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Preface

This book is the outcome of the 3rd HISP (Helmholtz Institute for Super-
computational Physics) summer school in Potsdam, which was dedicated to
“Chaos and Stability in Planetary Systems”. The idea was to give a group
of some 40, carefully selected students from different nations a basic forma-
tion in the following topics: Hamiltonian dynamics (I), Celestial Mechanics
(II), the structure of extrasolar planetary systems (III), cosmogonie and the
formation of planets (IV) and last but not least in handling supercomputers
(V). Lucky enough we had world known experts for achieving the goal and
teaching these different topics which are substantially connected. All these
lectures are written down in this volume, which should give students and
colleagues interested in this topic the basis to understand the complexity of
extrasolar planetary system, their formation, their detection and dynamical
structure. The idea of the book was not to replace existing books in Hamil-
tonian Mechanics or in Celestial Mechanics, but it should be able to give the
necessary basic information for interested readers.

In the friendly atmosphere of the lectures and especially of the afternoon
exercises with the computers we all had the impression of having reached the
goal of the school to initiate the interest in the subject. Young people from
different countries all over the globe, from Brazil to Russia, from Marocco to
Finland, learned together, wrote computer codes and – last but not least –
built new friendships. We, as editors, also responsible for the success of the
summer school of 2003 in Potsdam, hope that this book will be able to
transport the spirit of these weeks of work to the reader.

We gratefully acknowledge the financial support of the Ministerium für
Wissenschaft und Forschung des Landes Brandenburg and the hospitality of the
University of Potsdam which was an important precondition for the school to
take place. Special thanks go to Carmen Romano, Marco Thiel and Werner
von Bloh, who are a good deal responsible for the scientific and also social
success of the school.

Vienna Rudolf Dvorak
April 2005 Florian Freistetter

Jürgen Kurths
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1 Prolog: The Golden Mean

Let us start with a problem of dynamical biology, which was posed about 800
years ago by Fibonacci1:

“A certain man put a pair of rabbits in a place surrounded on all sides
by a wall. How many pairs of rabbits can be produced from that pair
in a year, if it is supposed that every month each pair begets a new
pair which from the second month on becomes productive?”

Fig. 1 shows how the rabbits reproduce:

Fig. 1. The Fibonacci Tree

How can we interprete this diagram?

• After the first month there is still only 1 pair.
• After the second month the female gave birth to a new pair; consequently

we have 2 pairs of rabbits.
• After the third month the original female has born a second pair and

there are 3 pairs.
1 Leonardo Pisano Fibonacci (1170 – 1250)

R. Dvorak and F. Freistetter: Orbit Dynamics, Stability and Chaos in Planetary Systems,
Lect. Notes Phys. 683, 3–140 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005



4 Rudolf Dvorak and Florian Freistetter

• After the fourth month the original female has born another new pair but
the female, born two months ago, has her first pair also, making 5 pairs.

Thus the number of pairs are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,
233, 377, 610, 987, . . . after one, two, three, . . . months and the answer is
that after 12 month the number of rabbit pairs populating the surrounded
area is 144! But how can we compute these Fibonacci numbers ? The answer
is easy because the number of pairs for a certain month is the sum of pairs
of the two preceding months.

If we take the ratio of two successive numbers in Fibonacci’s series, we
will find the following series of numbers: 1/1 = 1; 2/1 = 2; 3/2 = 1.5; 5/3 =
1.666...; 8/5 = 1.6; 13/8 = 1.625; 21/13 = 1.61538...

When we plot the sequence of the ratios on a graph (Fig. 2) we can see
how fast this value converges.

 1.56

 1.58

 1.6

 1.62

 1.64

 1.66

 1.68

 1.7

 0  5  10  15  20  25  30

golden number 1.618034...

iteration

ra
tio

Fig. 2. The convergence of the mapping towards the golden number

The ratio settles to a particular value, namely the golden ratio or the
golden number Φ. It has a value of approximately 1.618034...2 This number
can be constructed as follows (see Fig. 3).

It is the ratio between two sides a and b in the rectangle in Fig. 3 with
the m property that

a

b
=

a + b

a
(1)

Setting a = 1 the ratio, which is the golden number Φ (the “most” irrational
number) can be constructed by making use of Fig. 3:

MB =
√

5
2

= MF and CF = Φ (2)

2 Φ with 20000 digits can be found at http://goldennumber.net/phi20000.htm
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Fig. 3. The construction of the golden mean

and the golden number Φ which fulfills relation (1) is therefore 1+
√

5
2 .

This ratio, or proportion, determined by Φ was already known to the
Greeks as the Golden Section and to Renaissance artists as the Divine
Proportion and it is also called the Golden Ratio and the Golden Mean.
Φ appears in mathematics, physics, biology, architecture, ... and seems to be
an extraordinary number of unique importance for the construction of our
world.3 As we will see in the last section, the number Φ also plays an essential
role in dynamical systems.

2 Mappings

2.1 Basic Definitions

When one wants to investigate the properties of a dynamical systems, map-
pings are an easy way to start with: first of all they are, in general, very sim-
ple (compared to a full dynamical system); nevertheless, they hold the same
amount of information and complexity. Second, they are easy to compute –
thus the general properties of dynamical systems can be best investigated by
the help of mappings. This section will give an introduction to mappings, will
give some examples and explain some of the basic characteristics of dynamical
systems.
3 compare the respective homepages e.g. http://goldennumber.net/neophite.htm



6 Rudolf Dvorak and Florian Freistetter

Mappings are mathematical objects with the following simple form

an+1 = F (n, an) (3)

with n a natural number where an is a sequence of real (or complex) numbers
and F (n, an) is a function which determines how to compute the next number
an+1. A very simple example is the fore mentioned Fibonacci-sequence; there
the mapping is defined as

an+1 = an + an−1 (4)

with a0 = 0 and a1 = 1

Definition 1. A mapping F is called autonomous when it does not depend ex-
plicitly on the index n, while in the opposite case it is called non-autonomous.

Definition 2. A mapping is defined as of order M if

an+M = F (n, an, an+1, ...an+M−1). (5)

In this sense the Fibonacci sequence is of order M=2 and is the result of
an autonomous mapping.

A general solution of a mapping exists, when we can express any an by
a mathematical formula which just computes any an from a0. E.g. for the
mapping

an+1 = a2
n (6)

the solution is
an = F (n, a0) = a2n

0 (7)

which can be verified easily

a2n+1

0 = [a2n

0 ]2 = a
2(2n)
0 (8)

2.2 Linear Mappings

In the following two examples of a non-autonomous linear mapping (the terms
an appear only linearly) are shown:

an+1 = F (n)an + G(n) (9)

an+2 = F1(n)an+1 + F2(n)an + G(n) (10)

In the mapping I (9) only the n-th element is used to compute the (n+1)th
element – thus it is of order 1, whereas in the mapping II (10) the (n+2)th
element is computed from the (n+1)th element and the n-th element – so it
has the order 2 (similar to the Fibonacci sequence).
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Remark 1. The theory of ordinary differential equations is very similar to the
theory of mappings.

Theorem 1. If an is a solution of the mappings I and II with the function
G(n)=0 then also the function C ·an is a solution if C is an arbitrary number
(∈ C,R) (no proof).

Theorem 2. If bn and cn are linearly independent solutions of the mapping
II with G(n)=0 (cn �= bn and C arbitrary) then the function C1 · bn + C2 · cn

is also a solution (no proof).

A special form of a linear mapping is given when we have the following

an+2 = αan+1 + βan (11)

where α and β are constants. Making the ansatz for a particular solution

an = λn and λ = const (12)

and inserting it into the mapping and solving for λn one gets

λn[λ2 − αλ− β] = 0 (13)

where (λ �= 0) one gets the characteristic equation4:

λ2 − αλ− β = 0 (14)

Using the respective solutions λ1 and λ2 the general solution for the n-th
term reads

an = C1λ
n
1 + C2λ

n
2 (15)

where the constants are determined from the “initial conditions” a0 and a1:

a0 = C1 + C2 (16)
a1 = C1λ1 + C2λ2 (17)

For the Fibonacci sequence with α = β = 1 the real solutions for the
characteristic equation are

λ1,2 =
1 ±

√
5

2
(18)

which leads for a0 = a1 = 1 to the irrational solution

an =
1√
5



(√

5 + 1
2

)n+1

−
(

1 −
√

5
2

)n+1

 (19)

for any an.5 If, for example, n = 7 we find a7 = 21.
4 which is the same in the theory of ordinary linear differential equations of 2nd

order.
5 Note the interesting fact that a linear combination of powers of irrational num-

bers has an integer as solution.
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As next example we will treat two coupled linear maps of the form

xn+1 = m1xn + m2yn (20)

yn+1 = m3xn + m4yn (21)

We write this 2-dimensional mapping in a form of a vector

Xn+1 = MXn (22)

where M is the 2 × 2 matrix

M =
(

m1 m2

m3 m4

)

where m1, . . . ,m4 are real constants which do not depend on n.
The mapping can be reduced to two independent homogeneous mappings

of second order by replacing n by n + 1 in equation (20) and using equa-
tion (21) to express yn+1:

xn+2 = m1xn+1 + m2yn+1 (23)

Using

yn =
1

m2
(xn+1 −m1xn) (24)

the result is

xn+2 = (m1 + m4)xn+1 − (m1m4 −m2m3)xn (25)

In fact we can express this equation with the aid of the matrix M for xn+2

but also for yn+2

xn+2 = TrMxn+1 − detMxn (26)
yn+2 = TrMyn+1 − detMyn (27)

We have to solve the characteristic equation defined previously for α = TrM
and β = −detM where the stability of the system depends on two conditions:

|TrM | ≥ 2
√

|detM | (28)

|TrM | < 2
√

|detM | (29)

If the first condition is fulfilled, then all the solutions are unbounded
(which is the hyperbolic case); if the second condition is fulfilled all solutions
are bounded (which is the elliptic case).

Of special interest for the problems in celestial mechanics is the case with
detM = 1 which gives an area preserving mapping.
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Theorem 3. A mapping M is called area preserving if detM = 1. This
means that a closed curve of initial conditions IC1 around an area A is always
mapped into another closed curve IC2 which encloses exactly the same area
A.

Proof. We can prove this statement just by applying the transformation M
to a parallelogram with the vectors a and b with the components (a1,a2) and
(b1,b2), which is depicted in Fig. 4:

Fig. 4. Area preserving mapping

A1 = |a1b2 − a2b1| (30)

The transformation can be applied directly to the vectors where we can see
that

A2 = |(Ma1)(Mb2) − (Ma2)(Mb1)| (31)

which is after multiplication of the different terms

A2 = |detM |A1 (32)

and because of the assumption that detM = 1 it follows that

A2 = A1 (33)
��
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Fixed Points and Their Stability

Definition 3. A mapping of any form may have a periodic solution with a
period T when xn+T = xn. We relate the order k to a fixed point x0 when
the mapping F applied k times gives the same value of x0:

x0 = F (F (F (F (. . . F (x0) . . .))))︸ ︷︷ ︸
k−times

(34)

A simple example is the mapping

xn+1 = 2xn − x2
n (35)

which has a 1st order fixed point which can be computed by

x = 2x− x2 (36)

with the solutions x = 0 and x = 1. The 2nd order fixed point can be found
by

xn+2 = 2xn+1 − x2
n+1 (37)

which leads to
x = 2(2x− x2) − (2x− x2)2 (38)

The solution of the resulting 3rd order algebraic equation leads to three
2nd order fixed points:

x1 = 1 (39)

x2,3 = 3/2 ± i
√

3/2 (40)

where, with i =
√
−1, two solutions are complex.

A mapping with a fixed point of order k will reproduce this point after
applying the mapping k times. But what happens when we start close to this
fixed point?

Definition 4. A fixed point is called linearly stable when a point suffi-
ciently close to the fixed point remains close to it for any number of itera-
tions.

Definition 5. A fixed point is called linearly unstable when a point suffi-
ciently close to the fixed point leaves the neighborhood after a certain number
of iterations.

To derive a criterion for linear stability we study the point (xF + λn)
which lies infinitesimally close to a fixed point xF of the mapping

xn+1 = F (xn) (41)

We thus substitute xn = xF + λn:
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xF + λn+1 = F (xF + λn) (42)

and make a Taylor expansion with respect to λn

xF + λn+1 = xF + λn
dF

dλn
+ O(λ2

n) (43)

which leads to the so-called linearized mapping (′ indicates derivation accord-
ing to λ)

λn+1 = F ′(xF )λn + O(λ2
n) (44)

which has the solution
λn = λ0[F ′(xF )]n (45)

Remark 2. A fixed point of the mapping (41) is linearly stable iff |F ′(xF )| ≤ 1,
otherwise (|F ′(xF )| > 1) it is linearly unstable.

2.3 The Logistic Map

As an example we want to deal with the well known logistic map, which
describes in a simple way the size of a population of species depending on a
parameter r:

xn+1 = F (x) = rxn(1 − xn) (46)

If we examine a hunter-prey population, then the number of prey will
decrease if the number of hunters increases (in a closed system). After some
time, because of the lack of food, the number of hunters will decrease and
thus the number of prey will increase again (the same mechanism can also
be found e.g. in financial trading or electronics). Equation (46) describes the
mentioned behavior mathematically.

Using the methods described in the last section, we now can compute the
first order fixed points easily:

x = rx(1 − x) (47)

from which follows that we have two 2 fixed points, namely x1 = 0 and
x2 = 1 − 1/r. We can study the stability of these points by writing the
derivative with respect to x according to equation (45):

dF

dx
= r − 2xr (48)

Substituting the two solutions for x1 and x2 gives

F ′(x1) = r (49)
F ′(x2) = 2 − r (50)
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Fig. 5. Values of xn for r > 3: the mapping converges to two fixed points

The behavior of this mapping is such it converges for special values of
the parameter r to different points, which seem to attract the sequence of
points.6 We now investigate this mapping according to the value of r.

• If r < 1 then there are two period 1 fixed points: 0 (linearly stable), and
1− 1

r < 1 which is linearly unstable (because of F ′(x2) = 2−r > 1). Thus
the value of xn converges relatively fast to 0.

• For r = 1 there exists only one fixed point of period one : x = 0.
• If 1 < r < 3 the value of xn converges to a fixed point which depends on

the parameter r.
• If r > 3 the dynamics become more complicated. For r > 0 both period

1 fixed points are linearly unstable. There are now four fixed points of
period 2, two of them stable and two unstable – thus the mapping will
converge to two fixed points (period doubling – see Fig. 5).

• For 3 < r < 3.5699... the period doubling continues and the mapping will
converge to 4, 16, . . . fixed points – see Fig. 6.

• If r > 3.5699... the period doubling stops and the value of xn now jumps
chaotically between 0 and 1 (Fig. 7) – the mapping has become chaotic!

Fig. 8 shows the Feigenbaum diagram. The values of xn are plotted against
the value of r and one can see the behavior described above more clearly: for
small values of r there exists only one solution; then, for a certain value
6 “An attractor is a set of states (points in the phase space), invariant under

the dynamics, towards which neighboring states in a given basin of attraction
asymptotically approach in the course of dynamic evolution. An attractor is
defined as the smallest unit which cannot be itself decomposed into two or more
attractors with distinct basins of attraction. This restriction is necessary since
a dynamical system may have multiple attractors, each with its own basin of
attraction” (definition from mathworld.wolfram.com).
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Fig. 7. Values of xn for the chaotic case: xn jumps chaotically between 0 and 1

r1, the period doubles and there are two solutions, for r2 there are four
solutions,...After r = r∞ = 3.5699... the mapping becomes chaotic.

The values of ri can be related by

δ =
ri − ri−1

ri+1 − ri
(51)

which, for i → ∞ has a value of δ = 4.6692..., which is a universal constant
– the Feigenbaum constant. For certain windows for larger parameter val-
ues new attractor cycles with different periodicity appear – thus the logistic
map is self-similar. Fig. 9 shows a zoom inside the chaotic region where the
“original structure” reappears.
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2.4 Standard Mapping

Introduction

The origin of the nowadays well known and widely used Standard Mapping lies
in the field of particle physics7: to examine a possible cosmic ray acceleration
mechanism in which charged particles accelerate by collisions with moving
magnetic field structures, Fermi [21] created an analog problem, where a ball
is bouncing between a fixed and an oscillating wall. If, every time the ball
impacts, the phase of the oscillation is chosen at random, the particle will
be (in the average) accelerated. The question was now, if the ball would be

7 The derivation of the equations of the Standard Mapping follows [42].
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also accelerated, when the wall oscillation is a periodic function of time. This
problem was investigated by Ulam [72] who found that the particle motion
appeared to be stochastic, but did not increase its energy (on the average). In
other publications (i.e. [44]) these results are explained. They demonstrated
that in the case of smooth forcing functions, the phase plane shows three
distinct regions with increasing ball velocity: a low-velocity region were all
fixed points of period 1 are unstable and thus leading to stochastic motion;
an intermediate velocity region in which islands of stability around elliptic
fixed points are embedded in a stochastic sea and a high velocity region in
which bands of stochastic motion are separated from each other by regular
orbits. Because this problem of particle acceleration can be approximated by
simple mappings, it became a well-suited case to study the parameter regions
of phase space and the corresponding KAM surfaces.

In the following we want to show, how the equations of the Standard
Mapping can be derived.

Ulam Mapping

The exact Ulam Mapping for the motion of a bouncing ball between a fixed
and an oscillating wall (see Fig. 10), where the wall velocity is defined by a
sawtooth function, is given by the following set of exact difference equations:

un+1 = ±un

(
ψn − 1

2

)
(52)

ψn+1 =
1
2
− 2un+1 +

[(
1
2
− 2un+1

)2

+ 4φnun+1

] 1
2 (

un+1 >
1
4
ψn

)
(53)

Fig. 10. Ulam version of the Fermi acceleration model in which a particle bounces
between an oscillating and a fixed wall
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ψn+1 = 1 − ψn + 4un1

(
un+1 ≤ 1

4
ψn

)
(54)

φn = ψn +
ψn (1 − ψn) + 1

4 l

4un+1
mod(1) (55)

where 2a is the peak amplitude of the wall oscillation, l is the distance between
the walls, un is the velocity of the wall (normalized to V , where 1

4V is the
amplitude of the wall velocity), n is the number of collisions with the wall
and ψn is the phase of the moving wall at the time of the collision.

These equations are exact, but not area-preserving. To obtain an area-
preserving map, the difference equations can be written in terms of collision
with the fixed instead of the moving wall. ū

2ωa is defined as the normalized
velocity, θn is the phase of the moving wall at the nth collision with the fixed
wall; the motion of the wall shall be given as x = F (ψ) where F is an even
periodic function of phase ψ = ωt and a period of 2π and Fmax = Fmin = 1.
The equations of motion now can be written as

ūn+1 = ūn − F ′ (ψ) (56)

θn+1 = ψc +

[
πM + 1

2F (ψc)
]

ūn+1
(57)

ψc = θn +

[
πM + 1

2F (ψc)
]

ūn
(58)

where ψc is the phase at the next collision with the moving wall after the nth
collision with the fixed wall; M = l

2πa and F ′ is the velocity impulse given
to the ball. Using the extended phase space, given by (v, x,−E, t) (where
E = ū2 is the energy), one can construct an area-preserving mapping (−E, θ)
by choosing a surface of section (SOS)8 with x = 0.

The mapping (52)–(55) can be simplified by allowing the wall to add
momentum to the ball according to its velocity (without a change in the
position of the wall). For this problem, the ball velocity and phase just before
the nth impact can serve as proper canonical variables. The equations (in
normalized form) are given by

un+1 =
∣∣∣∣un + ψn − 1

2

∣∣∣∣ (59)

ψn+1 = ψn +
M

un+1
mod1

where we used the following notation: M = l
16a , M

u = 2l
vT is the normalized

transit time, T = 32a is the period of the wall oscillation and v = uV is the
8 for details how to construct a surface of section see Sect. 2.1 in the chapter on

“Regular and Chaotic Motion in Hamiltonian Systems”.
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particle velocity.9 With a sinusoidal momentum transfer – a nonlinear force
function – equations (59) can be written as

un+1 = | un + sinψn | (60)

ψn+1 = ψn +
2πM
un+1

where the phase of the wall oscillation now extends over 2π instead of unity.

From the Fermi Map to the Standard Mapping

To explore the transition between orbits bounded by KAM surfaces10 and
orbits that can move chaotically, now a stochasticity parameter K is intro-
duced.

The Standard Mapping is obtained from (60) by linearization in action
space near a given fixed point of period 1 located at

2πM
u1

= 2πm (61)

where m is an integer. Using un = u1+∆un and shifting the angle θn = ψn−π
(−π < θn ≤ π) the equations now can be written as

In+1 = In + K sin θn (62)
θn+1 = θn + In+1

where
In =

−2πM∆un

u2
1

(63)

is now the new action and11

K =
2πM
u2

1

(64)

is the stochasticity parameter, now related to the old action u1.
The period 1 fixed points of the Standard Mapping can be easily obtained

by requiring that the phase (mod 2π) and the action are stationary:

I1 = 2πm m ∈ Z (65)
θ1 = 0, π

9 These simplified equations can be obtained as an approximation to the exact set
for l

a
>> 1 and u >> 1.

10 KAM surfaces (or KAM tori) are the last invariant curves that separate chaotic
from regular motion. If the perturbation increases these KAM tori break up and
become so the called Cantori.

11 for details on action-angle variables see see Sect. 3.2 in the chapter on “Regular
and Chaotic Motion in Hamiltonian Systems”.
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Thus, for every integer m there are two fixed points. We now expand the
mapping around a fixed point to obtain the linearized equations:

x = x0 + ∆x. (66)

With xT = (I, θ), and, by keeping only the linear terms, this gives

∆xn+1 = A∆xn (67)

where A is a transformation matrix independent of x and reads

A = M(x0) · M(x1) (68)

where M(x) is the Jacobian matrix

M(x) =

(
∂I1
∂I0

∂I1
∂θ0

∂θ1
∂I0

∂θ1
∂θ0

)

For the mapping (62) this leads to

A =
(

1 ±K
1 1 ±K

)

for θ1 = 0 and θ1 = π. Note that det A=1 is required for area preserving map-
pings. The stability condition depends on the trace of A (see equations (28)–
(29)):

| 2 ±K |< 2 (69)

It is evident that the fixed point at θ = 0 will be always unstable whereas
the fixed point at θ = π will be stable for K < 4 and changes with larger K
from an elliptic fixed point to an hyperbolic one.

Numerical Experiments

The behavior of the period-1 fixed points explained above can be seen in
Figs. 11 and 12. It can be also seen, how the chaotic region in the phase space
is increasing with K. For K = 0.5 (Fig. 11a) one can see the primary period
1 and 2 orbits very clearly; only local stochasticity near the seperatrices12

occurs. In Fig. 11b the last KAM curve between the period 1 and 2 islands
has been destroyed – now the chaos is global; only islands of stability remain
(for K > 0.9716...).

These islands decrease in size if K is increased: for K > 6 no islands of
stability can be seen in the phase space.
12 “A phase curve (i.e. an invariant manifold) which meets a hyperbolic fixed point

(i.e. an intersection of a stable and an unstable invariant manifold) or connects
the unstable and stable manifolds of a pair of hyperbolic or parabolic fixed points.
A separatrix marks a boundary between phase curves with different properties”
(definition from mathworld.wolfram.com).
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Fig. 11. Phase space for the Standard Mapping for K = (a) 0.5; (b) 1.0; (c) 1.5;
(d) 2.0; (e) 2.5; (f) 3.0 (from top left to bottom right)

This does not mean, that the chaos is complete for K > 6 – if one magnifies
sections of the phase space, one can still find areas of regular motion. If
one divides the phase space of the Standard Mapping in a large number of
squares and counts the ones not entered by a chaotic orbit, one can obtain
a measure of the percentage of regular area. Fig. 13 shows, how the regular
area decreases and increases as a function of the stochasticity parameter K.

It can be seen that, also for very large values of K, there are still regions
in the phase space, where regular motion is possible. Fig. 14 shows, that
the “creation and decay” of the periodic orbits always happens in the same
way and repeats itself with a period of 2π. For a detailed description of this
behavior see [6], [8] and [10].

2.5 Stickiness

An important feature in chaotic dynamics is the so called stickiness. This
behavior can be seen in Fig. 15 which shows the logarithm of the escape time
(that is the time a chaotic orbit needs to leave the vicinity of an island of
stability) versus the initial x position. The edge of a large region of regular
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Fig. 12. Phase space for the Standard Mapping for K = (a) 3.5; (b) 4.0; (c) 4.5;
(d) 5.0; (e) 5.5; (f) 6.0 (from top left to bottom right)
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Fig. 13. Percentage of regular area in the phase space of the Standard Mapping
in dependence of K
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Fig. 14. Development of the regular areas for K close to (a) 12; (b) 18; (c) 50; (d)
56; (e) 150 and (f) 157. The pictures show the percentage of regular area versus
the stochasticity parameter K

motion can be seen on the right side of the figure; also, in the middle, there
is a smaller region of stability, where the orbit stays near the island all the
time. In between, the trajectory leaves the vicinity of the regular orbit more
or less fast. But it is clearly visible, that there is a chaotic region (left to
the large island of stability) where, although the orbit is chaotic, the escape
time is considerably higher than for the others. Thus, the orbit “sticks” to
the island of stability. This behavior is due to the complicated structure
of the Cantori (the remanents of the KAM curves that broke up when the
stochasticity parameter was increased) which “trap” the trajectory near the
islands of stability. Some sticky regions can be seen in Fig. 16 and 17. For
details on the behavior of sticky orbits see [8].
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Fig. 15. Stickiness in the Standard Mapping: the logarithm of the escape time vs.
the initial value (from [8])

Fig. 16. Sticky region for the Standard Mapping (K=5) (from [8])
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Fig. 17. Sticky regions for the Standard Mapping (K=5) (from [8])

3 Hamiltonian Systems

3.1 Introduction

In this section we will introduce two of the most important tools when dealing
with dynamical systems: the Lagrange equations and the Hamilton equations.
We will start with the Lagrange equations of first kind stemming from New-
tonian axioms; out of this, the Lagrange equations of second kind will be
derived. These equations can be used to obtain easily the equations of mo-
tions of any dynamical system if its kinetic and potential energy are known
(This method will be applied in Sect. 5 to obtain the equations of motion for
the restricted three body problem).

Then the powerful Hamilton formalism and the Hamilton equations will
be introduced and explained. Throughout this book one will find many exam-
ples on how this formulation can help to investigate dynamical systems. We
will show how canonical transformations can be used to simplify the system –
appendix B gives an application of this method to the famous Hénon Heiles
system which can be derived from the Toda-Lattice that will be discussed at
the end of this section.

This derivation of the Lagrange and Hamilton equations closely follows
the very good presentation of the topic in [22].
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3.2 Lagrange Equations of the First Kind

Although the Newtonian axioms are very important, for certain problems it is
not always possible to apply them directly. If we investigate a plain pendulum
with a length l, moving on a circular path, because of the restriction due to
the length it follows (in rectangular coordinates) that

x2 + y2 − l2 = 0 (70)

Thus, the thread induces a constraint force C and the second Newtonian
axiom reads

mr̈ = F + C (71)

where r = (x, y, z).
Because the force C in general depends on the actual motion it is not

possible to obtain its value directly. To determine the constraint forces, we
first write:

h1 (r, t) = 0 (72)
h2 (r, t) = 0 (73)

Equations (72)–(73) give the constraints. For the pendulum we would have

h1 (r, t) = z = 0 (74)

and
h2 (r, t) = x2 + y2 − l2 = 0 (75)

Of course there can be only two constraint forces for one particle; three of
them would determine the values of x, y and z and thus make any motion
impossible. For more than one particle, equations (72)–(73) can be written
as

hi (r1, r2, . . . , rN , t) = 0 (76)

with i = 1, 2, . . . , R and R ≤ 3N − 1.
The constraints determine the direction of the constraint force C. Using

this property, equation (71) can be solved. A constraint restricts the motion
of a particle on a surface – but not inside the surface. Thus, the constraint
force has only a component orthogonal to the surface:

h (r, t) = 0 → C || ∇h (r, t) (77)

where ∇ is the Nabla operator. Now we can make the following ansatz for
the constraint force C:

C (r, t) = α (t) · ∇h (r, t) (78)

where α (t) is a unknown function. Inserting (78) in (71) gives now the La-
grange equations of first kind:
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mr̈ = F + α (t) · ∇h (r, t) (79)

and
h (r, t) = 0 (80)

We now have four equations and four unknown functions (x(t), y(t), z(t), α(t))
– thus it is possible to solve the problem.

Equation (79) can be written in a different form, if one considers that
the constraints determine a curve. The constraint force now has to be or-
thogonal to this curve. For hi(r, t) = 0, the ∇hi(r, t) are independent basis
vectors. Thus, any force that has to be orthogonal to a surface determined
by hi(r, t) = 0, i = 1, . . . , R can be written as

C (r, t) = α1(t)∇h1(r, t) + . . . + αR(t)∇hR(r, t) (81)

For N particles and 3N − 1 constraints of the form (76) we can write (79) as

mnẍn = Fn +
R∑

i=1

∂hi (x1, . . . , x3N , t)
∂xn

(82)

and
hi (x1, . . . , x3N , t) = 0 (83)

with n = 1, 2, . . . , 3N and i = 1, 2, . . . , R.13 These are now 3N +R equations
for 3N + R unknown functions and therefore the equations can be solved.
Equations (82) and (83) are called Lagrange equations of the first kind.

3.3 Lagrange Equations of Second Kind

The Lagrange equations of first kind (82)–(83) were defined only for cartesian
coordinates. For R constraints, only

f = 3N −R (84)

of the 3N cartesian coordinates are independent (f is called the number of
degrees of freedom). We now select f generalized coordinates:

q1, q2, . . . , qn (85)

The qi have to be chosen in a way that the position of all particles is deter-
mined:

xn = xn(q1, q2, . . . , qf , t) (86)

with n = 1, 2, . . . , 3N . Additionally, all constraints have to be fulfilled for all
values of the qi:
13 The first particle has the coordinates (x1, x2, x3), the second one (x4, x5, x6); the

last one is given by (x3N−2, x3N−1, x3N ).
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hi (x1 (q1, . . . , qf , t) , . . . , x3N (q1, . . . , qf , t) , t) = 0 (87)

Using the generalized coordinates, we can now eliminate the constraint forces.
The constraints in (87) do not depend on qi because, for every value of qi,
hi = 0. That means that the total derivative of hi has to vanish:

dhi

dqk
= 0 (88)

and thus
3N∑
n=1

∂hi

∂xn

∂xn

∂qk
= 0 (89)

with k = 1, 2, . . . , f . Multiplying (82) with ∂xn

∂qk
and building the summation

over n gives then
3N∑
n=1

mnẍn
∂xn

∂qk
=

3N∑
n=1

Fn
∂xn

∂qk
(90)

with n = 1, 2, . . . , 3N .14 Equation (90) now does not depend on the con-
straints or constraint forces.

