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‘The works of the Lord are great, sought out of all them that
take pleasure therein.’

From Psalm 111; carved over the entrance to
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FOREWORD

The planets, which have always been objects of wonder and
curiosity to those with the opportunity or need to lift their eyes to the
heavens, now in our times shine with new and strange lights revealed to us
by the far seeing instruments carried upon space craft. The Moon, Mars,
Venus and Mercury all bear on their surfaces the crater scars of
innumerable meteorites that have fallen upon them from the beginning of
the solar system. The Earth alone has an active surface that has oblit-
erated those scars. The fluid surface of Jupiter is in constant and vigorous
motion, driven by heat flowing out from the interior or, it may be, brought
to it by the ultra-violet radiation from the Sun or by the solar wind. The
Medicean satellites of Jupiter now present to us strange and individual
faces: would Galileo who first saw the mountains on the Moon or the
spots on the Sun have been surprised by the eruption of sodium and
sulphur from Io and the cloud of gas within which it moves, or by the
strange stress patterns upon other of the satellites? Seeing these strange
and varied faces of the planets, each apparently different from any other,
who can forbear to ask, what bodies are these, how are they made up, that
their appearances are so distinctive? Why are some active, and others
apparently dead, some dry, and others thickly covered with atmosphere
or ocean? We have indeed little to go on to answer those questions, just
the sizes of the planets, the grosser features of the fields of gravity around
them and the magnetic fields they possess. But within recent years, as we
have learnt more by experiment and by theory of the behaviour of solids
and liquids at very high pressures, it has become possible to supplement
our knowledge of the planets with understanding of how their possible
constituents might behave. That, in essence, is the theme of this book. I
aim to explain how the mechanical properties of the planets are deter-
mined nowadays, to describe the behaviour of planetary materials at
planetary pressures, and to combine the Newtonian physics of celestial

ix



Foreword

mechanics with the quantum physics of highly compressed matter to
establish the general constitution of the planets. No detailed explanation
of the state of each planet can be expected, indeed I shall often emphasize
the limitations upon our knowledge and understanding, but some
connexions can be made between what we see of the surfaces and what
there must be within, and, more speculatively, something may be said
about how the system of planets came into being. But for all the great
achievements of space research our understanding of the planets is still
rudimentary, with many surprises no doubt yet to come, and my emphasis
is upon the ways in which we approach the study of the planets, rather
than on the results we have so far attained.

I am indebted to Mr. W. B. Harland and to Professor V. Heine for
reading certain chapters in typescript and to many other colleagues for
discussions on various topics of this book. I am most grateful to the staff of
the Cambridge University Press for their outstanding help.



Note on the expression of planetary masses

The masses of all planets are derived from the acceleration of
some object in the vicinity at a known distance. The fundamental quantity
observed is thus the product, GM, of the mass and the gravitational
constant. For example, the value of this product for the Earth is

GMg=3.986 03x 10" m*/s”.
Values of such products are known to very high accuracy, that of the

Earth, for example, to a few parts in a million. The constant of gravitation

is, however, poorly known. In this book its value is taken to be
6.67x107 " m*/s kg;

it has an uncertainty of a few parts in a thousand.

It follows that ratios of masses are well known, as are the accelerations
to which they give rise, but densities expressed in kilogrammes per cubic
metre have uncertainties of a few parts in a thousand, and that should be
borne in mind in comparing estimates of planetary densities with
laboratory data.
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Introduction

1.1 The wonders of the heavens

The planets have been a subject of wonder to man from earliest
recorded times. Their very name, the Wandering Ones, recalls the fact
that their apparent positions in the sky change continually, in contrast to
the fixed stars. Greek astronomers, Ptolemy particularly, had shown how
the motions of the planets, the Sun and the Moon could be accounted for
if they were all supposed to move around a stationary Earth, and in
mediaeval times an elaborate cosmology was created, at its most alle-
gorical, evocative and poetic in the Paradiso of Dante. The men of the
Renaissance overthrew these ideas but provided fresh cause for wonder
in their place. Placed in motion around the Sun by Copernicus, their paths
observed with care by Kepler, the planets led Newton to his ideas of
universal gravitation. Galileo, his telescope to his eye, showed that they
had discs of definite size and that Jupiter had moons, the Medicean
satellites, which formed a system like the planets themselves.

The discoveries of the seventeenth century settled notions of the
planets for three centuries, but within that framework a most extra-
ordinary flowering of the intellect attended the working out of the ideas of
Newton. Closer and closer observation showed ever more intricate
departures of the paths of the planets from the simple ellipses of Kepler,
and each was accounted for by ever subtler applications of mechanics as
the consequence of the gravitational pull of each planet upon its fellows.
For some while the system of planets was tacitly or explicitly supposed to
be closed, until William Herschel, in almost his first excursion into
astronomy from his profession of music, saw from Bath an unknown
planet — Uranus. Much later Adams predicted, a great achievement of
dynamical theory, the existence of a further planet, and Leverrier found
it. Now we know of yet a further planet, Pluto, and of the belt of asteroids

between Mars and Jupiter. The major dynamical features of the motions
1



Introduction 2

of the planets are now well understood, as are many minor features,
among them the effects of the general-relativistic description of gravita-
tion.

No doubt there are still discoveries to be made in orbital dynamics;
they will-come from the exploitation of modern developments in theory
and, in particular, the execution of lengthy algebraic calculations by
computer, and they will come also from the ever more precise measure-
ments of the motions of the Moon and the planets and space probes that
g2 close to them, by means of radio, radar and lasers. But these will
probably be refinements; the heroic age of dynamical studies is almost
closed, and other fields are now more productive. Early in this century,
definite ideas about the internal constitution of the Earth began to
develop, while estimates of the densities of the planets were available
from dynamical investigations. It was realized that Mercury, Venus and
Mars, as well as the Moon, must be in a general way similar to the Earth
while the major planets, with much lower densities, were essentially
different. In the 1930s the physics of the solid state and the quantum
mechanics of materials at high pressures, rudimentary though they were
by present day standards, were nonetheless adequate guides to thought
about the nature of the planets, and the conjunction of dynamical studies
on the one hand with the physics of condensed matter on the other 1s the
theme to be developed in this book.

Space research has certainly contributed to the dynamical study of the
planets, but rather in the way of refinement, for the observations of
natural objects had led to considerable knowledge of the masses, densi-
ties, gravitational fields and moments of inertia of the Moon and a
number of the planets before any space probes were launched towards
them. The refinements have been valuable and have brought precision
and simplicity to what previously may have been approximate and
complex, but the great contributions of space research have been else-
where, to the knowledge of surfaces and surface processes and of
magnetic fields. We take it to be almost certain that the magnetic field of
the Earth and the changes that the surface of the Earth undergoes are
dependent on the internal state of the Earth and are driven by sources of
energy within the Earth. The same is very likely true of the Moon and
planets, but in different ways and to different degrees; surface features
and magnetic fields no doubt contain clues to the nature of the interior,
but we do not yet know how to unravel them; we do not understand the
connexions in the Earth so how much less can we make use of them in
studying the planets. We may nonetheless be fairly confident that it is
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here that the next major step in understanding the planets will be taken.
The relation between the structures of the planets and the natures of the
materials, so far as they can be unravelled by dynamical studies and
understanding of the physics of condensed matter, is established as far as
the major features are concerned. Some ideas of the limits of knowledge
are also clear and further studies are, on the whole, likely to lead to
refinements of present ideas but not to major changes. If major changes
come, it will probably be as a result of understanding the way in which
magnetic fields and surface processes are related to internal constitutions.

1.2 The system of the planets

Some of the principal facts about the planets are collected in
Table 1.1. It gives the distance of each planet from the Sun, and its radius
and mass, all in terms of the Earth’s distance, radius and mass, it gives the
mean density of each and it gives the period of spin about the polar axis.
In Figure 1.1 the masses and densities are plotted against the distance
from the Sun. The table and figure demonstrate the well-known division
of the planets into two groups: the inner, terrestrial planets, relatively
close to the Sun, of low mass and high density, and the outer, major
planets, relatively far from the Sun and having high masses and low
densities. The size and mass of Pluto, the outermost planet, are poorly
known, but it is certainly smaller and denser than the other outer planets.

Table 1.1. The system of planets

Distance Spin

from Sun Density period

(AU)? Radius® Mass® (kg/m?) (@
Moon 0.27 0.0123 3340 28
Mercury 0.387 0.382 0.055 5434 58.6
Venus 0.723 0.949 0.815 5244 243
Earth 1 1 1 5517 1
Mars 1.524 0.532 0.107 3935 1.026
Jupiter 5.203 11.16 317.8 1338 0.411
Saturn 9.539 9.41 95.1 705 0.428
Uranus 19.18 4.02 14.60 1254 0.967
Neptune 30.06 3.89 16.78 1635 0.92?
Pluto 39.44 0.24 0.002 ~1000 6.4

* The astronomical unit (AU) is the mean distance of the Earth from the Sun
and is equal to 1.496 x 10® km.

®The radius and mass are given in terms of the Earth’s radius (6378 km) and
mass (5.977 x 10* kg).
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Any theory of the origin of the solar system must account for the sharp
distinction between the two groups of planets. It is not my purpose to
discuss the problem of the origin of the planets in any detail save that at
the end I shall draw some conclusions about the origin of the planets from
their present structure. The way in which the planets were formed does,
however, have consequences for the chemical constitution of the planets,
that is for the types of material of which we may suppose them to be made
up, and hence for the physical properties of those materials at high
pressure and temperature.

It is nowadays commonly supposed that the planets formed at an early
stage in the history of the Sun, during the so-called Hiyashi phase, when
the Sun was far more extended than it is now. Irregularities of density
were brought about by the influence of a second star and led to conden-
sations from which the planets formed. Many people currently favour a
hot origin of the inner planets, that is to say, that they formed from the
condensation of materials from a hot gas as opposed to accretion from a
cloud of cold dust. It is therefore thought that the temperature of a planet
immediately after formation would be the temperature of condensation.
The distribution of temperature inside the planets is discussed in Chapter
9, here I am concerned to point out that theories of planetary origin entail

Figure 1.1. Masses, densities and distances of the planets.
The mass of Pluto is about 0.002 that of the Earth.
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The system of the planets 5

certain distributions. They also entail ideas about the compositions of the
planets. In particular, if the planets condensed from a hot gas, then the
different materials would condense in order of their boiling points, those
with the highest points condensing first and so forming the innermost
parts of the planets, followed by other materials in succession and leading
to zoned structures for the planets. Quite detailed predictions of such
sequences have been made, for the thermodynamic properties of
materials that may form planets are known in some detail. Thus, if a
mechanism for the formation of the planets is postulated, it may be
possible to show that it entails a certain internal structure and a certain
thermal history. Such an approach has been widely followed in much
recent discussion, but it is not adopted here. The fact is that the origin of
the solar system remains most obscure and while it may be plausible it is
also surely hazardous to base our ideas of the internal structure of the
planets on theories which of their nature do not admit of empirical
verification.

A different approach is taken in this book. We start with the known
dynamical properties of a planet, the size, mass, density and gravitational
field, and ask what they imply for the internal distribution of density, and
combine that with our knowledge of the properties of likely planetary
materials to derive possible models of the internal structures. It may then
be possible to make useful comparisons between the models derived in
this way and those derived from theories of the origin of the solar system.
No more will therefore be said about the origin of the planets until the
final chapter when we look at the types of structure to which we shall have
been led, and ask if they tell us anything significant about the origin of the
planets. In brief, we are going to try to work back from observations of the
planets, through models of their interiors, to criticisms of theories of
origin, in contrast to going from theories of origin to models of structure
which are constrained to fit the observed properties of the planets.

Seismological studies have enabled the internal structure of the Earth
to be worked out in great detail, so that we know the density and elastic
moduli as functions of pressure from the surface almost to the centre
(Chapter 2). We have, in fact, empirical equations of state for the major
constituents of the Earth and, by comparing them with equations of state
found experimentally in the laboratory, it is possible to identify the
chemical constituents of the Earth with some assurance. For no other
body is that possible and in consequence other, indirect, evidence must be
drawn upon to suggest the nature of the materials of the other planets.
The densities of the major planets are so low that they must be composed
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largely of hydrogen and helium. Table 1.2 shows the densities of the
condensed phases of the lighter elements at a pressure of 10°Pa,t
together with their abundances in the solar system. Evidently the only
abundant elements that could form the major planets are hydrogen and
helium. The densities of the planets are of course much greater than the
densities of hydrogen and helium at one atmosphere, but the pressures in
the interiors of those planets are of the order of 10" Pa or more and the
compression of hydrogen and helium under such pressures is sufficient
(Chapter 7) to account for the mean density of Jupiter and all but account
for that of Saturn. Uranus and Neptune, with their greater mean densities
but smaller size and so lower pressures, must have heavier elements, such
as carbon, nitrogen and oxygen, mixed with the hydrogen and helium.

The increase of density through self-compression is much less in the
smaller terrestrial planets, in which the greatest pressure is 3x 10! Pa at
the centre of the Earth. Accordingly we must suppose that those planets
are composed of materials with densities of 3000 kg/m> or more at
10° Pa. There are three sources of evidence for the nature of such
material. First, the surfaces of the Earth and the Moon are composed of
silicates of aluminium, magnesium, sodium and iron and similar materi-
als, having densities in the range of about 2500 to 3000 kg/m>. Secondly,
meteorites are composed of similar materials together with free iron and
nickel with densities of about 7000 kg/m?® (Table 1.3). Thirdly; there is
the evidence of the internal structure of the Earth. Comparisons between
the empirical equations of state of the different zones of the Earth and
equations of state determined in the laboratory indicate that the outer
zones of the Earth are composed predominantly of silicates of iron,

Table 1.2. Densities of the condensed phases of
the lightest elements at 10° Pa

Solar system abundance Density

Element (Hydrogen=1) (kg/m?)
Hydrogen 1 89
Helium 107! 120
Lithium 2x107° 533
Beryllium 2.5x107" 1846
Boron 2.5%x107° 2030
Carbon 5x107™* 2266

+SI units are used throughout this book. 1 Pa (pascal) = 10 bar~107°
atmospheres.
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magnesium and aluminium and possibly the oxides of iron, magnesium,
aluminium and silicon at the greater depths, whilst the inner zone, the
core, is composed mainly of iron diluted with some lighter material such
as sulphur.

In all the compact bodies of the Universe, the inward attraction of their
own gravitation would lead to condensation to an exceedingly high
density were it not balanced by some pressure. Stars are hot and the
balancing pressure is the radiation pressure of the thermal radiation
flowing outwards. White dwarf stars have cooled down so that the
radiation pressure is inadequate to balance self-gravitation and in
consequence the density of the material has increased until the pressure
of the degenerate gas of electrons in the ionized material balances the
self-gravitation. Since the pressure depends little on temperature in a
degenerate gas, white dwarfs may be considered to be cold. The pressures
and temperatures in planets are much less than in stars, whether hot or
white dwarfs, and the self-gravitation is balanced by the forces in solids
and liquids which prevent their collapse. If the materials are unionized,
the forces are the Coulomb forces between electrical charges in crystals; if
the materials are ionized and metallic, the forces are those corresponding
to the kinetic energy of the conduction electrons and the potential energy
of the electrons in the field of the positive ions. In each case, the density is
determined by the balance between internal repulsive forces, on the one
hand, and internal attractive forces and external pressure, on the other;
the repulsive forces arise mainly from the effect of the Pauli exclusion
principle on states of electrons and from the kinetic energy of the

Table 1.3. Composition of the surface
of the Earth and chondritic meteorites

Crust of Average

Earth chondrite
Si0, 0.587 0.380
MgO 0.049 0.238
FeO 0.052 0.124
Fe — 0.188
FeS —_ 0.057
AlLO,; 0.150 0.025
CaO 0.067 0.020
Ni — 0.013
Na,O 0.031 0.010
K.O 0.023 0.002

FCzO3 0.023 -_
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electrons in metals. None of these forces depends greatly on temperature
and so the planets may be considered to be cold bodies. Thermal
vibrations lead of course, according to Debye theory, to additional energy
and thermal expansion, but the coeflicient of thermal expansion
decreases rapidly with increase of pressure, so that to a high degree of
approximation the densities of materials in the interiors of planets may be
calculated as if they were at the absolute zero of temperature.

Let V be the specific volume of a substance, p be the pressure and T
the temperature. Then

9 (ﬂ) - i(ﬂ)
ap\oT/ oT\op/
ButoV/aT = aV, where « is the coeflicient of volume thermal expansion,

and
a_‘_/_ 1%

ap K
where K is the bulk modulus. Thus

%(aV) = —i(x>

oT\K
or
oa | % 1 V oK
Voo °x - kYR
that is
da 1 9K
o KT
The bulk modulus for many materials follows the approximate rule
K =K,+bp,

where K is about 3x 10'" Pa and b about 2; 6K/aT is about —1.5 x 10’
Pa/deg for olivine. Thus, we find da/dp=—1.7x107'/degPa at
atmospheric pressure and somewhat less at 10" Pa.

Thus the change of « over a range of 10" Pais —1.7x107°. But the
value of « is about 107°; it may be inferred that « is negligible at pressures
of the order of 5x 10'® Pa or more.

1.3 Problems of inference

In all studies of the interiors of the Earth and the planets we are
faced with having to derive the properties of the interior from obser-
vations made at the surface. In mathematical language, we wish to find a
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distribution of some property, density for example, as a function of
radius. What we observe at the surface is some functional of the desired
function; for example, the mass, which is equal to

L p(r) dr,

where dr denotes the element of volume and T the volume of the planet;
or the moment of inertia, which is equal to

z J rzp(r) dr.
T

If we are concerned to determine the elastic moduli as functions of
radius, then more complex functionals are involved, namely the times of
travel of elastic waves from one point on the surface to another, or the
periods of various modes of free oscillation of the planet.

The determination of the desired functions from the observed
functionals is the key problem of geophysics. It is of the essence of the
subject. Quite generally the number of functionals that can be observed is
finite and so the detail with which the functions can be estimated is
limited. The study of the optimum ways of determining the unknown
functions is known as inverse theory (Backus, 1970a, b, c; Backus and
Gilbert, 1967, 1968, 1970) and has revolutionized our understanding of
what can be learnt about the interior of the Earth from observations at the
surface.

Seismology, carried out in a systematic way with a worldwide network
of instruments and frequent large natural earthquakes, has provided an
immense quantity of data from which quite detailed knowledge of the
interior of the Earth has been derived. Comparable data are lacking for
any of the other planets and are very inadequately represented for the
Moon. We are therefore faced with the problem of trying to learn what we
may about the planets from the values of two functionals, at the most,
namely the mass and moment of inertia, which can be obtained by
dynamical analysis without landing space craft on the planet. It may be
expected that with such a dearth of information little can be learnt of the
interior. The problem has been considered by Parker (1972), who has
shown how certain limits may be placed on the models that may be
constructed.

Given just the radius, mass and moment of inertia of a planet, the
number of parameters by which a model may be characterized is limited.
Essentially there are two types of model we may use: one in which the
planet is divided into two zones and in which we attempt to determine the
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radius of the division between them, together with the densities in the two
zones; or the other in which there is a continuous distribution of density
specified by two parameters. The former is appropriate to the terrestrial
planets, for we know the Earth is divided into two major zones, while the
density in any zone changes relatively little with pressure. Of course the
model is only a first approximation, for, with only the mass and moment
of inertia to go on, we cannot determine finer subdivisions nor variations
of density within zones. The second type of model may be more suitable
for the major planets if, as suggested above, they are composed pre-
dominantly of a substance of uniform composition.

The simple models are still indeterminate if only the radius, mass and
moment of inertia are given. Consider the model with two zones. Let the
radius of the planet be a and the radius of the inner zone be a;. Let & be
the ratio a,/a.

Let the densities of the inner and outer zones be respectively p, and p,
and let the mean density of the planet be 5. We then have for the mass

4_ 3 4 3 3 _4_ 3.
smaipr+3m(a’ —ai)p=M=3ma’p.

If we let p»/p = 05, and p;1/p = o1, this may be written

o+ (1-a)o =1. (1.1)
We suppose we also know the mean moment of inertia, I. Then
smaips+ma®—al)p1=1
Let us define an inertial mean density, yp, by the relation I = Sma’yp.
Note that
I
Ma?

and that, for a body of uniform density, y = 1.
We then have the second equation in the form

2
=5y

o+ (1-a)oi=v. 1.2)
It is evident from the form of these equations that given y from obser-
vation the most we can do is obtain a relation between o1, 0> and «; if a
value of a,, for example, is chosen, p, and p, are determined. There are,
however, some limits on the range of variables, as is discussed in
Appendix 1.
Evidently, if we wish to select a particular model as in some sense the
preferred one, we must have some a priori principles on which to make
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our choice. The general approach which, following Parker (1972), I adopt
is to choose that model which maximizes some function of the density.
For example, one might maximize the variance of the density

I(p—ﬁ)z dr,

subject to the conditions that the mass and moment of inertia have their
observed values.

Suppose we wish to maximize some integral I subject to the conditions
(1.1) and (1.2). Then, by the procedure of undetermined multipliers, we
find the unconstrained maximum of

I+xa[ala+(1—a)oi—1]+A5[a’ o+ (1 —a’)o— y]
with respect to variations of «, o, and 0.

How is I to be chosen? We can either attempt to set a limit on one or
more of a, o or o>, or we may attempt to estimate the best values of these
parameters. Parker was concerned with the first problem. He wished to
find the least value of o, consistent with the mass and moment of inertia
and showed that then the integral I must be

([ 100w arra) ™

where p is allowed to go to infinity, for, as that happens, I becomes the

greatest maximum of |p|.
Parker then finds the simple result that

p(r)=po for A, r2+A.r*>0
p(rH=0 for A, r%+Art <.

pois the least value of the maximum density, i.e. the value of p,, and, for
it, p; is zero.
Parker shows that

a:/a=GI/Ma*)'?,
o® = po/p = GMa’/D)*".

This is essentially a very simple result: it says that the least value of o, is
that which corresponds to the outer zone having zero density. Any finite
value of o, leads to a smaller value of « and a greater value of o». It is of
value in specifying the maximum information we can obtain from the
mass and moment of inertia alone.

If we wish to select some best value of the model parameters, we must
invoke considerations of a priori probability. A principle which, foilowing
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developments in information theory, is now often followed is to choose
that model which has the most random variation of parameters consistent
with the observed functionals. The reason for making that choice is that
then the model contains the least extra information extraneous to the
data: the effect of a priori hypothesis is reduced to the minimum. By
analogy with thermodynamics an entropy is defined and maximized. Here
we follow a suggestion of Rubincam (see Graber, 1977) and define the
entropy corresponding to a distribution of density to be

—J oclnodr,
T

where o is p/p.

The problem of maximizing the entropy subject to the constraints of
the observed mass and moment of inertia, both for the two-zone model
and for a continuous distribution, is discussed in Appendix 1.

The limits set by Parker’s rules are not in general very stringent and, if
we do no more than follow them or the prescription of maximum entropy,
we in fact ignore other a priori information we have, not indeed certain
information about a particular planet, for we have already exhausted
that, but general, somewhat probable, ideas based on what we know of
other planets and the behaviour of materials. We have already drawn on
such general ideas in choosing to look at two-zone models of the
terrestrial planets. If we consider solely an individual planet we have no
grounds for making that or any other choice, but we observe that the
Earth has the major division into core and mantle and we note (Chapter
5) that there is probably a similar division in the Moon and so we are led to
think that the other planets of broadly similar size and density may be
similarly constituted. The conclusion may be wrong, but it has a high a
priori probability of being right in our present state of knowledge.

We shall therefore attempt to construct models of the terrestrial
planets by analogy with the Earth and the Moon, making them as close to
the Earth and the Moon as the observed properties allow. Not only will
zoned models be adopted, but the physical properties of the materials will
be chosen to be as close as possible to those of the Earth and the Moon.
However, analogies must be followed with caution: we already know
(Chapter 5) that the materials in the Moon are not identical with those in
the corresponding parts of the Earth and we therefore have a hint that
materials may show some variation from planet to planet even though the
planets are grossly similar.
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When we turn to the major planets it is clear, for the reasons set out
already, that the analogies with the terrestrial planets fail, for the
densities of the major planets are too low for them to be composed of
similar materials. The materials of the terrestrial planets, metals and
metal silicates and oxides, are too complex and admit of too great a
variety in composition for realistic theoretical calculations to be made of
their physical properties (Chapter 4). On the other hand, Jupiter appears
to be made of so nearly pure hydrogen that it is reasonable to choose as a
first approximation a model consisting of cold hydrogen compressed
under its self-gravitation. The equation of state of hydrogen, especially in
the metallic form it assumes at high pressures, can be calculated with
considerable assurance (Chapter 7) and it therefore seems that a secure
theoretical basis exists for models of Jupiter and probably Saturn. Uranus
and Neptune do not agree with hydrogen models and essentially more
complex structures are required (Chapter 8).

1.4 The interest of the internal structures of the planets

No one will ever visit the depths of the planets, noteven the Earth,
and observe their nature directly. What then are the reasons for studying
them? In the first place, the problem itself is of great intellectual, indeed
human, interest. What must these bodies be like inside for them to be as
we find them from the outside? How should we account for the
differences and similarities between them? The attempt to understand
the planets is a major challenge to the human mind.

The study of the planets raises problems of physics. Often in the history
of physics, astronomical observations have led to experimental and
theoretical studies which have extended in major ways our understanding
of physics. Some of the fundamental observations in atomic physics are
based on astronomical observations. The same is also true of the planets,
where condensed matter is subject to pressures until recently unobtain-
able in the laboratory; indeed the highest ones are still unobtainable. The
observed properties of the Earth and the need to understand the
behaviour of hydrogen in its metallic form have contributed to important
developments in understanding of the condensed state of materials. The
reason why astronomy has been and continues to be so effective a
stimulus to physics is that conditions are encountered there far outside
the limited range of laboratory experiment, so that phenomena occur that
would never have been anticipated from laboratory studies alone. The
same is true of planetary physics; a wider range of conditions leads us to
consider behaviour and structures which might never otherwise have
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been suspected. In a very real sense, all physics, especially the physics of
condensed matter, is subsumed in solutions of Schrodinger’s equation,
but the possible solutions are so various that we need a guide to what they
might be and which are the most interesting. Experiment and observation
provide that guide and they also provide the solutions themselves when
theory fails on account of the complexity of the systems. Such is the
situation for planetary materials at high pressures.

Mankind has always tried to understand the way in which his home, the
Earth, and its neighbours in space have come into existence. As
mentioned above the problems are at present intractable, but attempts
have been made to produce models of the evolution of the solar system
based on current understanding of the evolution of a star from a
condensing cloud of gas. Any such predictions should account for the
planets as they are: their orbits, their masses and sizes, the rates at which
they spin and their compositions. It has already been seen that the outer
planets must consist primarily of hydrogen while the Earth, at least, and
the other terrestrial planets probably, consists of metals and their silicates
and oxides. Theories of the origin of the planets must predict such
compositions. They must also predict core and mantle for the Earthand a
zoned structure for the Moon; is it possible to set even further constraints
upon theories of planetary origin from inferences that may be drawn
about the interiors of other planets? To that question I return at the
conclusion of this book.

The models of the planets so far discussed, and those which are the
prime concern of this book, are concerned with distributions of density
with radius and the closely related equations of state — the variations of
density with pressure — and it has been argued that to a first approxima-
tion planets may be taken to be cold and the temperature within them
ignored. This is only a first approximation although it seems that it gives a
good basis from which to develop more complex models. That more
complex models are needed is evident from the existence of magnetic
fields around the Earth, Jupiter, Mercury and Saturn, and from the
surface irregularities of the Earth, the Moon and Mars which show that
the surfaces have undergone changes of internal origin (as distinct
from meteoritic bombardment) in the course of their histories. Both
phenomena imply relative motions of material within the planets. They
show that the planets must contain sources of energy to drive the motions
and that they cannot be in hydrostatic equilibrium. The idea of cold
planets in hydrostatic equilibrium under their gravitational self-attrac-
tion is thus inadequate, and we are led to ask whether it is possible to learn
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anything about the departures from hydrostatic equilibrium or about the
sources of energy by studying the magnetic field or the surface features of
those parts of the gravitational field which are incompatible with hydro-
static equilibrium. From the point of view of the human condition, this is a
study of great concern, for human life exists by reason of the nicely
adjusted departures of the Earth from hydrostatic equilibrium, sufficient
to permit land to emerge from the waters, but not so great as to lead to
extreme and inhospitable conditions (see Cook, 1979).

The plan of this book is as follows. Chapter 2 is devoted to a summary
of our knowledge of the internal structure of the Earth. It has already
been observed that through seismology we have a very detailed know-
ledge of the properties of the materials of the Earth; properties that may
be compared with theory and experiment and that must form the basis for
attempts to understand the other terrestrial planets and the Moon.
Chapter 3 is concerned with the ways in which the dynamical data for the
planets may be derived from observation. The next three chapters deal
with the Moon and the terrestrial planets. Chapter 4 discusses the
properties of the materials of which they are most probably made,
Chapter 5 is devoted to the Moon and Chapter 6 to Mars, Venus and
Mercury. In Chapter 7 we take up the study of the major planets with the
theory of the structure and behaviour of hydrogen and helium at high
pressures and in Chapter 8 the theoretical results are applied to models of
the major planets. Chapter 9 deals with magnetic fields, surface proper-
ties, the departures from hydrostatic equilibrium and how all these may
be related to internal structure. Finally, in Chapter 10, threads are drawn
together, especially the implications for theories of the origin of the
planets.



2

The internal structure of the Earth

2.1 Introduction

The Earth, as will appear, is not typical of the planets. It is the
largest of the inner planets, it is the only one on which active tectonic
development of the surface appears to be going on at present and, so far
as we know, it has the most complex structure. Yet it is the only one which
can be studied in detail; from it we may derive empirically equations of
state of the materials of the inner planets; and the methods that have been
used to study the structure of the Earth are those we should like to use,
but are inhibited from using by the difficulties of observing, in the
investigation of the other planets. For these reasons it is helpful to preface
an account of the methods used to study the planets and of the results that
have been obtained with a review of the way in which the Earth is
examined and what has been discovered.

Our knowledge of the internal structure of the Earth comes by two
routes. In the first place the mass, size and density of the Earth provide a
rough idea of the overall composition and of the central pressure, while
the value of the moment of inertia shows that the density increases
strongly towards the centre. Naturally a wide range of models could be
constructed to fit just three facts and so it is necessary to turn, in the
second place, to seismology to provide more detailed information. Seis-
mologists study the times of travel of elastic waves through the body of
the Earth or round the surface and they study the periods with which the
Earth vibrates as a whole. In general, rather complex calculations are
required to construct a model of the interior of the Earth from seis-
mological data and, furthermore, seismological data by themselves do not
suffice for the construction of models: the models must also give the right
mass and moment of inertia for the actual radius. At the same time, rather
simple arguments from seismic observations lead to the conclusion that
the Earth is divided into two major parts: an outer solid shell, or mantle,

16
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and an inner liquid denser core. The division into core and mantle, the
core having a radius of just over half the radius of the Earth as a whole, is
the major feature of the internal structure of the Earth, so let us consider
the evidence for it in more detail.

22 Evidence for a core and mantle

The size and mass of the Earth are very well known. The means
by which those of the Moon and planets are found will be discussed in
Chapter 3; the methods used for the Earth can be quickly summarized
here. In former times, the size of the Earth was found from measurements
of the lengths of arcs over the surface combined with astronomical
measurements of the angles subtended by the arcs at the centre of the
Earth; the equatorial radius and the polar flattening had to be estimated
simultaneously. At the same time, measurements of the attraction of
gravity were made over the surface and from them the equatorial value of
gravity and the variation from equator to pole were estimated. By
ignoring the flattening of the Earth, the mean value of gravity is given by

GM

g= 2
a

where M is the mass of the Earth, a the mean radius and G the constant
of gravitation.

Although simple in principle, the procedure is not straightforward in
practice because the surface is irregular and gravity varies greatly from
place to place. Much more satisfactory results are now obtained from the
observations of the motions of artificial satellites. Consider a satellite in a
circular orbit far enough away that it is not affected by the drag of the
atmosphere. Let its distance from the centre of the Earth be R and its
angular velocity in its orbit, n. Then by Kepler’s third law

n’R*=GM,
while D, the measured distance of the satellite from the surface of the
Earth, is

D=R-a.

The observations on a single satellite do not suffice to determine both a
and M because R is also unknown, but if observations are made to a
second satellite (which might be the Moon) then a and GM can be found.

There are complications. The orbit of a satellite is not circular, nor even
just a Kepler ellipse with the Earth at one focus: it is perturbed by the
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attraction of the Sun and by the variation in the Earth’s gravity cor-
responding to the polar flattening, but both effects can readily be
calculated.

Another method is to observe the acceleration of a space probe as it
travels away from the Earth after the motors have been shut down. The
instantaneous velocity relative to the Earth can be found from the
Doppler shift of a radio transmission from the space vehicle as received
on Earth, and the acceleration may be found from the distance from the
surface of the Earth as obtained by integrating the velocity. Once again,
the radius of the Earth is unknown but, because the acceleration is found
for a range of distances from the surface, both the mass of the Earth and
the radius of the Earth can be derived.

The precision of both methods is high and the accuracies of current
values of the radius and mass are a few parts in a million. However, it
should be noted that the observations yield-values of the product GM and
not of the mass separately; the uncertainty of the product is a few parts in
a million but the uncertainty of G is a few parts in a thousand so that the
value of the mass is also uncertain by a few parts in a thousand. Needless
to say the radius and mass of the Earth are better known than those of any
other planet. Where possible, similar methods using space probes or
artificial satellites are employed to find the radius and mass of the Moon
and planets, but they are not available for all planets and in any case the
conditions for observation are less favourable than for the Earth.

Turn now to the polar flattening and the corresponding variation of
gravity. Because the gravitational potential, V, satisfies Laplace’s equa-
tion outside the Earth, it may be written as a series of spherical
harmonics, functions of radial distance, r, from the centre of mass of the
Earth, of co-latitude, 6, and of longitude, A. Thus

v-_GM [1— » (f) T.P.(cos 6)
r ne2 \71
+ Y i (%) (Crm €OS MA + S, SIN MA )P, (cos 0)].
n=2m=1

Here P,(cos ) is a Legendre function and P, (cos 8) is an associated
Legendre function (Whittaker and Watson, 1940) and J,,, C,,.. and S,..
are numerical coefficients. It is usual to choose the numerical factor in
P (cos @) such that the integral of the square of an harmonic term over
the surface of the unit sphere is 47 and values of C,., and S,... are most
often given for that normalization. The P,(cos @) are also sometimes
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normalized in the same way, but often the convention is that

+1

I [P, (cos 6)F d cos 8 =
-1

2n+1’

The theory of the motion of a satellite in such a potential is now highly
developed (see Chapter 3) but, so far as the principal features of the
internal structure of the Earth are concerned, it is only the second zonal
harmonic term, that with the coefficient J,, that concerns us. That term is
related to the polar flattening by the formula

f=3l+im.
Here f is the ratio (a —b)/a, where a is the equatorial and b the polar
radius of the Earth, and m is the ratio of centrifugal to gravitational
acceleration at the equator; if w is the spin angular velocity of the Earth,
_ w’a’
T GM

The polar and equatorial radii and the flattening have to be carefully
defined. The actual rough solid surface of the Earth is not what is
involved, the radii and flattening are those of the surface on which the
combined potential of gravity and rotation is constant and equal to the
value it has over the open oceans; the surface is thus mean sea level where
that can be seen and it is the continuation of that surface in continental
regions.

The effect of the second zonal harmonic in gravity on the orbit of an
artificial satellite is particularly simple. Suppose the orbit lies in a plane
which makes an angle i with the plane of the equator (Figure 2.1). Let the
plane of the orbit intersect the equatorial plane in the line NN'; because
one focus is at the centre of the Earth, NN' passes through the centre. N
as drawn is called the ascending node of the orbit; through it the satellite
passes from south to north. The position of N is measured by the angle
9 subtended between it and a reference direction at the centre of the
Earth; the reference direction is usually the vernal equinox or first point of
Aries, T.

To a first approximation, the effect of the second zonal harmonic is that
the position of the node moves steadily backwards along the equator at
the rate

m

, 3 2
Sl=——(£) nJ, cos i,
2\a,

where n is the mean angular velocity of the satellite in its orbit and a; is
the semi-major axis of the orbit (Chapter 3).
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Let P be the perigee of the orbit, the position at which the satellite is
closest to the centre of the Earth. The position of P is measured by the
angle w drawn round the orbit from the ascending node. To a first
approximation the effect of the second zonal harmonic in gravity is to
cause the perigee to move at the steady rate given by

2

@ =§(—“—) nTy(5 cos® i —1).
4\a,

The formulae for £ and & by no means give the whole story: they are
the dominant parts of the motions, but for practical application more
detailed results are required.

As a result of many observations of many artificial satellites, the value
of J, is known to be 1082.65 x 10~°. The importance of J, for the study of
the interior of the Earth and the planetsis that it is related to the moments
of inertia. Let A, B and C be the principal moments of inertia, of which C
is the polar moment, the largest. Then by McCullagh’s theorem (Cook,
1973)

C-3A+B)
L

Figure 2.1. Geometry of satellite orbit.
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A and B are very nearly identical for the Earth and to a good approxima-
tion

C-A
J 2= Ma 7 .

J, is proportional to the difference of moments of inertia and some
other relation between C and A is required if each is to be obtained
separately. The required relation is provided by the luni-solar precession
of the Earth. As a consequence of the torque exerted by the Sun and the
Moon on the equatorial bulge of the spinning Earth, which behaves as a
gyroscope, the direction of the Earth’s polar axis rotates about the normal
to the plane of the Earth’s orbit about the Sun at a rate which to a first
approximation is equal to
3 nr%'i MM né
i (3 i s
where @ is the inclination of the Earth’s axis to the normal to the ecliptic,
H is the ratio (C — A)/ C, sometimes called the dynamical ellipticity of the
Earth (Chapter 3), nv is the mean angular velocity of the Moon about the
Earth, ng that of the Sun, = the spin angular velocity of the Earth and
My and Mg the masses of the Moon and Earth, respectively.

H can be found with high precision from astronomical observations of
the precession and has the value 3279.30x 107°. It follows at once that

c
ME H 0.33079.
Now C/Ma? can be related to the variation of density within the Earth
and in particular if the density is constant within a sphere
C/Ma*=04.

The fact that C/Ma?’ is significantly less than 0.4 for the Earth
demonstrates that the density increases considerably from the surface to
the centre. Table 2.1 shows the values of C/Ma? for a sphere with a
central core having a radius one half that of the surface, and with a range
of ratios of the density of the core to that of the outer shell. The particular
radius of the core is chosen because it corresponds, as will be seen below,
to the actual state of the Earth. It is clear that a value of C/Ma? not very
much less than 0.4 indicates an appreciable increase of density towards
the centre and that the value of 0.33 corresponds to a density of the core
about 3.4 times that of the shell. We shall find later that the outer planets
have much lower values of C/Ma? and, correspondingly, a much greater
increase of density towards the centre.



The internal structure of the Earth 22

It may of course be quite wrong to suppose that a planet is divided into
two parts each with a constant density. In general, densities will increase
inwards as a result of compression under the gravitational attraction of
the planet itself, and an alternative is to suppose that the density increases
inwards solely because of the self-compression. Without other evidence it
is not possible to decide between these or any other possible distributions
of density, provided only that they give the correct mass and moment of
inertia. For the Earth that other evidence comes from seismology.

An isotropic elastic solid can support two types of wave motion that
propagate through the body of the solid; one, the P-wave, in which the
displacement of the solid is along the direction of propagation, and the
other, the S-wave, in which the displacement is perpendicular to the
direction of propagation and can be regarded as a component of rotation
about that direction. Denoting, as is usual, the velocity of P-waves by a
and that of S-waves by B, the theory of elastic waves shows that

a’=(K+3u)/p, B’=wulp,
where K is the bulk modulus, & the shear modulus and p the density (see
Bullen, 1975).

Clearly a is always greater than 8; thus, if an earthquake generates
both types of disturbance, the P-wave will arrive first at a recording
station. The P and S notation comes from this circumstance; P stands for
primary, the first signal to arrive, S for secondary.

Table 2.1. Moment of
inertia for a composite
sphere, having a core of
half the surface radius and
a density p times the outer

shell

P C/Ma?

1 0.400

2 0.366

3 0.340
Earth 0.3308

4 0.318

6 0.285

8 0.260
10 0.240
12 0.226

14 0.215
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An earthquake gives rise to many more than two signals at a distant
observatory because there are many paths involving reflexions and
refractions within the Earth by which seismic waves may travel between
two points on the surface. The first pair to arrive, however, travel through
the outermost parts of the Earth, following paths that are concave
outwards because the velocities o and 8 increase inwards. If A denotes
the angular separation of the earthquake and the observatory and T the
time of travel, then to a good approximation the first P and S signals arrive
at times that satisfy

T=aA-bA>.
Such signals may be traced out to a separation of just over 100°. The
signals then disappear or become very faint, but at separations of about
140° and greater one set of signals, which can be identified as the

P-waves, reappear quite strongly and continue to the antipodes. The
S-waves however do not reappear. Figure 2.2 is a somewhat idealized

Figure 2.2. Travel-time diagrams of P and S arrivals. (From Cook,

1973.)
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travel-time diagram of the first P and S arrivals over the whole surface of
the Earth.

The region from about 104 ° to 140 ° where the P arrivals fail is known
as the shadow zone. Its origin (first realized by Oldham, 1906) may be
understood from Figure 2.3. Consider a sequence of ray paths emerging
from an earthquake at E and arriving at observatories Oy, O,, O3, etc.
Out to O, the times increase steadily. Then at O; the rays just come in
contact with the boundary between the outer shell and an inner core. If
the velocity in the core is less than that in the shell, the next ray which just
enters the core will be refracted towards the radius vector and will
subsequently emerge from the core further round its boundary. Thus
there will be a gap, O; 0% within which no rays from E can reach the
surface of the Earth. Just such is the behaviour shown by the first P-wave
arrivals round the Earth and it shows that there is a major discontinuity
within the Earth, inside which the longitudinal wave velocity is less than
outside.

The decrease in velocity could arise from a combination of circum-
stances. Since a” is equal to (K +3u)/p, the density could be greater in
the core or (K +3u) could be less. Now we already know from the value of
C/Ma? that the density increases inward towards the centre, although we
cannot say that it increases by a jump. But there is a strong suggestion that
the density does increase discontinuously at the surface corresponding to
the shadow zone. However, the behaviour of the S-waves shows that, in

Figure 2.3. The core shadow zone. (After Cook, 1973.)
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shadow
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addition, (K +3u) decreases. The S-waves do not reappear after the
shadow zone as do the P-waves and it is supposed that the reason is that u
vanishes inside the boundary; in effect, the material of the core is liquid.
Then, even though the bulk modulus is not reduced, (K + %p,) does
fall.

The value of C/Ma?® and the existence of the seismic shadow zone
together show that the Earth has a central core, which is probably liquid
and in which the density is on the average about three times as great as in
the outer shell. Other evidence reinforces the conclusion. In addition to
the forced motion of the axis of rotation of the Earth under the attraction
of the Sun and the Moon, there is a free oscillation or nutation, the period
of which depends on the elastic properties of the interior of the Earth. It
has been shown that the observed period requires that the core should be
liquid.

What is the radius of the core revealed by the shadow zone? If the
velocities did not change with depth in the outer shell, it would be a simple
matter to calculate the radius of the core (Figure 2.4). In practice, it is
necessary to know how « and 8 change with radius in order to calculate
the curvature of successive rays or, what is the same thing, the maximum
depthreached by aray emerging at an angular distance A from the source.
That can be done if the variation of T with A is known out to the
maximum value of A. Thus the core radius is now estimated to be about
3485 km.

Figure 2.4. Principle of calculation of radius of core. A is the angular
radius to the shadow zone. The radius, r, of the core is given by
r=a cos A,
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It might still be argued from the evidence so far presented that it is not
necessary for the fall in velocity at the core to be accompanied by a
jump in density. Other seismic evidence requires a jump in density as
well. Seismic waves can reach the surface from a distant earthquake by
reflexion at the boundary of the core (Figure 2.5). Two possible paths are
shown as PcP and ScS; c denotes reflexion at the core boundary. Other
possibilities, PcS and ScP, involve conversion from P-waves to S-waves
or vice versa over reflexion. Now the reflexion coefficients for all four
possible reflexions can be calculated from wave theory; they depend on
the velocity and density, and the observed values show that the density
must increase at the boundary of the core.

With rather simple evidence we have now arrived at a fairly clear
picture of the Earth as composed of a dense liquid inner core and an
outer less dense solid mantle. To go further, as we can for the Earth, we
must look in detail at the transmission of seismic waves through the Earth
and study the way in which the Earth vibrates elastically as a whole. That
we shall consider in the next section, in order to establish a model of the
Earth which shall be a reference for our study of the planets, as well as to
enable us to derive relations between the pressure and density of material
within the Earth. Before leaving the simple physical arguments advanced
in this section, arguments which do not involve detailed numerical
analysis but only a physical understanding of behaviour in general, two
points need emphasizing. One is that results that depend on general

Figure 2.5. Reflexion of waves from core.
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rather than particular arguments are all that for the most part are
available in the study of the planets, and so the reasoning for the Earth
has been set out at some length; the second point is that for the other
planets we have to rely on even more elementary arguments, and that
apart from the Moon there is no evidence about elastic waves within them
and none about precession.

2.3 Construction of models of the Earth

The data used to construct models of the interior of the Earth are
primarily the times of travel of P-waves and the periods of free oscil-
lations of the Earth. Models, which comprise graphs or tables of the
variations of density and the two elastic moduli, K and u, with radius,
must also give the correct values of the mass and C/Ma?>.

The first attempts to construct models of the interior of the Earth were
based on the approach of Williamson and Adams (1923). Because a is
equal to (K +%) and g7 to u/p, it follows that

a’~38%=K/p.
a*~3%B? is commonly designated by ®.
Now suppose that the change of volume of a solid under pressure, p, is

solely due to elastic compression and not at all to change of crystal
structure. Then, by the definition of bulk modulus,

d_p_ =P _ 0
dpr K
Subject then to the condition that only elastic compression is involved,
dp/dp is known wherever « and 8 are known in the Earth.
Next suppose that the Earth is in hydrostatic equilibrium, so that
pressure depends on radius according to the equation

d

b
dr gp’

where g is the attraction of gravity at the radius, r.
It follows, by combining the two equations, that

Finally, g is given by ~GM,/r?, where M, is the mass within radius r.
If the Earth were uniform, and if the conditions of hydrostatic equi-
librium were satisfied, then the equations could be integrated, starting
from the outside of the Earth, where M, is equal to the total mass of the
Earth, and using the value of C/Ma?® to determine the surface density,
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which is so far unspecified. In essence this was the procedure followed
until the discovery of the free vibrations of the Earth as a whole, but it
suffers from a number of limitations.

In the first place, reliable values of @ and 8 are required throughout the
Earth. In principle they are obtained from the changes of the travel times
of P-waves and S-waves with distance through the solution of an integral
equation. The equation can be solved provided a and 8 increase uni-
formly as the radius decreases, but it is not certain that they do so; 8
probably and « possibly have minima within the outer part of the shell
and it is not then possible to obtain unique solutions. More significant is
the fact that 8 is not so well known as «. The times of arrival of P-waves
are well established because the signals start suddenly out of a quiet
background, but they themselves generate unresolved noise in detectors
so that the S signals arise out of a noisier background and the times are
not so reliable.

More important perhaps than inadequacies in the data are failures of
the assumptions on which the Adams~Williamson procedure is based. As
one goes inward through the Earth, density may change with radius not
only because pressure increases with radius, but also because composi-
tion changes with radius. Furthermore the increase of temperature with
depth may affect the change of density, although, because coefficients of
thermal expansion decrease as pressure increases, that is probably not a
significant effect. Formally, the most troublesome feature is that there are
discontinuous changes of density within the Earth which introduce
arbitrary constants into the integration of the Adams-Williamson equa-
tions, constants which cannot be determined uniquely since there are no
further global properties beyond mass and C/Ma” by which they might
be fixed. Thus special hypotheses have to be invoked to enable the
equations to be integrated, but then of course the results to which they
lead are not unique.

The primary discontinuity in the Earth is that between the core and the
shell, or mantle, as it is usually known. There are also discontinuities
within the mantle, which is divided into the upper and lower mantle, and
within the core, divided into outer and inner core. The crust, dis-
tinguished between oceanic and continental, lies over the upper mantle.
The evidence for the upper mantle comes from the observation of sharp
changes in the slopes of the travel-time curves of P-waves and S-waves at
a distance of about 20 °; the corresponding boundary is known as the 20 °
discontinuity and corresponds to rather sharp changes in the gradients of
velocity, elastic moduli and density at a depth of some 600 km. As for the
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inner core, it was first observed by Miss I. Lehmann that some energy
leaks into the shadow zone that cannot be accounted for by diffraction
round the curved boundary of the core, and she suggested that within the
liquid core there was an inner core in which the P velocity was greater
than in the core. Because density must increase with pressure for stability,
she suggested that the shear modulus was not zero and that the inner core
was solid. With the setting up of large discriminating arrays of seismo-
meters it has been possible to detect waves that have passed through the
inner core as shear waves, so confirming the solidity of the inner core. In
addition, some of the periods of free oscillations of the Earth show the
inner core to be solid.

The first systematic attempts to integrate the Adams—-Williamson
equations were those of Bullen who used two criteria to obtain unique
solutions. If some distribution of density is obtained in the mantle, the
moment of inertia (C,,) and mass (M,,) of the mantle can be calculated.
Given those of the Earth as a whole, those for the core follow:

M.=M-M,; C.=C—-Cy.

Hence the ratio C,/M,a? can be found.

An evident condition on C,, and My, is that C./ M.a? should not exceed
0.4. That alone, however, is not sufficient, and to proceed further Bullen
observed that the velocities @ and 8 are related by simple algebraic
formulae to K, i and p, so that if @ and 8, or da/dr and dB/dr vary
continuously with radius, so must p, dp/dr and so on; equally, dis-
continuities in «, da/dr, would entail discontinuities in p, dp/dr, etc.
Bullen also had to make some estimate of the density at the top of the
upper mantle which of course is inaccessible to direct observation.

The outcome of Bullen’s study was a set of models of his type A, of
which some characteristic properties are shown in Table 2.2 and Figure
2.6. Bullen’s next step came as a result of his observation that the bulk
modulus appeared to undergo no change in passing from mantle to core
despite the great increase in density. Indeed it seemed that to a good
approximation K was a linear function of pressure throughout at least
much of the lower mantle and the core. Bullen supposed that this was a
general property of terrestrial matter at a sufficiently high pressure and
used it as a condition to be satisfied by Earth models. Thus he produced
his models of type B. Evidently since his incompressibility—pressure hy-
pothesis arose from the properties of the models of type A, the difference
between the models A and B can only be in detail and in such matters as
the maximum central density of the inner core, which is rather uncertain.
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Table 2.2. An Earth model of type A (Bullen, 1975)

Depth p a B D K
Region (km) (kg/m®  (km/s) (km/s) (10''Pa) (10" Pa)
A — 2840 6.30 3.55 _ 0.65
33 3320 7.75 4.35 0.009 1.15
B 413 3640 8.97 4.96 0.141 1.73
C 984 4550 11.42 6.35 0.379 3.49
D 2000 5110 12.79 6.92 0.87 5.10
2898 5560 13.64 7.30 1.36 6.39
2898 9980 8.10 0 1.36 6.55
4000 11420 9.51 0 2.47 10.33
F 4980 12170 10.44 0 3.20 13.26
5120 12250 9.40 — 3.28 —
G 5120 —_ 11.16 — 3.28 —_
6371 1251 11.31 — 3.61
The regions A-G are as labelled by Bullen (1975).
Figure 2.6. Properties of Bullen model A.
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Matters of detail are not important in relating the structure of the
planets to that of the Earth; it is important to concentrate on aspects of
Bullen’s models that might be relevant to other planets. In the first place
we need to understand the nature of the major divisions of the Earth to
see if similar divisions may occur in other planets; secondly we need to
investigate the incompressibility—pressure hypothesis to see whether it
may be applicable to conditions in other planets.

In the years since Bullen set up his models of type B, important new
data have become available on which to base a discussion of those
questions, namely the values of periods of free oscillations of the Earth.
Following a great earthquake in Chile on 22 May 1960, it was found that
some very sensitive detectors of long period had recorded trains of signals
lasting for many hours which could be resolved into a number of
components, each with a well-defined period from 50 min downwards.
Almost at once the oscillations were identified as the free elastic oscil-
lations of the Earth as a whole. Whereas the motion of a high frequency
disturbance has a wavelength short compared with the radius of the Earth
and propagates locally in the Earth almost as if there were not bound-
aries, at low frequencies the motion of the whole Earth is coherent
and the frequency is determined by the elastic properties of the Earth and
by the finite size of the Earth, because suitable boundary conditions
(vanishing of stress) must be satisfied on the outer surface and on internal
discontinuities. Since the free oscillations were first detected, they have
been observed from subsequent large earthquakes and the theory has
been developed in great detail.

Corresponding to the two types of body wave, there are two types of
free oscillation: one, called spheroidal, in which there is a radial
component of the displacement, and the other, called torsional, in which
there is no radial component. The different modes of oscillation are
distinguished by the letter S for spheroidal and T for torsional and by
triplets of numbers (I, m, n), of which ! denotes the number of nodal
surfaces (spheres) within the Earth on which the motion vanishes, m
denotes the number of nodal cones with axes on the polar axis and » the
number of nodal meridional planes. Thus the disturbance is in general
proportional to

" cos
f(r)P.(cos 6) sin na

where 6 is the co-latitude and A the longitude.
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For any realistic model of the Earth, the equations of motion must be
solved numerically. However, it is possible to see from the form of the
respective equations that the periods of the torsional modes depend on
the distributions of p and u within the Earth, as well as upon the radii of
surfaces of discontinuity, whereas the periods of spheroidal modes
depend in addition on the distribution of K.

The periods of over 1000 free modes of oscillation are now quite well
established and constitute a body of data of great importance for the
study of the interior of the Earth (Gilbert and Dziewonski, 1975). In
principle it should be possible to set up models of the interior of the Earth
which fit the observed periods and reproduce the observed mass and
moment of inertia. The great advantage to be looked for in the use of free
periods is that it should be possible to avoid the hypotheses that have to
be introduced to obtain unique results from the Adams-Williamson
procedure, and at the same time to dispense with the less accurate S-wave
travel times. The problem of determining models from periods of free
oscillation is the prime example, and one of the most complex, of the
procedure known generally as ‘inversion’, whereby distributions of
properties within the Earth are derived from quantities observed at the
surface of the Earth. In general, the derived distributions are not unique,
but it is often possible to establish ranges of uncertainties which depend
both on the uncertainties of the data and the way in which the quantities
actually observed cover the whole possible range. In practice, the
inversion starts from an existing model and attempts to calculate
improvements to it. Further, it is usual to include the travel times of
P-waves in the data, for they are well established. Thus, most calculations
using free oscillations have started from a model of Bullen’s type, but it is
important to note that the Bullen type of model is but a starting point and
the calculation of the improvements from the free oscillations does not
require adherence to any arbitrary constraints that may have been
applied to obtain the initial model. There is one important restriction
however. It is always supposed that the differences between the initial
model and the improved model that is being sought are so small that all
differences between the periods calculated for the two models are linear
functions of the differences between the distributions of p, K and y in the
models. That limitation may restrict the range of models that can be
reached starting from the chosen starting point, and so it is not clear that
uncertainties calculated for that linearized procedure necessarily cover
all possible models that would fit the data.
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2.4 Models and composition of the interior of the Earth

It turns out that Bullen’s models of type A yield periods of free
oscillations in somewhat better agreement with the data than do the
models of type B. For our present purpose, therefore, where we are not
concerned with details of the structure of the Earth, it will suffice to set
out the main zones of the Earth as they are in a model of type A,
supplemented in some instances by data from free oscillations.

Roughly speaking, the Earth may be divided into five zones, the crust,
the upper mantle, the lower mantle, the outer core and the inner core.

The crust is the result of tectonic activity over the lifetime of the Earth.
Over the continents it is roughly 30 km thick, more under mountains, and
comprises acidic and intermediate types of rock with sediments at the
surface. The oceanic crust is not much more than 7 km thick, the lower
5 km being of basalt, the upper 2 km of oceanic sediments. Oceanic crust
is formed at mid-oceanic ridges where new material comes to the surface;
itis destroyed where it is driven against the boundary of a continent by the
movement of tectonic plates and in the process mountains and new
continental crust are formed. The crust as we see it on the Earth is almost
certainly peculiar to the Earth, for it originates from tectonic activity that
has no parallel on the Moon or the other planets.

The crust everywhere rests on material of higher density, about
3300 kg/m>, and higher seismic velocities; the P-wave velocity is about
8 km/s. The boundary between crust and upper mantle is known as the
Mohorovicié discontinuity. Below it, the upper mantle continues to a
depth of almost 800 km. Throughout the first 400 km or so properties
increase steadily inwards and then there is a sharp increase in gradients
which manifests itself at the surface as the 20° discontinuity in the
travel-time curves. Thereafter the gradients decrease to the rather low
values they have in the lower mantle, which extends to the core and is
characterized by steadily increasing velocities, density and elastic moduli.
It is instructive to reduce the actual densities to values at zero pressure,
which can be done because the bulk modulus is known. To a good
approximation (Figure 2.7) the reduced density is constant in the upper
part of the upper mantle to 400 km, increases in the transition zone
between 400 and 700 km and thereafter remains constant to the top of
the core. Within the core, the density and bulk modulus increase steadily,
corresponding nearly to pure hydrostatic compression, until the bound-
ary of the inner core, where the density and bulk modulus both increase
discontinuously and the shear modulus, instead of being zero as in the



The internal structure of the Earth 34

outer core, becomes non-zero. The radius of the inner core appears to lie
between 1215 and 1250 km.

- How are the models, as distributions of density and elastic moduli, to
be interpreted in terms of chemical composition? The first point to notice
is that we know the pressure within the Earth, for, given the density as a
function of radius, we can calculate the mass M, out to a given radius, and
hence the value of gravity at that radius, namely GM,/r?, and so, finally
the pressure by integrating inwards from the surface, since

dr__
ar_ &

Thus we have density, bulk modulus and pressure as functions of the
radius, and so may express density and bulk modulus as functions of
pressure. Now a great many observations of pressure—density relations
for likely components of the Earth have been made (Chapter 4) and, from
comparisons of those experimental data with properties of the Earth, the
following identifications may be made with reasonable confidence.

The upper mantle consists mainly of silicates of iron and magnesium,
having the olivine and pyroxene crystal structures in the outer 400 km.

Figure 2.7. Reduced density within the Earth: (a) actual density in
the Earth; (b) density reduced to zero pressure. (From Cook, 1973.)
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The increase in density in the lower part of the upper mantle between 400
and 1000 km is in part the consequence of a change in crystal structure
from olivine or pyroxene to the more compact spinels. However,
experiments indicate that change of crystal structure alone could only
account for about half the increase of density and so itis supposed that the
proportion of iron increases with depth in the lower mantle. Experiments
also indicate that at sufficiently high pressures silicates transform into the
constituent oxides; it is not clear where such a change occurs in the Earth
but, while it is possible that the lower mantle is composed of iron-rich
spinel throughout, it may be that the change to a mixture of iron,
magnesium and silicon oxides takes place in the deepest part of the upper
mantle.} It is not really possible to compare terrestrial data with experi-
ment much more closely because the range of possible composition would
make it difficult to distinguish between changes of composition and
changes of crystal structure (see Chapter 4).

The composition of the core has long been debated. The pressure—
density curve is well established and the question is how well can it be
matched by experimental data? Iron has often been suggested as the
material and the pressure—density curve for iron has been established
from shock-wave studies (Chapter 4). The two curves lie nearly parallel,
but that for the core lies somewhat below that for iron (Figure 2.8). To
account for the difference some admixture of such materials as silicon,
sulphur or oxygen (as oxide) is suggested. It may also be supposed that the
iron contains about 10 per cent of nickel as usually accompanies it in the
solar system; the density of nickel is, however, greater than that of iron so
that if nickel is present rather more material of low density would be
needed. An iron core and a silicate or oxide mantle are not the only
possibilities for the major divisions of the Earth; for example, models
dominated by iron and iron oxide have been suggested. It has also
frequently been proposed that the core is a metallic form of the material
of the mantle ionized under pressure. However (Chapter 4), as more
information about such metallic transitions becomes available from
theory and experiment it looks less and less likely that the corresponding
change of density would be great enough.

The nature of the inner core is unclear. All we know with some
assurance is that density, bulk modulus and shear modulus all increase at
the boundary. A natural suggestion is that the molten material of the

+ Dziewonski, Hales and Lapwood (1975) argue that the dependences of P-
wave and S-wave velocities in the lower mantle are consistent only with an
oxide composition.
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outer core is solidified in the inner core because the rise of melting
temperature as a consequence of elevated pressure exceeds the increase
of actual temperature with decreasing radius. Unfortunately, we have no
knowledge whether from theory or experiment about how the elastic
properties of molten iron would behave on solidification at the pressure
and temperatures of the interior of the Earth and so it is profitless to push
further the question of the composition of the inner core. It is also of little
value from the standpoint of the study of the other planets, for at the
present time we have no prospect of obtaining any evidence for or against
an inner core in any of them.

2.5 The incompressibility-pressure hypothesis within the Earth
The essence of Bullen’s suggestion is that throughout the lower
mantle and the core the bulk modulus, K, varies smoothly with pressure,
D, irrespective of composition; it applies, as originally formulated, to the
range 0.4-4 x 10" Pa in pressure and to materials predominant in the
Earth. The most striking evidence for the correctness of the hypothesis
was the observation that, whereas the density changed from about 5600
to 10 000 kg/m” on crossing from the mantle into the core, any change in

Figure 2.8. Plot of the equation of state of the core compared with
iron and similar materials.
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bulk modulus was within the uncertainty of the determination. Bullen’s
original proposal was based on P and S travel times interpreted by the
Adams-Williamson procedure, but it is now possible to test the hypoth-
esis against models based on P-wave travel times and periods of free
oscillations interpreted by methods not restricted by the arbitrary
assumptions required in the Adams—Williamson method. The models
give both K and p as functions of radius, so it is straightforward to
tabulate K as a function of p. The graph in Figure 2.9 shows the result of
the comparison for two models.

It is clear from Figure 2.9 that Bullen’s original proposition is still
amply justified: any possible change of K from mantle to core is within
the uncertainty of the determinations, namely, about 10'° Pa in K.
Bearing in mind that any application of the hypothesis to another planet
may not be correct in detail, the variation of K with p is well represented
by the linear relation

K=23+321p.

Figure 2.9. Dependence of bulk modulus on pressure.
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A quadratic relation has also been proposed, but it is clearly unnecessary.

In setting up the behaviour of terrestrial material as a reference for
studying the interiors of planets, we may state Bullen’s hypothesis in the
form: the bulk modulus at terrestrial pressures of 0.4-4x10'" Pa is
represented by

K=23+321p

in units of 10'" Pa, to within +10"° Pa.

The limitations of the statement need emphasis, and indeed Bullen
himself has emphasized them: the statement applies between pressures of
0.4x 10" and 4 x 10" Pa and it applies to terrestrial material. The first
restriction excludes, in its application to the Earth, the upper mantle and
the inner core; the second might lead us to be cautious in extending the
hypothesis to other planets. In the upper mantle, K still appears to
change continuously with pressure, but does so much more rapidly than
elsewhere within the Earth. As to the inner core, there is quite clear
evidence that K does increase discontinuously on going from the outer to
the inner core.

The behaviour of K in the upper mantle and inner core leads us to ask
how far the departures from the simple rule that holds elsewhere in the
Earth depend on pressure and how far on composition (temperature
probably has little effect because the coefficient of thermal expansion
decreases with pressure). The discussion of that issue is taken up again in
Chapter 4.

2.6 The temperature within the Earth

It has so far been possible to conduct the discussion of the
internal structure of the Earth with almost no reference to temperature,
for, as already mentioned, the coefficient of thermal expansion of solids
decreases with pressure so that throughout much of the Earth the
temperature, high though it be, can have little effect on the density. There
are three places where the value of the temperature is significant. First,
and most obvious, if the core is indeed molten iron, then the temperature
must exceed the melting temperature of iron at the pressures within the
core. Secondly, it may be that the inner core is solid iron, in which case the
radius of the inner core is that at which the melting temperature at the
ambient pressure first exceeds the actual temperature. Finally, the value
of the temperature may influence the radius of the transition zone at the
base of the upper mantle. The pressure at which a change from one crystal
structure to another takes place is not independent of temperature, for,
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associated with the change, as with melting or vaporization, there is a
change of internal energy (or latent heat) and so the transition tempera-
ture and pressure are related by the Clausius—Clapeyron equation. For
this reason it cannot be assumed that a similar transition will occur in
other planets at the same pressure, even could it be supposed that the
chemical compositions were the same.

The high temperature within the Earth is important for other reasons.
When the mantle of the Earth is deformed relatively quickly, over times
from about 1 sup to 1 y, it behaves as an almost perfectly elastic solid. Yet
there is plain evidence that rocks at the surface have undergone plastic
deformation by creep or flow, no doubt in very much longer times. Can it
be that the mantle of the Earth would also flow if the temperature were
high enough? The temperature must be high for two reasons. In the first
place, the rate at which solids can creep under a steady stress is negligible
at temperatures less than half the melting temperature but then increases
towards the melting temperature. Secondly, the force which drives the
movement may be the buoyancy force exerted on a body of material when
the temperature gradient exceeds the adiabatic gradient. Thus, if move-
ments in the mantle are to be invoked, for example, to account for the
movements of tectonic plates, it is necessary for the temperature within
the mantle to be close to the melting point of silicates or oxides.

Unfortunately, it is extremely difficult to obtain independent evidence
of the distribution of temperature within the Earth. The rate at which
heat flows out through the surface of the Earth has been measured in
many places and the average value, much the same on the average for
continents and oceans, is about 0.06 W/ m?. To calculate the temperature
within the Earth it would be necessary to know how the effective thermal
conductivity varies with depth, how sources of heat are distributed within
the Earth, whether the temperature has settled to a steady value and, if
not, what was the initial temperature throughout the Earth. Something is
known of phonon conductivity (ordinary thermal conductivity) in silicates
and something of the transport of heat by radiation, but for almost all the
rest it is necessary to guess. A different approach is needed.

A starting point might be the temperature in the core. If the core is iron,
its temperature must at least exceed the melting temperature at the local
pressure. At the same time, convection in it will probably transport heat
quite rapidly, so that the temperature will be close to the melting
temperature throughout. If then we knew the melting temperature of iron
as a function of pressure we would know the temperature throughout the
outer core, while in the inner core it would be less than the melting
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temperature. It may be thought that such a model is on the whole a likely
one for the core, but it cannot be proved to be correct. We do not know
that the core is iron but, whatever it is, it is liquid and the temperature is
probably close to the melting temperature. Even if the core is iron, we still
do not know the temperature, for the melting temperature is not known
at the core pressures. Empirical melting point formulae have been
proposed which may apply to iron, but in the absence of experimental
data we cannot be sure. Figure 2.10 does, however, show a plausible
range of temperature within the core. On this basis, the temperature at
the outer boundary of the core would lie between 3500 and 5000 K.

If such a value for the temperature of the outer boundary of the core is
reasonable, we have values for the temperature of the base of the mantle
and for the outer surface (290 K) and a simple calculation shows that, if
the thermal conductivity of the mantle were uniform and if there were no
heat sources within the mantle, the temperature gradient at the surface
would be 0.5 deg/km. The actual value is close to 30 deg/km. Evidently
the effective conductivity of the mantle is much greater than the conduc-
tivity of rocks at the surface, or there are sources of heat within the

Figure 2.10. Possible temperature within the Earth.

5000 —
4000 —
3000 —
<
b~
2000 1= Mantle Outer core Inner core
(liquid) (solid)
2885 km 5153 km
1000
1 1 | |
0 1500 3000 4500 6000

Surface Depth (km) Centre



The electrical conductivity within the Earth 41

mantle, or both. We know, in fact, that there are sources of heat close to
the surface in the radioactive uranium, potassium and thorium in rocks,
mostly granite, and indeed most of the heat flowing out from the surface
could be accounted for by the radioactivity in the continental, though not
in the oceanic, crust. No doubt the upper mantle also contains sources of
radioactive heat. On the other hand, it is known that olivines are
semi-transparent to low frequency infra-red radiation and at moderate
depths within the mantle radiation transport is probably more effective
than phonon conduction. Can we set further limits? Is it possible to show
that radiation transport is inadequate to move heat from the core? If it is,
a persuasive argument can be made for convection in the mantle, for in
that case the temperature in much of the mantle would approach the
temperature of the boundary between the core and the mantle and in
consequence the gradient in the outer parts would exceed the adiabatic
gradient, so giving rise to buoyancy forces, while the high temperature
would afford the possibility of creep. Thus some sort of convective motion
might be expected in the parts of the mantle where both the temperature
and the gradient are high; in the lower part of the mantle, on this picture,
the gradient might be less than the adiabatic gradient. The argument is
plausible but it cannot be taken much further partly because we do not
know if radiative transport is inadequate, partly because we do not know
if creep in a quasi-solid material would indeed give rise to convection.
The possibility is there; it may provide a driving force for tectonic
movements at the surface and it may need to be considered in other
planets.

2.7 The electrical conductivity within the Earth

The magnetic field of the Earth is now usually supposed to arise
from dynamo action in the liquid core; in consequence the conductivity of
the core must be high enough to allow electrical currents to flow. It is
generally supposed that if the core is mainly iron its conductivity, while
not known for certain, will be within the right range, and one may suppose
also that, if any other planet has a liquid core like that of the Earth, it will
similarly have a conductivity that would permit of dynamo action.

The conductivity of iron is a function of temperature and pressure and
it is because experiments have not been carried out at pressures and
temperatures close enough to those of the core that we do not have close
estimates of the conductivity. The electrical conductivity of the material
of the mantle can perhaps be even less well estimated from experi-
ment. Silicates at the temperature and pressure of the mantle develop
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conductivity of the sort shown by semi-conductors; that is to say, elec-
trons can pass from filled valence bands or from impurity levels to bands
empty at room temperature, in which the electrons are then mobile. The
dependence of the conductivity so developed upon temperature is of the
general form

o=0opexp (—E/kT),
where oo depends on the number density of electrons in the impurity or
valence levels and E is an activation energy (gap energy). The conduc-

tivity depends on pressure through changes in the gap energy, E.
For olivine

g0=10S/m intrinsic
00=10"2-10"*S/m impurity
E=3eV intrinsic
E=0.5-10eV impurity

(the conductivity of iron at room temperature is 10’ S/m; of germanium
and silicon, about 10> S/m).

Experiments have not been carried to a high enough temperature
or pressure to explore the behaviour of silicates under conditions that
obtain deep in the mantle; furthermore, the conductivity depends
strongly on composition through the gap energy; thus it would be
hopeless to try to predict in detail the conductivity throughout the mantle,
but, on the other hand, it is possible to predict that it should increase
greatly with temperature and, therefore, with depth.

