a Lambert
sphere, which scatters all incoming photons isotropically. It can be shown that
for a Lambert sphere

pλ = 2/3 , (84)

and

φλ(α) =
sinα+ (π − α) cosα

π
. (85)

Inserting these two relations in (82), we get

ελ(α) =
2
3

(
Rp

a

)2( sinα+ (π − α) cosα
π

)
. (86)

This equation can be used together with (83) to calculate simple models of
the phase variations. Inserting typical numbers of “hot Jupiters” in (86), we
expect variations of order

∆ε = 6 · 10−5

(
Rp

Rjup

)2 ( a

0.05AU

)−2

(87)

for planets with edge-on orbits. (For i < 90◦ the variations are smaller, be-
cause we cannot probe the full range of phase angles.) With the precision
of the upcoming photometric space missions (Sect. 6.5), it should thus be
possible to detect the starlight reflected by hot Jupiters through their phase
variations.

For more realistic predictions of the brightness of the reflected light, one
has to compute detailed models of the structure of the planetary atmosphere
(see below). The presence of strong atomic and molecular absorption features
also opens the possibility to obtain spectroscopic information on the plane-
tary atmospheres. It should finally be pointed out that the atmospheric light
scattering processes lead to a high degree of polarization of the reflected light
at phase angles near or slightly below 90◦. The expected signature of a planet
in the stellar polarization fraction is only a few times 10−6, however, which is
below the current detection limit (Seager et al. 2000).

The Signature of Spectral Features in Reflected Light

It is obvious from (80) that the light reflected by a planet carries spectral
imprints both from the stellar photosphere (wavelength dependence of Fincid)
and from the planet’s atmosphere (parameterized by pλ and φλ(α)). For ob-
servations with low spectral resolution, the description in (80) is sufficient,
but at a resolving power R >∼ 1,000 we have to take a more careful look at
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the implications of the Doppler effect. First of all, the radial velocity vp of the
planet is given by

vp(Φ) = Kp cos 2πΦ = −K∗
m∗
mp

cos 2πΦ , (88)

whereKp andK∗ are the radial-velocity amplitudes of the planet and the star,
respectively. If the geometric albedo of the planet can be regarded as constant
over a small spectral range in the vicinity of a stellar absorption line, a “ghost
image” of this line appears in the reflected spectrum with (time-dependent)
amplitude and Doppler velocity given by (82) and (88). The velocity am-
plitude Kp is typically many km s−1 (Kp = 30 km s−1 for m∗ = 1M� and
a = 1AU), which is much larger than the line width of old G dwarfs, and
much more than the resolution achievable with an Echelle spectrograph. It
thus appears promising to search for the reflected “ghost spectrum” in high-
signal-to-noise spectra of stars with known planets. The difference of two such
spectra taken at different orbital phases should reveal two ghost spectra (one
of them positive, the other negative) at the velocities predicted by (88). One
important difficulty of such searches is the unknown orbital inclination of the
planet. Combining (19) with (88), we obtain

vp(Φ) =
(
2πG
P

)1/3

m
1/3
∗ sin i cos 2πΦ. (89)

This means that only an upper limit to Kp is known a priori. The need to
perform a search for the weak reflected line over the velocity range up to this
limit increases the probability of a false detection; therefore a higher signal-
to-noise ratio is necessary than for the detection of an equally faint line at a
known position.

A second consideration concerns the width of the reflected lines. For a
planet orbiting in the equatorial plane, the observed Doppler width vrefl of
the reflected lines is given by

vrefl = 2πR∗ sin i
∣∣∣∣ 1
Prot

− 1
Porb

∣∣∣∣ = v∗ sin i
∣∣∣∣1− Prot

Porb

∣∣∣∣ , (90)

where Prot is the rotational period of the star, Porb the orbital period of the
planet, and v∗ sin i the Doppler width of the directly observed stellar lines.
In the case of “hot Jupiters”, Prot and Porb may be similar to each other;
it has also been argued that a convective envelope with mass m ≈ 0.01M�
could become tidally locked in less than the age of the system (Marcy et al.
1997). In this case, there is no relative motion between any point on the stellar
surface and the planet. The reflected spectrum therefore does not show any
broadening due to stellar rotation, in agreement with (90). The broadening
caused by the rotation of the planet (which is certainly tidally locked) is
small, because of the small planetary radius. The width of the reflected lines
is therefore dominated by convective motions in the stellar photosphere, and
may thus be substantially smaller than v∗ sin i.
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The most obvious observing strategy consists in acquiring spectra with
good coverage near the phases Φ = 0 and Φ = 0.5, when the separation in
velocity space between the “ghosts” and the directly observed lines is largest.
One can then subtract a mean spectrum obtained by averaging over all phases
from each individual spectrum, and search in these difference spectra for a
ghost feature whose location varies sinusoidally with phase according to (88).
Alternatively, one can observe around Φ = 0.75, when the velocity separa-
tion between the direct and reflected light are smaller than the line width,
and search for subtle distortions of the line shape due to the time-varying
contribution from the planet (Charbonneau et al. 1998). In either approach,
the spectral regions around many stellar lines have to be analyzed together
to achieve a signal-to-noise ratio that comes close to the requirement for a
planet detection.

Classification of Extrasolar Giant Planets

The geometric albedo of a planet and the wavelength dependence of this
albedo are determined by the relative strengths of a few scattering and ab-
sorption processes; the most important of these are Rayleigh scattering, mole-
cular absorption, and scattering by atmospheric condensates (e.g. Marley et
al. 1999). If the scattering cross section is much larger than the absorption
cross section, there is a good chance that an incoming photon will be reflected
back (the geometric albedo of an infinitely deep purely Rayleigh-scattering
atmosphere is 0.75); conversely a large absorption cross section leads to a
low albedo. Rayleigh scattering, with a λ−4 wavelength dependence, predom-
inates in the blue, while molecular absorption bands tend to remove red and
infrared photons. Cloud-free atmospheres are therefore quite dark at wave-
lengths >∼ 0.6µm, but water clouds an other condensates can form bright
reflecting layers. In addition, Raman scattering and photochemical hazes can
reduce the geometric albedo in the ultraviolet and blue.

The atmospheric chemistry and stratification has a dramatic influence on
the wavelength-dependent albedo of giant planets, and therefore on their
detectability in reflected light. Sudarsky et al. (2000) define five distinct
classes, which form a temperature sequence; the boundaries between these
classes are given by the temperatures at which various types of condensates
can form.

Class I: “Jovian” planets.

At Teff <∼ 150K, the albedo spectrum is determined mainly by reflection from
condensed NH3, and absorption from molecular CH4. Ammonia clouds keep
the albedo high at λ <∼ 1.5µm, except in methane absorption bands. At longer
wavelengths, the molecular absorption cross sections tend to become larger,
which leads to an increased probability of absorption above the cloud deck,
and therefore a lower albedo.
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Class II: “Water cloud” planets.

At somewhat higher temperatures, Teff ≈ 250K, very strongly reflective H2O
clouds develop in the upper atmosphere. Because these clouds form higher in
the atmosphere than the NH3 clouds of class I objects, the visible-wavelength
albedo of class II objects is even higher than that of class I planets.

Class III: “Clear” planets.

The atmospheres of planets in the range 350K<∼ Teff <∼ 900K are essentially
free of condensates, so that their albedos are determined predominantly by
atomic and molecular absorption and Rayleigh scattering. The photons can
penetrate to depths where sodium and potassium absorption as well as H2–H2

collision-induced absorption play an important role. These processes, as well
as absorption by CH4 and H2O, make the albedo low through most of the
visible region, and almost negligible in the near-IR.

Class IV: “Roasters”.

For temperatures 900K<∼ Teff <∼ 1, 500K, which are expected for the planets
with small orbital radii, the equilibrium abundance of alkali metal atoms is
even higher than in class III objects. A silicate cloud deck exists at moderate
pressures, but it is so deep in the atmosphere that it has no significant effect
on the albedo. Absorption above the silicate clouds by sodium and potassium
atoms as well as ro-vibrational molecular bands renders class IV objects very
dark in the visible and near-IR spectral range.

Class V: “Hot roasters”.

If the temperature is very high, Teff >∼ 1, 500K, the silicate clouds are located
much higher in the atmosphere. This increases the albedo dramatically, and
makes class V objects much brighter than class IV planets. The transition
temperature between these two classes depends on the gravity and is reduced
for less massive planets.

In summary, the albedo of extrasolar giant planets depends primarily on
their effective temperature; the coolest and hottest objects have much higher
albedo than those at intermediate temperatures. The class IV models by Su-
darsky et al. (2000) have very low bond albedo (< 1% for irradiation by a cool
star); this has to be taken into account for the computation of Teff , of course
(see (79)).

For detailed comparisons between observations of reflection spectra and
models, the temperature–pressure profile in the atmosphere has to be modeled
more carefully (Seager and Sasselov 1998). The best approach is a self-
consistent computation of the atmospheric structure that takes the exter-
nal irradiation into account in the solution of the radiative transfer equation
(Barman et al. 2001). The predictive power of these models is limited by the
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unknown “weather patterns” in the planetary atmosphere. It is unlikely that
the clouds form a homogeneous layer; one should thus expect variations of
the albedo across the planetary surface. Large differences in the atmospheric
structure may exist between the day- and nightside, especially for close-in
planets whose rotation is tidally locked to the orbital period. These differences
depend on the efficiency with which the radiation received on the dayside is
redistributed across the whole planetary surface, which may be fairly low (see
Guillot in this volume). As these considerations show, detailed observations
of the reflected spectrum as a function of phase angle have the potential to
provide a wealth of information on the atmospheric structure of extrasolar
giant planets.

Searches for Reflected Light from “Hot Jupiters”

Several attempts have been made to detect the reflected light from the planet
orbiting τ Boo, which has one of the smallest orbital radii of all known planets.
Observations with the HIRES spectrograph at the Keck I Telescope gave an
upper limit of ε <∼ 5 · 10−5 at λ ≈ 480 nm; together with the assumption that
Rp = 1.2Rjup, this limits the geometric albedo near 480 nm to p <∼ 0.3 (Char-
bonneau et al. 1999). Based on initial observations with the William Herschel
Telescope (WHT) at La Palma in a similar wavelength range, a tentative de-
tection of τ BooB was reported by Collier Cameron et al. (1999). This claim
was retracted, however, when further observations by the same group did not
confirm the initial result. The latter data imply a geometric albedo p < 0.22,
under the simplifying assumptions of a wavelength-independent albedo in the
range 387.4 nm≤ λ ≤ 586.3 nm, a Lambert-sphere phase-function (85), and a
radius Rp = 1.2Rjup. This appears to exclude the existence of a high cloud
deck as expected for class V “hot roasters”, but is compatible with the pre-
dicted class IV “roaster” spectra.

A complementary set of observations in the infrared at wavenumbers near
3,044 cm−1 has been performed with the Infrared Telescope Facility (IRTF) on
Mauna Kea (Wiedemann et al. 2001). The goal of this experiment was not the
detection of the reflected ghost of the stellar absorption spectrum, but rather
the detection of methane absorption features in the planetary atmosphere,
which should also vary with time according to (88). The analysis of this data
set yielded a weak signal at the ε ≈ 2 · 10−4 level, but the attribution of this
signal to the planet remains very doubtful.

The innermost planet of υAnd may offer even better prospects of detection
than τ BooB, because it has a lower mass and may thus be a class V rather
than a class IV object. A search for reflected light from υAndB with the WHT
did not result in a clear detection, however (Collier Cameron et al. 2002). The
observations give an upper limit of Rp ≤ 1.51Rjup if υAndB indeed has a
class V spectrum, but the constraint is weaker, Rp ≤ 2.23Rjup if the spectrum
is assumed to be of class IV. In summary therefore, the searches for reflected
light from hot Jupiters conducted so far have given only upper limits on the
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combination of albedo and planetary diameter that are consistent with the
expectations for these objects.

7 The Effects of Atmospheric Turbulence
on Astronomical Observations

Turbulence in the Earth’s atmosphere is a major obstacle to the detection of
planets with coronographic and interferometric methods from the ground. It
limits the contrast achievable with high-resolution imaging and the precision
of astrometric measurements. Atmospheric turbulence also determines many
of the key design parameters of adaptive optics systems and interferometers:
site selection, operating wavelength, aperture size, temporal bandwidth of the
servo loops, and integration times. It is therefore important to understand
how turbulence is generated in the atmosphere, and how its effects on the
propagation of light can be quantified. This chapter gives a brief outline of
atmospheric turbulence in the “standard” Kolmogorov model; more detailed
treatments of this topic have been given by Roddier (1981, 1989), Fried (1994),
and Hardy (1998).

7.1 The Kolmogorov Turbulence Model

Eddies in the Turbulent Atmosphere

The properties of fluid flows are determined primarily by the well-known
Reynolds number R = V L/ν, where V is the fluid velocity, L a char-
acteristic length scale, and ν the kinematic viscosity of the fluid. For air,
ν ≈ 1.5 · 10−5 m2 s−1, so that atmospheric flows with wind speeds of a few
m s−1 and length scales of several meters to kilometers have R >∼ 106 and
are therefore almost always turbulent. The turbulent energy is generated by
eddies on a large scale L0; these large eddies spawn a hierarchy of smaller ed-
dies. Dissipation is not important for the large eddies, but the kinetic energy
of the turbulent motion is dissipated in small eddies with a typical size l0. The
characteristic size scales L0 and l0 are called the outer scale and the inner
scale of the turbulence. There is considerable debate over typical values of L0;
it is probably a few tens to hundreds of meters in most cases (Buscher et al.
1995; Davis et al. 1995; Conan et al. 2000; Linfield et al. 2001; Quirrenbach
2002b). l0 is of order a few millimeters.

In the so-called inertial range between l0 and L0, there is a universal
description for the turbulence spectrum, i.e., of the turbulence strength as a
function of the eddy size, or of the spatial frequency κ. This somewhat surpris-
ing result is the underlying reason for the importance of this simple turbulence
model, which was developed by Kolmogorov, and is therefore generally known
as Kolmogorov turbulence.
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The spatial structure of a random process can be described by structure
functions. The structure functionDx(R1, R2) of a random variable xmeasured
at positions R1, R2 is defined by

Dx(R1, R2) ≡
〈∣∣x(R1)− x(R2)

∣∣2〉 (91)

(see also (246)). In words: the structure function measures the expectation
value of the difference of the values of x measured at two positions R1

and R2. For example, the temperature structure function DT (R1, R2) is the
expectation value of the difference in the readings of two temperature probes
located at R1 and R2. In the following paragraph, a simple argument based
on dimensional analysis will be used to derive structure functions for the Kol-
mogorov model.

The Structure Function for Kolmogorov Turbulence

The only two relevant parameters (in addition to l0 and L0) that determine
the strength and spectrum of Kolmogorov turbulence are the rate of energy
generation per unit mass ε, and the kinematic viscosity ν. The units of ε are
J s−1 kg−1 = m2 s−3, and those of ν are m2 s−1. Under the assumption that
the turbulence is homogeneous and isotropic, the structure function of the
turbulent velocity field, Dv(R1, R2), can only depend only on |R1 −R2|, and
can therefore be written as:

Dv(R1, R2) ≡
〈∣∣v(R1)− v(R2)

∣∣2〉
= α · f

(
|R1 −R2| / β

)
, (92)

where f is some as yet unspecified dimensionless function of a dimensionless
argument. It is immediately clear that the dimensions of α must be velocity
squared, and those of β length. Since α and β depend only on ε and ν, it
follows from dimensional analysis that

α = ν1/2ε1/2 and β = ν3/4ε−1/4 . (93)

In addition, the structure function must be independent of ν in the inertial
range, because dissipation does not play a role here. This is possible only if f
has the functional form

f = k ·
(
|R1 −R2| / β

)2/3 (94)

with a dimensionless numerical constant k, because only in this case the de-
pendence on ν drops out in the expression of the structure function:

Dv(R1, R2) = α · k ·
(
|R1 −R2| / β

)2/3 = C2
v · |R1 −R2|2/3 , (95)

where C2
v ≡ α · k/β2/3 = k · ε2/3. We have thus derived the important result

mentioned above, namely a universal description of the turbulence spectrum.
It has only one parameter C2

v , which describes the turbulence strength.
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Structure Function and Power Spectral Density
of the Refractive Index

The turbulence, with a velocity field characterized by (95), mixes different
layers of air, and therefore carries around “parcels” of air with different tem-
perature. Since these “parcels” are in pressure equilibrium, they must have dif-
ferent densities ρ, and therefore different indices of refraction n. The “parcels”
are carried along by the velocity field of the turbulence. The temperature fluc-
tuations therefore also follow Kolmogorov’s Law with a new parameter C2

T :

DT (R1, R2) = C2
T · |R1 −R2|2/3 ; (96)

note that this is completely analogous to (95). From the Ideal Gas Law, and
N ≡ (n−1) ∝ ρ, it follows that the structure function of the refractive index is

Dn(R1, R2) = DN (R1, R2) = C2
N · |R1 −R2|2/3 , (97)

with CN given by

CN =
(
7.8 · 10−5P [mbar]/T 2[K]

)
· CT . (98)

It should be noted that (97) contains a complete description of the statistical
properties of the refractive index fluctuations, on length scales between l0 and
L0. It is possible to calculate related quantities such as the power spectral
density Φ from the structure function D. Now we write R ≡ R1−R2, and use
the relation between the structure function and the covariance (247), and the
Wiener-Khinchin Theorem (245). In this way we obtain from (97):

C2
N ·R2/3 = DN (R) = 2

∫ ∞

−∞
dκ
[
1− exp(2πiκR)

]
Φ(κ) . (99)

Calculating Φ(κ) from this relation is a slightly non-trivial task27; the result is:

Φ(κ) =
Γ (53 ) sin

π
3

(2π)5/3
C2
Nκ

−5/3 = 0.0365C2
Nκ

−5/3 . (100)

We have thus obtained the important result that the power spectrum of
Kolmogorov turbulence follows a κ−5/3 law in the inertial range.28

27 See Tatarski (1961). Note that his definition of the power spectral density has an
additional factor 1

2π
, and that his ω corresponds to 2πκ.

28 Note: We have defined R = |R1 −R2| and κ as one-dimensional variables, and
consequently used a one-dimensional Fourier transform in (99). Sometimes three-
dimensional quantities 3R and 3κ are used instead. Then a three-dimensional
Fourier transform with volume element 4π |3κ|2 d |3κ| has to be used in (99), and

the result is a power spectrum Φ(|3κ|) ∝ |3κ|−11/3.
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7.2 Wave Propagation Through Turbulence

The Effects of Turbulent Layers

We now look at the propagation of an initially flat wavefront through a turbu-
lent layer of thickness δh at height h. The phase shift produced by refractive
index fluctuations is

φ(x) = k

∫ h+δh

h

dz n(x, z) , (101)

where k ≡ 2π/λ is the wavenumber corresponding to the observing wave-
length. For layers that are much thicker than the individual turbulence cells,
many independent variables contribute to the phase shift. Therefore the Cen-
tral Limit Theorem implies that φ has Gaussian statistics.

We will now use the statistical properties of the refractive index fluctua-
tions, which were calculated in Sect. 7.1, to derive the statistical behavior of
the wavefront ψ(x) = exp iφ(x). We first express the coherence function Bh(r)
of the wavefront after passing through the layer at height h in terms of the
phase structure function (see Sect. 11 for definitions):

Bh(r) ≡
〈
ψ(x)ψ∗(x+ r)

〉
=
〈
exp i

[
φ(x)− φ(x+ r)

]〉
= exp

(
− 1

2

〈∣∣φ(x)− φ(x+ r)
∣∣2〉)

= exp
(
− 1

2Dφ(r)
)
. (102)

Here we have used the fact that [φ(x)− φ(x+ r)] has Gaussian statistics with
zero mean, and applied the relation

〈
exp(αχ)

〉
= exp

(
1
2α

2
〈
χ2
〉)

(103)

for Gaussian variables χ with zero mean, which can easily be verified by
carrying out the integral over the distribution function.

Calculation of the Phase Structure Function

The next step is the computation of Dφ(r). We start with the covariance
Bφ(r), which is by definition (240):

Bφ(r) ≡
〈
φ(x)φ(x+ r)

〉
= k2

∫ h+δh

h

∫ h+δh

h

dz′ dz′′
〈
n(x, z′)n(x+ r, z′′)

〉

= k2
∫ h+δh

h

dz′
∫ h+δh−z′

h−z′
dz BN (r, z) . (104)
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Here we have introduced the new variable z ≡ z′′ − z′, and the covariance
BN (r, z) of the refractive index variations. For δh much larger than the cor-
relation scale of the fluctuations, the integration can be extended from −∞
to ∞, and we obtain:

Bφ(r) = k2δh

∫ ∞

−∞
dz BN (r, z) . (105)

Now we can use (247) again, first for Dφ(r), then for DN (r, z) and
DN (0, z), and get:

Dφ(r) = 2
[
Bφ(0)−Bφ(r)

]
= 2k2δh

∫ ∞

−∞
dz
[
BN (0, z)−BN (r, z)

]

= 2k2δh
∫ ∞

−∞
dz
[(
BN (0, 0)−BN (r, z)

)
−
(
BN (0, 0)−BN (0, z)

)]

= k2δh

∫ ∞

−∞
dz
[
DN (r, z)−DN (0, z)

]
. (106)

Inserting from (97) gives:

Dφ(r) = k2δhC2
N

∫ ∞

−∞
dz
[(
r2 + z2

)1/3 − |z|2/3]

=
2Γ (12 )Γ (

1
6 )

5Γ ( 23 )
k2δhC2

N r5/3

= 2.914 k2δhC2
N r5/3 . (107)

This is the desired expression for the structure function of phase fluctuations
due to Kolmogorov turbulence in a layer of thickness δh.

Wavefront Coherence Function and Fried Parameter

We are now in a position to put the results of the previous sections together.
Inserting (107) into (102), we get:

Bh(r) = exp
[
− 1

2 (2.914 k
2C2

N δh r5/3)
]
. (108)

This expression can now be integrated over the whole atmosphere. In the
process, we also take into account that we are not necessarily looking in the
vertical direction. Introducing the zenith angle z, this leads to:

B(r) = exp
[
− 1

2

(
2.914 k2(sec z)r5/3

∫
dhC2

N (h)
)]

. (109)
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To simplify the notation, it is now convenient to define the Fried parameter
r0 by

r0 ≡
[
0.423 k2(sec z)

∫
dhC2

N (h)
]−3/5

, (110)

and we can write

B(r) = exp

[
−3.44

(
r

r0

)5/3
]

, Dφ(r) = 6.88
(
r

r0

)5/3

. (111)

We have thus derived fairly simple expressions for the wavefront coherence
function and the phase structure function. They depend only on the Fried
parameter r0, which in turn is a function of turbulence strength, zenith angle,
and wavelength. The significance of the Fried parameter will be discussed
further in Sect. 7.4.

7.3 The Effect of Turbulence on Astronomical Images

Optical Image Formation

The complex amplitude A of a wave ψ diffracted at an aperture P with area
Π is given by Huygens’ principle, which states that each point in the aperture
can be considered as the center of an emerging spherical wave. In the far field
(i.e., in the case of Fraunhofer diffraction), the spherical waves are equivalent
to plane waves, and we can write down the expression for the amplitude as a
function of position α in the focal plane:

A(α) =
1√
Π

∫
dxψ(x)P (x) exp(−2πiαx/λ) . (112)

Here we describe the aperture P by a complex function P (x). In the simple
case of a fully transmissive and aberration-free aperture P (x) ≡ 1 inside the
aperture, and P (x) ≡ 0 outside. Introducing the new variable u ≡ x/λ we can
write this as a Fourier relation:

A(α) =
1√
Π
FT
[
ψ(u)P (u)

]
. (113)

The normalization in (112) and (113) has been chosen such that the illumi-
nation S in the focal plane is given by the square of the wave amplitude:

S(α) =
∣∣A(α)∣∣2 =

1
Π

∣∣∣FT [ψ(u)P (u)
]∣∣∣2 . (114)

Applying the Wiener-Khinchin Theorem (245) to this equation we get

S(f) =
1
Π

∫
duψ(u)ψ∗(u+ f)P (u)P ∗(u+ f) . (115)
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This equation describes the spatial frequency content S(f) of images taken
through the turbulent atmosphere, if ψ is identified with the wavefront after
passing through the turbulence. Taking long exposures (in practice this means
exposures of at least a few seconds) means averaging over many different
realizations of the state of the atmosphere:〈

S(f)
〉
=

1
Π

∫
du
〈
ψ(u)ψ∗(u+ f)

〉
P (u)P ∗(u+ f)

= B(f) · T (f) . (116)

Here we have introduced the telescope transfer function

T (f) =
1
Π

∫
duP (u)P ∗(u+ f) . (117)

Equation (116) contains the important result that for long exposures the op-
tical transfer function is the product of the telescope transfer function and
the atmospheric transfer function, which is equal to the wavefront coherence
function B(f).

Diffraction-Limited Images and Seeing-Limited Images

The resolving power R of an optical system can very generally be defined by
the integral over the optical transfer function. For the atmosphere–telescope
system this means:

R ≡
∫
df S(f) =

∫
df B(f)T (f) . (118)

In the absence of turbulence, B(f) ≡ 1, and we obtain the diffraction-limited
resolving power of a telescope with diameter D:

Rtel =
∫
df T (f) =

1
Π

∫ ∫
dudf P (u)P ∗(u+ f)

=
1
Π

∣∣∣∣
∫
duP (u)

∣∣∣∣
2

=
π

4

(
D

λ

)2

. (119)

The last equality assumes a circular aperture and shows the relation of R
to the more familiar Rayleigh criterion 1.22 · λ/D. Working with R instead
of using the Rayleigh criterion has the advantage that R is a well-defined
quantity for arbitrary aperture shapes and in the presence of aberrations.

For strong turbulence and rather large telescope diameters, T = 1 in the
region where B is significantly different from zero, and we get the seeing-
limited resolving power:

Ratm =
∫
df B(f) =

∫
df exp

[
−3.44

(
λf

r0

)5/3
]

=
6π
5
Γ ( 65 )

[
3.44

(
λ

r0

)5/3
]−6/5

=
π

4

(r0
λ

)2
. (120)
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Here we have used (111) with r = λf for the wavefront coherence func-
tion B(f).

7.4 Fried Parameter and Strehl Ratio

The Significance of the Fried Parameter r0

A comparison of (119) and (120) elucidates the significance of the Fried pa-
rameter for image formation, and reveals the reason for the peculiar choice of
the numerical constant 0.423 in (110): The resolution of seeing-limited images
obtained through an atmosphere with turbulence characterized by a Fried para-
meter r0 is the same as the resolution of diffraction-limited images taken with
a telescope of diameter r0. Observations with telescopes much larger than
r0 are seeing-limited, whereas observations with telescopes smaller than r0
are essentially diffraction-limited. It can also be shown that the mean-square
phase variation over an aperture of diameter r0 is about 1 rad2 (more pre-
cisely, σ2

φ = 1.03 rad2). These results can be captured in an extremely simpli-
fied picture that describes the atmospheric turbulence by r0-sized “patches”
of constant phase, and random phases between the individual patches. While
this picture can be useful for some rough estimates, one should keep in mind
that Kolmogorov turbulence has a continuous spectrum ranging from l0 to
L0, as described by (100).

The scaling of r0 with wavelength and zenith angle implied by (110) has
far-reaching practical consequences. Since

r0 ∝ λ6/5 , (121)

it is much easier to achieve diffraction-limited performance at longer wave-
lengths. For example, the number of degrees of freedom (the number of actu-
ators on the deformable mirror and the number of subapertures in the wave-
front sensor) in an adaptive optics system must be of order (D/r0)2 ∝ λ−12/5.
An interferometer works well only if the wavefronts from the individual tele-
scopes are coherent (i.e., have phase variances not larger than about 1 rad2);
therefore the maximum useful aperture area of an interferometer is ∝ λ12/5

(unless the wavefronts are corrected with adaptive optics). Equation (121)
implies that the width of seeing-limited images, θ ≈ 1.2 · λ/r0 ∝ λ−1/5, varies
only slowly with λ; it is somewhat better at longer wavelengths. In addition,
we see from (110) that r0 ∝ (sec z)−3/5; the seeing gets worse with increasing
zenith angle.

From this discussion it should be clear that the value of r0 – given by
the integral over C2

N – is a crucial parameter for high-resolution observations.
At good sites, such as Mauna Kea or Cerro Paranal, r0 is typically of order
20 cm at 500 nm, which corresponds to an image FWHM of 0′′. 6. The scaling
of r0 with λ (121) implies that in the mid-infrared (λ >∼ 10µm) even the 10m
Keck Telescopes are nearly diffraction-limited, whereas a 1.8m telescope has
D/r0 ∼ 2 at λ = 2µm and D/r0 ∼ 5 at λ = 800 nm. It should be noted that at
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any given site r0 varies dramatically from night to night; at any given time it
may be a factor of 2 better than the median or a factor of 5 worse. In addition,
the seeing fluctuates on all time scales down to minutes and seconds; this has
to be taken into account in calibration procedures and in the design of servo
loops for adaptive optics systems and of fringe trackers for interferometers.

Strehl Ratio

The quality of an aberrated imaging system, or of the wavefront after propaga-
tion through turbulence, is often measured by the Strehl ratio S. This quantity
is defined as the on-axis intensity in the image of a point source divided by the
peak intensity in a hypothetical diffraction-limited image taken through the
same aperture. For a circular aperture with an aberration function ψ(ρ, θ),
which describes the wavefront distortion (in units of µm or nm) as a function
of the spherical coordinates (ρ, θ), the Strehl ratio is given by:

S =
1
π2

∣∣∣∣
∫ 1

0

∫ 2π

0

ρ dρ dθ eikψ(ρ,θ)
∣∣∣∣
2

. (122)

From this equation it is immediately clear that 0 ≤ S ≤ 1, that S = 1
for ψ = const., that S � 1 for strongly varying ψ, and that for any given
(varying) ψ the Strehl ratio tends to be larger for longer wavelengths (smaller
k). In the case of atmospheric turbulence, only the statistical properties of ψ
are known. If the r.m.s. phase error σφ ≡ k σψ is smaller than about 2 rad, S
can be approximated by the so-called extended Marechal approximation:

S = e−σ
2
φ . (123)

We have seen above ((111) and discussion of the significance of r0) that

σ2
φ = 1.03

(
D

r0

)5/3

. (124)

Equations (123) and (124) show that the Strehl ratio for images obtained
with a telescope of diameter D = r0 is S = 0.36; for D >∼ r0 the Strehl ra-
tio decreases precipitously with telescope diameter. Equivalently, S decreases
sharply with decreasing wavelength, since r0 ∝ λ6/5.

If S >∼ 0.1 in an imaging application, deconvolution algorithms can usu-
ally be applied to obtain diffraction-limited images, but the dynamic range
and signal-to-noise ratio are worse than for S ∼ 1. For example, because of
spherical aberration, the Hubble Space Telescope has S ≈ 0.1 without cor-
rective optics. Before the installation of Costar and WFPC2 in the first
servicing mission, the imaging performance of HST was severely affected by
the flawed optics, although diffraction-limited images could be obtained with
image restoration software. In an interferometer, the maximum fringe contrast
is roughly proportional to the Strehl ratio if no corrective measures (adaptive
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optics or mode filtering with pinholes or single-mode fibers) are taken. Planet
detection with imaging requires an extremely high dynamic range, which usu-
ally means that a Strehl ratio close to 1 is desired.

7.5 Temporal Evolution of Atmospheric Turbulence

Taylor Hypothesis and τ0

So far we have discussed the spatial structure of atmospheric turbulence and
its effects on image formation. Now we turn to the question of temporal
changes of the turbulence pattern. A convenient approximation assumes that
the time scale for these changes is much longer than the time it takes the wind
to blow the turbulence past the telescope aperture. According to this Taylor
hypothesis of frozen turbulence, the variations of the turbulence caused by a
single layer can therefore be modeled by a “frozen” pattern that is transported
across the aperture by the wind in that layer. If multiple layers contribute to
the total turbulence, the time evolution is more complicated, but the temporal
behavior of the turbulence can still be characterized by a time constant

τ0 ≡ r0/v , (125)

where v is the wind speed in the dominant layer. With typical wind speeds
of order 20ms−1, τ0 ≈ 10ms for r0 = 20 cm. The wavelength scaling of τ0 is
obviously the same as that of r0, i.e., τ0 ∝ λ6/5.

7.6 Temporal Structure Function and Power Spectra

It is sometimes necessary to quantify the temporal behavior of phase fluc-
tuations at a given point in space. If Taylor’s hypothesis is valid, we can of
course convert the spatial structure function (111) into a temporal structure
function:

Dφ(t) = 6.88
(
t

τ0

)5/3

. (126)

A calculation similar to the one leading to (100) can be carried out to compute
the temporal phase power spectrum

Φφ(f) = 0.077 τ−5/3
0 f−8/3 . (127)

This equation tells us which residual phase errors we have to expect if we try to
correct atmospheric turbulence with a servo loop of a given bandwidth (e.g., in
an adaptive optics system or an interferometric fringe tracker). For example,
if we could correct the turbulence perfectly up to a limiting frequency f0, and
not at all at higher frequencies, we would obtain a phase variance that can be
computed by integrating (127) from f0 to∞. For a more realistic calculation,
we have to multiply the phase power spectrum with the response function of
the servo loop.
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The Long-Exposure and Short-Exposure Limits

Observations with exposure time t� τ0 average over the atmospheric random
process; these are the long exposures for which (116) and (120) are applica-
ble. In contrast, short exposures with t� τ0 produce images through a single
instantaneous realization of the atmosphere; these speckle images contain in-
formation at high spatial frequencies up to the diffraction limit, which can be
extracted from series of such images with computer processing (e.g., bispec-
trum analysis). The parameter τ0 is also of great importance for the design
of adaptive optics systems and interferometers. All control loops that have
to reject atmospheric fluctuations – AO control loops, angle trackers, fringe
trackers – must have bandwidths larger than 1/τ0. Together r0 and τ0 set fun-
damental limits to the sensitivity of these wavefront control loops: a certain
number of photons must arrive per r0-sized patch during the time τ0 for the
wavefront sensor (or fringe sensor) to work. This implies that the sensitivity
scales with r20 · τ0 ∝ λ18/5 (for equal photon flux per bandpass).

7.7 Angular Anisoplanatism

The light from two stars separated by an angle θ on the sky passes through
different patches of the atmosphere and therefore experiences different phase
variations. This angular anisoplanatism limits the field corrected by adaptive
optics systems and causes phase decorrelation for off-axis objects in interfer-
ometers. To calculate the effect of anisoplanatism, we trace back the rays to
two stars separated by an angle θ from the telescope pupil. They coincide at
the pupil, and their separation r(d) at a distance d is θ · d. At zenith angle z,
the distance is related to the height h in the atmosphere by d = h sec z. To
calculate the phase variance between the two rays, we insert this relation in〈

|φ(0)− φ(r)|2
〉
= Dφ(r) = 2.914 k2 sec z δhC2

N r5/3 (128)

(see (phasestruct)), integrate over the height h, and obtain:

〈
σ2
φ

〉
= 2.914 k2(sec z)

∫
dhC2

N (h) (θh sec z)5/3

= 2.914 k2(sec z)8/3θ5/3
∫
dhC2

N (h)h5/3 (129)

=
(
θ

θ0

)5/3

,

where we have introduced the isoplanatic angle θ0, for which the variance of
the relative phase is 1 rad2:

θ0 ≡
[
2.914 k2(sec z)8/3

∫
dhC2

N (h)h5/3
]−3/5

. (130)
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By comparing the definitions for the Fried parameter r0 and for θ0, (110) and
(130), we see that

θ0 = 0.314 (cos z)
r0
H

, (131)

where

H ≡
(∫

dhC2
N (h)h5/3∫

dhC2
N (h)

)3/5

(132)

is the mean effective turbulence height. Equations (isodef) and (131) show
that the isoplanatic angle is affected mostly by high-altitude turbulence; the
anisoplanatism associated with ground layers and dome seeing is very weak.
Moreover, we see that θ0 scales with λ6/5, but it depends more strongly on
zenith angle than r0. For r0 = 20 cm and an effective turbulence height of
7 km, (131) gives θ0 = 1.8 arcsec. For two stars separated by more than θ0 the
short-exposure point spread functions (or point spread functions generated
by adaptive optics) are different. In contrast the long-exposure point spread
functions, which represent averages over many realizations of the atmospheric
turbulence, are nearly identical even over angles much larger than θ0.

It should be pointed out that these calculations of anisoplanatism give
results that are somewhat too pessimistic. The reason is that a large fraction
of the phase variance between the two rays considered is a piston term (i.e.,
a difference in phase that is constant across the aperture), which doesn’t lead
to image motion or blurring.29 Moreover, anisoplanatism is less severe for low
spatial frequencies, which most adaptive optics systems correct much better
than high spatial frequencies. The degradation of the Strehl ratio with off-axis
angle is therefore not quite as bad as suggested by inserting (129) in (123).

7.8 Scintillation

The geometric optics approximation of light propagation that was used in
Sect. 7.2 is only valid for propagation pathlengths shorter than the Fresnel
propagation length dF ≡ r20/λ. In other words, the Fresnel scale

rF ≡
√
λL =

√
λh sec z , (133)

where L is the distance to the dominant layer of turbulence, must be smaller
than the Fried scale r0. For r0 = 20 cm and λ = 500 nm, dF = 80 km. This is
significantly larger than the height of the layers contributing much to the C2

N

integrals, and the geometric approximation is a good first-order approach at
good sites for visible and infrared wavelengths, as long as the zenith angle is

29 Note, however, that piston terms have to be taken into account in interferometry,
where they are responsible for fluctuations in the relative delay between the two
stars.
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not too large. (dF ∝ λ7/5 for Kolmogorov turbulence; therefore the geometric
approximation is even better at longer wavelengths.) However, if the propaga-
tion length is comparable to dF or longer, the rays diffracted at the turbulence
cells interfere with each other, which causes intensity fluctuations in addition
to the phase variations. This phenomenon is called scintillation; it is an im-
portant error source in high-precision photometry unless the exposure times
are sufficiently long to average over the fluctuations. Since scintillation is an
interference phenomenon, it is highly chromatic. This effect can be easily ob-
served with the naked eye: bright stars close to the horizon twinkle strongly
and change color on time scales of seconds.

Although scintillation is weak for most applications of adaptive optics
and interferometry, it has to be taken into account when high Strehl ratios
are desired. High-performance adaptive optics systems designed for the direct
detection of extrasolar planets have to correct the wavefront errors so well that
intensity fluctuations become important. In interferometers that use fringe
detection schemes based on temporal pathlength modulation and synchronous
photon detection, scintillation noise has to be considered when very small
fringe amplitudes are to be measured.

The effects of scintillation can be quantified by determining the relative
intensity fluctuations δI/I; for small amplitudes δI/I = δ ln I. A calculation
similar to the one in Sect. 7.2 gives the variance of the log intensity fluctua-
tions:

σ2
ln I = 2.24 k7/6(sec z)11/6

∫
dhC2

N (h)h5/6 . (134)

This expression is valid only for small apertures with diameter D � rF .
For larger apertures, scintillation is reduced by averaging over multiple inde-
pendent subapertures. This changes not only the amplitude of the intensity
fluctuations, but also the functional dependence on zenith angle, wavelength
and turbulence height. The expression

σ2
ln I ∝ D−7/3(sec z)3

∫
dhC2

N (h)h2 , (135)

which is valid for D � rF and z <∼ 60◦, shows the expected strong decrease of
the scintillation amplitude with aperture size; note that it is independent of
the observing wavelength. For larger zenith angles the assumption δ ln I � 1 is
no longer valid, the fluctuations increase less strongly with sec z than predicted
by (135), and eventually saturate.

7.9 Turbulence and Wind Profiles

We have seen in the preceding sections that the most important statistical
properties of seeing can be characterized by a few numbers: the Fried para-
meter r0, the coherence time τ0, the isoplanatic angle θ0, and the scintilla-
tion index σln I . For the design and performance evaluation of high-angular-
resolution instruments it is of great importance to have reliable statistical
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information on these parameters. Therefore extensive seeing monitoring cam-
paigns are normally conducted before decisions are made about the site se-
lection for large telescopes and interferometers, or about the construction of
expensive adaptive optics systems. Having access to the output of a continu-
ously running seeing monitor which gives the instantaneous value of r0 (and
ideally also of the other seeing parameters) is also very convenient for debug-
ging and for optimizing the performance of high-resolution instruments.

From equations (110), (125), (129), and (134) it is obvious that all seeing
parameters can easily be calculated from moments

µm ≡
∫
dhC2

N (h)hm (136)

of the turbulence profile C2
N (h), and (in the case of τ0) from moments

vm ≡
∫
dhC2

N (h)vm(h) (137)

of the wind profile v(h). More complicated analyses such as performance esti-
mates of adaptive optics systems with laser guide stars and of multi-conjugate
AO systems also rely on knowledge of C2

N (h) and v(h). In-situ measurements
of these profiles with balloon flights and remote measurements with Scidar

30

or related methods are therefore needed to fully characterize the atmospheric
turbulence. Figure 41 shows profiles measured on Cerro Paranal, the site of
the European Southern Observatory’s Very Large Telescope observatory. The
decrease of C2

N with height is typical for most sites; frequently wind shear
at altitudes near 10 km creates additional layers of enhanced turbulence. The
highest wind speeds normally occur at heights between 9 and 12 km. Exten-
sive sets of observed turbulence and wind profiles, combined with the analytic
methods sketched in this section and numerical simulations, form a firm basis
for the evaluation of astronomical sites, and for the design of interferometers
and adaptive optics systems.

8 Introduction to Optical Interferometry

The angular resolution required for detection of extrasolar planets drives us to
very large telescope sizes. Scaling this approach to mid-infrared wavelengths
is certainly impractical; we are thus compelled to consider interferometry as
a means to achieve the required resolution. This chapter introduces the basic
concepts of optical and infrared interferometry, beam combination schemes,
and fringe detection methods. We will then take a look at ways to transfer
phase knowledge from one baseline to another, or from one wavelength to an-
other, and discuss the limitations that instrumental and atmospheric errors

30 The Scidar technique is based on auto-correlating pupil images of double stars.
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Representative Cerro Paranal Turbulence and Wind Profiles
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Fig. 41. Turbulence and wind profiles measured on Cerro Paranal, Chile. The
turbulence is strongest close to the ground (2,635m above sea level). The wind speed
is highest at an altitude of ∼10 to 15 km. Wind shear often leads to additional layers
of strong turbulence at high altitude (only weakly present in this data set)

impose on these techniques. These concepts will be applied to planet detection
in the subsequent chapters. For a more detailed tutorial about optical inter-
ferometry the reader is referred to Lawson (2000); many details and references
to the literature can also be found in the review by Quirrenbach (2001).

8.1 Schematic Design of an Optical Interferometer

Long-baseline interferometry is the coherent combination of light received with
separate telescopes. This is shown schematically in Fig. 42. For the viewing
direction indicated in this figure, light from a distant star arrives first at
the telescope to the right, and a little later at the telescope to the left. The
pathlength difference or delay D is given by the relation

D = ?B · ŝ , (138)

where ?B is the baseline vector joining the two telescopes, and ŝ the unit vector
in the direction toward the star. D is of the order of the baseline length, i.e.,
up to tens or even hundreds of meters. This is much larger than the coherence
length of the stellar light, which is given by λ2/∆λ, where λ is the observing
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Fig. 42. Schematic drawing of the light path through a two-element interferometer.
The external delay D = 3B · ŝ is compensated by the two delay lines. The pathlengths
D1, D2 through the delay lines are monitored with laser interferometers. The zero-
order interference maximum occurs when the delay line positions are such that the
internal delay Dint = D2 −D1 is equal to D

wavelength and ∆λ the bandwidth of the filter used for the observations.
To observe interference fringes, it is therefore necessary to compensate the
external delay D with an opposite internal delay.

V =
Imax − Imin

Imax + Imin
. (139)
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8.2 Beam Combination Concepts

The various beam combination schemes that can be employed in astronomical
interferometry may be classified according to several criteria (?): the beam
étendue (single-mode or multi-mode), the beam direction (co-axial or multi-
axial), the combination plane (image plane or pupil plane), and the relation
between input and output pupils (Michelson or Fizeau configuration, see be-
low). For N telescopes in an array, there are N(N − 1)/2 baselines. The
N(N − 1)/2 visibilities can either be measured by pairwise beam combina-
tion, or by bringing the light from all telescopes together on one detector. In
the latter “all-on-one” techniques the fringes from the different baselines have
to be encoded either spatially (by using a non-redundant output pupil) or tem-
porally (by using different dither frequencies for the beams from individual
telescopes).

Unlike in radio astronomy, where the radiation is detected and amplified
before correlation, in an optical interferometer the beam combination occurs
before detection. For pairwise beam combination the light from each telescope
has to be divided in (N − 1) beams; in “all-on-one” schemes the visibility
measurement for each baseline is affected by noise contributed by the (N − 2)
other telescopes. This means that a baseline that is part of an N -element array
is always less sensitive than an equivalent two-telescope interferometer. The
detailed trade-offs between different beam combination schemes depend on the
predominant noise source (background, detector, photon noise), detector cost
and availability, and other technical considerations. Armstrong et al. (1998)
discuss the case of pupil-plane combination with temporal encoding of the
fringes, for which in the photon-rich regime

SNR ∝
(
nphotN

Nout

)1/2
V

Ncorr
, (140)

where nphot is the photon rate from each telescope, N the number of array
elements (equal to the number of input beams to the combiner), Nout the
number of output beams from the combiner, and Ncorr the number of input
beams combined to produce each output beam. For pairwise combination,
Ncorr = 2 and Nout = N(N−1). (Note that combining beams at beamsplitting
surfaces produces two output beams.) For “all-on-one” combination Ncorr =
N and Nout = 2. In both cases SNR ∝ N−1/2, which demonstrates that
multi-element arrays are indeed less sensitive than single-baseline instruments.
Equation (140) gives a ∼

√
2 advantage of the “all-on-one” technique over

pairwise beam combination, but the required temporal encoding of the fringes
is difficult to realize technically.

Michelson and Fizeau Interferometers

In a Fizeau interferometer the output pupil is an exact replica of the input
pupil, scaled only by a constant factor. This is also known as homothetic
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mapping between input and output pupil. In contrast, in a Michelson in-
terferometer there is no homothetic relation between the input and output
pupils.31 This means that the object–image relationship can no longer be
described as a convolution, because the rearrangement of the apertures re-
arranges the high-spatial frequency part of the object spectrum in the Fourier
plane (Tallon and Tallon-Bosc 1992). This has an important consequence for
off-axis objects: the image position does not coincide with the white-light
fringe position (see Fig. 1 in Tallon and Tallon-Bosc 1992). For a finite spec-
tral bandwidth this means that the fringe contrast decreases with field angle
and the field-of-view is limited; the maximum size of an image from a Michel-
son interferometer is ∼R ≡ λ/∆λ resolution elements in diameter. This effect
is known as “bandwidth smearing” in radio astronomy (see Sect. 8.4). If a
Michelson interferometer is used with image plane beam combination, and
the visibilities are estimated by integration over each fringe peak, the field-
of-view is additionally restricted to the size of one Airy disk of the individual
telescopes.

8.3 Source Coherence and Interferometer Response

The source coherence function is defined as

γ(ξ1, ξ2, τ) =
〈
E(ξ1, t)E∗(ξ2, t− τ)

〉
, (141)

where E is the radiation field, and ξ the direction cosine on the sky. For
ξ1 = ξ2 = ξ, γ is the time autocorrelation function of the radiation from
direction ξ; for τ = 0, this is the time-averaged brightness from that direction〈
|E(ξ)|2

〉
. An extended source is spatially incoherent if γ = 0 for ξ1 �= ξ2; in

this case

γ(ξ1, ξ2, τ) = γ(ξ1, τ) · δ(ξ1 − ξ2) . (142)

An interferometer with antennae at positions u1, u2 measures essentially
the Fourier transform of γ:

Γ (u1, u2, τ) =
∫ ∞

−∞

∫ ∞

−∞
γ(ξ1, ξ2, τ) e−2πi(ξ1u1−ξ2u2)dξ1dξ2 . (143)

In the spatially incoherent case, the interferometer response depends only on
the difference vector of the antenna positions:

Γ (u, τ) =
∫ ∞

−∞
γ(ξ, τ) e−2πiξudξ . (144)

31 I take this as the definition of Fizeau and Michelson interferometers. Sometimes
these terms are also used to mean “image plane” and “pupil plane” interferometer,
respectively. In my nomenclature, it is possible to build an image plane Michelson
interferometer.
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The interferometer output at zero delay is called complex visibility; the com-
plex visibility is the Fourier transform of the source brightness distribution:

V = Γ (u, 0) =
∫ ∞

−∞

〈∣∣E(ξ)
∣∣2〉 e−2πiξudξ . (145)

Each observation on one baseline measures one Fourier component of the sky
brightness distribution.

8.4 Bandwidth and Interferometric Field-of-View

For monochromatic light, the interferometer response is:

F = cos
(
2πB
λ

sin θ
)

= cos
(
2πBξ
λ

)
. (146)

For a rectangular bandpass with width ∆ν, the response is:

F (ν0) =
1

∆ν

∫ ν0+∆ν/2

ν0−∆ν/2
cos
(
2πBξν

c

)
dν

= cos
(
2πBξν0

c

)
· sin(πBξ∆ν/c)

πBξ∆ν/c
(147)

= cos
(
2πBξν0

c

)
· sinc

(
πBξ∆ν

c

)
,

where we have again used the function sinc(x) ≡ sin(x)/x. This bandwidth
smearing limits the field-of-view of the interferometer; the maximum size of
the field is of order R = ν/∆ν resolution elements:

ξmax ≈ R · λ/B. (148)

8.5 Fringe Detection

Delay Modulation and ABCD Detection

In each of the spectral channels, arriving photons are counted synchronously
with the delay modulation in bins corresponding to λ/4. (Since the physical
stroke is equal to λ only in the channel with the longest wavelength, dead
time has to be added in the electronics at the end of the stroke in the other
three channels.) From the four bin counts A, B, C, and D (see in Fig. 43, the
square of the visibility V 2 can be estimated using

V 2 =
π2

2
·
〈
X2 + Y 2 −N

〉
〈N −Ndark〉2

, (149)
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Fig. 43. ABCD fringe scanning scheme. The delay is modulated by a sawtooth pat-
tern with amplitude one wavelength (top). The time for the fringe scan is divided
in four intervals of equal length, A, B, C, and D. The detector readout is synchro-
nized with these four intervals, and the intensity integrated during each interval is
measured. The fringe amplitude and phase can be derived from the four bin counts
(see (149) and (150))

where X = C − A and Y = D − B are the real and imaginary parts of the
visibility, N = A + B + C +D is the total number of photons counted, and
Ndark is the background count rate determined separately on blank sky. This
estimator for V 2 is not biased by photon noise (Shao et al. 1988). The visibility
phase is estimated from

φ = arctan
(
Y

X

)
− π

4
. (150)

For delay modulation and synchronous detection of the photon count rate
in n bins per wavelength of modulation, (149) can be generalized to

V 2 =
(

4π2

n2sin2(π/n)

) 〈
X2 + Y 2 − σ2

N

〉
〈N −Ndark〉2

, (151)
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where X and Y are again the real and imaginary parts of the visibility con-
structed from the bin counts, N the total number of counts in all bins, σ2

N

the variance of N due to noise (Benson et al. 1998).

Coherent and Incoherent Visibility Integration

The data are averaged using a combination of coherent and incoherent inte-
grations.32 By choosing a coherent integration time T , an observation of total
duration M · T is divided into M intervals, which are averaged incoherently.
The variance of the V 2-estimator (149) is then given by

σ2 =
π4

4MN2
+
π2V 2

MN
, (152)

where N is the number of photons detected per coherent integration time
(Colavita 1985). The signal-to-noise-ratio of V 2 is therefore:

SNR(V 2) =
2
π2
·
√
MNV 2√

1 + 4
π2NV 2

. (153)

If NV 2 � 1, the second term in (152) dominates, and the variance depends
only on the total number of photons detected, MN . If, however, NV 2 � 1,
the first term is the dominant one, and the variance for a given total duration
of the observation (i.e., constant total number of photonsMN) decreases with
increasing coherent integration time, σ2 ∝ N−1 ∝ T−1; this implies that the
signal-to-noise ratio of V 2 is ∝ T 1/2 (for constant M ·T ). We will call the two
cases the “photon-rich” and “photon-starved” regimes, although NV 2, and
not N , is the critical quantity.

The important results captured in (152) and (153) have a simple intu-
itive interpretation. If the coherent integration time is sufficiently long, we
get a good estimate of the amplitude and phase of the complex visibility. We
can then stop the coherent integration, write out V 2 for a data sample, and
average over these samples later without losing sensitivity. This is the photon-
rich regime. If we are forced to stop the coherent integration (e.g., because of
variations in the atmospheric or instrumental phase) before we get a mean-
ingful phase measurement, we can still estimate V 2 for each data sample, but
averaging over these estimates gives the poorer signal-to-noise characteristic
of the photon-starved regime.

32 Coherent integration means that we sort each photon arriving during the inte-
gration time in one of the bins A, B, C, D, and use (149) to get an estimate
of V 2. Incoherent integration means that we average over many estimates of V 2.
The intuitive meaning is that the coherent integration is used to estimate both
amplitude and phase of the visibility, whereas the incoherent integration averages
over the modulus of the visibility.
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While these considerations show that it is advantageous to choose T large
enough to get into the photon-rich regime, values larger than a fraction of the
atmospheric coherence time will lead to serious phase changes and therefore
to unacceptable degradation of the visibility. In the MkIII “standard” data
reduction for measurements of stellar diameters and binary stars, T = 4ms is
adopted, which gives a coherence loss of a few percent for seeing conditions
typical for Mt. Wilson.

Visibility Calibration

The different interferometers use somewhat different observing strategies and
calibration procedures, but they are all based on measurements of stars with
known diameters. In the case of the MkIII, several calibrator stars were nor-
mally included in the observing list for each night. They were used to deter-
mine the “system visibility” V 2

sys, i.e., the value of V
2 observed for unresolved

stars, as a function of seeing, zenith angle, time, and angle of incidence on the
siderostat mirrors. For the seeing calibration, a seeing index S is calculated
for each observation from the residual delay that the fringe tracker was unable
to remove (Mozurkewich et al. 1991). After removing the relatively strong de-
pendence of V 2 on S, calibration with respect to the other variables normally
gave only a slight further improvement. (This situation is changed for phase-
referenced data, where an additional strong decrease of V 2 with zenith angle
has to be taken into account, see Sect. 8.6). The raw values of V 2 determined
from (149) are then divided by V 2

sys to obtain calibrated data V 2
cal for further

analysis. Both the internal noise, with contributions from photon noise and
from short-term fluctuations, and the calibration uncertainty contribute to
the error of V 2

cal. The two terms can be added in quadrature to obtain formal
error bars.

Fringe Tracking Trade-Offs

The optimization of the fringe-tracking sensitivity is critically important for
every interferometer. An important consideration in this regard concerns the
trade-off between white-light fringe tracking and techniques based on dis-
persed fringes (le Poole and Quirrenbach 2002). White-light fringe tracking
gives the highest sensitivity, because it allows for the simplest optical design
(and thus for the highest optical throughput), and because it uses all available
light with the smallest possible number of pixel-reads. On the other hand,
white-light fringe tracking is also most sensitive to fringe mis-identification
and fringe jumps. The best way to overcome this is by considering spectrally
dispersed fringes. A compromise between these two conflicting requirements
is to send part of the light to the white-light tracker, and part to a dispersed
fringe sensor to locate the central fringe at a lower sampling rate. It is ob-
vious that this works well only if fringe jumps are sufficiently rare, which in
turn sets a limit on the minimum necessary signal-to-noise ratio and thus on
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the required brightness of the reference star. Detectors with intrinsic spectral
resolution would be very advantageous to solve this dilemma; they could com-
bine the advantages of white-light fringe tracking (efficiency and sensitivity)
with a simultaneous capability to measure the group delay, and thus to ensure
proper identification of the central fringe. Detector types that are currently
under development include Superconducting Tunneling Junctions (STJs) and
Superconducting Edge Sensors (Perryman and Peacock 2000; Romani et al.
1999; Bruijn et al. 2000). A fringe tracker based on an adaptation of these
detector types for near-infrared observations with a spectral resolving power
of R ≈ 20 would produce an almost optimum solution for fringe tracking on
faint sources.

Single-Mode Fibers and Modal Filtering

Single-mode optical fibers can be used for many of the functions required
in an optical interferometer: beam transport, beam combination (in X cou-
plers), modulation of the optical path difference (by physically stretching a
fiber, Shaklan 1990), polarization control, and modal filtering. The last capa-
bility is particularly attractive; single-mode fibers can eliminate the decrease
in fringe visibility caused by atmospheric turbulence and thus alleviate the cal-
ibration difficulties of ground-based interferometers. The coupling efficiency
into single-mode fibers depends on the wavefront shape; it is roughly equal to
the Strehl ratio of the input beam (Shaklan and Roddier 1988). The output
of the fiber is a perfectly flat wavefront. Introducing a single-mode fiber in
each of the interferometer arms thus converts atmospheric wavefront aber-
rations into intensity fluctuations. Splitting off some of the light from each
telescope before beam combination in a Y coupler allows monitoring of I1
and I2 (Coudé du Foresto et al. 1997). The corrected interferogram

Icor ≡
Iout − I1 − I2

2
√
I1I2

= Γ (u, 0) (154)

is then independent of atmospheric wavefront degradation. By definition, the
étendue of a single-mode fiber is λ2, i.e., the field-of-view is limited to one
Airy disk.

Phase-Referenced Visibility Averaging

The wide-band tracking channel in the MkIII Interferometer provides a phase
reference, which can be used to extend the coherent integration time T beyond
the limit imposed by the atmospheric turbulence. This method provides a
means of obtaining substantially better signal-to-noise in the photon-starved
regime, or even to make a transition into the photon-rich regime. The phase-
referenced quantities Xr, Yr, Vr, and φr are defined by

Xr + iYr = Vr eiφr = Vs ei(φs− λt
λs
φt) , (155)
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where λs, Vs, φs are the wavelength, visibility, and phase in the signal channel,
and λt, φt the wavelength and phase in the tracking channel. In practice, V 2

r

is computed from (149) using Xr and Yr instead of X and Y ; this procedure
retains the advantage of using an unbiased estimator.

Equation (155) assumes that the atmospheric phase at λs is given by
(λt/λs)φt. If this were the case exactly, there would be no coherence losses,
and the integration time could be arbitrarily long. A number of systematic
effects (discussed in more detail in Sect. 8.6, see also Quirrenbach et al. 1994)
can lead to a decorrelation of the phases between the signal and tracking
channels, however. They introduce additional phase noise, which reduces the
system visibility and limits the maximum integration time. The dependence
of the system visibility on seeing and zenith angle is also made steeper, which
increases the uncertainty of the calibration. In practice, therefore, phase-
referenced averaging involves trading off some calibration accuracy for the
gain in signal-to-noise.

8.6 Phase Decorrelation Mechanisms

Phase Errors and Coherence Losses

We will now discuss a number of mechanisms that lead to phase errors and
therefore to coherence losses and to a reduction of the phase-referenced vis-
ibility. These effects can be broadly divided into two classes, namely those
mechanisms that are due to errors in the determination of the phase in the ref-
erence channel, and those that are due to differential atmospheric propagation
effects. While some of the former processes are instrument-dependent and can
be reduced (or even avoided) by improved interferometer and fringe-detector
designs, the latter class sets fundamental limits to the application of phase-
referencing methods from the ground. We will again use phase-referenced visi-
bility averaging with the MkIII Interferometer to give some specific numerical
examples (see also Quirrenbach et al. 1994).

If the variance of the referenced phase φr associated with a decorrelation
mechanism is σ2

φ,r, it will reduce V 2
r by a factor η, which can be computed

from

η = e−σ
2
φ,r . (156)

For assessing the individual mechanisms, it is not only important to com-
pare the numerical values of the associated phase variances, but also to note
their dependencies on observing conditions (e.g. seeing, zenith angle) and par-
ticularly on stellar parameters (e.g. colors). While the standard calibration
procedure will correct for a uniform reduction of V 2, and to some extent for
variations with observing conditions, effects that differ from star to star can in-
troduce systematic errors that are difficult to detect. A priori limits on these
effects are therefore necessary for practical applications of phase-referenced
visibility averaging.
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Photon Noise in the Tracking Channel

The finite number of photons detected during each coherent integration inter-
val (4ms in the MkIII case) sets a fundamental limit to the precision of the
reference phase determination. The variance of φr due to photon noise in the
tracking channel is

σ2
φ,r =

(
λt
λs

)2

σ2
φ,t,phot =

(
λt
λs

)2

· 2
NtV 2

t

, (157)

where Nt and Vt are the number of the photons counted and the visibility in
the tracking channel. σ2

φ,r depends on the brightness and color of the star,
and even on the baseline length (through V 2

t ). However, for the fringe tracker
to work reliably under average seeing conditions, NtV

2
t ≈ 70 is needed for the

4ms sampling interval, giving η ≈ 0.98 for λt = 700 nm, λs = 800 nm, and
η ≈ 0.95 for λt = 700 nm, λs = 500 nm. Thus the visibility reduction is slight
even for stars that are close to the sensitivity limit of the fringe tracker, and
negligible for stars that are substantially brighter. It is also possible to intro-
duce the signal-to-noise in the tracking channel as an additional independent
variable in the calibration process, if very high accuracy is required.

Color and Visibility Dependence
of the Effective Tracking Wavelength

To achieve high sensitivity (and to keep the errors due to photon noise small),
the bandpass in the fringe-tracking channel should be made as wide as possi-
ble. The effective wavelength to be used in (155) is then given by

λt =
∫
dλλWt(λ)N(λ)V (λ)∫
dλWt(λ)N(λ)V (λ)

, (158)

where N(λ) is the number of photons emitted by a star as a function of wave-
length, V (λ) the visibility, and Wt(λ) the combined response of atmosphere,
instrument, and detector. If the wavelength used in (155) differs from the true
effective wavelength by δλt, the resultant variance of the reference phase is

σ2
φ,r =

(
δλt
λs

)2

·
〈
φ2
t

〉
. (159)

As evident from (158), the true effective wavelength depends on stellar colors
and diameters, and on the baseline length. If for simplicity one uses λt =
700 nm for all stars in the data reduction, δλt <∼ 25 nm for the parameters of
the MkIII Interferometer. With the additional assumption that the residual
atmospheric phase r.m.s. not tracked by the fringe tracker

√
〈φ2

t 〉 <∼ 2 rad,
η >∼ 0.99 is derived from (159).
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Stroke Mismatch

In pathlength modulation schemes like that used by the MkIII, any difference
between the stroke of the 500Hz pathlength modulation and the wavelength
λ will also lead to errors in the phase estimation, since then the bins A, B,
C, and D do not correspond exactly to λ/4. (This correspondence is assumed
implicitly in (150).) For each channel, the gating of the electronic counters
for A, B, C, and D has to be set by the on-line control system to match one
quarter of the nominal wavelength. In this way, an effective stroke s is created
for each channel. Defining

ε =
2π
λ
· (s− λ) and δ =

cos ε/4
1 + sin ε/4

, (160)

it has been shown by Colavita (1985) that

tanφest = δ · tanφtrue , (161)

where φest is the phase estimated from (150), and φtrue is the true phase. For a
complete treatment of the effect of the stroke mismatch, these equations have
to be integrated over λ, with a suitable weighting function representing the
bandpass of the tracking channel. To first order, however, it can be assumed
that the phase error is given by (160) and (161), evaluated at λ = λt. For
st − λt ≤ 25 nm, a phase error φest − φtrue ≤ 2◦ is then obtained. Errors of
this order can be safely ignored for most visibility averaging applications, but
may be important for phase-referenced imaging and spectroscopy.

Fringe Jumps

An ideal fringe tracker would follow the atmospheric pathlength fluctuations
to a fraction of λt, and φt would always be well within the interval (−π, π].
In practice, however, temporary excursions from the central fringe that are
larger than λ/2 may occur, and the phase has to be “unwrapped” by the
phase-referencing algorithm. This is done by imposing the requirement that
the phase in successive data segments (4ms intervals for the MkIII) should
be continuous. While this process normally works well, occasional misidentifi-
cations are possible. It is obvious from (155) that a 360◦ error in φt will lead
to a phase jump in φr.

If the average number of these jumps during the coherent integration time
T is small, the coherence loss is not dramatic. This requirement sets an upper
limit to T . Since the probability of unwrapping errors depends only on the
seeing and on the signal-to-noise in the tracking channel, it can be accounted
for in the calibration procedure. In a series of tests with the MkIII, it turned
out that the degradation of the phase-referenced visibility Vr due to fringe
jumps was not serious for integration times up to 2 s, for average seeing
conditions on Mt. Wilson.
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Dispersion

While (155) assumes that the atmospheric pathlength fluctuations are inde-
pendent of wavelength, they are actually larger in the blue spectral range
than in the red, because of dispersion. The two-color dispersion coefficient D
is defined by

D =
n(λt)− 1

n(λs)− n(λt)
, (162)

where n(λ) is the refractive index of air at λ. Typical values for λt = 700 nm
and λs = 450, 500, 550, and 800 nm are D = 59, 87, 137, and −364, respec-
tively. If the total “unwrapped” phase in the tracking channel is denoted Φt,
a phase error (λt/λs)(Φt/D) is introduced by the dispersion. Since the largest
phase excursions occur on long time scales, this sets a limit to the coherence
time. For Kolmogorov turbulence, the coherence time t0,r of φr is given by

t0,r = |D|6/5 t0,s , (163)

where t0,s is the atmospheric coherence time in the data channel (Colavita
1994). Under average conditions on Mt. Wilson, t0,s is of order 6 to 8ms
at 500 nm. For integration times up to about 2 s, the coherence losses due
to dispersion are therefore tolerable for visibility averaging, and they can be
taken into account by the calibration procedure.

It is obviously possible to deal with dispersion explicitly by using

φ̃r = φs −
λt
λs
φt −

λt
λs
· Φt
D

(164)

instead of φr as defined in (155). While this approach can reduce the phase
errors by a factor ∼10, a residual effect due to water vapor fluctuations re-
mains, because their dispersion is different from the values applicable to dry
air.

Anisoplanatism

If the reference phase is measured on a star at an angular separation θ from the
target object, there will be some decorrelation because the light from the two
sources passes through different turbulence cells, as discussed in Sect. 7.7. In
interferometric applications, the independent contributions from the two arms
of the interferometer have to be taken into account. Under the assumption
of a Kolmogorov turbulence spectrum, the interferometric isoplanatic angle
therefore is

θi = 2−3/5θ0 =
[
5.82 k2(sec z)8/3

∫ ∞

0

dhC2
N (h)h5/3

]−3/5

, (165)

where k = 2π/λ is the wavenumber (assumed here to be equal for the target
and reference channels), and z the zenith angle. While this expression holds for
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small apertures, a somewhat more optimistic estimate is obtained for larger
apertures (Colavita 1994). Typical values for θi are of order a few arcseconds,
much larger than the interferometric field of view of a Michelson interferom-
eter. In applications where the reference phase is measured on the object of
scientific interest itself, anisoplanatism does not occur at all. However, it is the
most severe limitation for dual-star interferometry (see Sect. 9.5). Because of
the usual θi ∝ λ6/5 scaling finding reference stars for dual-star interferometry
is much easier at longer wavelengths.

Differential Refraction

An effect somewhat similar to anisoplanatism occurs even when the angular
separation between the target and the reference is zero. If λs �= λt, the beams
at the two wavelengths follow different paths through the atmosphere at non-
zero zenith angles, due to differential refraction. For a Kolmogorov turbulence
spectrum, the corresponding phase variance is

σ2
φ,r = 5.82 k2s

[
h0 (n(λt)− 1) e−h1/h0

D

]5/3
tan5/3z sec8/3z

×
∫ ∞

0

dhC2
N (h)

(
1− e−h/h0

)5/3
, (166)

where ks = 2π/λs is the wavenumber in the signal channel, n(λt) is the
atmospheric index of refraction at λt, D is the atmospheric dispersion between
λs and λt defined by (162), h0 is the scale height of the atmospheric density, h1
is the elevation of the observatory site above sea level, z is the zenith angle,
and C2

N (h) is the refractive index structure constant. Again, this estimate
might be somewhat pessimistic, since averaging over the aperture has not
been taken into account.