We now want to simplify (90) furthermore and use the following notation:

x = (x1, x2, . . . , x3N ) (91)
q = (q1, q2, . . . , qf ) (92)
ẋ = (ẋ1, ẋ2, . . . , ẋ3N ) (93)
q̇ = (q̇1, q̇2, . . . , q̇f ) (94)

Differentiation of (86) with respect to the time gives

ẋn =
d

dt
xn(q, t) =

f∑
k=1

∂xn(q, t)
∂qk

q̇k +
∂xn(q, t)

∂t
= ẋn(q, q̇, t) (95)

Thus it follows for ẋn
∂ẋn(q, q̇, t)

∂q̇k
=

∂xn(q, t)
∂qk

(96)

The kinetic energy (in cartesian coordinates) can be written as

T = T (ẋ) =
3N∑
n=1

mn

2
ẋ2

n (97)

If xn(q, t) does not explicitly depend on the time, equation (95) reduces to

ẋn =
f∑

k=1

∂xn(q)
∂qk

q̇k (98)

14 Note that xn stands for xn(q1, q2, . . . , qf , t).
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Together with (97) it follows that

∂T (q, q̇, t)
∂qk

=
3N∑
n=1

mnẋn
∂ẋn

∂qk
(99)

and because of (96)
∂T (q, q̇, t)

∂q̇k
=

3N∑
n=1

mnẋn
∂xn

∂qk
(100)

Differentiation of (100) with respect to time gives15

d

dt

∂T

∂q̇k
=

3N∑
n=1

mnẍn
∂xn

∂qk
+

3N∑
n=1

mnẋn
∂ẋn

∂qk
(101)

We now define the generalized forces Qk:

Qk =
3N∑
n=1

Fn
∂xn

∂qk
(102)

Combining (101), (99) and (102) and inserting in the equations of motion (90)
gives:

d

dt

(
∂T

∂q̇k

)
− ∂T

∂qk
= Qk (103)

with k = 1, 2, . . . , f .
We now restrict the equations to forces Fn that originate from a poten-

tial U :

Fn = −∂U(x)
∂xn

(104)

The generalized forces can now be written as derivatives of U

Qk =
3N∑
n=1

Fn
∂xn

∂qk
= −

3N∑
n=1

∂U(x)
∂xn

∂xn

∂qk
= −∂U(q, t)

∂qk
(105)

where U(q, t) = U(x1(q, t), . . . , xn(q, t)). Because ∂U
∂q̇k

= 0, (103) reads

d

dt

∂ (T − U)
∂q̇k

=
∂ (T − U)

∂qk
(106)

We now define the Lagrange Function L

L(q, q̇, t) = T (q, q̇, t) − U(q, t) (107)

15 Here we use that d
dt

∂xn
∂qk

= ∂ẋn
∂qk

which can be shown easily.
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which is the difference between the kinetic and the potential energy. The final
form of the Lagrange equation of second kind is now

d

dt

∂L(q, q̇, t)
∂q̇k

− ∂L(q, q̇, t)
∂qk

= 0 (108)

with k = 1, 2, . . . , f .
Equation (108) is widely used in mechanics because it depends only on

L – a scalar function – which can be easily found for most systems and thus
the equations of motions can be obtained easily. In Sect. (5) we will give some
examples on how to use equation (108).

The term ∂L
∂q̇k

is also called the generalized impulse pk:

∂L(q, q̇, t)
∂q̇k

= pk (109)

3.4 The Hamilton Function

The Lagrangian notation uses the generalized coordinates and velocities qi

and q̇i. Now we want to use the generalized momenta pi instead of q̇i. From
equation (109) we get

q̇k = q̇k(q, p, t) (110)

We now define the Hamilton function16:

H(q, p, t) =
f∑

i=1

q̇i (q, p, t) pi − L (q, q̇ (q, p, t) , t) (111)

We can use the Lagrange equation (108) to obtain the partial derivatives
of H:

∂H

∂qk
=

f∑
i=1

∂q̇i

∂qk
pi −

∂L

∂qk
−

f∑
i=1

∂L

∂q̇i

∂q̇i

∂qk

= − ∂L

∂qk

= − d

dt

(
∂L

∂q̇k

)

= −ṗk (112)

16 Note that the Hamilton function is obtained from the Lagrange function by a
Legendre transformation.
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∂H

∂pk
=

f∑
i=1

∂q̇i

∂pk
pi + q̇k −

f∑
i=1

∂L

∂q̇i

∂q̇i

∂pk

= q̇k (113)

∂H

∂t
=

f∑
i=1

∂q̇i

∂t
pi −

f∑
i=1

∂L

∂q̇i

∂q̇i

∂t
− ∂L

∂t

= −∂L

∂t
(114)

Equations (112) and (113) are the canonical or Hamiltonian equations:

ṗk = −∂H(q, p, t)
∂qk

(115)

q̇k =
∂H(q, p, t)

∂pk
(116)

These equations follow directly from the Lagrangian equations and thus they
are equivalent to the equations of motion given by (108).

3.5 Canonical Transformations

Canonical transformations are a very important tool when one is dealing
with Hamiltonian systems. These transformations are used to simplify the
Hamiltonian and thus make it possible to find a solution of the Hamiltonian
equations.17

The so-called Hamiltonian principle states that the variation of the action
vanishes. The action S18 is defined by

S(q) =
∫ t2

t1

L(q, q̇, t)dt (117)

One can replace the Lagrangian equations (108) with the condition that the
variation of S has to vanish:

δS(q) = S(q + δq) − S(q) = 0 (118)

where δq is an infinitesimal change of q.
Replacing L with H (equation (111)) gives

17 An example for a canonical transformation can be found in the appendix, where
we introduce the method of Lie transformations.

18 For more information on the so-called action–angle variables see Sect. 3.2 in the
chapter on “Regular and Chaotic Motion in Hamiltonian Systems”.



30 Rudolf Dvorak and Florian Freistetter

δS(q) = δ

∫ t2

t1

(
f∑

i=1

piq̇i −H(q, p, t)

)
dt = 0 (119)

We assume now that

δq(t1) = 0
δq(t2) = 0
δp(t1) = 0
δp(t2) = 0 (120)

and get19

δS[q, p] =
∫ t2

t1

f∑
i=1

((
q̇i −

∂H

∂pi

)
δpi −

(
ṗi +

∂H

∂qi

)
δqi

)
dt (121)

Because of the Hamiltonian equations (115) and (116) it follows that

δS[q, p] = 0. (122)

H is determined up to the total time derivative of an arbitrary function
F (q, p, t) which can be added to (119) without affecting the canonical equa-
tions (115) and (116). The transformation

f∑
i=1

piq̇i −H →
f∑

i=1

piq̇i −H +
d

dt
F (q, p, t) (123)

can now be used to change the form of the Hamiltonian.
We investigate the transformation from the old coordinates qi and pi to

some new coordinates Qk and Pk:

Qk = Qk(qi, . . . , qf , pi, . . . , pf , t) = Qk(q, p, t) (124)
Pk = Pk(qi, . . . , qf , pi, . . . , pf , t) = Pk(q, p, t) (125)

Definition 6. A transformation is called canonical if it does not change the
form of the Hamiltonian equations:

Q̇k =
∂H ′

∂Pk
(126)

Ṗk = − ∂H ′

∂Qk
(127)

where H ′ is now the transformed Hamiltonian.
19 Note that piδq̇i can be replaced with ṗiδqi.
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Applying the Hamiltonian principle we get

δ

∫ t2

t1

(
f∑

i=1

piq̇i −H(q, p, t)

)
dt = δ

∫ t2

t1

(
f∑

i=1

PiQ̇i −H ′(Q,P, t)

)
dt (128)

From (123) it follows that

f∑
i=1

piq̇i −H(q, p, t) =
f∑

i=1

PiQ̇i −H ′(Q,P, t) +
d

dt
F (q, p,Q, P, t) (129)

The function F (q, p,Q, P, t) is called the generating function of the trans-
formation. In the following we will describe the process of canonical trans-
formation with a generating function of the type F (q,Q, t).20 The additional
term in (129) now becomes

dF (q,Q, t)
dt

=
f∑

i=1

∂F

∂qi
q̇i +

f∑
i=1

∂F

∂Qi
Q̇i +

∂F

∂t
(130)

With (129) we derive

pk =
∂F (q,Q, t)

∂qk
(131)

Pk = −∂F (q,Q, t)
∂Qk

(132)

H ′(Q,P, T ) = H(q, p, t) +
∂F (q,Q, t)

∂t
(133)

Equation (133) shows the great advantage of a canonical transformation:
one can choose an arbitrary function F (q,Q, t) in such a way, that the new
Hamiltonian H ′ becomes simpler. Because the Hamiltonian equations are
not affected by the transformation, it is also simpler to solve the equations
of motion!

3.6 Example: The Toda Lattice

As an example for an integrable Hamiltonian with more than one degree of
freedom, we present the three-particle Toda Lattice.21 It is given by

H =
1
2
(
p2
1 + p2

2 + p2
3

)
+ e−(φ1−φ3) + e−(φ2−φ1) + e−(φ3−φ2) − 3 (134)

This Hamiltonian describes the motion of three particles on a ring with
exponentially decreasing repulsive forces between them (see Fig. 18).
20 The process is similar for the other types of generating functions

(F (q, P, t), F (Q, p, t), F (p, P, t)).
21 For a detailed investigation of the Toda Lattice see also Sect. 3.4 in the chapter

“Regular and Chaotic Motion in Hamiltonian Systems”.
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Fig. 18. The three particle Toda lattice

Of course the energy of this system has to be conserved; additionally the
total momentum is constant:

P3 = p1 + p2 + p3 = const. (135)

This has to be true because if we apply a rigid rotation φi → φi + φ0,
the Hamiltonian is not affected. This can be seen, when the Hamiltonian is
transformed to the new momenta P1 = p1, P2 = p2 and P3 given as above.
When using the generating function

F = P1φ1 + P2φ2 + (P3 − P1 − P2)φ3 (136)

one obtains

H ′ =
1
2

(
P 2

1 + P 2
2 + (P3 − P1 − P2)

2
)

+ e−φ1 + e−(φ2−φ1) + eφ2 − 3 (137)

Here the φ’s are canonical with the P ’s and H ′ is independent of φ3 – thus
P3 is constant. We now choose a rotating coordinate system in which the
total momentum equals zero which allows us to set P3 = 0. In addition to
the two known isolating integrals (energy, momentum) there seems no further
obvious constant.

By applying the following transformation, we obtain a Hamiltonian in a
form of a particle moving in a 2-D potential well.

F ′ =
(
4
√

3
)−1 [(

p′x −
√

3p′y
)
φ1 +

(
p′x +

√
3p′y

)
φ2

]
(138)
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and

p′x = 8
√

3px x′ = x p′y = 8
√

3py y′ = y H̄ = H ′/
√

3
(139)

This gives the so-called Toda Hamiltonian:

H̄ =
1
2
(
p2

x + p2
y

)
+

1
24

[
e2y+2

√
3x + e2y−2

√
3x + e−4y

]
− 1

8
(140)

Figure 19 shows the potential curves; they vary smoothly and show a ternary
symmetry.

Fig. 19. The potential curves for the Toda Hamiltonian; shown are the lines for
constant U (taken from [42])

We can expand equation (140) to 3rd order and obtain the now non-
integrable Hénon and Heiles Hamiltonian:

H̄ ′ =
1
2
(
p2

x + p2
y + x2 + y2

)
+ x2y − 1

3
y3 (141)

3.7 Hénon Heiles System

We will now describe shortly the former derived system which played an
outstanding role in the exploration of nonlinear dynamics: it was the first nu-
merical proof for the existence of chaotic motion in a dynamical system [29].
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The motion of a star in the gravitational potential Ug(R, z) of a galaxy cor-
responds to a trajectory in the 6-dimensional phase-space described by the
polar coordinates (R,Θ,z,Ṙ,Θ̇,ż). In a 6-d phase-space there exist five inde-
pendent conservative integrals of motion: Ij = Cj with j = 1, . . . , 5 where
the Cj are constants. Each integral can be isolating or non-isolating. The hy-
persurface corresponding to a non-isolating integral consists of an infinity of
sheets which fill the phase-space very densely; thus Ij = Cj does not give any
useful (for physical applications) information. Therefore the non-isolating in-
tegrals are ignored and only the isolating integrals are called ”integrals’. For
a very detailed explanation of the integrals of motion in galactic dynamics
see [5].

In this case, two isolating integrals are known:

I1 = Ug(R, z) +
1
2

(
Ṙ2 + ṘΘ̇2 + ż2

)
(142)

I2 = R2Θ̇2 (143)

corresponding to the total energy and the angular momentum per unit mass
of the star around the z-axis. It can be shown, that I4 and I5 are non-
isolating in general. But there are no informations about the nature of the
third integral.

The properties of any potential third integral can be investigated numer-
ically [5]. For that purpose, one introduces the potential

U(R, z) = Ug(R, z) +
C2

2R2
(144)

where C2 is the constant value of the angular momentum. This problem is
equivalent to the problem of the motion of a particle in a plane in an arbitrary
potential U . If one substitutes x and y for R and z, the phase-space (x, y, ẋ, ẏ)
has four dimensions and there exist three independent conservative integrals.
One of them is the known isolating integral

I1 = U(x, y) +
1
2
(
ẋ2 + ẏ2

)
= E (145)

which corresponds to the total energy of the star divided by its mass. The
third integral is generally non-isolating – but nothing is known about the
second integral.

We now investigate the fore mentioned potential by means of a surface
of section: because of the existence of the energy integral E, one of the four
coordinates can be substituted. Thus, the trajectory of a star for a given
energy can be investigated in the three dimensional phase-space (x, y, ẏ).
Then we consider the successive intersections of the trajectory with the plane
x = 0 (in the upward direction) – this plane (y, ẏ) is called the surface of
section (SOS). If there is no other isolating integral, the trajectory will fill
a bounded volume and is called ergodic; the successive points on the SOS
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will fill an area. But if there exists a second isolating integral, the trajectory
will lie on a surface; on the SOS the successive points will lie on an invariant
curve.

The potential for the Hénon Heiles system reads

U(x, y) =
1
2

(
x2 + y2 + 2x2y − 2

3
y3

)
(146)

which corresponds to the potential of the third order Toda-Hamiltonian
(equation 141).

Figures 20a to f show the SOS for different values of the energy. If the en-
ergy is very low, the whole phase-space consists of closed curves – so it seems
that an additional isolating integral exists. But if the energy is increased,
chaotic regions appear and the regular areas shrink. Finally, for very large
values of the energy, the whole phase space seems to be chaotic.

So it is impossible to answer the question, if there exists a third integral
of motion definitely. If the energy is small, the third integral seems to exist
always. If the energy is increased to values larger than a certain critical
energy we find an infinite number of regions in phase-space (seperated from
each other) where a third integral exists; if we increase the energy further it
seems that there is no third integral. For a detailed discussion we refer to the
extended literature on this nonlinear dynamical system (for a review see [5]).

4 The Two-Body Problem

4.1 Historical Remarks

For the ancient Babylonian, Greek and Egyptian astronomers the major in-
terest was to predict the positions of the Sun, the Moon and the planets on
the celestial sphere, because the main tasks for them were to provide an exact
calendar and the precise determination of the times of the eclipses in advance.
This was accomplished with long and difficult observations to detect the dif-
ferent periods of the motion of the celestial bodies on the sky. The believed
structure of the universe for more than one and a half thousand years was
written down in the Almagest of Ptolemäus (100–160): the Earth is in the
center, the sphere of the stars is rotating around it, and the planets, the Sun
and the Moon are separately moving on perfect circles on other spheres.22

From the point of view of understanding the nature of physics an impor-
tant step forward was the change of the “center” of the world from the Earth
to the Sun, namely the change from the geocentric to the heliocentric sys-
tem by Nikolaus Copernicus (1473–1543). This time coincides also with the

22 A poetic description of the structure of the universe as it was known in the
middle ages can be found in the “divina comedia” by Dante (1265–1321).
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Fig. 20. SOS of the Hénon-Heiles system for an energy E = (a) 0.08333; (b) 0.09;
(c) 0.125; (d) 0.14; (e) 0.16 and (f) 0.1675

discovery of America, which is seen as the end of the “dark” middle ages. An-
other finding can be regarded also as an essential change in the human mind,
namely that the planets do not fulfill the perfect “divine” circular motion. It
was Johannes Kepler (1571–1630) who found that the motion of Mars is an
ellipse, with the Sun in its focus. He did computations as successor of Tycho
Brahe (1546–1601) an imperial mathematician on the court of Rudolf II in
Prag. Two facts were favorable for Kepler’s discovery: first Tycho was a very
careful observer and provided the best observations ever done up to his time,
second Mars has the most eccentric orbit besides Mercury and therefore the
deviations from the circle are the most prominent ones. In his Astronomia
Nova, published in 1609, he formulated his laws of the motion of the planets,
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Fig. 21. Johannes Kepler (Picture courtesy of Sternwarte Kremsmünster, Upper
Austria)

which are the basis of all future work in Celestial Mechanics. It should be
mentioned that Kepler was quite close to the idea that the cause of motion
is a force acting between two celestial bodies, but he did not find the law
behind!

In this short introductionary section we should also mention the great
Italian, who was always in war with the christian authorities in Rome, namely
Galileo Galilei (1564–1642). He was the one who discovered, with the aid of
the telescope, that Jupiter can be regarded as being the center of a small
planetary system with its four satellites. With this discovery the Copernican
heliocentric system was finally accepted (with the exception of the Roman
Catholic church).23

The final step forward to understanding the motion of the planets, the
Sun and the Moon was the discovery of the universal law of gravitation
by Isaac Newton (1642–1717), who stands at the beginning of the epoch of

23 The Vatican waited until 1992 to accept the work of Galileo officially!
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deterministic physics, where everything can be determined when we know
the laws governing it.24

Why is the knowledge of the two-body motion of such importance? There
are different reasons for that:

1. the motion of a single planet around the Sun (the two-body problem) is
the only astrodynamical problem where we have a complete and general
solution (although it is not as simple as it looks like) besides very special
cases of the three-body problem not exactly realized in nature.

2. for many problems in the dynamics of celestial bodies it is a very good
first approximation.

3. it is the starting point of analytical theories from which we can develop
then the solution to higher orders with respect to small parameters in-
volved like the eccentricity, the inclination of the orbit and the small
masses of the other planets, which perturb the elliptic motion of a planet
around the Sun (see Sect. 7)

4.2 The First and Second Law of Kepler

The motion in a two-body system is governed by the three Kepler Laws. This
section will give a kinematic description of the first and second law, that were
found by Kepler by the means of observation.25

Because the motion of a planet takes place on an ellipse (Fig. 22), the
first law of Kepler can be written as

r =
p

1 + e cos v
(147)

where r is the distance between the planet and the central star, e the ec-
centricity of the ellipse and v the true anomaly. From Fig. 22, the following
properties for the configuration parameters can be derived easily:

a =
p

1 − e2

b =
p√

1 − e2

p =
b2

a

e =

√
1 − b2

a2
(148)

The second law of Kepler can be derived by investigating Fig. 23 when
one takes into account the motion of a planet along its orbit:
24 This belief ended in the 20th century with the discovery of quantum physics and

also the finding of chaotic behavior of orbits in dynamical systems, which makes
long time predictions impossible.

25 In this chapter we follow mainly the extensive book by Stumpf [63]
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Fig. 22. Configuration of the two-body problem

Fig. 23. Motion of a planet along the ellipse

The area covered by the connecting line between the planet and the central
body is given by:

F∆ =
1
2
r (r + ∆r) sin∆v (149)

If ∆v and ∆r are small, this can be written as

F∆ ∼ 1
2
r2∆v (150)

Kepler discovered that the value of r2∆v is constant for equal time intervals:
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r2∆v ∼ c∆t (151)

or, using differential notation

r2 dv

dt
= c (152)

We can now derive the value of the constant by introducing rectangular
coordinates:

x = r cos v
y = r sin v

r =
√

x2 + y2

tan v =
y

x
(153)

By implicit differentiation we can express the derivate of v:

v̇

cos2 v
=

v̇r2

x2
=

ẏx− yẋ

x2
(154)

and thus
r2 dv

dt
= r2v̇ = ẏx− yẋ = c (155)

We can get a different representation of the constant by starting with the
following formula for the area in Fig. 23:

∆f =
abπ

N
(156)

where abπ is the area of the ellipse and N the number of sections. By intro-
ducing the orbital period U one obtains with (151)

abπ

N
=

1
2
c∆t =

1
2
c
U

N
(157)

and thus
c =

2πab
U

= nab =
nap√
1 − e2

(158)

where
n =

2π
U

(159)

is the mean motion of the body which is related to the mean anomaly M (see
Fig. 24) by

M = nt (160)

Equation (158) can be transformed by using (148):

c = nab = n
√

pa3 = na2
√

1 − e2 =
nap√
1 − e2

(161)
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Fig. 24. Relation between true, mean and eccentric anomaly. Note that the “ficti-
tious angle” M = nt cannot be found in an exact way by geometrical construction

To obtain the true anomaly from the mean anomaly, we first have to
define the eccentric anomaly E (see Fig. 24). We define E = 0 if the planet is
in perihelion position (r = a(1 − e)) and E = π if the planet is in aphelion
position (r = a(1 + e)). This leads to the following (indirect) definition of E:

r = a (1 − e cosE) (162)

We start by transforming the first law of Kepler (147) and use the rela-
tions (148) and (162) to obtain an expression for x = r cos v:

r + er cos v = p (163)

re cos v = p− r = a
(
1 − e2

)
− a (1 − e cosE) (164)

r cos v = a (cosE − e) (165)

The expression for y = r sin v can be obtained by

r2 − r2 cos2 v = r2 sin2 v = a2
((

1 + e2 cos2 E
)
−
(
cos2 E + e2

))
(166)

This simplifies to

r2 sin2 v = a2
(
1 − cos2 E

) (
1 − e2

)
= a2 sin2 E

(
1 − e2

)
(167)

and thus
r sin v = a

√
1 − e2 sinE (168)

Now making use of (165) and (162) one finds that
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cos v =
cosE − e

1 − e cosE
(169)

and find a relation between E and v

1 − cos v =
(1 + e)(1 − cosE)

1 − e cosE

1 + cos v =
(1 − e)(1 + cosE)

1 − e cosE
(170)

which simplifies via the formula

tan
α

2
=

1 − cosα
1 + cosα

(171)

to

tan
v

2
=

√
1 + e

1 − e
tan

E

2
(172)

The next step consists in finding a relation between eccentric anomaly E and
mean anomaly M . From (147) the derivate of r can be obtained:

dr =
pe sin v

(1 + e cos v)2
dv =

r2e

p
sin vdv (173)

Because of the second law of Kepler (151)

r2dv = cdt =
nap√
1 − e2

dt (174)

it follows that

dr =
na√

1 − e2
e sin vdt (175)

Equation (162) gives for dr

dr = ae sinEdE (176)

Combining (168), (175) and (176) gives

dE =
na

r
dt (177)

or
(1 − e cosE) dE = ndt (178)

and, after integrating, one obtains

E − e sinE = n (t− t0) (179)

and because of (160)
E − e sinE = M (180)

which is the well-known Kepler equation that cannot be solved in closed
form.26
26 There exist literally hundreds of different ways to solve it numerically and even

today new algorithms are found that make the evaluation more efficient.



Stability and Chaos in Planetary Systems 43

4.3 From Kepler to Newton

By using the properties above, it is now possible to derive the acting forces
between the two bodies. For this purpose, the force is divided in a radial part
r and a tangential part t (the configuration can be seen in Fig. 25) which are
perpendicular to each other and can be described by

r = i cosφ + j sinφ

t = −i sinφ + j cosφ (181)

Fig. 25. Forces acting between the two bodies

According to Fig. 25 the acting force is proportional to p̈. Because of

p = rr (182)

(where r is the unit vector in the r-direction) we have

p̈ = r̈r + 2ṙṙ + rr̈ (183)

From (181) it follows that

ṙ = (−i sinφ + j cosφ) φ̇
= φ̇t

r̈ = (−i sinφ + j cosφ) φ̈− (i cosφ + j sinφ) φ̇2

= φ̈t − φ̇2r (184)
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This leads to
p̈ =

(
r̈ − rφ̇2

)
r +

(
2ṙφ̇ + φ̈r

)
t (185)

where now the vector p̈ has been decomposed in its radial and tangential
components r and t. We can now use the first and second law of Kepler to
obtain expressions for ṙ,r̈,φ̇ = v̇ and φ̈ = v̈:

v̇ =
c

r2
(186)

ṙ =
pe sin v

(1 + e cos v)2
v̇ = c

e

p
sin v (187)

r̈ =
c2e

pr2
cos v (188)

v̈ = − 2
r3

cṙ (189)

Equations (186)–(189) can be used together with (185) to obtain an expres-
sion for the tangential part t (please note that v and φ are identical):

2ṙφ̇ + φ̈r = 0 (190)

thus there are no tangential forces acting in the two body problem.
The acceleration in the radial direction can be derived by substitut-

ing (147) in (185):

r̈ − rφ̇2 =
c2

r2

(
e

p
cos v − 1

r

)
= − c2

pr2
(191)

It can be seen that the acting acceleration is negative and thus attracting;
it is also proportional to 1

r2 . This is the famous law of gravitation that was
established by Isaac Newton one hundred years after the discoveries of Kepler
which reads

p̈ = − c2

pr2
r = − c2

pr3
p (192)

where p is the parameter of the ellipse defined above (148).
The fact, that the motion in the two body system is only governed by a

central force, leads directly to the second law of Kepler: because of (190)

2ṙ
r

+
φ̈

φ̇
= 0 (193)

By integration one gets

2 log r + log φ̇ = log c (194)

or
r2φ̇ = c (195)

which is identical to (151). As a consequence the second law of Kepler is valid
for all central force fields.
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4.4 From Newton to Kepler

By including also the masses involved, we can write the differential equation
describing the motion in the two body problem by starting with the second
law of motion of Newton:

“The acceleration of an object as produced by a net force is directly
proportional to the magnitude of the net force, in the same direction
as the net force, and inversely proportional to the mass of the object”

F = mp̈ = −k2 Mm

r2
r (196)

The gravitational force on M (the Sun) by m (the planet) and vice versa
on m by M is therefore given by (where r is the unit vector between the Sun
and the planet - see Fig. 26)

Fs = M q̈s = −k2 Mm

r2
r

Fp = mq̈p = k2 Mm

r2
r (197)

which reads with p = qp − qs because of Newton’s third law of motion

“For every action, there is an equal and opposite reaction.”

p̈ = −k2 (M + m)
p

r3
(198)

Fig. 26. Configuration of the Sun and planet in an inertial frame
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where the constant k still has to be determined. This is a three dimensional
differential equation of second order – thus one needs 6 constants of motion
to solve the equation.

For an easier treatment of the equations, we first set k2 (M + m) = κ2.
Also, in the following, squared brackets [., .] will denote vectorial multiplica-
tions.

Multiplying (198) with p gives

[p, p̈] = −κ2

r3
[p,p] = 0 (199)

Thus we introduce the constant angular momentum vector g which is perpen-
dicular to the plane of motion given by

g = [p, ṗ] (200)

and | g |= c.
The three components of this vector deliver the first three constants of

motion. An additional constant can be found by

[p̈, g] = −κ2 [p, g]
r3

= −κ2 [p, [p, ṗ]]
r3

(201)

By solving the multiple vectorial multiplication one obtains

[p̈, g] = −κ2

r3
((ṗp) p − (pp) ṗ) (202)

Substituting ṗp with ṙr and pp with r2 gives

[p̈, g] = −κ2

r3

(
(ṙr) p − r2ṗ

)
=

κ2

r2
(rṗ − ṙp) (203)

and thus
[p̈, g] = κ2 d

dt

(p

r

)
(204)

Because of
d

dt
[ṗ, g] = [p̈, g] + [ṗ, ġ] (205)

with (204) one obtains by integrating

[ṗ, g] =
κ2

r
p + f (206)

The constant vector f stemming from the integration is the so-called Laplace
vector, which is perpendicular to g and has | f |= d = const. Because [g,f ] =
0, this gives 2 more constants of motion.

Now we can write
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(p, [ṗ, g]) =
κ

r
(pp) + (pf) (207)

Because of
(p [ṗ, g]) = (g [ṗ,p]) = (gg) = c2 (208)

and (pf) = rd cos(φ− φ0) it follows that

c2 = r
(
κ2 + d cos(φ− φ0)

)
(209)

and

r =
c2

(κ2 + d cos(φ− φ0))
(210)

This can also be written as

r =
c2

κ2(
1 + d

κ2 cos(φ− φ0)
) (211)

which is identical to the first law of Kepler (147) with

p =
c2

κ2
e =

d

κ2
(212)

Substituting into the second law of Kepler (r2dφ = cdt) gives

p2

(1 + e cos (φ− φ0))
2 dφ = cdt (213)

and, after integrating

p2

∫ φ

φ0

dφ

(1 + e cos (φ− φ0))
2 = c (t− t0) (214)

t0, the perihelion time (the moment, when planet is in its perihelion), is now
the sixth and last constant of motion.

According to (212), (198) can also be written as

p̈ = −κ2 r

r2
= − c2

r3p
p (215)

with

κ2 =
c2

p
→ c = κ

√
p (216)

From (158) and (148) it follows that

c2 = n2a3p (217)

and because of (159) we get
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κ2 = n2a3 =
4π2

U2
a3 (218)

which gives the third law of Kepler:

a3
i

U2
i

=
κ2

4π2
(219)

where the index i stands now for the i-th body.
Comparing equation (215) with (198) shows that the constant κ is in fact

the quantity introduced above

κ2 = k2 (M + m) (220)

but the actual value of k is still unknown and can only be determined by
astronomical observations or experimental measurements. The value27 of k
is identical with the Gaussian constant G determined as

G = 6.672 · 10−11m3kg−1s−2 (221)

4.5 Motion in the Space and Computation of Ephemerides

Until now, we did not take into account, that the motion of a planet takes
place in the three dimensional space, with three degrees of freedom. It was not
necessary, because one can reduce it to a motion on a plane, via an adequate
change of variables. In three dimension we need 6 orbital elements, which are
the following three action-like variables:

1. semimajor axis a
2. eccentricity of the orbit e
3. inclination i (of the orbital plane, with respect to an inertial system)

and the three angle-like variables

1. the longitude of the ascending node Ω
2. the argument of the perihelion ω
3. the true anomaly v.

These elements are plotted in Figs. 27 and 22.
We already discussed in detail the three Kepler laws, which govern the

motion of a planet. What we are interested in is now the position of a planet
on the celestial sphere. To compute from the given orbital elements for a
given time t the right ascension α and declination δ of a planet (asteroid) we
need to compute step by step:

1. the eccentric anomaly E from the mean anomaly M of the celestial body
for the instant of time we want to know via the Kepler equation

E − e sinE = n(t− T ) = M(t0) + n(t− t0) (222)
27 if measured in years, AU and Sun’s mass, k2 = 0.01720209895



Stability and Chaos in Planetary Systems 49

Fig. 27. The orbital elements

2. the distance r, from the Sun is

r = a(1 − e cosE) (223)

3. the true anomaly v giving the position in the orbit

tan
v

2
=

√
1 + e

1 − e
tan

E

2
(224)

4. the so-called argument of the latitude u = ω + v
5. the heliocentric polar coordinates r, l, b (see Fig. 27)

cos b cos l = cosu cosΩ − sinu sinΩ cos i
cos b sin l = cosu sinΩ − sinu cosΩ cos i

sin b = sinu sin i (225)

6. the rectangular heliocentric coordinates x, y and z

x = r(cosu cosΩ − sinu sinΩ cos i)
y = r(cosu sinΩ − sinu cosΩ cos i)
z = r sinu sin i (226)
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7. which we need to transform into the equatorial heliocentric coordinates,
taking into account the variable obliquity of the ecliptic ε ∼ 23 degrees28

x̄ = x

ȳ = y cos ε− z sin ε

z̄ = z cos ε− y sin ε (227)

8. the geocentric equatorial coordinates making use of the published coor-
dinates of the Sun X̄, Ȳ and Z̄ (from the Nautical Almanac)

ξ̄ = x̄ + X̄

η̄ = ȳ + Ȳ

ζ̄ = z̄ + Z̄ (228)

9. via a final transformation the right ascension α and declination δ of the
planet

tanα =
(

η̄

ξ̄

)

tan δ =

(
ζ̄√

ξ̄2 + η̄2

)
(229)

The whole procedures sketched here are nowadays written in computer
programs, which take into account all – in the foregoing schema neglected –
effects like aberration etc. In this short section we only wanted to demonstrate
how one can, in principle, compute ephemerides of a body when the six
Keplerian elements are known. For a very detailed and profound description
we refer to the Nautical Almanac, which is published every year by the US
Naval observatory.