It is then of interest to obtain some estimate of the conductivity within
the mantle, for if a similar estimate were available for the Moon or a
planet supposed to have a mantle of similar composition it might be
possible, by comparison with the Earth, to arrive at some idea of the
temperature in the Moon or planet. Disturbances of the magnetic field at
the surface of the Earth provide the means for estimating the electrical
conductivity. The surface field has its origin principally within the Earth,
but a small variable part is generated by currents in the ionosphere and
magnetosphere; the field of external origin can be separated from that of
internal origin by analysis into spherical harmonics. Suppose that
separation effected: then, if the mantle conducts electricity, a component
of the external field will induce currents in the mantle which will then
generate a component of the internal field, varying in time in the same
way as the external component. The relation between the external
component and the internal component induced by it depends on the
variation of conductivity with depth. Once again we meet an inverse
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problem in geophysics. The direct problem and external component from
the distribution of conductivity with depth can always be solved
numerically; given a number of such relations determined experimentally
for components with different rates of change, the inverse problem is to
find distributions of conductivity with depth to reproduce the data. Again
there is no unique solution, but Figure 2.11 shows the range within which
the conductivity probably lies within the upper mantle.

2.8 Departures from the hydrostatic state
The Earth is very nearly in a hydrostatic state; that is io say, the
stresses are almost everywhere due to normal pressures, and shear

Figure 2.11. Electrical conductivity in upper mantle. (From Cook,

1973.)
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stresses are generally negligible. The hydrostatic assumption is made in
the Adams-Williamson procedure, but not when deriving Earth models
by the inversion of data from free oscillations, and the models that have
been constructed in that way do not depend on assuming hydrostatic
conditions in the Earth. However, when for the other planets far less
information is available than for the Earth, hydrostatic conditions must
be supposed in order to make much progress in interpretation. Thus,
whereas the moment of inertia of the Earth can be found without having
to make any assumption, nothing equivalent to precession can be
observed for any of the other planets, and the moment has to be estimated
from the gravitational coefficient J,. To do so, it is necessary to assume
hydrostatic conditions (Chapter 3). It is therefore of some importance to
see how far the Earth departs from the hydrostatic state.

That the Earth does so depart is evident. The theory of the external
gravity field of a spheroid of revolution shows that, if the surface is an
equipotential surface, as it would be in hydrostatic equilibrium, then the
only terms in the expansion of the potential in spherical harmonics would
be even zonal harmonics and the coefficients J,,, would be of the order J5.
In fact, there are a great many harmonic terms in the Earth’s field, even
zonal, odd zonal and tesseral (dependent on longitude) all of the order
(1073-1074)J,. They arise from distributions of density within the Earth
that are inconsistent with the hydrostatic state. The polar flattening itself
is significantly different from what it would be for the hydrostatic state.
Since the value of C/Ma?® is known for the Earth independently of the
hydrostatic assumption, it is possible to calculate (Chapter 3) what the
polar flattening (and the coefficient J,) would be if the Earth were in the
hydrostatic state; it is found that f would be 1/299 instead of the actual,
significantly greater, value of 1/298.25.

There is other evidence that the Earth is notin a hydrostatic state: were
it so the outer surface would be a surface of constant potential, and seas
would cover the Earth uniformly without continents or mountains.
Clearly stresses support the outer irregularities of the Earth as well as the
irregularities of density within the Earth. From one point of view, the
study of tectonics is largely encompassed by the investigation of the
forces, whether thermal or chemical or otherwise, that generate those
irregularities and by the investigation of the shear stresses that support
them, whether through the strength of the material of the crust and
mantle or through convective -motions within the mantle. The question
will be taken up again in discussing possible tectonic activity on the Moon
or the terrestrial planets; so far as concerns the Earth two things may be
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said. First, it is evident that movements do take place within the Earth and
lead to tectonic activity in the crust and uppermost parts of the mantle and
to the development of oceans, continents and mountains. Secondly, these
movements are probably generated by thermal forces: they could not
occur in a hydrostatic Earth for there would be no forces to drive them.
Thus departures from hydrostatic equilibrium represent both the sources
of energy that drive tectonic movements and the irregularities produced
by those movements.

We do not know how to separate the effects of the sources and
consequences upon the gravitational potential. Any particular dis-
turbance of gravity comes from an irregularity of density. This may be due
to an abnormality of temperature, possibly driving a convective cell
acting on a tectonic plate, or it may be due to some irregularity supported
by the strength of the mantle or crustal material in shear. Near the
surface one would suppose that strength in shear is more important in
supporting departures from the hydrostatic state, but, at the higher
temperatures at depth, strength may fail and irregularities may be
supported dynamically by the motions of material of the mantle. Thus
one might argue that irregularities of density at small depths are sup-
ported by shear strength, and those at greater depths are the
consequences of convective currents. But we cannot distinguish between
them in practice because of an inherent ambiguity in deriving a dis-
tribution of density from a potential: the density variations may be put at
any depth less than a maximum set by the order of harmonic variation and
in practice the limits set for the Earth are so wide as to be quite unhelpful
in the present matter.

In studying the Moon and the inner planets, we shall again have to ask
whether departures from the hydrostatic state are supported statically by
shear strength or dynamically by internal motions.

2.9 The magnetic field of the Earth

The Earth has a magnetic field which to first approximation is
that of a dipole the centre of which is slightly displaced from the centre of
the Earth and which is inclined to the axis of rotation at an angle of some
10 ° so that the magnetic north pole lies not at the geographical pole but in
Canada. The field is not, however, adequately represented by that simple
description and many relatively large terms are needed in a spherical
harmonic representation of the field. Table 2.3(a) lists some of the larger
coeflicients. Alternatively, the non-dipole part of the field may be
represented by dipoles (or loops of current) in the surface of the core, and
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Table 2.3(a). Some harmonic coefficients of
the geomagnetic field

n m gm(T) ki (T)
1 0 ~3.04%x107° —
2 0 -0.16x107° —
3 0 0.13%x10°° —
4 0 0.10x107° —
5 0 —0.02%x107° —
6 0 0.14%107° —
1 1 -0.021x107° 0.58x10°°
2 1 0.30x107° -0.19%107°
3 1 -0.20%x107° —0.05%x107°
4 1 0.08x10°° 0.02x107°
2 2 0.15x10°° 0.02x107°
3 2 0.13x107° 0.02x107%
4 2 0.06x107° -0.03%107°
3 3 0.08%10°° —
4 3 —0.03%x107° —
6 3 -0.02%x107% —

Note: g, and h,; are respectively the coeflicients
of P (cos 8) cos mA and P; (cos @) sin mA in the
spherical harmonic expansion. The integral of any
harmonic over the unit sphere is 2n +1)7/2,
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Table 2.3(b). Representation of the geomagnetic field by radial dipoles

M/a®(T) Co-latitude Longitude
(deg) (deg E)
Central dipole -7.0%x107° 23.6 208.3
Radial dipoles at 0.25a 1.0x107% 13.7 3419
1.1x1073 46.0 179.9
-0.3x107% 54.9 40.1
0.8%x107% 77.4 241.7
0.3x107% 91.3 120.8
-0.7x107% 139.8 319.3
-1.2%x107% 141.1 43.0
04%x10°% 102.9 180.1

a is the radius of the Earth.
The unit of magnetic moment is T m>, so that M/a®, the moment divided by

a’, is in tesla.
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Table 2.3(b) gives the principal ones. The dipole field and the main
non-dipole components may be shown to originate from currents within
the Earth.

The main internal fields are not constant: they vary with a secular
variation which may be represented by the growth and decay of loops of
current in the surface of the core.

Beyond the relatively small secular variation, it is known from the
study of the magnetization of rocks that the direction of the main dipole
field has reversed on many occasions in geological history so that what is
now the north pole was on many occasions the south pole. The frequency
of reversals has varied in geological history; in the relatively recent past it
has been every few million years, the change occurring relatively rapidly
in some 10 000 years. At other times in the past, tens of millions of years
or more have passed without change.

In addition to the fields of internal origin there are fields that vary in
time and are produced by currents in the ionosphere and magnetosphere.
They have already been mentioned in connexion with the estimation of
the electrical conductivity of the Earth. The magnetosphere and iono-
sphere are both controlled by the main field of internal origin. The
magnetosphere is that region around the Earth where the field is essen-
tially that of the geocentric dipole; outside the magnetosphere the field
transported by the solar wind is dominant and the magnetopause which
bounds the magnetosphere is the region where the field lines of the
Earth’s field are deflected by the field and ions are transported by the
solar wind. The magnetopause moves as the strength of the solar wind
varies as a result of currents flowing in it and generating magnetic
disturbances at the Earth. The position of the ionosphere around the
Earth is determined by the depth to which ionizing radiation from the Sun
can penetrate in the atmosphere. The actual structure and the variation
from day to night are, however, influenced by the main field, for the
ionized particles of the ionosphere tend to move along field lines.

The origin of the main field is now almost always sought in dynamo
action in the core of the Earth (see Moffat, 1978, and Chapter 9). The
general idea is that motions in the fluid electrically conducting core,
taking place in a magnetic field, induce electrical currents which then
generate a magnetic field. If the fluid motions are of the proper sort, and if
the conductivity and viscosity of the core are suitable, the generated field
will reinforce the original one and so a field will be maintained by
electromagnetic induction in the core. The theoretical problem is to find
motions which can maintain a field in this way, and a difficulty that has to
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be met is that it is known that self-induction in a fluid will not maintain a
field if the motions have axial symmetry. What drives the motions in the
core of the Earth and are they suitably asymmetrical? Those questions
are not answered, although some plausible ideas of answers can be
developed. Itis usually supposed that the relatively high rate of spin of the
Earth is important, but a spinning core by itself would not generate a
field; some other components of motion must be present and have been
sought in thermal convection within the core. It has, however, been
argued that the core is stably stratified and does not convect, although the
argument has been strongly criticized; yet, if the core is stable to
convection, internal hydrodynamic waves may travel in it, the motions of
which may generate a field. Apart from thermal convection it has been
suggested that mechanical coupling between the mantle and core would
generate internal motions that could induce a field.

There is no agreement at present on the details of the dynamo process
nor on the source of energy by which it is driven. No doubt, in looking at
fields of other planets, the obvious first idea would be to think in terms of
thermal convection in a spinning core as responsible for the field, but
there are other possibilities.

2.10  Conclusion

The study of the planets must start with the Earth. The available
methods are there most fully worked out, and the ideas of constitution we
shall use were developed from terrestrial studies. What themes should we
bear in mind as we leave the security of the Earth for the vagueness of the
planets, about which we are so ignorant?

One important point concerns the roles of the polar moment of inertia
and a magnetic field relative to the internal constitution. The former
shows us how strongly the density increases towards the centre, while the
latter, if present, will strongly suggest, on the basis of a dynamo theory of
its origin, that part of the planet is liquid and conducts electricity.

We may ask if the planetis in a hydrostatic state or not. Departures will
show up as topographicirregularities at the surface and in the existence of
significant coefficients in the spherical harmonic expansion of the
potential beyond the second zonal coefficient, the one that corresponds
to the polar flattening. Departures from the hydrostatic state may be relics
of irregularities in the initial formation of a planet or they may be the
result of a continuing process: we suppose the latter to be the case on
the Earth, while, for the Moon, the former may be more probable. The
Earth warns us not to take too simplistic a view: the obvious surface
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irregularities of the Earth, the mountains, oceans and continents, which
are the results of tectonic procesees, affect the potential but slightly
because of the maintenance of isostatic equilibrium, while large scale
features of the non-hydrostatic potential appear to bear little relation to
present tectonic processes.

If a planet is in hydrostatic equilibrium, the coefficient J, in the
spherical harmonic expansion of the potential is determined by the polar
moment of inertia, and the latter may be inferred from the former, given
the spin angular velocity (Chapter 3). If hydrostatic equilibrium fails, the
moment of inertia derived in this way will be in error and that must be
considered for the terrestrial planets.

Temperature has a relatively small effect on the density at a given
pressure because the coefficient of thermal expansion in general
decreases very greatly at high pressures. However, the pressure at
which a phase change occurs, whether it be melting or a change
of crystal structure, is dependent on pressure through the
Clausius—-Clapeyron relation, so that it is wrong to assume that phase
changes, if they exist, will occur in other planets at the same pressure
as within the Earth.

Important though temperature is in this way, we have seen how difficult
it is to arrive at any firm idea of its variation through the Earth; how much
less then can these estimates be made for other planets?

The chemical constituents of the Earth have been identified as metal
silicates and oxides in the mantle and iron in the core. On that basis, the
gross average composition of the Earth may be compared with that of
chondritic meteorites, often taken to be typical of the composition of the
heavier elements in the solar system, i.e. excluding the more fugitive
gases (see Table 1.3). Although in gross composition the Earth appears to
fit its chondritic pattern it is clear that it is unusual among the planets, for
the substantial differences between the bulk densities (Chapter 6) show
that neither the terrestrial planets nor still less the major outer planets
can have a common composition.

The Earth shows upon its surface the results of tectonic activity. We
relate that activity to forces that probably derive from the heat flowing
out of the Earth, and tectonic activity may be taken as evidence of an
internal temperature high enough to permit movement of solids by creep
or otherwise. They also show that a planet is not in hydrostatic equilib-
rium. Evidence for surface structure and tectonic activity on the inner
planets is now accumulating from photographs obtained by space craft
and must be borne in mind in discussing the internal states.
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The distribution of density within the Earth is found from seismic data,
no assumption being made about composition. Because seismic data are
not available for the other planets, a model of the internal structure can
only be obtained by taking an assumed equation of state and using it
to construct a variation of density with radius that fits the known size,
mass and moment of inertia; the procedure will be discussed further in
Chapter 4. How then can we obtain equations of state, especially for the
inner planets? How far do they depend on composition, can anything
useful be said about equations of state if the composition is not known?
We have seen that in the Earth a very simple rule relates bulk modulus
and pressure to high accuracy, and we shall have to consider if that can be
extended to the inner planets.



3

Methods for the determination of the
dynamical properties of planets

3.1 Introduction

Leaving aside the special case of the Moon, the properties of
planets that can at present be determined are certain gross quantities
descriptive of a planet as a whole; these are the size, the spin angular
velocity, the mass and mean density, the moments of inertia and the
coefficients in a sphérical harmonic expansion of the gravitational poten-
tial, together with some features of the magnetic field and possibly
electromagnetic induction in the planet. The Moon alone is open to the
study of the variation of properties with depth by seismology. The
investigation of the internal state of a planet depends on what can be
inferred from the measured gross properties, and fails unless those
properties can be measured with precision. Given only integral proper-
ties, a wide range of internal distributions of density is consistent with the
data, but the more precisely the integral properties are known the more
restricted the range of possible distributions.

The various dynamical properties of a planet are not independent, for
all are determined by three factors: the spin, the chemical composition
and the temperature. Suppose the spin acceleration at the surface at the
equator (where it has its greatest value) to be small compared with the
acceleration of the self-gravitational attraction. Then composition and
temperature together determine the equation of state, the latter mainly
by its control of the occurrence of any polymorphic phase changes. Given
an equation of state, in general different in different zones, the radius is
determined for a given mass, and vice versa, and so is the variation of
density with radius, and thus the moment of inertia. The moment of
inertia and the spin determine the polar flattening (section 3.7). The
composition, spin and temperature accordingly fix the moment of inertia,
the size and the polar flattening if the mass is given. The converse is not,
however, true, and the equation of state cannot be found uniquely from
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mass, size, spin, flattening and moment of inertia, the properties which
can be measured or estimated for most planets. There is an important
limitation which severely restricts discussion of Venus and Mercury: if the
spin is negligible the flattening may be indetectable, and the moment of
inertia cannot thus be determined.

Consider a planet in hydrostatic equilibrium spinning with angular
velocity w. Then, as is shown in section 3.7, the value of the polar
flattening f is given by

Sm_,.2 ( .3 € )2

2 f 4 2 Md*/’
where m is the ratio of centrifugal to gravitational acceleration at the
equator, equal to @’a’/GM, M is the mass of the planet, a is the
equatorial radius, and C is the polar moment of inertia.

The value of J; is related to the polar flattening. Let the potential of the
gravitational attraction of the mass of the planet be denoted by V and let
it be expressed in spherical harmonics. Because the planet is in hydro-
static equilibrium and is spinning, it will be symmetrical about the polar
(spin) axis and so the potential (and all the other quantities) depend only
on the radial distance, r, and the co-latitude, 6, measured from the north
pole, and are independent of longitude. Further, if the centre of co-
ordinates is taken to be the centre of mass, there is no first harmonicin the
expansion of the potential, which may then be written as

2
V=—ﬂ4[1—(’r—°) J,P(cos 6)+ - - ]
r

ro is for the moment an unspecified scale factor.
To this must be added the potential from which the spin acceleration
may be derived. The radial and meridional tangential components of the

acceleration are ro’ sin” 6 and rus’ sin 6 cos 6. They are equal to
d 19 .
(——, —— —) 1r’w” sin® 9),
or r dé

showing that the spin acceleration may be regarded as deriving from a
potential

4’ sin” 6.
Thus the total potential V, or the geopotential as it is called, is equal to
V —3r’w’sin® 6.

Now the surface of a rotating body in hydrostatic equilibrium is one in
which the potential V' is constant.
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Let that surface have the form
re=a(l-fcos’ )
or
ro=a[1-3f—3fPx(cos 6)+- - -],
that is, it is a spheroid of revolution and the polar flattening, the relative
difference between equatorial and polar radii, is f.

On substituting for r; in the expression for V, and remembering that
sin® @ =3[1— P, cos 6)], we find that the part independent of € is

GM
—7(1 +3f)—3a’o’,

while the coefficient of P,(cos ) is

2
LT

2

If the potential is to be a constant, independent of 6, this coefficient
must be zero.

It is usual to choose the arbitrary scale factor ro to be a. As before, write
m for a’w’/GM, the ratio of spin to gravitational acceleration at the
equator. Then

f=%-’2+%m-

The foregoing result applies to the physical surface of a planet in
hydrostatic equilibrium, but is more general. It applies to any surface on
which the potential is constant; thus, on the Earth, the form of the sea
level surface is so related to J,, and even though the land surface is
irregular, and not an equipotential surface, it is still possible in principle
to define a surface (the geoid) which continues the sea level equipotential
surface below the land. When a planet is not in hydrostatic equilibrium,
the geometrical flattening of the physical surface does not necessarily
agree with the flattening calculated from J> and m. Thus, evidence about
the internal state of the planet may be obtained from a comparison of the
geometrical with the dynamical flattening derived from J, and m; those
for the Moon and Mars in particular are discrepant.

32 Distance and size

The sizes of the major planets have still to be found by multiply-
ing the angular diameter as found from telescopic measurements by the
known distance from the Earth. It is therefore worth recalling that the
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relative distances of the planets follow from Kepler’s law

n’al=GM,,
where n is the mean orbital angular velocity, a, the semi-major axis of the
orbit, and M, the mass of the Sun; that the ratios of the angular velocities
are very accurately known and so therefore are the ratios of semi-major
axes; and, finally, that the scale of the whole system is found from radar
measurements of distances from the Earth to the inner planets. The scale
is expressed by the accepted value of the semi-major axis of the Earth’s
orbit, the astronomical unit, which by international agreement is taken to
be 1.496 00 x 10° km.

Telescopic measurements of angular diameters may seem straight-
forward, and so they are for Jupiter and Saturn, but the angular diameters
of Uranus, Neptune and especially Pluto, are small and, as may be seen
from Table 3.1, are none too well known. (It should be recalled that a
relative error £ in the linear dimensions generates a relative error 3¢ in
the volume and mean density.)

Telescopic observations will also give the geometrical flattening, again
subject to appreciable errors with small planets. A relative error of ¢ in
each of the polar and equatorial diameters generates a relative error of 2¢
in the flattening.

The form of the planet observed telescopically is that of its projection
on a plane perpendicular to its radius vector from the Earth, and so its

Table 3.1. Some planetary properties

Equatorial Orientation  Spin Polar
Distance of spin angular flattening
from Sun Radius Diameter® axis to velocity

Planet (AU (km) (arcsec) orbital plane (rad/s) f

Mercury  0.387 2439 54 10° 1.22x107¢ 0

Venus 0.723 6052 30.5 3° -2.99%x1077 0

Earth 1 6378 — 23°27' 7.29%x107° 0.003
Mars 1.524 3397 89 23°59' 7.09x107% 0.005
Jupiter 5.203 71200 234 3°04' 1.77x10™* 0.06
Saturn 9.539 60000 9.8 26°44' 1.71x10™* 0.10
Uranus 19.18 25650 1.8 82°5' 8x107° 0.02
Neptune 30.06 24800 1.1 28°48' 8x107° 0.02
Pluto 39.44 1500 0.2 unknown 1x10°° unknown

“1 AU=1.496 x 10% km.
® The equatorial diameter in angular measure is the greatest value as seen
from the Earth.
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true polar flattening can only be calculated if the inclination of the polar
axis to the plane is known. For most planets there is little difficulty
because the spin axes are all roughly parallel and perpendicular to the
ecliptic (Table 3.1), but Uranus is an exception, for its spin axis lies almost
in the plane of the ecliptic.

The size of Saturn, as of many natural satellites, has been obtained
from pictures taken from space craft.

A powerful method for the determination of the size and flattening of a
planet makes use of occultations; the most accurate results are obtained
from occultations of a space probe or artificial satellite, but occultations
of stars also provide valuable data for planets inaccessible to space probes
or unprovided with artificial satellites. Suppose that the position of an
occulted object is known, relative to the planet, as a function of time. The
simplest case is that of an artificial satellite in orbit about the planet and
tracked by measurement of the Doppler shift of radio transmissions that
it radiates. The size of the orbit can readily be found if the plane of the
orbit contains the Earth. Let the maximum and minimum velocities along
the line of sight then be v, and v,, so that the range of tangential velocities
is (v1—v.). In a circular orbit the tangential velocity would be constant
and equal to 3v1—0,).

The period, T, is the interval between successive instants at which the
minimum velocity recurs. Hence the mean angular velocity, », is 27/ 7,
and the radius of a circular orbit is

H(v1—02)/n

or
(1/4m)(v1-v)T.

Artificial satellites often have nearly circular orbits but, if they deviate,
the eccentricity and time of pericentre can be derived from a more
detailed study of the line-of-sight velocity as a function of time.

Doppler tracking thus provides the scale of the orbit. Now, since the
plane of the orbit of the satellite contains the centre of mass of the planet,
the satellite, if its orbit also contains the Earth, must pass behind the
planet as seen from the Earth and so be occulted. The diameter of the
circle in which the planet intersects the plane of the orbit (necessarily a
great circle of the planet) may then be found from the times at which the
satellite disappears behind the planet, cutting off its radio signals, and at
which it reappears and the signals are heard again.

The case of a space probe is similar, save that only one disappearance
and reappearance may take place instead of a sequence. The trajectories
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of space probes lie for the most part in the plane of the Earth’s orbit about
the Sun so that the occultation of a space probe by a planet will in the
simplest case give the diameter of a section by the ecliptic. Doppler
tracking of a space probe gives its line-of-sight velocity, but the complete
trajectory may be found by integrating the equations of motion of the
space probe in the gravitational field of the Sun and the planets, while
ensuring that the solutions fit the measured line-of-sight velocity. Thus
the tangential velocity of the space probe may be found and so the ecliptic
diameter from the times of disappearance and reappearance.

Occultations of stars are slightly different in that the planet may be
thought of as moving across a fixed field of stars instead of remaining
stationary, whilst a space probe or satellite goes behind it. Times of
disappearance and reappearance of stars are measured photoelectrically.

Stars, in general, and space probes, in some instances, do not pass along
a diameter of the projected disc of the planet, but if the distance of the
path from the centre of the disc is known, a diameter may be found.

Given a number of occultations, it may be possible to determine a
geometrical flattening as well as an equatorial diameter. Details will not
be pursued further, since the aim of this chapter, here and subsequently,
is to set out principles and not to be a detailed treatise, but examples will
appear in the discussion of individual planets.

33 Spin

It would seem a straightforward matter to determine the period
of rotation of a planet from observations of the passage of distinctive
features across the disc, but, in fact, the spin of only one planet - Mars —
can be found unambiguously in that way. The innermost planets —
Mercury and Venus — present difficulties because each of them rotates
very slowly, while the solid surface of Venus is obscured by a thick
atmosphere. The spins of each have been derived from the Doppler shifts
of radar returns, but for some time the results were in doubt because the
effects to be observed are very small.

The spin period obtained for Mercury from radar observations
(Goldstein, 1971) has been confirmed by photographs taken from
Mariner 9 as it passed the planet (Klaasen, 1975) as well as by photo-
graphy from telescopes on the Earth (Murray, Dollfus and Smith, 1972).

The period of rotation of Mercury (58.6 d) is two-thirds of its period
about the Sun. Venus rotates with a period of 243.09 d (Shapiro, 1967)
such that it rotates four times with respect to the Earth between every
inferior conjunction with the Earth.
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These resonant rotations of Mercury and Venus are remarkable
because the values of J, for each, to which torques coupling them to the
Sun or Earth would be proportional, are known to be less than 107°.

There is no difficulty in observing the motions of surface markings on
Jupiter and Saturn, but the surfaces are not solid, nor no doubt are the
interior, and so the significance of the observed surface spin must be open
to some doubt. Uranus and Neptune are too distant for reliable obser-
vations to be made of surface markings, but it is possible to obtain the
spins from the Doppler shifts of spectrum lines in light reflected from the
surface. Pluto is too distant for the spin to be determined.

34 Masses
The masses of planets are found from the gravitational attraction
they exert upon other bodies. The actual measurements are of accelera-
tions, a, and distance, d; since the acceleration of a test body is given by
a=-GM/d?,
it is the product GM that is determined and not M itself in kilogrammes.
The point has already been made in Chapter 2. In consequence, the
absolute masses of the planets are known only with the very low precision
(afew parts in 1000) with which G is known, whereas the relative masses
are for the most part known much more precisely, as may be seen from
the subsequent discussion of the separate planets.

If a planet has satellites, whether natural or artificial, it is straight-
forward to obtain a well-determined mass. By Kepler’s law

GM =n 2a3,
where n is the mean orbital angular velocity of the satellite and a the
semi-major axis of its orbit. Both n and a may be obtained from
telescopic observation and in that way the masses of Mars, Jupiter, Saturn
and Uranus have long been determined, for those planets all have two or
more natural satellites.

If the satellite is artificial and emits radio transmissions, the Doppler
shifts may be used directly to determine GM. As has already been seen,
the tangential velocity in a circular orbit in a plane containing the Earth is
%(vl —v5), where vy and v are the greatest and least velocities in the line
of sight. But the tangential velocity is an, while n is 27/ T, where T is the
period found from the recurrence interval of maximum or minimum
velocity. Accordingly,

= T 3
GM_167T(v1 1)2) .
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Artificial satellites have been used to obtain the masses of the Moon and
Mars but not so far of other planets.

While satellites afford the possibility of observations continued over a
long time, and so may give the most accurate results, masses may also be
derived from the effects on the motions of other planets or of space
probes. Consider, as the simplest case, a space probe travelling towards a
planet along the line joining the Earth to the planet. When the space
probe is at a distance x from the planet, its velocity is x, and this is
measured by the Doppler shift of radio transmissions from the space
probe and is known as a function of time; x is not known.

The acceleration, X, is given by

;o _GM
_-ou

the integral of which is
x- — (GM)I/Z/xl/Z-

Hence x¥?=3(GM)"?(t — t,), where t, is a constant of integration.

It follows that
% =(GM)'*[3(t—10)/2]'7,

from which, knowing x as a function of time, GM may be found.

In practice, space probes do not travel along straight lines between
Earth and planet, so that solving the equations of motion and fitting the
observations to theory is somewhat more complex than in the idealized
case.

The masses of Venus and Mercury and of Io, a satellite of Jupiter, have
now been derived from observation of space craft.

Planets, to a first approximation, move in elliptical orbits about the
Sun, but each attracts the others and all orbits are perturbed to a greater
or lesser degree by those attractions; observations of the perturbations
should enable the relative masses of all planets to be estimated. Thus
indeed were the masses of Venus and Mercury estimated until space
probes approached them and so were Neptune and Pluto discovered.

The mass of the Moon is well determined from artificial satellites, butin
addition a method peculiar to the Moon gives an accurate value. The
Moon and the Earth each move in orbits about their common centre of
mass, the diameter of the Earth’s orbit being m/M times that of the
Moon’s, where m is the mass of the Moon and M that of the Earth. The
ratio is about 1/81. Let d be the diameter of the Moon’s orbit and D the
distance of the Earth and Moon from the Sun. Then the orbit of the Earth
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subtends an angle of md/MD at the Sun; at the fixed stars the angle
subtended is negligible, and so, as the Moon and Earth go round about
each other once a month, the position of the Sun relative to the stars
appears to vary through the angle md/MD. The angle is very small, about
6 arc sec, and the value of m/M found from it was not very accurate. With
the advent of space probes more precise measurements can be made.
Consider a space probe moving away from the Earth; the velocity of the
Earth in its orbit tangential to the line of sight of the space probe will vary
between +nmmd/M and —n,md/M, where n, is the mean angular
velocity of the Moon and the Earth in their respective orbits about their
common centre. Thus the velocity of the space probe derived from
Doppler shifts of radio transmission received from it on Earth will
fluctuate with a monthly period and amplitude of n,md/M. The ratio
m/M found from such fluctuations agrees well with the value found from
artificial satellites of the Moon.

3.5 The gravity fields of planets
In the free space outside a planet, the gravitational potential, V,
satisfies Laplace’s equation

V2V =0.
Because planets are nearly spherical, it is convenient as in Chapter 2
to write and solve Laplace’s equation in spherical polar co-ordinates
(r, 6, A), where r is the radial distance from the centre of mass, 6 is the
co-latitude measured from the north pole and A is the longitude
measured from a convenient arbitrary meridian. In those co-ordinates,

the solutions of Laplace’s equation are spherical harmonics, and the
potential may be written as a series:

n= 2

V——@[l—v JP(coso)

+ Y Z ( ) (Cos cOS MA + S, sin mA) P} (cos 0)]

n=2m=1

In this expression, a is a scale factor, usually the equatorial radius of the
planet, P,(cos 6) is a Legendre function and P}’ (cos 6) is an associated
Legendre function (Whittaker and Watson, 1940). These functions
contain arbitrary numerical factors and a convention is needed to stan-
dardize them. It is usual in the present context to define the associated
Legendre functions so that the integral of the square of a surface
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harmonic over a unit sphere is 47, that is to say

2
S

J [P (cos )T Z?n2 mA dS=4.

The Legendre functions are sometimes standardized in the same way,

but another choice, for which
+1

J [P.(cos 9)F dcos 6=2/(2n+1)
-1

is also commonly used.

The J,, C,.. and S,,,, are numerical coefficients which characterize the
field of an individual planet.

The expansion so far as the term in P,(cos 8) has already been
introduced in connexion with the polar flattening of a planet. Let us now
see more generally how the coefficients J,, and so on, are related to the
internal distribution of matter in the planet, and then how they may be
determined from the orbits of satellites and otherwise. It should first be
pointed out that the value of J, for the Earth is about 10> and of all other
coefficients about 107° or less. The value of J, for most other planets
seems to exceed that of all other coefficients by a large factor, but some
coefficients for the Moon, probably for Mercury and possibly for Venus,
are of comparable magnitude, indicating that the shapes of those planets
and their gravity fields are not determined predominantly by hydrostatic
pressures, but that non-hydrostatic stresses are of comparable
importance.

Suppose that the density at a point inside a planet with co-ordinates
(r1, 61, A1) is p. The potential at an external point with co-ordinates
(r, 8,A) is equal to the integral of contributions from all elementary
volumes of the planet, namely

o[ L,
T D
where dm is the mass of an elementary volume d7, that is, pdr, and D is
the distance from that volume to the external point; T is the volume of the
planet.
Now

D?=r?+r>-2rr cos X

where y is the angle between the radius vectors r; and r.
By the cosine rule,

COS x = c0s 07 cos 8 +sin 8 sin § cos(A;—A).
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D™ may be expanded in powers of r,/r:

D! =l[1+ Y (r) P, (cosx)]

n=1

and this expansion may be converted into one in terms of (61, A) and (6, A)
by means of the expansion theorem for spherical harmonics:

P,(cos x)=P,(cos 6;)P,(cos 8)

+ E P (cos 61) Py (cos 6) cos[m(r,—A)].

m=1
Consider now a typical term of the integral. It will be

QJ dT(‘E) P} (cos 6,)P) (cos 9)
T r

r

X (COS mA, €OS mA +sin mA, sin mA),
that is, with a equal to the equatorial radius,

GM( ) P} (cos 0)[cos m/\J dT( ) P} (cos 8,) cos mA,
r \r T M a

+ sin mA J dT(rl) P (cos 8,) sin mA ]
T M a

This is of the form already given for a typical term of the potential if we
write

Com = J;?J(Z) P (cos 6;) cos mA,

Spm = L i;(;l) P} (cos 8,) sin mA;.

Furthermore, for the terms independent of A,

J, = L P (cos 8).

The coefficients J,,, C,,,,,, S, are those identified as the dimensionless
multipole moments of the density of the planet. The value of J;, the
quadrupole moment, has already been seen to be (C —A)/ Ma?.

This formulation shows that it is not possible to obtain the distribution
of density within a planet from the variation of potential outside it; the
most that can be done is to obtain some of the multipole moments. Any
density distribution that gives these moments will be consistent with the
observed external potential. On the other hand, if the density is given as a
function of radius and angle, the coefficients of the harmonic terms may
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be calculated. In particular, as is set out below, a fairly detailed theory has
been developed for calculating the potential and form of a planet in
hydrostatic equilibrium, that is to say, one for which surfaces of constant
density are also surfaces of constant potential and constant pressure.

The methods for the determination of the potential all depend on the
fact that the multipole moments of a planet are small, say less than 0.1. It
is, therefore, a good first approximation to say that a satellite in orbit
about a planet moves in a Keplerian ellipse, that is that it moves as it
would about a point mass in a strictly periodic elliptical orbit which lies in
a fixed plane and of which the semi-major axis maintains the same
direction. The effects of the higher harmonic terms in the potential
appear as changes in the plane and orientation of the orbit, in its size and
eccentricity, and in its period, and because those changes are relatively
small they can be calculated by a perturbation theory based on the Kepler
orbit. For that, the Hamiltonian formulation of the equations of motion is
most convenient.

First, however, it is necessary to define the geometry of an elliptical
orbit. It is convenient to refer the plane of the orbit to the equatorial
plane of the planet (Figure 2.1). Let the two planes intersect in the line
NN’, the line of nodes, where N is the intersection when the satellite is
moving upwards from south to north. The direction of NN’ must be
related to some direction fixed in space and it is usual to take the direction
of the first point of Aries (T). The angle that NN’ makes with that fixed
direction is the longitude of the node, .. The angle between the two planes
is the inclination, i.

Let the semi-major axis of the elliptical orbit be denoted by AP; P is
the pericentre where the satellite is closest to the planet and A is the
apocentre where the satellite is most distant. The angle that NP subtends
at the centre of mass of the planet (which is one of the foci of the ellipse) is
called the longitude of pericentre, w; Q, i and w determine the orientation
of the orbit in space.

The other necessary quantities determine the size and eccentricity of
the ellipse and the speed of the satellite in it. They are a, the semi-major
axis, e, the eccentricity and #, the mean angular velocity of the satellite in
its orbit, or mean motion.

Finally, it is necessary to identify a particular satellite, for there might
be a number in the same orbit, and that is done by specifying the time, 7, at
which it passes through pericentre.

No difficulty arises in defining the elements of an invariant orbit about a
mass point, but what is to be done when the orbit is no longer a constant
ellipse and indeed not even periodic? Evidently, if six elements, Q, i, w, e,
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a and n define the orbit, then, given those elements, the position and
velocity vectors, r and v, of a satellite at any point upon it may be
calculated. Conversely, if position and velocity vectors are given, six
numbers in all, the corresponding six orbital elements can be defined. The
orbit they specify is known as the osculating ellipse corresponding to r and
v. Itis inherent in this way of specifying the osculating ellipse that it may
vary in the course of one revolution of the satellite in its orbit as well as
from orbit to orbit. It may therefore sometimes be necessary to specify a
position to which the osculating elements refer, and it is usual to take the
ascending node. One object of satellite theory is to calculate the evolution
of the osculating elements as a function of time for a given potential and
orbit.

Now let us see how to formulate the equations of motion in Hamilton’s
form, the general expression of which is

. oKX . _ X

Pi oqi’ T gk
# is Hamilton’s function, equal to the sum of the kinetic energy T and
potential energy V.

The p« and g, are momenta and co-ordinates, in number correspond-
ing to the number of degrees of freedom of the system. For satellite
theory we require three momenta and three co-ordinates. The momenta
and co-ordinates are said to be canonical if the equations of motion can be
written in Hamilton’s form. It turns out that the equations of motion for
elliptical motion about a mass point can be put in the special form such
that % is independent of all the gy, and of all but one of the p; that is to
say

P =0, pr. =constant for all k
and
4 =0, qi = constant for all k
except one, for which ¢, =B, g, = a + ¢
The p, and g, are then said to be canonical constants. Not all dynamical
systems admit of canonical constants, but the orbital problem does, as
might be seen from the fact that all six orbital elements are constants.
There is some choice in how the canonical constants are specified; one
choice is the Delauney elements of which the momenta are
L=(GMa)"?
G=Ln, where 172=1—e2
H=Gcos i,
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and the fixed co-ordinates are @ and , while the variable co-ordinate is
M, equal to n(¢t— ), the mean anomaly.

The Hamiltonian for the Kepler orbit is T — GM/r. Now consider what
happens if an additional term is introduced into the potential so that it is
no longer possible to find a set of canonical constants.

Let #, be the Hamiltonian for the Kepler orbit and # that with the
additional terms, V' say. Then if p; and q; are the perturbed momenta
and co-ordinates

HHo+ V')

Ao+ V)
oq ’

Pk~ s qi = ap;c

But 09¢,/dq; and d#o/dp, are all zero except one that is constant. So
=2V v
P oqic’ ope’

ignoring the differences between qi, pi and qi, pir respectively in the
differentials.

If V' can be written as a function of the p, and g, the equations for p}
and q; may be integrated, usually straightforwardly.

If higher accuracy is required, the difference between the p, qi and py,
g, must be allowed for in the differentials.

Suppose, for instance, we wish to find the speed of the node cor-
responding to the second zonal harmonic in the potential. Then we take
one of the d to be & so that the appropriate equation of motion is

A%
oH’
H having been substituted for the momentum corresponding to . Now

di=—

Q:

3

M
|4 =%—(?) J2P3(cos 6),

where r is the amplitude of the radius vector of the satellite.

We have to write r in terms of the orbital elements, but it is indepen-
dent of i and so its differential with respect to H is zero. On the other
hand, cos é depends on the inclination and therefore on H, and on the
position of the satellite in the orbit. Expressing P,(cos ) as a function of
H, and performing the differentiation with respect to H, we obtain the
instantaneous value of & for an arbitrary position of the satellite in its
orbit usually expressed as the longitude of the satellite measured round
the orbit from the ascending node. Integration round the orbit from one
crossing of the ascending node to the next gives an expression for the
change of the longitude of the node, AQ, in one nodal period.
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The algebra is always heavy, even for the simplest problems, because
the potential V' is naturally written as a function of spherical polar
co-ordinates, and its expression in terms of the canonical constants (py
and q), which involve the elements of the orbit, is complex and takes the
form of a Fourier series in which the arguments are linear combinations of
the mean longitude of the satellite, the longitude of the node and the
longitude of pericentre, and the coefficients are polynomials involving
powers of the eccentricity and of the sine of the inclination of the orbit to
the equator (Kaula, 1966).

Many special methods are available for integrating the equations of
motion in the Hamiltonian or equivalent form, and there is an extensive
literature (see Cook, 1963). Where high accuracy is needed (as it is for
the Earth, but not as yet for planets) the differences between the
perturbed constants, p; and g, and the canonical constants, p, and gy,
must be allowed for in the differentials.

A summary of the principal results can be set out according to the
symmetry of spherical harmonics, which are primarily divided into those
independent of longitude (zonal harmonics) and those that depend on
longitude (tesseral and sectorial harmonics). Zonal harmonics may be
further subdivided into even harmonics, which are polynomials in even
powers of cos § and are symmetrical about the equator, and odd
harmonics, polynomials in odd powers of cos § and anti-symmetrical
about the equator.

Some results for the first few even and odd zonal harmonics are given in
Tables 3.2 and 3.3, which give respectively the changes of longitude of

Table 3.2. Secular and long periodic changes of node and perigee: even
zonal harmonics

n Qn Wn
—2cosi 3(1-39)
15 cos i(1-38)(1 +%ez) —$(16-25+495?)
—$2cosi(1-38)e? cos 2w +(18—638 +1826%)¢2
+13(6-358 +%8%)e? cos 2w

6 — B cos i(1-2S+287)(1+5e* +2e*) H[31-85+1325> %18

-3 cos i(1-68 +1887)(1+3€?) +(2-685+318%S cos 2w

X e2 cos 2w + O(e*) cos 4w +0(e?)]

AQ=27].(a/p)" %y Aw = 27T (a/ )" @,.
a is the equatorial radius.

p is the semi-latus rectum.

S=sin’i
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node and perigee in one nodal period (the time between successive
passages through the ascending node) in the forms

A= 2771,,<3) o,
4
and
Aw = 277],,(2) @y
14

where J,, is the coefficient of the nth zonal harmonic in the potential, a is
the equatorial radius of the Earth, p is the semi-latus rectum of the orbit,
and 9, and w, are functions of the eccentricity, e, the longitude of
perigee, w, and the inclination, i.

The even zonal harmonics generate perturbations of node and perigee
which include terms independent of w (secular variations) and terms of
arguments that are even multiples of w, namely of order

2, COS
e 2nw;
sin

the odd zonal harmonics, on the other hand, generate perturbations with
arguments that are odd multiples of w and of order

_1 €08
e" 177 2n-1e.
sin

Let us concentrate first on the even harmonics, as is reasonable for the
Earth and most other planets for which the flattening part of the poten-
tial, the second zonal harmonic, dominates. It will be seen from Tables
3.2 and 3.3 that the second zonal harmonic generates steady motions of
the node and perigee amounting in each nodal period to

a 2
AQ= 277];(;) (=3 cos i)

Table 3.3. Long-periodic changes of node and perigee: odd harmonics

n (198 Wn

3 3(1-%e) cotisinw (3/2e) sin i[(gl —Z%S)—coseczi
+(38—9e?]sinw
5 Loeoti (1-2+256))(1+38Y) esinw  (105/16e) cosec i[(—3+2S —38%)S
— 195 cos i(1-22S)e® sin 3w + (2818 +5182 -378%)?
—(1-59)S%?cos w]sin &

Notation as in Table 3.2.
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and
a 2
Aw= 2WJ2(;) [3(1-5sin? )]

respectively. The net steady motions of node and perigee will comprise
those parts together with contributions (usually much smaller) from the
higher even harmonics. The success of the application of early artificial
satellites about the Earth to the study of the flattening of the Earth was a
consequence of the fact that steady, as distinct from periodic, changes can
be found with high accuracy by continuing observations over a sufficiently
long period; similarly the flattening of planets with artificial or natural
satellites can be found from the steady changes of longitude of the node
(perigee is more difficult to observe since most satellites have orbits of low
eccentricity).

When the second zonal harmonic dominates the potential, the steady
motion of perigee is essentially determined by that harmonic. Thus sin @
in the expressions for the perturbation generated by the third zonal
harmonic is a known periodic function of time (typically with a period of
50~100 d for Earth satellites) and it is a straightforward matter to find the
amplitude of the perturbation of that period in say Q or w, the eccentricity
of inclination.

It will be seen that all even harmonics contribute to the steady
evolution of f and w and that all odd harmonics contribute to the term
with the period of w (the perturbation of long period) in the evolution of
the elements &, w and ¢ and i as well. In consequence, the steady motion
of the node of, say, a single satellite is proportional to a linear combina-
tion of all even zonal harmonic coefficients and, if the coefficients are to
be found separately, more than one satellite must circle the planet. In
fact, it is impossible in principle to make a complete separation because
there is an infinite set of coefficients and only a limited number of
satellites, and there is as yet no completely satisfactory way of dealing
with the problem, which is especially acute for the Earth, where the
details of the potential are of great interest (Cook, 1978). However, if the
second zonal harmonic dominates, it will be possible to estimate it fairly
well from only one satellite and probably quite well from two or more,
although the higher harmonics may not be well determined.

The perturbations corresponding to tesseral and sectorial harmonics
contain no steady terms or terms of long period, but are in general
proportional to the angle m(wt—%), where m is the degree of the
harmonic, w is the spin angular velocity of the planet and Q is the
longitude of the node of the orbit. The product @ enters because it is a
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measure of the rotation of the planet, and the potential at a point fixed in
space depends on the orientation of the planet about its axis of spin.
These perturbations of short period (fractions of a day) are much more
difficult to determine than those of long period and also require that the
geocentric co-ordinates of the observatories be known. Thus, in general,
it is not yet possible to determine them for satellites about planets.

Let us now review the problem of finding the harmonic terms in the
potential so far as is required for the study of the internal structures of the
planets. Our primary aim is to find J, because of its connexion with the
moment of inertia. If a planet is spinning fast, as are Mars and the outer
planets, the flattening dominates non-hydrostatic terms in the potential,
so that J; is much greater than the general J,,, and then it will be possible
to make quite a good estimate of the value of J, from just two satellites, or
perhaps from just one. At the same time, some idea of the order of
magnitude of coefficients of higher harmonics will be obtained but the
actual values will probably be rather uncertain. Coefficients of higher
harmonics are wanted for two purposes. First, if the planet is in hydro-
static equilibrium, the odd zonal coeflicients are zero, but the even ones
are of order (J2)"'?; the factors depend on the details of the constitution,
and so, if J, is large enough, J, is not insignificant, and the actual value of
J, will bear on the internal constitution. The terrestrial value of J, (10™3)
is too small for this argument to be used, because the expected value of J,
is about 1075, but the Jovian value of J, (107" is much greater, so that J,
is also greater and can be used in studies of the constitution (Chapter 8).
The other reason for wanting to know the higher harmonics is so that it
may be possible to estimate the degree of departure from hydrostatic
equilibrium. For that an order of magnitude suffices, necessarily so since,
for a complete description, the tesseral and sectorial harmonics are
required and as yet they cannot be found for any of the planets except
Mars. In summary, the most important aim of an analysis of the potential
is to obtain an estimate of J, but values of the higher zonal coeflicients
are useful if they can be derived, essentially because they may be used to
check the assumptions made when using J, in the study of the internal
structure.

The element of the orbit of a satellite which is most readily obtained,
whether by telescopic observation of natural satellites or by radio track-
ing of artificial satellites, is the longitude of the node. Fortunately, almost
all planetary satellites move in nearly equatorial orbits so that the
inclination is nearly zero and cos i, to which the motion of the node is
proportional, takes almost its maximum value of 1.



The gravity fields of planets 69

Table 3.4 gives estimates of the steady motions of the nodes of some
planetary satellites.

In the foregoing discussion no reference has been made to bodies other
than the planet or a single satellite. This assumption is often unrealistic.
Of the planets with natural satellites, all save the Earth have more than
one and in at least two cases, Jupiter and Uranus, the satellites are
massive enough for there to be significant interactions between them.
Furthermore, the effect of the Sun is often important. It dominates the
motion of the Moon and has to be considered for most other satellites.

The behaviour of satellites about the Moon is rather complex. Just as
the motion of the Moon about the Earth is strongly influenced by the Sun,
so is the motion of an artificial satellite of the Moon strongly influenced by
the Earth. At the same time the second zonal harmonic does not
dominate the gravitational potential of the Moon as it does that of any
planet; the sectorial harmonics of second order are as large. Orbits about
the Moon therefore evolve in a more complex way than do orbits about
the planets and need special discussion; analytical treatments have
proved inadequate for the most part. ‘

One of the outer planets, Uranus, has the unusual feature that its spin
axis lies nearly in the plane of its orbit instead of roughly perpendicular to
it as for other planets. The satellites of Uranus, however, move very
nearly in the equatorial plane of the planet. Thus the solar attraction on a
satellite is perpendicular to the plane of the orbit instead of in the plane of
the orbit.

More details of special features, when they are relevant to the deter-
mination of the gravitational fields of particular planets, will be given in
the chapters in which those planets are discussed. Because of the special
nature of the Moon, the determination of its potential is discussed
separately in Chapter 5.

Table 3.4. Motions of the nodes of some planetary satellites

Primary Mars Jupiter Saturn
Satellite Phobos Ganymede Tethys
Mean motion of satellite

(deg/d) 1125 50 191
Distance of satellite from

primary (km) 9000 1.07x10° 2.95%x10°
J, of primary 2x1073 1.5x1072 1.7x1072

Mean motion of node of
satellite (deg/d) 0.48 0.005 0.20
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The innermost planets, Venus and Mercury, have no satellites, but
space probes have passed close to them and values of harmonic
coeflicients have been estimated from tracking the vehicles close to the
planets. Itis possible to do that because the potential departs from the 1/r
form.

For simplicity, consider a space probe moving towards a planet in its
equatorial plane. The potential within which it moves is then

2
V=_QM[1+1(2) Jz+...],
r 2\r

(the odd zonal harmonics vanish in the equatorial plane). Thus
2

. GM| 3/a
= r’ [1+2<r) T2+ ]’

so that

2
r2=%[1+1(g) J2+ . ]
r 2\r

Now we know that if J, is zero the solution is
r=0"*(GM)" (1= 10"

let this be written as
= K(t - t0)2/3.

When J; is not zero, put r = ro+rq, where r; is small compared with r,.
Then

YAt T 2K (1107 ’
whence
3a°J -
n=- K 2(t—t0) 5/3.

Just as for the determination of the mass of a planet by tracking a space
probe in its neighbourhood, the actual situation is more complicated than
the simplified model chosen for illustration, because the space craft will
not be moving directly along the straight line from the Earth to the planet
nor will its path lie in the equatorial plane of the planet; a numerical
solution of the equations of the motion must therefore be made, and the
mass and J», and possibly higher harmonic coefficients, adjusted until the
numerical solution fits the tracking data.
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The theoretical methods used for the study of orbits of satellites and
space probes in the gravity fields of planets, as well as the analysis of the
data, are both strongly influenced by the fact that the fields of all planets
are to a very good approximation those of mass points and that depar-
tures from the field of a mass point are for most planets dominated by the
second zonal harmonic. It is a consequence of these facts that all theories,
both of artificial satellites and of space probes, can be constructed by
perturbation methods in which the departures from motions in the field of
a mass point are treated as small effects. It is a second consequence that
the value of J, can usually be estimated from the data without having to
pay serious attention to the determination of higher harmonics. It has
been pointed out above that this is a fortunate circumstance because the
values of higher harmonics are probably only determined so far as orders
of magnitude. The Moon has been seen to be an exception.

Although values of J, for Mars, Jupiter, Saturn and Neptune have been
known for some time from the analysis of telescopic observation of
satellites of those planets, our present knowledge of the gravity fields of
the planets depends to a great extent on observations of space probes sent
towards a number of planets, especially those that lack natural satellites,
for, not only have those artificial objects enabled fields to be estimated for
planets that lack natural satellites, but also, the high precision of radio
Doppler tracking, which greatly exceeds that of telescopic observation,
has yielded more detail about two planets (Mars and Jupiter) for which
values of J, (and J, for Jupiter) had already been estimated from
telescopic observations. Now that the Pioneer 11 space craft has
reached the neighbourhood of Saturn details in the field of that planet
have been confirmed.

So far in this section we have supposed that the only perturbing forces
acting upon a satellite or space probe are the gravitational attraction of
the parent planet or possibly of the Sun or other satellite. It is well known
that other forces have to be taken into account when studying the motion
of artificial satellites about the Earth and that corrections must be applied
for them when estimating harmonic coefficients from the observed
motions. Close satellites are subject to the resistance of the atmosphere
and to the pressure of solar radiation, as well as to the gravitational
attraction of the Sun and the Moon, while general-relativistic effects must
be taken into account for the most exact work. Luni-solar attraction and
radiation pressure are more significant relative to the effects of the
Earth’s gravitational field the further the satellite is away from the Earth.
Similar extraneous forces act on the satellites and space probes of the
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Moon and other planets. Thus, because the Earth is more massive than
the Moon, the effect of terrestrial attraction upon a lunar satellite is
relatively greater than that of lunar attraction on a terrestrial satellite.
Again the gravitational attraction of the Sun and the repulsion of solar
radiation pressure are both greater for planets closer to the Sun than is the
Earth, and less for those further away. Atmospheric resistance is
important for Venus and in some circumstances for Jupiter, but it has no
significant effect upon long-established natural satellites.

Atmospheric drag causes the orbit of a satellite to contract, but to first
order has no effect on the motion of the node, so that it will not cause
serious errors in the estimation of zonal harmonics; the solar attraction
and repulsion, however, must be calculated carefully if errors are not to
be made in the estimation of zonal harmonics of the potential. The
attraction of natural upon artificial satellites is generally negligible apart
from that of the Moon upon terrestrial satellites (and the Earth upon
lunar satellites).

3.6 Precession and libration

It was shown in Chapter 2 that the moments of inertia of the
Earth cannot be obtained from the value of the harmonic coefficient, J5,
by itself, but that it is possible to do so by combining J, with the the
dynamical ellipticity, H, obtained from the precession of the Earth under
the attraction of the Sun and the Moon. The relevant perturbations of
satellite orbits about the Earth and the luni-solar torques which generate
the precession are in consequence of Macullagh’s expression for the
potential, both proportional to the difference of moments of inertia
[C=3(A+B)], or (C—A) in most cases. But the perturbation of an
artificial satellite depends on the ratio of the perturbing torque to the
angular momentum of the satellite in its orbit, which is determined by the
mass of the planet and the radius of the orbit, so that the perturbations are
proportional to (C —A)/Ma?, or J,. The gyroscopic precession of the
Earth’s axis of spin is proportional to the ratio of the gravitational torque,
again proportional to (C — A), to spin angular momentum of the Earth, or
Cw, where w is the spin angular velocity of the Earth; in consequence the
luni-solar precession is proportional to (C —A)/C.

Precession as a consequence of a solar torque is negligible for most
planets (torques due to natural satellites other than the Moon would be
yet smaller); nonetheless an outline of the theory of precession will be set
out as the basis for a brief discussion of the possibility of observing the
precession and using it to determine C/Ma®.
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A convenient way of deriving the precession is from the Lagrangian
form of the equations of motion of the Earth. If L is the Lagrangian, equal
to the difference of the kinetic energy T and the potential energy V, the
equations in Lagrangian form are

where the &; are a set of co-ordinates sufficient to specify the state of the
system; in this case they are the Eulerian angles which specify the position
of the spinning planet, namely the inclination, 6, of the equator to the
ecliptic, the longitude, Q, of the direction of the intersection of the
equator and ecliptic measured from a suitable origin, ordinarily the first
point of Aries, and y, the longitude of some arbitrary meridian in the
planet measured from the ascending node (Figure 3.1).

Assume that the planet is symmetrical about the axis of spin, so that y
may be ignored, and take the spin angular velocity to be w. It is then easy
to see that the square of the angular velocity about an axis co-incident
with the intersection of equator and ecliptic is

6+ 97 sin® 6,
while that about the spin axis is
(@ + 9 cos 6)%.
Figure 3.1. Geometry of precession.
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Then, because all directions in the equator are equivalent, the kinetic
energy is given by

2T = A(6* + 9% sin” 8) + C (w+ £ cos 9)°.
Let M be the mass of the Sun, r the distance of the planet from the Sun, a
the equatorial radius of the planet and ¢ the co-latitude of the Sun
measured from the north pole of the planet. The second harmonic in the
potential energy is then given by

2V—GM®

(C—-A)(3cos’> p—1)

=GM®(r) c- A1(3cos é—1).

r

For all planets, except possibly Mercury and Venus, w is much greater
than 2 and 6 and so 2 and 6 may be ignored in comparison with wQ and
w.

If A is the longitude of the Sun measured from the first point of Aries,

cos ¢ =sin @ sin (A — Q).
The Lagrangian equations of motion then read

3 GM@( ) ’C-

—Cwsinfé= 3 2A sin [2(A — Q)] sin® 6;

Cwsin 6 = —3%(—)

r r

CA

sin® (A — Q) sin 6 cos 6.

Let k denote the factor
GM @( ) (o A)
r

r Cwa’

Now #, the mean motion of the planet about the Sun, is given by
n>=GMgy/r’
and so k is equal to n(n/w)(C —A)/C. Then
—3k sin [2(A —Q)]sin 6
and
Q= —3k{1 —cos [2(A —Q)]} cos 6.
The steady motion of the node upon the ecliptic, —32k cos 6, is the solar
precession, while the periodic terms in # and Q constitute the nutation, a
rotation of the spin axis about its mean position at the speed 2n. Such an

elementary theory is inadequate for the Earth, especially when modern
sensitive methods of observation are used, particularly laser range
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measurements to the cube-corner reflectors on the Moon, but it will be
quite adequate for a discussion of planetary precession.

Table 3.5 contains estimates of [(C —A)/C], k, and the rate of pre-
cession under the attraction of the Sun for Mars, Jupiter and Saturn. The
values for all other planets are less; for Mercury and Venus because J; is
very small and for the outermost planets because they are so distant from
the Sun.

We may ask then whether there is any hope of observing precession.
That of Mars might be observable if radio devices were placed on the
surface to measure the distance from a Martian satellite, the latter
constituting an inertial reference. There seems to be no hope for Jupiter
and Saturn since they do not have solid surfaces to which measurements
might be made. We must conclude that only for Mars is there some future
possibility of using the ratio J,/ H to obtain the polar moment of inertia.
It will be seen in the next section how the moment of inertia may be
calculated from J; or the flattening if a hydrostatic state is assumed. Now
that is almost certainly a good assumption for Jupiter, Saturn, Uranus and
Neptune, but it may well not be so good for Mars, Venus or Mercury;
because the precessions of Venus and Mercury are negligible, Mars
remains the one planet for which measurements of precession may be
possible and would certainly be valuable.

Just as the Earth is subject to the torques exerted upon its equatorial
bulge by the Sun and the Moon, so the Moon is subject to torques exerted
by the Earth. The consequent motions it undergoes, the physical libra-
tions, are-somewhat different from precession and nutation and because
they are a special case are discussed in Chapter 5 and Appendix 3. As
seen from the Moon, the Earth remains almost in the same direction
relative to the principal axis of inertia of the Moon, but, because the
Moon’s orbit is slightly eccentric and is inclined to the equator of the
Moon, as defined by the A and B axes of inertia, the direction of
the Earth oscillates about the C and B axes and so exerts torques

Table 3.5. Solar precession of the planets

k Precessional period
Planet H (rad/s) (centuries)
Mars 5.3%x107° 8.4x1071 1800
Jupiter 0.0557 9.1x107% 14 400
Saturn 0.0807 2.2x1074 67 000

H=(C-A)/C.



Determination of the dynamical properties of planets 76

upon the Moon, which in consequence rocks slightly around its principal
axes. The main effects are the slight inclination of the C axis of the Moon
to the pole of the ecliptic and a small oscillatory rotation about the C axis.
The librational motion of the Moon differs from the precession and
nutation of the Earth for two reasons: the Earth is almost fixed in relation
to the Moon and does not rotate steadily about it as the Moon does about
the Earth, and the spin angular momentum of the Moon is relatively
much less than that of the Earth.

The librational movements of the Moon have in the past been deter-
mined from telescopic observations, but are now found with high
accuracy from laser ranging to cube-corner reflectors on the Moon
(Cook, 1976).

3.7 The potential of a planet in hydrostatic equilibrium

Because it is not yet possible to observe the solar precession of
any planet but the Earth, the moments of inertia of the other planets
cannot be estimated directly from observed dynamical behaviour, and so,
if any idea of them is to be obtained, recourse must be had to theory. No
doubt many hypotheses could be constructed about the relation between
density and radius in a planet that would give a relation between the
observable J; and the moment of inertia, but, in the absence of any direct
evidence, the only hypothesis that can be justified is that the planet is in
hydrostatic equilibrium. From that assumption there follows, as is shown
below, an almost exact relation between the surface ellipticity or J5, and
the moments of inertia.

Such arelation could only be applied with confidence to the study of the
interior structures of the planets if there were reasonable assurance that
the planet was indeed in hydrostatic equilibrium. It is clearly not applic-
able to the Moon (it is not needed either) which, as we shall see in Chapter
5, departs grossly from hydrostatic equilibrium. It is almost applicable to
the Earth, for which, as was shown in Chapter 2, the moment of inertia
calculated from J, on the hydrostatic hypothesis is close to but not
identical with the value given by the ratio J,/ H. The value of J, cannot so
far be determined for Venus and Mercury, so that moments of inertia
cannot be found from it; the field of possible application of the hydro-
static hypothesis is therefore restricted to Mars and the outer planets.
More detailed discussions will be given later in the relevant chapters but,
briefly, it may be said that the hypothesis fails to some extent on Mars,
where the surface topography and values of higher harmonics in the
potential show that that planet cannot be in hydrostatic equilibrium,
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irregularities of density being supported near the surface at least by the
strength of the solid material. As to the outer planets, they are no doubt
fluid and so at first sight in hydrostatic equilibrium, but fluid currents, as
well as material strength, can support departures from hydrostatic equi-
librium and some may perhaps occur. Therefore, in applying the hydro-
static theory to particular planets, the effect of departures from the
hydrostatic hypothesis must be considered.

A significant parameter in this connexion is the central pressure of the
planet. If it is very much larger than the strength of solid planetary
material, we may suppose that the distribution of density and thus the
moment of inertia is not greatly affected by shearing stresses, while, in a
fluid planet, we may compare dynamic stresses with the central pressure.
We return to these questions at the end of the section and meanwhile take
the point of view that in the absence of more detailed information the
hydrostatic hypothesis is the only one that can be adopted, remembering
always that we should be alert for any fact that may confirm or deny it.

The equation of hydrostatic equilibrium is

Vp=—pVU,
where p is the pressure, p the density and U the potential, here the sum of

the gravitational potential and that of the spin acceleration.
It follows that

VpaVU=—pVUAVU,

which is zero, so that Vp is parallel to VU and so, if U is constant on some
surface, then p is also.

Further,

VAaVp=-=VpaVU-pVaAVU.
But VAVp and VA VU are identically zero and, therefore, Vo AVU is
zero, and, consequently, p is constant on an equipotential surface.

Now the spin acceleration at any point (r, 6,A) is a function of r and 0
but not of A ; it follows that p, p and U are functions of r and 6 but not of
A: the planet is symmetrical about the axis of spinf.

We therefore take equipotential surfaces within the planet to have the
form

r=afl+} e,P,(cos 6)],
where we suppose, in a theory of first order, that squares of ¢, may be
neglected and the odd coefficients are zero because the planet must be
symmetrical about the equator; a is the mean radius of the surface and

T It is, however, possible to have triaxial ellipsoids in hydrostatic equilibrium.
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the e, are functions of a, as are p, p and U'; if p is as supposed given as a
function of r then the gravitational part of U, V say, may be calculated on
the surface, as may the spin part Uj, say. Also, V is the sum of two parts,
the potential of matter inside the surface and that of matter outside it.

Now, since the surface is an equipotential, the potential upon it cannot
depend on 6 but must be a function of a only. Thus the coefficients of
spherical harmonic terms in an expansion of the potential upon the
surface @ must all be zero, leading to a differential equation for each e,. A
transformation of a variable closely related to the moment of inertia
leads to a first order differential equation by means of which the outer
surface value of ¢, (at a = ap, the mean radius of the outer surface) is
related to the moment of inertia.

To calculate the potential at a point (r, §) within the planet, consider a
spheroidal shell of mean radius a and thickness da ; the potential at (r, 6)
outside the shell is
3 3 n+3

Jd
dVe=%1eré; —

; m ey enP,(cos 0)] da,

while that at (7, 8) inside the shell is

n

of r
dV, =2 7Go—|32a%+ ——e,P, 0] )
swGp |24 Zznﬂan_z? (cos 6) | da

The total potential is the integral of the external potential of all shells
within a together with the integral outside a. Thus
3

4 (% 0 [a 3 g™
=——GL b [7+z e Pa(cos o)] da

4 (% 9 [; 2 3 r ]
+__ —_— + R
GL Pl Y, Tnrla? e P,(cos )] da.

To V must be added the potential of the spin acceleration, namely
U,=—3r*w?sin’> 6 = —3r*w* - 3r’w?P, (cos 6).
The mean density, go, of the whole planet is
3 (%
—3 J' pa’da,
mao Jo

and that within the surface of mean radius a is

__ 3 J’“ 2
=— a” da.
P ma’ ) P
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In the expression for V, 1/r is replaced by

%[1 -3 e.P.(cos 0)],

but elsewhere, where powers of r are multiplied by quantities of order e,

it is replaced by a'.

The total potential U is then
_471G{ 1-Y e.P,(cos 8)
3 a

3P,(cos 0)[ 1 J‘“ a3 ,,J‘“O ( e, )]}
+ d(—=
+X el La ), pd(e.a”")+a o pd=

I ?»pa2 da
1]

1.2 2 1.2 2
—3a°w" —3a @ P, (cos ),

and that is to be a function of a only, so the coefficients of all the P, must
vanish; that is to say

e, [°
——I pa2 dn
(1]

a
1 1 r° %o e
[ty [ o))
2n+1[a"+1j‘op (ea ) a a p an2
must vanish, except for n =2, for which it will be a’w’/8wG. On
multiplying by a"*" and differentiating, it is found that

n den n— ¢ n %o d €n
—(a ?+na 1e,,) L pa’da+a’® L pa(a,,_z) da

is equal to 0 or —5a*w”/87G.
Now divide by a®" and again differentiate, so reducing the right-hand
side to zero in all cases. Then

d’e, n(n+1) ) “ ., ,(de, e,,)
(da2_ pe: e, L pa“da+2pa (da+a =0

or

d’e, n(n+1) ) 6p (de,, e,,)
D\ ———e, | +—|—+—)=0.
p(da2 a’ ¢ al\da a

This differential equation was first obtained by Clairaut in 1743.

By studying the behaviour of a Taylor series expansion in the neigh-
bourhood of a =0, it may be shown that e, increases with a. It must then
increase all the way to the surface, for suppose on the contrary there is an



Determination of the dynamical properties of planets 80

a at which e, -ceases to increase and so de,/da = 0. Then
d’e, 6p1 e
[
p a’

da’

Now for n =2, n(n+1) =6 and p is less than 5, so d’e,/da” has the sign of
e, and |e,| would again increase.

Further study of the original condition on the coefficients of P,(cos )
shows that all e, except e; must vanish, and that ¢, must be positive at the
surface of the planet (and so throughout) and thus, as Newton (1687)
originally showed, a spinning planet in hydrostatic equilibrium is oblate
(Jeffreys, 1970, p. 186).

Putting a = ag, and e, at ao equal to eq,,

2 degy 5 o’as

% da, 87 G

Now the quantity m introduced in the theory of the external field is
w’ay/ GM = w*/57Gpo,

aopo( +Zao€oz)

and so

a(de°2
da

We now make a transformation introduced by Radau (1885) which
reduces Clairaut’s differential equation to one of first order and also

enables the surface value of e, to be related to the polar flattening.
Let n be defined to be dlne/dIna, or

) +2a0e02 =3m.
0

where e has been written for e, since all other e,, are zero. Then

de e d’e _(1dn n’-n

da & da’? (a da _az_)e'
On substituting in Clairaut’s equation,

aiq+n2—n —6+6Tp(n +1)=0

da I
and observing that
=1+42 adp
p da’

it follows that

dn adp
—+n*+5n+2=-F =0.
ag T ﬁda(1+n) 0
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The following identity is now used to eliminate dn/da:
(d/da)[pa’1+m)] _1ds 5 1 dn
pa’(1+q)"? gda a 2(1+n)da’

Thus
d
d—[ﬁa5(1+n)”2]=5ﬁa ¥(n),
a
where
d(n)=(1+3n—16m°)/1+2)"%

This is Radau’s equation and it owes its importance to the behaviour of
¥(n), for
1dy 1 n(1-3n)
¢ dn 20 (L+9)(1+3m—7on")
which shows that ¢ attains a minimum where » = 0 and a maximum when
n=3% When n=0, ¢ =1, when n =3, ¢ =1.00074. Thereafter ¢
decreases.
On the Earth the surface value of n is 0.57, for which ¢ =0.999 61.
The largest value of n on any planet is about 1.4, for which ¢ = 0.974.
To a good accuracy, therefore, for all planets

d
35 l0a (1+7)"*1=5pa".

The moment of inertia is intimately related to this equation, for
a0

C=%7TI pa"da
0

=§7TI (3a4ﬁ+a5%> da.
0 da

On integrating the second term by parts

c=§(pas-2
0
But, from the reduced form of Radau’s equation,

a

o
[ " 6a* da=1pad 1+ n0)
0

a

a‘p da).

and so
C =5mpag[1-3(1+mn0)""’]
or

C
Mz~ H1-31+n0)"%1.
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Let us now revert to our earlier notation in which f denotes the polar
flattening, the same as the surface value of e. Then, 7o is equal to
$(m/f)—2.
Equivalent expressions for C/Ma” in terms of the flattening f and J,
are therefore

¢ _E'I_Z(Em_l)m]
Ma* 3l 5\2f

and
C 20 _g(4m—312)”2]
Ma* 3l° 5\ m+3J,

We must now consider the limitations of the first order theory and in
particular whether it will be adequate for application to the major planets
which spin very fast and for which m is much larger than for the Earth.

First notice that the formula for C/ Ma” may be re-arranged to give the
following expression for J in terms of C/Ma?* and m:

25 3 C\
é_4_7(1_5—Ma2)
m 75 3 C\"

3+T(1—2Ma2)

This shows how the spin and internal distribution of density determine
J> and the flattening, and how J, increases with spin, m, for a given value
of C/Ma>. Itisin consequence of this behaviour that J, is relatively very
much larger for the major than for the terrestrial planets, because m is
very much greater. The following list shows how J,/m varies with

C/Ma*.
C/Ma* J/m
0.4 0.5
0.3 0.2
0.2 0.08

Yet another way of expressing the result of hydrostatic theory is to give

the value of f/m

L

m 5

2
~+

5

2

3 C A\
EMaz)] )

(-
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The following figures show the relation:

C/Ma* fim
04 1.2

0.3 0.87
0.2 0.61

Evidently the terrestrial value of C/Ma?, about 0.33, gives values of
J2/m and f/m close to the observed values, which are approximately 0.33
and 1 respectively.