The phase variance due to differential refraction depends very strongly
on z; while it is negligible close to the zenith, it is the dominant decorrela-
tion mechanism at intermediate to large zenith angles for the parameters of
the MkIII phase-referenced visibility averaging experiments. From (166) it is
obvious that differential refraction – like anisoplanatism – is more strongly af-
fected by high-altitude turbulence than by disturbances close to the ground.
This is expected, since the beams from target and reference coincide at the
telescope aperture; their separation increases with height when they are traced
back through the atmosphere. To carry out quantitative calculations of dif-
ferential refraction, it is therefore necessary to know the turbulence profile;
in the absence of better measurements we use the model for the atmospheric
turbulence as a function of height h (in m) by Hufnagel (1974),

C2
N (h) = 2.7 ·

(
2.2 · 10−53h10e−h/1000 + 10−16e−h/1500

)
. (167)

Figure 45 shows the reduction of V 2
r derived from a numerical integration

of (166), with the Hufnagel turbulence profile. The values h0 = 8300m,



158 A. Quirrenbach

h1 = 1700m (applicable to Mt. Wilson), λt = 700 nm, and λs = 450, 500,
550, and 800 nm were used. This figure demonstrates that differential refrac-
tion leads to a much steeper dependence of the system visibility with zenith
angle in the phase-referenced data than in incoherent averages. This effect is
particularly important in the blue spectral range, where the dispersion is large
(small values of D). Differential refraction therefore restricts the application
of phase-referenced visibility averaging to moderate zenith angles, depending
on the wavelength λs and on the seeing.

The top panel in Fig. 44 shows the MkIII system visibility for two nights
(July 29 and 31, 1989) as a function of zenith angle z, for the data integrated
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Fig. 44. Top panel: Observed V 2 divided by an estimate V 2est from photometric
data, for 16 stars at 500 nm. The data are plotted as a function of zenith angle z.
Each night was normalized to 1 at z = 0. Each measurement corresponds to one 75 s
observation. The standard data reduction procedure was used, which averages the
4ms samples incoherently. Bottom panel: The same data as in the top panel, but
processed with the phase-referenced averaging algorithm. The coherent (phase-ref-
erenced) integration time is 1,024ms. The solid curve is the visibility reduction due
to differential refraction predicted by the Hufnagel model atmosphere; the dashed
curves correspond to atmospheres that have 0.5 and 2 times the C2n of the Hufnagel
model at all heights
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Fig. 45. Reduction of V 2 due to differential refraction as a function of zenith angle
z, predicted from a Hufnagel (1974) model atmosphere. The reference wavelength
λt = 700 nm; the wavelength in the data channels λs = 450, 500, 550, and 800 nm

incoherently with the standard method; it has been normalized to V 2
sys = 1

at z = 0. It is obvious that V 2
sys varies only slightly with z; this variation is

mostly due to the degradation of the seeing for longer pathlengths through the
atmosphere. The bottom panel shows the same data, but processed with the
phase-referencing algorithm, using an integration time of 1,024ms. A strong
reduction of the system visibility is now apparent at z >∼ 40◦. The solid line
indicates the visibility reduction due to differential refraction predicted by the
Hufnagel (1974) atmosphere model. The qualitative agreement between the
observations and this model demonstrates that differential refraction is indeed
the dominant reason for coherence losses at intermediate to large zenith angles.

Diffraction

Finally, if λs �= λt, there will be some decorrelation because of diffraction.
The phase variance due to diffraction is related to the intensity scintillation
variance σ2

ln I by
σ2
φ,r = G(λt/λs)σ2

ln I(λt) , (168)

with a function G(r), which can be approximated by

G(r) ≈
(
r1/2 (r − 1) /2

)4/3
(169)



160 A. Quirrenbach

for 1 ≤ r <∼ 1.5 (Colavita 1994). Observed values for σ2
ln I on Mt. Wilson

range from 0.005 to 0.05. The larger of these values gives σ2
φ,r = 0.0073, or

η = 0.99 for λt = 700 nm, λs = 500 nm. Since all stars are affected equally,
the calibration procedure takes into account the small coherence loss due to
diffraction.

9 Astrometry with Interferometry

The principle of planet detection with astrometry is similar to that behind the
Doppler technique: one infers the presence of a planet from the motion of its
parent star around the common center of gravity. In the case of astrometry
one observes the two components of this motion in the plane of the sky;
this gives sufficient information to solve for the orbital elements without sin i
ambiguity. Astrometry also has advantages for a number of specific questions,
because this method is applicable to all types of stars, and more sensitive to
planets with larger orbital semi-major axes. Interferometric techniques hold
the promise to push astrometric precision well beyond the current state of
the art; these advances are needed for planet detection. In this chapter we
will therefore discuss the technical foundations of interferometric astrometry,
and examine its potential for the detection and characterization of extrasolar
planets.

9.1 Astrometric Signature of Low-Mass Companions

From simple geometry and Kepler’s Third Law (17) it follows immediately
that the astrometric signal θ of a planet with mass mp orbiting a star with
mass m∗ at a distance d in a circular orbit of radius a is given by

θ =
mp

m∗

a

d
=
(

G

4π2

)1/3
mp

m
2/3
∗

P 2/3

d

= 3µas · mp

M⊕
·
(
m∗
M�

)−2/3(
P

yr

)2/3(
d

pc

)−1

; (170)

This signature is shown in Table 11, for five sample planets (analogues to
Earth, Jupiter, Saturn, Uranus, and a “Hot Jupiter” with mp = 1Mjup and
P = 4days) orbiting a 1M� star. From this table, the main strengths and
difficulties of astrometric planet detection are readily apparent:

• The astrometric signature θ is small compared to the precision of “stan-
dard” astrometric techniques (<∼ 1mas).

• The difficulty of detecting different types of planets varies greatly, with θ
ranging from <∼ 1µas to ∼1mas.

• The sensitivity of astrometry for a given type of planet drops linearly with
d (unlike the radial-velocity technique).
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Table 11. Astrometric signature from different planet / parent star combinations

planet orbit [AU] star amplitude · d [µas · pc]

Earth 1 G2 3

Jupiter 5 G2 4,800

Uranus 20 G2 880

“hot” Jupiter 0.1 G2 96

Brown Dwarf 0.1 M5 7,500

Jupiter 5 A5 2,200

Jupiter 5 M5 24,000

Note that the numbers given in the last column have to be divided by the
distance to give the astrometric signature. 15Mjup was used for the mass
of the brown dwarf

• The detection bias of astrometry with orbital radius is opposite to that
of the radial-velocity method, favoring planets at larger separations from
their parent stars.

It should be pointed out that for circular orbits the observed astrometric signal
is an ellipse with semi-major axis θ independent of the orbital inclination; the
mass of the planet can therefore be derived directly from (170) if the mass
of the parent star is known. The situation is a bit more complicated for non-
circular orbits, but even in that case can the orbital inclination be determined
from the astrometric data with techniques analogous to those used for fitting
orbits of visual binaries (e.g., Binnendijk 1960).

In Table 12, the numbers from Table 11 have been converted to the max-
imum distance at which the planet is detectable, for different assumptions
about the astrometric precision.

9.2 Upper Mass Limits and Astrometric Detection of Gl 876B

Looking at planets that are already known from radial-velocity surveys is an
obvious first application of the astrometric technique, because of its ability to
determine the planet’s mass without sin i ambiguity. It is clear from that this
is a challenging task with a precision of slightly better than a milliarcsecond,
which is currently achievable with Hipparcos data or with the Hubble Fine
Guidance Sensors. Observations of Gl 876 with the latter instrument resulted
in the detection of the astrometric wobble due to its companion Gl 876 b,
and thus mark the first secure astrometric detection of an extrasolar planet
(Benedict et al. 2002). The parameters of this system are φ = 0.25±0.06mas,
i = 84◦ ± 6◦, and mp = 1.9± 0.5Mjup.

In many cases, interesting upper limits on the companion mass can be de-
rived from astrometric observations even if the signature is below the detection



162 A. Quirrenbach

Table 12. Maximum distance to which different planets can be observed with
a ground-based interferometer in astrometric mode, with either 50 µas or 10µas
precision

precision planet orbit [AU] star max. distance [pc]

50µas Jupiter 5 G2 48

Uranus 20 G2 9

Brown Dwarf 0.1 M5 75

Jupiter 5 A5 22

Jupiter 5 M5 240

10µas Jupiter 5 1M� 240

Uranus 20 G2 44

Jupiter 5 A5 110

10 Earths 1 G2 1.5

1µas Jupiter 0.1 G2 48

Earth 1 G2 1.5

1µas can probably be attained only from space. It is assumed that a 4 σ peak-to-
peak variation is required for secure detection of a planet

limit. A good example is the case of ιDra b (Frink et al. 2002). The radial-
velocity observations give P = 536 days, e = 0.70, and mp sin i = 8.9Mjup for
this object. The non-detection in the Hipparcos data places a 3σ upper limit
of 45Mjup on the mass of ιDraB, and thus firmly establishes its sub-stellar
nature.

9.3 Astrometric Measurements with an Interferometer

Improving the astrometric precision by one to two orders of magnitude is
required to make astrometry a truly powerful and versatile tool for planet
detection. Dramatic progress is indeed expected from the development of in-
terferometric techniques, which have the potential to achieve ∼10µas from
the ground, and ∼1µas from space.

Principles of Interferometric Astrometry

Astrometric observations by interferometry are based on measurements of the
delayD = Dint+(λ/2π)φ, whereDint = D2−D1 is the internal delay measured
by a metrology system (see Fig. 42), and φ the observed fringe phase. Here φ
has to be unwrapped, i.e., not restricted to the interval [0, 2π). In other words,
one has to determine which of the sinusoidal fringes was observed. This can,
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for example, be done with dispersed-fringe techniques (see Sect. 8.5). D is
related to the baseline ?B by

D = ?B · ŝ = B cos θ , (171)

where ŝ is a unit vector in the direction toward the star, and θ the angle
between ?B and ŝ. Each data point is thus a one-dimensional measurement
of the position of the star θ, provided that the length and direction of the
baseline are accurately known. The second coordinate can be measured with
a separate baseline at a roughly orthogonal orientation.

In a ground-based interferometer the endpoints of the baseline (i.e., the
positions of the telescopes or siderostats) can be related to the solid ground
of the site and thus tied to the Earth’s rotation. One can either rely on the
stability of the telescope mount, or, if greater precision is needed, use a truss
of laser interferometers to monitor changes of the positions of the siderostat
pivot points with respect to “optical anchors” attached directly to bedrock
(Armstrong et al. 1998). Repeated observations of a set of stars throughout
a night can then be used to determine the baseline vector ?B in the rotating
reference frame of the Earth. With a sufficient number of observations for
each star one obtains more observables (delays) than unknowns (stellar and
baseline coordinates), so that one can solve for ?B from a set of over-constrained
equations (Thompson et al. 1986).

In space, no convenient stable platform like the Earth is available. The
Space Interferometry Mission (SIM, Sect. 9.6) therefore uses two additional
interferometers that look at two stars to stabilize the spacecraft attitude; these
guide interferometers are essentially extremely precise star trackers (Milman
and Turyshev 2000). Since the spacecraft structure is not sufficiently stiff on
the sub-µm scale, an “optical truss” is again formed by laser interferometers
and used to monitor the exact position of all important optical elements,
including the baseline length and the relative orientation of the main and
guide interferometers.

Astrometric Precision

The photon noise limit for the precision σ of an astrometric measurement is
given by the expression

σ =
1

SNR
· λ

2πB
. (172)

Since high signal-to-noise ratios can be obtained for bright stars, σ can be
orders of magnitude smaller than the resolution λ/B of the interferometer.
For example, the resolution of SIM (B = 10m) is about 10mas, but the
astrometric precision of measurements with SIM should approach 1µas.

To reach this photon noise limit, it is of course necessary to control all
other statistical and systematic errors very precisely. Keeping track of all in-
strumental contributions to the final astrometric error is quite an arduous
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task; it is usually accomplished with a formal error budget. This is essen-
tially a tree in which error sources are organized in a hierarchical structure.
Each box in this error budget can be further subdivided in sub-boxes down to
the noise of individual metrology detectors, surface errors of individual mir-
rors, or vibration spectra of the mounts of individual optical elements. Once
this error tree has been established, it is possible to perform “top-down” or
“bottom-up” analyses of the error budget. In a top-down error budget, one
starts with a desired measurement accuracy, and divides the allowable error
to individual systems, sub-systems, and so on to derive performance specifi-
cations for all components in the instrument. In a bottom-up analysis, one
starts with known data or manufacturers’ specifications for all components to
arrive at a prediction of the final system performance. In the end, hopefully,
both analyses agree, and one ends up with a plan for building an instrument
that will perform to specifications. During the commissioning and operation
of the instrument, the error tree is an important tool for debugging and im-
plementation of improvements.

Radio and Millimeter Interferometry

The application of interferometric methods to astrometry is not limited to the
visible and infrared wavelength ranges, of course. The technique of very long
baseline interferometry (VLBI), in which telescopes on different continents are
coupled coherently, has indeed produced astrometric data of such quality that
the International Celestial Reference Frame has been based on radio sources.
VLBI can also reach sub-milliarcsecond precision for the measurement of the
photocenter position of radio stars (Lestrade 2000a). Unfortunately, the rela-
tion between the center of mass and the region from which the radio emission
emanates, is frequently poorly understood, which makes the interpretation of
the data difficult. Nevertheless, pilot VLBI observations of a number of dMe
stars have been performed with the ultimate goal to search for planets around
them (Guirado et al. 2002). The sub-millimeter array ALMA currently under
construction in the Atacama desert in Chile will have sufficient sensitivity to
detect the photospheres of nearby stars at 345GHz and could thus also search
for the astrometric signature of planets around them (Lestrade 2000b). How-
ever, the intrinsic faintness of stellar photospheres far in the Rayleigh-Jeans
regime of their thermal emission limits the scope of such projects in compar-
ison to the more promising astrometric programs at visible and near-infrared
wavelengths.

9.4 Atmospheric Limitations of Astrometry

The Narrow-Angle Atmospheric Regime

The Earth’s atmosphere imposes serious limitations on the precision that can
be achieved with astrometric measurements from the ground. An obvious dif-
ficulty is atmospheric refraction (Gubler and Tytler 1998), but the effects
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Fig. 46. Schematic of the atmospheric paths for narrow-angle astrometry with short
and long baselines B (or telescope diameter D). In each panel, rays from two stars
to the two telescopes at the ends of the baseline are shown. The atmosphere is
represented by a single layer at height h. In this layer, the two rays originating from
the same star to the two telescopes are separated by B; the two rays originating
from the two stars to the same telescope are separated by θh. In the left panel the
baseline B is short, θh � B, in the right panel the baseline is long, θh � B. From
Shao and Colavita (1992)

of seeing are even more disturbing. In Sect. 7 we have discussed the blur-
ring of optical images due to atmospheric turbulence. The first-order terms
(frequently referred to as tip and tilt) of this blurring are global wavefront
gradients, which correspond to a motion of the centroid of the stellar light
in the two coordinates. Because most of the power of atmospheric turbulence
is in these low-order modes (e.g. Hardy 1998), the amplitude of this image
motion is similar to the width of the stellar images, i.e., ≈ λ/r0 ≈ 0′′. 5...1′′

(Sect. 7.4). One can obviously reduce this error by taking many exposures and
thus averaging over many independent realizations of the atmospheric turbu-
lence, but achieving a precision of a milliarcsecond or even better in this way
is clearly not possible.

It helps, however, to make differential measurements over small angles on
the sky, i.e., to measure the position of the target star with respect to that
of a nearby reference (see Fig. 46). If the reference star is sufficiently close on
the sky, the rays from the two stars are affected in almost the same way by
the atmospheric turbulence, and the error in the relative position between the
two stars is greatly reduced. From Fig. 46 it should be intuitively clear that
the length of the baseline33 also plays an important role.

33 An analogous analysis can also be carried out for single telescopes, where the
telescope diameter plays the role of the baseline length. It is indeed possible
to perform precise narrow-angle astrometry with large telescopes (Pravdo and
Shaklan 1996).
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If the baseline is short (B � θh, where θ is the angle between the two stars,
and h the effective height of the atmospheric turbulence, see the left panel of
Fig. 46), all rays from star 1 pass close to each other through the atmosphere,
and all rays from star 2 pass close to each other; the separation between the
two ray bundles is large in comparison. This means that a localized patch of
atmospheric turbulence could affect all rays from star 1, but leave those from
star 2 unaffected. Therefore the image motions of the two stars are only weakly
correlated, and the astrometric error is independent of the baseline length. In
contrast, if the baseline is long (B � θh, right panel of Fig. 46), the rays
from both stars to telescope 1 pass relatively close to each other, and those to
telescope 2 pass close to each other. A localized patch of turbulence will thus
tend to affect rays from star 1 and 2 in nearly the same way, which leads to
a stronger correlation of the image motions, and therefore to an astrometric
error that decreases with increasing B.

With a calculation similar to those demonstrated in Sect. 7 it can be shown
that the variance σ2

θ of measurements of the angle θ is given by (Shao and
Colavita 1992)

σ2
θ ≈

16π2

B2t

∫ ∞

0

dh v−1(h)
∫ ∞

0

dκΦ(κ, h) [1− cos(Bκ)]·[1− cos(θhκ)] , (173)

provided that the integration time t � max(B, θh)/v. Here v(h) is the wind
speed at altitude h, and Φ(κ, h) denotes the three-dimensional spatial power
spectrum of the refractive index (see Footnote 28 on p. 132). It may at first
seem surprising that stronger winds should give a smaller measurement error,
but within the frozen-turbulence picture (see Sect. 7.5) a higher wind speed
means that one averages faster over independent realizations of the stochastic
refractive index fluctuations. Inserting a Kolmogorov power spectrum in (173)
one obtains the two limiting cases

σ2
θ ≈



5.25B−4/3θ2t−1

∫∞
0

dhC2
N (h)h2v−1(h) for θ � B/h, t� B/v

5.25 θ2/3t−1
∫∞
0

dhC2
N (h)h2/3v−1(h) for θ � B/h, t� θh/v

(174)

for long and short baselines, respectively. In particular we see that for suffi-
ciently small angles θ the important scaling relations σθ ∝ θ and σθ ∝ B−2/3

hold for the astrometric error σθ. This error is plotted as a function of θ for
three different baseline lengths in Fig. 47; the knees in the curves mark the
transition between the two limiting cases in (174). We see that for a good site
such as Mauna Kea astrometric measurements with a precision of ∼10µas
are possible over angles of ∼10′′. It is also apparent from the factor h2 under
the integral in this equation that the astrometric error is dominated by the
turbulence at high altitudes. The low level of high-altitude turbulence at the
South Pole would therefore make an astrometric interferometer at a site on
the high Antarctic plateau an attractive possibility (Lloyd et al. 2002).
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Fig. 47. Error of relative astrometric measurements for different values of the base-
line length B, using a turbulence profile as measured for Mauna Kea, and assuming
an integration time of 1 h. From Shao and Colavita (1992)

Influence of the Outer Scale of Atmospheric Turbulence

The calculation leading to (174), which is based on a Kolmogorov power law
for the turbulence spectrum, actually gives somewhat pessimistic results. The
reason is that in the Kolmogorov theory there must be an outer scale, beyond
which the power in the turbulence spectrum flattens out (see Sect. 7.1). The
mathematical treatment of this regime is much more involved than that of the
inertial range. Two different parameterizations are in common use, namely the
von Karman spectrum

Φ(|?κ|) ∝
(
κ2 + L−2

0

)−11/6
(175)

and the Greenwood–Tarazano prescription

Φ(|?κ|) ∝
(
κ2 + κ/L0

)−11/6
. (176)

It is obvious that in the limit of small spatial scales (large κ) both functional
forms asymptotically approach the Kolmogorov spectrum Φ(|?κ|) ∝ κ−11/3

(see Footnote 28 on p. 132).
Reliable measurements of the outer scale are very sparse, so that little is

known about numerical values for L0, much less about temporal variability
of L0 or which of the functional forms (175) or (176) is to be preferred (see
Quirrenbach 2002b and references therein). Plausible typical values are in
the range L0 ≈ 10 . . . 100m, but the uncertainty is very large. The best one
can therefore currently do is calculate the astrometric errors for a range of
outer scales – and base the design of astrometric instruments on the more
conservative assumption of a Kolmogorov spectrum with infinite outer scale.
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9.5 Dual-Star Interferometry

Simultaneous Observations of Two Stars

For faint objects one would like to emulate the phase calibration procedure
widely used in radio astronomy in which the atmospheric phase is determined
from a bright source near the target. In radio interferometry one can slew
the telescope between target and reference in intervals of several minutes,
but because of the short atmospheric coherence time at visible and near-
infrared wavelengths, here the target and the reference have to be observed
truly simultaneously. Off-source fringe tracking is therefore possible only in
interferometers with a field much wider than feasible in a Michelson instru-
ment; either a wide-field (e.g., Fizeau) setup or a dual-star system is required.
The discussion of atmospheric limitations of ground-based interferometric as-
trometry (Sect. 9.4) also assumed that the target and reference are observed
simultaneously, again calling for a wide-field or dual-star system.

In a dual-star interferometer, each telescope accepts two small fields and
sends two separate beams through the delay lines (see Fig. 48). The delay
difference between the two fields is taken out with an additional short-stroke
differential delay line; an internal laser metrology system is used to monitor
the delay difference (which is equal to the phase difference multiplied with
λ/2π, of course). For astrometric observations, this delay difference ∆D is the
observable of interest, because it is directly related to the coordinate difference
between the target (subscript t) and reference stars (subscript r); from (171)
it follows immediately that

∆D ≡ Dt −Dr = ?B · (ŝt − ŝr) = B(cos θt − cos θr) . (177)

To get robust two-dimensional position measurements, observations of the
target with respect to several references and with a number of baseline orien-
tations are required.

Narrow-Angle Astrometry

Measurements of the delay difference between two stars give relative astromet-
ric information; this means that the position information is not obtained in a
global reference frame, but only with respect to the nearby comparison stars,
which define a local reference frame on a small patch of sky. We have seen
that this approach greatly reduces the atmospheric errors, and some instru-
mental requirements are also relaxed (see below). The downside is that the
information that can be obtained in this way is more restricted, because the
local frame may have a motion and rotation of its own. This obviously makes
it impossible to measure proper motions. Moreover, all parallax ellipses have
the same orientation and axial ratio, which allows only “relative parallaxes”
to be measured.
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Fig. 48. Schematic setup of a dual-star interferometer. The star separators (also
called dual-star modules) send the light from two stars down the main delay lines
and separate differential delay lines into two beam combiners. The differential delay
∆L is measured by an internal metrology system, which measures the pathlengths
backwards from the beam combiners to common metrology fiducials. The observed
fringe phases ΦA,B , amplitudes AA,B and group delays LgA,B are recorded along
with ∆L.

Narrow-angle astrometry is generally sufficient for planet detection, but
there are a few caveats. First of all, if only one reference star is used, there is
an ambiguity to which star an astrometric wobble has to be attributed. For
example, if one chooses a distant star as reference, and this star happens to
be an unrecognized binary, the resulting variation of the position difference
could be mistaken for planetary signature of the much closer target (see (170)).
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This can of course be avoided by using multiple reference stars, at the cost
of an increase in observing time and somewhat reduced sensitivity. (Some of
the signal-to-noise is used to sort out which of the references are binaries and
which are not.) A somewhat more subtle effect is caused by the rotation of
the local reference frame, due to uncertainties in the proper motions of the
reference stars.34 This rotation couples to the proper motion of the target star,
and produces a spurious “Coriolis” acceleration, which could be mistaken for
the signature of a planet in an orbit with a period longer than the time span
covered by the observations. The detection of planets in long-period orbits
with narrow-angle astrometry therefore requires accurate knowledge of the
proper motions of the reference stars.

Anisoplanatism and Sky Coverage

The dual-star technique is being developed for interferometric astrometry
and for phase-referenced visibility averaging or phase-referenced imaging. The
most important problem encountered by these off-source phase-referencing
techniques is anisoplanatism. The phase noise associated with anisoplanatism
reduces the phase-referenced visibility dramatically if the distance to the ref-
erence source exceeds the isoplanatic angle. The need to find a reference object
within the isoplanatic patch (165) is a severe limitation for off-source phase-
referencing; the chances to find a suitably bright star for a randomly chosen
target are typically one in a hundred or worse.35 This is a substantial problem
for interferometric observations of faint targets such as extragalactic objects
or microlensing events.

The interferometric reference source can also be used for adaptive optics
wavefront sensing, if such a system is available. In this case the whole entrance
pupil of the interferometer is made fully co-phased and the sensitivity of the
interferometer is essentially identical to the sensitivity of a single telescope
with the same diameter. It is thus important to realize that bright objects are
needed to co-phase an interferometer, but very faint sources can be observed
in a limited field around these reference sources.

These principles can also be applied to astrometric observations; where we
need to find astrometric reference stars near the intended target. In the case
of astrometric planet searches, the target is a nearby and therefore bright star,
which can be used for fringe tracking. The point is that now the astrometric

34 For illustration purposes, assume that the local frame is defined by two stars.
The star in the North has an Eastward proper motion, the star in the South a
Westward one; these proper motions are not known to the observer. The reference
frame in which these stars are at rest will have a counter-clockwise rotation.

35 The probability depends strongly on the observing wavelength (because of the
λ6/5 scaling of the isoplanatic angle, (165)) and on the Galactic latitude. The
stellar environment also plays a role, e.g. for observations in clusters or toward
dark clouds.
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references can be quite faint, because phase-referenced fringe tracking can
be applied to them: the astrometric target is the interferometric reference.
It is thus possible to measure the fringe phase on the astrometric reference
stars with a co-phased instrument; the only limitation on their brightness is
the photon noise contribution to the astrometric error budget. For a half-
hour integration with 1.8m apertures and an intended astrometric error of
10 . . . 20µas this limit is about mK = 16 . . . 17. The probability that suitable
reference stars can be found will be further discussed in Sect. 9.8.

Instrumental Requirements

The fundamental instrumental requirements can be derived directly from
(177), which can be written as

∆D ≡ Dt −Dr = ?B · (ŝt − ŝr) ≡ ?B · ∆?s . (178)

The propagation of systematic errors in measurements of the differential delay
δ∆D and of the baseline vector δB to errors in the derived position difference
δ∆s can be estimated from the total differential

δ∆s ≈ δ∆D
B

+
∆D
B2

δB =
δ∆D
B

+ ∆s
δB

B
. (179)

This formula allows us to draw two important conclusions. First, the system-
atic astrometric error is inversely proportional to the baseline length. Together
with the B−2/3 scaling of the atmospheric differential delay r.m.s. (174) this
clearly favors longer baselines, up to the limit where the target star gets re-
solved by the interferometer. The second important conclusion from (179) is
that the relative error of the baseline measurement gets multiplied with ∆s;
this means that the requirement on the knowledge of the baseline vector is
sufficiently relaxed to make calibration schemes possible that rely primarily
on the stability of the telescope mount. For a 10µas (50 prad)contribution to
the error budget for a measurement over a 20′′ angle, with an interferometer
with a 100m baseline, the metrology system must measure δ∆D with a 5 nm
precision; the baseline vector has to be known to δB ≈ 50µm (Quirrenbach
et al. 1998). These are very demanding specifications, but within reach of the
Very Large Telescope Interferometer and the Keck Interferometer.

9.6 Interferometric Astrometry from Space

The Space Interferometry Mission (SIM) and GAIA

While many interesting astrometric projects on extrasolar planets can be car-
ried out from the ground (Sect. 9.7), overcoming the fundamental limitations
imposed by atmospheric anisoplanatism requires going to space. Orbits that
leave the immediate vicinity of the Earth (e.g., L2 orbits or drift-away or-
bits) provide the added bonus of a quiet environment with stable heat flux
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and low vibration levels. NASA’s Space Interferometry Mission (SIM), to be
launched in 2010, will exploit these advantages to perform a diverse astro-
metric observing program (NASA 1999a). SIM is essentially a single-baseline
interferometer with 30 cm telescopes on a baseline of length 10m. SIM is a
pointed mission, i.e., targets can be observed whenever there is a scientific
need (subject only to scheduling and Solar exclusion angle constraints), and
the integration time can be matched to the desired signal-to-noise ratio. The
limiting magnitude of SIM with “reasonable” observing times (of order one
hour per visit) is thus mV ≈ 19 . . . 20. The main scientific driver of SIM is ob-
serving extrasolar planets, but a wide range projects addressing Galactic and
extragalactic astrophysics will also be carried out (e.g., Quirrenbach 2002a).

The European Space Agency is planning to launch an astrometric satellite
of their own, called GAIA, in roughly the same time frame as SIM. GAIA’s
architecture builds on the successful Hipparcos mission (Lindegren and Per-
ryman 1996). Unlike SIM, GAIA will be a continuously scanning survey in-
strument with a large field of view, which results in an enormous number of
observed stars. The main thrust of GAIA will thus be in the area of Galactic
structure (Gilmore et al. 2000; Perryman et al. 2001), but it can also de-
tect extrasolar planets (Lattanzi et al. 2000; Sozzetti et al. 2001). SIM and
GAIA will be complementary to each other in this area. SIM will provide
at least one order of magnitude better accuracy and the ability to obtain
well-sampled orbits (especially of multiple systems) with suitably timed ob-
servations, whereas GAIA will potentially discover massive planets around a
larger number of stars.

SIM Observing Modes

For any fixed spacecraft orientation, SIM will be able to access stars in a field
with a diameter of ∼15◦. Within each such “tile”, a few stars will be selected
before the mission to define an astrometric reference grid. A basic observing
block will consist of observations of the target object(s) interleaved with ob-
servations of the grid stars in the tile; the measured delay differences will thus
yield one-dimensional positions of the target(s) relative to the grid stars. The
second coordinate can be obtained by rotating the spacecraft around the line
of sight by an angle close to 90◦. During the course of the mission, the grid
stars will be visited regularly, about four to five times per year. By observ-
ing overlapping tiles, a full-sky reference grid can be constructed in the same
manner as overlapping plates have been used to assemble all-sky astrometric
catalogs. The inclusion of quasars in the grid will ensure that this reference
system will represent an inertial frame. The expected performance of SIM in
this “global astrometry” mode is 4µas precision on the derived astrometric
parameters (position, parallax) at the end of the nominal 5-year mission.

Many terms in the error budget of SIM measurements depend on the an-
gle between the target and the astrometric references. It is thus possible to
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improve the accuracy by choosing references close (<∼ 1◦) to the object of
interest. For this “narrow-angle” mode36, an accuracy of 1µas for each mea-
surement is envisaged. (Note that this number has to be divided by

√
N with

N = 30 . . . 100 for the number N of visits to obtain the “mission accuracy”.
This is the fair comparison with the “global” mode and with the figures usu-
ally quoted for other missions.) These narrow-angle measurements will not be
in an inertial reference frame, but only with respect to the selected reference
stars, as discussed in Sect. 9.5. The narrow-angle precision will thus not apply
to absolute parallaxes and proper motions, but this is the relevant number for
determining the astrometric wobble due to unseen companions.

From Observations to Astrometric Data

For an instrument like SIM, the path from the observables to the final astro-
metric data products is very complex. The following list illustrate the various
steps that have to be taken, and the most important instrumental and astro-
physical corrections that must be applied (NASA 1999a):

1. The spacecraft slews to a tile, and acquires fringes on each grid star and
the science target(s) in turn, with the delay line positions and fringe phases
yielding the white-light fringe positions as the primary observables. These
delay line measurements include instrumental terms. During the observa-
tions, the guide interferometers, which are locked onto two bright stars,
maintain the baseline orientation by actuating optical elements, while the
spacecraft attitude control system maintains the coarse baseline orienta-
tion.

2. The baseline is reoriented by a spacecraft slew to a nearly orthogonal ori-
entation. Step 1 is repeated for the new orientation, yielding a complete
set of observations from which to construct the two-dimensional geometry
of the target and local grid stars. A large amount of additional informa-
tion necessary for reconstructing the astrometric positions of the target is
recorded.

3. The data are now ready for a first reduction on the ground. A number of
deterministic effects – for example, stellar aberration determined from an
accurate spacecraft ephemeris, and large proper motion for some targets
– are removed, and the delays are averaged over a single pointing for
each object. Following this step, the delays are in the form of two sets of
averaged positions, one for each baseline orientation.

36 Note that the term “narrow-angle” as used here denotes the regime where angle-
independent terms in the error budget dominate over terms increasing with angle.
This is slightly different from the use of this term in Sect. 9.4, where it denoted
a break in the scaling laws of atmospheric errors. One has to keep in mind that
“narrow-angle” for SIM means <∼ 1◦, whereas for ground-based astrometry it
means <∼ 1′.
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4. The pairwise differences in these delays comprise the important observ-
ables in reconstructing the geometry of the reference stars and target,
which are related to the set of star positions.

5. Metrology and supporting data, which determine the baseline length, and
star-tracking pointing information are similarly averaged to give a first
guess at the baseline ?B.

6. The true baseline ?B for each orientation is found by iteratively solving the
interferometric astrometry equation for the science interferometer using
the grid star differential delays, a model for the grid that specifies grid
star positions as a function of time in an inertial frame, and the temporal
component of general relativistic effects obtained from a relativistic Solar
System model. While the procedure for carrying out this computation for
an ideal instrument is straightforward, a number of additional instrumen-
tal and systematic effects must be characterized, understood, and modeled
out at this step.

7. The differential delays involving the science target are similarly calibrated
using relativistic and other instrumental and systematic effects. They now
represent a geometrically consistent set of fixed or rectilinearly moving
points. In other words, we now have the differential delays that would be
produced by an ideal instrument taken instantaneously from a fixed point
relative to the Solar System barycenter at a particular time.

8. The calibrated differential delays are now transformed into a set of object
positions (equivalently ŝ) in the local coordinate system of the reference
grid objects.

9. The object positions ŝ in the Solar System barycenter frame referenced to
zero potential are now found, taking into account general relativistic ef-
fects arising from the particular distribution of masses in the Solar System
at the mean time of the observations.

10. A set of measurements covering the whole sky multiple times is used to
solve for the standard astrometric parameters (position, parallax, proper
motion) of the grid stars. This information is fed back into Step 6.

11. The residuals of the target star positions after fitting the standard astro-
metric can be analyzed for the presence of planetary companions.

It should thus be clear that attaining the best possible sensitivity to low-mass
planets requires a very detailed understanding of a plethora of instrumental
and astrophysical effects. Misinterpreting systematic drifts, position- or color-
dependent errors, confusion effects, correlations between parallax, proper mo-
tion and the parameters of fits to the residuals, or any other subtleties may
well lead to errors in the derived orbital elements of the detected planets, or
worse, to false planet detections. On the other hand, SIM will acquire a very
large set of individual measurements that can be analyzed in a systematic and
consistent way. If many null results are obtained (i.e., stars that do not show
any residuals indicative of planets), one can be confident of planets discovered
around the others.
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9.7 Astrometric Planet Surveys

Questions that can be addressed

• Mass determination for planets detected in radial velocity surveys (with-
out the sin i factor). The RV method gives only a lower limit to the mass,
because the inclination of the orbit with respect to the line-of-sight remains
unknown. Astrometry can resolve this ambiguity, because it measures two
components of the orbital motion, from which the inclination can be de-
rived.

• Confirmation of hints for long-period planets in RV surveys. Many of the
stars with detected short-period planets also show long-term trends in the
velocity residuals (Fischer et al. 2001, see Sect. 3.2). These are indicative
of additional long-period planets, whose presence can be confirmed astro-
metrically.

• Inventory of planets around stars of all masses. The RV technique works
well only for stars with a sufficient number of narrow spectral lines, i.e.,
fairly old stars with m∗ <∼ 1.2M�. Astrometry can detect planets around
more massive stars and complete a census of gas and ice giants around
stars of all masses.

• Detection of gas giants around pre-main-sequence stars, signatures of
planet formation. Astrometry can detect giant planets around young stars,
and thus probe the time of planet formation and migration. Observa-
tions of pre-main-sequence stars of different ages can provide a critical
test of the formation mechanism of gas giants. Whereas gas accretion on
∼10M⊕ cores requires ∼10Myr, formation by disk instabilities would pro-
ceed rapidly and thus produce an astrometric signature even at very young
stellar ages (Boss 1998b).

• Detection of multiple systems with masses decreasing from the inside out.
Whereas the astrometric signal increases linearly with the semi-major axis
a of the planetary orbit, the RV signal scales with 1/

√
a. This leads to

opposite detection biases for the two methods. Systems in which the masses
increase with a (e.g., υAnd, Butler et al. 1999) are easily detected by the
RV technique because the planets’ signatures are of similar amplitudes.
Conversely, systems with masses decreasing with a are more easily detected
astrometrically.

• Determine whether multiple systems are coplanar or not. Many of the
known extrasolar planets have highly eccentric orbits. A plausible origin
of these eccentricities is strong gravitational interaction between two or
several massive planets (Lin and Ida 1997; Papaloizou and Terquem 2001).
This could also lead to orbits that are not aligned with the equatorial plane
of the star, and to non-coplanar orbits in multiple systems.

• Search for massive terrestrial planets in the Solar neighborhood. NASA’s
Space Interferometry Mission (SIM) has a 1µas precision goal in its
“narrow-angle” mode (over 1◦). This opens the exciting perspective of
looking for rocky planets down to a limit of a few Earth masses.
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9.8 Astrometric References

Reference Stars for Ground-Based Narrow-Angle Astrometry

The discussion of optical/infrared interferometry in Sect. 9.5 has tacitly as-
sumed that there are reference stars against which the motion of the target
star can be measured. Identifying suitable references, however, is an important
and non-trivial task by itself. It is possible to get a feeling for the difficulty
of this task by cross-correlating a catalog of potential targets (e.g. the Hip-
parcos catalog, European Space Agency 1997, or the Gliese catalog) with a
sufficiently deep catalog of possible reference stars (USNO-A1.0, Monet et al.
1996). Quirrenbach (2000a) did this exercise for potential targets for the VLT
Interferometer, with the following results:

• The Hipparcos catalog contains 4,760 stars with δ ≤ +20◦ and parallax
π ≥ 20mas.

• For 1,762 of these stars, 3 reference stars within 50′′ are found.
• For 734 of these, 3 reference stars within 30′′ are found.
• The Hipparcos catalog contains 1,018 stars that have δ ≤ +20◦ and π ≥

40mas, and 130 stars with δ ≤ +20◦ and π ≥ 100mas.
• The Gliese catalog contains 2,381 stars with δ ≤ +20◦.
• The proportion of these samples for which potential references within 30′′

or 50′′ are found is about the same as for the full Hipparcos sample.

These numbers indicate that a large number of target stars are available for
ground-based astrometric projects.

There are a few caveats about the results from these catalog cross-correla-
tions, however, which may lead to an overestimate of the number of potential
reference stars. For example, some of the “reference stars” may actually be
galaxies that were not recognized as such during the compilation of the USNO
catalog. In some cases, a target star with high proper motion is found as
a potential “reference” for itself because the USNO catalog lists the stellar
positions at the epoch of the underlying Schmidt plates. (It would be necessary
to look up the plate epoch for each target star, compute its position at that
epoch, and compare it to the positions of the “references” found by the cross-
correlation. This is even more important when reference stars within 10′′ from
the target are sought.) On the other hand, the available catalogs may be
incomplete in the vicinity of very bright stars; one has to take CCD images
in the field of each potential target to make sure that one does not miss any
available references (Creech-Eakman et al. 1999).

These cautionary remarks notwithstanding, it is apparent from the above
numbers that the requirement of finding nearby reference stars reduces the
number of potential targets considerably, especially for the highest precision
when the search radius is only 10′′. The problem is even somewhat exacerbated
by the high proper motion of many of the nearby target stars: a star that
has three references today may move far enough away from them during the
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course of a several decade-long program that the astrometric accuracy gets
severely degraded. It is obviously possible to increase the number of potential
targets by requiring only one or two references, but then the risk gets high
that the references turn out to be members of multiple systems, which can
lead to unusable data, or worse, to false “planet” detections if the motion of
the reference is ascribed to the target.

It is also possible to search for planets in double stars (Quirrenbach 2000a).
The Washington Double Star Catalog (Worley and Douglass 1997) contains
745 F, G, and K main sequence stars with δ ≤ 20◦ and V ≤ 10 in pairs
with separation between 5′′ and 20′′; 23 of these are G main sequence stars
with V ≤ 7.5. Most of these are members of wide physical binaries, and
searching for planets in these systems is scientifically interesting (see Sect. 3.4)
and technically somewhat less challenging than searches around single stars.
The downside of this approach is the difficulty of determining to which of the
two system components any detected planet belongs.

The bottom line is that the availability of nearby astrometric references is
an important criterion for the selection of suitable targets for ground-based
astrometric observations. Optimizing the sensitivity of the faint star channel
is clearly very important, because this enhances the chances of finding astro-
metric references. The general considerations in this regard are similar to the
optimum design of a fringe tracker (Sect. 8.5). In addition, one should use as
many photons as possible; simultaneous operation in the H and K bands is
therefore highly advantageous.

Reference Stars for the Space Interferometry Mission

The success of SIM also depends critically on the selection of suitable grid and
reference stars. About 2, 000 . . . 3, 000 stars distributed evenly over the sky
are needed for the grid. These stars must be astrometrically stable (i.e., they
must not show any motion other than parallax and linear proper motion) on
the level of a few µas. For each narrow-angle target, at least three reference
stars stable to better than 1µas must be available within a ∼1◦ diameter
field. Finding stars that meet these stability requirements is by no means a
trivial task. They have to be identified and characterized before the launch of
SIM, because the potential presence of even a fairly small number of unstable
references can only be compensated by a dramatic increase in redundancy
of the observations (Frink et al. 2001), which is very costly in terms of SIM
observing time.

A key criterion for selecting suitable grid and reference stars for SIM is
their distance d, because the wobble induced by planets or other unseen com-
panions scales with 1/d (170). The best class of reference stars are therefore
K giants, which are numerous even at high galactic latitudes, and intrinsi-
cally bright. Samples of candidate SIM reference stars can either be selected
from existing astrometric catalogs (Frink et al. 2000a,b), or identified in a
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specialized survey (Patterson et al. 1999; Rhee et al. 2001). The case for dis-
tant K giants as good grid stars rests on a three-fold argument (Frink et al.
2001):

• The wobble due to planetary companions is sufficiently small.
• We know from the radial-velocity (RV) surveys that brown dwarfs are

rare as companions to G dwarfs (the “brown dwarf desert”, see Sect. 3.2
or e.g. Marcy and Butler 2000), which are the progenitors of K giants.
Brown-dwarf companions to K giants will therefore also be rare.

• Stellar companions can be detected efficiently before the launch of SIM
by an RV survey. This is a non-trivial statement as photospheric activ-
ity could corrupt precise RV measurements. A survey with the Hamilton
Echelle Spectrograph at Lick Observatory has shown, however, that many
K giants are sufficiently stable; about 2/3 of all K giants are drawn from
a distribution with a mean of ∼20m s−1 (see Fig. 49). This allows the de-
tection of most stellar companions with only two or three RV data points.

It should thus be possible to define the SIM grid, and to gain confidence in
its integrity, well before launch. The selection of narrow-angle reference stars
is a more difficult problem because of the increased accuracy requirement and
more limited search area for suitable stars. Observational programs aimed
at identifying candidate reference stars for high-priority narrow-angle targets

Fig. 49. Histogram of radial velocity scatter (i.e., dispersion of repeated RV mea-
surements) observed in a sample of K giants (updated from Frink et al. 2001). About
2/3 of the observed stars have radial velocity scatter of 19.2±12.2m s−1 and are good
candidates for the SIM grid. Stars showing larger RV scatter could have companions
and would not be included in the grid
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have recently been started. Without this preparation it would not be possible
to carry out an efficient planet detection program with SIM.

9.9 The Differential-Phase Method

Another interesting application of phase referencing, which is related to
astrometry, consists of making differential phase measurements between dif-
ferent wavelengths (Akeson and Swain 1999; Quirrenbach 2000a). The near-
infrared spectra of giant extrasolar planets should be characterized by
extremely deep absorption bands of water and methane (e.g. Burrows et al.
1997a, see also Sect. 6.6). This opens the possibility of using wavelength-
dependent astrometric information for the detection of extrasolar planets,
and even to obtain their spectra.

The photocenter of a star–planet system is slightly different between two
wavelengths, one of which falls in a region free of molecular bands, where the
planet is relatively bright, and the other inside a band, where the planet is
much fainter (see Fig. 50). Actually, the shift of the photocenter is propor-
tional to the planet/star brightness ratio and can thus be used as a proxy for
the planet spectrum (Quirrenbach 2000a). The shift of the photocenter gives
rise to a corresponding wavelength dependence of the interferometer phase,
which can be measured if the signal-to-noise ratio is sufficient and systematic
effects are kept small. In the case of “hot Jupiters” like 51Peg b, which is quite
favorable because the planet is close to the star and therefore hot and bright,
the expected effect on the interferometer phase is ≈ 0.5mrad on the longest
baselines of the VLTI (see Fig. 51). To measure such a small phase difference,
a signal-to-noise ratio of ≈ 3, 000 is needed, and it remains to be seen whether

wavelength outside molecular ban d

wavelength inside molecular band

photocenter

photocenter

Fig. 50. The shift of the star–planet photocenter with wavelength gives rise to an
interferometric phase shift that can be exploited to obtain a spectrum of the planet
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Fig. 51. Model spectrum of the planet 51Peg b (red, from Sudarsky et al. 2003),
and interferometer phase predicted for a 100m baseline aligned with the star–planet
separation vector (blue). The planetary spectrum is dominated by absorption bands
of water and carbon monoxide. At short wavelengths (≤ 2µm) it is very difficult to
detect the planet because of the very high contrast between the star and the planet.
The phase changes significantly across the K band near 2.2 µm due to water bands
shortward and longward of the window in the Earth’s atmosphere that defines this
observing band. For the specific baseline length chosen, the phase goes through zero
near 3.3µm

the systematic instrumental and atmospheric effects can be overcome at this
level. For this technique, the dispersion in the air in the delay lines is a se-
rious difficulty (Daigne and Lestrade 1999; Meisner and le Poole 2002). This
problem can be overcome either by the use of a evacuated delay lines, or by
making double differential measurements with respect to a nearby reference
star

φdd ≡ φt(λ1)− φt(λ2)− [φr(λ1)− φr(λ2)] , (180)

where the subscripts t and r stand for “target” and “reference”, respec-
tively (le Poole and Quirrenbach 2002). If the reference star has no com-
panion, its photocenter position is independent of wavelength, and the term
[φr(λ1)− φr(λ2)] is equal to the phase offset caused by dispersion, which is
thus subtracted from the phase difference of the target in (180). But even
with this double differential technique the spectroscopy of extrasolar planets
will be a very challenging project.



Detection and Characterizationof Extrasolar Planets 181

10 Nulling Interferometry

The principal problem of direct planet detection is the large contrast between
the planet and the parent star. Bracewell (1978) proposed to overcome this
difficulty by using an interferometer to suppress the starlight. The key to
the success of this method is the creation of an achromatic null, which en-
sures that the light arriving on axis interferes destructively at all wavelengths
within the observing bandpass. Nulling interferometry in the mid-IR from the
ground is a promising approach to the detection of exozodiacal dust disks.
From space, the contrast and signal-to-noise ratio can be made sufficient for
low-resolution spectroscopy of Earth-like planets. This is one of the leading
architectures that have been proposed for the DARWIN and Terrestrial Planet
Finder missions.

10.1 Principles of Nulling

Starlight Rejection in a Michelson Interferometer

For monochromatic light, the output intensity of a standard Michelson inter-
ferometer with an ideal 50% beam combiner varies with the phase φ as

Iout = Iin(1 + V cosφ) , (181)

where V is the fringe visibility and Iin ≡ I1 + I2 the sum of the intensities
in the two interferometer input arms. This means that the intensity oscillates
between Imin = (1− V )Iin and Imax = (1+ V )Iin when the delay D is varied,
in agreement with (139). If V = 1, we can set the delay line such that φ =
2πD/λ = 180◦ and get completely destructive interference, Iout = 0. For a
non-zero bandwidth, we have to integrate the right-hand side of (181) over
frequency; for V = 1 and a rectangular bandpass we thus get

Iout =
1

∆ν
Iin

∫ ν0+∆ν/2

ν0−∆ν/2

[
1 + cos (2πDν/c)

]
dν

= Iin

[
1 + cos

(
2πDν0

c

)
· sinc

(
πD∆ν
c

)]
, (182)

in analogy to (147). If ∆ν/ν0 ≈ ∆λ/λ � 1, the cosine term in (182) varies
much faster than the sinc term; the minima of the right-hand side therefore
occur close to the delays for which the cosine term assumes the value −1. The
condition for the first and deepest of these minima is D = c/(2ν0), and we
obtain

Imin

Imax
≈ 1

2

[
1− sinc

(
π

2
∆λ
λ

)]
. (183)

For bandwidths of 10%, 30%, and 50%, the depth of the first minimum is 0.2%,
2%, and 5%, respectively. It is thus possible to reject most of the starlight
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by simply offsetting the delay line to the first interference minimum, but
rejection factors of more than a few hundred are possible only with a very small
bandwidth.37 An achromatic method to generate destructive interference is
therefore needed.

The Principle of Achromatic Nulling

If we can introduce a phase shift in the interferometer, which is exactly π rad
at all wavelengths, the output signal from an interferometer is changed to

Iout = Iin(1− V cosφ) . (184)

Now the intensity is zero if V = 1 and φ = 0, i.e., the light from an on-
axis point source is completely rejected at zero delay. This is the principle of
achromatic nulling. A nulling interferometer can be used to detect extrasolar
planets in the following way (see Fig. 52): The parent star is placed on the
interferometer line-of-sight, and a fringe tracker assures that φ = 0, so that
no light from the star is received. The planet, on the other hand, is located
at an off-axis angle which is comparable to the interferometer resolution λ/B.
The light from the planet therefore has a significantly non-zero phase, leading
to a detectable interferometer output according to (184). The nulling inter-
ferometer thus acts as an ideal coronographic mask, with complete rejection
of the starlight and only moderate attenuation of the planetary signal.

In practice, the null is never perfect, of course, because there are always
wavefront corrugations, phase fluctuations, and internal contrast losses, which
reduce the visibility. This means that Iout �= 0 even in the absence of planets.
It is therefore necessary to modulate the signal from the planet, for instance
by rotating the interferometer around its axis, which leads to a periodic mod-
ulation of the projected baseline length and therefore of φ and Iout. In this
way it is possible to separate the constant term due to the starlight leak (or a
uniform face-on dust disk) from the AC term due to the planet (see Fig. 53).

To characterize the quality of a nulling instrument and to quantify the
leakage of unwanted photons, we introduce the null depth

N ≡ Imin/Imax . (185)

For low-resolution spectroscopy of Earth-like planets with space-based inter-
ferometers an extremely deep null (N <∼ 10−6) is required; for the detection
of exozodiacal dust disks N ≈ 10−3 . . . 10−4 is sufficient.

37 This conclusion is strictly valid only for single-baseline nulling interferometers.
Mieremet and Braat (2002a) have shown that interferometric arrays with mul-
tiple telescopes can produce a deep broad-band null if appropriate delays are
introduced in the interferometer arms.
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Fig. 52. Fringe pattern for a standard and a nulling interferometer. The fractional
bandwidth ∆λ/λ = 0.5. The pattern of the nulling interferometer has a central zero;
the depth of the first minima of the standard interferometer are 5%. Fringe tracking
ensures that the delay for the star is zero. The resolution of the interferometer is
matched to the star–planet separation such that the planet is close to a transmission
maximum

Symmetry and Stability Requirements

To produce a deep null, the two arms of the interferometer must be made
symmetric with very high precision (apart from the π phase shift, of course).
Any of the following imperfections can ruin the performance of the nuller:
residual phase fluctuations, differences between the two arms in dispersion or
polarization properties, a rotation between the two beams, and a mismatch be-
tween the two intensities (e.g., Serabyn 2000; Wallner et al. 2001). We denote
the residual phase (i.e., the difference between the actual phase and the “best
compromise” for all wavelengths within the bandpass and the two polarization
states) by ∆φ, the rms phase difference due to dispersion mismatch, averaged
over the bandpass, by ∆φλ, the phase difference between the two polarization
states by ∆φs−p, the relative rotation angle between the two beams by α, and
the normalized intensity mismatch by δI/I ≈ δ ln I. A fairly straightforward
analysis shows that the null depth is then given by (Serabyn 2000)

N =
1
4

[
(∆φ)2 + (∆φλ)2 +

1
4
(∆φs−p)2 + α2 + (δ ln I)2

]
. (186)
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Fig. 53. Top left: model face-on planetary system with one planet and exozodiacal
dust. Top right: the same system, multiplied with the response function of a linear
four-element nulling interferometer. Bottom left: positions of the four telescopes and
the beam combiner during rotation of the interferometer. Bottom right: output of
the nuller for one full rotation. From NASA (1999b)

For illustration, we show how N can be calculated in the case that intensity
mismatch is the only imperfection in the interferometer. Imin and Imax are
then given by

Imin = (I + δI) + (I − δI)− 2
√

(I + δI)(I − δI)
= 2
(
I −
√
I2 − (δI)2

)
(187)

= 2I


1−

√
1−
(
δI

I

)2

 ≈ (δI)2

I
,

and
Imax = (I + δI) + (I − δI) + 2

√
(I + δI)(I − δI) ≈ 4I , (188)
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from which we get

N ≡ Imin/Imax ≈
1
4

(
δI

I

)2

=
1
4
(δ ln I)2 , (189)

in agreement with the more general expression given in (186). To achieve a
good null depth it is obviously necessary to control the optical path difference
between the two interferometer arms, and to balance their intensities. If the
mean values for ∆φ and δ ln I are kept at zero, the time-averaged null depth
can be written as

N =
1
4

[
σ2
φ + (∆φλ)2 +

1
4
(∆φs−p)2 + α2 + σ2

ln I

]
, (190)

where σ2
φ is the residual phase variance and σ2

ln I the variance of the resid-
ual intensity fluctuations. If we assume that the purely instrumental effects
(dispersion, polarization, beam rotation) are relatively stable, the fluctuations
of the null depth around its mean value are dominated by the fluctuations of
the phase and intensity. It can then be shown that the variations of the null
depth are given by (Serabyn 2000)

σ2
N =

1
8
(
σ4
φ + σ4

ln I

)
. (191)

If a certain depth of the null is desired, (190) and (191) can be used to con-
struct an error budget for the various contributions toN . A slight complication
arises from the fact that the phase and intensity variations determine not only
the mean null depth, but also the level of the fluctuations around this mean
value. For example, if the null depth is dominated by phase fluctuations, a
+2σ excursion of N from its mean value means that the instantaneous null
depth is

N2σ = N + 2σN =
(
1
4
+

2√
8

)
σ2
φ ≈ σ2

φ . (192)

This means that specifying an error budget for +2σ fluctuations requires
placing a four times more stringent requirement on the phase variance than
constructing an error budget for the mean null depth. The same argument
obviously also applies to intensity variations. In the error budget one can
allocate a maximum value Ni to each one of the contributing effects; the sum
of these values must be smaller than the desired null depth. We thus get the
set of requirements

σφ <
√
N1 (193)

σln I <
√
N2 (194)

α < 2
√
N3 (195)
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∆φλ < 2
√
N4 (196)

∆φs−p < 4
√
N5 (197)

5∑
i=1

Ni < N . (198)

Wavefront Aberrations and Modal Filtering

In the previous section (186) and (190) we have implicitly assumed that at
each wavelength and for each polarization there is a unique phase difference
between the two interferometer arms. This is not necessarily the case, how-
ever, as aberrations and atmospheric turbulence distort the wavefronts and
thus create phase variations across each of the apertures. Denoting the phase
variances across the two pupils with σ2

w1,2
, we can write in analogy to (190)

N =
1
4
(
σ2
w1

+ σ2
w2

)
=

1
2
σ2
w , (199)

where the second equality holds if the contributions from the two telescopes
are equal. We will see in Sect. 10.3 that (199) places a requirement on the wave-
front quality that is impossible to achieve even with state-of-the-art adaptive
optics systems, if a null depth of ∼10−3 is desired at 10µm in a ground-based
interferometer. Similarly, it appears infeasible to produce optics that would
allow a space interferometer to obtain a 10−6 null in this way.

It is thus necessary to introduce a modal filter in the interferometer, as
described in Sect. 8.5 (Clark and Roychoudhuri 1979; Mennesson et al. 2002).
Since the coupling efficiency into a single-mode fiber is roughly given by the
Strehl number of the input beam, we can use (123) to calculate the intensity
fluctuations

δI ≡ 1
2
(I1 − I2) ≈

1
2

(
e−σ

2
w1 − e−σ

2
w2

)
I0 ≈

1
2
(
σ2
w2
− σ2

w1

)
I0 . (200)

The second approximation is valid only if σ2
w � 1, which is the case for nulling

interferometers in space. Inserting this result in (186) gives

N =
1
4

(
δI

I

)2

=
1
16
(
σ2
w2
− σ2

w1

)2
. (201)

It is thus the difference between the wavefront qualities in the two beams that
matters for the null depth, but in most practical circumstances this difference
is directly related to the wavefront quality itself. It is also worth pointing
out that (201) implies that N ∝ λ−4, which is a very steep scaling with the
observing wavelength.
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Pointing Requirements

If the telescopes are not pointed exactly at the target star, the phase across
the pupil is not constant, and we expect an associated null leakage. If there
is a pointing error δθ in the x-direction, the phase varies across the pupil
according to

φ(x) =
2πx
λ

δθ =
2πr cosψ

λ
δθ , (202)

where we have introduced polar coordinates (r, ψ). The phase variance is thus

σ2
w =

1
πR2

∫ 2π

0

dψ

∫ R

0

rdrφ2

=
1

πR2

4π2(δθ)2

λ2

∫ 2π

0

dψ

∫ R

0

dr r3 cos2 ψ (203)

=
(
πD

2λ

)2

(δθ)2 .

If there is no modal filtering, the resulting null depth can be computed by
inserting (203) in (199)

N =
1
8

(
πDσθ
λ

)2

. (204)

In the case of modal filtering we have to insert (203) in (201) and obtain

N =
1
256

(
πD

λ

)4 〈[
(δθ1)2 − (δθ2)2

]2〉
. (205)

To simplify this expression we note that for Gaussian variables χ with zero
mean and standard deviation σχ〈

χ4
〉
= 3σ4

χ . (206)

Therefore〈[
(δθ1)2 − (δθ2)2

]2〉
=
〈
(δθ1)4

〉
− 2
〈
(δθ1)2(δθ2)2

〉
+
〈
(δθ2)4

〉
= 4σ4

θ . (207)

Inserting this result in (205) we finally obtain the desired expression for the
null depth

N =
1
64

(
πDσθ
λ

)4

. (208)

To achieve a deep null it is therefore necessary to stabilize the telescope point-
ing at a rather small fraction of the width of an Airy disk, which is of order
λ/D.
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Leakage from the Stellar Disk

Up to this point we have computed limitations of the null depth due to a
variety of instrumental effects, under the assumption that we want to reject
light from a point source. This assumption is violated if the star is partially
resolved by the interferometer; in that case the light from the stellar limb
arriving at an off-axis angle is not completely rejected even by a perfect nulling
device. To first order (ignoring limb darkening) the star can be modeled as a
uniform disk of angular diameter θdia and normalized intensity

I(Ω) =
(
πθ2dia
4

)−1

. (209)

The fringe phase for light emanating from a point on the stellar surface with
polar coordinates (θr, ψ) is

φ =
2πB sin(θr cosψ)

λ
≈ 2πB θr cosψ

λ
. (210)

The null depth can easily be calculated by integrating φ2 over the stellar
surface, which results in

N =
1
4

∫
dΩφ2(θr, ψ)I(Ω)

=
1
4

∫ θdia/2

0

∫ 2π

0

θrdθrdψ φ
2(θr, ψ)I(Ω)

=
1
π

(
2πB
θdiaλ

)2 ∫ θdia/2

0

∫ 2π

0

θrdθrdψ θ
2
r cos

2 ψ (211)

=
1
π

(
2πB
θdiaλ

)2 ∫ 2π

0

dψ cos2 ψ
∫ θdia/2

0

dθrθ
3
r

=
π2

16

(
Bθdia
λ

)2

.

This expression relates the null depth to the ratio of the angular diameter
and the resolution of the interferometer λ/B. To get a quick overview of the
importance of this stellar leak for stars of different types, it is convenient
to derive a scaling relation with stellar magnitude and effective temperature
(Quirrenbach 2000b). For observations in the infrared (λ >∼ 2.2µm) we can
use the Rayleigh–Jeans approximation of blackbody radiation

F ∝ θ2dia · Teff (212)

to rewrite (211) as

N = 0.26
(

B

100m

)2(
λ

2.2µm

)−2(
Teff

10, 000K

)−1

· 10−0.4mK , (213)
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where mK is the K-band magnitude of the star. The leakage from the stellar
disk is tolerable for ground-based nulling if the baseline is not too long, but
it may limit the null depth for the very brightest stars. For space interfer-
ometers with a requirement of N ≈ 10−6 the stellar leakage seems to be an
insurmountable obstacle, and indeed it is necessary to employ more compli-
cated nulling schemes involving multiple baselines. These will be discussed in
Sect. 10.4.

10.2 Implementation of Achromatic Phase Shifts

There are two fundamentally different approaches to implement achromatic
phase shifts. The first is the introduction of a “geometric” phase shift, in
most cases by 180◦. Techniques based on this principle are truly achromatic
in that they manipulate the phase, not the delay. The alternative is the use
of dispersive elements to create “pseudo-achromatic” phase shifts; the goal
here is find a combination of different materials that approximates a constant
phase shift over a broad band. Both methods have shown great potential, and
they will now be discussed in turn.

Geometrical Field Reversal

The basic principle of creating a field flip by purely geometrical means is
illustrated in Fig. 54. The beams in the two arms of the interferometer are sent

Fig. 54. Effect of a mirror-reflected pair of right-angle periscopes. Each beam en-
counters two mirrors at the locations of the 90◦ folds. Both the apertures and the
fields undergo a relative rotation of 180◦, as shown schematically by the clock hands
and the letters “F”. Each polarization component undergoes one s-plane and one
p-plane reflection. From Serabyn and Colavita (2001)
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through right-angle periscopes that are mirror-images of each other. This leads
to an inversion of the apertures and of the relative direction of the electric
fields in the two beams, which is equivalent to a 180◦ phase shift. Since this
phase shift is achieved by reflections, it is strictly achromatic. In every other
respect the field inverter is fully symmetric, e.g., each polarization component
undergoes one s-plane and one p-plane reflection at a 45◦ incidence angle. This
symmetry facilitates the task of meeting the stringent tolerances discussed in
Sect. 10.1.

After passage through the pair of periscopes, the light from the two inter-
ferometer arms is sent to a pupil plane beam combiner. It is important again
to make the combiner as symmetric as possible, to keep δI and ∆φs−p as small
as possible. A single pass through the beam splitter as drawn in Fig. 42 is not
suitable, because it is impossible to manufacture a beam splitter for which
the reflectivity and transmissivity are exactly equal to each other over a large
wavelength range and for both polarizations. It is thus necessary to design a
beam combiner in which each beam undergoes one reflection and one trans-
mission before emerging at the nulled output. A further subtlety arises from
the point that beam splitters are multi-layer dielectric films on a transparent
substrate. In the presence of slight internal absorption, the reflectivity of the
beam splitter is different between the front and back sides, whereas the trans-
missivity does not depend on the direction.38 Figure 55 shows an example of
a fully symmetric beam combiner, based on a classical Mach-Zehnder inter-
ferometer. Note that each of the beams emanating at the balanced outputs
(shown as solid heave arrows) undergoes two reflections at a mirror, one reflec-
tion at the front side of the beam splitter (r), and one transmission through
the beam splitter. The transmissions are in different directions (front side
first (t), and back side first (t′), respectively), but this doesn’t matter since
t = t′. The combination of the field inverter (Fig. 54) and the beam combiner
(Fig. 55) is thus fully symmetric by design; the null depth is only limited by
imperfections of the coatings, and the quality and alignment of the optical
elements.

A variation on the theme of geometric field reversal is the rotational shear-
ing interferometer. Here the functions of field reversal and beam combination
are not separated, but are both done in a modified Michelson interferometer
(Serabyn 1999; Serabyn et al. 1999). The field reversal can for example be
performed by rooftop (i.e., V-shaped) mirrors in the two interferometer arms.
One of the rooftops is oriented vertically, the other horizontally, so that the
two beams are rotated by 180◦ with respect to each other (see Fig. 56).39 Al-
though this arrangement is not fully symmetric (one of the beams undergoes

38 This is the “Left-and-Right Incidence Theorem”, see e.g. Knittl (1976).
39 Take two identical copies of a written page. Flip one of them around a horizontal

axis, the other around a vertical axis. The two pages now have a relative rotation
of 180◦.



Detection and Characterizationof Extrasolar Planets 191

Fig. 55. Symmetric beam combiner derived from a classical Mach-Zehnder inter-
ferometer. At zero optical path difference, constructive interference occurs at the
balanced outputs (shown as solid heavy arrows). In conjunction with a prior field
flip these balanced outputs become nulled outputs at zero OPD. The pair of markers
on the input beams indicate the wavefront offset needed for pathlength matching at
the outputs. From Serabyn and Colavita (2001)

a front-side (r) reflection, the other back-side (r′) reflection), it has been used
to demonstrate a N = 7 · 10−5 null in the laboratory with broadband visible
light (Wallace et al. 2000).

Asymmetric Passage through Focus and Use of Berry’s Phase

An alternative way of introducing a geometric phase shift of 180◦ is the intro-
duction of a focus in one arm of the interferometer (Gay and Rabbia 1996).
This method should in principle work well, but because of its intrinsic asym-
metry it is probably more difficult to achieve a very deep null in this way than
by symmetric field inversion.

Yet another geometric method is based on an effect known as Pancharat-
nam’s phase or Berry’s phase (Pancharatnam 1956). The essence of this phe-
nomenon is that converting two beams from identical initial polarization states
to identical final polarization states via different intermediate states (with a
suitable arrangement of polarizers, quarter-wave plates etc.) in general results
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Fig. 56. Schematic layout of the beam paths in a rooftop-based rotational shearing
interferometer. As a result of the double-pass beam splitter, the two input beams
to be combined (red and blue) yield four output beams, two of which (black) are
nulled at zero optical path difference and two of which add constructively (violet).
From Serabyn (1999)

in a phase shift between the two beams.40 Nulling with Pancharatnam’s phase
has been demonstrated experimentally in the laboratory; the most impor-
tant technical challenge is obtaining fully achromatic wave plates (Baba et al.
2001).

Phase Shift with Dispersive Elements

If we had a plane-parallel plate of thickness s, made of a material with strictly
linear dispersion, n(λ) = n0+aλ, we could use it to create an achromatic phase
shift. Inserting the plate in one of the interferometer arms, and compensating
for the fixed delay D0 ≡ (n0 − 1) · s, the resulting phase would be

φ =
2π
λ
· aλ · s = 2πas , (214)

which is obviously independent of λ. Unfortunately real optical materials do
not have linear dispersion; it is therefore not possible to obtain a truly achro-
matic null in this way. For a plate with refractive index n(λ), the general
expression for the phase is

φ(λ) =
2π
λ
·
[
D +

(
n(λ)− 1

)
· s
]
, (215)

40 The acquired phase difference is equal to −1/2 times the area enclosed by the two
paths of the polarization state on the Poincaré sphere (for definition see e.g. Born
and Wolf 1997). Pancharatnam’s phase is closely analogous to the well-known
Aharonov–Bohm effect, according to which two electron beams acquire a relative
phase proportional to the magnetic flux they enclose (Berry 1987).
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where D is some extra pathlength introduced by the delay line. If we pick two
wavelengths λ1, λ2 and a desired phase shift φ̃, (215) becomes a system of
two equations with two free variables D and s, which can thus be chosen such
that φ(λ1) = φ(λ2) = φ̃.41 The residual phase error φ(λ)− φ̃ at λ �= λ1, λ2 is
then due to the second order curvature of the dispersion n(λ). This concept
can easily be generalized to an arbitrary number N of plates made of different
materials, for which

φ(λ) =
2π
λ
·
[
D +

N∑
i=1

(
ni(λ)− 1

)
· si

]
, (216)

which allows for perfect phase adjustment at N + 1 distinct wavelengths,
φ(λj) = φ̃ for j = 1 . . . N + 1. One can choose the λj optimally spaced across
the bandpass of interest, and thus get φ(λ) ≈ φ̃ with very small errors, because
now the dispersion can be balanced up to order N in the Taylor expansion
of the ni(λ). Many different glasses are available at visible wavelengths to
implement this approach, but the choices in the mid-infrared are much more
limited. Nevertheless, just two materials (ZnSe and ZnS) are sufficient to
achieve a nearly achromatic phase shift consistent with a 10−5 null across
a 7µm . . . 19µm bandpass (Morgan et al. 2000). A nulling interferometer
working in the 8µm . . . 13µm band has been tested on the Multiple Mirror
Telescope (Hinz et al. 1998). In this instrument a single ZnSe plate was used
for the phase shift. This would ideally have allowed to reach a null depth
N ≈ 10−4, but the observed null depth was limited to only 0.06 by atmospheric
turbulence.

One obvious difficulty with the plane-parallel plate setup are manufactur-
ing tolerances; one needs plates of precisely prescribed thickness. It is possible,
however, to adjust the effective thickness by introducing a slight tilt of the
plate (Mieremet et al. 2000).42 The delay D(λ) introduced by a tilted plate
can be calculated by referring to Fig. 57; we get

D(λ) = n(λ)AB +BC −AD

=
n(λ)s
cosβ

+ s sinα(tanα− tanβ)− s

cosα

=
n(λ)s
cosβ

(
1− sin2 β

)
+

s

cosα
(
sin2 α− 1

)
(217)

= s

√
n2(λ)− n2(λ) sin2 β − s cosα

=
(√

n2(λ)− sin2 α− cosα
)
s .