5 The Restricted Three Body Problem

The history of the restricted problem (by which we mean the circular re-
stricted three body problem = R3BP) dates back to Leonhard Euler,29 who
worked on a Lunar theory. His main contribution to the R3BP was the intro-
duction of a synodic coordinate system, where the two massive bodies have
fixed positions. He also solved a special case of the R3BP – the so-called two
fixed center problem, where two fixed centers of force act on a third one.30

28 The actual value for a given date has to be computed from the respective formula
given in the Nautical Almanac.

29 Leonhard Euler (1707 – 1783)
30 Later in this chapter we will see, that this problem can be regarded as a gener-

alization of the MacMillan problem, where a massless body moves up and down
in between two equally massive bodies.
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Fig. 28. Leonhard Euler (1707 – 1783) (picture taken from MacTutor History of
Mathematics archive, University of St Andrews Scotland)

After the two-body problem was investigated (and solved analytically) in
the last section, we will now demonstrate how, adding a massless third body,
adds an enormous amount of complexity to the dynamics of the system. The
most complete study on the R3BP was published by Szebehely [67], where one
finds also an extensive literature. In the following demonstration we follow
closely to the very well book by [64].

The restricted three body problem is defined as follows:

• two bodies, named primaries, with the masses m �= 0 and µ �= 0 move on
circular orbits,

• a third, massless body m3 = 0 moves in the same plane as the primaries.

The restricted three body problem can serve as a good dynamical model
for the investigation of many different types of motion in the Solar system
and in other planetary systems:
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• the motion of an asteroid, with the Sun and Jupiter as primaries,
• the motion of a satellite with the Sun and the planet as primaries,
• the motion of a comet with the Sun and Jupiter (which is – due to its

large mass – the principle perturbing body) as primaries,
• the motion of terrestrial planets in extrasolar planetary systems with the

star and a large Jupiter-like planet as primaries (or motions in double
stars),

• . . .

For a detailed investigation of the R3BP we choose a rotating coordinate
system (η, ξ) (centered at the Sun) where the primaries are fixed (see Fig. 29).

Fig. 29. Rotating coordinate system for the R3BP

The equations of motions can be obtained by the Lagrange equation (108):

d

dt

∂L

∂ẋj
− ∂L

∂xj
= 0 (230)

where the function L = T + U is the sum of potential energy U and kinetic
energy T which (if we assume that the factor κ2 = −k2(m+µ) = 1) are given
by:

T =
1
2
(
ẋ2 + ẏ2

)
(231)

U =
1
r

(232)

where (according to Fig. 29)
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x = ξ cosφ− η sinφ

y = ξ sinφ + η cosφ
φ = nt

r =
√

ξ2 + η2 (233)

with n the mean motion of the primaries and r the distance to the Sun. By
differentiation of x and y with respect to time t

ẋ = cosφ
(
ξ̇ − ηn

)
− sinφ (η̇ + ξn)

ẏ = sinφ
(
ξ̇ − ηn

)
+ cosφ (η̇ + ξn) (234)

one obtains the kinetic energy T in the rotating system:

T =
1
2

(
ξ̇2 + η̇2

)
+ n

(
ξη̇ − ηξ̇

)
+

n2

2
(
ξ2 + η2

)
(235)

To get the equations of motion from (230) we now have to differenti-
ate (235) respectively (232):

∂U

∂ξ
= − ξ

r3

∂U

∂ξ̇
= 0

∂U

∂η
= − η

r3

∂U

∂η̇
= 0 (236)

∂T

∂ξ
= n (η̇ + nξ)

∂T

∂ξ̇
= ξ̇ − nη

∂T

∂η
= n

(
−ξ̇ + nη

)

∂T

∂η̇
= η̇ + nξ (237)

Substituting (236) and (237) in (230) gives

d

dt

(
ξ̇ − nη

)
= n (η̇ + nξ) − ξ

r3

d

dt
(η̇ + nξ) = n

(
−ξ̇ + nη

)
− η

r3
(238)
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which leads, with the introduction of the potential Ω,

Ω =
1
r

+
1
2
n2r2 (239)

to the equations of motion of the R3BP:

ξ̈ − 2nη̇ =
∂Ω

∂ξ
(240)

η̈ + 2nξ̇ =
∂Ω

∂η
(241)

5.1 Lagrange Points

We will now investigate the potential (239) in more detail, but we use now
a rotating coordinate system with the barycentre of the masses m and µ as
origin and the angular velocity φ = nt (Fig. 30). First, we write it in a way,
where the gravitational and rotational part are separated:

Ω = Ωgrav + Ωrot =
(

m

r
+

µ

ρ

)
k2 +

n2R2

2
(242)

From Fig. 30 we obtain the following relations:

R2 = ξ2 + η2

r2 = (ξ + µ)2 + η2

ρ2 = (m− ξ)2 + η2 (243)

In addition we choose the units such that k = 1, n = 1 and m + µ = 1; as a
consequence (242) can be written as

Ω =
m

2

(
r2 +

2
r

)
+

µ

2

(
ρ2 +

2
ρ

)
− mµ

2
(244)

The maxima and minima of the potential can be found by setting the deriv-
atives equal to zero:

Ωξ = Ωη = 0 (245)

and therefore

Ωrrξ + Ωρρξ = 0
Ωrrη + Ωρρη = 0 (246)

where the subscripts indicate derivations. Differentiating the potential gives:
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Fig. 30. Configuration of the bodies in the rotating frame ξ, η

Ωr = m

(
r − 1

r2

)

Ωρ = µ

(
ρ− 1

ρ2

)

rξ =
ξ + µ

r

rη =
η

r

ρξ =
ξ −m

ρ

ρη =
η

ρ
(247)

This leads to the conditions that have to be fulfilled at the extreme values:

m

(
r − 1

r2

)
ξ + µ

r
+ µ

(
ρ− 1

ρ2

)
ξ −m

ρ
= 0

m

(
r − 1

r2

)
η

r
+ µ

(
ρ− 1

ρ2

)
η

ρ
= 0 (248)

A trivial solution can be found for r = ρ = 1 which corresponds (see
Fig. 30) to two positions where the three bodies form an equilateral triangle.
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mL3 L1 L2

Fig. 31. Location of the extreme values on the ξ-axis

To find the other solutions, it can be seen from (246) that the following
equation has to be fulfilled:

ξ + µ

r

η

ρ
− ξ −m

ρ

η

r
=

η

rρ
= 0 (249)

which is true for η = 0 – therefore the remaining extreme values will be
placed on the ξ-axis. Because of Ω(m) = ∞ and Ω(µ) = ∞, there are three
more extreme values situated in three intervals (see also Fig. 31):

1. −µ < ξ < m
2. m < ξ < ∞
3. −∞ < ξ < −µ

Their location on the ξ-axis can be found in the following way (we show
it for L1, the interval 1 −µ < ξ < m). Because of

r = ξ + µ

ρ = 1 − ξ − µ (250)

and

rξ = 1
ρξ = −1 (251)

(252)

it results from (246) that the following condition has to be satisfied:

Ωr −Ωρ = 0 (253)
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or

m

(
r − 1

r2

)
− µ

(
ρ− 1

ρ2

)
= 0 (254)

Substituting
λ =

ρ

r
(255)

leads to

m

(
1

1 + λ
− (1 + λ)2

1

)
− µ

(
λ

1 + λ
− (1 + λ)2

λ2

)
= 0 (256)

or (
−λ2 + (1 + λ)3 λ2

)
=

µ

m

(
−λ3 + (1 + λ)3

)
(257)

and after simplifying

λ3 =
µ

3

(
1 + 3λ + 3λ2

1 + λ + 1
3λ

2

)
(258)

we get the approximate solution

λ ∼ 3

√
µ

3
= ν (259)

Expanding (258) into a power series around ν gives for L1

λ = ν +
2
3
ν2 +

2
9
ν3 − 32

81
ν4 + . . . (260)

Inserting the values of m and µ for the Sun-Jupiter system, this yields a value
for λ = ρ

r ∼ 1
15 .

The same procedure can be performed for the other intervals. The re-
spective positions for the other four Lagrangian equilibrium points are the
following:

• L2: ρ
r = ν + 1

3ν
2 − 1

9ν
3 − 31

81ν
4 . . .

• L3: ρ
r = 1 + 7

12µ− 35
144µ

2 + 3227
20736µ

3 . . .

• L4: ρ = r = 1

• L5: ρ = r = 1

In Fig. 32 we show in a three-dimensional plot the value of the potential
function Ω: The location of the primaries is well visible through the two tubes
where the potential field is going to infinity (marked with “M1” and “M2”).
In between the two tubes we see the Lagrange point L1; we also plotted the
other two collinear Lagrange points L2 (right side of the smaller tube) and
L3 (left side if the large tube). The two equilateral equilibrium points are
inside the black banana shaped regions. We explain the meaning of these two
regions in the next section.
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Fig. 32. The potential function Ω in the rotating frame

5.2 The Jacobi-Constant and the Zero-Velocity Curves

The problem of finding the motion of the third massless body m3 is to find
solutions ξ(t) and η(t) of the equations of motion (240-241): Fortunately it is
possible to find an integral of motion, which leads to significant constraints
for the motion of m3. We multiply (240) with ξ̇, and (241) with η̇ and add
them which leads to a cancellation of the terms with η̇ξ̇:

ξ̈ξ̇ + η̈η̇ =
∂Ω

∂ξ
ξ̇ +

∂Ω

∂η
η̇. (261)

This expression can be integrated because the right hand side is the total
derivative with respect to the time, dΩ

dt , and thus leads to

2(ξ̇2 + η̇2) ≡ 2v2 = 2Ω − C (262)

where C(ξ, η, ξ̇, η̇) is the Jacobian constant.31 With the aid of C the dimension
of the system may be reduced by one order. This constant is an integral of
motion which can be written

C = n2(ξ2 + η2) + 2k2

(
m

r
+

µ

ρ

)
− ξ̇2 − η̇2 (263)

31 after Carl Gustav Jacobi (1804–1851).
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We mention that C can also be expressed in a non-rotating coordinate system
(x, y) by32

C =
1
2
(ẋ2 + ẏ2) − k2

(
m

r
+

µ

ρ

)
− n(xẏ − yẋ) (264)

We will see how useful the Jacobian constant is for a qualitative analysis of
the motion of m3: it is evident that the square of velocity in the rotating
system has to be positive. This means that in the (ξ, η) coordinate system –
according to the quantity of C – there are so-called forbidden regions, where
the velocity would be imaginary. Thus one defines the zero-velocity curves;
also called Hill’s zero-velocity curves33

2U = C for v2 ≡ ξ̇2 + η̇2 = 0. (265)

One should mention that this is not the energy integral, which does not exist
in the restricted problem, nor exists the angular momentum integral, because
m3 is regarded as a massless body. In a certain sense the Jacobian integral
replaces the energy-integral.

An interesting property of the system, which holds for any system of 2-
degrees of freedom, is the following: if additional to the Jacobian constant
C one could derive a second integral, then the problem would be integrable.
Let us denote it by D(ξ, η, ξ̇, η̇) = const. We can then express the velocities
by

dξ

dt
= f(ξ, η, C,D)

dη

dt
= g(ξ, η, C,D). (266)

By division one gets only one equation, namely

dη

dξ
=

g

f
= h(ξ, η, C,D) (267)

which could be solved with the aid of a factor of the form M(ξ, η) such that

0 = fMdη − gMdξ ≡ dF (268)

is a complete differential expression. This yields F (ξ, η) = const which is an
algebraic equation of the orbit we are looking for. Additionally with the aid
of (268) one could eliminate from (266) the coordinates

ξ̇ = α(ξ), η̇ = β(η) (269)

and from this one easily via a quadrature could find the final solution ξ = ξ(t)
and η = η(t). Because no additional integral of motion is known for the R3BP
32 note that we expicitely write ‘n’ although it was set to 1 in the preceding chapter
33 after George William Hill (1838-1914), who also developed a Lunar theory on

the basis of the R3BP.
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this way of solution cannot be used. One should also mention that – even with
two integrals of motion in a two degrees of freedom system – it is sometimes
impossible to solve the former mentioned equation (268) because the factor M
is rather difficult – if not impossible – to find. In addition when one can find
M quite often one cannot solve it in elementary function (compare Sect. 3.4
in the chapter “Regular and Chaotic Motion in Hamiltonian Systems” of
[42]).

We now continue to use the zero-velocity curves for a quantitative analysis
of the motion of a satellite, an asteroid and a comet in the gravitational field of
the Sun and a massive planet on a circular orbit, neglecting the gravitational
force of the other planets. Jupiter has a mass of 1/1047.355 of the Sun’s mass
– thus the ratio is of the order of 0.001, but in order to explain the essential
of the zero-velocity-curves we use in Figs. 33, 34 and 35 a different mass ratio
between the two primaries (µ = 0.1).

• Large C: We start to describe the motion of an asteroid on an eccentric
orbit with a small semimajor axis (see Fig. 33): from the position of the
third mass we can compute the potential and from (262) we compute the
constant C for v2 = 0 which defines the zero-velocity curves. For this
motion they correspond to two separated closed curves around the Sun
(left region) and around the planet (right region) and the asteroid can
never leave these areas. But also the motion of a satellite of Jupiter is
limited by the zero-velocity curves and can never escape from this region
(right region). On the other hand a massless body could move outside the
outer circles-like curve and could never penetrate the inner system. We
thus have a forbidden region of motion (dark grey) separating different
possible regions of motion. In this sense we can speak of an absolute sta-
bility found for t → ∞, which is very rare for problems in astrodynamical
problems.

• Moderate C: Next we check the stability of a massless asteroid with a
large eccentricity in the main belt. Again the position defines the potential
and for v2 = 0 we find a value for C which defines the zero-velocity
curves (see Fig. 34). We can see that the regions of motion around the
two primaries opened and are now connected. This means that the third
body can move freely around both primaries, but is still captured inside
and may not escape into the outer regions.

• Small C: With even a higher eccentricity the third body may now es-
cape through the large gap, which opens around the Lagrange point L2

(Fig. 35). A massless body may stay around the primaries for quite a long
time, but then it can escape to the outer region, which is now connected
to the inner one. The forbidden region is shrinking more and more to-
wards two points in the rotating coordinate system (ξ − η), a fact that is
quite well visible in the three dimensional representation of Ω (Fig. 32)
(the very dark region around the two Lagrange points L4 and L5). Finally
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Fig. 33. Zero-velocity curves in a rotating frame for an asteroid close to the Sun
(large black spot) or a satellite around a planet (small black point). The grey region
can never be penetrated by a third body moving either close to the planet, close to
the Sun or far outside both primaries. The small circles show the so-called Lagrange
points of equilibrium (for an explanation see in the text)

the zero-velocity curves degenerate to the equilateral Lagrange points and
disappear completely for small values of C.

5.3 Stability of the Lagrange Points

To investigate the stability of the Lagrange points, we start by examining the
motion of a body that moves very close to L4 (see Fig. 38).

The coordinates ξ and η for the body close to the Lagrange point are
given by
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Fig. 34. Zero-velocity curve in a rotating frame for a body (asteroid) which can
move in a region around both primaries (caption like in Fig. 33)

ξ = a + x

η = b + y (270)

where the position of L4 is fixed by a = 0.5 − µ and b =
√

3/2 (see Fig. 36).
This leads to the following equations of motion for the deviation from the

Lagrange point

ẍ− 2ẏ =
∂Ω

∂x

ÿ + 2ẋ =
∂Ω

∂y
. (271)

With a Taylor expansion of the potential Ω close to the Lagrange point up
to 2nd order
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Fig. 35. Zero-Velocity Curve in a rotating frame for a body (comet) which can
escape from the region around the Sun and the planet (caption like in Fig. 33)

Ω(ξ, η) = Ω(a + x, b + y) (272)

we derive the equations of motion for the asteroid close to L4

ẍ− 2ẏ = xΩaa + yΩab

ÿ + 2ẋ = xΩab + yΩbb (273)

where the Ωaa, Ωbb and Ωab are the numerical values of the partial derivatives
at the Lagrange points (for x = y = 0).

To obtain a solution, we make the ansatz

x = Aeλt

y = Beλt (274)

Inserting (274) into (273) gives
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Fig. 36. Configuration and parameters of a body close to the Lagrange point L4

λ2Aeλt − 2λBeλt = AeλtΩaa + BeλtΩab

λ2Beλt + 2λAeλt = AeλtΩab + BeλtΩbb (275)

from which we derive

A
(
λ2 −Ωaa

)
−B (2λ + Ωab) = 0

A (2λ−Ωab) + B
(
λ2 −Ωbb

)
= 0 (276)

The characteristic equation for λ is therefore

λ4 − λ2 (Ωaa + Ωab − 4) + ΩaaΩbb −Ω2
ab = 0 (277)

After performing the derivations and inserting the values for L4 one obtains:

Ωaa =
3
4

Ωab =
3
√

3
4

(1 − 2µ) Ωbb =
9
4

(278)

This gives the following solution for λ:

λ2 = −1
2
± 1

2

√
1 − 27µ (1 − µ) (279)

from which the condition for a real solution for λ is found:

µ <
1
25

(280)

This means that L4 (and also L5) are stable only, if the mass ratio of the
two primaries is smaller than 1

25 ! This is the case in our Solar system for all
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planets and also the Earth-Moon system. For the Sun and Jupiter the ratio
is ∼ 1

1000 and indeed we can observe a large group of asteroids (“Trojans”)
that move around L4 and L5.

For the general solution of (273) we can make the ansatz

x =
4∑

i=1

Aie
λit (281)

y =
4∑

i=1

Bie
λit (282)

where the Ai can be expressed through the Bi. One can replace the λis with

λ1 = jν1, λ2 = −jν1 (283)
λ3 = jν2, λ4 = −jν2 (284)

with j =
√
−1, which now leads to

x = A1e
jν1t + A2e

−jν1t + A3e
jν2t + A4e

−jν2t (285)
y = B1e

jν1t + B2e
−jν1t + B3e

jν2t + B4e
−jν2t (286)

Furthermore by replacing e±jνt (making use of the de Moivre formula) one
can see – after some algebraic work34 – that the solutions for x and y consists
of two purely sinusoidal functions with the periods

p1 =
2π
ν1

; p2 =
2π
ν2

(287)

where the frequencies ν1 and ν2 are independent of the initial conditions.
They determine the amplitudes and the phases of the libration, because

ν2 = −λ2 =
1
2

(
1 ±

√
1 − χ

)
with χ = 27µ(1 − µ) (288)

only depends on the masses but not on the initial conditions. With this
equation the two periods as function of the masses (respectively the mass
ratio µ) can be developed as follows:

ν1 = 1 −
(

1
8
χ +

5
128

χ2 +
21

1024
χ3 + · · ·

)

ν2 =
1
2
√

χ

(
1 +

1
8
χ +

7
128

χ2 +
31

1024
χ3 + · · ·

)
(289)

Taking into account the property that ν2
2 = 1−ν2

1 we can explicitely find the
two frequencies (expressed in the correct units) :

34 e.g. [65], 127ff
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ν1 = 1 − 27
8

µ− 3213
126

µ2 − 22717827
65600

µ3 + · · · (290)

For Jupiter Trojans the two periods are a short one very close to Jupiter’s
own period p1 = 11.9 years and a longer one with p2 = 147.42 years. We
can see a similar behavior in Figs. 37-39. Fig. 37 shows a “banana” shaped
orbit around the Lagrange point L4 where one clearly sees, how the motion
is dominated by two frequencies; also the shape becomes more elongated if
the angle φ35 is increased. For even larger φ, the orbit encloses L4 and L5 –
and it is called “horseshoe” orbit (Fig. 39).
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Fig. 37. Orbits around the Lagrange point L4 in the R3BP: the large “banana”
shaped orbit is for the initial conditions φ = 140o and e = 0.02; the smaller orbit
with several loops is for φ = 50o and e = 0.01; the most innermost orbit only visible
as line through L4 is for φ = 60o and e = 0.001. (Note that the eccentricity is the
one of the Trojan!)

Finally one should say that even in extrasolar planets one can expect
stable motion around the Lagrange points L4 and L5, which is the subject
of several recent papers (e.g. [14, 39]). The period of libration for such sys-
tems can be easily determined using the formula given above (290) with the
appropriate value of µ.

5.4 On the Stability Regions of the Trojan Asteroids

Until the first discovery of an asteroid, which moves always in the vicinity
of L4 by Max Wolf in Heidelberg in 1906 (the Asteroid (588) Achilles), the
R3BP with stable orbits around the equilateral Lagrange points seemed to be
35 φ is the angle between the line connecting the Sun and the planet and the planet

and the point where the massless body has its closest approach to the planet.
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Fig. 39. Orbits around the Lagrange point L4 in the R3BP:“Horseshoe” orbit
around L4 and L5 for φ = 150o and e = 0.02 and an orbit around L5 for φ = 40o

and e = 0.1

only of theoretical interest. Ever since the search for bodies librating around
the Lagrange points L4 and L5 of the Sun-Jupiter system was quite successful
and nowadays we know of about 1000 Trojan asteroids36 around the leading
point L4, but only 600 around the trailing L5. This difference between the
two populations is still an open question of Solar System dynamics. It should
be mentioned that the stability of the equilibrium points is retained also for
an elliptic orbit of the planet and for orbits outside the plane of motion of
the primaries. In many papers (e.g. [17],[18]) the motion of the Trojans was

36 These asteroids are called “Trojans” since all of them are named after heroes of
the Trojan war.
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studied also with analytical methods in the model of the spatial elliptic re-
stricted three-body problem and even in a more realistic model where one
takes into account Saturn’s perturbations on Jupiter. Using numerical meth-
ods Milani [48], [49] was able to show that some of the real Trojans are on
chaotic orbits. Also possible escapes from the Trojan cloud were discussed by
different groups (e.g. [54],[70],[71]) in connection with chaotic orbits.

In Fig. 40 we show a histogram of the Trojans with respect to the in-
clinations and another one with respect to the eccentricities (Fig. 41). Here
the differences in the population for L4 and L5 Trojans mentioned before are
well visible.
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Fig. 40. Distribution of all real L4 (darkgrey) and L5 (lightgrey) Trojans with
respect to their inclination

One can see that the mean value of the inclinations is slightly above zero
degrees – this means that the Trojans with small inclined orbits with respect
to Jupiter’s plane of orbit seem to be more stable. The eccentricities of the
orbits show a maximum around e = 0.05, which is caused by the variation of
the eccentricity of Jupiter’s orbit (0.025 < eJup < 0.06).

To check the largeness of the stability region around L4 and L5 of Jupiter,
numerical test computations were undertaken for time scales up to 108 years.
The respective results are summarized in Fig. 42, where one can see how large
these regions are. For a fine grid of initial conditions (semimajor axis versus
initial eccentricity) of fictitious Trojans, we performed long-term numerical
integrations. We used the entropy K2

37 as measure of the chaoticity of an
orbit. We started with the R3BP and did also computations in the realistic
model of the outer Solar System, where we included the planets from Jupiter
to Neptune (we show the results for the more realistic model including also

37 for a definition see [2]
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Fig. 41. Distribution of all real L4 (darkgrey) and L5 (lightgrey) Trojans with
respect to their eccentricity

Fig. 42. Stability diagram around the equilateral Lagrange points L4 showing
the semi-major axis of the fictitious Trojan versus its initial eccentricity. Initial
conditions in the red regions lead to unstable and in the yellow ones to stable orbits
(after von Bloh, 2005, unpublished). The color in the diagram gives the value of
K2 – the entropy, a chaos indicator (for details see [2])
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Saturn). Recently [62, 16] also analytical methods were used for an estimation
of the “effective time of stability” where it is shown (still in the framework of
the restricted three body problem) that most of the actually observed Trojans
are “effectively” stable for up to 109 years.

6 The Sitnikov Problem

There are good reasons to include a description of the Sitnikov problem in
this introductionary course on Celestial Mechanics:

“We argue that it provides a very clear example for introducing stu-
dents to non-integrability and chaos” (see Hevia [30])

In fact this dynamical system it is quite often cited as a perfect exam-
ple for the chaoticity of a dynamical system. The Sitnikov problem can be
regarded as a special case of the restricted three body problem: the configu-
ration consists of two equally massive primary bodies on Keplerian orbits. A
third, massless body moves perpendicular to the orbital plane of the primaries
through the center of mass (see Fig. 43).

To describe the extreme sensitivity with respect to the initial conditions
(which is one main property of a chaotic system) we cite J. Moser [50]:

“... we consider a solution of z(t) with infinitely many zeroes tk(k =
0,±1,±2, · · ·) which are ordered according to size, tk < tk+1, z(tk) =
0. Then we introduce the integers

sk =
[
tk+1 − tk

2π

]
(291)

which measures the number of complete revolutions of the primaries
between two zeroes of z(t). This way we can associate to every such
solution a double infinite sequence of integers. The main result can
be expressed as the converse statement:

Theorem. Given a sufficiently small eccentricity ε > 0 there exists an
integer m = m(ε) such that any sequence s with sk ≥ m corresponds
to a solution ...”

6.1 Circular Case

The case, when the primaries move on circular orbits was already known to
Leonard Euler as a special case of the two fixed center problem, when the
two masses involved are equal (m1 = m2) and the third massless body m3
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Fig. 43. Configuration of the Sitnikov problem

moves in the same plane, but perpendicular to the line of connection of the
two masses through the barycentre. He solved the two fixed center problem
generally for any motion of the massless body with the aid of elliptic functions
(see Sect. 3.4 in the chapter “Regular and Chaotic Motion in Hamiltonian
Systems”and also [74],[75]). In 1907 G. Pavanini [53] expressed the solutions
of the circular Sitnikov problem by means of Weierstrass elliptic functions.
MacMillan [45] gave a solution in terms of elliptic integrals in Legendre’s
normal form and was able to find a solution in form of a Fourier series ex-
pansion where the coefficients are power series depending on the perturbation
parameter z (sufficiently small).

With m1 = m2 = m, r2 = a2 + z2 and a = constant, the total energy h
of the systems reads

h =
1
2
ż2 − 2m

r
(292)

from which one finds the equation of motion by differentiating with respect
to the time

z̈ = −2mz

r3
. (293)

From the energy relation it follows furthermore

dz

dt
=

√
2h +

4m
r

(294)

which can be separated and prepared for integration

dt = ± dz√
2h + 4m

r

. (295)

Setting 2m = 1 and a = 1 leads to the equation of motion from (295)
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z̈ = − z(√
1 + z2

)3 . (296)

We find a restriction for the square of the velocity from the energy relation

1
2
ż2 = h +

z√
1 + z2

= h +
1
r
≥ h + 1 (297)

and by integration of equation (295)

t− t0 = τ =
1√
2

∫ z

z0

dz√
h + 1√

1+z2

(298)

We set t = t0, which is the time when the massless body crosses the barycen-
tre. For every motion ż ≥ 0 and consequently condition (297) is fulfilled and
we find a restriction for bounded motions, namely h ≥ −1. It follows that
there exists a point of return zmax = ±γ for the massless body for ż = 0

h = − 1√
1 + γ2

. (299)

That means we have bounded motion only for negative h. With the respective
energy −1 ≤ h < 0 the motion is confined between

zmax = ±γ = ±
√

1
h2

− 1 (300)

For h = −1 we have γ = 0 and the body is motionless in the barycentre. For
h = 0, which is the parabolic case, the reversion point is shifted to infinity;
when h > 0 we have the hyperbolic case, where the velocity is always nonzero.

For −1 ≤ h < 0 the motion is always symmetric to z = 0 and reaches its
maximum velocity in the barycentre

żmax = ±
√

2(h + 1) = ±2k; with 0 ≤ k =

√
1 + h

2
<

1√
2

(301)

This purely periodic motion can be represented with the aid of a Fourier
series

z = a1 sin ντ + a3 sin 3ντ + a5 sin 5ντ + . . . (302)

where ν = 2π√
p and p is the period of the oscillation

p

4
=

1√
2

∫ γ

0

dz√
h + 1√

1+z2

(303)

The solution leads to an elliptic integral of the 3rd kind. After rather lengthy
transformations38 finally one ends up with a time series for z:
38 for details see Stumpff [64], p.75 ff
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Fig. 44. Oscillations of m3 for zini = 0.2, 0.7, 1.3 for 10 revolutions of the primary
bodies

z = γ

[
sin ντ +

3
64

µ(sin ντ + sin 3ντ)+ (304)

+
1

4096
µ2 (79 sin ντ + 108 sin 3ντ + 29 sin 5ντ) + . . .

]
(305)

with γ =
√

µ
1−µ .

6.2 Numerical Results

Almost no dynamical system is integrable and therefore a way of deriving an
orbit is to use numerical techniques to solve the equations of motion. The
problem there is that we just can follow one orbit for one set of initial con-
ditions. An appropriate way to study the dynamics of – low dimensional –
systems is to construct surfaces of section (=SOS) with the aid of extensive
numerical investigations, where we compute orbits for various initial condi-
tions. As example we show in Fig. 44 the solutions for 10 revolutions of the
primaries for the MacMillan problem for three different initial conditions,
where we set the velocity ż = 0. It is obvious that the frequency diminishes
with the amplitudes and converges to a final value for infinitesimal oscilla-
tions; the respective numerical value will be given later. In Fig. 46 (upper
left plot) the SOS of the MacMillan problem is plotted for initial values of
0.1 < zini < 2. (e = 0), where one can see that all invariant curves are closed:
this means, that all motions are quasiperiodic ones on a KAM torus.
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6.3 Elliptic Case

In the Sitnikov problem (e �= 0) the situation is different: we can observe the
structure of phase space which we know from nonlinear dynamical systems
with periodic orbits, quasiperiodic orbits and chaotic ones.

As example we show the orbital behavior of the third body for the same
initial conditions (z = 0.05, the primaries in periastron) but for different
eccentricities of the primary bodies (Fig. 45):

1. The regular periodic motion with one specific amplitude is well visible on
the top graph for e = 0.

2. For e = 0.3 the difference is already evident (small differences in the
amplitudes and the periods).

3. A big change is visible in the next graph for e = 0.6 with small and large
amplitudes and periods, although the motion still seems to be quasiperi-
odic (we can verify from Fig. 47 that it is very close to be approximated
by a high order perturbation theory, see next subsection).

4. Finally with the eccentricity e = 0.9 (bottom graph) the system is in
a mode, where the consecutive intervals of time of the crossing of the
barycentre are completely different. Whenever the primaries are in the
periastron (multiples of 2π) there is a strong interaction with m1 and m2

because they are in this position very close to m3 (a = 0.1, compared
to the value a > 1 in the MacMillan problem). In fact after some ten
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of the primaries. In this e − z(0) diagram in the central red region the errors stays
within 10−7, in the yellow, green and light blue region the error grows from 10−7

to 10−2 and reaches very fast 50 percent in the violet corners, after Lhotka [41]

more revolutions of the primaries the third body escapes! The other three
motions described above are stable.

The structure of the phase space for different eccentricities is shown in
Fig. 46. Any of these orbits in the SOS starts with different initial conditions
for z with ż = 0 and a = amin (= periastron); one can imagine that we
“drop” the third mass from this position. Points on this subspace of the
three dimensional phase space are plotted for the next crossing of the orbit
with the SOS when the primaries are again in their perihelion position. It
means that we have chosen the positional angle of the primaries being zero
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as initial condition and as defining the surface of section. Let us describe in
Fig. 46 the different SOS one by one:

• e = 0 (upper left graph): As stated above all initial conditions lead to
closed curves, which we can understand as sections of KAM-tori with a
plane.