In fact, the foregoing theory is not adequate for the major planets and
more can be derived by working to the second or third order in the
ellipticity. Clairaut’s equation is an equation for the ellipticity or, what
comes to the same thing, the coefficient of P, (cos 6) in the expression for
the radius vector of an equipotential surface. By retaining further terms in
the various expansions, equations may be obtained for the coefficients of
the higher harmonics, P,(cos 8) and Pg(cos 6). It then becomes prefer-
able to use integral rather than differential equations for the coefficients.
The details are given in Chapter 8; the principles are the same as in the
first order work. An expression is written down for the radius vector
of a surface of constant density and potential, and the po.ential is
calculated. The condition is then applied that the radius vector is to be
such that the potential shall be a constant; on substituting the general
expression for the radius vector into the general expression for the
potential and applying the condition that the potential is to be a function
of radius only, a series of conditions is obtained in the form of integral
equations for the coefficients of the harmonics in the expression for the
radius vector. Thus, given the density as a function of radius, the
coeflicients J5, J4, Js . . . in the external potential may be calculated on the
hydrostatic hypothesis, providing the basis on which to check the
supposed density function against the observed J», Jy, Js. Values of J,,
J4 and Jg are now available for Jupiter and J, and J, for Saturn.

The theory by Darwin (1899) and by Zharkhov and Trubitsyn (1970)
supposes that the density is given as a function of radius, but the theories
of the outer planets start from an equation of state that gives the density
as a function of pressure. Thus, to the integral equations of hydrostatic
theory must be added the equation of state

p=p(p)
and the hydrostatic equation

Vp=-pVU.
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In the latter equation, U, the potential, is the sum of the potential of
self-gravitation of the planet and the potential of spin acceleration.

Darwin’s relation between C/ Ma® and J, for a hydrostatic planet takes
the simple form it does because the function

W(n) =1+ —15n°)(1+n) ">

is taken to be 1, a value to which, as has been seen, it is close for all values
of n encountered in practice. One should, in fact, allow for the departure
of ¢(n) from 1 for the major planets, but then the relation between C and
J>» would depend on the variation of p with radius, or would involve J.
Rather than proceed to this elaboration, it seems best to keep the simple
form of Darwin’s relation, use the value for C/Ma® so obtained as a guide
to the structure of the planet, and then use comparisons between the
calculated and observed values of J,, J4, Js... in order to check the
validity of any postulated density function or equation of state.

Darwin’s simple relation between C/Ma? and J, is thus inadequate for
the major planets because terms of order J5 are important. It fails for the
terrestrial planets because they are not in hydrostatic equilibrium and so
we now consider whether it is possible to estimate the error committed by
using Darwin’s formula when there are departures from hydrostatic
equilibrium as shown by the presence of significant odd zonal and tesseral
and sectorial harmonics in the gravitational potential.

Consider a spinning planet and take, as usual, spherical polar co-
ordinates (r, 6, A) with the origin at the centre of mass and the co-latitude
measured from the north pole of the axis of spin.

Let the density, p, be a function of (7, 6, A). The polar moment of
inertia, C, is given by

Cc=4% I pr*[1+ P»(cos 6)]d(cos ) dA dr,
T

where the integral extends throughout the volume, T, of the planet.
Now suppose that at any radius the density departs from the value, py,
corresponding to hydrostatic equilibrium by the amount p’, so that

p=putp'
pu does vary with angular position at a given radius, but it is constant on
surfaces of constant potential, and so if such a surface is specified by say its

polar radius, then py is a function of that radius only.
o’ may then be written in a series of spherical harmonics as

S x0() Yo (6, 1),
n=1
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Now write
C=Cu+C

where Cy is the polar moment of inertia for the density pyy and C’ that for
p'. Then

C'=3% J:r r* Y %, (1) Yo (8, A)[1 + Pa(cos 8)] d(cos 8) dA dr.

It immediately follows from the orthogonality property of spherical
harmonics that the only part of C' that gives a non-zero integral is

x(r) P(cos 6),

and that gives
8w
15

a being the surface radius of the planet.
Now the moment of inertia, A, about an axis in the equatorial plane, is

(o I x(r)rtdr,
0

I r* (cos® 6 +sin® 6 sin® A) d(cos 8) dA dr.
T

If we take the average value of A for all axes in the equatorial plane,
that is, if we assume that p' does not depend on azimuth, then

A= rrI pr*(2 cos® 6 +sin® 8) d(cos ) dr
or

2
3

Thus, replacing p by p’ as before. we have

I pr*[2 + Py(cos 6)] d(cos ) dr.

27
3
or, with p’ = x,(r)P,(cos 6),

C'-A'= Ip’r“Pz(cos 0)d(cos 6)dr

' :_4___7T ¢ 4
C'—-A =15 L x2(r)r* dr

=3C".
Now the value of J, is

27
3Ma’

and if we write, with an obvious notation,
Jy=Jm +73,

I pr*P,(cos 6) d(cos 8) dr
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it follows that

! 4‘” 4
J3 = T5Ma J x2(r)r” dr

=(C'-A")/Ma’
=31C'/Mad>.

This result provides the relation between the departures of C and J»
from the values they would have for a density distribution in hydrostatic
equilibrium. It is not, however, the result that relates the value of C
calculated on the hydrostatic hypothesis from the actual value of J,, to
the true value of J,. In that calculation we use Darwin’s result in the form

C _g[ _g(4m —312)”2]
Ma* 3l 5\ m+3J, ’
but we use an erroneous value for J,, namely the actual one, and not one
corresponding to a hydrostatic distribution of density; that is we use J»
when we should use J,y subsequently adding the correction 2Ma 2J2' to
the calculated value, Cy, of C.
To calculate the error committed, differentiate Darwin’s formula:

oC 281>/ m
Ma®>  (4-31,/m)'*(1+31,/m)*">’
where 6J, is J5.
Write this expression as
8C = kéJ,
where
2Ma®/m

k

T @=30L/m)EA+ 3, /m)*

If J, is 3m, as it roughly is for the Earth,
k =Ma*/2.4m.

This result gives a discrepancy 8C that is much larger than C’, and the
calculated value of C is

Cu+Ma’J5/2.4m
instead of
Cu+2Ma’J5.
Thus the error committed by using Darwin’s formula is

1 2
———-2|Ma“J5.
(2.4m 2) a’Jz
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Suppose, for example, that J5 is 107° and m is about 3.3 x107>. The
errorin C calculated on the hydrostatic hypothesis is then 1.2 x 10™*Ma?,
whereas the true value of C departs from the hydrostatic value by only
2% 107°Ma?; C itself lies between 0.4Ma? and 0.2Ma? for all planets.

The application of these ideas to Mars will be considered in Chapter 6.



Equations of state of terrestrial materials

4.1 Introduction
The dynamical properties of a planet depend on the way in which
the density varies with radius, and seismological properties depend also
on the way in which the elastic moduli and elastic dissipation vary with
radius. The data we have for the Earth are sufficiently complete that the
variations of density and elastic moduli with radius can be derived from
them and we are then presented with the problem of inferring the
mineralogical and chemical composition consistent with them. When, as
for the other planets, seismic data are lacking, we must proceed in a
different way and derive the variation of density from a postulated
composition, asking if it leads to the observed mass and moment of
inertia. In either case, we must know how the density depends on
pressure, temperature and composition, for all these vary with radius, and
when we discuss the Earth and the Moon, for which we have seismic data,
we must also examine the dependence of the elastic moduli upon the
three variables. Some idea of the problems that arise, of the theoretical
principles, of possible experimental methods, and of the systematics of
equations of state of minerals has already been given in Chapter 1, and it
is the aim of this chapter to give a more extensive and systematic account.
Our aim is to discuss the variation of density and other properties with
radius. If a planet is in hydrostatic equilibrium, then all harmonic
components of the gravitational potential except the even zonal ones will
be zero, and the coefficient J,,, of the term proportional to P, (cos ),
will be of order (J2)". We know that many other harmonic components of
lower symmetry occur in the potential of the Earth, the Moon and Mars
so that the distributions of density in those bodies do not correspond to
the hydrostatic state. We do not know for certain how the corresponding
stress differences are supported, but it is reasonable to suppose that in the
outer parts of a planet, where the temperature is low and the strength
88
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correspondingly high, the stress differences are supported by the strength
of the material, whereas in the deeper parts the temperature may be high
enough for the material to creep steadily, when it is likely that the stress
differences are supported by the movement of the material as in con-
vection. However, it is not at present necessary to settle that issue in order
to discuss the major variations of density with radius, for the non-
hydrostatic harmonic coefficients in the potential are of order 10~* or less
and it is clear that, except in the Moon, the hydrostatic pressure deep
within any planet greatly exceeds the strength of minerals, and it is
possible to consider as a first, probably rather good, approximation that
the density does indeed depend only on radius. Strictly the argument
applies only to the small terrestrial planets, for which the surface centri-
fugal acceleration is small compared with the gravitational acceleration;
when the surface centrifugal acceleration is not small, as for the major
planets, the surfaces of constant density are not surfaces of nearly
constant radius. In this chapter, we shall ignore all lateral variations of
density, both those consistent and those inconsistent with the hydrostatic
state, the former because we are concerned with the terrestrial planets
and the latter because they are small and, in any case, we know little about
their effects on equations of state.

Suppose then that the density is taken to be a function of radius alone:

p=p(r).

Suppose also that the variation with radius is a consequence of the
variation of pressure, temperature and composition with radius:

p=p(p), T(r), C(r)).

Here C stands for an empirical function which gives the density as a
function of mineral composition, crystal structure and chemical
composition.

Thus, to find p as a function of radius, we need to know how pressure,
temperature and composition vary with radius. The change of pressure
with radius is a straightforward matter. Suppose that

p=p(p).
At any radius, r,

dp

5= 8
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Furthermore the value of gravity at radius r is equal to the attraction of
the mass within radius r concentrated at the centre:

G r
=5 oar,
rJo

where dr is an element of volume at radius 7.

If p is given as a function of p, the foregoing equations may be solved
(numerically in general) to give p as a function of r. Let M be the mass
within radius r. Then
_1aM

4ar® dr’
and g = —-GM/r*.

Now if

P

then

or

In terms of M,

dp_ 2 dM_ 1 d&'M
dr  4mr’ dr  4mr® 4

Thus the equation of hydrostatic equilibrium reads

2dM d&°M _GM dM dp

“rdr dr” 7 odr dp
Since dp/dp is supposed to be known, this equation may be solved for
M (r) and then p(r) may be found by differentiation and g(r) and p(r) by
substitution.

It has been tacitly assumed that density is a continuous function of
pressure, but that is in general not the case. The equation for M would
then have to be integrated piecewise, allowing for discontinuous
increases of pressure with density. Such discontinuities do indeed occur
and correspond to changes of phase, whether from solid to liquid or vice
versa or from a less compact to a more compact crystal structure.
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Evidently it is crucial to the study of the interiors of planets to
investigate theoretically and experimentally the behaviour of the densi-
ties of single phases as functions of pressure and also the changes of phase
that may occur at sufficiently high pressure; and those are the principal
topics of this chapter. Density is also a function of mineralogical and
chemical composition and consequently in order to estimate densities
within planets it is necessary to have some idea both of the likely
compositions of the planets and also of the dependence of density on
composition. The evidence bearing on the likely composition will be
considered when the structures of the Moon and the terrestrial planets
are discussed in Chapters 4 and 5, respectively, while in this chapter
synoptic relations between density and such parameters as mean atomic
weight will be considered.

The density of a simple substance in general depends on temperature as
well as pressure so that we may write

dp_op dp, dp dT
dr apdr 8T dr’
dp/ap is a function of temperature and dp/dT a function of pressure,
If K is the bulk modulus,
w_»p
ap K
so that
3 [dp 1 3 p K
e

K aT K?oT’
Let a be the volume coefficient of thermal expansion:

1 dp
Y
then
1dp__ar
K 3T K
Also
9 (dp d (adp 9 da ap
7T ap) "3 57) "3 =P i
Thus, comparing the two expressions for 3°p/3Tap, it follows that
da p oK
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or
aK 2 Ja
& _gr=
oT op
and
2

ap P da
T ap "_E(a +K£)'
If 0/ 3p is small, K is nearly independent of temperature and then p as a
function of pressure is also nearly independent of temperature. Wildt
(1963) and Ramsey (1963) have argued that those are indeed the
conditions within the planets.

Values of « at high pressures do not appear to have been measured, but
there are a few values of 0K/dT available. The experimental value of the
adiabatic compressibility of sodium chloride is —1.09 x 10’ Pa/deg. The
bulk modulus is 2.5 x 10" Pa, K5' 3K/ T is therefore —4.4 x 10™*/deg
(K is the isoentropic compressibility) and da/dp is —1.8 x 107'*/deg Pa.
Since a is about 1.2 x 10™*/deg it is clear that if da/dp is independent of
pressure, a will vanish at about 7 X 10° Pa (70 kbar), a pressure attained
high in the mantle of the Earth. In fact, because of the factor 1/K 2 which
varies as p - at high pressures, da/dp may be expected to tend to zero at
high pressure; nonetheless it is clear that @ must become quite small at
rather moderate pressures.

As another example, consider olivine, for which dKg/8T is about
—1.5%x 10’ Pa/deg (Kumazawa and Anderson, 1969) while Ky is about
1.3x10"! Pa at zero pressure. Thus Ks' aKs/0T is —1.2x 10™*/deg and
da/dp is —0.9 x 107"°/deg Pa. With a linear dependence on pressure, a,
which is 2.4 x107°/deg at low pressure, would vanish at 2.6 x 10"’ Pa
(260 kbar).

The low pressure values of a ' da/dp are 1.5x107'°/Pa for salt and
0.6x107'°/Pa for olivine, values which are not appreciably different
despite the larger differences of K and a.

If the temperature and pressure vary with position in a column of a
compressible fluid, then the fluid will be mechanically stable if the
pressure and temperature are so related that the work done on an
element of fluid when its pressure changes exceeds the change of internal
energy. If the change of internal energy is greater, net energy becomes
available as kinetic energy of convection. The gradient at which the work
done and the change of internal energy just balance is the adiabatic
gradient. Convection can transport heat rapidly and it is usually supposed
that, provided the supply of heat is sufficient, the temperature gradient in
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a fluid will attain the adiabatic gradient but will not greatly exceed it.
Thus, it is supposed that the gradient in the core of the Earth is close to the
adiabatic gradient and that convective motions are sustained. Much
higher gradients could be maintained in solids if the stresses produced are
less than the strength of the material, but at sufficiently high temperatures
most solids creep at a steady rate by diffusion or by movements of
dislocations, and so it has been argued, particularly by Tozer (1967), that
in the presence of a temperature gradient steady state creep will occur
and the gradient in solids also will be close to the adiabatic gradient.
For an adiabatic change the entropy, S, is constant, Now

s5=(5) or+(2)

(05/9T), is C,/ T, where C, is the specific heat at constant pressure,
while, by one of Maxwell’s thermodynamic relations,

(7) =—<a¥) =aV.

Thus, along an adiabat,
dT_aVT
dp G

Under hydrostatic conditions,

dp
o8

and thus

dr dpdr G
since p is the reciprocal of the volume V for unit mass.

There is considerable difficulty in estimating d7/dr within a planet.
Values often quoted sometimes seem to allow inadequately for the
decrease of @ with pressure; on the basis of this argument alone it is
unlikely that @ would exceed 107 in the core of the Earth.

The specific heat, Cy, at constant volume, and at a sufficiently high
temperature, is 25 kJ/deg kg mole, while the difference of C, from Cy is
given by (Wilson, 1966, p. 39)

=),
VK \aT/,

Thus C, — Cv = (VT/Kt)a® (K7 is the isothermal bulk modulus).

Cp—CV=
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V and Kr are well enough known at high pressure, so the problem
again reduces to estimating « at high pressure.

In order to estimate the properties of materials in the interiors of the
planets we need to know the variations of density, elastic moduli and
coefficient of expansion with pressure and temperature; we need to know
the changes of crystal structure and composition that minerals suffer at
high pressure; and we need to know when materials melt. So far as the
density of single minerals are concerned, it has been argued above,
following Wildt (1963) and Ramsey (1963), that the thermal expansion
can be ignored. Thus, a major part of this chapter is concerned with
isothermal equations of state, although effects of temperature are not
ignored. In subsequent sections changes of crystal structure and
composition and the problem of melting are considered.

4.2 Theoretical equations of state

The components of planets are generally thought to be mainly of
two sorts: minerals which are ionic crystals, and metals. The outermost
parts of the major planets are molecules with covalent bonding. Only in
the simplest possible case ~ the metallic form of hydrogen (see Chapter 6)
— is it possible to calculate the density at high pressures from first
principles; in all other cases quasi-empirical methods must be used which
in general are not trustworthy at the pressures deep in planets.

In principle, the properties of any solid or liquid could be calculated if it
were possible to solve Schrodinger’s equation for the complete assembly
of nuclei and atoms comprising the material. We would naturally expect
such a solution to show us how most of the electrons form cores round the
nuclei, so that structures very like free atoms persist in condensed phases;
we would expect to see how the internal energy depends on the linear
scale of the system and thus to calculate the volume at a given pressure;
and we would expect to identify certain motions with thermal motions
and so identify the thermal properties. No such programme has yet been
achieved for even the simplest condensed material — metallic hydrogen —
although the isothermal properties do seem to be well understood. Since
it is impossible to solve Schrodinger’s equation in complete generality,
some approximations must be made. It should be noted that we are here
confronted with a rather different problem from that which Frohlich
(1973) has considered. Frohlich discussed the way in which the macro-
scopic features of a problem could be extracted from the general quantum

+ The silica tetrahedra of a mineral like olivine are themselves covalently
bonded, but are held together by ionic bonds to metallic ions.
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mechanical solution and, for example, showed how to derive the Navier—
Stokes equation for the motion of a fluid. We could equally derive the
equations of elasticity for a solid, but that does not help us to calculate the
elastic constants by quantum mechanical methods because Fréhlich’s
averages are chosen to avoid our ignorance of the quantum mechanical
solutions. We have to make approximations which retain some of the
information that may be extracted from Schrédinger’s equation.

One approximation allows the thermal properties to be treated
separately from the isothermal behaviour. It is akin to the Born-Oppen-
heimer approximation used in the quantum theory of molecules and
depends on the fact that the masses of nuclei are very much greater than
those of electrons. Consequently, the electron velocities are much greater
than nuclear velocities and it is possible to regard the total wave-function
as a product of electronic and nuclear wave-functions. The eigenenergies
of the solid are then the sums of eigenenergies of the electrons and nuclei
separately. To the former correspond structures of the atomic cores and
the forces that hold the cores in position in a crystal, while to the latter
correspond the mechanical vibrations (phonons) of the crystal lattice
which are excited when the material is heated. A somewhat similar
division can be made for a liquid, complicated though it is by the fact that
the atomic cores do not occupy fixed sites as in a crystalline solid. Thus,
much as we can write the energy of a molecule as a sum of electronic,
vibrational and rotational terms, so we may write the energy of a solid or
liquid as the sum of electronic and vibrational terms (plus rotational and
translational parts for a liquid); the electronic part corresponds to the
internal energy at zero temperature and depends on configuration and
pressure, while the vibrational part gives the thermal energy. Just as in
molecules, so no doubt in solids and liquids, this separation is not exact,
and perturbations of the order of the ratio of the electronic mass to the
nuclear mass no doubt occur, but neither experiment nor theory are exact
enough for them to matter. All minerals of importance are ionic crystals;
that is to say, they consist of positive and negative ions held together in a
lattice by Coulomb forces. There are no free electrons, and the pure
crystals at low pressures are insulators. The potential of an ion is +ze/r,
where z is the degree of ionization, e is the electronic charge and r the
radial distance from the nucleus; close to the ion, however, the potential
becomes repulsive and is often taken to be proportional to exp (—7/p),
where p is a constant (Kittel, 1968) or to 1/r". The repulsive form of the
potential close to the nucleus is a consequence of the Pauli exclusion
principle.
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If the repulsive potential were known, then it should in principle be
possible to calculate by classical methods the energy of ions arranged in a
specified lattice. In principle, a fundamental quantum mechanical cal-
culation would yield both the lattice structure and the repulsive potential,
the latter following from the energy levels of each ion as perturbed by its
neighbours. In practice, these two properties are taken as empirical facts.

It is often assumed in lattice calculations that the potential is of the
form —a/r™ +b/r" (m will be 1 for Coulomb forces, » is much larger and
a value such as 6 may be taken).

Given such a potential, the energy may be calculated as a function of r.
If the external pressure is zero, the value of r for which the lattice energy
is a minimum gives the zero pressure density, while, if the pressure is not
zero, the density follows from the value of r for which the sum of lattice
energy and external work is a minimum. Differentiation with respect to
volume yields the pressure at zero temperature and further differen-
tiation with respect to pressure gives the bulk modulus and its pressure
derivative dK/dp. The last is important in studying planetary interiors and
so some results of lattice calculations are given.

Furth (1944) showed that 0K/ap at zero pressure is 5(m +n +6), while
Ramsey (1950) showed that at high pressure 6K/dp depends only on the
repulsive potential and for a power law is 3(n+6). Thus, if n is 6, 3K/ op
would be 4, a value close to that found for a number of minerals.
Anderson (1968) has obtained somewhat different results:

%‘(m +3)(n—-m)
(n+3)(Vo/ V)" 3™ —(m+3)’

(ﬂ{l) =i(n+3)+
op /r
where V) is the specific volume at zero pressure.

At zero pressure, V = V,and (0K1/dp)r is 3(m + n +6) as Fiirth found,
but, at high pressure, where V approaches zero, (0K7/dp)r becomes
Hn+3).

Lattice calculations thus predict that (8K7/dp)r should decrease to a
limit at high pressures, the limit being determined by the repulsive part of
the potential.

It should be appreciated that the foregoing results are based on
simplifications. Details of the lattice structure are ignored and a simple
power law is assumed for the repulsive potential, whereas more compli-
cated forms, different for different ions, might be appropriate. Cal-
culations in which exact lattice sums were evaluated have been carried
out for cubic structures by Anderson and Liebermann (1970), who show
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that if m =1 (Coulomb attraction)
(8K1/9p)r =3(n+7),

in agreement with the general expressions given above.

While some results of lattice calculations are of value in interpreting
experimental results, they are not of great value for predicting behaviour.
The difficulty is that potentials which might be appropriate for low
pressures do not necessarily describe behaviour at high pressures.

Given the interionic potentials, other properties of a crystal may be
calculated; in particular, its elastic moduli, its coefficient of thermal
expansion and other thermal properties. The thermal properties are
found from a knowledge of the spectrum of the modes of vibration of the
lattice which are determined by the interionic potential and the mass of
the lattice. Metals are distinguished from insulators by the gas of free
electrons which permeates the lattice of positive ions and which makes
the metal a good conductor of electricity. In the most elementary
treatment of a metal the electronic wave-functions are supposed to be the
single plane waves of a free electron, but that description cannot be
correctin general although the properties of some metals are indeed close
to those predicted by a free- or nearly-free-electron model. The free-
electron plane wave model is adequate for hydrogen, where the potential
of a single proton is that of a point charge, and for helium, but with more
complex atoms, having a large un-ionized core of electrons, the potential
within the core corresponding to bound states of the electrons is such that
plane wave states outside the core cannot be matched to bound states
within it. Yet the plane wave model works quite well and it is reasonable
to suppose that many electronic, optical and mechanical properties of
metals could be calculated if it were possible to find a potential which had
the same effect outside the atomic core as the actual potential. Such
potentials have been constructed and are known as pseudopotentials
(Heine, 1970). The main requirement for the pseudopotential is that it
leads to the correct eigenvalues of the conduction electrons, leading, that
is, to the observed band structure. There is now an extensive literature
concerned with pseudopotentials and, in particular, the way in which they
may_be constructed from experimental data has been reviewed by Cohen
and Heine (1970).

If a pseudopotential can be constructed for a metal, then as discussed
by Heine and Weaire (1970) the binding energy may be calculated as a
function of the linear scale of the metal. Heine and Weaire illustrate the
principle by the following simple model.
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The energy of a free electron as a function of wave-number, k, is
E(k) = V0+%k2,
where V), is the mean pseudopotential.

Consider a bare ion and an electron gas of density z electrons per ion.
Take the pseudopotential of the ion to be
r<Rm:v.(r)=—-Ag
r>Rwm:vi(r)=—2/r,
where Ry is a constant.
To this add the potential v, for a uniform gas of electrons contained in a

spherical cell of radius R 4.
Within Ra, r<Ra, and

a3
ve=% —|1—=\+
2 Ra 3\RaA

and, outside Ra, r> R4, and
ve=2z/1.
Outside Ra, v.—v. is zero. Within R4 the mean potential is

0.3z 1.5zRiy Rm\’

Ra Ra Ra
On summing the energy for all the occupied states of the electrons, the
total is zV0+§zEF per atom, where Er is the Fermi energy
(#*/2m)37>N2/3, N, being the electron concentration.

However, in this way the self-energy of the electron gas is counted
twice and, therefore, the energy of a uniform sphere of negative charge z,
namely 0.6z°/Ra, must be subtracted.

The exchange and correlation energies of the electrons in the gas
(Chapter 7) must also be added. It is convenient to introduce the radius 7.
of a sphere containing 1 electron, namely

=2z _1/3RA.
The exchange energy may be written as 0.458z/r, and the correlation

energy as z(0.0575+0.01551nry), and the total energy of the metal
becomes

1.105\ 0.
V0=z< . )—O4r582+z(0.0575+0.0155lnrs)
2 2 2 3
z° 3z RM) RM)
—0.9—+>=—(=") —A.z{ZY) .
0% 2RA<RA AOZ(RA

It will be noted that the expression contains a variable R4 (or r,) which
determines the atomic volume and two parameters, Ao and Ry, by which
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the pseudopotential is described. The equilibrium volume for a given A,
and Ry is found by minimizing the energy with respect to R4 (and r); to
obtain the equilibrium volume at a finite pressure, it is necessary to
minimize the sum of the electronic energy and the mechanical work done
in compression.

For illustration, a simple pseudopotential has been adopted; in prac-
tice, more complex potentials would be necessary to reproduce the actual
behaviour. There is, however, one metal, hydrogen, where the actual
potential is just —1/r and accurate calculations can be carried out, as will
be seen in Chapter 7.

While it is clear how the zero-temperature equation of state could be
calculated if a pseudopotential were given, it is unfortunately the fact that
very few calculations have been done (see Heine and Weaire, 1970) and
none for iron, the metal of greatest interest in the study of planets.

Of course, if the wave-functions for the bound states of an ion could be
calculated with sufficient detail and precision, there would be no need to
fit a pseudopotential. Some calculations have been done, in particular for
aluminium and iron (Berggren and Froman, 1969); those for aluminium
yield an equation of state in good agreement with that from shock-wave
experiments at high pressure, but those for iron, with its more complex
electronic structure, deviate considerably from experiment.

So far, whether for ionic crystals or metals, the discussion has been
concerned with the calculation of the energy (and hence pressure) as a
function of volume at zero temperature. Because it seems, as was shown
in the previous section, that the coefficient of thermal expansion
decreases rapidly at high pressure, the study of thermal effects is of much
less importance than the estimation of the isothermal dependence of
density on pressure. Some consideration must, however, be given to the
thermal energy, if only because it is a significant factor in the reduction of
shock-wave observations to isothermal equations of state.

It was seen earlier that the Born—Oppenheimer approximation leads to
the conclusion that the energy of a crystal (the argument applies equally
to ionic crystals and to metals) divides into a part that depends only on
pressure and a part that depends also on temperature. Correspondingly,
the free energy, F, equal to E — TS, may be written as ¢ + ). Fy, where ¢ is
the energy of the static lattice, while F; involves products of displace-
ments of nuclei from their equilibrium positions taken k at a time.

If Fp is zero for all k greater than 2 the vibrational energy will be a
function of the squares and products of the displacements and the nuclei
will execute harmonic oscillations. If, however, Fs, F, . . . are not zero the
oscillations are not harmonic.
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The free energy of any system is
F=—-kThhZ,

where Z is the partition function of the system.
Treating the lattice vibrations as a set of independent harmonic oscil-
lators,

Z=TZ @),

where Z is the partition function of a mode of frequency w;.
Since the energy levels of the oscillator i are
E,=(n+2hw;,

the partition function is
Z(wi)= L exp (-E,/kT)
n=0

_ exp (—3hwi/kT)
" [1—exp (—hwi/kT)]

and so
F =¢o+kT Y [Ghew/kT) +1In {1 —exp (hwi/ kT)}].

This expression accounts for the harmonic part of the vibrational energy.
Note that, in general, w; is a function of the wave-vector and of the
polarization of a plane wave.
Now the pressure is given by

__OF
v’
so that
d¢o 1 din w; 1 —1
=2 _ B ~hw/KT) - 117"},
v VZdanhw{z+[exp( hwi/kT)—1]7"}

in which the thermal effects are in the summation through the vibrations
of frequency w;.

Write
déo 1
=———+—=vE;
P="qv V"
where
dln w;
Yi= T T %/

“dinV
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and

1 1
E,' = h |:“ + ] .
“l2 exp (—hw;/kT)-1
If the v; are all equal, the thermal term becomes (y/ V)E,, where E, is the
total thermal energy (including the zero point energies of the vibrations).
In that case

dv v’

Hence, if p; and p, are the pressures and E; and E; the energies of two
states of different temperature but the same volume

déo  ¥E,

PI—P2=%(51“‘Ez)-

This is the Mie—Griineisen equation of state which, as will be seen, plays a
large part in the reduction of data from shock-wave experiments. As here
derived it depends on the assumption that d In w;/d In V is the same for
all modes of vibration. Neither theoretically nor experimentally does
there seem to be much justification for that assumption. On the other
hand, at a sufficiently high temperature the energy of each oscillator
becomes kT (for two directions of polarization) and then

PPE TSN Ty

where N is the number of ions in the crystal and vy, equal to ) v,/3N, is an
average value of ;. It follows from the Mie—Griineisen equation that

which gives

Now
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and
1%
a_T = Va,
so that
_ VaKs
Y= Cp .

This expression is known as Griineisen’s ratio.

In view of the fact that it is not in general possible to calculate
isothermal pressure-density equations of state from first principles, or
from almost first principles, using either the idea of an ionic potential or of
a metallic pseudopotential, it is desirable to have empirical equations
which might be used to express experimental data in a compact form, and
to interpolate among experimental data, and even perhaps to extrapolate
beyond the range of experiment. The ideas behind the construction of
such equations are extensions of those ideas of strain and strain energy
functions which hold for infinitesimal strain to circumstances in which the
strains are far from infinitesimal. Most treatments depend on the work of
Murnaghan (1944, 1951) as developed by Birch (1947, 1952).

Suppose that x; are the co-ordinates of a point after deformation and y;
those before, and let a strain tensor be defined as

1/dy;: dy:
e = E(a_x, P 5,'k),
where 8; is the Kronecker delta. Then, if the strain is taken to be
hydrostatic, as is generally assumed in constructing equations of state,

x=1+a)y
and so

ax,-

—=(1+a)é

ay; !

and ej = HA+a)2- 116 = ed;, say.
The corresponding changes in volume and density are

Vo _p 3/2
—=—=(1+2¢)"".
V = ( )

While this definition of strain, ey, seems a natural extension of
infinitesimal strain, Knopoff (1963) has pointed out that it is not unique
and that there are other tensors of rank 2 that reduce to the infinitesimal
strain form, and he has in particular suggested the form

i = €ij + A28k
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Birch supposed that the strain energy, E, could be expressed as a power
series in the strain, ¢;

[+ <]
E= Z an€ n’
n=2
where the coefficients a, are in general functions of temperature.
It may then be shown that the pressure —0E/dV may be written as a
function of p/po as follows:

p 5/3 o p 2/3 n—1
i) Lol
Po n=2 Po

K is the bulk modulus at zero pressure and «,, is equal to na,/2a,. For
example a5 is 1 and a3 is 3a3/2a,.
If the strain energy contains just the quadratic term a,e?, it follows

that
7/3 5/3
-l (2)-(2)"]
Po Po

This is a form of the Birch—-Murnaghan equation, widely used for inter-
polations of experimental data, especially in the highly compressible
alkali metals.

Since an important result of seismic studies is the function @, equal to
(a?—%B%) or K/p, it is desirable to see how the values of K predicted by
theory or observed in experiment depend on pressure. The Birch—
Murnaghan equation leads to

3 2 5/7 K. 2/7
i3 )
3D 1 7\3 p ’

so that 9K/dp tends to 7 at high pressures and the somewhat higher value
of 2.6 at low pressures. The values of dK/dp found for many planetary
materials are considerably greater, so that the Birch—-Murnaghan equa-
tion does not represent their behaviour well. However, many results from
shock-wave experiments can be represented quite well if the strain
energy is supposed to contain a cubic term and a3 is taken to be between -3
and +1 (Ahrens, Anderson and Ringwood, 1969; Takeuchi and
Kanamori, 1966). Knopoff’s expression for the strain, taken with a
quadratic strain energy, leads to the equation

pe 3K, [(£)§(7+4a3)_(£0)§(5+2a3)]
2(1+a2)L\po .0 ?

which of course reduces to the Birch-Murnaghan form when «5 is zero.
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The value of dK/dp at high pressure is 3(7 +4as) and is larger at low
pressures. In one respect, all these finite strain equations reproduce the
behaviour of real materials, for it is found that 6K/dp is generally less at
high than at low pressures.

In view of the fact that 6K/dp is often not very dependent on pressure,
it might be sufficient to take

K =Ko+ Kop,

where K;=0K/ap is supposed to be constant.
It then easily follows that

_ﬁ[<_&)"‘)_1]
K(') Po ’

an equation due to Murnaghan (1944), which is almost equivalent to the
Birch—-Murnaghan equation.

Thomsen and Anderson (1971) have argued that it is not entirely
consistent to obtain the total strain at a given pressure and temperature
by first finding the isothermal strain from an equation of the Birch—
Murnaghan type and then finding the thermal strain from the Mie—
Griineisen equation. They point out that formally all empirical equations
can be regarded as Taylor series expansions about an initial point
determined by the initial temperature and pressure and that the free
energy should be therefore written in terms of the total strain, isothermal
plus isobaric, measured from that initial condition.

Let the density at p =0, T = T, be denoted by poo and write x for the
ratio p/poo, where p is the density at (p, T). The strain, g, is then
3?2 -1).

Anderson and Thomsen take the free energy, F, to be a double Taylor
series in powers of strain ¢ and temperature deviation, ¢ (equal to T — Tj).

Let differentiation with respect to ¢ be denoted by the suffix ¢ and that
with respect to € by the suffix ¢. Let is be understood that all differential
coeflicients, such as F,,, are to be evaluated at t =0, ¢ =0.

Then the free energy at p, T, is

F(p, T)=Foo+ Ft+3F >+ - - +g(1)
+(F.+F. g +3F.at*+ - )e
+3(Foe+Foet+ - )el+ -+
In this expression, g(z) takes account of anharmonic terms in the lattice
vibrations and has the form:
g(t)=—3Nak[(z+68)In (1+¢/6)—1],
where N, is Avogadro’s number.
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It is found by experiment that zero order and first order coefficients are
Zero:

Fy=F,=F,=0.
Further,
F,. =9Ko0/poo
F,.. =—27Koo(Koo =4)/poo
Foeee = —27Koo(Kbo+ Koo +3)/poo
F,.. = —3a00Koo/ poo-

Ko and Ko denote the first and second derivatives with respect to
pressure of Kqo, evaluated at p=0, t=0.

The equation of state found from that free energy is somewhat similar
to the Birch-Murnaghan equation with additional terms to allow for a
cubic term in the strain energy and for thermal expansion:

1
P(P, T) = %KOO(X7/3 - X5/3)[1 - f(e)(xz/:; - 1)] —_x5/3FsseeE3
qVoo

+ taooK()oX5/3[1 + 38 (800— K60 + %)]

800 is the combination (1/aK){(0K/dT), evaluated at p =0, t =0,

The detailed compositions of the terrestrial planets are not known and
it would be very helpful if some general rules for the behaviour of
material at high pressures could be set out. Two rules in particular would
be useful; one giving the density and bulk modulus at zero pressure as
some functions of an average composition, and one giving the depen-
dence of bulk modulus on pressure. So far as theory takes us, the
zero-pressure values appear to be arbitrary; they enter explicitly in the
empirical equations derived from the theory of finite strain, and they
would require detailed calculations in lattice or pseudopotential theory.
However, as will be seen later in this chapter, some general empirical
rules appear to follow from experiment. On the other hand, theory
suggests values of 0K/dp of the order of 4, decreasing as pressure
increases, and the question arises whether it is possible to predict any
asymptotic value to which dK/dp would tend for all materials at high
pressures.

An answer to that question is offered by the Thomas-Fermi-Dirac
statistical theory of the atom, supposed to be valid when the density is so
high that all eigenstates are mixed. The internal energy is then that of Z
independent electrons (Z is the atomic number) in the field of the
nucleus. Each nucleus is thought of as occupying its own spherical cell of
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volume equal to the atomic volume, with the cloud of Z free electrons
around it.

In the original Thomas-Fermi theory, the potential was taken to satisfy
Poisson’s equation subject to the boundary conditions that it and its
derivative should vanish at the boundary of the elementary sphere and
that it should vary as 1/r at the centre. When the electrons satisfy
Fermi-Dirac statistics, an exchange term has to be included in Poisson’s
equation. A great deal has been written about the Thomas-Fermi-Dirac
equation and its properties (see, for example, Feynman, Metropolis and
Teller, 1949; Teller, 1962; Boschi and Caputo, 1969; Gilvarry, 1954;
Gilvarry and Peebles, 1954; March, 1955; and especially Gilvarry,
1969), but since the approximations inherent in the Thomas-Fermi
procedure clearly fail at pressures within planetary interiors (for ionic
crystals and metals still exist as such at those pressures) it suffices for the
present purpose to consider only the high pressure asymptotic form of the
equation, to which it is supposed that all other equations of state will tend.

Gilvarry (1969) shows that the pressure exerted by a material of atomic
number Z at sufficiently high pressure and zero temperature is

2 2/3 s/3 2
-2 () T e
Sm\8x 4V h
Here m is the mass and e the charge of the electron and V the atomic
volume. The first term is the pressure exerted by the electrons in the
volume V, the second is the effect of electron-electron and electron—
nucleon interactions.

It follows that the bulk modulus —V 3p/aV of a Thomas—Fermi-Dirac

substance at zero temperature is

Sa 4 b
VT3 VP

h2 3 2/3 5/3
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b= 2Th‘§—(42)”3.

where
and

The gradient of the bulk modulus is
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which approaches the value of 3 at high pressures, the more rapidly the
greater Z.

Attention may be called to the following features of the Thomas—
Fermi-Dirac equation. In the first place, the relation between pressure
and volume at zero pressure depends only on Z. That suggests that the
equations of state of real materials at lower pressures might also depend
primarily on atomic number. The bulk modulus, likewise, is a function
only of atomic volume and Z, while, as has been said, 9K/dp approaches 3.
It will be seen later how far these properties are reliable guides to the
behaviour of terrestrial materials at high pressures.

43 Experimental determinations of equations of state
At low pressures and moderate temperatures it is nowadays a
straightforward matter to determine the density of a substance as a
function of pressure and temperature by direct compression under
hydrostatic pressure. Pressure can be measured by a pressure balance,
temperature by thermocouples or resistance thermometers and density
by change in the volume of the specimen or by X-ray diffraction
measurements of lattice spacing. All these techniques fail or become very
difficult at pressures and temperatures encountered at even moderate
depths in the Earth. Liquids cannot be used to transmit pressures in
hydrostatic systems at pressures greater than some 5 x 10° Pa because all
suitable ones solidify. Thus direct measurement of pressure and hydro-
static compression both become impossible. Some way of producing
high pressures without hydraulic amplification is needed, and some way
of estimating the pressure that does not rely on direct hydrostatic
measurement. High temperatures also become more difficult to attain
because the strengths of materials, and thus the ability to confine systems
at high pressure, decrease materially at temperatures of 1000 K or so.
The problem of producing high pressures has been tackled by designing
presses in which the area of faces in contact with the specimen is much less
than the area to which hydrostatic pressure is applied. There is then a
problem of preventing the specimen being squeezed out from between
the jaws of the press which has been overcome in presses of tetrahedral or
spherical form. The first device to overcome the extrusion problem was,
however, the ‘belt’ apparatus (Hall, 1960) in which the pistons of
tungsten carbide compressed a specimen with a die of tungsten carbide
surrounded by a steel ring or belt (Figure 4.1). It was with this apparatus
that diamonds were first made artificially (Bundy, 1963). The tetrahedral
press was invented by Hall (1958) and comprises four anvils of tungsten
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carbide in tetrahedral form squeezed together in a hydraulic press
(Figure 4.2). Pressures of the order of 10'° Pa have been attained in such
presses, sufficient to produce diamonds artificially. It was the tetrahedral
press which enabled a very great deal of high pressure physics and
chemistry to be undertaken, giving as it does a high pressure gain and
overcoming the problem of containing the specimen. A somewhat similar
design is that of Kawai (1971) who cuts a solid of revolution into tapering
sections; either a sphere or a cylinder may be used (Figure 4.3). If the area
of the internal faces is a and that of the external faces is A, a pressure p
applied to the latter will cause a pressure Ap/a to be exerted by the
internal faces on the specimen. As in the Hall press, the specimen is
confined in a small volume in the centre. If the diameter of the sample is
2 mm and that of the outside surface 250 mm, the ratio of areasis 15 000,

Figure 4.1. The ‘belt’ high pressure apparatus. (After Hall, 1960.)
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Figure 4.2. The tetrahedral press. (After Hall, 1960.)
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which should be the pressure gain. Kawai estimates that he can attain
pressures of 8 X 10'® Pa. In a further development (Suito, 1972) an inner
cubical press of eight tungsten carbide anvils is contained within an outer
press of steel spherical segments. Anvils of the type devised by Bridgman
have also been used extensively up to about 1.5 x 10'® Pa by Ringwood
and his collaborators (Ringwood and Major, 1968).

The Hall and Kawai presses use tungsten carbide as the material of the
anvils, and the maximum pressure that can be used is limited by the
crushing strength of tungsten carbide. Diamond has a greater strength,
and with the advent of artificial diamond it has become possible to

Figure 4.3. Spherical press. (After Kawai, 1971.)
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construct high pressure presses of it either as anvils (Figure 4.4, Merrill
and Bassett, 1974) or in the form of a diamond piston working in a
diamond cylinder. Diamond has a further advantage over tungsten
carbide in thatitis transparent to light and X-rays. This means that X-ray
diffraction can be used to determine changes of lattice spacing and of
crystal structure (Munro, 1967), while intense laser radiation can be used
to heat specimens (see Liu, 19754, b for description of a diamond anvil
used with a YAG laser). A further advantage is that the temperature of
the specimen may be measured with an optical pyrometer, so avoiding
problems of thermocouple calibration at high pressure (see Kawai, 1971).

The determination of the stress in the specimen is a severe problem in
all non-hydrostatic apparatus, that is, in all equipment used at the highest
pressures. There are three difficulties. In the first place, the stress is
almost certainly not hydrostatic; for example, because the material tends
to be extruded from between anvils. Secondly, it is not possible to
calculate the pressure from the ratio of areas of inner and outer faces of a
Hall or Kawai type of press, or from the geometry of a piston and cylinder
apparatus, because friction between components, which increases with
increasing pressure, reduces the pressure on the specimen. Thirdly, direct
static measurements of pressure cannot be made absolutely with a
pressure balance above some 5 x 10° Pa because of the freezing of liquids.
For all these reasons it is desirable at lower pressures, and essential at
higher pressures, to establish a pressure scale based, like a practical
temperature scale, on fixed points, such as phase transitions at known

Figure 4.4. Diamond anvil press. (After Merrill and Bassett, 1974.)
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pressures. The types of such transition are phase transitions in bismuth,
detected by variations of electrical resistance.

Even so, fixed points can only be established if a mechanical
measurement of pressure can be made, and, above the range of the
pressure balance, estimates of pressures of fixed points must be unsure.
Thus, much recent work on phase transitions at high pressures has relied
on a calculated pressure—density relation to establish pressure, in par-
ticular the relation for sodium chloride (Weaver, Takahashi and Bassett,
1971). In essence a suitable equation of state is used to interpolate
between the properties measured statically at low pressures and those
found dynamically at high pressures from shock-wave studies.

Let the energy of the solid be written as

E(V,T)=¢(V)+E(V,T)
where ¢ is the static lattice energy and E, the vibrational energy. Then

since

p=-(3v), 7).
and

Kr= V%+ K..

pv and K, are the contributions from the lattice vibrations.
A central force model for the interionic potential is used:

the repulsive core being represented by b e™"°.
Then it is found that

4, 3 -11/3

/3—p6x_ —DsX +pr_2/

p=-—pux~ *exp (—rox'?/p)+ p*
and

3 -11/3

Kr=—%pmx > = 3pex >~ Y pex
+3prx 222+ rox/p) exp (—rox'3/p)+ K *

In these expressions, x is the volume ratio V/V, and pu, pe, Ps, Pr, o
and p are parameters fitted to the low pressure equation of state.

Various models were taken to obtain p* and K*, which are functions
that match the low pressure to the high pressure equation of state. They
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are of the Mie-Griineisen and Hildebrand type already discussed, but
different formulations were chosen.

It was found that of the models studied, four agreed to within 4 x 10° Pa
at 2.8x10'° Pa and so it was estimated that the best calculated values
should give a pressure-temperature—density relation correct to about 1
per cent.

The experimental data used to determine numerical values for sodium
chloride included

Madelung constant, a,: 11.85x107° deg

Coefficient of volume expansion, ao: 1.747 56 X 10™%/deg
Adiabatic bulk modulus, Ks: 2.5%10'° Pa

—(0Ks/9T),: 0.109 x 10° Pa/deg

Isothermal bulk modulus, Kr: 2.374x 10'° Pa
dKr/op:5.35

As will be seen below, Ks and Kr at zero pressure are much less than
for many minerals while dKr/dp is greater.

Static methods, with which pressures of over 3x10'°Pa at
temperatures of 3000°C have been attained, have in recent years
been used mainly for studies of phase changes, a subject which will be
discussed in a later section. Even pressures of 3X 10"°Pa are
attained at relatively moderate depths in the Earth, scarcely into the
lower mantle, and at those depths the changes of density are
dominated by changes of phase and composition. Equations of state
at greater pressures and depths, where hydrostatic compression is
relatively more significant, must be studied with shock waves. It has
been seen also that the pressure scale established through the equation
of state of sodium chloride depends on shock-wave results; we turn
therefore to the shock-wave method for determining the behaviour of
minerals and metals at high pressures.

If a slab of material is given a strong blow on one side, intense enough
that the resulting strain cannot be considered as infinitesimal, a pressure
wave travels through the slab at a speed greater than the speed of sound.
The pressure rises in a thin layer of material to the value set up by the
blow and, behind the thin layer (the shock front), the material as a whole
is set into motion. When the shock reaches the far side of the slab it is
reflected as a rarefaction wave, so satisfying the condition that the
pressure on that side should be zero (or atmospheric pressure which is
near enough to zero). The whole slab is then moving at the speed of the
material behind the shock.



Experimental determinations of equations of state 113

The value of shock-wave studies lies in the fact that the equations of
conservation of mass, momentum and energy, together with the
measured velocities of the shock wave and the bulk material, enable the
pressure, density and internal energy of the shocked material to be
calculated.

Each shock of given strength thus gives one point specified by p and p
in the shock. If material is given a series of shocks of different strengths,
then a curve of density against pressure can be built up. It is neither an
isotherm nor an adiabat, for the internal energy and the temperatures
vary from point to point along the curve. It is known as the Hugoniot
equation of state, and a major problem is the deduction of an isothermal
equation of state from the Hugoniot equation.

Consider a shock front (Figure 4.5) propagating at a speed u, into
material of density po and pressure pg at rest. The pressure rises in the
front to p and the bulk material behind moves with a velocity 4 and
attains a density p. Then the rate at which mass enters unit area of the
shock is pous, while the rate at which mass leaves the unit area of the shock
is p(us —u).

Conservation of mass requires the two rates to be equal:

Potts = p(us— u).

Consider now the rate of change of momentum per unit area in the
shock. The rate at which momentum is generated in the shock is equal to
the rate of flow of mass through the shock, namely pous, multiplied by the
velocity acquired, u, and it is also equal to the difference of pressure
across the front. Thus

D — Do = polsu.

Finally, the rate at which work is done on the material passing through the
shock is equal to the rate of flow of mass through the shock (pous)

Figure 4.5. Velocity, u, pressure, p, and density, p, in a shock front.
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multiplied by the change of kinetic energy per unit mass Gu?) plus the
change of internal energy per unit mass (E — E,). The rate is also equal to
the rate at which the pressure does work on the material. Thus

pu = pous(3u’) + pous(E — Eo).

The three equations give

(p —Po)l/2

(Vo—V)
=H(p —po)(Vo— V)}'"?
E—Eo=3(p+po)(Vo— V),

U=V,

where V,, V are the specific volumes equal to po ! and p~! respectively.
Since po, po, Us and u are known, these equations may be solved for p, p
and (E — E,). In many cases, the Hugoniot equation takes a simple form,
for it is often found that there is a linear relation between u, and u, namely

Us=co+Au

where ¢, is the velocity of sound, to which u, reduces when the shock is
weak and u very small.
When that relation is satisfied, the Hugoniot equation is found to be

c3(Vo—V)

= +
P=Do V()_)t(V()_V)z.

The reduction of the Hugoniot equation to an isotherm depends on the
use of the Mie—Griineisen equation:

P—Po=%(E-Eo)

for two states (p, E) and (po, Eo) having the same volume.

Various schemes of calculation have been used to effect these reduc-
tions (Takeuchi and Kanamori, 1966; Knopoff and MacDonald, 1960;
Shapiro and Knopoff, 1969; Ahrens, Anderson and Ringwood, 1969;
Davies and Anderson, 1971).

The main difficulty is to obtain a value of +y at high pressures (Knopoft
and Shapiro, 1969). As will be realized from the earlier theoretical
discussion, vy is a somewhat empirical quantity and there is no sound
theoretical basis on which to predict its variation. Empirical relations for
the dependence of y on volume have been proposed:

1 ¥p/eV? 2

— (Slater, 1940
2V oapiaV 3 (Slater, )
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or

F(pV??)/ov?
—_1 7y 1
y==3V 2 pV) oV 3 (Dugdale and MacDonald, 1953)

but the most reliable calculations are probably those which employ an
experimentally determined value of y.

Now v is equal to KaV/C,, and it should be possible to determine it
from shock-wave studies on material of the same K, a and C,, but of
different specific volume or density. In fact, if the Mie—Griineisen equa-
tion of state is substituted into the Hugoniot equation, it is found that

_ V(pa—pr)
%(PH"‘PHO)( Vo= V)+(Euo—Er)

In this expression py is the pressure on the Hugoniot curve, pr the
isothermal compression giving the same specific volume V, pyo is the zero
pressure on the Hugoniot curve and Eyo and Er have corresponding
meanings.

It is possible to reduce the specific volume of a material while keeping
the other parameters constant by preparing it in a porous sintered form.
Thus Altshuler, Krupnikov and Brazhnik (1958) and Altshuler et al.
(1958a) carried out experiments on sintered iron and found a value for y
of about 1.6 at 10! Pa and, more recently, experiments have been done
on sintered magnesium oxide, a material of considerable importance in
studies of the mantle of the Earth (Carter, Marsh, Fritz and McQueen,
1971). The latter experiments show that pvy is nearly constant.

Comprehensive reviews of the methods of shock-wave experiments
have been given by Rice, McQueen and Walsh (1958) and by Duvall and
Fowles (1967). Shock waves are generated by driving a metal plate at high
velocity against specimens of the material, for in that way it is possible to
generate stronger shocks than by detonating an explosion against the
specimen. The plate is driven by an explosive charge (Figure 4.6), the
composition of which determines the speed of the plate and hence the
strength of the shock.

In order that the plate may move with a uniform velocity the explosive
charge must burn uniformly across its area and this means that it must be
ignited at the same time all over. That condition is answered by igniting
the main charge from a lens-like charge itself ignited by a detonator. The
lens charge is made up in such a way that the time taken for the ignition
wave to travel from the detonator to the main charge is everywhere the
same.

Y
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In the earliest experiments the time of arrival of the shock was shown
by the specimen being forced into contact with a pin, so making an
electrical circuit. By drilling holes of different depths in the specimen and
inserting pins in them, the arrival of the shock at different distances
through the specimen could be detected and thus the speed calculated.
The method is applicable only to metals and a more versatile method uses
the flash of light generated by the shock heating of gas (usually argon)
trapped between the surface of the specimen and the surface of a block of
leucite. A number of specimens with a range of thicknesses is carried on a
support against which the driver plate is forced (Figure 4.6) and, by
placing leucite blocks close to the support and the rear surface of the
specimens, flashes of light are generated at times corresponding to the
times taken for the shock to pass through the different specimens.
Measurements of the times of the successive flashes taken with different
thicknesses of the blocks yield the shock velocity. The mass velocity
behind the shock is found from the time taken by a specimen to travel
across a known gap to a leucite slab. The flashes are recorded photo-
graphically on a streak camera placed either behind the specimens or to
one side.

Most experiments have been done on minerals and metals, but some
results are available for liquids, in particular water and mercury. Shock
pressures of up to 5x 10! Pa have been achieved, beyond the pressures
attained at the centres of the terrestrial planets, but less than those
attained in the major planets. One difficulty in using the results has

Figure 4.6. Generation of shock waves in solid specimens.
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already been discussed, namely the uncertainty in the reduction of the
Hugoniot curve to an isotherm or adiabat. There are two other objections
which have been advanced against the uncritical use of shock-wave data
in planetary studies. The first is that the shock wave does not set up a
hydrostatic system of stresses and it is therefore a question of how far the
Hugoniot equations of state may depart from a hydrostatic equation:
what influence in fact does the strength of the material have on the
behaviour of a shocked solid? Carter, Marsh, Fritz and McQueen (1971)
have discussed the point and conclude that the Hugoniot curve is a
hydrostat, at least if a small constant correction is made for the effects of
strength.

The second possible difficulty lies in the time it takes for a material to
take up its new density as the shock wave passes. Is there an effective bulk
viscosity which prevents the density attaining its ideal value? The ques-
tion is most serious, probably, when shock waves are used to study
transformations of minerals to forms stable at high pressure, for, if the
transition is too slow, its occurrence would be missed. The times$ in
question are a few microseconds. It does indeed seem to be the case that
some transitions observed in static experiments are not found in shock
studies (Ahrens, Anderson and Ringwood, 1969). Fortunately studies of
phase transformations can be made statically. Shock-wave studies do
then give the properties of those high pressure phases which result from
the shock. These questions will be considered further when high pressure
transformations are discussed.

4.4 Pressure-density relations

The chemical and mineralogical compositions of the terrestrial
planets are not known. Arguments based on the composition of the
Earth’s mantle and of meteorites lead to plausible suggestions but not to
certainty, so that the composition of the zones of the Earth must be
inferred from comparisons of the pressure-density relation established
from seismic data with the results of experiment, while, for the other
planets, for which no seismic data exist, a whole range of models may be
constructed that fit the values of size, mean density and moment of inertia
(when known). The composition of the Earth was discussed briefly in
Chapter 2 and models of the Moon are considered in Chapter 5 and of the
terrestrial planets in Chapter 6. A planet might be composed of a great
variety of metal silicate minerals, and the range of possibilities is such that
it would be pointless to construct all possible models, for many would no
doubt be very similar. Even for the Earth the available data would not
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allow of other than broad distinctions to be drawn between possible
models, and far less for the other planets. It turns out that the density of a
silicate mineral, at zero pressure, is determined almost entirely by its
mean atomic weight. Thus, pure silicon itself is the least dense whilst the
densest silicates are those with high proportions of iron. Anderson (1967)
found that the density at zero pressure and mean atomic weight were
related to the seismic parameter ®, equal to (a*—382) or Ko/ po, by the
empirical formula

po/M =ad",

where po is the density at zero pressure in kg/m>, M is the mean atomic
weight, and @ is in (km/s)?.

Anderson gave two sets of values for a and n. Either a is 48 and n is
0.323 or, for more compact minerals, a is 49.2 and »n is 1 (Anderson,
1969).

Anderson’s relation, it will be noted, is somewhat different from the
indication of the Thomas—Fermi-Dirac equation, which would suggest a
relation between mean atomic number and density and elastic moduli.
However, on the range of atomic weight and atomic number encountered
in silicates, a relation in terms of atomic number would probably be as
satisfactory as one in terms of atomic weight.

Anderson’s relation may be used in one of two ways. If po and ® are
known, as they are for the Earth, it is possible to infer their values at zero
pressure and, hence, with the help of Anderson’s relation, to establish the
mean atomic weight. On the other hand, if values of p, and M are
postulated, a value of K, is entailed by Anderson’s formal relation, so
that the change of density with pressure for low pressures may be
calculated. Formally

n+1

n_Po_
Ko—aM.

Thus
do_dp_dp —\1/n
L~ Z = (abl)
Po K, P(1)+1/

or

pé/n dp = (aM)l/n dp.
The hydrostatic equation gives

dp=—gpdr,
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with
G
g= 2 J 4mpr® dr

to complete a set of equations that may be integrated to give p and p as
functions of radius.

If a value of p, is postulated, integration of the equations yields the
mass of a planet of specified radius.

Here it‘is assumed that K, is the value at zero pressure. However, K
does not remain constant as the pressure increases, and the bulk modulus
at a pressure of 10" Pa may be much greater than at zero density. Table
4.1 contains values for K, and 9K,/ dp taken from Ahrens, Anderson and
Ringwood (1969). The values given are the isothermal ones; the adiabatic
bulk modulus is somewhat greater, but the pressure gradients of the
isothermal and adiabatic bulk moduli are hardly distinguishable.

It was suggested in section 4.2 that the value of dK/dp would tend at
very high pressures towards the value of 3, or 1.67, the value for the
Thomas-Fermi-Dirac equation of state; the values of 0K/dp for the three
silicates given in Table 4.1 are all less than 1.67, and that for fayalite is
negative. Values for oxides are, however, all greater than 1.67.

0K/ dp itself is not constant but falls with increase of pressure, at least
for MgO, Al,O and stishovite (SiO,) as shown in Figure 4.7.

Experiments at high pressure give equations of state directly, but
information about the derivatives at low pressures comes also from the

Table 4.1. Values of Ko and 0K,/dp for some
silicates and oxides (from Ahrens, Anderson and
Ringwood, 1969)

Mineral K,(10"Pa) 8K,/dp
Oxides
Al,O; corundum 2.901 3.24
AL O; ceramic 2.532 3.94
MgO periclase 1.648 4.06
SiO, a-quartz (stishovite) 3.627 3.04
MnO, pyrolusite 3.390 1.67
Fe;O, magnetite 4.483 1.79
Fe,O; haematite 3.814 1.88
Silicates
Mg.SiO, forsterite 4.307 1.07
Fe,SiO, fayalite 3.953 -1.66

MgSiO; enstatite 3.277 1.50
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elastic constants of solids. Many observations have been made by acoustic
methods, the elastic constants being obtained from the times of travel of
sound waves through crystals. Data relating to minerals of geophysical
interest have been reviewed by Anderson, Schreicher, Liebermann and
Soga (1968).

Some of the first shock-wave experiments were done on metals
(Rice, McQueen and Walsh, 1957; Altshuler et al., 1958a; Altshuler,
Krupnikov and Brazhnik, 1958). Takeuchi and Kanamori (1966) have
reduced Hugoniot equations of state to isotherms and adiabats and,
according to their results, the bulk modulus of iron is well represented by

K=2+36p

below a pressure of 4 x 10'" Pa, but, at pressures of 10" Pa or more, the
slope dK/dp falls to about 2.8,

The high pressure equations of state for oxides can well be fitted by the
lattice dynamic type of equation dismissed in section 4.2 with values of »n
and m about 6 and 1, respectively, but it is difficult to see how the
behaviour of olivines and enstatite can be represented in a similar way.

Quantum mechanical calculations have been carried out for aluminium
and iron by Berggren and Froman (1969). The calculated values of the
density of aluminium are quite close to shock-wave values, and the

Figure 4.7. Behaviour of 3K/dp at high pressures.
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calculated values of bulk modulus are closely represented by
K=12+29p (in10" Pa),

which, over the range from 1-3 x 10'! Pa is not very different from the
shock-wave result,

K=24+24p (in 10" Pa).

The calculations for iron are in less satisfactory agreement with the
shock-wave data. New calculations for iron have recently been carried
out by Bukowinski and Knopoff (1976).

According to Bullen’s extended incompressibility-pressure hypothe-
sis, materials of terrestrial planets all show, at sufficiently high pressures,
a compressibility that varies as

K =K0+bp,

where b is a constant close to 3. The value for the lower mantle and core
of the Earth is very close to 3.2 (Chapter 2). Well though such a rule
represents the compressibility within the Earth, it is clearly not of
universal application. The slopes, b, equal to dK/dp, of a number of
possible planetary materials are plotted in Figure 4.8 and it will be seen
that they vary widely with composition and substantially with pressure.
Clearly the Bullen rule as derived from the Earth may not necessarily
apply to the other planets. So far as the Earth is concerned the major
question raised by Bullen’s rule is why the bulk moduli of such very
different materials as those comprising the core and lower mantle of the
Earth should agree as closely as they do, and it has been argued (Cook,
1972) that the coincidence is related to the particular size of the core and
the pressure that happens to be attained at the boundary between core
and mantle. According to a plausible model, the lower mantle consists of
the oxides of iron, magnesium, aluminium and silicon, and the bulk
moduli of all these oxides happen to be rather close to each other at the
pressure at the boundary of the core (1.5 X 10! Pa); they are also close to
the bulk moduli of iron and of the lower mantle and core at the same
pressure. Were the pressure at the boundary of the core and mantle to
differ by 0.5x 10! Pa from its actual value, the coincidence between all
these values of the bulk modulus would be appreciably less close.

4.5 Changes of crystal structure

Polymorphic forms of ionic crystals have been known for some
time, and Bernal (1936) suggested that common olivine might transform
under the pressures and temperatures established in the mantle of the
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Earth to a spinel form with a density 9 per cent greater. His suggestion,
which was based on the observation (Goldschmidt, 1931) that the anal-
ogous compound Mg,GeO, could exist, even at atmospheric pressures, in
olivine and spinel forms, was employed by Jeffreys (1937) as the basis for
an explanation of the rapid increase in seismic velocities between the
upper and lower mantles. Olivine-spinel transitions of a number of
analogous minerais are now known, the increase of density in most of
them being about 10 per cent and the transition pressures and tempera-
tures ranging from zero to 1.2 x 10'° Pa and 820 to 1000 °C (Ringwood,
1975, p. 839).

Figure 4.8. Values of K/dp for planetary materials. (From Cook,

1972.)
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At first it was not possible to study the (Fe, Mg) olivine system directly
under static conditions, but that has now been made possible by
improvements in experimental apparatus, as indicated in section 4.3, and
extensive studies of the olivine and other systems have been carried out.
At the same time not all possible planetary materials are susceptible of
direct study, and so the investigation of analogous materials remains
important, while shock-wave experiments enable the properties of high
pressure forms of minerals to be investigated over a wider range of
pressure and temperature than do static experiments.

Along the temperature—pressure boundary between two forms of a
single substance, such as the boundary between ice and water or olivine
and spinel, the Gibbs free energy at constant pressure must be equal for
the two forms. The Gibbs free energy G is defined by

G=E-TS+pV.

Now the differences in the internal energies and entropies of two forms
do not depend much on pressure, whereas the product p AV, where AV
is the difference of specific volumes, is proportional to pressure. Thus, for
a sufficiently high pressure, the Gibbs free energy of the denser form must
be less than that of the less dense form of the substance, even though the
internal energy is greater, and so a transition to the denser form will take
place.

The pressure at which the transition occurs will depend on temperature
according to Clapeyron’s equation

dp_1AH

dT T AV’
where AH is the difference of the heat functions (U +pV) for the two
forms and AV is the difference of specific volumes; AH is the latent heat
of the transition.

Changes of crystal form are not the only possible transitions, and Birch
(1952) suggested that the lower mantle of the Earth might be a mixture of
oxides having much the same overall composition as olivine, basing his
argument on the agreement of values of the ratio K/p for such oxides with
the value for the lower mantle.

Within recent years, static experiments have yielded a great deal of
information about transitions in the olivine, (Mg, Fe),SiO4, pyroxene,
(Mg, Fe)SiOs, and other systems. The transition from the olivine form
which is hexagonal, to the spinel form, which is cubic, is well established,
and a diagram showing the dependence of the transition pressure on
composition is shown in Figure 4.9. However, when the proportion of
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iron is less than 20 per cent, the high pressure crystal structure is not the
true spinel form but a birefringent form of lower symmetry known as the
B-phase.

Ringwood (1975, Chapter 11) has discussed at length the possible
transformations of olivines, initially to the spinel and 8-forms, then to a
denser form having the structure of strontium plumbate; at yet higher
pressures the mineral of olivine composition splits up (‘dis-
proportionates’) into simple compounds, possibly into (Mg, Fe)SiO
(aluminite structure) and (Mg, Fe)O (rock salt structure) and perhaps at
still higher pressures into the isochemical mixture of oxides, MgO, FeO
and SiO,.

Lastly, at the highest pressures attained in the mantle of the Earth, it
has been suggested that a post-oxide phase may be formed, consisting
of silicates denser than the isochemical oxides. One indication of this
possibility is found in shock-wave studies, where the densities at
pressures greater than 7 x 10'° Pa appear to be some 5 per cent greater
than those of the isochemical oxides (McQueen and Marsh, 1966).

Evidence for the transformations at very high pressures has become
available quite recently from static experiments. Thus Bassett and Ming
(1972) (see also, Ming and Bassett, 1975) studied the disproportionation

Figure 4.9. Dependence of the olivine-spinel-oxide transition on
composition at T =1000 K.
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of fayalite up to 2.5x 10'°Pa and 3300 K, but Liu (1976) found that
within that range forsterite (Mg,SiO,) did not decompose but adopted a
different structure. Liu (19754) has also investigated the post-oxide
phases of forsterite and enstatite and has argued (Liu, 1975b) that the
lower mantle is composed of a mixture of perovskite (Mg, Fe)SiO; and
the oxides FeO and MgO.

The possible transformations of olivines are summarized in Table 4.2.
Pyroxenes are found to undergo somewhat similar transformations to
those of olivines (Ringwood, 1975, Chapter 12), initially to spinel and
stishovite according to an equation such as

2ABO; » A,BO,+ BO,
(pyroxene)  (spinel) (oxide)
(see Figure 4.10 and Table 4.2).
In the presence of aluminium oxide, garnets are formed:
3MgSlO3XA1203 -> XMg:;Alei:;Olz + 3(1 - X)MgSIO:;
(aluminium enstatite) (pyrope garnet) (enstatite)
(Ringwood, 1975, Chapter 12; Paprika and Cameron, 1976).

It seems from the experiments of Liu (1974a, b) that, at pressures of
about 3 x 10"! Pa, pyroxenes transform to crystals of ilmenite structure
(perovskite) which are denser than the isochemical mixed oxides, a

conclusion supported by shock-wave results (McQueen and Marsh,
1966).

Table 4.2. Transformations of forsterite and enstatite
(from Liu, 19754)

Density
Formula Phase (kg/m°*)
Forsterite
Mg,Si0, olivine 3214
B-phase 3480
spinel 3549
2MgO +Si0, periclase +stishovite 3852
MgO +MgSiO; periclase + perovskite 3927
Enstatite
MgSiO, enstatite 3190
18i0, + 2Mg,Si0, spinel +stishovite 3741
MgSiO, ilmenite 3813
MgO+Si0, periclase + shishovite 3972

MgSiO; perovskite 4083
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The changes of density in a number of transitions are summarized in
Table 4.3.

The transformations which have just been outlined have been
established mainly by static experiments at high temperatures, but shock-
wave experiments supplement the static ones, for they can attain higher
pressures and also some phases produced at high pressures in static
experiments may not be observed because they revert to low pressure
forms when the pressure is released. On the other hand, some phases may
not have time to form in a shocked specimen. The information about
equations of state of high pressure forms comes almost entirely from
shock-wave studies.

Ringwood (1975, Chapter 3) has argued that the mantle of the Earth is
predominantly a mixture of pyroxene and olivine with perhaps some
garnet, to which (Ringwood, 1962) he gave the name pyrolite, and he has
constructed, on the basis of experimental evidence summarized above,
the transformations of crystal structure and composition that pyrolite
may be expected to undergo. At a depth of about 400 km in the Earth,
pyroxene would transform to garnet and olivine to the spinel or B-phase,
followed, at about 700 km depth, by transformations to a mixture of
oxides and perovskite, with possibly a recombination of oxides to
perovskite at yet higher pressures. The changes at 400 and 700 km
correspond rather well with major changes in density and elastic proper-
ties in the upper mantle, but the evidence for further changes at great
depths is less convincing: the expected changes of density are themselves
only a few per cent and the seismic evidence, especially the models
inferred from free oscillations of the Earth, suggest very smooth changes
of density and elastic moduli below 1000 km.

Table 4.3. Some changes of density in phase transformations

Low pressure High pressure  Ap

form form (kg/m?) Vi/ Vi
Mg,SiO, forsterite B-phase +264 1.078
Fe,SiO, fayalite spinel +440 1.100
Mg,SiO, B-phase oxides +372 1.112
Fe,Si0, spinel oxides +460 1.096
MgSiO; enstatite oxides +750 1.245
MgO +8i0, oxides perovskite +110 1.028

Vi specific volume of low density form.
V... specific volume of high density form.
Ap: change of density.
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While rather convincing models of the Earth’s mantle can be con-
structed on the basis of known transformations of minerals likely to
constitute the mantle, the models cannot be applied in a straightforward
manner to the other planets. In the first place, the composition may not be
the same as in that of the Earth’s mantle, and, as has been seen, the
olivine-spinel transformation, as an example, occurs at a pressure which
varies with composition (Figure 4.9). Secondly, the transition pressure
depends on temperature, according to the Clapeyron equation (p. 123).

The specific volumes of some of the different structures of silicate
minerals are known (Table 4.4), but the latent heats are in general poorly
known. Some examples are given in Table 4.4, calculated from the slope
of the phase boundary. It will be noticed that no direct information is
available for forsterite nor for solid solutions of fayalite and forsterite.
Only one estimate of dp/dT is available for the spinel dispropor-
tionation; it was obtained from calorimetric data for the enthalpy of
formation of the tin analogues, Mg,SnO, and Co,Sn0O,, from component
oxides, and by argument based on analogy the value of dp/dT is thought
to be less than 10° Pa/deg for silicates (Navrotsky and Kasper, 1976).