41 Note that we can make D or s negative by introducing the extra delay or the
plate in the other arm of the interferometer. For symmetry reasons, one should in
any case put a plate in each arm; in that case s is the thickness difference between
these plates.

42 Note that there is a typo in (10) of Mieremet et al. (2000). It should read W =
n1 cos(α− β)d1/ cos(α).
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Fig. 57. Light path through a tilted plate with refractive index n. The angles α
and β are related by Snell’s Law sinα = n sinβ

Expansion of this expression in powers of the tilt angle α gives for α� 1

D = (n− 1)
(
1 +

1
2
α2

n

)
s ,

dD

dλ
=
(
1 +

1
2
α2

n2

)
s
dn

dλ
; (218)

this means that tilting the plate affects not only its effective thickness but
also the effective dispersion.

The phase shifter can also be implemented with a pair of prisms in place
of the plane-parallel plate (Bokhove et al. 2002). The pathlength through a
pair of prisms (see Fig. 58) is

D(λ) = n(λ)
(
AB + CD

)
+BC

= n(λ) (s− h tanα) + g
cosα
cosβ

= n(λ)
(
s− g cosα

cosβ
sin(β − α) tanα

)
+ g

cosα
cosβ

= n(λ)
(
s+ g

sinα
cosβ

(sinα cosβ − cosα sinβ)
)
+ g

cosα
cosβ

(219)

= n(λ)
(
s+ g sin2 α

)
− g cosα sin2 β

cosβ
+ g

cosα
cosβ

= n(λ)
(
s+ g sin2 α

)
+ g cosα cosβ

= n(λ)
(
s+ g sin2 α

)
+ g cosα

√
1− n2(λ) sin2 α .

The pair of prisms is thus equivalent to two plane-parallel plates; one with
thickness s and index n(λ), and one with thickness g and index

ne ≡ n(λ) sin2 α+ cosα
√

1− n2(λ) sin2 α . (220)

This is a remarkable result, because we now have effectively twice as many
materials at our disposal to flatten the phase across the bandpass, a significant
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Fig. 58. Light path through a pair of prisms with refractive index n. The angles α
and β are related by Snell’s Law n sinα = sinβ

advantage especially in the mid-infrared, where only very few optical materials
are available. Dispersive elements appear thus equally suited for nulling in-
terferometry as the geometric methods discussed above, because they can
generate phase shifts that are close enough to achromatic. In addition, dis-
persive elements can produce any desired phase shift (not only π rad), which
is required in some classes of multi-element nulling arrays (see Sect. 10.4). An
additional degree of freedom can sometimes be used to minimize achromatic
effects, namely the possibility to use a (nominal) phase shift of 2π instead of
0 (Mieremet and Braat 2002b). For example, a three-telescope configuration
with relative phases of (0, π, 0) is equivalent to one with phases of (0, π, 2π),
but the achromatic errors are different between the two cases.

10.3 Nulling Interferometry from the Ground

Strehl Fluctuations, and Tip-Tilt Accuracy

We will now consider a simple Bracewell nulling interferometer on the ground,
and we assume that the two telescopes are equipped with adaptive optics
systems, which correct the beams from the two telescopes with a Strehl ratio
S. From (199) and (123) we obtain

N =
1
2
σ2
w ≈ −

1
2
lnS ≈ 1

2
(1− S) , (221)

which means that the AO systems have to provide S = 0.998 to achieve a
10−3 null. This is hardly feasible even in the thermal infrared, which means
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that modal filtering of the wavefront is necessary. We will therefore analyze
performance requirements for the AO system to reach a specified null depth
under the assumption that the nulling beam combiner contains a single-mode
modal filter. Using (123), (190), and (200), we see that we can then write the
average null depth as

N =

〈
(S1 − S2)2

〉
16 〈S2〉 , (222)

where S1 and S2 are the Strehl ratios produced by the two AO systems, and〈
S2
〉
the mean squared Strehl ratio (assumed to be equal for the two AO

systems). This means that the null depth depends primarily on the stability
of the wavefront correction, not so much on the actual value of

〈
S2
〉
. In prac-

tice, the stability and the quality of AO correction are closely linked to each
other, however. For strictly stationary Kolmogorov turbulence it is possible
to calculate the expected variability of the AO performance (Yura and Fried
1998), but in practice the non-stationary nature of turbulence is probably
the limiting factor.43 Slow variations of the seeing produce equal variations
of the Strehl ratio in both telescopes, but fast variations must be uncorre-
lated over distances of ∼100m. These fast Strehl fluctuations are difficult to
measure with most AO systems, but it is plausible to assume that an AO
system producing a mean Strehl ratio of 0.5 actually provides an instanta-
neous Strehl ratio fluctuating between 0.3 and 0.7. We can therefore estimate√
〈(S1 − S2)2〉 ≈ 0.2 and get N ≈ 0.01 from (222). This is not very satis-

factory, but fortunately the null depth is ∝ λ−4 as pointed out above. If we
can build an AO system that achieves the above performance in the K band
(2.2µm), it will provide a mean Strehl ratio of 0.97 and a null depth of 2 ·10−5

at 10µm (see Table 13).
The requirements on the quality of the tip-tilt correction follow immedi-

ately from (208). The angle tracker has to follow not only the atmospheric
image motion, but also telescope vibrations induced by wind shake. The per-
formance should be independent of the observing wavelength. If the residual
tip-tilt fluctuation are of order 10mas (which is realistic for the 10m Keck
telescopes), we get N ≈ 3.6 · 10−3 in the K band, about a factor of three
smaller than the effect of Strehl ratio fluctuations. For the 8m telescopes of
the VLTI, N ≈ 1.5 · 10−3. Since again N ∝ λ−4, the ratio between the effects
of AO compensation and tip-tilt correction is the same for all wavelengths. We
conclude that on an 8m to 10m telescope a tip-tilt servo loop that provides
10mas rms angle tracking is well-matched to an AO system that delivers a
Strehl ratio of 0.5 in the K band.

43 In practice the seeing is observed to vary on all accessible time scales. “Lucky
moments” are interrupted by spells of bad seeing, which may last only seconds.
Real-time seeing monitors typically average over a few minutes to get representa-
tive figures, yet they frequently report variations of r0 by sizeable amounts within
less than one hour.
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Table 13. Expected null depth for the near-infrared bands

band wavelength 〈S〉 NAO NOPD N
0
scint N

8m
scint

K 2.2 µm 0.50 1.0 · 10−2 3.8 · 10−3 4.4 · 10−3 7.4 · 10−7

L 3.6 µm 0.77 1.4 · 10−3 1.4 · 10−3 2.5 · 10−3 7.4 · 10−7

M 5.0 µm 0.87 3.9 · 10−4 7.4 · 10−4 1.7 · 10−3 7.4 · 10−7

N 10.0µm 0.97 2.4 · 10−5 1.9 · 10−4 7.5 · 10−4 7.4 · 10−7

Q 20.0µm 0.99 1.5 · 10−6 4.6 · 10−5 3.3 · 10−4 7.4 · 10−7

The following assumptions have been made (for details see text). AO system: mean
Strehl at K-band = 0.5, r.m.s. Strehl imbalance at K-band = 0.2. Atmosphere: fG =
21.35Hz at 500 nm, one layer at 10 km with r0 = 0.2m at 500 nm for scintillation
calculation. Fringe tracker: 2ms loop lag

Fringe Tracking

Nulling interferometry requires precise fringe tracking. The null depth due to
residual uncorrected high-frequency fluctuations of the optical path difference
can be calculated

N =
1
4
σ2
R =

1
2
κ

(
fG
fS

)5/3

. (223)

A careful modeling of the dynamical behavior of the control loop is needed to
determine the value of κ. To get a feeling for the numerical values involved,
consider the case of a “pure delay” of 2ms, so that κ = 28.4, and fS =
500Hz. Let’s further assume that at 500 nm the Greenwood frequency fG,500 =
21.35Hz; this corresponds to a wind velocity v = 10m s−1 and Fried parameter
r0,500 = 20 cm. Scaling fG to 2.2µm and inserting into (223), we obtain a K-
band null depth of 3.8 · 10−3. We see that the speed of the control loop must
be much faster than the Greenwood frequency to obtain a good null depth;
lags due to detector readout or processing time are particularly damaging
because of the large value of κ associated with them. The wavelength scaling
of high-frequency fringe tracking residuals is N ∝ λ−2.

Photon noise in the fringe tracker is also a source of phase noise, which
becomes important for faint stars. The null depth due to photon noise from
(157) and (190) is

N =
1
4

(
λt
λn

)2

σ2
φ,t,phot =

(
λt
λn

)2

· 1
2NtV 2

t

, (224)

where λt is the wavelength at which the fringe tracking is performed, and
λn the wavelength at which the nuller operates. The factor (λt/λn)2 in (224)
favors fringe tracking at a short wavelength. This means that one has to be
careful about additional errors due to dispersion between λt and λn. One
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possibility is using two nested control loops. This scheme uses a fast servo
at λt, which tracks the rapid atmospheric phase fluctuations, and an “outer”
loop with a sensor that measures the residual phase at λn, and determines
tracking offsets between the two wavelengths with a much slower update rate.

Another implication of (224) is the degradation of the quality of the null
when the star is partially resolved at the tracking wavelength. If we require
V 2
t
>∼ 0.03, the stellar diameter has to be <∼ λt/B. The numerical value for

a 50m baseline at K band is 10mas, which is exceeded only by a relatively
small number of bright cool giants and Mira stars. On much longer baselines
or at much shorter λt, however, many of the nearby main-sequence stars will
have low visibilities. It thus appears reasonable to perform the fringe tracking
at K band. In this band a 0mag star observed with two 8m telescopes with
a 10% total efficiency generates ∼ 2 · 1010 photons per second. Scaling this
value to K = 12 gives 320 photons per millisecond. If the AO systems achieve
a Strehl ratio of 0.5, half of these photons are rejected by the modal filter.
The corresponding K-band null depth from (224) is 3.1 · 10−3; it scales with
N ∝ λ−2. Consequently, the nulling performance should not depend much on
the stellar brightness down to K ≈ 12, if the fringe sensor remains photon-
noise limited down to that magnitude.

Scintillation Effects

While the atmospheric phase fluctuations will be corrected to a large extent
by an adaptive optics system, it may be difficult to implement an intensity
control that works on similar time scales. In that case atmospheric scintillation
creates a rapidly variable imbalance between the two beams. The consequent
limitation on the null depth can be calculated combining (110) and (134)

σ2
ln I = 1.14

(√
λh sec z
r0(h)

)5/3

(225)

and by inserting it in (190); this gives44

N = 0.14

(√
λh sec z
r0(h)

)5/3

. (226)

A layer at 10 km above the observatory with r0 = 20 cm at 500 nm will thus
produce a K-band null depth of 4.4 ·10−3. The improvement with wavelength,
N ∝ λ−7/6, is the slowest of all effects considered.

44 A little care has to be taken about factors of 2 here. A fluctuation δI in one beam
increases the average intensity I; the two beams thus have intensities I+δI/2 and
I− δI/2. So the variance in (190) is 1/4 of the variance in (225). Multiplying this
by 2 for the contributions from the two telescopes we get the numerical factor in
(226).
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In the derivation of (226) we have made use of (134), which is valid for the
intensity fluctuations at any given point of the wavefront. This means that
(226) is applicable if the interferometer consists of two very small telescopes,
or if a classical co-axial beam combiner is used.45 If, on the other hand, a
single-mode fiber is used in the beam combiner, the contributions from dif-
ferent parts of the pupil are mixed, and it is the intensity averaged over the
telescope aperture that matters for the null depth. The scintillation pattern
varies spatially on the Fresnel scale rF ≡

√
λh sec z. For telescopes much larger

than rF most of the fluctuations represent high-order modes that are rejected
by the modal filter; only variations of the average intensity couple efficiently
into a single-mode fiber. According to Ryan (2002), aperture averaging can be
approximately described by multiplying the right-hand side of (134) or (225)
by a factor

A ≈
[
1 + 1.1

(
D2

λh sec z

)7/6
]−1

. (227)

This leads to a null depth of 7.4 · 10−7 independent of λ for D = 8m, so that
scintillation should be negligible for nulling with the VLTI UTs or the Keck
10m telescopes.

Subtraction of the Thermal Background

Infrared nulling observations from the ground have to cope with the thermal
background radiation of the atmosphere and instrument. This can in princi-
ple be done by the standard chopping and nodding techniques that are widely
used in infrared astronomy (e.g., McLean 1997). This is technically not easy,
however, because it means that the chopping devices (usually the telescope
secondaries), adaptive optics systems, and the fringe tracker have to be syn-
chronized. The adaptive optics and fringe tracking loops have to be opened
during the off-source part of the chopping cycle; at the beginning of the on-
source part, the adaptive optics loops have to be closed, the fringes have to be
re-acquired and the servo has to find the zero optical path difference position
before data taking can resume. Since canceling the atmospheric fluctuations
requires chopping frequencies of several Hz, this all has to be done very quickly
to keep the resulting overhead tolerable.

A more efficient way of dealing with the thermal background is creating
an internal modulation of the interferometric signal (see Fig. 59). For this
purpose the apertures of the two telescopes are split in halves, so that four
beams are sent to the beam combination laboratory. The right halves and the

45 Recall that in co-axial beam combiner a 50% beam splitter is used to super-
pose the pupils from the two telescopes. Light from each point of the first pupil
therefore interferes only with light from the corresponding point of the second
pupil.
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Fig. 59. Schematic setup (left) and transmission maps of the Keck Interferometer
nulling experiment. Each of the two telescope apertures is split into two halves; the
right halves and the left halves form two nulling interferometers. The outputs of
these nulling interferometers are combined on a third nuller. Modulating the optical
path difference of this aperture nuller by λ/2 alternates between the transmission
maps shown in the top panels. Multiplying by the transmission maps of the two
nulling interferometers (center panels) gives the resulting transmission maps shown
in the bottom panels. A point source on the optical axis is rejected at all times, while
the light from an extended source (e.g., dust disk) or off-axis companion produces
a modulated signal on top of the constant thermal background

left halves form two nulling interferometers with baselines B, which reject the
light of an on-axis star. The angular scale of these nulls is therefore λ/B. The
two outputs are combined on a third nuller, which interferes the light from
the sub-aperture pairs and therefore creates a null with angular scale λ/D.
Modulating the optical path difference of this aperture nuller by λ/2 creates
the desired modulated signal. Whereas the light from an on-axis point source
is rejected at all times by the λ/B nuller, and the incoherent background is
not affected by the modulation, any source at a separation between λ/B and
λ/D (or of corresponding size) will alternatingly be passed an rejected. For
stars at d = 20pc, these two numbers correspond to 0.4AU and 4AU for
an interferometer with two 10m telescopes on a 100m baseline, operated at
10µm. This setup is therefore well-suited for the detection of dust disks and
planets around nearby stars.
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10.4 Design of Nulling Arrays

Quadratic and Higher-Order Nulling

We have seen above (213) that the non-zero diameter of the stellar disk causes
a leak, which severely limits the null depth that can be obtained on bright
stars. The reason is that the null depth is proportional to the square of the
off-axis angle (see (186) and (210)). The only way around this problem is
creating a higher-order null, which is possible if the light from more than
two telescopes is combined with proper phase shifts. Let us consider an array
consisting of n telescopes with diameters Dk, located at positions with polar
coordinates (Lk, δk). If a phase shift φk is introduced in the beam of telescope
k before beam combination, the complex amplitude for a point source with
polar coordinates (θ, ψ) is given by

Aout =
n∑

k=1

Dk · e2πi(Lkθ/λ) cos(δk−ψ) · eiφk . (228)

We are interested in the scaling of Aout for small off-axis angles; therefore
we expand the exponential into a Taylor series in θ. With the abbreviation
xk ≡ 2π(Lkθ/λ) we obtain

eixk cos(δk−ψ) = 1 + ixk cos(δk − ψ)− 1
2x

2
k cos

2(δk − ψ) +O(x3k) . (229)

Back-substituting this expansion into (228) we see that the condition for on-
axis nulling (Aout = 0 for θ = 0) is

n∑
k=1

Dk · eiφk = 0 . (230)

The complex amplitude is then ∝ θ and the intensity leaking through the
nuller ∝ θ2. Setting the second term of the expansion (228) and (229) to zero
we get

n∑
k=1

Dk · xk · cos(δk − ψ) · eiφk = 0 . (231)

If (230) and (231) are satisfied simultaneously for all values of ψ, the inten-
sity varies ∝ θ4. This result can easily be generalized by adding equations
from higher orders of the expansion; the additional condition to achieve a θ6

null is
n∑

k=1

Dk · x2k · cos2(δk − ψ) · eiφk = 0 . (232)
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Using the standard formula for the cosine of a difference, we see that requiring
(231) to be satisfied for all values of ψ is equivalent to the two conditions

n∑
k=1

Dk · xk · cos δk · eiφk = 0, (233)

n∑
k=1

Dk · xk · sin δk · eiφk = 0 . (234)

Similarly, (232) is equivalent to

n∑
k=1

Dk · x2k · cos2 δk · eiφk = 0, (235)

n∑
k=1

Dk · x2k · sin2 δk · eiφk = 0, (236)

n∑
k=1

Dk · x2k · sin 2δk · eiφk = 0 . (237)

Equations (230), (233), and (235) provide a systematic framework for the
design of arrays that perform quadratic, fourth-order, or sixth-order nulling.
An example for a linear array that generates a sixth-order null is the OASES
concept (Angel and Woolf 1997). The transmission of this configuration is
compared to that of a two-element Bracewell interferometer in Fig. 60.
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Fig. 60. Transmission of the linear OASES interferometer concept consisting of
four telescopes with diameters (1, 2, 2, 1) located at positions (−2,−1, 1, 2), and
combined with phases (0, π, 0, π). The horizontal axis is the component of the off-
axis angle parallel to the array. The θ6 null of OASES (full line) is compared to the
θ2 null of a two-telescope Bracewell interferometer 3/8 as long, for which the first
maximum in the transmission occurs at the same off-axis angle (dash-dotted line)
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External and Internal Modulation

The next important question to consider is the way of extracting useful infor-
mation from the nulling array. A pupil plane interferometer does not produce
images, but rather a photon count from a single-pixel detector as a function of
time. The output of the beam combiner for light arriving from the direction (θ,
ψ) is given by (228); the total amplitude received can therefore be computed
by multiplying this expression with the electric field at (θ, ψ), and integrat-
ing over the plane of the sky. This process is illustrated in the top panels of
Fig. 53; the observed photon count is the total integrated intensity contained
in the top right panel. This single number obviously does not provide us with
the information we are seeking, namely the position and brightness of the
planet(s) associated with the target star. The simplest way of increasing the
amount of information from the nulling interferometer is to rotate it around
the line-of-sight toward the star, as illustrated in the bottom panels of Fig. 53.
In the course of the rotation the planet is traversed by regions of high and
low response, which leads to a modulation of the observed intensity. The in-
formation about the position and brightness of the planet is encoded in this
signal, which is plotted as a function of time for a full rotation in the bottom
right panel.

The rotational modulation method has a significant difficulty, namely the
requirement that the instrumental response has to remain stable over a full
rotation period, which is typically of order several hours. Small drifts of the
detector sensitivity or background, of the telescope pointing, or other com-
ponents of the interferometer can mask the presence of a planet or lead to
spurious detections. It is therefore highly desirable to modulate the output at
a higher rate (≈ 1Hz). In a “standard” Michelson stellar interferometer one
can modulate the delay and measure the visibility with a lock-in detection
scheme as described in Sect. 8.5. This is generally not possible for a nulling
interferometer, because delay scanning changes the φk and thus violates the
nulling conditions. It is obvious from (230), however, that four identical tele-
scopes combined with phases (0, π, α, and α+ π) will produce a central null
irrespective of the value of α. One can, for example, quickly alternate between
α = π/2 and α = −π/2, which generally changes the interferometer response
pattern on the sky (see Fig. 61). This technique of modulating the planetary
signal is called “internal chopping”.

We can think of this configuration as constructed from two Bracewell pairs
with phases (0, π) and (α, α+π), respectively. This concept can be generalized
to arbitrary nulling configurations. If the outputs fromN arrays, each of which
produces a θµ null, are combined with relative phases α1, . . . , αN , the output
produces again a θµ null, and the αi can be varied to produce a modulation
of the signals from off-axis sources. This recipe can be used to construct
complicated nulling arrays with desirable properties from simpler building
blocks. We should also note that compressing or stretching an array in one
direction changes the width of the null in that direction, but preserves the
order of the null.
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Fig. 61. Transmission of a linear double-Bracewell interferometer consisting of four
telescopes of identical diameter with unit spacing. The horizontal axis is the compo-
nent of the off-axis angle parallel to the array. The full curve is the transmission for
phases (0, −π/2, π, π/2), the dash-dotted curve for (0, π/2, π, −π/2). Chopping be-
tween these states modulates the planetary signal between the two values indicated
by circles

Nulling Array Geometries

Various array geometries have been proposed for the direct detection of extra-
solar planets in the mid-infrared, each one with certain technical advantages
and disadvantages. If all telescopes are mounted on a single long structure,
linear configurations are certainly easier to assemble and maneuver. On the
other hand, two-dimensional arrays in which each telescope is mounted on
its own free-flying spacecraft have more versatility. In that case, an “ideal”
nulling array should perhaps fulfill the following criteria:

• All telescopes are at equal distance from the beam combiner spacecraft. If
this is not the case, the beam transport is more complicated, and diffrac-
tion effects will be different between the interferometer arms.

• All telescopes and the beam combiner are in one plane (perpendicular to
the line of sight to the target star). This allows a thermal design that
minimizes radiative coupling between the illuminated and cold parts of
the spacecraft.

• The null is of fourth or sixth order. We have seen above that second-order
starlight suppression is not sufficient.

• The only phase shift needed is π. While it is possible to introduce shifts by
other amounts with dispersive elements, they are more difficult to control
precisely.

• All telescopes have the same diameter. This is certainly cheaper than
launching telescopes with different sizes.
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• Internal phase modulation is possible. This relaxes the required stability
of the optics and detectors.

• The transmission function should not have any rotational symmetries,
which lead to ambiguities in the position of any detected planets. (For
example, linear configurations with mirror-symmetric transmission func-
tions have a 180◦ degree ambiguity.) The determination of planet orbits
from multiple observations is much easier if the positions are unambiguous,
especially in multi-planet systems.

As we will see, it is possible to design a arrays that have all of these properties.
The price to be paid is in the number of telescopes and in the complexity of
the beam combination, when a high-order null and chopping capability are
required. Since the more complicated arrays are constructed from simpler
building blocks, it is useful to look at the various arrangements, progressing
from the elementary to the more complex. A summary is also given in Table 14.
All concepts assume that the whole interferometer is oriented perpendicular to
the line-of-sight to the target star, i.e., there has to be a spacecraft maneuver
to reorient the array for each observed star. The array can then be rotated
around the line-of-sight during the observation, either by a full 360◦ or a
smaller angle, as shown in Fig. 53.

Bracewell Pair.

This is the most basic nulling interferometer, consisting of two telescopes
with equal size and a π phase shift between them. The resulting θ2 null is
insufficient for the direct detection of Earth-like planets.

Table 14. Configurations for space-borne nulling interferometers

name Ntel configuration order chopping ambiguities

Bracewell 2 Single Baseline θ2 no yes

Double Bracewell 4 Linear 1:1:1:1 θ2 yes no

OASES 4 Linear 1:2:2:1 θ6 no yes

Angel’s Cross 4 Cross-shaped θ4 no yes

DAC 3 Linear 1:
√
2:1 θ4 no yes

Double DAC 4 Linear 1:
√
3:
√
3:1 θ4 yes no

Mariotti 3-DAC 6 Triangular θ4 yes no

DARWIN 5-Telescope 5 Compressed Pentagon θ4 no no

Robin Laurance 6 Hexagon θ4 yes no

For explanations of the individual configurations see text. Note that variants of many
of the concepts exist; only the main version for each one is included in the table
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Double Bracewell Interferometer.

This is the simplest nulling interferometer that allows for internal chopping.
It consists of four identical telescopes in a linear arrangement with equal
spacing. The first and third telescope form one Bracewell pair, the second and
fourth the other. Switching the relative phase between the two Bracewell pairs
phases between π/2 and −π/2 is illustrated in Fig. 61. The double Bracewell
interferometer inherits the θ2 null from the single Bracewell pair.

OASES.

The OASES concept is a linear array that provides θ6 nulling (Angel and
Woolf 1997). It consists of two Bracewell pairs; one of them has twice the
baseline but only half the aperture diameter of the other. The phase between
the two Bracewell pairs is π. The OASES configuration can thus be described
by Dk = (1, 2, 2, 1), Lk = (−2, −1, 1, 2), and φk = (0, π, 0, π).

Angel’s Cross.

This is a two-dimensional configuration, in which four telescopes of equal
diameter are placed at the corners of a rhombus, so that their arrangement
resembles a cross with pairwise equal bar lengths (Angel 1990). The telescopes
located opposite of each other on the same bar have the same phase; the phase
difference between the two bars is π. Angel’s cross produces a θ4 null.

Degenerate Angel’s Cross (DAC).

This configuration is derived from Angel’s cross by collapsing it along one of
the bars, i.e., the two telescopes of one of the bars are replaced by a single tele-
scope with twice the aperture area. Taking a linear configuration with equal
spacings, telescope diameters (1,

√
2, 1), and phases (0, π, 0), and dividing

the light from the central telescope in two equal beams, we get an array of
four telescopes with equal diameters at positions (−1, 0, 0, 1) and with phases
(0, π, π, 0). This is just the projection of an Angel’s cross on one coordinate
axis.46 The order of the null in the DAC configuration is also θ4.

Double Degenerate Angel’s Cross.

If we construct two DACs, we can combine their outputs with a time-variable
phase and thus obtain an array with a θ4 null and internal chopping. A double

46 There seems to be a paradox here. According to our formalism (230), one should
expect diameters of (1, 2, 1), not (1,

√
2, 1). Actually, both versions are “correct”.

Consistency with our formalism requires that if we choose (1, 2, 1), we must send
the light from the central telescope in one entrance of the beam combiner; if we
choose (1,

√
2, 1) we must divide the light from the central telescope and send the

two beams into two different entrances. It is not too difficult to convince oneself
that the light in the nulled output is the same in both cases; the extra photons
in the (1, 2, 1) case end up in the non-nulled outputs.
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DAC can either be realized with six independent telescopes (Woolf and Angel
1997), or with a linear array of four equally spaced telescopes with diameters
(1,
√
3,
√
3, 1). The latter approach is based on the idea of overlaying separate

nulling arrays such that they share one or more telescopes. The aperture area
of a shared telescopes must be equal to the sum of the areas of the constituent
telescopes at that position. In the case of the double DAC, splitting the light
from the large telescopes with a 2:1 intensity ratio forms two arrays that are
equivalent to diameters (1,

√
2, 1, 0), and (0, 1,

√
2, 1), respectively; these are

the two constituent DACs.

Mariotti 3-DAC.

This configuration consists of three DACs, which form the three sides of an
equilateral triangle. Each of the telescopes at the vertices of the triangle is
shared between two DACs, so that all telescopes are of equal size. This fact, to-
gether with the θ4 null, chopping capability, redundancy, and two-dimensional
coverage of the uv plane make the Mariotti 3-DAC quite attractive for a space
nulling array.

DARWIN 5-Telescope Configuration.

A five-telescope solution to (230) and (233) is given by xk = const., δk =
2(k − 1)π/5, and φk = 4(k − 1)π/5, i.e., the telescopes are located on a regu-
lar pentagon, and the phase difference between neighboring telescopes is 144◦

(Mennesson and Mariotti 1997). The DARWIN 5-telescope configuration is
derived from this solution by compressing the array along one axis by a factor
∼2. Upon rotation of the array (internal chopping is not possible), the trans-
mission function provides fairly strong modulation of planetary signals but
only weak modulation of the light from a symmetric exozodiacal disk. Unlike
most other non-chopping configurations, the DARWIN 5-telescope concept
does not suffer from ambiguities of the planet position; the five-fold symme-
try of the regular pentagon is broken by the compression along one axis.

Robin Laurance Interferometers.

This is a class of nulling arrays that consists of building blocks, which can be
called generalized Angel’s crosses (GACs); a GAC is here defined simply as a
nulling interferometer that satisfies (230) and (233) and thus produces a θ4

null. One can easily verify that assigning telescope diameters Dk = (3, 2, 0,
1, 0, 2) and phases φk = (0, π, ×, 0, ×, π) to the six vertices of a regular
hexagon defines a GAC. Three such GACs rotated by 120◦ with respect to
each other and overlayed on the hexagon as shown in Fig. 62 constitute a Robin
Laurance interferometer (Karlsson and Mennesson 2000). This configuration
satisfies all of the requirements on an “ideal” nulling array listed above. The
most significant drawbacks are its complexity and the need to divide the light
from three of the telescopes asymmetrically with a 4:4:1 intensity ratio. Many
similar overlays of GACs on regular hexagons and on pentagons exist. It is
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GAC 1 GAC 3GAC 2

Fig. 62. Robin Laurance interferometer. Three generalized Angel’s crosses (GACs)
are overlayed on a hexagonal telescope array. The designation of this specific config-
uration RL3(3,2,0,1,0,2) gives the number of GACs, and the amplitudes contributing
to each GAC, starting with the largest and counting along the hexagon’s vertices.
Within each GAC, the large and small telescope are combined with phase 0 (black),
the two intermediate-size telescopes with phase π (light gray). The contributions
from the three GACs add up to 9 units for each telescope aperture area

therefore possible to devise layouts that are technically simpler (for example
solutions in which all beams have the same intensities), and to optimize various
aspects of their performance (Karlsson and Mennesson 2000).

Location of the Beam Combiner

In the preceding section the various array geometries have been described in
terms of the location and size of the telescopes, and of the applied phase shifts.
It is also necessary, of course, to provide for a beam combiner. In the case of the
Robin Laurance configuration, for example, the beam combiner should clearly
be located at the center of the hexagon. The pathlength from each telescope
is then equal, and the beam relay to the central hub comparatively simple.
If there is no location from which all telescopes have the same distance (e.g.,
in the OASES and Mariotti 3-DAC configurations), the beam can be passed
through several spacecraft rather than sent directly to the beam combiner.
An example is shown in the bottom left panel of Fig. 53. Sending the beams
from telescopes 1 and 3 to the combiner via telescope 2 ensures equality of
the paths. It is thus normally necessary to provide a separate beam combiner
spacecraft in addition to those carrying the telescopes.

Image Reconstruction

Like any other interferometer, a nulling array produces a non-intuitive output
when a complicated object is observed. Whereas in a “standard” two-element
interferometer the signal and the source structure are related by a Fourier
transform (145), we can derive an analogous generalized equation for a nulling
array by multiplying (228) with the electric field distribution E(θ, ψ) on the
sky, and integrating over θ and ψ. Because more than two telescopes contribute
to the observed signal, there is no simple Fourier relation between source
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structure and data, but general requirements on the sampling of the uv plane,
and the use of image reconstruction algorithms, apply in a similar way.

Figure 63 shows an example of these principles applied to a simulated
observation of a planetary system with a linear nulling interferometer, which

Fig. 63. Reconstruction of an observation of a terrestrial planet at a distance of
10 pc with a linear nulling interferometer. The level of exozodiacal emission was
assumed to be equal to that in the Solar System; the inclination was taken to be
i = 30◦. The panels show how the reconstructed image improves as more baselines
(left to right) and more wavelengths (top to bottom) are added. From NASA (1999b)
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was rotated around the viewing direction to synthesize a reasonable uv plane
coverage as illustrated in Fig. 53. The left-hand panels assume that the tele-
scopes of the interferometer are fixed with respect to each other, whereas the
right-hand panels assume that the size of the array can be varied. The top
panels use only monochromatic light for the reconstruction, whereas the cen-
ter and bottom panels take advantage of wavelength synthesis. These images
demonstrate clearly how the quality of the reconstruction improves as more
baselines and more wavelengths are added. A few artifacts remain, however,
even in the best case. Most significantly, there is a mirror image of the planet
due to the symmetric transmission pattern of the array, and an aliasing arti-
fact at twice the orbital distance. These effects can be avoided by asymmetric
array configurations or asymmetric internal chopping techniques. It is clear
that a careful choice of the array geometry and of the image reconstruction
technique are necessary to optimize the ability of a nulling interferometer to
perform meaningful observations of systems with multiple planets.

11 Appendix: Useful Definitions and Results
from Fourier Theory

For reference, this appendix lists a few useful results from Fourier theory
without proofs. In the notation adopted, g ⇐⇒ G means “G is the Fourier
transform of g”, and it is understood that small and capital letters designate
Fourier transforms pairs, i.e., g ⇐⇒ G and h ⇐⇒ H. H∗ is the complex
conjugate of H. Introductions into Fourier theory and more details can be
found in many textbooks (e.g. Bracewell 1965). The results are frequently
formulated for the one-dimensional Fourier pair time and frequency (t←→ f),
but they can equally be applied to the three-dimensional variables position
and spatial frequency (x←→ κ).

The convolution g ∗ h and correlation Corr(g, h) of two functions g and h
are defined by:

g ∗ h ≡
∫ ∞

−∞
dτ g(t− τ)h(τ) (238)

and

Corr(g, h) ≡
∫ ∞

−∞
dτ g(t+ τ)h(τ) . (239)

A special case of the latter is the correlation of a function with itself, the
covariance:

Bg ≡ Corr(g, g) . (240)
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For complex functions, the coherence function is defined by:

Bg ≡ Corr(g, g∗) . (241)

The customary use of the same symbol B for covariance and coherence func-
tion is somewhat unfortunate, but should not be too confusing. The power
spectral density Φ(f) is defined as

Φ(f) ≡
∣∣G(f)

∣∣2 . (242)

The famous Convolution Theorem and Correlation Theorem are:

g ∗ h⇐⇒ G(f)H(f) (243)

and

Corr(g, h)⇐⇒ G(f)H∗(f) . (244)

The special case of the Correlation Theorem for the covariance is theWiener-
Khinchin Theorem:

Bg = Corr(g, g)⇐⇒
∣∣G(f)

∣∣2 = Φ(f) . (245)

The structure function Dg of a function g is defined by:

Dg(t1, t2) ≡
〈∣∣g(t1)− g(t2)∣∣2〉 . (246)

If g describes a homogeneous and isotropic random process, Dg depends only
on t = |t1 − t2|. By expanding the square in (246), we see that in this case

Dg(t) = 2
(
Bg(0)−Bg(t)

)
. (247)

Finally, Parseval’s Theorem states that the total power in a time series is the
same as the total power in the corresponding spectrum:

TotalPower ≡
∫ ∞

−∞
dt
∣∣g(t)∣∣2 =

∫ ∞

−∞
df
∣∣G(f)

∣∣2 . (248)
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The Optical Gravitational Lensing Experiment. Discovery of the first candi-



240 A. Quirrenbach

date microlensing event in the direction of the Galactic bulge. Acta Astron
43:289–94
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Physics of Substellar Objects
Interiors, Atmospheres, Evolution

T. Guillot

1 Introduction

All stars visible to the naked eye owe their momentary brightness to nuclear
reactions occurring in their interior. While this certainly makes them jewels
of the night skies, it will eventually lead them to a tragic end, in which they
will explode to become either degenerate white dwarfs, neutron stars or black
holes. Another, more numerous but barely visible population has chosen to
lead a dull but quiet and almost eternal life: these are careful not to ever
become dependent on hydrogen to shine. Some, in their youth, do burn less
energetic substances as deuterium and lithium, but they rapidly get short of
supply. As a consequence, they steadily cool and contract, retaining intact
most of the elements that made them.

These brown dwarfs and giant planets form an entirely new class of astro-
nomical objects. They fill a gap between stars and the planets of our Solar Sys-
tem. Their study informs us on our origins, the formation of stars and planets.
It can also help us to understand or test theories from high pressure physics,
to atmospheric dynamics, tides, condensation and cloud formation...etc.

The course focuses on some physical aspects related to the theoretical
study of these substellar objects: I detail their hydrostatic evolution and how it
is modeled, what we can learn from Jupiter, Saturn, Uranus and Neptune, how
the atmospheres of brown dwarfs and giant planets are key to their appearance
and cooling, what we can learn from the recent observations of brown dwarfs
and extrasolar planets, and how this affects our view of planet formation.

2 “Our” Giant Planets as a Basis for the Study of
Substellar Objects

2.1 Origins: Role of the Giant Planets for Planet Formation

The Solar System contains our Sun, which possesses more than 98% of the
mass of the system, and eight planets orbiting around it in the same plane and
Guillot T (2006), Physics of substellar objects Interiors, atmospheres, evolution. In:
Mayor M, Queloz D, Udry S and Benz W (eds) Extrasolar planets. Saas-Fee Adv Courses
vol 31, pp 243–368
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same direction with quasi-circular orbits. The planets contain 99.5% of the
angular momentum of the system. The four inner planets, Mercury, Venus,
Earth and Mars have the highest densities, but more than 99.5% of the mass
of the planetary system is in its four outer planets, Jupiter, Saturn, Uranus
and Neptune. Most of the planets have moons, or natural satellites. Orbiting
around the Sun, one also finds asteroids, Kuiper belt objects (including Pluto)
and comets.

A picture emerges naturally from these observations: the formation of the
planets in a circumstellar disk: the protosolar nebula. Planets formed close to
the Sun naturally contain less volatiles and ices, while the outer planets were
favored by the abundant presence of ices and could therefore grow fast enough
to get hold of the surrounding hydrogen and helium of the nebula before
its dissipation. In this picture, asteroids, Kuiper belt objects and comets all
represent leftovers from an inefficient planet formation mechanism.

By their masses, the giant planets Jupiter, Saturn, Uranus and Neptune
played a key role in this story. While the inner, terrestrial planets took tens
of millions of years to reach their present masses, the giant planets had to
form rapidly, before the gas of the protosolar nebula disappeared onto the
star or was swept away from the system. They led to the ejection of numerous
material, preventing the formation of a planet between Mars and Jupiter,
and sending planetesimals into the Oort cloud, from where these remains of
planetary formation come back once in a while as comets.

Their study therefore informs us on our origins. It also allows us to ex-
tend our knowledge beyond the frontiers of the Solar System and to model
with confidence the other giant planets that have been found orbiting other
stars. Before presenting the theoretical aspects of that understanding, I will
detail here a few of the observations and measurements of significance for our
purposes.

Most of the measurements at the basis of our understanding of the struc-
ture of our giant planets have been acquired by spacecraft missions: Pioneer
10 & 11, Voyager 1 & 2, Ulysses, Galileo, Cassini-Huygens.

2.2 Gravity Field and Global Properties

The mass of the giant planets can be obtained with great accuracy from the
observation of the motions of their natural satellites: 317.834, 95.161, 14.538
and 17.148 times the mass of the Earth (1M⊕ = 5.97369×1027 g) for Jupiter,
Saturn, Uranus and Neptune, respectively. More precise measurements of
their gravity field can be obtained through the analysis of the trajectories
of spacecrafts during flyby, especially when they come close to the planet
and preferably in a near-polar orbit. The gravitational field thus measured
departs from a purely spherical function due to the planets rapid rotation.
The measurements are generally expressed by expanding the components
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of the gravity field on Legendre polynomials Pi of progressively higher
orders:

Vext(r, θ) = −
GM

r

{
1−

∞∑
i=1

(
Req

r

)i
JiPi(cos θ)

}
, (1)

where Req is the equatorial radius, and Ji are the gravitational moments .
Because the giant planets are very close to hydrostatic equilibrium the coeffi-
cients of even order are the only ones that are not negligible. We will see how
these gravitational moments help us constrain the planets’ interior density
profiles.

Table 1 also indicates the radii obtained with the greatest accuracy by
radio-occultation experiments. By convention, these radii and gravitational
moments correspond to the 1 bar pressure level. The rotation periods show
the relatively fast revolution of these planets: about 10 hours for Jupiter and
Saturn, about 17 hours for Uranus and Neptune. The fact that this fast rota-
tion visibly affects the figure (shape) of these planets is seen by the significant
difference between the polar and equatorial radii.

A first result obtained from the masses and radii indicated in Table 1 is the
fact that these planets have low densities: 1.33, 0.688, 1.27, and 1.64 g cm−3

for Jupiter, Saturn, Uranus and Neptune, respectively (these values are calcu-
lated using the planets’ mean radii, as defined in Sect. 3.5). Considering the

Table 1. Characteristics of the gravity fields and radii

Jupiter Saturn Uranus Neptune

M × 10−29 [g] 18.986112(15)a 5.684640(30)b 0.8683205(34)c 1.0243542(31)d

Req × 10−9 [cm] 7.1492(4)e 6.0268(4)f 2.5559(4)g 2.4766(15)g

Rpol × 10−9 [cm] 6.6854(10)e 5.4364(10)f 2.4973(20)g 2.4342(30)g

J2 × 102 1.4697(1)a 1.6332(10)b 0.35160(32)c 0.3539(10)d

J4 × 104 −5.84(5)a −9.19(40)b −0.354(41)c −0.28(22)d
J6 × 104 0.31(20)a 1.04(50)b . . . . . .

Pω × 104 [s] 3.57297(41)h 3.83577(47)h 6.2064i 5.7996j

The numbers in parentheses are the uncertainty in the last digits of the given
value. The value of the gravitational constant used to calculate the masses of
Jupiter and Saturn is G = 6.67259×10−8 dyn cm2 g−1 (Cohen and Taylor 1986)
a Campbell and Synnott (1985)
b Campbell and Anderson (1989)
c Anderson et al. (1987)
d Tyler et al. (1989)
e Lindal et al. (1981)
f Lindal et al. (1985)
g Lindal (1992)
h Davies et al. (1986)
i Warwick et al. (1986)
j Warwick et al. (1989)
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compression that strongly increases with mass, one is led to a sub-classification
between the hydrogen–helium giant planets Jupiter and Saturn, and the “ice
giants” Uranus and Neptune.

2.3 Magnetic Fields

As the Earth, the Sun and Mercury, our four giant planets possess their own
magnetic fields, as shown by the Voyager 2 measurements. The structures of
these magnetic fields are very different from one planet to another and the
dynamo mechanism that generates them is believed to be related to convection
in their interior but is otherwise essentially unknown (see Stevenson 1983 for
a review).

The magnetic field B is generally expressed in form of a development in
spherical harmonics of the scalar potential W , such that B = −∇W :

W = a

∞∑
n=1

(a
r

)n+1 n∑
m=0

{gmn cos(mφ) + hmn sin(mφ)}Pm
n (cos θ) . (2)

r is the distance to the planet’s center, a its radius, θ the colatitude, φ the lon-
gitude and Pm

n the associated Legendre polynomials. The coefficients gmn and
hmn are the magnetic moments that characterize the field. They are expressed
in magnetic field units (i.e. the Gauss in c.g.s. units).

One can show that the first coefficients of relation (2) (for n = 0 and n = 1)
correspond to the potential of a magnetic dipole such that W = M · r/r3 of
moment:

M = a3
{(
g01
)2

+
(
g11
)2

+
(
h11
)2}1/2

. (3)

Jupiter and Saturn have magnetic fields of essentially dipolar nature, of
axis close to the rotation axis (g01 is much larger than the other harmonics);
Uranus and Neptune have magnetic fields that are intrinsically much more
complex. To provide an idea of the intensity of the magnetic fields, the value
of the dipolar moments for the four planets are 4.27GaussRJ, 0.21GaussRS,
0.23GaussRU, 0.133GaussRN, respectively (Connerney et al. 1982; Acuña et
al. 1983; Ness et al. 1986, 1989).

2.4 Atmospheric Composition

The most important components of the atmospheres of our giant planets are
also among the most difficult to detect: H2 and He have a zero dipolar mo-
ment. Also their rotational lines are either weak or broad. On the other hand,
lines due to electronic transitions correspond to very high altitudes in the
atmosphere, and bear little information on the structure of the deeper levels.
The only robust result concerning the abundance of helium in a giant planet
is by in situ measurement by the Galileo probe in the atmosphere of Jupiter
(von Zahn et al. 1998). The helium mole fraction (i.e. number of helium atoms
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over the total number of species in a given volume) is qHe = 0.1359± 0.0027.
The helium mass mixing ratio Y (i.e. mass of helium atoms over total mass)
is constrained by its ratio over hydrogen, X: Y/(X + Y ) = 0.238± 0.05. This
ratio is by coincidence that found in the Sun’s atmosphere, but because of he-
lium sedimentation in the Sun’s radiative zone, it was larger in the protosolar
nebula: Yproto = 0.275 ± 0.01 and (X + Y )proto ≈ 0.98. Less helium is there-
fore found in the atmosphere of Jupiter than inferred to be present when the
planet formed. We will discuss the consequences of this measurement later:
let us mention that the explanation invokes helium settling due to a phase
separation in the interiors of massive and cold giant planets.

Helium is also found to be depleted compared to the protosolar value in
Saturn’s atmosphere. However, in this case the analysis is complicated by the
fact that Voyager radio occultations apparently led to a wrong value. The
current adopted value is now Y = 0.18 − 0.25 (Conrath and Gautier 2000),
in agreement with values predicted by interior and evolution models (Guillot
1999a,b; Hubbard et al. 1999). Finally, Uranus and Neptune are found to have
near-protosolar helium mixing ratios, but with considerable uncertainty.

The abundance of other elements (that I will call hereafter “heavy ele-
ments”) bears crucial information for the understanding of the processes that
led to the formation of these planets. Again, the most precise measurements
are for Jupiter, thanks to the Galileo probe. Most of the heavy elements are
enriched by a factor 2 to 4 compared to the solar abundance (Niemann et al.
1998; Owen et al. 1999). One exception is neon, but an explanation is its cap-
ture by the falling helium droplets (Roulston and Stevenson 1995). Another
exception is water, but this molecule is affected by meteorological processes,
and the probe was shown to have fallen into a dry region of Jupiter’s at-
mosphere. There are strong indications that its abundance is at least solar.
Possible very high interior abundances (∼10 times the solar value) have also
been suggested, either to explain waves propagation after the Shoemaker-
Levy 9 impacts (Ingersoll et al. 1994) or as a scenario to explain the delivery
of heavy elements to the planet (Gautier et al. 2001).

Assuming that all elements are enriched by a factor∼3 in Jupiter’s interior,
the total mass of heavy elements in the planet would be ∼18M⊕. In the other
planets, the case is considerably less clear as only the abundance of CH4 can
be measured with confidence. As shown in Table 2 this ratio is consistent
with an increased proportion of heavy elements when moving from Jupiter to
Neptune. The problem of how these elements were delivered to these planets
will be discussed later.

2.5 Energy Balance and Atmospheric Temperature Profiles

Jupiter, Saturn and Neptune are observed to emit significantly more energy
than they receive from the Sun (see Table 3). The case of Uranus is less
clear. Its intrinsic heat flux Fint is significantly smaller than that of the
other giant planets. Detailed modeling of its atmosphere however indicate
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Table 2. Chemical species detected in the atmospheres of giant planets (courtesy
of B. Bézard)

Jupiter Saturn Uranus Neptune

H2 0.864 0.86− 0.90 0.81− 0.86 0.77− 0.82

He 0.134 0.10− 0.14 0.12− 0.17 0.16− 0.22

rare gases Ne, Ar, Kr, Xe

species in CH4: 2× 10−3 CH4: 3−6×10−3 CH4: ∼2×10−2 CH4: ∼2×10−2

thermochemical NH3: 5× 10−3 NH3

equilibrium H2O: > 10−3 H2O

H2S: 8× 10−5 H2S? H2S?

species in PH3 PH3

thermochemical CO CO CO

disequilibrium GeH4 GeH4

AsH3 AsH3

photochemical C2H6, C2H2, C2H6, C2H2, C2H2 C2H6, C2H2,

products C2H4, CH3C2H, CH3C2H, C4H2, C2H4, CH3,

C6H6 C6H6, CH3 HCN

meteoritic flux H2O, CO H2O H2O H2O

CO2 (from H2O)

SL9 residuals CO, CO2

CS, HCN

Table 3. Energy balance as determined from Voyager IRIS dataa

Jupiter Saturn Uranus Neptune

absorbed power [1023 erg s−1] 50.14±2.48 11.14±0.50 0.526±0.037 0.204±0.019
emitted power [1023 erg s−1] 83.65±0.84 19.77±0.32 0.560±0.011 0.534±0.029
intrinsic power [1023 erg s−1] 33.5±2.6 8.63±0.60 0.034 +0.038

−0.034 0.330±0.035
intrinsic flux [erg s−1 cm−2] 5440±430 2010±140 42 +47

−42 433±46
bond albedo 0.343±0.032 0.342±0.030 0.300±0.049 0.290±0.067
effective temperature [K] 124.4±0.3 95.0±0.4 59.1±0.3 59.3±0.8
1-bar temperatureb [K] 165±5 135±5 76±2 72±2
a After Pearl and Conrath (1991)
b Lindal (1992)

that Fint ∼> 60 erg cm−2 s−1 (Marley and McKay 1999). With this caveat, all
four giant planets can be said to emit more energy than they receive from the
Sun. Hubbard (1968) showed in the case of Jupiter that this can be explained
simply by the progressive contraction and cooling of the planets.
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A crucial consequence of the presence of an intrinsic heat flux is that it re-
quires high internal temperatures (∼10, 000K or more), and that consequently
the giant planets are fluid (not solid) (Hubbard 1968; see also Hubbard et al.
1995). Another consequence is that they are essentially convective, and that
their interior temperature profile are close to adiabats. We will come back to
this in more details.

The deep atmospheres (more accurately tropospheres) of the four giant
planets are indeed observed to be close to adiabats, a result first obtained
by Trafton (1967), but verified by radio-occultation experiments by the Voy-
ager spacecrafts, and by the in situ measurement from the Galileo probe
(Fig. 1). The temperature profiles show a temperature minimum, in a region
near 0.2 barcalled the tropopause. At higher altitudes, in the stratosphere,
the temperature gradient is negative (increasing with decreasing pressure). In
the regions that we will be mostly concerned with, in the troposphere and
in the deeper interior, the temperature always increases with depth. It can
be noticed that the slope of the temperature profile in Fig. 1 becomes almost
constant when the atmosphere becomes convective, at pressures of a few tens
of bars, in the four giant planets.

It should be noted that the 1 bar temperatures listed in Table 3 and the
profiles shown in Fig. 1 are retrieved from radio-occultation measurements us-
ing a helium to hydrogen ratio which, at least in the case of Jupiter and Saturn,
was shown to be incorrect. The new values of Y are found to lead to increased
temperatures by ∼5K in Jupiter and ∼10K in Saturn (see Guillot 1999a,b).

Fig. 1. Atmospheric temperatures as a function of pressure for Jupiter, Saturn,
Uranus and Neptune, as obtained from Voyager radio-occultation experiments (see
Lindal 1992). The dotted line corresponds to the temperature profile retrieved by
the Galileo probe, down to 22 barand a temperature of 428K (Seiff et al. 1998)
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However, to make things simple (!), the Galileo probe found a 1 bar temper-
ature of 166K (Seiff et al. 1998), and generally a good agreement with the
Voyager radio-occultation profile with the wrong He/H2 value.

When studied at low spatial resolution, it is found that all four giant
planets, in spite of their inhomogeneous appearances, have a rather uniform
brightness temperature, with pole-to-equator latitudinal variations limited to
a few kelvins (e.g. Ingersoll et al. 1995). However, in the case of Jupiter, some
small regions are known to be very different from the average of the planet.
This is the case of hot spots, which cover about 1% of the surface of the planet
at any given time, but contribute to most of the emitted flux at 5 microns, due
to their dryness (absence of water vapor) and their temperature brightness
which can, at this wavelength, peak to 260K. This fact is to be remembered
when analyzing e.g. brown dwarfs spectra.

2.6 Spectra

A spectrum of a jovian hot spot obtained from the Galileo orbiter is shown in
Fig. 2. It demonstrates the complex structure of a planet, and the significant
departures from a black-body radiation. At short wavelengths (λ ∼< 3µm,
the spectrum is dominated by the directly reflected solar light. At longer
wavelengths, the thermal radiation dominates. The spectrum is dominated by
the absorption bands of methane with some absorption by ammonia; water
lines are seen around 5µm, and a number of less abundant chemical species
(e.g. phosphine) contribute to this spectrum.

Fig. 2. Flux emitted by a Jupiter hot spot as seen by the Galileo orbiter with NIMS
[From Carlson et al. 1996; Courtesy of P. Drossart]
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2.7 Atmospheric Dynamics: Winds and Weather

The atmospheres of all giant planets are evidently complex and turbulent in
nature. This can for example be seen from the mean zonal winds (inferred from
cloud tracking), which are very rapidly varying functions of the latitude (see
e.g. Ingersoll et al. 1995): while some of the regions rotate at the same speed
as the interior magnetic fields (“system III”), most of the atmospheres do not.
Jupiter and Saturn both have superrotating equators (+100 and +400m s−1 in
system III, for Jupiter and Saturn, respectively), Uranus and Neptune have
subrotating equators, and superrotating high latitude jets. Neptune, which
receives the smallest amount of energy from the Sun has the largest peak-to-
peak latitudinal variations in wind velocity: about 600m s−1. It can be noted
that, contrary to the case of the strongly irradiated planets to be discussed
later, the winds of Jupiter, Saturn, Uranus and Neptune, are significantly
smaller than the surface speed due to the revolution of the planet on itself
(from 12.2 km s−1 for Jupiter to 2.6 km s−1 for Neptune).

The observed surface winds are believed to be related to motions in the
planets’ interiors, which, according to the Taylor–Proudman theorem, should
be confined by the rapid rotation to the plane perpendicular to the axis of
rotation (e.g. Busse 1978). Unfortunately, no convincing model is yet capable
of modeling with sufficient accuracy both the interior and the surface layers.

Our giant planets also exhibit planetary-scale to small-scale storms with
very different temporal variations. For example, Jupiter’s great red spot is
a 12000 km-diameter anticyclone found to have lasted for at least 300 years.
Storms developing over the entire planet have even been observed on Saturn
(Sanchez-Lavega et al. 1991). Neptune’s storm system has been shown to
have been significantly altered since the Voyager era. On Jupiter, small-scale
storms related to cumulus-type cloud systems has been observed by Galileo,
and lightning strikes can be monitored.

It is tempting to extrapolate these observations to the objects outside our
Solar System as well. However, it is important to stress that an important
component of the variability in the atmospheres of our giant planets is the
presence of relatively abundant condensing chemical species: ammonia and
water in the case of Jupiter and Saturn, and methane for Uranus and Neptune.
These species can only condense (and thus provide the necessary latent heat)
in very cold atmospheres. Other phenomena are however possible.

2.8 Moons and Rings

A discussion of our giant planets motivated by the opportunity to extrapolate
the results to objects outside our solar system would be incomplete without
mentioning the moons and rings that these planets all possess. First, the satel-
lites/moons can be distinguished from their orbital characteristics as regular
or irregular. The first ones have generally circular, prograde orbits. The latter
tend to have eccentric, extended, and/or retrograde orbits.
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These satellites are numerous: After the Voyager era, Jupiter was known
to possess 16 satellites, Saturn to have 18, Uranus 20 and Neptune 8. Recent
extensive observation programs have seen the number of satellites increase
considerably. The number of satellites detected is now 60 around Jupiter, 31
around Saturn, 26 around Uranus and 11 around Neptune (see Gladman et
al. 2001; Sheppard and Jewitt 2003). All of these new satellites are classified
as irregular.

The presence of regular and irregular satellites is due in part to the history
of planet formation. It is believed that the regular satellites have mostly been
formed in the protoplanetary subnebulae that surrounded the giant planets
(at least Jupiter and Saturn) at the time when they accreted their envelopes.
On the other hand, the irregular satellites are thought to have been captured
by the planet. This is for example believed to be the case of Neptune’s largest
moon, Triton, which has a retrograde orbit.

A few satellites stand out by having relatively large masses: it is the case of
Jupiter’s Io, Europa, Ganymede and Callisto, of Saturn’s Titan, and of Nep-
tune’s Triton. Ganymede is the most massive of them, being about twice the
mass of our Moon. However, compared to the mass of the central planet, these
moons and satellites have very small weights: 10−4 and less for Jupiter, 1/4000
for Saturn, 1/25000 for Uranus and 1/4500 for Neptune. All these satellites
orbit relatively closely to their giant planets. The furthest one, Callisto rotates
around Jupiter in about 16 Earth days.

The four giant planets also have rings, whose material is probably con-
stantly resupplied from their satellites. The ring of Saturn stands out as the
only one directly visible with only binocular. In this particular case, its enor-
mous area allows it to reflect a sizable fraction of the stellar flux arriving at
Saturn, and makes this particular ring as bright as the planet itself. The oc-
currence of such rings would make the detection of extrasolar planets slightly
easier, but it is yet unclear how frequent they can be, and how close to the
stars rings can survive both the increased radiation and tidal forces.

2.9 Oscillations

Last but not least, the case for the existence of free oscillations of the giant
planets is still unresolved. Such a discovery would lead to great leaps in our
knowledge of the interior of these planets, as can be seen from the level of ac-
curacy reached by solar interior models since the discovery of its oscillations.
Observations aimed at detecting modes of Jupiter have shown promising re-
sults (Schmider et al. 1991), but have thus far been limited by instrumental
and windowing effects. A recent work by Mosser et al. (2000) puts an up-
per limit to the amplitude of the modes at 0.6m s−1, and shows an increased
energy of the Fourier spectrum in the expected range of frequencies. Obser-
vations from space of through an Earth-based network should be pursued in
order to verify these results.
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3 Basic Equations, Gravitational Moments and Interior
Structures

3.1 Hydrostatic Equilibrium

A very pleasing property of giant planets and brown dwarfs is that in spite of
more than two decades of variation in mass, these objects basically obey the
same physics: for most of their life, their interior is fluid and they are governed
by the equilibrium between their internal pressure and their gravity. Unlike
terrestrial planets, the characteristic viscosities are extremely small and can
be neglected. The standard hydrostatic equation is thus:

∂P

∂r
= −ρg, (4)

where P is the pressure, ρ the density, and g = Gm/r2 the gravity (m is the
mass, r the radius and G the gravitational constant).

Another equation is necessary to obtain the temperature as a function of
pressure:

∂T

∂r
=
∂P

∂r

T

P
∇T . (5)

While the equation itself is trivial, the calculation of the temperature gradient
∇T ≡ (d lnT/d lnP ) is not, and depends on the process by which the internal
heat is transported. This term will be analyzed in a following section.

Thirdly, a special case of the mass conservation with zero velocity is:

∂M

∂r
= 4πr2ρ . (6)

Again, the physics of this equation is hidden in the dependency of the density
ρ with the pressure, temperature and composition, something given by the
equation of state (see Sect. 3.2).

Finally, a crucial equation is derived from energy conservation considera-
tions:

∂L

∂r
= 4πr2ρ

(
ε̇− T ∂S

∂t

)
, (7)

where L is the intrinsic luminosity, t the time, S the specific entropy (per unit
mass), and ε̇ accounts for the sources of energy due e.g. to radioactivity or
more importantly nuclear reactions. Generally it is a good approximation to
assume ε̇ ∼ 0 for objects less massive than ∼13MJ, i.e. too cold to even burn
deuterium (but we will see that in certain conditions this term may be useful,
even for low mass planets).

3.2 Boundary Conditions

At the center, r = 0; m = 0, L = 0. The external boundary conditions are
more complex to obtain because they depend on how energy is transported in
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the atmosphere. One possibility is to use the Eddington approximation , and
to write (e.g. Chandrasekhar 1960):

r = R : T0 = Teff ,

P0 =
2
3
g

κ
,

(8)

where κ is the opacity in cm2 g−1 (see Sect. 5). Note for example that in the
case of Jupiter Teff = 124 K, g = 2600 cm s−2 and κ ≈ 5×10−2(P/1 bar) cm2 g−1.
This implies P ≈ 0.2 bar, which is actually close to Jupiter’s tropopause, where
T ≈ 110 K.

Another possibility is to use an atmospheric model and to relate the tem-
perature and pressure at a given level to the gravity and effective temperature
of the object (or equivalently luminosity and radius):

T0 = T0(Teff , g); P0 = P0(Teff , g) . (9)

In the case of Jupiter and Saturn, an approximation often used is based on
old calculations by Graboske et al. (1975). It takes the form

T1 bar = KT aeffg
−b , (10)

where K = 1.5, a = 1.243 and b = 0.167, all the quantities being expressed
in cgs units. As shown by Fig. 3, this approximation is relatively good for
effective temperatures lower than 200 K, but it degrades substantially above
that value (see also discussion in Saumon et al. 1996).

Fig. 3. Comparison of the boundary condition obtained from (10) (dashed) to a gray
atmosphere from Saumon et al. 1996 (plain), in the case of Saturn (g ≈ 1100 cm s−2),
Jupiter (g ≈ 2600 cm s−2) and Gl229B (g ≈ 105 cm s−2)
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Note that these boundary conditions assume that the object is isolated.
This is not the case of the giant planets of the solar system and for extrasolar
planets for which the insolation can play an important role. We leave that
problem for a further discussion.

3.3 Simple Solutions

Central Pressure

In order to estimate the central pressure, it is useful to write the hydrostatic
equilibrium in a form which is independent on density:

∂P

∂m
= − Gm

4πr4
. (11)

Approximating by m ≈ M/2, r ≈ R/2 (M and R being the total mass and
radius, respectively) yields

Pc ≈
2
π

GM2

R4
. (12)

Another simple solution is obtained by assuming uniform density ρ =
3M/4πR3. Equation (4) can then be integrated to obtain

Pc ≈
3
8π

GM2

R4
. (13)

Knowing the mass and radius of a moon, planet or star, its central pressure
can therefore be approximated within a factor of a few.

Using (12,13) the central pressure of the moon is found to be 17−91 kbar,
1.7− 9.1Mbar for the Earth, 12− 64Mbar for Jupiter and 1.3− 7.2Gbar for
the Sun. For comparison, the corresponding values given by more elaborate
models are ∼40 kbar, 3.6Mbar, 40 to 70Mbar and 230Gbar, respectively. The
approximation is least successful in the case of the Sun, mostly because of the
increase in density of the central regions (ρc ≈ 150 g cm−3).

When dealing with objects of small masses like planetary moons, the uni-
form density model is in fact a good approximation to the internal pressure,
which can be shown to be:

P (ξ) ≈ 4π
6
GR2ρ2

[
1−
( r
R

)2]
. (14)

The central temperatures are more difficult to obtain a priori because
contrary to main-sequence stars the interiors strongly depart from ideality.
An a posteriori estimate uses the fact that these objects are mostly convec-
tive and that their temperature gradient ∇T ≡ (d lnT/d lnP ) ≈ 0.3. One
then finds that T ≈ Teff(P/P0)∇T , with Teff and P0 being defined by the
boundary conditions discussed in Sect. 3.2. In the case of Jupiter, starting
from T (1 bar) = 165K and Pc ≈ 12Mbar, one gets Tc ≈ 22000K, a relatively
accurate estimate of the temperature at the bottom of the hydrogen–helium
envelope.
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Polytropic Solutions

A full integration of the set of differential equations is of course necessary
to obtain the necessary precision on quantities such as pressure, temperature
and density. However, it is sometime useful to use approximate analytical so-
lutions to understand the underlying physics. One of these approximations, of
considerable importance for stellar physics, is to assume a polytropic relation
between pressure and density:

P = Kρ1+1/n , (15)

where K is supposed constant, and n is the polytropic index . Of course, this
relation implicitly assumes that either density only depends on pressure not
on temperature, or that the temperature profile is well-behaved and yields K
and n constants.

This property is indeed verified in the limit when the pressure is due to
non-relativistic fully degenerate electrons (e.g. Chandrasekhar 1939). In that
case, a pure hydrogen plasma obeys the polytropic relation (15) with n = 3/2
and a constant K defined by fundamental physics (i.e. independent of M ,
Teff ...etc.).

On the other hand, a perfect gas with a constant temperature gradient
can be shown to obey a polytropic relation of index n = 1/(1+1/∇T ). In the
case of a monoatomic perfect gas, n = 3/2. It is important to notice that in
that case K is set by the atmospheric boundary condition: it depends on pa-
rameters such as the mass and effective temperature of the object considered.

A solution of the polytropic problem is obtained from the integration of
the hydrostatic and Poisson equations:


dP

dr
= −dΦ

dr
ρ ,

1
r2

d

dr

(
r2
dΦ

dr

)
= 4πGρ ,

(16)

where Φ is the gravitational potential. The problem can be solved with some
algebra. With the following change of variables,

z = Ar , A2 =
4πG

(n+ 1)K
ρ

n−1
n

c

w =
Φ

Φc
=

ρ

ρc
,

(17)

where ρc and Φc are the central density and gravitational potential, respec-
tively, one is led to the famous Lane–Emden equation (see Chandrasekhar
1939; Kippenhahn and Weigert 1991 for a demonstration):

1
z2

d

dz

(
z2
dw

dz

)
+ wn = 0 . (18)
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This equation possesses analytical solutions for n = 0, 1 and 5. For our
purpose, it is sufficient to say that the solutions are characterized by the
surface condition: zn such that w(zn) = 0 and by the derivative of the function
w at that point: (dw/dz)zn

. It can be shown that the total mass and surface
radius of a polytrope are such that:

M = 4πρcR3

(
−1
z

dw

dz

)
z=zn

, (19)

R = zn

[
1

4πG
(n+ 1)K

]1/2
ρ

1−n
2n

c . (20)

If we assume that K and n are independent of the mass and surface condi-
tions of the object considered, it is easy to show that the mass–radius relation
is such that

R ∝M
1−n
3−n . (21)

First, one can notice that the exponent diverges for n = 3. In this case, the
Lane–Emden equation has only one solution: this leads to the Chandrasekhar
limit for the mass of white dwarfs. Second, for uncompressible materials, n = 0
and we can verify that R ∝ M1/3. Third, objects whose internal pressure
is dominated by non-relativistic degenerate electrons (this is formally valid
only in the white dwarfs regime) are such that n = 3/2 (see Sect. 4.1) and
R ∝M−1/3.

3.4 Mass–Radius Relation

The relation between mass and radius has very fundamental astrophysical
applications. Most importantly is allows one to infer the gross composition
of an object from a measurement of its mass and radius. This is especially
relevant in the context of the discovery of extrasolar planets with both radial
velocimetry and the transit method, as the two techniques yield relatively
accurate determination of M and R.

Figure 4 shows as a plain line the mass–radius relation of isolated hydrogen–
helium objects (of approximate solar composition) after 10Gyr of evolution.
As could have been inferred from the polytropic solutions, this curve has a
local maximum: at small masses, the compression is rather small so that the
radius increases with mass (corresponding to a low polytropic index). (Note
for example that in the case of the Earth, the central density is ∼13 g cm−3, to
be compared with a mean density of 5.52 g cm−3). At large masses, degeneracy
sets in and the radius decreases with mass (note from Fig. 4 that it never quite
reaches the white dwarf limit R ∝M−1/3). At still larger masses (more than
70MJ), we get in the stellar regime, which is dominated by thermonuclear
reactions, and thermal effects have to be taken into account.

The polytropic indexes of the isolated 0.1, 1 and 10MJ are shown in Fig. 5.
At small masses, n is effectively rather small and the tends toward a uniform
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Fig. 4. Radius versus mass for hydrogen–helium planets (Y=0.25) after 10 Ga of
evolution (plain line). An approximate mass–radius relation for zero-temperature
water and olivine planets is shown as dashed and dash-dotted lines, respectively
(Courtesy of W.B. Hubbard). The observed values for Uranus, Neptune, Saturn and
Jupiter, as well as that for the Pegasi planet HD209458b are indicated.

Fig. 5. Polytropic index n (such that P ∝ ρ1+1/n) as a function of internal radius,
for 0.1, 1 and 10MJ isolated planets of solar composition after 10Ga of evolution
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density solution. At around the mass of Jupiter, we get n ∼ 1, which effec-
tively corresponds to a maximum in the polytropic mass–radius relation (21).
Above a mass of ∼4MJ, the radius starts decreasing with increasing mass,
and effectively, the 10MJ object has n ≈ 1.3 in most of its interior. Equa-
tion (21) would imply R ∝M−0.18, which is steeper than obtained on Fig. 4.
This is due to the fact that even after 1010 years, a 10MJ object still retains
part of its primordial heat and that K cannot be considered as independent
of effective temperature and mass, as assumed in (21).

Another conclusion that can be derived from Fig. 4 is that the planets in
our Solar System are not of solar composition: their radii lie below that pre-
dicted for Y = 0.25 objects. Indeed, it can already be inferred that Jupiter,
Saturn, and the two ice-giants Uranus and Neptune contain a growing pro-
portion of heavy elements. The theoretical curves for olivine and ice planets
predict even smaller radii however: even Uranus and Neptune contain 10 to
20% of their mass as hydrogen and helium.