• e = 0.1 (upper right graph): We already can see the structure known from
nonlinear dynamics: outside the “main island” of stable orbits, where all
motions are bounded. We see two islands of invariant curves around a
stable point, which correspond to the 2:1 resonance (where the primaries
make two complete revolution whereas the third mass finishes exactly one
oscillation – two crossings of the barycentre). Inside the “main island”
one can also see two other islands, which correspond to different resonant
motions (in Table 1 we give initial conditions for some specific resonant
orbits).

• e = 0.2: The “main island” shrinks towards the point of equilibrium in
the center and the 2:1 island is more and more isolated and shrinks also
in size. The triangle like structure has a vertex directly on the x-axis
opposite to the main land and is caused by a 3:1 resonant orbit.

• e = 0.3, e = 0.4 and e = 0.5: The size of the island starts to grow again
after going through a minimum and change of the orientation on the SOS:
the triangle like structure of the island now has a vertex on the abscissa
on the side of the “main island”39

• e = 0.6 and e = 0.8: The size of the “main island” is shrinking more and
more while from the point (z = 0, ż = 0) new periodic orbits emerge when
the eccentricities of the primaries become larger. These fixed points and
the surrounding secondary islands are shifted outwards with larger and
larger values of the eccentricity until they disappear in the large chaotic
see.

What we describe here is the well known behavior of dynamical systems
which was already described in the discussion of the Standard Mapping. We
emphasize that the structure of the phase space is such, that in between
any periodic orbits there is an infinity of invariant curves corresponding to
quasiperiodic orbits. This foliation into KAM-tori shows the close connection
of dynamical systems and number theory which will be discussed in the very
last section of this part. A detailed discussion can be found e.g. in [16].

Nevertheless there exist periodic orbits which correspond to points in the
SOS. They are dense with respect to the initial conditions (like the rational
numbers). Table 1 shows the initial condition zini for some of them:

39 this well known effect in non-integrable Hamiltonian systems is described in
details in [73]
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Table 1. Initial conditions for the distance z for selected periodic orbits in the
Sitnikov problem; the primaries are in periastron position and ż = 0; n is the mean
motion

nprim : nm3 e = 0 e = 0.2 e = 0.4 e = 0.6 e = 0.8

1:1 1.043698 0.872719 0.691427 0.496293 0.278653
1:2 1.848460 1.836787 1.816155 1.786429 1.747073
1:3 2.495394 2.924811 3.024252 3.048240 3.040044
1:4 3.064713 3.071739 3.071158 3.062020 3.042885
1:5 3.584274 3.137770 3.090335 3.067454 3.043343

6.4 Analytical Results for the Elliptic Case

In the elliptic case (e > 0) the distance of the primaries 2a is not constant,
a fact that changes the equations of motion into a form which is explicitely
time dependant

z̈ = − 2m(√
z2 + a(t)2

)3 (306)

Using the known development for the distance a

a(t) =
1
2

(1 − e cos(t)) + O(e2) (307)

we can develop (306) and set m = 1

z̈ = − 8z(√
4z2 + 1

)3 − e
24z(√

4z2 + 1
)5 cos(t) (308)

For the case e = 0 we see, that for z << a the equation of motion reduces to
a simple harmonic oscillator

z̈ + 8z = 0 (309)

with the solution
z(t) = z(0) cos

√
8t (310)

which is the aforementioned limiting period p = 2
√

2 for small amplitudes.
For treating the low energy case Wodnar [76] introduced a transformation

of the independent variable time to the angle ζ = z
a(ϕ) which is the tangent

of the angle between the barycentre and one primaries’ position seen from
the mass m3. The equation of motion in the dependant variable ζ is

ζ ′′ +
e cosϕ + (0.25 + ζ2)−1.5

1 + e cosϕ
ζ = 0 (311)

where the ’ stands for the derivation with respect to the true anomaly ϕ.
Following Hagel [26] the expression Ξ(ζ) = (0.25 + ζ2)−1.5 can be developed
into a polynomial differential equation of the form
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ζ ′′ + g1(ϕ)ζ +
M∑

k=2

gk(ζ)ζk = 0 (312)

with an appropriately chosen M to ensure accurate results for ζ. To achieve
this goal one can expand the expression Ξ(ζ) = (0.25+ζ2)(−1.5) into a Taylor
series or, which turns out to be more efficient, into Chebycheff polynomials
which yield

Ξ(ζ) = 8 − 47ζ2 + 203ζ4 − 616ζ6 + 1168ζ8 + O(ζ10) (313)

which is valid in the range −0.8 < ζ < 0.8. Thus one is lead to the following
equation which describes motions in the vicinity of the barycentre and can
be used for further investigations. From the linearized equations

ζ
′′

+ g1(�)ζ = 0 (314)

one can derive exact analytical solutions for the frequencies and the ampli-
tudes. This can be used for a subsequent perturbation theory which gives
quite good solutions up to large eccentricities of the primaries.

ζ ′′ +
8 + e cosϕ
1 + e cosϕ

ζ +
n∑

k=2

Ak

1 + e cosϕ
ζ = 0 (315)

The linear part is a differential equation of Hill’s type and the solution can
be discussed using the Floquet theory. For very small oscillations but large
eccentricities Hagel and Trenkler [27] succeeded with the aid of quasi integrals
to confirm a result found by Alfaro and Chiralt [1] that the fixed point for
z = ż = 0 is unstable for very small intervals of the eccentricity (e.g. close to
0.544469 · · ·, between 0.855862 · · · < e < 0.855863 · · ·, etc. Based on this work
Lhotka [41] treated the non-integrable case (e > 0) of small amplitudes and
used then Floquet’s theory like Hagel. Using computer algebra (Mathematica)
he was able to expand the transfermatrix R (monodromy matrix) up to the
17th order in the eccentricity of the primaries. After the reduction of the
problem to a harmonic oscillator, an automatic application of the method of
Poincaré-Lindstedt was implemented. Thus it was possible to find a solution
consisting of 24 time dependant frequencies and amplitudes:

z(t) =
24∑

k=1

ak(t) cos(Ψk(σ(t))) +
24∑

k=1

ak(t) sin(Ψk(σ(t))) (316)

where the respective functions Ψ(σ(t)) can be computed according to the
initial conditions with a Mathematica program.40 The range of validity for
z and the eccentricity e is shown in Fig. 47, where the red central region
marks a very good precision even after 10 revolutions of the primaries. It is
40 Available at http://www.astro.univie.ac.at/∼adg
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quite remarkable that with this approach Lhotka succeeded to have very good
solutions even for relatively large values of the “small quantities” eccentricity
and/or initial distance from the barycentre.

6.5 The Sitnikov Sequences

One motivation to discuss the main properties of the Sitnikov problem was
already mentioned in the introduction: whatever sequence of integer numbers
sk– corresponding to revolutions of the primaries – one can imagine, there
is always one orbit which corresponds to these successive crossings of the
barycentre (with the restriction sk ≥ m already stated in the theorem).

To realize such a sequence numerically we can proceed as follows (see [9]):
we choose a grid of initial conditions for the true anomaly ϕ of the primaries
and for the velocity ż and start our computations always from the position
z = 0. We follow the orbit up to the first crossing of the massless body and
ask whether this crossing was still during the first revolution of the primaries,
or after the second, third, fourth etc. more revolutions. In such a way we can
characterize an orbit by a sequence of numbers. We mark these numbers in
an initial condition diagram for a great number of orbits, which now define
different regions. Then we proceed to the next crossing of the barycentre, but
work on a finer grid and count again the number of revolutions between the
last crossing and this one. We have done this up to four crossings and found
regions in the initial condition diagram (phase of the primaries versus the
velocity of m3) which correspond exactly to the sequences of numbers we were
speaking above. We characterized each of this sequences with different colors
in Fig. 48: e.g. the large violet region corresponds to a crossing already during
the first revolution of the primaries; consequently the sequence would start
with 1. The black region on the top of the plot corresponds to a large initial
velocity and to a first crossing after 4 or more revolution of the primaries. In
this figure one can see the complicated dynamical structure of the phase space
of the Sitnikov problem and how a tiny difference in the initial conditions can
change the orbit after only a few crossings of the barycentre.

In Fig. 49 we finally show an orbit which excellently demonstrates the
sensitivity of the motion to a change of the initial conditions(which charac-
terizes nonlinear dynamical systems and chaotic motions). The initial position
of these three orbits just differ by 10−6 and lead to different behavior:

1. for z(0) = 10−3 m3 leaves after 2 primary revolutions along the negative
z-axis (red line),

2. for z(0) = 10−3 +10−6 m3 leaves the system in the other direction (green
line);

3. for z(0) = 10−3 − 10−6 m3 the orbit stays bounded for long time but
nevertheless escapes.
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Fig. 48. Initial condition diagram for the eccentricity e = 0.3: x-axis is the phase of
the primaries, y-axis is the velocity of the third body (z(0) = 0). The fine structure
of the phase space is marked with different colors indicating initial conditions which
lead to a specific Sitnikov sequence (after F. Vrabec (unpublished))(see the text for
details)
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Fig. 49. For a large eccentricity of the primaries (e=0.9) we see the different
behavior of three orbits initially only separated by 10−6 in position (for details see
text)
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7 Planetary Motion and Classical Perturbation Theory

7.1 Historical Remarks

A remarkable confirmation of Newton’s law of gravitation was the prediction
of the appearance of the comet Halley for 1758, which was done by Edmund
Halley (1656–1742) who used several observations and assumed an elliptic
orbit with a very large eccentricity for this comet. It was much more diffi-
cult for the next generation of astronomers to solve the n-body problem41 –
although the only force acting between them is the gravitation:

• Leonhard Euler (1707–1783) was the one who found the ten integrals for
the n-body problem.

• Joseph-Louis Lagrange (1786–1813) solved the equations of motions for
special cases of the general three-body problem (when they always are in
the configuration of an equilateral triangle).

• Pierre Simon Laplace (1749–1827) discovered that up to the second order
in the small masses the semi-major axis of the orbits of the planets are
constant; this was an important indication of the stability of the planetary
system. It was also Laplace who summarized the knowledge of the epoch
in its famous books: Mécanique céleste and Exposition du Système du
Monde where – as a consequence of Newton’s law – he stated that

“We may regard the present state of the universe as the effect of its past
and the cause of its future. An intellect which at any given moment knew all
of the forces that animate nature and the mutual positions of the beings that
compose it, if this intellect were vast enough to submit the data to analysis,
could condense into a single formula the movement of the greatest bodies of the
universe and that of the lightest atom; for such an intellect nothing could be
uncertain and the future just like the past would be present before its eyes.”42

In 1781 William Herschel (1738–1822) discovered, after systematically
searching the sky with his telescope, the planet Uranus. Because of system-
atically differences in the position of Uranus, Adams in England and Lever-
rier in France computed the orbit of an additional planet outside the orbit
of Uranus. In fact in 1846 this planet – Neptune – was discovered in Berlin
by Galle; this was a magnificent proof of the possibilities of using perturba-
tion theory based only on Newton’s law of gravitation. The outermost planet
Pluto was discovered in 1931; it turned out in recent years that Pluto is
just one large object out of many – called Plutinos –in the 3:2 mean mo-
tion resonance with Neptune. With the use of better and better telescopes
41 with n > 2.
42 quite often cited as “Laplace’s demon”
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Fig. 50. Pierre Simon Laplace (1749-1827) (picture taken from MacTutor History
of Mathematics archive, University of St Andrews Scotland)

astronomers now discover many more small but also larger object far outside
Pluto, which built the so-called Edgeworth-Kuiper belt.43

Finally we should mention that the spacing of the planets seemed to be
quite regular for the planets known up to the middle of the eighteenth century;
therefore Titius and Bode formulated a “law” from which one could compute
the distance d of the known six planets (Mercury to Saturn) in units of the
distance Earth-Sun:

d = 0.4 + 0.3(2n) with n = −∞, 0, 1, 2, 4, 5 (317)

43 There is an estimated number of some ten thousands of objects larger than
100km; the largest known up to now are Quaoar and Sedna, discovered recently,
with more than 1000 km in diameter.
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At the distance corresponding to n=5 in fact Uranus was discovered (d ∼
19), for n = 3 in 1801 the first planetoid Ceres was observed (d ∼ 2.8);
both seemed to be a confirmation of the Titius-Bode law. But at least, when
Neptune was discovered in a quite different distance from the Sun from the
one given by this “law” (for n = 7 Neptune should have distance d ∼ 39
but it has d ∼ 30) it turned out to be just a kind of a rule to compute the
distances for some planets and nothing more.44

In this section we will give an introduction into classical perturbation
theory, then we will investigate mean motion resonances and their influence
on the motion of the planets. Finally, at the end of this section, we explain
the principles of the secular perturbation theory.

7.2 Classical Perturbation Theory of the Solar System

There exist quite good textbooks on this problem like the one by Roy [60] or
the excellent one by Brouwer and Clemence [3].

Heliocentric Equations of Motion

Newton’s law gives the force F acting between two bodies with masses mi

and mj
45

F ij = k2 mimj

r2
ij

pi − pj

rij
(318)

where pi and pj are the position vectors in an inertial frame (see Fig. 51);
rij = |pi − pj|. To find out the force from n-1 bodies with masses mj ; (j =
0, ..., n, j �= i) acting on mi, one has to add all the forces

F i = mi · p̈i = k2mi

n∑
j=0,j �=i

mj

r3
ij

(pi − pj) (319)

Adding all forces leads to the equation

n∑
i=0

mi · p̈i = k2
n∑

i=0

n∑
j=0,j �=i

mimj

r3
ij

(pi − pj) = 0 (320)

which is identically zero because every vector pi − pj is canceled by a vector
in the opposite direction pj − pi. Double integration defines the barycen-
tre of the dynamical system, which is moving linearly in space. This vector
s = at + b can be used to reduce the system because a and b are constants;
44 Every now and then it is tried to find another law of the spacing of the planets.

We refer to a systematic exploration in the book of Murray and Dermott [51] in
a separate chapter (1.5).

45 This derivation follows [65].
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Fig. 51. Configuration in the inertial frame

the barycentre may serve as the new origin for the coordinate system. Be-
sides these 6 constants of motions – the components of a and b – four more
integrals of motion are the angular momentum integral (3 constants) and
the energy integral Ekin + Epot = const. These 10 constants of motion are
the classical integrals of the Newtonian n-body problem. In planetary theory,
where one wants to describe the motion of the planets, we use the fact that
more than 99.9 percent of the mass is in the Sun (m0). Therefore it is useful
to transform to a heliocentric relative coordinate system, where we denote
the relative (heliocentric) vectors with qi = pi−p0.46 To transform the equa-
tions of motion to a heliocentric system, we first separate in equation (320)
the attraction of the Sun on the planet mi from the other terms.

p̈i = k2


m0

r3
0i

(p0 − pi) +
n∑

j=1,j �=i

mj

r3
ij

(pj − pi)


 (321)

and separate in the Sun’s equation of motion the attracting force of the planet
mi on the Sun

p̈0 = k2


mi

r3
0i

(pi − p0) +
n∑

j=1,j �=i

mj

r3
j1

(pj − p0)


 (322)

46 which also is true for the velocities and the accelerations.
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Subtracting now equation (322) from (321) and separating the vector pi−p0,
we get the following – now heliocentric – equations of motion of the planet
mi

q̈i = k2

[
−m0

r3
0i

(pi − p0) +
mi

r3
0i

(pi − p0)
]

+

+
n∑

j=1,j �=i

[
mj

r3
ji

(pj − pi) −
mj

r3
j0

(pj − p0)

]
(323)

which finally can be written as

q̈i = k2


−m0 + mi

r3
0i

qi +
n∑

j=1,j �=i

mj

(
qj − qi

r3
ji

− qj

r3
j0

)
 (324)

In this formulation it is evident why the orbits of the planets are – in the first
approximation – ellipses, as we pointed out at the beginning: the first term
describes an unperturbed two-body motion around the Sun, and the second
term includes a factor that depends always on the other planets’ masses,
which are only in the order of 10−3 to 10−6 percent of the Sun’s dominat-
ing mass. Consequently we can write for planetary motions the equations of
motion in the form

q̈i = −k2 m0 + mi

r3
0i

qi + P i (325)

where the perturbing vector P i reads

P i = k2
n∑

j=1,j �=i

mj

(
qj − qi

r3
ji

− qj

r3
j0

)
(326)

These n 2nd order differential equations are the equations of motion for
all solar system bodies and apply to planets, asteroids and also comets. For
the Moon it is better to use a coordinate system centered at the Earth; for
satellites of the planets it is also better to work in a planetocentric system.
In the perturbing vector P i the appearance of the 3rd power of the distances
| qj − qi |= rji in the denominator may cause large accelerations, when
these distances become small although the masses of the planets are small.
In planetary theories this fact is not a problem, because planets move on
well separated orbits. It is different for comets, which come quite often close
to planets (especially Jupiter) who then changes their orbits significantly, so
that comets, having initially a parabolic orbit, may end on an elliptic orbit
with moderate eccentricity.47 The equations of motion in this form are also
not practical for “Near Earth Asteroids” like the Atens, Apollos and Amors
on their high eccentric orbits, which lead them quite often close to a planet.
47 These captures are responsible for the Jupiter family of comets.
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One should mention the two different integration methods of solving the
equations of motion (325):48

1. With the numerical integration method, the solution (only ONE) has to
be calculated step by step (with regard to time), and can be found with
any desired precision (but only for a limited time interval which depends
on the problem; for comets and Near Earth Asteroids the time is in the
order of years, for the planets in the order of ten thousands of years).
The Nautical Almanac Service at the Naval observatory in Washington
publishes ephemerides on the basis of numerical integrations provided by
the JPL in Pasadena, which take into account even the perturbations of
the major asteroids, make corrections due to the general relativity and
incorporate precise astrometric observations.

2. The general perturbation method works with complicated series expan-
sions including thousands of terms and computes the solutions for a
whole bundle of initial conditions. The solution is such, that inserting
the time in the series (also in form of a Fourier series) gives immediately
the position in space (and on the sky). This method will be discussed in
detail, because it gives deep insight in the nature of the dynamics of the
planetary system!

The Lagrange Equations

The equations of motion of one planet perturbed by the other ones can also
be written with the aid of a scalar, namely the perturbing function Fi

Fi = k2
n∑

j=1,j �=i

mj

(
1
rij

− qiqj

r3
j

)
(327)

When we compute the gradient of Fi, we find

∇iFi = k2
n∑

j=1,j �=i

mj

(
qj − qi

r3
ji

− qj

r3
j0

)
(328)

which is identical to the perturbing acceleration P i in equation (326). Fi

consists of the direct part 1
ρ (ρ = rij = |qj − qi|) and the indirect part

involving the inner product of the two heliocentric positions vectors qi and
qj of the planets. The direct part can be computed via the triangle consisting
of |q1| = r1, and |q2| = r2 and ρ (see Fig. 52):

ρ2 = r2
1 − r1r2 cosφ + r2

2 (329)

where we now restrict the calculations to one planet perturbed by another
one; φ is the angle between the two position vectors of the planets involved:
48 Examples of these methods are discussed in the appendix.
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Fig. 52. Heliocentric position vectors

1
ρ

=
1
r2

[
1 − 2α cosφ + α2

] 1
2 (330)

with α = r1/r2 < 1 and thus r1 < r2, which means that we deal with the
problem of an inner planet perturbed by an outer one.

We now can develop (330) with respect to the fact that α < 1 into a
power series of α and trigonometric functions of the angle φ. With the aid of
the Legendre polynomials49 the whole perturbing function for a planet with
mass m1 perturbed by an other planet with mass m2 can be expressed as

F12 =
k2m2

r2

∞∑
n=2

(
r1

r2

)n

℘n(cosφ) (331)

where ℘s stands for the Legendre polynomials. With some more algebra we
end up with a Fourier series in time:

F12 = k2m2

∞∑
j=−∞

∞∑
k=−∞

Cjk · cos[(j · n1 + k · n2)t + Djk] (332)

where Cjk = Cjk(a1, e1, i1, a2, e2, i2) are polynomial expressions in the small
parameters inclination and eccentricity which can be derived from the above
mentioned development into Legendre polynomials. Furthermore Djk is a
function of ω1, Ω1, ω2 and Ω2.

The perturbations of other planets on a planet (m1) may just be added
leading to a perturbating function F1 = m2F12 + m3F13 + . . . + mnF1n de-
pending on the number of planets which are involved.
49 see appendix D for details
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As we have seen in a first approximation, the orbits of the planets are
Kepler ellipses with constant elements, where the theory of the two-body-
motion can be applied, which has been developed in Sect. 4 in its basic
ideas. Under the attraction of the other planets, the constant orbital elements
σT

i = (ai, ei, ii, Ωi, ωi,Mi)50 can be modeled with the aid of a set of 1st order
differential equations – the Lagrange equations51 where F =

∑n
j=1 Fj :

da

dt
=

2
na

∂F

∂M

de

dt
=

−
√

1 − e2

na2e

∂F

∂ω
+

1 − e2

na2e

∂F

∂M
di

dt
=

−1
na2

√
1 − e2 sin i

∂F

∂Ω
+

cos i
na2

√
1 − e2 sin i

∂F

∂ω

dΩ

dt
=

1
na2

√
1 − e2 sin i

∂F

∂i

dω

dt
=

√
1 − e2

na2e

∂F

∂e
− cos i

na2
√

1 − e2 sin i

∂F

∂i

dM

dt
= n− 2

na

∂F

∂a
− 1 − e2

na2e

∂F

∂e
(333)

Perturbations in Delaunay Elements

To understand how mean motion resonances act in a planetary theory, we
introduce the Delaunay elements (for i = 1, . . . , n planets)

Li = κi

√
a

Gi = Li

√
(1 − e2

i )

Hi = Gi cos ii
li = Mi

gi = ωi

hi = Ωi (334)

with κi = k2(mi + m0) where m0 is the mass of the Sun. These canonical
elements obey the canonical equations in the form of

dΓi

dt
=

∂Fi

∂γi

dγi

dt
= −∂Fi

∂Γi
(335)

50 the T indicates transposition of the vector
51 In this representation of the Lagrange equations the indices are omitted.



90 Rudolf Dvorak and Florian Freistetter

where the elements Γi = (Li,Hi, Gi)T have as conjugate elements γi =
(li, hi, gi)T .

In analogy to the Hamilton formalism, we can use these conjugate ele-
ments to obtain a “semi-canonical” Hamilton function, which, in the case of
two bodies (i = 1, 2) (a planet with mass m1 perturbed by a planet with
mass m2) consists of an unperturbed part F0 and the perturbation function
F12:

F = F0 +F12 =
κ4

1

2L2
1

+m2

∞∑
j=−∞

∞∑
k=−∞

Cjk · cos[(j ·n1 +k ·n2)t+Djk] (336)

The formulation of the perturbations shows that the mean anomaly l = M
is a special case, because we have to take into account F0 in the second of
equations (335), when we built the derivatives with respect to the conjugate
Delaunay element L.

Using the equation for M

dM

dt
= −∂F0

∂L
(337)

just for the 2-body problem without the perturbation F12 and taking into
account the definition of L gives for the right hand side

κ4

κ3a3/2
= κa−3/2 ≡ n (338)

It is also clear that F0 is the Hamiltonian of the 2-body problem which is the
total energy H

H =
v2

2
− κ2

r
(339)

When we make use of the so-called velocity relation52

v2 = κ2

(
2
r
− 1

a

)
(340)

it follows that F0 and H are in fact identical. For the 2-body problem one can
see that the five Delaunay-elements are constant, but M = nt is explicitely
time dependant.

For now we concentrate on these other 5 Delaunay elements for which we
can directly apply the integration after the derivation to get the perturba-
tions. For any element – we now use the greek letter Γ for any of the five
elements L, G, H, g and h and γ for their conjugate element – the form of
the equations (335) is the following

52 from which one can easily compute the velocity in the perihelion and aphelion
position.
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dΓi

dt
= ±mi

∂Fi

∂γi
(341)

Integrating we get the first order approximation

Γ0 ±
∫ t

0

∂Fi

∂γi
dt = Γ0 + δΓ (342)

We show – as an example – the procedure to compute δL1 where we need to
build the derivative in formula (335) with respect to the conjugate Delaunay
element l1. Keeping in mind that the Delaunay element l = M = nt and
therefore (j · n1 + k · n2)t = jl1 + kl2 this expression reads

δL1 = −m2

∫ t

0

∞∑
j=−∞

∞∑
k=−∞

Cjk · j sin[(j · n1 + k · n2)t + Djk]dt (343)

The integration leads to

δL1 = m2

∞∑
j=−∞

∞∑
k=−∞

Cjk · j cos[(j · n1 + k · n2)t + Djk]
jn1 + kn2

(344)

For δL2 the same small divisor jn1+kn2 appears, a fact that will be discussed
below. For Gi and Hi one has to build the derivative of Dj,k with respect
to the corresponding Delaunay element (e.g. for Hi with respect to hi) and
then to integrate:

δHi = m2

∞∑
j=−∞

∞∑
k=−∞

Cjk · ∂Djk

∂hi

cos[(j · n1 + k · n2)t + Djk]
jn1 + kn2

(345)

For the elements gi and hi the perturbations read (we show it for hi)

δhi = −m2

∞∑
j=−∞

∞∑
k=−∞

∂Cjk

∂Hi
· cos[(j · n1 + k · n2)t + Djk]

jn1 + kn2
(346)

We have to separate the term for j = 0 and k = 0 in the expansion of F
(equation (336)) which is the term C0,0 · cosD0,0; after integration it leads
to a so-called secular term. This means that any Delaunay element – except
Li,53 which we will treat later in detail – has a form

Γ = Γ0 + Γ1t +
∑

j,k �=0

Ejk

j · n1 + k · n2
cos[(j · n1 + k · n2)t + Dj,k] (347)

We now will discuss the role of the small divisors and their connection with
mean motion resonances. Whenever the ratio of the mean motions fulfills the
condition of being closely commensurable
53 in the semimajor axes no secular terms arise because for j = 0 and k = 0 the

first order perturbation disappears.
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n1

n2
≈ k

j
(348)

this leads to a divisor which is close to zero and is called a mean motion
resonance. Consequently the respective perturbations for such planets (or
asteroids or comets) in a mean motion resonance are large, because the am-
plitudes Ej,k are divided by a quantity close to zero. In fact in our Solar
system we have the example of the giant planets Jupiter and Saturn where
the mean motions are nJup = 0.o08309/day and nSat = 0.o03346/day which
is close to the ratio 5 : 2. The perturbations acting between both planets
have a small divisor

2nJup − 5nSat = 0.o00112 (349)

which leads to a period of 360o/0.o00112 days corresponding to about 880
years. In fact this perturbation is rather large and causes a variation in the
amplitude in Jupiter’s longitude of almost 20

′
and for Saturn 48

′
with the

above mentioned period.

Table 2. Mean motion resonances in the Solar System (the ∗ denotes exact mean
motion resonances)

System Resonances

Solar System Jupiter–Saturn 5:2 Saturn–Uranus 3:1
Uranus–Neptune 2:1 Neptune–Pluto∗ 3:2

Jupiter System Io–Europa∗ 2:1 Europa–Ganymed∗ 2:1

Saturn System Mimas–Tethys∗ 2:1 Enceladus–Dione∗ 2:1
Dione–Rhea 5:3 Titan–Hyperion∗ 4:3

Uranus System Miranda–Umbriel 3:1 Ariel–Umbriel 5:3
Umbriel–Titania 2:1 Titania–Oberon 3:2

In our planetary system resonances occur quite often, which can be seen
in Table 2 for the planets and for the satellite systems of the giant planets
Jupiter, Saturn and Uranus:

Mean motion resonances are of special importance for the asteroids:

• The group of Trojan asteroid shows a 1:1 resonance with Jupiter with
more than 1000 asteroids around the Lagrange point L4 and about 600
around the Lagrange point L5.

• The group of the Plutinos are asteroids in a 3:2 resonance with Nep-
tune like Pluto itself (up to now we have evidence for some 100 of these
bodies.54)

• The role of mean motion resonances can be seen in the structure of the
main belt asteroids between Mars and Jupiter (see Fig. 53) where one can
see that for some resonances the number of asteroids is quite small; on

54 these numbers significantly increase every year
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Fig. 53. The distribution of the asteroids in the inner Solar system

the other hand a resonance may protect an asteroid (e.g. visible in the
3:2 resonance).

First Order Perturbation for the Delaunay Element l

A separate treatment is necessary for the Delaunay element l, for which we
have to take into account

δl1 =
∫ t

0

∂F1

∂L1
dt (350)

Inserting the Fourier series for F1 one has to evaluate the partial derivative
with respect to the conjugate variable, which leads to an additional term
for l because in the first term in equation (341) the conjugate element L1 is
present

− ∂F0

∂L1
=

κ4
1

L3
1

(351)

such that we get the perturbations in the following form:

L1 = L
(0)
1 + m2

∫ t

0

∂F1

∂l
dt = L

(0)
1 + δL1 (352)

We now find

dl1
dt

= −
(

∂F0

∂L1
+ m2

∂F1

∂L1

)
= κ4

1

(
L

(0)
1 + δL1

)−3

−m2
∂F1

∂L1
(353)
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Dividing the quantity (L(0)
1 + δL1)−3 by L

(0)
1 we develop the expression

into a series and just keep the first term55

dl1
dt

= n
(0)
1

(
1 − 3

δL1

L
(0)
1

)
−m2

∂F1

∂L1
(354)

where we also used the 3rd Kepler law: n(0)
1 = a

−3/2
1

√
κ2

1. An integration with
respect to time now leads to

l1 = n
(0)
1 t−m2

∫ t

0

∂F1

∂L1
dt− 3

n
(0)
1

L
(0)
1

∫ t

0

δL1dt (355)

and furthermore

l1 = −m2

∫ t

0

∞∑
j=−∞

∞∑
k=−∞

∂Cj,k

∂L1
j cos[(jn1 + k · n2)t + Dj,k]dt−

− 3
n

(0)
1

L
(0)
1

∫ t

0

∞∑
j=−∞

∞∑
k=−∞

Cj,kj
cos[(j · n1 + kn2)t + Dj,k]

jn1 + kn2
dt +

+ n
(0)
1 t (356)

After integration this becomes

l1 = −m2

∞∑
j=−∞

∞∑
j=−∞

∂Cj,k

∂L1

sin[(jn1 + k · n2)t + Dj,k

(j · n1 + kn2)
−m2

∂C00

∂L1
t cosD00 −

− 3
n

(0)
1

L
(0)
1

∞∑
j=−∞

Cj,kj
sin[(jn1 + kn2)t + Dj,k]

(jn1 + kn2)2
+ n

(0)
1 t (357)

and finally we get

l1 =
(
n

(0)
1 −m2

∂C00

∂L1
cosD00

)
t + δl1

=
(
n

(0)
1 + δn1

)
t + δl1 (358)

and a similar expression for

l2 =
(
n

(0)
2 −m2

∂C00

∂L2
cosD00

)
t + δl2

=
(
n

(0)
2 + δn2

)
t + δl2 (359)

We can see that we have secular and periodic perturbations also for the mean
anomalies. It is remarkable that the periodic perturbations – in contrary to
55 we make use of the known formula (1 + x)−3 = 1 − 3x + 6x2 − . . .
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the perturbations on the other Delaunay elements – have a denominator
which causes very large amplitudes, due to the fact that we have to per-
form a second integration (which as a consequence leads to the square of the
denominator in equation (357)).

A final statement should be made about the validity of the third law of
Kepler: when we have δni and δai (the perturbations in mean motion and in
semimajor axis) for a planet with mass mi, then the relation

(n(0)
i + δni)(a

(0)
i + δai)−3/2 = n

(0)
i (a(0)

i )−3/2 = κi (360)

holds. We emphasize that this is not true for the mean values of a and n,
which we derive from observations and which are published in the Nautical
Almanac; for the herein published “mean” elements the 3rd Kepler law does
not hold.