Figure 4.10. Dependence of the pyroxene-spinel-oxide transition on
composition at T =1000 K.
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Table 4.4. Thermodynamic properties of olivine—spinel transformation (after Ringwood, 1975) and disproportionation
(after Navrotsky and Kasper, 1976)

Transition Transition
pressure temperature av L dp/dT
Compound (10*°Pa) (K) (m?®/kg mole) (J/kg mole) (10° Pa/deg)
Olivine-spinel transformation
Mg,GeO, 0 1090 3.5x107? 1.3x10° 33
Fe,Si0, 0.49 1270 4.4x107 1.6x10° 2.8
Ni,Si0, 0.31 1270 3.3x107? 0.7x10° 1.6
Co,Si0, 0.70 1170 4.0x107° 1.5x10° 32
Mg,SiO, 1.25 1270 42x107? 1.6-2.7 x 10° 3-5
Disproportionation
Mg,SnO, 0.26 400 3.85x107° 4.7x107¢ 3.04

Co,Sn0, 0.12 400 3.80% 107 ~1.6x10™° ~1.03

Downloaded from Cambridge Books Online by IP 83.132.177.223 on Sat Jul 24 23:09:17 BST 2010.
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Knowledge of transformations of minerals to polymorphic forms or
constituent oxides may be summarized as follows: the transitions likely to
occur at pressures encountered within the Earth and planets have been
identified, changes of density at the transition are known and high
pressure equations of state are available. Thermodynamic data are,
however, sparse, and the values of dp/dT along the phase line are not
well known.

4.6 Melting
By Clapeyron’s equation, the variation of melting temperature
with pressure is given by

dT TAV

dp L

where AV is the difference of specific volume and L the latent heat.

Values of d7/dp are known for planetary materials (in particular iron)
only at low pressures, if at all, and a problem which has been extensively
discussed is how to estimate melting temperatures at high pressures in the
absence of the necessary thermodynamic data measured at high pressures
in excess of 10" Pa. Even the difference of specific volumes is not known,
for although shock-wave experiments have been done on iron (Section
4.4) they do not distinguish between solid and liquid. The change of latent
heat along the phase boundary is given by Clausius’s equation:

pr T Gyl

DL L L (6V)
aT

14

the symbol A, as before, denotes the difference between the values of a
quantity for the solid and the liquid, while D/DT indicates differentiation
along the phase boundary. It will be seen that, in addition to the
difference of specific volumes, it is necessary to know the coefficients of
expansion (9V/aT) and the specific heat at constant pressure. Now

T (oWV\®> .
G- Cv =y (a_T),, (Wilson, 1966, p. 39)

which shows that AC, also involves AV and A(@V/aT) as well as the
difference ACy.

In the absence of thermodynamic data at high pressure, recourse must
be had to empirical or quasi-theoretical approaches to estimate the
melting temperature at high pressure. A well-known empirical rule is that
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of Simon (1937) which reads

Tm\*
(-
p T()
where T is the melting temperature at pressure p, T, that at atmospheric
pressure and A and ¢ are numerical constants.
¢ is related to Gruneisen’s parameter:

c=(6y+1)/(6y+2).

Kraut and Kennedy (1966) found that Simon’s rule gave melting
temperatures generally higher than those measured at high pressures.
They observed that for most metals there is a linear relation between
melting temperature and the volume compression of the solid:

T= To[1+a(évl0/)].

Most metals, as distinct from non-metals, do appear to follow such a
linear law, but some, for example mercury and bismuth, do not (see Chan,
Spetzler and Meyer, 1976). Furthermore, as Birch (1972) has pointed
out, phase transformations in the solid, known to occur in iron, will affect
the melting temperature.

If, then, empirical relations do not seem to be generally applicable, and
in any case cannot be checked at 10! Pa, quasi-theoretical estimates are
scarcely more satisfactory. The prime difficulty is that we do not know
how to describe what happens when a solid, specifically a metal, melts.
The solid of course has a structure of ions in a lattice with well-defined
mean parameters about which it executes thermal vibrations, but the
order in a liquid is statistical; the average distance of nearest neighbours is
known, but not the separation of a particular pair at a particular instance.
It is not so far possible to describe how the one structure changes to the
other. Lindemann (1910) early suggested that melting occurred when the
amplitude of lattice vibrations was comparable with the distance between
nearest neighbours and, more recently, melting has been related to
dislocations in the solid, melting being defined as the state when the
density of dislocations becomes infinite. Other contributions have been
made by Leppaluota (1972), using the idea (John and Eyring, 1971) that
liquids have an essentially solid structure through which ions move.
Another approach (Boschi, 1974a) is to use the results of computer
calculations on models of solids and liquids consisting of hard spheres (see
Ree, 1971); the results appear to be inconsistent with the Kraut-
Kennedy relation. Boschi (1974b) has also pointed out that the Kraut—
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Kennedy relation may be regarded as the linear approximation to a more
general relation of the form

A —n/3
To=T (1 AT
0 Ve
where n is between 8 and 9.

Since AV/ V, exceeds 10 per cent within the core of the Earth, terms of
order (AV/V,)* may be quite significant. Boschi finds much higher
melting temperatures for iron than those given by the Kraut-Kennedy
rule.



The Moon

5.1 Introduction

After the Earth, the Moon is much the best known body of the
solar system. Almost all physical measurements that have been made on
the Earth have also to some extent been made on the Moon. Artificial
satellites have been placed in orbit about the Moon and have enabled the
components of the gravitational potential to be estimated. The physical
librations, the equivalent of the luni-solar precession of the Earth, have
been observed, especially by laser ranging to the retroreflectors left on
the Moon by Apollo astronauts. The Apollo astronauts took with them
seismometers that have recorded impacts of meteorites and rockets on
the surface and moonquakes within the Moon. The flow of heat through
the surface of the Moon was measured.

The magnetic field of the Moon has been studied intensively, globally
by satellites at a distance from the surface and in detail by others close to
it, while the magnetization of rock samples brought back by the Apollo
astronauts has been studied in the laboratory. In addition, electro-
magnetic induction in the Moon has been studied. Thus, there is some
prospect of being able to construct models of the interior of the Moon
using much the same methods as are followed for the Earth, whereas
there is at present no such prospect for any of the planets. However, there
are major gaps in our knowledge of the Moon as compared with the
Earth, and the principal one is that seismic data are comparatively very
sparse because there are only four seismic stations on the Moon and all of
them are on the same hemisphere and, furthermore, because free oscil-
lations of the Moon have never been observed.

We shall see that the Moon is in some respects very different from the
Earth. Thus it provides an alternative to the Earth as a basis for models of
the terrestrial planets: we shall see that Mars may be more like the Moon
in constitution than the Earth. A close study of the Moon is, therefore, a

132
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necessary prelude to the study of the terrestrial planets as well as being of
great interest in its own right.

52 The mass and radii of the Moon

The mass of the Moon is obtained in two ways with comparably
high precision. It may, in the first place, be derived from the period and
semi-major axis (or orbital velocity) of a lunar satellite by using Kepler’s
third law. In this way, Michael and Blackshear (1972) using Explorers 35
and 49, obtained the result

GM =4.902 84 x 10" m?/s>.

The other way involves finding the ratio of the mass of the Moon to that
of the Earth. Just as the Moon describes an orbit about the centre of mass
of the system of the Earth and the Moon, so does the Earth, but in an orbit
smaller in the ratio of the mass of the Moon to that of the Earth. In
consequence, all stars appear to move in circular orbits with a monthly
period and an amplitude of some 6". It was from this phenomenon that
the mass of the Moon was determined until quite recently (Chapter 3).
Another consequence of the same motion of the Earth is that a body, such
as a space probe moving with a steady velocity in space, will appear to
have a variation in velocity with a monthly period and an amplitude of
about 12.4 m/s. That variation can be found with high accuracy from the
Doppler shifts of radio transmissions from such vehicles, and the obser-
vations lead to the result (Anderson, Efrom and Wong, 1970) that the
ratio of the mass of the Earth to the mass of the Moon is 81.3008 +
0.0008, and consequently that GM for the Moon is 4.902 82X
10" m?/s%.

The radii of the Moon have been found traditionally from telescopic
observations from the Earth, but the current best values are derived from
radio echo sounding from satellites of known orbits. The results for the
principal axes of the Moon’s figure are (Sjogren and Wollenhaupt, 1976)

Maria (km) Highlands (km)

a 1736.6 1738.1
b 1735.0 1738.2
c 1733.0 1738.0

53 The gravitational field of the Moon from orbiting satellites

As a preliminary to the landing of the Apollo astronauts, the
gravitational potential of the Moon was investigated through the changes
in the orbits of artificial satellites of the Moon. Five such satellites were
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established (Michael and Blackshear, 1972; Table 5.1) and were tracked
by the Doppler shift of radio signals.

The motions of artificial satellites of the Moon are more complex than
those of the Earth. Just as the main deviation of the Moon’s orbit about
the Earth from a Keplerian ellipse results from the attraction of the Sun,
so in a similar way the main deviation of the orbit of a satellite about the
Moon is the consequence of the attraction of the Earth. When the second
zonal harmonic of the Moon is also taken into account, orbits of lunar
satellites fall into two groups according to whether the perilune circulates
(that is, has a steady secular motion) or librates about a longitude which is
an odd multiple of 37. Into whigh group an orbit falls depends on the
initial conditions (Felsentreger, 1968). '

Another important difference from terrestrial satellites is that the
second degree zonal harmonic does not dominate the potential as it does
for the Earth, because the tesseral and sectorial harmonics are compar-
able in magnitude with the principal zonal harmonics. The motions of
node and perigee are therefore not controlled by the second degree zonal
harmonic as for terrestrial satellites. The orbits of the five satellites of the
Moon have been interpreted by numerical integration of the equations of
motion, adjusting the values of the coefficients of a number of harmonics
until agreement is obtained with the observed orbits.

The estimates of the coefficients cannot be independent, derived as
they are from the orbits of only five satellites. It was seen in Chapter 3 that
the estimates of the coefficients of the Earth’s gravity field depend on
fewer independent observations than there are significant coefficients.
The lower harmonics of the Earth are, however, reasonably well deter-
mined because the coefficients in general die away fairly rapidly as the

Table 5.1. Artificial satellites of the Moon

Semi-major Inclination to
axis lunar equator
Satellite (km) (degree)
Lunar Orbiter 1 2670 12
2 2702 18
3a 2688 21
3b 1968 27
4 3751 84
5 2832 85
Explorer 35 5980 170

49 2803 62
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degree increases, so that errors arising from correlation between esti-
mates, arising as they do from neglect of coefficients beyond a certain
degree, are relatively more serious for the high than for the low degree
harmonics. Things are not so clear cut for the Moon. The coefficients do
not die away so rapidly as the degree increases as do those for the Earth
(see Figure 9.1) so that errors due to neglect of higher harmonics are
probably relatively more important in coefficients of second and third
degree than they are for the Earth.

A list of harmonic coefficients is not very instructive: square roots of
the sum of squares of the coefficients of a given order provide a useful
summary of the behaviour; maps are still more convenient. Two ways of
representing the lunar field have been used; one a map of an equipoten-
tial surface (see Chapter 2 for the procedure for the Earth) and the other a
map of the acceleration due to gravity at the surfaces. Examples of such
maps of equipotentials for the near and far side of the Moon, taken from
Michael and Blackshear (1972) are shown in Figures 5.1(a) and (b).

An alternative description of parts at least of the lunar gravity field is
available. Doppler tracking provides directly the line-of-sight velocities
of a satellite and so it is straightforward to derive the accelerations of the
satellite normal to the surface of the Moon over much of the visible
hemisphere, accelerations which can be interpreted in terms of mass
excess or defect near the surface below the satellite. In this way concen-
trations of mass (mascons) related to certain large craters were identified
and the gravity field has been represented by a set of point masses near
the surface. While instructive for the near surface structure of the Moon,
this representation does not help much in obtaining a value of J, or C,
and thus the moments of inertia of the Moon. The representation is also
ambiguous because the depths at which the masses lie cannot be specified
(the same is true of the spherical harmonic representation which
describes the external field but does not specify the location of the
sources).

The best values of J, and C,, have been obtained from the Explorer 35
and 49 satellites which have greater semi-major axes than the other lunar
orbiters, so that the effects of harmonics of low degree are more
significant relative to those of high degree than for the orbiters which
have orbits close to the surface of the Moon. The effect of a harmonic
term of degree n is proportional to (a/a’)", where a is the mean
equatorial radius of the Moon and a’ is the semi-major axis of the
satellite. Thus, if a and a' are nearly equal, harmonics of many degrees
will have effects of similar relative magnitude, whereas, if a’ is much
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greater than a, only the lowest harmonics will have much effect on the
orbit. Using then satellites for which a’ was respectively 1% and more than
3 times a, Gapcynski, Blackshear, Tolson and Compton (1975) obtained
values for J, and C»; that are probably less dependent on other harmonics
than are the estimates derived from all lunar orbiters. Bryant and
Williamson (1974) have also used Explorer 49 while Sjogren (1971) has
used the data for Orbiter 4 which has the greatest semi-major axis of the
Orbiter series. The most recent analysis is that of Ferrari (1977) whose
results are given in Table 5.2.

Other evidence about the harmonics of third order is now available
from observations of the physical librations, to which, therefore, we now
turn.

Table 5.2. Coefficients of spherical harmonics
in the lunar gravitational potential

A J,=2.0272+£0.0148x10™*
J,=6.276+5%x107°

(Gapcynski, Blackshear, Tolson and
Compton, 1975)

B Some of the lower degree normalized
coefficients (Ferrari, 1977)

n m C.m X 10° Som X 10*
2 0 -0.91 —

2 1 0.02 -0.002
2 2 0.34 —-0.004
3 0 -0.05 —

3 1 0.27 0.06
3 2 0.12 0.01
3 3 0.25 -0.09
4 0 0.02 —

4 1 -0.05 0.03
4 2 0.14 -0.03
4 3 -0.01 -0.21
4 4 -0.13 -0.01
5 0 -0.04 —

5 1 —-0.04 -0.04
5 2 0.04 0.07
5 4 0.06 0.18
5 5 -0.05 0.16

Material also from Blackshear and Gapcynski
(1977), Anauda (1977), Ferarri (1977).
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5.4 The gravitational potential and moments of inertia from the
physical librations
The Moon has three unequal moments of inertia, A, B and C.
The axis of least inertia (A) points nearly in the direction of the Earth, the
axis of greatest inertia (C) is nearly perpendicular to the ecliptic and to
the plane of the Moon’s orbit about the Earth, while the axis of inter-
mediate inertia (B) is nearly tangential to the orbit. The Moon’s mean
angular velocity in its orbit is equal to its spin angular velocity, so that, on
the average, the Earth lies always in the same direction as seen from the
Moon. But the Moon’s orbit is not circular, nor does its plane coincide
with the equator of the Moon as defined by the A and B axes of inertia,
and, therefore, as seen from the Moon, the position of the Earth oscillates
about its mean direction, the axis of least inertia (A). The Earth
accordingly exerts periodic torques upon the Moon and, in consequence,
the Moon is driven into forced oscillations about the mean directions of
its axes of inertia. These oscillations are the physical librations of the
Moon (for an outline of the theory see Appendix 3). The principal
manifestation of the physical librations is the inclination of the axis of
greatest inertia (C) to the normal to the ecliptic at an angle of about
1° 30'. The C axis of inertia rotates about the normal to the ecliptic at
the angular velocity of the Moon in its orbit about the Earth so that the
axis of inertia, the normal to the ecliptic and the normal to the Moon’s
orbit, remain nearly coplanar, a phenomenon first described by Cassini.
The angle between the C axis and the normal to the eclipticis relatively
large because of a near resonance in the motion; it is proportional to

68 sin i
2(g'—no/n)-3B

where S is the ratio of moments of inertia, (C-A)/ B, i is the inclination of
the Moon’s orbit to the ecliptic (about 7 °), n¢ is the mean angular velocity
of the Earth about the Sun, » is the mean angular velocity of the Moon
about the Earth, and g’ is the rate at which the node of the Moon’s orbit
rotates about the Earth.

B is about 6 x 10™* and sin 3i is about 0.045 but, because (g’ —no/n) is
about 5 x 107>, the amplitude is about 1° 30"

The inclination term in the libration corresponds to synchronous
rotations about the A and B axes of intertia. Another important term is
the libration in longitude, corresponding to a rotation about the C axis; it
is proportional to ye, where v is the ratio (B-A)/C (about2x 10 ™*)and e
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is the eccentricity of the Moon’s orbit, and it is small because there is no
small divisor to amplify it.

Most terms in the physical libration are indeed of order 107° or less,
and only very few of them were detected by telescopic observation of
the Moon. The ability to measure distances from the Earth to the
retroreflectors placed on the Moon by the Apollo astronauts (Figure 5.2)
has now made it possible to observe the physical librations in very much
greater detail. This has led to estimates of 8 and vy in which considerable
confidence can be placed; when combined with values of J,, C,, and S,
from lunar satellites, they lead to estimates of the ratios C/Ma 2 B/Ma*
and A/Ma? reliable enough to be used in the study of the interior of the
Moon.

The unequal moments of inertia of the Moon correspond to the
gravitational coefficients J,, Cs> and S,,. The harmonics of third and
fourth order in the gravitational field of the Moon also give rise to torques
exerted by the Earth upon the Moon and thus to components of the
physical librations (Appendix 3). Indeed the best estimates of certain
harmonic coefficients are at present obtained from librations rather than
from orbits of lunar satellites, and so to some extent provide a check on
results from satellites. An account of laser ranging to the Moon has been
given by Bender et al. (1973).

The principle of the determination of the physical librations by laser
distance measurements is shown in Figure 5.3. C; and C; are respectively
the centres of mass of the Earth and the Moon, O is the position of an

Figure 5.2. Positions of cube-corner reflectors on the Moon. All,
A14 and A1S are Apollo sites and LK?2 is Lunakhod 2.

N
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observatory on the Earth and L that of a retroreflector on the Moon.
Denote the vector C1C; by R, C,0 by r, and C,L by r,. The vector OL,
denoted by D, is then given by

D=R - ry—rs.

The quantity that is measured is D equal to the absolute value of D. Now
D*=D-D =R-ri—r)  (R—ri—ry).

Thus
D?*=R*-2R - (r,+r)+ri+r3+2r - ra.

or approximately
D=R[1—R . (r1+r2)/R].

Now D - r;/D and D - r»/ D are the respective projections of r, and r, on
R, p1 and p; say, so that the approximate result is

D=R- P1—D2.
Of course, this is not a sufficiently accurate formula for measurements
with a precision of much better than 1 m, but it does show the factors on
which the measured distance, D, depends.

In the first place, there is the distance, R, between the centres of mass of
the Earth and the Moon which is determined by the orbital motion of the
Moon about the Earth. Secondly, p;, which depends on the angle
between R and ry, as well as on the geocentric position of O, varies with a
period of one day as the Earth spins about its axis. Thirdly, p. depends on
the selenocentric position of L and also on the rotation of the Moon
relative to the Earth. Now the Moon rotates relative to the Earth in part
through the physical librations, but also, in greater part, because the orbit
of the Moon about the Earth is not circular, giving rise, as has already
been said, to oscillations of the position of the Earth as seen from the

Figure 5.3. Principle of lunar laser ranging.
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Moon about its mean position along the A axis of the Moon. These
relative rotations of the Moon are the geometrical librations; with
amplitudes of up to 7 ° they are much larger than the physical librations,
but may be calculated from the Moon’s orbit. Like the principal term in
the physical libration, they have a period of 1 month, so that, if there were
only one reflector on the Moon, they could not be separated from
variations in R on account of the eccentricity of the lunar orbit. However,
with three or more reflectors fairly symmetrically disposed around the
intersection of the line of centres C;C, with the lunar surface, it is easy to
make the separation, for, when p, increases for one reflector, it will
decrease for a reflector on the other side of the intersection. Thusit is that
it is possible to make a clear separation of the librations from other
motions.

The measurements of distances to the lunar retroreflectors from the
MacDonald Observatory (Bender et al. 1973) have been interpreted by
numerical solutions for the lunar orbit and for the physical librations. The
librations depend, as seen above, on the ratios 8 and vy, and also on the
ratios of the harmonic coefficients of third order in the lunar potentialtoa
coeflicient of second order, J, say. Thus B, y and the third order harmonic
coefficients were adjusted until the librations determined from the
numerical integration agreed with the measurements of distance. The
values of 8 and y so found are (Williams, 1976) B =6.3126 x10™* and
y=2277x107"

The retroreflectors were not the only ranging equipment left on the
Moon. Radio transmitters formed part of the so-called ALSEPs (Apollo
Lunar Surface Experimental Packages) with power provided from
nuclear sources. The positions of the transmitters are determined by very
long baseline radio interferometry (VLBI); the measurements are most
sensitive to relative rotations of the transmitters and not very sensitive to
variations in the Earth—-Moon centre-to-centre distance nor to the co-
ordinates of the observing sites (King, Counselman and Shapiro, 1976).
Again the observations have been compared with a numerical integration
of the equations of libration.

King, Counselman and Shapiro (1976) combined lunar laser ranging to
the reflectors with VLBI observations to the radio transmitters and
obtained the following results:

10°8=631.27+0.03  10°Cs; =26+4 10°8;, =—1+30

105y =227.7+0.07 10°C5,=4.7+£0.2  10°S5,=1.8+0.3
10%7;=3+20 10°C33=2+2 10%S5;,=—0.3+1.
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The harmonic coefficients significantly determined from the librations are
Cs1, Cs; and Aj,.

Now
]2=C—%(A+B)
Ma2 ’
while
A_1-8y
C 1+8°
and
B_1+v,
C 1+8°
thus
C  21,(1+B)

Ma2_2ﬂ—'y+ﬂ'y'
With the above values of 8 and y and the value of J, derived by

Gapcynski et al. (1975), namely (202.72+1.48)x107°, it follows that
C/Ma*=0.392+0.003.

5.5 Lunar seismology
The Apollo astronauts left on the Moon at their landing sites
groups of seismometers with which natural and artificial seismic events
have been observed. The first, at the Apollo 11 site, was powered by solar
cells and did not operate for long, but the others, at the sites of Apollos
12, 14, 15 and 16, had nuclear power supplies and are still operating. The
12 and 14 sites are close together (181 km), the other two are at about
1100 km from 12 and 14 and with them form a roughly equilateral
triangle on the near side of the Moon facing the Earth. The need to have
clear line of sight for the radio transmission of data to the Earth means of
course that seismometers cannot be placed on the far side of the Moon.
The seismometers at each site comprised a three-component set of long
period seismometers and a single vertical short period seismometer, the
response curves of which are shown in Figure 5.4 (Lammlein et al., 1974;
Toksoz, Dainty, Solomon and Anderson, 1974). The long period seis-
mometers can operate in a peaked mode or, with feedback, in a flat
response mode. Both the long period and short period instruments can
detect ground motion of the order of 0.3 nm. The sensitivity is much
greater than for terrestrial seismometers because the natural noise on the
Moon is far less than on the Earth. Of the sixteen instruments, only two
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failed, the short period vertical at Site 12 which was damaged on
installation and the long period vertical at Site 14 which has operated only
intermittently since January 1972.

Signals are received at the seismometers from artificial sources on the
surface (impacts of Saturn 4B boosters and lunar modules), from
meteorite impacts on the surface and from internal moonquakes. The
characters of lunar signals are very different from those of terrestrial
signals. The latter consist of a number of distinct pulses, corresponding to
waves travelling by different paths through the body of the Earth as
longitudinal or shear waves, followed by long trains of surface waves
showing dispersion. The pulses to appear first on lunar seismograms are
small, those from surface sources are followed by a slow increase of
amplitude followed by an even slower decay over a very long time. The
long trains of waves show neither dispersion nor coherence between the
components in different directions. Some examples are shown in Figure
5.5. '

It is now generally accepted that elastic waves are trapped in a
relatively thin layer close to the surface of the Moon, within which they

Figure 5.4. Apollo seismometer response curves. (After Lammlein et
al., 1974.)
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Figure 5.5. Lunar seismograms: {a) from impact of lunar module;
(b) from internal moonquake.+(From Toksoz ef al., 1974.)
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suffer random scattering. Theory and experience (Toksoz et al., 1974)
show that, in such circumstances, the amplitude of a signal received at a
detector from a distant surface source will build up slowly and then decay
even more slowly. For such phenomena to be observed, as they are on the
Moon, two factors are necessary: the existence of a wave trap and very
low attenuation, so that waves may be scattered many times within the
trap. The trap is formed by the lunar surface material which is a loose
powder at the surface and becomes rapidly more compact with depth with
a corresponding increase of seismic velocity (Cooper, Kovack and
Watkins, 1974). Ray paths are, in consequence, concave towards the
lunar surface so that rays originating in the surface are refracted strongly
back towards it, whilst rays coming up from below are of course reflected
at the free surface. Thus a wave trap is formed, which is of the order of
1 km thick. The material at the lunar surface, the regolith, formed by the
smashing of lunar material by meteorite impacts, is very dry, indeed it
seems that the Moon as a whole is very dry compared with the Earth. It is
on that account that it is believed that the attenuation of seismic waves
within the Moon is much less than within the Earth. The combination of
the scattering in the wave trap and the low attenuation means that only
the first one or two signals arriving by the most direct path can be seen on
seismograms, for pulses arriving later by longer paths, if they exist, are
swamped by the reverberation in the wave trap.

The points of impact of spent boosters and lunar modules are all quite
close to the seismometer sites, and so signals from them provide
information about seismic velocities in the upper parts of the Moon.
Table 5.3 gives a list of the impacts that were used. No unique relation
between seismic velocity and depth can be obtained from the travel-time
data, but bounds can be set to the range within which the velocity must lie
at any depth. Toks6z et al. (1974) have used methods developed by
McMechan and Wiggins (1972) and Bessanova et al. (1974) which make
use of the ray parameter d7/dA, denoted by p (T is the time taken alonga
ray joining two points on the surface that subtend an angle A at the centre
of the Moon). The first step is to derive from the travel-time curves limits
on p, considered as a function of A and considered as a function of a
residual time 7 equal to T—-Ad7/dA. From those bounds and the
travel-time curve, limits can be set to the velocity.

The information in the travel-time curves does not exhaust that in the
signals recorded at the seismometer, and the velocity-depth relation can
be refined through comparisons of the observed seismograms with those
calculated theoretically for postulated velocity—depth relations.
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The lunar module impact data determine the velocity to a depth of
about 80 km. Within the uppermost 1 km, the velocity increases from
about 200 m/s to 4 km/s, presumably corresponding to compaction of the
lunar regolith. There is then a smooth increase to about 6.7 km/s at a
depth of about 21 km, a value which is maintained to some 54.5 km. The
velocity then increases to about 8.9 km/s at 60 km depth and remains
roughly constant below that, so far as can be determined from the impact
data. There is, however, a discordance between data from close events,
the lunar modules and boosters, and more distant events such as
meteorite impacts, for, as will be seen below, the latter indicate that the
P-wave velocity below the crust is about 8.1 km/s. The velocity of
6.7 km/s is similar to velocities encountered in the crust of the Earth and
that of 8.9 km/s to velocities encountered in the upper mantle and so the
outermost 60 km of the Moon is called the crust and the region below it
the upper mantle; the correspondence is not of course exact and, in
particular, crustal material on the Moon is much thicker than on the
Earth: approximately twice as thick as the continental crust on the Earth.
The results refer to the region occupied by the seismometer sites, the
nearside region most directly opposite the Earth, and nothing is known
about possible differences in other parts of the Moon.

The records of impact signals contain S-wave arrivals which can
sometimes be identified with the help of diagrams of particle motion. It is
found that the travel-time data for S-waves can be reproduced by taking
the P-wave velocities and assuming that Poisson’s ratio is 0.25, i.e. the

Table 5.3. Particulars of lunar impact seismic sources
(Tokséz et al., 1974)

Kinetic Distance from seismometer at site

energy (km)
Impact (10°MJ) 12 14 15 16
LM-12 3.4 73 — — —_
S4B-13 46.3 135 — — —
S4B-14 452 172 — — —
LM-14 34 114 67 —_ —
S4B-15 46.1 355 184 — —
LM-15 3.1 1130 1048 93 —
S4B-16 not known 132 243 1099 —
S4B-17 47.1 338 157 1032 850
LM-17 3.2 1750 1598 770 995

LM: lunar module.
S4B: Saturn 4 booster.
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S-wave velocities are taken to be the P-wave velocities divided by 3'/2.
The S-wave data are of poor quality and cannot be used to make an
independent determination of velocity with depth.

Knowledge of the seismic velocities at depths greater than about
100 km comes from meteorite impacts, from moonquakes and from high
frequency teleseismic events (HFT events, Nakamura et al., 1974), which
may lie at any distance from the seismometers. Meteorite impacts are of
course surface sources, and the high frequency teleseismic events ori-
ginate close to the surface, whereas the moonquakes lie deep within the
Moon. The problem with these signals is that, in contrast to the artificial
impacts, the positions and times of the sources are unknown. Suppose the
source lies in the surface and its time is known; then times of arrival at two
seismometers will locate it if the wave velocities are known (with an
ambiguity as to the hemisphere in which it lies). With three seismometers,
the time of origin can also be determined, and with four seismometers, as
on the Moon, something may be said about velocities. Because
moonquakes do not lie in the surface, five seismometers are needed if an
average velocity to the surface is to be determined, as well as position and
time, from waves of one type. The Apollo series provides only four
seismometers. Hence, a sequence of successive approximations is used in
which a variation of velocity with depth is assumed, locations and times
are calculated, and then changes (it is hoped, improvements) are made to
the velocities. ToksOz ef al. (1974) point out that there is no guarantee
that the process will converge to the correct structure; indeed it is not
clear that it will converge at all. When both S and P arrivals can be read,
something more definite can be derived, but itis rare for both to be clearly
seen on the same record.

It is a striking feature of the strong signals from internal sources that
they fall into groups such that, at any one seismometer, the signals in one
group from different events are all very similar, but distinct from
members of other groups. Now the details of a seismogram after the first
arrival depend both on the source function and on the scattering,
diffraction, reflexions and so on, suffered by a wave in passing from source
to detector, and, if a number of seismograms at one station have similar
form, the inference to be drawn is that in each case the waves have
followed the same path and have therefore come from the same source.
Thus, all events of one class can be ascribed to sources within a relatively
small volume. Further, because the signals are the same, the signal-to-
noise ratio can be improved by adding all the seismograms of a class
together to produce a composite seismogram for sources in that particular
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small volume. The data are then sufficient to enable the sources to be
located and a mean velocity to the seismometer to be determined. A map
of the principal moonquake epicentres on the near side of the Moon is
shown in Figure 5.6 from which it will be seen that the epicentres form
two quite well-defined belts.

The occurrence of moonquakes appears to be influenced by the tidal
stresses in the Moon set up by the variable torques exerted by the Earth as
it librates about its mean position relative to the principal axes of inertia
of the Moon. Figure 5.7 shows how the frequency of events at a particular
location depends on the position of the Earth relative to the Moon.

Moonquakes differ from earthquakes in two clear ways: many of them
recur within a relatively small volume and the frequency of occurrence is
controlled by tidal stresses in the Moon, There are two other very clear
differences. Moonquakes occur deep within the Moon, between depths of
300 and 800 km, and far below the lunar crust, whereas the great
majority of earthquakes occur in or close to the crust of the Earth and
relatively few at great depth. The energy released in moonquakes is also
far less than in earthquakes, the total annual rate being 10* J for moon-
quakes and 5x 107 J for earthquakes. It is only because the Moon is
seismically very quiet that any of these events is detectable.

Figure 5.6. Location of moonquakes. (From Lammlein ef al., 1974.)
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Travel-time curves for various sources are shown in Figure 5.8. The
location of moonquakes at depths of 300 to 800 km depends on the
behaviour of the differences between arrival times of P-waves and
S-waves. When signals from a particular group of events can be identified
at all four seismometers, it is found that the S—P intervals are large (not
less than 90s) and comparable on all four seismometers, whereas the
differences of S arrivals between separate seismometers are less. It
follows that the sources must be roughly equidistant from all four
seismometers and, given that the seismometers are about 1100 km apart,
the sources cannot lie on the surface but must lie deep below the near side
of the Moon. It is possible to reproduce the observed times if the P
velocity of 8.1 km/s is supposed to extend to 800 km. The interval
between S and P arrivals is related to the P arrival time by the differential
equation

(Ts—Tp)/dTe~1,
a result clearly distinct from that for surface sources, namely
a(Ts - TP)/a Tp -~ 073

The relation for the deep sources entails a value of the S-wave velocity
of 3.8+0.2 km/s over the range of 300-800 km.

It may be noted that the values of depths and S-wave velocities given
here follow from the most recent analyses (Toksbz et al, 1974;
Nakamurz et al., 1974) whereas earlier analyses (Lammlein et al., 1974)
gave greater velocities and greater depths.

in the analyses just described, the P-wave and S-wave velocities are
supposed not to vary with depth down to 880 km, but Nakamura et al.
(1974) find that, when they determine velocities from distant meteorite

Figure 5.7. History of moonquake activity showing dependence upon
distance of the Moon from the Earth. (From Lammlein et al., 1974.)
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impacts and high frequency teleseismic events, making the assumption
that the velocity does not vary with depth, then the velocities so found
vary in a systematic way with range; a constant P-wave velocity is not,
they claim, an adequate model, and they suggest that the velocity
decreases with depth, either with a discontinuity at 300 km or continu-
ously to a minimum of 7.8 km/s to around 500 km, or perhaps both types
of behaviour may occur.

There is some other evidence for a discontinuity at 300 km. S-waves
from surface and HFT events extend, albeit weakly, to distances of 150 °,
although high frequency shear waves from internal sources are not
received in circumstances which suggest they do not propagate in the
Moon below 800-1000 km. The S signals from the surface sources are
therefore thought to be refracted at or diffracted round the discontinuity
at 300 km, although there is the third possibility that they are refracted in
a low velocity zone below 300 km. So far, then, the seismic evidence
reveals to us a thin outer layer of smashed up rock in which waves are
trapped and scattered, a crust about 60 km thick, the properties of which
are determined from signals from impacts of lunar modules, and a region
(the upper mantle) from 60 to 300 km depth in which the P-wave and
S-wave velocities are about 8.9 and 5.1 km/s, respectively, the properties
of which are determined from signals received from distant meteorite
impacts and near surface high frequency teleseismic events; and finally a
region (the middle mantle) from 300 to 800 km depth where the P and S
velocities, of about 8.1 km/s and 3.8 km/s, respectively, are derived from
signals from deep moonquakes that occur within or below the middle
mantle. The seismic velocities within the different zones are shown in
Figure 5.9. A somewhat different interpretation is, however, possible,
involving a smaller ditference between the upper and middle mantle.
Toksoz et al. (1974) suggest that all observations might be consistent with
constant veleaties (about 8.1 km/s for P and 4.0 km/s for S) throughout
the upper and middle mantle, although recent interpretations do indicate
a decrease in the S-wave velocity with depth from about 4.7 km/s just
below the crust to 4.0 km/s at 700 km depth (Dainty, Goins and Toksé6z,
1975; Toksoz, 1975).

Little is known of the zone below 800 km (the lower mantle) save for
evidence from certain moonquakes that S-waves in it are strongly
attenuated.

There is some evidence for a small inner core (Nakamura et al., 1974).
A signal has been received from a source at 168 °, nearly at the antipodes
of the seismometers, with a large delay on the P-wave arrival compared



The Moon 152

with signals from near sources (Figure 5.8). Although only one such signal
has been identified, Nakamura et al. (1974) interpret it as coming from a
wave which has passed through a central zone or core in which the P-wave
velocity is much less than in the mantle outside it. They set the following
limits on the size of and velocity in a possible core:

radius: 170-360 km
P-wave velocity: 3.7—-5.1km/s.

The interpretations placed upon the seismic signals so far analysed may
be summarized in the following list of zones of the Moon:

(a) The crust, 50-60 km thick, at least in the area of the seismometers. It
is probably composed of material rich in plagioclase and the top few
hundred metres are pulverized, forming the regolith.

(b) The upper mantle, 250 km thick, extending to a depth of 300 km. The
P-wave velocity is 8.1 km/s, Poisson’s ratio is 0.25, and comparisons
with laboratory determinations of seismic wave velocities suggest
that the material is a mixture of olivine and pyroxene with the ratio
Mg/(Mg+Fe) about 4 to 5.

Figure 5.9. Seismic velocities in the Moon. (After Nakamura et al.,

1974.)
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(¢) The middle mantle, extending from 300 to 800km depth. The
P-wave velocity is about 8.1 km/s or possibly slightly less, but the
S-wave velocity (3.8 km/s) is much less than in the upper mantle and
Poisson’s ratio is between 0.33 and 0.36, an unusually large value.
The deep moonquakes occur mainly towards the base of this zone.

(d) The lower mantle, below 800 km. Velocities in this zone are not
known; all that is known about it is that S-waves do not penetrate it.

(e) A possible core of radius between 170 and 360 km in which the
P-wave velocity may lie between 3.7 and 5.1 km/s.

It must be emphasized that this division of the Moon is by no means so
clearly based as that of the Earth into crust, upper and lower mantle and
inner and outer core. The number of seismometers is almost never
sufficient to enable velocities as well as locations to be determined, and
the only possible assumption to make for a given source is that mantle
velocities are constant. There is no possibility, as there is on the Earth, of
deriving a travel-time curve for P or S, or any other phase, from signals
from a single source observed at a wide spread of seismometer stations.
Furthermore, because of scattering in the outer wave trap, it is only very
rarely that signals can be seen that might be interpreted as having arrived
by paths other than the direct P or S rays. There are of course no
observations of free oscillations, but then the division of the Earth into
zones was established before any observations of free oscillations on the
basis of signals arriving at well-spaced seismometers by a multiplicity of
paths. There are no doubt deficiencies in the distributions of earthquakes
and seismometers on the Earth, which prevent a close analysis of regional
variations, but the travel times and the velocity distributions derived from
them are for the most part unambiguous, whereas unique solutions are
not possible for the Moon.

5.6 Lunar magnetization, heat flow and electrical conductivity

The magnetization of the Moon, the heat flow through its surface
and the electrical conductivity of its deep interior all provide information
about the internal structure of the Moon, although the interpretation to
be placed on any of them is far from clear.

The magnetic field of the Earth has provided three lines of evidence
about internal structure. In the first place, the properties of the main
dipole field, coupled with those of the secular variation, have, through the
concepts of the dynamo theory of the main field, clarified some of the
questions we should ask about the core, about its electrical conductivity
and viscosity, the motions in it and the sources of energy it contains (see
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Gubbins, 1974). Unfortunately it is perhaps true to say that at present the
theory of the geomagnetic dynamo (see Moffat, 1978) is not sufficiently
developed to enable us to derive, in more than the sketchiest of ways,
answers to those questions from the properties of the main field. There
are also major problems, as yet unapproached in dynamo theory, such as
why the main dipole is inclined to the spin axis of the Earth, just as it is in
Jupiter although not in Saturn. Secondly, the field generated around and
within the Earth by the magnetosphere and ring currents induces currents
in the outer parts of the Earth which themselves generate time-varying
magnetic fields that can be detected at the surface. By comparing the field
of the induced currents with the fields that induce the currents, it is
possible to determine how the electrical conductivity of the Earth varies
with depth. Then, using the measured behaviour of conductivity with
temperature in semiconductors such as olivine, some idea of the
temperature within the outer parts of the Earth may be obtained. Lastly,
the remanent magnetization of rocks at the surface has been used to show
how parts of the surface of the Earth have moved relative to each other,
so that it has contributed to the development of the concepts of plate
tectonics, the movements corresponding to which are seen as surface
manifestations of the outward flow of energy from the interior of the
Earth. Does the magnetization of the Moon seem likely to give us any
comparable information about its interior?

The general magnetization of the Moon is extremely feeble, as has
been shown by a succession of observations with magnetometers carried
in satellites in orbit about the Moon. Those that went closest to the Moon
were the sub-satellites of the Apollo 15 and 16 missions at altitudes of
some 100km above the surface. They showed that the Moon’s
permanent dipole moment is not more than 4.4 X 10% T m?, whereas that
of the Earth is 1.8 X 10" Tm?; the surface field corresponding to the
Moon’s permanent moment would not exceed 10™'° T compared with the
Earth’s field of the order of 5 x 10~> T. However, closer inspection shows
that the Moon has local magnetic fields. The astronauts of Apollos 12, 14,
15 and 16 made measurements with magnetometers that showed fields of
up to 3x107" T, and similar results were obtained in traverses by
Lunakhod 2. The magnetometers in the Apollo 15 and 16 sub-satellites
were able to map fields which are less than 107° T, but extend in a
coherent way over appreciable areas of the surface of the Moon. Then
again, studies of the flow of the solar wind past the Moon by the Explorer
35 satellite have indicated magnetized regions at the surface which
compress the stream of protons and electrons, while most recently
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electron probes in orbiting satellites have provided further evidence of
magnetized regions. Thus, the picture of the magnetization of the Moon s
quite different from that of the Earth where the main field dominates and
most of the magnetization of rocks is induced by the main dipole field and
is not, as it appears to be on the Moon, mainly permanent magnetization.
The question to answer for the Moon is, how did the permanent
magnetization, varying comparatively rapidly from place to place as it
does, come into existence?

Further evidence of the permanent magnetization of lunar material has
been provided by extensive studies of rocks brought back in the Apollo
sample programme. Natural remanent magnetization is widespread but,
whereas on the Earth such magnetization is carried by ferrimagnetic
oxides of iron and titanium, that of the lunar rocks resides in very fine
particles of iron. Attempts have been made to use the demagnetization
curves of samples under various conditions to estimate the field in which
the magnetization was established. For that to be possible it must be
established that the remanent magnetization is thermal or chemical
remanent magnetization and that is something difficult to do for lunar
samples. Thus, very few estimates of the intensity of the inducing field
have been made and they range from 2x 107 T to 10™* T (Fuller, 1974).

Local studies of samples and wider surveys of the surface of the Moon
show that the rocks at the surface are permanently magnetized, and that
the magnetization maintains its sign over areas of some 10 ° (300 km) in
extent. Some of the areas of magnetization appear to be associated with
large craters though that is not always so; the strengths of the fields
appear to be greater on the far hemisphere than on the near hemisphere.
Yet the Moon itself has no main dipole field, so how have the surface
materials become magnetized? It may be pointed out that, because the
surface fields change sign every 300 to 500 km, it is not sufficient simply to
have a dipole field. Some way is needed of producing in addition
remanent magnetization of variable direction relative to the main field.
Another difficulty is that it cannot be said that any of the lunar rocks are in
the positions they were in when magnetized. On the Earth various tests
can be applied to check that rocks have indeed not been disturbed since
they were magnetized, but that has not been possible for lunar samples,
and so the directions of the fields in which they were magnetized cannot
be reconstructed.

A wide range of explanations has been advanced to account for the
magnetizing fields; they fall into three categories: fields generated in the
Moon and since decayed; fields of the Sun or Earth that were once much
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stronger; and fields generated by solar or other plasmas, again once
stronger than now, streaming past the Moon. It has also been suggested
that the shock of meteorite impacts might magnetize the surface material.
One of the more complete attempts at an explanation is that of Runcorn
who has postulated that the crust of the Moon (outside the Curie point of
iron) became magnetized in the dipole field of a lunar dynamo maintained
in a core which was liquid early in the history of the Moon but which has
now solidified. The field of a shell magnetized by a dipole field vanishes
outside the shell after the dipole field is removed, but the crust is still
magnetized and, where it is damaged, by craters for example, field lines
are discontinuous and external fields appear.

Unfortunately it has to be admitted that we do not know how the lunar
surface was magnetized. We therefore do not know if the Moon did once
have a dipole field and we do not know how strong it was. At present then,
intriguing as are the issues it raises, we cannot draw on the remanent
magnetization of the Moon to tell us about the structure of the interior.
One thing does seem clear: whatever the origin and history of the Moon’s
field, it is not simply a small scale model of the Earth’s field (see also
Runcorn, 1977).

The Apollo 15 and 17 astronauts carried with them instruments for
measuring the temperature gradient in the lunar soil and its thermal
conductivity and hence they were able to estimate the flow of heat out
through the surface of the Moon (Langseth et al., 1972; Langseth, Keihm
and Chute, 1973).

The measured value of the flow at the site of the Apollo 15 landing was
2.2x107>W/m?, while at the Apollo 17 site it was 1.6 x107>W/m’
(Schubert, Young and Cassen, 1977); the difference between the two
values is within the uncertainty of both. It is found from a study of the
surface brightness temperature, made on the Apollo 15 flight, that the
thermal conductivity increases rapidly with depth down from the surface
of the Moon (Keihm et al., 1973). The implications of these values will be
discussed in Chapter 9.

As with the Earth, it is not possible to estimate the temperature within
the Moon solely from the rate of flow of heat out through the surface. To
do so, we would need to know the original temperature, the rate of
generation of heat within the Earth or Moon and the processes of heat
transfer. None of them do we know. We can, however, gain some idea of
the variation of temperature within both the Earth and the Moon from
the electrical conductivity of the material, and that in turn can be
estimated from the magnetic fields generated by currents induced by
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external fields. The materials of the outer parts of the Earth and the Moon
are generally supposed to be semi-conductors, such as olivine, and it is
well known that the electrical conductivity of a semi-conductor depends
on temperature, T, according to the exponential formula

o=Y o;exp (—E/kT)

where o; is a constant independent of temperature and E; is an activation
energy. There are distinct values of o; and E; for impurity, intrinsic and
ionic conductivity and those modes of conduction may dominate at
different temperatures according to the values of o and E..

Suppose now that o; is known as a function of radius in the Moon and
suppose also that the constants o; and E; are known for the lunar interior;
then it would be possible to calculate temperature as a function of radius.
In fact we do not know what we need to know to make the calculation; as
will be seen, o; is not known as a function of radius, rather some general
indication of its behaviour can be given, and also we do not know for sure
of what the lunar interior is composed. It will be argued below that it is
probably not closely comparable to any material in the Earth. Despite the
lack of precise information, it does seem nonetheless possible to set useful
constraints to the possible behaviour of temperature as a function of
radius in the Moon.

The estimates of electrical conductivity depend on the way in which the
presence of the Moon affects magnetic fields convected past it in the solar
wind. Those fields induce currents in the Moon which, in turn, generate
magnetic fields that change those moving with the solar wind, so that the
response of a magnetometer carried in a satellite on the side of the Moon
remote from the Sun differs from that of an instrument on the sunward
side of the Moon. A number of such studies have been made, and the
variations of conductivity with depth as proposed by different authors are
shown in Figure 5.10. Two different types of analysis have been used:
one, applicable to variations on the night side of the Moon, deals with the
transient response of the Moon (Dyal and Parkin, 1973; Dyal, Parkin and
Daily, 19744, b), while the other, more applicable to the day side,
employs a Fourier decomposition of the response (Sonnett et al., 1972;
Kuckes, 1971). Hobbs (1973) has pointed out that unique solutions
cannot be obtained and has applied inversion theory to indicate the range
of conductivity entailed by the data, although since then the scope of the
available data has widened and correspondingly tighter limits might now
be set to the conductivity. Notice that the conductivity cannot be esti-
mated at a radius less than 0.4 of the surface radius.
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The electrical conductivity of olivine at high pressure has been deter-
mined by Duba et al. (1974) and, by using it, temperatures can be
estimated from the conductivity. It is a general feature of all estimates
that the temperature rises rapidly to about 1200 K at a radius of about 0.8
of the surface radius and thereafter more slowly to about 2000 K at 0.4 of
the surface radius. The particular values depend on the material of the
Moon being olivine and too much credence should not be placed on
particular numerical values of the temperature, but it may well be that the
qualitative feature of a rapid rise with depth followed by a much slower
one to just below half the radius (where estimates fail) does represent the
behaviour in the Moon.

Figure 5.10. Electrical conductivity in the Moon.
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5.7 The crust and mantle of the Moon

Until recently (see, for example, Lyttleton, 1963; Cole, 1971,
Cook, 1972) models of the density and elastic properties within the Moon
were constructed on the basis that the equation of state of lunar material
was similar to that of the upper mantle of the Earth. There seemed good
justification for so doing, for the mean density of the Moon (3340 kg/m?)
is very close to that of the upper mantle at zero pressure, the moment of
inertia appeared to be very nearly 0.4Ma?, indicating an almost uniform
density, and the pressure was so low relative to the bulk modulus of
mantle material that very little change of density with radius could occur.
These considerations are still valid in a first approximation, but need to
be refined. Thus the moment of inertia is distinctly less than 0.4Ma?, so
that some central condensation or some lighter surface layer, or both, are
required. Then, as will shortly be secn, the seismic data, not available to
earlier workers, clearly show that the density and bulk modulus do
change with temperature as well as with pressure within the lunar mantle,
and in fact have different properties from the Earth’s mantle. Finally, and
it is to this point we now turn, there are clear indications from studies of
the chemistry of lunar samples that the material of the Moon is not
identical with that of any zone in the Earth.

The surface of the Moon has been shown to consist of two distinct types
of rock (see Burnett, 1975), the dark material of the maria and the light
material of the highlands. The former has the higher content of iron and
titanium (higher in fact than terrestrial basalts) and has a low content of
alumina, and it is composed of clinopyroxene, ilmenite and various iron
oxides. The highlands on the other hand are primarily composed of
plagioclase with a high content of calcium, they have a high content of
alumina but are low in iron oxides. It is supposed that both are derived
from the original mantle material of the Moon, whether by differentiation
in a molten magma, or by melting and recrystallization under the impact of
meteorites, although it is possible that the crust accreted separately onto
the Moon, from meteorites, after the formation of the mantle.

It seems that, if the mare and highland materials were derived from the
mantle, the mantle is unlikely now to have the same constitution as the
upper mantle of the Earth.

Further evidence for differences between the Moon and the Earth
comes from a study of trace elements. Thus, uranium and thorium appear
to be concentrated in the outer parts of the Moon, for, if the Apollo
sample concentrations were maintained throughout the Moon, the
generation of heat would be too great for the observed outward flow of
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heat. Studies of lead/uranium and ’Sr/%®Sr ratios show that the chem-
istry of lunar material is not the same as of terrestrial material. Generally,
the volatile trace elements (Na, Pb for example) are depleted relative to
refractory ones (U, Th) in the Moon, and the siderophile elements (those
with metallic association, for instance Ni, Ir, Au, Ge) have abundances in
lunar material that are low compared with the average solar composition.
These observations appear to indicate that the chemistry of the Moon
differs from that of the Earth and from that of chondritic meteorites
(often supposed to represent the composition of the solar system). In
particular, the low abundances of siderophile elements may indicate that
metallic components were separated from the material that eventually
formed the Moon before that formation took place, and thus one might
speculate that the lunar mantle is also deficient in metals relative to the
terrestrial mantle.

It should be noted that the density of the mare basalts is between 3300
and 3400 kg/m® whereas that of the highland material is 2800 to
3100 kg/m>. It has been suggested on the basis of laboratory experiments
that the density of the basalts would increase by phase transformation to
between 3500 and 3700 kg/m> at the pressures encountered in the
mantle of the Moon,; if so, mare basalt cannot compose the mantle.

Let us now see if such seismological evidence as there is about the
Moon’s interior is consistent or not with the inferences drawn from the
chemical and isotopic constitution of surface samples.

It was seen that the P-wave velocity is almost constant over depths from
about 60 km (the base of the crust) to 700 or 800 km, while over the same
range the S-wave velocity decreases somewhat. The implications of this
behaviour are now developed. It will be shown first that density and
elastic moduli must depend upon temperature as well as upon pressure
and cannot be a function of pressure alone.

Let « and 8 stand as usual for the P-wave and S-wave velocities and let
K be the bulk modulus, « the shear modulus and p the density. Then

a®=(K+35u)/p, B =ulp,
and, as in Chapter 2,
K/p=a’-3p>.
The adopted values of the P-wave and S-wave velocities at 60 and
800 km are given in Table 5.4. From them there follow the values of K/p
and u/p which are also given in that table: K/p increases from 36 km?/s’

to 43.2 km?/s® and /K, which is equal to B*/ (a2+§ﬂ %), decreases from
0.61 to 0.36.
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Let us compare these values for the lunar mantle with the correspond-
ing values for the Earth at the same pressure. To calculate the pressures at
60 and 800 km, it is sufficient to treat the Moon as a sphere of uniform
density; if the surface radius is a and the density p, the pressure at radius r
is

27 Gota>-r,
3
where G is the constant of gravitation.

Taking a to be 1738 km and p to be 3340 kg/m®, the pressure at a
depth of 60 km will be found to be 0.4 X 10° Pa, while at 800 km it will be
3.45x10° Pa.

The Adams—Williamson argument may now be used to set limits to the
change of density from 60 to 800 km, assuming that it comes solely from
the increase of pressure. We have

dp_dp
p K
so that
dp =¥ dp,

where ¥ stands for p/K.
An integration by parts gives

Py
so=[wpl- [ pav.

pP1
Here p; is the pressure at 60 km (0.4 x 10° Pa) and p, that at 800 km
(3.45 x 10° Pa). The integral depends on the behaviour of W, that is, on

Table 5.4. Properties of the lunar mantle

Depth Pressure o B K/p  ulp Koin Bomin
(km)  (10°Pa) (km/s) (km/s) (km/s)* (km/s)> (10''Pa) (10 Pa)

60 0.4 8.1 4.7 36.16 22.09 1.15 0.76
800 3.45 8.1 4.1 43.20 16.81 1.37 0.53

Kiin» Hmin: values calculated with the minimum density of 3180 kg/m°.
If « is 8.0 km/s, the corresponding values of K, are:
Depth below

the surface Konin
(km) (10" Pa)
60 1.10

800 1.37
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whether the seismic wave velocities change steadily or in jumps. Limits
may, however, be placed upon it if we assume that ¥ changes mono-
tonically. Then

, I Pd‘l'l <|(p2=p1)(¥2—-¥y),

where ¥; and ¥, are the values of ¥ at p, and p;.
In fact [p dW is less than zero, for p, > p;, but ¥, <W¥,. The numerical
values are

p K/p v

(10° Pa) (km?/s?) (1078 s*/m?)
1 04 36.16 2.76

3.45 43.20 2.31

Hence
[Wpl5:=68.6 kg/m’,
while
[(p2—p1)(¥2— V)| < 14.3 kg/m>.

Thus, the increase of density from 60 to 800 km should lie between 69
and 83 kg/m>, provided that pressure is the only factor causing the
density to change.

The seismic data show that K/p increases by about 20 per cent over the
range 1-3.5x 10° Pa in the Moon, while the argument from the Adams—
Williamson relation suggests that the increase of density is not more than
about 2.5 per cent. The value of the density itself may be estimated from
the dimensionless angular momentum of the Moon, the current estimate
of which is 0.392 (see above). The density between 60 and 800 km will
take its least value if the density below 800 km is constant from there to
the centre, and the least value between 60 and 800 km in those circum-
stances is then 3180 kg/m>. Thus we can calculate the minimum values of
K by multiplying the observed values of K/p by 3180 kg/m>. The values
so found are given in Table 5.4, together with corresponding values of u.

The terrestrial values of K, u and p to compare with the foregoing
estimates of lunar properties are taken from the models of Gilbert and
Dziewonski (1975). Gilbert and Dziewonski constructed two models,
1066A and 1066B, the differences between which are for the present
purpose insignificant, and the values given in Table 5.5 are the means of
K, n and p from the two models. The comparison between terrestrial and
lunar properties is contained in Table 5.6.
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The density within the Earth over the relevant range of pressure (that
is, to a depth of about 100 km, or within the lithosphere) is very close to
the mean density of the Moon (3340 kg/m?) and increases by less than the
amount estimated above for the Moon. Not only are the values of K/p at
the same pressure different for the Earth and the Moon, but X is greater
for the Moon than for the Earth. The values of K/p are independent of
estimates of density, whereas the lunar values of K are proportional to
the assumed density; nonetheless, the minimum values exceed the ter-
restrial values by substantial amounts. The increases of K, in the Moon as
well as the Earth, are of the same order as suggested by laboratory
measurements of the variation of K with pressure for olivine. Kumagawa
and Anderson (1969) found dK/ap to be 5.2 for polycrystalline olivine, so
that the change of K from 1 x10° to 3.5 x 10° Pa would be 13 x 10° Pa as
compared with the estimated increases of 20 x 10° Pa for the Earth and
22 x 10° Pafor the Moon. At the same time, the temperature will increase
with depth, both in the Earth and in the Moon, leading to smaller changes
of K than estimated from the effect of pressure alone. It follows that the

Table 5.5. Values of density p, bulk modulus K, shear modulus 1 and
the ratios K/p, u/K for the outermost parts of the Earth

Depth Pressure Density K u K/p uw/K o
(km)  (10°Pa)  (kg/m®) (10 Pa) (10''Pa) (km/sy
42 1.0 3330 1.04 0.72 31.2 0.70 0.20
73 2.0 3342 1.12 0.70 33.4 0.62 0.24
100 3.0 3346 1.20 0.68 35.4 0.57 026
123 3.7 3357 1.26 0.66 37.6 0.52 0.8
168 52 3375 1.36 0.64 40.5 0.46 0.30

The values are approximately means of the values given by the two models
1066A and 1066B constructed by Gilbert and Dziewonski (1975).

Table 5.6. Comparison between properties of the Earth and the Moon

Pressure K

n
(10°Pa) (10" Pa) (10! Pa) W/ K -

Earth Moon Earth Moon Earth Moon Earth Moon
;5 1.04 115 072 070 069 061 020 025

1.24 137 0.67 0.53 0.54 0.39 0.28 0.32
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bulk modulus of the lunar mantle, supposing it to have a uniform
composition, increases more rapidly with pressure than does that of
olivine. The bulk modulus of olivine decreases by 1.5x107 Pa/deg
(Kumagawa and Anderson, 1969). Thus the difference between the
increase of K in the Earth and in the Moon could be explained if the
temperature between 40 and 120 km in the Earth increased by 200 K
more than that in the Moon between 60 and 800 km. However, if a
difference in temperature is to be invoked to explain the differences in K
itself, the temperature in the Earth at 40 km would need to exceed that in
the Moon at 60 km by 700 K, and that seems unlikely.

It is possible that the changes of bulk modulus with depth in both the
Earth and the Moon may be accounted for by the actual increase in
pressure and plausible differences of temperature, but the differences in
the values of K themselves indicate a difference in composition of lunar
and terrestrial material.

There is an evident difference between the ratio u/K for the Earth and
the Moon and, as may be seen from Table 5.6, not only is K greater in the
Moon than the Earth, but w is lower, and, whereas K increases with
pressure more rapidly in the Moon than the Earth, u decreases more
rapidly. The two effects together lead to great differences between the
ratios u/K.

u, like K, increases with pressure and decreases with temperature. If a
temperature effect could account for the different values of K in the
Earth and the Moon, could it account for the different values of u as well?
The signs of the differences show that it cannot. K increases more rapidly
in the Moon than in the Earth, implying a lower temperature at a pressure
of 3.5x10° Pa in the Moon than in the Earth, but u decreases more
rapidly in the Moon, implying a higher temperature in the Moon. The
validity of this argument depends only upon the assumption that the
changes of K and u are due solely to pressure and temperature and that
the coefficients of temperature have the same signs for K and u, as is the
case.

We must conclude that the changes of K and u with pressure and
temperature cannot account for the differences of K and u and u/K
between Earth and Moon. It seems clear that there are real differences of
composition, for, not only is the bulk modulus greater in the Moon, but
also, it seems likely, the density is less. The minimum density, as set by the
dimensionless moment of inertia, is considerably less than the terrestrial
density over the same range of pressure, and the maximum possible
density must also be less, for the terrestrial density is very close to the
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mean density of the Moon, while the density of the outer part of the
Moon must be less than the mean density for the dimensionless moment
of inertia to be less than 0.4.

Consideration of the shear modulus introduces other factors.
Kumagawa and Anderson (1969) give the following values for the
pressure and temperature coefficients of the moduli of olivine:

aK/ap: 5.2 dufop: 1.8
aK/oT: —1.5x10" Pa/deg  ou/dT: —1.3x 10’ Pa/deg.
If one were to suppose that these values apply to the upper mantle of

the Earth, then the change in temperature between 40 and 110 km would
be estimated to be

from the change of K: —470K
from the change of u: +730 K.

The corresponding estimates for the lunar temperature at 800 km
depth are

from the change of K: —600 K
from the change of u: +1730 K.

It is clear from these estimates that, in the Earth and Moon alike, u«
decreases more rapidly with depth than can be accounted for by a simple
decrease proportional to the increase of temperature. Furthermore the
lunar and terrestrial values of dK/ap appear to be significantly greater
than found in laboratory experiments, namely at least 8 to 9 instead of
about 5 for olivine. The greatest values found experimentally are about 6
(Cook, 1972) and this suggests that the change of K is not solely due to
pressure, but to a change of composition as well.

Two conclusions seem to follow from the foregoing analysis. The first is
that the values and changes of K and u in the Earth and Moon cannot be
reconciled if it is supposed that the material is the same for each. The
material of the lunar mantle appears to be less compressible than the
terrestrial mantle. The other conclusion is that in the Earth as in the
Moon the decrease of shear modulus shows that the behaviour of the
shear modulus with temperature is more complex than laboratory work
indicates.

5.8 Lunar models

Any model of the Moon or a planet must satisfy the constraints of
the known mass and moment of inertia, but in themselves those con-
straints are far from being sufficient to determine the internal structure
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and in general some assumptions must be made about the present state of
the body or of the conditions that gave rise to it. As has been shown in
Chapter 4, a great deal is known in a general way about the behaviour of
planetary materials, but the complexity of the chemical constitution is
such that it is not possible to predict the state of a particular body in the
absence of a detailed chemical specification. There is little direct evidence
on which such a specification can be based and so we are faced with two
possibilities; either to draw such general conclusions as are possible in the
absence of detailed chemical knowledge, or to call upon theories of the
origin of the planets for a chemical recipe. In this book I emphasize the
first approach; I am concerned to see how far it is possible to go without
making use of theories of origin. That is not to say that such theories are to
be ignored: they have much of value to tell us about the planets, but one
aim of this book is to see how far it is possible to use our knowledge of the
present state of the planets to check the validity of such theories, and in
consequence we must proceed as far as possible independently of them.

Our knowledge of the Moon consists then of the mean density,
3340 kg/m>, the moment of inertia factor, 0.392, and the seismic data as
analysed in the previous section. Because it seems that the material of the
outer parts of the Moon is not identical with that of the upper mantle of
the Earth, we are not allowed to construct models of the interior of the
Moon using terrestrial equations of state.

The moment of inertia factor is somewhat less than % so that some
increase of density towards the centre occurs. Our knowledge of the Earth
indicates that there are three possible causes: compression of material of
uniform composition under self-gravitation; the olivine-spinel or similar
change of phase; and the presence of a heavy core. Of these possibilities,
the second, a phase transition, may be eliminated because the pressure is
never great enough for it to occur. The moment of inertia factor shows
that the density is nearly constant throughout the Moon, so that the
central pressure may to a first approximation be taken to be that in a
sphere of constant density, namely

27Gp* ,
mihe/ Py
3
where G is the constant of gravitation, p the density and a the radius.
With p equal to 3340 kg/m? and a equal to 1738 km, the central pressure
so estimated is 4.7 X 10° Pa, which is much less than the pressure (~1.5x

10'° Pa) at which the olivine—spinel transition occurs. It may therefore be
taken that the outer parts of the Moon have the low pressure crystal
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structure, which is consistent with the mean density of the Moon being
close to that of olivine and to that of the upper mantle of the Earth.

We therefore consider two possibilities: either the Moon is of more or
less uniform constitution throughout (apart from the crust of 60 km) or it
has a small central core of heavy material of different chemical constitu-
tion, and we ask first if the limits given in Appendix 1 provide any guide to
the choice. Parker’s limit is that, if there is a core, its density must exceed
1.03 times the mean density and its radius must be less than 0.99 times the
Moon’s radius, hardly stringent conditions. If the variance of density is to
be minimized, the radius of the core must be 0.75 times the lunar radius
and the outer density must be 0.95 and the core density 1.06 times the
mean density. These values do not suggest the presence of a small dense
core. Similarly Rietsch’s (1978) bound on the maximum density, namely
3472 kg/m>, within a radius of 0.9 times the lunar radius, does not
indicate the existence of a dense core. These limits tell us that, unless
there are any strong reasons for supposing a small heavy core to exist, we
should first consider the effect of self-compression on material of uniform
composition.

In considering the Moon we can take advantage of the fact that the
maximum pressure is relatively low and so adopt a simplified treatment.
The relevant parameter here is the ratio of the central pressure to the bulk
modulus of the material; the former has just been estimated to be about
4.7 x 10° Pa, whilst the latter was seen in the previous section to be of the
order of 1.5x 10! Pa, so that the ratio is about 3 x 1072,

This means that the maximum change of density due to self-compres-
sion is of the order 3x 1072 and accordingly an approximate algebraic
treatment of the problem is possible in which the pressure is calculated as
if the density were constant. The pressure at any radius, r, is accordingly

taken to be
2
—37—7 Gp*(a®-r?),

where p is understood to be the mean density of the Moon.
Further, K is assumed to be given by the linear expression

K =Ko+bp,

where, for the Moon, K, is 1.5x 10" Pa and b is 8.
The change of density with pressure is given by

dp_dp
p K’
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with the foregoing expressions,

2
dp= —?”sz d(r?)

and
K=KO+%’Gp2(a2—r2).
Thus
2 3 2 2,2 2
dp = 7 Gp [1_ wbGp~(a r)]d(rz),
3 K() 3K0
to the approximation adopted here, leading to
27 Gps 22 27’ 2; 5, 2 22
=pot+———(@@ —r)— G°b —-ro).
P =po 3K0(a r)gK(z) pola” —r°)
Thus
p=po 1+ (2= - T (a*- 7]
a’ a ’
where
_27 Gpia’
3 K
and

&is po/Ko, where p. is the central pressure and 7 is 36 (p./ Ko)*. The mass is
equal to

I 4pr* dr
0
and the moment of inertia to
a 877' 4
— pr dr.

L 3 P

Thus
47 3 2 8

M =34 po(l+5€—337m)

and

8
I=1—’5’ a®po(1+3¢—&n)
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whence

I
oz = - 55E + 0+ 100)8°]

Since ¢ is 3 x 107>, the third term is negligible and we find

I
Mo 0.3986.

The result is significantly greater than the observed value of 0.392 and
we conclude that self-compression is inadequate to account for the
observed moment of inertia.

So far the effect of the 60 km crust has not been considered. We do not
know what the density is, but suppose it to be 3000 kg/m>. Then the
moment of inertia factor of a uniform interior covered by such a crust, the
whole having a density of 3340 kg/m>, would be 0.397. The effects of the
crust and self-compression may be combined according to the formula
given in Appendix 2. Let y be 5I/2Ma>. If vy, is the value corresponding
to one factor and y, that to another and, if both are close to 1, the two
factors together give a value of y equal to y; y». If then we combine a crust
as just specified with an interior in which the density increases by
self-compression, the moment of inertia ratio is found to be 0.396.

This value is still in excess of the observed value and it therefore seems
likely that the Moon possesses a small heavy core. Let the core in an
otherwise uniform Moon have a value of y equal to y;. We must then
have

Yobs = Y1Y27Y3
or

Y3 = Yobs/ Y1Y2s

where y.ps is the observed value for the Moon and vy, and y, are
respectively the values for the crust and self-compression.

We have just seen that y,y, = 0.99 (I/Ma’ = 0.396). Since yous is 0.98,
we require that y; should be 0.99. Suppose, for example, that the core is
not allowed to have a density in excess of 8000 kg/m> (an iron-like
material). The required radius of the core would then be 340 km and the
mean density of the mantle material between the core and the crust would
be 3270 kg/m>.

To summarize, a model with the following characteristics has a moment
of inertia ratio very close to the observed value:

(a) a crust of 60 km ihickness and a density of 3000 kg/m>,
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(b) a mantle of mean density 3270 kg/m> and bulk modulus of 1.5 x
10"! Pa, under self-compression,
(c) a core of density 8000 kg/ m® and radius 340 km.

All these are consistent with our knowledge of the Earth and the Moon,
but other possibilities are by no means excluded. The nature of the crust is
in fact rather uncertain. It is not known if it extends over the whole Moon
(Lammlein, 1977) and there is no independent evidence for the density.
A value of 3000 kg/m’ seems reasonable in the light of lunar sample
properties. If the crust were less dense, the core would need to be smaller,
and vice versa. The fact that the very sparse seismic data seem to set a
limit of about 300 km on the radius of the core (Nakamura et al., 1974)
may be seen as support for a crustal density not less than 3000 kg/m”>. As
to the material of the mantle, it does seem to differ significantly from that
of the upper mantle of the Earth, for the density appears to be less than
that of the upper mantle of the Earth over a comparable range of
pressure, while, as seen above, the bulk modulus is rather greater.

More elaborate models than the foregoing have been constructed,
necessarily based on more assumptions (see also Bills and Ferrari, 1977).
No allowance has been made in the present model for any increase of
temperature towards the centre and that, by reducing the increase of
density somewhat, would increase the moment of inertia ratio.
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Mars, Venus and Mercury

6.1 Introduction

Mars, Venus and Mercury form with the Earth and the Moon a
group of rather similar bodies. By comparison with the giant planets on
the one hand and the small satellites on the other, the sizes lie in a
relatively restricted range, while the mean densities are higher than those
of most other bodies in the solar system. It is natural to think that their
compositions are similar and that the structures of Mars, Venus and
Mercury might be inferred from what is known of the Earth and the
Moon.

Seismological data are, of course, not available for any of the planets
other than the Earth, so that the structures of the terrestrial planets must
be derived from the dynamical data, together with such inferences as may
be drawn from the magnetic and electrical properties, together with
analogies with the Earth and the Moon.

Unfortunately, the dynamical data themselves are less informative for
Mars, Venus and Mercury than they are for the Earth and the Moon or for
the major planets. The solar precession of Mars has not so far been
observed and, in consequence, the moment of inertia cannot be derived
from the value of J, without making the assumption of hydrostatic
equilibrium. Yet it is clear that Mars is not in hydrostatic equilibrium.
The theory of the errors likely to be committed by making the assumption
of hydrostatic equilibrium was given in Chapter 3 and subsequently in this
chapter (section 6.6) it will be applied to Mars. Our knowledge of Venus
and Mercury is even less than that of Mars. It was seen in Chapter 3 that
the value of J, of a planet in hydrostatic equilibrium is proportional to m,
and so to the spin of the planet. Now Venus and Mercury rotate very
slowly, so that m and therefore J, are small, so small in fact that for
neither planet is J, greater than the current limit of detection set by the
observations of the paths of space probes that have passed close to the
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planets. Thus, with m very small, and J, not detectable, Darwin’s formula
(Chapter 3) cannot be used to estimate C/Ma?, even supposing the
planets to be in hydrostatic equilibrium, a supposition that may not be too
erroneous for Venus, but may well be unsatisfactory for Mercury.

A seismometer was placed on Mars by the Viking mission of 1976
(Anderson et al., 1977). The disturbances caused to the instrument by
winds prevent seismic signals being detected in the daytime, and only a
few events have been detected at night. The few records obtained at a
single site provide no information about internal structure.

The magnetic field of the Earth is associated with the metallic core,
while the absence of an external dipole field of the Moon is consistent
with the absence of a core of significant size. Maguetic fields of the other
terrestrial planets might therefore provide clues to the presence or
absence of cores, but the fields of internal origin are at the most very
small, so that no clear conclusions can be drawn about the existence of
cores.