An object is found above the hydrogen–helium curve: HD209458b. In this
case, we will see that the planet has its evolution dominated by the intense
stellar irradiation it receives. Thermal effects are no longer negligible: One
cannot neglect the variations of the polytropic constant K with mass. Instead
of (21), one is led to:

R ∝ K
n

3−nM
1−n
3−n . (22)

The constant K can be estimated through the surface boundary condition,
assuming that the planetary interior is tied to the surface with an approxi-
mately constant polytropic index n (a condition which is generally verified).
Thus, using a perfect gas relation

K = P
−1/n
0

(
RT0
µ

)1+1/n

. (23)

Let us assume that T0 is, in the case of irradiated planets , set by the stellar
insolation (and therefore independent of M). Using the Eddington boundary
condition P0 ∝ g/κ. The relation for the opacity κ ∝ P is generally valid
for hot atmospheres not dominated by hydrogen–helium collision-induced ab-
sorption (see Sect. 5). Therefore, a constant insolation and constant interior
n implies

K ∝
(
M

R2

)−1/2n

. (24)

It is then easy to show that the mass–radius relation for strongly irradiated
planets becomes

R ∝M
1/2−n
2−n . (25)

Thus, for n = 3/2, a relation valid for an adiabatic, ideal monoatomic gas,
one finds R ∝ M−2. For n = 1, one finds R ∝ M−1/2. Strongly irradi-
ated hydrogen–helium planets of small masses are hence expected to have
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the largest radii. Note that this estimate implicitly assumes that n is con-
stant throughout the planet. The real situation is more complex because of
the growth of a deep radiative region in most irradiated planets, and because
of structural changes between the degenerate interior and the perfect gas at-
mosphere.

3.5 Rotation and the Figures of Planets

Hydrostatic Equilibrium and Symmetry Breaking

We have thus seen that the knowledge of the mass and radius of a planet
could inform us on its global composition. Fortunately, the giant planets in
the Solar System are also fast rotators and their figure can also inform us
more precisely on their internal composition. In the case of an inviscid fluid
rotating with an angular velocity Ω(r), the hydrostatic equilibrium has to be
written in the frame of rest of the system (see e.g. Pedlosky 1979):

∇P
ρ

= ∇V −Ω× (Ω× r) , (26)

where the gravitational potential is defined as

V (r) = G

∫
ρ(r′)
|r− r′|d

3r′ . (27)

The resolution of (26) is generally a complex problem. It can however be
somewhat simplified by assuming that |Ω| ≡ ω is such that the centrifugal
force can be derived from a potential:

W (r) =
1
2
ω2r2 sin2 θ , (28)

where θ is the angle from the rotation axis (colatitude). This implies that ω is
either constant, or a function of the distance to the axis of rotation (rotation
on cylinders).

The total potential is U = V +W and the hydrostatic equilibrium can be
written as

∇P = ρ∇U . (29)

The figure of a fluid planet in hydrostatic equilibrium is then defined by
the U = cte level surface. The expression of W shows that the centrifugal
acceleration will be maximal at the equator. Since it tends to oppose gravity,
it can be intuited that the planet’s figure will depart from a sphere and become
oblate, with a smaller polar radius than its equatorial radius. This was first
demonstrated by Newton in 1687, but is in no way straightforward, and was
contested by contemporaries, some advocating that the Earth’s dimension
should be larger at the poles!
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Most of the problem lies in the breaking of the symmetry by rotation: the
gravitational potential can no longer be integrated simply. We will summarize
here one method, worked out by Lagrange, Clairaut, Darwin and Poincaré
and detailed by Zharkov and Trubitsyn (1978). At its basis is a projection of
the integrand of (27) onto a basis of Legendre polynomials Pn(cosψ):

1
|r− r′| =




1
r

∞∑
n=0

(
r′

r

)n
Pn(cosψ) if r ≥ r′ ,

1
r

∞∑
n=0

(
r′

r

)−n−1

Pn(cosψ) if r < r′ ,

(30)

where ψ is the angle between the radius vectors r and r′. The Legendre poly-
nomials are determined from the formula

Pn(x) =
1

2nn!
dn

dxn
[
(x2 − 1)n

]
. (31)

In particular, P0 = 1 and P2(x) = (3x2 − 1)/2. These polynomials also have
very important orthogonal properties that will not be detailed here.

Some geometry, the properties of Legendre polynomials and the assump-
tion of hydrostatic equilibrium (azimuthal symmetry) allows one to write the
gravitational potential in the form

V =
G

r

∞∑
n=0

(
r−2nD2n + r2n+1D′

2n

)
P2n(cos θ) ,

D2n =
∫
r′≤r

ρ(r′, cos θ′)r′2nP2n(cos θ′)d3r′ ,

D′
2n =

∫
r′>r

ρ(r′, cos θ′)r′−2n−1P2n(cos θ′)d3r′ . (32)

The potential V is thus projected on the basis of Legendre polynomials
P (cos θ). The D2n and D′

2n coefficients are complex functions. It is to be
noted that this projection, as proposed by Lagrange poses a mathematical
problem of divergence of the Legendre series between the sphere and level
surface. Using a method initially proposed by Lyapunov, Trubitsyn showed
that this expression is however valid because of the exact cancellation of the
divergent terms (see Zharkov and Trubitsyn 1978).

On the other hand, the centrifugal potential can be written on the same
basis:

W =
1
3
ω2r2[1− P2(cos θ)] . (33)

The total potential U thus appears as a weighted sum (however complex) of
Legendre polynomials.
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Equations for the Level Surfaces: Principles

The figure of a planet is determined by the level surfaces on which the total
potential is constant. As shown by (29), in hydrostatic equilibrium ∇P and
∇U are in the same direction. Taking the curl of that equation, one finds that
∇ρ×∇U = 0. The surfaces of constant potential are also surfaces of constant
pressure, density, and hence temperature. Hydrostatic equilibrium therefore
also corresponds to barotropic equilibrium. (But remember our hypothesis
that the centrifugal acceleration derives from a potential). These surfaces of
constant U are sought in the form:

r(s, cos θ) = s

[
1 +

∞∑
n=0

s2n(s)P2n(cos θ)

]
, (34)

where s2n(s) are coefficients to be determined, and s is chosen to be the radius
of a sphere of equal volume (and hence, equal mass):

4π
3
s3 =

4π
3

∫ 1

0

r3(s, cos θ)d cos θ . (35)

This allows one to integrate the angular part entering the calculation of
the coefficients D2n and D′

2n in (32). The solution of the problem is found by
noticing that the total potential can now be written

U(s, cos θ) =
4π
3
Gρs2

∞∑
n=0

A2n(s)P2n(cos θ) , (36)

where ρ is the planet’s mean density. Since by definition the gravitational
potential is constant on a level surface (fixed s), all coefficients A2n(s) must
be zero for n �= 0. With (35), we thus have n + 1 equations for the n + 1
variables s0, . . . , s2n. The problem can thus be solved for weak rotation rates
ω by introducing a small parameter, q, the ratio of the centrifugal acceleration
at the equator to the leading term in the gravitational acceleration:

q =
ω2R3

eq

GM
, (37)

Req being the equatorial radius. One can show that s0 ∝ q and s2n ∝ qn

for n �= 0. This system of integro-differential equations is rather complex and
will not be given here (see Zharkov and Trubitsyn 1978 for equations to third
order).

With our choice of coordinates, the hydrostatic equation retains a simple
form:

∂P

∂s
= ρ

∂U

∂s
, (38)

i.e. the equation is now integrated with respect to the mean planetary
radius. Furthermore, because of our assumption that the fluid remains
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barotropic, the other equations are unchanged. A detailed calculation of U
shows that

1
ρ

∂P

∂s
= −Gm

s2
+

2
3
ω2s+

GM

R3
sϕω , (39)

where ϕω is a slowly varying function of s which, in the case of Jupiter varies
from about 2× 10−3 at the center to 4× 10−3 at the surface.

The External Potential: Constraints from Observations

As suggested previously, the effect of rotation is not only to complexify the
equation for hydrostatic equilibrium. It also provide ones with the only way
(yet) to probe the interiors of the giant planets of the solar system. This was
first recognized by Sir H. Jeffreys (1923), but has seen significant progresses
due to the flybys of the giant planets by the Pioneer and Voyager spacecrafts
that allowed for a direct measurement of the planets’ gravitational potentials.

The thus measured gravitational potentials are generally written in the
form

Vext(r, cos θ) =
GM

r

[
1−

∞∑
n=1

(a
r

)2n
J2nP2n(cos θ)

]
, (40)

and the coefficients J2n are the planet’s gravitational moments . These are
hence directly related to the coefficients D2n defined by (32), from which it
can be shown that

J2n = − 1
Man

D2n . (41)

(Note that because we are always outside the planet r > r′ and the centrifugal
potential does not appear since we are in an inertial coordinate system).

For example, the first gravitational moment can be calculated as

−Ma2J2 =
∫
ρ(r′)r′2

(
3
2
cos2 θ′ − 1

2

)
d3r′

=
∫
ρ(r′)

1
2
(2r′2 cos2 θ′ − r′2 sin2 θ′)d3r′

=
∫
ρ(r′)

1
2
[(y2 + z2) + (x2 + z2)− 2(x2 + y2)]d3r′

=
A+B − 2C

2
, (42)

where A, B and C are the principal moments of inertia of the planet with
respect to axes x, y and z, respectively.

The measured gravitational moments can thus be compared to the the-
oretically measured ones. For a planet in hydrostatic equilibrium, the odd
moments J2n+1 are all zero while the even moments have a magnitude
J2n ∝ qn. The high order gravitational moments also correspond to inte-
grals with weighting functions peaking closer to the external layers of the
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Table 4. Parameters constraining interior structure

q Λ2 C/MR2eq

Jupiter 0.08923 0.165 0.26

Saturn 0.15491 0.105 0.22

Uranus 0.02951 0.119 0.23

Neptune 0.0261 0.136 0.24

planet. The information contained by the {J2n} is therefore limited: without
other information from e.g. global oscillations of the planet, it is impossible
to accurately constrain the structure of the inner regions.

Table 4 shows the values of the parameter q and of the axial moment
of inertia of the giant planets calculated from J2 using the Radau–Darwin
approximation (Zharkov and Trubitsyn 1978):

C

MR2
eq

≈ 2
3

[
1− 2

5

(
5

3Λ2 + 1
− 1
)1/2

]
, (43)

where we have introduced the linear response coefficient Λ2 ≡ J2/q, and we
have neglected second order terms proportional to the planets’ flattening. Our
four giant planets all have an axial moment of inertia substantially lower than
the value for a sphere of uniform density, i.e. 2/5MR2, indicating that they
have dense central regions.

An analytical solution of the figure equation can be found for a polytropic
equation of state of index n = 1 (P ∝ ρ2), which is, as we have seen relevant
for most of Jupiter’s interior. In that case, one finds that (see Zharkov and
Trubitsyn 1978; Hubbard 1989), Λ2 = 0.173 and thus C/MR2 = 0.263, indeed
very close to the value found for Jupiter. This shows already that Jupiter’s
core is small, relatively to the planet’s total mass. It also indicates that Saturn,
Uranus and Neptune have dense central regions and hence depart substantially
from solar composition.

Effect of Differential Rotation

In order to be able to integrate the system of integro-differential equations, we
have implicitly assumed a solid body rotation. The atmospheres of all giant
planets is seen to rotate with a speed which is latitudinally dependent. These
latitudinal variations amount to about 1% for Jupiter to more than 15% in
the case of Neptune, from peak to peak.

A first consequence is that the gravitational calculated assuming solid body
rotation will be different than if the interior rotation is, say, on cylinders. For
a given structure, differential rotation such as imposed by the surface winds of
Jupiter and Saturn increases the absolute values of the planets’ gravitational
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moments. In order to account for that effect using solid body rotation, one
has to use effective gravitational moments that are smaller in absolute value
than those directly measured (Hubbard 1982).

Another interesting consequence concerns the high order gravitational
moments, J10 and above. Hubbard (1999) has shown that if the observed
atmospheric rotation pattern persists deep enough into the interior (say to
within a few % of the total radius beneath the atmospheric layer), then the
gravitational moments will stop decreasing and reach a plateau at a value
|Jn| ≈ 10−8 with n ∼> 10. This lends support to space missions that would
enable a detailed mapping of the gravitational fields of the giant planets. This
would require both a polar-like orbit and one (or better several) very close
flybys.

3.6 Equations of Evolution

We have so far expressed the differential equations in terms of the radius r.
This Eulerian approach has the inconvenience that the spatial variable can be
a rapidly varying function of time (when, during the evolution, the contraction
is fast). It is therefore generally more convenient to use a Lagrangian approach,
in which the new independent coordinates are the massm and time t. This has
the advantage that except in the case of mass loss/gain, the outer boundary
condition is defined at a fixed m = M , the total mass of the object. Note
that because of our definition of the radius as the mean radius, the effect of
rotation is just to add two terms to the hydrostatic equation. Hereafter, we
will use r instead of s as the mean radius (see e.g. Guillot and Morel 1995
for a possible method to numerically resolve the equations). The system of
differential equations becomes:



∂P

∂m
= − Gm

4πr4
+

ω2

6πr
+

GM

4πR3r
ϕω ,

∂T

∂m
=
(
∂P

∂m

)
T

P
∇T ,

∂r

∂m
=

1
4πr2ρ

,

∂L

∂m
= ε̇− T ∂S

∂t
.

(44)

The boundary conditions are as discussed in Sect. 3.2, except that the
variable is now m instead of r. Note however that when studying the present-
day interiors of Jupiter, Saturn, Uranus or Neptune, the most logical surface
boundary condition is at a fixed temperature T = Tsurf and pressure Psurf , for
m = M . Note that in that case, there is no time dependency, and the energy
conservation equation cannot be integrated. This requires a priori setting the
luminosity (usually by assuming that it is uniformly equal to the measured



266 T. Guillot

intrinsic luminosity of the planet). In all other cases, i.e. when considering the
evolution of substellar objects, the outer boundary condition must depend on
L and R.

Most of the important physics in the system of equations (44) is hidden
in several quantities: ϕω contains the physics related to rotation discussed
previously, but is generally a small perturbation. The term ∇T depends on the
process which transports the energy inside the planet and will be discussed in
Sect. 5. The density ρ and specific entropy S are functions of the temperature,
pressure and composition. They have to be calculated independently using
an appropriate equation of state, the subject of Sect. 4. Finally, ε̇ accounts
for any source of energy, e.g. thermonuclear reactions, radioactivity or heat
dissipation. This term is generally neglected, but will be discussed for brown
dwarfs, and also in the case of Pegasi planets.

4 Equations of State

4.1 Basic Considerations

Calculation of Equations of State

The knowledge of appropriate equations of state is at the basis of any modeling
of substellar objects. Basically, for a given atomic composition, and two macro-
scopic thermodynamic variables, say temperature and volume, an equation of
state is to provide all the other thermodynamic variables and their deriv-
atives (pressure, internal energy, entropy, specific heat...etc.). As discussed
by Fontaine, Graboske and van Horn (1977), the thermodynamic constraints
that have to be satisfied for any equilibrium thermodynamic description of a
single-phase material are:

I. Accuracy P approx(T, V ) = P exact(T, V ) .
Uapprox(T, V ) = U exact(T, V ) .

II. Stability
(
∂P
∂V

)
T
< 0,

(
∂U
∂T

)
V
> 0 .

III. Consistency
(
∂P
∂T

)
V
=
(
∂S
∂V

)
T
= 1

T

(
P +

(
∂U
∂V

)
T

)
.

IV. “Normality”
(
∂P
∂T

)
V
> 0,

(
∂2P
∂V 2

)
T
> 0 .

As noted by the authors, condition II is generally trivial to achieve; con-
dition III is straightforward but often grossly violated; condition IV is not
thermodynamically demanded, but holds for most ρ, T values. Indeed, we
will see one possible equation of state for which condition IV is violated.

The calculation of equations of state itself can become extremely complex.
For our purposes, it will suffice to say that it can be split into two main groups:
the “chemical” and “physical” pictures. In the chemical picture, one assumes
that bound configurations (e.g. atoms, molecules) retain a definite identity and
interact through pair potentials. The system of particles of species α confined
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to a volume V at temperature T is conveniently described by the Helmoltz
free energy F , which is itself obtained from microscopic physics through

F ({Nα}, V, T ) = −kT lnZ({Nα}, V, T ) , (45)

where Nα denotes the number of particles and Z is the canonical partition
function of the system. Other thermodynamical quantities are then obtained
from derivatives of F . For example,

P = −
(
∂F

∂V

)
{Nα},T

.

When confronted to ionization and/or dissociation, the actual composition
of the system (i.e. abundances of electrons, ions, atoms and molecules) is ob-
tained through a minimization of the free energy of the system. As discussed
by Fontaine et al. the calculation of the free energy requires several assump-
tions that necessarily limit its accuracy. Its main drawback is the apriori
definition of certain classes of particles, i.e. ions, atoms and molecules which
necessitates the use of effective interaction potentials. The calculation can
thus fail in states where more complex systems are formed and the distinction
between bound and free states is not easily made.

Another method consists in directly computing the n-body Schrödinger
equation of the quantum-statistical system. This approach is generally ex-
act in the limit set by the computationally intensive method that has to be
used to solve the problem. Within this physical picture, two main approaches
have been used: restricted path integral Monte Carlo simulations, and density
functional theory molecular dynamics. The first approach consists in solving
the full problem for a limited number of protons and electrons in a box (64
of each at the most, with today’s computers). The second approach involves
local solutions to the problem and fails when both short range and long range
interactions have to be taken into account.

The Phase Diagram

In terms of pressures and temperatures, the interiors of giant planets and
brown dwarfs lie in a region for which accurate equations of state are extremely
difficult to calculate. Some of the important phenomena that occur in these
objects are illustrated by the phase diagram of hydrogen (Fig. 6).

The photospheres of these objects is generally relatively cold and at low
pressure, so that hydrogen is in molecular form and the perfect gas conditions
apply:

P =
ρRT
µ

; U = CV T , (46)

with µ ≈ 2 (neglecting helium atoms and heavy elements) and CV ≈ 5/2k,
due to the vibration of the hydrogen molecule.
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Fig. 6. Phase diagram for hydrogen with the main phase transitions occurring in the
fluid or gas phase. The temperature–pressure profiles for Jupiter, Saturn, Uranus,
Neptune, and Gl229B (assumed to be a 30MJ brown dwarf) are shown. The plain,
almost vertical line near 1Mbar represents the Plasma Phase Transition (PPT)
supposed to separate molecular from metallic hydrogen as computed by Saumon et
al. (1995). The region in which hydrogen is predicted to be solid is represented as a
dashed area. Lines showing the values of the parameters θ and Γ (see text) are also
shown

As one goes deeper into the interior however, the molecules become closer
to one another. The system progressively becomes a liquid, in which the in-
teractions between molecules play an important role. This occurs when the
intermolecular distance becomes of the same order as the size of a hydrogen
molecule. Using real equations of state, it can be estimated that the perfect
gas relation tends to underestimate the pressure by 10% or more when the
density becomes larger than about 0.02 g cm−3 (pressures above 1 kbar in the
case of Jupiter).

At higher densities (or pressures) and relatively low temperatures, the elec-
trons can become degenerate : in that limit, their momentum is not determined
by the temperature of the mixture, but by the fact that, as fermions of spin
−1/2 or +1/2, only two of them can be stacked in a cell ∆p∆V = h3 (Pauli’s
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exclusion principle). The significance of this phenomenon can be measured
through a degeneracy temperature parameter

θ =
T

TF
=

2mek

h2

(
8π
3
µemu

)2/3
T

ρ2/3
, (47)

where TF is the Fermi temperature, and the number density of electrons is
ne = ρ/µemu. The quantity µe is the mean molecular weight per electron
(µe ≈ 2/(1 +X)). The parameter θ can be defined regardless of the presence
of bound states. However, in the presence of atoms and molecules, the energy
of most of the electrons is not kT nor kTF so that its usefulness in that regime
is limited. It can be seen from Fig. 6 that the interiors of substellar objects
are always characterized by θ < 1. It is never possible to assume that free
electrons behave like a perfect gas .

Another important quantity is the coupling parameter, defined as the ratio
of the Coulomb potential to the thermal energy:

Γ =
e2

akT
=
e2

k

(
4π

3µmu

)1/3
ρ1/3

T
, (48)

where a is the mean distance between nuclei. As Γ increases due either to
an increase of the density or to a decrease of the temperature, the Coulomb
forces becomes more effective. With increasing densities, the system of ions
eventually favors a non-random organization and becomes bound into a lat-
tice system. This occurs for large values of Γ (∼100). Figure 6 shows that
substellar objects always have Γ > 1: the system is dominated by the repul-
sive coulombian potential between nuclei. However, we will be concerned with
values of Γ < 50, i.e. unlike white dwarfs, substellar objects are not expected
to crystallize (this occurs for Γ ∼> 180). Hubbard (1968) was the first to show
that Jupiter’s interior should be hot enough for its interior to be fluid. It can
also be seen in the phase diagram that it is the case of Saturn. For Uranus and
Neptune, the situation is actually more complex because at large pressures
they are not expected to contain hydrogen, but several studies show that ices
in their interior should be fluid as well (e.g. Cavazzoni et al. 1999).

The largest fraction of the interior of brown dwarfs and giant planets is
in a region in which hydrogen is metallic: the hydrogen molecules have been
dissociated and ionized. The pressure inside this region can be expressed in
the following form (e.g. Stevenson 1991):

P = Pe + Pth,ion + Pcoul + Pex , (49)

where Pe represents the contribution from the electron gas, Pth,ion the con-
tribution from the thermallized ions, and Pcoul and Pex are negative terms
due to the Coulombian interactions of nuclei in the sea of electrons, and the
reduction in electron–electron repulsion due to the exclusion principle, respec-
tively. Pcoul is significant when Γ becomes large. The exchange pressure Pex

has to be taken into account for small values of θ. Although quantitatively,
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the terms due to ions are important, most of the important physics and in
particular the molecular/metallic transition is due to a difference in behavior
of the electrons when the density rises.

The Degenerate Electron Gas

In stars with masses larger than about 0.3M� the electrons always behave
with a near-maxwellian distribution of the momenta. However, for objects of
lower interior temperatures, the Pauli exclusion principle yields a distribution
which is determined by Fermi–Dirac statistics. The number of electrons in a
volume dV and with an absolute of the momentum in [p, p+ dp] is:

f(p)dpdV =
8πp2dpdV

h3
1

1 + eE/kT−ψ , (50)

where in the non-relativistic case E = p2/(2me) and ψ is the degeneracy para-
meter. For ψ → −∞ the distribution is identical to the Maxwell–Boltzmann
one. In the limit ψ → +∞ the electrons are said to be fully degenerate.

The density of electrons, electronic pressure and internal energy can be
obtained through integrations of that distribution:

ne =
8π
h3

∫ ∞

0

p2dp

1 + eE/kT−ψ , (51)

Pe =
8π
3h3

∫ ∞

0

vp3dp

1 + eE/kT−ψ , (52)

Ue =
8π
h3

∫ ∞

0

Ep2dp

1 + eE/kT−ψ . (53)

The degeneracy parameters ψ obtained in the central region of substellar
objects is relatively independent of the mass and age (to a factor ∼3) and is
of the order of ψ ≈ −30 (e.g. Chabrier and Baraffe 2000). The combination
of these low values of θ and ψ thus implies that a significant fraction of the
electrons are indeed degenerate.

Although this is not true of regions at lower pressures, we will find it
instructive to use the relations for a fully degenerate electron gas for qualita-
tive estimates. In the limit ψ →∞, one finds that the completely degenerate
non-relativistic electron gas is such that (e.g. Kippenhahn and Weigert 1991):

Pe =
1
20

(
3
π

)2/3
h2

me
n5/3
e

= 1.0036× 1013
(
ρ

µe

)5/3

(cgs)

Ue =
3
2
Pe .

(54)
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Pressure Ionization

As seen in the phase diagram, hydrogen can become ionized due to increasing
pressure instead of standard ionization at increasing temperature. Basically,
this occurs when the degenerate electrons get a Fermi energy which is larger
than that necessary to ionize hydrogen atoms. The approximate level at which
this occurs can be estimated as follows.

First, it can be noted that both free and bound electrons have to obey the
Pauli principle.

The energy of each electron is hence of the order Ue/ne. For a set value of
ne a lower bound on Ue can be obtained by assuming full degeneracy (54). In
order to become ionized this value has to become larger than the ionization
potential of hydrogen, u0 = 13.6 eV. This occurs when

ne ∼>
(
8π
3

)5/2( 5me

4πh2

)3/2

u
3/2
0 , (55)

corresponding to an electronic pressure

Pe ∼>
2
3

(
8π
3

)5/2( 5me

4πh2

)3/2

u
5/2
0 . (56)

Quantitatively, hydrogen metallization is then found to occur around ne ∼ 5×
1023 cm−3, ρ ∼ 0.8 g cm−3 and Pe ∼ 7Mbar. Even though crude assumptions
were made, this is relatively close to more elaborate calculations.

The same estimates can be used for helium ionization, assuming helium
atoms are immersed in a sea of protons and electrons. Because u0 = 54.4 eV,
the density and electronic pressure for helium ionization rise to 6.5 g cm−3

and 230Mbar, respectively. However, at those very high densities, the distance
between nuclei has become much smaller than the Bohr radius (a0 = 5.3 ×
10−9 cm). A very crude solution is to use an effective potential ueff = u0(1−
(a0/d)2) to account for the fact that the ionization energy is reduced due
to the proximity to the other nuclei. The mean distance between hydrogen
nuclei is d ∼ (3/4πne)1/3. Including that correction and solving iteratively
(55), one finds that helium could ionize at a pressure as low as Pe ∼ 17Mbar.
Applied to hydrogen, this procedure also leads to a reduced ionization pressure
Pe ∼ 2Mbar.

The total pressure cannot be obtained through that method because one
then needs to describe the system of ions. In the metallic regions of substel-
lar objects, an order of magnitude estimate is that ions and electrons have
similar contributions to the total pressure. Our assumption of full degeneracy
in fact tends to overestimate the pressures at which the transition occurs.
This can be understood by the fact that the Pauli distribution corresponds
to the minimum energy state for a fixed density ne. Thermal effects have the
tendency to move some of the electrons to higher energies, thereby0 favoring
ionization. The transition from molecular to metallic hydrogen is therefore
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expected to occur at lower pressures and densities when the temperature is
increased. Of course, these crude estimates are given for didactic purposes,
but cannot replace a full treatment of this complex problem.

4.2 Experiments and Theoretical Hydrogen EOSs

Reaching Ultrahigh Pressures: Experimental Results

The high pressures and high temperatures typical of the interiors of giant plan-
ets can be achieved in the laboratory by shock-compression of a small sample
of material. The shock is typically generated by a hypervelocity impactor or by
a powerful laser. Measuring the thermodynamic properties of the compressed
sample is quite difficult since such dynamical experiments last only 5 – 100 ns
and the sample can be very small (0.4 – 500mm3). For a given initial state of
the sample, the family of shocked states that can be achieved follows a curve
in the (P, ρ, T ) phase diagram known as a Hugoniot. The Hugoniot is one of
the Rankine–Hugoniot relations that result from the conservation of energy,
momentum, and matter flux across the shock front. Nearly all dynamical ex-
periments on hydrogen and deuterium performed share the same cryogenic
initial state and therefore measurements from different experiments can be
directly compared. By reflection of the shock wave on a back plate made of a
material stiffer than the sample, a double-shocked state can be achieved that
reaches even higher pressures with a modest increase in temperature. Multi-
ple shock reflections, known as shock reverberation, lead to a succession of
compressed states that approach adiabatic compression.

Since 1995, deuterium has been the subject of intense experimental study
using several independent techniques.1 Measurements of the pressure, density,
temperature, reflectivity, electrical conductivity, and sound speed have been
performed along the single-shock Hugoniot and, in some cases, along double-
shock Hugoniots.

The most reliable experimental results come from experiments where the
impactor is accelerated with a gas gun. This technique allows for larger sam-
ples (∼500mm3) and longer lasting (∼100 ns) experiments but is generally
limited to pressures below 1Mbar. Pressures and densities have been measured
along the single-shock Hugoniot up to 0.2Mbar and along the double-shock
Hugoniot up to 0.8Mbar (Nellis et al. 1983). The reshocked states reproduce
the (P, T ) conditions of the molecular hydrogen envelope of Jupiter and pro-
vide a direct probe of the thermodynamics of hydrogen.

Under conditions where the dissociation of molecules becomes significant,
the temperature becomes a sensitive test of the EOS. Processes that can
absorb substantial amounts of energy like dissociation and ionization result

1 Due to its higher density, deuterium is experimentally more advantageous than
hydrogen because higher shock pressures can be achieved for a given impactor
speed.
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in relatively cool temperatures and higher degrees of compression for a given
pressure along the Hugoniot. In the absence of such processes, the energy
of the shock is expended mostly in the kinetic degrees of freedom with a
corresponding increase in temperature. The temperature of double-shocked
deuterium (Holmes, Ross and Nellis 1995) was found to be lower than all
EOS predictions by about 30–40%, indicating that dissociation plays a more
important role than predicted by contemporaneous models.

Finally, the sound speed has been measured along the Hugoniot in gas
gun experiments up to 0.28Mbar (N. C. Holmes, priv. comm.). Since it is a
derivative of the pressure, the sound speed is a sensitive test of EOS models
with the advantage of being measurable very reliably.

With powerful lasers, deuterium can be shocked to much higher pres-
sures than with gas guns but the small sample size and the very short du-
ration of the experiments make accurate diagnostics very challenging. The
(P, ρ, T ) single shock Hugoniot has been measured recently up to 3.5Mbar
with the NOVA Laser Facility (Da Silva et al. 1997; Collins et al. 1998, 2001),
reaching a maximum density of ∼1 g cm−3 at ∼1Mbar (Fig. 7). Such a high
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Fig. 7. Comparison of experimental data and theoretical Hugoniot for deuterium
(densities are twice larger than expected for hydrogen at any given pressure). Empty
ellipses correspond to data points obtained from laser compression (Collins et al.
1998). Filled ellipses were obtained by magnetic compression (Knudson et al. 2001).
Theoretical calculations are represented by lines. They are respectively: the “PPT”
(solid) and “interpolated” (dashed) Saumon–Chabrier equations of state (Saumon,
Chabrier and Van Horn 1995), and a Path Integral Monte Carlo EOS (Militzer and
Ceperley 2000). The solid line to the left shows the T=0 equation of state for D2 as
determined by an exp-6 potential fit to diamond-anvil cell measurements (Hemley
et al. 1990). The temperatures along the Hugoniot have been calculated using the
PPT-EOS. [From Guillot et al. 2004]
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compressibility was not anticipated by most EOS models and this work
sparked the current interest in the thermodynamics of warm dense hydro-
gen as well as controversy, both on the theoretical and experimental fronts.
The reflectivity of shocked deuterium reaches about 60% for pressures above
0.5Mbar along the Hugoniot (Celliers et al. 2000), a value indicative of a large
density of free electrons and of a high electric conductivity characteristic of
fluid metallic hydrogen. Second-shock compression up to 6Mbar with the Nike
laser give results in agreement with the NOVA (P, ρ) data (Mostovych et al.
2000). On the other hand, Knudson et al. (2001) used a magnetic Z-accelerator
to accelerate impactors to very high velocities. Their single-shock Hugoniot
agrees well with the NOVA data for P ∼< 0.4Mbar but it is not as compressible
at higher pressures, reaching a density of only∼0.7 g cm−3 at 0.7Mbar (Fig. 7).

Hydrogen: EOS Calculations

While the temperatures obtained along the single-shock Hugoniot rapidly be-
come much higher than those inside Jupiter at the same pressure (Fig. 8),
these measurements provide very important, and heretofore unavailable tests

Fig. 8. Hydrogen phase diagram, with interior profiles of present-day Jupiter and
Saturn overlaid, and with some experimental data shown. The boundary between
liquid H2 and solid H2 is somewhat uncertain in the Mbar pressure range (2 estimates
are shown), but is not relevant to Jupiter. The laser shock measurements of Collins
et al. (2001) and the gas-gun measurements of Holmes et al. (1995) are shown
as triangles and filled circles in the upper left-hand corner, respectively. Single-
and double-shock hydrogen Hugoniots calculated by Saumon et al. (2000a,b) are
shown as dot-dashed lines in the same region of the plot. The solid line labeled
“50%” shows where 50% of molecular dissociation is obtained in the model of Ross
(1998)
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of equations of state in the 0.5 to 5 Mbar range where pressure ionization of
hydrogen occurs. Conversely, EOS models can be used to compute the vari-
ous physical quantities measured in the lab and to interpret the experimental
results.

Theoretical single-shock Hugoniots computed from a wide variety of EOS
models basically fall into two groups. First principle calculations (e.g.Militzer
and Ceperley 2000; Lenosky et al. 2000; Galli et al. 2000) all predict a rather
stiff Hugoniot that is in general agreement with the Z-accelerator data of
Knudson et al. (2001). This is illustrated in Fig. 7 by the Path Integral Monte
Carlo calculation of Militzer and Ceperley (2000). On the other hand, models
that are partly calibrated with experimental data (Saumon, Chabrier and
Van Horn 1995; Ross 1998; Ross and Yang 2001), obtain a generally good
agreement with the NOVA data (Fig. 7; Collins et al. 1998). Interestingly, the
standard SESAME EOS of deuterium (Kerley 1972) predicts a Hugoniot that
generally agrees with the much more sophisticated ab initio calculations.

Our study of a number of theoretical Hugoniots shows that EOS that
have been fitted to the gas gun single- and double-shock (P, ρ, T ) data of
Nellis et al. (1983) and Holmes et al. (1995) – all taken below 0.8Mbar and
5300K – reproduce the high compression of the NOVA data (Collins et al.
1998) and the sound speed data along the single shock (N. C. Holmes, priv.
comm.). On the other hand, the first-principle calculations generally agree
with the stiffer Hugoniot of Knudson et al. (2001) and cannot reproduce the
high compression of the NOVA data. They also fail to reproduce the double-
shock temperatures and the sound speed measurements. Some of the ab initio
calculations disagree with the low-pressure gas gun data (e.g. Lenosky et al.
2000). On the one hand, the Knudson et al. (2001) data and nearly all first-
principle EOS calculations are in good agreement with each other. On the
other hand, more heuristic EOS models clearly show that four independent
EOS experiments (second-shock temperature, sound speed, the NOVA single
shock and the Nike double shock) are fully consistent with each other but
neither with first principle calculations nor the Knudson et al. (2001) data.
Both the high compressibility of the NOVA Hugoniot and the low gas-gun
reshock temperatures can be explained by the absorption of the shock energy
resulting from molecular dissociation.

This polarization of EOS calculations along different data sets has cre-
ated a lively debate and is stimulating much additional (and challenging)
experimental and theoretical work. The EOS of hydrogen in the 0.5 to 5
Mbar regime, where it is transformed from an insulating molecular fluid to
a conducting liquid metal remains uncertain to a level that is significant for
modeling the interior of Jupiter. The recent progress in this area as been very
beneficial, however, as it appears that the current data and models bracket
the actual EOS of hydrogen.

In order to model Jupiter’s interior with confidence, a careful study of the
uncertainties arising from the EOS would be required. This is not presently
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available, but Fig. 7 shows that this can be crudely approximated by using
the “interpolated” and the “PPT” equations of state of Saumon, Chabrier
and Van Horn (1995) even though they do not fit the experimental data well.
However, large uncertainties in density along the Hugoniot at 1 Mbar (∼30%)
result in much smaller differences along the Jupiter adiabat (∼8%). The effects
on the inferred core mass and the mass of heavy elements in Jupiter and Saturn
are discussed later on.

A Plasma Phase Transition?

We have seen that hydrogen undergoes a transition from a low-pressure mole-
cular insulating fluid to a high-pressure conductive fluid. Is the transition
continuous, as is the case for temperature ionization, or rather a first or-
der phase transition (the so-called Plasma Phase Transition, or PPT) with
discontinuities in density and entropy across the coexistence curve? Such a
first-order transition was first suggested by Wigner and Huntington (1935)
on the basis of the different nature of the interaction potentials in metals (a
weakly repulsive, screened Coulomb potential) and in insulators (a strongly
repulsive “hard-sphere” potential).

The PPT has not been observed experimentally in hydrogen (i.e. there
is no evidence for the expected discontinuities), but it can be argued that
the gas-gun experiments have not reached high enough pressures, and that
laser-shocks may be supercritical. Note for example that using the new data,
the critical point for the PPT computed by Saumon et al. (2000a) is lower
(T ≈ 14, 600K; P ≈ 0.73Mbar) than shown in Fig. 8. The PPT is predicted
by some of the more heuristic “chemical picture” EOS models (Saumon et
al. 1995 and references therein) and Beule et al. (1999). On the other hand,
none of the first-principle EOS calculations show evidence for a first order
phase transition in warm dense hydrogen. This can be seen in Fig. 9 which
shows a continuous variation of the proton–proton pair correlation function
as a function of density and temperature obtained by Militzer and Ceperley
(2001). The figure indicates that H2 molecules are present at low temperatures
and densities, as seen by the peak at ∼0.8 Å, and the fact that the correlation
function goes to zero at larger distances. As one increases the density, the
correlation function becomes non-zero everywhere except close to a proton,
indicating that hydrogen has been dissociated.

If present, the PPT would have significant consequences for the structure
of Jupiter, Saturn, and low-entropy extrasolar giant planets. Its main effect
would be to create an impenetrable barrier for convection between the molecu-
lar and metallic hydrogen parts of the envelope, affecting the mixing of chemi-
cal species (Stevenson and Salpeter 1977b). The thermodynamic conditions of
phase equilibrium imply that the chemical composition across the PPT must
be discontinuous (Landau and Lifschitz 1976), with the consequence that at-
mospheric abundances of all elements would no longer be indicative of their
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Fig. 9. Proton–proton pair correlation function multiplied by the density n as a
function of interparticle distance r (in Angstrom). The columns correspond, from left
to right, to decreasing values of the density parameter rs = a0/ae (increasing density
ρ; a0 is Bohr’s radius, ae is the mean electronic distance). The rows correspond to
temperatures increasing from 5, 000K (bottom) to 62, 500K (top). [Courtesy of B.
Militzer; see also Militzer and Ceperley 2001]

bulk abundance in the planet. In addition, as the planet cools, a fraction of
the mass of the envelope is converted from one phase to the other with an
associated latent heat release (or absorption). The effect on the evolution is
not very pronounced for a latent heat of ∼0.5kB per proton (Saumon et al.
1992).

4.3 Other Elements

Approximate Equations of State

An equation of state has been computed for helium by Saumon et al. (1995),
but it is less sophisticated (realistic?) than the hydrogen EOS. This shouldn’t
affect the results too much because in a solar composition mixture, hydrogen
represents about 90% of the atoms, and helium only about 10%. The con-
sequent EOS for the hydrogen–helium mixture is then calculated using the
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additive volume rule:

ρ−1 = (1− Y )ρ−1
H + Y ρ−1

He

U = (1− Y )UH + Y UHe

S = (1− Y )SH + Y SHe + Smix(Y ) ,
(57)

where Smix is the entropy of mixing, and all quantities depend on P and
T . This method implicitly neglects any interactions between hydrogen and
helium.

For other elements, the treatment is even more approximate. Zharkov
(1986) suggests a fit in the form of a zero temperature pressure plus a thermal
component:

P (ρ, T ) = P (ρ, 0) +
3RT
A

ργ , (58)

where γ is the Grüneisen parameter (generally of order ∼1). Fits for various
elements are given by Zharkov (1986). Similar approximate relations are also
provided by Hubbard et al. (1995).

A fit to the densities of “ices” (initially a mixture of water, methane and
ammonia) and “rocks” at high pressures and planetary temperatures is pro-
vided by Hubbard and Marley (1989) based on experimental Hugoniot data:

“ices” P = ρ3.719 exp(−2.756− 0.271ρ+ 0.00701ρ2) , (59)
“rocks” P = ρ4.406 exp(−6.579− 0.176ρ+ 0.00202ρ2) , (60)

where P is the pressure in megabars and ρ is the density in g cm−3. This fit
is valid in the pressure range 0.1Mbar < P < 8Mbar.

Miscibility of Elements in Hydrogen

As first proposed for Jupiter and Saturn by Smoluchowski (1967) and Salpeter
(1973), helium can undergo a phase separation from hydrogen: at low temper-
atures, helium (or other elements) can become insoluble and form droplets.
Under the action of gravity, these droplets will tend to fall toward the central
regions of the planet.

Physically, a phase separation arises in a binary mixture of concentra-
tion c when the second derivative of the Gibbs free energy ∂2G/∂c2 < 0.
The two concentrations c1 and c2 of equal chemical potentials (∂G/∂c)(c1) =
(∂G/∂c)(c2) correspond to the concentration of the droplets and the environ-
ment which are in equilibrium. The lower the temperature, the closer c1 and
c2 are to 0 and 1, respectively.

Of course, when calculating the miscibility of hydrogen–helium mixture,
both hydrogen, helium and their interactions should be accounted for. Given
the difficulty in modeling the EOS for hydrogen alone, it may not be so sur-
prising that the question of the helium phase separation in the giant planets
is still unsolved.
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One approach has been to calculate the hydrogen–helium phase diagram
assuming complete ionization. In that case, critical temperatures of order
8000K at 2Mbar can be calculated (see Stevenson 1982). Even more im-
portantly, this leads to a critical temperature that decreases with increasing
pressure. The consequence is that (i) this would imply that a phase separation
has occurred in Jupiter, and earlier in Saturn, as suggested by the abundance
of helium measured in the atmosphere (see Sect. 2); (ii) helium would be most
insoluble near the molecular/metallic transition.

Other calculations have been attempted in the local density approximation
(physical picture). Earlier work (Klepeis et al. 1991) suggested a unrealistically
high critical temperature (40, 000K at 10.5Mbar). However, a more careful
study by Pfaffenzeller et al. (1995) with the same basic technique led to a
lower critical temperature (less than 5, 000K at 4Mbar). This value would
imply no demixing of helium in Jupiter and Saturn. More importantly, the
work of Pfaffenzeller et al. implies a critical temperature that increases with
pressure. This can be explained if hydrogen is still not fully ionized at the pres-
sures considered (4 to 24Mbar), which seems difficult to reconcile with the
more standard hydrogen EOSs. Another problem of the work of Pfaffenzeller
et al. is that it does not recover the fully ionized limit. If the critical tem-
perature increases with pressure, this would open the possibility that helium
separates from hydrogen over an extended fraction of the planetary radius,
with significant consequences for the interior and evolution models.

Other elements are also expected to separate from hydrogen if the temper-
ature is low enough. However, the only estimates are for fully ionized mixtures.
Table 5 shows critical temperatures and concentrations for the separation of
various mixtures, as estimated by Stevenson (1976b). The low temperatures
for demixing are due to the different coulombian potential for hydrogen and
ions of progressively larger charges. As for helium however, these elements are
not expected to be fully ionized which severely limits the applicability of these
estimates to substellar objects.

5 Opacities and Heat Transport

We have seen that modeling the interiors of substellar objects requires to be
able to calculate the temperature gradient ∇T at each level. This necessitates

Table 5. Separation of fully ionized mixtures

mixture Tc [K] cc

H–Li 1.4× 104 0.18

H–C 1.1× 105 0.086

H–O 2.6× 105 0.064

H–Fe 5.5× 106 0.019
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to know how energy is transported. Three processes can contribute to this
transport: radiation, conduction and convection.

5.1 Radiation Absorption – Basic Considerations

Let us consider a ray of radiation whose initial intensity is I0ν as a function
of frequency ν passing through a medium of density ρ on a distance l. The
final intensity is then

Iν = I0νe
−κνρl ,

where 1/κνρ corresponds to the mean free path of photons of frequency ν,
and κν is the monochromatic opacity . As example of possible values in the
interiors of giant planets and brown dwarfs are κ ∼ 1 cm2 g−1, ρ ∼ 10−2 leads
to a photon mean free path of lph ∼ 1 meter.

As can be intuited from this very small mean free path, radiation in the
interior is almost isotropic. In order to show that, let us consider the radial
temperature difference between two levels separated by the photon mean free
path:

∆T = lph
dT

dr
.

The temperature lapse rate dT/dr cannot be calculated a priori. However,
typical values for the Jupiter’s interior are dT/dr ≈ 104/109 Kcm−1, and
lph ≈ 102 cm implying ∆T ≈ 10−3 K. Since the energy density is proportional
to T 4, the anisotropy has to be of the order 4∆T/T . Using the previous
estimate and T ≈ 104 K, one can see that it is of the order of 4 × 10−7, i.e.
most of the interiors of giant planets and brown dwarfs can be considered
as isotropic when radiation is concerned. Note that this is not the case near
the photospheres of these objects, where photons can escape to space and
lph becomes large. In that case, the full radiative transfer equation has to be
solved. We refer the reader to available textbooks on the subject for further
information on that problem (e.g. Goody and Yung 1989).

For modeling the interior, it is therefore justified to use the diffusion ap-
proximation, : radiation then obeys a standard diffusion equation:

j = −D∇n ,
where j is the radiation flux, D is the diffusion coefficient, which can be shown
to be equal to clph/3 (e.g. Clayton 1968) and n represent the energy density
Uν . Because all the variables only vary radially, we can rewrite the diffusion
equation as:

Fν = − c

3κνρ
∂Uν
∂r

, (61)

where Fν is the net radial flux per unit wavelength2.
2 Note that when including rotation, this equation is not strictly valid any more:
the surfaces of constant intrinsic flux then tend to become more spherical than
those of constant pressure. In a radiative environment, this gives rise to a slow
meridional circulation also known as the Eddington–Sweet circulation.
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In this approximation, the energy density at each level of temperature T
is proportional to the black body function Bν(T ):

Uν(T ) =
4π
c
Bν(T ) =

8πh
c3

ν3

hν/kT − 1
. (62)

The total radial flux can then be obtained by integrating over all frequencies:

F = −
[
4π
3ρ

∫ ∞

0

1
κν

∂Bν

∂T
dν

]
∂T

∂r
. (63)

It is thus convenient to define the Rosseland mean opacity as

κR =
[

π

acT 3

∫ ∞

0

1
κν

∂Bν

∂T
dν

]−1

. (64)

Note that κR is a harmonic average of the opacity, weighted by a function
which is close to a blackbody function and peaks at ν = 4kT/h (or equiv-
alently σ = 2.78T where σ is expressed in cm−1 and T in Kelvins). This
has crucial consequences for its calculation, as spectral regions for which the
monochromatic opacity is the smallest will tend to have the most important
contribution to the mean. Physically, this can be interpreted by the fact that
the cooling of any given layer in the star/planet will be governed by the pho-
tons which have the longest mean free path. Numerically, this implies that
regions where the opacities are least known will have potentially very impor-
tant contributions and that the final accuracy is extremely hard to estimate.

On the other hand, in a radiative or conductive environment, the temper-
ature gradient will be directly given by the intrinsic luminosity, as can be seen
from (63) and (64):

∂T

∂r
= − 3

16πac
κRρL

r2T 3
. (65)

In a radiative/conductive region, the temperature profile is hence steeper when
the luminosity to be transported is larger. In the limit of a zero luminosity, it
becomes isothermal as can be expected from thermodynamic principles.

5.2 Rosseland Opacities

Absorption of a Zero-Metallicity Gas

The contribution of hydrogen and helium to the overall opacities is often rela-
tively small but fundamental, due to the nature of the Rosseland mean. At the
pressures (bars or more) and temperatures (100s to 1000s K) of interest, these
elements mostly have continuum opacity and therefore avoid any divergence
of (64).

One of the most complete and useful work on the subject so far is certainly
that of Lenzuni et al. (1991). I refer the reader to that paper for details on
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this problem. In this course, the materials that will be considered is relatively
cool and at high density, implying that the main absorption sources are:
H2–H2and H2–He collision-induced absorption (CIA): H2 and He in their

ground state have no electric dipole and mainly absorb during collisions. The
H2 molecule has three degrees of freedom: translation, rotation3 and vibra-
tion4. The largest energy transitions are between the vibrational bands, while
the rotational bands imply a finer structure whose main consequence is to
broaden these bands. The detailed calculation and structure is complex, es-
pecially in the case of the H2–H2 collision (4 other quantum numbers are then
required to describe the state of the supermolecule), but to simplify it is dom-
inated by 4 almost evenly spaced absorption bands (transitions v : 0 → 0 to
v : 0 → 3) between 0 and 14000 cm−1. (See Borysow et al. 2000; Borysow
1992 and references therein).
H− bound-free absorption: At high enough densities, the abundance of the

H− ion can become non-negligible. In this case, photons of sufficiently high
energy can dissociate the ion into a hydrogen atom and a free electron. The
absorption rapidly rise with increasing wavenumbers to reach a maximum at
1 micron. At higher wavenumbers (energies) it slowly decreases.
H−

2 free-free absorption: At very high densities, free electrons can “feel”
the potential of the neutral H2 molecule and therefore act as a superparticule
which can absorb radiation. The cross-section for this reaction is a rapidly
decreasing function of wavenumber.
Rayleigh scattering by H2: Although this is not real absorption, Rayleigh

scattering is very important for limiting the propagation of high energy radi-
ation due to its 1/λ4 dependency.

Molecular Line Opacities

Due to the relatively low temperatures and high pressures encountered in
regions where radiative heat transport matters, the opacity is dominated by
molecular absorption. At low temperatures, the dominant molecules are H2O,
CH4 and NH3. For hotter objects CH4 transforms into CO, and then TiO and
VO, two important absorbers in the stellar regime appear (see Fegley and
Lodders 1994, 1996; Lodders 1999).

Due to the complexity of the rotation and vibration modes of these mole-
cules, one often has to rely on experimental measurements. Those can consist
of measurements of mean absorptions in frequency intervals. These are how-
ever limited to a fixed number of pressures and temperature at which the
measurements have been done. Another approach chosen for example for the
GEISA and HITRAN data base is to measure the intensity of the largest
3 Approximately, Erot ∼ �

2/2 Ij(j+1) where I is the molecule’s moment of inertia
and j the rotational quantum number.

4 Evib ∼ �ωosc(v + 1/2) where ωosc is the vibration frequency of the equivalent
harmonic oscillator and v the vibrational quantum number.
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possible number of lines. The absorption at any temperature and pressure
of a given compound can then theoretically be calculated from the following
relation:

κν(T, P ) =
∑
i

Ii(T0, P0)
[
1− ehν/kT
1− ehν/kT0

] [
Q(T )
Q(T0)

e
−Ei

k

(
1
T − 1

T0

)]
Lν(T, P, νi) ,

(66)
where the monochromatic opacity κν and the observed intensity of the line
i are generally given in cm2 molec−1 and the measured quantities have been
obtained at temperature T0 and pressure P0. The ratio of exponential corre-
sponds to induced emission. Q(T ) is the partition function at temperature T ,
Ei the energy of the level from which the observed line i comes from, and
therefore the second term in square brackets is the ratio of the population of
the initial energy level between temperature T and T0. The line profile is Lν
and this function is such that

∫∞
0

Lνdν = 1.
Although theoretically reasonable, one of the main drawback of this ap-

proach is the fact that the extrapolation to high temperatures involves excited
energy level transitions which are extremely difficult to detect at room tem-
peratures. The problem of formula (66) is therefore that the population of
energy levels corresponding to known lines decreases whereas the population
of unknown excited levels increases. This problem, known as the “hot band”
problem eventually leads to a strong (and false) decrease of the absorption
with increasing temperature.

In recent years, progresses in computational power have lead to very inter-
esting advances in ab initio calculations. These calculation predict the entire
energy levels of a given molecule and can therefore yield the absorption spec-
trum at all temperatures and pressures. These kind of calculations have been
successfully applied to diatomic molecules such as TiO, CO, VO...etc for quite
a few years, using the principles of the harmonic oscillator. The case of the
linear molecules as HCN has also been solved after that. However it is only
relatively recently that convincing calculations have been performed for more
complex molecules such as H2O. Other important molecules in the context of
cool objects (Teff ∼< 1200K) that still resist are CH4 and NH3. In the absence
of crucial data for these molecules, one has to rely on hazardous extrapolation
of experimental data.

Line Profiles

In the case of stellar atmospheres, the problem of the profile of absorp-
tion lines is relatively straightforward. Because the medium is at relatively
high temperatures and low densities the absorption of a molecule away
from the center of a line is due to the Doppler shift of the radiation as
seen by the absorber. The Doppler line profile is written as a function of
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wavenumber (σ = ν/c):

Lσ(T, σ0) =
e−(σ−σ0)

2/∆σ2
D

∆σD
√
π

, (67)

and the line halfwidth is

∆σD =
σ

c

√
2kT
m

, (68)

where m is the mean molecular mass.
In the case of most substellar objects, the cooler and denser conditions

which prevail imply a different kind of broadening which is dominated by
the effect of collisions: because the energy levels are populated only for finite
periods of time (due to excitations/deexcitations caused by collisions), the
transition cannot have a unique frequency. This gives rise to the so-called
Lorentzian line profile, which is

Lσ(T, P, σ0) =
∆σL

(∆σL)2 + (σ − σ0)2
, (69)

and the Lorentzian half-width then depends on details of the physics of micro-
scopic collisions. In general, it can be approximated by the following perfect
gas approximation

∆σL ≈ σ0
P√
T
, (70)

and σ0 depends on the line considered. This value can be experimentally
determined at room temperature, but when using ab initio calculation it is
generally set to a fixed value corresponding to the mean of the observed ones.

The use of the Doppler line broadening can be justified when its halfwidth
value is larger than that of a Lorenztian profile, i.e. when

T ∼> 7000K
(

ρ

10−4 g cm−3

)
.

At significantly lower temperature and/or larger densities, one is justified to
use a pure Lorentzian profile. In between, the Voigt profile is a combination
of the two:

Lσ(T, P, σ0) =
∫ +∞

−∞

∆σL

(∆σL)2 +
(
σ − σ0 − uσ0

c

)2 ( m

2πkT

)
e−mu

2/2kT du .

(71)
The Lorentzian (or Voigt) broadening is intrinsically more complicated

than the Doppler one due to the additional pressure dependency and the a
priori unknown halfwidth. It is also more complicated due to its slow decay
compared to the Doppler profile.

A cutoff to the Lorentzian profile is generally used first because it is com-
putationally much less intensive. It has also been empirically verified that syn-
thetic spectra of the giant planets generally fit the observations better when
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using a cutoff. This is for example the case of the 5µm spectrum of Jupiter,
modeled by Kunde et al. (1982) using a cutoff of ∆σcutoff ∼ 120 cm−1. Last
but not least, there are theoretical grounds for which the Lorentzian profile
should fail far from the line center.

The Lorentzian “core” is indeed a result of the impact approximation: it
is valid when the collision time is large compared to the characteristic time of
the transition:

rc
vc

= τcol ∼> τω =
1

2πc|ω − ω0|
, (72)

where rc and vc are the mean radius and velocity at closest approach during
collisions. Further from the line center, the impact approximation fails and a
faster exponential decay should prevail (Birnbaum 1979). This simplification
was indeed used by Guillot et al. (1994a) to predict a line cutoff proportional
to
√
T around 100 cm−1 at T = 200K, consistent with spectroscopic models

of Jupiter’s atmosphere.
More generally, the Lorentzian profile is known to fail in a variety of con-

ditions. Both superlorentzian and sublorentzian profiles can be observed, and
spectral lines can even be shifted due to microscopic interactions and line mix-
ing. However, a surprising result of the recent years is that, at least in the case
of alkali metals, far wings can still be of significance much beyond expectation.
In the case of Na lines in the visible spectral region, Nefedov et al. (1999)
find that the expected exponential cutoff occurs for ∆σ � 1000 cm−1. Us-
ing a Lorentzian profile convoluted with an exponentially-decaying function,
Burrows et al. (2000a) find that alkali metals, and especially the potassium
doublet at 0.77µm can explain the absence of flux emitted by brown dwarfs
in the visible and the slope of the spectrum for wavelengths shorter than 1µ.

The consequences of these results is still to be investigated, as are many
microscopic problems of line mixing and departure from ideality.

Radiative Rosseland Mean Opacities

The calculation of a Rosseland opacity table for substellar objects is a difficult
task, and indeed no such table spanning the range of giant planets to M-dwarfs
is yet available. An opacity table for stars have been calculated by Alexander
and Ferguson (1994), but at low temperature it is dominated by the presence
of interstellar-sized grains. It is then essentially designed to the study of cir-
cumstellar disks. Another effort was led by Lenzuni et al. (1991) with their
zero-metallicity opacity table. As suggested by the name, the calculations in-
cludes only hydrogen and helium and its applicability to real giant planets and
brown dwarfs is thus limited. The theoretical spectra of M-dwarfs and cooler
objects are now relatively good but unfortunately no Rosseland opacity table
has been published by modelers. Finally, a limited Rosseland table was com-
puted for Jupiter and Saturn by Guillot et al. (1994a) and Guillot (1999a,b)
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Fig. 10. Absorption of a solar-composition mixture, at 300K and 1 bar (left), and
at 2000K and 100 bar. Various contributions are shown. Top diagrams: H2–H2 CIA
(shaded) and H2O (gray lines);Middle: NH3 (shaded) and CH4 (gray lines); Bottom:
PH3 (shaded, left diagram), CO (shaded, right diagram) and H2S (gray).

but it does not include high-temperature species (such as TiO), and, as other
tables calculated so far, it does not account for the absorption of alkali metals.

I won’t attempt to discuss any specifics of these calculations. However
the broad features can be understood by looking at the monochromatic ab-
sorptions shown in Fig. 10. At low temperatures and pressure, the spectrum is
dominated by water and methane with a small contribution of H2–H2 collision-
induced absorption, ammonia and phosphine (PH3). The molecular bands
are relatively narrow. At higher temperatures and pressures, the absorption
bands become much broader. The H2–H2CIA becomes more important but
water still dominates the absorption spectrum. However, methane has almost
disappeared in the favor of carbon monoxide, which peaks at 5µm. The be-
havior of the Rosseland opacity over this range of conditions evolves mostly
because of the displacement of the weighting function dBν/dT in (64). At
300K, it is maximum at 830 cm−1, in a spectral region where the absorption
is large. At 2000K, its peak is around 5600 cm−1, and the contribution of
the low-absorption region around 1µm(10, 000 cm−1) becomes important. At
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still higher temperatures, the increased abundance of electrons imply a very
rapidly increasing H− and H−

2 continuous absorption: the Rosseland mean
opacity then rises so much that any radiative process becomes very inefficient
until eventually conduction dominates.

Two important points are to be mentioned: first, this local minimum of the
Rosseland opacity at temperatures of the order of 1500 to 2000K which pre-
vails for a zero-metallicity gas is conserved in the presence of water, methane,
ammonia, silane and a variety of other species observed in the atmospheres of
Jupiter and Saturn. This is due to the fact that these elements all have low
absorptions around 1µm. The presence of other chemical elements can alter
this conclusion. First, those that have low ionization potentials can increase
the number of electrons. This is the case of Al, Na...etc., but has been shown
not to be sufficient to erase this minimum (Guillot et al. 1994a). Second,
alkali metals have been shown to absorb precisely at these wavelengths (Bur-
rows et al. 2000a) and can therefore greatly affect this conclusion. Finally, the
presence of grains/dust/cloud particles can have a very significant effect.

Clouds and Dust

A great variety of chemical species in condensed form have been identified
in the interstellar medium, and their contribution to the energy balance of
interstellar clouds and circumstellar disks has been shown to be absolutely
essential. Solid grains have also been shown to affect the structure and evolu-
tion of red giant stars, and in particular to be determinant for understanding
the violent mass loss processes that these objects undergo. Finally, we owe our
very existence to the presence of condensed species in our own atmosphere:
the presence of clouds, of rain, proves that these phenomena greatly affect
the energy balance in Earth atmosphere. This is also the case in the giant
planets, and the presence of big particles (i.e. clouds) (generally of unknown
composition) is required for a proper fit of the observed spectra.

Condensed grains have such a fundamental importance because of their
ability to absorb light: Taken alone, the grains that can potentially condense
out of a solar-composition mixture are capable of providing a Rosseland opac-
ity up to ∼10 cm2 g−1 (e.g. Pollack et al. 1985, 1994). This value depends on
the abundance and composition of the condensed material, and hence mostly
on the temperature of the mixture, but also on the size distribution.

One can define three regimes, depending on the ratio of the wavelength
to the size of the grains. For grains much smaller than the wavelength of
the incoming light, the opacity is essentially due to Rayleigh scattering and
the Rosseland mean is independent of the size. For large grains, the cross
section decreases as the grains are bigger (the total mass of condensed material
being held constant), and the Rosseland opacity is consequently inversely
proportional to the size of the grains. The opacity is maximal at wavelengths
of the order of the size of the grain.



288 T. Guillot

Astrophysical opacity tables have generally been calculated assuming a
full chemical equilibrium in which the condensing species have been retained.
Furthermore, their size distribution has generally been taken to be that of
the interstellar medium. A good example is the widely used table provided by
Alexander and Ferguson (1994), which shows several absorption jumps due
to the condensation of various species, in particular silicates at temperatures
lower than ∼2000K.

However, it is not clear that this approach is even useful in the case of gi-
ant planet and brown dwarfs atmospheres. The size distribution then obtained
strongly depends on complex advective processes and has in most cases noth-
ing to do with that of interstellar clouds. Gravity is indeed a very important
factor in planetary atmospheres: it will generally lead to the removal of grains,
but several complications can occur due to convection and more generally ad-
vection of material. Heterogeneity is also likely to occur, and instabilities can
be generated by the presence of clouds. Finally, latent heat release can also be
an important factor, as in the case of the Earth, for which cumulus clouds can
penetrate the upper atmosphere because of the significant release of energy
occurring during the condensation of water vapor to a liquid or solid phase.

The calculation of a mean opacity table for substellar atmospheres that
would include condensed species is hence at the least impractical and limited
to very special conditions. However, it may be possible to use this simplified
treatment by noting that grains often dominate the absorption when they
occur. A combination of two tables, one without grains, and one with grains
only might be a possibility.

Conductive Opacities

We have seen that at high temperatures, the number of electrons present
yields a very rapid increase of the opacity. Because we are considering envi-
ronments in which the electrons become partially degenerate, conduction by
these electrons can become, at high pressures, an efficient way to transport
the internal heat.

In environments in which heat is entirely transported by conduction, the
heat flux obeys a standard diffusion equation:

Q = −Kc∇T , (73)

whereKc is the thermometric conductivity, expressed in units of erg s−1 cm−1 K−1.
An order of magnitude estimate of this quantity for the jovian interior is pro-
vided by Stevenson and Salpeter (1977a):

Kc ≈ 108ρ4/3 erg s−1 cm−1 K−1 , (74)

and ρ is expressed in g cm−3.
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The relationship between the conductive opacity and the thermometric
conductivity is

κc =
4acT 3

3Kcρ
. (75)

The diffusion equations for radiation and conduction being additive, one
can define a conductive + radiative opacity κ as

κ−1 = κ−1
R + κ−1

c . (76)

Tables of either the thermometric conductivity or the conductive opacity
have been calculated by Hubbard and Lampe (1969) and more recently by
Potekhin et al. (1999). The results by Potekhin et al. indicate slightly smaller
opacities by ≈ 10%. Typically, the conductive opacity of the hydrogen gas at
107 K decreases from about 105 cm2 g−1 at ρ = 1g cm−3 to 103 cm2 g−1 for
ρ = 100 g cm−3.

5.3 Heat Transport

We have described two ways of transporting heat: radiation and conduction. In
the diffusion approximation, i.e. at levels where the medium can be considered
isotropic, these fundamental physical processes can be described by relatively
simple equations. However, another extremely important mechanism has been
left out so far: the advection of heat by macroscopic motions. There are many
ways to generate heat advection, or convection, and it can take many forms.
We will only mention the most simple one: when convection is generated
by a destabilizing temperature gradient, and the medium can be considered
barotropic (surfaces of constant P and ρ coincide). The method pioneered
by Prandtl, Schwarzschild and Ledoux and widely used in stellar physics is
explained thoroughly in many textbooks. We will therefore only sketch it.

Convective Instability Criterion

In stellar (or in this case substellar) physics, viscosity is considered negligible
and convection is predicted to occur whenever it is energetically favorable.
This is unlike e.g. the Rayleigh–Bénard instability for which the system has
to overcome a barrier of potential to occur. In stars and giant planets, the
barrier is so small that it can be neglected (see later Sect. 5.3).

In our case, convection is supposed to occur whenever the medium is locally
unstable to convection, i.e. when a parcel of fluid displaced upward (resp.
downward) is lighter (resp. heavier) than its surrounding. Let us consider this
parcel of fluid versus its environment. When it is arbitrarily displaced radially
by ∆r, its density changes by ∆ρ? and has changed by ∆ρ in the unperturbed
environment. A convective instability then develops if:

∆ρ?

∆r
<
∆ρ

∆r
. (77)
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Because pressure variations are equilibriated much faster (at the speed of
sound) than temperature variations in the interior, this is equivalent to5:

(
∂ρ

∂T

)
P,µ

(
dT

dP

)?
dP

dr
<

(
∂ρ

∂T

)
P,µ

(
dT

dP

)
dP

dr
+
(
∂ρ

∂µ

)
T,P

(
dµ

dP

)
dP

dr
, (78)

where (dT/dP )? corresponds to the temperature variation in the perturbed
fluid parcel. We have implicitly considered that the molecular diffusivity is
slower than the thermal one so that the mean molecular weight µ is held
constant in the parcel and varies in the environment. Clearly this is not the
case for fast chemical reactions as ionization. In that case, convection can be
thought to occur in a homogeneous medium.

This implies that convection should develop whenever

∇T > ∇?T +
ϕ

δ
∇µ, (79)

where ϕ and δ are thermodynamical derivatives of the density (equal to 1 for
a perfect gas):

δ = −
(
∂ ln ρ
∂ lnT

)
P,µ

; ϕ = −
(
∂ ln ρ
∂ lnµ

)
P,T

. (80)

This criterion is not yet in a useful form because neither ∇?T nor ∇T
are known a priori. However, one should note that the following inequalities
should be satisfied in a convective zone:

∇rad > ∇T > ∇?T > ∇ad , (81)

where ∇rad is the radiative (+conductive) gradient

∇rad =
3

4πσG
κPL

mT 4
, (82)

∇ad ≡ (∂ lnT/∂ lnP )S is the adiabatic gradient, ∇T ≡ ∂ lnT/∂ lnP is the
real temperature gradient and ∇?T is that gradient in the parcel of fluid.
The first inequality to the left is due to the fact that given a set luminosity,
the radiative gradient is a strict maximum to the temperature gradient. The
second inequality is a consequence of the convection criterion. The last one is
due to the fact that heat can be transported by the parcel only if its motion
is slightly superadiabatic i.e. if it looses some of its heat during its ascent.

It is then easy to derive the so-called Schwarzschild–Ledoux criterion for
convective instability (Note that ϕ and δ are positive quantities):

∇rad > ∇ad +
ϕ

δ
∇µ . (83)

5 For simplicity, we forget the time derivative and use dP/dr instead of ∂P/∂r.
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This criterion is fundamental for the evolution of planets to stars. It is impor-
tant to notice that ∇rad is proportional to the luminosity L and to the mean
opacity κ. Convection will occur if L and κ are too large so that radiation can
transport the heat flux only with a steep, unstable temperature gradient.

Mixing Length Theory

While we now know when convection should occur, we haven’t derived an ex-
pression for the temperature gradient ∇T . In stellar modeling, this is generally
done using the approach due to Prandtl (1925): the Mixing length theory. This
is in fact a phenomenological approach and as such it has been widely crit-
icized. In the case of substellar objects, a detailed treatment of convection
will generally not be necessary because, as we will see, convection is almost
adiabatic.

The main hypothesis of the mixing length theory is that convective el-
ements should dissolve after a “mixing length” l ≡ αHP , where HP is the
pressure scale height and α is a free parameter of order unity.

We will first assume a homogeneous medium, i.e.∇µ = 0. By definition, the
total flux F , radiative flux Frad and convective flux Fconv obey the following
relations: 



F = Frad + Fconv

Frad =
4acT 3

κρ

T

HP
∇T

F =
4acT 3

κρ

T

HP
∇rad .

(84)

Prandtl’s approach allows to estimate the convective flux and the convective
velocity by integrating the acceleration by the buoyancy force over the mixing
length. This is done in several textbooks (e.g. Kippenhahn and Weigert 1991)
and I will not rederive these expressions. After some algebra, one derives the
cubical equation of the mixing length:


9
4
Γ 3 + Γ 2 + Γ = A2(∇rad −∇ad) ,

A =
cPκρ

2α2

12
√
2acT 3

(gδ)1/2H3/2
P ,

(85)

where 0 ≤ Γ ≤ ∞ is a parameter characterizing the efficiency of convection,
and I used as second parameter of the mixing length a ratio of the volume V
of convective elements over their surface S, V/S = l/6. The cubical equation
has only one real and positive root: it defines a unique value of Γ .