8 Secular Perturbation Theory

8.1 Introduction

Secular perturbation theory is a powerful tool for the investigation of plan-
etary dynamics. Although the general N -body problem (N ≥ 3) is non-
integrable, one can find analytical solutions to particular problems by con-
sidering the secular terms of the disturbing functions. The derivation of the
secular system and proper elements presented in the following was done ac-
cording to [51] and follows closely this very clear presentation.

8.2 Two Planet Perturbations

At first, the motion of two planets (with masses m1 and m2 that orbit around
a central mass m0 ) under their mutual gravitational attraction will be inves-
tigated (with m1 << m0 and m2 << m0). The perturbations on the orbits
of planet 1 and planet 2 can be described by the perturbation functions F1

and F2, which are functions of the osculating elements of the bodies. The
perturbations on these orbital elements can be described by the Lagrangian
planetary equations (333).

The secular perturbations can be obtained by isolating the terms in the
disturbing functions that are independent from the mean longitude and that
do not depend on the semimajor axis (it can be seen in Lagrange’s equation
for the element a that there is no influence on the secular evolution). Going
to second order in the eccentricities and inclinations and first order in the
masses gives then the general, averaged, secular direct part of the disturbing
function:
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F
(sec)
D =

1
8
[
2α12D + α2

12D
2
]
b
(0)
1
2

(
e2
1 + e2

2

)
− 1

2
α12b

(1)
3
2

(
s2
1 + s2

2

)

+
1
4
[
2 − 2α12D − α2

12D
2
]
b
(1)
1
2

e1e2 cos (ω1 − ω2)

+α12b
(1)
3
2

s1s2 cos (Ω1 −Ω2) (361)

The subscripts 1 and 2 refer to the inner and the outer body; α12 = a1
a2

with a1 < a2; b
(j)
s (α) denotes the Laplace coefficients56 and sj = sin 1

2 ij .
F1 and F2 can now be derived from F

(sec)
D :

F1 =
Gm2

a2
F

(sec)
D =

Gm2

a1
α12F

(sec)
D (362)

F2 =
Gm1

a1
α12F

(sec)
D =

Gm1

a2
F

(sec)
D (363)

Using the relations between the Laplace coefficients and their derivatives
and substituting Gm0 ≈ n2

1a
3
1 ≈ n2

2a
3
2 one obtains:

F1 = n2
1a

2
1

m2

m0 + m1

[
1
8
α2

12b
(1)
3
2

e2
1 −

1
8
α2

12b
(1)
3
2

i21

−1
4
α2

12b
(2)
3
2

e1e2 cos (ω̃1 − ω̃2)

+
1
4
α2

12b
(1)
3
2

i1i2 cos (Ω1 −Ω2)
]

(364)

F2 = n2
2a

2
2

m1

m0 + m2

[
1
8
α12b

(1)
3
2

e2
2 −

1
8
α12b

(1)
3
2

i21

−1
4
α12b

(2)
3
2

e1e2 cos (ω̃1 − ω̃2)

+
1
4
α2

12b
(1)
3
2

i1i2 cos (Ω1 −Ω2)
]

(365)

We emphasize that these equations are only valid for small values of i1
and i2 when the approximations s1 = sin 1

2 i1 ≈ 1
2 i1 and s2 = sin 1

2 i2 ≈ 1
2 i2

are correct.
Both equations can be combined to

Fj =nja
2
j

[
1
2
Ajje

2
j + Ajke1e2 cos(ω̃1 − ω̃2) +

1
2
BjjI

2
j +BjkI1I2 cos(Ω1 −Ω2)

]

(366)
with j = 1, 2;k = 2, 1(j �= k) and
56 for details see appendix C.
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Ajj = +nj
1
4

mk

m0 + mj
α12α12b

(1)
3
2

(α12) (367)

Ajk = −nj
1
4

mk

m0 + mj
α12α12b

(2)
3
2

(α12) (368)

Bjj = −nj
1
4

mk

m0 + mj
α12α12b

(1)
3
2

(α12) (369)

Bjk = +nj
1
4

mk

m0 + mj
α12α12b

(2)
3
2

(α12) (370)

with α12 = α12 if the perturbation is external (j = 1) and α12 = 1 if the
perturbation is internal (j = 2).

The Aij and Bij can also be written as elements of two matrices A and
B with elements that only depend on the masses and the semimajor axes of
the two bodies.

If one takes only terms of the lowest order in e and i in the Lagrange
equations (333), one obtains a simplified form of the Lagrange equations:

ėj = − 1
nja2

jej

∂Fj

∂ω̃j
(371)

˙̃ωj = +
1

nja2
jej

∂Fj

∂ej
(372)

i̇j = − 1
nja2

j ij

∂Fj

∂Ωj
(373)

Ω̇j = +
1

nja2
j ij

∂Fj

∂ij
(374)

One can see that in equations (371)–(374) singularities can appear, if e or i
become very small. Therefore a new set of variables will be used:

hj = ej sin ω̃j (375)
kj = ej cos ω̃j (376)
pj = ij sinΩj (377)
qj = ij cosΩj (378)

Equation (366) can now be written as

Fj = nja
2
j

[
1
2
Ajj

(
h2

j + k2
j

)
+ Ajk (hjhk + kjkk) +

+
1
2
Bjj

(
p2

j + q2
j

)
+ Bjk (pjpk + qjqk)

]
(379)

The Lagrange equations in the new variables are given by
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ḣj = +
1

nja2
j

∂Fj

∂kj
(380)

k̇j = − 1
nja2

j

∂Fj

∂hj
(381)

ṗj = +
1

nja2
j

∂Fj

∂qj
(382)

q̇j = − 1
nja2

j

∂Fj

∂pj
(383)

These differential equations for the non-singular elements can be written as

ḣ1 = +A11k1 + A12k2 (384)
ḣ2 = +A21k1 + A22k2 (385)
k̇1 = −A11h1 −A12h2 (386)
k̇2 = −A21h1 −A22h2 (387)
ṗ1 = +B11q1 + B12q2 (388)
ṗ2 = +B21q1 + B22q2 (389)
q̇1 = −B11p1 −B12p2 (390)
q̇2 = −B21p1 −B22p2 (391)

The advantage of this representation is that – at least for the first order – the
development of hj and kj is decoupled from that of pj and qj . Because these
equations are linear differential equations with constant coefficients, they can
be solved by using the eigenvalues and eigenvectors of the matrices A and B:

hj =
2∑

i=1

eji sin (git + βi) (392)

kj =
2∑

i=1

eji cos (git + βi) (393)

pj =
2∑

i=1

Iji sin (fit + γi) (394)

qj =
2∑

i=1

Iji cos (fit + γi) (395)

where the frequencies gi and fi are the eigenvalues of the matrices A and B
and eji and Iji are the components of the corresponding eigenvectors. The
phases βi and γi (and also the amplitude of the eigenvectors) are determined
by the initial conditions.

The solution described by equations (392)–(395) is known as the classical
Laplace-Lagrange secular solution.
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An important difference in the solutions for {h, k} and {p, q} is worth
mentioning, namely that the characteristic equation for matrix B is

∣∣∣∣
B11 − f B12

B21 B22 − f

∣∣∣∣ = 0

or
f (f − (B11 + B22)) = 0 (396)

Therefore one solution of the characteristic equation f1 = 0 and consequently
a degeneracy exists in the problem. This stems from the definition of the non-
singular variables: {h, k} involve the eccentricity and {p, q} the inclination.
Whereas an eccentric orbit causes an asymmetry (and thus a “natural” ref-
erence line), there is no sense in introducing a reference plane on a spherical
or point-mass body and therefore it is only meaningful to talk about mutual
inclinations.57

It is also an interesting fact that the solution (392)–(395) does not de-
pend on the mean longitude M and therefore one is only able to predict the
variations in eccentricity, inclination, pericenters and nodes; the positions of
the planets cannot be determined via a secular theory.

8.3 Proper Elements

After establishing the secular theory of two bodies, we can now formulate the
disturbing function for a third massless body (e.g. an asteroid perturbed by
Jupiter) with the orbital elements a, n, e, i, ω̃ and Ω:

F = na2


1

2
Ae2 +

1
2
Bi2 +

2∑
j=1

Ajeej cos (ω̃ − ω̃j) +
2∑

j=1

Bjiij cos (Ω −Ωj)




(397)
with

A = +n
1
4

2∑
j=1

mj

m0
αjαjb

(1)
3
2

(αj) (398)

Aj = −n
1
4
mj

m0
αjαjb

(1)
3
2

(αj) (399)

B = −n
1
4

2∑
j=1

mj

m0
αjαjb

(1)
3
2

(αj) (400)

Bj = +n
1
4
mj

m0
αjαjb

(1)
3
2

(αj) (401)

and
57 By introducing non-spherical planet terms this degeneracy problem would be

removed.
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αj =
{ aj

a if aj < a
a
aj

if aj > a

αj =
{

1 if aj < a
a
aj

if aj > a

When we use again the non-singular variables h, k, p and q the perturbing
function reads

F = na2

[
1
2
A
(
h2 + k2

)
+

1
2
B
(
p2 + q2

)
+

+
1∑

j=1

Aj (hhj + kkj) +
1∑

j=1

Bj (ppj + qqj)


 (402)

For the equations of motion, one obtains

ḣ = +
1

na2

∂F

∂k
(403)

k̇ = − 1
na2

∂F

∂h
(404)

ṗ = +
1

na2

∂F

∂q
(405)

q̇ = − 1
na2

∂F

∂p
(406)

Differentiation of (402) and inserting in (403)–(406) gives

ḣ = +Ak +
2∑

j=1

Ajkj (407)

k̇ = −Ah−
2∑

j=1

Ajhj (408)

ṗ = +Bq +
2∑

j=1

Bjqj (409)

q̇ = −Bp +
2∑

j=1

Bjpj (410)

The values for hj , kj , pj and qj can now be obtained from the solutions of the
secular system (392)–(395), which gives

ḣ = +Ak +
2∑

j=1

Aj

2∑
j=1

eji cos (git + βi) (411)
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k̇ = −Ah +
2∑

j=1

Aj

2∑
j=1

eji sin (git + βi) (412)

ṗ = +Bq +
2∑

j=1

Bj

2∑
j=1

iji cos (fit + γi) (413)

ḣ = −Bp +
2∑

j=1

Bj

2∑
j=1

iji sin (fit + γi) (414)

A solution can be obtained by building the second derivatives with respect
to the time; see (411)–(414):

ḧ = −A2h−
2∑

j=1

νi (A + gi) sin (git + βi) (415)

k̈ = −A2k −
2∑

j=1

νi (A + gi) cos (git + βi) (416)

p̈ = −B2p−
2∑

j=1

µi (B + fi) sin (fit + γi) (417)

q̈ = −B2q −
2∑

j=1

µi (B + fi) cos (fit + γi) (418)

with

νi =
2∑

j=1

Ajeji (419)

µi =
2∑

j=1

Bjiji (420)

Equations (415)–(418) are a system of uncoupled differential equations with
the solution

h = efree sin (At + β) + h0(t) (421)
k = efree cos (At + β) + k0(t) (422)
p = ifree sin (Bt + γ) + p0(t) (423)
q = ifree cos (Bt + γ) + q0(t) (424)

The constants efree, ifree, β and γ can be determined by the boundary condi-
tions and the functions h0(t), k0(t), p0(t) and q0(t) are given by

h0(t) = −
2∑

i=1

νi

A− gi
sin (git + βi) (425)
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k0(t) = −
2∑

i=1

νi

A− gi
cos (git + βi) (426)

p0(t) = −
2∑

i=1

µi

B − fi
sin (fit + γi) (427)

q0(t) = −
2∑

i=1

µi

B − fi
cos (fit + γi) (428)

It can be seen that h0(t), k0(t), p0(t) and q0(t) are only functions of the semi-
major axes (which are constant) and do not depend on any other orbital
elements of the test particle. Nevertheless they will vary with time because
they also depend on the secular solution of the two perturbing bodies.

Introducing

eforced =
√

h2
0 + k2

0 (429)

iforced =
√

p2
0 + q2

0 (430)

allows a simple geometric interpretation of the solution (421)–(424).
Figures 54 and 55 show the connection between the free and forced ele-

ments: The solution for h and k defines a point in the (h, k) plane – a vector
from the origin to this point has the length e and encloses an angle �. This
vector can also be constructed by the sum of two other vectors: one with a

Fig. 54. Geometrical relationship between osculating, free and forced eccentricities
and longitudes of pericentre (efree > eforced) (after [51])



Stability and Chaos in Planetary Systems 103

Fig. 55. Geometrical relationship between osculating, free and forced inclinations
and longitudes of ascending nodes(ifree < iforced) (after [51])

length of eforced and an angle ω̃forced going from the origin to the point (h0, k0)
and the second going from there to (h, k) with a length of efree and an angle
ω̃free = At+β. Thus in the plane h–k the motion of the particle resembles the
motion of a circle centered at (h0, k0) at a constant rate A; the center-point
itself moves according to the secular solution of the two perturbing bodies.
The two quantities eforced and ω̃forced depend only on the semimajor axis of
the test particle and the secular solutions; efree and ω̃free are the fundamental
orbital parameters of the test particle. They are called proper elements of the
particle’s orbits.

A similar geometrical explanation exists for the relation between the os-
culating, free and forced inclinations and longitudes of ascending nodes.

9 The chaotic Motion of the Planets
and the Stability of the Solar System

This section deals with the problem of the long-term stability of the Solar
System. This question was posed in 1889 in a contest which was held as
part of the 60th birthday of King Oscar II, of Sweden and Norway. For this
contest, mathematicians were invited to write an original paper where one
question concerned celestial mechanics and the stability of a collection of or-
biting bodies:
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“Given a system of arbitrarily many mass points that attract each other ac-
cording to Newton’s laws, assuming that no two points ever collide, give the
coordinates of the individual points for all time as the sum of a uniformly
convergent series whose terms are made up of known functions.”

Henri Poincaré (1854–1912, Fig. 56) wrote a prize paper,58 where he
showed that the perturbation techniques to represent the solution in form
of power series of small parameters like the eccentricities, inclinations and/or
the planets’ masses are not convergent due to small divisors. As a consequence
these solutions are not valid for infinite times.

Fig. 56. Henri Poincaré (1854-1912) (picture taken from MacTutor History of
Mathematics archive, University of St Andrews Scotland)

Moreover Poincaré was well in advance his time with his deep insight in
dynamical problems: in his famous work Methodes nouvelles de la Mécanique
céleste he laid down the basic ideas of chaotic motion, something which was
rediscovered and explored in detail only some fifty years later.
58 Although he did not answer the question, because of his brilliant ideas the mem-

ber of the jury were in favor to give him the prize.
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It is evident that one could use a straight forward integration of the
equations of motion to follow the orbit of a planet in the solar system. But
even for the best integrators the accuracy is lost for chaotic systems, because
for non-regular motions the nonlinear dependence of the initial conditions
creates an inacurracy in the results due to the accumulation of the round
off errors. Nevertheless the orbits are well determined in a qualitative way
over long time scales. One may try to find a better solution – valid for long
times with the aid of analytical perturbation theory. But we know from the
preceding chapter that, due to the presence of small divisors in the series
expansions of the solutions, the series do not converge!

This section will first present numerical integrations for the long time
motion of the bodies in the Solar System and then will show results obtained
from semi-analytical approaches.

9.1 Numerical Solutions

There exist many different papers on the long-term evolution of the planetary
system (e.g. [40] and [32]). We report the results of an integration of the full
equations of motion in a model consisting of the whole planetary system from
Mercury to Neptune (planets as point-masses, Earth+Moon as one body, no
relativistic effects) which demonstrate how small the variation for the orbital
elements in fact are [13]. The integration of the differential equations of mo-
tion was done with the Lie-Integration Method [28], which is explained in
detail in appendix A. The time interval covered was 108 years (from -500
Myr to +500 Myr). As examples we show in Fig. 57 the time development of
the elements a, e and i for Mercury for 200 million years (from -100 million
years to +100 million years). One can see the relative large variations in the
elements eccentricity and inclination and the almost constant value for the
semimajor axes. Additionally in Fig. 58 we plotted the respective elements
from 300 Myrs to 500 Myrs. The plot of the semimajor axis shows the preci-
sion of the method used, because the first sign of the lack of precision of an
integration is a secular drift of the semimajor axes of the most inner planet
in a simulation of the motion of the planetary system.

In Fig. 59 we can see the strong coupling between the planets Earth
and Venus, which have almost the same masses and therefore suffer from
almost the same perturbations in the elements. We show – besides the time
interval −2.5 to +2.5 million years around the present epoch – the time
evolution of their eccentricities for the first 5 million years and the last 5
million years of our 200 million years integration. It is remarkable that no
qualitative differences at all can be seen there!

Finally we show the eccentricities for the outer planets in Fig. 60: for
Jupiter and Saturn the coupling due to the 5:2 resonance is well visible; for
the outer planets the variation in eccentricity and inclinations (not shown
here) is more regular than for the inner planets. In Table 3 we show also the
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Fig. 57. Semimajor axis, eccentricity and inclination of Mercury from -100 Myr
to 100 Myr
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Fig. 59. Eccentricities of Earth and Venus

smallest (respectively largest) values of the three action like variables for all
the planets.

Table 3. Maximum, minimum and actual values of the action like variable for
109 years

planet amin amax anow emin emax enow imin imax inow

Mercury 0.38710 0.38710 0.38710 0.07874 0.29988 0.20562 0.17600 11.72747 7.00468
Venus 0.72332 0.72336 0.72333 0.00002 0.07709 0.00680 0.00076 4.91515 3.39467
Earth 0.99997 1.00004 1.00000 0.00002 0.06753 0.01668 0.00075 4.49496 0.00065
Mars 1.52354 1.52386 1.52369 0.00008 0.13110 0.09342 0.00291 8.60320 1.84937
Jupiter 5.20122 5.20504 5.20187 0.02513 0.06191 0.04895 1.09172 2.06598 1.30377
Saturn 9.51281 9.59281 9.56872 0.00742 0.08959 0.05612 0.55867 2.60187 2.48618
Uranus 19.09807 19.33511 19.13833 0.00008 0.07835 0.04991 0.42170 2.73888 0.77187
Neptune 29.91013 30.32452 29.99772 0.00001 0.02317 0.00761 0.77977 2.38597 1.77179

9.2 A semi-analytical approach

By using a mixture of methods, namely representing the right hand sides of
the secular equations (compare Sect. 8) via series expansions and a numerical
integrations of these equations one can determine – again only for a limited
but significant larger time span – the orbits of the planets qualitatively (with-
out giving the positions on the sky).
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Fig. 60. Eccentricities of Jupiter and Saturn (upper graph) and Uranus and Nep-
tune; (large (respectively smaller) amplitudes lower graph).

Using this method of averaging over the fast angle, the mean motion
of the planets,59 J. Laskar [35, 37, 38] from the Bureau des longitudes in
Paris60 succeeded to find qualitative solutions of the motions of the planets
up to Gigayears. His work consisted of two steps: first he developed with
the aid of computer algebra the secular part of the differential equations of
motion (see Sect. 8) up to the second order in the masses and to the order
five with respect to the small inclinations and eccentricities of the orbits of all
eight planets. These truncated secular equations consist of several hundred
thousand terms. The next step was to integrate numerically these differential
equations via an adequate numerical method with a rather big time step of
500 years. In a first run Laskar integrated the equation over 200 million years
and determined the long periodic terms of the system, which are connected
to the motions of the nodes and of the perihelions of the planets which are the
fundamental frequencies of the secular system. There were two main secular
resonances present among the planets, namely

• θ = 2(g4 − g3) − (s4 − s3) related to Mars and the Earth and

• σ = (g1 − g5) − (s1 − s2) related to Mercury, Venus and Jupiter;

59 which means to keep the semi-major axis of all planets constant.
60 now as IMCCE part of the Observatoire de Paris.
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The frequencies gn and sn involved refer to the secular motion of Ωn

and ωn of each planet n. All these resonances and their linear combinations
were found with the aid of a sophisticated frequency analysis [35] of the
numerical solutions of the secular systems; the forementioned combinations
of the frequencies turned out to have quite large amplitudes. During the
evolution of the system the fundamental frequencies itself change slightly, a
fact that leads to a characteristic change from libration to circulation several
times during the time interval from −200 · 106 years to 200 · 106 years. This
is shown in Fig. 61.

Fig. 61. Change of libration to circulation (left graphs) and from circulation to
libration (right graphs) for the critical argument θ (from Laskar [35])
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This qualitative change of the motion is a typical sign of chaotic behavior.
Think of the perturbed pendulum having a motion close to the separatrix:
the slightest change in the initial conditions may lead to a separatrix cross-
ing – and the pendulum is no longer librating but circulates and vice versa.
In a comparison with an integration of the full equations of motion the quan-
titative behavior of the argument θ was confirmed for the first 6 million
years [36] A direct comparison for the whole time of 500 million years is
under construction.

In a continuation of the computations Laskar extended the time scale up
to several 109 years, which could only done by a further simplification of the
right hand sides of the secular equations of motion. This was accomplished
by dropping the small amplitudes which led to a significant smaller num-
ber of terms (∼ 5000 terms). These simplified equations of motion could be
integrated now much faster, although the system had still 15 independent
degrees of freedom. Because of the further simplification one can doubt the
significance of results which he found, which was also expressed by the au-
thor himself, who used a different argument: “Indeed, because of the exponen-
tial divergence with a Lyapunov time of 5 Myr, after 100 Myr the computed
solution will be very different from the real solution followed by the actual
solar system”.

His main idea was to integrate several different solutions with slightly
different initial conditions up to times as long as some 109 years to find
the diffusion time for the action-like variables inclination and eccentricity.
Therefore, in his integrations, he used backward and forward slightly differ-
ent conditions for the moments when the eccentricity of Mercury was large.
It is evident that the crucial orbital element is the eccentricity, because even
with a fixed value of the semi-major axes, as it has been done by averaging
over the short periods, large eccentricities may lead to orbit crossings. Unlike
that of the inner planets, the outer planets have almost no variations in their
eccentricities. Fig. 62 gives the values for Mercury, Venus, Earth and Mars:
The eccentricity of Mercury was large, and his computations led finally, after

Fig. 62. Evolution of the eccentricities of Venus, Earth (lowest lines) and Mercury
from −6.6 Gyrs to 3.5 Gyrs (from Laskar [38])



Stability and Chaos in Planetary Systems 111

several 109 years, to a value close to 1. As a consequence, a close approach to
Venus could happen because their orbits now cross. Thus, as a consequence,
Mercury could escape from the Solar System! But, as also the author empha-
sized, the solution computed here which led to an escape of Mercury was very
carefully tailored by selecting at each step one solution among 4 or 5 equiv-
alent ones. And he finally concludes that From the present computation, it
can be thought that this probability is small, but not null, which is compatible
with the present existence of Mercury.61

9.3 Conclusions

After all what can be concluded for the long-term stability of our plane-
tary system? Is there any final answer to the question of stability which
astronomers are concerned with since the days of Lagrange? From both ap-
proaches we only can say for sure, that – also being in a state of chaos as
shown by the computed Lyapunov exponent and also the qualitative change
of some critical angles – within some 109 years of evolution – the overall
qualitative behavior (but also the quantitative one) did not change signifi-
cantly within the last Gigayears of evolution and will not change for the next
Gigayears from the dynamical point of view.62

10 Terrestrial Planets in Extrasolar Planetary Systems

A whole part of this book is devoted to the description of extrasolar plane-
tary systems (=ESP), their detection and the complicated dynamics involved
when a system with two gas giants (=GG) in mean motion resonance is on
high eccentric stable orbits (see the chapter in this book by Ferraz-Mello et
al). We have no evidence up to now that terrestrial planets may exist in such
systems but for our human spirit it seems quite normal that Earth-like plan-
ets may also exist in ESPs. The reason is simple: in our Solar System inside
the orbits of Jupiter, Saturn, Uranus and Neptune four terrestrial planets
are orbiting the Sun and many other terrestrial like planets are satellites of
Jupiter and Saturn or are on orbits outside Pluto in the Kuiper-belt. The
central question is whether such terrestrial planet in ESPs may move in the
61 A critical remark should be placed here concerning the results presented in this

paragraph: when, as it was done by Laskar, we truncate the order of the per-
turbations in the small parameters from 6 on, for eccentricities e > 0.4 the
significant digits are limited to two. Thus the system cannot be any more an
adequate description of the planetary system. The important point is that the
very slow diffusion may lead to such large eccentricities as e = 0.4 of Mercury.

62 The small masses of the asteroids, the shape of the planets, relativity and also
galactic tides are too small to change this picture.
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Fig. 63. Possible habitable regions for terrestrial planets in ESPs (C1 to C4): the
full black circles show the terrestrial planet, the light grey full circles show the gas
giant. (for details of the four classes see in the text)

so-called habitable zones63. From the orbital characteristics and the criterion
to be in a habitable region one can distinguish 4 different classes (see Fig. 63):

1. C1: when the GG is very close to the star there could exist such stable
orbits for time scales long enough to develop a biosphere.

2. C2: when this GG moves far away from the central star (like Jupiter)
then stable low eccentric orbits for additional planets can exist.

3. C3: when the GG itself moves in the habitable region, a terrestrial like
satellite (like e.g. Titan in the system of Saturn) could have a stable orbit.

4. C4: when the GG itself moves in the habitable region a Trojan like ter-
restrial planet may move on a stable orbit around the Lagrangian equi-
librium points L4 or L5.

63 We will not discuss the complex problem of habitable regions around a host star
in detail, because it is still somewhat in contradiction; it depends not only on
the dynamical parameters of the orbit of a planet, but also on the astrophysical
parameters of the star like the spectral type and the age (e.g. [34]). A somewhat
rough estimate for it is where water could exist in liquid form on the surface of
a planet; for a more precise definition see [33].



Stability and Chaos in Planetary Systems 113

Besides the extensive study of [47] concerning the stability of orbits of
terrestrial planets in extrasolar systems there exist investigations for specific
systems for the classes C1 and C2: e.g. [19], [20], [10], [11], [12],[2]. In recent
investigations also the dynamical stability of possible terrestrial planets in
the 1:1 resonance with the gas giant (class C4) was studied (e.g. [20]).

About the formation mechanism of planets in general from the protoplan-
etary disk we refer to the chapter by Tom Quinn (in this book). It seems that
we have reasonable theories for the formation of terrestrial planets of C1, C2
and C3 types. From the cosmogonical point of view one can even imagine
a possible formation of two planets in a 1:1 mean motion resonance [39] as
result of an interaction with the protoplanetary disc.

10.1 Theoretical Considerations

For the C1, C2 and C3 types there exist many numerical studies concerning
the stability of an additional massless regarded body in the three dimensional
elliptic restricted problem via extensive numerical integrations (e.g. [58], [31],
[55]). Quite often for this kind of stability studies the use of supercomputers
is appropriate, because of the huge amount of CPU necessary to get good
statistical results. Many thousands of orbits are computed simultaneously for
a fine grid of initial conditions with such computers.

For the C4 group there exist a lot of analytical work concerning the sta-
bility of the Lagrangian points in the model of the elliptic restricted problem
depending on the mass ratio of the primaries and the eccentricity of their
orbits (e.g. [57], [4]). Additional work has been done even for cases when the
third mass is not regarded as massless [46]. The results of a first order stabil-
ity analysis in the framework of the general three-body-problem (loc.cit. p.
46ff) are presented there. With M the total mass and m1 ≤ m2 ≤ m3 a mass
parameter R was defined as R = (m2+m3)/M +m2.m3/m

2
1+O(m3

2.m3/m
4
1).

Using these results one can see64 that in the case of a terrestrial like planet
with a relatively small mass compared to the two primary bodies there is
practically no difference in the stability of the equilibrium points When one
takes into account the observed eccentricities of the orbits of the GG in the
ESPs, furthermore the estimated (minimum) mass of the giant planet and
a terrestrial planet comparable to the mass of our Earth it turned out that
all planetary systems of the list given by Jean Schneider65 have stable equi-
lateral Lagrangian points. But the extension of the stable region around this
equilibrium points cannot be determined with such an analysis.

The methods of establishing such zones for all 4 groups C1 to C4 are
numerical ones; suitable methods are e.g. the Lie integration method (see
appendix A) or classical Runge-Kutta and Bulirsch-Stoer methods [56] to
determine the orbits via solving the equations of motion for an appropriate
64 Fig. 13, p.49 in Marchals’s book
65 http://www.obspm.fr/encycl/catalog.html
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grid of initial conditions. One uses different tests for the stability of an orbit
like the Lyapunov exponents (see the Chapter of Harry Varvoglis – in this
book) or similar methods ([23], [61]). In the following we will show – as
examples – the results of such investigations for terrestrial planets (C2 and
C4) in the habitable zones of Gl 777A and HD 23079.

10.2 Gl 777 A

The first discovery of a planet in Gl 777 A (=HD 190360) was reported by
Naef et al. [52] from the Geneva group of observers. This extrasolar planetary
system is a wide binary with a very large separation (3000 AU); for the
dynamical investigations of motions close to one star there was no need to
take into account the perturbations of the very far companion. The central
star is of spectral type G6 IV with 0.9M� and has a planet of minimum mass
1.33 MJup with a semimajor-axis of 4.8 AU. Because of the large eccentricity
(e=0.48) the possible region of motion for additional planets is confined to
a < 2.4 AU (= periastron). One can see in Fig. 64 that for this system the
mean motion resonances are not important for motions in the habitable zone,
because they are all well outside. This is sometimes quite different, as one
may see in [2].

Fig. 64. Main characteristics of the extrasolar system Gl 777 A. The light grey
region shows approximately the position of the HZ; the dark grey bar indicates how
closely the planet approaches the central star in its orbit. The different numbers
characterize the mean motion resonances

The interesting region of habitability (see Fig. 64), where planets could
have temperature conditions to allow liquid water on the surface, corresponds
roughly to 0.7 < a < 1.3 AU, when we ignore the eccentricity of the terrestrial
planet. The computations were started in a larger region (0.5 < a < 1.3) with
a grid spacing of ∆a = 0.01 AU and the eccentricity of the known planet was
changed between 0.4 < e < 0.5 with a gridsize of ∆e = 0.01. The results
(Fig. 65) of the direct analysis of the largest eccentricity (MEM- Maximum
Eccentricity Method) achieved during the orbital evolution (1 Million years)
show two main features: 1) strong vertical lines due to high order resonances
and 2) more and more unstable orbits with larger semimajor axes of the
terrestrial planet (red or yellow colors). We observe the same structure in the
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Fig. 65. Initial condition diagram of semi-major axis of the fictitious terrestrial
planet versus the eccentricity of the GG of the extrasolar system Gl 777 A. The col-
ors indicate the maximum eccentricity achieved during the integration of 1 million
years

main belt of asteroids due to the perturbations of Jupiter. The eccentricity
tells us directly the variable distance to the central star and consequently it is
a direct measure of the differential energy flux (insolation) on the planet. We
can therefore determine where the variation of this distance does not exceed
50 percent which corresponds roughly to an eccentricity of e = 0.2.

We also used a second method, namely the Rényi entropy66 to distinguish
between regular stable orbits and chaotic orbits (Fig. 66). One can see that
this is a very sensitive instrument giving us a measure of the degree of chaos.
High order resonances are also visible and one recognizes them also in regions
where the MEM method does not show any features.