The variation of density in the mantle of the Earth is controlled both by
composition and pressure. There is a steady increase of density owing to
pressure, and there are additional increases of density within the upper
mantle, both because of an increase of the ratio of iron to magnesium and
also because of polymorphic changes of silicates under pressure. It may
be expected that the same three factors will determine the densities of
silicates in the mantles of the Moon, Mars, Venus and Mercury and,
although it was seen in Chapter 5 that the pressure in the Moon never
attains that required for the olivine-spinel transformation, the pressure in
Mars and Venus does exceed that transition pressure. Thus, it may be
supposed that, as in the mantle of the Earth, so in the mantles of Mars and
Venus, the increase of density with depth will be determined by hydro-
static compression, changes of composition and polymorphic transitions.
There is a further difficulty: the pressure at which a polymorphic tran-
sition occurs depends both on composition (that is, the iron-magnesium
ratio in olivine and pyroxene) and on temperature and so, since both
composition and temperature will probably vary with radius and pressure
otherwise than they do in the Earth, the radii or pressures at which the
polymorphic transitions occur in Mars and Venus are unlikely to.be the
same as in the Earth.

Given such complexities, inherent in the variability of iron-magnesium
silicates, it is hopeless to attempt to derive detailed models from such
dynamical data as there are, together with analogies with the Earth or
Moon to resolve the very wide range of possibilities consistent with the
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mechanical properties. Are the magnetic fields, which are very small, of
any help in resolving ambiguities in the internal structure, or can any
conclusions be drawn from ideas about the origin of the solar system? The
evidence of magnetic fields is left to Chapter 9, but the other question
brings up the matter of the general approach adopted in this book. There
are in the literature many models of the Moon and the terrestrial planets
in which the temperature and composition as functions of radius are
determined by considerations drawn from models of the early history of
the solar system, often thought of as developing from a T-Tauri phase of
the youthful Sun (see Figures 6.1-6.3).

No doubt such ideas are plausible, but it must be emphasized that the
early history of the solar system is to a high degree uncertain and that any
conclusions about planetary structure drawn from it will be affected by
that uncertainty. The early history of the solar system lies in the distant
past; there remain from it traces in the form of chemical and isotopic
constitution, possible magnetic fields and possible thermal states, them-
selves unknown save for the fluxes of heat through the surfaces of the
Earth and the Moon. To some extent general principles of chemistry can
be applied to work out in detail the sequence of condensation of a mixture
of iron and silicates, but one major uncertainty remains unresolved: did
the planets condense from hot material and cool down, or did they
accumulate from cold dust and heat up? What was the starting point of
the chemical and isotopic evolution of the planets? It is unknown.

Figure 6.2. Conditions for condensation of iron and magnesium
silicates. (After Grossman and Larimer, 1974.)
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A different attitude is adopted in this book, the aim of which is to find
out as much as possible about the planets from their present state, so far
as it is observable, and to use only established physical principles. When,
together, these fail, the failure is explicitly recognized and no attempt will
be made to fill the gap by inference from an assumed past state. From such
a self-denying approach it will yet be possible to draw some conclusions
(Chapter 10) about the origin of the solar system.

6.2 Investigation of Mars, Venus and Mercury

Of these three planets, it had been possible to learn much of Mars
by telescopic observations from the Earth. The surface can be seen
through the tenuous atmosphere, so that the period of rotation and the
size and polar flattening of the geometrical surface can all be estimated
with adequate precision. Furthermore, Mars has two small natural satel-
lites, Phobos and Deimos, the orbits of which can be determined from the
Earth, so enabling the mass of Mars and the value of J, to be found
(Kovalevsky, 1970; Sinclair, 1972). Venus and Mercury, on the other
hand, are less accessible to telescopic observation from the Earth, Venus

Figure 6.3. Mean atomic weights of the planets predicted from the
fractionation of metals and silicates in the early solar nebula. (From

Lewis, 1972.)
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because the solid surface is concealed by the thick atmosphere and
Mercury because it is always close to the Sun. Thus, whereas the older
estimates of the mechanical properties of Mars have been refined only in
detail by the new means of radar and space craft, quite radical changes
have taken place in the knowledge of Venus and Mercury. A convenient
summary of the results of telescopic observations (together with some of
the newer methods) will be found in the compilation edited by Dollfus
(1970).

Telescopic observations from the Earth have not been without their
development in recent years. It has been possible to improve the resolu-
tion of photographs very considerably by using telescopes at high alti-
tude, such as that at the Pic-du-Midi, and the measurements of diameters
was much improved by the split-image micrometer devised by Dollfus
(see, for example, Dollfus 1972a, b). Nonetheless, it has been the appli-
cation of radar and various observations from space craft that have so
greatly improved our knowledge of Venus and Mercury in the last two
decades or so.

Radar studies of the planets began with the detection of echoes from
Venus, followed by echoes from Mercury in 1962 and Mars in 1963.
(Radar returns from the Moon had been obtained as early as 1946.) A
radar system to observe echoes from the planets differs in important ways
from one that detects ships or aircraft. Obviously the transmitters must
generate more power and the receivers operate at optimum sensitivity for
echoes from such distant bodies to be received. The aerial also must be as
large as is reasonable from the point of view of cost and mechanical
practicability, but it does not have to follow a rapidly moving target. It
should indeed operate under computer control to follow the planet being
observed. Perhaps more fundamental is the difference between the
character of the echo received from a planet and one from an aircraft.
Because the planet is large and rotating, the observed returns come from
a range of distances and with a range of Doppler shifts of frequency, and,
in fact, from the distribution of echo power with respect to range and
frequency, it is possible to determine both the radius of the planet and its
rate of rotation (Green, 1968). Analyses of the echo pattern or scattering
function of a planet are greatly facilitated by the fact that successive
echoes are effectively identical, unlike those of a ship or aircraft which are
continually changing.

The obvious use of radar is of course to determine the distance of the
planet. The ratios of the semi-major axes of the orbits of the planets are
very well established by Kepler’s laws from the known orbital periods,
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and so the scale of the solar system, namely the astronomical unit or the
semi-major axis of the Earth’s orbit, follows, in principle, from a single
determination of the distance between two planets. A number of careful
observations have led to international agreement on a value to be
adopted for the astronomical unit (Ash, Shapiro and Smith, 1967).

There are two ways of estimating the radius of a planet from radar
observations. Besides that just mentioned, involving the analysis of the
echo pattern, the radius may be found by comparing the least distance of
the planet from the observatory with the distance calculated dynamically
from the orbital period. The former gives the distance to the closest part
of the surface of the planet, the latter the distance to the centre of mass,
and the difference between the two is the radius along the line of sight to
the observatory. As explained by Shapiro (1968) a process of successive
approximations has to be followed to estimate all the parameters that
determine the echo time from the planet.

A second method is also available to establish the period of rotation of
a planet, complementary to that just mentioned, which depends on the
Doppler shift of the frequency of an echo from a moving surface. That
method works well for a planet rotating relatively fast, but is less
satisfactory for the slow rotators, Venus and Mercury. However, for
those it is possible to detect specific features of the echo which come from
some particular part of the surface and move in time through the echo
pattern as the planet rotates; by following such factors, the period of the
planet’s rotation may be established. It was in this way that the current
values of the rotation periods of Venus and Mercury were first obtained.

Most radar observations of the planets have been made in the United
States where there are some very powerful observatories, particularly the
steerable systems at Millstone Hill operated by the Lincoln Laboratory of
the Massachusetts Institute of Technology and at Goldstone, operated by
the Jet Propulsion Laboratory of the California Institute of Technology.
The Lincoln Laboratory also operates the Haystack system. Cornell
University operates a system with a very large antenna at Arecibo (Puerto
Rico), where the parabolic reflector is formed in the ground and has a
fixed vertical axis, although by moving the aerial feed it can operate
within 20 ° of the zenith. Outside the United States the Mark I radio
telescope at Jodrell Bank (England) has been used for radar work, as has
the Crimean Deep Space Tracking Station in the U.S.S.R.

Accounts of the theory of radar astronomy, of installations and of
methods and results of observations of the planets will be found in the
co-operative work edited by Evans and Hagfors (1968).
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Powerful as radar methods are, they have their limits. The radii which
are determined are essentially equatorial radii; the radar echo is insensi-
tive to polar flattening, but might reveal, or set limits to, any ellipticity of
the equator. More important, radar gives no information about the mass
or gravity field of the planets, and it is there that space craft have made
fundamental contributions. The principal results have come from the
Mariner series of space craft (see, for example, Rea, 1970) which are
stabilized with respect to three axes and carry a variety of instruments
according to the special emphasis of a particular flight, but which have
always carried equipment for accurate tracking, whether by radio
Doppler shift measurements or by radio time delay measurements or
both, and have often carried television equipment. The first deter-
mination of the mass of a planet from the perturbations it produced on the
trajectory of a space craft was that of Venus by means of Mariner 2
(Kovalevsky, 1970). Much more recently the flight of Mariner 10 past
Venus and Mercury in 1974 and 1975 has led to accurate estimates of the
masses of those planets (Howard et al., 19744, b; Deane, 1976).

The first space craft to fly by Mars was Mariner 4, followed by Mariners
6 and 7, which carried television equipment (Smith, 1971; Kliore,
Fjeldbo and Seidel, 1971) and subsequently by Mariner 9, which was
successfully placed in orbit round Mars in 1971. The detailed study of the
orbit of Mariner 9 has enabled very detailed description of the gravity
field of Mars to be given (Jordan and Lorell, 1975).

The major aims of the Mariner space craft, and the corresponding craft
launched from the U.S.S.R., especially Mars 1 to 6 (Marov and Petrov,
1973) and the Venera space craft, have been the study of the surface
features, the geology and morphology, and the ionospheres and mag-
netospheres of the planets, but the instruments carried by the Mariner
space craft in particular have allowed the determination of the sizes and
rotation rates in certain cases. The size can be found from occultations by
the planet of radio signals received on Earth from the space craft. Thus
the polar as well as the equatorial radii of Mars have been determined and
radii of Mercury at orientations of 2 ° and 68 ° to the equator.

Important observations have been made with the television cameras
carried on Mariners 9 and 10. The former photographed the moons,
Phobos and Deimos, enabling their orbits to be established. The data so
obtained could be combined with tracking of the space craft itself, leading
to a very detailed description of the gravity field (Born, 1974). Photo-
graphs from Mariner 10 of the surface of Mercury led to an accurate
determination of the period of rotation, concordant with other methods
(Table 6.4).
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Space craft of the U.S.S.R. Mars series have landed on Mars and were
followed by the soft landings of the Viking Landers 1 and 2 (Soffen and
Young, 1972). From the point of view of dynamics, the important point
about the Viking landings is that they took place from space craft in orbit
about Mars, the tracking of which led to further improvements in the
knowledge of the Martian gravity field (section 6.3).

6.3 Dynamical properties

The principal dynamical properties of the terrestrial planets have
been reasonably well known for quite a long time. All three planets are
close enough for their dimensions to be established from telescopic
observations from the ground. The polar flattening and other properties
of Mars are also well determined from telescopic observations; estima-
tion of the period of rotation is straightforward, whilst the mass and the
gravitational coefficient, J,, are derived from the orbital motions of the
natural satellites, Phobos and Deimos. Mercury and Venus present some
difficulties for ground based observations. They have no natural satellites,
so that it was necessary to estimate their masses from the perturbations
that they produced of the orbits of other planets, an inherently less
accurate procedure than the more direct one utilizing the size and period
of a satellite orbit. Again, in the absence of natural satellites, it was not
possible to estimate J,, while telescopic observations failed to detect any
polar flattening of the geometrical figures. Furthermore, estimates of the
periods of rotation were very uncertain. Valuable summaries of the
knowledge of the terrestrial planets up to 1970 will be found in the book
edited by Dollfus (1970). Radar measurements, begun in the 1950s,
contributed to improved knowledge of some properties of the
terrestrial planets, in particular of the periods of rotation of Venus
and Mercury.

Knowledge of the dynamics of the terrestrial planets has been very
greatly advanced through observations made with the Mariner series of
space craft and the Viking Landers on Mars. The periods of rotation of
Venus and Mercury have been firmly established and their masses
carefully determined from the behaviour of space craft in their neigh-
bourhood. The sizes have been found from occultations of very high
frequency radio transmissions from space craft and limits placed upon the
geometrical flattening. A detailed knowledge of the gravity field of Mars
has been obtained from the orbits of Mariner 9 and Vikings 1 and 2 as
well as from the orbits of Phobos and Deimos derived from photographs
of them taken from Mariner 9. Finally, limits have been placed upon
values of J, for Venus and Mercury.
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The rotational period of Mars is 1.02596d, corresponding to an
angular velocity of 7.088 22 x 107° rad/s (Dollfus, 1970; Allen, 1963).

Recently, de Vaucouleur, Davies and Sturms (1973) have obtained a
somewhat improved value, from telescopic observations of surface
markings. They find that the period of rotation is 24 h 37 min 22.655 s or
88 642.655s, corresponding to an angular velocity of 7.088 21X
10~° rad/s.

The most recent observations of the geometrical figure of Mars are
given in Table 6.1(a).

Three means have been used to determine the geometrical figure of
Mars; visual observations from telescopes on the ground (see Dollfus,
1972b); radar observations; and occultations of radio transmitters car-
ried in space craft, especially in Mariner 9. Dollfus devised a
double-image micrometer in which two images of the planet are arranged
so that their opposite limbs just touch, and has used it at telescopes at
Pic-du-Midi and Meudon and in Greece, working with a number of
collaborators over some years. The values he obtained for the equatorial
and polar radii, as given in Table 6.1(a), are the results of combining the
optical observations with material from the Mariner 4, 6 and 7 flights.
Dollfus, like Born (1974) who used radar data and observations of the
natural satellites made from Mariner 9, did not distinguish between
equatorial radii: he took the equator to be circular. Cain et al. (1972) and
Christensen (1975), on the other hand, found the equator to be distinctly
elliptical. Cain et al. analysed radio occultations from Mariner 9, while
Christensen combined the occultations with radar and optical obser-
vations of the surface.

The agreement between the various estimates of the Martian radii is
satisfactory, although the estimates are not independent, for some of
them use common data. Nonetheless, the polar radius is probably known
to within +2 km, while it seems likely that the equator is definitely
elliptical.

The polar flattening of the geometrical surface is comparatively large
and greater than the dynamical flattening (see below), indicating that
Mars is not in hydrostatic equilibrium. The indication is strengthened by
the implication of the large geometrical flattening. Were Mars in hydro-
static equilibrium, Darwin’s formula (Chapter 3) could be applied in the
form
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to give C/Ma®. If the value of m and the geometrical flattening are
inserted, it will be found that C/Ma*=0.45. Since the largest possible
value of C/ Ma? is that for a uniform sphere, namely 0.4, it is evident that
the assumption of hydrostatic equilibrium is incorrect (see Dolifus,

1972b).

The mass of Mars is well determined from the tracking of a number of
space craft, namely Mariners 4, 6 and 9, by means of the Doppler shifts of
frequencies of radio transmissions from them. The result from the
tracking of Mariner 4 (Null, 1969) was especially precise. Mariner 9 was

Table 6.1. Dynamical properties of Mars

(a) Geometrical figure

Polar
Radii (km) flattening
a b c x1073
Born (1974) 3397.2+1 3375.5+1 6.38+0.03
Dollfus (1972b) 3398+3 3371+4 7.94
Christensen (1975)  3399.1 3394.1 3376.7 5.9
Cain et al. (1972) 3400.8 3394.7 3372.5 7.42
(b) Mass
GM M
(10"* m?/s?) (102 kg)

Mariner 4 (Null, 1969)
Mariner 6 (Anderson, 1970)
Mariner 9, approach
(Lorell et al., 1973)
S. K. Wong (quoted in Born, 1974)
Mariner 9, Phobos and Deimos (Born, 1974)

4.28283+0.00001 6.4191
4.28280+0.00020 6.419 06

4.28282+0.00010 6.41909
4.28285+0.00004 6.41913
4.28281+0.0005 6.41907

(c) J»

10%7,

Natural satellites

(Sinclair, 1972)
Mariner 9

(Jordan and Lorell, 1975)

(Sjogren, Lorell, Wong and Downs, 1975)
Mariner 9 and Vikings 1 and 2

(Gapcynski, Tolson and Michael, 1977)

1.9655+0.0014

1.9606
1.9577

1.9557+0.0004
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more versatile, for it carried cameras which took photographs of Phobos
and Deimos, so that better orbits of those satellites were determined than
could be done from the ground, and Born (1974) combined the data from
the orbits of the satellites with Doppler tracking to improve the estimate
of the mass of Mars as derived from the tracking alone (Sjogren, Lorell,
Wong and Downs, 1975). It seems likely that the best result for the mass
of Mars is to be obtained by taking the average of the Mariner 4 result and
that of Born (1974) and it is that value, namely 6.419 09 x 10 kg that is
given in the summary in Table 6.5. In fact, none of the values in Table
6.1(b) differs from this mean value by more than its own quoted standard
deviation.

Estimates of the value of J, had long been obtained from the motions of
Phobos and Deimos as observed from the Earth. Both satellites are close
enough to Mars for the perturbations due to J, to be appreciable, and,
since Mars is relatively close to the Earth, quite accurate observations of
the perturbations are available (Sinclair, 1972). However, because there
are only two satellites, neither of which can be observed in detail from the
ground, it is in effect only J, that can be determined. Much greater detail
of the field is derived from the very detailed observations of the motions
of Mariner 9. Two approaches have been adopted. In one (Sjogren et al.,
1975) the accelerations of the space craft were determined over short
segments of the orbit and were represented by the attraction of 92 point
masses distributed over the planet, a method that has also been adopted
to represent the gravity field of the Moon (Chapter 5). Then the spherical
harmonic representation of the potential of the point masses was cal-
culated. The coefficients of the spherical harmonics so determined are
listed in Table 6.2. The Viking Landers have provided new data, which
have been analysed by Gapcynski, Tolson and Michael (1977). Like
Mariner 9, Vikings 1 and 2 were followed by observations of the Doppler
shifts of radio signals from transmitters that they carried, so that it was
possible to study three orbits. The parameters of the sections of the orbits
that were analysed are as follows:

Mariner 9 Viking 1 Viking 2
a (km) 1600-9000 1500-11 700
e 0.6 0.75 0.75
i 64° 38° 75°
T (h) 12 22-27

a is the semi-major axis, e the eccentricity, i the inclination and T the
period.
It will be noted that in particular a good range of inclination is attained.
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The accelerations were found over short sections of the orbits and the
potential was represented by an expansion in spherical harmonics up to
degree 6 and order 6. The coefficients are listed in Table 6.2 for

Table 6.2. Gravity field of Mars

Normalized coefficients x 10°

c §¢
m 1 2 3 1 2 3
0 87.68 87.55 87.46 — — —
2 -846 -—827 -8.0 493 506  4.97
3.0 112 130 -1.26 — — —
1 047 039  0.34 251 246 243
2 -160 -168 -1.57 081 1.01 0.80
3 353 3.60 3.52 252 269  2.50
4 0 -097 -042 0.61
1 0.50 048 044 033 032 033
2 -020 -0.17 -0.09 -0.98 -0.91 -0.88
3 0.69 0.66  0.68 0:.00 012 -0.01
4 0.00 -0.11 -0.02 130 -1.12 -1.21
5 0 — - -0.23 — — —
1 — — =002 — — 025
2 — — -0.44 — — -0.07
3 — — 030 — —  0.00
4 — — -0.48 — — =036
5 — — —0.50 — — 031
6 0 — — 020 — — —
1 — — 024 — — -0.01
2 — — 0.4 — — 020
3 — —  0.09 — — =007
4 — — 023 — — 031
5 — — 021 — —  0.02
6 — — 028 — — 002

¢ C denotes the coefficient of the term proportional to cos ¢, S that of

the term proportional to sin ¢.

1 Jordan and Lorell (1975)
2 Sjogren, Lorell, Wong and Downs (1975)

3 Gapcynski, Tolson and Michael (1977).

The normalization is such that the integral of the square of a
harmonic term on the unit sphere is 47r. Unnormalized coefficients
were obtained by multiplying by

[(2n +1)(n—m)'(2—8nm)
(n+m)

this factor is 52 for J,.

1/2
] ’
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comparison with those of Sjogren, Lorell, Wong and Downs (1975).
However reliable or unreliable estimates of coeflicients of individual
harmonics may be, it is evident that Mars is far from being in hydrostatic
equilibrium. The significance of the coefficients, and in particular of their
dependence on degree, will be considered later in this chapter.

The gravity field of Mars thus now appears to be known in almost as
much detail as that of the Moon; the fields of Venus and Mercury,
however, remain almost completely unknown. The dynamical properties
of Venus are listed in Table 6.3. Because Venus is covered by a thick
cloudy atmosphere, optical observations of the solid surface cannot be
made and, consequently, it has not been possible until recently to obtain
reliable values of the rate of rotation and the surface radius. Radar
observations of the surface have changed that situation. A reliable value
for the (retrograde) spin rate was derived from radar reflexions from the
surface by Shapiro (1967). The period is very close to the value of
243.16 d required if Venus is to present the same aspect to the Earth at
inferior conjunction; and the implication is that Venus is constrained to
move commensurably with the Earth by a couple generated through
departures of Venus from perfect sphericity. It has been estimated that
for the commensurable condition to be maintained

B-A

1—4
—CKO,

where A, B and C are the moments of inertia, with A the least and C the
greatest.

Table 6.3. Dynamical properties of Venus

Spin period (d)* 243.09+0.18

Radius (km)® 6052.1+£2

Mass (kg)° 4.868 96 x 10**£3x 108
I, <2x107°

¢ Shapiro (1967).

® There are two values from radar observation: 6050.5+
5km (Ash et al., 1968), 6053.7+2.2 km (Melbourne,
Muhlmann and O’Handley, 1968) (see also Dollfus,
1972a).

¢ Howard et al. (1974a); the mass is given as the reciprocal
of the solar mass, namely M /408 523.9+1.2.

4 Howard, ef al. (1974a).
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The radius of the solid surface of Venus is also obtained from radar
observations. The visual observations made by Dollfus (1972a) refer to a
layer of cloud at a radius of 6115+ 13 km. Other estimates of the radius
(6085 + 10 km) were derived from space craft (Venera 4 and Mariner 5)
approaching the planet, but it seems (Ash ez al., 1968) that the motions of
the space craft have been misinterpreted, for the inferred radius is
inconsistent with a radius obtained from radar observations extending
over some years made from a number of observatories. The radar radii
estimated by Ash et al. (1968) are effectively confirmed by observations
made from the Goldstone observatory (Melbourne et al.,, 1968). The
radar values are those given in Table 6.3.

The mass of Venus was originally found from the perturbations it
produced in the orbits of other planets, but the current values derive
from perturbations of tracks of space craft near Venus. The value given in
Table 6.3 (Howard et al., 1974a) comes from the observation of radio
transmissions from the Mariner 10 space craft. No departure of the
gravity field from spherical symmetry was detectable, and the authors
conclude that J, lies between 10™® and 2 x 107>, They also estimate that
the relative differences of any pairs of moments of inertia must be less
than 1in 10*, which on the face of it appears to conflict with the argument
based on the commensurable spin of Venus (see above), according to
which one of those differences should exceed 1 in 10°.

Mercury, being free of an atmosphere, is in some ways less difficult to
study than Venus. The spin period is well established by three different
methods: Goldstein (1971) used radar reflexions from the surface;
Murray, Dollfus and Smith (1972) mapped the surface of Mercury by
observing it through a telescope on the surface of the Earth; and finally
Klaasen (1975) found the spin period from photographs of the surface
taken from Mariner 10. The second and third results agree within their
joint uncertainty.

The radius of Mercury was found from observations with Mariner 10
by Howard et al. (1974b). The value of the mass given in Table 6.4 was
derived by the same authors, who also studied the departures of the
gravity field from sphericity. As with Venus, it has not so far been possible
to detect any departures, and the authors state that all harmonic
coefficients of the gravity field must, in non-dimensional form, be less
than the corresponding coeflicients of the lunar field, that is to say, less
than about 2x 107*,

The foregoing dynamical data are all the mechanical information we
have from which to infer internal structures for Mars, Venus and
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Mercury. A seismometer was placed on Mars by the Viking Lander
(Anderson et al., 1977), but the results have so far been somewhat
disappointing. During the Martian day, the strong winds that blow
generate strong noise and it is only at night that true seismic events might
be detected. At the time of the publication just referred to, only one event
that might represent a Martian earthquake had been observed. Evidently
Mars is seismically very quiet compared to the Earth. Anderson et al
(1977) suggest that the characteristics of that one possible event may
indicate that there is a crustal layer on Mars some 30 km thick.

6.4 Models of Mars
It is now time to attempt to assemble such data as we have about
the internal density of Mars and to see what may be inferred about the
structure of the planet. We begin by noting that the mean density of Mars,
3935 kg/m?, lies between the densities of the lower and upper mantles of
the Earth when reduced to zero pressure (3300 and 4000 kg/ m® respec-
tively) and is greater than the mean density of the Moon. Recalling, also,
that the difference in density between the upper and lower mantles of the
Earth s in part the consequence of polymorphic transitions in olivine and
pyroxene, it is likely that Mars is composed in larger part of material
similar to that of the mantle of the Earth, with polymorphic transitions
somewhere within the planet. The argument for a structure of this type
was first set out by Jeffreys (1937) and the considerations leading to it are
now discussed in more detail.
The central pressure in a sphere of radius a and uniform density p is
2rGp*a’. Using the values of p and a for Mars in Table 6.5, the central

Table 6.4. Dynamical properties of Mercury

Spin period (d)

Klaasen (1975) 58.661 £0.018
Goldstein (1971) 58.65+£0.25
Murray et al. (1972) 58.644 £0.009
Radius (km)
Howard et al. (1974b) 2439.0
Mass (kg)
Howard et al. (1974b) M =M/(6 023 600 £ 600)

=3.30216x10*+3 x 10"
J>
Howard et al. (1974b) Not so far detected (<107%)
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pressure in Mars will be found to be of the order of 2.5x10'°Pa
(compare Lyttleton, 1965).

The polymorphic and compositional changes which occur in the
Earth’s mantle lie in the zone which Bullen (in, for example, Bullen,
1975) calls Zone C, a zone which lies between the depths of 410 and
980 km; at greater depths the density and elastic moduli increase steadily
with depth in the lower mantle. The pressure within the Earthat 410 km is
1.4x10'° Pa and that at 980 km is 3.8 10'° Pa. We would therefore
expect that the initial polymorphic changes in the olivine and pyroxene
series would occur in Mars (where the maximum pressure is 2.5X
10'° Pa), but that those which take place at the higher pressures would
not be found in Mars. Experimental evidence on the transitions of olivine
and pyroxene is in general agreement (Chapter 4). The central pressure in
Mars would allow the spinel transition and that to the 8-phase to occur,
but not disproportionation (if it does indeed take place) nor the final
perovskite stage.

It has to be remembered that the pressures at which the phase
transitions occur depend on temperature and composition. It is very
likely that the temperature in Mars at a pressure of say 1.5 x 10'° Pais not
the same as that in the Earth at the same pressure, whilst the example of
the Moon warns us that, although the composition of Mars is probably
generally similar to that of the Earth, it may well not be identical.
Accordingly, it would probably be incorrect to construct a model of Mars
on the basis that the density was the same function of pressure as it is in
the Earth.

Table 6.5. Summary of dynamical properties of Mars, Venus and
Mercury

Mars Venus Mercury

Spin period (d) 1.02596 243.09 58.65
Equatorial radius (km) 33974
Polar radius (km) 3373.9 6052.1 2439.0
Mass (kg) 6.41909x10% 4.869x10* 3.3022x10*
Mean density (kg/m®) 3935.2 5243.7 5433.5
m (a’w*/GM) 4.600%107° 6.107x107® 1.012x107°
J> 1.9606x 1072 <2x10°* <10~
Polar flattening

geometrical 6.92x1073 — —

dynamical 5.24x107° — —

C/Ma? 0.3752 - —
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The simplest model to take is one in which there is just a single
polymorphic transition in Mars, a plausible model in view of the rather
moderate central pressure. It will also be supposed to begin with that
there is no heavy metallic core. With a mean density less than 4000 kg/m’
it is not obvious that a heavy core is needed. It may be that it is needed to
reproduce the value of C/Ma”, and one aim of the study of models
without a heavy core must be to see if they can yield the observed value-of
C/Ma?* or whether a core must be added to do so. The first models to
discuss, therefore, are those with two zones, the material in the inner zone
being chemically the same as that in the outer zone but with a poly-
morphic transition.

The moment of inertia factor of Mars as calculated from the actual
value of J, and the rotational angular acceleration is 0.3752, but it was
shown in Chapter 3 that C/Ma” should be calculated from the hydrostatic
part of J,. Let us therefore now estimate the effect of non-hydrostatic
distributions of density upon J,. There is of course no direct deter-
mination of the non-hydrostatic part of J,, and it must be inferred
from the behaviour of other non-hydrostatic terms in the gravitational
potential.

The mean square coefficients for degrees 3 to 6 are listed in Table 9.1
and plotted against degree in Figure 9.1. The harmonics of degree 3 and
greater are produced by non-hydrostatic distributions of density and can
be seen to vary in a regular way with degree. Accordingly we suppose that
the non-hydrostatic terms of degree 2 follow the same empirical rule and,
if so, we find that the expected mean square non-hydrostatic coefficient of
degree 2 is 1.259x107° whilst the contribution of the observed
harmonics of degree 2, other than J,, is, from Table 6.2, 1.9 x 10™°. This
result suggests that J, contains no significant non-hydrostatic part and we
therefore use the observed value of J, in order to calculate C/Ma?,
recognizing that that may be a somewhat uncertain thing to do (compare
Cook, 1977). Different arguments led Binder and Davis (1973) and
Reasenberg (1977) to estimate larger corrections to J, and C/ Ma’.

The value of v, equal to SC/2Ma”, corresponding to the value of
0.3752 for C/Ma?, is 0.938. Since y is not very far from 1, the effects of
different types of departure from a constant density may be combined
according to the prescription of Appendix 2, just as was done for the
Moon. Three effects will now be considered: a polymorphic transition;
the increase of density by self-compression; and a possible crust. So far as
the crust is concerned, let us suppose that its effect is comparable with that
of the lunar crust, entailing a value of y of 0.993.
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Consider next the effect of self-compression and use the formula that
was derived for the Moon in Chapter 5, namely

y=1-35¢ +1353(9 + 10b)&%,

where £ is the ratio of central pressure to K, and K, and b are the
constants in the linear formula for the bulk modulus

K =K, +bp.
If K, is taken to be 1.5 x 10" Pa, the same value as for the Moon, then £ is
0.17.

The third term in the expression for v is negligible, and the value of y
for self-compression turns out to be 0.98.

On the hypothesis of a planet with a polymorphic transition, the
observed value, yous, Will be the product of three factors, that cor-
responding to the crust (y; say), that corresponding to self-compression
(y2 say), and that corresponding to the two zones into which the poly-
morphic transition divides the planet. Calling this y;, we should have

Y3 = Yobs/ Y172
NOW Yous is 0.938, ¥4 is 0.993 and y- is 0.98. Thus vy; is 0.964, and the
question to be addressed is whether any two-zone model with a specified
difference of density can give such a value of ;.

Because the pressure at which a polymorphic transition takes place
depends both on the temperature and the chemical composition (in
olivine and pyroxene, the iron-magnesium ratio), we have to contem-
plate, as Lyttleton (1965) did, that the transition may occur anywhere
within Mars. Of course, if the transition occurs near the surface or almost
at the centre, the density will be uniform and the value of y; will be 1. For
transitions at intermediate radii, the value of y; will be less, and we seek
the minimum value to compare with our estimate of what y; should be. If
the least value for the two-zone model exceeds i, we shall conclude that
there is in addition a heavy core as we found to be required in the Moon.

The formal expressions for a two-zone model of constant density in
each zone are given in Appendix 2. The densities are taken to be constant
in each zone because the effect of self-compression has already been
allowed in the factor y,.

If o, is the relative density in the outer zone, o that in the inner zone
and if « is the ratio of the radius of the inner zone to that of the planet,
then

o +(1-ad)o =1,

a’or+(1-a’)o=1y.
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We suppose that o, exceeds o, by the factor 1+ ¢, where ¢ is specified,
and seek the least value of vy. (The greatest value of y will be 1 when « is 0
or 1.) Now

1+ a’e
Y= 1+a’s’

and the minimum value occurs when
a =0.703+0.033¢.

If we take £ to be 0.1, « is 0.706 and the least value of vy is 0.983.

This is a value so much greater than the required value of 0.964 that our
preliminary conclusion is that a core is indeed required in Mars. The
minimum size of a core may be estimated by using the same device of
multiplying values of y. Suppose y, represents the effect of inserting a
core into an otherwise uniform planet. We must have

Yobs = Y1Y2Y3Ya4.

We have just estimated the least value of y; for a 10 per cent polymorphic
change and, if that is inserted in the above expression, the value of vy, that
results is the greatest value consistent with the assumptions, and so leads
to the minimum size of core. With vy; as just estimated and the values of
¥1, ¥2 and Yops as before, the greatest value of vy, is found to be 0.980. As
for the Moon, let the density of the supposed core be 8000 kg/m>. Then,
using the same formulae as for the lunar core, the minimum radius of a
Martian core is found to be 925 km.

The methods so far followed are rather crude and, as for the Moon, no
account has been taken of the effects of an inward increase of tempera-
ture. One refinement is to determine the self-compression exactly for a
two-zone model by integrating the equations of hydrostatic equilibrium
throughout the model instead of assuming, as was done above, that the
effect in a two-zone model would be taken into account by using the
analytical expression for a model with uniform composition.

Within each zone an equation of state must be adopted and as before it
will be taken to be Bullen’s relation

K =K0+bp,

which experimental evidence shows to be generally obeyed over
moderate ranges of pressure.
Let the outer zone be labelled 1 and the inner zone 2, so that in either

K=K +bp



Models of Mars 191

where i stands for 1 or for 2. If the material in each zone is supposed to be
chemically homogeneous, and if the effect of temperature may be
ignored, density depends only on pressure within each zone and

d_p
dp K
or
do__dp
p Koi+bp

The differential equation for p integrates to give

p 1 (Ko,'+b,'p)
In&==In(=2—F),
Po b; Ko

where po is the value of p at zero pressure. Thus

(D))
=—1(£) -1}.
P b; Po

Now suppose that Mars is in hydrostatic equilibrium. The non-hydro-
static terms in the gravity field show that that is clearly not true, but it is
likely (Chapter 9) that the density anomalies corresponding to the
non-hydrostatic terms lie close to the surface. Thus, bearing in mind other
simplifications that are being made, the assumption of hydrostatic equi-
librium will be sufficient. The relation between pressure and radius is then

where M, is the mass within the radius r. In addition
dM, = 4»;1-pr2 dr.
These two equations, together with the p(p) relation and appropriate

boundary conditions will determine the distribution of density with
radius.

Because
do_»p
dp K
and
dK
E; =b,
we get

K =Cp",
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where

C = Koipo "
Further, the equation of hydrostatic equilibrium together with the
definition of bulk modulus, K, give

do_dpdp_ _p GMp

dr dpdr K P
or

_ Kr* dp
r— "E;E a-r
But
dM, = 4mpr” dr
and so
2
dir (-I—Z-Z— g—f) =—4nGpr’.

On putting K = Cp” it follows that
% (rzpb,.—z %’) =A%),
where
A*=47G/C.
Now let
p"?dp=dn
or
n=p""/(b:i=1).
Then

d
& (7 SD) = -arriei- vy,
dr dr

or,if vr=1/(b;—1),

i 2d’fl)_ 2.2 v
dr(’ ar) = AT /)

With the further substitution of
E=Am "2
it will be found that

dig(gzj_;T)_'_gznv:O
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or

This is Emden’s equation (Lyttleton, 1965; Bullen, 1975) and admits of
analytical solution only for » =1 and 5. In the terrestrial planets b; is
about 3.2 so that v is about 0.45 and Emden’s equation must be solved
numerically.

Because Emden’s equation is of second order, two boundary condi-
tions are required for each zone. If a planet were supposed to consist of a
single zone, the boundary conditions could be adjusted to give the correst
mass and C/Ma?®fora specified radius. If a two-zone model is considered,
pressure and gravity must be continuous at the boundary.

An extensive numerical study of the solutions of Emden’s equation for
a two-zone model of Mars was made by Lyttleton (1965). He took
equations of state that were the same as those for the upper and lower
mantles of the Earth, as known at that time, and constructed a sequence
of models in which the polymorphic transition was allowed to occur at any
radius from the centre to the surface of Mars. The sequence has a
minimum value of C/Ma?, as shown in Figure 6.4; the minimum occurs
when the transition occurs at 0.84 times the surface radius and is 0.381. It

Figure 6.4. Values of C/Ma? and density for Lyttleton’s (1965)
models of Mars.
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follows (Cook, 1972, 1977) that, because the minimum value of C/Ma®
exceeds the observed value of 0.375, the presence of a heavy core must be
postulated.

As for the Moon, sets of more detailed models have been constructed
based on detailed models of the chemical composition and of the thermal
state of the interior. One group of such models is based on Lewis’s (1972)
study of the fractionation of metals and silicates in the early history of the
solar system. Figures 6.1 and 6.2 show the calculated variation of
temperature in the early solar nebula, together with the temperatures at
which various components of the planets would condense. Figure 6.3
shows the resulting mean densities of bodies formed in the positions of
the terrestrial planets, and it will be seen that this model does indeed
reproduce well the mean densities of the planets.

Johnston and Toks6z (1977) (see also earlier work in Johnston,
McGetchin and Toks6z, 1974) have adopted Lewis’s results and have
followed Solomon and Toks6z (1973) in their procedures and assump-
tions in calculating the temperature in Mars (see further Chapter 9). They
assume that Mars has a crust 50 km thick with a density of 3000 km (as in
Chapter 5 and above) and that an olivine—spinel transition occurs within a
mantle. The core is supposed to be a mixture of iron and iron sulphide at a
temperature in excess of 2000 K so that it would be molten. Some
examples of their models are shown in Figure 6.5. Johnston and Toksoz
(1977) take a lower density for the core than that adopted above and in
consequence obtain larger radii for the core.

A different approach has been followed by Ringwood and Clark
(1971) who suppose that the metal abundances are the same in all the
planets, but that their different densities may be accounted for by
different degrees of oxidation.

6.5 Venus and Mercury

All we know about Venus and Mercury are the radii, masses and
mean densities. They compare as follows with the corresponding values
for the Earth:

Earth Venus Mercury
Radius (km) 6378 6052 2439
Mass (kg) 6x10* 4.87x10% 3.30x 103
Mean density (kg/m?) 5517 5244 5434
Central pressure (Pa) 3x 10" 2.5x 10" 3x10%

The estimates of the central pressure which are also listed require some
explanation. All exceed the values calculated from the formula %wszaz
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using the mean density. The value for the Earth is the actual pressure
obtained by integrating throughout the Earth using the known values of
g, a and p (Chapter 2). The values of Venus and Mercury have been
increased pro rata to allow for the fact that the formula for a body of
uniform density underestimates the pressure when the density increases

Figure 6.5. Examples of models of Mars with different thermal
regimes: (@) conduction model; (b) convection model. The four
different models correspond to four different models of the core.
(From Johnston and Toksoz, 1977.)
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towards the centre. The actual values are not too significant: what matters
is that the pressures at the centres of Venus and the Earth are much the
same and that at the centre of Mercury it is an order of magnitude less.

If the bulk modulus throughout much of the planet is taken to be
(3 x 10“+3.2p) Pa, as it is within the core and much of the mantle of
the Earth, it can be seen that the increase of density due to self-
compression will be of the order of 25 per cent or so throughout a
substantial part of the Earth and Venus, but nowhere more than 10 per
cent in Mercury. The conclusion to be drawn is that the mean density of
Venus, like that of the Earth, is determined to a large extent by self-
compression. In the Earth, itis largely determined by self-compression of
the mantle since the volume of the core is only about one-eighth of that of
the Earth as a whole so that the density of the core does not have a major
effect on the mean density. We may see that the lower mean density of
Venus is consistent with self-compression of similar mantle material at a
slightly lower maximum pressure.

We know also that part of the increase of density towards the centre of
the Earth is produced by the sequence of polymorphic changes of silicates
(Chapter 4). The maximum pressure in Venus, like that in the Earth, is
about ten times greater than the pressures at which those changes occur
and so we infer that they do occur in Venus. So similar is Venus to the
Earth in position, size and density, that it is natural to suppose that Venus,
like the Earth, has a core composed predominantly of iron, with a density
ranging from about 8000 to about 11 000 kg/m>.

The high density of Mercury cannot be accounted for by self-compres-
sion of mantle material, for the greatest pressure is far too low to account
for the difference between 5434 kg/m> and 3300 kg/m’: the greatest
density that mantle material could attain in Mercury, with allowance
made for a polymorphic transition is about 4000 kg/ m>. Mercury must
therefore have a substantial heavy core. If it be supposed to be of the
same composition as the Earth’s core, its mean density will be about
8300 kg/ m>. With some allowance for self-compression, the density of
the mantle material may be taken to be 3500 kg/m>. The radius of the
core will then be found to be 1800 km. The core boundary thus may lie at
adepth of 600 km; at that depth in the Earth the pressure is great enough
for polymorphic changes to occur in olivine and pyroxene, but the
pressure in Mercury at the same depth will be less, so that the mantle of
Mercury will be of the low pressure forms of olivine and pyroxene
throughout. Consequently, the assumption that the density is about
3500 kg/m’ is justified. For such a model, C/Ma? is about 0.335.
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6.6 Conclusion

The models of Mars, Venus and Mercury considered in this
chapter have been, like those of the Moon discussed in Chapter 5, cold
models, in that the effects of temperature on the density, and hence on the
ratio C/Ma®, have been neglected. The general justification for the
neglect was given in Chapter 4; namely that the coefficient of expansion
of any material decreases with pressure. Of course, the pressures are less
in the Moon and Mars, so that the decrease would be expected to be less
than in the Earth or Venus. On the whole, allowance for temperature
would not be expected to modify the models adopted here in any serious
way. If it is desired to obtain an indication of the effect of a specified
distribution of temperature, 7, it may be done by calculating the cor-
responding factor y for a sphere of uniform composition. Let

p=po(l+aT),
where a and T are functions of r, known or postulated. Then the mass is

M=My+4mp, I r*aT dr,

0

and the moment of inertia

I= 10+§’—Tp0 I r*aT dr.

377 )

Here M= %n-poa3 and I = %wpoas. Thus

y= 1+%’-%° J:) r*aT dr-f%‘(’)—" J:) PaT dr.
The maximum value of «T is likely to be less than 1 per cent and
consequently v is unlikely to be less than about 0.99.
All the models we have considered have heavy cores, supposed to
consist of iron-like material. Table 6.6 summarizes the sizes and relative
volumes of the cores.

Table 6.6. The cores of the Moon and the terrestrial planets

Volume of core

Volume of core

Radius (10"'m?) Volume of planet
Moon 340 4.8 0.0075
Mercury 1800 135.7 0.40
Mars 925 35.8 0.02
Venus — — (supposed same as
the Earth)

Earth 3400 484.2 0.15
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There is a wide range in both the absolute volumes of the cores (1 to
100) and in the relative volumes (1 to 53). The implications of these
ranges will be taken up again in Chapter 10.



7

High pressure metals

7.1 Introduction

The possibility that, at the pressures encountered in the planets,
materials ordinarily non-metallic at low pressures might transform into
metals has been discussed for more than forty years. Two main ideas have
been considered: one, that metal silicates, such as olivine, might become
metallic at pressures developed in the core of the Earth, and the other,
that hydrogen, helium and other light elements might transform to metals
at pressures encountered in the major planets. Sufficient is now known
about changes of density in metallic transformations under high pressure
to be sure that the jump of density between the mantle and the core of the
Earth is too great to be explained by such a transformation and in the
preceding chapters on the terrestrial planets it has been assumed that the
difference between the core and mantle of the Earth is one of composition
(see also Anderson, 1977). It is otherwise with Jupiter and Saturn. The
mean densities of those planets are too low for them to be composed of
anything but hydrogen, helium and other materials of low atomic
number, and the likelihood of a metallic transformation of hydrogen in
particular is crucial to a discussion of their internal structures. One of the
first studies of the metallic transformation in hydrogen (Kronig, de Boer
and Korringa, 1946) was prompted by the idea of Kuhn and Rittman
(1941) that the inability of the core of the Earth to support shear waves
might be because it was of solar composition, that is, mainly of hydrogen,
and by the subsequent suggestion of van der Waals that at core pressures
the hydrogen might be metallic. It is now clear that the density of the core
of the Earth is about ten times that of metallic hydrogen at the same
pressure; on the other hand, it is almost certain that hydrogen in metallic

form makes up large proportions of Jupiter and Saturn.
The pressure at which molecular hydrogen may transform to a metal is
probably greater than 2x 10"' Pa and is therefore beyond the reach of
199
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present experimental methods using steady pressures. Until recently, the
only experimental studies with which theoretical calculations of the
equation of state of molecular hydrogen could be compared were those of
Stewart (1956). Another set of data is now available (Anderson and
Swenson, 1974) which is, in fact, in close agreement with that of Stewart
and which extends to about the same pressure as Stewart’s, namely
2.5x 10° Pa. Further, because the compressibility of hydrogen is great, it
is not possible to develop high pressures in it by shock waves. Thus, no
one has yet certainly demonstrated the metallic transformation in
hydrogen, although there have been claims that it has been observed
(Grigorev et al., 1972; Mlynek, 1974; Kamarad, 1975; see also Hawke,
1974). The properties of metallic hydrogen can therefore at present be
found only by calculation, but, as will appear in this chapter, the structure
of metallic hydrogen seems now to be well understood, and different
methods of calculation appear to give concordant equations of state. It is
in fact more difficult to calculate the properties of molecular hydrogen at
high pressure and, in consequence, the pressure at which the trans-
formation to the metallic form occurs cannot be estimated to better than
an order of magnitude. In so far as this is because the equations of state of
the molecular and metallic forms are thought to be very similar, it does
not affect the study of the internal constitution of Jupiter and Saturn too
seriously.

The primary aim of theoretical studies of metallic (and molecular)
hydrogen is to calculate an equation of state, that is to say, to calculate the
density as a function of pressure. Itis also desirable to calculate transport
properties, heat capacity, latent heat of transformation, the melting curve
of metallic hydrogen and to predict whether metallic hydrogen may be
superconducting or superfluid. The first step is to determine the density of
the metallic form at zero temperature. The internal energy is calculated as
a function of the separation of the protons in the metal, and the minimum
is found as the separation is varied. That minimum is the internal energy,
and the corresponding separation gives the atomic volume (or density).{
To find the relation between pressure and density, the internal energy, E,
is calculated as a function of the proton separation, and hence of the
specific volume, and the pressure is calculated as the differential

_IE}
%

It is uncertain whether the metallic form of hydrogen is stable at zero
pressure.
1 At zero temperature, the free energy, F, is equal to the internal energy, E.
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Most calculations are carried out for a lattice of fixed protons, that is,
for a solid at zero temperature, but some work has been done on the solid
at high temperature and on the liquid. The heart of the theory is,
however, the calculation of the internal energy as a function of proton
separation.

It is well known that many of the properties of simple metals like
sodium are very close to those of a gas of free electrons, and accordingly
the first step in the calculation of the properties of metallic hydrogen is to
regard it as a Fermi gas with purely kinetic energy. Allowance has to be
made for the correlation of the electrons or, put in another way, for the
energy of collective plasma oscillations. The gas is not, however, free for
it lies in the periodic potential of the lattice of protons, and so it is
necessary to add to the kinetic energy of the free gas the potential energy
of the electrons in the proton lattice and also that of the repulsion of the
protons. The calculations of the various components of the energy will be
discussed in.the next sections of this chapter, and will be summarized in
e>mparisons of the results of different methods of calculation. The means
of estimating the properties of molecular hydrogen will also be described,
and the transition pressure will be discussed.

The first calculations on metallic hydrogen were those of Wigner and
Huntington (1935) who used the methods developed by Wigner and Seitz
(1933, 1934) (see also Wigner, 1934) for the study of sodium. Further
calculations were undertaken by Critchfield (1942) and, as already
mentioned, by Kronig, de Boer and Korringa (1946), who incorporated
work by Bardeen (1938). Subsequently, de Marcus (1958) re-examined
the theory with particular reference to the constitution of Jupiter and
Saturn, but following the same lines as Wigner and Huntington (1935)
and Kronig, de Boer and Korringa (1946). In recent years, interest in
metallic hydrogen has increased considerably (see Caron, 1975) and, in
particular, new methods for the calculation of the electron energy have
been employed that derive from developments in the theory of metals
generally, while, in addition, the effects of different possible lattice
structures for the protons have been investigated.

In theoretical calculations of equations of state it is common to use
atomic units.

The unit of length is the Bohr radius, ao, namely #*/me?, where m is
the mass and ¢ the charge of the electron (ao=5.2918 X 10" m).

The atomic unit of energy is the Rydberg, Ry, namely me*/4w#> ¢
(Ry=2.1799 x 10" *® J = 13.6 eV). Sometimes the unit of energy is taken
to be 2 x Ry.
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The atomic unit of pressure is 1 Ry/a3 or 147.107x 10" Pa, i.e.
147.107 Mbar. (A value of 147.15 Mbar will also be found in the
literature.)

Another way of expressing the energy is by the equivalent tempera-
ture, that is, if the energy is kT per electron or atom, it is given as T K.
(1 K is equivalent to 1.3807x 107>* J or 0.8617 x 10 ™* eV.)

It is convenient to have a value for the energy of a kilogramme mole of
hydrogen which contains 6.022 x 10”° electrons. Thus 1 Ry per electron
is equivalent to 1.3127 x 10° J/kg mole, 1 eV per electron is equivalent to
9.648 x 10’ J/kg mole, and 1K per electron is equivalent to 8.3146 x
10° J/kg mole.

7.2 The free-electron gas (see Wilson, 1966)

Let us take as the simplest model of a metal N electrons in box of
side L. The wave-functions of the electrons will be periodic with a spatial
part, ¢, equal to

2w
exp T(nlx, nay, H3z)|.

As the electrons are free, apart from being confined by the walls of the

box, Schrodinger’s equation reads
2

vy Ep=0,
2m

so that E,, the energy of the rth wave-function, is
2

2mL?

The total energy is obtained by summing E, over the possible combina-
tions of n,, n,, n3. We assume that the total number of electrons is very
large and so replace the sum by an integral. In fact the multiple integral
can be reduced to a single integral

(n? +n3+n3).

Yo
Y (n+n5 +n§)=j v*?dv =203
0
where v, is related to N, the total number of electrons. In fact, N is equal
to the number of combinations of (n,, n», n3) multiplied by 2 because two
states of spin 3 correspond to each . Thus N is twice the volume of a

. 1
sphere of radius v'/?, or

8w
=—0.

3
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Consequently
= 2 h_z(i)mNS/s
52mL*\87 '
But the volume of the gas is V, and so, finally,
2 2/3
S LaVER
52m \8x V

The pressure, p, is —0E/dV, that is

1 h2 3 2/3 5/3
S5m (877) (9 '

So far, the temperature of the gas has been ignored, as is to a
large extent justified by the fact that the energy of 1 Ry per electron
corresponds to a temperature of nearly 2x10° K. However, as the
temperature rises, states higher than the lowest possible ones become
occupied, as described by the Fermi function fo(E), equal to
{1+exp [(E—u)/kT]} ", where u is the chemical potential.

fo(E) is equal to the number of occupied states of energy E. If E is less
than w, fo(E) is almost unity, i.e. each state is occupied, but, as E increases
above u, fo(E) falls away much like a Maxwell-Boltzmann distribution
(Figure 7.1). The fraction of electrons in states with u > E is of the order
of kT/u, and it is the variation in their number with T that provides the
electronic part of the specific heat of metals (only detectable at low
temperatures when the lattice part, proportional to T2, is negligible).

Let a degeneracy temperature, Ty, be defined as

h? (3 N\
0_2mk(87r v) '

Figure 7.1. The Fermi-Dirac distribution.

fo (E)
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At temperature less than T, the gas of electrons will be highly degenerate
and to a first approximation we may ignore the temperature in calculating
the equation of state. Taking the density of metallic hydrogen to be
1000 kg/m>, and allowing one electron per atomic volume, it will be
found that

N/V =6x10%°/m’.
Now

hY2mk =1.7x107" m* deg,
and so the degeneracy temperature for metallic hydrogen is about
2x10*K. The temperature within Jupiter is estimated to be about 10°K
so that to a first approximation we may ignore it in calculating the

equation of state of metallic hydrogen in Jupiter (and Saturn).
The internal energy at low temperature T is then

%NkTo[l + o(—z)]
T
and the free energy F is

5NkTo[1 o(= Tz)]

0
where the remainder O(T?/T3) is the same for E and F to O(T?). Then

OF 2 NKTy

9V 5V
() &3 Tr+olR)]
“\8x) Sm\v T2

and the entropy

5= 2 wnkisr v
aT h 3N

2/3
NKT+- -

Our final results for the equation of state of the free-electron gas at a
temperature much less then Ty are that
T is then

2 2/3
JNh ( 3 N)

2m\8#x V

3 2/3 h2 N 5/3
r=(2) =)

while § is negligible.

and
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It is convenient to express these results in terms of the separation of the
protons. We introduce the idea of the Wigner-Seitz sphere: let a sphere
of radius 7, be drawn around a proton, such that it encloses a volume V/N.
Then

47 5, V
3"*°N
or
3 V 1/3
()
while
N /331
vz
Thus
R 9 V1 9w\
E=Ny (5m) =T
while

3 23 p2  3\5/3
p=(57) smlas)

In the literature it is common to express these results in terms of atomic
units, by writing 7, as a multiple of the Bohr radius. Similarly the energy
per electron is commonly expressed as a multiple of the Rydberg.

In terms of the Rydberg and the Bohr radius

2.209
E= 2 Ry per electron.

s

At this point three things must be emphasized. The first is that we have
supposed that the gas of fermions is enclosed by a rigid box, like the
molecules in a classical gas. The second follows from that: the energy of
the electrons just calculated is entirely kinetic energy. Thirdly, the
interactions between the electrons have been neglected. The model so
limited is clearly an unrealistic model of a metal. It ignores the positive
charges of the ions which actually hold the electrons together and thus
although the free-electron model accounts well for the electrical and
thermal properties of a metal it excludes ab initio the means by which the
metal is held together so that it cannot account for the fact that the metal
coheres at zero pressure nor can it predict the variation of density with
pressure.
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The effect of the lattice of protons may be calculated to first order on a
classical basis by considering the protons to be embedded in a uniform
background of negative charge of density p equal to e(GGar2)™" (Figure
7.2). The justification for this approximation is akin to the justification of
the Born-Oppenheimer approximation in molecules, namely that the
motion of the protons may be ignored in comparison with that of the
electrons because of their much greater mass. Accordingly, the electrons
can be considered as a smeared out distribution of charge, whereas the
protons must be treated as fixed charge points. The charge inside a sphere
of radius r (less than r;) about a proton is then equal to +e on the proton
together with the negative charge inside r, that is

q(=e—e(r/r)’

The potential at r, ¢ (r), due to the charge within r, is q(r)/r, and the
potential energy of the negative charge of density p lying between r and
r+dris

4ar’p dr(r)
and thus the potential energy of the charge inside the radius r, is

_J"S3e2(r_r_4) dr___9e2
o e r To10r

The total energy of the Fermi gas in a lattice of protons is accordingly

i(&r)”_ff__zé_ h [i(&r)”(@)z_z(@)].
10\4/ mr? 10r, mail10\ 4 re 10\r. /)

with r, measured in units of the Bohr radius, ao, the energy per electron is

. 1.8
2 %1 —— Rydberg.

Figure 7.2. The distribution of charge in an elementary classical
model of a metal.
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The energy has a minimum at r,=2.45; that is to say at a volume of
5.488 m>/kg mole, or a density of 182 kg/m®. The pressure at a given
volume is

oE 1 @8E

oV 4l o’

that is

1
4—77755[442 - 1.8"5],

in atomic units of pressure equalto 147.11 % 10"! Pa. The bulk modulus is
an important property of planetary materials; it is given by

ap
K=-V—
oV

dr; dp
—y—=E
dvV oar,

1
=5 osl22.1-7.2r]

again in atomic units of pressure.

Finally, values of the Gibbs free energy, G, are required for a dis-
cussion of the transition between metallic and non-metallic forms.

At zero temperature,

G=E+pV.

The behaviours of E, G and p as functions of r; for this, the so-called
‘Jellium’ model of a metal are shown in Figure 7.3(a).

While the foregoing model shows how a stable metal may form, it is an
inadequate description of a real metal. In the next section the quantum
mechanical problem of electrons in a lattice of protons is discussed.

73 Electrons in a lattice of protons (see Pines and Nozieres, 1966)

We consider a set of protons and an equal number of electrons
and wish to calculate from quantum mechanical principles the state of
lowest energy and the value of that energy for a given external pressure
and given temperature. We recognize that this is a many-body problem
which cannot be solved exactly and that some step-by-step approximate
procedure will have to be adopted. Let us, however, write down formally
a Hamiltonian for the system. It will be

He+Hp+Hi,

where H. is the Hamiltonian for the electrons by themselves, H,, is that
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for the protons by themselves and H; represents the interaction of protons
and electrons.

Already there is an approximation implicit in this way of splitting up
the Hamiltonian, namely that the velocities of the electrons are so much
greater than those of the protons that we may suppose the motion of the
lattice is not affected by the former. As was remarked above this is
equivalent to the Born—Oppenheimer approximation in molecular

physics; it is reasonably accurately satisfied there and, no doubt, also in
metals.

Figure 7.3. (a) Comparison of internal energy, E, Gibbs free
energy, G, and pressure, p, for the elementary classical model of
metallic hydrogen without exchange forces (‘Jellium’) and for the
Wigner-Seitz model. () Dependence of bulk modulus, K, upon
pressure for the Wigner-Seitz model of metallic hydrogen.
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Accordingly H, will be the Hamiltonian for a set of electrons in the field
of the positive charges of a set of protons that we may assume to be fixed
in their mean positions. In fact the protons are in motion whether they
form a solid lattice or whether the metal is, as it may be, liquid, but, in the
spirit of the Born—-Oppenheimer approximation, we take the protons to
be fixed in forming H.. We must also arrange that the wave-function for
all the electrons is anti-symmetrized and must explicitly recognize that
electrons have spin 3. The leading term of H, will of course be that
corresponding to the Fermi distribution, namely

Y p*/2m,
where p,equal to xik, is the momentum of asimple harmonic wave-function
of the form given in the previous section and having a wave-number k.
Next consider Hp,; it contains two parts, the first the kinetic energy of
the protons, which may be in a solid lattice or may move as in a liquid, and

Figure 7.3 cont.
»)
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the potential energy of the Coulomb interaction of the protons. H,, will of
course be different for a liquid or a solid and will be different for different
types of lattice. Lastly, there is the term H; which describes the interaction
between electrons and protons. Again, in evaluating this term, we
suppose that the protons are fixed in their mean positions. The obvious
contribution to H; is the Coulomb energy of the electrons in the field of
the protons, but in evaluating it we have to take account of the fact that
each electron is present in the field of all other electrons. In particular, the
electrons move in a coherent way as a plasma so that it is not possible to
build up H; as the sum of terms of individual electrons each in the field of
its own proton. It is to some extent a matter of choice which terms appear
in H, and which in H;, for it is possible to consider the effect of the protons
as to a first approximation to be that of a uniform background of positive
charge which one takes as given in evaluating terms of H.. One effect of
the positive background is to modify the Fermi energy, so that instead of
being 2.21/ r? it becomes 221a/ rZ, where a is a numerical factor which
accounts for the positive background. The other effect is the collective
plasma energy. Either of these contributions may be found in different
theories in H, or in H;.

The principal terms in the energy of the electrons in the lattice of
protons are thus:

(a) the kinetic energy of the electrons, namely (2.21/ r2),

(b) the proton-proton and electron-proton Coulomb energies,
(c) the electron-electron exchange energy,

(d) the electron—electron correlation energy.

The general expression is

221 A
2 __+B’
rs rs

where B varies slowly with 7.

The proton—proton energy contributes to A and the proton—electron
energy contributes to A and B, the exchange energy to A, or to A and B,
depending on definition, and the correlation energy contributes to B.

There are three main problems in the theoretical formulation:

(a) How do we treat the protons: namely, what is the periodic potential
in which the electrons move?

() How do we set up the periodic potential with allowance for the
screening of the protons by the electron gas?

(c) How should we deal with electron exchange and correlation?
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Methods which have been developed to deal with the calculations will
now be explained. It must be emphasized that any calculation of the
properties of metallic hydrogen is approximate, since it is not possible to
solve the many-body problem exactly. Two points may be made at the
outset. Hydrogen is, we believe, the simplest metal in the sense that we
know that the potential of the proton is exactly the Coulomb potential
and thus it is not necessary to deal with a pseudopotential as with other
ions (Chapter 4), but, on the other hand, we do not know from obser-
vation what lattice structure the solid metal may assume. The second
point is that the results of calculations according to different procedures
are in rather good agreement, especially at high pressures; in
consequence, uncertainties in the behaviour of hydrogen at pressures
between say 10'° and 10! Pa or so arise much more from doubts about
the properties of the molecular form than the metal.

In the earliest work on metallic hydrogen the interaction energy was
calculated according to the method of Wigner and Seitz (1933, 1934).
The space within the metal is divided into similar polyhedra conformably
with the lattice structure such that there is one proton at the centre of each
polygon. It is supposed that there is also just one electron in each polygon
and the Hamiltonian is then

2

D
( 2m - V) v,

where p is the momentum of the electron and V = —e?/r is the potential

of the electron in the field of the proton.

We require to find the lowest eigenvalue E corresponding to this
Hamiltonian. It would be difficult to solve Schrodinger’s equation for a
polyhedron, so it is assumed that the polyhedron may be replaced by the
sphere of equal volume, the Wigner-Seitz sphere of radius r.

The assumption made here is akin to St Venant’s principle in elasticity,
namely that the fields in the space between the polyhedron and the sphere
have a minor effect on the eigenvalues. The boundary conditions for the
spherical problem are taken to be the same as for the polyhedral problem.
First  must be finite at the centre. Secondly the solution in one
polyhedron must match that in the adjacent one. Now, by dealing with
just one sphere, we of course ensure that the values of ¢ are the same for
all spheres, but we do not ensure that grad ¢ is continuous. We therefore
impose the condition that

W_
ar
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on the surface of the Wigner—Seitz sphere, corresponding to the physical
condition that

o
an

=0

on the surface of any polyhedron.
The problem so posed has been solved in two ways, either analytically,
explicit series developments of E, and ¢ being obtained, or numerically.
Wigner and Huntington (1935) found for zero momentum of the
electron

3 (1.36)°
EO —_——— ...
r. 20.02-2.65r,
by an analytical treatment, while Kronig, de Boer and Korringa (1946)
used two analytical approaches which give effectively identical results,
namely

-3

E0=——
1.2 .
rs—3prs + -

Here, as before, E; is in Rydbergs and r; in Bohr radii.

de Marcus (1958), in his work, made a numerical solution for Eg, and
other authors (for example, Neece, Rogers and Hoover, 1971) have from
time to time revised the Wigner—Seitz calculations; summaries of the
results are given later in this chapter. »

It would seem evident that a major defect of the Wigner-Seitz
approach is that it ignores the presence of other electrons and protons.
Thus, it is spoken of as the independent electron approach. At one time
the problem of the effect of other electrons appeared to give considerable
difficulty because, when the long range Coulomb interactions with all
other electrons were allowed for, the calculated behaviour of simple
metals appeared to agree less well with observations than if the electrons
were treated as independent. The issue was resolved through studies of
the shielding of the effects of distant electrons, from which it appears that
the effective range of the electrostatic force between proton and electron
is of the order of the distance between protons and thus it is quite a good
approximation to ignore other electrons in working out the ground state
potential energy of the electron in the field of the proton.

The effect of the screening of other electrons may be described by a
dielectric function introduced by Lindhard (1954). If n is the.ratio k/2kg,
where kg is the Fermi wave-number, i.e. the value of k corresponding to
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the Fermi energy, then the dielectric function ¢ (7) is

1 1/3
em=1+3-(5-) rngm),
with
2 (1-9% |n+1 1)
== —[+2).
g(n) nz( | T+

Hammerberg and Ashcroft (1974) employ Lindhard’s result in a
somewhat different decomposition of the total Hamiltonian from that
used in the Wigner-Seitz procedure. They add the part of the electron—
electron interaction for which the wave-number is zero (stationary elec-
trons) to the proton-proton interaction, so giving the Madelung energy of
the lattice. That is of the form —A,,/r,, where A, has the values:

simple cubic lattice: 1.760 122 Ry per electron
face-centred cubic: 1.791 749 Ry per electron
body-centred cubic: 1.791 861 Ry per electron.

The remaining part of the electron-electron interaction is then
obtained with the Lindhard dielectric function, using the result

&)

= 1 -2
E_ 671_2277 £(’n)

where 7 =0 (i.e. k=0) is excluded from the summation since the
corresponding contribution already enters the Madelung energy.

A third method of calculating the effect of the proton potential is by
means of the combination of wave-functions corresponding to the solu-
tion of Schrodinger’s equation about a single proton; the method is called
the linear combination of atomic orbitzis (LCAO) (Harris and Monkhorst,
1969). Suppose (r;) to be the wave-function for an electron in the
neighbourhood of an isolat:d proton with the position vector r;; it is
supposed that the wave-functions for electrons in the lattice are obtained
by suitably adding similar wave-functions for electrons in the fields of all
the protons. In order that the wave-function should have the periodicity
of the lattice of protons it must be in the Bloch form. Ross and McMahon
(1976) write the wave-function for the electron with momentum k as

Ue(r)=e*" L ¢(r-R.),
where ¢ is a wave-function of atomic form for the electron at r in the field

of the proton at R, ; ¢ is taken to be a Slater function, e **, and « is varied
to obtain the minimum energy.
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The Thomas-Fermi-—Dirac statistical method (see Chapter 4) is the
fourth method to have been applied to the calculation of energies of
electrons in the proton lattice (Salpeter and Zapolsky, 1967). On the face
of it the method is inappropriate to hydrogen since it supposes that there
are many electrons around each ion. Nonetheless, the electron density
is found from Fermi-Dirac statistics, using an appropriate chemical
potential.

Salpeter and Zapolsky (1967) include an additional energy cor-
responding to correlation between electrons, using the form found by
Gell-Mann and Brueckner (1957) which, however, is appropriate to
densities very much greater than those likely to be encountered in the
planets. There is no inconsistency in Salpeter and Zapolsky’s use of that
form, for their aim was to obtain an asymptotic form of the equation of
state at very high pressures; the Gell-Mann and Brueckner form is not,
however, the correct one to use at planetary pressures. Finally, there is a
fifth method of calculating the energy of the electron gas in a lattice,
which is based on plane wave-functions and is known as the method of
augmented plane waves.

All the foregoing methods have been used to calculate the equation of
state of metallic hydrogen at planetary pressures and the results, as will be
seen in section 7.5, are on the whole in close agreement with the
approximation which includes just the kinetic energy and the exchange
energy (the terms 2.21/r2 —0.916/r). To this the correlation energy
(next section) has to be added and, as will be seen, there is still some
uncertainty in how to handle it. Further, the lattice structure also has a
small effect upon the equation of state and the free energy. The small
differences between the Madelung energies for simple cubic, face-
centred cubic and body-centred cubic lattices in Hammerberg and
Ashcroft’s (1974) work have already been seen and Wigner and
Huntington (1935) pointed out that a layered lattice would have the
lowest energy and be the preferred form at low pressures.

The most extensive calculations on the properties of different lattices
are those of Brovman and his colleagues (Brovman, Khagan and Kholas
1972a, b; Brovman, Khagan, Kholas and Pushkarev, 1973) whose results
are set out later. Some of the structures will be unstable at very low
pressures, but not at pressures of 10"'' Pa or more (see also, Beck and
Strauss, 1975).

Because the energy of electrons in a lattice cannot be calculated
exactly, a perturbation method has always to be adopted, leading in effect
to an expansion in powers of r,. The leading terms correspond to the
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kinetic energy of a free—electron gas (2.21/rZ) and to the potential energy
of the exchange interaction of electrons with parallel spin (—0.916/r,).
Everything else is grouped together as the correlation energy. .

The correlation energy has been thoroughly discussed by Nozieres and
Pines (1958) (see also Pines and Nozieres, 1966) who point out that
metals, in particular metallic hydrogen, lie in an intermediate range of
density. At very low densities (r;>» 10) Wigner showed that the cor-
relation energy could be put in the form

u v wW
—+ 3/2+ 2
rs Is s

where U, V and W are constants, while, for very high densities (r,« 1),
Gell-Mann and Brueckner (1957) obtained the expression

0.0622 In r,—0.096.

In metals r, is of the order of 1, and Nozieres and Pines discuss the form
of approximation that gives an appropriate interpolation between the
high density and low density forms. They find that the correlation energy
should be represented by

-0.115+0.031Inr.

More recently a very similar expression has been derived by Vashista
and Singwi (1972).

7.4 Equation of state of molecular hydrogen and helium
It is much more difficult to make reliable estimates of the

equation of state of molecular hydrogen than of that of the metallic form.
As already mentioned (section 7.1) experimental results are restricted to
pressures less than 2.5 X 10° Pa (Stewart, 1956; Anderson and Swenson,
1974). So far as <neoretical calculations go, the interactions between H,
molecules in a gas or liquid are much more difficult to describe than those
between protons and electrons in the metal. At the same time, while
molecular hydrogen is the stable form at low pressure, experimental
studies of the equation of state have not so far been carried to sufficiently
high pressures for the results to be extrapolated confidently to the
pressures at which the transition to the metallic form may occur.

In early work it was supposed that the potential of the H, molecule was
spherically symmetrical and a Lennard-Jones potential of the form

(2
r6 r12

was adopted. The constants a and b were found by fitting calculated
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isotherms to measured properties at low pressure and then used to
extrapolate to high pressure. When that was done it was found that use of
the Lennard-Jones potential enabled some properties to be reproduced,
but gave rise to large discrepancies with others (see Etters, Danilowicz
and England, 1975); such failures of theoretical calculations led de
Marcus (1958) to extrapolate the experimental results of Stewart (1956),
which extended to 2 x 10° Pa, by empirical methods to 3 x 10*! Pa.

If one considers two hydrogen molecules arbitrarily oriented (Figure
7.4) then it can readily be seen that the interaction between them can be
expressed as a function of the four distances ry3, 714, 723, 724 between each
pair of atoms and, in consequence, the effective potential will in general
be anisotropic.

The forces between the molecules arise in two ways. First, there are the
repulsive forces between pairs of atoms. Secondly, there are attractive
forces which originate in the dipoles and quadrupoles induced in one
molecule by the other. (The 1/r® term in the Lennard-Jones potential
accounts for induced dipole interactions.)

Trubitsyn (1966) took the repulsive potential between hydrogen atoms
to have the form a; e ”, where a; = 2.17 in atomic units of energy and
b=1.81 in atomic units of distance. The atomic units employed by
Trubitsyn are

distance: 5.29%x 107! m
energy: 27.2 eV
pressure: 294 x 10'" Pa.