The temperature gradient and convective velocity are given by

∇T = ∇ad +
Γ (Γ + 1)

A2
, (86)

v =
(gδHP )1/2

2
√
2

α
Γ

A
. (87)
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The cubical mixing length equation should be consistently solved when cal-
culating the evolution of substellar objects. However, in most cases, convection
is found to be very efficient and Γ is large. In that case, simpler expressions
for the convective velocity and temperature gradient can be obtained:

∇T −∇ad ∼
[

4
√
2

α2δ1/2
Fconv

cPT (ρP )1/2

]2/3
, (88)

v ∼
[
αδ

4
P

ρcPT

Fconv

ρ

]1/3
. (89)

According to (84), the convective flux is Fconv = F (1−∇T /∇rad). When the
opacities become large, ∇rad � ∇T ≈ ∇ad and Fconv ≈ F . Physically, the
superadiabatic gradient is an adimensional quantity involving the ratio of the
energy per unit mass F/

√
ρP to be transported to that of a given layer, cPT .

The convective velocity is essentially proportional to (F/ρ)1/3: since F is a
slowly varying function, v should be expected to be larger near the surface,
where ρ is smaller. This corresponds to the fact that in a low density material,
transporting the same energy requires higher velocities.

Since we consider objects that are almost fully convective, and for which
our assumption that Γ � 1 is verified in most of the interior, the value of
α can affect the results through the change in the superadiabatic gradient.
As we will see next, this value is generally extremely small. The structure of
substellar objects is thus weakly dependent on the treatment of convection,
except possibly for the largest masses and early in the evolution.

Properties of Convection in Substellar Objects

First, let us determine the physical reasons for which the interiors of substellar
objects are found to be essentially convective (for direct applications to our
giant planets, see Hubbard 1968; Stevenson and Salpeter 1977b; Guillot et al.
1994b, 1997; Guillot 1999a,b). At any given level, we define a critical opacity
κcrit as the Rosseland mean opacity for which ∇rad = ∇ad. It can be seen
from the definition of ∇rad (82) that

κcrit =
∇ad

3
g

P

(
T

Teff

)4

. (90)

We now assume that ∇T is approximately constant so that T ∝ P∇T , and
that the flux σT 4

eff and gravity g are also constant. This yields

κcrit ≈
∇ad

3
g

P0

(
P

P0

)4∇T −1

. (91)

The critical opacity is thus only weakly dependent on the pressure level. Using
the definition of the photospheric pressure, and introducing the photospheric
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opacity κ0 ≡ κ(P0, Teff), one finds that

κcrit ≈
∇ad

2
κ0

(
P

P0

)4∇T −1

. (92)

Note that this expression is relatively simple, but caution should be made
regarding to its applicability. We have assumed g and Teff to be constant,
an assumption which generally verified, except in the central regions. The
hypothesis ∇T=cte is more ad hoc. However, because of the small superadi-
abaticities in substellar objects, ∇T ≤ ∇ad + ε where ε is a small quantity
(see (93) hereafter). With ∇ad ∼ 0.3, regardless of variations of ∇T , one finds
that in most cases κcrit is a function that weakly depends on P . We are thus
led to the conclusion that substellar objects are mostly convective because of
the strong increase of their Rosseland opacities with increasing pressure and
increasing temperature.

It should be stressed however that (92) is not valid near the photosphere
because it is calculated in the diffusion approximation. One can notice for
example that κcrit is a Rosseland mean opacity, whereas κ0 would correspond
more or less to a Planck mean opacity (straight mean weighted by the Planck
function).

In the case of isolated substellar objects, we can distinguish two regimes:

1. Cool objects (Teff ∼< 1500K): The opacity κ is essentially due to molecu-
lar absorption which is weakly dependent on pressure and temperature.
However, an important contribution is due to the H2–H2collision-induced
absorption which is proportional to P . The increase in this opacity guar-
anties convection.

2. Hot objects (Teff ∼> 1500K): The increase in temperature provides a grow-
ing number of electrons which greatly contribute to the total opacity via
H−

2 and H− absorption. Convection is then also guaranteed in this regime.

Note that this is the case only for isolated, or weakly irradiated planets
or brown dwarfs. The case of strongly irradiated objects will be discussed
afterward. Furthermore, any decrease of the Rosseland opacity, such as that
due to minimum 1 micron absorption in the absence of alkali metals can
yield a small but important radiative region. Finally, the presence of moist
convection or of gradients of composition can alter this conclusion. However,
this only affects limited regions, and one can consider that substellar objects
are mostly convective (however see Chabrier et al. 2000b).

Let us characterize convection in these objects. Under typical conditions,
(88) can be shown to yield:

∇T −∇ad ≈ 10−3

(
Teff

1000K

)7/3(
P

1 bar

)−2/3

. (93)

Convection can thus be considered adiabatic in most cases. This is due to the
fact that the energy to be transported is relatively small when compared to
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that available from thermonuclear reactions in stars. Because of this property,
the structure and evolution is found to be relatively insensitive to the treat-
ment of convection (and e.g. to the choice of the mixing length parameter
α).

The convective velocity is estimated from (89):

v ≈ 150
(

Teff
1000K

)4/3(
ρ

1 g cm−3

)−1/3

cm s−1 . (94)

The velocities thus derived are relatively small for giant planets such as Jupiter
(Teff ∼ 100K) and in the interior. They can however reach 100m s−1 at the
top of the convective region of the hottest brown dwarfs (Teff ∼ 2000K).
Note that in the case of Jupiter, the condensation of water provides another
source of energy which is not considered here. Due to that effect, updrafts can
reach several 10’s of m s−1. (The same principle holds for the Earth’s cumulus
clouds).

Table 6 illustrates the properties of convection in Jupiter, based on esti-
mates from Stevenson and Salpeter (1977a). The pressure scale height varies
from a few tens of kilometers near the photosphere to a fraction of the plan-
etary level near the center. The convective velocity is very small deep in the
interior, but as discussed, it decreases significantly at smaller densities.

A few adimensional numbers characterize convection itself: the Prandtl
number is the ratio between the opacity and the viscosity. It is small in regions
where either radiation or convection are relatively efficient at transporting
heat (independently of the presence of convection), i.e. near the surface and
in the metallic interior where conduction becomes dominant. The Reynolds
number compares macroscopic diffusion to the viscosity. It is very large, indi-
cating that convection is turbulent. Finally, the Rossby number is a measure
of the importance of rotation on convective motions. It is low, due to the
rapid rotation of the planet in ∼10 hours. This indicates that rotation will
significantly affect convective motions, implying that convective motions will
be mostly confined to a plane perpendicular to the axis of rotation. This gives
rise to the so-called Taylor columns (e.g. Busse 1978).

Table 6. Properties of convection in Jupiter

HP vconv Pr = ν/κ Re = vd/ν Ro = v/ωd

[km] [m /s]

Surface 40 1 10−4 109 1

PPT/molecular 1

PPT/metallic 10−3

Center 13000 0.03 10−3 1011 10−4
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Possible Inhibitions of Convection

A few phenomena are susceptible of inhibiting convection. I will enumerate a
few of them:

1. Rotation: In the limit of very low Rossby numbers, convective motions
are confined to a plane perpendicular to the axis of rotation (see e.g.
Pedlosky 1979). In the case of Jupiter, it has been estimated that this
yields a limited increase of the superadiabaticity and is hence negligible
to first order (Stevenson 1976a).

2. Magnetic field : In an ionized medium, a strong magnetic field can force
motions to follow the magnetic lines. All giant planets in our Solar System
possess such a magnetic field. Some low-mass stars have been observed to
show variability presumably related to the presence of star spots. This is
a strong indication that these stars are magnetic. One can therefore sur-
mise that magnetic dynamos occur in most or all substellar objects. The
mechanisms that generate these dynamos have not been fully elucidated,
and consequences for convection and heat transport remain unclear.

3. Compositional gradients: The presence of compositional gradients (∇µ >
0) can lead to the inhibition of convection. The problem becomes complex
because this gradient is a priori unknown: on one hand, convection tends
to homogenize layers, leading to ∇µ → 0; on the other hand, sharp in-
terfaces can form for which ∇µ →∞, yielding sharp, diffusive interfaces.
This is indeed observed in the Earth oceans, where salt and heat have
opposite effects.

4. Condensation: Phase changes of minor species, such as water can strongly
modify convection. First, the latent heat released favors updrafts, as ob-
served in Earth’s cumulus clouds. In Jupiter, this leads to convective up-
drafts of tens of m/s. However, in hydrogen–helium atmospheres, another
effect can be potentially important: in this case, because any condensing
species is heavier than the surrounding air, condensation tends to yield a
stable compositional gradient (∇µ > 0)6. Guillot (1995) shows that con-
vection is locally inhibited when the abundance of the condensing species
is larger than a certain critical value. This value is of the order of 5, 15
and 40 times the solar values for H2O, CH4 and NH3, respectively. The
temperature profiles of Uranus and Neptune retrieved from radio occul-
tation of Voyager 2 indeed show a strong superadiabaticity in the region
of methane condensation, implying that convection is probably inhibited
by this mechanism (Guillot 1995).

6 This is unlike the Earth’s atmosphere in which the condensing molecule, water
(µ = 18), is lighter than air (µ = 29).
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6 Interior Structures of our Giant Planets:
Numerical Integrations and Results

6.1 Basic Principles

Constraints on the interior structure of the giant planets of our Solar System
are derived from knowledge of their mass, M , equatorial radius a, and grav-
itational moments J2 and J4. Measurements of these quantities still go back
to the Pioneer and Voyager missions.

Basically, the procedure is to integrate the hydrostatic equations including
rotation using appropriate equations of state, opacities and a set of observed
parameters (mass, surface temperature...etc.). The a priori unknown compo-
sition is constrained by the gravitational moments. In the case of Uranus and
Neptune, we will see that another approach has been proposed which simply
relies on the computation of random density profiles. It is to be stressed that
in the absence of other information such as a vibration spectrum, only a few
moments of the interior density can be constrained. Most of the knowledge
concerning the interiors of these planets is indirect: it heavily relies on the
input physics.

All four giant planets appear to emit more energy than they receive from
the Sun (see Table 3 and Sect. 2). As first proposed by Hubbard (1968) for
Jupiter, this implies that their interior is hot, fluid and because of the large
opacities (see “Possible Inhibitions of Convection”), mainly convective. This
is an essential property which allow to model these objects with the same
underlying physics.

I will first discuss the case of Jupiter and Saturn, which are mostly formed
with hydrogen and helium. These two planets have been extensively modeled
(see Hubbard and Marley 1989; Zharkov and Gudkova 1992; Chabrier et al.
1992; Guillot et al. 1994b; Gudkova and Zharkov 1999), but these works gen-
erally aimed at finding a limited sample of models matching the observational
constraints. I choose to present models calculated in the purpose of extensively
exploring the set of parameters (Guillot 1999a).

I will then present more briefly the cases of Uranus and Neptune. These
planets are mostly made of ices, and their interior structure is consequently
more difficult to grasp. They are also distantly connected to the much more
massive brown dwarfs and extrasolar planets that have been detected thus
far. However, they are also a crucial piece in the puzzle to understand how
the Solar System was formed.

6.2 Jupiter and Saturn

Input Data

Gravitational field : The characteristics of Jupiter and Saturn’s gravity fields
as obtained from spacecrafts measurements are listed in Table 7. Note that
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Table 7. Characteristics of the gravitational fields

Jupiter Saturn

measureda adjustedb measuredc adjustedb

M/M⊕ 317. 83 95. 147

Req/10
9 cm 7. 1492(4) 6. 0268(4)

ω/10−4 s−1 1. 76 1. 64

J2/10
−2 1. 4697(1) 1. 4682(1) 1. 6332(10) 1. 6252(10)

J4/10
−4 −5. 84(5) −5. 80(5) −9. 19(40) −8. 99(40)

J6/10
−4 0. 31(20) 0. 30(20) 1. 04(50) 0. 94(50)

Note. The numbers in parentheses are the uncertainty in the last digits of the given
value. All the quantities are relative to the 1 bar pressure level.
a Campbell and Synnott (1985).
b Campbell and Anderson (1989).
c Adjusted for differential rotation using Hubbard (1982).

the rotation rate ω is that of the planets’ magnetic field, assumed to be tied
to the rotation of the deep interior.

A complication arises from the fact that the equations derived from that
theory generally assume the planet to be rotating as a solid body. Observations
of the atmospheric winds show significant variations with latitude, however
(e.g., Gierasch and Conrath (1993)). The question of the depth to which these
differential rotation patterns extend is still open. Hubbard (1982) has proposed
a solution to the planetary figure problem in the case of a deep rotation field
that possesses cylindrical symmetry. It is thus possible to derive, from interior
models assuming solid rotation, the value of the gravitational moments that
the planet would have if its surface rotation pattern extended deep into its
interior. It is a priori impossible to prefer one model to the other, and I will
therefore present calculations assuming both solid and differential rotation.
Table 7 gives both the measured gravitational moments, and those corrected
for differential rotation.

Atmospheric abundances: Because Jupiter and Saturn are believed to be rela-
tively well-mixed, precise measurements of atmospheric abundances is crucial
for modeling the interior. First, helium is found in relatively small abun-
dance: Solar evolution models indicate that the protostellar helium mass mix-
ing ratio relative to hydrogen was Y/(X + Y ) = 0.270 ± 0.005 (Bahcall and
Pinsonneault (1995)). In situ measurements of that quantity in Jupiter yield
Y/(X + Y ) = 0.238± 0.007 (von Zahn et al. (1998)). Combined radio occul-
tation measurements and spectra analysis from Voyager 2 indicate that, in
Saturn, Y/(X + Y ) = 0.06± 0.05 (Conrath et al. (1984)). This last value has
been challenged by several approaches (Guillot 1999a,b; Hubbard et al. 1999;
Conrath and Gautier 2000) and could be significantly larger. However, it still
appears to be smaller than the protosolar value.
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The conclusion that more helium was present in the protosolar nebula
gas from which Jupiter and Saturn formed than is observed today in their at-
mospheres seems inescapable. As discussed in Sect. 4, this implies the existence
of a hydrogen/helium phase separation, in which helium droplets can grow suf-
ficiently fast to be dragged down by gravity despite convection (Salpeter 1973;
Stevenson and Salpeter 1977b). The fact that the Galileo probe measured a
depleted abundance of neon is also indicative of such a phase separation, as
neon tends to dissolve into the helium-rich drops (Roulston and Stevenson
1995).

The measured abundances of other elements also provide important clues
to the composition of the planets. Both Jupiter and Saturn are globally en-
riched in heavy elements compared to the Sun. In Jupiter, the in situ measure-
ments of the Galileo probe are compatible with a ∼3 times solar enrichment
of carbon, sulfur, argon, xenon and krypton (Niemann et al. 1998; Owen et al.
1999). It is still unclear as to whether nitrogen is close to solar (by a factor 1
to 1.5; dePater and Massie 1985), moderately (2.2 to 2.4; Carlson et al. 1992)
or strongly enriched (3.5 to 4.5 times solar; Folkner et al. 1998). Water is still
a problem because of its condensation at deep levels, and only a lower limit
of ∼0.1 times solar can be inferred from the measurements. The enrichment
in noble gases (except neon) is problematic and bears directly on formation
issues. It has been proposed that these elements are brought to the planet in
the form of clathrates (Gautier et al. 2001).

Unfortunately, the uncertainties for Saturn are still relatively large. Its
atmosphere is enhanced in carbon by a factor of 2 to 7, and in nitrogen by a
factor 2 or more (Gautier and Owen 1989). Observationally, it could therefore
be more rich in heavy elements than the jovian atmosphere. This will be tested
by the Cassini–Huygens mission.

Atmospheric temperatures: The temperatures at the tropopause (at pressures
of about 0.3 bar) are relatively well constrained by direct inversions of infrared
spectra. These predict relatively large latitudinal temperature changes of the
order of 10K (Conrath et al. 1989). The temperature gradients decrease with
tropospheric depth, as interior convection presumably becomes more efficient
in redistributing the heat. However, the accuracy of this method drops rapidly
with increasing pressure and does not reach levels deep enough to be used as
surface condition for interior models. So far, the only reliable measurement of
the deep tropospheric temperature of a giant planet is that from the Galileo
probe in Jupiter: 166 K at 1 bar (Seiff et al. 1998). It is not clear however
how representative of the whole planet this measurement is. Previous analyses
have relied upon (local) radio occultation data acquired with the Pioneer and
Voyager spacecrafts (Lindal et al. 1981, 1985) that predicted 1 bar tempera-
tures of 165 ± 5 K in Jupiter and 134.8 ± 5 K in Saturn. The temperatures
inferred from these data are however dependent on the assumed mean molec-
ular weight m. The Galileo helium mixing ratio, applied to the Voyager data
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would yield a temperature of 170.4K at 1 bar in Jupiter. It is therefore rea-
sonable to assume that the uncertainty on these temperatures if of the order
of ∼5K.

Equations of state: Ideally, one should use an equation of state valid for any
chemical composition. This is of course unrealistic. The most recent astro-
physical equation of state for hydrogen and helium provided by Saumon,
Chabrier and Van Horn (1995) does not account for interactions between
the two species. The presence of other species can be added using generally
less reliable equations of state.

Figure 11 compares different pressure–temperature profiles for Jupiter and
Saturn, using the various equations of state described here. The figure is
intended to provide an estimate of the uncertainties on the various equations
of state (hydrogen–helium, heavy elements). It is important to notice at this
point that Saturn’s interior lies mostly in a relatively well-known region of
the hydrogen-helium EOS, i.e. in which hydrogen is molecular, whereas a

Fig. 11. Density profiles in models of Jupiter (gray line) and Saturn (continuous
lines: adiabatic i-EOS and PPT-EOS models; dashed : non-adiabatic i-EOS model).
Upper curves (dashed and dot-dashed) are T = 0 K density profiles for water ice
and olivine (from Thompson 1990). The dashed region represents the assumed uncer-
tainty on the EOS for heavy elements (ρZ(P, T )). Within this region, the continuous
line corresponds to our “preferred” profile for ρZ . Inset : Differences of the decimal
logarithm of the Saturn density profiles with the same profile using the i-EOS and an
adiabatic structure (plain and dotted lines). The gray line corresponds to the same
difference but for a PPT-EOS non-adiabatic Jupiter model (From Guillot 1999a)
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significant fraction of Jupiter’s interior is at intermediate pressures (one to a
few Mbar) for which the EOS is most uncertain.

Opacities: As discussed in Sect. 5 the Rosseland opacities available for models
of Jupiter and Saturn are still uncertain. A small table is provided by Guillot
(1999a) but does not include the absorption due to alkali metals. It therefore
predicts the existence of a radiative region in both Jupiter and Saturn at tem-
peratures around 1500K and pressures of 1–10 kbar. However, including the
absorption of sodium and potassium, as observed in brown dwarfs (Burrows
et al. 2000a) provides the required opacity source and the radiative regions
then disappear for both planets (Freedman et al. in preparation). The models
presented hereafter include uncertainties on the opacities as follow: a mini-
mum value is set by the calculation of a Rosseland opacity table assuming no
alkali metals, and thus include the presence of a radiative zone. Other models
simply assume that the planets are fully convective. The differences between
these models are in fact, in term of interior structure, relatively limited. How-
ever, we will see that the presence of a radiative zone affects the evolution
more significantly.

Construction of Models

Most models of Jupiter and Saturn assume a three-layer structure: a helium-
poor molecular region, a helium-rich metallic region and a central dense core.
The fact that the molecular/metallic transition coincides with a jump in the
abundance of helium is related to the idea that helium is most insoluble in
low-pressure metallic hydrogen, as obtained from calculations assuming full
ionization (see Sect. 4). The consequences of a different phase diagram have
not been calculated so far.

The three regions are linked to three parameters: Mcore the mass of the
core, Zmol and Zmet the mass mixing ratio of heavy elements in the mole-
cular and metallic envelopes, respectively. (The helium mixing ratio in the
molecular envelope is set equal to the atmospheric value; That in the metallic
region is constrained by the fact that the total helium/hydrogen ratio should
be equal to the protosolar value).

The total mass of the planet being fixed, the observational constraints are
the equatorial radius Req and gravitational moments J2, J4 and J6, measured
with respective observational uncertainties σReq , σJ2 , σJ4 and σJ6 . In the
framework of the three-layer models, the adjustable parameters are Zmol, Zmet

and Mcore. A way of finding models matching the observational constraints is
therefore to minimize the following function:

χ2(Zmol, Zmet,Mcore) =
1
4

[(
∆Req

σReq

)2

+
(
∆J2
σJ2

)2

+
(
∆J4
σJ4

)2

+
(
∆J6
σJ6

)2
]
,

(95)
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where ∆Req, ∆J2, ∆J4, ∆J6 are the differences between observed and the-
oretical Req, J2, J4 and J6. The non-uniqueness of solutions matching the
observed gravitational fields is found to be mostly due the uncertainty on J4.
So far, no useful constraint can be derived from the values of J6, owing to
their large observational uncertainties (see Table 7).

Results

The resulting interior models of Jupiter matching all available observations
are shown in Fig. 12. Hundreds of models have been calculated, but the solu-
tion is represented as a filled area instead as dots for an easier interpretation
of the figure. A striking result obtained from Jupiter’s modeling is the large
uncertainty due to our relatively poor knowledge of the behavior of hydro-
gen at Mbar pressures. As a consequence, two kind of solutions are found
depending on one using the Saumon–Chabrier PPT EOS, or the one that
is smoothly interpolated between the molecular and the metallic fluids. The
uncertainties in the solutions are not due to the qualitative difference at the
molecular/metallic transition but instead by the quantitatively different den-
sity profiles, as seen in Fig. 11. Any solution between the two regions in Fig. 12
would be valid, provided the “true” EOS for hydrogen lies between the PPT
and interpolated EOSs.

More quantitatively, Fig. 12 shows that an upper limit to Jupiter’s core
mass is rather small, i.e. about 10M⊕ only. This is significantly smaller than
found ∼20 years ago, the main difference being due to the improved EOSs.
The lower limit on the core mass is found to be zero: in this case, Jupiter could
have no core, or a very small one. This corresponds however to rather extreme
models, assuming a hydrogen EOS close to the interpolated one, and a large
J4 value. The lower panel of Fig. 12 also indicates that this corresponds to a
planet that is enhanced in heavy elements by 4 to 6 times over the solar value
(assuming Zmol = Zmet, a consequence of the presence of no physical discon-
tinuity of the EOS). Generally, it is found that Jupiter’s molecular region is
enriched in heavy elements by 1.5 to 6.5 times the solar value, in agreement
with the observations that indicate a ∼3 times solar enrichment for C, N, S.

In the case of Saturn (Fig. 13), the solutions depend less on the hydrogen
EOS because the Mbar pressure region is comparatively smaller. The total
amount of heavy elements present in the planet can therefore be estimated
with a better accuracy than for Jupiter. It is interesting to see that presently,
we do not know which of Jupiter and Saturn contain more heavy elements
in absolute value! However, because Saturn’s metallic region is deeper into
the planet, it mimics the effect that a central core would have on J2. The
uncertainty on Mcore is therefore large. In Fig. 13 constraints obtained from
the evolutionary models have been used to eliminate models that otherwise
satisfied the static constraints (see Guillot 1999a for details). Saturn’s core
is therefore found to be between 6 and 17M⊕. Saturn’s enrichment in heavy
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Fig. 12. Constraints on Jupiter’s interior structure. The upper panel shows values of
the core mass (Mcore) and total mass of heavy elements (MZtot) of models matching
all available observational constraints. The lower panel shows the mass mixing ratio
of heavy elements of the molecular (Zmol) and metallic (Zmet) regions, in solar units
(Z� = 0.0192). The two different regions correspond to different EOSs for hydrogen
(see text). Arrows indicate the direction and magnitude of the assumed uncertainties,
if J4 or Yproto are increased by 1σ, rotation is assumed to be solid (“Ω”), the core
is assumed to be composed of ices only (“fice”) and if Jupiter’s interior becomes
fully adiabatic (“∇T ”). The dashed line in the lower panel indicates a homogeneous
abundance of heavy elements (Zmol = Zmet) [Adapted from Guillot 1999a]
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Fig. 13. Same as Fig. 12 in the case of Saturn. The solutions for the PPT and
interpolated hydrogen EOSs are very similar and are thus not highlighted. The
arrow labeled T1 bar corresponds to an increase of Saturn’s 1 bar temperature from
135 to 145K. The arrow labeled Y mol corresponds to an increase of the helium mass
mixing ratio from 0.16 to 0.21 [Adapted from Guillot 1999a]

elements is found to be generally larger than in the case of Jupiter, but with
a considerable uncertainty in the metallic region.

Figures 12 and 13 also show as arrows the significance of various sources
of uncertainties for estimating precisely the parameters of the interior struc-
ture. The uncertainty on the measured value of J4 is shown to signifi-
cantly affect the results: in the case of Saturn in particular, a more accurate
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measurement (that the Cassini–Huygens mission will probably provide) is ex-
pected to substantially narrow the ensemble of viable models. Note that in
the case of Saturn, a more accurate determination of the surface tempera-
ture and of the helium to hydrogen ratio would also be invaluable for better
constraining the interior models.

6.3 Uranus and Neptune

Spectroscopic measurements indicate that their hydrogen–helium atmospheres
contain a large proportion of heavy elements, mainly CH4, which is enriched
by a factor ∼30 compared to solar composition (see Table 2). The two plan-
ets have similar masses (14.53M⊕ for Uranus, 17.14M⊕ for Neptune) and
radii. Neptune’s larger mean density is partly due to greater compression, but
could also be the result of a slightly different composition. The gravitational
moments impose that the density profiles lie close to that of “ices” (a mix-
ture initially composed of H2O, CH4 and NH3, but whose composition most
probably does not consist of intact molecules in the planetary interior), ex-
cept in the outermost layers, which have a density closer to that of hydrogen
and helium (Marley et al. 1995; Podolak et al. 2000). Three-layer models of
Uranus and Neptune consisting of a central “rocks” core (magnesium-silicate
and iron material), an ice layer and a hydrogen–helium gas envelope have
been calculated (Podolak et al. 1991; Hubbard et al. 1995).

The fact that models of Uranus assuming homogeneity of each layer and
adiabatic temperature profiles fail in reproducing its gravitational moments
seem to imply that substantial parts of the planetary interior are not homoge-
neously mixed (Podolak et al. 1995). This could explain the fact that Uranus’
heat flux is so small: its heat would not be allowed to escape to space by
convection, but through a much slower diffusive process in the regions of high
molecular weight gradient. Such regions would also be present in Neptune,
but much deeper, thus allowing more heat to be transported outward. The
existence of these non-homogeneous, partially mixed regions are further con-
firmed by the fact that if hydrogen is supposed to be confined solely to the
hydrogen–helium envelope, models predict ice/rock ratios of the order of 10 or
more, much larger than the protosolar value of ∼2.5. On the other hand, if we
impose the constraint that the ice/rock ratio is protosolar, the overall compo-
sition of both Uranus and Neptune is, by mass, about 25% rocks, 60–70% ices,
and 5–15% hydrogen and helium (Podolak et al. 1991, 1995; Hubbard et al.
1995). An upper limit to the total amount of hydrogen and helium present in
these planets is 3M⊕ for Uranus and 5M⊕ for Neptune (Podolak et al. 2000).

The characteristics of typical models of the four giant planets are sum-
marized in Fig. 14, including corresponding uncertainties in the temperature
profiles. The distinction between the “gas giants” Jupiter and Saturn and the
smaller “ice giants” Uranus and Neptune is evident.
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Fig. 14. Schematic representation of the interiors of Jupiter, Saturn, Uranus and
Neptune. The hashed region indicate a possible radiative zone (in Jupiter, it corre-
sponds to P ∼ 0.15 to 0.6GPa, T ∼ 1450 to 1900K, and R ∼ 0.990 to 0.984RJ;
in Saturn, it is located around P ∼ 0.5GPa, T ∼ 1700K, R ∼ 0.965RS). The ra-
diative zone are expected to disappear in the presence of alkali metals. The range
of temperatures for Jupiter and Saturn is for models neglecting the presence of the
inhomogeneous region. Helium mass mixing ratios Y are indicated. In the case of
Saturn, it is assumed that Y/(X + Y ) = 0.16 in the molecular region. The size of
the central rock and ice cores of Jupiter and Saturn is very uncertain. Two represen-
tative models of Uranus and Neptune are shown, but their actual interior structure
may be significantly different (see text) [From Guillot 1999b]

6.4 Consequences for Formation Models

The Minimum Mass Solar Nebula

The composition of the giant planets provides crucial information to under-
stand the formation of planets in general. A useful first indication of the



306 T. Guillot

structure of the early protosolar nebula comes from the estimation of the
minimum amount of gas that initially had to be present in the disk in order
to form the planets that we see today. The result is commonly called the min-
imum mass nebula (see Weidenschilling 1977; Hayashi 1981). Figure 15 shows
the minimum surface density (g/cm2 projected onto the plane of the Solar
System) of hydrogen and helium, as a function of the distance to the Sun, as-
suming that the planets were formed at their present locations, and using the
most recent interior models for Jupiter, Saturn, Uranus and Neptune. The gas
to solids ratio was assumed to lie between 55 and 90; these two extremes cor-
respond to (1) the condensation of all species except H, He, and noble gases,
and (2) the condensation of only water and metals and only small amounts
of condensed C (which is then assumed to mostly remains in the form the
gaseous CO) and N (remaining mostly bound up as N2), respectively.

In Fig. 15, the surface density required by two models of formation of
the giant planets are indicated. The most “standard” model of formation of
the giant planets is based on the formation of a solid protoplanetary embryo
followed by the capture of the surrounding hydrogen and helium, on a few
million year time scale (Pollack et al. 1996). The density required to form

Fig. 15. Surface density of hydrogen and helium as a function of distance to the Sun,
as estimated by various workers. The dashed and plain black lines correspond to the
minimum mass protosolar nebula as derived by Hayashi (1981) and Weidenschilling
(1977) respectively. The thicker vertical error bars outside 5 AU are updates of the
Weidenshilling values using interior models of the outer planets from Guillot (1999a).
The diamonds are the optimal surface densities for giant planet formation in a core-
accretion scenario, assuming a gas to solids ratio of 70 (Pollack et al. 1996). The
two upper lines (Boss 1998, 2000) correspond to a scenario of formation of Jupiter
and possibly Saturn by direct gravitational instability in the gas
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Jupiter in less than 10 million years is just slightly over the the new median
estimate for the minimum mass nebula. Neglecting any migration process,
this implies that between 20 and 75% of the solids in that region have been
lost, probably due to dynamical evolution. (These numbers account for the
fact that the gas to solids ratio has to be the same when comparing different
results). The density increases over the minimum one required to form Saturn,
Uranus and Neptune is higher, implying an even larger ejection efficiency (or
other loss mechanism) for solids in those regions.

An alternative model that might explain the formation of Jupiter is by di-
rect gravitational instability of the gas itself, on much shorter time scales (Boss
1998, 2000). This requires even larger densities than in the core-accretion sce-
nario, but it could be advocated that part of the gas present in the disk at
that early times has been accreted onto the star. The subsequent formation of
central cores in these models would require an early settling of heavy elements.

Delivering Planetesimals to the Giant Planets

To study the delivery of heavy-element rich planetesimals to the forming giant
planets, Guillot and Gladman (2000) performed extensive numerical dynam-
ical simulations of the fate of 10,000 massless particles distributed between
4 and 35 AU. In a baseline model, the masses and radii of the giant planets
were set to their present-day values, exploring a scenario in which the planets
“suddenly” reach nearly their current masses by a rapid gas accretion onto a
much smaller core. After 100Myr, 61% of the initial particles had been ejected
out of the system, 23% had been sent to the Oort cloud (aphelia larger than
10,000 AU), with only 13% remaining in the system. Only 4% of the par-
ticles impacted one of the four giant planets. In this physical scenario, the
probability of impact is low compared to that of ejection, mainly due to the
presence of Jupiter, to which the other giant planets efficiently ‘pass’ their
planetesimals. However, this inefficiency of planetesimal accretion poses grave
problems when we consider the known mass of heavy elements in the giant
planets.

Focusing on the core-accretion scenario, Fig. 16 shows the accretion effi-
ciency, defined as the ratio between the inferred amount of heavy elements in
the giant planets (Guillot 1999a) and the amount of solids required for their
formation (Pollack et al. 1996). Planets with the present characteristics are
found to be too efficient at ejecting material from the system compared to
accreting it, as indicated by the diamonds on Fig. 16.

Guillot and Gladman (2000) therefore propose that the heavy elements
present in the giant planets today were captured first during a runaway growth
phase, probably yielding the cores that are observed today and second dur-
ing an extended phase during which the planets had large effective capture
radii (∼3RJ) but relatively small masses (∼20M⊕). This case corresponds to
triangles in Fig. 16 and agrees with the accretion efficiencies needed for the
giant planets’ envelopes (lower thick error bars).
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Fig. 16. Accretion efficiencies required to form the giant planets in the core accretion
scenario. The accretion efficiency for a given planet is defined as the quantity of
heavy elements that had to impact the planet divided by the total amount of heavy
elements within the annulus that extends halfway to the next planet. The upper left
error bar for each planets corresponds to the ratio between the total mass of heavy
elements and the quantity of solids required by Pollack et al. (1996). The lower
thick error bars account for core formation by runaway growth, and include only
heavy elements in the envelopes. Diamonds are accretion probabilities in the Jupiter,
Saturn, Uranus and Neptune regions, respectively, as calculated in the standard
case. Triangles correspond to the reduced-mass case (see text) [From Guillot and
Gladman 2000]

Possible Formation Scenarii

Three possible scenarii may explain Jupiter and Saturn’s core mass and total
mass of heavy elements:

1. Rapid formation with a small core or no core (Gas instability scenario).
The formation of giant planets by gas instability is very fast, i.e. 104 to 105

years at the most (e.g. Boss 2000). Because the final mass of the planet
is rapidly reached, the hydrostatic equilibrium imposes a fast contraction
of the planet. Although this would have to be quantified, it appears that
this planet would have a very low accretion efficiency. In order to explain
the structure of Jupiter and Saturn, one needs to invoke a very large mass
of solids. This scenario also would predict that Saturn has a smaller core
than Jupiter, which isn’t implied by the interior models. A possibility
would be the capture of very small particles by the planet during their
fast migration toward the Sun. All in all, this scenario cannot be ruled
out but seems to be unlikely.

2. Slow formation with extended-phase. In the model of Pollack et al. (1996),
the growth of a giant planet by capture of a hydrogen–helium envelope
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onto a core cannot proceed extremely fast due to the feedback mechanism
produced by the release of gravitational energy heating the envelope. A
phase in which the planet has 20 to 30M⊕ and its effective capture radius
can be of the order of 2 to 3 times the present radius of Jupiter can
persist for millions of years. This scenario is found to be consistent with
the dynamical calculations. Most of the heavy elements are hence captured
during the first Myr. An important consequence is that in order to explain
the enrichment observed in the atmosphere, an efficient upward mixing is
required.

3. Formation from an initially massive core. Another alternative could be to
form a giant planet from an initially very massive core (this happens e.g. if
the surface density of solids is higher than the values indicated in Fig. 15).
Part of the core would then have to be mixed upward. The advantage is
that the phase of extended capture radius is not required anymore and
that the formation can be considerably faster.

As discussed in Sect. 5, the problem of mixing is a difficult one. It has
been advocated by Stevenson (1982) that the energy available in Jupiter is
barely sufficient to mix the any significant fraction of the core, owing to the
strongly stabilizing compositional gradient. This would imply that the cores
of the giant planets are primordial. Due to the properties of runaway growth
that I will not discuss here (see e.g. Wuchterl et al. 2000), one would then
expect the giant planets to have relatively similar cores.

However, an analysis of the accretion efficiency has shown us that the
heavy elements observed in the atmosphere must have been mixed upward.
If we report the 3 times solar value measured in Jupiter’s atmosphere in the
entire planet, this means that 18M⊕ had to be transported upward. Effi-
cient mixing mechanisms had therefore to exist to be capable of overcoming
the gradient of molecular weight. Two possibilities exist: one is the adiabatic
compressional heating during the rapid contraction phase. This phenomenon
could heat water more than hydrogen and therefore ease the mixing process.
Another possibility consist in advocating Kelvin–Helmoltz instability (e.g.
Chandrasekhar 1961) during the accretion of the envelope: their is indeed
no reason that the primordial core and the gaseous envelope would have the
same angular momentum. The powerful shear would be progressively erased
by mixing the different layers and transporting part of the heavy elements
upward. This scenario would also explain why Jupiter would have a smaller
core than Saturn: its envelope being more massive, it would be capable of
mixing more of the central core.

7 Evolution of Giant Planets and Brown Dwarfs

The problem of the formation of giant planets and brown dwarfs is still ob-
scure. That of their evolution, which, as we will see, is only weakly dependent
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on the initial conditions, is relatively better understood. The accuracy of these
calculations in fact mostly reflects our limited knowledge of their atmospheres
as we will see in the next sections. They however allow us to predict probable
characteristics of extrasolar giant planets, and appear to describe reasonably
well brown dwarfs, based on their measured spectra.

7.1 The Virial Theorem

Integrating the hydrostatic equation leads to a well known relation linking
the internal energy to the potential gravitational energy. It is very basic to
stellar evolution, but I choose to rederive it here, following the formulation
of Kippenhahn and Weigert (1991), because it is fundamental to understand
the evolution of substellar objects. For simplicity, rotation or the presence of
magnetic fields is neglected. Starting from (11), we write∫ M

0

4πr3
∂P

∂m
dm =

∫ M

0

4πr3
Gm

4πr4
dm . (96)

The left hand side can be integrated by part to yield:

3
∫ M

0

P

ρ
dm =

∫ M

0

Gm

r
. (97)

The right hand of (97) corresponds to the gravitational energy with a
minus sign:

Eg ≡ −
∫ M

0

Gm

r
dm (98)

and −Eg is the energy required to bring all the mass to infinity. The left hand
side of (97) is related to the internal energy

Ei ≡
∫ M

0

udm =
∫ M

0

3
ξ

P

ρ
dm , (99)

where ξ ≡ 3P/uρ and u is the internal specific energy. In the case of a perfect
gas, ξ = 3(γ − 1) where γ = cP /cV . In the case of a monoatomic perfect gas,
ξ = 2. If we furthermore assume that ξ is uniformly constant throughout the
star/planet considered, (97) takes the following form:

ξEi + Eg = 0, (100)

known as the virial theorem.
If we furthermore consider the total energy of the system W = Ei + Eg

(W < 0 for a gravitationally bound system), and assume that the luminosity
is entirely due to the loss of energy (i.e. we neglect thermonuclear reactions,
radioactivity...etc.),

dW

dt
+ L = 0 (101)
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and hence

L = (ξ − 1)
dEi

dt
= −ξ − 1

ξ

dEg

dt
. (102)

This relation is valid in a variety of cases, including giant planets for their
entire life and brown dwarfs for the parts of their life when thermonuclear
reactions represent a small fraction of the total luminosity.

Let us consider a contracting brown dwarf or giant planet beginning its
life mostly as a perfect H2 gas. In this case γ ≈ 7/5, hence ξ = 16/5 = 3.2.
Two third of the energy gained by contraction is therefore radiated away, one
third being used to increase the internal energy. This being proportional to
the temperature, the effect is to heat the object. This represents the slightly
counter-intuitive but well known effect that a star or giant planet initially
increases its luminosity while heating up.

Let us now move further in the evolution, when the contraction has pro-
ceeded to a point where the electrons have become degenerate. The problem
then becomes relatively complex because of the interplay between ions and
electrons. It is instructive however to consider the ideal case, formerly valid
only in the white dwarf regime, in which most of the pressure is provided by
non-relativistic degenerate electrons. In that case, P/ρ ≈ (2/3)u and therefore
ξ ≈ 2: Half of the gravitational potential energy is radiated away and half of
it goes into internal energy. The problem is to decide how this energy is split
into an electronic and an ionic part. The gravitational energy changes with
some average value of the interior density as Eg ∝ 1/R ∝ ρ1/3. The energy of
the degenerate electrons is essentially the Fermi energy: Ei ≈ EF ∝ ρ2/3. One
is therefore led to a simple relation between Eg and Ee:

Ėe ≈ 2
Ee

Eg
Ėg = −Ee

Ei
Ėg , (103)

where Ei is introduced via the virial theorem (Eg = −2Ei). In the case of
white dwarfs, Eion � Ee and therefore Ei = Eion+Ee ≈ Ee. This means that
Ėe ≈ −Ėg ≈ 2L. The energy balance L = −Ėion − Ėe − Ėg becomes

L ≈ −Ėion ∝ −Ṫ . (104)

In this case, the gravitational energy lost is entirely absorbed by the degen-
erate electrons, and the observed luminosity is due to the thermal cooling of
the ions.

For brown dwarfs and giant planets, the problem is more complex because
the electrons are only partially degenerate, and the contribution of the ions to
the pressure and internal energy cannot be neglected. However this only affects
the solution through numerical factors: qualitatively, most of the gravitational
energy lost is used up to increase the energy of the degenerate electron gas,
while the luminosity is essentially provided by the cooling of the ions.
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7.2 A Semi-Analytical Model

Solution for Isolated Objects

It is possible given certain assumptions to solve analytically the evolution
problem. A more detailed numerical solution is of course eventually required,
but the analytical solution is a tool to comprehend the physical problem. The
solution that is presented here is due to Hubbard (1977).

We consider an already dense giant planet or brown dwarf without ther-
monuclear reactions, and assume that its metallic region provides the essential
contribution to its cooling. Second, we will assume that it is adiabatic. One
can then show that the internal temperature profile obeys a relation of the
form

T ≈ CT1 barρ
γ . (105)

In the case of Jupiter, C ≈ 42.8 when ρ is expressed in g cm−3, and γ ≈ 0.64
is the Grüneisen parameter.

In the set of equations (44) governing the evolution of substellar objects,
only the energy conservation equation involves time, through the −T∂S/∂t
term. This equation can be rewritten in the form

∂L

∂m
= −cV

∂T

∂t
+ cV

(
∂T

∂ρ

)
S

∂ρ

∂t
. (106)

The term (∂T/∂ρ)S being positive, the luminosity is provided both by the
contraction and cooling of the planet.

Let us first neglect insolation. Integrating (106), we obtain

L = 4πR2σT 4
eff = −

∫
CV

(
∂T

∂t
− γ T

ρ

∂ρ

∂t

)
dm . (107)

Furthermore, (10) and (105) imply that

∂T

∂t
= T

(
−b∂ ln g

∂t
+ a

∂ lnTeff
∂t

+ γ
∂ ln ρ
∂t

)
. (108)

The gravity dependence is weak. The term proportional to ∂ ln g/∂t can hence
be neglected. Reporting (108) into (105), one finds

dt = −α(Teff)T a−5
eff dTeff , (109)

α(Teff) =
aCK

4πR2σgb

∫
CV ρ

γdm . (110)

In the case of Jupiter, CV ≈ 1.66kB/mH yielding α(Teff = 124.4K) ≈ 2.8 ×
1023 cgs.

Let us assume α constant (i.e. we neglect the evolution of the planet’s
structure during the contraction). The time necessary to cool from an effective
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temperature Teff,0 to Teff,1 is therefore

∆t =
α

4− a (T
a−4
eff,1 − T

a−4
eff,0 ) . (111)

Using a ≈ 1.24, one can see that the time for the planet to cool from an infinite
temperature to Teff,1 is approximately 50 times smaller than that required for
cooling from Teff,1 to Teff,1/4. The evolution problem is very weakly dependent
on initial conditions.

Jupiter’s cooling time from an initially infinite effective temperature to
its present value Teff = 124.4K is found, using (111) to take about 5.4Gyr.
Saturn’s cooling time is much shorter, i.e. about 2Gyr.

Correction due to Irradiation

Let us now include the absorbed stellar luminosity. The total luminosity of
the planet (or irradiated brown dwarf) has then three components: a directly
reflected stellar part which does not contribute to the heating of the planet
and is hence often not mentioned when studying the evolution; a part cor-
responding to the absorbed stellar luminosity, that I choose to note L��; the
intrinsic luminosity Lint. The effective temperature now has to be redefined.
The definition tying most closely the effective temperature to the temperature
at the photosphere is

4πR2σT 4
eff ≡ L�� + Lint . (112)

In the interior of the planet, the only relevant quantity is the intrinsic
luminosity (and it thus convenient to forget the int suffix when considering
the internal structure). The stellar flux is generally very rapidly absorbed
and contributes in fact only to heating the outer boundary. The problem is
therefore to derive the new boundary temperature. A simple approach is to
use the same boundary condition [(9,10)] but with the new definition of Teff .
We will come back on that assumption when discussing the case of Pegasi
planets (Sect. 9).

We therefore rewrite (107) by taking account of the absorbed stellar lumi-
nosity:

4πR2σ(T 4
eff − T 4��) = −

∫
CV

(
∂T

∂t
− γ T

ρ

∂ρ

∂t

)
dm , (113)

where T�� is the effective temperature that the planet would have if its intrinsic
luminosity would drop to zero while conserving the same atmosphere and
overall structure. It is defined by L�� = 4πR2σT 4��.

It is easy to show that (109) is now replaced by

dt = −α(Teff)
T a−5
eff

1− (T��/Teff)4 dTeff . (114)
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An expansion in powers of (T��/Teff)4 leads to

t =
α

4− aT
a−4
eff

[
1 +

4− a
8− a

(
T��
Teff

)4

+
4− a
12− a

(
T��
Teff

)8

+ ...

]
. (115)

The value of (T��/Teff)4 is 0.60 for Jupiter and 0.56 for Saturn. Using a =
1.243, the term between the square brackets is therefore of the order of 1.3 for
both Jupiter and Saturn. The contribution to the evolution of Solar radiation
is hence far from negligible. Equation (115) furthermore demonstrates that
the evolution is slowed by the stellar radiation.

Numerically, these equations predict that Jupiter should take about 7Gyr
to cool from an infinite effective temperature to today’s value. This value is
however overestimated due to the fact that α was held constant, i.e. variations
in the structure of the planet itself were neglected. Obviously, more sophisti-
cated models have to be developed anyway to go beyond the approximations
made in this semi-analytical model.

Influence of a Radiative Zone

The possible presence of a radiative zone can have deep, structural changes
on the evolution of a planet. These modifications are not always easy to in-
tuit. Of course, the most fundamental question is to know whether a radiative
zone leads to a quicker cooling, or if on the contrary it slows the evolution
of the planet. In fact, we shall see that the answer depends on the evo-
lution of the radiative zone itself.

Let us consider two adiabatic models separated in time by an unknown
interval ∆tad. Let us also consider two non-adiabatic models (possessing an
internal radiative zone), which have the same external conditions as the adi-
abatic ones (i.e. same surface temperature, intrinsic luminosity...etc.), but
separated by in time by an unknown amount ∆tnad. The energy conservation
equation tells us that

∆tad ≈ −
M

L
Tad∆Sad , (116)

∆tnad ≈ −
M

L
Tnad∆Snad , (117)

where Tad, Tnad, Sad and Snad are characteristic values of temperature and
specific entropy of adiabatic and non-adiabatic models, respectively.

The external boundary conditions being identical, the condition of convec-
tive instability necessarily implies (neglecting small compositional differences
between the two models) Tad > Tnad: the radiative model is always cooler
than the fully convective model. However the difference in entropy variation
between the two kind of models will depend on the evolution of the charac-
teristics of the radiative zone during the planet’s cooling.
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Fig. 17. Example of evolution of the specific entropy profile in the purely adiabatic
case (left) and in the presence of a radiative zone (gray area in the right hand side
figure). In each case, the entropy is represented in function of the mass variable at
two different times. Here the entropy jump is chosen to decrease with time. In spite
of the fact that the initial surface conditions are the same in the two cases for the
initial and final models, the mean entropy difference is smaller in the non-adiabatic
case than in the adiabatic one (∆Snad < ∆Sad). In this example, the cooling of the
non-adiabatic model is faster (see text)

In the entirely adiabatic case, Fig. 17 shows that the entropy variation
∆Sad between the models at ages t0 and t0+∆tad is equal to the entropy vari-
ation imposed by the external conditions ∆Sext. In the non-adiabatic case, the
presence of a radiative zone induces a decrease of the entropy in the planet’s
interior. The evolution of this entropy decrease (shaded area in Fig. 17) is cru-
cial. In the case of the giant planets and opacities with no alkali metals, the
entropy variation in the radiative zone is greater when the planet is hotter.
This implies that ∆Snad < ∆Sext. Consequently, for the case illustrated by
Fig. 17, one can see that

∆tad > ∆tnad . (118)

In other terms, the presence of a radiative zone tends, in this case, to accelerate
the evolution.

7.3 Evolution of Jupiter and Saturn

Results of Numerical Simulations

The evolution of Jupiter and Saturn to their present state is represented on
Figs. 18 and 19. As indicated by the analytic calculation, the initial contraction
is very fast, and the initial conditions are forgotten after a few million years or
less. The ages of the models which reproduce the observed radii, and effective
temperature are for Jupiter 3.7 to 4.5 Gyr for models with a radiative zone,
and 4.5 to 5.2 Gyr for fully-convective homogeneous models. In the case of
Saturn, these values are 2.0 to 2.4 and 2.2 to 2.6 Gyr, respectively (Guillot
et al. 1995; Guillot 1999a,b). Because, as discussed in Sect. 5, the opacities
do not account for the presence of alkali metals, one would expect values for
fully-convective models to be closer to reality. These corresponds to the largest



316 T. Guillot

Fig. 18. Contraction and cooling of a non-adiabatic model of Jupiter (opacities not
including alkali metals). The 1 bar temperature, effective temperature and mean
radius are represented as a function of time. All these quantities are normalized to
their present value, T �

1bar, T
�
eff , and R�. The right figure is an enlargement of the left

one. Note that time is then represented linearly. The vertical dotted line indicates the
age of the solar system. The arrow labeled SHCV corresponds to the age obtained
for a fully convective model by Saumon et al. (1992) [From Guillot et al. 1995]

Fig. 19. Same as Fig. 18 for a model of Saturn

ages (and indeed, one can verify that the alkali-free opacities lead to a faster
cooling, as discussed previously).

The “real” age of Jupiter and Saturn should be relatively well constrained,
unless our understanding of planet formation is utterly wrong. Isotopic dating
of meteorites shows that the first condensates appeared in the Solar System
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4.56Gyr ago. Jupiter and Saturn are mostly made with hydrogen and helium,
and had to be formed when these elements were still present in the nebula.
Observation of forming stars as well as models of circumstellar disks (see
Chapter by Pat Cassen) show that hydrogen and helium should have been
present for at most ∼10Myr. The age of both Jupiter and Saturn must be
about 4.55Gyr.

There is therefore a problem both for Jupiter and Saturn. In the case of
Jupiter, the more-realistic adiabatic models seem too old. It can be argued
however that the atmospheric model is crude and introduces an uncertainty
on the final age of at least 10%. Imprecisions in the equations of state also
introduce a probably significant uncertainty. In the case of Saturn, the dis-
crepancy with the age of the Solar System is large and cannot be explained by
inaccuracies in the calculation. Another source of energy has to be invoked:
that due to the slow release of gravitational energy thus appears as the most
likely one (Salpeter 1973; Stevenson and Salpeter 1977b).

It has been suggested that deuterium-deuterium reaction in a deuterium-
enhanced shell around the central core may explain “Jupiter’s excess heat”
(Ouyed et al. 1998). The models that I have presented explain Jupiter’s lu-
minosity naturally by the slow release of gravitational energy through the
planet’s contraction and cooling. The corollary is that any additional source
of energy, and in particular the putative D-D thermonuclear reactions would
pose a very difficult problem to relate Jupiter’s evolution to that of the Solar
System. Furthermore, the model of Ouyed et al. requires the presence of an
ad hoc deuterium shell and is therefore extremely unlikely.

Including a Hydrogen/Helium Phase Separation

The energy released by helium sedimentation per unit time can be very sig-
nificant. It is of the order of

Lgrav ∼
(
dM

dt

)
He

gH , (119)

where H is the mean distance over which the helium has fallen. In the case
of Saturn, if 10% of the helium atoms were to be transported on a distance
equal to half the planet radius in 1Gyr then Lgrav ≈ 4 × 1024 erg s−1, to be
compared with Saturn’s present intrinsic luminosity 8.6 × 1023 erg s−1. This
process indeed provides the right amount of energy. Note that the energy is
essentially proportional to the distance H. If the hydrogen/helium phase sep-
aration is tied to the molecular/metallic transition (see discussion in Sect. 4),
this could explain relatively naturally why this effect is more important in
Saturn than in Jupiter since Saturn’s metallic zone is much deeper than that
of Jupiter (R/Rtot ∼ 0.43 for Saturn compared to 0.80 for Jupiter).

However, the fact that a phase separation occurs is not sufficient in itself
to explain helium sedimentation. Since the planets are also convecting, the
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helium drops also have to grow fast enough before they are carried away by
convective cells. The problem has been estimated by Stevenson and Salpeter
(1977b). First, one has to estimate the size above which the free-fall velocity
of drops is larger than the convective speed. In the Stokes limit, they show
that this speed is, as a function of the drop size b:

vb ≈
b2g

24ν
. (120)

The convective velocity being of order 10 cm s−1, the free-fall time becomes
larger for sizes b ∼> 1 cm.

Furthermore, the molecular diffusivity of helium in hydrogen being esti-
mated to be D ∼ 10−3 cm2 s−1, the time scale for the drops to grow to ∼1 cm
is found to be of order of 103 s, i.e. much faster than convective time scales.

Let us now estimate analytically how helium sedimentation affects the
evolution, using an analytic model inspired by the one of Sect. 7.2. We assume
that at a mass mt, which can vary in time, an evolving jump of the helium
mass mixing ratio ∆Y occurs. ∆Y is chosen to be positive when more helium
is present at deeper levels (small values of m).

An integration the energy equation (107), but splitting the entropy deriv-
ative in a homogeneous and an inhomogeneous part yields

L =
∫
−T
[(

∂S

∂t

)
Y

+
dY

dt

(
∂S

∂Y

)
t

]
dm . (121)

Neglecting the entropy of mixing and the presence of species other than hy-
drogen and helium implies that(

∂S

∂Y

)
t

= SHe − SH ≡ −δYS . (122)

Note that the larger mass of the helium atom implies that δYS is positive.
Let us now assume that both ∆Y and mt vary with time. Mass conserva-

tion implies that

dX

dt
=



∆Y

dmt

dt
+mt

d∆Y

dt
if m > mt(t),

∆Y
dmt

dt
− (1−mt)

d∆Y

dt
if m < mt(t+ dt) .

(123)

dX/dt is infinite between mt(t) and mt(t+ dt) but its integral is finite:

∫ mt(t+dt)

mt(t)

−dY
dt

TδYSdm = T (mt)δY S(mt)∆Y
dmt

dt
. (124)
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We therefore obtain that the luminosity of the model at a time t is the
sum of three contributions:

L =
∫ M

0

−T
(
∂S

∂t

)
Y

dm

+
d∆Y

dt

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}

− ∆Y
dmt

dt

{∫ M

0

TδYSdm− T (mt)δYS(mt)

}
. (125)

The first part is the contribution from the homogeneous evolution assumed
not to change as a result of the helium sedimentation (obviously a zero-order
assumption). The second part is proportional to d∆Y/dt and is always positive
if ∆Y increases with time (more helium is bought to deeper levels). The third
part can be either positive or negative depending on the displacement of the
transition region. The term between curved brackets is usually positive for
large enough values of mt (mt/M ∼> 0.45 for models of Jupiter and Saturn).
In this case, the contribution of this third part is thus to add to the luminosity
if the transition region moves to deeper levels (small mt).

Numerically one finds that

1
M

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}
≈ 5× 1011 erg g−1 (126)

for both Jupiter and Saturn and

1
M

{∫M
0

TδYSdm− T (mt)δYS(mt)
}
≈ 2.5× 1012 erg g−1 Jupiter
≈ 1011 erg g−1 Saturn

(127)

If the transition follows the PPT, then

1
M

∣∣∣∣dmt

dt

∣∣∣∣ ∼< 2× 10−2 Gyr−1 , (128)

and the contribution of the displacement of the transition region is negligible.
One therefore finds that the lifetime added to the planet through a phase

transition from an initially homogeneous planet to one that has a helium jump
∆Y is approximately

∆t ≈ ∆Y

L

{∫ mt

0

TδYSdm−
mt

M

∫ M

0

TδYSdm

}
, (129)
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where L is the planet’s present intrinsic luminosity. Numerical applications
indicate that

∆t ≈ 9∆Y Gyr , (130)

for both Jupiter and Saturn. This is consistent with more detailed numerical
calculations (Hubbard et al. 1999). From our evolution models, we can infer
that ∆Y ∼< 0.01 for Jupiter, and that 0.2 ∼< ∆Y ∼< 0.3 in Saturn. Interior
models of Jupiter are in contradiction with that upper limit since they lead to
∆Y ∼ 0.04 (Guillot 1999b). This problem is still not resolved. In the case of
Saturn, this implies that the Voyager value for the atmospheric helium mixing
ratio is too low, something recognized independently from interior models
(Guillot 1999a), evolutionary models (Hubbard et al. 1999) and a reanalysis
of Voyager IRIS data (Conrath and Gautier 2000).

7.4 From Giant Planets to Brown Dwarfs

Giant planets and brown dwarfs share the same physics. It is so much the
case that it is difficult to make the distinction between the two classes of
objects. Presumably they should be formed by different mechanisms (see e.g.
Wuchterl, Guillot and Lissauer 2000). However, I will here arbitrarily define
giant planets as substellar objects in which thermonuclear reactions do not
occur, and brown dwarfs as objects which burn some deuterium during their
life, but which never attain the equilibrium phase (main sequence) in which
most of their energy is provided by hydrogen burning.

Nuclear Reactions

For brown dwarfs, the occurrence of thermonuclear reactions is almost entirely
due to a truncated PPI cycle (e.g. Burrows and Liebert 1993):

p + p→ d+ e+ + νe
p + d→ 3He+ γ.

Note that because of the relatively low central temperatures, only 3He, not
4He is formed through these reactions. The pp and pd reactions release 1.442
and 5.494MeV, respectively.

The energy released through these reactions is, assuming no screening
(Fowler et al. 1975):

ε̇pp = 2.5× 106
ρX2

T
2/3
6

e−33.8/T
1/3
6 erg g−1 s−1, (131)

and
ε̇pd = 1.4× 1024

ρXYd

T
2/3
6

e−37.2/T
1/3
6 erg g−1 s−1 , (132)
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where X and Yd are the mass mixing ratios of hydrogen and deuterium, re-
spectively, and T6 = T/106 K. Note that the primordial deuterium abundance
is of the order of Yd = 2× 10−5.

However, (131, 132) are underestimates because the fact that the plasma
is strongly coupled significantly softens the repulsive potential of the nuclei.
A detailed analysis of this is discussed by Saumon et al. (1996) and Chabrier
and Baraffe (1997). In the case of brown dwarfs, the enhancement factor is of
the order of ∼2 for both reactions. An estimate of the final sensitivity of the
reactions to temperature and density variations is provided by Burrows and
Liebert (1993):

ε̇n ≈ 5.9× 1010
(

T

3× 106 K

)6.3(
ρ

103 g cm−3

)1.28

erg g−1 s−1 . (133)

This expansion around T = 3×106 K and ρ = 103 g cm−3 shows the strong sen-
sitivity of the energy production to the temperature. Note however that other
thermonuclear reactions can have much steeper temperature dependences in
the case of more massive stars (e.g. Clayton 1963).

Brown Dwarf Models and Results

The two most cited evolution models of giant planets and brown dwarfs to
date are those of the “Tucson group” (e.g. Burrows et al. 1997) and of the
“Lyon group” (e.g. Chabrier and Baraffe 1997). These models share many
similarities, and in particular have the same equation of state and same nuclear
burning rates. They however differ on a few points:

• On the atmospheric model: The ‘Tucson’ model uses the k-coefficient ap-
proach from Marley et al. (1996) and an approximate treatment of clouds
using Lunine et al. (1989). The ‘Lyon’ model is based on a detailed line
by line approach (e.g. Allard and Hauschildt 1995).

• On the treatment of convection: The ‘Tucson’ model is essentially adia-
batic, whereas the ‘Lyon’ one uses the mixing length theory.

• On conduction: implemented in the ‘Lyon’ model only, using conductive
opacities from Potekhin et al. (1999). Figure 20 shows the evolution of the
conductive core of a 0.06M� brown dwarf (from Chabrier et al. 2000b).

Other models by D’Antona and Mazitelli (see Montalbán et al. 2000) are
available but will not be discussed since they have generally concerned objects
of larger masses.

Figures 21 and 22 show the evolution of isolated giant planets, brown
dwarfs and stars. The distinction between stars and brown dwarfs can be read-
ily seen from the fact that stars reach a long equilibrium period during which
the tendency of the star to contract under the action of gravity is balanced
by thermonuclear hydrogen fusion. For brown dwarfs, even if thermonuclear
reactions are indeed possible (even of hydrogen for the most massive ones),
they are never energetic enough to reach this balance: brown dwarfs and giant
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Fig. 20. Evolution of the conductive core Mcond/Mtot (shaded area) as a function
of time for a 0.06M� brown dwarf [From Chabrier et al. (2000b)]

Fig. 21. Evolution of the luminosity (in L�) of solar-metallicity M dwarfs and
substellar objects vs. time (in yr) after formation. The stars, “brown dwarfs” and
“planets” are shown as solid, dashed, and dot-dashed curves, respectively. In this
figure, we arbitrarily designate as “brown dwarfs” those objects that burn deuterium,
while we designate those that do not as “planets.” The masses (in M�) label most
of the curves, with the lowest three corresponding to the mass of Saturn, half the
mass of Jupiter, and the mass of Jupiter [From Burrows et al. (1997)]
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Fig. 22. log10 radius (in cm) vs. effective temperature (Teff, in K), with Teff de-
creasing to the right. The isochrones are the almost horizontal lines and are labeled
in log10 yr. In all cases, the radius decreases with time. Initially, for the more massive
brown dwarfs, the effective temperature is roughly constant, or slightly increasing,
before decreasing inexorably at later times [From Burrows et al. (1997)]

planets contract inexorably. Note that the crossing of evolution lines in Fig. 21
is due to deuterium burning. It occurs later for brown dwarfs of small masses
(∼15MJ), and those can hence be, for a small period of time, more luminous
than slightly more massive brown dwarfs that have already consumed all their
deuterium.

Figure 22 shows the relative constancy of the radius both as a function
of time and mass, as well as the range of effective temperatures spanned
by brown dwarfs and isolated giant planets. After 0.1Gyr of evolution, it is
found that all isolated brown dwarfs and giant planets should have a radius
ranging between 1010 and 5× 109 cm. For comparison, Jupiter’s mean radius
is 7 × 109 cm. The effective temperatures can range from about 3000K for a
young (∼10Myr) massive brown dwarf to only ∼100K for a 5Gyr isolated
Jupiter-mass planet.

Figure 23 is a theorist’s H–R diagram for the “brown dwarfs” and giant
“planets.” The inset is a continuation of the figure down to low luminosi-
ties and Teffs. The current Jupiter and Saturn are superposed for compari-
son (Pearl and Conrath 1991). Importantly, constant mass trajectories never
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Fig. 23. H–R diagram: luminosity (in L�) versus Teff (in K) for various masses
labeled on the figure in M�. Due to the large range in luminosity and the near
degeneracy of the tracks of substellar objects at late stages of evolution, it is not
possible to represent with adequate detail the whole H–R diagram as one figure.
Accordingly, the low-temperature and low-luminosity tail of the H–R diagram is
shown in the inset. The observed positions of Jupiter and Saturn are labeled as
points “J” and “S,” respectively [From Burrows et al. (1997)]

cross and it is only for objects below 25MJ that temperatures below 400 K
are reached within 1010 years. All substellar objects decrease in luminosity
monotonically, though during the early phases deuterium burning slows the
evolution. As the “brown dwarfs” and “planets” cool to their cold radii, their
tracks in the lower right of the H–R diagram correspond closely to curves of
constant radius.

The consequences of a different helium to hydrogen ratio, of rotation or
of the presence of a central dense core on the final luminosity and radius of
1 and 5MJ planets are indicated by Saumon et al. (1996). They show that a
10% variation of Y generally translate into a 5% variation of R and L (Y and
R being always anti-correlated, while Y and L are generally correlated). The
presence of rapid rotation (with rotational speeds similar to that of Jupiter)
can also significantly affect both the radius, increasing it by up to 20%, and
the luminosity, which can be decreased by the same amount (but complex
behavior can be found).
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Deuterium, Lithium and Hydrogen Burning

The calculation of central temperatures shows at what masses and when vari-
ous key-species are burned in brown dwarfs and stars. Because thermonuclear
reactions are mostly temperature dependent, Fig. 24 shows as horizontal lines
the burning temperatures of deuterium, lithium and hydrogen. It can be seen
that objects of 0.012M� (∼12MJ) fail to reach the deuterium-burning limit.
Using this property to distinguish brown dwarfs and planets sets the realm of
brown dwarfs beyond 13MJ (see Burrows et al. 1997; Chabrier et al. 2000a).

In objects of about 0.06M�, lithium starts burning. The signature of
lithium in the spectrum of an object is thus an important sign to prove its
substellar nature. There are various caveats however: at low temperatures,
lithium pairs with hydrogen to form the mostly undetectable LiH (Lodders
1999). Furthermore, stars retain some of their primordial lithium for a few
million years for the less massive of them. Therefore, lithium can be observed
in young objects without these being brown dwarfs.

Hydrogen starts burning for masses higher than 0.7M�. This however
depends on the metallicity of the object: this limit is valid for solar-metallicity,

Fig. 24. Central temperature as a function of age for different masses. TH, TLi and
TD indicate the hydrogen, lithium and deuterium burning temperatures, respectively
[From Chabrier and Baraffe 2000]
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but goes up to 0.8M� for objects with [Fe/H]= −2 (Chabrier and Baraffe
2000). This can be understood as follows. We have seen that the photospheric
pressure is proportional to g/κ. Objects with a smaller metallicity, hence
smaller atmospheric κ have a larger photospheric pressure, for a given gravity.
They hence have a colder interior at a given pressure. One therefore needs to
go to higher gravities, hence higher masses to reach a central temperature
above the deuterium fusion point.

7.5 Extrasolar Giant Planets

The extrasolar planets that have been discovered so far by the radial velocime-
try technique orbit all relatively close to a star; the amount of radiation that
they receive has to be taken into account. I present here results obtained in
the weak-irradiation approximation discussed in Sect. 7.2: these results are
valid when most of the stellar flux is absorbed in a convective, adiabatic zone.
We will see however that this is not true of strongly irradiated planets: in this
case specific calculations have to be performed (Sect. 9)

Figure 25 gives examples of effective temperatures and radii predicted for
some of the recently found extrasolar giant planets and brown dwarfs, assum-
ing solar composition, a factor 2 uncertainty on the mass (due to the fact
that radial velocity measurements only yield M sin i, where i is the inclina-
tion of the orbital plane), and including uncertainties on the ages and albedo
(between 0.1 and 0.5). It illustrates the diversity of planets detected so far.
Because of the range of temperatures, many different condensates (from am-
monia to silicates) are expected in planetary atmospheres. However, the cal-
culated radii are always close to that of Jupiter, until the mass is large enough
to sustain hydrogen fusion, at about 75MJ. A local maximum of the radius
at a mass of ∼4MJ for isolated planets is due to the competition between
additional volume and increased gravity. (This is because, when considering
planets of larger masses, the degenerate metallic hydrogen region grows at the
expense of the molecular region.) Planets that are significantly heated by their
star have larger radii for smaller masses because their cooling is strongly sup-
pressed. This case will be discussed in more detailed in Sect. 9, in connection
with the constraints obtained for HD209458b.

8 Spectra and Atmospheres

8.1 Direct Observations of Substellar Objects

Gliese 229 B

Numerous observations of brown dwarfs are now available, but the first object
whose substellar nature has been recognized as such beyond any doubt is
Gliese 229 B. That object was discovered in 1995 (Nakajima et al. 1995;
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Fig. 25. Predicted effective temperatures and radii (in units of Jupiter radii,
RJ ∼ 70, 000 km) of some extrasolar planets and brown dwarfs, including reasonable
uncertainties for their mass, albedo and age (see text). The dashed line is for iso-
lated H–He (Y = 0.25) objects after 10Ga of evolution. The upper panel also shows
potentially important chemical species expected to condense near the photosphere
in the indicated range of effective temperatures [From Guillot (1999b)]

Oppenheimer et al. 1995), but it is still one of the most studied object of the
field. It has the particularity of being companion to a cool M1-dwarf star,
only 5.77 parsecs away. Its projected separation is only 45AU, i.e. about the
distance between Pluto and the Sun. (Note that its real mean orbital distance
is still unknown.) One of the key features of the spectrum of Gl229B was the
presence of methane absorption (Fig. 26). Because this molecule turns into
CO at temperatures above 1000 to 1500K for realistic photospheric pressures
(see Sect. 8.2 hereafter), this implied that Gl229B was a genuine brown dwarf.
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Fig. 26. Synthetic spectra for (bottom to top) Teff = 890K, 960K, 1030K and
g = 105 cm s−2 together with observed data from Geballe et al. (1996) (top panel)
and photometric broadband measurements also from Geballe et al. (bottom panel).
In both panels, spectral intervals are labeled with the molecules primarily responsible
for the opacity in that interval [From Marley et al. 1996]

Two theoretical attempts to model the brown dwarf’s spectrum were per-
formed independently by Allard et al. (1996) and Marley et al. (1996). These
works concluded to an effective temperature Teff ∼ 900± 100K and a gravity
log g ∼ 5 ± 0.5 with g in cm s−2. They identified several water and methane
bands, and were able to correctly reproduce most of the spectrum. Another
work from Tsuji et al. (1996), also coincided with the discovery. The compar-
ison of this work with the observations showed that clouds were not present,
in Gl229B, or that they were patchy. A few problems were however found at
the time:
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• The fit to the observed spectrum were relatively poor in the region of
methane absorption. This problem is still present, in the lack of reliable
opacity data for that molecule at temperatures of ∼1000K and more.