As a result for habitability of a terrestrial planet inside the orbit of the
Jovian planet, we find that for the system Gl 777 A there is quite a good
chance that planets will last long enough in the habitable zone to acquire the
necessary conditions for life in the region with a < 1 AU.
66 A detailed decription of the Rényi entropie which is the estimate of one of the

dynamical invariants of Reccurence Plots can be found in [2], [68] and [69].
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Fig. 66. Initial condition diagram of semi-major axis of the fictitious terrestrial
planet versus the eccentricity of the GG of the extrasolar system Gl 777 A: The
value of the entropy is marked by different colors; small values of the entropy stand
for regular orbits

10.3 HD23079

As another example of possible stable orbits of terrestrial planets we discuss
a Trojan planet (C4) in a specific ESP. HD 23079 has a central star of 1.1
M� and a GG with 2.61 MJup that moves on an orbit with a semimajor axis
a = 1.65 AU and an eccentricity of e = 0.1 close to the habitable region. The
initial conditions around the stable Lagrangian point L4 were taken for a fine
grid in the semimajor axis 1.56AU < a < 1.76 AU with δa = 0.001 AU and
for the synodic longitude 30o < λ < 120o with δλ = 1o. For the eccentricity
of the GG three different values were taken as initial conditions in order
to see how the structure of the stable region around the equilibrium points
diminishes (see Fig. 67). For the lowest value of eGG = 0.05 the eccentricity
of the fictitious Trojan planet stays always smaller than e < 0.05; for the
actual measured value of eGG = 0.1 the eccentricity of the fictitious Trojan
planet still fulfills the requirement mentioned above of always being below
e < 0.2. For a larger value eGG = 0.15 the respective large eccentricities of
emax > 0.2 would – according to our hypothesis for the maximum variation of
the distance to the central star – not allow conditions for habitability. It also
confirms the ring of less stable motion around the Lagrangian point, which is
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Fig. 67. Stability region around the Lagrangian point L4 of the system HD 23079
for three different values of the eccentricity of the observed gas giant (for details
see in the text)

well visible for e = 0.05. For the actual measured e = 0.1 one can recognize
a bar like structure which is not visible with the MEM method.

This system was also investigated by another method, namely the RLIs
(Relative Lyapunov Indicators, compare [20]) for the actually determined
eccentricity of the primary’s orbit eGG = 0.1. A comparison of the respective
results show the good agreement of both results: it confirms the size of the
stable region and also ring of less stable orbits around the Lagrangian point.

Fig. 68. RLIs around the Lagrangian point L4 of HD23079: the degree of chaoticity
is marked by the different grey-scales: white is regular and black is chaotic
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11 Epilog: Back to the Golden Mean

11.1 Continuous Fractions and Golden Numbers

We started this course with the introduction of a very special number, the
golden mean

1 +
√

5
2

= 1.618034 . . . (431)

which plays an important role in number theory, because it is the most ir-
rational number. This can be easily seen by representing the number of the
golden mean as a continued fraction:

Definition 7. An irrational number a can be written as a continued fraction
of the form

a = [a1, a2, a3, ...] =
1

a1 + 1
a2+

1
a3+...

. (432)

where the ais are positive integers.

Remark 3. The better a number can be approximated by a continued fraction,
the larger the ai will be (because if the approximation is good, the remaining
part is small and thus the denominators have to be large).

Definition 8. When ai = 1 for all i above a certain value N , the number a
is called a noble numbers of order N.

For example [2,1,1,...] is of order one, [2,3,2,1,...] is of order three. In this
sense the golden mean [1,1,1,1,1...] is of order zero and thus, keeping in mind
remark 3, it is the most irrational of all numbers. There are some properties
of the noble numbers which we recall briefly:

• For noble numbers of order 1 the following relations hold

[1, 1, ...] > [2, 1, ...] > [3, 1, 1, ...] > ... > [∞, 1, ...] = 0 (433)

• Noble numbers of order 2 are in between the first order noble numbers
like

[1, 1, ...] >
1
2

= [2,∞, 1, ...] > ... > [2, 3, 1, ...] > [2, 2, 1, ...] > [2, 1, 1, ...]

(434)
which means that the noble numbers of order 2 with a number 2 in the
first digit are larger than the first order noble number [2,1,...].

• The noble numbers of order 2 with the number 1 as first digit are larger
than the golden number:

1 = [1,∞, 1, ...] > ... > [1, 3, 1, ...] > [1, 2, 1, ...] > [1, 1, 1, ...] (435)
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• The noble numbers of order 3 are between the noble number of order 2:

[1, 1, 1, ...] > [1, 1, 2, 1, ...] > [1, 1, 3, 1, ...] > ... > [1, 1,∞, 1, ...] =
1
2

(436)

• An increase of a2 of a noble number produces a larger number; on the
contrary the increase of a3 produces a smaller number.

This construction via continuous fraction is also valid for the computation
of any rational number when we limit the number N of coefficients ai, i =
1, ..., N to a certain integer e.g.

1
2

= [1, 1, 1]

4
9

= [2, 4, 1]

5
11

= [2, 4, 1, 1] (437)

There exists an interesting method of construction of rational numbers and
the continued approximation of irrationals via the Farey tree, where we can
arrange the different “generations” in the following way:

G1 =
0
1
,
1
1

(438)

G2 =
0
1
,
1
2
,
1
1

(439)

G3 =
0
1
,
1
3
,
1
2
,
2
3
,
1
1

(440)

G4 =
0
1
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
1
1

(441)

G5 =
0
1
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1
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1
4
,
2
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1
3
,
3
8
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3
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1
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4
7
,
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5
7
,
3
4
,
4
5
,
1
1

(442)

Two properties are visible, from which one easily can derive the whole tree
like structure from generation to generation:

1. Each rational of a generation has as numerator and denominator the sum
of the numerator and denominator of the two rationals of the previous
generation (e.g. for G5 the new rational in between 1

4 and 1
3 of the G4

generation is 2
7 ).

2. The numerator of a rational multiplied by the denominator of the fol-
lowing rational in a sequence minus the denominator of the first rational
multiplied with the nominator of the following rational is always ±1 (e.g.
in G5 we take the two neighboring rationals 2

5 and 3
7 .
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11.2 The KAM-Tori and Noble Numbers

In Sect. 2.4 where we investigated the Standard Mapping we have seen that
an orbit is either periodic (same points on the plane), quasiperiodic (where
the sequence of points fills densely the so called invariant curve or – in this
case a one dimensional KAM Torus S1) or chaotic (where no regularity can
be seen in the sequence of points). On this KAM-Torus two vectors from the
center (a periodic orbit) to two consecutive points have a certain rotational
angle which is characteristic for every KAM-Torus (in fact the mean value
of a great number of rotational angles). These points fill densely the curve
and as a consequence this angle cannot be a rational number, because then
the orbit would be a periodic one. Because it is an irrational number it can
be approximated by a continuous fraction. In Fig. 69 we see a large part
of the phase space where the initial conditions lead to invariant curves and
will never leave the area, surrounded by a cloud of chaotic orbits. But on
the edge of the “island of regular motion” we can see a quite dark region,
where orbits are trapped for a long time, and then escape into the chaotic see.
These “sticky” orbits are confined by Cantori, which are KAM-Tori which are
destroyed with increasing strength of the non-linearity parameter (K in the
case of the Standard Mapping) and have holes, where an orbit may escape
through.

The connection to the noble numbers is the following: The KAM-Tori
with the “most irrational” rotational numbers are destroyed and – as we have
seen before – they are the ones having noble numbers as rotational numbers.

Fig. 69. Sticky region in the Standard Mapping
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Because any noble number can be approximated by a continuous fraction
with higher and higher orders, every KAM-torus with a special noble number
as rotational number is surrounded from the outside and from the inside
by periodic orbits characterized by rational numbers. This approximation is
better and better with increasing generation Gn (compare [15]).

11.3 KAM-Theory and the Stability of the Solar System

What we have discussed before is not only true for a two dimensional mapping
but also for n-dimensional dynamical systems. Also for our planetary system,
when the motions would be quasiperiodic, the orbits that are confined to a
high dimensional torus and thus stable for all times. Evidently the motion
is not quasiperiodic as we have seen from the plots of the elements and
from the computations by Laskar – as a consequence our planetary system
is chaotic. But in the sense of the sticky orbits in the Standard Mapping we
may conclude that the orbits of the planets are also sticky and that they
are also confined by high dimensional Cantori, which hinder our planetary
system to become unstable within the next Gigayears.

A Lie Integration Method

A.1 General Properties of the Lie-series

Gröbner [25] defined the Lie-operator D as follows:

D = θ1(z)
∂

∂z1
+ θ2(z)

∂

∂z2
+ . . . + θn(z)

∂

∂zn
(443)

D is a linear differential operator; the point z = (z1, z2, . . . , zn) lies in the
n-dimensional z-space; the functions θi(z) are holomorphic within a certain
domain G, e.g. they can be expanded in converging power series. Let the
function f(z) be holomorphic in the same region as θi(z). Then D can be
applied to f(z):

Df = θ1(z)
∂f

∂z1
+ θ2(z)

∂f

∂z2
+ . . . + θn(z)

∂f

∂zn
(444)

If we proceed applying D to f we get

D2f = D(Df)
...

Dnf = D(Dn−1f)

The Lie-series will be defined in the following way;
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L(z, t) =
∞∑

ν=0

tν

ν!
Dνf(z) = f(z) + tDf(z) +

t2

2!
D2f(z) + . . .

Because we can write the Taylor-expansion of the exponential function

etDf = (1 + tD1 +
t2

2!
D2 +

t3

3!
D3 + . . .)f (445)

L(z, t) can be written in the symbolic form

L(z, t) = etDf(z) (446)

The convergence proof of L(z, t) is given in detail in Gröbner [25]
One of the most useful properties of Lie-series is the Vertauschungssatz:

Theorem 4. Let F (z) be a holomorphic function in the neighborhood of
(z1, z2, . . . , zn) where the corresponding power series expansion converges at
the point (Z1, Z2, . . . , Zn); then we have:

F (Z) =
∞∑

ν=0

tν

ν!
DνF (Z) (447)

or
F (etD)z = etDF (z) (448)

Making use of it we can demonstrate how Lie-series solve differential equa-
tions. Let us give the system of differential equations:

dzi

dt
= θi(z) (449)

with (z1, z2, . . . , zn). The solution of (449) can be written as

zi = etDξi (450)

where ξi are the initial conditions zi(t = 0) and D is the Lie-operator as
defined in (443). In order to prove (450) we differentiate it with respect to
time t:

dzi

dt
= DetDξi = etDDξi (451)

Because of
Dξi = θi(ξi) (452)

we obtain the following result which turns out to be the original differential
equation (449):

dzi

dt
= etDθi(ξi) = θi(etDξi) = θi(zi) (453)
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A.2 A Simple Example

To demonstrate the principle of the Lie-integration, we will show, how one
has to proceed in the simple case of the harmonic oscillator, a 2nd order
differential equation:

d2x

dt2
+ α2x = 0 (454)

The first step consists in separating (454) in two 1st order differential equa-
tions such that

dx

dt
= y = θ1(x, y)

dy

dt
= −α2x = θ2(x, y)

with the initial conditions x(t = 0) = ξ and y(t = 0) = η. With this notation
we find the Lie-operator of the form

D = θ1
∂

∂ξ
+ θ2

∂

∂η
= η

∂

∂ξ
− α2ξ

∂

∂η
(455)

The solution can now be written as Lie-series

x = eτDξ and y = eτDη (456)

where t − t0 = τ and the initial conditions can be obtained for τ = 0. Being
aware of the symbolic development of eτD we can compute the first terms:

D1ξ = η = θ1

D2ξ = Dη = −α2ξ = θ2

D3ξ = −α2Dξ = −α2η

D4ξ = −α2Dη = α4ξ

D5ξ = α4Dξ = α4η

D6ξ = α4Dη = −α6ξ

...

For the Lie-terms even (respectively odd) in the order consequently one can
find

D2nξ = (−1)nα2nξ

D2n+1ξ = (−1)nα2nη

which leads to the solution for z:

z = ξ + τη − τ2

2!
α2ξ − τ3

3!
α2η +

τ4

4!
α4ξ . . .
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Finally we get after the factorization of ξ and of η

z = ξ

(
1 − τ2

2!
α2 +

τ4

4!
α4 − τ6

6!
α6 + . . .

)
+

η

α

(
τα − τ3

3!
α3 +

τ5

5!
α5 − τ7

7!
α7 + . . .

)

which is exactly the known solution of the harmonic oscillator:

z(t) = ξ cosατ +
η

α
sinατ

A.3 Hénon Heiles System

The equations of motion for the coordinates and momenta of the Hénon-
Heiles system are given by:

ẋ = px

ẏ = py

ṗx = −x− 2xy
ṗy = −y − x2 + y2

The initial conditions for a time τ are denoted as follows:

x(τ) = ξ px(τ) = pξ (457)

y(τ) = η py(τ) = pη (458)

The system of equations needed to derive the Lie operator is now:

ξ̇ = pξ = θ1 (459)

η̇ = pη = θ2 (460)

ṗξ = −ξ − 2ξη = θ3 (461)

ṗη = −η − ξ2 + η2 = θ4 (462)

and the Lie operator is given by:

D = θ1
∂

∂ξ
+ θ2

∂

∂η
+ θ3

∂

∂pξ
+ θ4

∂

∂pη
(463)

or

D = pξ
∂

∂ξ
+ pη

∂

∂η
+ (−ξ − 2ξη)

∂

∂pξ
+
(
−η − ξ2 + η2

) ∂

∂pη
(464)

Now the solution for a time (τ + ∆τ) can be derived by
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x(τ + ∆τ) = e∆τDξ (465)

y(τ + ∆τ) = e∆τDη (466)

px(τ + ∆τ) = e∆τDpξ (467)

py(τ + ∆τ) = e∆τDpη (468)

Symbolically, these equations can be written in the form

x(τ+∆τ) = e∆τDξ = ξ+∆τD1(ξ)+
∆τ2

2!
D2(ξ)+

∆τ3

3!
D3(ξ)+

∆τ4

4!
D4(ξ)+O(5)

(469)

y(τ + ∆τ) = e∆τDη = η + ∆τD1(η) +
∆τ2

2!
D2(η) +

∆τ3

3!
D3(η) +

+
∆τ4

4!
D4(η) + O(5) (470)

px(τ + ∆τ) = e∆τDpξ = pξ + ∆τD1(pξ) +
∆τ2

2!
D2(pξ) +

∆τ3

3!
D3(pξ)

+
∆τ4

4!
D4(pξ) + O(5) (471)

px(τ + ∆τ) = e∆τDpη = pη + ∆τD1(pη) +
∆τ2

2!
D2(pη) +

∆τ3

3!
D3(pη) +

+
∆τ4

4!
D4(pη) + O(5) (472)

Now the expressions for Di have to be derived:

D1(ξ) = pξ (473)

D2(ξ) = D1(pξ) = −ξ − 2ξη (474)

D3(ξ) = −D1(ξ) − D1(2ξη) = −D1(ξ) − 2
((

D1(ξ)
)
η +

(
D1(η)

)
ξ
)

(475)

D4(ξ) = −D2(ξ) − 2
((

D2(ξ)
)
η + 2

(
D1(ξ)

) (
D1(η)

)
+
(
D2(η)

)
ξ
)

(476)

D1(η) = pη (477)

D2(η) = D1(pη) = −η − ξ2 + η2 (478)

D3(η) = −D1(η) − 2
(
(D1(ξ))ξ − (D1(η))η

)
(479)

D4(η) = −D2(η) − 2
((

D2(ξ)
)
ξ +

(
D1(ξ)

)2 − (
D2(η)

)
η −

(
D1(η)

)2)
(480)

Because of D2(η) = D1(pη) and D2(ξ) = D1(pξ) the expressions for Di(pη)
and Di(px) can be obtained easily:
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D1(pξ) = D2(ξ) D1(pη) = D2(η) (481)

D2(pξ) = D3(ξ) D2(pη) = D3(η) (482)

D3(pξ) = D4(ξ) D3(pη) = D4(η) (483)

D4(pξ) = D5(ξ) = (484)

= −D3(ξ)−2
((

D3(ξ)
)
η + 3

(
D2(ξ)

) (
D1(η)

)
+ 3

(
D2(η)

) (
D1(ξ)

)
+
(
D3(η)

)
ξ
)

(485)
D4(pη) = D5(η) = (486)

= −D3(η)−2
((

D3(ξ)
)
ξ + 3

(
D2(ξ)

) (
D1(ξ)

)
− 3

(
D2(η)

) (
D1(η)

)
−
(
D3(η)

)
η
)

(487)
Now, the equations of motion of the Hénon-Heiles system can be integrated
numerically with the Lie integration method (up to order 4).

It appears the question why should we use another numerical integrator
of differential equations when many of well tested methods are free on the
“market”? Let us state five major points why we propose to make use of this
method:

1. Because of the structure of the solution as power series expansions in the
independent variable (we used t or τ in the examples), which is also the
time step for the integration, we can choose it differently for every step.67

2. The desired precision can be fixed and controlled by two different parame-
ters, namely the largeness of the “time step” and the number of Lie-terms
we use for the Lie-series. A small step size needs less Lie-terms and vice-
versa when we choose a large step-size (attention has to be drawn to the
convergence radius of the series!) we need more Lie-terms to achieve the
same precision.

3. The goal is to find out a recurrence form for the Lie-terms making use
of the properties of the Lie-operator to be linear. If one can achieve it
the integrator is very fast! Quite successful was the construction of an
integrator of the elliptic restricted three body problem and also of the
n-body problem (e.g. [28],[43], [7]).

4. Because of the convergence of the powerseries the Lie-integrator can be
regarded as a kind of a symplectic integrator which conserves quite well
the integrals of motion.

5. The construction of a proper tool to integrate a DE is very educative
for students and avoids to take a black box as solver of the problem in
question (it does not mean that the own Lie-integrator is always faster).

67 It needs not to be the time step but in dynamical systems we are quite used to
it. Precisely it is the step forward in the independent variable for which we want
to get the solution of the DE in question.
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The only disadvantage is that the derivation of reccurence in the Lie-
terms may nevertheless lead to very lengthy expressions when the right hand
sides are complicated and lengthy themselves. This is the only task where we
propose to use a standard method. Most of the problems have simpler right
hand sides of the equations; therefore – please try it out!

B Lie Perturbation Method

B.1 Lie Transformation

Lie Transformations are a very powerful technique in perturbation theory.68

In general, a Lie Transformation simplifies a given Hamiltonian via a canon-
ical transformation. Let us consider a Hamiltonian of the following type:

H = H (qi, pi, ε) = H0 (qi, pi) + εH1 (qi, pi) + ε2H2 (qi, pi) + O
(
ε3
)

(488)

The equations of motion are then given in canonical form:

dqi

dt
=

∂H

∂pi

dpi

dt
= −∂H

∂qi
(489)

The coordinates pi and qi are now transformed to new coordinates Pi and Qi

via the functions Fji and Gji, which will be determined so that the transfor-
mation is a canonical one:

qi = Qi + εF1i (Qi, Pi) + ε2F2i (Qi, Pi) + . . .

pi = Pi + εG1i (Qi, Pi) + ε2G2i (Qi, Pi) + . . . (490)

This gives a new Hamiltonian K (a Kamiltonian)69 when we make use
of (490):

K = K (Qi, Pi, ε)
= H (qi, pi, ε)
= H

(
Qi + εF1i + ε2F2i + . . . , Pi + εG1i + ε2G2i + . . .

)
(491)

Also the Kamiltonian can be developed into a power-series with respect to
the perturbing parameter ε:

K = K (Qi, Pi, ε) = K0 (Qi, Pi)+εK1 (Qi, Pi)+ε2K2 (Qi, Pi)+O
(
ε3
)

(492)

68 We follow the treatise on this problem by R. Rand [59].
69 The expression Kamiltonian K is used by Goldstein in his textbook Classical

Mechanics [24]. The argument for using another name and another notation was
that it is shorter to use than transformed Hamiltonian H̃.
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We emphasize that for ε = 0 the Hamiltonian H0 (qi, pi) and the Kamiltonian
K0 (Qi, Pi) are the same and therefore Qi = qi and Pi = pi. The functions of
the coordinate transformation have to be chosen in such a way, that the new
Kamiltonian has the simplest possible form (i.e. by eliminating Qi which is
then a so-called ignorable coordinate), the resulting equations of motion can
be solved more easily than in the original case.

First Order

The canonical transformation (490) yields equations of the Hamiltonian form
for qi and pi depending on ε:

dqi

dε
=

∂W

∂pi

dpi

dε
= −∂W

∂qi
(493)

where W = W (qi, pi, ε) is the so-called Lie-generating function. Making use
of the coordinate transformation (490) the function W can also be expanded
in a power series in ε:

W = W
(
Qi + εF1i + ε2F2i + . . . , Pi + εG1i + ε2G2i + . . .

)

= W1 (Qi, Pi) + εW2 (Qi, Pi) + ε2W3 (Qi, Pi) + O(ε3) (494)

Additionally to the original equations of the time evolution of the coordinates
for fixed ε – equation (488) – the evolution of the canonical transformation
itself can be regarded as a Hamiltonian process as ε varies. Therefore we can
make a Taylor expansion for the “old” coordinates qi and also for pi:

qi(ε) = qi(0) + ε
dqi

dε

∣∣∣∣
ε=0

+
ε2

2
d2qi

dε2

∣∣∣∣
ε=0

+ . . . (495)

and find the following expression for the 1st term using (493) and (495)

dqi

dε

∣∣∣∣
ε=0

=
∂W

∂pi

∣∣∣∣
ε=0

=
∂(W1 + εW2 + ...)

∂pi

∣∣∣∣
ε=0

=
∂W1

∂Pi
(496)

The same procedure can be accomplished for pi, which leads to the following
transformations from the old to the new coordinates:

qi = Qi + ε
∂W1

∂Pi
+ O

(
ε2
)

pi = Pi − ε
∂W1

∂Qi
+ O

(
ε2
)

Given an arbitrary function f(qi, pi), we can apply the following canonical
transformation defined by the generating function W :
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f (qi, pi, ε) = f

(
Qi + ε

∂W1

∂Pi
+ O

(
ε2
)
, Pi − ε

∂W1

∂Qi
+ O

(
ε2
))

= f(Qi, Pi) + ε
df

dε

∣∣∣∣
ε=0

+
1
2
ε2

d2f

dε2

∣∣∣∣
ε=0

+ O(ε3) (497)

We now can calculate the first derivative with respect to ε in the following
form when we use (495)

df

dε

∣∣∣∣
ε=0

=
∑

i

(
∂f

∂qi

∂qi

∂ε
+

∂f

∂pi

∂pi

∂ε

)

=
∑

i

(
∂f

∂Qi

∂W1

∂Pi
− ∂f

∂Pi

∂W1

∂Qi

)

= [f,W1] (498)

Introducing furthermore the Poisson Bracket [f, g]:

[f, g] =
∑(

∂f

∂Qi

∂g

∂Pi
− ∂f

∂Pi

∂g

∂Qi

)
(499)

we can write for (497) up to the first order in ε

f(qi, pi) = f(Qi, Pi) + ε [f,W1] + O(ε2) (500)

We now replace f with H from (488) and obtain

H (qi, pi, ε) = H0 (Qi, Pi) + ε [H0,W1] + εH1 (Qi, Pi) + O
(
ε2
)

(501)

By comparing equations (501) and (488) one can identify

K0 (Qi, Pi) = H0 (Qi, Pi)
K1 (Qi, Pi) = H1 (Qi, Pi) + [H0,W1] (502)

and obtain the new Kamiltonian

K (Qi, Pi) = H0 + ε (H1 + [H0,W1]) + O(ε2) (503)

We now can choose W in such a way, that K becomes considerably simpler
than the original Hamiltonian H.

Higher Orders

We can use the development (497) up to the 2nd order and find for the 2nd

derivative with respect to ε

d2f

dε2
=

d

dε
[f,W ] =

[
df

dε
,W

]
+
[
f,

∂W

∂ε

]
= [[f,W ] ,W ] +

[
f,

∂W

∂ε

]
(504)
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Differentiatingg W gives

∂W

∂ε
= W2 (Qi, Pi) + 2εW3 (Qi, Pi) + . . . (505)

and thus
df

dε

∣∣∣∣
ε=0

= [f,W1] (506)

d2f

dε2

∣∣∣∣
ε=0

= [[f,W1] ,W1] + [f,W2] (507)

resulting in the transformation of f :

f (qi, pi) = f (Qi, Pi)+ε [f,W1]+
1
2
ε2 ([[f,W1] ,W1] + [f,W2])+O

(
ε3
)

(508)

As a consequence the complete Kamiltonian up to the second order reads

K (Qi, Pi) = H0 + ε (H1 + [H0,W1]) +
ε2

2
(H2 + [[H0,W1] ,W1] + [H0,W2])

(509)
Making the developments to even higher orders we obtain for the contribution
of the third order Hamiltonian the following expression:

K0 = H0 (510)
K1 = H1 + [H0,W1] (511)

K2 = H2 + [H1,W1] +
1
2

[[H0,W1] ,W1] +
1
2

[H0,W2] (512)

K3 = H3 + [H2,W1] +
1
2

[[H1,W1] ,W1] +

+
1
2

[H1,W2] +
1
6

[[[H0,W1] ,W1] ,W1]

+
1
3

[H0,W3] +
1
3

[[H0,W2] ,W1] +
1
6

[[H0,W1] ,W2] (513)

From this formalism it is evident that the procedure of applying the Lie-
transform as perturbation theory can be automized with an appropriate com-
puter algebra program like Maple or Mathematica.

B.2 A two Degrees of Freedom System: the Hénon-Heiles System

We demonstrate the technique of Lie Transformation up to the 2nd order
for a two degrees of freedom system, the Hénon-Heiles system, where two
linear oscillators are nonlinearly coupled. In the unperturbed (noncoupled
case) both oscillators have the same frequency and this will – as we can see
later – lead to terms which cannot be removed via a canonical transformation.
Nevertheless the phase space structure in its regular parts can be represented
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for small coupling in a satisfactory way. The Hamiltonian of the system is
given by

H = H0 + εH1 =
1
2
p2

x +
1
2
p2

y +
1
2
x2 +

1
2
y2 + ε

(
x2y − 1

3
y3

)
(514)

It is quite usual to transform to action-angle variables via

x =
√

2p1 sin q1

y =
√

2p2 sin q2

px =
√

2p1 cos q1

py =
√

2p2 cos q2 (515)

which leads to the Hamiltonian

H (q1, q2, p1, p2) = p1 + p2 + 2
√

2ε
(
p1p

1
2
2 sin2 q1 sin q2 −

1
3
p

3
2
2 sin3 q2

)
(516)

This form is not practical for removing the periodic terms and as next step we
have to replace the terms sin2 q1 and sin3 q2 by a well known tranformations
which gives the possibility to remove the terms by an adequate choice of the
Lie generating function W . After this transformation the Hamiltionian reads

H = p1 + p2 + 2
√

2ε
(
p1p

1
2
2

(
1
2

sin q2 −
1
4

sin (q2 + 2q1) −
1
4

sin (q2 − 2q1)
)

− 1
3
p

3
2
2

(
3
4

sin q2 −
1
4

sin 3q2

))
(517)

With equations (497) and the canonical tranformation of the coordinates
we get the Hamiltonian (respectively the Kamiltonian), where K0 = H0 =
P1 + P2 and

K1 = H1(Qi, Pi) + [H0,W1]

= 2
√

2
(
P1P

1
2
2

(
1
2

sinQ2 −
1
4

sin(Q2 + 2Q1) −
1
4

sin(Q2 − 2Q1)
)

− 1
3
P

3
2
2

(
3
4

sinQ2 −
1
4

sin 3Q2

))
− ∂W1

∂Q1
− ∂W1

∂Q2
(518)

We can now choose a Lie-generating function such, that K1 becomes as simple
as possible; we suggest the following ansatz for W1

W1 = A cosQ2 + B cos (2Q1 + Q2) + C cos (2Q1 −Q2) + D cos 3Q2 (519)

We differentiate W1 with respect to the coordinates Q1 and Q2 and choose
the coefficients A,B and C to eliminate the terms in K1
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A =
√

2
2

(
P

3
2
2 − 2P1P

1
2
2

)

B =
√

2
6

(
P1P

1
2
2

)

C = −
√

2
2

(
P1P

1
2
2

)

D = −
√

2
18

(
P

3
2
2

)
. (520)

With this choice all terms in K1 cancel and consequently K1 = 0! To proceed
to the 2nd order theory we, first of all, make use of

K1 = H1 + [H0,W1] (521)

and substitute in the respective equation for K2 (512) [H0,W1] with K1−H1

and obtain [[H0,W1],W1] = [K1,W1]− [H1,W1]. The 2nd order Kamiltionian
K2 therefore reads

K2 = H2 +
1
2

([K1,W1] + [H1,W1] + [H0,W2]) (522)

Because K1 = 0 and also H2 = 0 the 2nd order Kamiltionian reduces to

K2 =
1
2
[H1,W1] −

∂W2

∂Q1
− ∂W2

∂Q2
(523)

We now have to choose W2 appropriately to simplify the Hamiltonian; this
time we cannot eliminate all terms in second order because through the Pois-
son bracket [H1,W1] new resonances and also a constant term appear in K1:

[H1,W1] =
1
3
P1P2 cos(2Q1 + 2Q2) −

7
3
P1P2 cos(2Q2 −Q1)

+
1
6
(P 2

2 cos 4Q2 + P 2
1 cos 4Q1+

2
3
(P1 + P2)(P2 cos 2Q2+P1 cos 2Q1)

− 5
6
(P 2

1 + P 2
2 ) +

2
3
P1P2 (524)

The remaining terms lead to a Kamiltonian K2

K2 =
1
2

(
−7

3
P1P2 cos (2Q2 − 2Q1) +

2
3
P1P2 −

5
6
(P 2

1 + P 2
2 )
)

(525)

Nevertheless a further discussion leads to an interesting reduction of the
Kamiltonian, because the two coordinates Q1 and Q2 appear only in the
combination Q2 − Q1. Now we can pose a simple canonical transformation
via
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X1 = Q2 −Q1

X2 = Q2

Y1 = P1

Y2 = P1 + P2 (526)

where the Kamiltonian is now given as

K = Y2 +
ε2

2

(
−7

3
Y1 (Y2 − Y1) cos 2X1 −

5
6
Y 2

1 − 2
3
Y1 (Y2 − Y1)

−5
6
(Y2 − Y1)2

)
+ O(ε3) (527)

and X2 does not appear explicitly in (527). Thus, because of the Hamiltonian
character of the equations, it follows that Y2 is constant. As a consequence
also the difference K−Y2 = G is a constant of motion and K2 is – up to order
3 – a first integral of the system under consideration. We now transform this
expression for G back to the original coordinates x, px, y and py, which gives
us the following form for this second integral of motion

G = 5p4
y + (10y2 + 10p2

x − 18x2)p2
y + 56xypxpy + 5y4 + (10x2 − 18p2

x)y2

+ 5p2
x + 10x2p2

x + 5x4 (528)

With the Hamiltonian as one integral and G as another integral of motion
we can eliminate with the aid of H e.g. the coordinate px and replace it
in the integral G. Still this would be a three dimensional subspace of the
phase space, which is difficult to represent. We therefore choose a surface
of section70 and set x=0, which will then define curves in the y − py plane
depending on the value of the energy h (the value of the Hamiltonian which
can be computed from the initial conditions). We first express px with the
aid of the energy h and set x = 0

p2
x = 2h− p2

y − y2 +
2
3
εy3 (529)

We also set x = 0 in the integral G and replace the value of px, which now
leads to the following curves

5(p2
y + y2)2 + (10p2

y − 18y2)(2h− p2
y − y2 +

2
3
εy3) +

+5(2h− p2
y − y2 +

2
3
εy3)2 = const (530)

In Figs. 70 and 71 we show respective curves for ε = 0.1 and h = 0.15 for the
results obtained by the perturbation theory and numerical integrations.
70 for details on how to construct a surface of section see Sect. 2.1 in the chapter

on “Regular and Chaotic Motion in Hamiltonian Systems”.
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Fig. 70. Surface of Section for the Hénon Heiles system obtained from Lie Pertur-
bation Theory (for ε = 0.1 and h = 0.15)

C Laplace Coefficients

If we write the direct part of the perturbation function we obtain (see equa-
tion (330))

1
ρ

=
1
r2

[
1 − 2α cosφ + α2

] 1
2 (531)

Expanding this expression in Fourier series gives

1
r2

[
1 − 2α cosφ + α2

] 1
2 =

1
2
b
(0)
s/2 +

∞∑
j=1

b
(j)
s/2 cos jφ (532)

where s is an positive odd integer. The coefficients b
(j)
s/2 where first studied

by Laplace and therefore are called Laplace coefficients. They were and are
studied intensively (see [66] for a recent work).