On integrating over all orientations of the atoms in two molecules, the
repulsive potential between molecules is found to be of the form

<I>1(R)=4a1(1.66—1—§—0)e"’R

Figure 7.4. Distances between atoms of two hydrogen molecules.
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where a;=3.04 and R is the distance between the centres of the
molecules. Trubitsyn considers that, over the significant range of R, it is
possible to write

®(R)=a e’

where a = 5.6 and b = 1.81.
The potential of the attractive van der Waals forces is taken to be

®,(R)=-cR*(1+dR7),

with ¢ =10.9 and 4 = 10.6.

Trubitsyn adds the zero point energy of the lattice vibrations at zero
temperature to the sum of the attractive and repulsive potentials and finds
for the pressure

p=3ABV ?exp (—BV'?*)—2CcVv3(1+1.3DV 3
+8.7x1072v ™%,
where A =3a, B=2"%p, C =0.452¢, D =0.44d, and
V= (R/2"?.

Trubitsyn finds that the results of Stewart (1956), already referred to,
fit an expression of somewhat similar form, namely

p=1aBV " exp (-BV"*)-25V?

and shows that there is quite a close fit between his calculations and
Stewart’s results.

Trubitsyn gives the following expression for the bulk modulus, K,
which is equal to —V dp/dV:

K =3AB V2 +BV'? exp(-BV'?)
—6CV3(1+1.6DV ™3,

He also considers the effect of higher temperatures. If molecular
hydrogen behaves as a Debye solid, then the free energy, F, is equal to

Eo+kT{3In[1-exp (—0O/T)]-D(®/T)},

where ® is the Debye temperature of the lattice and D is the Debye
function equal to

3 J"‘ du
) .
1]

x e —1’
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Thus the pressure at volume V and temperature T, whichis —(3F/0 V), is
equal to

3kT 0
+—= =
Do v ‘YD(T),

where py is the pressure at T =0and y isdIn ®/d In T. y is Griineisen’s
ratio.
Thus, with an estimate of vy, Trubitsyn writes

plp, T)=5.01x10"p*? exp (—0.491p'"?)
—2.34x10%°+5.4%x10°TD(®/T),

where now p is in Pa and p in kg/m°.

The equation of state of unionized helium is somewhat easier to
calculate than that of molecular hydrogen because the atoms are
spherically symmetrical and there is no question of calculating averages
over all orientations as with molecular hydrogen. The interatomic poten-
tial may be calculated from the wave-function of the ground state of
helium, and Trubitsyn (1967) takes it to be

®(R)=a e ™®~(cR™°+dR®) exp (—-fR®).

Here a cut-off factor, exp (—fR ~°) is applied to the normal van der Waals
potential. The constants that Trubitsyn adopts are, in atomic units,
a=14.5,b6=2.35,¢c=1.47,d=113, f=160.

The energy per atom at zero temperature is then found to be

Aexp (-BV'Y?®)-CV2(1+DV™*?) exp (-FV3),

where A =6a, B=2"2bh, C=3.61c, D =6.703 d/c and F=1f.
The pressure and bulk modulus follow by differentiating the energy.
A somewhat similar calculation to that of Trubitsyn (1966) was per-
formed for hydrogen by Neece, Rogers and Hoover (1971) who
represented the repulsive forces by the exponential form

& €Xp (_ri/ro)’

where & =3.2¢%/ao and ro = 0.03 nm and took the average of this poten-
tial over the four distances, r, between atoms of two molecules, as in
Figure 7.4. They represented the attractions between induced dipoles
and quadrupoles by the potential

6 8 2
aop (7)) e
[-105(%) -111(3) J5

where R is now the centre-to-centre separation of two molecules.
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They found that their numerical results were close to
E =5.645%x10" exp (5.05p/%)—9.4250%,
where E is in J/kg and p is in kg/m’.

Neece, Rogers and Hoover originally expressed their results in
different units, namely

E=1129000exp (-4.01V"?)-1885V 2,
where E is in kbar cm®/g mole H, and V is in cm®/g mole H,.
The pressure is then given by
p=-9.502x10"?? exp (=5.05p /%) +18.89p> Pa,
while G at zero temperature, namely E +pV, is
(5.465-9.502p" /%) x 10" exp (5.05p™"/%)+9.455p" I /kg.

Etters, Danilowicz and England (1975) carried out a systematic
investigation of the effects of orientation of H, molecules one to another;
they calculated the interactions between molecules by quantum
mechanics from first principles and then took a spherical average over all
orientations. Figure 7.5, reproduced from their paper, shows how the

Figure 7.5. Comparison of Lennard-Jones and spherically averaged
potential for H,. (After Etters, Danilowicz and England, 1975.)
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spherically averaged potential so obtained differs from a Lennard-Jones
(6-12) potential and it will be seen that, although the latter agrees quite
well with the former at small and large distances, there are appreciable
discrepancies around the minimum. Figure 7.6 shows how the calculated
results fit Stewart’s observations at low pressures quite closely.

7.5 Numerical results and comparison of equations of state
7.5.1  Metallic hydrogen

The first approximation to the theory of metallic hydrogen given
at the end of section 7.2 is inadequate because the potential energy
(—1.8/r) is calculated on a purely classical basis. The potential energy of
exchange for a fluid of free electrons in the ground state must be
included to give an adequate first order model of metallic hydrogen.

Figure 7.6. Comparison of theoretical and experimental variations

of pressure with volume for solid H,. (After Etters, Danilowicz and
England, 1975.)
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The theoretical form of the exchange energy is
3 9m\'? _,
—2—17-(7) rs - Ry per electron
or —0.916r; " Ry per electron.
Thus the total potential energy to first order is
-2.716r;! Ry per electron.
The same result is found by the Wigner-Seitz calculation taken to first
order. Kronig, de Boer and Korringa (1946), for example, find that the

lowest eigenvalue for the solution of Schrédinger’s equation for an
electron and a proton in a Wigner—Seitz sphere is

-3
re—30re
or —3/r.+0.100+: - -
They take the exchange energy to be that calculated by Bardeen
(1938), namely

0284 058
rs r+5.1°

the total potential energy is therefore, as above, —2.7167;" to first order.
When E is

2.21_2.716
rl r

the minimum value occurs at

r,.=1.627,
corresponding to a density of 680 kg/m?, which is thus the estimate of the
density of metallic hydrogen at zero pressure.

The pressure is given, in atomic units, by

1 /442 3.62
p= ——-(—5 - ———) Ry per electron,
477' rs rs

while the Gibbs free energy, G, is

3.68 3.62
R Ry per electron.

Values of E, p and G according to the above Wigner-Seitz calculations
are plotted in Figure 7.3(a) and show the effect of the exchange energy in
the differences from ‘Jellium’,
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The dielectric function approach of Hammerberg and Ashcroft (1974)
gives a similar result to first order except that explicit calculations for the
Madelung energy of different lattices are used instead of the value
—1.8r;" that comes from the simple ‘jellium’ calculation. The values,
already given in section 7.3 are

simple cubic lattice: —1.760 ry ' Ry per electron
face-centred cubic: —1.792 r;' Ry per electron
body-centred cubic: —1.792 ;' Ry per electron.

When more precise calculations are to be made, the higher terms of the
potential energy, the correlation energy, must be included; one form for
the correlation energy is that given by Nozieres and Pines (1958)

-0.115+0.0311nr,
while Ross and McMahon (1976) use the expression
—0.1303+0.0495 In r..

The various calculations of the properties of metallic hydrogen will
now be compared in more detail. In the first place, some different
calculations for the same model are compared, and then calculations for
different models.

There are three points to beware of in comparing published cal-
culations. First, a number of different systems of units have been
employed. The most common is the atomic system (of which, as will have
been noticed already, there are two versions), but other systems are used,
and in the present comparisons SI units are used, namely, joules per
kilogramme mole for energy, and pascals for pressure.

Secondly, different values are taken for zero energy. When the energies
of metallic and molecular hydrogen are compared, the dissociation
energy of molecular hydrogen and the ionization energy of atomic
hydrogen must be taken into account; the energy of the metallic form that
should be compared with the molecular form is

Emewt +3Ep+Ej,
where Ep is the dissociation energy of one molecule and E; is the
ionization energy of one atom:
Ep=0.329 Ry/molecule = 0.216 x 10° J/kg mole
E;=1Ry/atom =1.3128 x 10° J/kg mole.
Thirdly, some authors calculate the zero point energy of the proton
lattice while others do not.

Table 7.1(a) gives a comparison of two calculations by the Wigner-
Seitz method, one by de Marcus (1958) and the other by Ross and



Numerical results and comparison of equations of state 223

Table 7.1. Metallic hydrogen at T =0
(a) Calculations by the Wigner-Seitz method

E G P
(10° J/kg) (10° J/kg) (10" Pa)
I P
(bohr) (kg/m*) 1 2 3 1 2 3 1 2 3
1.70 540 —1.410 -1.369 -1.246 ~1.409 -1.359 -1.289 0.04 005 —0.18
1.39 1000 -—1.374 -1.312 -1.205 -1.226 -1.114 -1.069 1.62 190  +1.38
1.34 1111  -1.357 -1.287 -1.192 -1.167 -1.043 -1.015 2.27 2.60 2.03
1.29 1250 —1.334 -1.256 -1.159 -1.092 -0.957 -0.932 3.20 3.62 3.14
1.23 1430 —1.296 -1.210 -1.117 -0.987 -0.831 -0.811 4.57 5.40 4.41
1.17 1667 —1.242 -1.145 -1.066 —0.849 -0.677 -0.729 6.82 7.40 6.47
1.10 2000 —1.122 -1.048 -0.979 -0.653 -0.453 -0.470 1051 1196  10.33

1: Ross and McMahon (1976).

2: de Marcus (1958).

3. Carr (1962).

The values from Ross and McMahon (1976) include correlation and zero point terms as in de Marcus (1958); those from Carr
(1962) include correlation but not zero point energy. Different expressions were used for the correlation energy in the three
calculations.

The values taken from de Marcus have been reduced by the ionization of a single atom (1.3128 x10° J/kg).

Downloaded from Cambridge Books Online by IP 83.132.177.223 on Sat Jul 24 23:12:52 BST 2010.
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Table 7.1. continued
(b) Calculations by the dielectric function method

E G 4

(10° J/kg) (10° J/kg) (10" Pa)
r p
(bohr) (kg/m?) 1 2 1 2 1 2
1.70 540 -1.374 -1.416 -0.23
1.39 1000 -1.351 -1.339 -1.216 -1.204 1.36 1.36
1.34 1111 —-1.337 -1.321 -1.155 -1.132 1.98 2.08
1.29 1250 -1.311 -1.297 -1.080 -1.057 2.89 3.00
1.23 1430 -1.276 —-1.258 -0.979 —-0.946 4.25 4.49
1.17 1667 -1.224 -1.197 —0.838 -0.810 6.49 6.65
1.10 2000 ~1.143 -1.122 -0.659 -0.637 10.06 10.33

1: Ross and McMahon (1976).

2: Hammerberg and Ashcroft (1974).

The values from Ross and McMahan (1976) include the correlation but not the zero point terms, as in Hammerberg and
Ashcroft (1974).

The Hammerberg and Ashcroft (1974) values are for the face-centred cubic lattice to correspond with those of Ross and
McMahan (1976).

Downloaded from Cambridge Books Online by IP 83.132.177.223 on Sat Jul 24 23:12:52 BST 2010.
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McMahon (1976) using the formula of Neece, Rogers and Hoover
(1971). There is some doubt about the basis of the comparison, for it is
clear that de Marcus must have added a constant to the energy and Gibbs
free energy and the best agreement between energies is obtained if that
constant is taken to be the ionization energy, whereas the Gibbs free
energies agree best if the constant is taken to include half the dissociation
energy as well. As explained in the table, de Marcus’s values have been
reduced by the ionization energy.

The calculations of Carr (1962), which were the basis of Trubitsyn’s
(1966) work, are somewhat similar to Wigner-Seitz calculations and are
accordingly included in Table 7.1(a). His results correspond to the
formula:

2.209 2.708
E= Z T, 0.0905—0.018r, Ry per electron,

with a small difference of 0.000 14 ;' Ry per electron between body-
centred cubic and face-centred cubic lattices. The correlation energy is
not the same as that used by Ross and McMahon (1976).

Table 7.1(b) gives a comparison of two calculations by the dielectric
function method, one by Ross and McMahon (1976) and the other by
Hammerberg and Ashcroft (1974). It should be noted that Hammerberg
and Ashcroft (1974) tabulate E and p as functions of ., from which itis a
simple calculation to obtain them as functions of density, whereas they
tabulate G as a function of pressure, entailing a slightly more involved
calculation to obtain it as a function of density.

Table 7.2. Calculations of properties of
metallic hydrogen. Maximum differences
between different calculations by the
same method

Wigner-Seitz method

A B
AEn(10°T/kg)  0.179 0.086
AGma(10°T/kg)  0.200 0.200
Apmax(10''Pa)  1.63 1.45

Dielectric function method

AE,.(10°J/kg)  0.027
AGx(10°J/kg)  0.033
AP rmax(10'! Pa) 0.27

A: including Carr’s (1962) calculations.
B: excluding Carr’s calculations.
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The greatest differences between the various calculations over the
range of density shown in Tables 7.1(a) and 7.1(b) are listed in Table 7.2.
The spread of energies attains about 20 per cent for the Wigner-Seitz
calculations but only about 3 per cent for the dielectric function cal-
culations and the spread of pressure attains about 15 per cent for the
Wigner-Seitz, but again 3 per cent for the dielectric function calculations.

Ross and McMahon (1976) compared the results of four methods of
calculation, and their results, in SI units, are given in Table 7.3. It will be

Table 7.3. Calculations of the properties of metallic hydrogen
by different methods (after Ross and McMahan, 1976)
(a) Energies

Energy
(10°J/kg)

r P A
(bohr) (kg/m®) WS DF LCAO APW (per cent)

540 -1.390 -1.355 -1.340 -1.388
1000 —1.348 -1.325 -1.306 —-1.339
1110 -1.330 -1.308 -1.288 -1.319
1250 -1.304 -1.281 -1.260 -1.289
1430 -1.264 -1.244 -1.223 -1.250
1667 -1.208 -1.189 -1.168 -1.190
2000 -1.122 -1.105 -1.084 -1.101

e e
== R R W W
ONWOVOROO
LW LW LW W
PRrLBRDON

Values include correlation energy and zero point energy.
The greatest differences are between WS and LCAO.

(b) Gibbs free energies

Gibbs Free Energy
(10° J/kg)

P A
(kg/m®) WS DF LCAO APW (per cent)

e
=]
=
hu¥

540 -1.380 -1.387 -1.365 -1.386
1000 -1.187 -1.176 -1.153 -1.162
1110 -1.125 -1.113 -1.090 -1.099
1250 -1.048 -1.036 -1.011 -1.017
1430 —-0.948 -0.935 -0.916 -0.914
1667 —0.798 —0.786 —0.764 —0.763
2000 -0.597 -0.597 -0.559 -0.553

e S Y
= RN W W
ONWLWOVOREOVO
NP LWLLD
SRV AT N S RV-R P

The greatest differences are mostly between WS and LCAO and
the magnitude is nearly constant at about 0.035x10°J/kg.
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(c) Pressures

Pressure
(10! Pa)

A P A
(bohr) (kg/m® WS DF LCAO APW (per cent)

1.70 540 +0.05 -0.18 -0.14 -0.003 >100

1.39 1000 1.69 +1.49 +1.54 +1.76 17
1.34 1110 227 2.14 2.19 248 15
1.29 1250 3.20 3.08 3.13 341 10
1.23 1430 4.57 4.48 4.53 4.85 8
1.17 1667 6.82 6.69 6.74 7.13 6
1.10 2000 1045 1044 1049 1097 5

The greatest differences are mostly between DF and APW and lie
between 0.23 and 0.53 x 10*! Pa.

WS: Wigner-Seitz.

DF: dielectric function.

LCAQO: linear combination of atomic orbitals.

APW: augmented plane wave.

A: range of E, G or p.

seen that the spread of energies is less than that in Table 7.1(a) for the
different Wigner-Seitz calculations, but the spread of pressure is greater.
The results listed in Table 7.3 are shown graphically in Figures 7.7-7.9.

7.5.2  Molecular hydrogen

It seems that the only calculations for molecular hydrogen that
should be considered seriously are those in which spherical averages have
been taken over all relative orientations of pairs of molecules, namely the
calculations of Trubitsyn (1966), Neece, Rogers and Hoover (1971) and
Etters, Danilowicz and England (1975).

Table 7.4 gives values of energy, pressure and Gibbs free energy for
values of the density from 100 to 1000 kg/m® as derived from the
calculations of Neece, Rogers and Hoover (1971) and Etters, Danilowicz
and England (1975). The latter authors published numerical tables of
their results, from which the values given in Table 7.4 are derived by
interpolation and by conversion of units, while the former authors
expressed their numerical calculations in the form of an interpolation
formula equivalent to

E =5.645x10" exp (—50.52p %) —4.712 x 107%p?,
where E is in J/kg and p is in kg/m>.
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It follows that the pressure in pascals is given by
p=9.506x10"p*>exp (=50.52p %)= 9.425x10™%p>.

There are unfortunately inconsistencies in Trubitsyn’s (1966) pub-
lished results which prevent the tabulation of any consistent values
derived from his work. He himself gave his results in three forms. His
expression for the internal energy at zero temperature is

A exp (-BV'?)—CV ™31+ DV per atom,

where the volume is in atomic units per atom. A is equal to 16.8 atomic
units of 27.2 eV and b is 1.81.

On conversion to SI units, the expression for the internal energy
becomes

4.4089 x 10" exp (—57.45p"'%)—0.0165p> J /kg,

Figure 7.7. Comparison of internal energy, E, and Gibbs free
energy, G, of metallic hydrogen for different calculations.

1: Carr (1962), Wigner-Seitz;

2: de Marcus (1958), Wigner-Seitz;

3: Hammerberg and Ashcroft (1974), dielectric function;

4: Ross and McMahan (1976), dielectric function;

5: Ross and McMahan (1976), Wigner-Seitz.
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and the equivalent expression for the pressure would be
8.443x10"p*" exp (-57.45p7"/%) - 0.0335p° Pa.
Trubitsyn himself gives the following expression for the pressure at
zero temperature:
p=5.01x10%p?"? exp(—4.91p™'/*) - 2.34 x 10°p°,
where p is in atmospheres and p in g/cm’.
In SI units the equivalent expression is
p=5.08x10"p*" exp (—49.1p~"*)—237p°,
which is evidently different from the expression derived from the energy
above.

Neither formula agrees with Trubitsyn’s tabulated values. Thus he
gives a table (Trubitsyn, 1971) in which the molecular hydrogen values

Figure 7.8. Dependence of pressure on density of metallic hydrogen
for different calculations. Key as for Figure 7.7.
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are taken from the 1966 paper, according to which the pressure at a
density of 850 kg/m” is 2.0 x 10! Pa. His own formula for the pressure
gives 1.21 x 10! Pa, whilst that derived above from his expression for the
energy leads to 1.76 x 10" Pa.

The energies and pressures derived from any of Trubitsyn’s forms are
less than those of the other two authors.

7.5.3  The transition pressure

The transition from the molecular to metallic form of hydrogen,
or vice versa, will take place at the pressure at which the Gibbs free
energies of the two forms are the same. The results of sections 7.5.1 and
7.5.2 are therefore now presented in a slightly different way, namely
as graphs showing the dependence of Gibbs free energy on pressure
(Figure 7.9).

Figure 7.9. Gibbs free energy as a function of pressure for metallic (1-4)
and molecular hydrogen (a, b).

1: Wigner-Seitz;

2: dielectric functions;

3: linear combination of atomic orbitals;

4: augmented plane wave.
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It will be remembered that the energies for the metallic form were
calculated from a state in which the protons and electrons were widely
separated, whereas those for the molecular form were calculated from a
state in which the molecules were widely separated. To make the two sets
of energies comparable, the dissociation energy of the molecule and the
ionization energy of the atom must be added to the internal energies and
Gibbs free energy of the metallic form as calculated above. If E, is the
internal energy of the metallic form calculated from the state of widely
separated protons and electrons, the energy to be compared with that of
the molecular form is

E=3Ep+E+E, per atom,

where 3Ep + Ej is equal to 1.528 x 10° J/kg.

It will be seen from Figure 7.9 that the molecular and metallic curves of
G against p cross at a relatively small angle so that the estimated
transition pressure is rather strongly dependent on errors in the cal-
culations. According to which calculations are preferred, the estimated
transition pressure may range from 0.75x 10" Pa to 2.3 x10'" Pa. Any
of Trubitsyn’s calculations for molecular hydrogen gives lower energies
and pressures at a given density and a lower Gibbs free energy at a given
pressure, and consequently the transition pressures estimated from his
results would be greater than those shown in Figure 7.9 by something of
the order of 10! Pa. Trubitsyn’s (1966) estimate, using his own molecu-
lar calculations and Carr’s (1962) metallic calculations, is 4.6 x 10" Pa.

Table 7.4. Calculations of the properties of molecular hydrogen

E G p

(J/kg) (J/kg) (10° Pa)
p
(kg/m® 1 2 1 2 1 2
100 1.1x10° -3.3x10° 4.9x10° 1.2x10° 3.8 0.5
200 1.0x107 2.5x10° 3.9x10" 1.5x107 57.5 22.5

300 3.0x107  1.2x107 1.05x10°5.0x107 22x10>° 1.2x107
400 59%x107  2.7x107 1.95x10°1.0x10®° 54x10>° 3.1x10*
500 9.7x107 5.1x10° 3.0x10® 1.9x10®° 1.0x10° 7.0x10°
600 1.4x10®% 8.7x107 4.4x10® 3.2x10° 1.7x10®> 1.4x10°
700 1.9x10° 1.3x10® 55x10®° 4.4x10® 2.5x10®° 2.3x10°
800 2.4x10° —  6.8x10° — 3.6x10° —
900 3.0x10® —  83x10°® —  47x10° —
1000 3.6x10° 2.9x10® 9.7x10® 8.5x10® 6.1x10° 5.6x10°

1: From the formula of Neece, Rogers and Hoover (1971).
2: Interpolated from the table of Etters, Danilowicz and England (1975).
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All the foregoing calculations for metallic as well as molecular hydro-
gen have been made for zero temperature. At finite temperatures the
energy will contain a term corresponding to the lattice vibrations, which
may be estimated from Debye theory. Trubitsyn shows that the effect of
temperature is small compared with the uncertainties in the calculation of
the transition pressure at zero temperature.

It is not clear whether the transition from the molecular to the metallic
form of hydrogen has been observed. Grigorev et al. (1972) as already
mentioned, considered that their observations implied a transition at a
pressure of about 2.8 x 10"" Pa. More recently, Vereshchagin, Yakolev
and Timofeev (1975) claim to have found the transition at 10" Pa, but, as
will be seen below, some doubt must be felt about this result.

7.6 Melting and the phase diagram of hydrogen
The following phases of hydrogen are known or postulated:

(a) in the molecular form: gas, liquid and solid;
(b) in the metallic form: liquid and solid.

Experimental results for molecular hydrogen are known at low pres-
sures and low temperatures, where it is found that the melting tempera-
ture T,, depends on the melting pressure p,, according to the rule

1/c¢
T.,,=T2,(1+p——“‘) ,
a

T3 =14.155K, a =2.742x 10" Pa, and ¢ = 1.747 (Trubitsyn, 1971).
At higher pressure, the melting temperature is supposed to be found

from Lindemann’s rule, according to which a solid melts when the

thermal vibrations of the lattice attain an amplitude comparable with the

lattice spacing. The rule leads to the following expression:
2

T {0\ V\??
76 (5
where O is the Debye temperature and V the molecular volume at the
pressure p corresponding to the temperature Ti,, and @ and V), are the
Debye temperature and molecular volume at zero pressure.
The Lindemann rule may similarly be used to estimate the melting
temperature of metallic hydrogen. Neither ©, nor Ty, is known for

metallic hydrogen, but Trubitsyn (1971) assumed that metallic hydrogen
is similar to the alkali metals and so found

Tm=18%x1070*V*?K,

where V is in atomic units.
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On substituting his calculated value of O, he obtained
Ta=4x10%"2K
if p isin kg/m3.

Leung, March and Motz (1976) adopt a different rule for extrapolating
the melting temperature of molecular hydrogen, supposing that the
melting pressure is proportional to T’°, a result obtained from work of
Mills and Grilly (1956) and Woolley, Scott and Brickewedde (1948). They
use Lindemann’s rule to obtain the melting curve of metallic hydrogen.
The melting relation for metallic hydrogen has also been derived by
Stephenson and Ashcroft (1974), again by the Lindemann rule; they
found a melting temperature of 3 X 10* K at a density of 10.000 kg/m?, to
be compared with a value of about 9000 K that would be predicted by
Trubitsyn’s (1971) rule.

The line between the molecular and metallic solid probably lies at
lower pressures as the temperature rises; the evidence for this prediction
comes from a criterion for the metal-insulator transition given by
Herzfield (1927) and on experimental observations of Vereshchagin
(1973) on the transition in carbon.

The phase diagram proposed by Leung ef al. (1976) is reproduced in
Figure 7.10 and that of Trubitsyn (1971) is very similar. Leung et al. point
out that it is possible to join up the molecular and metallic liquid lines and
then the solid metallic-molecular liquid could meet them at the point of
intersection, but the liquid metallic-molecular line could not then pass
through that same point. However the nature of these intersections is at
present uncertain and is left so in the diagram.

Figure 7.10. Sketch of phase diagram of hydrogen. (After Leung,
March and Motz, 1976.)
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7.7 Transport properties

A number of important questions about the interiors of Jupiter
and Saturn turn on a knowledge of the electrical and thermal conductivity
of metallic hydrogen. If the magnetic field of Jupiter is to be generated by
dynamo action in an electrically conducting fluid (as is generally postu-
lated) then the electrical conductivity must be high and also the tempera-
ture must be high enough for metallic hydrogen to be liquid; to assess the
likelihood of metallic hydrogen being liquid requires some ideas about
the internal temperature as well as about the phase diagram, and, hence,
some estimate of the thermal conductivity.

The theory of transport properties of simple metals is well understood
(for an elementary account see, for example, Kittel, 1968). The momen-
tum, p, of a free electron is #ik. In an electric field, E, the force exerted on
an electron is eE, and the rate of change of momentum is consequently

dp
X _¢E
- ¢
or
eEébt
5k——T.

If electrons moved without collisions 8¢ would increase without limit
and so would 6k : the metal would be a superconductor. But, in ordinary
metals, electrons collide with the ions of the lattice. If the average time
between collisions is 7 and if the collisions destroy all coherence between
motion before and after collision, the time for which the electric field, E,
acts will be in effect 7, and thus the average change of k is

—eE7r/h.

The change of velocity, év is
hok/m,

that is
—eEt/m,

where m is the mass of the electron.

If the number of electrons per unit volume is n, the electrical current, j,
corresponding to the velocity, v, is

j=nedv=—ne’Er/m>
Thus, the specific conductivity, o, is given by
o =ne*r/m.
In this expression, n, ¢ and m are known and the problem is to calculate 7.

The thermal conductivity, K is equal to
3C 8vl,
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where C is the heat capacity of the electrons (the phonon contribution is
ignored), &v is the drift velocity of the electrons and / is the mean free
path of the electrons.

Now the theory of the Fermi gas shows that

=17 mkT/To

where Ty is the degeneracy temperature.
! is given by Tvg, where v is the velocity of electrons at the edge of the
Fermi surface. It then follows that the electron conductivity, K., equals
mnk*Tr
3m
The expression for K, and o combine to give the Wiedmann-Franz

law, namely
2

&=ﬁ(5) T
o 3\e

a result which is probably reliable for metallic hydrogen.

The most complete treatment of collisions of electrons with the hydro-
gen lattice is that of Stephenson and Ashcroft (1974). They estimated the
melting temperature of metallic hydrogen from the Lindemann criterion
(see below, section 7.8) to be about 3x 10* K ata density of 10 000 kg/ m>
and, using that value, found that the electrical conductivity at 16 000 K
would be 2% 10" e.s.u. or 2 x 10’ S/m. The Wiedemann-Franz law then
led to values of the thermal conductivity which, for a specific model of
Jupiter, ranged from 9 x 10> W/m deg at the centre to 10*> W/m deg at
the boundary of the metallic part. The values of the electrical conductivity
obtained by Stephenson and Ashcroft (1974) are higher than those of
Hubbard and Lampe (1969). Other calculations have been made by
Hubbard (1970) and earlier by de Marcus (1958).

7.8 Is metallic hydrogen a superconductor?

The alkali metals, which are presumably the closest analogues of
metallic hydrogen, are not found to be superconducting at the lowest
temperatures at which experiments have been done. Ashcroft (1968) has
however pointed out that metallic hydrogen may differ significantly from
the alkali metals and could be a superconductor at quite high tempera-
tures.

The temperature T, at which a metal becomes superconducting is,
according to the Bardeen—Cooper—Schrieffer theory, given by

T.=0.850 exp (—1/No V),
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where @ is the Debye temperature and NyV is the non-dimensional
product of the density of (Fermi) states with the lattice interaction. The
product NoV depends on the velocity of sound in the metal. Ashcroft
estimates that © is about 3.5x 10> K, much greater than the values for
the alkali metals which are about 100 K. He further estimates that the
product NV is not less than 0.25. Thus T is not less than 60 K and,
because of the strong dependence of T.on N,V it could be much greater.

The dependence of the transition to the superconducting state on
pressure has been summarized by Bowen (1967).

7.9 Conclusion
It has been my aim in this chapter to give a general idea of the
state of theoretical calculations on the properties of hydrogen and helium
at pressures such as are attained in the major planets. I have also tried to
summarize and compare numerical calculations where possible. Within
recent years, a great deal of interest has been taken in the properties
of metallic hydrogen, and various methods have been employed to
calculate them, but it is clear that the spread of the calculations made by
different authors is not great. Calculations on molecular hydrogen are, by
that criterion, less successful, and the uncertainties of estimates of the
pressure of the transition from the molecular to the metallic form
depend primarily on the molecular calculations; at the same time,
because the equations of state of the metallic and molecular forms are not
so very different, the uncertainty in the transition pressure does not
greatly affect the construction of dynamical models of the major planets.
Nothing has been said about the effect of temperature upon the
transition pressure, save for a study by Trubitsyn (1966). The difficulty lies
in the fact that the difference of the internal energies of the molecular and
metallic forms is the small difference between quantities having
uncertainties comparable with the difference. Thus the latent heat of the
transition, needed in the Clausius—Clapeyron equation, is very uncertain.
The melting temperature of the metallic form is also a quantity which is
very uncertain. Here the difficulty is that there is no reliable theory of
melting that can be applied to even so apparently simple a system as
metallic hydrogen. All current theories are to some extent empirical and
consequently unreliable at the conditions in the major planets. One of the
principal needs in planetary physics is for a reliable theoretical account of
melting.
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Jupiter and Saturn, Uranus and Neptune

8.1 Introduction

The major planets are distinguished from the terrestrial planets
most obviously by their great sizes, their great distances from the Sun
(Table 8.1) and their low densities. It has already been seen (Chapter 1)
that their low densities imply that Jupiter and Saturn can only be formed
in the main of hydrogen and helium; the mean densities of Uranus and
Neptune are greater than those of Jupiter and Saturn (Table 8.8) while
the central pressures are less and, accordingly, the mean atomic weights
of Uranus and Neptune must be somewhat greater than that of a mixture
of hydrogen and helium.

A further distinctive feature of all the major planets is that they spin
much faster than any of the terrestrial planets. The spin periods them-
selves are of the order of a day, but the factor m which expresses the spin
angular acceleration at the surface in terms of surface gravity is much
greater than in the terrestrial planets (Table 8.8). It will be recalled that m
is equal to a’w?/GM and, because the mean densities of the major
planets are less than those of the terrestrial planets, the factor a*/M is
greater for the major planets. Thus m ranges from about 2x1072 to
1.6x10™" for the major planets, Saturn having the greatest value,
whereas the greatest value for the terrestrial planets is 4.6 x 10> for

Table 8.1. Some properties of the major planets

Jupiter Saturn  Uranus Neptune

Distance from Sun (AU) 5.20 9.55 19.2 30.1
Greatest angular diameter seen 46.9 19.5 3.6 2.1
from the Earth (arc sec)

Number of satellites 13 9 5 2

237
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Mars. Further, the material of the major planets, is more compressible
than that of the terrestrial planets, for the bulk modulus tends to 2p at
high pressures (p is the pressure) instead of to 3p. Accordingly, and
because, in addition, the central pressures are greater in the major
planets, the central compression is greater and thus the dimensionless
moment of inertia is less in the major planets than in the terrestrial
planets. Darwin’s formula relating J,, m and C/Ma?* for a planet in
hydrostatic equilibrium then shows that J, will be much greater for the
major planets than for the terrestrial planets, and, consequently, that the
major planets will be more flattened at the poles. These expectations are
borne out, indeed the polar flattenings of Jupiter and Saturn are so great
(fs and 1g respectively) that they may readily be seen through a telescope.
Uranus and Neptune are less flattened, about 335, but, even so, much more
than any of the terrestrial planets. In summary, the major planets are
larger and softer and spin faster than the terrestrial planets and so are
more flattened.

Information about the major planets is, however, much more difficult
to obtain because they are so much more distant from the Earth than any
of the terrestrial planets. Radar observations have in consequence not
been rewarding, and it is only quite recently that two space craft, Pioneers
10 and 11, have passed by Jupiter and Saturn. Tracking of Pioneers 10
and 11 has yielded valuable information about the masses and gravity
fields of Jupiter and Saturn, but both have many well-observed satellites
(Table 8.1), and from their motions the masses and J, and J4 had been
reasonably well determined. The other major planets likewise have
satellites, the motions of which have been used to estimate the masses and
values of J,, but Uranus presents an interesting difficulty. The polar axis
of Uranus lies almost in the orbital plane, itself close to the ecliptic, while
the planes of the satellite orbits, like those of the satellites of other
planets, are close to the ecliptic. Thus the satellites are nearly polar
satellites instead of being nearly equatorial as with other planets. The
orbits are also nearly circular; in consequence, the motions of the nodes
and periastra are difficult to determine. The sizes and geometrical
flattenings present problems. The major planets are small objects when
seen through a telescope (Table 8.1), and the errors of visual obser-
vations, especially of Uranus and Neptune, are rather large; some
additional estimates of size and flattening come from occasional occul-
tations of stars. There are likewise considerable difficulties in observing
spins of Uranus and Neptune. Furthermore, the outer parts of the major
planets are not solid but fluid, so that there is no uniquely defined surface;
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rather what is seen in the telescope is a surface of particular optical depth
in the fluid, while, at the same time, the surface is mobile, and so there are
some problems in defining the rotation of the planet as a whole.

Jupiter and Saturn have magnetic fields. The significance of this fact for
the internal structure is elaborated in Chapter 9, but it will suffice to
mention here that on the basis of dynamo theory it implies that part of the
planet is fluid and electrically conducting, as is implied also by the study of
metallic hydrogen and helium in Chapter 7. This chapter is concerned
with the dynamical properties of the major planets and with the internal
structures entailed by them. The dynamical properties themselves are
discussed in the next section.

So far as is known, the major planets are in hydrostatic equilibrium.
However, the theory of planets in hydrostatic equilibrium, developed in
Chapter 3, is inadequate for a study of the major planets. Itis a first order
theory, sufficient for planets not greatly flattened nor with definite
departures from hydrostatic equilibrium, and it is not good enough for
highly flattened planets. Therefore, in section 8.3 the theory of a planet in
hydrostatic equilibrium will be carried to an order of approximation
sufficient for highly flattened planets.

Jupiter and Saturn, as already pointed out, are composed essentially of
hydrogen and helium, and models of their internal structures will be
considered in section 8.4. Such models are inapplicable to Uranus and
Neptune with their higher densities and the constitutions of those two
planets are separately discussed in section 8.5.

8.2 Dynamical properties

Summaries of earlier estimates of the radii, masses and values of
J of the major planets will be found in the articles by Kovalevsky (1970)
and Dollfus (19705) in the compilative work on surfaces and interiors of
planets and satellites edited by Dollfus (1970a). A somewhat more
recent review of the properties of the major planets and their satellites
has been provided by Newburn and Gulkis (1973).

The spin period of Jupiter as derived from the motions of surface
features in the equatorial zone is 9h 50m 30s (Allen, 1963), and the
corresponding period in high latitudes is greater. The period of rotation
of the magnetic field of Jupiter (or more strictly, of the magnetosphere)
has been derived from extended observations of features of radio
emission (Carr, 1971) and the value is still longer: 9h 55 m 29.75 s. If itis
assumed that the magnetic field rotates with the main body of the planet,
this is the period to take in calculations of the dynamics of Jupiter. As on
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the Earth, it appears that winds in the upper atmosphere rotate more
rapidly than the body of the planet.

The best estimates of the radius of Jupiter are obtained from two
groups of observations. Dollfus (19705, c) has devoted a great deal of
effort to the measurement of the diameters of the planets using an optical
double micrometer on large telescopes; his result for Jupiter (Dollfus
197054, c; Table 8.2) is:

equatorial radius: 70 850+ 100 km

polar radius: 66 550+ 100 km,
values which entail a polar flattening of 0.060 69+ 0.000 12, or 1/16.48.
A more recent value has been derived from observations of the occul-
tation of the star 8-Scorpii by Jupiter; the value for the equatorial radius
is 71 400 £ 100 km. Dollfus’s measurement is to the top of the cloud layer
over Jupiter and the occultation measurement no doubt refers to a
somewhat similar, though not necessarily identical, surface.

The flattening originally obtained from the occultation was 0.060 +
0.001, which is consistent with the observations of Dollfus. However, as a
result of a study of the orbit of Io, Hubbard (1977) has obtained a new
position for the centre of mass of Jupiter and that in turn entails a revision
of the flattening calculated from the occultation, leading to a value of
0.063+£0.001. It will be seen below that this is in much better accord with
the gravity data than the value of 0.0607. It should be noted that the radii
of Jupiter and Saturn refer to some rather ill-defined layer in the
atmosphere.

The mass of Jupiter given by Kovalevsky (1970) is equivalent to
(1.899 67+ 0.000 07) x 10*’ kg. The data of the estimate are obser-
vations of the sizes and periods of satellites of Jupiter and perturbations
of the orbits of the asteroids. It should perhaps be noted that the mass
obtained by such methods is expressed as a fraction of the mass of the
Sun, and Kovalevsky gives the mass of Jupiter as 1/(1047.38+0.04)
times the solar mass. When, on the other hand, the mass is derived from
the tracking of space craft, the result is often expressed as the product,
GM, of the constant of gravitation and the mass. Now the value of GM
for the Sun is 1.327 125x10*°m?/s® and so Kovalevsky’s result is
equivalent to a value of GM for Jupiter equal to 1.267 08 X 10" m®/s%.
The value of G is taken throughout this book to be 6.67 x 10" m*/s” kg,
and the mass of Jupiter in kilogrammes corresponding to Kovalevsky’s
result is as given above. The mass of Jupiter has also been obtained from
analyses of the orbit of Pioneer 10 as tracked by the variation of the
Doppler shift of S-band radio signals from the space craft. As may be seen
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Table 8.2. Dynamical properties of Jupiter
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Period of rotation
9h50m30s
9h55m29.75s

Radius

Equatorial radius (km) Polar radius (km)

71400+ 100

70850+100

Geometrical flattening, f
0.06069+0.00012 (1/f=16.48)

0.063 £0.001
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+0.000 05
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1.899 754
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}x 107*

} x107*
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Allen (1963)
Carr (1971)

Hubbard and van Flandern
(1972)
Dollfus (19705, ¢)

Dollfus (19705, ¢)
Hubbard (1977)

Kovalevsky (1970)

Anderson, Null and Wong
(1974)

Kovalevsky (1970)

Anderson, Null and Wong
(1974)

Null, Anderson and Wong
(1975)

Anderson, Null and Wong
(1974)
Null, Anderson and Wong
(1975)
Anderson, Null and Wong
(1974)
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from Table 8.2, the estimates of the mass of Jupiter obtained by classical
celestial mechanics and from the space craft track agree excellently.

The coefficients of the spherical harmonics in the gravitational poten-
tial have likewise been found both from the perturbations of the orbits of
the natural satellites and from the tracking of space craft. J, was obtained
by de Sitter (1931) from the motions of the Galilean satellites, while van
Woerkom (1950) obtained a relation between J, and J; from which
Kovalevsky (1970) derived the values of J, and J, given in Table 8.2.
Values of J; and J, have been estimated from the tracks of Pioneers 10
and 11 and Js from Pioneer 11; it will be seen from Table 8.2 that there is
excellent agreement between the classical and space craft results.

Some idea of possible departures of Jupiter from the hydrostatic state
can be obtained from other harmonic coefficients that were investigated
in the analysis of the Pioneer tracks. It will be seen from Table 8.2 that
only upper limits can be set to values of J3, Cy; and S,,; the limits are
small, and it may be said that no non-hydrostatic terms in the gravita-
tional potential have been detected.

The radii of Saturn, Uranus and Neptune have been determined by
Dollfus (19705, ¢) by the optical double micrometer. The equatorial and
polar radii of Saturn have been found from observations from the Pioneer
11 space craft (Gehrels et al., 1980); the equatorial radius agrees well
with Dollfus’s (197056, ¢) value, but the polar radius is rather different.
Uranus has been observed at high resolution with the stratoscope tele-
scope in orbit about the Earth — making observations outside the Earth’s
atmosphere permits much greater resolution than observations from the
ground (Danielson, Tomasko and Savage, 1972) - and occultations of
stars by Neptune and Uranus have been studied (Taylor, 1968; Kovalev-
sky and Link, 1969; Freeman and Lynga, 1970; Elliot, Dunham and
Mink, 1979; Table 8.3).

The masses of Saturn, Uranus and Neptune have all been estimated by
Klepcynski, Seidelman and Duncombe (1971) in their general review
of the masses of the planets. (See also, Duncombe, Klepcynski and
Seidelman, 1971; Ash, Shapiro and Smith, 1971.) The mass of Saturn
has been estimated subsequently by Garcia (1972) and Sinclair (1976)
each of whom has analysed the motions of the closer satellites.

The values of J, and J, for Saturn have been quite well established from
the perturbations of orbits of the satellites (Jeffreys, 1954; Sinclair, 1976)
although Garcia (1972) obtained discrepant results. J, and J4 have also
been determined from Doppler tracking of Pioneer 11 (Anderson et al.,
1980); the values agree well with those found from natural satellites.
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When it comes to comparing the geometrical (or optical) polar flatten-
ing for Jupiter or Saturn with that of an equipotential surface, as
calculated from the harmonic coefficients of the gravity field, the first
order relation between f, m and J; is no longer adequate. That relation is
based on the assumption that the equipotential surface is an ellipsoid of
revolution with its meridional sections being ellipses, and on that
assumption the relations to the second order in f, m and J; are

L =3f(1-3)~4m(1-3f)]

Ja= —35f(1f —5m)
(Cook, 1959, but note that the m used in that paper is (1 — f)a3w2/ GM
and not a’w?/GM as here).

Let us first check whether the equipotential surfaces are spheroids. We
calculate f from J, alone and find, for Jupiter, f=0.065 89 and, for

Table 8.3. Dynamical properties of Saturn

Period of rotation

10h14m Allen (1963)
Radius
Equatorial (km) Polar (km)
60 000+ 240 53 450+240 Dollfus (19705, ¢)
60 000500 54720+ 500 Gehrels et al. (1980)
Geometrical flattening, f
0.10917 +0.004 Dollfus (19705, ¢)
0.088 +£0.006 Gehrels et al. (1980)
Mass
GM (m*/s?) M (kg) Dollfus (19705, ¢)
3.7938 16 26 Klepcynski, Seidelman and
{ i0.000S] x10 5.6879x10 Duncombe (1971)
3.7918 x 10" 5.6848x 10%° Sinclair (1976)
3.7902 16 { 5.6824 26 .
{iO.OOZ]XIO :t0.003]X10 Garcia (1972)
Gravitational potential
Js Js
Satellites
0.016 67 ] {-—0.001 03]
{ﬂ:0.000 03 +0.00007 Jeffreys (1954)
-0.0010
0.0165 { ] i i
£0.0001 Sinclair (1976)
Pioneer 11
{0'016 46 ] [—0'000 99] Anderson et al. (1980)
+0.000 05 +0.000 08
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Saturn, f=0.0797. The value for Saturn is less than either optical
flattening, and that for Jupiter is greater. Now we calculate J, from m, and
the above values of f, with the following results. For Jupiter
J4=-0.000 15, and for Saturn J,=+0.031. The calculated values are
far from the observed values and, for Saturn, even the sign is different.
We conclude that the equipotential surfaces of Jupiter and Saturn are
not ellipsoids of revolution.
Let us then suppose that the equipotential surface has the form

r=a[l—e,—es+esPr(cos 8)+esPa(cos 6)].

e4is 27¢3/35 for an ellipsoid of revolution. The polar flattening of such a
surface is

3 S
5ex+3ey,

and the value of J, will differ from that for an ellipsoid. Consider only the
changes Ae, due to departures from the elliptical section. Then

Aes=—AJ, 4
where AJ, is the difference between the observed J4 and that cor-
responding to an ellipsoid of revolution with the same J,. The change in
flattening, Af, is then —3AJ,.
The values are

Jupiter: ATy =5x 1074, Af:3.1x107% f+Af: 0.0662;
Saturn: AJy: —0.032; Af: 0.02; f+Af:0.10.

The revised values are still discordant with the geometrical flattenings.
The geometrical flattening of Jupiter seems to be less than is entailed by
the gravity field, while the two values for Saturn lie one either side of the
dynamical estimate.

To summarize, the dynamical properties of Jupiter and Saturn are
reasonably well established, but the gravitational fields appear not to be
those of ellipsoids of revolution, although some of the discrepancies may
arise from uncertainties in the spin rates of the planets or in the positions
of their centres of mass.

Properties of Uranus and Neptune are much less well known. Not only
are the values of J, poorly known, and those of J, unknown, but there are
large discrepancies between observations of the spin rates. The spin
periods of both planets have recently been determined by two methods,
one involving measurements of the Doppler shifts of Fraunhofer lines in
sunlight reflected from the disc of the planet, and the other depending
on periodic variations in the intensity of the reflected sunlight. Two
spectroscopic determinations of the period of Uranus (Hayes and
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Belton, 1977; Trafton, 1977) give values close to 24 h (Table 8.4),
whereas two others (Brown and Goody, 1977; Trauger, Roesler and
Miinch, 1978) give values about 14.5 h. Similarly, Hayes and Belton
(1977) found a value of 22 h for the rotational period of Neptune using
the spectroscopic method, whereas Cruickshank (1978) and Slavsky and
Smith (1977), both of whom employed the photometric method,
obtained values in the neighbourhood of 18.5 h (Table 8.5). Smith and
Slavsky (1977) estimated that the photometric period of Uranus was
close to 24 h.

Neither for Uranus nor for Neptune can J, be found and the values of
J> and the geometrical flattening are poorly known. The difficulties in
obtaining J, from the motions of the satellites of Uranus have already
been mentioned, but two values have been obtained from the orbits of the
satellites Miranda (Whitaker and Greenberg, 1973) and Ariel and
Umbriel (Dunham, 1971). The mean motions of the three satellites are
approximately commensurate according to the relation

nm—3na+2ny=0,

where nm, na and ny are the mean motions (angular velocities) of
Miranda, Ariel and Umbriel respectively.

Table 8.4. Dynamical properties of Uranus

Spin period (h) 24+3 Hayes and Belton (1977)
234 Trafton (1977)
15.57+0.8 Brown and Goody (1977)
13.0+1.3 Trauger, Roesler and Munch
(1978)
23.92 Smith and Slavsky (1979)
Equatorial radius (km) 25 400+280 Dollfus (1970c)
25900+ 300 Danielson, Tomasko and
Savage (1972)
25700200 Elliot ef'al. (1979)
Geometrical 0.028 +£0.01 Dolifus (1970c¢)
flattening, f 0.01+0.01 Danielson, Tomasko and
Savage (1972)
0.033+0.007 Elliot ez al. (1979)
J 0.005 Whitaker and Greenberg
(1973)
0.012 Dunham (1971)
0.00343 Nicholson et al. (1978)
Mass (kg) 8.727x10% Klepcynski, Seidelman and

Duncombe (1971)
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Whitaker and Greenberg (1973) found that the motions of the node
and pericentre of Miranda are not equal and opposite as would be
expected from the secular theory of perturbation by the oblateness of
Uranus, and, although they estimated J, from those motions, and found
that Dunham’s (1971) value of J, is inconsistent with the observed
motions, they also point out that the commensurability of the mean
motions probably means that the secular theory is inadequate. On the
other hand, Miranda, being closest to Uranus, is most perturbed by the
oblateness of Uranus.

Uranus has recently been found to have a system of rings of dust about
it (Elliot et al., 1978) and the fifth ring outwards (labelled ¢) has been
shown by a study of occultations to have an elliptical form which is
precessing about Uranus. J, has been estimated from the apsidal pre-
cession (Nicholson et al., 1978).

There is just one estimate of the value of J, (0.0050=+0.0004) for
Neptune, derived from an analysis of the orbit of Triton (Gill and Gault,
1968; Kovalevsky 1970).

For each of the planets Uranus and Neptune there are at least two
estimates of the ratio, m, and two of the geometrical flattening, f. There
are three estimates of J, for Uranus and one for Neptune. Combinations
of the estimates of m and J lead to additional estimates of f according to
hydrostatic theory, and some attempt will now be made to discriminate
between the many estimates of f on the basis of physical arguments. In
view of the wide range of the estimates of m and f, only first order theory

Table 8.5. Dynamical properties of Neptune

Spin period (h) 22+4 Hayes and Belton (1977)
18.17 £0.003 Cruickshank (1978)
or 19.58+0.003
18.43+0.05 Slavsky and Smith (1977)
Equatorial radius (km) 24 300450 Dollfus (1970¢)
24 75359 Freeman and Lynga (1970)
25225+60 Kovalevsky and Link (1969)
Geometrical 0.0259£0.0051 Freeman and Lynga (1970)
flattening, f 0.021+0.004 Kovalevsky and Link (1969)
J, 0.0050+0.0004 Kovalevsky (1970) and Gill
and Gault (1968)
Mass (kg) 1.0296 x 10%° Klepcynski, Seidelman and

Duncombe (1971)
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will be used, so that f is calculated from the formula (see Chapter 3)
f = %J 2 + %m

Now, according to Darwin’s first order theory of a planet in hydrostatic
equilibrium, the dimensionless moment of inertia is given by

_Q_z[l_z(zm_l)‘”]
Ma? 3 5\2 f '

Physical restrictions on the possible values of C/Ma?* entail correspond-
ing restrictions on the possible values of m/f. The ratio C/Ma* must be
real; accordingly m/f must exceed 0.4. Also C/Ma® must be less than 0.4
if the density is to increase towards the centre of the planet; m/f must
therefore exceed 0.8. On the other hand, C/Ma2 cannot be less than
zero; m/f must therefore be less than 2.9.

The values of f and C/Ma? for Uranus, calculated for two values of the
spin period and m, are collected in Table 8.6. Certain combinations are
seen to be excluded by the criteria just set out, but there remains a wide
range of possible values. Dunham’s (1971) high value of J, (0.012) should
perhaps be discounted in the light of the later findings of Whitaker and
Greenberg (1973). There then remain two quite different possibilities,
according to which value of the spin period is adopted. If the period is
taken to be about 14.5h, the two remaining values of J, and the
geometrical flattenings of 0.028 and 0.033 are reasonably consistent,
with m/f about 1.5 and C/Ma? about 0.22. On the other hand, when the
period is taken to be 24 h, the geometrical flattenings of 0.028 and 0.033

Table 8.6. Values of f and C/Ma* for Uranus

Spin period: 24 h

m:0.0153
J, 0.005 0.012 0.00343
f 0.033 0.028 0.01 0.0152 0.0256 0.0128
m/f 0.464 0.546 1.53 1.0 0.60 1.20
C/Ma* 0.56 0.5 0.22 0.34 04 0.29
Spin period: 14.5h

m:0.0420
J> 0.005 0.012 0.00343
f 0.033 0.028 0.01 0.0285 0.39 0.0262
m/f 1.273 1.5 4.2 1.47 1.08 1.60
C/Ma* 0.27 0.22 0 0.23 0.32 0.20

Adopted values of a: 25 650 km,
mass: 8.727 X 10 kg.
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are impossible, and there is no consistency between the various values of
m/f and C/Ma®.

The greater geometrical flattening of Neptune (0.0259) is impossible
on the basis of either spin period, and the lesser one on the basis of the
longer period. With the shorter period, however, the flattening of 0.021
can be roughly reconciled with the value of J,.

These comments on the consistency of different estimates do not, of
course, prove that the respective estimates are correct. A different line of
argument suggests that the smaller values of C/Ma?, to which the
comments on Uranus appear to tend, may be unlikely. Uranus and
Neptune have mean densities and central pressures which lie between
those of the Earth, on the one hand, and of Jupiter and Saturn, on the
other, the central pressures in effect probably being rather close to that in
the Earth. The central compressions might therefore be expected to be
closer to that in the Earth than in Jupiter or Saturn, and thus C/Ma?
would be expected to be greater than the Jovian value (0.25) but less than
that for the Earth (0.33). On this argument, the low values for Uranus in
Table 8.6 would be unlikely, while the Neptunian value of just over 0.3 in
Table 8.7 would be reasonable. However, the argument is none too
secure, for, applied to Jupiter and Saturn, it would lead to the conclusion
that C/Ma? should be less for J upiter than for Saturn, whereas the
reverse is the case. It is tempting to think that Uranus and Neptune, which
have almost identical sizes, should be similar in other respects as well, but
the masses and mean densities are substantially different, and it may well

Table 8.7. Values of f and C/Ma? for Neptune.

Spin period: 22 h

m:0.014
J2 0.0050
f 0.0259 0.021 0.0145
m/f 0.540 0.667 0.97
C/Ma? 0.5 0.45 0.348
Spin period: 18.5h

m:0.020
Js 0.0050
f 0.0259 0.021 0.0175
m/f 0.772 0.95 1.142
C/Ma? 0.41 0.353 0.303

Adopted values of a: 24800 km,
mass: 1.0296 x 10> kg.
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be that so also are the flattenings and the values of C/Ma?>. It can only be
concluded that large uncertainties remain in the dynamical properties of
Uranus and Neptune and that no generally consistent set of data exists for
either.

The dynamical properties of the major planets are summarized in
Table 8.8, various alternative values being given for Uranus and Neptune
where appropriate.

8.3 Theory of a rapidly spinning planet in hydrostatic equilibrium
The theory of a rotating planet in hydrostatic equilibrium given
in Chapter 3 was confined to quantities of the order of J,, and was
adequate for the purposes for which it was used in discussing the internal
states of the terrestrial planets. The uncertainties introduced by neglect-
ing terms of order J3 are probably not important in relation to the error
committed in using Darwin’s formula for C/Ma® when the planet is not in
hydrostatic equilibrium. When, however, we turn to the major planets,
the situation changes, for the values of m and J, are much greater and
their squares must be taken into account in comparing the geometrical

Table 8.8. Summary of the dynamical properties of the major planets

Jupiter Saturn Uranus Neptune

Spin angular velo- 1.7734x107* 1.7055x10™* 7.721x107° 7.93x107°

city (w) (rad/s) 1.204x10™* 9.43x107°
Equatorial radius 71 200 60 000 25650 24 800
(km)
Polar radius (km) 66 710 54 000 25260 24 440
Mass (kg) 1.8997x10% 5.685x10%° 8.727x10*° 1.0296 x 10*¢
Jy 1.472%x1072 1.65x1072 0.005 0.0050
0.00343
Ja -6.5x10™* -1.0x107?
m 0.08809 0.1657 0.0153 0.014
0.0420 0.020
Polar flattening
geometrical 0.063 0.108 0.028 0.021
0.01
dynamical® 0.065 89 0.08
C/Ma* 0.252 0.212
Mean density 1337.7 705.3 1254 1635
(kg/m®)

“for an ellipsoid of revolution.
®using dynamical flattening.
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and dynamical flattenings of Jupiter and Saturn. Furthermore, values of
Js as well as J, are available. Use of the Darwin formula (a first order
expression in any case) to calculate C/Ma?® neglects the information
available in J, and in any higher harmonic coefficients that may even-
tually be determined for those planets. In addition, with values of J, and
Je available, other integrals of the density besides the mass and moment
of inertia may be calculated. Thus, it is necessary to carry the theory of the
gravity field of a spinning planet to higher order than it was in Chapter 3
to make use of the extra data available for the major planets. The theory
presented in Chapter 3 has a further defect in its application to the major
planets. The density is supposed known as a function of position (not
strictly of radius, because the density is constant on equipotential surfaces
which are not spherical), but, in the usual models of the major planets, the
density is supposed kncwn as a function of pressure, so that a theory of
the internal gravity field which employs the density in that form is
desirable.

Let us first recall the principles of the theory of Clairaut, Darwin and
Callandreau as set out in Chapter 3. The density is supposed known as a
function of position, and the potential (including the rotational contribu-
tion) is calculated at points within the planet. The condition is then
imposed that the potential on a surface of constant density should be
constant, and from that the form of each such surface is derived. It was
seen that the condition led to an integral equation from which a differen-
tial equation for the polar flattening could be derived and also that it was
possible to derive a relation (Darwin’s) between C/Ma?, f and m. When
m is small, the surfaces of constant density and potential are nearly
spherical, and it is natural to express their equations in the form of a series
of even zonal spherical harmonics, other spherical harmonics being
excluded by axial symmetry and by symmetry about the equatorial plane.
The differential equation given by the first order theory is for the
coefficient of the zonal harmonic of second degree, and it is tacitly
assumed that the coefficients of all the terms of higher degree are
negligible.

Let the radius vector of a surface of constant density be given by the
expression

r=a’(1+Z ei,S,,)

where S, is a zonal harmonic of even degree and where the (small)
coefficient e, is a function of a’. Let the density on this surface be p’.



Rapidly spinning planet in hydrostatic equilibrium 251

According to the results obtained in Chapter 3, the potential of the
whole body on the surface for which a’ = a, is

—47G [1 =Y, eniSn
3

I 3p! !Zda!
a 0

3S" 1 “ ' m '
2n+1alf™! .L d(a""e,

38, ,,J’“ , e ]
+§ 2n+1a1 alp d(a'"_2)

_47TG
3

a
I p'3a? da'—3r*w?(S,—1),
a;
the last term being the rotational potential. The variable a is the surface
value of a’, and ¢,,; corresponds to a;.

Each harmonic term separately must be zero, and thus, equating
coefficients of each harmonic to zero, we have

—e

1 1 J’“‘
n !;2

— +

aj J; da’ 2n+1a n+1 0

at , e
+2n+1.[ d( "o 2) 0

for n #2, and

2_2
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P' d(am+3en1)

for n=2.
In proceeding to the second order, Darwin (1899) took any surface to
be of the form

r=a'[1-3h +335h° +35e2—3h(1+2h)Py(cos 6)
+35(3h” — e2)P4(cos 0)).
The rather complex form is of eventual algebraic convenience.
h is related to the first order flattening f by

h =f—%_2f_%€2-

Notice that f is equal to (@ — b)/a and is not the same as e; in the earlier
expression.
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The expression for the internal potential may then be written in the
form

3V So 2 S2P(cos 0)+ 12 S4P4(cos 6)

anG r 5 r 35 r
%rz T2P2(cos 6) —155r* T4P4(cos 6)
w 22

where the coefficients of the zonal harmonics are the following integrals:

so=j o' dla”® (1~ h~5h> +e2)],
0
S, = j o dla"(h +3h2)),

0

Sa

[0 dla” 2 ~3ea,
0
T2 = J P' d[h +l7lh2],

T, = J p' dlez/a”].

1
In these expressions a quantity d[X] stands for (dX/da’) da’'.
The conditions for the potential to be constant on a surface of constant
density are obtained by substituting for r in the expression for the
potential and equating the coefficients of P, and P, each to zero. Then

S 3S
=+ 3R =5 5 1+ 8h) -3 T.(1-Fh)
3w
S 3w’
_0'(62 2h2)—g §'2‘ﬁ+3 S‘;+5 2T2h §a4T4+—a2h=0.
a a* 2a 47
These are integral equations for 4 and e, because So ..., T> .. .involve

and e; under the integral sign.
Darwin (1899) reduced the integral equations to the following
differential equations:

d’ &h, 6o dh ( _ﬁ)[sh 14h> 66 h dh
da’ p1a da P1

a’ 7 a da

(s anhed 8]0
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and

d’e, 6p de, 6p) h*
+__—_._ —_—— —_—— )
da? pia da (20 P1 2+12(1 pl) 2

(a-lBoyhdn_(, o0y (i’
p1/ ada pi/ \da

The procedure would be to solve the first equation for & and then, after
substituting 4 so found in the second equation, to solve that for e,.
p1 is the mean density out to a radius r, defined by

J ‘a? da’ =3pir?;

like p itself, it is a function of radius.

When, as is in general the case, the equations have to be solved
numerically, there is no particular advantage in working with either the
differential or the integral form, and in the latest development of the
theory by Zharkhov and Trubitsyn (1969, 1975b) it is the integral form
which has been chosen.

If, as earlier, we take the radius in the form

r= a{l + ao+82P2+€4P4+€6P6},

where a is the equatorial radius, the integrals S, ..., T,,... take on
slightly different forms:

So= J: p(a) d[a®{1+3a0+(3a3 +32e3)
+(ad +3ace; +35e3)}],

S,=-3 J: p(a) d[a’{es+ (dage, +5e3)
+(6ades+Faoes +5e3 +3ese0)}),

Ss 3—SJ p(a)dla’{Gée; +e4)
+(Faoes +6aces+¥5es + FHeren}],

Se= —1ox J p(a)dla (f}‘eg +iteseq+ es)],

To= J p(a)dla*(1+2a0+a} +1e2)),

a

aq
3 12, 2 2 2,13 2
T,= —EJ pla) dle;—aoe,+7e> +acer +5a0e3 +7€2 —3e2€4),

a
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ay
35 -2, 27 2 108 2
T4=—?I pla)dla "(—3se5 +es+75 aoes
a

206 3 60
—3aces+5s35€2 —77€2€4)],

Te=—% I p(a) dla* (e —Heres +e6)].
There then follow three integral equations for e,, e; and es (ao, the
constant part, is a linear combination of e,, e4 and e¢).

Zharkhov and Trubitsyn also show how to express the integrals and the
integral equations, not only in terms of the equatorial radii of equipoten-
tial surfaces, but also in terms of the polar radii or the mean radii (de
Sitter, 1924).

The theory of a rotating body in hydrostatic equilibrium given the
density as a function of pressure, was developed for stars by James (1964)
and later by Ostriker and Mark (1968) and has been applied to the
problems of rapidly rotating planets by Hubbard, Slattery and de Vito
(1975). If the density is known as a function of pressure, then equally, the
pressure is known as a function of density, p(p). The equation of
hydrostatic equilibrium is then

p tdp=4dv.

Let V be the potential within the body and V the value at the surface.
Also let

Z(p)=V-V.
Evidently
°14d
Z(P)=I _,_p_, p'.
o P dp

Z(p) incorporates the equation of state. It may be supposed that p is
zero. Thus

V=V.+Z(p),
arelation between potential and density, the latter being given in terms of
pressure.
But V may also be calculated from the density as a function of position.

Let p(r') be the density at radius vector r'. The gravitational potential at
the radius vector ris

G I dr L)
r—r'|
where dr is the element of volume and the integral extends throughout
the whole body.
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If Q is the potential of rotation,

V=0Q+G J dr L(r—)—
|r—r|

This is a second expression for the potential, and, by equating it to the
first, we obtain an equation from which the form of an equipotential
surface and the coefficients J,, J4, J6 of the external gravity field may be
calculated. The method of solution adopted by Hubbard, Slattery and
de Vito is similar to that of Clairaut and Darwin, in that all quantities are
expanded in series of spherical harmonics: the two expressions for V are
written as series of spherical harmonics, and the coefficients of a given
degree are equated. To effect the expansions, Hubbard, Slattery and
de Vito define projection operators, T}, for the /th zonal harmonic, which
form the Ith harmonic component of a function ¢ (r, i) say:

+1
Tip(r, ) =31+ DPi(p) | du' &(r, u)Pilp"),
-1

(u is the cosine of the colatitude.)

This is just the usual expression for a term in an expansion of an
arbitrary function of r and u in zonal harmonics.

It is assumed that the density at a given radius may be expanded in
even zonal harmonics:

plru)= EO paPa(p).

po is of course a function of r; if all other coefficients were zero, the
distribution of density would be spherically symmetrical as in a non-
rotating planet. The rotational potential is 37°w?sin® 6, and its pro-
jections are

TOQ 3r (0 ’
T,Q = -3 w’Py(u),
T,Q=0, (I>1).

Formally we wish to equate all the projections of the two expressions for
the potential, i.e.

Ty(Vi+2Z)= T21(0+GJ drp’ ),

|r—r|
fori=0,1,2....

Q appears only in the first two projections and it induces the second
harmonic distortion in surfaces of constant potential. Its effects are,
however, not confined to the first two projections, because the expansions
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in the higher projections involve terms such as P3, which lead to dis-
tortions of higher harmonic forms dependent on the rotational potential.
Thus the coefficient p,; in the expansion of the density will be found to be
of order m'.

Z is expanded in a Taylor series about the spherically symmetrical
value of p, po:

Z(0)=Z(p0+Z'(p0) T puuPar+Z*(p0) £ p2iPu)

where
Z’(po) = dZo/dp

To obtain the projection of the gravitational potential, the well-known
expression of |[r—r/|”! in a series of zonal harmpnics is used. It is then
found that

v=0+2"5 P,(u) 27 +1[{r'2’ J-Ordr’ r’z'”pzz(r’)}

+{ ZMJ- dr' r 14021(r')}+ b ZMSH’“""]’

b is the polar radius, and the first two terms in the square bracket give the
contributions to the potential of material within a radius r and from the
radius r to the radius b. The contribution from the remaining material
outside the radius is given by the so-called shell integral SH;.1,,,, Here m
denotes the surface value of u and the integrals are defined by:

R(w)
SHI+1,mP21=T2l[b21_2J- ar' r*o(r, M)]
b

R () is the value of the external radius for 6 = cos™' w;itisb whenpu =1.
The aim now is to solve the equations to give R(u) in the form:

R(p)= b[l +§0 dztpzl(#)] .

The d,; are shape coeflicients.

Now, in free space, for r greater than a, the equatorial radius,
27G =

V= Q+— Z le(ﬂ)m

X[ —ZIJ- drl r121+2p (r)+r 2b21+3SHl+1 0]
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with
R(p)
SHi1,0P2 = th[b_s_zlj dr "'ZHZP("', M)]-
b

The values of J5, J4 . . . may then be obtained by comparing the terms in

the above expression for the external potential with the form

21
a

v=o+9f‘—4[1—l§1 (9) paw].

r

The first few equations for the coefficients p,; have the following forms:
(a) 1=0:

1 r b
4170[; J x2po dx+J Xpo dx] =Z(po)+ V.
0 r

The solution of this equation gives po, the density of a non-rotating
planet, as a function of r when p is a known function of pressure. It may be
noted that this relation is satisfied trivially when p is a constant. The
left-hand side is then

LY 3p2— 2
4#Gp[%+§(b2—r2)]=4170p b - L

which is the potential at radius r within a sphere of radius 5 and is thus
equal to the right-hand side.
() I=1, order m:

47G[1 (7 b dx
- [r_sj x*p2 dx+rzj pz;]—%w2r2=Z’(po)pz.
0 r

This shows how p2, the coefficient of P, in p, is dependent on w”.
(¢) I=2,order m*:

47 11 6 fF dx rt 1 18 rn 3
—G = ox padx +r P4;§+—25H3,1 —33Z"(po)p2
0 r

9 b
=Z'(po)pa.
(d) 1=3,order m>:
dr [1 (' bodx r®
11 G[r_7 J:) x%ps dx+r6'|’r Ps F+? SH4,1]

- %Z”(PO)PZFM - %Z'"(Po)ﬂ; = Z’(Po)Ps-
The shape coefficients d;, are needed to calcﬁlate the shell integrals, and
Hubbard, Slattery and de Vito show how to find them. They also obtain
analytical solutions for the case when the pressure is given by

p=3Kp?,
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the particular case of the polytropic form

n Kplta/m
n+1

in which n = 1. For this form, it follows that

p=

’

dp _8 1-a/m

dr K
or

do_ g

dr K

if n =1. Hubbard (1974b) considers that the material in Jupiter follows
closely the polytrope with n = 1; the coefficients in the expansion of the
density then have the form

p21(r) = julxr),
where the j,; are spherical Bessel functions and

k =Q27nG/K)"2

It is instructive to compare the state of the theory of the internal gravity
field with that of the external field. For a long time the latter was
approached through an expansion of the potential in spherical harmonics,
although it was realized that that might not be a correct procedure. The
reason is that an expansion of the inverse distance in powers of r only
converges in the space outside a spherical surface of radius a, equal to the
equatorial radius, which contains no mass, whereas the expansion is used
down to the surface of the planet and therefore in a region in which a
sphere of radius less than a contains mass. This difficulty can be overcome
for a perfect ellipsoid of revolution (to which planetary surfaces closely
approach) by using oblate spheroidal co-ordinates, because the cor-
responding expansion for the inverse distance in spheroidal harmonics
converges everywhere outside the co-ordinate surface which coincides
with the planetary surface, and an exact theory of the external field of an
ellipsoid of revolution is possible (Cook, 1959). If an attempt is made to
apply spheroidal co-ordinates in the theory of the internal field, an
apparently intractable difficulty arises in that the co-ordinate surfaces
become flatter towards the centre of the planet, where they collapse to a
disc, whereas the flattening of equipotential surfaces decreases towards
the centre, where they become a sphere. Thus, it seems that spheroidal
co-ordinates are less well adapted to the theory of the internal field than
are spherical co-ordinates. The theoretical difficulty of the latter remains,
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however, namely that, in the region between the spheres of radii » and a,
neither the expansion of the inverse distance in powers of r nor that in
inverse powers of r converges. In so far as they use expansions in terms of
spherical harmonics this objection applies equally to the Darwin type of
theory and to the work of Hubbard, Slattery and de Vito.

8.4 Models of Jupiter and Saturn

All current models of Jupiter and Saturn are based on the ideas
that these planets must be composed almost entirely of hydrogen and
helium and that, at the pressures encountered in them, the hydrogen at
least is in the metallic form in some part. The simplest models have been
found to match Jupiter quite well, but Saturn less well. Models vary in the
pressure at which the metallic transition in hydrogen is supposed to occur,
but that does not have a large effect on the properties of the model
because, as was seen in Chapter 7, the fact that the transition pressure is
poorly determined reflects in part the similarity of the pressure—density
relations of the metallic and molecular forms of hydrogen. Other sources
of variation between models are the way in which the temperature is
supposed to increase inwards and the mixing of helium with hydrogen.
When a rule for the variation of density with pressure has been
established, then the variation of density with position can be calculated
either from the integral equations of Hubbard, Slattery and de Vito or by
a process of successive approximations using the Darwin theory in which
the pressure and J, and J, are calculated from an assumed variation of
density with radius. The variation of density with radius is then recal-
culated from the pressure, and so on, at each stage the total pressure
being that due to gravitational attraction and centrifugal acceleration.
Models would be considered satisfactory when the values of the mass, J,
and J; calculated from the distribution of density with radius and
co-latitude agree with the observed values.