• The predicted fluxes were much too large, by several orders of magnitude,
for wavelength λ ∼< 1µm. The works of Tsuji et al. and Allard et al. did
not include the condensation and settling of the very efficient absorber
TiO: their fluxes were coincidentally similar to the observed ones, but
for the wrong reasons. None of the distinctive features of TiO absorption
have indeed been found in Gl229B’s spectrum (Oppenheimer et al. 1998).
Marley et al. used an arbitrary cutoff of the absorption for λ < 1µm. It
was later advocated that photochemical processes due to the irradiation
of the weak Gl229A could create large-enough particles to explain that
absorption but no component could be found to provide the right slope
(Griffith et al. 1998). The problem was later shown quite convincingly to be
due to the absorption of alkali metals, and in particular to the potassium
doublet (Burrows et al. 2000a). Although this theory depends on an ad
hoc parameter, the slope of the non-lorentzian line profile (see Sect. 5.2), it
has been shown to properly reproduce the spectrum of another cool brown
dwarf (Liebert et al. 2000).

• The theoretical spectra predict absorption minima that are much deeper
(by one to two orders of magnitude) than the observed one. Although one
possible explanation could be the contamination of the observations by
light scattered from Gl229A, a careful analysis of the measured spectrum
(e.g. Oppenheimer et al. 1998) shows that this is unlikely. No convincing
explanation has yet been proposed to explain the discrepancy.

The New Spectral Classes

As discussed in the introduction, the technological progresses made possible
the detection of hundreds of brown dwarfs in only a few years. This led to
the definition of a new spectral type, the first one in more than a hundred
years. This spectral type, “L” was first proposed by Mart́ın et al. (1997), and
later worked out by Kirkpatrick et al. (1999) and Mart́ın et al. (1999). I will
not discuss in detail the classification itself (or rather the classifications, there
being some divergences between the two groups). In a nutshell, M-type stars
are identified by distinctive signatures of molecules, especially TiO and VO.
The spectra of L-type objects see the progressive disappearing of TiO and VO
lines and the advent of K, H2O, Cs...etc. Cooler than the L-dwarfs, one then
finds the T-dwarfs, whose detailed classification scheme has obviously to be
worked out, but which are characterized by the presence of CH4 absorption.
Finally, it has been proposed that even cooler objects similar to Jupiter and
Saturn (who mainly show features of CH4 and NH3) be termed “Y-dwarfs”
(see Basri 2000 for a review).

The correspondence between hydrogen-burning and spectral-type is not a
simple one because it depends on factors such as the gravity and metallicity of
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the object. For solar composition, the limit between stars and brown dwarfs
is at M10 around 1Gyr, M7 around 100Myr, and M6 around 10Myr.

The Colors of Brown Dwarfs

The abundance of brown dwarfs now discovered makes us almost forget how
faint these objects are, and how difficult it is to find them. They are indeed
10,000 to 100,000 times fainter than our Sun. Since high-resolution spectra
imply long exposures, programs aiming at the detection of brown dwarfs have
relied on color information, i.e. images taken with several broadband filters
that combined together provide information on the effective temperature of
the targets. Because of the coolness of the sources, brown-dwarf surveys (e.g.
DENIS, 2MASS) have generally been done using infrared I, J and K bands
(see Basri 2000).

It is a well known property of blackbodies that they get redder and redder
as one looks at objects that are cooler and cooler: the peak of the Planck
function is then displaced to longer wavelengths. This implies that, e.g. relative
to the K band, less flux is emitted in the J band. Because astronomers are
nostalgic of outdated conventions, this implies an increasing J–K value (J and
K being the magnitudes in the J and K bands, respectively).

Figure 27 shows a color-magnitude diagram in which theoretical calcula-
tions are compared to observations. Main sequence stars are easily spotted by
their low, relatively uniform J–K value. This is due to the fact that at high
temperatures, the J and K bands are in the Wien tail of the Planck function
and their difference is independent of temperature. Objects of smaller absolute
magnitudeMK then progressively move to the red-part (right) of the diagram.
This tendency is well reproduced by a “dusty” atmospheric model, i.e. one in
which all the condensed particles are assumed to remain in the atmosphere.
The effect of the presence of dust is effectively to reduce spectral variations so
that the spectrum is more similar to that of a black body (Allard et al. 2001).

However, at still lower temperatures, Gl229B sticks clearly out of this
tendency, and is in fact significantly bluer in J and K than main sequence stars!
Furthermore, it is not an isolated case: several other cool brown dwarfs have
now been detected to have the same characteristics (e.g. Burgasser et al. 1999;
Strauss et al. 1999). As we will see, this rapid variation in color is indicative of
a transition from “dusty” to “clear” atmospheres, probably sharpened by the
additional cooling provided by the apparition of methane at low temperatures.

Detection of Very Young Substellar Objects

Brown dwarfs can be discovered in the field, as for the DENIS and 2MASS
surveys. They can also be discovered in known star-forming regions: because
they are young, they can be considerably hotter than the average field objects.
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Fig. 27. MK vs (J–K) diagram for different ages and metallicities: [Fe/H]=0 for
108 yr (dotted lines) and 5 × 109 yr (solid lines); [Fe/H]= −2, t=10 Gyr (dashed
line). The curves on the upper right correspond to the DUSTY models for [Fe/H]=0.
The curves on the down left correspond to the COND models for [Fe/H]=0. Filled
circles and triangles on the isochrones indicate masses either in M� or MJ (1 MJ ≈
10−3 M�) [From Chabrier and Baraffe 2000]

However, most of these regions are relatively far away (100’s of parsecs), and
extinction then becomes a problem.

A very interesting region is the σ−Orionis cluster, which is only a few
Myr old. Very faint, low-mass objects have been successfully discovered (see
Mart́ın et al. 2001 and references therein). These authors have shown that
a continuous sequence of brown dwarfs is present, down to very low masses
(perhaps ∼8MJ). Similar results have been obtained for other clusters, were
numerous brown dwarfs were detected down to and beyond the deuterium
burning limit. Mass functions down to these low masses have been derived
for the IC348 cluster (Najita, Tiede, and Carr 2000) and the Trapezium (Hil-
lenbrand and Carpenter 2000; Luhman et al. 2000). The mass functions thus
obtained are extremely interesting as they bear on formation theories, but
will not be discussed in this course.
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Fig. 28. K vs I–K color-magnitude diagram. Empty circles are substellar members
in σOrionis. The thick solid line and filled triangles represent the mean locus of the
σOrionis objects. The 5 Myr isochrones from Chabrier et al. (2000b) are displayed
(Nextgen no-dusty models—dotted line, Dusty models—dot-dashed line, and Cond
models—dashed line). The thin solid line with asterisks is a best-guess isochrone
that combines the models [From Mart́ın et al. 2001]

Figure 28 shows the observations of Mart́ın et al. (2001) in σ−Orionis as a
color-magnitude diagram. The theoretical interpretation using the Lyon model
is shown by the dotted, dash-dotted and dashed lines. (The models computed
by the Lyon and Tucson groups yield very similar results). As previously, a
tendency arise with hotter, more massive objects being closer to a theoretical
sequence that accounts for the presence of dust in the atmosphere, and one
assuming a clear atmosphere for cooler objects. We will come back to that
transition in the following sections. The very low masses obtained for the
fainter objects are interesting and one has to consider the uncertainties that
are associated with them.

Because the age of the cluster is not precisely known (note that all stars
do not form exactly at the same time), the intrinsic uncertainty of 1–5Myr
leads to an uncertainty on the predicted masses. It is interesting to see however
that the uncertainty of the models themselves, as computed by two groups and
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with several assumptions relative to atmospheric composition give strikingly
similar results.

First, the age of the cluster is not known. In the case of σOrionis, it is 1–
5Myr. This translates into a factor∼2 uncertainty on the mass, the young ages
corresponding to the lowest values of the masses. Another important source
of uncertainty is due to the relative closeness to unknown initial conditions. If
in the process of formation the proto-brown dwarfs are able to loose some of
their entropy, their interior entropy will be lower than the external one, until
cooling (possibly over millions of years) readjusts the profile to a uniform
one. For some time the brown dwarf or planet will therefore have a cooler
interior, for the same external boundary conditions. (See the entropy profiles
and discussion in Sect. 7.2). The objects could then be found for some time
to the left of the Hayashi track (see Fig. 23), implying for already compact
objects that they could be interpreted to be less massive than they really are.
However, the magnitude of this effect has to be investigated.

Rotation, Magnetic Activity and Variability

Rotation is a particularly important astrophysical parameter to understand
formation processes. In the case of stars, most of the angular momentum
present in the molecular cloud had to be lost. Two physical processes can
be advocated: the formation of a circumstellar disk and angular momentum
transport within that disk, and magnetic braking. The situation is similar for
substellar objects.

The rotation rates of brown dwarfs can be inferred through radial-velocity
measurements. Contrary to the case of the detection of companions however,
one then seeks the intrinsic line broadening due to the rotation. The mea-
sured parameter is v sin i, the rotation speed at the equator multiplied by the
sine of the inclination. Observations of type M (see e.g. Basri 2000 for a re-
view) indicates that objects all down to ∼M10 have very widespread values
of v sin i, and show intense chromospheric heating, as characterized by their
Hα emission. On the other hands, the observed L-type objects are all very
fast rotators (v sin i = 20 to 80 km s−1), and have a weak Hα emission. This
probably indicates that low-mass objects have a weaker magnetic braking.
Several interpretations are possible (see Basri 2000).

Photometric variations of up to 5% in fluxes have also been detected in M
and L dwarfs (e.g. Bailer-Jones and Mundt 2001). In a few cases, these vari-
ations are periodic with a period comparable to that of the dwarfs’ rotation.
They can then be attributed to surface features. Non-periodic variability is
also observed, indicating a more complex, time-variable activity. Interestingly,
a greater occurrence of variability is found in objects later than M9 indicating
that it is not correlated with chromospheric activity. We will see hereafter that
in atmospheres at low temperatures (corresponding to dwarfs of later types),
condensation sets in. The observed variability could thus well be due to the
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presence of non-homogeneously distributed, time-variable, photospheric dust
clouds.

8.2 Atmospheric Models: Importance of Condensation

Modeling the atmospheres of substellar objects is a complex subject that
would require several courses. I will focus on a problem which is particular
to cool atmospheres: that of condensation. Although condensation has long
ago been recognized as an important astrophysical phenomenon, it has been
mostly developed in a low- or no-gravity framework. In planetary and sub-
stellar atmospheres, condensates are expected to be formed, transported, and
vaporized continuously, as is the case on Earth. Their study consequently
requires new tools, with a particular emphasis on problems related to the
transport of material in these atmospheres.

Basics of Condensation

Let us consider the equilibrium between a condensed phase and a vapor phase
of a given chemical species. The thermodynamical condition for equilibrium
is that the pressures, temperatures and Gibbs free energies of the two phases
should be equal. The last condition implies that:

v(v)dPs − S(v)dT = v(c)dPs − S(c)dT , (134)

where the (v) and (c) superscripts indicate the vapor and condensed phases,
respectively. v and S are the volume and entropy per unit mass. Equation (134)
implicitly neglects any surface tension that would appear on a finite size drop
formed of condensed material. It is hence valid for equilibrium of the vapor
over an infinitely long surface of condensed material. Strictly, the formation
of droplets will involve a slightly larger saturation pressure, but this effect will
be neglected.

The latent heat is defined as the difference in enthalpies of the two species,
hence

L = (S(v) − S(c))T . (135)

One therefore obtains from (134) the Clausius–Clapeyron equation:

dPs

dT
=

L

T (v(v) − v(c)) . (136)

Using the perfect gas equation and neglecting the specific volume of the con-
densed phase over that of the vapor leads to the following equation:

d lnPs

d lnT
=

L

kT
. (137)

This equation allows one, from a known condensation temperature at a given
pressure to derive the condensation temperatures at any other pressure. Note
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that Ps is the saturation pressure, i.e. the pressure corresponding to an equi-
librium between the condensate and vapor phases.

The saturation pressure obtained from (137) will be useful in the following
for a derivation of the composition gradient, but is only correct to first order.
In the case of giant planets and brown dwarfs, the following relations have an
accuracy of order 10%:

H2O : log10 ps = 5.0587− 1630.91
T − 50.396

, (138)

CH4 : log10 ps = 4.3180− 451.64
T − 4.66

if T ≤ 91K, (139)

log10 ps = 3.8205− 405.42
T − 5.37

if T ≥ 91K, (140)

NH3 : log10 ps = 7.0887− 1617.91
T − 0.60

, (141)

MgSiO3 : ps = exp
(
−58663

T
+ 25.37

)
. (142)

The pressures are expressed in bars and the temperatures in kelvins. In the
case of water, the following approximation for the equilibrium of the vapor
with liquid water and ice, respectively, give still better accuracies (better than
0.3%) in the temperature interval −30◦C ≤ T ≤ 40◦C for liquid water, and
−80◦C ≤ T ≤ 0◦C for ice:

liquid H2O : ln ps = 46.77181− 6743.769
T

− 4.8451 lnT, (143)

ice H2O : ln ps = 16.42311− 6111.72784
T

+ 0.15215 lnT, (144)

where pressures are still in bars and temperatures in kelvin.

Abundance of Condensing Species in an Atmosphere

Let us consider an atmosphere in which the condensing species is not the
dominant one. The saturation abundance of the condensing species is deter-
mined by the ratio of the saturation partial pressure to the total pressure:
xs = Ps/P . We introduce the following adimensional quantity:

β =
L

kT
. (145)

For most species of interest in substellar atmospheres, β ≈ 10 − 20. Assum-
ing that β is constant, one can derive the compositional gradient in the at-
mosphere:

d lnxs
d lnP

= β∇T − 1 . (146)
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One can thus see that in most cases (e.g. convective tropospheres), ∇T ≈ 0.3
and d lnxs/d lnP ≈ 2 − 5. The abundance at saturation is decreasing with
altitude faster than the pressure itself. To the contrary, in nearly isothermal
regions, and in stratospheres (∇T < 0), the abundance at saturation increases
with altitude.

Possible abundance profiles are depicted in Fig. 29. In all cases the abun-
dance x has its maximal value (the bulk abundance) and is constant at large
depths. However, the composition at upper levels strongly depends on phys-
ical mechanisms. In one extreme case (labeled (a) in Fig. 29), solid species
are immediately removed by gravity and atmospheric circulation is not fast
enough to oppose the effect of upward diffusion of the condensing species. The
other extreme (b) corresponds to a situation in which solids are transported
by convection so rapidly throughout the atmosphere that they can never grow
to a size at which they would fall. The total (vapor + solid) abundance is then
constant.

In reality, a third situation (c) is more likely. In the presence of advec-
tion and sedimentation of part of the condensed material, downward motions
will tend to produce an undersaturated mixture, while upward motions will
lead to the formation of clouds. This necessarily leads to a non-homogeneous

log x

z

Vapor

log x

z

Vapor

log x

z

Vapor

(a) (b)

(c)

Dust

Clouds

Fig. 29. Possible abundance profiles x of a condensing species in a substellar or
planetary atmosphere (plain lines). The dashed lines corresponds to the saturation
profiles. Three cases are: (a) clear atmosphere (immediate “rainout” of condensates);
(b) dusty atmosphere (no “rainout”); (c) a possibly more realistic situation (see text)
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atmosphere, where clouds of the same condensing species appear at various
altitudes and do not cover the entire atmosphere. This patchiness is observed
in the four giant planets, but is maximal when clouds occur in a convective
and not radiative region.

Note that downward motions can lead to a lower-than expected abundance
at great depths. This has been observed in Jupiter by the Galileo probe for
NH3, H2S and H2O (Niemann et al. 1998), but is also evident in Voyager 2
radio-occultation data for Neptune, in the case of CH4 (Lindal 1992; see also
Guillot 1995).

It is important to stress that depending on the condensation model (a, b
or c), the chemistry of the atmosphere will be very different. In model (b),
condensed particles are still present in the atmosphere and can react with
other species. In model (a) they are completely removed. Therefore, model (a)
cannot be consistently calculated by simply using model (b) for the chemistry
and removing the opacity arising from condensed particles. In both models (a)
and (c), the chemical equilibrium must be consistently calculated, accounting
for the full or partial removal of the elements that have condensed.

An important example is titanium: this atom is expected to form CaTiO3

and thus become solid at temperatures ∼2000K. However, chemical equilib-
rium calculations predict that the abundance of the solid is very small, and
that most of the titanium is in form of the strong absorber TiO . If solid
CaTiO3 particles are kept in the atmosphere and allowed to react with the
environment, TiO will remain as the most important absorber. It is however
not observed in Jupiter and Saturn, a sign that condensation, grain growth
and subsequent sedimentation have occurred and removed Ti from the upper
levels (see e.g. Fegley and Lodders 1994, 1996). This is also observed in the
case of Gl229B, which shows no sign of TiO absorption (Oppenheimer et al.
1998; Marley et al. 1996).

This problem would therefore require to consistently calculate atmospheric
models using a microphysical description of the clouds and including a descrip-
tion of vertical mixing and a fully self-consistent chemical equilibrium model.

Temperature Profiles

An important consequence of condensation is to modify heat transport by
providing latent heat. The adiabatic temperature gradient is thus modified.
Neglecting the heat capacity of condensed species (or equivalently, assuming
any condensed material to be left behind during an ascending motion), one can
derive themoist pseudo-adiabatic temperature gradient. Using the formulation
of Emanuel (1994), but simplified notations:

∇pseudo = ∇ad

[
1 + β fε
1 + β2

c̃P

f
ε

]
, (147)

where ∇ad is the adiabatic gradient when neglecting latent heat effects (dry
adiabatic gradient), ε = mv/md is the ratio between the molecular mass of
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the condensable species over that of dry air, f = ρv/ρd = εx/(1 − x) is the
mass mixing ratio of the vapor over dry air, and c̃P is the adimensional mean
specific heat per molecule (including dry air and vapor).

In the cases that are of interest to us, f/ε� 1 so that

∇pseudo ≈ ∇ad

[
1−
(
β

c̃P
− 1
)
β
f

ε

]
. (148)

Because β ≈ 10−20 and c̃P ≈ 3.5, we obtain that f/ε ≈ x ∼> 2×10−4 in order
to change the adiabatic gradient by ∼1% or more. In objects of approximately
solar composition, the only potentially condensable species that are abundant
enough are H2O and CH4. Note that NH3 can induce a change of ∼0.6% and
compounds formed from Mg, Si and Fe a change of ∼0.2% .

The phenomenon of moist convection , i.e. of convection powered by latent
heat release, such as that observed in cumulus clouds on Earth is therefore
likely to be limited to atmospheres in which water and methane can con-
dense, i.e. to relatively cold atmospheres. In the case of condensation of more
refractory species, the limited effect of latent heat release on the tempera-
ture gradient is likely to be outweighted by the strongly inhibiting condensate
loading.

Another consequence of condensation in substellar hydrogen atmospheres
is that it yields a stable molecular weight gradient. Assuming that the at-
mosphere is saturated and using (146),

∇µ = Yf(β∇T − 1) , (149)

where Y = (1 − 1/ε)/(1 + f). In the case of hydrogen atmospheres, Y ∼ 1,
β ∼ 20, ∇T ∼ 0.3 so that ∇µ > 0. In the case of the Earth, Y ∼ −0.5 due to
the smaller weight of the water molecule than of N2: in that case, moist air
tends to rise, thereby favoring the occurrence of moist convection.

In the ideal case of a saturated atmosphere in which condensed species
are removed instantaneously by gravity, the criterion for convective is slightly
modified compared to (79). Because of condensation occurring both in the
environment and the upwelling parcel, the local criterion becomes (Guillot
1995):

(1−Yβf)(∇T −∇pseudo) > 0 . (150)

Convection is thus inhibited when the abundance of the condensable is such
that

f > (Yβ)−1 . (151)

Physically, this condition results from the fact that the abundance of condens-
able species drops faster in the environment than in the rising parcel. In spite
of its higher temperature, the parcel thus becomes negatively buoyant. This
occurs however only for condensing species whose mass mixing ratio can raise
above ∼0.03, i.e. enrichment over the solar value of ∼5 for H2O, ∼15 for CH4

and ∼10–20 in silicates and iron. This is potentially interesting in the case
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of water condensation in Jupiter and Saturn and of methane condensation in
Uranus and Neptune. In the case of the two latter planets, it could explain
the superadiabatic gradients obtained from the Voyager radio-occultation in
the region of methane condensation (Guillot 1995).

For objects of solar composition however, the molecular weight gradient
effect is limited, i.e. ∇µ ∼< 10−2 as long as water condensation is not involved.
To first order, the effect of condensation on the temperature gradient can be
neglected.

Figure 30 shows several atmospheric temperature profiles calculated by
Burrows et al. (1997) for isolated substellar objects. The figure shows as
dashed lines the limits for condensation of water, ammonia, MgSiO3 and iron,
assuming solar composition. The lines where CO and CH4 and where N2 and
NH3 have the same abundances are also indicated. As can be intuited, depend-
ing on the effective temperatures and gravity, various elements are expected
to condense near the photospheres of substellar objects having great effects
on their spectra: Particularly important are the condensation of methane,
ammonia and water for low effective temperatures, and iron and silicates in
relatively warm atmospheres. Note that these are only the most abundant
species to be formed: other potentially condensing species include numerous
sulfides and chlorides (e.g. K2S, Na2S...etc.)

Fig. 30. Atmospheric pressure–temperature profiles for non-irradiated substellar
atmospheres with surface gravity fixed at 104 cm s−2 and Teff = 800, 600, 500, 400,
200, and 128 K. Note that the inner radiative zones disappear in the presence of
alkali metals (not accounted for in the calculation) [From Burrows et al. (1997)]
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The temperatures profiles of Fig. 30 do not account for the presence of
any clouds. When present, these would lead to a significant warming of the
atmosphere (see Allard et al. 2001). Note that the inner radiative zones shown
in Fig. 30 disappear when alkali metals are included in the calculation.

Dust and Clouds: Relevant Physical Processes

The formation of dust and clouds in substellar atmospheres is governed by
several processes:

1. Chemistry : given the composition, temperatures and pressures of a sub-
stellar atmosphere, a set of chemical species is predicted to undergo va-
por/liquid or vapor/solid phase changes. The deepest level at which that
occurs is the condensation level, sometime improperly called cloud base
(as we can see from model (c) in Fig. 29, clouds do not necessarily orig-
inate from that level). Among the different kinds of condensation, one
might distinguish the condensation of a minor species, as it involves a
chemical reaction (e.g. CaTiO3 with TiO remaining in gaseous form), and
the condensation of a major species (e.g. H2O).

2. Grain growth: this groups all the mechanisms that affect the size of the
condensed grains or droplets. Those include condensation (vapor mole-
cules/atoms sticking upon an already condensed site), coagulation (due to
Brownian motion) and coalescence (merging of big droplets with slightly
different vertical velocities). It also includes evaporation which occurs in
an undersaturated environment (i.e. when the partial pressure of the con-
densing species is smaller than its saturation pressure).

3. Sedimentation: condensed particles are affected by gravity forces, the more
massive ones falling more rapidly than the lighter ones.

4. Mixing : the advection of saturated/undersaturated gas and small parti-
cles due to various effects (convective instability, meridional circulation,
waves...etc.) inevitably influences grain growth and sedimentation. As we
have seen, in the case of water and methane, this is complicated by the
significant latent heat effect that tends to favor updrafts in which conden-
sation occurs.

5. Radiative heating/cooling : the presence of solid/liquid particles modifies
the radiative properties of the medium, which can in turn affect mixing
(by creating small-scale or large-scale instabilities) and condensation (by
modifying the temperature profiles).

The processes of grain growth and sedimentation can be approximated us-
ing the timescales provided by Rossow (1978). These estimates are applied to
the case of an iron cloud in a typical 2000K brown dwarf and shown in Fig. 31
(see also Lunine et al. 1989). Grain growth is dominated by condensation for
sizes larger than several microns. However, before they reach those sizes, they
are expected to be removed efficiently by sedimentation. Let us define a time
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Fig. 31. Time scales for grain growth and sedimentation at the basis of an “iron-
cloud” in a brown dwarf of Teff = 2000K, g = 3× 105 cm s−2 [Brown dwarf model:
courtesy of F. Allard; timescales from Rossow 1978]

τ? and size a? as satisfying the following condition:

τsedimentation(a?) = τgrowth(a?) ≡ τ? . (152)

These two quantities are defined by the point at which the sedimentation and
condensation lines cross in Fig. 31.

The amount of condensed particles and their sizes will then depend on the
mixing of vapor and small particles from levels above and below the one con-
sidered. In terrestrial clouds, this is modeled through the solution of a complex
set of differential equations (see e.g. Cotton and Anthes 1989). In giant plan-
ets and substellar objects this problem is far from being well understood, and
a much simpler approach is generally sufficient. One thus generally defines a
turbulent diffusivity as relevant of mixing processes in the atmosphere. In our
very simple case, we will define τmix as the characteristic time scale for mixing
over one pressure scale height HP .

Two cases occur:

1. τmix ∼< τ?: This is the case of efficient mixing (i.e. case (b) in Fig. 29).
Fresh particles and vapor are constantly supplied by the mixing before
they can fall under the action of gravity. In the limit when mixing does
not affect the largest grains, the final mean size is expected to be of the
order of a?. If the largest grains are also transported, then the final mean
radius will depend mostly on the time during which they remain above
the condensation level. The situation can become complex: in the Earth’s
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clouds, a bi-modal distribution of water droplets is generally observed (e.g.
Cotton and Anthes 1989).

2. τmix ∼> τ?: Here, the relatively sluggish mixing prevents the formation of
particles as large as a? because they are removed by sedimentation. The
mean size is expected to be largely set by the equilibrium between mixing
and sedimentation, i.e. τmix = τsedimentation. This yields of course particles
of sizes smaller than a?. It also yields a lower abundance of particles (i.e.
case (a) or (c) in Fig. 29).

A Transition from Dusty to Clear Atmospheres

As shown in Fig. 27, there is a transition from high effective temperature,
red, and dusty brown dwarfs, to brown dwarfs of lower effective temperatures
that are much bluer and appear to have clear atmospheres (or more accu-
rately, to deviate from case (b) of Fig. 29). This transition is thought to be
due to the sedimentation of dust in brown dwarfs of low temperatures and also
to the additional cooling due to the CO to CH4 transition.

Let us focus first on the high temperature, dusty brown dwarfs . In the
case of our Teff = 2000K brown dwarf, one finds that a? ≈ 1µm, and τ? ≈
3 × 103 s. The time scale for mixing in the convective zone can be estimated
from τmix ≈ HP /v and v is the convective velocity from (94). At the basis
of the iron cloud, we have T ≈ 1700K and P ≈ 0.4 bar. The convective
velocity would then be v ≈ 2 × 104 cm s−1, HP ≈ 2 × 105 cm and hence
τmix ≈ 10 s. However, convection is found to start at much deeper levels, i.e.
around 10 bar (F. Allard, pers. communication). The good results obtained
from stellar models using an ad hoc interstellar grain size distribution (Allard
et al. 2001) indicates that the mean particle size is indeed probably between
0.1 and 1µm. Therefore, a mixing process is needed to explain the presence
of these particles in the brown dwarfs upper photosphere. Several possibilities
exist, and the fact that these objects are generally fast rotators (e.g. Basri
2000) is interesting because it could yield enough meridional circulation to
provide the right amount of mixing.

The transition to brown dwarfs of lower temperatures (“T-dwarfs”) is still
unclear. A possible model based on the timescales discussed here is provided by
Ackerman and Marley (2001), and with a free parameter reproduces relatively
well the observations. However, the model assumes an eddy mixing time scale
that even in radiative regions is arbitrarily large. One may therefore wonder
whether the real problem to solve may instead be “why are grains present in
brown dwarfs of high effective temperatures?”

Observational constraints on the amount of atmospheric mixing exist at
least for one well-studied brown dwarf: Gl229B. The detection of chemical
species that are out of thermochemical equilibrium informs us on how fast
these species are transported throughout the atmosphere. This is in particular
the case of CO which partially escapes a transformation into CH4 as it is
transported upward in Gl229B’s atmosphere (roughly from levels of ∼10 bar
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to ∼1 bar where it is detected). Griffith and Yelle (1999) estimate that the
diffusion coefficient of mixing is Kmix ∼ 3 × 102 to 104 cm2 s−1. The mixing
time scale is (very inaccurate!) τmix ≈ H2

P /Kmix ≈ 1.5×106 to 5×109 s. This
is to be compared to the mixing times of 10–103 s required to keep grains up
in the atmosphere.

Dust and Variability

The presence of dust opens new possibilities for atmospheric variability. As
discussed previously, moist convection is not a likely possibility in the case
of brown dwarfs and hot giant planets. The situation is therefore different
than for our giant planets. However, variability is linked to the spatial hetero-
geneities. The fact that in Jupiter, small regions of the planet can emit much
more than others because of a lack of clouds there has to be kept in mind.

One possibility for the presence of Jupiter’s hot spots is the presence of
a planetary wave (Showman and Dowling 2000). In the same frame of mind,
waves could well affect the distribution of dust in the atmosphere of brown
dwarfs. A potential interesting source of waves is again in the rapid rotation
of these objects and the possibility of Rossby and Kelvin waves. Baroclinic
instabilities linked to the rotation and the presence of meridional circulation
are also a possibility. Finally, a coupling between dust formation and heat
transfer may be envisioned: we have seen that the presence of dust indeed
greatly increases the opacity.

9 Pegasi Planets (“51Peg b-like” Planets)

9.1 Introduction

The detection of planetary-mass companions in small orbits around solar-type
stars has been a major discovery of the past decade. More than 100 extrasolar
giant planets (with masses M sin i < 13MJ, i being the inclination of the
system) have been detected by radial velocimetry. A significant fraction have
distances less than 0.1 AU. This is for example the case with the first extrasolar
giant planet to have been discovered, 51 Peg b (Mayor and Queloz 1995).
These close-in planets form a statistically distinct population: all planets with
semi-major axis smaller than 0.06 AU have near-circular orbits while the mean
eccentricity of the global population is < e >≈ 0.27. This is explained by the
circularization by tides raised on the star by the planet (Marcy et al. 1997).
One exception to this rule, HD83443b (e = 0.079± 0.033), can be attributed
to the presence of another eccentric planet in the system (Mayor et al. 2001).
As we shall see, the planets inside ∼0.1 AU also have very specific properties
due to the closeness to their star and the intense radiation they receive. For
this reason, following astronomical conventions, I choose to name them after
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the first object of this class to have been discovered: “51Peg b-like” planets,
or in short “Pegasi planets”.

Such planets provide an unprecedented opportunity to study how intense
stellar irradiation affects the evolution and atmospheric circulation of a gi-
ant planet. Roughly 1% of stars surveyed so far bear Pegasi planets in orbit,
suggesting that they are not a rare phenomenon. Their proximity to their
stars increases the likelihood that they will transit their stars as viewed from
Earth, allowing a precise determination of their radii. (The probability varies
inversely with the planet’s orbital radius, reaching ∼10% for a planet at 0.05
AU around a solar-type star.) One planet, HD209458b, has already been ob-
served to transit its star every 3.524 days (Charbonneau et al. 2000; Henry
et al. 2000). The object’s mass is 0.69±0.05MJ. Hubble Space Telescope mea-
surements of the transit (Brown et al. 2001) imply that the planet’s radius
is 96300 ± 4000 km (see light curve on Fig. 32). An analysis of the lightcurve
combined with atmospheric models shows that this should correspond to a
radius of 94430 km at the 1 bar level (Hubbard et al. 2001). This last esti-
mate corresponds to 1.349RJ, where RJ≡ 70, 000 km is a characteristic radius
of Jupiter. This large radius, in fair agreement with theoretical predictions
(Guillot et al. 1996), shows unambiguously that HD209458b is a gas giant.

One expects that the evolution of Pegasi planets depends more on the
stellar irradiation than is the case with Jupiter. HD209458b and other Pegasi
planets differ qualitatively from Jupiter because the globally-averaged stellar
flux they absorb is ∼108 erg cm−2 (105 Wm−2), which is ∼104 times greater
than the predicted intrinsic flux of ∼104 erg cm−2. (In contrast, Jupiter’s ab-
sorbed and intrinsic fluxes are the same within a factor of two.)

Fig. 32. Phased light curve of four planetary transits across the star HD209458
observed with the HST. The orbital period of the planet is 3.52474 days. [Figure
from Brown et al. (2001)]
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9.2 Evolution of Strongly Irradiated Giant Planets

Including Stellar Heating: Definitions

As discussed in Sect. 7.2, the total luminosity of an irradiated planet or brown
dwarf consists of three parts: (i) the part of the stellar flux which is directly
reflected and does not contribute to the atmosphere’s energy budget; (ii) L��,
the part which is absorbed, thermalized and reemitted (we assume that no
seasonal effects take place and that the system is in equilibrium); (iii) L, the
intrinsic luminosity due to the object’s contraction and cooling.

First, the effective temperature of any irradiated planet is defined by:

4πR2σT 4
eff = L+ L�� (153)

and the equilibrium effective temperature T�� by

4πR2σT 4�� = L�� . (154)

T�� is the effective temperature toward which the planet tends as it cools and
L→ 0. It is a function of the Bond albedo A (i.e. the ratio of the luminosity
directly reflected to the total luminosity intercepted by the planet):

T�� = T?

(
R?

2D

)1/2

(1−A)1/4 , (155)

where T? and R? are respectively the star’s effective temperature and radius,
and D is the star–planet distance.

It is important to stress that these definitions are valid independently of
heat absorption and heat transport in the atmospheres of these objects. Most
of the physics is hidden in the Bond albedo A. The values for our giant planets
are listed in Table 3. They all lie between 0.29 (Neptune) and 0.35 (Jupiter).
In the case of extrasolar giant planets, simulations indicate similar values of
the albedo when alkali metals are not present (Marley et al. 1999), but very
low values A ∼ 0.05 when alkali metals contribute to the absorption in the
optical (Sudarsky et al. 2000). This would imply that extrasolar planets are
very difficult to detect in the optical, since they reflect little of the incoming
flux. However, the albedo can be significantly modified by the presence of
grains in the atmosphere (see Marley et al. 1999). Our understanding of grain
and cloud formation being far from complete, these estimates of A have to be
taken with caution.

Finally, in the case of Pegasi planets we will see that the stellar heat
is absorbed very inhomogeneously and is not necessarily well redistributed
over the entire atmosphere. This does not affect the above definitions, but
it strongly modifies any calculation of the atmospheric structure. The bond
albedo, and surface boundary conditions then have to account for this. I will
focus on cases in which this effect is neglected. However, the effect of day/night
temperatures variations both on the evolution and on chemistry in Pegasi-
planet atmospheres will be discussed.
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Temperature of Irradiated Atmospheres

Most of the course has been concerned with mostly-convective objects. We
have seen in Sect. 7.2 that in this case, which corresponds to weak irradiation, a
relatively trivial modification of the external boundary condition was sufficient
to obtain a relatively good estimate of the evolution. We derived (115) an
evolution time scale for weakly irradiated object that was equal to the time
scale in isolation plus an expansion in powers of (T��/Teff)4. In the case of
Pegasi planets however, the strong stellar irradiation leads to Teff ≈ T�� (the
absorbed stellar flux is typically about 104 times stronger than the intrinsic
heat flux). With the assumptions of Sect. 7.2, one would find a cooling time
scale tending to infinity. This is because when Teff → T��, L → 0, and the
planetary interior necessarily becomes partly radiative.

The strong irradiation thus not only significantly slows the cooling of the
planet, it also profoundly modifies its very structure. The growth of a radiative
zone located just below the “atmosphere” (defined as the region which is
penetrated by the stellar photons) implies that standard boundary conditions
cannot be used. The problem hence becomes relatively complex, and requires
a detailed treatment of the radiative transfer equations in the atmosphere.

In the absence of adequate atmospheric models, Guillot et al. (1996) how-
ever derived evolution models for Pegasi planets using the approximation of
Sect. 7.2. This was also later used by Burrows et al. (2000b) for the evolution
of HD209458b. In these papers, the atmospheric boundary condition is at the
same pressure and temperature than that of an isolated object of the same
effective temperature:

T (P = 10 bars) = Tisolated(Teff , g) . (156)

This approximation is exact in the limit when the stellar luminosity is entirely
absorbed at the 10 bar level, or if the region of absorption is connected to
the 10 bar level by an isentrope (i.e. the 10 bar level is in a nearly-adiabatic
convective zone).

Unfortunately, the approximation becomes incorrect in the case of strongly
irradiated planets because of the growth of a thick external radiative zone. An-
other boundary condition has therefore to be sought: either part of the stellar
flux is able to penetrate to deeper levels (P0 > 10 bar) and lead to a boundary
condition defined by T (P0) > Tisolated, or most of the stellar flux is absorbed at
P0 < 10 bar, yielding T (P0) < Tisolated. (This is due to the fact that in the ra-
diative zone dT/dP ∝ F , where F is the flux to be transported). Indeed, more
detailed models of the atmospheres of Pegasi planets have shown that most
of the starlight is absorbed at pressures less than 10 bar, and that (156) over-
estimates the atmospheric temperatures by as much as 300 to 1000K (Seager
and Sasselov 1998, 2000; Goukenleuque et al. 2000; Barman et al. 2001).

A similarly incorrect approach has been used by Lin, Bodenheimer and
Richardson (1996) and Bodenheimer et al. (2001): they also use the same
approximation as described in Sect. 7.2, but instead of (156), they use the
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Eddington approximation (8). Their boundary pressure P0 is much smaller,
i.e. P0 ≈ 1mbar, a consequence of g ≈ 103 cm s−2 and κ ≈ 1 cm2 g−1. Their
temperatures in the deep atmospheres (around 10 bar) are much smaller than
calculated by detailed atmospheric models. This is mostly due to the fact that
the opacities used (Pollack et al. 1994) are very high because they include the
presence of grains but no sedimentation. We have seen in Sect. 8.2 that the
true abundance of grains should be much lower. With κ ≈ 10−3 cm2 g−1, a
more realistic value, the photospheric pressure becomes P0 ≈ 1 bar. However, a
more serious problem is that the Eddington approximation has no theoretical
validity for irradiated atmospheres.

In order to get around that problem Guillot and Showman (2002) use an
ad hoc atmospheric boundary temperature which is lower than predicted by
(156) by 1000K. According to the detailed atmospheric models, this “cold”
boundary condition is supposed to be more realistic.

Hertzprung–Russell Diagram

On a Hertzprung–Russell diagram (L vs. Teff), isolated brown dwarfs and
planets essentially follow the Hayashi evolution track , which is defined by the
trajectory of a fully convective object of given mass and composition (Hayashi
1961). Figure 23 shows a set of Hayashi lines for various masses. Massive brown
dwarfs can only slightly deviate from these tracks in the case of the growth
of an inner conductive region. This is however a relatively marginal effect. In
the case of strongly irradiated planets, the deviation from the Hayashi track
can be much more pronounced.

Figure 33 is a H–R diagram for irradiated 1-Mj planets. The dark region at
low effective temperatures (to the right-hand side of the graph) corresponds
to the Hayashi forbidden region: no object in hydrostatic equilibrium can be
found there because it would violate the Schwarzschild instability criterion.
(The situation is more complex in the presence of stabilizing compositional
gradients, but this effect will be ignored). The forbidden region is bounded to
the left by the fully-convective Hayashi line.

Jupiter is found to follow the Hayashi line (even when a radiative zone
such as that found by Guillot et al. (1994a) is included, the departure is
small). The evolution starts with an extended planet, to the top right of the
diagram. In a first phase, the contraction yields higher values of Teff . When the
degeneracy becomes important, the virial theorem shows that the luminosity is
then essentially provided by the planet’s cooling and the effective temperature
decreases (see Sect. 7.1).

In the case of irradiated planets, the evolution cannot proceed to low
values of Teff due to (153). It is easy to see that the planet then cannot
stay on the Hayashi line. Not only would it imply an nonphysical singularity
in the diagram, it would also violate thermodynamics principles: the planet
would then stop cooling, but its interior would remain much hotter than its
atmosphere (∼30, 000K vs. ∼1500K).
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The solution to this paradox is, as discussed previously, the growth of
an inner radiative zone. The evolution tracks are then observed to deviate
substantially from the Hayashi line, as shown by the almost vertical lines in
Fig. 33. A very important consequence of the growth of the radiative zone is
that the planets continue to shrink, and their radii after a few billions of years
of evolution are close to that of Jupiter, assuming a solar composition. (In
the case of planets made entirely out of rocks, the radii obtained are about
1/3RJ, as indicated by triangles in Fig. 33.)

The evolution is found to be relatively fast on the Hayashi line, but slow
away from it. This is due to the fact that when a radiative zone develops, due
to irradiation, the ability of the planet to cool is not governed by the heat
leaking from the atmosphere but instead by the slow shrinking or growth of

Fig. 33. Hertzprung–Russell diagram for 1MJ planets orbiting at 0.02, 0.025, 0.032,
0.05 and 0.1 AU from a solar-type star, assuming a Bond albedo of 0.35. Arrows
indicate the corresponding equilibrium effective temperature (T��). A Jupiter model
is also shown, the diamond in the bottom right-hand corner corresponding to the
present-day effective temperature and luminosity of the planet. Evolutionary tracks
for planets of solar composition are indicated by lines connecting dots which are
equally spaced in log(time). The numbers 7, 8, 9 and 10 are the common loga-
rithms of the planet’s age. Zero-temperature models for 1MJ planets made of olivine
(Mg2SiO4) are indicated by triangles. The Hayashi forbidden region, which is en-
closed by the evolutionary track of the fully convective model, is shown in dark gray
(see text). Models in the light gray region have radii above the Roche limit (and
therefore are tidally disrupted by the star). The region where classical Jeans escape
becomes significant is bounded by the dash-dotted line. Lines of constant radius are
indicated by dotted curves. These correspond, from bottom to top, to radii (in units
of RJ) in multiples of 2, starting at 1/4. [From Guillot et al. (1996)]
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the radiative zone. In the early phases, when the irradiated planet is very
extended, the radiative zone shrinks as the object contracts. This slow evolu-
tion is effectively a problem for the formation of the planet at this distance.
One can get around this problem by increasing the abundance of solids in the
nebula and progressively capturing the gaseous envelope (e.g. Bodenheimer
et al. 2001). However, a more simple (probable?) solution is that the planets
were not formed very close to their stars but were formed at greater distances
and then migrated inward (Lin et al. 1996; see also Trilling et al. 1998 and
the chapter by Pat Cassen).

Growth of a Radiative Zone

The evolution models applied to HD209458b (M = 0.69MJ; T�� = 1400K)
are shown in Fig. 34. Initially (t ∼< 107 years in this case), as predicted by the
virial theorem, the interior heats up. When the central pressure rises above
several Mbar, the gravitational energy lost due to the contraction is mostly
used to increase the pressure of the degenerate electrons. The luminosity is
then mostly due to the planet’s cooling.

As discussed previously, due to the strong stellar irradiation, the only pos-
sibility for the interior to cool is through the growth of a radiative zone, as
evidenced by the dashed region in Fig. 34. This region is almost isothermal. In

Fig. 34. Evolution of HD209458b using a “cold” atmospheric boundary condition
(see text). The evolution of the central pressure with time is shown as the bottom
thick line. The planet is convective except for an upper radiative zone indicated by
a hashed area. Isotherms from 4000 to 20 000K are indicated. The isotherms not
labeled correspond to 3500, 30 000 and 40 000K. The dashed line indicates the time
necessary to contract the planet to a radius of 1.35RJ. [From Guillot and Showman
(2002)]
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Fig. 35. Evolution of the radius of a solar composition 0.69MJ planet with T�� =
1400K. The plain lines correspond to standard evolution models with the “hot”
(larger radii) and “cold” (smaller radii) atmospheric boundary condition. The dotted
curve corresponds to an evolution calculation with dissipation, and in the “cold”
case. The box indicates inferred radii and ages of HD209458b. [Adapted from Guillot
and Showman (2002)]

these calculations, Guillot and Showman (2002) used opacities from Alexan-
der and Ferguson (1994). These opacities do not include the presence of alkali
metals, but they include the presence of grains. Other opacity tables includ-
ing alkali metals and grain settling should be used, but are expected not to
significantly alter the results.

Reproducing the Radius of HD209458b

Of course, an evident constraint to the model calculations is the photometrical-
ly-measured radius of HD209458b. Figure 35 shows how the radius of a 0.69MJ

solar-composition object with T�� = 1400K is found to vary with time, de-
pending on several assumptions. The plain curve indicating the largest radii
corresponds to a model calculation with the standard (“hot”) atmospheric
boundary condition (Burrows et al. 2000b). This “hot” model thus appears
to reproduce satisfactorily the measured radius.

However, Fig. 35 shows that a model calculated with a more realistic
(“cold”) atmospheric boundary condition fails to reproduce the observations7.
The problem becomes even more severe if one accounts for the presence of a
7 Note that, as can be seen from Fig. 33, the characteristic time of contraction of
an irradiated planet cannot be made arbitrarily small by an increase of the initial
radius. One therefore has to start the calculation from a finite initial time step,
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dense core (Bodenheimer et al. 2001). Of course, a slower evolution can be
found if one assumes a larger mass, or higher interior opacities, but it appears
very difficult to obtain a fair match to the observations that way.

Instead, Bodenheimer et al. (2001) and Guillot and Showman (2002) pro-
pose that energy is dissipated by stellar tides and contributes to the energy
budget in the atmosphere. In this case the equation of energy conservation in
the planetary interior (7) is calculated using ε̇ > 0. The dotted line in Fig. 35
corresponds to the dissipation of Ė ≡

∫
ε̇dm = 1.8× 1026 erg s−1 (which cor-

responds to less than 0.1% of the globally-averaged absorbed stellar heat flux)
at the planet’s center. In that case, one finds that the evolution is very similar
to that of stars: an equilibrium is found, in which the planet’s evolution is
effectively halted, as long as the star dissipates its energy into the planet.

Other cases corresponding to dissipation in external regions are also calcu-
lated by Guillot and Showman (2002) but are not shown here. It is sufficient
to mention that a dissipation of a small fraction (1% or less) of the stellar
photons to deeper levels than by radiative transfer is sufficient to explain the
measured radius.

Survival of Pegasi Planets

The radii predicted by models (Guillot et al. 1996) and the one measured for
HD209458b (Brown et al. 2001) both point to a relatively modest inflation
(∼50%) of Pegasi planets as compared to Jupiter (see Fig. 25). This point is
crucial for the survival of these objects so close to their star.

A first important consequence is that they do not suffer from Roche lobe
overflows (see Fig. 33). Were it the case, the planets would be very rapidly lost
due to the mass–radius relation implying an increase of radius for decreasing
mass.

However, mass loss is expected to proceed simply through the escape of
chemical species from the planets’ exospheres. This happens when a particle
acquires a velocity larger than the planet’s escape speed. This can occur either
by the escape of particles in the tail of the Maxwell–Boltzmann velocity dis-
tribution (thermal escape) or because of the production of hot ions by stellar
ultraviolet radiation (non-thermal escape).

Thermal escape is difficult to estimate because the temperature of the
exosphere is unknown. One possibility is that it could be limited by the ion-
ization of H atoms near 10,000K. Even in this relatively hot case, it is found
to yield a relatively small evaporation of the planet. Non-thermal escape is
generally found to be more significant. Extrapolating results for Jupiter for
a 104 higher flux of photons, Guillot et al. (1996) find that a gas giant at

which strongly depends on the surface boundary temperature. In the hot case,
this initial time step is larger than in the cold case. This is why the two evolution
curves do not appear to have started from the same initial condition.
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0.05AU from a solar-type star with a mass of a 1MJ would loose ∼1034 hy-
drogen atoms per second. Only ∼0.5% of its mass would be lost over the main
sequence lifetime of the star. Lin et al. (1996) also reach a similar conclusion.

Very recent observations by Vidal-Madjar et al. (2003) tend to con-
firm these estimates. Using HST observations, these authors observe that
HD209458b appears much bigger when observed in Lyman α than at other
wavelengths. They interpret this finding by the presence of escaping hydrogen
atoms, and infer a minimum escape flux of around 1010 g s−1. This is, coinci-
dentally or not, almost exactly what was predicted in 1996 (∼1.7×1010 g s−1).

Pegasi planets thus appear to be able to survive their proximity to their
parent star, even if they are made of hydrogen and helium. In the case of
planets made of denser material, the situation would be of course more com-
fortable. However, I stress that only rough estimates of this important problem
have been made so far. Our best argument to decide that gas giant survive
very close to their star is that they are observed to be there!

9.3 Tidal Effects

One of the specificity of Pegasi planets is that most of them have circular
orbits. This indicates that tides raised by the planet on the star acted to
strongly damp the planets’ orbital eccentricities. The other specificity is that
the tides raised by the star on the planet are expected to rapidly drive them
into synchronous rotation (Guillot et al. 1996; Marcy et al. 1997; Lubow et al.
1997). This can be shown by considering the time scale to tidally despin the
planet (Goldreich and Soter 1966; Hubbard 1984):

τsyn ≈ Q

(
R3

GM

)
(ω − ωs)

(
M

M?

)2 ( a
R

)6
, (157)

where Q, R, M , a, ω and ωs are the planet’s tidal dissipation factor, radius,
mass, orbital semi-major axis, rotational angular velocity, and synchronous
(or orbital) angular velocity. M∗ is the star’s mass. Factors of order unity
have been omitted. A numerical estimate for HD209458b (with ω equal to the
current Jovian rotation rate) yields a spindown time τsyn ∼ 3Q years. Any rea-
sonable dissipation factor Q (see Marcy et al. 1997; Lubow et al. 1997) shows
that HD209458b should be led to synchronous rotation in less than a few mil-
lion years, i.e. on a time scale much shorter than the evolution timescale. Like
other Pegasi planets, HD209458b is therefore expected to be in synchronous
rotation with its 3.5-day orbital period.

Nevertheless, stellar heating drives the atmosphere away from synchronous
rotation, raising the possibility that the interior’s rotation state is not fully
synchronous. Here, I discuss (1) the energies associated with the planet’s initial
transient spindown, and (2) the possible equilibrium states that could exist
at present.
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Spindown Energies

Angular momentum conservation requires that as the planet spins down, the
orbit expands. The energy dissipated during the spindown process is the dif-
ference between the loss in spin kinetic energy and the gain in orbital energy:

Ė = − d

dt

(
1
2
k2MR2ω2 − 1

2
Ma2ω2

s

)
, (158)

where k is the dimensionless radius of gyration (k2 = I/MR2, I being the
planet’s moment of inertia). The orbital energy is the sum of the potential
gravitational energy and of the kinetic energy of the planet on its orbit and is
hence negative by convention. The conservation of angular momentum implies
that the rate of change of ωs is constrained by that on ω:

d

dt

(
Ma2ωs + k2MR2ω

)
= 0 . (159)

The fact that the planetary radius changes with time may slightly affect the
quantitative results. However, since τsyn appears to be so short, it can be safely
neglected in this first order estimate. R being held constant, it is straightfor-
ward to show, using Kepler’s third law, that:

Ė = −k2MR2(ω − ωs)ω̇ . (160)

The total energy dissipated is E ≈ k2MR2(ωs−ω)2/2, neglecting variation
of the orbital distance. Using the moment of inertia and initial rotation rate
of Jupiter (k2 = 0.26 and ω = 1.74 × 10−4 s−1), we obtain for HD209458b
E ≈ 4×1041 erg. If this energy was dissipated evenly in the planet, this would
correspond to a global increase of the temperature of the planet of 1400K.

By definition of the synchronization timescale, the dissipation rate can be
written:

Ė =
k2MR2(ω − ωs)2

τsyn
. (161)

With Q = 105, a value commonly used for Jupiter, τsyn ∼ 3 × 105 years and
the dissipation rate is then ∼1029 erg s−1, or 35,000 times Jupiter’s intrinsic
luminosity. Lubow et al. (1997) have suggested that dissipation in the radiative
zone could yield lower values of Q before spindown has occurred; if so, the
initial energy deposition rate could be as large as 10−2 L� = 2× 1031 erg s−1,
but this would last for only ∼100 years.

The thermal pulse associated with the initial spindown is large enough
that, if the energy is dissipated in the planet’s interior, it may affect the
planet’s radius. It has previously been argued (Burrows et al. 2000b) that
Pegasi planets must have migrated inward during their first 107 years of evolu-
tion; otherwise, they would have contracted too much to explain the observed
radius of HD209458b. But the thermal pulse associated with spindown was
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not included in the calculation, and this extra energy source may allow later
migration to be consistent with HD209458b’s radius. Unfortunately, therefore,
it may be difficult to derive constraints on the migration time scale from radii
measurements.

On the other hand, it seems difficult to invoke tidal synchronization as the
missing heat source necessary to explain HD209458b’s present radius. High
dissipation rates are possible if τsyn is small, but Ė would drop as soon as
t > τsyn in the absence of a mechanism to prevent synchronization. The most
efficient way of slowing the contraction of Pegasi planets would then be to
invoke τsyn ∼ 1010 years. In that case, the energy dissipated becomes Ė ∼
1024 erg s−1, i.e. at least two orders of magnitude smaller than that necessary
to significantly affect the planet’s evolution. Dissipation of the energy due
to transient loss of the planet’s initial spin energy is therefore unlikely to be
an substantial-enough source of present-day heating to explain the radius of
HD209458b.

Another possible source of energy is through circularization of the orbit.
Bodenheimer et al. (2001) show that the resulting energy dissipation could
reach 1026 erg s−1 if the planet’s tidal Q is 106 and if a hypothetical com-
panion planet pumps HD209458b’s eccentricity to values near its current ob-
servational upper limit of 0.04. If such a companion is absent, however, the
orbital circularization time is ∼108 years, so this source of heating would be
negligible at present. Longer circularization times of 109–1010 years would
allow the heating to occur until the present-day, but its magnitude is then
reduced to 1025 erg s−1 or lower, which is an order of magnitude smaller than
the dissipation required.

The Equilibrium State

The existence of atmospheric winds implies that the atmosphere is not syn-
chronously rotating. Because dynamics can transport angular momentum ver-
tically and horizontally (including the possibility of downward transport into
the interior), the interior may evolve to an equilibrium rotation state that is
asynchronous.

Let us split the planet into an “atmosphere”, a part of small mass for
which thermal effects are significant, and an “interior” encompassing most of
the mass which has minimal horizontal thermal contrasts. Suppose (since τsyn
is short) that the system has reached steady state. The two possible cases are
illustrated by Fig. 36 and depend on the physical mechanisms that determine
the gravitational torque caused on the atmosphere (see Showman and Guillot
2002 for a more detailed discussion).

A simple estimate illustrates the extent of nonsynchronous rotation pos-
sible in the interior. Suppose that the globally-averaged flux of absorbed
starlight is F��, which is of order 108 erg s−1 cm−2 for Pegasi planets near
0.05 AU, and that the globally-averaged flux of kinetic energy transported
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Fig. 36. Angular momentum flow between orbit, interior, and atmosphere for a
Pegasi planet in steady state. Arrows indicate flow of prograde angular momentum
(i.e., that with the same sign as the orbital angular momentum) for two cases: An-
ticlockwise: Gravitational torque on atmosphere is retrograde (i.e., adds westward
angular momentum to atmosphere). For torque balance, the gravitational torque
on the interior must be prograde (i.e., eastward). These gravitational torques must
be balanced by fluid-dynamical torques that transport retrograde angular momen-
tum from atmosphere to interior. Clockwise: Gravitational torque on atmosphere
is prograde, implying a retrograde torque on the interior and downward transport
of prograde angular momentum from atmosphere to interior. Atmosphere will su-
perrotate if gravitational torques push atmosphere away from synchronous (as on
Venus). It will subrotate if gravitational torques synchronize the atmosphere (e.g.,
gravity-wave resonance)

from the atmosphere to the interior is ηF��, where η is small and dimension-
less. If this kinetic energy flux is balanced by dissipation in the interior with a
spindown timescale of τsyn, then the deviation of the rotation frequency from
synchronous is

ω − ωs =
(
4πηF��τsyn

k2M

)1/2

. (162)

Experience with planets in our solar system suggests that atmospheric kinetic
energy is generated at a flux of 10−2F��, and if all of this energy enters the
interior, then η ∼ 10−2. Using a spindown time of 3×105 years then implies ω−
ωs ∼ 2×10−5 s−1, which is comparable to the synchronous rotation frequency.
The implied winds in the interior are then of order ∼2000m s−1. Even if η is
only 10−4, the interior’s winds would be 200m s−1. The implication is that
the interior’s spin could be asynchronous by up to a factor of two, depending
on the efficiency of energy and momentum transport into the interior.

Any scenario involving different rotation rates of the atmosphere and inte-
rior inevitably leads to significant energy dissipation. Since we have considered
situations for which the system is in gravitational equilibrium, the energy as-
sociated with the flow is provided by the stellar photons. A fraction of the
absorbed stellar flux is therefore dissipated at levels other than what would be
predicted from radiative transfer. Depending on whether the energy is dissi-
pated at low pressures or deep in the interior, the consequences for the planet’s
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evolution are very different. If energy is dissipated in the high atmosphere, as
may be the case for gravity waves, the effect on the evolution will be small. If it
is dissipated in the interior, as in the case of a Kelvin–Helmoltz instability, this
could potentially be the dominant process governing the planet’s evolution.

9.4 Atmospheric Dynamics

I have so far implicitly assumed that Pegasi planets have uniform atmospheres.
Because of the strong inhomogeneous stellar irradiation, and the near-synch-
ronous rotation, this hypothesis is in fact probably very far from reality. The
consequences of the presence of day/night temperature variations for the evo-
lutions are found to affect only weakly the planet’s contraction (Guillot and
Showman 2002). Here, I analyse the consequences for the atmosphere of Pegasi
planets, on the basis of the articles by Guillot (2001) and Showman and Guil-
lot (2002).

Timescales

Temperature variations across planetary atmospheres are governed by the
time required for the atmosphere to absorb the stellar heat, to radiate its
heat to space, and by the characteristic advective time scales.

The radiative heating/cooling timescale can be estimated by a ratio be-
tween the thermal energy within a given layer and the layer’s net radiated flux.
In the absence of dynamics, absorbed solar fluxes balance the radiated flux,
but dynamics perturbs the temperature profile away from radiative equilib-
rium. Suppose the radiative equilibrium temperature at a particular location
is Trad and the actual temperature is Trad+∆T . The net flux radiated toward
outer space is then 4σT 3

rad∆T and the radiative timescale is

τrad ∼
P

g

cp
4σT 3

. (163)

This timescale is thus particularly dependent on the characteristic tem-
perature of the atmosphere. For our giant planets, T ∼ 200K, so that the
radiative timescale is long, i.e. about a year at 1 bar. This is to be compared,
e.g. to the rotation period, which is of the order of 10 hours for Jupiter and
Saturn. Their atmospheres are thus found to be relatively uniform. However,
as shown in Fig. 37, Pegasi planets have ten times hotter atmospheres, so that
τrad is of the order of 1 day at photospheric levels, to be compared with their
rotation period of ∼4 days.

The timescale for advection by winds is more difficult to estimate. Guillot
(2001) and Showman and Guillot (2002) use a shear instability criterion: as-
suming that the convective core is locked into synchronous rotation, they
assume that at upper levels winds build up with increasing altitude only if
they do not exceed the Kelvin–Helmholtz instability criterion (Chandrasekhar
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Fig. 37. Left: Characteristic time scales as a function of pressure level. τzonal is
the minimal horizontal advection time (dashed). τrad is the timescale necessary to
cool/heat a layer of pressure P and temperature T by radiation alone (solid). For
each case, the thin black and thick gray lines correspond to the “hot” and “cold”
models. Right: Approximate cooling/heating rate as a function of pressure. [From
Showman and Guillot (2002)]

1961), i.e. if:

Ri =
N2

(du/dz)2
>

1
4
, (164)

where Ri is the Richardson number, and N2 = (g/HP )(∇ad −∇T ) (N is the
Brünt–Vaisala frequency). This thus implies a constraint on the wind shear
du/dz. The resulting timescale is shown as dashed curves in Fig. 37, for both
the “cold” and “hot” cases.

At pressures exceeding 0.1 bar, radiation is slower than the maximal advec-
tion by zonal winds, but by less than one order of magnitude. The consequent
day/night temperature difference ∆Tday–night to be expected is:

∆Tday–night
∆Trad

∼ 1− e−τzonal/τrad , (165)

where∆Trad is the day–night difference in radiative equilibrium temperatures.
Rough estimates from Fig. 37 suggest that τzonal/τrad ∼ 0.3 at 1 bar, implying
that ∆Tday−night/∆Trad ∼0.3. If ∆Trad = 1000K, this would imply day-night
temperature differences of 300K at 1 bar. Values of ∆Tday−night even closer
to ∆Trad are likely given the fact that slower winds will lead to an even more
effective cooling on the night side and heating on the day side.
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The small radiative time scale implies that, for the day-night temperature
difference to be negligible near the planet’s photosphere, atmospheric winds
would have to be larger than the maximum winds for the onset of shear
instabilities.

Possible Circulation and Atmospheric Chemistry

As discussed by Showman and Guillot (2002), the intense stellar radiation is
expected to drive both zonal and meridional winds, but the atmospheric cir-
culation is unknown. However, they note that even if locked into synchronous
rotation, the atmospheres of Pegasi planets are characterized by relatively low
(∼0.1) Rossby numbers. This implies that the Coriolis force plays a very im-
portant role and that zonal circulation is favored over meridional circulation.

A preliminary numerical simulation with a global circulation model by
Showman and Guillot (2002) indicates that a fast superrotating equatorial jet
develops, and that the atmosphere is globally superrotating, a situation very
similar to that of Venus. This situation is depicted in Fig. 38. It is interesting

Fig. 38. Conjectured dynamical structure of Pegasi planets: At pressures larger than
100–800 bar, the intrinsic heat flux must be transported by convection. The convec-
tive core is at or near synchronous rotation with the star and has small latitudinal
and longitudinal temperature variations. At lower pressures a radiative envelope is
present. The top part of the atmosphere is penetrated by the stellar light on the day
side. The spatial variation in insolation should drive winds that transport heat from
the day side to the night side. [From Guillot (2001); Showman and Guillot (2002)]
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to notice that this kind of circulation pattern implies that the equator to pole
temperature variation is even more pronounced than the day to night one.

However, the consequences for cloud formation and chemistry in the at-
mospheres of Pegasi planets are still unclear. The solution to that problem
depends in fact on whether the heating/cooling is mostly balanced by vertical
motions (in which case clouds would tend to form at the substellar point, on
the day side), or by horizontal advection. The latter seems to be favored by
the simulations and it is instructive to discuss it further.

Let us assume that a superrotating wind advects air roughly on constant
pressure levels (negligible vertical advection). In that case, air is cooled on the
night side, then it is intensely heated on the day side. As a consequence, any
chemical species that condenses on the night side and forms clouds there will
evaporate on the day side. The night side should then be relatively cloudy,
while the day side would be clear (low albedo). But this circulation has another
very important consequence for atmospheric chemistry: most abundant species
that condense on the night side are, according to the estimates from Rossow
(1978), expected to settle down on short timescales (Guillot 2001). Because,
according to our hypothesis, the air is transported on isobars, when it reaches
the day side, the condensing species are undersaturated everywhere down to
the condensation level on the night side.

The magnitude of this effect can be estimated as follows: Let us assume
that on the day side, the saturation abundance of the condensing species,
x = p/P is maximal and equal to x? at P = P ?

day (the condensation level on
the day side). On the night side, the temperature is lower. Equations (137)
and (145) can be used to show that the abundance at saturation on the night
side becomes:

lnx(P ?
day) = lnx? − β ln(Tday/Tnight) . (166)

In order to reach condensation, i.e. x = x?, one has to penetrate deeper into
the atmosphere. Equation (146) implies that on the night side,

lnx(P ) = lnx(P ?
day) + (β∇T − 1) ln(P/P ?

day) , (167)

assuming that ∇T is constant. Using (166), one obtains the condensation
pressure on the night side:

P ?
night

P ?
day

=
(
Tday
Tnight

)β/(β∇T −1)

. (168)

Using β ∼ 10, ∇T ∼ 0.15 and Tday/Tnight ∼ 1.2, one finds P ?
night ∼ 38P ?

day, a
very significant variation of the condensation pressure. This implies that air
flowing on constant pressure levels around the planet would lead to a rapid
depletion of any condensing species on the day side, compared to what would
be predicted from chemical equilibrium calculations. This can potentially also
remove important absorbing gases from the day side, as in the case of TiO,
which can be removed by CaTiO3 condensation, or Na, removed by Na2S
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condensation (Lodders 1999). Of course, most of the variation depends on
the exponential factor β/(β∇T − 1), which is infinite in the limit when the
atmospheric temperature profile and the condensation profile are parallel to
each other. In the discussion, we implicitly assumed β∇T − 1 > 0; however,
when the atmosphere is close to an isotherm, this factor can become negative.
In this case the day/night effect is even more severe, as the condensing species
is entirely removed from this quasi-isothermal region.

The rapid circulation from the night side to the day side can also lead
to a disequilibrium chemistry for non-condensing species when the reaction
timescales are longer than the advection timescale (∼ a day). This is for
example the case of the N2 to NH3 reaction in Gl229B (Saumon et al. 2000b),
but many other chemical species should be affected.

Observational Consequences

The structure and evolution of Pegasi planets is much more complex than
envisioned when these planets were first discovered. The possibility of dis-
sipation by stellar tides is interesting because it will be directly tested by
observations and because this phenomenon is poorly understood even for the
planets of our solar system. However, the drawback is that it should be more
difficult to infer the planets’ global compositions from radii measurements, as
first suggested (Guillot 1999b).

However, our understanding of these objects should be greatly increased
by the numerous direct or indirect observations that are now possible. With
several ground programs (STARE, VULCAN) and space missions (COROT,
MONS, MOST, KEPLER, EDDINGTON) aiming at detecting photometric
transits of Pegasi planets, there is indeed a good chance that statistically sig-
nificant information on e.g. the mass radius relationship of Pegasi planets can
be gathered.

Measurement of starlight reflected from these planets may allow the albedo
to be estimated. Because the star–planet–Earth angle changes throughout
the planet’s orbit, crude information on the scattering properties of the at-
mosphere (e.g., isotropic versus forward scattering) may be obtainable. Asym-
metries in the reflected flux as the planet approaches and recedes from the
transit could give information on the differences of albedo near the leading and
trailing terminators, which would help constrain the dynamics. Finally, tran-
sit observations of Pegasi planets using high resolution spectroscopy should in
the near future yield constraints on the atmospheric temperature, cloud/haze
abundance, and winds (Seager and Sasselov 2000; Brown 2001; Hubbard et al.
2001). If these measurements are possible during the ingress and egress, i.e.,
the phases during which the planets enters and leaves the stellar limb, re-
spectively, asymmetries of the planetary signal should be expected and would
indicate zonal heat advection at the terminator.
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Protostellar Disks and Planet Formation

P. Cassen

1 Introduction

The idea that the planets of the Solar System formed from a “protoplanetary
disk” of material swirling about the primitive Sun follows naturally from the
observation that the planetary orbital angular momentum vectors are nearly
aligned with each other and that of the Sun itself. The existence of such a
progenitor disk was implicit in the ideas of Descartes, and has been a common
feature of scientific attempts to explain the systematic aspects of the Solar
System since then. A corollary of these “nebular” theories is that planetary
systems are an ordinary consequence of star formation. Modern astronomy
has confirmed the essential aspects of the hypothesis by revealing the common
existence of planets around other stars, and disks around young stars.

But the idea that planets form from circumstellar disks carries the further
implication that the properties of planetary systems are somehow related to
those of their parent disks; that is, an understanding of disk evolution leads
naturally to an understanding of the nature of the resultant planetary system.
Certainly this premise has been adopted in much of the theoretical work on
the formation of the Solar System; indeed, it is the basis upon which much
of the content of these lectures is organized. It may be, however, that nature
contrives to obscure the conditions of planetary formation to the extent that
the disk-planetary system connection is no longer recognizable, at least in
some cases. We will discuss some lines of theoretical argument which suggest
that this is the case. Certainly the dynamical properties of the extrasolar
planetary objects discovered so far are not obviously associated with specific
disk properties, or even a disk origin, despite the overwhelming circumstantial
evidence that they must have formed from disks. It remains to be seen to
what degree these bodies, or the Solar System, are representative of planetary
systems in general.