Table 4 shows some numerical values of the Laplace coefficients (also for
the ratio of the semimajor axes of Jupiter and Saturn). They can be calculated
by the following formulas (for details on the derivation see [64]):

1
2

(
b
(j)
s+1 + b

(j+1)
s+1

)
=

(j + s) b(j)s − (j − s + 1) b(j+1)
s

2s (1 − α)2
(533)
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Fig. 71. Surface of Section for the Hénon Heiles system obtained from numerical
integrations (for ε = 0.1 and h = 0.15)

Table 4. Laplace coefficients

α 1
2
b
(1/2)
0 b

(1/2)
1

1
2
b
(3/2)
0 b

(3/2)
1 b

(3/2)
2

0.1 1.0025 0.1004 1.0228 0.3057 0.0381
0.2 1.0102 0.2031 1.0954 0.6519 0.1611
0.3 1.0237 0.3107 1.2349 1.0745 0.3983
0.4 1.0440 0.4267 1.4745 1.6660 0.8154
0.5 1.0732 0.5559 1.8908 2.5805 1.5580

0.54543 1.0902 0.6208 2.1800 3.1873 2.0837

0.6 1.1146 0.7060 2.6666 4.1867 2.9799
0.7 1.1750 0.8923 4.3323 7.5430 6.1179
0.8 1.2702 1.1443 9.0110 16.885 15.161

1
2

(
b
(j)
s+1 − b

(j+1)
s+1

)
=

(j + s) b(j)s + (j − s + 1) b(j+1)
s

2s (1 + α)2
(534)

D Legendre Polynomials

The Legendre polynomials (or Legendre functions of first kind) are solutions
of the Legendre differential equations and can also be used to develop the
direct part of the perturbation function:

(
1 − x2

) d2y

dx2
− 2x

dy

dx
+ l (l + 1) y = 0 (535)
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These solutions are polynomials, if l is an integer and can be defined by

℘n(x) =
1
2π

∮ (
1 − 2tx + t2

) 1
2 t−n−1dt (536)

The Legendre polynomials up to order 7 are

℘0(x) = 1 (537)
℘1(x) = x (538)

℘2(x) =
1
2
(
3x2 − 1

)
(539)

℘3(x) =
1
2
(
5x3 − 3x

)
(540)

℘4(x) =
1
8
(
35x4 + 30x2 + 3

)
(541)

℘5(x) =
1
8
(
65x5 − 70x3 + 15x

)
(542)

℘6(x) =
1
16
(
231x6 − 315x4 + 105x2 − 5

)
(543)

℘7(x) =
1
16
(
429x7 − 693x5 + 315x3 − 35x

)
(544)
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in Hamiltonian Systems
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1 Introduction

All laws that describe the time evolution of a continuous system are given
in the form of differential equations, ordinary (if the law involves one inde-
pendent variable) or partial (if the law involves two or more independent
variables). Historically the first law of this type was Newton’s second law
of motion. Since then Dynamics, as it is customary to name the branch of
Mechanics that studies the motion of a body as the result of a force acting on
it, has become the “typical” case that comes into one’s mind when a system
of ordinary differential equation is given, although this system might as well
describe any other system, e.g. physical, chemical, biological, financial etc.
In particular the study of “conservative” dynamical systems, i.e. systems of
ordinary differential equations that originate from a time-independent Hamil-
tonian function, has become a thoroughly developed area, because of the fact
that mechanical energy is very often conserved, although many other physi-
cal phenomena, beyond motion, can be described by Hamiltonian systems as
well. In what follows we will restrict ourselves exactly to the study of Hamil-
tonian systems, as typical dynamical systems that find applications in many
scientific disciplines.

The method used traditionally in the study of a conservative dynamical
system, whose Hamiltonian leads to a complex set of differential equations,
is to follow a sequence of approximations. In the beginning, we try to solve
exactly the equations derived from a simplified form of the Hamiltonian, the
so-called zero-order approximation, omitting complex or non-linear terms.
Then we revert to the full Hamiltonian and consider the omitted terms as a
“perturbation” of the zero order approximation. We then modify the initial
solution by a sequence of “corrections”, which are expected to describe better
and better the real system.

This method is based on the implicit assumption that the sequence of
successive approximations converges to the “real” solution. Since the method
is based on the fact that the solution of the zero order dynamical system
is known exactly, it is closely connected to the theory of integrable, or else
regular dynamical systems. By this term, we denote the Hamiltonian dynam-
ical systems whose differential equations of motion can be solved at least
by quadratures, i.e. they can be expressed as integrals of functions of one

H. Varvoglis: Regular and Chaotic Motion in Hamiltonian Systems, Lect. Notes Phys. 683,
141–184 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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variable. Under some rather general conditions and when the phase space
is compact, i.e. neither of the generalized co-ordinates or momenta do not
become infinite, the phase space is isomorphic, as we show in Sect. 3, to a n-
torus, when n is the number of degrees of freedom of the system. In that case
the “natural” selection for the generalized co-ordinates is a set of n angles
and the system can be solved exactly.

Since the nineteenth century it was understood, however, that the method
of beginning by an integrable Hamiltonian and then add perturbation terms
is in some cases ill-behaved. The reason is that, if the series representing the
solution of the “real” system is to converge to the “real” solution, the suc-
cessive terms generated by the successive approximations have to get smaller
and smaller. But it was found out that these terms have, in their denomina-
tors, linear combinations of the n angles which can become, for appropriate
sets of coefficients, arbitrarily small. Therefore the terms of the series do not
get ever smaller, and its convergence is not guaranteed. This is the famous
problem of the “small divisors”, which appeared first when people working
on Celestial Mechanics tried to find the general solutions of the three-body
problem.

In the beginning the problem of the small divisors was considered to be
a “technicality”, which could be overcome through an “appropriate” math-
ematical handling. It so happened because the partial sums of the first few
terms of the series solutions were giving very good approximations for the
actual motion of the planets and their satellites. At the end of the nineteenth
century, however, Poincaré proved that the problem of small divisors is in-
herent to the dynamical system of the three-body problem, so that there
is no way to avoid it. Moreover he showed that this problem entails a very
complex evolution of trajectories that approach an unstable periodic orbit,
a phenomenon that today we call chaos. However Poincaré’s result was not
particularly appreciated at his time, since the analytical solutions, in formal
power series, were working in Celestial Mechanics as expected.

Things started to change after the appearance of the electronic computer,
with the aid of which it became possible to attempt the numerical solution
of non-linear equations of motion. Hénon and Heiles [17], in their pioneering
work, showed that chaos may dominate the phase space of very simple dynam-
ical systems. In the following years it became evident that non-integrable dy-
namical systems, in which appears the phenomenon discovered by Poincaré,
are the rule rather than the exception in nature. It is evident that the ap-
proximation of a chaotic dynamical system by an integrable one is not useful.
Indeed, as we will show in Sects. 2.2 and 4.1, a solution of a chaotic dynamical
system deviates exponentially not only from the solution of any integrable
approximation, but from any other nearby solution of the full system as well.
Therefore methods devised for the study of regular systems cannot be applied
to chaotic ones, at least not without a justification on a case by case basis.
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Extensive analytical and numerical work since the paper by Hénon and
Heiles has shown that almost all real dynamical systems are neither purely
ordered nor purely chaotic, but their phase space consists of closely inter-
mingled ordered and chaotic regions. The systems that have this property
are said to posses a “divided” phase space. These systems can be considered
as ordered or chaotic, depending on the measure of the chaotic and ordered
regions of phase space.

This article is divided into four sections:

1. Elementary tools for the study of dynamical systems,
2. Integrable Hamiltonian systems,
3. Non-integrable (or else chaotic) Hamiltonian systems and
4. Transition from order to chaos and the Chirikov-Contopoulos stochastic-

ity criterion.

In the first section we present the two most basic tools that are used
in the numerical study of Hamiltonian systems, and in particular for the
determination of the ordered or chaotic nature of trajectories. These are the
surface of section technique and the Lyapunov Characteristic Numbers.

In the second section we introduce the notion of an integrable Hamiltonian
system, through the existence of integrals of motion and canonical action-
angle variables. We find these variables in two simple Hamiltonian systems,
which are very often used as simple models of more complicated systems, the
harmonic oscillator and the pendulum, and in three real Hamiltonian systems,
the two fixed centers problem, the Toda lattice and the Kepler’s problem. We
introduce also the concept of resonance.

In the third section we present the mathematical definitions and prop-
erties of five classes of dynamical systems that are used as models of “real”
chaotic Hamiltonian systems with divided phase space: ergodic, mixing, K-
and C-systems and Bernoulli shifts.

In the fourth and last section we present the Contopoulos-Chirikov sto-
chasticity criterion and we give a complete working example on how this
criterion is implemented in a specific dynamical system.

There exist excellent textbooks in most of the topics covered in the present
mini-course, such as those by Arnold [3], Contopoulos [10], Gutzwiller [16],
Lichtenberg and Lieberman [21] or Ott [23], to name a few in alphabetical
order. As the careful reader may notice, our presentation is, in some points,
influenced by their style. There exist, also, many fine review articles, such as,
in alphabetical order as well, those by Berry [6], Chirikov [8] and Ford [12]
[13].
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2 Elementary Tools

2.1 Surface of Section

The evolution of a dynamical Hamiltonian system can be visualized by draw-
ing its trajectories in phase space. Unfortunately this can be done only for
one-degree-of-freedom (1-D) systems, whose phase space is two dimensional
and can, therefore, be plotted on a surface, using the conjugate variables (co-
ordinate, q, vs. momentum, p) as cartesian co-ordinates.1 Poincaré proposed
a method that enables us to plot the evolution of a 2-D Hamiltonian system
as well. This is the famous surface of section technique.

Fig. 1. The consecutive intersection of the trajectory with the y = 0 plane lie on
a surface of section (from [6])

We select one pair of conjugate variables, say (q1, p1), and we plot on the
corresponding surface q1p1 (as in the 1-D case) a point whenever the value of
the other co-ordinate, q2, takes a preselected value, usually q2 = 0. In this way
we represent the trajectory on the Poincaré’s surface of section, PSS q1p1

by a sequence of points, which are called consequents (Fig. 1). In other words
we have replaced the evolution of a continuous dynamical system, i.e. a flow,
with the evolution of a discrete dynamical system, i.e. a mapping, with two
degrees of freedom less (Fig. 2). In order to make the representation unique
and avoid ambiguities, we plot only the consequents corresponding to either
positive or negative values of the momentum i.e. either
1 A standard result of Hamiltonian Mechanics is that the exterior product of the

unit vectors along the conjugate axes p̂i ∧ q̂j is given by the delta function of
Kronecker, δi,j , while q̂i ∧ q̂j = p̂i ∧ p̂j = 0. In this way, following the usual
Euclidean metric, the conjugate variables qipi may be considered as orthogonal
to each other.
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Fig. 2. The surface of section technique maps a region of phase space, X0, to
another region, X1 (from [6])

p2 > 0 or p2 < 0. (1)

In this way we define a mapping

(qi, pi) → (qi+1, pi+1) (2)

which is a single-valued representation of the trajectory. In the general case
of an arbitrary Hamiltonian system, it is not always easy to select a surface of
section, since there is the possibility that some trajectories do not intersect
this surface very often, or even at all. If, however, we are dealing with an
integrable dynamical system with a compact phase space, then the selection
is rather easy. As we will see in the next section, in this case the variables
of choice are actions and angles, J1, θ1 and J2, θ2, and we know that the
trajectories are helices, winding on nested tori. The “natural” selection for
a PSS is then θ2 = const. and the consequents lie on smooth curves, named
invariant curves (e.g. the lines J1−θ1 in Fig. 3). As we will see in Sect. 4, non-
integrable dynamical systems possess trajectories whose intersections with
at least a region of the surface of section look scattered (see Sect. 4). It
should be noted that a PSS can be defined for dynamical systems with more
than two degrees-of-freedom. In these cases, however, it is not easy to get an
easy visualization of the corresponding mapping, since it has more than two
dimensions.

2.2 Lyapunov Characteristic Numbers

The surface of section technique, used by Hénon and Heiles for the differenti-
ation between ordered and chaotic trajectories, cannot be applied (at least in
a straightforward way) to dynamical systems with more than two degrees of
freedom. Therefore soon appeared the need for a tool that could be used for
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Fig. 3. The two actions of a 2-degrees of freedom dynamical system correspond to
the two radii of a torus, J1,2 = (2I1,2)

1/2. The two angles correspond to the two
angle coordinates on the toroidal surface

Fig. 4. Typical surface of section of a 1 1/2 D dynamical system (1-D plus time),
describing the motion of a charged particle in a magnetic field and an electrostatic
wave propagating perpendicular to the field. Note that the consequents near the
origin lie on smooth curves, while far from it look scattered, an indication of chaos

the study of dynamical systems with any number of degrees of freedom. The
first such tool, proposed already in 1968 by Oseledec [22], is the calculation of
the Lyapunov Characteristic Exponents (LCE) or Lyapunov Characteristic
Numbers (LCN), which not only enables us to discriminate between ordered
and chaotic trajectories, but can as well “measure” the degree of stochasticity
of a chaotic trajectory.

Hénon and Heiles, in their pioneering work on the numerical study of the
stochastic region of a conservative dynamical system, made the remark that
“Experience has shown previously that ... in a region occupied by (smooth
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invariant) curves the distance (between orbits) increases only slowly, about
linearly, but ... in the ergodic region the distance increases rapidly, roughly
exponentially.” Roughly speaking, the LCNs of a trajectory characterize the
mean exponential rate of divergence of other trajectories surrounding it and,
therefore, it is the mathematical aspect of the experimental observation by
Hénon and Heiles.

In the years that followed, the concept of LCNs was founded on solid
mathematical ground by many authors so that the LCNs have become the
“industry standard” in assessing the degree of stochasticity of a dynamical
system. It should be mentioned that the calculation of LCNs has some weak
points, related to the fact that they are defined, as we will see, in the limit
t → ∞. Therefore finite time numerical calculations can be considered only
as “useful approximations” to the unknown “real” LCNs of a trajectory.
This problem becomes more pronounced in the cases where the values of
the LCNs are extremely small. Several authors have proposed other tools,
through which one can asses the chaotic or ordered nature of a trajectory in
a faster or more efficient way. Examples are the stretching numbers, the fast
Lyapunov indicators, the frequency analysis, the methods PSOD, MEGNO
etc. For a concise review the reader is referred to . However the ultimate
criterion to evaluate the efficiency of such a method is the confirmation of
its results by the calculation of the LCNs, so that the understanding of this
method is absolutely necessary in the study of dynamical systems. Before
proceeding further we should point out that LCNs may be defined for con-
servative as well as dissipative systems; in the present text, however, we will
restrict ourselves to conservative systems.

The procedure for computing the LCNs can be found in any standard
textbook. There are basically two methods for their calculation. The first,
the “classical” one, is based on the simultaneous numerical integration of a
“main” trajectory, described by x, and a “nearby” trajectory, described by
x + ∆x. Then we calculate the limit

σ(x0,∆x) = lim
t→∞,‖∆x(0)‖→0

[
1
t

ln
‖∆x(t)‖
‖∆x(0)‖

]
(3)

Equation (3) is a vector equation. It can be shown that the limits of its
components exist and are finite. If we select a co-ordinate system, we can
write these limits as numbers, which are as many as the number of first order
differential equations describing the evolution of the dynamical system. These
numbers are the LCNs characterizing the “main” trajectory. In practice we
calculate only the largest of them, called maximal characteristic Lyapunov
number, since it is the one that dominates the evolution of the dynamical
system. It should be pointed out that the values of the LCNs are independent
of the choice for the metric of phase space used in (3). This is really important,
since the phase space does not posses a “natural metric”, which therefore
would be “preferred” in the calculation of the norms in (3), as the Euclidian
metric is “preferred” in configuration space.
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The second method is based on the numerical solution of the variational
equations of the system, i.e the linearized equations of motion. It has the
advantage that we do not have to take the limit ∆x(0) → 0 in (3). It also does
not have the problem of re-normalization (i.e. the re-definition of x0, when
the separation between the two trajectories reaches the physical dimensions of
the dynamical system) neither the problem of migration of each trajectory to
a region of phase space with different properties. On the other hand, in many
real applications it is difficult to write down the variational form of complex
equations of motion. A note of caution should be included here. In systems
with n = 2 degrees of freedom a positive Maximal Lyapunov Number implies
complete chaos . However in systems with n > 2 this is not so, as there is
always the possibility that one or more degrees of freedom correspond either
to Lyapunov numbers equal to zero or very close to it (i.e they are mildly
chaotic), as it is the case with stable chaos in the Solar system (e.g. see
[26]). Since numerically these two cases cannot be differentiated efficiently,
one should not consider a dynamical system with n > 2 as completely chaotic
solely by the fact that it has a positive Maximal Lyapunov Number, unless
he has computed all its Lyapunov exponents.

The algebraic sum of all Lyapunov exponents is related to the evolution
of volume in phase space. In a system with dissipation this sum is negative,
while in a conservative dynamical system it is exactly equal to zero, due to the
conservation of phase space volume. Moreover in any conservative dynamical
system at least one of the LCNs is zero because, in the direction along the
trajectory, ∆x grows only linearly with time. If, in addition, the dynamical
system is Hamiltonian (i.e. it is written in canonical co-ordinates, which define
a special co-ordinate system), then the Lyapunov exponents have a particular
symmetry

σi = −σ2N−i+1 (4)

where N is the number of degrees of freedom. It follows that there are at
least two Lyapunov exponents equal to zero in the case of a conservative
Hamiltonian dynamical system.

LCNs in Maps andi Flows

Besides dynamical systems defined by differential equations, i.e. flows, Lya-
punov Characteristic Numbers may be defined for maps as well. For example,
several authors calculate LCNs not for the flow itself but for the evolution of
consequents on a PSS. Sometimes there is a confusion on the dimensions and
the units, in which LCNs are measured in these two cases. Here we show the
relationship between them. For the M -dimensional map

xn+1 = F(xn) (5)

we can define σmap through (3) with t replaced by n, which leads to the
M Lyapunov exponents σi

map. If the Poincaré’s map of dimension M is
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generated by an autonomous Hamiltonian flow of dimension M +2, then the
LCNs of the map are proportional to the LCNs of the flow

σi
map = τσi, i = 1, ...,M (6)

The constant of proportionality, τ , is the mean time between successive in-
tersections of the trajectory with the surface of section. Note that, since two
of the LCNs of an autonomous Hamiltonian flow are known to be equal to
zero, the number of non-trivial LCNs for a map equals that of the flow, from
which the map was derived.

3 Integrable Systems

Since integrable systems are described in detail in all advanced textbooks on
Classical Mechanics, this topic is highly developed. We will try, therefore, to
explain the salient features without proofs or elaborate calculations, focusing
our presentation on conservative dynamical systems.

3.1 Constants of Motion

The basic property of integrable conservative dynamical systems is that they
posses constants of motion, in addition to the “energy” (which is by definition
constant in a conservative system). Sometimes it is difficult to find explicit
expressions of these constants as functions of coordinates and momenta, but
their existence can be recognized by a special structure they impose on phase
space, which is described as a foliation in invariant tori. The definition of a
constant of motion, of an invariant torus and of the foliation in invariant tori
will be among the topics of the present and the next section.

Conservative integrable systems and their properties are usually discussed
in the framework of Hamiltonian mechanics and canonical variables. We will
assume, therefore, that we consider an autonomous dynamical system (i.e.
∂H/∂t = 0) and that we have written its Hamiltonian function, H(pi, qi), as
well as the equations of motion, in the canonical variables (pi, qi). Suppose
then that we have discovered a (single valued) function, F (pi, qi), with the
following property: The value of F does not change with time, t, when its
arguments, pi and qi, are replaced by any solution of the equations of motion

dpi

dt
= −∂H

∂qi
,

dqi

dt
=

∂H

∂pi
(7)

Such a function is called a constant of motion of the dynamical system.
The constant value of such a function, along a trajectory, imposes the

condition
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dF (pi, qi)
dt

= 0 =
∑

i

(
∂F

∂pi

dpi

dt
+

∂F

∂qi

dqi

dt

)
=

∑
i

(
∂H

∂pi

∂F

∂qi
− ∂H

∂qi

∂F

∂pi

)
= [F,H] (8)

It should be emphasized that the Poisson bracket, [F,H], can be computed
for any two functions of the canonical variables, not only the Hamiltonian
and a constant of motion. However, the necessary and sufficient condition for
a function F to be a constant of motion is that the Poisson bracket between
the Hamiltonian, H, and F is zero ∀qi, pi.

Now suppose that we have found a set of independent constants of motion
for the dynamical system in study and let us call them F1, F2, etc. According
to what has been said, they have to be single-valued functions of the canon-
ical coordinates and momenta and each one should have a vanishing Poisson
bracket with the Hamiltonian, in accordance with (8). Moreover being in-
dependent implies that we cannot express, say, F3 as a function of F1 and
F2. A specific trajectory then lies on the intersection of all the hypersurfaces
Fj(pi, qi) = const., when these constants take the values corresponding to
the initial conditions of the trajectory.

However, the above three properties (e.g. single-valued, constant and in-
dependent) are not sufficient to guarantee the solution of the equations of
motion of the corresponding dynamical system in a straightforward way. But
if we could impose some additional conditions on the constants of motion,
we would be able to construct a special system of canonical coordinates, the
so-called action-angle variables, which portray in a very simple and elegant
way the special properties of integrable systems.

3.2 Action-Angle Variables

A Hamiltonian dynamical system with n degrees of freedom has a phase space
of 2n dimensions. Let’s assume that we have already found k constants of
motion with the above properties, including the energy H(pi, qi) = E. Any
trajectory of this dynamical system is then restricted to a (2n − k)- dimen-
sional subspace of the whole phase space. In order to construct a canonical
coordinate system using the above constants as level surfaces, these constants
should be “in involution”, which means that the Poisson bracket of any two
functions should vanish, i.e. [Fi, Fj ] = 0 ,∀i �= j. This imposes some restric-
tions on the topology of the subspace, on which the motion takes place, and
ensures that the constants Fi can, in principle, be used as a set of momenta
in some canonical set of variables.

The most favorable case, for the explicit solution of the equations of
motion of a conservative dynamical system, is when there exist at least
n constants of motion (i.e. as many as there are degrees of freedom) with
all the above mentioned four properties. If, moreover, all trajectories lie on
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a connected subset of phase space which is compact (i.e. neither the posi-
tions nor the momenta take infinite values), the trajectory is confined to
a n-dimensional manifold. Then, by a well-known theorem due to Liouville
(e.g. see [3], beginning of Chapter 10), this manifold is isomorphic to an n-
dimensional torus, i.e. a “hypersurface” on which the position may be defined
by a set of n angles. Each trajectory of the dynamical system lies on such
a torus, which is therefore called invariant. Since two different trajectories
do not intersect in phase space, so do any two invariant tori. Therefore the
invariant tori are nested, one inside the other, and the phase space is said to
be foliated. Such a dynamical system is called integrable. A few remarks on
the notion of integrability are necessary at this point.

• It is generally accepted that a dynamical system is integrable because it
has symmetries, which are responsible for the existence of the constants
(or integrals) of motion (the famous Noether’s theorem, e.g. see Arnold
[3], p. 88). But in most integrable dynamical systems these symmetries,
and the corresponding constants, are not obvious at first sight. This is
exactly the case with the Toda lattice (Sect. 3.4), where the symmetry
corresponding to the additional integral is not trivial at all.

• Integrability, in the Liouville sense, is sufficient for the solution of the
equations of motion by quadratures, i.e. as integrals of elementary func-
tions. However it is not a necessary condition. A trivial dynamical system
which is not integrable, in the strict Liouville sense, but whose equations of
motion are solvable in closed form, is Kepler’s problem for non-negative
energy values and/or zero angular momentum. The reason is that the
available region of phase space is not compact, since in the first case the
position and in the second the momentum go to infinity.

• There exist Hamiltonian dynamical systems for which we know as many
constants of the motion as the number of degrees of freedom, but we
cannot find the action-angle variables in explicit form, because the cor-
responding integrals cannot be computed in terms of elementary func-
tions (e.g. the non-linear pendulum, Sect. 3.4 or the problem of the two
fixed centers, Sect. 3.4). A dynamical system, for which we can find a
co-ordinate system in which the equations of motion for each one degree
of freedom do not depend on the other degrees, is called separable (e.q.
see Sect. 3.4).

It is intuitively helpful to realize why, in a system with two degrees of
freedom and two constants of motion in involution, the trajectories cannot
lie on a 2-sphere (or a surface with the same topology): it is impossible to
define on a sphere a coordinate system that does not have, at least, one
singular point somewhere. On the surface of a 2-torus, however, there is an
obvious system of coordinates without any singularity. It consists of two sets
of circles, one winding around the symmetry axis that passes through the
“hole” of the torus (i.e. parallel to the “equator” of the torus) and the other
one winding parallel to this axis (i.e. the “meridians” of the torus) (see Fig. 5).
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Fig. 5. A co-ordinate system on a sphere has at least one singular point, where
one co-ordinate is not defined. This is not so on a torus (from [6])

On a n-torus the position is defined by a set of n co-ordinates, (θ1, θ2, ..., θn)
which are named angle variables, since each one has a 2π-periodicity. If we
select the angle variables as generalized co-ordinates of a new system of canon-
ical co-ordinates of an integrable dynamical system, then by the same above
theorem we know that their time derivatives (ω1, ω2, ..., ωn), called frequen-
cies of the dynamical system, are constant on each torus. The frequencies ωi

depend on the values of the constants of motion characterizing the particu-
lar invariant torus. The conjugate momenta of the angles are called actions
and are denoted by the symbols (I1, I2, ..., In). From what was said in the
previous paragraph, it becomes evident that the angle variables are linear
functions of the time, since their derivatives with respect to time, the fre-
quencies ωi, are constant on each invariant torus. From the second part of
(7) then it follows that the Hamiltonian cannot depend on the angles but only
on the actions. Therefore the Hamiltonian in the new coordinates becomes
H∗(I1, I2, ..., In) (note that we have put an asterisk in the new Hamiltonian,
because it is a function different from H). This means that, in action-angle
variables, Hamilton’s equations of motion given by (7) take the trivial form

dIi

dt
= −∂H∗

∂θi
= 0,

dθi

dt
=

∂H∗

∂Ii
= ωi (9)

We see that the frequencies, ωi, are simply the derivatives of the Hamiltonian
with respect to the actions, Ii, and that the actions are constants of motion,
something that should be expected, since they are functions of the original
constants of motion, Fi. Therefore the trajectories become straight lines on
each (Ii, θi) plane. We recall that the principal property of a Hamiltonian
system is that the action integral of p dq is invariant under a canonical
transformation. This means that

∑
pidqi =

∑
Iidθi. From the latter condi-

tion we can explicitly calculate the Iis, in the following way. We assume that
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all other angles are kept constant except for θi, which varies from 0 to 2π.
In this way the trajectory is a closed loop, Ci, which can be expressed either
in the original coordinates, (pi, qi), or in the action-angle variables, (Ii, θi).
Since the action integrals in the two coordinate systems have to be equal
(as stated above), we find immediately the formula for the calculation of the
actions

∫

Ci

Iidθi =
∫

Ci

pidqi ⇒ Ii =
1
2π

∫

Ci

pidqi (10)

We emphasize that, by definition, action-angle variables can be constructed
only for integrable Hamiltonian systems.

In order to get a geometrical picture of the action variables, we start
with the one-degree-of-freedom (1-D) case. We recall that, since the action
integral is invariant under a canonical transformation, so is its differential,
dpdq, which expresses the elementary area on the surface (pq). Therefore
the elementary area in action-angle variables is written as dE = dIdθ. On
the other hand it is known that conjugate canonical co-ordinates may be
considered as being orthogonal (see footnote 1). Then the elementary area on
the surface (Iθ), in polar coordinates, is expressed as dE = rdrdθ = d( r2

2 )dθ.
By comparing the last two relations we find that r =

√
2I. In a similar way, in

a two-degrees-of-freedom (2-D) integrable Hamiltonian system, the two action
variables are, up to a factor 1/2, the squares of the two (constant) radii of a
torus: the first is the radius of a “meridian” (a section parallel to the axis of
symmetry) and the second is the radius of the “equator”, which is orthogonal
to the meridian (Fig. 3). Action-angle variables are of particular interest in
Hamiltonian Mechanics, not only because they are the variables of choice
for integrable systems, but because they are used, as well, in the study of
chaotic Hamiltonian systems and the calculation of the, so-called, resonance
overlap criterion, which gives an estimate on when a perturbed integrable
Hamiltonian system shows prominent chaotic behavior (see Sect. 5).

3.3 Periodic, Quasi-Periodic and Ergodic Motion

If we are able to find the Hamiltonian H∗, then we have arrived, as well, at the
complete solution of the equations of motion. This is so because the general
solution of (9) is given by θi = ωit+φi. In this expression the frequencies, ωi,
are functions of the actions Ii only and, together with the phase angles, φi, are
the integration constants (they correspond to the initial conditions!). There
are many possible sets of angle-type variables in any special problem (e.g. the
true or the eccentric anomaly in Kepler’s problem). They are, however, not
linear functions of time in general, so that they are not the angle variables
of an action-angle variables set. In contrast, the mean anomaly in Kepler’s
problem is a linear function of time and, therefore, it can be considered as the
angle of a corresponding action-angle pair. The difficulty in integrating the
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equations of motion consists exactly in finding the angle-type variables whose
time-dependence is linear. But if we manage to do so, then the geometrical
form of the trajectories is remarkably simple: they are helices winding on the
surface of a torus. In particular, if all n frequencies are independent in the
rationals, i.e. if the resonance relation

m1ω1 + m2ω2 + ... + mnωn = 0

is not satisfied for any set of the integers m1,m2, ...,mn, then the helix is
open and covers densely (and, hence, ergodically, see Sect. 4.1) the surface
of the (n-dimensional) torus. If only one frequency is independent (i.e. if
n − 1 resonance relations are satisfied), the trajectory is closed and, thus,
periodic (Fig. 6). In between lie all other cases, in which the number of
independent frequencies is between 1 and n and the trajectory covers densely
a submanifold of the n-torus. The motion in these intermediate cases is said
to be conditionally periodic or quasi-periodic.

Fig. 6. In a 2-D system with only one independent frequency, the corresponding
trajectories are periodic (from [6])

3.4 Examples of Integrable Systems

The Harmonic Oscillator (or Linear Pendulum)

The simplest one-dimensional (and thus integrable by quadratures) system
is the harmonic oscillator, described by the Hamiltonian

H =
1
2
p2 +

1
2
ω2q2 = h (11)
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Fig. 7. In a 2-D system with two independent frequencies, the corresponding tra-
jectories are conditionally periodic (from [6])

We will try to write this Hamiltonian in action-angle variables, using the rule
given by (10). We solve the Hamiltonian for p,

p = p(q, h) =
√

2h− ω2q2 (12)

substitute it in (10) and calculate the integral. The result is

I =
h

ω
(13)

which, of course, could be found directly by substituting the well know solu-
tions of the equation of motion

x = cos(ωt), p = ω sin(ωt) (14)

in (11). The angle θ can be found by simple inspection: Since the argument
in the trigonometric functions of the solution is linear in time, it is exactly
the angle sought, i.e. θ = ωt. The action, I, as a function of the value of the
Hamiltonian, h, can be found by squaring the solutions, p(t) and q(t) and
adding them. The result is

H = ωI (15)

from which the action variable is given immediately as

I = H/ω (16)

The Non-Linear Pendulum

The harmonic oscillator is a trivial application of the method to calculate
action-angle variables for a one-dimensional dynamical system. A more in-
teresting case is the (non-linear) pendulum, described by the equation of
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motion:
q̈ = − sin(q) (17)

which is derived from the Hamiltonian

H =
1
2
p2 − cos(q) (18)

where for convenience and without loss of generality we have set ω, i.e. the
frequency of low-amplitude oscillations, equal to 1 (in dimensionless units).