The first model derived on these principles was that of de Marcus
(1958) who used the theory of the internal gravity field effectively in the
form given by de Sitter. As for the equations of state, de Marcus
recalculated the properties of the metallic form of hydrogen with results
that have been discussed in Chapter 7. The densities of molecular
hydrogen and of helium were based on measurements by Stewart {1956)
and, as explained in Chapter 7, there are considerable difficulties in
extrapolating these data, obtained at relatively low pressure, to a million
atmospheres or so. An analytical expression was used to extrapolate the
helium results, but a ‘judicious’ procedure was used for hydrogen.
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de Marcus estimated that the transition pressure from the molecular
form to the metallic form would lie between 1.9 x 10'" and 3.9 x 10"’ Pa.
He also considered that the molecular form would be mainly fluid up to
the transition pressure and that the molecular fluid would have an
equation of state close to that of solid molecular hydrogen at absolute
zero. He considered that the thermal expansion of solid hydrogen would
not be significant, and he also pointed out that the thermal conductivity of
the molecular, as well as the metallic, form would be expected to be
high. Thus, at a density of about 700 kg/m®, he estimated the thermal
conductivity of metallic hydrogen to be 420 W/m deg and that of mol-
ecular hydrogen at 172K to be almost the same (copper at room
temperature has a thermal conductivity of about 40 W/mdeg). de
Marcus found that he could obtain reasonable but not exact agreement
with the mechanical data for Jupiter and Saturn available to him at the
time if he supposed that the fraction of helium increased from zero at the
surface to 1 at a radius of one-tenth the surface radius in Jupiter and
one-quarter in Saturn. These detailed models thus confirm a conclusion
arrived at earlier by de Marcus (1951) and by Ramsey (1951) that a model
composed of hydrogen alone would not fit Jupiter or Saturn. It is also a
straightforward matter to see that Jupiter and Saturn cannot have the
same composition. Saturn is both smaller than Jupiter and has a lower
mean density, so that the central pressure will be less. If, then, the
compositions of the two planets are the same, the increase of density
under self-compression will be less in Saturn than in Jupiter and
consequently the dimensionless moment of inertia should be greater for
Saturn than for Jupiter, whereas it is certainly less. It follows that the
central parts of Saturn are composed of material of higher atomic weight
than are the central parts of Jupiter. In de Marcus’s models this is
achieved by increasing the relative volume of pure helium.

A significant feature of de Marcus’s work is that he somewhat arbi-
trarily took the density of molecular hydrogen at high pressures to be
about 10 per cent less than a straightforward extrapolation of Stewart’s
(1956) results would indicate; he did so in order to get the best match
between his model and the known properties of Jupiter. de Marcus’s
work was revised and extended by Peebles (1964) who took advantage of
an electronic computer to calculate a wider range of models and, in
particular, models with a wider range of helium abundance and with
various assumptions about the atmosphere below the visible cloud layer,
the atmosphere being defined as the region in which thermal expansion is
significant. In particular, he considered models with thick atmospheres in
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the adiabatic state. Peebles used the same equation of state as de Marcus
and fitted his models to the same dynamical data, but, whereas de Marcus
allowed the proportion of helium to increase towards the centre in order
to obtain agreement between the dynamical properties of the models and
those of the actual planets, Peebles took the composition to be the same
throughout. He admitted, however, the possible existence of a core of
much denser material and, by taking the atmosphere to be thick and at a
relatively high temperature, introduced an outermost zone of low
density. Models of uniform composition appear not to be so strongly
condensed toward the centre as the actual planets, even as Jupiter, and to
obtain sufficient relative increase of density, the atomic weight of the
central core must be increased, whether by increasing the proportion of
helium or by postulating a core of terrestrial material and in addition, or
alternatively, there must be supposed to be an atmosphere of particularly
low density. de Marcus and Peebles both conclude that the abundance of
hydrogen in Jupiter and Saturn is about 80 per cent, or somewhat greater
than the value (75 per cent) now usually taken for the abundance in the
Sun.

de Marcus and Peebles both effectively supposed the planets to be cold
in that the temperature was low enough not to affect the density, and they
also supposed the hydrogen and helium to be completely mixed. Both
assumptions have been abandoned in more recent work (Hubbard and
Smoluchowski, 1973; Stevenson and Salpeter, 1975; Zharkhov and
Trubitsyn, 1975a). Low (1966) found, as a result of infra-red obser-
vations of Jupiter at a wavelength of about 20 pm, that the atmosphere of
the planet was at such a temperature (about 150 K) that it emitted nearly
three times as much energy as it received from solar radiation; if the
emission and absorption were in balance, the temperature would be
expected to be 105 K. A similar result was found for Saturn, and both
results were confirmed (with a slight downward revision of the re-
radiated power) by Aumann, Gillespie and Low (1969) who observed
Jupiter and Saturn from a high flying aircraft. Direct observations from
the Pioneer 10 and 11 space craft (Kliore, Woiceskyn and Hubbard,
1976; Opp, 1980) further confirmed the general result, but reduced the
re-radiated power from Jupiter to about 1.9 times the incident solar
radiation and that from Saturn to about 2.2 times the solar radiation, or
2.4+0.8 W/m®.

Hubbard (1968) concluded from the initial result of Low (1966 ) that the
additional power radiated from Jupiter came from an internal source of
heat, which would have to be much more powerful than any source of
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heating by radioactive decay as in the Earth. It has usually been consi-
dered by those who follow this argument that the heat is generated by the
contraction of an extended cloud of hydrogen to the present size of
Jupiter. Hubbard wrote the free energy of metallic hydrogen in the form

F=NE,+NkT[3In(1-¢ ®T)-D(@®/T)),

where N is the number of protons, E, is the binding energy at zero
temperature, O is the Debye temperature and D is the Debye function.
The expression follows from the straightforward Debye theory for the
thermal energy of a lattice. For alkali metals, Hubbard takes @ to be

1.742Z/A)p ">

and argues that, because A, the atomic mass, is 1, ® will be of the order
of 10> K. He then argues that the actual temperature of the metallic part
of Jupiter cannot be much less than © for, otherwise, the heat capacity
would be very small and the thermal energy would have been radiated
away long since, instead of still being radiated. He considered that the
heat capacity was, instead, 3 K, and he further argued that the tempera-
ture gradient would everywhere exceed the adiabatic gradient so that
Jupiter and Saturn would be fully convecting throughout. On this basis,
Hubbard (1969, 1970) constructed a number of models of Jupiter and
Saturn. Hubbard’s work has run parallel to that of Zharkhov and
Trubitsyn in the U.S.S.R., with whom he has collaborated (see Zharkhov,
Trubitsyn and Hubbard, 1978), and, like theirs, has been characterized
by an intensive study to determine internal properties and equations of
state from the external gravity field.

Hubbard’s work has been based on his adaption of the James and
Ostriker approach to the theory of a rotating planet in hydrostatic
equilibrium, as described above and as recently summarized (Hubbard,
1974b). Hubbard has emphasized that the equation of state of the
mixture of hydrogen and helium in Jupiter is close to that of a polytrope of
index 1, being well represented by p = 1.96p%, and has studied in some
detail the properties of a planet made up of such material (Hubbard,
1974a). He finds the following results:

J,=0.173273m —0.197 027m?,
Ja=—0.081092m?2,

J6=10.056 329m>,
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where m is a’w?/GM ; the consequent values for Jupiter are

J>=0.013 93,
J+=-0.000 52,
Js=0.000 039.

They are smaller than the observed values, but close enough to suggest
that the polytrope of index unity is a good model from which to derive
more realistic ones by small perturbations.

Further model calculations have been made by Slattery (1977), using
the thermodynamic calculations for a solar mixture of molecular hydro-
gen and helium of Slattery and Hubbard (1976) in which a Monte
Carlo procedure was used. Zharkhov and Trubitsyn have based their
calculations on their extension of Darwin’s theory of the figure of a
rotating planet, now extended to the fifth order (Zharkhov and Trubitsyn,
1975b). They also use simple laws of density variation for which analyti-
cal solutions are possible, namely a linear law in which

p =po(l—r/rs),
where r, is the surface radius and p, is about 4000 kg/m?, or a quadratic
form.
If the radius of an equipotential surface is
r=a[1—fcos® 6 — (3f*+k)sin’ 26
+3Gf + h)(1 -5 sin’ 9) sin’ 26,
then the coefficients f,.k and A are functions of a/as:

f=fot+fi(a/ay),

k = ki(a/a)’,

h =hi(a/a5).
They give formal methods for relating J,, J; . . . to deviations from the
linear law of density (Zharkhov and Trubitsyn, 1974).

A variety of models, with a range of compositions, but all with cores of
high density materials has been calculated by Zharkhov, Makalkin and
Trubitsyn (1974) who find that in all such models the central temperature
is of the order of 20 000 K.

Zharkhov, Trubitsyn and Makalkin (1972) have calculated the gravi-
tational parameters for certain models, using their theory of the figure
carried to the third order, with the results shown in Table 8.9. The linear
and quadratic models are those of Zharkhov and Trubitsyn mentioned
above. They, in general, give the poorest fits to observation, while de
Marcus’s models are as good as any.



Jupiter and Saturn, Uranus and Neptune 264

All the foregoing models of Hubbard, Zharkhov and Trubitsyn are
based on the interior temperature being very high and the material
entirely liquid. Hubbard (1968) himself remarked that the excess infra-
red power radiated by Jupiter did not necessarily entail an internal source
of heat and hence a high temperature, but that the atmosphere might be
heated in some other way. Such a way has indeed recently been proposed
by von Zahn and Fricke (1977) who find that data from the satellite
ESRO 4 show that the solar wind contributes appreciably to the heating
of the Earth’s atmosphere, and they estimate that the effect of the solar
wind on Jupiter would be still greater in relation to heating by ultra-violet
radiation. However, they appear also to have revised the equilibrium
temperature due to ultra-violet heating upward to about 150 K, which
appears to agree well with values obtained from Pioneers 10 and 11
(Kliore, Woiceskyn and Hubbard, 1976) and there accordingly now
seems little evidence for excess radiation from Jupiter from an internal
source. Thus an essentially cold planet looks more plausible than it has
done over the past ten years or more. At the same time, there is good
evidence that Jupiter and Saturn are liquid at least in part. The existence
of magnetic fields (Chapter 9) is powerful evidence for liquid zones,
supposing, as it seems we must at present, that the fields originate by
dynamo action in liquid cores or shells. Then again, Goldreich and Soter
(1966) have studied mechanical damping in bodies of the solar system.
They have estimated Q-factors, that is, the ratios of the total energy
stored in an elastically vibrating body to the energy lost per cycle of
oscillation, and find them to be greater than 10’ for Jupiter and greater
than 6 x 10* for Saturn. These values are some 100 times greater than for
the solid Earth and strongly suggest that Jupiter and Saturn contain large
proportions of liquid. Nonetheless, solid zones do not appear to be

Table 8.9. Summary of calculated gravitational parameters

10%7, 1047, 10%J,

Model Jupiter  Saturn  Jupiter Saturn  Jupiter  Saturn

de Marcus 14.8 16.80 -5.87 -12.90 391 —

(1958)
Peebles (1964) 15.53 17.01 -6.50 -11.2 4.29 —
Hubbard (1969) 15.33 — -6.34 — 411 —
linear 15.02 2491 -6.11 -16.7 3.89 —

quadratic 17.76 29.50 —7.94 -10.3 5.41 —
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excluded although, in the absence of an adequate theory of the melting of
metallic hydrogen, it is not possible to estimate in any reliable way the
maximum temperature at which solid metallic hydrogen could exist.
The earliest studies of models with pure hydrogen showed that the
properties of the major planets could not be matched without some
admixture of heavier elements and in particular of helium, whether in
solar proportions or, as some models, in rather a lower proportion than in
the Sun. It was supposed in earlier work that the hydrogen and helium
would be completely mixed, but Smoluchowski (1967, 1973) has studied
theoretically the behaviour of helium in hydrogen and has concluded that
there will be zones in which helium will separate from hydrogen. At
sufficiently high pressures, helium in the presence of metallic hydrogen
will ionize and behave like a divalent metal. Hydrogen is, of course, a
monovalent metal and Smoluchowski argued that, when ionized, helium
would alloy with hydrogen in the same way as divalent metals do with
alkali metals. On the other hand, if the helium is not ionized, it would
not be miscible with metallic hydrogen and would separate out (see also,
Stevenson and Salpeter, 1975); a similar behaviour has been found
experimentally by Streett (1976). Thus it seems that Jupiter agd Saturn
may consist of layers rich in helium and layers depleted in helium, as
indicated in Figure 8.1. So far no quantitative details have been cal-
culated from which numerical models can be derived, but Smoluchowski

Figure 8.1. Zones of miscibility and immiscibility of hydrogen and
helium in a major planet.
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has suggested that the gravitational separation of immiscible liquids rich
in hydrogen on the one hand and in helium on the other would provide an
internal source of heat that would not entail a high internal temperature.

The models of Jupiter and Saturn that have been generally investigated
fall into three categories: models in which hydrogen and helium are fully
mixed, but in which the composition changes with depth; models in which
the ratio of helium to hydrogen is as in the Sun and in which the necessary
central condensation is obtained with a core of denser material; and the
models, so far just sketched, in which helium separates from hydrogen in
some layers. Models with a core of denser material have been studied by
Zharkhov, Makalkin and Trubitsyn (1974) and also by Podolak and
Cameron (1974) who suppose the core to consist of metal silicates (rock)
surrounded by an ice shell of methane, ammonium and water, and that, in
turn, surrounded by a mixture of hydrogen and helium of solar composi-
tion.

Among the variety of models which may plausibly be constructed to fit
the mass and gravitational parameters of Jupiter and Saturn, what may be
picked out as common features of general validity? The first is that the
major constituent is hydrogen which, on account of the high pressure,
becomes metallic at some depth within the planet. Secondly, the metallic
hydrogen is liquid somewhere within the planet, though not necessarily
everywhere, so providing a means for the generation of the magnetic
fields of Jupiter and Saturn. The third point is that both planets are more
condensed than a uniform composition would predict, and Saturn is far
more so than Jupiter. Objections have been raised that no mechanism has
been suggested for changing the ratio of hydrogen to helium as required
in the models of de Marcus and Peebles, and so models which have a
denser core surrounded by a hydrogen and helium mixture in solar
proportions may be thought to be the most likely. On this view, Saturn
would have a relatively larger core than Jupiter. Furthermore, this model
might be thought more reasonable than the immiscibility model of
Smoluchowski, in that, to produce the greater central condensation in
Saturn, the latter model would seem to entail greater separation of helium
from hydrogen in Saturn than in Jupiter, whereas, with the greater range
of pressure, and probably temperature, in Jupiter, the reverse would
seem more likely. Indications of the variation of density and composition
with radius for ‘typical’ models are given in Figures 8.2 and 8.3.

From time to time it has been suggested (see Chapter 7) that metallic
hydrogen might be a superconductor (Ashcroft, 1968) with a critical tem-
perature high enough for it to be superconducting in Jupiter (de Cesare,
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1974). Evidently. this is more likely if Jupiter is relatively cold than
if it is in the fully convecting state, and, in view of the reassessment of
the atmospheric heating of Jupiter, indicated above, it may be that the
possibility of a superconducting zone does require serious consideration
and that attention should be paid to the effect of such a zone, which
presumably would not extend to all the metallic hydrogen, upon the
magnetic field. It is also worth speculating that protons in metallic
hydrogen might be paired, giving rise to superfluid behaviour, and, if
so, asking how that would affect the interpretation of the dynamical
properties.

Figure 8.2. Typical model of Jupiter.
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8.5 Model of Uranus and Neptune

Uranus and Neptune form a natural pair in that they are more
similar to each other than they are to Jupiter and Saturn. The sizes and
masses are both comparable, but Uranus is larger in volume, but less in
mass, than Neptune, and so its mean density is less, and indeed less than
that of Jupiter. The central pressures are of the order of those at the
centre of the Earth rather than at the centres of Jupiter or Saturn and thus
self-compression must be less than in Jupiter and Saturn. Consequently,
the mean atomic mass of the material of Uranus and Neptune must be
greater than that of hydrogen or helium (Ramsey, 1951) and it has
generally been supposed, at least since the studies of Ramsey (1963), that
those planets are composed of hydrogen and helium with admixtures of
carbon, nitrogen and oxygen in greater than solar proportions. It is
clear from the fact that Neptune is more massive than Uranus although
smaller, that Neptune contains more heavier material, which may be in
the form of a core of metallic compounds.

As was seen above (section 8.2), the gravitational coefficients and the
dynamical and geometrical flattening of Uranus and Neptune are not well
known and, indeed, some of the published estimates are physically
impossible. It appears that the dimensionless moment of inertia, C/Ma?,

Figure 8.3. Typical model of Saturn.

Density
2.5 = — Pressure
— 3000
2.0
Metallic Molecular
_ hydrogen hydrogen
- — 2000 ~
Ss E
é &
= =
: z
3 1.0~ g
£ \ 1000 &
N — 1000
N
0.5 -
1 | | | ==l 0
0 1 2 3 4 s 6

Radial distance (10* km)



Models of Uranus and Neptune 269

is quite possibly of the order of 0.34 for Neptune and, less plausibly so, for
Uranus. This is a value which can be reproduced with a suitable mixture
of hydrogen, carbon, oxygen, nitrogen and neon, as shown by the
calculations of Ramsey (1963). Ramsey assumed that Uranus and
Neptune would be formed of saturated compounds of hydrogen with
carbon, oxygen and nitrogen, together with neon, the mixture of
methane, water, ammonia and neon being chosen so that the carbon,
oxygen, nitrogen and neon atoms were in their cosmic proportions. He
then calculated the pressure—density relations for these compounds and
for the mixture, which he called CHONNE. Methane is a nearly spherical
molecule which interacts only through repulsive forces and a weak van
der Waals attraction. Ramsey assumed a Lennard-Jones type of potential
and determined the constants from thermodynamic properties of the gas
at low pressures (great separations) and for molecular scattering experi-
ments at small separations. He then found that the indices m and # in the
Lennard-Jones potential

A B

n m

r r

were n =6, m =13.75, and, from those and the constants A and B, he
could calculate the pressure—density relation for methane. The properties
of neon were derived in a similar way from similar data. The properties of
water were derived from shock-wave experiments (see Chapter 4).

Ramsey supposed that ammonia combined with hydrogen at high
pressures to form ammonium, which, following the calculations of Bernal
and Massey (1954), he took to be metallic. While Bernal and Massey’s
calculations of the metallic form are not unsatisfactory, Stevenson (1975)
has calculated the properties of the molecular mixture NH;+3H, and
found a considerable discrepancy; the energy is less than that of the
metallic form as calculated by Bernal and Massey, which itself is some-
what less than that calculated by Stevenson, at pressures up to 10'" Pa.
Stevenson speculates indeed that, if metallic ammonium exists, the
transition pressure will be appreciably greater than 10'' Pa. Whether
ammonia is in the metallic or molecular form does not, however, greatly
affect the properties of CHONNE for it is not a large proportion (11 per
cent) of the mixture. Indeed, the behaviour is dominated by water which
forms 66 per cent by mass, and the properties of water are obtained from
experiments up to 4 X 10'° Pa and extrapolated beyond that by the Bullen
type of formula for the bulk modulus

K=K0+bp,



Jupiter and Saturn, Uranus and Neptune 270

where, for water, K, = 6.25 x 10° Pa and b = 4.2. Water is thus consider-
ably less compressible at high pressures than is hydrogen, for which b is 2;
values of b of the same order are also found for neon and methane
(Ramsey, 1963; Cook, 1972). Indeed, water, neon and methane are less
compressible at high pressures than the lower mantle and core of the
Earth, for which b is about 3 (Table 8.10).

Now Ramsey’s calculations for the CHONNE mixture give values of
C/Ma® of about 0.36 for models that assume a radius of about
21 000 km. C/Ma? does not change much with radius, indeed it increases
slightly, so that a CHONNE model with a radius of 25 000 km would
have C/Ma? very close to 0.36 compared with a possible value of about
0.34. While Ramsey’s CHONNE models give a plausible value of
C/Ma?, at least for Neptune, the densities are far too great, of the order
of 2400 kg/m? for a radius of 21 000 km. A density much less than that of
the CHONNE mixture is required to match the actual densities of Uranus
and Neptune and, because the density of methane is about half that of
water over the range of planetary pressures, it would seem that a model
composed to a large extent of methane would fit the properties of
Neptune to first order.

Uranus is yet less dense than Neptune so that a large proportion of
methane is needed, while, if its value of C/Ma? is indeed as low as 0.25, a
very dense core would be needed to give the high increase of density
towards the centre. Apart from considerations of C/Ma?, it is clear that
Uranus and Neptune cannot be represented by the same type of model,
for Uranus is the larger planet, yet has the lower mass and density. The

Table 8.10. Densities of water and
methane (from Ramsey, 1963)

Pressure (10!' Pa) Density (kg/m?)
Water Methane
0 1000 522
0.1 1650 1020
0.5 2320 1340
1.0 2730 1510
2.0 3220 1690
5.0 4000 1960
10.0 4710 2190
15.0 5190 2340

20.0 5560 2450
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overall mean atomic weight of Neptune would therefore seem to be
greater than that of Uranus, despite a possibly dense core in the latter.
Podolak and Cameron (1974), as already mentioned in the previous
section, considered models with a core of rock surrounded by a shell of
solid methane, ammonia and water and that, again, by hydrogen and
helium in solar proportions, while Podolak (1976) has constructed
models of Uranus in which the composition is dominated by methane.
With the dynamical properties as imperfectly known as they are, a wide
variety of models is possible. It is possible to say two things with some
assurance: first, the composition is dominated by materials heavier than
hydrogen and helium and lighter than the materials of the terrestrial
planets and, thus, considering cosmic abundances, comprising to a large
extent some mixture of water, ammonia, methane and neon; secondly,
because Neptune is smaller but more massive, it must have a larger
proportion of dense material than Uranus, despite the presence of a
larger rocky core in Uranus. On the other hand, it does not seem
necessary to postulate the presence of a shell of hydrogen and helium,
because the lower compressibility of methane and water (Table 8.10) is
better matched to the values of C/Ma? as at present known.

8.6 Conclusion

The major planets form two pairs, Jupiter and Saturn, and
Uranus and Neptune, as judged by size, mean density and, probably,
central condensation. Jupiter and Saturn must be composed in large
proportions of hydrogen and helium, Uranus and Neptune probably of
methane.

Even before the detailed calculations on the properties of metallic
hydrogen by de Marcus and subsequent authors it had been shown by
Ramsey (1951) and Miles and Ramsey (1952) that the proportion of
hydrogen in Jupiter exceeds that in Saturn, the exact amount of hydrogen
depending on the way in which helium and heavier elements are dis-
tributed with radius. For this reason, it is difficult to decide whether any of
the four planets has a rocky core. It is possible to produce satisfactory
models of Jupiter and Saturn which differ in the distribution of helium
with radius. If such a variation is thought to be implausible, then the
differences between Jupiter and Saturn may be accounted for by a larger
rocky or heavy metal core in Saturn than in Jupiter.

Similar considerations apply to Uranus and Neptune, although here
there is more scope for speculation in view of the lack of definite
knowledge of the flattening. If Uranus is predominantly composed of
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methane then Neptune almost certainly has a larger proportion of a
heavier material such as water. Evidently more definite dynamical data
for Uranus and Neptune are much to be desired.

While it is natural to group Jupiter and Saturn as a pair, and Uranus and
Neptune, it is at the same time clear that there are sharp differences
between them which make it impossible to represent the planets of a pair
by the same model. There is one prediction that can be made if the
foregoing ideas about the constitutions of the major planets are realistic.
Jupiter and Saturn have magnetic fields which are currently thought to be
generated by dynamo action in liquid metallic hydrogen. Now that it
appears that ammonia, even if present in Uranus and Neptune, would not
be in the metallic form at the pressures attained in those planets, the
material of Uranus and Neptune would not seem to have metallic
conductivity and thus there is no scope for dynamo action within them.
Uranus and Neptune therefore would not be expected to have magnetic
fields.



9

Departures from the hydrostatic state

9.1 Introduction

The models of the planets which have been adopted so far
depend explicitly on the assumption that the planet is in the hydrostatic
state, so that the density is a function only of radial distance (in a
generalized sense when the planet is flattened by spin). That may be an
appropriate first assumption to provide a starting point for further
developments, but it is clearly not adequate: the gravity fields of the
Earth, the Moon and Mars contain harmonic components that would be
absent if the internal state were hydrostatic; the irregular surface features
of the terrestrial planets are inconsistent with strict hydrostatic equi-
librium; and the structure seen in the atmosphere of Jupiter reveals
internal motions, if only superficial. A density distribution not in hydro-
static equilibrium requires a stress system to support it that departs from
the simple normal pressure to which hydrostatic equilibrium cor-
responds. Such a stress system may be developed in two ways: statically,
through strains of the planet, or dynamically, through movements of the
material. According to which mode is effective, so the planet may be
considered to be cold or hot (though, as has already been argued, no
planet is hot in relation to the effect on the equation of state). If the planet
is cold, the materials within it have high strengths, can support large
stresses and so maintain statically non-hydrostatic distributions of
density. If the planet is hot, then parts will be molten, as is the core of the
Earth, or will be sufficiently hot to creep steadily under applied stress. In
either case, motions will generate stresses that may support non-hydro-
static distributions of density. Such non-hydrostatic distributions are
considered in this chapter from the point of view of what they may reveal
about the internal structure of the planet. They are, of course, of great
interest in their own right, whether we consider the features of the
surface, the motions of the surface or the magnetic fields of such planets
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as possess them, but here we seek to use them as evidence for the state of
the interior.

To recapitulate, the planets are cold in the sense that the density is
primarily determined by pressure, together with chemical composition,
and hardly at all by temperature, which, at planetary pressures, has only a
minor effect upon the density. Thus, at a temperature of say 3000 K and a
pressure of 10'! Pa, conditions corresponding to the boundary of the core
in the Earth, the effect of temperature on the density is a few parts in a
thousand at the most, whereas the compression is about 20 per cent. The
pressures of self-gravitation and rotational acceleration thus determine
the gross structure of planets and lead to a distribution of density which,
overall, corresponds to the hydrostatic state. Superposed on the general
hydrostatic state are variations of density, which presumably arise in one
of two ways. Either initial irregularities in the formation of the planet
have been maintained because the material is cold enough and, so, strong
enough to support them, or internal sources of heat exist, which generate
motions which lead to variations of density. In either case one would
expect the departures from hydrostatic equilibrium to be small; in the first
case, the strength of mateftials is small compared with planetary pres-
sures, except for the Moon which is far from being in the hydrostatic state;;
in the second case, convective motions driven by differences of density
arising from a temperature gradient are such as to reduce the variations of
density.

9.2 Surface features
The surfaces of the Earth, the Moon, Mars and Mercury are now
all well known and some indications of the surface structure of Venus
have been obtained. Perhaps the most significant conclusion to be drawn
from this information is that the Earth is quite different from all the
others. All show considerable variations in relief, these being most
pronounced in Mars, but, whereas processes generating relief are still
active on the Earth, they must have ceased long since on the other planets
and the Moon, for the surfaces of all of them «re covered with craters
produced by the impact of meteorites, some of these craters dating from a
very long time ago. The other big difference between the Earth and the
other bodies is that 70 per cent of the surface of the Earth is covered by
the oceans, whereas liquid water is abse1it from the others.
On further inspection one sees that the character of the relief of the
Earth is different from that of the Moon and other planets. The surface of
the Earth, as we now appreciate, is divided into a few plates, which are
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relatively rigid so that displacements within them are small, but which
more relative to one another at rates of a few centimetres per year. The
plates, in general, comprise oceanic and continental sections. Plates are
built up by volcanic activity along submarine ridges which, in terms of
relief and length, are, after the continents and oceans, the major features
of the topography of the Earth, although hidden by the waters of the
oceans. The constancy of the surface area of the Earth requires that plates
should also be destroyed, as takes place at the margins of continents with
the formation of mountains. Earthquakes and volcanoes occur almost
entirely along mid-oceanic ridges or along mountain chains. A rather
important aspect of the tectonic activity of the Earth cannot at present be
fitted naturally into the plate tectonic pattern, namely, vertical, or
eustatic movements of continental structures on a large scale. The
existence of such movements is well known, and some are related to
accumulation or disappearance of ice caps, but others seem to be related
to plate motion in ways not yet understood.

Two factors seem to determine the tectonic behaviour of the Earth. In
the first place, temperature increases inwards relatively rapidly (30
deg/km near the surface) and in consequence only the outermost shell of
the Earth, the lithosphere, is strong enough for sections of it to withstand
internal stresses and move as a whole. At greater depths, in the
asthenosphere, itis generally considered that the material is weak enough
to deform in a quasi-liquid manner under stress, so that it allows sections
of the lithosphere to move over it, or alternatively carries them with it as it
moves itself. The cause of the motions of the plates is not known, except
in so far as one can say that there must be a source of energy within the
Earth that drives them through the flow of energy outwards through the
Earth. It may be that the energy is heat energy, the sources of which are
the heat generated by the radioactive nuclides in the Earth and that
stored in the Earth since its formation.

The second factor which determines the tectonic behaviour of the
Earth is the oceans. The rocks of the floors of the oceans form under some
3-5 km of the ocean and, undoubtedly, the characteristic of the ocean
floor is in part determined by the cooling of volcanic rock under water; in
particular, the thickness of the oceanic crust, that part which is chemically
differentiated from the upper part of the mantle, is so determined. The
oceans also play a part in the formation of mountains. In the first place,
mountains form from sediments which have been accumulated under
water. In the second place, mountains and the chemically differentiated
continental crust are in isostatic equilibrium with the oceanic crust and,
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thus, in some indirect way, not as yet understood, the thickness of the
continental crust is fixed by the thickness of the oceanic crust. Thus we
may conclude that the major differentiation of the crust into continental
and oceanic type is determined by the presence of the water cover on the
Earth (see Cook, 1979).

The oceans affect the tectonics of the Earth in another important way,
for they are the reservoir for the water which is taken up into and
precipitates from the atmosphere and leads to erosion of the high land
and the return of the material as sediment to the oceans where it can
participate again in the formation of mountains and continental crust. Itis
clear that the continuation of tectonic activity, at least in the form in
which it has occurred since the late pre-Cambrian, depends on the
existence of the oceans.

To summarize, the tectonic activity of the Earth, at least as it is
recorded for the past 2000 My, depends on two factors, the oceanic
cover, on the one hand, and, on the other, the existence of a source of
energy in the Earth which both provides the power to drive the tectonic
activity and, through a fairly steep thermal gradient, ensures that the rigid
surface layer, the part which forms the plates, is not more than about
100 km or so thick.

The surface appearances of the other planets are dominated by quite
different structures from those that dominate the Earth. The Moon, Mars
and Mercury are all covered by craters formed by the impact of
meteorites, craters which on the Moon range in size from tens, and
perhaps hundreds, of kilometres across down to a few micrometres. The
form of the distribution of number of craters against size appears to be the
same over a very wide range of size. Photographs of Mercury taken by
Mariner 10 show much the same characteristics (see Strom, 1979). Those
features of the planets which are of indigenous origin have to be looked
for beneath the cover of craters. Itis, of course, fairly obvious why craters
are not evident on the Earth. In the first place, the smaller meteorites
burn up through frictional heating in the atmosphere of the Earth, as no
doubt also happens on Venus. Only the largest meteorites now penetrate
the atmosphere with sufficient velocity to produce craters. In the past, the
flux of meteorites is supposed to have been much greater, and the relics of
some of the larger ancient craters have been detected, but, in general, 70
per cent of all meteorites will have fallen in the seas, and, of the craters
formed on land, most are degraded by erosion or filled in with sediment.

Below the cover of craters, what appears on the Moon, Mars and
Mercury? The dominant features appear to be volcanoes. The largest
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relief in the terrestrial planets is that of the Tharsis group on Mars (Mutch
etal. 1976), which is apparently a great central volcano. Gravity measure-
ments show that it is not isostatically compensated as is all terrestrial
relief, but is supported by the strength of the material of Mars. Again, on
the Moon, the major features are large areas of volcanic flows which lie
above local concentrations of mass, or mascons, revealed by the dis-
turbance of the gravity field and thus also apparently supported by the
strength of the material. Mercury also appears to have volcanic structures
below the crater cover. It is possible that all the tectonic features of the
Moon and Mercury could have been formed by volcanic activity, but
there is evidence from the extreme relief of Mars which is, in parts,
unconnected with volcanic features, that other processes may have
operated in that planet.

It has proved possible to estimate the ages of major features of the
Moon and Mars by counting craters of different sizes upon them. All the
major features of the Moon are of the order of 3 x 10° y old. Studies of
Mercury have not as yet progressed so far as those of the Moon and Mars,
but it seems that there, also, there is evidence of volcanic activity which
ceased at an early stage in the history of the planet.

What may be said with assurance about the Moon, Mars and Mercury is
that any substantial tectonic and volcanic activity ceased some consider-
able time ago, as shown by the craters covering all features of indigenous
origin. Thus the source of energy for tectonic activity in those bodies
expired long ago, whereas it is still present in the Earth. The other
conclusion is that no plate structure is seen. Isolated volcanoes occur, but
are not distributed in a systematic way as are those on the Earth. One may
ascribe this, first, to the absence of oceans and, secondly, perhaps, to the
temperature within the planets increasing inwards more slowly than in
the Earth so that the rigid outer layer is much thicker. The conclusion to
which one is led is that the temperatures within those bodies were never
as great as in the Earth, although at an early period there was sufficient
energy to drive volcanic activity. In so far as this conclusion may be
related to the fact that the Earth is larger than the other bodies, it is
unfortunate that, as yet, we know little about Venus. Is there evidence of
continuing tectonic activity on that planet? There is some indication from
infra-red photographs as well as from radar observations (Timber and
Kirk, 1976) that the surface has craters and so may not be currently
active. The question we would like to address is, whether the lower
energy in the Moon, Mars and Mercury is due entirely to their small sizes,
or is there a difference of composition and a lower radioactive content? If
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Venus, of much the same size as the Earth, is inactive, it may be because
the Earth had originally more radioactive material than the other planets.
Of course, with no oceans, one would not expect Venus to show the same
type of tectonic activity as the Earth, but, if it has a similar internal source
of energy, one would expect it to have a thin lithosphere and a currently
active surface.

Related to the question of sources of energy within the planets is the
power of seismic activity. In the Earth, along mountain chains and the
mid-oceanic ridges, there are continual earthquakes with, occasionally,
some very large ones, all driven apparently by stresses that accumulate as
the tectonic plates move. Seismic activity on the Moon, as revealed by the
seismometers placed there in the Apollo programme, is very many orders
of magnitude less than on the Earth, so much so that the stresses which
control it are, to a large degree, of external tidal origin instead of being of
wholly internal origin, as in the Earth. A single seismometer has been
placed on Mars by the Viking Lander and has similarly shown very low
activity, confirming, as with the Moon, that tectonic activity such as
occurs on the Earth is negligible.

The surface features of the terrestrial planets, when compared with
those of the Earth, thus lead us to conclude that the other planets have at
the present time a much smaller internal source of energy than the
Earth, and, also, that, being colder, the strength of the material can
support larger stress differences and thus larger departures from hydro-
static equilibrium than in the Earth. We now look at the potential fields of
the planets, the gravitational and magnetic fields, to see how far those
conclusions are supported.

The major planets have fluid surfaces and so do not show permanent
features as do the Moon and the terrestrial planets. However, Jupiter, in
particular, shows features that bear witness to motions in the outer parts,
that is, departures from the hydrostatic state, and thus to an internal
source of energy driving the motions.

9.3 The gravitational fields of the planets

The gravitational field of the Earth is very well known indeed
from analyses of orbits of artificial satellites as well as from measurements
of gravity on the surface, and the field of the Moon and, to a lesser extent
that of Mars, is well known from analyses of orbits of orbiting space
vehicles, as already discussed to some extent in Chapters 3 and 6. It has
also been seen that the knowledge of the fields of Mercury and Venus is
confined to upper limits on the values of the harmonic coefficient, J>.
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Even for the Earth, the higher harmonic coefficients of the potential
are not individually well determined, mainly because the number of
possibly significant coefficients is greater than the number of distinct
satellite orbits, and more or less arbitrary assumptions have to be made
about their behaviour (as, for example, that those above a certain degree
may be taken to be zero) for estimates of their magnitude to be made. The
situation is worse for the Moon and Mars where the orbits of very few
orbiting vehicles are available. Thus it is unlikely to be profitable to
attempt any interpretation of individual harmonic coefficients, although
it is known that the gravity field does reflect major topographic features,
such as the large maria on the Moon (through the mascons) and the
Tharsis volcanoes on Mars. There may be, however, some hope that
statistical studies may be useful and, in particular, that reliable
conclusions may be drawn from the way in which harmonic coefficients
vary in general with degree.

It is well known that the magnitudes of the harmonic coefficients of the
potential of the Earth, the Moon and Mars decrease with degree, and
W. M. Kaula some while ago gave a rule which is closely followed by
the terrestrial coefficients. If, in the usual notation, C,, and S;. are
the non-dimensional coefficients of the normalized harmonics,
P[" (cos 8) cos ma and P;" (cos §) sin mA, then Kaula’s rule is (see
Gaposchkin, 1973):

1 e
71 z_o (Ci, +S3)=10"°1"2

The coefficients of the Moon and Mars have been fitted to a similar
rule. An alternative comparison is, however, instructive, in which a
specific hypothesis about the origin of the anomalies of the field is
adopted. That hypothesis is that the anomalies are the potential of a
random distribution of density variations, p, at some radius, r, less than a,
the planetary radius. If p is expressed as a mass per unit area, then
coefficients of the spherical harmonics in the potential are

2 !
a“(r cos
—{=- T ds,

M (a) L pPY (cos 6) sin mA

where the integral is taken over the surface of the unitsphere and M is the
mass of the planet.
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If p is random and uncorrelated and if p> has a variance var(p) it follows

that the expected values of C3. and S3,. are given by

4 +4 2
21 S

E(Ch Stn) =73 (;) var(p)j [P]" (cos )T :?nZ mA dS
S
477'04 r 20+4
=L (—) var (p),

a
by the normalization convention for the spherical harmonics. Thus
47a’var(p)
M2
so that a plot of In E(C?%,, S..) against 2/ should give a straight line from
which r/a and var(p) may be determined.

In E(C,, S3.) = (21+4) In (;’) +In (

Table 9.1. Mean square coefficients of potential for the
Earth, the Moon and Mars

1

1
2 2
Values of 71 mZ=O(C,m +8%.

l Earthx10® Moonx 102 MarsX 10'2
2 — 1945 —
3 6805 233 419
4 2880 116 37.6
5 1536 38.3 10.1
6 583 159 3.40
7 372 111 —
8 245 26.8 -—
9 79.7 12.9 —

10 67.2 3.6 —

11 61.1 18 —

12 314 3.6 —

13 24.8 34 —

14 17.3 8.4 _

15 15.3 9.8 —_

16 17.7 19.4 —

17 12.1 — —

18 8.52 — —

r/a a 0.68 0.8 0.46

b 0.89 —_ —
o(N(kg/m*) a 6.6 x10* 1.03x10° 2.66x10*
b 4.0x10° — —_

a Low order terrestrial harmonics (/ <9).
b High order terrestrial harmonics (/=9).
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Values of E(C?,, $3..) have been calculated from the solutions for the
Earth, the Moon and Mars given, respectively, by Gaposchkin (1973),
Ferrari (1977) and Gapcynski, Tolson and Michael (1977); as above

E=-1_ i (Cim +S5)
2 l +1 o Im Im).

The results are listed in Table 9.1 and shown diagrammatically in
Figure 9.1. The second degree harmonics have been excluded from the
lists for the Earth and Mars because the zonal harmonic is determined by
the spin of the planet and not by azimuthal irregularities of density. The
second degree harmonics of the Moon are, however, listed because the
hydrostatic spin contribution to the zonal harmonic is small.

Figure 9.1. Dependence of r.m.s. coefficient of harmonics in
gravitational potentials upon the degree of the harmonic for the
Earth, the Moon and Mars.
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The data for Mars are, of course, much less extensive than for the Earth
and the Moon. It must also be remembered that the uncertainties of many
of the listed harmonic coefficients are large and themselves uncertain.
Thus many of the lunar coefficients in Ferrari’s solution are much less
than the uncertainties that he quotes. Even so, all sets of data seem to
follow linear laws according to the expression derived above. Two
different regimes appear to hold in the Earth, one for harmonics of lower
order with a large slope, implying the possibility of deep sources, and the
other for harmonics of high order, indicating the need for supposing
shallow sources. The results for the Moon are very scattered, possibly
reflecting the unreliability of the data, but also possibly reflecting the
inapplicability of the model to the Moon; that is, density variation may be
distributed more generally throughout the Moon than would be implied
by the assumed surface distribution.

Table 9.1 gives the relative radius #/a as found from the slope of the
fitted line and also gives the density per unit area found from the
magnitude of the anomalies. They do not of course represent a unique
physical model. If r were taken to be greater, the higher harmonics would
die away less rapidly and their amplitudes in p would therefore also have
to decrease with degree, and vice versa. The results for the Earth suggest
that there may be two distributions, one related to the deep mantle, the
other to the upper parts of the mantle. The necessary density variations
are rather moderate. The largest is for the Moon and corresponds to a
variation of density of 100 kg/m> (or 3 per cent of the lunar density)
extending over a radial range of 100 km; the smallest variation is that
responsible for the harmonics of high order in the Earth and corresponds
to 100 kg/m” over a radial range of 1 km. It will be noticed that, although
all the terrestrial harmonic coeflicients are some orders of magnitude less
than those in the Moon and Mars, so that the relative variations of density
are less, the absolute variations of density are not so much less; indeed,
that responsible for the variations of low order is greater than in Mars.
Two other conclusions are of interest. In the first place, the low degree
line for the Earth suggests that contributions from irregularities of the
boundary between the core and the mantle are not important. It has long
been known that the harmonics of low degree in the Earth could arise
from such irregularities (Cook, 1963), but here it will be seen that the
lowest harmonics fit on a line corresponding to a value of r/a equal to
0.68, which is well outside the boundary of core and mantle. The other
feature is the difference between the Moon and Mars. Similarities
between Mars and the Moon are often remarked upon, but there is a clear
difference between the two bodies.
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A certain amount is known about the gravity field of Jupiter, from the
fly-bys of the Pioneer 10 and 11 space craft as well as from long standing
observations of the Jovian satellites, but so far the only harmonics
definitely estimated are the even zonal harmonics, J», J, and Js, which are
consistent with hydrostatic equilibrium (Chapter 8).

94 The thermal states of the planets

While the temperature within the planets is the key to the
questions discussed in this chapter and influences, to a much lesser
degree, the structure of spherically symmetrical models, almost nothing is
known of the thermal conditions within any planet. Indeed, it may be said
that we know just the surface temperatures of the planets (determined by
the balance between heating by solar radiation and cooling by radiation
from the surface) and, besides those, just two other facts, namely, the
rates at which heat flows out through the surface of the Earth and the
Moon.

Attempts have been made for many years to estimate the flow of heat
through the surface of the Earth by combining measurements of
temperature gradients in boreholes with values of the thermal conduc-
tivity of the surrounding rocks. There are many difficulties in the way of
that procedure, especially those connected with long term variations of
the surface temperature and with heat convected past the borehole by
flow of water, and it turns out that it is more straightforward to estimate
the flow of heat through the floor of the ocean from measurements of
temperature gradient and conductivity in the sediments at the sea-
bottom.

Thus, despite the difficulties and expense of working at sea, the heat
flow through the floor of the oceans is better known than that through the
continental surface. The flow is not the same everywhere, and there is a
strong relation to major tectonic features; in particular, the flow is larger
from the mid-oceanic ridges. Nonetheless, a worldwide average is not too
difficult to establish and is close to 0.06 W/m”.

The heat flow through the surface of the Moon was estimated at two of
the Apollo sites from measurements of heat flow and conductivity with
probes driven into the surface. The two estimates are (Schubert, Young
and Cassen, 1977)

Apollo 15 site: 0.022 W/m?
Apollo 17 site: 0.016 W/m?>.

The average, so far as an average of two results can represent the global
value for the Moon, is 0.019 W/m?, about one-third of that for the Earth.
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The surface flow of heat from the Earth is thus about thrice that from
the Moon, but that is not the case on a volumetric basis. The ratio of the
radius of the Earth to that of the Moon is about 3.7 to 1, and so that of the
areas is about 13 to 1, and, consequently, the total rate of fiow of heat out
of the Earth is some 42 times that of the Moon. However, the volume of
the Earth is about 49 times that of the Moon and, consequently, the loss
of heat per unit volume from the Earth is effectively the same as that from
the Moon. What does this conclusion entail?

Knowing nothing about the thermal state of the Earth or the Moon, we
might adopt one of two extreme positions. On the one hand, the Earth
and the Moon are in thermal equilibrium, so that the rate at which heat
flows out of each is equal to the rate at which heat is produced in them by
decay of radioactive nuclides. We should then conclude that the radio-
active heat production in the Earth is, per unit volume, the same as that in
the Moon. Alternatively we might suppose that the Earth and the Moon
are cooling down from a state in which they were both at the same high
temperature throughout. Suppose also, for we have no basis for any other
supposition, that the thermal diffusivity, K, equal to k/cp (k is the
thermal conductivity, ¢ the heat capacity and p the density) is the same for
both bodies and has a value of about 7% 10~” m?/s (Carslaw and Jaeger,
1959). The characteristic time for cooling of a sphere of radius a is a*/K,
which takes the following values:

Earth: 1.8x10"%y,
Moon: 1.4x 10 y.

Both times are much greater than the age of the Earth. For both bodies
the solution to the equation of heat conduction therefore takes the
approximate form (Carslaw and Jaeger, 1959)

T =2aT,sin(w7r/a) exp (=72t 7),

where Ty is the initial temperature and 7 is equal to a’/K.Now t, the time
since the origin of the solar system, is about 5 X 10°y so that w7 is
about 0.02 for the Earth and about 0.35 for the Moon. In each case the
heat flow through the surface (arather better approximation for the Earth
than for the Moon) is 2T,/ a. Thus, the heat flow through the surface of
the Earth would be expected to be less by a factor of 4 than that through
the surface of the Moon. Allowance for the smaller value of a*/K for the
Moon would reduce the factor by about 2.5.

It seems clear from these comparisons that the thermal time constants
of the Earth and the Moon are very much shorter than would be expected
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if heat transfer took place by conduction, and we conclude that some
more effective process of transfer takes place throughout the major part
of each body, so effective, in fact, that the flow of heat through the surface
is currently in equilibrium with the rate of production in the interior.
McKenzie and Weiss (1975) came to the same conclusion from con-
sideration of the physics of the Earth by itself. It should be noted that the
coincidence of the apparent volumetric rates of heat prodnction in the
Earth and the Moon does not preclude other solutions. What is excluded
is that both bodies have cooled from the same initial temperature over the
same time; they might have reached the present state by cooling from
different initial temperatures over different times with different rates of
internal heat generation. It is now commonly supposed that the
mechanism of heat transfer is convective transport in a ‘solid’ material
undergoing creep (see, for example, Schubert, Young and Cassen, 1977).
Unfortunately, the theory of such processes is difficult and has been little
explored, and it is not possible to make calculations of the rate of
transport of heat from first principles. Tozer (1972) has pointed out that,
in a sense, it is not necessary to do so. His argument is that the
temperature within a planet will rise to such a value that the rate of creep
under buoyancy forces is sufficient to transport the heat being produced
by radioactive sources, or otherwise. While this argument has great force,
it does not provide a specification for calculating the distribution of
temperature within a planet.

For the purpose of understanding the dynamical state of the interior of a
planet, it is necessary to know how much thermal energy is available to
drive convective motiens and also what the distribution of temperature is.
If it is supposed that the Earth and the Moon are representative of all the
terrestrial planets in having the same rates of heat production per unit
volume, then it is possible to say that the heat production in Mars exceeds
that of the Moon and is less than that in the Earth and so one might expect
the tectonic activity to be intermediate between the Earth and the Moon,
as indeed it appears to be; similarly, the heat production in Mercury
would be expected to be close to that of the Moon and tectonic activity,
correspondingly, at a low level. It must, however, be emphasized that
these arguments take no account of how the radioactive sources are
distributed through a planet; there is strong reason for thinking that in the
Earth there is considerable concentration towards the surface and it may
be that the same is true of other planets.

Although the temperature distribution within a planet cannot be
calculated from just the known heat flow, it was seen in Chapter S that itis
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possible to estimate it to some extent from the distribution of electrical
conductivity, the latter being found from the character of currents
induced in the planet by external electromagnetic fields.

The heat production and distribution of temperature in the major
planets may be expected to have some effect on their internal constitu-
tions, but are even more uncertain than they are in the terrestrial planets,
Observations of infra-red radiation from Jupiter and Saturn (Chapter 8)
show that they radiate up to twice as much heat as they receive from the
Sun as ultra-violet radiation, so that there are some other sources
associated with them. If those sources are internal radioactive heating,
the central temperatures are estimated to exceed 5000 K; however, as
was seen in Chapter 8, the source of heat may be the solar wind, in which
case no inference can be made about the internal temperature.

9.5 Magnetic fields

Among the striking properties of planets are their magnetic
fields, the characteristics of planets with perhaps the widest spread, for
the magnetic moments range from 1.4 x10°° T m® for Jupiter to 2.4 x
102 T m? for Mars. It seems clear that, for the Earth at least, and no
doubt for Jupiter, the existence of a magnetic field is evidence for internal
motions, for it is now no longer possible to suppose that the Earth’s field
arises from permanent magnetization of the interior of the Earth. Irres-
pective of arguments about the thermal state of the interior of the Earth,
it is clear from the surface heat flow that the Curie temperatures of
ferromagnetic minerals are attained at very modest depths within the
Earth, no more than about 20 km, and that the amount of ferromagnetic
material within the crust of that thickness is inadequate to provide the
observed magnetic moment. Furthermore, the field is variable. It shows a
secular variation with a time constant of about 500y and reversals of
polarity at a mean interval of about 2 x 10° y (Bullard, 1968), variations
that are inconsistent with a source in a rigid crust. Thus the origin of the
Earth’s field is now sought in dynamo action in motions of the conducting
fluid core of the Earth. The possibility that the Earth’s field might be the
remnant of an original field still decaying is excluded by the very short
diffusion time of a field in the Earth compared with the age of the Earth,
and by the fact of magnetic reversals, which are found in quite early rocks.
It is not possible to make such definite statements about the fields of other
planets, for as yet, we do not know how they vary with time, but supposing
that they, like the Earth’s field, are to be explained in terms of dynamo
action, what can they tell us about the internal state of the planet?
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The fields of all the planets, the Earth included, as well as the Moon, are
known to us as a result of observations from artificial satellites and space
probes. The space outside a planet is an insulator (except for any
ionosphere or other plasmas) and so the field of internal origin can be
expressed as the gradient of a potential that satisfies Laplace’s equationin
the space external to the planet:

B=V,
with
V2o =0.

To the field so specified there must, in general, be added fields
generated by currents in any external plasma, such as those that produce
magnetic storms on the Earth; for our present purpose, the essential point
is that the field of internal origin, the one with which we are here
concerned, may be specified by a potential which satisfies Laplace’s
equation outside the planets and which, therefore, like the gravity field,
may be expanded in spherical harmonics.

The usual notation is

0 n+l
@=-3 (%) % [gm(®) cosmr
n=1\r m=0

+ Ry (£) sin mA 1P} (cos 6),

where a is the radius of the Earth and the spherical polar co-ordinates of
an external point are (r, 6, A).

The units of g and & are those of magnetic field. Both g and & vary with
time: the secular variation of the internal field.

Table 9.2 gives the values of g, h, g and k for the spherical harmonic
expansion of the internal field.

Alternative descriptions of the main field are also useful. The harmonic
part, proportional to P;(cos #), represents an axial dipole, but the three
first harmonic terms together represent a dipole inclined (at about 11 °) to
the polar axis of the Earth.

The effects of the quadrupole terms may be represented by displacing
the axis of the dipole from the centre of the Earth. Thus the Earth’s field
may be represented to first order by an off-axis inclined dipole. The terms
of higher order in the potential may similarly be represented by dipoles
(or current loops) now placed at the surface of the core of the Earth, and
some six such dipoles suffice to give a good representation of the higher
harmonics (Chapter 2).
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Table 9.2. Harmonic coefficients of the geomagnetic field
(Barraclough et al., 1975)

n om g(0°T) k(10°T) ¢(10°T/y) h(10°T/y)
1 0 —-30103.6 — 26.8 —
1 -2016.5 5682.6 10.0 -10.1
2 0 —-1906.7 —_— -25.0 —
1 3009.9 -2064.7 0.3 -2.8
2 1633.0 -58.1 5.5 —-18.9
3 0 1278.2 —_— -3.8 —
1 -2142.0 -329.8 -10.5 7.2
2 1254.7 265.9 —-4.7 2.8
3 831.0 -227.0 ~4.7 6.4
4 0 946.9 — -0.9 —_—
1 792.5 193 .4 -2.2 5.4
2 443 .8 -265.8 —4.0 0.7
3 —-403.9 53.0 -2.1 2.6
4 212.5 -285.2 —4.6 -0.7
5 0 -220.6 —_ 0.2 _
1 3514 24.5 -1.0 0.9
2 262.3 148.4 1.3 2.6
3 —63.8 -161.3 -2.1 -2.7
4 —-157.5 —-834 —-0.6 1.3
5 —-40.2 92.3 1.3 1.1
6 0 44.1 _ 0.6 _
1 69.9 -11.2 0.9 -0.3
2 27.7 100.4 2.3 -0.2
3 -194.4 77.6 3.5 0.2
4 -0.9 —-40.3 0.0 -1.6
5 3.8 -7.9 0.8 0.4
6 —-108.7 15.6 -04 2.0
7 0 71.5 — -04 —_
1 -53.3 -76.6 -0.2 -1.2
2 2.3 —24.7 -0.5 -0.2
3 13.4 —4.5 0.3 0.0
4 —-6.4 7.0 0.8 0.3
5 3.2 24.5 0.6 -0.6
6 17.0 -21.8 0.5 0.0
7 =59 -12.9 —-0.8 1.2
8 0 11.0 — 0.4 —_
1 5.1 4.9 0.3 -0.2
2 -2.6 -13.9 0.0 -0.3
3 -12.6 5.0 0.4 -0.3
4 —-13.8 —-18.0 -0.2 -0.3
5 -0.1 5.7 -04 0.5
6 —2.4 14.5 0.6 -0.5
7 12.3 -11.1 -0.3 -0.6
8 4.9 —-16.7 0.0 0.5

Normalization: The normalization of the spherical harmonics differs

somewhat from that generally adopted for the gravity field and is
+1

J (PP {u)dp =1/2n +1).
-1
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One can ask, just as for the gravity field, what is the greatest depth at
which the sources of the field can be placed, and two procedures have
been adopted to answer that question. Lowes (1974) followed the same
method set out above (section 9.3) for the analysis of planetary gravita-
tional fields, namely the mean square harmonic coefficients of given
degree were plotted against degree, and Lowes found that the sources of
different degree would be the same if located near the surface of the core.
Hide (1978) has adopted a somewhat different approach, asking at what
depth the flux through a sphere is no longer conserved, and again finds
that the sources of the field must be located at the boundary of the core.
Should harmonic expansions for the fields of other planets become
known, it would be possible by similar arguments to determine the
greatest depth at which sources could be placed, in effect the depth of the
conducting core in which dynamo action takes place. At the present time,
however, insufficient components have been determined for the other
planets for which, in general, only the parameters of an off-axis tilted
dipole representation of the field are known.

Lowe’s analysis shows up another feature of the Earth’s field, and no
doubt of the fields of the other planets as well. Evaluated at the surface of
the core, the field is no longer primarily a dipole field, for all multipole
components of the magnetic potential have similar magnitudes. The field
is not in fact an essential dipole field, it only appears so to us because the
dipole field dies away the most slowly with radial distance.

The field of Jupiter has been determined from observations from the
Pioneer 10 and 11 space craft, and a summary of these results is shown in
Table 9.3. Acuna and Ness (1976) have made a more detailed analysis,
reproduced in Table 9.4.

The existence of the Jovian field had been inferred, prior to direct space
craft observations, from the properties of radio emission from Jupiter,
and the value of the dipole moment, estimated from the radio observa-
tions, agrees well with the later space craft measurements, although the

Table 9.3. Dipole field of Jupiter: summary of Pioneer
10 and 11 results

Pioneer 10 Pioneer 11

Moment (T m?) 1.454x10%° 1.536 x 10%°

Tilt (degrees) 10.6 10.77

Offset (Ry) 0.111 0.101

Reference Smith (1974) Smith et al. (1975)
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radio observations cannot provide the detail of the direct measurements
(Warwick, 1967).

Radio emission from Saturn has been detected and the existence of a
magnetic field, of the same order as that of Jupiter, has been inferred
(Brown, 1975) and has now been confirmed by direct observation from
Pioneer 11 (Smith et al., 1980; Acuna and Ness, 1980) (see Table 9.5). In
contrast to the Earth and Jupiter, Saturn has a dipole field with its axis
very close to the spin axis and in the opposite sense to the other two.

The magnetic fields of the terrestrial planets and the Moon have been
derived from a number of space craft observations. Mariner 10 observa-
tions give the field of Mercury. The initial analyses yielded a dipole
moment of 5.1x10>Tm> (Ness, Behannon, Lepping and Whang,
1975), but a later study, with allowance for a quadrupole component,
gave 2.41x10"* T m® (Jackson and Beard, 1977).

The magnetic moment of Venus was obtained from observations with
the Venera-4 space craft. The first interpretation indicated that the
moment was below the limit of detection (8 x 10 T m?), but Russell
(1976) in a re-discussion, suggests a value of 6.5 x 10> T m®.

The magnetic moment of Mars is derived from observations with
the Mars 2 and 3 space craft and is about 2.4x 10> Tm® (Dolginov,
Yerovshenko and Zhuzgov, 1973). Russell (1977) has discussed the
morphology of the bow shocks formed by the solar wind flowing past the
terrestrial planets, as observed by the Mariner and Venera space craft,
and has noted that they fall into two sets: one the one hand, those around
the Earth and Mercury, where the solar wind is deflected by the
permanent magnetic dipole moment of the planet; and those around

Table 9.4. Spherical harmonic
coefficients of Jovian magnetic field
(Acuna and Ness, 1976)

n m g(10™T) h(107*T)
2 0 -0.203 —
1 -0.871 -0.037
2 +0.331 -0.402
3 0 ~0.233 —
1 -0.357 -0.463
2 +0.506 +0.096
3 ~0.202 +0.233

Magnetic moment: 1.56 X 102 T m>,
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Venus and Mars where the deflection is by an ionosphere and where any
permanent dipole moment is insignificant. The discussions of the direct
observations of the field of Venus and Mars have been somewhat
inconclusive, and it may be that there are no net dipole fields of those
planets, but that they are magnetized in much the same way as the Moon.

The Moon has no significant net dipole field but the surface is
magnetized in a somewhat random fashion (Chapter 5; Sonnett, 1977,
Coleman and Russell, 1977). Any overall dipole field has a moment of
less than 10° T m?, but the surface material is magnetized with field
intensities ranging from about 3 nT to —3 nT, and maintaining a given sign
over areas of up to 300 km across. A past field in the range of 107° to
107* T s required to account for the remanent magnetization of lunar
rocks, but no such field currently exists. Runcorn’s suggestion (Chapter 5;
Runcorn 1975, 1977) is accordingly that a field of internal origin and of
that magnitude did once exist, and that it magnetized the outer shell of the
Moon, and has since decayed away, leaving no net dipole moment.
However, because of irregularities in the outer magnetized shell of the
Moon, local fields appear at the surface. Viking observations have shown
that rocks at the surface of Mars are magnetized, and it is tempting to
apply Runcorn’s model to Mars as well.

The information about the dipole moments of the planets and the
Moon is summarized in Table 9.6. In order to use facts about the
magnetic fields of the planets to elucidate their internal structure, it is
necessary to understand how planetary fields are generated, and detailed
understanding is lacking. For the reasons set out earlier, it appears that
the Earth’s field must be generated in a liquid core, and it is natural to say
the same of the other planets, but as yet we have no evidence which
requires the origin to lie in a liquid core. The evidence for the Earth is the

Table 9.5. The magnetic field of Saturn
(Acuna and Ness, 1980; Smith et al., 1980)

Magnetic moment (T m?) (4.3+£0.2)x10"®
Tilt (degrees) 2+1

Equatorial field (mT) 2x1072

N. polar field (mT) 6.3x1072

S. polar field (mT) 4.8%x1072

Spherical harmonic coefficients (mT):
g) 2.03x1072
g5 0.15x107> A 0.01x1072 K 0.02x107?

1 mT = 10 gauss.



Departures from the hydrostatic state 292

variation of the field in time, and we do not know how the fields of the
Moon and planets change with time. There is, however, no theory other
than a dynamo theory that shows any signs of accounting for the fields of
the planets. The remainder of this section is therefore concerned to see
what may be learnt about the interiors of the planets on the basis of
dynamo theory.

The general idea of dynamo theory is that some source of energy causes
motions in a fluid that is electrically conducting, that the motions of
the liquid in the magnetic field induce electric currents and that those
currents generate the magnetic field. The motion of the liquid is resisted
by viscosity and by the forces corresponding to ohmic dissipation of the
electric currents. From this brief statement we may infer that a planet
with a magnetic field must have a liquid electrically conducting zone, not
necessarily the innermost zone; the inner core of the Earth, for example,
is solid, and so may be the innermost cores of Jupiter and Saturn. In the
Earth, electrical conductivity of the core is consistent with a metallic
composition, mainly iron, while dynamical and seismological evidence
shows that the core is liquid. Metallic hydrogen, the major constituent of
Jupiter and Saturn, must have a high electrical conductivity; there is no
direct evidence that any part of Jupiter or Saturn is liquid, but we take the
existence of magnetic fields as implying that there are liquid zones in
those planets.

Table 9.6. The magnetic fields of the planets

Spin Dipole fields

Surface Core  angular Dipole

radius radius velocity moment  at surface at core

(km) (km) (rad/s) (Tm? (mT) (mT)
Moon 1738 <400 —  <5x10° <1078 -
Mercury 2442 — 1.22x10™° 2.4x10?* 1.6x107* —_
Mars 3380 — 7.09x107° 2.4x10? 6.2x107° —
Venus 6053 —  —299x1077 6.5x10'? 2.9x107° —
Earth 6378 3400 7.29x107° 8x10% 3.1x1072 2x10™"
Saturn 60 000 — 1.71x10™* 4x10'® 4x1072 —
Jupiter 71000 —_ 1.77x10™* 1.5x10*° 4.2x107! —

The bodies are arranged in order of radius.

The core radius is that of a possible fluid conducting core.

The ‘surface field’ is that magnetic moment divided by the cube of the surface
radius and gives the order of magnitude of the dipole component at the surface.
The field at the core is similarly evaluated; as mentioned in the text this may be far
from a correct description of the actual field just outside the core.
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Consider first the equation of motion in a rotating liquid (all planets are
rotating). Let u be the velocity of the liquid, £ the angular velocity of the
body, p the pressure and v the viscosity. Let F be the force acting on the
liquid; it will include an electromagnetic term if a magnetic field is being
generated. Then u satisfies the equation

d _
-é't—‘+u-Vu+20 Au=—p ‘Vp+F+vVu.

It is often permissible to ignore the convective acceleration u - Vu and
the viscous term »V?u, so that

d -
a—':+29. Au=—p 'Vp+F

Suppose that pg = —Vp, that the temperature within the body is T and
that the coeflicient of thermal expansion is «; there is then a buoyancy
force per unit volume equal to aTg. Further, let B be the magnetic
induction and J the electric current; there is then an electromagnetic
force per unit volume equal to

p I AB.
Let the liquid be confined to a volume V. Outside V, B satisfies
VB =0.
Within V,
oB
PV -VAE (Maxwell),

where E is the electric field.
E has two parts, the first being the motional field arising from the liquid
moving in the magnetic field, namely

E=—-unrB.

In addition, there is the ohmic term arising from the electric current, J,
that is

E=J/o,
where o is the electrical conductivity. But
uod =VAB

and thus

1
E=—-VB.
HoT
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Accordingly

1
VAE=-V A(unB)———VA VAB.
Hoo

Denote (1oa) " by A. Then
B
(?9_t=VA (unB)+AV’B.

The boundary conditions on u and B are
u-n=0

on the boundary of V, and B must be continuous across the boundary.

Associated with the equations for ou/ ot and 0B/ ot there should also be
the equation of heat conduction. Together with the equation for the
conservation of mass, they should allow the velocity u, induction B and
temperature T to be found for given boundary conditions of, for
example, heat flux or temperature. That is the problem one would like
to solve, but no solutions have so far been obtained. The dynamo problem
is, in fact, usually divided into two: the dynamical problem and the
kinematic problem. The former problem is to determine u and B given a
force field (including a temperature field), the latter problem is to deter-
mine B given u.

The kinematical problem is in the nature of an existence problem, it
addresses the question whether there are any velocity fields which lead to
the maintenance of a steady magnetic field, irrespective of whether there
is a means of generating those velocity fields. A thorough account of the
state of both problems has been given by Moffat (1978).

A very important general result is a theorem of T. G. Cowling who
showed that dynamo action cannot occur if the velocities and magnetic
fields have a common axis of symmetry. An important aspect of planetary
fields is that they are generated in bodies that are rotating, in which the
axial symmetry of the motions is removed; it may well be that the
inclination of the dipole axis to the spin axis, as observed in the Earth and
Jupiter, is a consequence of departure from axial symmetry, although no
theoretical work has as yet shown that the inclination does naturally
follow from dynamical requirements. The field of Saturn, on the other
hand, may pose a problem of interpretation.

Any solenoidal vector field may be written in the form, for B for
example,

B =BT+BP,
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where Br, the toroidal part, is given by
By=VA(xT(x))
=—xaVT,

where x is the position vector and T a scalar function.
By, the poloidal part, is given by

Bp=V AV A (xP(x)),

where P is another scalar function of position. It follows that VA Bris a
poloidal field, and likewise V A Bp is toroidal.

Kinematic dynamo theory is concerned with the interaction between
toroidal and poloidal parts of velocity and magnetic fields, each being
expanded in the form

fam (F) Yo (6, ),

where f,.,(r) is a radial function and Y,..(6, ¢) a spherical harmonic.

It has been found possible to construct velocity fields that lead to
self-sustaining dynamos. Dynamo action may be thought of in terms of
the concentration of magnetic flux by motions of conducting fluids
carrying the flux with it because of the high conductivity so that the field
lines are ‘frozen into’ the fluid. Suitable motions will lead to greater
concentration of field lines, but that concentration will be counter-
balanced by diffusion according to the equation

oB
at

Only if the rate of concentration by convection in the fluid is greater
than diffusion will a magnetic field grow and be sustained. Thus, whether
or not a field is generated is dependent on a magnetic Reynolds number
which expresses that balance, namely

=AV’B.

_ olo

Rm == uolo;LoG,
A
where u, is a typical velocity and /o is a typical scale for variations of u.

The westerly drift of the secular variation field of the Earth suggests
that R,, is about 150 for the core; values of R, of about 20 to 100 are
required to sustain dynamo action in some simple cases.

The work on kinematic dynamos briefly mentioned postulates that u
and B can be specified as functions of position and time, but it is almost
certain that motions in the core of the Earth, and no doubt in other
planets, are turbulent with random components. Much attention has
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therefore been paid in recent years to kinematic dynamo theory in which
random fields have an essential part.

The essential feature of such dynamos is that the interaction of the
random components of velocity and magnetic field can produce a mean
electromotive force, and have an electrical current parallel to the mean
magnetic field.

Let the velocity U be written as the sum of mean, U, and fluctuating
parts, u:
U= U0+ u,

such that the mean value of u, averaged over an appropriate span of space
and time, is zero.
Similarly, let B be separated:
B=By+b.
Then the induction equation
oB
at
similarly separates:

0B,
at

—=VA(UAB)+AV’B

=VA(UoABy)+VAE+AV?B,

and
ab 5

5= VAa(UoAD)+ Va(unBy)+ VAG+AVD.
Here E =(u A b) and G = u » b — E, where the brackets () denote a mean
value.

Moftat (1978) shows that the components of E are linearly related to
those of B, through the equation for b (which involves B linearly), and
consequently it is possible to write

B
E a,,Bo, +Bllk x0]+

’

the coefficients ay;, B are pseudotensors, changing sign on a change of
parity because E is a polar vector and B, an axial vector.
In certain simple (isotropic) cases a; may be written as

i = ady,
where « is a pseudoscalar. In that case

E=aB()
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and
J=cE =ocaB,.

The effect whereby a current parallel to B, can be established by
interaction of turbulent motions and fields is known as the ‘a-effect’.

The effect of the term proportional to 9B,;/dx, is to change the
magnetic diffusivity; in the simplest case A is replaced by A + 8.

The numerical values of « and 8 depend on the type of motion that is
established. It should be noted that, with suitable choice of the extent of
smoothing, G can be taken to be negligible.

Dynamo theory is concerned with the form and magnitude of the
a-tensor and B-tensor. Because « is a pseudotensor, changing sign with
a change from a left-handed to a right-handed co-ordinate system, no
motions which are symmetrical under such a change can produce dynamo
action through the a-effect. It is here, then, that rotation plays an
important part, for, if a spherical body of fluid is both rotating and
convecting, the resulting motion will have an overall left-handedness or
right-handedness and will be able to sustain an a-effect, whereas, if there
is no rotation, the motions may be symmetrical under reflexion and no
a-effect will occur.

Velocity fields which lack reflexional symmetry are said to be helical,
helicity being defined as u - w, where w is the vorticity, equal to V A u.
Whether velocity fields are laminar or turbulent, for them to be able to
sustain dynamo action it is essential that they should have non-zero
helicity.

If the a-effect operates, two types of dynamo are possible in a rotating
fluid. Suppose that the mean velocity, magnetic and electric fields are all
axisymmetrical, so that they may be written, dropping the suffix 0, in
cylindrical polar co-ordinates (7, z, ¢), as

U=rowl(r, z)iy+ Us,
B=B(r,z)is+ By,
E=E¢i¢ +Ep.