Whether or not the particular properties of a protostellar disk are eventu-
ally reflected in the properties of a planetary system, the disk origin of planets
is on firm ground. Furthermore, disks are complex and interesting objects in
Cassen P (2006), Protostellar disks and planet formation. In: Mayor M, Queloz D, Udry S
and Benz W (eds) Extrasolar planets. Saas-Fee Adv Courses vol 31, pp 369–448
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their own right. Thus the first half of these lectures are devoted to methods
of elucidating their properties. The second half deals with theories of planet
formation. The literature on these subjects is enormous, so my choice of spe-
cific subjects to be treated, as well as the references supplied, are somewhat
subjective. I have tried to tie arguments to first principles wherever possi-
ble, although references must be relied upon for many details. Inevitably, the
derivations of some results are too cumbersome for inclusion here, in which
cases the reader is directed to the appropriate references.

2 Observations of Protostellar Disks

2.1 T Tauri Stars

Most of what we know about protostellar disks is derived from observations
of T Tauri stars. These are pre-main sequence stars of spectral class G, K
and M, originally identified by their observational characteristics: prominent
Balmer emission lines, excess ultraviolet (UV) and infrared (IR) emission,
variability and evidence for outflows. It is now known that the defining emis-
sion characteristics of T Tauri stars are due to the presence of circumstellar
accretion disks. Lynden-Bell and Pringle (1974) identified the source of IR
radiation as dissipation within the disk, due to angular momentum transport
and the release of gravitational energy, as material is fed through the disk to
the star. The UV radiation was attributed to gas heated to high temperatures
by dissipation in a narrow boundary layer between the (rapidly rotating) in-
ner edge of the disk and the surface of the (slowly rotating) star. It turns
out that starlight shining on the disk, which is absorbed and re-emitted at
longer wavelengths, also contributes substantially to the IR radiation. Also,
there is evidence that the UV radiation is due to disk material falling onto
the star along stellar magnetic flux tubes, rather than through the viscous
boundary layer imagined by Lynden-Bell and Pringle (1974). Nevertheless,
the theory developed by these authors (and their predecessor, (Lüst 1952))
forms the basis of the current understanding of protostellar disks, and cor-
rectly describes the continuum spectrum a T Tauri star in terms of several
components (see Fig. 1): the nearly blackbody radiation from the star itself;
a broad IR component from the optically thick part of the disk; microwave
(submillimeter-to-millimeter) emission from the more distant, optically thin,
parts of the disk; and an optical and UV component from hot gas transferred
from the disk to the star.

Figure 2 shows the Hertzprung–Russellure (H–R) diagram for classical T
Tauri stars and “weak-line” T Tauri stars (WTTS; premain sequence stars
without evidence for disks) in the Taurus–Auriga star-forming region, along
with theoretically derived pre-main sequence evolutionary tracks and their
isochrons. Note that although some disks apparently last as long as 107 years,
they appear to be gone by the time a star reaches the main sequence. Also,
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Fig. 1. Accreation disk theory predicts that the continuum spectrum of a pre-
main sequence star and disk (thick solid line) is the sum of three components: the
nearly blackbody radiation from the star (thin solid line), a broad component from
the disk (short dashed line),and a blackbody-like component from hot gas being
accreted from the disk to the star (long dashed line)

there are some stars that appear to be quite young and yet show no evidence
for disks. These stars are of particular interest: either disks never formed;
they did form, but were rapidly dissipated; or they rapidly became invisible
because the dust in them coagulated to form larger objects (e.g., planets)
which are not detected by standard means. These young “weak-line” T Tauri
stars deserve more systematic study than they have so far received.

2.2 Interpretation of T Tauri Spectral Energy Distributions

An array of observational methodologies are now used to probe the proper-
ties of protostellar disks. High-resolution spectroscopy, optical and near-IR
imaging, microwave interferometry (reviewed in chapters of Protostars and
Planets IV ) have all yielded fascinating, detailed information on individual
objects. So far, however, the most general information has come from the
determination of the spectral energy distributions (SEDs) of a large number
star/disk systems, by multiwavelength photometry. The SED is defined as the
quantity λFλ (λ), where Fλ is the measured flux per unit wavelength λ [or
equivalently, in terms of frequency, ν Fν(ν)]. The SED constrains the trends
of several properties potentially important for planet formation: disk mass,
temperature, accretion rate, lifetime and the degree to which solid particles
have coagulated. Therefore, in the remainder of this section, we concentrate
on the basics of interpreting SEDs, with an emphasis on the derivation of
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Fig. 2. Positions on the H–R diagram of classical T Tauri stars (filled circles) and
“weak-line” T Tauri stars (open circles) for stars in the Taurus–Auriga star-forming
region. The solid lines are theoretical evolutionary tracks, labeled by mass in units
of M�, from D’Antona and Mazzitelli (1994) The dashed lines are isochrons, corre-
sponding to (from the top down): 105, 106, 3×106, 107 and 3×107 years, respectively.
The dot-dash line is a theoretical upper limit pre-main sequence locations in the di-
agram (Stahler 1983). (Figure from Kenyon and Hartmann 1985)

fundamental relationships and the approximations commonly employed to
obtain useful estimates of disk properties.
We start with some concepts from basic radiative transfer theory (Mihalas

1978). Define the specific intensity Iν , to be the radiant energy dE flowing
in direction k through an area dA (with normal in direction n), in time dt,
frequency interval dν and solid angle dΩ:

dE = Iνk · ndAdνdΩ .

Then the flux vector is defined to be the moment

Fν =
∫
Iνk dΩ .

Thus the flux component Fν , coming from a protostellar disk and passing into
a telescope pointed at the disk is given by

Fν =
∫
(2πrdr)

cos θ
d2

Iν ,
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where the integral is to be taken over all disk radii. Interpretation of the
measurement of Fν therefore requires that the quantity Iν be understood
in terms of disk properties. Now the significance of Iν is that it obeys a
conservation law of the form

∂Iν
∂t

+ ck · ∇Iν = sources + sinks . (1)

The first term on the left is negligible in cases where changes in the source and
intervening medium are slow compared to the light travel time. In a vacuum,
the right hand side is zero. In the presence of matter, the source and sink
terms are expressed as

sources =
Zεν
4π

+ (scattering terms)

sinks = ZκνIν + (scattering terms) ,

where Z is the material mass density, εν is the emissivity/mass and κν is the
absorption opacity (the latter two being wavelength-dependent). The scat-
tering terms quantify the amount of radiation scattered into and out of the
relevant direction and wavelength interval, and we assume them to be unim-
portant for the present purposes. In the case of local thermodynamic equi-
librium (LTE), in which the radiative state of material is defined solely by
its temperature, the relationship εν = 4πκνBν(T ) holds, where Bν(T ) is the
Planck function:

Bν(T ) =
2hν3/c3

e hν/kT − 1
.

Thus, (1) can be written

dIν
dτν

+ Iν = Sν , (2)

where

τν =
∫ S

0

Zκν ds′

is the optical depth along the ray path length s, and the source function Sν
is given by

Sν =
ε

4πκν
= Bν(T ) .

The last equality holds for LTE. Equation (1) has the formal solution

Iν(τν) = Iν(0)e−τν +
∫ τν

0

Bν(T ) exp [− (τν − τ ′ν)] dτ ′ν .



374 P. Cassen

For the radiating disk, we can measure the optical depth along the normal
to the disk (τν⊥) and from the midplane, in which case Iν(0) = 0 and τν =
τν⊥/ cos θ. If Bν(T ) was independent of τν , the integral would yield

Iν = Bν(T ) (1− exp (−τν⊥/ cos θ))

and

Fν =
∫

(2πr dr)
cos θ
d2

Bν(T )
(
1− exp

(
−τν⊥/ cos θ

))
. (3)

Beckwith et al. (1990) used this expression to derive estimates of disk
masses and temperature distributions from the SEDs of about 40 T Tauri
stars, as described below. Of course the function Bν(T ) is generally not inde-
pendent of τν , so (3) represents an approximation. The approximation, how-
ever, does make sense in the limits of large and small disk optical depth, as
long as care is taken in the interpretation of the value of the temperature T
in Bν(T ).

The inner parts of protostellar disks are usually optically thick, even at
far IR and millimeter wavelengths. For those regions, the exponential term in
(3) can be neglected, and T is clearly to be regarded as a photospheric, or
effective radiating temperature, Te. If one represents its radial distribution as
a power law, Te = Teo (r/ro)

−q, a transformation of the variable of integration
leads to

νFν = A (Teo) ν4−
2
q

(
cosθ

d2

)∫
xdx

exp (xq)− 1
.

Thus the slope and magnitude of the SED (the latter modulated by the incli-
nation and distance to the disk) correspond to a particular power law effective
temperature distribution.

Simple theoretical arguments led to the expectation that the value of q
would be 3/4. First, the power radiated by an accretion disk at any distance
was expected to scale as the radial mass flux through an annulus of the disk,
times the gravitational energy per unit mass of the annulus. The expression
of this power in terms of an effective temperature yields

2 (2πrdr)σT 4
e ∝ Ṁdd

(
−GM

2r

)
= Ṁd

GM

2r2
dr

or T 4
e ∝ r−3/4. (This expression turns out to be correct, except for the constant

of proportionality; see Sect. 3.1)Second, stellar radiation impinging on a flat,
optically thick disk would be absorbed and re-radiated at a temperature T ′

e

according to

T ′4
e = T 4

∗

(
r∗
r

)2

sinα ≈ T 4
∗

(
r∗
r

)2(
r∗
r

)
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(where α is the angle upon which starlight impinges the disk), which again
implies T ′4

e ∝ r−3/4. In fact, Beckwith et al. (1990) found q to be greater than
3/4 (Figs.3 and 4), with the most frequent value being close to 1/2, which cor-
responds to a flat SED in the IR. This observation led to the development of
more sophisticated models of disk thermal structure than provided by the sim-
ple arguments given above. It was recognized, for instance, that if the surface

Fig. 3. Histogram of disk temperatures at 1 AU inferred by modeling SEDs, for a
sample of T Tauri stars. (Figure from Beckwith et al. 1990)

Fig. 4. Histogram of disk temperature power law indices, q, inferred from SEDs, for
a sample of T Tauri stars. Most values of q are less than that predicted for accretion
or reprocessing from a flat disk, which indicates that SEDs are generally flatter than
predicted by the simplest models. (Figure from Beckwith et al. 1990)
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of the disk flared upwards with distance from the star, proportionally more
stellar radiation would be absorbed and re-emitted at larger distances, which
would produce a flatter SED in the IR (Kenyon and Hartmann 1985). In par-
ticular, Chiang and Goldreich (1997) analyzed the two-layer model illustrated
in Fig. 5.

Dust particles in the upper layer of the disk absorb stellar radiation and
emit IR radiation, both outward to space and downward, toward the disk
midplane. Because they are smaller than IR wavelengths (≤ 1µm), the par-
ticles are inefficient emitters and must become superheated (relative to the
gas) in order to attain thermal equilibrium with the radiation they absorb.
The lower layers of the disk are heated by the radiation from the dust.
The vertical extent of the disk is determined by a balance between pres-
sure and the vertical component of stellar gravity at every radius. In this
model, the net effect of this balance is that the thickness of the disk increases
faster than linearly with radius, i.e., it flares upward. Both the superheat-
ing of the dust and the flaring contribute to flattening the SED relative to
that which would correspond to T ′

e ∝ r−3/4, as shown in Fig. 6. The es-
sential features of the Chiang and Goldreich (1997) model are evident in
the results of D’Alessio et al. (2001), who analyzed disk structure in much
greater detail. This work shows that heating by stellar radiation is the pri-
mary determinate of Te (r) beyond a few AU, and therefore of the slope of
the SED at IR and submillimeter wavelengths. Within a few AU, internal

Fig. 5. The two-layer disk model of Chiang and Goldreich (1997), used to explain
the flat continuum spectrum of many pre-main stars. Stellar radiation, incident
on the disk at distance a, height H, and angle α, is absorbed by dust within one
(visible wavelength) optical depth along its path into the upper layers of the disk.
The radiation is re-emitted at infrared wavelengths, outward to space and inward
toward the midplane. Because the dust particles are too small to be efficient radiators
in the infrared, their temperature Tds exceeds that of the surrounding gas, and
the temperature Ti of the interior dust (which absorbs and emits the IR radiation
from the upper layers with equal efficiency). (Figure from Chiang and Goldreich
1997)
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Fig. 6. A fit to the SED of the T Tauri star GM Aur, using the two-layer model.
(The SED here is plotted as a function of frequency, with wavelength along the top.
Astronomers differ in their preferences of independent variable.) The contribution of
the hot surface dust layer dominates throughout the IR, falling below that from the
interior only at wavelengths long enough for the disk to be optically thin. (Figure
from Chiang and Goldreich 1997)

dissipation associated with disk accretion is important for determining the
thermal structure.

At wavelengths where large parts of the disk are optically thin (typically,
λ > 1 millimeter), (3) may be written

Fν =
1
d2

∫
(2πr dr)

2ν2kT
c2

Σ(r)κν .

The quantity Σ(r) is the surface density. To obtain this expression, the expo-
nential was approximated in the limit of τν⊥ << 1, the Planck function was
approximated by the Rayleigh–Jeans form Bν ≈ 2ν2kT/c2, and the substitu-
tion τν⊥ = Σ(r)κν was made. In protostellar disks, as in the cool interstellar
medium, the opacity is determined essentially by the size and composition
of dust. Except near resonant absorptions, it can be expressed as a power of
frequency, κν = κ0(ν/ν0)

β , in which case

νFν =
A

d2
ν3+βκ0

∫
(2πr dr)T (r)Σ (r) .

The quantity A is a known constant. In principle, β can be determined by
observations alone, through measurements of the same system at different fre-
quencies. The integral then represents a “temperature-weighted” disk mass.
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Beckwith et al. (1990) constructed composite models of the SEDs of stars ob-
served at 1.3 and 2.7 mm, by combining their radio data with ground-based
optical photometry and IR measurements obtained by the Infrared Astronom-
ical Satellite, and so obtained the disk mass estimates shown in Fig. 7. The
masses are mainly in the range 10−3–10−1 M�, and so are typically within
an order of magnitude of the minimum mass inferred for the primitive solar
nebula, 10−2 M� (Weidenschilling 1977). The lack of correlation of disk mass
with age is not understood, but may reflect the fact that it is really dust that
is being observed, and the mass of dust present in a system could be the fluc-
tuating result of a residual interstellar component, loss by coagulation, and
production by collision and fragmentation of larger bodies.

Fig. 7. Histograms of disk masses (measured in M�) inferred by modeling SEDs,
for a sample of T Tauri stars. The upper panel is that deduced directly from the
data; the lower panel is an inferred distribution which accounts for sampling bias.
Values of disk masses are subject to uncertainties associated with dust emissivity
and abundance. (Figure from Beckwith et al. 1990)
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The exponent β is expected to lie in the range 0 < β < 2, with the smaller
values favored as particles grow. Comparisons of observed values of β and
κ0 with laboratory measurements and theoretical calculations of absorptivity
should then yield information on particle growth in disks (?). There is, in fact,
evidence from multiwavelength imaging and SED fits (D’Alessio et al. 2001;
Throop et al. 2001) that particle growth to mm-sized pebbles is observed, but
compelling, quantitative results are difficult to obtain because of ambiguities
in the modeling; see Beckwith et al. (2000) for a discussion.

2.3 Accretion Rates of Protostellar Disks

The accretion rate of a protostellar disk is an important quantity because
it determines the amount of energy released within the disk, which is the
primary determinant of midplane temperatures in optically thick parts of the
disk. Optical and UV radiation provide better diagnostics of accretion rates
than IR radiation, because the latter tends to be dominated by reprocessing
of stellar emission. Figure 8 shows a comparison between the optical spectrum
of the T Tauri star BP Tau and the WTTS LkCa7. The notable features
of the BP Tau spectrum are the excess emission at shorter wavelengths, the
prominent Balmer lines (at 4861, 4340, 4101 Å...; Hα at 6563 Å not shown),

Fig. 8. Optical spectra of the T Tauri star BP Tau (solid) and the weak-line T
Tauri star LkCa7 (dotted). The BP Tau spectrum exhibits excess emission at short
wavelengths, prominent Balmer lines and the narrower absorption lines, features
which are typical of stars with disks. They are explained by the accretion of hot,
infalling gas onto the star. The normal, pre-main sequence photosphere of LkCa7
indicates that this star is not undergoing accretion; its lack of IR excess indicates
that it has no disk. (Figure from Hartmann 1998)
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and the narrower absorption lines. These features are typical of T Tauri stars,
and are attributed to the presence of hot (several thousand K) gas, overlying
a normal, pre-main sequence photosphere, such as that of LkCa7. There is
evidence that the hot gas is produced by infalling material, channeled along
stellar magnetic field lines, from the inner edge of the accretion disk to the
surface of the star (Hartmann 1998).

Gullbring et al. (1998) and Calvet and Gullbring (1998) have derived ac-
cretion rates for T Tauri stars based on this concept. They assume that the
two components (photosphere and hot, infalling gas) contribute to the optical
spectrum, so the observed optical and UV luminosity Lobs = Lphotosphere +
Laccretion. The excess continuum emission due to accretion is determined by
the subtraction of a “template” spectrum provided by a WTTS of the same
spectral type, by the method described by Hartigan et al. (1998). Special
procedures must be used to account properly for extinction and UV emission
which cannot be observed from the ground. Accretion is then modeled as a
one-dimensional flow from a distance Ri (the inner edge of the disk, typically
several stellar radii) down a magnetic flux tube which intersects some frac-
tion f of the stellar surface (Fig. 9). The inflow becomes supersonic, and must
therefore pass through a shock before hitting the star.

The accretion rate is given by

Ṁd = Z
(
4πr2∗f

)
νs ,

where νs and Z are the gas velocity and density at the shock. The former is
taken to be the free-fall velocity from Ri:

ν2s =
2GM∗
r∗

(
1− r∗

Ri

)
.

The density is determined by the assumption that the shock location occurs
at optical depth unity above the star, where pressure balance between the
stellar atmosphere and the inflow requires:

ps =
1
2
Zν2s = g∗Σs = g∗

τ

κ
.

Here g∗ is the stellar gravity, Σs is the surface density of the shock layer, κ is
the mean opacity and the optical depth τ = 1. Thus, for knownM∗, r∗, g∗, Ri

and κ, the flux of energy from the accretion column can be calculated:

Faccretion =
(
1
2
Zν2s

)
νs .

The total accretion luminosity is

Laccretion =
(
4πr2∗f

)
Faccretion ,

which then, in principle, determines f . Comparisons of calculated spectra
with excess emission determined from observations, and corresponding values
of Faccretion and f , are shown in Fig. 10. An important result is that accretion
apparently occurs on only 1% or less of the stellar surface.
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Fig. 9. Accretion rates can be obtained from models in which it is assumed that gas
from the inner edge of the disk falls onto the star along stellar magnetic flux tubes.
Optically thin gas, flowing supersonically toward the star, passes through a shock
wave near the stellar surface. Radiation from the shocked gas heats both the stellar
photosphere and the infalling gas above it, which produce excess UV and optical
radiation and the characteristic emission features of accreting stars

Accretion rates determined by these methods are shown as a function of
stellar age in Fig. 11. Note that a typical accretion rate of 10−8 M�/year is
consistent with a disk mass of 10−2 M� for a million year old disk. Note also
that active (accreting) disks last for many thousands of dynamical (rotation)
periods; thus disk evolution is gradual and the processes that cause it are
subtle.

2.4 Internal Temperatures of Protostellar Disks

Temperatures within protostellar disks are not directly observable because
most disks are optically thick within a few AU of the star, even at long
(λ ≥ 1mm) wavelengths. Therefore, some model of the vertical structure,
like those referred to above, must be constructed to relate the observed sur-
face fluxes to the internal state. A key parameter in such a model is the rate
of energy dissipation within the disk, which is related to the accretion rate,
as described below in Sect. 1.3.1. Midplane temperatures for disks around T
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Fig. 10. Comparisons of calculated continuum spectra (thick line) with excess emis-
sion determined from observations, for a sample of T Tauri stars. Values of Faccretion
and f determined from the model illustrated in Fig. 10 are given. Note that f ≤ 0.1;
that is, accretion apparently occurs on only 1% or less of the stellar surface. (Figure
from Calvet and Gullbring 1998)

Tauri stars were estimated by Woolum and Cassen (1999), by combining the
results described above for disk surface temperatures, masses and accretion
rates, with a simple model based on radiative transport through a plane-
parallel atmosphere. The observed IR flux was treated as the sum of that due
to internally released accretion energy and a reprocessed stellar component.
In optically thick parts of the disk, the former largely controls the midplane
temperature, while the latter dominates the observed flux. They concluded
that midplane temperatures at 1 AU are mainly in the range 200–800K, for
disks with ages of about 1 million years. At the low pressures in these disks
(< 10−3bars), H2O would exist as vapor within a few AU of the star (wher-
ever the midplane temperature exceeds 160 K), and so would not be readily
incorporated into planetary objects. Icy objects could form beyond 2–3 AU.
They also argued that if very young disks were characterized by accretion
rates as high as 10−6M�/year (Fig. 11), midplane temperatures would then
be high enough to vaporize even the rock-forming elements (primarily Fe, Mg,
Si) at a few AU.
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Fig. 11. Mass accretion rates and ages inferred for T Tauri stars in three star-
forming regions. The vertical line indicates the mean and dispersion of accretion rates
estimated for embedded stars (assumed to be 105 years old). (Figure from Calvet et
al. 2000)

3 Theory of Disk Structure and Evolution

3.1 Conservation Equations

The equations that govern the structure and evolution astrophysical disks
are derived from the equations of mass, momentum and energy conservation,
which have the general form

∂

∂t


 Z
v
e


 + ∇ ·


v

 Z
v
e




 =


 0

forces
sources + transport


 .
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When applied without reference to a specific geometry, they lead to the equa-
tions of fluid motion, which are usually expressed as

∂Z

∂t
+∇ · (Zv) = 0 (mass)

Z

(
∂v
∂t

+ v · ∇v
)

= −∇p+∇ ·w − Z∇Φ (momentum)

Z

(
∂e

∂t
+ v · ∇e

)
= −p∇ · v −∇ · F+D (energy) .

In these equations, w is the non-diagonal part of the stress tensor, wij being
the stress on a j-facing surface in the i-th direction; Φ is the gravitational
potential; F is the energy flux vector due to radiation, conduction, or other
means; and D is the rate of energy dissipation associated with stresses:

D = wij
∂vi
∂wj

.

Magnetic fields have been ignored in these equations, as they will be in the
rest of this section; but they can be important and will be discussed later.

The equations of disk structure and evolution are most illuminatingly de-
rived by application of the conservation equations in their general form to a
control volume such as that shown in Fig. 12. Variations in φ are not consid-
ered. Because the disk is assumed to be thin, it is practical to consider the
values of z-integrated quantities, such as the surface density:

Σ =
∫ +∞

−∞
Zdz .

Thus, the conservation of mass equation , integrated over z, is:

∂Σ

∂t
+

1
r

∂ṁ

∂r
= 0, (4)

Fig. 12. Control volume for the derivation of conservation equations for a disk with
radially flowing material and no azimuthal gradients. The radial velocity vr is taken
positive outward by convention, but will generally be inward in the inner parts of
the disk and outward in the outer parts
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where

ṁ =
∫ +∞

−∞
Zvrr dz

is 1/2π times the radial mass flux through the disk (the “reduced” mass flux).
In what follows, it is assumed that the radial velocity vr varies little over the
disk thickness, so ṁ = Zvrr.

To a high degree of accuracy, the vertical momentum balance is hydro-
static, just as in a planetary atmosphere. Pressure forces are balanced by
gravity:

0 = −∂p
∂z

+ Z
∂Φ

∂z
.

The gravitational potential consists of two terms, one due to the vertical
component of stellar gravity and one due to the self-gravity of the disk. The
latter is negligible for stable, unperturbed disks, so

∂Φ

∂z
=
∂Φ∗
∂z

= − GM∗
(r2 + z2)

z

r
≈ −GM∗

r2
z

r
= −Ω2

Kz .

The quantity Ω2
K = GM∗/r

3 is the square of the Keplerian frequency, i.e.,
the angular velocity of a freely orbiting object in a circular orbit at distance
r from the star. Thus,

1
Z

∂p

∂z
= −Ω2

Kz . (5)

If we characterize the distance z by the thickness of the disk measured, say, in
terms of a scale height h, and note that the quantity p/Z is, to order unity, the
sound speed cs, we find that the relative thickness h/r = cs/rΩK = cs/VK <<
1, for a thin disk. (VK is the Keplerian velocity.) Disk models typically yield
values of h/r in the range 10−2–10−1.

The radial momentum equation is:

∂ (vrΣ)
∂t

+
1
r

∂ (vrṁ)
∂r

= Σ

(
∂Φ

∂r
+ rΩ2

)
− ∂P

∂r
,

where P ≡
∫ +∞

−∞
pdz and ∂Φ/∂r = −GM∗/r

2. It is readily seen that, as

long as the characteristic evolution time r/vr is much longer than the orbital
period 2π/Ω, the terms on the left are much smaller than the first term on
the right-hand side. Also, the pressure gradient is a factor of (h/r)2 smaller
than the first term on the right. Thus, to this order, Ω = Ωk; the orbital
motion is Keplerian. (It turns out that the small radial pressure gradient is
important when considering the fate of solid objects in the disk, as discussed
in Sect. 1.4.1.).
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Disk evolution is addressed directly by the angular momentum equation,
which is:

∂ (Σj)
∂t

+
1
r

∂ (ṁj)
∂r

=
1
r

∂
(
r2Wrφ

)
∂r

+
1
2π

∂T

∂r
.

Here, j is the angular momentum/mass = r2ΩK = rVK = (GM∗r)
1/2, T is

any externally applied torque, and

Wφr =
∫ +∞

−∞
wφr dz .

The mass conservation equation (4) can be used to solve for the reduced
mass flux:

ṁ =
r

j

∂

∂r

(
T

π
+ 2r2Wφr

)
. (6)

This equation and (4) specify the rearrangement of surface density in terms
of the forces that affect angular momentum (we omit the external torque term
from now on, for brevity):

∂Σ

∂t
= − 2

r
√
GM∗

∂

∂r

[
r1/2

∂

∂r

(
r2Wφr

)]
.

Now it is usually supposed that Wφr is a Newtonian stress; that is, it is
linearly proportional to the rate of strain (as is true for many viscous fluids).
If this is the case,

Wφr = Σνr
∂Ω

∂r
,

where we follow standard notation and use ν for the kinematic viscosity (not
to be confused with frequency, in Sect. 1.2). The disk evolution equation is
then

∂Σ

∂t
=

3
r

∂

∂r

[
r1/2

∂

∂r

(
r1/2Σν

)]
. (7)

This equation has the form of a diffusion equation for Σ, and the prob-
lem of disk evolution has been essentially reduced to one of determining the
proper expression for ν. For instance, if ν were given as any function of r,
the equation would be linear, and could be solved by any of a number of
standard techniques (Lynden-Bell and Pringle 1974). In general, solutions for
disks which conserve overall angular momentum (but can lose energy) have
the properties shown schematically in Fig. 13. Material in the inner parts of
the disk lose angular momentum and spiral in to the central star, while mater-
ial in the outer disk gains angular momentum and expands outward. This very
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Fig. 13. Schematic representation of the variations of surface density (left) and
accretion rate (right), as functions of time and radius. Surface density decreases in
the inner parts of the disk as the disk spreads. The mass accretion rate is negative
(inwards) in the inner parts, nearly independent of radius and diminishing in mag-
nitude with time. There is a stagnation radius, at which the radial motion changes
direction; the location of the stagnation radius moves outward with time

fundamental behavior of accretion disks can be demonstrated by the applica-
tion of simple conservation arguments, and is independent of the particular
mechanism(s) of angular momentum transport (see Lynden-Bell and Pringle
1974).

What is the value of ν indicated by observations? The viscous evolution
time is given by r2d/ν, where rd is a characteristic disk size, say, 100 AU. A disk
age of 1 million years then yields a kinematic viscosity of about 1015 cm2/sec,
far greater than the ordinary molecular viscosity of hydrogen gas, which is
about 106 cm2/sec for conditions appropriate for these disks. It is therefore
commonly supposed that turbulence in the disks enhances the viscosity far
above the molecular value. The turbulent kinematic viscosity (or eddy diffu-
sivity, as atmospheric scientists call it) can be expressed as the product of a
turbulent velocity and a mixing length. If the latter is as large as the scale
height of the disk, relatively modest turbulent velocities, about 103 cm/sec
would suffice to provide the inferred value of the viscosity.

The concept of turbulent viscosity gives rise to a prescription originally
postulated by Shakura and Sunyaev (1973), in another context. They assumed

ν = αcsh

where the parameter 0 < α < 1, as expected if the scale height and sound
speed are upper limits to the mixing length and turbulent velocity, respec-
tively. This widely adopted formulation shifts the burden of quantifying an-
gular momentum transport from ν to α. If one adopts expected values of cs
and h (say 1 km/sec and 0.1 AU, respectively), a value of α between 10−3

and 10−2 would provide the necessary viscosity. Useful as such prescriptions
may be for some purposes, one should bear in mind that the clear inadequacy
of molecular viscosity renders even the assumption of Newtonian viscosity
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suspect. For this reason, it is prudent to recognize the more basic forms of the
evolution (4) and (6).

The energy lost from an evolving disk contributes to the observed radiation
and provides diagnostic information, as discussed in Sect. 1.2. If the dissipated
energy is expressed in terms of an effective radiating temperature Te, the
energy conservation equation is

∂ (Σe)
∂t

+
1
r

∂ (ṁe)
∂r

=
1
r

∂ (rWφrvφ)
∂r

− 2σT 4
e + (external irradiation) . (8)

The thermal energy is (h/r)2 times smaller than the kinetic and gravitational
energies, so the pressure work term has been ignored, and a good approxima-
tion for the energy/mass is

e =
v2φ
2

+ Φ = −GM∗
2r

.

The last term in (8) may include energy deposition from the star, the back-
ground radiation field, and radiation from other parts of the disk itself. Ignor-
ing it for the moment, and using the mass conservation equation to eliminate
terms in (8), one finds

2σT 4
e = rWφr

∂Ωk

∂r
= −3

2
WφrΩK .

This formula can be expressed in terms of the disk mass flux by noting that
solutions of the disk evolution equation generally produce an r-independent
ṁ over some portion of the inner disk. In that region, (5) can be integrated
to obtain

Wφr =
ṁj

r2
.

Therefore

σT 4
e =

3ṀdGM

8πr3
,

where Ṁd = −2πṁ. Note that this frequently encountered formula for the
distribution of internally generated, radiated energy does not depend on the
nature of the stresses causing angular momentum transport. Its validity does
require that energy be dissipated “locally”; that is, that radial transport of
energy is negligible compared to vertical transport, and that the disk mate-
rial behave as a Newtonian fluid. And, as discussed above, it is not the sole
source of the observed radiated energy, which can be dominated by external
irradiation which is absorbed and re-emitted by the disk.
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Finally, it is important to have a description of the vertical structure of
the disk, especially when considering the accumulation of solid material into
planets. Equation (5) gives the mechanical balance. The thermal state must
be ascertained by an energy equation of the form

∂Fz
∂z

= − (dissipation) + (external irradiation) ,

where Fz is the flux of energy in the z direction and the terms on the right
must now be specified as functions of z. Although Fz may have radiative and
convective components, the latter is usually unimportant for heat transport
in disks (Cassen 1993; D’Alessio et al. 1999). Several other factors, however,
do complicate vertical structure models. First, without a detailed model for
the stresses responsible for angular momentum transport, some assumption
must be made regarding the vertical distribution of dissipation. Usually it is
assumed that the dissipation rate is proportional to the local mass density,
although this need not be the case in a real disk. Second, the evaporation,
condensation and coagulation of dust and ice, which are the major contribu-
tors to the opacity (Pollack et al. 1994; Henning and Stognienko 1996), must
be solved for self-consistently. Third, the effect of the external radiation can
be a complicated function disk radial structure (Bell 1999).

The nature of the most useful approximations and assumptions employed
to determine vertical structure may depend on the particular objective. Stud-
ies directed toward the astronomical appearance of disks must properly ac-
count for the external illumination, but may simplify the issues of opacity
structure and internal dissipation, as in, for instance, Chiang and Goldre-
ich (1997). Studies directed toward understanding the thermal conditions of
planet-building may simplify the treatment of external irradiation, which has
a minor effect on midplane temperatures where disks are optically thick,
but must account for the vertical distributions of dissipation and opacity
(e.g., Cassen 2001).

A simplification that is usually valid is to treat the vertical structure as
“quasi-steady”. That is, the time for even an optically thick disk to adjust to
new heating and cooling conditions,

tthermal =
Σc2s
2σT 2

e

is usually much shorter than other evolutionary timescales (e.g., the charac-
teristic dust coagulation time or the time over which the local accretion rates
changes). There are conditions, however, when even this simplification is in-
valid (e.g., during outbursts). See the papers by D’Alessio et al. (1998, 1999,
2001), Bell and Lin (1994) and Bell et al. (1997) and Cassen (2001) for further
applications of vertical structure modeling.
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3.2 Turbulence in Disks

The problem of disk evolution is that of determining the precise mechanisms
of angular momentum transport. What are the processes that produce the
torques and stresses that appear in (6) and how are they quantified? Insta-
bility leading to turbulence is the most frequently invoked phenomenon for
providing the required viscosity, but the nature of the instability and the con-
sequences of the turbulence remain controversial, despite assertions that the
problem has been solved (e.g., Balbus and Hawley (1991, 2000). The prob-
lem begins with the realization that a Keplerian disk, although possessing a
strong radial gradient of azimuthal velocity (shear), does not suffer the kind
of shear-induced instability known to produce turbulence in other situations.
An annulus of disk material displaced outward from radius r1 to r2, while
conserving its angular momentum, experiences a centrifugal force j21/r

3
2 at its

new location. The centrifugal force required to maintain it in equilibrium is
j22/r

3
2. So, as long as j1 < j2, as it is in a Keplerian disk, the material ex-

periences a net force which restores it toward its original location. The disk
satisfies Rayleigh’s criterion for stability,

dj2

dr
> 0

and some other source of turbulence must be sought.

Other instabilities exist, of course. For instance, it was proposed by Lin
and Papaloizou (1980) that convective instability, which stirs a fluid when
radiation alone would require a superadiabatic temperature gradient, could
provide the required radial mixing of angular momentum. They envisioned a
feedback loop, in which internally dissipated energy in an optically thick disk
would drive convection; the turbulence so produced would give rise to Wφr

stresses; the stresses would result in the net outward transfer of angular mo-
mentum from the (more rapidly rotating) inner annuli to the (less rapidly)
rotating outer annuli; the loss of angular momentum by the inner annuli would
release gravitational energy, which would be the ultimate source of the dis-
sipated energy driving convection. It is just such a feedback process that is
required to overcome the inherent stability conferred by rotation.

But strong arguments have been presented against the existence of any
such feedback process, in the absence of magnetic forces Balbus et al. (1996).
The issue can be addressed by examining the equations of turbulent motion,
derived from the mass and momentum equations by separating variables into
an average part and a fluctuating part. For instance, for the velocity compo-
nent vi,

vi = 〈vi〉+ ui

〈νi〉 =
1

2π∆r

∫
vi dφdr dz,
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where the r-integration is taken over some suitably small interval. In partic-
ular, one can derive a set of energy equations by multiplying each component
of the momentum equation by its respective velocity component, and drop-
ping terms smaller than second order in the fluctuating quantities (and other
terms assumed to be small). The results for the r and φ directions, derived
by Balbus et al. (1996), are:

∂

∂t

〈
Zu2r
2

〉
= 2Ω 〈Zuruφ〉 −

〈
ur
∂p

∂r

〉
−
〈
Zν|∇ur|2

〉

∂

∂t

〈
Zu2φ
2

〉
= −〈Zuruφ〉

r

d
(
r2Ω
)

dr
−
〈
uφ
r

∂p

∂φ

〉
−
〈
Zν|∇uφ|2

〉
. (9)

These equations do not represent the energy conservation law, being derived
from the momentum equations alone, but are relations that must hold be-
tween the mechanical energies associated with turbulent fluctuations and the
mean flow, the latter being represented by Ω and its derivative. The last
term on the right is the energy dissipated by viscosity; it always reduces the
energy of the fluctuating part of the flow (the terms whose derivatives ap-
pear on the left). The first term on right prescribes the interaction of the
turbulent stress, 〈Zuruφ〉, with the mean flow. The point stressed by Bal-
bus et al. (1996) is that, in Keplerian disks (or any disk that is stable by
Rayleigh’s criterion) this interaction provides a negative feedback for the
energy of φ-fluctuations if the stress is such as to transport angular mo-
mentum outward, i.e., 〈Zuruφ〉 > 0. But it is necessary for turbulence to
transport angular momentum outward in an accretion disk, because it is the
loss of angular momentum that allows material to flow inward. Thus, tur-
bulence that allows accretion appears to be self-defeating, no matter what
the source of the turbulence. (True, the radial fluctuations are not damped,
but correlated azimuthal fluctuations are necessary to produce any turbu-
lent stress.) What about the φ-pressure gradient term? Balbus et al. (1996)
argue that it cannot isotropize the turbulence enough to overcome the damp-
ing effect of the positive angular momentum gradient (while pointing out
that long-range correlations in pressure fluctuations associated with orga-
nized waves can provide the desired effect, but would not be considered to be
turbulence).

The conclusion that purely hydrodynamic turbulence cannot be self- sus-
taining in Keplerian disks is supported by numerical calculations of the evo-
lution of a turbulent field in a “local” patch of a disk. In these calculations
(e.g., Balbus et al. (1996) and Hawley et al. (1999), in which an appropri-
ate form of periodic boundary conditions are imposed on a sheared, rotating
fluid, instabilities are not manifested and an initially turbulent field decays.
Furthermore, calculations in which convective turbulence is forced by impo-
sition of an ad hoc heat source produce stresses which induce inward angular
momentum transport, consistent with the arguments given above.
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These results indicate that protostellar disk evolution must be driven by
either magnetic instability or the action of waves, topics discussed below. And
yet the issue should not be considered settled; not all researchers are ready to
rule out the possibility of hydrodynamic turbulence in the unequivocal manner
that its detractors have. For instance, calculations by Klahr and Bodenheimer
(2000) indicate that baroclinic instabilities lead to sustained positive turbulent
stresses and consequent outward angular momentum transport (see also Shee-
han et al. (1999) and Li et al. (2001)). Baroclinic instability, well-known in
planetary atmospheres, can occur when surfaces of constant pressure do not
coincide with surfaces of constant density, i.e., when

∇p×∇Z �= 0 .

This condition is precluded in any calculation for which a barotropic relation
between pressure and density, p ∼ Zγ , is assumed, for then

∇p×∇Z ∼ ∇Zγ ×∇Z = 0

and surfaces of constant p and Z do coincide. But it is virtually inevitable
in an optically thick protostellar disk, where radial entropy gradients prevent
the simple proportionality represented by the constant in the above equation.
Local calculations, which assume a barotropic relation or do not account for
a radial entropy gradient, and which exhibit decaying turbulence or negative
turbulent stresses, do not allow the possibility of baroclinic instability. Now
a common feature of the nonlinear development of baroclinic instabilities is
the generation of relatively long-lived, organized structures, such as vortices,
jet streams and spiral shock waves. Associated with these structures are non-
local, correlated fluctuations which contribute to the transport of angular
momentum. Related instabilities, which depend on the existence of a locally
steep pressure gradient have similar properties (e.g., Lovelace et al. (1999)
and Li et al. (2001). The full implications of these sources of turbulence (and
possibly others; real disks are complicated structures) remain to be worked
out (see the comments on Rossby waves, below).

In whatever way the issue of non-magnetic turbulence is resolved, Balbus
and Hawley (1991, 1998) have shown that magnetically coupled protostellar
disks are inevitably turbulent in a manner that produces outward angular
momentum transport at the level required to drive the observed activity. Ad-
ditional stress terms appear in (9) which can act as sources of azimuthal
fluctuations. The instability that produces the turbulence relies on the fact
that adjacent annuli are magnetically tethered, so they act like spring-coupled,
rotating masses. If the spring constant is very strong, the instability is sup-
pressed, but for a weak spring (magnetic field), perturbations in displacement
grow. The reader is referred to the above references for a formal stability
analysis. Here, we develop a useful analogy provided by Balbus and Hawley
(1998) that gives some insight into the nature of the instability, and can be
used to describe its essential properties.
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Fig. 14. Two masses, attached by a spring and displaced from a common orbit
about a star (left), obey the same equations as orbiting, perfectly conducting fluid
annuli threaded by a vertical magnetic fluid (right). Both systems are unstable for
a range of values of the effective spring constant. This unstable range encompasses
the only physically realistic values for the magnetic fluid

Consider two masses (identical for convenience) in orbit about a star, but
attached by a spring with spring constant fs (Fig. 14a) The equation of motion
of either mass, in the rotating frame, is

d2r
d2t

= Ω × (Ω × r) + 2Ω × dr
dt

= −2fsx+ g,

where x is the displacement from the equilibrium orbit. Let r = r0 + x and
expand g about its value at r0 to obtain the set

ẍr − 2Ωẋφ = xr
(
−2fs + 3Ω2

)
ẍφ + 2Ωẋr = −2fsxφ .

The effective spring constant for the r motion is 2fs − 3Ω2, which must be
positive for a restoring force. Now it turns out that these equations are exactly
equivalent to those for the small displacement of annuli in a disk of perfectly
conducting gas, threaded by a vertical magnetic field B(Fig. 14b), with the
correspondence

2fs − 3Ω2 → r
dΩ2

dr
+ (k · ua)

2
.

The last term is the scalar product of the wave vector of the disturbance and
the Alfvén velocity, the latter defined by

ua ≡
B√
4πZ

.
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Note that since dΩ2/dr < 0 in a Keplerian disk, stability requires

(k · ua)
2
> −rdΩ

2

dr
⇒ u2a >

∣∣∣∣ rk2 dΩ
2

dr

∣∣∣∣ .
But k must be large enough to allow a wavelength to fit within the thickness
of the disk: k > π/h. So the right hand inequality can be extended to

u2a >

∣∣∣∣ rk2 dΩ
2

dr

∣∣∣∣ >
∣∣∣∣rh2π2

dΩ2

dr

∣∣∣∣ = 3Ω2h2

π2
≈ 3c2s

π2
.

But this condition for stability requires that the magnetic field pressure dom-
inate the thermal pressure, a condition difficult to achieve in disks because
magnetic buoyancy effects tend to expel such strong fields. Therefore, mag-
netic disks are unstable; in fact, they are unstable even in the limit of vanish-
ingly weak field. Numerical simulations confirm the instability and indicate
that the resulting turbulence would be sufficient to provide the inferred ac-
cretion rates of protostellar disks Hawley et al. (1995).

Can we conclude that magnetic turbulence is the main process responsi-
ble for protostellar disk evolution? For this to be the case, the disk gas must
be well-coupled to the magnetic field. This condition is quantified by the re-
quirements that the magnetic Reynolds number be larger than unity and that
collisional ion-neutral momentum exchange occur rapidly compared to, say,
the orbital period. Disks are dense enough in most places to insure that the
latter condition is fulfilled, but the former condition requires a level of ion-
ization which, although not very high (ionization fraction ≈ 10−13), is still
difficult to attain in their cold, dusty interiors. One can identify four sources of
ionization: (1) galactic cosmic rays, (2) stellar energetic particles and x-rays,
(3) radioactive nuclides and (4) thermal (collisional) excitation. Galactic cos-
mic rays penetrate no more than about 102 gm/cm2 of material, and so would
be largely excluded from the inner disks (r ≤ 1AU) where the surface density
is estimated to typically exceed 103 gm/cm2. (The current galactic cosmic ray
flux is obviously incapable of significant ionization of most of the approxi-
mately 103 gm/cm2 of terrestrial atmosphere.) Furthermore, one expects that
the intense stellar wind associated with young stars would attenuate the flux
of such particles to levels well below that currently experienced by the solar
system. Stellar particles and x-rays, although abundant, penetrate only about
1 gm/cm2 ,and so are expected to ionize only a very thin “ionodisk” at high
altitudes. Similarly, the most abundant energetic particles from radioactive
nuclides have very limited ranges. Only close to the star, perhaps within a
few tenths of an AU, is the disk temperature expected to be high enough to
evaporate most of the dust, a condition that is probably required to maintain
the ionization level necessary for magnetically induced turbulence. Thus the
issue of turbulent angular momentum transport throughout the disk remains
open. For a recent discussion of relevant issues by the advocates of exclusively
magnetic turbulence, see Balbus and Hawley (2000).
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3.3 Waves in Disks

It was mentioned above that organized, non-axisymmetric structures trans-
port angular momentum. These structures frequently have the form of waves,
which may be thought of as coherent perturbations of the flow through which
the fluid medium flows. An astounding variety of fluid waves have been iden-
tified, many of them familiar in our everyday experience; one should expect to
find many of them in disks. Waves usually result from the interaction of some
disturbing force (or instability) and the natural restoring forces present in the
system, necessary for the existence of an equilibrium. The restoring forces can
be associated with the natural frequencies of a system. Some of the impor-
tant natural frequencies of a disk are its orbital frequency Ω, the epicyclic
frequency (associated with the Coriolis force and characteristic of radial os-
cillations), and the Brünt-Väisälä frequency (associated with pressure forces
and characteristic of vertical oscillations). In a thin disk, these frequencies are
all of comparable magnitude, so one might expect that there are complicated
interactions among various wave types.

The nature of a wave is quantitatively described by a dispersion relation,
which is a relation between the frequency of oscillation of the wave, ω, and the
wave number, k = 2π/λ (λ is the wavelength): ω = ω (k; parameters). From
the dispersion relation, one can determine the rate at which energy is car-
ried by the wave (∂ω/∂k), the speed at which the wave pattern moves (ω/κ),
places where the waves can and cannot propagate, and so forth. The usual
method of deriving a dispersion relation involves three steps: (1) all variables
are expressed as the sum of their equilibrium values and small perturbations
which oscillate in time and space; (2) the fluid equations are linearized by
retaining only terms first-order in the perturbations and using the fact that
the equilibrium values satisfy the steady-state equations exactly; and (3) spa-
tial derivatives in the equilibrium values are considered negligible compared
to the spatial oscillations of the perturbations (WKB approximation). These
steps result in a set of linear, algebraic equations (algebraic because the spa-
tial and temporal derivatives of oscillating quantities are proportional to the
quantities themselves). If there are no explicit forcing functions, the equations
are homogeneous and have solutions (the “free wave” solutions) only if there
is a specific relation between ω (specifying the temporal oscillation) and k
(specifying the spatial oscillation); this is the dispersion relation.

In Keplerian disks, the strong variation in rotation rate with radius tends
to shear disturbances, so that waves commonly have a spiral pattern. The
equation of a spiral is φ = ψ (r); the equation of a spiral rotating at frequency
ω is φ = ψ (r)+ωt; and many such spirals, with the same shape and frequency,
are described by mφ = ψ (r) + ωt, where m is an integer. Therefore, in ana-
lyzing disk waves, it is expeditious to express the oscillating perturbations in
the form:

x = Xe i[ωt−mφ+ψ(r)] .
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where X is the amplitude of the perturbation. The radial wavenumber is
given by k = dψ/dr and the pattern speed is Ωp = ∂φ/∂t = ω/m. A pos-
itive wavenumber corresponds to a leading wave (phase increasing with r)
and a negative wave number corresponds to a trailing wave. It turns out
that only trailing waves carry angular momentum in ways that are physically
sustainable.

Waves in disks have been studied using many different approximations,
assumptions and techniques, with the consequence that it is not always easy
to relate the results of one study to those of another. There are approxima-
tions based on disk geometry: 1-D (axisymmetric), 2-D (r, φ ), and “shearing
sheet” (or local Cartesian). In the last approximation, the (r, φ ) coordinate
system is replaced by a local, rotating (x, y) system, and terms associated with
the curvature of streamlines are neglected. The “tightly wound” (short radial
wavelength) assumption exploits the spiral geometry of the wave and is usually
equivalent to the WKBJ approximation. Physical forces that are frequently
(but not always) neglected are viscous, magnetic and disk self-gravitational.
The following approximations of the equation of state are often encountered:
isothermal, polytropic and Boussinesq (in which density variations due to dy-
namic pressure are neglected, but not those in the base state). In particular,
it is often assumed for mathematical convenience that the surface density
(rather than the volume density) is a power of the vertically integrated pres-
sure, a kind of polytropic approximation unjustifiable by any simple physical
assumption. Finally, analyses can be Lagrangian, in which the fluid displace-
ment is used as a dependent variable, or Eulerian, in which fluid velocities are
the primary dependent variables. I will identify the specific assumptions used
in the analyses described below.

Spiral density waves can be considered to be the primary wave-form in
astrophysical disks. They were originally studied in connection with galactic
structure (Lin and Shu 1964), but observational confirmation of the theory
was obtained in the structure of Saturn’s rings. A standard analysis (Shu 1992)
considers the disk to be infinitely thin, so that perturbations are restricted
to the (r, φ) plane and the volume density Z = Σδ (z), where δ is the Dirac
function. It is assumed that the vertically integrated pressure is a function
of only the surface density: P = P (Σ). Viscous stresses and dissipation are
ignored, but the self-gravity of the disk is included. For this purpose, the
standard conservation equations of Sect. 3.1 are supplemented by Poisson’s
equation for the gravitational potential:

1
r

∂

∂r

(
r
∂Φ

∂z

)
+

1
r2
∂2Φ

∂r2
+
∂2Φ

∂z2
= 4πGδ (z) + Z∗ .

Here, Z∗ represents the contribution to the stellar potential. Shu (1992) shows
how this equation can be simplified and solved in the WKB approximation
to yield a simple relation between the amplitudes of the surface density and
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gravitational potential perturbations. The following dispersion relation can
then be derived from the linearized conservation equations:

(ω −mΩ)2 = Ω2 + k2c2s − 2πG |k|Σ0 . (10)

Subscript 0 refers to the unperturbed state. (Here and in the following it
is assumed that the orbital and epicyclic frequencies are the same, as they
nearly are whenever the disk mass is small compared to the stellar mass.
More general relations can be derived, in which κ appears instead of Ω.)
The derivation of (10) involves some subtle issues of ordering. It must be
recognized that the perturbation to the surface density is intrinsically larger
than the velocity, displacement and potential perturbations. This effect is
illustrated geometrically in Fig. 15, where a density wave has been constructed
by representing the perturbed streamlines of the disk by a set of nested ellipses,
each ellipse being rotated slightly with respect to its neighbor. Note how
small displacement perturbations (eccentricities) produce large surface density
perturbations (tightly bunched streamlines).

The dispersion relation yields an axisymmetric (m = 0) stability crite-
rion. Recognize that ω2 > 0 (i.e., ω real) is required for oscillating (not

Fig. 15. Motions in a spiral density wave can be represented by elliptical streamlines
with radially varying phases. Even a small displacement of the streamlines from
circular can produce a large surface density perturbation, as seen in the tightly
bunched streamlines
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exponentially growing) perturbations, and find from (10) (with m = 0) that
the condition

Q ≡ csΩ

πGΣ
> 1 (11)

is required for stability; i.e., ω2 > 0 positive for all values of k. This important
inequality is commonly known as Toomre’s stability criterion (Toomre 1964),
although Toomre derived a slightly different relation for a galactic disk of stars,
and it has been derived by in other forms by a number of people (perhaps
first by Safronov (1960)). (The analysis of non-axisymmetric perturbations
is more complicated, but it is found that values of Q only somewhat greater
than unity are required for stability.) It is seen that the effects of pressure and
rotation are stabilizing, while the effect of gravity is destabilizing. Estimates
of the temperatures and surface densities obtained by the methods described
in Sect. 1.2 usually indicate that protostellar disks are stable by this criterion.
It is quite possible, however, that a disk could become unstable at some time
during its evolution. This might happen during the formation of the disk, if
mass builds up faster than it is accreted by the star, or at later times if the
outer part of the disk (for instance) becomes sufficiently cool. The question of
what happens to an unstable disk is of great importance to the issue of giant
planet formation, and will discussed in Sect. 1.6.2.

The dispersion relation also reveals other important properties of the
waves. These are conveniently described in terms of the nondimensional
wavenumber and frequency defined by

k′ =
k2πGΣ0

Ω2

ω′ =
ω −mΩ

Ω
.

The radius at which ω′ = 0 is the corotation radius , where the pattern
speed Ωp = ω/m matches the orbital frequency (which, for our Keplerian pro-
tostellar disks is the natural frequency for radial oscillations). The quantity
ω′ thus measures the “distance” from corotation in frequency space. The lo-
cations at which ω′ = ±1 also have special significance. This condition defines
the Lindblad resonances, where the orbital frequency is exactly an integer
times the difference in the orbital and wave pattern frequencies:

Ω = ±m (Ωp −Ω) .

The resonant radii are found from the Keplerian rotation law:

rL =
(
m± 1
m

)1/3

rcorotation (m = 1, 2, 3, ....) . (12)

The plus and minus signs correspond to outer and inner Lindblad resonances,
respectively. At these locations, the disturbance caused by the wave is in
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phase with the local natural frequency of oscillation, and one expects that
disturbances would interact strongly with the disk material there.

The dispersion relation, solved for k′, then becomes

|k′| = 2
Q2

[
1±
√

1−Q2
(
1− ω′2)] . (13)

The requirement that the radical be real excludes wave propagation from
within a certain distance of corotation:

ω′2 > 1− 1
Q2

.

Furthermore, the fact that the right-hand side of (13) must be positive indi-
cates that waves associated with the minus sign (“long” waves) cannot prop-
agate where ω′2 > 1. For very stable disks (Q >> 1), the range of long wave
propagation is very limited. These waves are governed primarily by rotational
and gravitational forces. The propagation of “short” waves (for the plus sign),
which are like acoustic waves, is not so restricted. The situation is illustrated
in Fig. 16. Spiral density waves can be excited by instability if Q < 1 some-
where in the disk, or by an object embedded in, or external to, the disk, such
as a planet or stellar companion. In fact, they can be excited by any number
of disturbances. Their importance for disk evolution lies in their ability to
transport angular momentum. One can get some idea about how this works
by examining the fate of energy, Ew, and angular momentum, Jw, carried by

Fig. 16. Long (gravity-like) waves of a given spiral mode (m) are restricted to
propagate in a limited range between the inner and outer Lindblad resonances,
the boundaries of which exclude the corotation radius. Short (acoustic-like) waves
can propagate within the inner Lindblad resonance and beyond the outer Lindblad
resonance, but are also excluded by the same boundaries near corotation
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a wave. In the absence of dissipation, wave energy and angular momentum
are conserved, in the sense that they obey conservation equations of the form:

∂ (Ew, Jw)
∂t

+
1
r

∂ [rcgr (Ew, Jw)]
∂r

= 0,

where cgr is the group velocity, and the quantities (Ew, Jw) represent the
azimuthally averaged energy and angular momentum, per unit surface area,
associated with the wave. They are, of course, functions of the wave para-
meters ω, k,m and the radius r. Their specific functional dependencies need
not concern us now (see Shu (1992) for formulae), except to note that quite
generally, Jw = Ew/Ωp. In the presence of dissipation, waves exchange energy
with the disk material, and the wave conservation equations take the form

∂Ew
∂t

+
1
r

∂ [rcgrEw]
∂r

= −D − ∂Ed
∂t

+
1
r

∂ [rvrEd]
∂r

∂Jw
∂t

+
1
r

∂ [rcgrJw]
∂r

= −∂Jd
∂t

+
1
r

∂ [rvrJd]
∂r

,

where D is the appropriately averaged dissipation rate and

Ed = −GM∗Σ

2r

Jd = Σ
√
GM∗r .

From these equations, with the aid of the azimuthally averaged mass con-
servation equation, and assuming that the disk quantities do not change in
the time of wave propagation, one can derive an explicit formula for the ra-
dial mass flux induced by angular momentum deposition from the attenuated
waves:

2πΣrvr =
4πD

Ω (Ωp −Ω)
.

This relation demonstrates that the mass flux is proportional to the dissipa-
tion, and that it is inward inside corotation and outward outside of corotation.
The relation does not hold at corotation because it was derived from the free
wave dispersion relation, which must be violated at the corotation resonance.
We return to the connection between waves and resonances in the discussion
of planet-disk interactions (Sect. 1.7.1).

What about the vertical structure of these waves? The 2-D analysis just
described cannot address this question, of course. In fact, a complete 3-D
analysis has yet to be accomplished. Interesting results have been obtained,
however, by means judicious approximations (Lubow and Pringle (1993); Ko-
rycansky and Pringle (1995); Lubow and Ogilvie (1998); Ogilvie (1998)). The
strategy employed is the following. The conservation equations, in the shear-
ing sheet approximation, including z and r dependencies, are linearized in the
usual way, but only axisymmetric waves are considered. The WKB approxi-
mation is used for r, but not z dependencies, so r takes the role of a parameter.
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This procedure reduces the problem to a set of 1-D (in z) differential equa-
tions (eigenvalue problems), with coefficients dependent on r. These equations
are solved for the z structure of the waves. The radial propagation properties
are diagnosed by solving the equations at different r and constraining the
solutions to obey conservation of wave energy. It is then argued that the re-
sults are applicable to non-axisymmetric waves, with the replacement of ω by
ω −mΩ, as long as the waves are tightly wound in the sense that m << kr.
Self-gravity is not included, so only the counterparts of the short (acoustic)
modes described above are present. Finally, it is assumed that the fluid obeys
a polytropic equation of state: p ∝ Zγ , as might be the case for an optically
thick disk. This point is important for the following reason: the vertical ex-
tent of a locally polytropic disk is finite. That is, there is an altitude at which
temperature, density and pressure fall to zero, which defines the thickness of
the disk. To see this, solve the vertical hydrostatic equation (5) to find that
the state variables are proportional to a power of the quantity

(
1− z2/H2

)
,

where

H2 = 2γp0/ (γ − 1)Ω2Z0

and subscript 0 refers to values at z = 0. This kind of vertical structure has
the effect of a waveguide, and strongly affects the nature of waves and their
propagation properties, as described below.

Resolving the vertical disk structure reveals a multiplicity of modes, each
with its own characteristic vertical oscillations, some of which are associated
with buoyancy restoring forces. Some modes have counterparts in stellar os-
cillations, and are therefore designated accordingly. The p-waves are com-
pressible, with the main restoring force provided by pressure. The g-waves
are essentially gravity waves, and are incompressible, with buoyancy provid-
ing the restoring force. Waves of the third mode, designated r-waves, have
no counterpart in (non-rotating) stars; they are inertial waves, with angular
momentum and buoyancy providing the restoring forces. Each of these modes
possess z-symmetric and antisymmetric components, and each is represented
by a series of waves with n nodes in the z direction. In addition, there are two
fundamental (designated f) modes (z- symmetric and antisymmetric), which
turn out to be particularly important because they carry almost all of the
angular momentum contained in waves stimulated at resonances. They are
the dominant 3-D counterparts of the short, 2-D spiral density waves.

Like their 2-D counterparts, the radial propagation of these waves is con-
strained, as shown in Fig. 17. Note that vertical resonances (where radial os-
cillations are in phase with vertical oscillations) now play a role in restricting
the radial propagation of the p-waves. The waves also become vertically con-
strained, in some cases severely so, as they propagate away from resonances.
The f , p and g modes become confined to within a wavelength of the surfaces
of the disk; the r modes become restricted to a distance of about (λH)1/2

from the midplane. An example of the confinement of the f mode is shown
in Fig. 18. This effect is due to the waveguide character of disks with finite
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Fig. 17. When the vertical structures of spiral density waves are resolved, variety of
additional modes are discovered. These also have restricted ranges of propagation,
some of which are bounded by the locations of vertical resonances, as well as the
Lindblad resonances. Shown are the boundaries of allowed propagation for the r−,
p−, g− and f− modes discussed by Lubow and Ogilvie (1998). I and O refer to
inner and outer, LR and VR are Lindblad and vertical resonances, respectively, and
CR is corotation. (Figure from Lubow and Ogilvie 1998)

vertical extent. In fact, it disappears in disks that are vertically isothermal, for
such disks formally extend to infinite z, as demonstrated by the appropriate
solution of (5). So what about a more realistic disk, which might resemble the
polytropic model except near the surfaces, where an optically thin, isothermal
atmosphere should exist? This situation was analyzed by Ogilvie and Lubow
(1999), who found that wave confinement still occurred, but was less severe.

Now recall that the angular momentum carried by a wave is deposited
in the disk according to how the wave energy is dissipated. The fact that
the energy of spiral density waves tends to be concentrated toward the disk
surfaces could have a profound effect on their non-linear behavior and the
ultimate manner in which they are dissipated. They might form shocks or
“break” in other ways. The problem deserves further attention, probably most
fruitfully by the application of high resolution numerical simulations.
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Fig. 18. A representation of the distribution in disk cross-section of the wave en-
ergy associated with the fundamental, m = 2 mode, launched at an inner (a) and
outer (b) Lindblad resonance. The scale refers the logarithm to the base 10 of a
dimensionless energy. The plot illustrates the channeling effect imposed by vertical
structure. (Figure from Lubow and Ogilvie 1998)

Before leaving the subject, something should be said about another kind
of wave, the Rossby wave. Rossby waves have the property of propagating
vorticity, which is a measure of the local shear in a flow, defined as the curl
of the velocity. These waves are well-studied in the context of planetary at-
mospheres and have been shown to be potentially important in protostellar
disks. Indeed, the baroclinic instability (and related instabilities) referred to
in Sect. 3.2 is known to stimulate such waves, which may then couple with
other modes in complicated ways. The Rossby wave dispersion relation, as
derived by Sheehan et al. (1999), is

(ω −mΩ)2 = Ω2 + k2c2s +m2c2s/r
2 . (14)

This looks very much like (10), except that the gravitational term has disap-
peared (because self-gravity was not included in the analysis), replaced by the
last term on the right. This term was neglected in the spiral density disper-
sion relation because it was smaller than other terms, for short wavelengths
(kr >> 1) in thin disks. But Rossby waves have long wavelengths and are
revealed only when this term is retained. For this reason, radial gradients of
the base state should not be suppressed, i.e., the WKBJ approximation is not
valid. [In other respects, the assumptions leading to (14) are the same as those
for (10).]

In planetary atmospheres, Rossby waves are known to be responsible for
the extraction of energy from external sources (such as solar radiation or
internally generated heat) and its transfer to organized motions. For instance,
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large storms and jet streams in the terrestrial atmosphere are manifestations
of Rossby waves, as are the vortices and high speed belts on Jupiter. The role
of these waves in disk angular momentum transport has yet to be determined.
Their effectiveness will depend on the existence of appropriate instabilities and
the establishment of a feedback loop that permits energy extraction from the
disk itself, as discussed above.

This ends our discussion of disks as astrophysical objects independent of
their potential for forming planets. The remaining sections focus on the theory
of how they produce planetary systems.

4 Dust-Gas Dynamics

4.1 Drift and Settling Velocities in the Absence of Turbulence

In a cool protostellar disk of the same composition as our Sun, about 0.4 %
of the mass is in the form of rock-forming solids (mainly iron and magnesium
silicates). If it is cold enough (less than about 160 K), another 1.5 % exists
as H2O ice. Initially, these solids are in the form of sub-micron particles, or
“dust”, inherited from the interstellar medium, or newly condensed, if and
where the disk was once hot. Small dust particles are well-coupled to the
gas, and so follow the overall gas motions closely. While dispersed, their main
effect is as a source of opacity; they have no direct effect on the gas dynamics,
because they comprise such a small mass fraction. Occasionally they collide
with each other, stick together (see ?, and references therein), and gradually
accumulate, reducing the opacity and altering the nature of their dynamical
interaction with the gas. So begins, it is believed, the process of rocky planet
formation.

The dynamical interaction of gas and solids is described by the equations
of motion for the solid particles, which may be written (e.g. Dubrulle et al.
1995)

dvrp
dt

= gr +
j2p
r3
− vrp − vr

tr

djp
dt

= −jp − j
tf

dvzp
dt

= gz −
vzp − vz

tf
. (15)

Subscript p refers to the particles. The last term on the right hand side of
each equation is the frictional force between the gas and the particles. The
“friction time” tf is the characteristic time in which a particle of given size
and mass exchanges momentum with the gas (sometimes referred to as the
“stopping time”). The way it is calculated depends on whether the mean free
path in the gas is larger or smaller than the particle and whether the initial
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relative velocity is super- or sub-sonic. The mean free path for gas at 1 AU in
a typical protostellar disk is a few tens of centimeters. For smaller particles
moving subsonically through such a gas,

tf =
Zprp
Zcs

,

where Z and rp are the particle’s density and radius, respectively. This formula
can be derived by equating the frictional force to the rate at which thermal
gas molecules transfer momentum to a solid, spherical particle and solving
the resulting momentum equation. (Of course, the particles are likely to be
irregularly shaped rather than round, in which case rp must be interpreted to
be an appropriate dimension. For instance, it might be the characteristic size
of the individual particles making up a fractal structure.) For particles larger
than the mean free path, the friction time depends on the relative velocity
itself:

tf =
8Zp

3ZCd (vp − v)
.

Here, Cd is the drag coefficient, which also depends on the relative velocity
as well as the particle size and shape, and gas viscosity; however, its value is
generally of order unity. In most of the following, we will be concerned with
particles smaller than the mean free path.

The first important point to be learned from these equations is the follow-
ing: solid particles experience an azimuthal drag due to the fact that the gas
motion is slightly sub-Keplerian, and this drag can cause a substantial radial
drift as particles lose angular momentum. In Sect. 3.1, we used the gas radial
momentum equation to derive the fact that, to order, (h/r)2, Ω = ΩK . But if
the pressure gradient term is retained in that equation, one finds for the gas

(rΩ)2 = (rΩK)2 +
r

Z

∂p

∂r

or

j2 = j2K +
r3

Z

∂p

∂r
.

With this expression, the solid particle radial momentum equation (the first
of 15) yields

vrp − vr =
tf
Z

∂p

∂r
.

Since the pressure gradient is usually negative, the effect produces an inward
drift. Weidenschilling (1977) calculated the drift rate in a model disk, for
a variety particle sizes and gas densities, for a disk in which vr = 0. His
results are shown in Fig. 19, in which it is seen that very small particles are
well-coupled to the gas and have small drift rates, and large solid objects
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Fig. 19. Particle drift rates due to loss of angular momentum by gas drag,
as a function of particle size and gas density, for typical disk conditions. Small
particles have small drift rates because they are easily carried along by the gas;
large objects have small drift rates because drag forces are small compared to inertial
forces. Intermediate-sized particles, in this case about a meter in size, drift rapidly.
(Figure from Weidenschilling 1977)

are decoupled from the gas and also have small drift rates. Intermediate-
sized particles, however, can drift rapidly. The peak drift rates in Fig. 19,
104 cm/sec, would deliver a particle from 1AU to the Sun in only 100 years.
The survival of planetary-sized objects therefore implies that growth through
the critical size range (about 1 meter, for a typical gas density) was rapid,
or that there were sustained, systematic outward gas velocities which were
larger than the drift rate, or that collective effects (for which formula derived
for individual, isolated particles do not apply) protected the particles from
drift loss.

The solid particle equations also quantify the rate at which vertical settling
and concentration at the midplane occurs. For the gas velocity vz = 0, and
writing vzp = dz/dt and dvzp/dt = d2z/dt2, one finds

d2z
dt2

+
1
tf

dz
dt

+ zΩ2 = 0 .
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This is the equation of a damped harmonic oscillator, which is critically
damped for tf = 1/2Ω. Particles larger than rp = Σ/4�p follow orbits which
oscillate through the midplane; smaller particles gradually spiral toward the
midplane. If tf << 1/Ω, the terminal velocity vzp = −zΩ2tf is quickly at-
tained. Suppose Ω = 2× 10−7 sec−1, the orbital frequency of the Earth, and
�0 = 10−9 gm/cm3, a typical value at 1AU. Then, if we measure the quantity
�prp in cgs units, we find tf ≈ 5 × 103 (�prp) sec, vzp ≈ 200 (�prp) cm/sec,
and the settling time = h/vzp ≈ cs/vzpΩ ≈ 103/Ω�prp sec. The density �p
is of order unity, so one sees immediately that micron-sized particles would
take millions of years to settle, and the least breeze in the vertical direction
would inhibit any concentration by settling. They must grow first. On the
other hand, a golf-ball sized rock would settle, in the absence of vertical gas
velocities, in 103–104 years.

4.2 Particle Growth and Trajectories in the Absence of Turbulence

Differential velocities among particles of different sizes cause them to collide,
stick and grow. The rate of growth of a particle and the path that it follows
as it grows can be determined by integration of the set (15), augmented by
an equation for the growth rate . The latter is given by

dmp

ds
= πr2p�s,

where mp is the particle mass (assumed here to be 4πr3p�p/3), s is the path
length along the trajectory, and �s is the volume density of solids encoun-
tered along the trajectory. This expression is valid if all solids encountered
by the growing particle stick to it, as is expected when relative velocities be-
tween particles are less than about 1m/sec (Dominik and Tielens 1997; ?).
If this is not the case, the right-hand side must be appropriately reduced by
some efficiency factor. If relative velocities are too high, fragmentation oc-
curs, rather than growth; see the discussion in Wurm et al. (2001). Note also
that the density of solids, �s, is an evolving quantity whose value depends on
how all of the particles are settling. Nakagawa et al. (1986) calculated growth
and trajectories by assuming that at early times �s was well represented by
its initial value, a constant fraction of the gas density. At later times, as
settling proceeded, it was approximated by Σs/z, where Σs is the initial col-
umn density of solids. They also adopted typical forms for the distribution of
gas density, and assumed that there were no gas velocities. Their results are
shown schematically in Fig. 20, for a particle starting at altitude Z0. There is
little radial drift until the particle has settled and grown. At Z1, it is large
enough to drift radially, but rapidly accumulates smaller (background) par-
ticles, and begins to spiral vertically again at Z3. But by this time, it has
entered a region (at Z2) in which settling has caused the dust density to be
comparable to the gas density. Further details are given in Fig. 21. Most of
the settling time is spent at high altitudes, while the particle grows. The total
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Fig. 20. Schematic representation of the trajectory of a particle settling and growing
in a non-turbulent disk. The initial position of the particle is at altitude Z0. It settles
mainly vertically until Z1, where it has become large enough to drift radially. It then
rapidly accumulates smaller particles, whereupon, at Z2, it enters a region where the
dust density is comparable to the gas density. After Z3 it spirals vertically toward
the midplane. Small amounts of turbulence, however, can prevent the formation of
the dense dust layer; see Fig. 23 and the discussion in Sect. 4.3. (Figure adapted
from Nakagawa et al. 1986)

Fig. 21. Quantitative results for settling and growth in a non-turbulent disk: al-
titude vs. particle size (a), and altitude vs. time. The quantity zg is the disk scale
height. The curves labeled E, J and N refer to locations in a disk at the orbits of
Earth, Jupiter and Neptune, respectively. The solid symbols correspond to the points
z1, z2 and z3 of Fig. 21, and the endpoint of the calculation. (Figure from Nakagawa
et al. 1986)
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radial drift experienced by these particles is limited to a small fraction of an
AU, because rapid radial drift is associated with rapid growth through the
size of maximum drift.

4.3 The Effect of Turbulence on Particle Settling

Although the calculation just described is useful for understanding the funda-
mental processes and timescales, even a small degree of turbulence could have
a substantial impact on some of the quantitative details. The rather small
values of the settling velocity estimated above motivate the following ques-
tion: What values of the turbulence parameter α would prevent (or inhibit)
settling? Suppose we calculate∣∣∣∣ vzpvturb

∣∣∣∣ = zΩ2tf
αcsh/lturb

=
2
αΣ

zlturb
h2

�prp .

Here, lturb is the turbulent mixing length. Realizing that zlturb/h2 < 1, one
concludes that ∣∣∣∣ vzpvturb

∣∣∣∣ < 2
αΣ

�prp = rp
2× 10−3

α

for �p = 1g/cm3 and a typical value (at 1 AU) of Σ = 103 gm/cm3. Turbulent
velocities would therefore exceed the settling velocities of small grains (rp <<
1 cm) even for values of α well below that required to evolve a disk in a
million years (10−3–10−2). Therefore, even if turbulence is not the primary
agent for transporting angular momentum in disks, it could still be important
for controlling the initial distribution and evolution of the solid component.

It is often useful to characterize the turbulent field by an ensemble of
transient eddies (or vortices), with some wavelength distribution of energy,
usually expressed as a power law in the wavenumber k:

Ek =
v2
k

k0

(
k

k0

)−a
.

The characteristic eddy velocity and size are vk and 2π/k, respectively. In
random turbulence, eddies typically last only a single turnover time, so their
lifetime tk is given by 1/kvk. The motion of a solid particle in a turbulent field
is then a diffusive process, as its velocity is altered by random encounters with
turbulent eddies. The velocity perturbations depend on the particle size and
the gas properties, as characterized by tf . For instance, if tf > tk, the eddy
disappears before the particle is entrained in it. If the particle has a systematic
velocity vp, and if the “eddy crossing time” tcross ≡ 1/kvp is greater than tk,
the particle can be entrained, but will also encounter smaller eddies within the
eddy of size 2π/k. If tcross < tf , the particle passes through the eddy without
being entrained. Such considerations must be accounted for when deriving
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a diffusion coefficient κp for the particles (Volk et al. 1980). The diffusion
coefficient can then be represented as an integral of the effects of each eddy
size. For particles settling in a turbulent disk, Dubrulle et al. (1995) derive

κp = κ0

[∫ ∞

k0

Ek (k) dk
k2

]1/2
,

where the coefficient κ0 represents the effects of the largest eddies, which
dominate the transport, and is a function of tf , vzp and k0 This diffusion
coefficient κp is to be used in the equation governing the diffusive settling of
particles:

∂�s
∂t

+
∂ (�svzp)

∂z
=

∂

∂z

[
�κp

∂ (�s/�)
∂z

]
.

Dubrulle et al. (1995) consider a disk with an isothermal vertical structure
and calculate the evolutions of initially uniform dust distributions, of a sin-
gle particle size, for various values of α. They find that stationary solutions,
shown in Fig. 22 (for α = 2× 10−3), are attained in a few times the timescale

Fig. 22. Steady state, vertical concentrations of solid particles in a turbulent disk
with turbulence parameter α = 0.002 . The quantity plotted on the vertical axis
is the enhancement in the concentration of solids above the initial, uniform value.
Particles are assumed to be of uniform size. The curves correspond to particle sizes of
250 cm (dot-dashed), 25 cm (dashed), 2.5 cm (dotted) and 0.25 cm (solid), for values
of the disk surface density of 103 gm/cm2 and particle density 2 gm/cm3. (Figure
from Dubrulle et al. 1995)
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tf/ (tfΩ)2. (These solutions can be scaled to other values of the parameters
by preserving α/tfΩ.) Strong concentrations about the midplane are only at-
tained by particles considerably larger than 1 cm. The theory predicts that
only large rocks (rp > 2.5m) could settle to a layer in which the density of
solids approaches that of the gas (but the analysis breaks down for such large
objects, which could oscillate about the midplane). Even if turbulence was
vanishingly small in the ambient disk, a dense layer of solids would produce
local turbulence by virtue of the velocity difference between it and the gas
(Weidenschilling and Cuzzi 1993), so the formation of such a layer appears
to be self-inhibiting. The conclusion is that substantial particle growth must
occur before a dense, dusty (or rocky) layer can form at the midplane.

4.4 The Initial Stages of Accumulation

The conclusion of the last section has important consequences for the initia-
tion of planet-building. If dense particle layers could form by settling, as in
the calculation by Nakagawa et al. (1986), they might form clumps due to
a gravitational instability in the layer (Safronov 1969; Goldreich and Ward
1973). The instability would be like that which occurs in a gas disk when
the criterion (11) is violated. This is an appealing prospect, because the most
primitive meteorites, which are objects representative of the earliest stage
of accumulation, appear to be made by the indiscriminant collection of neb-
ular solids, as might occur in such gravitational clumping. But the results
described above indicate that gravitationally unstable layers are not readily
formed; accumulation must proceed snowball fashion, as individual particles
and collections of particles collide. Calculations of this kind of accumulation
in the presence of turbulence have been performed (see Wasson 1985) and
indicate that it could produce rocky objects on a timescale of 104 years. But
the effects of fragmentation are either ignored or represented by untested hy-
potheses; furthermore, the detailed interactions of particles with the turbulent
field are approximated by averages which may obscure important physics.

An attempt to address these issues more rigorously was undertaken
by Cuzzi et al. (1996, 2001), with interesting results. They noted that the in-
stantaneous distribution of solid particles entrained in a turbulent flow tends
to be inhomogeneous; particles are transiently concentrated at stagnant re-
gions of the flow, between eddies. Moreover, there is a preferred particle size
for concentration, selected by the condition tf = tη, where η = kmax and
kmax is the wavenumber of the smallest eddies. (This kind of concentration is
not the same as that which is sometimes seen at the center of vortices, which
only occurs when long-lived, large scale eddies are present.) The expected
concentrations and preferred sizes depend on the turbulent characteristics.

Now the properties of the smallest eddies can be found by using the well-
known Kolomogorov rules of steady turbulence (Tennekes and Lumley 1972).
The starting point is the observation that, in steady, 3-D turbulence, energy
does not accumulate at any wavenumber despite the fact that it is being
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continuously transferred from larger to smaller eddies. Thus, Ėk, the rate at
which energy is transferred at wavenumber k, must be independent of k:

Ėk =
v2k
tk

=
v2k

1/kvk
= v3kk = v30k0 = v3ηkη .

Subscript 0 refers to the largest wavelength. Introduce the Reynolds number, a
dimensionless combination that measures the ratio of inertial forces to viscous
forces:

Re =
velocity × length
kinematic viscosity

.

The large scale turbulence is characterized by

Re = v0/k0νmol,

where νmol is the molecular viscosity. The smallest scale is that where energy
is dissipated by molecular viscosity, so

Reη = vη/kηνmol .

From these relations, and the invariance of ν3kk, one finds

η/k0 = R3/4
e

vη/v0 = R−1/4
e

tη/t0 = R−1/2
e .

These expressions give the turbulent characteristics at the dissipation scale in
terms of the large scale turbulent characteristics. So what is the value of Re in
a protostellar disk? It can be expressed in terms of the turbulence parameter
α as follows:

Re =
v0

k0νmol
=
αcsh

νmol
≈ αh

lmfp
≈ α× 1011 .

Here we have used the fact that νmol ≈ cslmpf , and chosen representative
values of lmpf = 10 cm and h = 1012 cm to obtain the numerical factor. The
preferred size for concentration is given by the condition tf = tη = R

−1/2
e t0,

so for this we need to know the lifetime of the largest eddies. It seems safe
to assume that, in random turbulence, this lifetime would be comparable to
an orbital period. With this assumption, the expression for preferred particle
size becomes

tf =
Zprp
Zcs

=
1

R
1/2
e Ω
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or

rp =
Σ

ZpR
1/2
e

= α−1/210−3 .

The numerical factor in the last equality corresponds to Σ = 103 gm/cm2 and
Zp = 3gm/cm3. Values of α commonly expected for disk evolution, or derived
from numerical simulations of angular momentum transport, (say, 10−4–10−2)
produce concentrations of particles in the size range 10−2–10−1. Cuzzi et al.
(2001) have emphasized that this is the range of sizes of chondrules, the abun-
dant and ubiquitous igneous pebbles found in primitive meteorites. In fact,
the distribution of sizes they find in concentrations from numerical simula-
tions matches that of chondrules in meteorites remarkably well (Fig. 23). Also,
from such simulations, and a fractal description of the turbulent properties
as a function of Re, they predict large concentration factors for the high

Fig. 23. Size distributions of chondrules from four meteorites (solid squares), com-
pared with predicted size distributions from numerical simulations of turbulent con-
centration (open circles). The quantity plotted on the horizontal axis is the Stokes
number, a non-dimensional parameter that measures (in this case) the ratio of the
friction time, tf , to the frequency of the smallest turbulent eddies; it is proportional
to the product of particle size and density. Thus the plots show, in effect, particle
size vs. density. (Figure from Cuzzi et al. 2001)
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Reynolds numbers of protostellar disks (see their Fig. 4, where concentrations
are expressed as the fraction of total particles expected to exceed a given
enhancement in spatial density, as a function of Re).

From this analysis, Cuzzi et al. (2001), noting that settling is inhibited
by turbulence, propose that the initial stages of rocky body accumulation oc-
curred by the formation of chondrule precursors by sticking collisions, their
subsequent transformation into chondrules (an enigmatic process, not under-
stood despite much attention and applied creativity), and concentration in
the manner described above. However, it must be emphasized that turbu-
lent concentrations are transient; particles actually flow through the regions
of concentration, so some further development must be postulated to attain
larger solid objects. Perhaps concentrations are high enough to promote gravi-
tational instability or some other positive feedback due to heavy mass loading
on the gas by solids. Incidentally, I note that an equivalent analysis of sys-
tematic inhomogeneities produced by waves has not been performed.

Other mechanisms for the concentration of solid material at the earliest
stage of planet formation have also been suggested. An example is the two-
phase (gas-dust) fluid instability proposed by Goodman and Pindor (2000),
which produces radial fluctuations in a dust layer at the midplane. Again, the
perturbations must grow to the point where gravitational instability sets in,
if the process is to lead to the formation of long-lived solid objects.

The fact is, we do not yet know exactly how the first rocks form from the
dusty component of protostellar disks. This is the case despite the fact that
we actually have samples of these rocks, in the form of meteorites, for our
own Solar System. The most primitive of the meteorites look like sediments,
the result of a gentle accumulation of disparate components, the ensemble of
which escaped familiar planetary equilibrating processes (heat and pressure).
Our lack of understanding of how this happened does not prevent us from
analyzing the later stages of planet formation, which, in some ways, is a less
complicated problem.

5 Growth of Planetesimals to Planets

5.1 Basics of Collisional Planet-building; Runaway Growth

For the present purposes, we define a planetesimal to be a body large enough
to gravitationally perturb its neighbors, but smaller than a full-grown planet,
say Moon-sized. The first part of this definition can be quantified by saying
that a planetesimal produces gravitationally induced velocity perturbations
larger than typical drift or settling velocities, perhaps 103 cm/sec. The velocity
perturbations are comparable to the escape velocity, so we are talking about
rocky objects of roughly a kilometer in radius or greater. Somehow these
objects formed, but, as indicated in the preceding discussion, gasdynamic
effects are sufficiently complex that the mechanisms of growth to this stage
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remain poorly described. Further growth is dominated by the gravitational
interactions among bodies, so the nature of the problem changes (although
gasdynamic effects are not necessarily negligible).

The number of kilometer-sized objects required to build the terrestrial
planets is about 1011. Even with modern computers and sophisticated algo-
rithms for integrating the equations of motion, this is far too many bodies
to treat by any direct numerical means; statistical methods are required. De-
spite the difficulty of the problem, a great deal of progress has been made in
understanding planetesimal growth in the past two decades. The reasons, I
believe, are to be found not only in the advances in computational capability
and the technical creativity of researchers, but in a cooperative effort in which
a combination of numerical and statistical treatments have been continuously
tested against each other to resolve discrepancies.

The statistical approach to understanding the coalescence of many small
objects into a few large ones starts with the coagulation equation:

dnk
dt

=
1
2

∑
i+j=k

Aijninj − nk
∞∑
i=1

Aikni .

Here, nk denotes the number of objects with massmk, and Aij is the probabil-
ity of collision (and merger) of bodies with masses mi and mj . The first term
on the right is the gain of bodies with mass mk and the second term is the
loss of bodies with mk that merge to make bigger bodies. All of the physics is
in the collision term Aij , which usually depends in complicated ways on the
relative velocities of colliding bodies, their masses, number densities and so
forth. Thus one must understand both the detailed physics of collisions (in-
cluding the effective cross-section for collision) and the dynamical evolution of
the ensemble, in order to calculate relative velocities and mass distributions.

Let us start with a description of collisional growth in the simplest situa-
tion. If all collisions result in merger, one can say

dmp

dt
=
(
πr2p
)
vrelZsFg .

The first factor on the right is the geometric cross-section of the particle, vrel
is the mean relative velocity of the ensemble of particles, Zs is their spatial
density and Fg is a gravitational enhancement factor, which represents an
increase in effective cross-section due to the gravitational bending of parti-
cle paths toward the growing object. In the simplest case, the growing body
sweeps up smaller particles (with much smaller masses) by two-body interac-
tions. It is readily shown by solution of this “scattering” problem that

Fg = 1 +
(
v2esc/v

2
rel

)
,

where the escape velocity is given by

v2esc =
2Gmp

rp
=

8
3
πr2pZp .
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Thus

dmp

dt
=
(
πr2p
)
vrelZs

(
1 +

8πr2pZp
3V 2

rel

)
.

Note that the dependence of growth rate on the radius of the growing particle
depends strongly on the relative magnitudes of vesc and vrel. If vesc << vrel,
dmp/dt ∝ r2p; in the opposite limit, dmp/dt ∝ r4p. In general, dmp/dt ∝ ryp ,
where 2 ≤ y ≤ 4. This dependence turns out to be extremely important
in determining the nature of solutions to the coagulation equation and the
physics of planetary growth.

To see this, consider the growth of two large objects sweeping up smaller
objects by two-body interactions. Calculate the time dependence of their mass
ratio:

d
dt

(
m1

m2

)
=

[(
r1
r2

)y−3

− 1

]
.

The “+” term on the right indicates a positive definite factor, the details of
which are unimportant for the present point. What is important, is that the
ratio m1/m2 continuously grows if y > 3 (as for vesc >> vrel). The possibility
of this “runaway growth” of one (or a few) body(ies) with respect to oth-
ers has a substantial effect on how the planetesimal growth problem must be
solved. For instance, because the coagulation equation involves probabilities
and deals with mean quantities (as do all statistical treatments), particu-
lar care must be used in evaluating such quantities which can be skewed in
unphysical ways if the distribution of masses (or other properties) becomes
discontinuous. (In fact, there are other aspects of the coagulation equation
that are potentially unphysical; see Wetherill (1990), for a discussion.) Be-
cause runaway growth occurs when relative velocities are smaller than escape
velocities, it is important to have an accurate representation of the dynamical
state of the entire ensemble. The central problems of planetesimal growth are
therefore those of obtaining real collisional cross-sections and outcomes (in-
cluding the effects of fragmentation), and describing the real velocity evolution
of the system.

5.2 Three-Body Effects on Collision Cross-Section

Greenzweig and Lissauer (1990) used numerical integrations of the restricted
three-body problem to determine the gravitational enhancement factor, Fg,
for an object sweeping up massless “test” particles in orbit about a star.
Averages of the outcomes of many integrations, starting from different initial
conditions, were used to evaluate

Fg = Fg [i, e, (rp/rhill)] ,
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where i and e are inclination and eccentricity of a test particle, respectively,
and rhill is the radius of the “Hill sphere”:

rhill =
(
mp

3M∗

)1/3

ap .

The quantity ap is the semi-major axis of the growing planetesimal. (The Hill
sphere is a measure of the extent of the gravitational influence of a secondary
compared to the gravitational influence of the primary. Its radius is defined to
be the distance from the secondary, in the direction of the primary, at which
the potential is a minimum, in a frame rotating with the secondary; that is,
the distance to the inner Lagrange point. It arises as a natural parameter
in the “shearing sheet” coordinate system.) By performing many integrations
and relating the eccentricities and inclinations to relative velocities, the results
shown in Fig. 24 were obtained. Scaling relations allow the results to be applied
to general values ofmp and ap. Although the two-body formula for Fg indicates
divergence as relative velocities vanish, three-body effects limit its value. It is
noteworthy that the orbits of test particles near the growing planetesimal can
be extremely complicated (see Fig. 1 of Greenzweig and Lissauer 1990). These
orbits should give pause to anyone contemplating a brute force, numerical
attack on the entire planetesimal growth problem.

Armed with the details of these encounters, one can say something about
the limits to runaway growth. Runaway slows when a planetesimal has

Fig. 24. The gravitational enhancement in collision cross-section, including three-
body effects, as a function of the ratio of escape velocity to planetesimal velocity
dispersion (or planetesimal eccentricity). The dashed line indicates the two-body
approximation. (Figure from Lissauer 1993)
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substantially cleared its neighborhood, after its own random velocity has di-
minished so that the boundaries of its neighborhood are reasonably stable.
From numerical integrations like those referred to above, this occurs after
test particles are depleted from a zone ∆r of a few rhill in width about the
planetesimal. The mass contained in such an annulus therefore represents the
mass attained after runaway:

mrunaway ≈ (few times)2πap∆rΣs ≈
(
10πa2pΣs

)3/2
(3M∗)

1/2
, (16)

where Σs is the surface density of solids. Note that this is not the upper
limit to the mass that may ultimately be attained; it is merely the mass that
corresponds to the end of the runaway phase, after which the growth rate
diminishes substantially. We note here that, for typical parameters, mrunaway

in the terrestrial planet region is about 0.04M⊕, or 3 lunar masses.

5.3 Evolution of the Velocity Distribution

One of the most successful techniques for describing the evolution of the plan-
etesimal velocity distribution is based on classical methods of statistical me-
chanics (Stewart and Kaula 1980; Lissauer and Stewart 1993). It employs the
collisional Boltzmann equation, or more specifically a Fokker-Planck equation,
in which encounters are regarded as instantaneous and local, and motions be-
tween encounters are effectively freely orbiting. (These techniques have also
been used in stellar dynamics.) As will be seen, distant, non-local encounters
are also important, so modifications must be made to incorporate their effects.
The basic premise is that the planetesimal ensemble can be described by as a
perturbation to a Boltzmann-like distribution function, f (r,v), expressed in
terms of inclination and eccentricity as f (i, e), where the number density of
planetesimals is

n =
∫
f d3v .

Evolution obeys the collisional Boltzmann equation

∂f

∂t
+

dr
dt

∂f

∂r
+

dv
dt

∂f

∂v
=

δf

δt

∣∣∣∣
encounter

. (17)

It is assumed that encounters cause perturbations to an equilibrium distribu-
tion, f = f0 + f1 , where f1 << f0 and

f0 (i, e) =
4Σs

mp

ei

〈e2〉 〈i2〉 exp
(
− e2

〈e2〉 −
i2

〈i2〉

)
. (18)

Equation (17) is linearized, using the fact that, because f0 is an integral of free
orbital motion, it satisfies the homogeneous equation. The result is a linear,
inhomogeneous equation for f1.
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It remains to specify the encounter term on the right hand side of (17). The
reader is referred to Wetherill and Stewart (1989) for mathematical details;
here I only describe the physical mechanisms that are included. The term is
usually divided into five components:

1. Gravitational “viscous stirring”, due to close encounters between orbiting
bodies converts ordered, orbital energy to random kinetic energy. This
component is always positive, in the sense that it increases relative veloc-
ities.

2. Inelastic collisions also produce “viscous stirring”, which increases ran-
dom energy at the expense of ordered, orbital motion. Cross-sections for
collision are provided by data such as that shown in Fig. 24.

3. Inelastic collisions can, of course, also extract energy from the random
component, which reduces relative velocities.

4. The effect of “dynamical friction” is also included in the encounter term,
although this effect really depends on the long-range, collective interaction
of large numbers of small objects with their larger counterparts. It acts to
drive the system toward a state of energy equipartition, in which different
masses have the same energy. Thus, it reduces the relative velocities of
the more massive bodies, and is a thereby a critical driver of runaway
accretion.

5. Gas drag extracts energy from both the ordered orbital motion and the
random velocities, but it can actually increase the relative velocities of
disparate masses by differential drag.

It is useful to examine steady state velocity distributions (the mean relative
velocity as a function of mass) derived by setting the sum of encounter terms
equal to zero. An example is shown in Fig. 25. The index q defines the power
law mass distribution; the value q = 2 gives an equal mass in each logarithmic
mass interval. When mass is distributed rather smoothly among the bodies
(q < 2), relative velocities are relatively uniform. For steeper power laws, and
particularly for q > 2, all relative velocities are less, but dynamical friction
caused by the relatively large number of smaller bodies dramatically decreases
those of the largest bodies. This, of course, promotes runaway accretion. (See
the discussion in Lissauer and Stewart 1993).

5.4 Calculating Planetesimal Growth

Modern computer codes that calculate the evolutionary development of an
ensemble planetesimals employ complicated algorithms that have been tuned
extensively by comparison with direct numerical simulations of more restricted
(and therefore more manageable) problems, careful comparison with exact so-
lutions of the coagulation equation (Wetherill 1990), and comparisons among
different methods (e.g., Stewart and Ida (2000) and Inaba et al. (2001)). Many
issues, not only of physics, but of numerical stability and accuracy must be
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Fig. 25. Equilibrium velocity dispersions as a function of planetesimal mass, for
different mass power law distributions. Larger objects tend to have lower random
velocities. As the mass power law steepens, the random velocities of the largest
objects are significantly depressed, a result of the equipartitioning effect of dynamical
friction. (Figure from Lissauer and Stewart 1993)

confronted. To give some flavor of what is involved in a comprehensive cal-
culation, we describe, with unfortunate but necessary brevity, the calculation
of Wetherill and Stewart (1993).

As in all such statistical treatments, a “box” of planetesimals is considered
to be representative of the ensemble evolution at a given distance from the
star. Wetherill and Stewart (1993) start with a box at 1 AU, of radial width
∆a = 0.17 AU, containing approximately 109 equally massive objects (i.e.,
all objects reside in a single mass bin, m1 = 4.8 × 1018 gm). At t = 0, the
distribution of velocities is given by (18), from which mean horizontal and ver-
tical relative velocities, and collision probabilities can be found. The number
of mergers, and the change in relative velocities in timestep ∆t due to en-
counters, is then calculated from δf/δt|encounter. The number of mass bins in
increased to two; one containing objects with initial massm1, and one contain-
ing objects with mass m2 (= 2m1, if all collisions resulted in perfect mergers).
Fragmentation is accounted for by creating a multi-mass bin, into which frag-
ments are distributed according to a fragmentation size distribution law. The
smallest of these fragments are particularly vulnerable to the gas drag term
in δf/δt|encounter, and may be lost from the system (dragged into the Sun).
The populations and mean relative velocities are calculated for each mass bin,
and each is advanced through ∆t, the number of mass bins being increased
as bodies merge. But soon the number of objects in the largest mass bins be-
comes rather small, challenging the validity of mean quantities calculated for
those bins. So an algorithm for identifying and treating such runaways must
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be implemented. Wetherill and Stewart (1993) find that these runaways tend
to be on circular, coplanar orbits, and so become isolated from each other
(but not from smaller objects). They define a “gravitational interaction ra-
dius” Rg = Rg (rHill, a, e) and regard as isolated the largest N bodies, where
N is defined by the condition that∑

N

Rg ≥ ∆a .

These objects are not permitted to collide with each other, but they do interact
with objects in bins of smaller mass. For more details the reader should consult
Wetherill and Stewart (1993) and subsequent literature.

A representative of the (Wetherill and Stewart 1993) results are shown as
successive cumulative mass distributions in Fig. 26. After 103 years, 52 bodies

Fig. 26. The results of a calculation of the evolution of cumulative mass distribu-
tion in the terrestrial planet. These calculations considered planetesimals in a box,
0.17AU on a side, located at 1AU, using special methods to treat the runaway
bodies. (Figure from Wetherill and Stewart 1993)
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with m > 30m1 have formed; after 7 × 103 years years, 50 bodies have be-
come isolated (the largest being bigger than 103 km in radius); by about
20 × 103 years, fragmentation has begun to increase the small body popula-
tion noticeably; and by 1.2× 105 years there are 7 runaway bodies containing
roughly half the mass of the system, the largest body being the size of Mer-
cury. The results of another calculation is shown in Fig. 27 (Weidenschilling
et al. 1997). This simulation is based on similar techniques, but treats the
isolation of the largest objects directly by explicitly calculating the properties
of individual runaway bodies, and including 100 radial zones, encompassing
a = 0.5–1AU. Their results are similar in essential ways to those of Wetherill
and Stewart (1993).

5.5 The Final Stage of Accumulation;
Rocky Planets in the Terrestrial Planet Region

Planetesimal growth simulations indicate that a final stage of rocky planet
accumulation begins when several (or perhaps a few tens) of lunar or Mars-
sized protoplanets, which have grown by runaway accretion, become rela-
tively dynamically isolated. Secular resonances among these objects and/or
externally produced perturbations (i.e., those produced by giant planets) then
must increase their eccentricities and inclinations to the point where their or-
bits cross and further collisional growth ensues. Modern computeralgorithms
(e.g., Sugimoto et al. (1990), Wisdom and Holman (1991), Saha and Tremaine
(1992), Saha and Tremaine (1994), Makino et al. (1997), Duncan et al. (1998)
and Chambers (1999)) can integrate the orbits of several tens to hundreds
of individual gravitating objects for hundreds of millions of years, and so
can be applied to the problem of this final stage. Monte Carlo techniques
(e.g., Wetherill (1992, 1994, 1996)) have also been applied with considerable
success, although they neglect secular effects. Inevitably, such calculations are
performed specifically for the terrestrial planets and asteroids, as they pro-
vide the only currently available quantitative test. Here, I only summarize the
main features of current results.

A typical calculation which begins with several tens of “protoplanets” in
the terrestrial planet region usually evolves to a situation in which only a few
planets remain (Fig. 28). The entire process may take a few times 108 years.
A few conclusions about the process are robust: (1) If there are no exter-
nal perturbers, mass and angular momentum are conserved to a high degree
(only a few percent lost in ejected bodies or collisions with the star). In the
presence of Jupiter or Saturn, more objects are lost, the amount depending
on how much material originally resided close to the regions most affected by
the giant planet resonances (i.e., beyond about 2 AU). (2) After a few hun-
dred million years, a few terrestrial-mass planets remain (if the appropriate
mass was present to begin with), although the final orbital configurations and
individual masses are stochastically determined. Thus, specific quantitative
predictions about the precise nature of the final planets cannot be made.
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Fig. 27. The results of another calculation of the evolution of cumulative mass
distribution in the terrestrial planet region. These calculations considered planetesi-
mals between 0.5 and 1.5 AU, and allowed for the interactions between a continuum
distribution of small bodies and a population of discrete runaway objects in individ-
ual orbits. There is qualitative agreement with the results shown in Fig. 27. (Figure
from Weidenschilling et al. 1997)
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Fig. 28. Results of an N-body simulation (starting with about 150 bodies) of the
final stage of planetary formation in the inner Solar System. The size of the symbols
are proportional to the planetesimal radii. This particular simulation produces a
reasonable facsimile of the terrestrial planets. (Figure from Chambers (2001))

(3) Giant collisions were inevitable during the last stages of rocky planet
formation. (4) There is some radial mixing of material, but not complete ho-
mogenization, during the period of final assembly.

Some problems remain. Because it is believed that the giant planets formed
in less than a hundred million years, their perturbations on terrestrial planet
formation are included in the most recent calculations. Yet, when this is done,
there is a tendency for N-body simulations to produce eccentricities and in-
clinations higher than those of the present terrestrial planets. Sometimes this
results in only one or two massive planets being formed in the simulations,
because more eccentric orbits permit more mergers. The results appear to
be somewhat sensitive to the initial mass distribution, and it might be that
the configuration of the terrestrial planet system reflects initial conditions not
well-represented by the calculations so far. But it is also clear that the loca-
tions of the giant planets, and the timing of their growths can have important
consequences. See Chambers and Wetherill (1998) and Chambers (2001) for
recent discussions of these issues.
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6 The Formation of Gas Giant Planets

6.1 Atmospheric Capture or Gravitational Collapse?

Although Jupiter and Saturn contain a greater mass of hydrogen and he-
lium than rock-forming and icy material, they are nevertheless enhanced in
the heavy elements relative to solar abundances. This fact excludes gravi-
tational collapse from the protoplanetary disk, a compositionally indiscrimi-
nant process, as the sole mechanism by which these planets formed. Moreover,
Uranus and Neptune, which have managed to retain large amounts of hydro-
gen and helium, are still made mostly of the heavier elements. Thus a great
deal of attention has been directed toward understanding the growth of plan-
ets, by the means described in Sect. 5.5, to the point where they can capture a
massive atmosphere. To be sure, one can imagine that these planets formed by
gravitational collapse followed by some other process (e.g., preferential loss of
gases, or gain of rocky planetesimals) which resulted in their present compo-
sitions. Furthermore, what appear to be gas giant planets have been detected
around other stars, and we do not know whether or not their compositions
are the same as that of their parent star; these might have formed by gravi-
tational collapse. So two distinct modes of giant planet formation may occur;
both are interesting.

6.2 Giant Planet Formation by Atmospheric Capture

Let us begin by asking: What do calculations predict for planetesimal growth
at 5 AU and beyond? Growth rate is proportional to collision frequency,
which is less at 5 AU than at 1 AU, because both orbital frequencies and
(presumably) the surface density of solids decrease with distance from the
star. Note, however, that settling in a non-turbulent nebula would still be ex-
pected to proceed on a 103–104 year timescale (see Fig. 21). As a planetesimal
grows, it is capable of retaining an increasing mass of gas in its atmosphere.
In fact, upon reaching a critical mass, it can induce the collapse of all the gas
available in its neighborhood, limited only by a finite reservoir, or by dynam-
ical effects associated with rotation (see Sect. 7.1). The planetesimal becomes
the core of a gas giant planet.

This mechanism of gas giant planet formation is frequently called the “core
instability” model, although it can be caused by evolution to a state in which
there is no static equilibrium. The phenomenon is a consequence of the simul-
taneous constraints imposed by hydrostatic equilibrium and radiative trans-
fer. A simple illustration is given by Stevenson (1982), although his argument
involves some sleight-of-hand. Hydrostatic equilibrium requires that the at-
mosphere above the core satisfy

1
Z

dp
dr

= −GMr

r2
,
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where Mr is the mass contained within radius r. Radiative transport in the
optically thick atmosphere is governed by

16σT 3

3κZ
dT
dr

= − L

4πr2
,

where the luminosity L (supplied by core accretion) and opacity κ are assumed
constant, for the sake of example. As long as Mr is dominated by the core
mass (and is therefore nearly constant), these equations are satisfied by state
variables with the dependencies

Z ∝ 1/r3, p ∝ 1/r4, T ∝ 1/r .

But when the core becomes large enough to attract an envelope which itself
begins to contribute substantially to the total mass, no physically realistic
solutions exist; the gravitational force within the atmosphere cannot be bal-
anced by the pressure gradient and the atmosphere collapses. Figure 29 shows
the critical core masses calculated by Mizuno (1980), along with an those de-
rived from an analytic expression derived by Stevenson (1982). Note that the
critical core mass has a strong dependency on opacity; it also depends on the
core mass accretion rate.

Fig. 29. Core mass as a function of total (core plus atmosphere) mass, for differ-
ent (normalized) concentrations of dust in the atmosphere (or, equivalently, opacity
normalized to a standard, solar composition). The solid lines are from calculations
of Mizuno (1980); the dot-dashed line is derived by a simple model of Stevenson
(1982). Portions of the curves with negative slope are unstable; no static equi-
librium solutions exist to the right of the vertical portions of the curves. (Figure
from Stevenson 1982)
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What limits the mass once the nebular gas begins to collapse around the
core? Undoubtedly, rotational effects become important at some point. Gravi-
tational interactions with the disk, i.e., gap clearing Lin et al. (1996), may act
to diminish Lubow and Artymowicz (2000) or terminate atmospheric accumu-
lation. Or, it may be that the mass of available gas diminishes with time, so
later-forming planets accrete less gas Shu et al. (1993). It has also been pro-
posed that gas accumulation can be terminated by a hydrodynamic instability
associated with accretion, if nebular densities are sufficiently low (Wuchterl
et al. 2000), and references therein). There is currently no consensus on this
important question.

The mass of Jupiter’s core is uncertain. It could be as large as 15M⊕, but
data constraining its size also permit models with no core (Guillot et al. 1997).
(If the latter were the case, the atmospheric capture model would be invalid,
of course.) Can a core of 15M⊕ grow before the gas of the protoplanetary disk
has disappeared? Recall that the lifetimes of protostellar disks do not appear
to exceed 107 years. Recall also that planetesimal growth slows considerably
after the runaway phase, and that even in the terrestrial planet region (where
planetesimal growth is faster) full-sized planets are attained only after 107–
108 years. Thus it seems necessary that the critical core mass for Jupiter
be attained before runaway ceases. The runaway mass is given by (16), which
demands thatΣs ≥ 10 gm/cm2 formc = 15M⊕. This surface density, if spread
over the Jovian zone, would yield a mass of solids of about 50M⊕, substantially
greater than that which now resides in Jupiter. We shall return to the question
of what happened to this “extra mass” in a moment, but supposing it to have
existed, a critical mass core, consistent with the limits imposed by models
of Jupiter’s composition and structure, could have accumulated within about
106 years.

Pollack et al. (1996) have constructed quantitative models of the forma-
tion of Jupiter and Saturn, based on the atmospheric capture idea. The study
incorporates a model for the growth of planetesimals and a calculation of the
hydrostatic structure of the gaseous envelope, including its interaction with
accreting planetesimals. They consider a zone in the disk centered on Jupiter’s
orbit (assumed not to change), with a width ∆a = ∆a

(
rHill,

〈
e2
〉)
. That is,

∆a grows as Jupiter’s Hill sphere grows, and as the eccentricity dispersion of
the accreting planetesimals increases. The planetesimals are assumed to be
distributed instantaneously uniform throughout ∆a, but their number dimin-
ishes as they are consumed by Jupiter (or increases as ∆a expands). The fates
of the planetesimals as they encounter Jupiter’s atmosphere are calculated.
They may have a grazing encounter, entering and leaving the atmosphere; they
may be trapped by gas drag and disintegrate in the atmosphere; or they may
plunge all the way to the core. Their kinetic energy is deposited accordingly.
Calculations are performed for an ensemble of impact parameters. Statistical
averages are then used as inputs to the atmospheric envelope growth calcu-
lation. The envelope is supported by the luminosity of accretion, and gas is
supplied to it from the disk in accordance with the growth of the Hill sphere.
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As might be suspected from the discussion above, opacity in the envelope is
a key variable. Pollack et al. Pollack et al. (1996) assume that it corresponds
to cosmic abundances.

Results of this study for the growth of Jupiter are shown in Fig. 30.
(Calculations for Saturn were also performed.) Runaway growth of the core
to about 12M⊕ occurs in less than one million years, after which it becomes
dynamically isolated and core growth slows. Atmospheric mass grows faster
until, at about 8 million years, it exceeds the core mass and induces dynamical
collapse. The authors point out that the quantitative aspects of this solution
depend rather sensitively on the assumed surface density of solids. If Σs is
much greater than 10 gm/cm2, the fraction of heavy elements (i.e., the core
mass) is too large to be consistent with models of Jupiter. If Σs is much
less than 10 gm/cm2, the core grows too slowly. Thus the model is essentially
“tuned” to provide the maximum core mass allowed by the data, so that
it can form within the inferred lifetime of the nebula. Variations on model
parameters are discussed in Pollack et al. (1996).

What of the “extra mass” in the Jupiter region implied by this value of
the surface density? Theory predicts that a few other potential giant planet
cores would form from this material (e.g., Kokubo and Ida 1998). Thommes
et al. (1999), noting the difficulty with which planetesimal accumulation the-
ories have in explaining the formation of Uranus and Neptune (bodies become
too isolated; growth is too slow) suggested that these planets formed between
Jupiter and Saturn and were gravitationally scattered to their present orbital
locations during the growth of Jupiter and Saturn. Their orbits were circu-
larized, according to Thommes et al. (1999), by interaction with the residual

Fig. 30. Growth of Jupiter as a function of time, according to calculations of Pollack
et al. (1996). Shown are the core mass (solid line), atmosphere mass (dot-dashed line)
and total mass (dotted line).(Figure from Lissauer 1993)
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planetesimal disk. This is an appealing hypothesis, potentially solving a few
puzzles at once.

At this point, one should realize that the planetesimal accumulation theory
of planet formation has attained considerable success in explaining the over-
all dynamical configuration of the Solar System, the only planetary system
available for meaningful tests. But there remain difficulties and uncertain-
ties concerning both the terrestrial and gas giant planets (and the asteroids,
which I have not discussed). Moreover, the existence of extrasolar giant plan-
ets close to their parent stars is not readily explained by gradual planetesimal
accumulation alone. We now turn to the possibility of planetary formation by
gravitational instability.

6.3 Giant Planet Formation by Gravitational Collapse

The idea that planets could form, like stars, by direct gravitational collapse
of gas and dust together, is an appealing one, particularly in the light of the
discoveries of extrasolar planets. Gravitational collapse would likely be fast
and efficient, taking only several orbital periods to isolate the planetary mass.
This is an obvious advantage, as the atmospheric capture process, as applied
to Jupiter, seems barely able to satisfy the requirement that the process be
complete before the disk gas disappears. Most of the extrasolar planets exceed
the mass of Jupiter and have non-circular orbits. It is not known how effective
atmospheric capture might be in producing such objects, but if they formed
rapidly by gravitational instability, one can readily imagine situations in which
multiple protoplanets scatter each other into irregular orbits, with occasional
mergers increasing the largest masses. Indeed, it has been argued (without no-
table acceptance, I should add) that the masses and distribution of eccentrici-
ties of extrasolar companions indicate that they represent a low mass extension
of the stellar population, and that they therefore probably formed as stars do,
by gravitational collapse, and should not even be called planets (Stepinski
and Black 2001). It should be understood, however, that here we are talking
about gravitational collapse within a protostellar disk, which represents quite
a different situation than the collapse of a molecular cloud core.

Gravitational instability occurs if the criterion of (11) is violated. It is pos-
sible to estimate Q from the diagnostics outlined in Sect. 1.2.2 and theoretical
models. Figure 31 shows the radial distribution of Q calculated from the mod-
els of D’Alessio et al. (1998) for typical T Tauri stars. It is seen that the disks
are quite stable over all radii less than about 10 AU, but that it is only the
effect of stellar radiation that stabilizes them beyond that distance. Thus, if
some heating event in the inner disk caused it to swell vertically and shadow
the outer disk (for instance), an instability might develop beyond 10 AU. Or
it might be that disks were substantially more massive during their early his-
tories, thereby lowering Q, as in the models of Boss (1997, 1998). Given the
model results shown in Fig. 31, it is reasonable to suspect that instances of
gravitational instability do occur.
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Fig. 31. The radial distribution of the gravitational stability parameter Q (solid
line) for a typical T Tauri star, calculated from the models of D’Alessio et al. (1998).
The dashed line indicates the value that would result if the disk was not illuminated
by stellar radiation. Disks appear to be stabilized by stellar radiation over radii less
than about 10 AU. They might be unstable at an earlier, more massive, stage, or if
shadowed by a hot inner region.(Figure from D’Alessio et al. 1998)

In Sect. 3, I stated that gravitational instability produces spiral density
waves. This fact has been confirmed in many numerical simulations, and is
not surprising because almost all disturbances in highly sheared disks produce
spiral structure. But the manifestations of instability are difficult to assess
by direct observation. The waves seen vividly in Saturn’s rings can usually
be attributed to the disturbance of a satellite rather than instability, and the
precise origin of galactic spiral structure is complicated by overlying processes
such as star formation and molecular cloud evolution. Thus, so far, we have
had to rely on the numerical simulations to determine the ultimate fate of
unstable disks.

There are two fundamental problems that plague gas disk simulations,
unique among numerical astrophysical problems. One source of difficulty is
the intrinsic dynamic range of global phenomena in Keplerian disks, as de-
fined by the variation of orbital period over the radial extent of the disk.
Gravitational disturbances close to the star develop rapidly and can affect
things far away, where the much slower orbital period can retard response.
Thus a useful simulation must be sustained, and resolve a large range of or-
bital periods. This problem has been addressed in galactic simulations by the
development of variable timestep techniques and tree codes, in which integra-
tions are performed non-uniformly over the disk; equivalent techniques have
not been developed for gas disks. The second problem stems from the fact that
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small changes in kinetic and gravitational energy can cause large changes in
internal energy, because the latter quantity is a factor of (h/r)2 smaller than
the former. And, as we shall see, the response of a disk’s internal energy to
instability plays a large role in determining the nonlinear development of the
instability.

The first problem is somewhat mitigated in simulations of gas giant planet
formation by gravitational instability, because the instability and interesting
effects are presumed to occur in the outer disk, with minimal influence of
the (highly stable) inner disk. Thus the inner disk has been effectively re-
moved from some calculations (e.g., Boss (2000) and Pickett et al. (2000b)),
although it remains to be demonstrated rigorously that this is an acceptable
procedure. Up until recently, the calculations have also been performed un-
der simplifying assumptions regarding the disposition of internal energy. It
has been established that if an unstable disk remains everywhere at its initial
temperature (as might be possible under optically thin conditions), instabili-
ties proceed violently to a state dominated by strong density waves and high
density contrasts (Boss 1997, 2000; Nelson et al. 1998; Pickett et al. 1998), as
in Fig. 32. Boss (1997) argued that some of the density perturbations were,
in fact, gravitationally bound and therefore could be regarded as potential
protoplanets. But it has also been shown that disks which respond adiabati-
cally to instability-generated disturbances sustain much milder density waves
(Pickett et al. 2000a; Boss 2000; Nelson et al. 2000). That is, the energy loss
rate determines the effect of the instability: isothermal disks, in which energy
is easily lost (and gained, in gas undergoing expansion) remain unstable and
evolve violently; adiabatic disks tend to heat up and become more stable.

It is clear that processes which transport and dissipate energy must be
accurately represented if we are to determine, from numerical simulations,
whether or not planets can form by gravitational instability and, if so, what
their characteristics would be. I can’t help mentioning that these calcula-
tions, as difficult (and therefore subject to error of assumption or algorithm)
as the calculations of planetesimal growth, have been undertaken by relatively
few researchers. A satisfactory theoretical understanding would be hastened,
no doubt, by the kind of cooperative attention that has so advanced the
planetesimal growth problem. Of course, determination of the heavy element
abundances of extrasolar giant planets could provide a definitive test: compo-
sitional identity of planet and parent star would heavily favor gravitational
collapse.

7 Planet Migration

7.1 Tidal Interaction and Angular Momentum Exchange Between
Planet and Disk

The discovery of large planets in orbits very close to their parent stars has
focussed attention on a theoretical result that had been previously disregarded
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Fig. 32. A representation of equatorial density in a gravitationally unstable pro-
tostellar disk. In this numerical simulation, the evolution was assumed to be
isothermal; that is, its temperature was fixed everywhere to its initial value. The
contour/gray-scale interval is 0.5 in the log of the fractional density perturbation; it
spans 4.5 orders of magnitude. An important unresolved question for giant planet
formation is whether the high density (dark) arcs seen in this simulation eventually
evolve into discrete, gravitationally coherent objects (protoplanets), or whether they
are transient entities, like the many waveforms that dissolve into the background.
(Figure from Pickett et al. 2000b)

in most theories of planet formation. The result states that angular momentum
can be exchanged between a planetary body (or other stellar companion) and
a circumstellar disk, due to tidal interaction, such that the net torque on the
planetary body causes rapid orbital evolution (Goldreich and Tremaine 1979).
Thus, even when a solid body has grown too large to be coupled to the gas
by viscous drag, it may still be coupled by gravitational forces strong enough
to affect its orbital motion.

An intuitive derivation of the tidal torque was given by Lin and Papaloizou
(1979), by means of an “impulse approximation”, in which the interaction is
considered to arise from the local gravitational deflection of fluid parcels in
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Fig. 33. A planet gravitationally deflects gas near the edge of a disk, changing
its angular momentum. If close encounters between the planet and a given fluid
element occur in a phase-coherent way, angular momentum is systematically ex-
changed between planet and disk. This tidal interaction can cause radial migration
of the planet

the disk by the planet (Fig. 33). The fluid is deflected through an angle δ as
it passes the planet, located ∆r away:

δ =
∆vr
vrel

=
2Gmp

∆rv2rel
.

Here vrel is the relative velocity between disk gas and planet and mp is the
mass of the planet. The change in the gas angular momentum (per unit mass)
is

∆j = −vrelrd (1− cos δ) ≈ −vrelrd
δ2

2
= −

2G2m2
prd

(∆r)2 v3rel
.
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This interaction occurs every time the planet comes near the particular fluid
under consideration, or every ∆t = 2π/ |Ω −Ωp|, so the rate of angular mo-
mentum exchange is given by

∆j

∆t
=

∆j

2π/ |Ω −Ωp|
= −

G2m2
p |Ω −Ωp|

πr2p (∆r)
2 (Ω −Ωp)

3 .

We have used the fact that vrel = rdΩ − rpΩp. To find the total angular
momentum exchanged between planet and disk, this expression should be
integrated over the whole disk:

dJ
dt

=
∫ ∞

∆rd

Σ
∆j

∆t
2πr d (∆r) .

But it is assumed that the torques nearest the planet dominate, so Ω may be
expanded

Ω2 =

(
Ωp +

dΩ
dr

∣∣∣∣
p

∆r + ....

)2

.

The result is
dJ
dt

= T = − 8
27

( rp
∆r

)3(mp

M∗

)2

Ω2
pΣr

4
p . (19)

Remarkably, this formula for the torque on the disk close to the planet is
almost correct, requiring only a modest adjustment of the constant to match
a more rigorous derivation. Note that, according to this formula, the torque
diverges as ∆r → 0, a fact which leads to the notion that the planet actually
clears a gap around itself, by extracting angular momentum from the gas
within its orbit and giving angular momentum to the gas outside of its orbit.
The size of the gap is presumably set by the ∆r at which the tidal torques
are balanced by some other (e.g., viscous) torque. It is then the difference
between the inner and outer torques that determines the net torque on the
planet, i.e., how fast and in what direction the planet’s orbit will change.

The problem with this derivation is that it obscures the real physics of
the interaction, which is rich in hydrodynamical phenomena, and is really
one of resonant (or near-resonant) interaction and wave excitation (Goldreich
and Tremaine 1979, 1980). These aspects are revealed only by solving the
full fluid equations, as in Sect. 3 for waves, but now including the forcing
by the gravitational potential of the planet. The linearized equations that
lead to the dispersion relation (9) then have inhomogeneous “driving” terms
which represent the Fourier decomposition of this potential. Solutions of the
inhomogeneous equations can be matched to the homogeneous, “wave” solu-
tions to obtain a full description of the excitation of the disk caused by the
planet (Goldreich and Tremaine 1979; Yuan and Cheng 1989). The torque is
indeed concentrated near the planet, but at the special locations identified
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previously as the Lindblad resonances (Sect. 3). These local disturbances ex-
cite spiral density waves which, behaving as previously described, propagate
away from the resonances carrying angular momentum to be deposited wher-
ever the waves damp. The effects associated with each resonance must then
be summed to obtain the total angular momentum exchange rate. The torque
exerted on the disk near a single resonance (designated as the mth Lindblad
resonance) is given by Ward (1997a); cf. Artymowicz (1993) as:

Tm = −π
2mΣψ2

m

r
dD∗
dr

, (20)

where the terms have the following definitions:

ψm =
r
dφm
dr

+ 2mφmf√
1 + 4 (mcs/Ωr)

2

φm = −Gmp

rp
bm1/2 (r/rp)

bm1/2 =
2
π

∫ π

0

cosmθ dθ√
1− 2 (r/rp) cos θ + (r/rp)

2

f = m (Ω −Ωp) /Ω

D∗ = Ω2 −m2 (Ω −Ωp)
2 + (mcs/r)

2
.

The quantity bm1/2 is the coefficient of the mth term in the Fourier expansion
of the planet’s gravitational potential (in the frame of the center of the disk).
Examination of these terms shows that the numerator of (20) contains the
intrinsic strength of the forcing term and the denominator contains the dis-
tance (measured in frequency space) from the resonance. Artymowicz (1993)
showed that the terms proportional to mcs/rΩ, which had been neglected in
previous analyses because this factor was considered to be small, of order the
disk thickness ratio, are important in limiting the maximum value of torque.
Recall that the impulse approximation indicates that the torque diverges as
the distance to the planet ∆r approaches zero. But note that the highest order
resonances also occur closest to the planet, so the relevant m becomes large
as ∆r becomes small; thus terms proportional to mcs/rΩ are not necessarily
negligible. These terms reflect the displacement of the resonant locations due
to the non-zero pressure gradient in the disk.
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Fig. 34. Normalized torque as a function of mode number m, for typical values of
disk parameters. In this figure, k refers to the power law index for the base state sur-
face density (i.e., k = 0 for constant surface density) and l is the (negative) power law
index for the base state temperature. Outer torques are systematically higher than
inner torques, an asymmetry which produces inward planetary migration. (Figure
from Ward 1997a)

Ward (1997a) calculated Tm from (20) for a typical disk configuration and
obtained the results shown in Fig. 34. A maximum value of Tm occurs for
intermediate values of m. Thus the highest order Lindblad resonances are of
diminishing importance and there exists a “torque cut-off” which limits the to-
tal torque even when there is no gap. Most importantly, note that the torques
associated with outer Lindblad resonances systematically exceed those of the
inner Lindblad resonances. This imbalance is due to intrinsic characteristics
of Keplerian disks; outer resonances are slightly closer to the planet than their
inner counterparts, and are less diminished by pressure effects, among other
factors (Ward 1997a). The result is that the dominance of the outer reso-
nances produces a net negative torque on the planet, which induces inward
migration.

The total torque can be found by the following trick. Calculate the torque
density by assuming that the torque is distributed more or less smoothly
between Lindblad resonances:

dT
dr

=
Tm

∆rLm
.

The distance rLm is the separation of successive resonances; see (12). The
total torque is then found as before, from the integral

T =
∫ ∞

∆r

dT
dr

dr .
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The trick is rigorously justified if the waves excited by the resonant interac-
tion are damped immediately, i.e., at or very close to the resonance. Even if
they are not, the total torque is usually accurately represented, because the
effect of propagating waves is simply to redistribute the torque deposited near
the resonance. If the terms proportional to mcs/rΩ are ignored, a formula es-
sentially the same as (19) is found, except with the coefficient 0.84 instead
of 8/27 = 0.296 (Goldreich and Tremaine 1980). Including the torque cut-off
effect yields a different coefficient, which depends on the details of the disk
base state.

7.2 Rates of Orbital Evolution

What do the results described above predict for the rate of planetary migra-
tion? To answer this question, one must calculate both the total torque and
the response of the disk, in a self-consistent manner. Note that the torque is
proportional to the local value of the surface density (19), which changes as
the disk material is redistributed in response to the torque. Thus one cannot
simply use the base state disk conditions to calculate the torque on the planet.
Ward (1997a) found an illuminating solution to this problem, in which the
planet migrates inward at constant radial velocity, accompanied by a steady,
wave-like disturbance in the disk density distribution (Fig. 35). In essence,

Fig. 35. The surface density perturbation produced by a migrating planet that is
not large enough to clear a gap (Type I drift), for three planetary masses and typical
disk parameters. The horizontal axis is the distance from the planet (normalized by
the scale height) in a frame moving with the planet. (Figure from Ward 1997b)
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the solution represents a situation in which the disk surface density is locally
disturbed in just the way necessary for the planet-induced torque to produce
a constant mass flux in the frame of the radially migrating planet. For an
inviscid disk, the planet’s radial velocity is given approximately by

vp = .25cs
mp

M∗Q

r3

h3
,

where Q is Toomre’s stability parameter (11). For typical parameter values
(cs = 1km/sec, h/r = 0.1, Q = 10, M∗ = 2 × 1033 gm), one finds vp =
7.5 (mp/M⊕) cm/sec. Thus a 1M⊕ planet would migrate from 1 AU to the Sun
in about 6×104 years and a 10M⊕ planetary core would migrate from 5 AU to
the Sun in about 3× 104 years. This mobility (called Type I migration, when
the planet is not massive enough to clear a gap around itself) can therefore
result in large radial displacements of planetary objects in times comparable
to or less than their formation times.

It is found, however, that there is a critical mass, mc, above which a gap
in the disk forms around the planet and Type I migration ceases. Because
viscosity acts to spread material into the gap, the critical mass increases with
disk viscosity; it is given by Ward (1997b)

mc ≈ (constant)M∗α

(
M∗
Σr2

)( cs
rΩ

)2
,

where the constant depends on specifics of the disk properties, and is generally
of order unity. For masses exceedingmc, radial flow past the planet is inhibited
and the planet becomes “trapped” in the gap. The planet and gap then move
with the local disk gas, and drift at the rate

vp ≈
ν

r
≈ αcsh

r
=
αc2s
rΩ

.

This drift is called Type II migration, and is slower than Type I migration,
although it is clearly significant on timescales relevant to the evolution of
the disk. Note that Type II migration could be outward, if the planet was
located in the expanding part of the disk. Ultimately, however, most of the
disk moves inward, and the planet would be carried with it toward the star.
Figure 36 summarizes the drift rates for Type I and II migration, as a function
of planet mass, for a typical disk configuration (Ward 1997a).

Although there is no obvious evidence for tidal drift in the Solar System,
it is a likely for the Jovian-sized planets found very close to other stars. That
is, it seems implausible that these planets formed so close to their parent
stars (Bodenheimer et al. 2000), so one might suppose that they formed further
away and then migrated inward to their present locations (Lin et al. 1996).
Why might some systems suffer extensive tidal drift while others exhibit no
effects? Trilling et al. (1998) addressed this question by calculating the orbital
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Fig. 36. Inward migration velocity as a function of planetary mass and turbulent
viscosity parameter α, showing the transition from Type I to Type II drift. The
velocity is normalized by 2 (M⊕/M∗)

(
π r2Σ/M∗

)
(VK/cs)

3 VK . The time shown on
the right-hand scale is the characteristic orbital decay time from 5 AU. (Figure
from Ward 1997b)

evolutions of planets subject to Type II migration in a circumstellar disk. The
planets were considered to be fully formed at the beginning of the calculation,
and located at a specified distance from a solar mass star, usually about 5
AU. Subsequent orbital migration due to disk tides was calculated using the
impulse approximation. If and when a planet approached the star, it suffered
additional torques due to mass exchange with the star (Roche lobe overflow)
and tidal interaction with the star, both of which tend to increase the orbital
angular momentum of the planet and thereafter oppose the disk tidal torques.
These torques depend on the size and internal structure of the planet, which
were also calculated. Finally, it was assumed that the disk disappeared after
a time interval of, say, 107, after which tidal interaction with the disk ceased.

Representative results from Trilling et al. (1998), for planets with initial
masses between 1 and 5 times that of Jupiter, are shown in Fig. 37. For the
case shown (disk mass 1.1 × 10−2 M�, α = 1 × 10−3), planets with initial
masses less than 3.36 Jupiter masses migrate toward the star and ultimately
lose most or all of their mass by Roche lobe overflow. Planets with initial
masses greater than 3.41 Jupiter masses lose no mass, and the most mas-
sive do not migrate far from their initial location before the disk disappears.
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Fig. 37. (upper) Orbital radius as a function of time for planets of various initial
masses, starting at 5 AU in a typical disk, and (lower) planetary mass versus orbital
radius for the same planets. Masses are in units of Jupiter’s mass. The dark region
in the upper figure represents the radial extent of the central star. Outward motion
is caused by mass loss and tidal interaction with the star. (Figure from Trilling et al.
1998)

Planets with initial masses between 3.36 and 3.41 Jupiter masses migrate to
distances at which they lose mass to the star, but are saved by the disap-
pearance of the disk. Trilling et al. (1998) suggest that the few percent of
the planets that fall into the last category may account for the extrasolar
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giant planets found close to other stars, although the relevant mass range
would vary with model parameters (disk mass and lifetime, initial planetary
location, etc.).

Note that the analysis of Trilling et al. (1998) is not consistent, in detail,
with the solutions found by Ward (1997a) First, Type I migration, which is
consequential during the planet building stage, being more rapid than Type
II, cannot be rigorously treated in the impulse approximation and is therefore
ignored in Trilling et al. (1998). Also, according to Ward’s analysis, Type II
migration rates are mass-independent, because gap formation in a viscously
evolving disk produces density perturbations which adjust the torque imbal-
ance on the planet to that which causes the planet migration to match the
movement of disk material. In contrast, according to Fig. 37, larger planets
migrate slower than smaller ones, a result attributed by Trilling et al. (1998)
to the larger gaps cleared by the larger planets. In fact, the final word on
planet migration has yet to be spoken. Not all of the potentially relevant feed-
back effects have been examined (e.g., the effects of waves on thermal state,
turbulent viscosity, dissipation, etc.). The interactions of multiple migrating
planets have yet to be fully assessed. For instance, differential Type I migra-
tion of planets of differing masses could affect planetary growth rates (Ward
and Hahn 1995). Numerical simulations by Artymowicz and Lubow (1996)
show that gap formation may not be complete, in the sense that material
can be accreted through the gap, which, in turn, would affect the migration
rate. See Ward (1997a) and Lin et al. (2000) and Ward and Hahn (2001) for
discussions of some of these issues.

7.3 Modeling the Formation of the Solar System

The Solar System will continue to provide the main test case for theories of
planet formation until the orbital configurations of other systems have been
determined to a much greater degree of completeness than they are presently
known. Thus our quantitative theories of particle accumulation, collisional
growth, giant planet formation, planetary migration, etc. must, in the end,
satisfactorily explain the dynamical state of the Solar System, which we know
to high accuracy. As discussed in these lectures, much progress has been made,
but the problem is of such complexity that a completely satisfactory model
does not yet exist, and may indeed be unattainable without further specific
constraints.

In fact, aside from dynamical factors, there exists a wealth of information
about the composition and physical state of the Solar System’s individual
members, which must also be consistent with our theories. For instance, the
outstanding characteristic of Solar System planetary composition is the ex-
treme volatile depletion of the terrestrial planets compared to the gas giants.
The former lack not only their cosmic share of the light gases hydrogen and
helium and noble gases, but are also vastly deficient in water and carbon-
and nitrogen-containing compounds. This state is commonly attributed to
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the relatively small masses of the terrestrial planets and the higher temper-
atures they have experienced by virtue of their proximity to the Sun, but a
quantitative integration of this idea with a general theory of planet formation
is lacking.

Among the most intriguing objects of the Solar System are the meteorites:
rocky fragments of asteroids, as well as some from the Moon and Mars, whose
orbits have brought them to Earth. Of the many kinds of meteorites, the most
common (the “chondritic” meteorites) are primitive, in the sense that they
have escaped the equilibrating processes (sustained high temperatures and
pressures) that are characteristic of terrestrial rocks. Thus they are composed
of an unequilibrated mix of pebbles and fine-grained material. The outstand-
ing features of chondritic meteorites are the following:

1. They are as old as the Solar System. The ages of individual components,
as determined by nucleochronological methods, are typically within sev-
eral million years of 4.56 Gyr (Wadhwa and Russell 2000, and references
therein). The oldest known components (calcium-aluminum rich inclu-
sions, or CAIs) are commonly taken to be the first solid objects formed in
the Solar System, with ages as great as 4.566±0.002 Gyr. Despite the am-
biguities encountered in interpreting radiometric ages, there is no doubt
that the chondritic meteorites have retained their essential character since
their formation in earliest Solar System history.

2. Their composition, as measured by the relative abundances of elements,
is the same as the Sun’s, within a factor of two or so, for all but the most
volatile elements. Although there are modest systematic differences in
composition, these meteorites formed from “solar material”, presumably
the protoplanetary disk itself, and have experienced little compositional
modification since then.

3. They are composed largely of igneous (melted and solidified) pebbles,
the “chondrules” from which the chondritic meteorites derive their name.
These chondrules exist within a matrix of fine-grained material to form
the bulk rock, which, laboratory studies have shown, could not have expe-
rienced the high temperatures required to melt the individual chondrules.
Moreover, there also exist within the meteorites, material with isotopic
compositions which identify them as pre-solar, and which apparently sur-
vived the formation of the Solar System intact, to be incorporated and
preserved in these primitive rocks. For the detailed properties of chondritic
meteorites and pre-solar material, see Bernatowicz and Zinner (1997),
Kerridge and Matthews (1988), and Hewins et al. (1996).

4. They contain unequivocal evidence for the existence of short-lived ra-
dionuclides (with half-lives less than a few million years) in the early
Solar System (Goswami and Vanhala 2000). These radionuclides were ei-
ther made in stellar sources or the interstellar medium shortly before the
Solar System formed, or they were produced by energetic events within
the Solar System itself.
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The first three properties listed above identify the chondritic meteorites
as early products of the planet-building epoch. They have therefore been re-
garded as key elements in understanding planet formation in the Solar System.
However, attempts to explain their properties have led to widely divergent
hypotheses. I will mention three approaches to the problem, to illustrate the
diversity of ideas regarding the origin of the primitive meteorites and their
radically different consequences for planetary formation theories.

A traditional approach has been to relate the bulk compositions of planets
and chondritic meteorites to the thermal state of the protoplanetary disk
at the time of their formation (e.g., Lewis (1974), Cameron (1978), Wasson
(1985) and Cassen (2001)). In this case, it is assumed that thermal gradients
reflect, directly or indirectly, position in the disk, and that a memory of these
gradients has been retained in the final product. This approach focuses on
bulk properties and usually has little to say regarding the details of physical
state, chondrule formation, or isotopic properties.

A contrasting theory has been extensively developed by Shu et al. (1996,
2001), which postulates extensive redistribution of planetary material by in-
ward drift within the disk and subsequent outward transport by the protosolar
wind. The theory takes advantage of the energetic environment near the Sun
(within 0.1 AU ) to account for the observed thermal processing of chondrules
and CAIs (as well as the production of short-lived radionuclides). Because
of the high abundance of chondrules in chondritic meteorites (up to 80% by
volume), a large amount of material must be recycled from close to the Sun
back to the terrestrial planet region and the asteroid belt. Therefore, in this
theory, one would expect that the final bulk compositions of planetary ma-
terial retained little memory of its initial distribution in the protoplanetary
disk.

Yet another idea (currently unpopular among meteoriticists) is that the
chondritic meteorites are the products of vaporizing collisions among massive
(perhaps lunar-sized), volatile-rich planetesimals of chondritic composition.
Collisional production of chondrules has been dismissed for various rea-
sons (Grossman 1988; Bos 1996), but I am partial to it because (1) the
chondritic meteorites reflect a range of physical and chemical conditions
(pressures, temperatures and oxidation states) which might be expected in
such collisions, and which are not particularly characteristic of those we be-
lieve prevailed in the solar disk, (2) the time scales inferred for chondrule
heating and cooling (minutes to days) (Jones et al. 2000) are commensurate
with those expected to result from such large collisions, (3) large amounts of
material might be locally processed and rapidly re-accumulated, thus pre-
serving the individual characteristics of various meteorite classes and (4)
such collisions are predicted by planetary formation dynamics. A consequence
of this hypothesis would be that the detailed properties of the chondritic
meteorites would have little to do with disk properties or any astronomi-
cally observable phenomena. But until a rigorous model for the remnants
of such collisions is developed, the hypothesis will remain in speculative
limbo.
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7.4 Concluding Comments

I began these lectures by noting that, despite the unequivocal genetic as-
sociation of circumstellar disks with planetary systems, there was reason to
be skeptical of the premise that the nature of a planetary system could be
predicted (or even modeled from) the properties of its progenitor disk. This
skepticism might be provoked just by the existence of planets with highly
eccentric orbits. Indeed, an argument can be made that final planetary con-
figurations are determined only by the dynamical laws governing many-body
systems, regardless of the origins of the bodies. I mentioned that the dis-
tribution of inferred extrasolar planet eccentricities appears to be similar to
the distribution stellar binary eccentricities (Stepinski and Black 2001), which
could be interpreted to mean that dynamics alone determines the orbits of
gravitating objects, regardless of origins. Also, it must be remembered that
the first extrasolar planets discovered were two Earth-sized objects in regular
orbits about a pulsar (Wolszczan and Frail 1992), a planetary system of or-
thodox mass and orbital configuration, but surely with an origin and history
dramatically different from other systems. One might speculate that we will
eventually recognize classes of planetary systems, distinguished by distinct
(or a continuous distribution of) dynamical histories, solely determined by
the range and variety of stable (i.e., long-lived) states.

The idea that any connection with a primordial disk is effectively obscured
is supported by numerous theoretical concepts, besides the gravitational scat-
tering of large objects: the radial mobility of small solid objects in disks due
to gas drag, the orbital evolution of planets due to tidal interactions with a
gaseous disk, the potential recycling of material by a stellar wind and so forth.
And yet the dynamical regularity found in our own Solar System, as well as
its enigmatic but systematic compositional regularities, seem to provide sound
evidence for inheritance from a disk. It still seems useful, therefore, to pursue
the idea that the properties of individual planets, as well as the system they
comprise, can be traced to their disk origins.
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P. D’Alessio, J. Cantó , N. Calvet, S. Lizano: ApJ 500, 411, (1998)
P. D’Alessio, N. Calvet, L. Hartmann, S. Lizano, J. Cantó: ApJ 523, 893,
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Alfvén velocity, 393
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anisoplanatism, 156
azimuthal drag, 405

Babinet’s Principle, 15
bandwidth smearing, 148
baroclinic instabilities, 392
barotropic equilibrium, 262
baseline vector, 144
Bond albedo, 345
Brünt-Väisälä frequency, 395
Bracewell, 206

CaTiO3, 337
caustic, 82
centrifugal force, 260
chondritic meteorites, 442
chondrules, 413
Clausius–Clapeyron, 334
close-in planets, 43
conductive opacity, 289
corotation radius, 398
Coulomb potential, 269
coupling parameter, 269

DARWIN, 181, 207
degenerate gaz, 268

deuterium, 253, 273
diffusion approximation, 280
disk
accretion luminosity, 380
angular momentum, 386
mass conservation, 384
mass flux, 388
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temperature-weighted mass, 377
two-layer model, 376

dual-star system, 168
dusty brown dwarfs, 342

eccentricity decay, 46
Eddington approximation, 254
Einstein radius, 78, 83
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energy conservation, 253
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models, 275
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epicyclic frequency, 395

Fraunhofer diffraction, 135
Fresnel scale, 141
Fried parameter, 135
frozen turbulence hypothesis, 139
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giant planets
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Grüneisen parameter, 278
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grain growth, 340
gravitational moments, 245, 263
gravity field, 244
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forbidden region, 347

helium, 246
ionization, 271
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Helmoltz free energy, 267
Hill sphere, 60, 417
Hot Jupiters, 42
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