Here i, is the unit vector in the ¢ direction, w(r,z) and B(r, z) are
functions of r and z, but not of ¢, and Up, Bp and Ejp are poloidal fields.
By is derived from an azimuthal vector potential:

Be=VAA(r, z)iy

(for example, if A represents a simple ring current, Bp is a dipole field).
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If E =aB -8V A B, it follows that

Z—I: +r(Up - V)(g) =r(Bp - VYo +[V A (aBp)ls +A(V —r"*)B
and

0A _ 2 =2

§+r (Up-V(A)a =B +A. (V' —1r A,

where A. = A + 8 is the effective value of A (Moffat, 1978).
In the equation for B, there are two source terms, namely

r(Bp- Vo and [V A(aBp)ls,
the ratio of their orders of magnitude being
L*wh/ ao.
L is a scale length over which mean quantities show significant variation
and is large compared with the scale of turbulence, w is a typical value of
Vw and ay a typical value of a.
The ratio thus expresses the effect of differential rotation, Ve, in

comparison to the strength of turbulent fields, «.
If differential rotation is negligible,

L 1 9(Z) =191 Bl 4 AV = 1B

and the term [V A (aBp)], acts as the source of B, that is of the toroidal
field.

On the other hand, if differential rotation dominates,

a
a—’f+ rH(Up - V)(g) =r(Bp- V)w +A(V:-r B

and the source of B is then proportional to Bp and Vw.
In either case, the source of the vector potential A, corresponding to
the poloidal part of B, is aB, through the equation

a
a—?+ r Y Up-V)(rA) = aB + A (V> —=r ) A.

The scheme of dynamos depending on the a-effect is thus that a
poloidal field, derived from a toroidal vector potential, is generated by
the a-effect between a toroidal field and the turbulent motion, and then
the toroidal field is regenerated from the poloidal field, either by inter-
action with the turbulent motion through the a-effect or through inter-
action with differential rotation. Dynamos in which the a-effect operates
in both parts are known as a’-dynamos, those in which differential
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rotation operates in producing toroidal field are known as aw-dyramos.

a depends in magnitude upon the magnitudes and spectrum of the
turbulent velocities (Moffat, 1978), whilst Vo depends in magnitude
upon the spin angular velocity; accordingly one may anticipate that
dynamos in slowly rotating bodies would be a>-dynamos, but that those
in fast spinning bodies would be aw-dynamos or laminar dynamos.

Moffat (1978) shows that, in a turbulent fluid, the maximum value of
the helicity is of order u3/l,, where I, is a characteristic scale of the
turbulence. He also shows that if the helicity has its maximum value, the
value of « is

loug/A.
Now [, and i, are related by the Reynolds number

R.=louo/v,

and so a~R§v2/lo)«.

Now, irrespective of the source of energy of a planetary dynamo, the
typical velocity will increase with the rate of supply of energy and thus
with the energy that has to be transported by the fluid motion; «,
therefore, will increase with the energy generated within the dynamo
regions.

While there is now a good understanding of certain kinematical
features of dynamos, little has been achieved in solutions of the dynami-
cal problem. The essence of the matter is that a force proportional to
J A B acts upon the fluid. It may be expected to have two effects. In the
first place, it will react back upon the fluid motion as a brake so setting a
limit to the fluid motions and, hence, to the magnetic field, a limit not
provided for in the kinematical theory. Secondly, it is expected to behave
like the Coriolis force in modifying the onset and form of convective
motions in the fluid. So far, however, insufficient has been done to make
any general comments on either of these points.

The conditions for the onset of dynamo action have been discussed by a
number of authors and it is usually considered that the magnetic
Reynolds number must exceed some limiting value.

Gubbins (1974) has given the following values for the core of the
Earth:

radius: 3483 km
electrical conductivity: 5x10° S/m
viscosity: » 102 Nm/s’.
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If the typical velocity is taken to be that of the westerly drift of the
secular variation field and the typical scale that of the radius of the core, it
will be found that R, is of the order of 10, while the Reynolds number is
about 3 x 10%. It has been suggested that R, should exceed about 10 for
the dynamo action to take place.

The magnetic Reynolds number for Jupiter must certainly be greater
than that for the Earth, probably very much greater, for the typical
dimension is greater and the electrical conductivity of metallic hydrogen
is some orders of magnitude greater than that of molten iron. It is not, of
course, known what the typical velocities are in Jupiter, but they would
have to be some orders of magnitude less than in the Earth for the
magnetic Reynolds number to fall below the terrestrial value. In any
event, we know that Jupiter has a magnetic field.

There is no general agreement on the source of power which drives the
geomagnetic field. In principle, the necessary power can be estimated
from the ohmic dissipation of currents needed to maintain the field. It is,
of course, a fairly simple matter to estimate the currents needed to
maintain the observed poloidal field; the difficulty is that, in the absence
of reliable solutions of the dynamo equations, the magnitude of the
currents that maintain the associated (and probably much larger) toroidal
field is not known. Three sources have been suggested: thermal energy,
whether from radioactive nuclides or from original heat; precessional
couples; and energy derived from differentiation of the core from the
mantle. Thermal energy is perhaps the natural one to think of, but has
been criticized on the grounds that there are strong indications in the
Earth that the radioactive nuclides are concentrated in the outer layers,
so that the core would be expected to be depleted and so would not
generate sufficient power to drive the dynamo. A somewhat related
difficulty that has been put forward, and has been strongly criticized, is
that the equation of state of the core of the Earth is such that it would be
stable to thermal gradients and would not convect. Whether that is so or
not, it is now believed that thermal convection, in the sense of motions in
an unstable fluid, is not necessary to generate a magnetic field through the
a-effect.

The core of the Earth is less oblate than the mantle, and the oblateness
decreases towards the centre where it is zero. Thus the precessional
couple, proportional to (C — A)/C, is not constant throughout the core,
but also decreases towards the centre. It has been suggested that the
differential couple would provide a torque to drive the geomagnetic
dynamo, but the idea has been strongly criticized by Rochester, Jacobs,
Smylie and Chong (1975).
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Finally, it has been suggested that, on the assumption that the core of
the Earth is still increasing in size by differentiation from the mantle, the
gravitational energy released would provide the power to sustain the
Earth’s field.

If we compare Jupiter with the Earth, the precessional source seems
even less likely, for the precessional couple on Jupiter is far less than that
on the Earth, yet Jupiter’s field is greater. As to Mercury, the Sun is much
closer, but J, is much smaller than for the Earth and again the pre-
cessional idea seems less favourable.

It will be argued below (Chapter 10) that the core of the Earth was
formed prior to and independently of the mantle around it and, if that is
right, continued growth of the core would not now be going on, nor would
it in Mercury, to which the argument for the prior formation of the core
would apply as to the Earth. Smoluchowski, in particular, has however
suggested that gravitational separation of helium from hydrogen in
Jupiter may be a source of the energy which is radiated from Jupiter and
so a possible source of the dynamo. It was seen in the previous chapter
that there must be considerable doubt about the source of the energy
radiated from the Jovian surface, and it is really quite uncertain how
much energy has to be produced in the interior. To summarize, it may be
said that in none of the planets with magnetic fields can the source of the
energy be identified as yet, nor, in the absence of a reliable theory, can the
magnitude and configuration of the field be used to estimate the power
needed to sustain it.

9.6 Conclusion

In this chapter, I have drawn together a number of features of the
planets which indicate how they deviate from simple models in hydro-
static equilibrium, in which the density may be supposed to depend only
to an unimportant degree upon temperature.

The main features are the terms in the gravitational potential that
would be absent for hydrostatic equilibrium, tectonic activity, heat flow
through the surface and generation of a magnetic field. The first could be
maintained in a static planet with sufficient strength, but the latter are
connected through motions in the interior. In so far as the motions are
driven by thermal convection, they will be in the sense of reducing
differences of density and so the distribution of density will tend to the
radial variation corresponding to the hydrostatic state. As knowledge of
the planets increases, it is to be hoped that it will become possible to
define such internal motions better than at present.
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Conclusion

10.1  The lesser objects of the solar system

So far in our studies, no notice has been taken of the smaller
bodies in the solar system, i.e. Pluto, the asteroids and the satellites of
Mars and the major planets, for their properties are but poorly known on
the whole and it is not very rewarding to apply to them the type of analysis
that was applied in the foregoing parts of this book to the greater objects.
Yet, in considering the solar system as a whole, their existence and such
information as we have of them cannot be ignored.

Pluto, the outermost known planet, is in a highly eccentric orbit highly
inclined to the ecliptic, and, in consequence, although it comes on
occasion within the orbit of Neptune, it never approaches Neptune
closely, and detailed studies have shown the outer solar system to be
stable. Pluto is a very small object as seen from the Earth, Its diameter is
estimated from the brightness and supposed reflectivity. The latter has
recently been redetermined from infra-red spectroscopy and the
diameter of Pluto is consequently now estimated to lie between 2800 and
3300 km (Cruickshank, Pilcher and Morrison, 1976). The mass of Pluto
was originally estimated from the perturbations of the orbits of Uranus
and Neptune, but a satellite has now been detected (Christy and Har-
rington, 1978) with a period of 6.4 d, from which the mass of Pluto is
estimated to be about 0.002 times that of the Earth (Meadows, 1980).
The density is consequently between about 650 and 1100 kg/m?, similar
to that of some of the smaller satellites (Table 10.1).

The asteroids form a cloud of small objects in planetary orbits about
the Sun, lying between Mars and Jupiter at about 2.8 AU from the Sun,
that is to say, closer to Mars than to Jupiter, which lies at about twice that
distance from the Sun. Their number is unknown, but the orbits of some
1700 have been determined and their total mass is far less than that of the

302
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satellites of planets as the following figures show:

mass of planets: 447.9 Mg
mass of satellites: 0.12 Mg
mass of asteroids: 0.0003 Mg,

where Mg is the mass of the Earth (Allen, 1963).

The mass and density of a few of them have been estimated; the largest,
Ceres, has a radius of 350 km, a mass of 6 x10** mg and a density of
3340 kg/m>.

The satellites of Mars and the major planets (Table 10.1) are, in
general, small objects of low density, comparable with the asteroids, but
four satellites — Ganymede and Callisto of Jupiter, Titan of Saturn, and
Triton of Neptune - are larger than the Moon.

Table 10.1. Properties of some satellites

Radius Mass Density
Planet Satellite (km) (kg) (kg/m®)
Earth Moon 1737 7.0x 10% 3340
Mars Phobos 10 — —
Deimos 5 — —
Jupiter Io 1830 7.24 x10% 2820
Europa 1550 4.71x 10 3020
Ganymede 2775 15.52x10% 1730
Callisto 2500 9.67x10% 1480
8 satellites less than 100 km in diameter
Saturn Mimas 180 3.8x10" 1500
Enceladus 300 7.4x10"° 700
Tethys 520+ 60 6.2x10% 1100
Dione 500+120 1.05 x 10* 2000
Rhea 800+100 2.2x10% 1000
Titan 2900+200 1.35x10% 1320
Hyperion 112+15 — —
Iapetus 725+100 2.8x10* 1800
: Phoebe 120 — —_
Uranus Ariel 200 1.3x10* —
Umbriel 200 5.4x10%° —
Titania 500 4.4x10% —
Oberon 400 2.5x 10 —
Miranda 100 0.6 x10* —
Neptune Triton 1885 1.36x10% 4800
Nereid 100 3x10* —

Data from Allen (1963), Newburn and Gulkis (1973) and Anderson et al. (1980).
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Phobos and Deimos are rocky irregular objects, pitted with craters and
their diameters are only indications of the general dimensions. They have
been photographed from the Viking orbiters.

The four innermost satellites of Jupiter were discovered by Galileo
with his early telescope and are known as the Galilean or Medicean
satellites.

The dynamical properties of many of the satellites of Jupiter and
Saturn have been determined from space craft (Anderson et al., 1980).
They are small objects (Table 10.1) in which, as in the Moon, self-
compression will be negligible. The densities suggest that the satellites are
made up of rocky material, of density around 3000 kg/m®, and ices of
water, ammonia and methane, of densities between 500 and 1000 kg/ m’,
but it must be said that these are only guesses based on general under-
standing of the composition of the solar system. There may well be
surprises in store. Many satellites have now been examined from space
craft. Phobos and Deimos have been photographed and, like the Moon,
Mars and Mercury, are heavily cratered as are Ganymede and especially
Callisto (Stone and Lane, 1979). Io lies within the radiation belts of
Jupiter, surrounded by an atmosphere of sodium and sulphur, which it
injects into the radiation belts, the electrical properties of which it
modaulates. Io shows strong volcanic activity (Carr et al., 1979) whereas
Europa is covered with a thin layer showing a complex pattern of
fractures (Stone and Lane, 1979).

No values have been quoted for the densities of the satellites of Uranus
and Neptune, except for Triton, for, if calculated from the radii and
masses given in Table 10.1, they would be implausibly high, as may be
seen by comparing the masses of the satellites of Uranus with those of
Saturn of supposedly the same radius. The fact appears to be that the
diameters of the Uranian and Neptunian satellites are too small to be
determined in any realistic way from the Earth.

Besides their satellites, three planets, Saturn, Jupiter (Stone and Lane,
1979) and Uranus (Nicholson et al., 1979) have rings of dust about them.

The small objects tell us really very little about the solar system. They
seem to be the debris, the inconsiderable remains of the principal
processes. The asteroids are often supposed to represent a missing planet
between Mars and Jupiter, but their total mass is so small — 3 x 107 of the
mass of the Earth — that it is hard to see where the rest of any such planet
can have gone; nonetheless, the average orbit of the asteroids fits neatly
into the place provided for it in Bode’s law of planetary distances.
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10.2  The planets as a whole

The planets divide clearly into two groups, the terrestrial planets,
a compact group, small and of rocky and metallic composition, and the
major planets, far from the Earth, covering a wide range of distance and
composed mainly of light materials, but probably with some core of rock
and metal. Within each group there are differences of size, mean density
and, by implication, of composition; Jupiter and Saturn are twins, but not
identical twins, and so are Uranus and Neptune, for, while the planets of
each pair comprise a light envelope in which a rocky core is probably
present, the relative size of any core is greater in the outer planet of the
pair. What can the internal constitutions, the similarities and dis-
similarities of the planets tell us about the way in which the solar system
may have come into being?

It is commonly supposed that the planets formed out of material that
once was part of the Sun, that tidal disturbances produced by a second
star caused irregularities of density in the outer parts of the solar
atmosphere, which developed into condensations that were unstable and
collapsed under self-gravitation into the planets. It is further considered
likely that the planets formed during the so-called Hyashi phase of the
formation of the Sun, when the solar atmosphere would have been
extended out into the region occupied by the solar system as we now
know it. The temperature within that extended atmosphere would, of
course, fall away from the inner to the outer zones, so that in the inner
parts materials such as hydrogen, helium, water or methane, would be
gaseous, but metals and metal silicates could condense to form the
terrestrial planets. As the temperature fell in the outer parts with the
contraction of the early Sun, the light elements there could also condense,
but would probably require some nucleus on which to do so; no doubt
condensation would start when the escape velocity from the rocky or
metallic nucleus was comparable with the thermal velocities in the
surrounding gas. Among others, two questions arise from this general
account: in what order of chemical composition did the condensation of
the terrestrial planets proceed, and how did rocky or metallic nuclei of the
major planets come into being so far from the Sun?

There are a number of broad classes of ideas about the condensation of
the terrestrial planets. On the one hand, it has been supposed that they
formed as liquid spheres, necessarily at high temperatures, in which the
rocky and metallic constituents were mixed, and then, because they were
immiscible, the metal separated from the rock as the planets cooled down
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and, being denser, formed the cores. On the other hand, it has often been
thought that the material condensed as dust which accumulated into
cold bodies that then heated up from the gravitational energy released in
the condensation and from the energy of radioactive nuclides which have
now decayed away; as the planet heated up, diffusion under gravitation in
the solid led to the separation of rock from metal and to the formation of a
core, with further release of gravitational energy. In yet a third scheme,
(see Chapter 6) it is supposed that, on account of its lower vapour
pressure, the metallic material of the core would first condense out of the
solar gas and would be followed by the rocky material which would
accumulate as mantles around the cores. The third process is distinct from
the first two in that the core is seen as the essential primitive feature of the
planet rather than as a secondary feature forming after the accumulation
of the planet.

It seems that our understanding of the constitution of the terrestrial
planets enables us to discriminate between the first two and the latter
schemes of condensation. In the first two, the composition of the material
would be expected to be the same for all the planets, or perhaps to change
in a systematic way with increase of distance from the Sun according to
changes of temperature and pressure in the inner atmosphere of the early
Sun. Thus, the cores of the planets would be expected to be either a
constant fraction of the planets or a proportion that changed systemati-
cally from Mercury to Mars. That is not found. No systematic dependence
of the relative size of the core upon the position of the planet is to be seen
in the data of Table 6.6, nor does the relative size of the core depend in
any regular way upon the overall size of the planet: the Earth and
presumably Venus have large cores and Mars and the Moon small ones or
none at all, but Mercury presumably has a core large in relation to its size.
This rather irregular state of affairs would, however, seem to be consist-
ent with the formation first of cores, then of mantles around them, the two
processes having no necessary relationship one to another, so that the
relative size of the core would be arbitrary. A two-stage process of
formation of the planets thus seems to be implied by the constitutions of
the terrestrial planets.

When we look at the major planets, the question that arises there is
how the cores of heavy material have come into existence so far from the
Sun. The information we have at present about the major planets does
not enable us to estimate the size of heavy cores unambiguously, and
indeed, without seismic data of some sort, that may never be possible, but
cores which are a few times larger than the Earth would be possible in
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Jupiter and Saturn. How is it that heavy bodies, larger than any of the
terrestrial planets, could form in the outer parts of the solar system in the
lower densities and temperatures of the early Sun? The present masses of
such presumed cores exceed by a factor of about ten the amount of rocky
and satellite constituents appropriate to the present mass of hydrogen in
composition.

A similar position is presented by the overall composition of the four
major planets, in which the overall ratio of carbon, nitrogen and oxygen
to hydrogen and helium exceeds the present solar proportion by a factor
of about ten. It seems that a great deal of hydrogen has been lost from the
outer parts of the solar system just as it has from the inner parts.
Furthermore, as in the terrestrial planets, the presence of rocky or
metallic cores of different proportions in the four major planets suggests
that the cores condensed first and that the light shells of hydrogen and
helium or methane and water accumulated around them.

10.3  The limits of knowledge
Our knowledge of the planets is limited in two ways: by the
absence of data which it is conceivable we might be able to obtain and by
the ambiguity of inference from conceivable data, however complete.
We would like above all to have seismic information about the ter-
restrial planets. If space craft are placed into orbit about Venus and
Mercury, then it is possible that even a small value of J, will be
measurable and some estimates of the dimensionless moments of inertia
and, hence, of the central condensations of those planets will be feasible.
The present information about the values of J, suggests, however, that
such studies will be very difficult; the corresponding secular motions of
any satellites would be small and would be dominated by the attraction of
the Sun, especially for Mercury. Placing of seismometers on Venus and
Mercury might, however, be of great value, although it must be recog-
nized that not much has so far been harvested from the Viking seis-
mometers on Mars and, also, that on all three planets there seems to be
almost no current tectonic activity as we know it on the Earth and, so, no
internal seismic sources. For no planet other than the Earth, therefore,
may we anticipate any observations of free oscillations. Will seismic
information ever be obtained for the major planets? Clearly seis-
mometers cannot be placed upon them, nor travel times measured
through them, but it is not entirely inconceivable that they may be excited
into free elastic oscillations by processes of which we are ignorant, and
that, as with the Sun, ways may be found to detect them in the motions of
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the surface of the atmosphere. More realistically, we may look forward to
considerable improvements in knowledge of the dynamical properties of
Uranus and Neptune. Observations from large telescopes in orbit about
the Earth should produce firmer values for the periods of rotation of
Uranus and Neptune and of the motions of the natural satellites, as well as
of the geometrical figure, and in due course space craft will pass close to
Uranus and Neptune. By all these means, far more reliable dynamical
data should become available for Uranus and Neptune about which there
is, as was seen in Chapter 8, much uncertainty.

Space craft passing by Uranus and Neptune should also settle the
question of the existence of magnetic fields of those planets.

More and better data will help us to understand the planets better than
we now do, but we have to recognize that there are other limitations to
our possible knowledge. We return to where we began: the data we can
obtain for the planets are functionals of distributions of density, elastic
properties, and so on, with depth. The deductions we can make from
them are subject to great ambiguity when only a few functionals can be
measured and, even when the equations of state can be derived with some
precision, as they can for the Earth, the identification of possible consti-
tutions still extends over a considerable range of choice. The most reliable
deductions about the nature of the planets will be those made from
general properties not so dependent on detailed interpretation of data.

As we contemplate the planets as we see them in the light of obser-
vations from space craft, they retain in many ways their mystery. Much
light has been shed on some problems, but others have been posed.
The general ideas about the constitutions of the planets are indeed not so
very different from those current before observations from space craft;
there have been notable refinements, some of our ideas about properties
of materials are more precise, but the internal states and mode of origin of
the planets still attract our wonder and challenge us to understand them.



APPENDIX 1

Limits and conditions on planetary models

Al Introduction

The only observed mechanical data we have for any planet are
the mass and moment of inertia, and infinite sets of models can be
constructed consistent with such pairs of data. The sets of models are not,
however, unbounded, and, further, certain models are in some sense
more probable than others. Itis the purpose of this appendix to set out the
bounds on two particular models and to give some most probable models.
The models considered are: that of two zones, each of constant density,
and that in which the density is determined by hydrostatic compression
alone. The terrestrial planets may be modelled by the former, and the
major planets by the latter. Neither model can represent the complexities
of actual planets but, given only two data, no more elaborate model is
justified. Guided by the constitution of the Earth, and by such seismic
data as are available for the Moon, it is natural to choose the two-zone
model as an approximation to the structures of the terrestrial planets. In
this model, the maximum pressure is such that changes of density under
self-compression are less than differences of density arising from
differences of chemical composition or crystal structure in different parts
of the planet. Thus, a model comprising two zones of different density is
chosen as a basis for study of the terrestrial planets. In the major planets,
on the other hand, the mean density is so low that they must be composed
predominantly of one material — hydrogen — while the central pressure is
great enough for there to be a major increase of density under self-
compression. The second type of model is therefore the one to choose for
the major planets.

It is the purpose of this appendix to describe the main features of these
simple models and the bounds which are imposed on them. There are
bounds which are inherent in the models (for example, a density must not
become infinite or vanish), and there are bounds set by our knowledge of
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planetary materials (a density must not exceed a certain value); bounds
are also set by considerations based on our principles of inference.

A2 Two-zone models
Consider a planet of radius a. In a two-zone model it is divided
into two by a surface of radius a,; within a, the density is p,, and between
a; and a itis p;. Given the mass and moment of inertia of the planet, what
can be learnt about a,/a and p,/p,?
The equations for the mass and moment of inertia are

45 47 47 ,_
mass: Ta?p2+T(a3_a?)pl= =Ta3p
.. 87 s 8w s 87 5 _

D — +—=(a®- =7=27 :
inertia: Tz a1p2 15(a aip1=1 TR

In these expressions, the mass mean density, p, is defined to be
3M/4mwa’®. An inertial mean density, y5, may also be defined as
151/8wa’.

The observed data may be conveniently represented by g and v. If the
density of the planet is constant throughout, then vy is 1.

Let a,/a be written as a and p,/p, as 8. Then the equations for the
mass and moment of inertia read

a’Bp1+(1-a)p1=5p

and

a’Bpr+(1=a’)pr1=vp
or

1-a*(1-B)=4/p:
and

1-a’(1-B)=3/p:.
Thus «, 8 and v are related by the expression

-y
B 1= a 3 (‘Y _ a2) -

A set of curves showing the dependence of 8 on « for different values
of the observed ratio y is given in Figure A.1. They are restricted to
values of B less than 5 because that seems a reasonable limit on the basis
of the constitution of the Earth.

In any hydrostatically stable planet, the density of the inner zone must

exceed that of the outer, so that p, exceeds p; and B is greater than 1.
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Thus o must not exceed y” 2

51-v)
AR

. Also, 8 has a minimum value of

at the value of « equal to Gy

Figure A.2 shows the maximum possible value of « and the value of «
for the least value of B, each as functions of vy, whilst Figure A.3 shows the
least value of B as a function of y.

It was seen in Chapter 1 that models may be required to satisfy some
external condition. Parker’s (1972) condition is obtained by supposing
the density to be an element of a space of functions L”; so that the norm of

Figure A.1. The dependence of 8, the ratio of the densities in a
two-zone planet, upon e, the relative radius of the zone boundary,
for various values of v, the ratio of the inertial mean density to the
mass mean density.
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Figure A.2. Maximum possible value of a for a two-zone planet,

and value of « for the least value of g2, the ratio of densities, as
functions of y.

0.6 0.7 0.8 0.9 1.0

ﬁ min

0.7 0.8 0.9 1.0



Appendix 1 313

the space is
a 1/p
lolo = ([ lotyrarsa)

Parker also shows that if this norm is maximized subject to the constraints
that the mass and moment of inertia are to be those observed, then a
lower bound on the greatest density is obtained, and he finds that to be

2Ma2 3/2
pm=(g 1) ps

the corresponding value of « is

5 I\
(EMaz) )

In this model, the density is pm inside the radius a, and zero outside.
Consider, for example, the Moon, for which I/Ma2= 0.392, so that
3I/Ma* = 0.98. Thus,

Pm=1.03p
and
a=0.99.

The inner density must exceed 1.03 times the mean density and & must be
less than 0.99.

A different approach is to choose the function to be maximized or
minimized on the basis of a probabilistic criterion. Following the principle
of maximum entropy (Chapter 1) we should maximize

E=—J ko In kp dr,
T

(where T is the volume of the planet) subject to the constraints of mass
and moment of inertia, thus selecting the most random set of densities
consistent with the mass and moment of inertia; k is a constant to be
determined.

It is convenient to denote by o or o, the ratio of p, or p, to g, the mean
density of the planet. Then it is convenient to take for the entropy

E=—J oclhhodr
T

and we wish to maximize E subject to constraints representing such data
and a priori knowledge as we have. Suppose we know nothing about a
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planet. We then maximize E by putting

dE

a0 0
ie.

o=1/e.

At first sight, this result determines p, but it does not, because we have
no data nor a priori knowledge and so we do not know what g is and,
therefore, we do not know p: if we know nothing about the planet, we can
infer nothing.

Now suppose that we know the mass, i.e.

4
J P dT=M=—1Ta3ﬁ,
T 3

where a is the mean radius of the planet. We then wish to maximize E
subject to the condition that
47
J pdr=—2a’p.
T 3

According to the method of undetermined multipliers, we seek to
maximize

E+)\de7
T

with respect to variations of . With only one datum, we must suppose o
to be a constant throughout the planet, and so find

4
d [?wag'(—a' Ino +)\ﬁa’)] =0

do
or
Inc+1-Ap=0
ie.
o=exp{(Apg—1).
As is usual in the method of undetermined multipliers, we determine A
by using the condition
p=0ap=pexp[rAs—1]=7;
ie.
Ap=1 or A=1/p
and o = 1. This trivial result reflects the fact that all we know about the
planet is its mean density.
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Consider now a model of two zones divided by a surface of radius a,
and having relative densities o, and o, outside and inside a;. As before,
let a1/a = a. Once again, if we know only the mass of a planet, we can
only suppose that the density is constant throughout. Now suppose that in
addition to the mass we know the moment of inertia. The function to be
maximized is

4 8
E +—3£a3[a30'2+ (1-a?a,1pA, +T5ﬂ-a3[a50'2+(1 —a’)o11pA2,

where a factor of a” has been included in A,. The variational equations
are then

—3(o2Inos—a1Ing)+3(e2—a)A 1 +5a* (02— o)A =0
and

(1-a’)(~Ingy—1+A)+(1-a’)r, =0,

while the equations of condition may be written

020’ +(1-a®)oy=1  (mass)
o’ +(1-a’)o = . (inertia)
It does not seem possible to obtain explicit solutions of these five

equations, but some idea of the behaviour may be obtained by taking a
different form for the entropy. The expression

—o(oc—1)

vanishes like —oIlno when =0 and 1 and approaches — as o
approaches o0, although at a different rate, and, if it is maximized, it is
found that « =0.752, independent of the value of v, provided it is close
to 1. The same result is obtained if the function to be maximized is the
variance of the relative density, that is

a3 (o2—-1+(1-a>) (o - 1)~
Again, consider the Moon, for which y=0.98. With a =0.75, the
corresponding values of o; and o, would be

o1 =0.95, o2 =1.06.

Rietsch (1978) has also discussed the determination of the lowest
possible value of the maximum density, p,, in a two-zone model, and finds
it to be given by

pu=p+(p— 01)5/2/(‘)’5 —01)3/2-
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where p, and p; are the upper and lower bounds on the density. The
corresponding value of « will be found to be
_ (‘Yﬁ - Pl) b
a={—" .
P~
Suppose, for the Moon, for which g =3340 kg/m>, we take p, to be
3600 kg/m>. Then a =0.9, and p, = 3472 kg/m>.

A3 Continuous models

Instead of taking a two-zone model as a basis, models with a
continuous variation of density have been studied according to the
principles of maximum entropy. Gruber (1977) showed that if the
entropy was taken to be of the form

kp In (kp),

that is, if the probability of obtaining a density p was taken to be
proportional to the density, then the distribution of density has the form
p(r)= A exp (—A2r?),
where A and A, must be determined from the known mass and moment of
inertia.
Rietsch (1977) took the entropy to be of the form

LP(") In[P(p)/w(p)] dr,

where w(p) is a weighting factor associated with a continuous distribution
of density and P(p) is the probability of the occurrence of a density p and
is normalized so that

L Pp)dr=1.

Rietsch calculates the expectation of the density, p,, in an element of
volume, T,, namely

Pn= I pnP(p) dr.

The probability P(p) is determined so as to maximize the entropy
subject to the conditions on probability, mass and moment of inertia.
Rietsch finds that
p(r)=p1+1/h(r, A),
where
h(r,A)=A1+30,(r/a)?,
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and A; and A, are the solutions of
1
| #*axhGR N =G=p)/3  (mase)

1
J'O x*dx/h(xR,A) = (yo —p1)/5 (inertia).



APPENDIX 2

Combination of effects of small departures
from a uniform distribution of density

The following results have been used to combine the effects of
various features of lunar models in Chapter S and of Martian models in
Chapter 6.

Suppose the density of a model departs by an amount p,(r) from a
constant density po. Then the mass and moment of inertia are

M=Mo+4wIp1r2 dr=Mo+M,

and

I=Io+8—;-TIp1r4 dr=1I+I,.
Thus

I S & L, M

Y= 52 e ) =
where

Y11= 1+%"%
since

Io=3M,a’.

Now suppose there to be a second departure, p,(r). Then
5 Io (1 Il M1+12 M2

(v U voag v M
where
L M,
=14+—=——.
Y2 To M,

Thus the effects of two small departures may be combined by calculat-
ing the separate values of y and multiplying them.
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The physical librations of the Moon

This treatment follows that of Cook (1977). Figure A.4 shows
the disposition of the Moon’s axes of inertia and the co-ordinate systems
used in the analysis of the physical librations; O is the centre of mass of
the Moon; XY is the plane of the ecliptic; and Z the pole of the ecliptic.

The axes OXYZ rotate about OZ at the constant rate n, which is the
average value of the motion of the Moon about the Earth. OX is in the

Figure A.4. Geometry of libration theory.
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mean direction of the Earth and OY is approximately tangential to the
Moon’s orbit.

0123 coincide with the Moon’s principal axes of inertia with the
following correspondence:
03:C, O2:B, O1:A.
Note that C>B > A.
The two systems of axes are related by the rotations, y;:
y:1 about OZ: 00X -»0X'

oY -»>0Y'
y» about OY": OX'-» 01
0Z-»0Z'
ys about O1: 0Y'-» 02
0Z'>03

The angular velocities are
n+y; about OZ

giving
(n + y1)cos y, about OZ',
—(n +yy)sin y, about O1,
(n + y1)cos y, sin y; about O2
and
(n +y1)cos y, cos y; about O3;
y2 about OY
giving
y2 cos y3 about O2
and
—y2 sin y3 about O3;
and

ys about O1.
The resultants are
about O1: —(n+yy)siny,+ys=0,
02: (n+y1) cos y,8in y,+y, cos y3 =)
03: (n+y1) cos y, cos y3— y, sin y3 = ().
The kinetic energy, T, is given by
2T =AQi+BQ3+CQ;S.
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Let /1, I, I; be the direction cosines of the Earth relative to the principal
axes of the Moon. The potential energy, V, is then given by

M
'Y = —(i—3[A +B+C—3(Al} +BI5 + CI3)].

M is the mass of the Earth and r its distance from the Moon.
If I is the vector (/1, I2, I3), and I’ is the corresponding vector of cosines
relative to the ecliptic system OXYZ, then

I=M -,
where M is the product of three matrices:

cosy; siny;

M;=|-siny; cosy;
1
cosy, - —siny,
M2 = 1
siny, - COS y2
1
M,=1- cosys Ssinys|.

—siny; CoOSys

!’ is obtained from the theory of the lunar orbit; the leading terms are
1=1, 1I5=0, l5=-2ksinuw,

where k =sin36, 6 being the inclination of the Moon’s orbit to the

ecliptic, and v is (n — ny)g, where n, is the mean motion of the Sun about

the Earth, and g, a factor close to 1, represents the steady motion of the

node of the Moon’s orbit upon the ecliptic. The equations of motion are
taken in the Lagrangian form:

d oT aT_ 3V

dt a)}i ay,' ay,"

The variable part of the potential energy is proportional to sin vz, so we
take y; to be proportional to e and write y; =ivy, ;= —vzy,». The
left-hand side of the equations of motion is then found to be

2

_v . . yl
V- —iv(1-B)| |y2|=N"-v,
ir(l—a) v —a y3

where a« =(C—B)/A and 8 =(C—-A)/B.
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The right-hand side reduces to

oV Y\ (" 0
(A,B, C)—=-3|B|| y2| +| 6B k sin v,
ay;
0/ \ys 0

where y = (B —A)/C. Then, since sin vt = (1/2i)(e"* —e™™"), the equa-
tions of motion may be written as

0
Ny=1lj—k e:tivt ,
0
where
v -3y .
N=-| - v -4 —iv(1-8)| .
iv(l —a) v —a

The solutions are then

0

— N_13€—k etiut ,
"o
where
1/,,2 . .
N1i=—| . (r*-1-38)" i’ -1-38)"",

-ir'*-1-38)" (P -1-38)""

with +» written for » when the forcing function is €™, and —» when it is
—ivt

e '”. Hence

0
3kB ivt —ivt

—_—— T € —"e )
I(V 1 33) _iV—l(elvt+e—lvt)

y=

Now » is g(n —no) or 1+g' —(no/n), where g'=0.0852 and no/n =
0.0808. v is very close to 1. Thus, the effect of the inclination of the
Moon’s orbit to the ecliptic is that there is no forced oscillation of y,, but

B 6kB sin vt
2{g'—(no/n)}—3B8

Y2=

and
_ 6kB cos vt
[2{g' = (no/n)}—3B1v"

y3
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The solutions represent a rotation of the C axis about the pole of the
ecliptic at the speed (n — no)(1 +g) and with amplitude

3kB/[g' ~ (no/n)~38]
(because » is not exactly 1, the amplitudes of y, and y; differ slightly).

With kK =0.045, 8=6x10"*, and g'—(no/n)~0.005, the angular
amplitude of the motion is about 1°30".

The divisor »*>—1—38 results in a large amplification.

To illustrate the theory, only one variable term in ' has been retained.
In fact, I' contains a very large number of terms, the next most important
being proportional to the lunar eccentricity. However, for the great
majority of the terms, the divisor -1 —3p is not very small. Other
terms which must be included are the attraction of the Sun, and terms in
the potential energy corresponding to the third and fourth harmonics in
the gravity field of the Moon.



REFERENCES

Chapter 1

Backus, G. (19704, b, ¢). Inference from inadequate and inaccurate data.

I, IL, III. Proc. Nat. Academy Sci., 65, 1-7, 65, 281-7, 68, 282-9.

Backus, G. and Gilbert, F. (1967). Numerical applications of a formalism to
geophysical inverse problems. Geophys. J. R. Astronom. Soc., 13, 247-76.
Backus, G. and Gilbert, F. (1968). The resolving power of gross Earth data.
Geophys. J. R. Astronom. Soc., 16, 169-205.

Backus, G. and Gilbert, F. (1970). Uniqueness in the inversion of inaccurate
gross Earth data. Philos. Trans. R. Soc. A, 266, 123-92.

Cook, A. H. (1979). Geophysics and the human condition. Q.J.R. Astronom.
Soc., 20, 229-40.

Graber, M. A. (1977). An information theory approach to the density of the
Earth. N.A.S.A. Tech. Memorandum 78034 (N.A.S.A.: Goddard Space
Flight Center, Greenbelt, Md.).

Parker, R. L. (1972). Inverse theory with grossly inadequate data. Geophys.
J. R. Astronom. Soc., 29, 123-38.

Chapter 2

Bullen, K. E. (1975). The Earth’s Density. London: Chapman and Hall.
Cook, A. H. (1973). Physics of the Earth and Planets. London: Macmillan.
Dziewonski, A. M., Hales, A. L. and Lapwood, E. R. (1975). Parametrically
simple Earth models consistent with geophysical data. Phys. Earth Planet.
Int., 10, 12-48.

Gilbert, F. and Dziewonski, A. M. (1975). An application of normal mode
theory to the retrieval of structural parameters and source mechanisms from
seismic spectra. Philos. Trans. R. Soc. A, 278, 187-269.

Moftat, H. V. (1978). Magnetic field generation in electrically conducting
fluids. Cambridge University Press.

Oldham, R. D. (1906). Constitution of the interior of the Earth as revealed
by earthquakes. Q. J. Geol. Soc., 62, 456-75.

Whittaker, E. T. and Watson, G. N. (1940). A Course of Modern Analysis,
4th edn. Cambridge University Press.

Williamson, E. D. and Adams, L. H. (1923). Density distribution in the
Earth. J. Wash. Acad. Sci., 13, 413-28.

324



References 325

Chapter 3

Cook, A. H. (1963). The contribution of observations of artificial satellites to
the determination of the Earth’s gravitational potential. Space Sci. Rev., 2,
355-437.

Cook, A. H. (1976). Measurements of distances to the Moon and artificial
satellites. Contemp. Phys., 17, 577-98.

Cook, A. H. (1978). The estimation of gravitational potentials of planets.
Boll. geod. Sci. affine., 37 (no. 2-3), 325-6.

Darwin, Sir G. H. (1899). The theory of the figure of the Earth carried to
the second order of small quantities. Mon. Not. R. Astronom. Soc., 60,
82-124.

Goldstein, R. M. (1971). Radar observations of Mercury. Astronom. J., 96,
1152-4.

Jeftreys, Sir Harold (1970). The Earth, 5th edn. Cambridge University Press.
Kaula, W. M. (1966). Theory of Satellite Geodesy. Blaisdell.

Klaasen, K. P. (1975). Mercury rotation period determined from Mariner 10
photography. J. Geophys. Res., 80, 3415.

Murray, J. B., Dolifus, A. and Smith B. (1972). Cartography of the surface
of Mercury. Icarus, 17, 576-84.

Newton, Sir 1. (1687). Philosphiae Naturalis Principia Mathematica.

Prop. XIX, Prob. II.

Radau, R. (1885). Sur la loi des densités a 'intérieur de la Terre.

C.R. Acad. Sci. Paris, 100, 972-4.

Shapiro, L. I. (1967). New method for the detection of light deflection by
solar gravity. Science, 157, 806-7.

Whittaker, E. T. and Watson, G. N. (1940). A Course of Modern Analysis
4th edn. Cambridge University Press.

Zharkhov, V. N. and Trubitsyn, V. P. (1970). Theory of the figure of
rotating planets in hydrostatic equilibrium - a third approximation. Soviet.
Phys. Astronomy (Engl. Translation), 13, 981-8

Chapter 4

Abhrens, T. J., Anderson, D. L. and Ringwood, A. E. (1969). Equations of
state and crystal structures of high pressure phases of shocked silicates and
oxides. Rev. Geophys. 1, 667-707.

Altshuler, L. V., Krupnikov, K. K. and Brazhnik, M, 1. (1958). Dynamic
compressibilities of metals under pressures from 400,000 to 4,000,000
atmospheres. J. Exptl. Th. Phys. (U.S.S.R.), 34, 886-93, transl. Sov. Phys.
JET.P, 17, 614-19.

Altshuler, L. V., Krupnikov, K. K., Ledenev, B. N., Zhuchikhin, V. I. and
Brazhnik, M. I. (19584). Dynamic compressibility and equation of state of
iron under high pressure. J. Exptl. Th. Phys. (U.S.S.R.), 34, 874-85, transl.
Sov. Phys. JE.T.P., 7, 606-14.

Anderson, D. L. (1967). A seismic equation of state. Geophys. J. R.
Astronom. Soc., 13, 9-30,

Anderson, D. L. (1969). Bulk modulus—density systematics. J. Geophys.
Res., 74, 3857-64.



References 326

Anderson, O. L. (1968). Some remarks on the volume dependence of the
Griineisen parameter. J. Geophys. Res., 73, 5187-94.

Anderson, O. L. and Liebermann, R. C. (1970). Equations for the elastic
constants and their pressure derivatives for three cubic lattices and some
geophysical applications. Phys. Earth Planet. Int., 3, 61-85.

Anderson, O. L., Schneider, E., Liebermann, R. and Soga, N. (1968). Some
elastic constant data on minerals relevant to geophysics. Rev. Geophys., 6,
491-524.

Bassett, W. A. and Ming, L. (1972). Disproportionation of Fe,SiO, to 2FeO
and SiO; at pressures up to 250 kb and temperatures up to 3000 °C. Phys.
Earth Planet. Int., 6, 154-60.

Berggren, K. E. and Froman, A. (1969). Properties of compressed states of
aluminium and iron from a spherical cellular model. Ark. Phys., 39, 355-81.
Bernal, J. D. (1936). Discussion Report, Obsérvatory, 59, 268.

Birch, F. (1947). Finite elastic strain of cubic crystals. Phys. Rev., 71,
809-24.

Birch, F. (1952). Elasticity and constitution of the Earth’s interior. J.
Geophys. Res., 57, 227-86.

Birch, F. (1972). The melting relations of iron and temperatures in the
Earth’s core. Geophys. J. R. Astronom. Soc., 29, 373-87.

Boschi, E. (1974a). On the melting curve at high pressures. Geophys. J. R.
Astronom. Soc., 37, 45-50.

Boschi, E. (1974b). Melting of iron. Geophys. J. R. Astronom. Soc., 29,
327-34.

Boschi, E. and Caputo, M. (1969). Equations of state at high pressures and
the Earth’s interior. Riv. Nuovo Cim. Ser. 1, 1, 441-513.

Bukowinski, M. S. T. and Knopoff, L. (1976). Electronic structure of iron
and models of the Earth’s core. Geophys. Res. Lett., 3, 45-8.

Bundy, F. P. (1963). Direct conversion of graphite to diamond in static
pressure apparatus. J. Chem. Phys., 38, 631-43.

Carter, W. J., Marsh, S. P., Fritz, J. N. and McQueen, R. G. (1971). The
equations of state of selected materials for high pressure reference. Nat. Bur.
Stds. Sp. Publ., 326 (Washington, D.C., U.S. Govt. Printing Office) 147-58.
Chan, T., Spetzler, H. A. and Meyer, M. D. (1976). Equation of state
parameters for liquid metals and energetics of Earth’s core. Tectonophysics,
35, 271-83.

Cohen, M. L. and Heine, V. (1970). The fitting of pseudopotentials to
experimental data. Solid St. Phys., 24, 37-248.

Cook, A. H. (1972). The dynamical properties and internal structures of the
Earth, the Moon and the planets. Proc. R. Soc. A, 328, 301-36.

Davies, G. F. and Anderson, D. L. (1971). Revised shock wave equations of
state for high pressure phases of rocks and minerals. J. Geophys. Res., 76,
2617-27.

Dugdale, T. S. and MacDonald, D. K. C. (1953) The thermal expansion of
solids. Phys. Rev., 89, 832-4.

Duvall, G. E. and Fowles, G. R. (1967). Shock waves. In High Pressure
Physics and Chemistry, ed. R. S. Bradley, vol. 2, 209-291, London:
Academic Press.



References 327

Feynman, R. P., Metropolis, N. and Teller, E. (1949). Equations of state of
elements based on generalised Fermi-Thomas theory. Phys. Rev., 75, 1561.
Frohlich, H. (1973). On the connection between macro and microphysics.
Riv. Nuovo Cim., 3, 490-534.

Fiirth, R. (1944). On the equation of state for solids. Proc. R. Soc. A, 183,
87-110.

Gilvarry, J. J. (1954). Relativistic Thomas-Fermi atom model. Phys. Rev.,
98, 71-2.

Gilvarry, J. J. (1969). Equations of state at high pressure from the Thomas—
Fermi model. In The Applications of Modern Physics to the Earth and
Planetary Interiors, ed. S. K. Runcorn, 313-403. London: Wiley.

Gilvarry, J. J. and Peebles, G. H. (1954). Solutions of the temperature
perturbed Thomas-Fermi equation. Phys. Rev., 99, 550-2.

Goldschmidt, V. M. (1931). Zur Kristallchemie des Germaniums. Nachr.
Gessells. Wiss. Gottingen, Math. Phys. K., 184-90.

Hall, H. T. (1958). Some high-pressure high temperature apparatus design
considerations: Equipment for use at 100,000 atmospheres and 3000 °C.
Rev. Sci. Instrum., 29, 267-75.

Hall, H. T. (1960). Ultrahigh-pressure, high temperature apparatus, the
“Belt”. Rev. Sci. Instrum. 31, 125.

Heine, V. (1970). The pseudopotential concept. Solid St. Phys., 24, 1-36.
Heine, V. and Weaire, D. (1970). Pseudopotential theory of cohesion and
structure. Solid St. Phys., 24, 249-63.

Jeffreys, H. (1937). On the materials and density of the Earth’s crust. Mon.
Not. R. Astronom. Soc. Geophys. Suppl., 4, 50-61.

John, M. S. and Eyring, H. (1971). The significant structure theory of
liquids. In Physical Chemistry, an advanced treatise, ed. D. Henderson, VIIIa.
New York: Academic Press.

Kawai, N. (1971). Equipment for generating pressures up to 800 kb. Nar.
Bur. Stds. Sp. Publ., 326, Washington, D.C., U.S. Govt. Printing Office,
45-8.

Kittel, C. (1968). Introduction to Solid State Physics, 3rd edn. London, New
York, Sydney: Wiley.

Knopoff, L. (1963). Solids: Equations of state of solids at moderately high
pressures. In High Pressure Physics and Chemistry, ed. R. S. Bradley, vol. 1,
227-45. London: Academic Press.

Knopoff, L. and MacDonald, G. J. F. (1960). An equation of state for the
core of the Earth. Geophys. J. R. Astronom. Soc., 3, 68-77.

Knopoff, L. and Shapiro, J. N. (1969). Comments on the inter-relationships
between Griineisen’s parameter and shock and isothermal equations of state.
J. Geophys. Res., 74, 1439-50.

Kraut, E. A. and Kennedy, G. C. (1966). New melting law at high pressures.
Phys. Rev., 151, 668-75.

Kumazawa, M. and Anderson, O. L. (1969). Elastic moduli, pressure
derivatives and temperature derivatives of single crystal olivine and single
crystal forsterite. J. Geophys. Res., 74, 5961-72.

Leppaluota, D. A. (1972). Melting of iron by significant structure theory.
Phys. Earth Planet. Int., 6, 175-81.



References 328

Lindemann, F. A. (1910). Phys. Zeit., 11, 605.

Liu, L. G. (1975a). Post-oxide phases of forsterite and enstatite. Geophys.
Res. Lett., 2, 417-19.

Liu, L. G. (1975b). Post-oxide phases of olivine and pyroxene and
mineralogy of the mantle. Nature, 258, 510-12.

Liu, L. G. (1976). The high pressure phase of MgSiO;. Earth Planet. Sci.
Len., 31, 200-8.

McQueen, R. G. and Marsh, S. P. (1966). Handbook of Physical Constants,
ed. S. P. Clark, Jr., Mem. Geol. Soc. Amer. 97.

March, N. H. (1955). Equations of state of elements from Thomas—Fermi
theory. Proc. Phys. Soc. A., 68, 726-34,

Merrill, L. and Bassett, W. A. (1974). Miniature diamond anvil pressure cell
for single crystal X-ray diffraction studies. Rev. Sci. Instrum., 45, 290-4,
Ming, L. and Bassett, W. A. (1975). The post-spinel phases in the Mg,SiO,—
Fe,SiO, system. Science, 187, 66-8.

Munro, D. C. (1967). Structural determinations by X-rays of systems at high
pressure. In High Pressure Physics and Chemistry, ed. R. S. Bradley, vol. 2,
311-23. London: Academic Press.

Murnaghan, F. D. (1944). The compressibility of media under extreme
pressures. Proc. Nat. Acad. Sci., 30, 244-7.

Murnaghan, F. D. (1951). Finite deformation of an elastic solid. New York:
Wiley.

Navrotsky, A. and Kasper, R. B. (1976). Spinel disproportionation at high
pressures; calorimetric determination of the enthalpy of formation of
Mg,SnO4 and Co,SnO,4 and some implications for silicates. Earth Planet. Sci.
Len., 31, 247-54.

Papika, J. J. and Cameron, Margyellen (1976). Crystal chemistry of silicate
minerals of geophysical interest. Rev. Geophys. Space Phys., 14, 37-80.
Ramsey, W. H. (1950). On the compressibility of the Earth. Mon. Nat. R.
Astronom. Soc., Geophys. Suppl., 6, 42-9.

Ramsey, W. H. (1963). On the densities of methane, metallic ammonium,
water and neon at planetary pressures. Mon. Not. R. Astronom. Soc., 128,
469-85.

Ree, F. H. (1971). Computer calculations for model systems.

In Physical Chemistry, an Advanced Treatise, ed. D. Henderson, vol. VIIIa.
New York: Academic Press.

Rice, H. M., McQueen, R. G. and Walsh, J. (1958). Compression of solids
by strong shock waves. Solid St. Phys., 6, 1-63.

Ringwood, A. E. (1962). A model for the upper mantle. J. Geophys. Res.,
67, 857-66.

Ringwood, A. E. (1975). Composition and petrology of the Earth’s mantle.
New York: McGraw-Hill.

Ringwood, A. E. and Major, A. (1968). Apparatus for phase transition
studies at high pressures and temperatures. Phys. Earth Planet. Int., 1,
164-8.

Shapiro, J. N. and Knopoft, L. (1969). Reduction of shock-wave equations of
state to isothermal equations of state. J. Geophys. Res., 74, 1435-8.



References 329

Simon, F. E. (1937). On the range of stability of the fluid state. Trans.
Faraday Soc., 33, 65.

Slater, J. C. (1940). Note on Griineisen’s constant for the incompressible
metals. Phys. Rev., 57, 744-6.

Suito, K. (1972). Phase transformations of pure Mg,SiO, into a spinel
structure under high pressures and temperatures. J. Phys. Earth, 20, 225-43.
Takeuchi, H. and Kanamori, H. (1966). Equations of state of matter from
shock wave experiments. J. Geophys. Res., 71, 3985-94.

Teller, E. (1962). On the stability of molecules in the Thomas~Fermi theory.
Rev. Mod. Phys., 34, 627-31.

Thomsen, L. and Anderson, O. L. (1971). Consistency in the high
temperature equation of state of solids. Nat. Bur. Stds. Sp. Publ., 326
(Washington, D.C., U.S. Govt. Printing Office) 209-17.

Tozer, D. (1967). Towards a theory of convection in the mantle. In The
Earth’s Mantle, ed. T. F. Gaskell. London: Academic Press.

Weaver, J. S., Takahashi, T. and Bassett, W. A. (1971). Calculations of the
p-V relation for sodium chloride up to 300 kb at 25 °C. Nat. Bur. Stds. Sp.
Publ., 326, (Washington, D.C., U.S. Govt. Printing Office) 189-99.

Wildt, R. (1963). Planetary interiors. In Planets and Satellites. The Solar
System III, ed. G. P. Kuiper and B. M. Middlehurst, 159-212. University of
Chicago Press.

Wilson, A. H. (1966). Thermodynamics and Statistical Mechanics.
Cambridge University Press.

Chapter §

Ananda, M. P. (1977). Lunar gravity, a mass point model. J. Geophys. Res.,
82, 3049-64.

Anderson, J. D., Efrom, L. and Wong, S. K. (1970). Martian mass and
Earth-Moon mass ratio from coherent S-band tracking of Mariners 6 and 7,
Science, 167, 277-9.

Bender, P. L., Currie, D. G., Dicke, R. H., Eckhardt, D. H., Faller, J. E.,
Kaula, W. M., Mulholland, J. D., Plotkin, H. H., Poultney, S. K., Silverberg,
E. C., Wilkinson, D. 1., Williams, J. G. and Alley, C. O. (1973). The lunar
laser ranging experiment. Science, 182, 229-38.

Bessanova, E. N., Fishman, V. M., Ryaboyi, V. Z. and Sitnikova, G. A.
(1974). The tau method for the inversion of travel times. I: deep seismic
sounding data. Geophys. J. R. Astronom. Soc., 36, 377-98.

Bills, B. B. and Ferrari, A. J. (1977). A lunar density model consistent with
topographic, gravitational, librational and seismic data. J. Geophys. Res., 82,
1306-14.

Blackshear, W. T. and Gapcynski, J. P. (1977). An improved value of the
lunar moment of inertia. J. Geophys. Res., 82, 1699-1701.

Bryant, W. L. and Williamson, R. G. (1974). Lunar gravity analysis from
Explorer 49. AIAA Paper 74-810, AIAA Mechanics and Control of Flight
Conference, Anaheim, Cal., Aug. 5-9 1974.

Burnett, D. S. (1975) Lunar Science: the Apollo legacy. J. Geophys. Res.,
13 (No. 3), 13-34.



References 330

Cole, G. H. A. (1971). On inferring elastic properties of the deep lunar
interior. Planet. Space. Sci., 19, 929-47.

Cook, A. H. (1972). The dynamical properties and internal structures of the
Earth, the Moon and the planets. Proc. R. Soc. A, 328, 301-36.

Cooper, M. R., Kovach, R. L. and Watkins, J. S. (1974). Lunar near surface
structure. Rev. Geophys. Space Phys., 12, 291-308.

Dainty, A. M., Goins, N. R. and Toks6z, M. N. (1975). The structure of the
Moon as determined from natural lunar seismic events. Lunar Sci., 6, 175-7.
(Lunar Sci. Inst., Houston, Tex).

Duba, A., Heard, H. C. and Shock, R. N. (1974). Electrical conductivity of
olivine at high pressure and under controlled oxygen fugacity. J. Geophys.
Res., 79, 1667-73.

Dyal, P. and Parkin, C. W. (1973). Global electromagnetic induction in the
Moon and planets. Phys. Earth. Planet Int., 7, 251-65.

Dyal, P., Parkin, C. W. and Daily, W. D. (1974a). Temperature and
electrical conductivity of the lunar interior from magnetic transient
measurements of the lunar tail. Proc. V Lunar Sci. Conf.

Dyal, P., Parkin, C. W. and Daily, W. D. (1974b). Magnetism and the
interior of the Moon. Rev. Geophys. Space Phys., 12, 568-91.

Felsentreger, T. L. (1968). Classification of lunar satellite orbits. Planet.
Space. Sci., 16, 285-95.

Ferrari, A. J. (1977). Lunar gravity: a harmonic analysis. J. Geophys. Res.,
82, 3065-85.

Fuller, M. (1974). Lunar magnetism. Rev. Geophys. Space. Phys., 12, 23-70.
Gapcynski, J. P., Blackshear, W. T., Tolson, W. H. and Compton, H. R.
(1975). A determination of the lunar moment of inertia. Geophys. Res. Lett.,
2, 353-6.

Gilbert, F. and Dziewonski, A. M. (1975). An application of normal mode
theory to the retrieval of structural parameters and source mechanisms from
seismic spectra. Philos. Trans. R. Soc. A, 278, 187-269.

Gubbins, D. (1974). Theories of geomagnetic and solar dynamos. Rev.
Geophys. Space. Phys., 12, 137-54.

Hobbs, B. A. (1973). The inverse problem of the Moon’s electrical
conductivity. Earth Planet. Sci. Lett., 17, 380-4.

Keihm. S. J., Peters, K., Langseth, M. G. and Chute, J. L. (1973). Apollo 15
measurement of lunar surface brightness; thermal conductivity of the upper
1 meters of regolith. Earth Planet. Sci. Lett., 19, 337-51.

King, R. W., Counselman, C. C. III and Shapiro, I. I. (1976). Lunar
dynamics and selenodesy; results from analysis of V.L.B.1. and laser data. J.
Geophys. Res., 81, 6251-6.

Kuckes, F. (1971). Lunar electrical conductivity profile. Nature, 232, 249-51.
Kumagawa, M. and Anderson, O. L. (1969). Elastic moduli, pressure
derivatives and temperature derivatives of single crystal olivine and single
crystal forsterite. J. Geophys. Res., 74, 5961-72.

Lammlein, D. R. (1977). Lunar seismicity, structure and tectonics. Philos.
Trans. R. Soc. A., 285, 451-61.



References 331

Lammlein, D. R., Latham, G. V., Dorman, J., Nakamura, Y. and Ewing, M.
(1974). Lunar seismicity, structure and tectonics. Rev. Geophys. Space Phys.,
12, 1-21.

Langseth, M. G., Clark, S. P., Chute, J. C., Keihm, S. J. and Wechsler, A. E.
(1972). The Apollo 15 lunar heat flow measurement. The Moon, 4, 390-410.
Langseth, M. G., Keihm, S. and Chute, J. C. (1973). Apollo 17 heat flow
measurement. Trans. Amer. Geophys. Un. EOS, 54, 349.

Lyttleton, R. A. (1963). On the origin of mountains. Proc. R. Soc. A., 275,
1-22.

McMechan, G. A. and Wiggins, R. A. (1972). Depth limits in body wave
inversions. Geophys. J. R. Astronom. Soc., 28, 459-73.

Michael, W. H. and Blackshear, W. T. (1972). Recent results on the mass,
gravitational field and moment of inertia of the Moon. The Moon, 3, 388~
402.

Moffat, H. K. (1978). Magnetic field generation in electrically conducting
fluids. Cambridge University Press.

Nakamura, Y., Latham, G., Lammlein, D., Ewing, M., Duennebier, F. and
Dorman, J. (1974). Deep lunar interior inferred from recent seismic data.
Geophys. Res. Lett., 1, 137-40.

Rietsch, E. (1977). The maximum entropy approach to inverse problems.

J. Geophys. Res., 42, 489-506.

Runcorn, S. K. (1977). Interpretation of lunar potential fields. Philos. Trans.
R. Soc. A, 285, 507-16.

Schubert, G., Young, R. E. and Cassen, P. (1977). Solid state convection
models of the lunar internal temperature. Philos. Trans. R. Soc. A. 285,
523-36.

Sjogren, W. J. (1971). Lunar gravity estimate: independent confirmation.

J. Geophys. Res., 76, 7021-6.

Sjogren, W. J. and Wollenhaupt, W. R. (1976). Lunar global figure from
Mare surface elevation. The Moon, 15, 143-54.

Sonnett, C. P., Colbprn, D. S., Smith, B. F., Schubert, G. and Schwartz, K.
(1972). The induced magnetic field of the Moon: conductivity profiles and
inferred temperature. Proc. IIT Lunar Sci Conf. (Lunar Sci. Inst., Houston,
Texas), 2309.

Toksdz, M. N. (1975). Lunar and planetary seismology. J. Geophys. Res., 13
(No. 3), 306-11.

Toksdz, M. N., Dainty, A. M., Solomon, C. C. and Anderson, K. R. (1974).
Structure of the Moon. Rev. Geophys. Space Phys., 12, 539-67.

Williams, J. G. (1976). Statement at Royal Society Discussion Meeting.

Chapter 6

Allen, C. W. (1963). Astrophysical Quantities, 2nd edn. University of
London: Athlone Press.

Anderson, D. L., Miller, W. F., Latham, G. V., Nakamura, Y., Toksoz, M. N.,



References 332

Dainty, A. M., Duennebier, F. K., Lazarewicz, A. R., Kovach, R. L. and
Knight, T. C. D. (1977). Seismology on Mars. J. Geophys. Res., 82,
4524-46.

Ash, M. E., Campbell, D. B., Dyce, R. B., Ingalls, R. P., Jurgens, R.,
Shapiro, I. I., Slade, M. A. and Thompson, T. W. (1968). The case for the
radar radius of Venus. Science, 160, 985-7.

Ash, M. E., Shapiro, I. I. and Smith, W. B. (1967). Astronomical constant
and planetary ephemerides deduced from radar and optical observations.
Astronom. J., 72, 338-50.

Binder, A. B. and Davis, D. R. (1973). Internal structure of Mars. Phys.
Earth Planet. Int., T, 477-85.

Born, G. H. (1974). Mars physical parameters as determined from Mariner 9
observations of natural satellites and Doppler tracking. J. Geophys. Res., 79,
4837-44.

Bullen, K. E. (1975). The Earth’s Density. London: Chapman and Hall.
Cain, D. L., Kliore, A. J., Seidel, B. L. and Sykes, M. J. (1972). The shape
of Mars from Mariner 9 occultations. Icarus, 17, 517-24.

Christensen, E. J. (1975). Martian topography derived from occultation radar,
spectral and optical measurements. J. Geophys. Res, 80, 2909-13.

Cook, A. H. (1972). The dynamical properties and internal structures of the
Earth, the Moon and the planets. Proc. R. Soc. A, 328, 301-36.

Cook, A. H. (1977). The moment of inertia of Mars and the existence of a
core. Geophys. J. R. Astronom. Soc., 51, 349-56.

Deane, J. A. (1976). Mariner 10 observations of Mercury. Space Res., 16,
965-8.

de Vaucouleur, G., Davies, M. E. and Sturms, F. M. Jr. (1973). Mariner 9
aerographic co-ordinate system. J. Geophys. Res., T8, 4395-404.

Dollfus, A. (1970). Surfaces and Interiors of Planets and Satellites. London
and New York: Academic Press.

Dollfus, A. (1972a). New optical measurements of planetary diameters. Part
II: Planet Venus. Icarus, 17, 517-24.

Dollfus, A. (1972b). New optical measurements of planetary diameters.

Part IV: Planet Mars. Icarus, 17, 525-39.

Evans, J. V. and Hagfors, T. (eds) (1968). Radar Astronomy. New York:
McGraw-Hill.

Gapcynski, J. P., Tolson, R. H. and Michael, W. H. Jr. (1977). Mars gravity
field combined Viking and Mariner 9 results. J. Geophys. Res., 82, 4325-17.
Goldstein, R. M. (1971). Radar observations of Mercury. Astronom. J., 76,
1152-4.

Green, P. E. (1968). Radar measurement of target scattering properties. In
Radar Astronomy, ed. J. V. Evans and T. Hagfors, 1-77. New York:
McGraw-Hill.

Grossman, L. and Larimer, J. W. (1974). Early chemical history of the solar
system. Rev. Geophys. Space Phys., 12, 71-101.

Howard, H. T., Tyler, G. L., Fjeldbo, G., Kliore, A. J., Levy, G. S., Brunn,
D. L., Dickinson, R., Edelson, R. F., Martin, W., Postal, R. B., Seidel, B.,
Sesplankis, T. T., Shirley, D. L., Stelzried, C. T., Sweetnam, D. N.,



References 333

Zygielbaum, A. F., Esposito, P. B., Anderson, J. D., Shapiro, I. I. and
Reasenberg, R. D. (1974a). Venus mass, gravity field, atmosphere and
ionosphere as measured by the Mariner 10 dual frequency radio system.
Science, 183, 1297-1301.

Howard, H. T., Tyler, G. L., Esposito, P. B., Anderson, J. D., Reasenberg,
R. D., Shapiro, L. 1., Fjeldbo, G., Kliore, A. J., Levy, G. S., Brunn, D. L.,
Dickinson, R., Edelson, R. E., Martin, W. C,, Postal, R. B., Seidel, B.,
Sesplankis, T. T., Shirley, D. L., Stelzried, C. T., Sweetnam, D. N., Wood,

G. E., and Zygielbaum, A. F. (19745b). Mercury: results on mass, radius,
ionosphere and atmosphere from Mariner 10 dual frequency radio signals.
Science, 185, 179-80.

Jeffreys, H. (1937). The density distribution of the inner planets. Mon. Not.
R. Astronom Soc., Geophys. Suppl., 4, 62-71.

Johnston, D. H., McGetchin, D. R. and Toksoz, M. N. (1974). The thermal
state and internal structure of Mars. J. Geophys. Res., 79, 3959-71.
Johnston, D. H. and Toksdz, M. N., 1977. Internal structure and properties
of Mars. Icarus, 32, 72-84.

Jordan, J. F. and Lorell, J. (1975). Mariner 9: an instrument of dynamical
science. Icarus, 25, 146-65.

Klaasen, K. P. (1975). Mercury rotation period determined from Mariner 10
photography. J. Geophys. Res., 80, 2415.

Kliore, A. J., Fjeldbo, G. and Seidel, B. L. (1971). Summary of Mariner 6
and 7 radio occultation results on the atmosphere of Mars. Space. Res., 11,
165-75.

Kovalevsky, J. (1970). Détérmination des masses des planétes et satellites. In
Surfaces and Interiors of Planets and Satellites, ed. A. Dollfus, 1-77. London
and New York: Academic Press.

Lewis, J. S. (1972). Metal/silicate fractionation in the solar system. Earth
Planer. Sci. Len., 15, 286-90.

Lorell, J., Born, G. H., Christensen, E. J., Esposito, P. B., Jordan, J. F.,
Laing, P. A., Sjogren, W. L., Wong, S. K., Reasenberg, R. D., Shapiro, I. I.
and Slater, G. L. (1973). Gravity field of Mars from Mariner 9 tracking data.
Icarus, 18, 304-16.

Lyttleton, R. A. (1965). On the internal structure of the planet Mars. Mon.
Not. R. Astronom. Soc., 129, 21-39,

Marov, M. Ya and Petrov, G. L. (1973). Investigations of Mars from the
automatic stations Mars 2 and 3. Icarus, 19, 163-79.

Melbourne, W. G., Muhlmann, D. O. and O’Handley, D. A. (1968). Radar
determinations of the radius of Venus. Science, 160, 987-9.

Murray, J. B., Dollfus, A. and Smith, B. (1972). Cartography of the surface
of Mercury. Icarus, 17, 576-84.

Null, G. W. (1969). A solution for the mass and dynamical oblateness of
Mars using Mariner IV Doppler data. Bull. Amer. Astronom. Soc., 1, 356.
Rea, D. G. (1970). NASA Planetary Programme: Present and Future. Space
Res., 10, 1028-35.

Reasenberg, R. D. (1977). The moment of inertia and isostasy of Mars.

J. Geophys. Res., 82, 369-75.



References 334

Ringwood, A. E. and Clark, S. P. (1971). Internal constitution of Mars.
Nature, 234, 89-92.

Shapiro, 1. 1. (1967). Resonance rotation of Venus. Science, 157, 423-5.
Shapiro, 1. I. (1968). Spin and orbital motions of planets. In Radar
Astronomy, ed. J. V. Evans and T. Hagfors, 143-85. New ‘York:
McGraw-Hill.

Sinclair, A. T. (1972). The motions of the satellites of Mars. Mon. Not. R.
Astronom. Soc., 155, 249-73.

Sjogren, W. L., Lorell, J., Wong, L. and Downs, W. (1975). Mars gravity
field based on a short arc technique. J. Geophys. Res., 80, 2899-908.
Smith, B. A. (1971). Mariner 6 and 7 television results. Space Res., 11,
155-64.

Soffen, G. A. and Young, A. T. (1972). The Viking missions to Mars. Icarus,
16, 1-16.

Solomon, S. L. and Toksoz, M. N. (1973). Internal constitution and
evolution of the Moon. Phys. Earth Planet. Int., 7, 15-38.

Chapter 7

Anderson, D. L. (1977). Composition of the mantle and core. Ann. Rev.
Earth Planet. Sci., 5, 179-202.

Anderson, M. S. and Swenson, C. A. (1974). Experimental compressions for
normal hydrogen and normal deuterium to 25 kbar at 4.2 K. Phys. Rev. B,
10, 5184-97.

Ashcroft, N. W. (1968). Metallic hydrogen: a high temperature
superconductor? Phys. Rev. Lett., 21, 1748-9.

Bardeen, J. (1938). An improved calculation of the energies of metallic
lithium and sodium. J. Chem. Phys., 6, 367-371.

Beck, H. and Strauss, D. (1975). On the lattice dynamics of metallic
hydrogen. Helv. Phys. Acta, 48, 655-669.

Bowen, D. H. (1967). Superconductivity of solids. In High Pressure Physics
and Chemistry, ed. R. S. Bradley, vol. 1, 355-373. London: Academic Press.
Brovman, E. G., Kagan, Yu and Kholas, A. K. (1972a). Structure of
metallic hydrogen at zero pressure. Sov. Phys. J.E.T.P., 34, 1300-15.
Brovman, E. G., Kagan, Yu and Kholas, A. K. (197254). Properties of
metallic hydrogen under pressure. Sov. Phys. J.E.T.P., 35, 783-7.

Brovman, E. G., Khagan, Yu, Kholas, A. K. and Pushkarev, Zh. (1973).
Role of electron—electron interaction in the formation of a metastable state
metallic hydrogen. J.E.T.P. Lert., 18, 160-2.

Caron, L. G. (1975). Metallic hydrogen. Comm. on Solid St. Phys., 6,
103-15.

Carr, W. J. (1962). Ground state energy of metallic hydrogen—I. Phys.
Rev., 128, 120-5.

Critchfield, C. L. (1942). Theoretical properties of dense hydrogen.
Astrophys. J., 96, 1-10.

de Marcus, W. C. (1958). The constitution of Jupiter and Saturn. Astronom.
J., 63, 2-28.



References 335

Etters, R. D., Danilowicz, R. and England, W. (1975). Properties of solid
and gaseous hydrogen based upon anisotropic pair interactions. Phys. Rev.
A, 12, 2199-222.

Gell-Mann, H. and Brueckner, K. A. (1957). Correlation energy of an
electron gas at high density. Phys. Rev., 106, 364-8.

Grigorev, F. V., Kormer, S. B., Mikhailova, A. P., Tolohko and Urlin,

V. D. (1972). Experimental determination of the compressibility of hydrogen
at densities 0.5 to 2 g/cm®. J.E.T.P. Len., 16, 201-4.

Hammerberg, J. and Ashcroft, N. W. (1974). Ground state energies of
simple metals. Phys. Rev. B, 9, 409-24.

Harris, F. E. and Monkhorst, H. J. (1969). Complete evaluation of the
electronic energies of solids. Phys. Rev. Lett., 23, 1026-30.

Hawke, R. S. (1974). Experiments on hydrogen at megabar pressures;
metallic hydrogen. Adv. Solid State Phys.; Festkdrperprobleme, 14, 111-18.
Herzfield, K. F. (1927). On atomic properties which make an element a
metal. Phys. Rev., 29, 701-5.

Hubbard, W. B. (1970). Thermal structures of Jupiter. Astrophys. J., 152,
745-54.

Hubbard, W. B. and Lampe,