Equation (17) has two families of solutions, one for h > 1 and the other
for −1 < h < 1. Since the trajectories of the family h > 1 are unbounded,
a case of limited interest in Physics and Astronomy, we focus on the case
−1 < h < 1. We note, however, that the energy hcrit = 1 corresponds to a
particular set of trajectories of this system, observed in practically all Hamil-
tonian dynamical systems, whose union is named “separatrix”. A separatrix
of an integrable dynamical system is a self-intersecting curve in phase space,
composed of three trajectories. One trajectory consists of only the point of
intersection and it is essentially a point of equilibrium. The two other trajec-
tories start in the neighborhood of this point and return to it after an infinite
time interval. Seperatrices play an important role in the appearance of chaos
in non-integrable dynamical systems, which are perturbation of integrable
ones, since the first signs of stochastic behavior appear in their neighborhood
as the perturbation increases.

By expressing p as a function of h through (18) and then by substituting
this function to (10), we arrive at

I =
1
2π

∮
(H + 2 cos(q))1/2dq (19)

The integral in (19) is non-trivial, but it can be found in tables of integrals.
The solution is well known, and we give it without derivation

I = I(h) =
8
π

[
E(π/2;κ) − (1 − κ2)F (π/2;κ)

]
(20)

where F and E are elliptic integrals of the first and second kind, respectively,
and the parameter κ is related to the energy, h, through the relation κ2 =
1+h

2 . In order to write the Hamiltonian, (18), as a function of the new action,
we have to invert (20). However this is highly non-trivial and the result is
expressed in terms of elliptic integrals as well, something that does not allow
us to obtain an easy “insight” in the properties of the solutions. We will
see in Sect. 3.4 that this problem appears in another integrable dynamical
Hamiltonian system, the problem of the two attracting fixed centers, and this
is the reason why some unexpected properties of this latter system, which
was solved a long time ago, were not understood until recently.

For reasons of completeness we note here that, although the complete
solution of the problem, which includes the calculation of the Hamiltonian
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H(I) as well as the expression of the “old” variable as a function of time,
q(t), is not very illuminating, the derivatives of these functions are relatively
simple:

ω(I) =
dH

dI
=

π

2F (π/2;κ)
q̇ =

dq

dt
= 2κcn(t;κ) (21)

where cn is the elliptic cosine and κ =
√

1+h
2 .

The Toda Lattice

The above theory of integrable systems will now be illustrated with one exam-
ple of a 2-D dynamical system of a form slightly more complicated kind than
the ones ordinarily found in textbooks, the Toda lattice. The “complication”
arises from the fact that the frequencies ωi, in this example, depend on the
actions Ii in a non-trivial manner. This means that the matrix of derivatives
of ωi with respect to Ii (i.e. the Hessian of the Hamiltonian) is not singular
(in other words it is different from zero; the corresponding dynamical system
is said to be non-degenerate). This condition is not satisfied in the usual text-
book examples, such as the Kepler’s problem or the Hénon-Heiles system (or
any other system of two harmonic oscillators coupled through a perturbing
term), which have a Hessian equal to zero and are, therefore, degenerate. For
example the Hénon-Heiles Hamiltonian can be written in the form

H =
1
2
(p2

x+p2
y)+

1
2
(x2+y2)+ε

(
x2y − 1

3
y3

)
= ω1I1+ω2I2+O(ε) = H0+O(ε)

(22)
so that H0 is integrable and its second derivatives, with respect to the ac-
tions, are zero. It should be pointed out that the original KAM (Kolmogorov-
Arnold-Moser) theorem, which guarantees the existence of ordered trajec-
tories of positive measure in any perturbed integrable Hamiltonian system,
does not apply to degenerate systems [3]. Therefore, Kepler’s problem, as well
as the zero-th order term of the Hénon-Heiles system, although integrable,
present special difficulties when perturbations are applied.

The Toda lattice (or chain) consists of n particles, which move along a line
and are coupled by non-linear springs. If by pi and qi we denote, respectively,
the momentum and the position of the i-th particle, then the Hamiltonian
describing the Toda lattice is written as

H =
1

2m

n∑
1

p2
i + V0

[n]∑
1

exp
(

qi − qi+1

a

)
(23)

The symbol [n] in the second summation may take two values: for an open
lattice it is [n] = n − 1, while for a periodic (or circular) lattice it becomes
[n] = n, with the identification qn+1 = q1.
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We observe that there appear three physical parameters in the above
Hamiltonian, the mass, m, of each particle, the strength of the spring, denoted
by the potential V0, and the scale, a, of the (short range) force of the springs.
By taking these parameters as new units (i.e. by setting m = V0 = a = 1),
the Hamiltonian is written in dimensionless units as a function of generalized
co-ordinates and momenta only.

The Hamiltonian in (23) does not present any explicit symmetry, so it
seems reasonable to believe that it does not possess any further constants of
motion, besides the energy and the momentum. Therefore it should be non-
integrable. The numerical calculation of surfaces of section for the periodic
lattice with n = 3, however, showed exactly the opposite. This lattice is a
three degrees of freedom Hamiltonian system that has two integrals of motion:
the total momentum and the total energy. Using the momentum integral and
by a suitable change of variables, one can write down the problem as a two
degrees of freedom dynamical system, described by the Hamiltonian

H =
1
2
(p2

x + p2
y) +

1
24

[
e2y+2

√
3x + e2y−2

√
3x + e−4y

]
− 1

8
(24)

This dynamical system has only one obvious integral of motion, the Hamil-
tonian itself. Moreover, if we expand the exponentials to third order in the co-
ordinates, we get the famous Hénon-Heiles Hamiltonian, which is well known
to be non-integrable. However the numerical results indicated that the Hamil-
tonian in (24) is integrable! The “second” integral was constructed by Hénon
and, almost simultaneously, Flashka discovered that the Toda lattice is in-
tegrable for any value of n and that the integrals of motion, in the original
variables, are polynomials of order 1, 2, ..., n in the momenta. This is very
interesting, since in the previously known integrable systems the additional
constants of motion were at most quadratic in the momenta. It should be
noted, however, that the action-angle variables of a Toda lattice cannot be
written in the form of elementary functions of the the energy and the other
constants of motion.

The Kepler’s Problem

It would be interesting, also, to see how we can introduce action-angle vari-
ables to a well known integrable dynamical system, namely the motion of a
test particle in the gravitational field of a fixed spherically symmetric body.
Hamilton’s function is written, in polar co-ordinates, as

H =
1

2m

(
p2

r +
p2

θ

r2

)
− GMm

r
(25)

where by m we denote the particle’s mass, by M the central body’s mass
and G is the gravitational constant. The corresponding dynamical system
is 2-D and has two independent integrals of motion, namely the energy, h,
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and the angular momentum, pθ. The compactness of the available phase
space region is guaranteed by assuming that the value of the Hamiltonian,
h, is negative, (in order to have bounded motion in configuration space), and
that the angular momentum is different from zero (in order to have bounded
motion in momentum space, since otherwise the particle is on a collision
course with the central body!). Therefore this dynamical system is integrable
in the Liouville sense and can be written in action-angle variables.

The angular momentum, pθ, can be taken as the “new” action, Iθ, since
θ is an ignorable co-ordinate, as

∂H

∂θ
= 0 (26)

and, therefore, it can be considered to be a (trivially) linear function of time.
The question is how one can find the second action. The answer is: follow the
rule given by (10):

2πIr =
∫

C

prdr (27)

From (25) we express pr as a function of r and we finally have

Ir =
1
2π

∫

C

[
2m

(
h +

GMm

r

)
− I2

θ

r2

]1/2

dr (28)

It is not a straightforward problem to calculate this integral, but we can find
its solution in tables of integrals (or in Goldstein!). It is

Ir = −Iθ +
GMm

2

(
2m
−h

)1/2

(29)

By solving this relation for h we get the “new” Hamiltonian function, H∗,
(expressed now in the actions Ir and Iθ)

H∗ = − (GMm)2m
2(Ir + Iθ)2

= h (30)

From the last relation it is obvious that the two frequencies of this problem,
ωr and ωθ, are not independent, since

ωr =
∂H

∂Ir
=

(GMm)2m
(Ir + Iθ)3

= ωθ =
∂H

∂Iθ
(31)

According to what we have said in the previous section, Sect. 3.4, we un-
derstand that the problem of Kepler is a degenerate dynamical system. As a
consequence of the equality of the two frequencies, all trajectories are wind-
ing periodically on the torus defined by the two actions and are, therefore,
periodic in time. This is actually the well known result of Newton, that all
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bounded trajectories in Kepler’s problem are ellipses. For reasons that will be-
come clear in the next section, people working on Celestial Mechanics prefer
to use another set of actions in Kepler’s problem, the so-called Delaunay ac-
tions L and G, which are related to Ir and Iθ through the relations L = Ir+Iθ

and G = Iθ. In these variables the Hamiltonian becomes simply

H∗ = − (GMm)2m
2L2

= h (32)

The Two Fixed-Centers Problem (2FCP)

The motion of a point mass, moving in the gravitational field of two fixed
attracting centers, is a problem first posed by Euler in the 18th century, as
an intermediate step towards the solution of the famous three-body problem.
Euler himself was able to integrate the equations of motion for the two-
dimensional (2-D) case, i.e. the case where the point mass moves on a plane
containing the two attracting centers. Almost a century later Jacobi showed
that the corresponding potential of the full 3-D case is separable in prolate
spheroidal coordinates. Another century later Erikson and Hill found, in ex-
plicit form, the third integral of motion of the full three-dimensional (3-D)
case (besides the other two “classical” ones, i.e. the total energy and the
angular momentum about the axis passing through the two centers). Since
then, the problem has been considered as a non-exciting example of a sepa-
rable potential and it is included, as such, in many textbooks of Theoretical
Mechanics.

Although the 2FCP is a separable dynamical system, the qualitative be-
havior of its solutions was, up to now, not very well understood, probably
due to the fact that, as we have mentioned already in Sect. 3.4, the solutions
are expressed in the form of elliptic functions.2 Here we focus our interest on
the (simpler to study) 2-D case of the problem, where the trajectory of the
third body lies on a plane and we assume, without loss of generality, that the
third body has unit mass. Then the Hamiltonian of the dynamical system is
written, in cartesian co-ordinates, x-y, as

H(x, y, px, py) =
p2

x

2
+

p2
y

2
−α1

r1
− α2

r2
≡ E (33)

where α1 = 2µ, α2 = 2(1 − µ) (µ ∈ [0, 1] is the mass parameter), r1 =√
(x + 1)2 + y2 and r2 =

√
(x− 1)2 + y2. We note that, in the variables used

in (33), the distance between the two centers is equal to α1 + α2 = 2 = −α.
For later use we define also the asymmetry mass parameter, β, which is equal
to β = α1 − α2 = 4µ − 2. We note however that in the numerical examples
2 For an extensive presentation of the history of the problem and its properties,

see [27] and references therein.
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we restrict our attention to the case of equal masses, so that µ = 0.5 and,
therefore, β = 0.

Following Euler and Jacobi, we write the above Hamiltonian in elliptic-
hyperbolic coordinates, through the canonical (point-)transformation:

ξ =
r1 + r2

2
, η =

r1 − r2

2
(34)

Then the “old” variables, as functions of the “new”, are given by

x = ξη (35)

y = (sign y)
√

(ξ2 − 1)(1 − η2) (36)

px =
η(ξ2 − 1)pξ + ξ(1 − η2)pη

ξ2 − η2
(37)

py = (sign y)

√
(ξ2 − 1)(1 − η2)(ξpξ − ηpη)

ξ2 − η2
=

=
y

ξ2 − η2
(ξpξ − ηpη) (38)

The Hamiltonian H, in the new variables (ξ, η, pξ, pη), becomes

H =
1

ξ2 − η2

[
1
2
(ξ2 − 1)2p2

ξ + αξ +
1
2
(1 − η2)2p2

η + βη

]
(39)

Finally we change the time scale, by multiplying the Hamiltonian function
by ξ2 − η2, noting that this quantity is positive everywhere except when the
moving body collides with one of the two centers, in which case it is equal
to zero. At the same time we switch to the extended phase space, where the
additional co-ordinate is time, t, and the corresponding momentum, pt, is
equal to −E, where by E we denote the numerical value of the Hamiltonian
function, (39). The new Hamiltonian, K(ξ, η, τ, pξ, pη, pτ ),

K =
1
2
(ξ2 − 1)2p2

ξ + αξ + ptξ
2 +

1
2
(1 − η2)2p2

η + βη − ptη
2 (40)

has in the extended phase space a numerical value equal to zero.
We observe that the Hamiltonian is the sum of two parts, Kξ and Kη,

the first depending only on ξ and pξ and the second only on η and pη. Since
the value of the Hamiltonian is by definition zero, the two parts should have
opposite values, and satisfy the relation

Kξ ≡ −Kη ≡ γ (41)

In this way we have separated the variables and, at the same time, we have
found the second integral of motion

G = − 1
ξ2 − η2

(η2Kξ + ξ2Kη) (42)
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However, although we have separated the variables in the Hamiltonian (40),
we have not written it in action-angle variables. The solutions can be found by
quadratures, but they are not computable in elementary functions. Therefore
some uncommon properties of the solutions were not known until the work
of Varvoglis et al. [27]. One such property is that the quasi-periodic orbits of
this dynamical system approach arbitrarily close the two attracting centers
and, if the centers are bodies with physical dimensions, the orbits collide with
one of them in a finite time.

4 Chaotic Systems

Since, according to the reasoning in Sect. 3.2, the presence of symmetries
implies integrability and, hence, regular behavior, it is obvious that their
absence is equivalent to non-integrability. In this sense most dynamical sys-
tems are non-integrable and, therefore, chaotic. However this does not mean
that we cannot get useful information from the study of a chaotic system.
The trick is to change our strategy, looking for a statistical description of a
chaotic dynamical system, instead of a complete solution of the motion.

A statistical description of a dynamical system usually implies that we try
to follow the time evolution of certain average quantities, instead of following
specific trajectories corresponding to given initial conditions. This procedure
is not new to physicists, since it is the essence of Statistical Mechanics. The
methodology followed in seeking a statistical description of a dynamical sys-
tem, which is discussed in the present section, depends on a number of rather
involved mathematical concepts, such as ergodicity, mixing and K-entropy.
We will try to discuss these concepts, as well as their role in such a statistical
description, in a rather heuristic, non-rigorous way.

4.1 Definitions and Basic Concepts

Ergodicity

The concept of ergodicity was introduced in Physics by Ludwig Boltzmann, in
his attempt to prove the second law of Thermodynamics, i.e that the entropy
of a closed system is a non-decreasing function. According to Boltzmann, an
ergodic system is the mathematical model of a gas: it has the property that
any initial fluctuations of the density or the temperature are quickly “wiped
out” and the system, after a while, becomes “homogeneous”. According to
Boltzmann, a dynamical system is ergodic if the time average of any smooth
(i.e. infinitely differentiable) function of the canonical coordinates is equal to
the space average. In order to understand this definition, we should first give
exact definitions for the notions of the time and space average of a function
in the phase space of a N -degrees of freedom Hamiltonian system. For any
smooth function f(pi, qi) of the generalized coordinates, qi = q1, ..., qn, and
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momenta pi = p1, ..., pn, we can define the time average 〈f(p, q)〉t through
the relation

〈f(p, q)〉t = lim
T→∞

1
T

∫ t+T

t

f(p(t′), q(t′))dt′ (43)

For the same function we can define also the space average, 〈f(p, q)〉Γ , through
the relation

〈f(p, q)〉Γ =
∫

Γ

f(p, q)dΓ (44)

In (44) the domain of integration, Γ , is the phase space and the differential,
dV , is given by dΓ = dp1dp2...dpndq1dq2...dqn.

If the two mean values (temporal and spatial) are equal and the equality
does not depend on the choice of the time t, we say that the motion is ergodic.
As we will se, this definition is not directly applicable to Hamiltonian systems.
We will, therefore, introduce a more mathematically oriented definition.
Let x be a vector in phase space. Then it can be shown that for almost all x:

• 〈f(x)〉t exists;
• 〈f(x)〉t is an invariant function, i.e. it is independent of the initial condi-

tions on a given orbit,

〈f(Tnx)〉t = 〈f(x)〉t , ∀n; (45)

• the space-mean value of 〈f(x)〉t is equal to the space-mean value of f(x).
An equivalent to (44) way of defining the space average of f(x) is

〈f(x)〉x =
∫

M

f(x)dµ (46)

In (46) the manifold M , having dimension M, is the phase space of the system
and µ is an invariant measure, given by dµ = P (x)dMx, where P (x) is the
probability density function. Thus dµ gives the probability that the value
of x is in the “interval” between x and x + dx. In the special case of a
Hamiltonian system, where x denotes the set of canonical variables, P (x) = 1,
due to Liouville’s theorem on the conservation of phase space volume along
a trajectory.

A dynamical system is defined, according to the ideas of Boltzmann, as
being ergodic if

〈f(x)〉x = 〈f(x)〉t (47)

for almost all x (this means that x belongs to the manifold M minus any
subset A of zero measure). From this definition it is clear that the time mean
of an ergodic system does not depend on x. Since the observable function,
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f , can be chosen arbitrarily,3 an ergodic system has the property that every
trajectory passes arbitrarily close to any point in phase space, infinitely many
times. It is then evident that a system possessing invariant tori, in addition
to chaotic regions, is not ergodic; we say that it is decomposable. For exam-
ple, any non-degenerate perturbed integrable system, to which the famous
KAM theorem may be applied, is decomposable, since this theorem guaran-
tees that, for some range of the perturbation parameter, invariant tori do
exist. Note that the class of decomposable systems is more general that the
one discussed above, since this class contains perturbed degenerate dynamical
systems as well (where the KAM theorem cannot be directly applied), such
as the Hénon-Heiles system. A delicate point in deciding on the ergodicity
or not of a system is the (sub)space where the motion is considered. An au-
tonomous Hamiltonian system does not posses an ergodic set of trajectories
on the entire phase space, because the energy is an integral of motion and,
therefore, a trajectory cannot visit all phase space. However a set of trajecto-
ries may be ergodic on a constant energy surface, i.e. a submanifold of M . In
particular, an integrable system with n-degrees of freedom is ergodic on any
non-resonant n−torus (on which, remember, all n frequencies are indepen-
dent). Then the time spent by a trajectory in a subset of the surface of the
torus is proportional to the measure of this subset. If other integrals, besides
the energy, do exist, then the system can be ergodic only on a subspace of
the phase space, which consists of the intersection of the level surfaces of all
these integrals.

In order to clarify the above definitions, we use the example of translations
on a torus, given by the mapping

T (θ1, θ2) = (θ1 + ω1, θ2 + ω2) (mod 2π), (48)

If the frequency ratio α = ω1
ω2

is irrational, the orbit is everywhere dense
on the torus and, therefore, its density can be given by an invariant function
〈f(x)〉x. It can be proven that 〈f(x)〉x is a constant independent of the initial
conditions, a fact that implies ergodicity. Physically, (48) corresponds to the
twist mapping on the surface of section θ1 − I1 of a two-degrees of freedom
(2-D) Hamiltonian system. Omitting the subscript 1, this mapping is:

Jn+1 = Jn

θn+1 = θn + 2πα (49)

If α is rational, all trajectories of this mapping are periodic. Since a periodic
trajectory consists of a finite number of points on a circle and, therefore, it
is not everywhere dense in the available region of phase space, this system
cannot be ergodic. On the other hand for α irrational the entire circle is
covered by the orbit, and 〈f(x)〉x → 〈f(x)〉t, which is a property implying
ergodicity.
3 E.g. it might be one of the generalized co-ordinates or momenta.
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Now, the mapping in (49) corresponds to the motion described by an
integrable 2-D Hamiltonian system on a given KAM torus, where θ1 and θ2

are the angle variables. Thus, in a restricted sense, we can say that the motion
is ergodic on any irrational torus, while non-ergodic within the entire phase
space. From the above example of regular quasi-periodic motion, it is clear
that an ergodic dynamical system is not necessarily chaotic. On the other
hand the “careful” definition of the subspace where the motion is considered
lets us hope that a chaotic region, such as a separatrix layer (defined by
the invariant curves that bound it) is also ergodic. However, this may be of
somewhat limited usefulness, as a separatrix layer is not an open set, since
it contains (according to the KAM theorem) surviving invariant tori of finite
measure.

Mixing

The concept of mixing is very simple. Following Arnold, if we want to prepare
a cocktail named rum-cola, we put in a shaker one part of rum and four parts
of cola. This setting represents the initial distribution of the “incompressible
fluid” in phase space. If we then stir or shake the liquid repeatedly, we expect
that, after the fluid has been stirred sufficiently often (n stirrings with n →
∞), every part of the shaker, however small, will contain “approximately”
20% rum and 80% cola. In a mathematically rigorous way we say that a
dynamical system is mixing if

lim
n→∞

µ
[
φn

(
A
⋂

B
)]

= µ(A)µ(B) (50)

A mixing system approaches an equilibrium; 〈f(x)〉x → 〈f(x)〉t, as t → ∞.
Mixing is a notion more subtle than ergodicity. It was introduced into

statistical physics already by Gibbs, but it found its way into non-linear
dynamics only relatively recently. The definition given above can be under-
stood in more physical terms if we introduce the notion of the autocorrelation
function. Since there are more than one nomenclature conventions in the cor-
responding literature, we will try to give detailed definitions on the concepts
introduced here. Let X be any co-ordinate or momentum (or a function of
them) of a dynamical system. Then we can define a function of X, which
is called covariance function of X, and is represented, here, by the symbol
R. The covariance function can be defined for flows as well as for mappings.
The definition for flows is, as a rule, used in theoretical calculations, while
the definition for mappings is used in numerical exploration of dynamical
systems, in which the value of any variable is recorded at regular intervals
of time. If the dynamical system is ergodic, then, according to (43) and (44)
the temporal mean value of X, µ = 〈X〉t, exists and is independent of the
selection of t0. Then the covariance function of X in the discrete case, R(n),
is defined through the relation
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R(n) = 〈[(Xj − µ)(Xj+n − µ)]〉 (51)

and is independent of j. Note that R(0) = V ar(X) = σ2
X , where by V ar(X)

we denote the variance of X and by σX its standard deviation. Note also that
the function R(n) is even, i.e.

R(−n) = 〈[(Xj − µ)(Xj−n − µ)]〉 = 〈[(Xj−n − µ)(Xj − µ)]〉 = R(n) (52)

so that R(n) = R(−n) = R(|n|). Then the function C(n), defined through
the relation

C(n) =
R(n)
σX

2
(53)

is called the autocorrelation function of X. Note that C(0) = 1 and that
−1 ≤ C(n) ≤ 1. In the continuous case we are led to exactly analogous rela-
tions, only that the discrete time n is replaced by the continuous time, t. It
should be noted that the above definitions can be generalized by introducing
in (51) and (52) two functions, X and Y , instead of one, in which case the cor-
responding function, analogous to (53), is named cross-correlation function.
Also the definition can be generalized for vector functions as well. However
these generalizations are outside the scope of the present article.

The autocorrelation function is closely related to the concept of mixing.
We say that an ergodic dynamical system is mixing if the autocorrelation
function of its co-ordinates and momenta satisfies the relation

lim
τ→∞

C(τ) = 0 (54)

which is equivalent to (50) and is well known in physics as the condition of
decay of time correlations (see e.g. [28]). The process of mixing may be visu-
alized by considering the time evolution of a droplet of “phase-space liquid”.
In the case of a mixing motion its evolution in phase space is extremely com-
plicated (Fig. 8). The boundary of the droplet quickly assumes an irregular
shape with long protruding “filaments” and deep “fjords”. As time goes on,
the shape of the boundary gets more and more complicated, and the filaments
extend to ever new regions of phase space. By virtue of Liouville’s theorem,
the volume of the droplet is conserved, and the phase space is gradually being
filled by the liquid, owing to the stretching and thinning of the filaments of
the droplet. It is no surprise that the ergodicity conditions (43–45) automati-
cally follow from the condition of mixing, (50), since the equivalent definition
of mixing, (54), was derived under exactly this assumption.

The difference of a “simply” ergodic motion from a “mixing” ergodic
motion is illustrated in Fig. (9). In the case of “simple” ergodicity (i.e. non-
mixing), a trajectory fills the phase space consecutively in a regular manner,
e.g. like a two-dimensional Lissajous curve on the x− y plane when the ratio
of the x− and y− frequencies is irrational. Mixing results in a quite different
scheme of filling the phase space. First the system covers the whole phase
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Fig. 8. As time goes by, a droplet of initial conditions of a mixing dynamical
system spreads in phase space in a way that depends on whether the corresponding
dynamical system is (a) non-mixing and (b) mixing (from [28])

Fig. 9. The difference between (a) purely ergodic motion and (b) mixing motion
(from [28])
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space nearly uniformly over a certain time interval T . In a time 2T this
process is approximately repeated in such a way, so that the size of the cells
of this network becomes approximately twice as small, and so on.

The differences between mixing and non-mixing ergodic systems may be
understood in even another way, which sometimes is more intuitive to a physi-
cist. Instead of studying the evolution of the system in the time domain, one
might switch to the frequency domain. The spectral density function, or sim-
ply spectrum, f(ν), of any dynamical variable of a system is the counterpart
(in the frequency domain) of the covariance function, R(n). In other words,
f(ν) is the Fourier transform of R(n) and vice versa. In the case of practical
interest to dynamical systems, the trajectory is computed by the numerical
integration of the equations of motion and, thus, it is known as a time series.
If we assume that the time series consists of N points at intervals ∆t = 1,
the function R(n) consists of N points as well. The largest ν will be 1

2∆t = 1
2

(remember that ∆t = 1), since we do not resolve oscillations with periods
smaller than 2∆t, and the smallest ν will be 1

N , since we have not enough
information for oscillations with period longer than N∆t. The νs then lie in
the interval −N/2 < ν < N/2 and are equally spaced, differing by 1

N . As as
a result then, f(ν) and R(n) are related through the equations:4

f(νj) =
N−1∑
k=0

R(τk)e(−2πiνjτk) (55)

and

R(τk) =
1
N

N
2∑

j=−N
2

f(ν)e(2πiνjτk) (56)

Since from (52) we know that R(k) = R(−k), it turns out that f(ν) is a real
and even function. Therefore it is sufficient to consider the spectrum only
for positive values of ν. It should be emphasized that conventions differ in
the literature. Some authors use different normalization factors in (55–56).
Others use the correlation function, C(n), instead of the covariance function,
R(n), in (55)5 In our nomenclature, the last case should be named normalized
spectrum. If now we use the spectrum as a tool, the difference between mixing
and non-mixing dynamical systems becomes clear. In the case of non-mixing
motion, the spectrum is discrete, that is
4 For reasons of completeness, we should note that the pair of conjugate functions

f(ν) and is defined in a different way if the “signal” is a continuous function
of time defined in a finite interval and yet in another way if it is a continuous
function defined over the real numbers. These cases, however, are outside the
scope of the present chapter.

5 Note that in (55) the lower limit of summation is 0, since negative ks have no
new information.
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f(ν) =
∑

k

fkδ(ν − νk) (57)

while in the case of mixing motion the spectrum is continuous. Therefore in
principle one could differentiate between a mixing and a non-mixing dynami-
cal system by just calculating the spectrum of a dynamical variable. In reality
things are not so simple because, due to the phenomenon known as leakage in
the calculation of a Fast Fourier Transform (FFT), closely spaced spectral
lines give the impression of a continuum spectrum. Another delicate point
in the calculation of the spectrum is the phenomenon called aliasing. If we
under-sample the signal, i.e. the signal contains still information at frequen-
cies above our highest one (the so-called Nyquist frequency), then the power
corresponding to these modes will wrongly appear at lower frequencies, and
therefore will contaminate the power spectrum that we get. This problem
is more dangerous in dynamical systems that have characteristic frequencies
that differ by orders of magnitude. A typical example is the motion of planets
and asteroids in our solar system. Due to the degeneracy of the Hamiltonian,
the motion has a set of characteristic frequencies related to the orbital mo-
tion, which are of the order of 1 − 102 yrs, and another one related to the
secular change of the orbits due to the mutual perturbations between the
planets, which is of the order of 103 − 105 yrs. As a result we face the follow-
ing dilemma: either we record the output of the numerical integration at time
intervals pertaining to the orbital motion, in which case we are flooded with
an enormous volume of data points, or we record the output at time intervals
pertaining to the secular motion, in which case the higher orbital frequencies
contaminate the spectrum through aliasing. The solution is to “smooth” the
high frequencies before applying the FFT, e.g. through the use of a running
mean filter. It should be noted, however, that in this case the high frequency
information is lost.

Mixing implies a coarse-graining of the phase space. With this we mean
the following. If we want to model time-irreversible processes, as it is as-
sumed for the evolution of a mixing dynamical system, we should assume
that we can know the final position of the moving particle(s) only within the
uncertainty of a small but finite box in phase space. Otherwise any trajectory
traced backwards in time would return exactly to its initial conditions and
the system would be exactly reversible. The assumption that phase space
is coarse-grained guarantees that information is lost somewhere in our dy-
namical system, as required by the existence of a positive Kolmogorov-Sinai
entropy (see Sect. 4.1).

It is easy to see that mixing implies ergodicity. However, the converse is
not true: ergodicity does not imply mixing. This can be understood at once
from a counterexample concerning the translations on the torus, described by
(48). If we paint one bundle of trajectories black and a neighboring bundle
grey, clearly they will maintain their relationship to one another as they
ergodically cover the torus, so that they do not mix to an equilibrium. This



170 Harry Varvoglis

Fig. 10. The rotation by an irrational fraction, a, of 2π is an ergodic dynamical
system (from [21])

property is illustrated in Fig. 10 for the twist mapping, where the “black”
and “grey” portions of the circle do not mix, even when α is irrational.

We intuitively would expect that the chaotic trajectories of non-integrable
Hamiltonian systems are mixing within the phase space region they explore.
However it is hard to prove the mixing property of dynamical systems rigor-
ously. Up to now there are only a few cases where this has been achieved. One
such case is the “coarse-grained” observable function of the mapping known
as baker’s transformation (see Sect. 3.4), which approaches an equilibrium
state that is uniform, independent of the initial conditions, a fact implying
that this mapping is mixing. Another system proven to be mixing is the
completely ergodic system of the hard sphere gas. This system is equivalent
to the motion of a point mass on the surface of a 2-torus having a circular
hole, with the “rule” that the angle of incidence on the circumference of the
hole equals that of reflection (Fig. 11). The proof depends on the continual
defocusing of a bundle of trajectories, as they are reflected on the boundary
of the hole, because the boundary has negative curvature (Fig. 12). These
results justify, in a way, the assumptions made when attempting the statis-
tical description of non-integrable dynamical systems. Note, however, that
both refer to dynamical systems in which the “force” is non-differentiable,
and not to analytic, infinitely differentiable flows, which are of main interest
in physical applications.

K-Systems

K-systems, so called after Kolmogorov who was the first to study them, are
systems that have positive metric or Kolmogorov-Sinai (KS) entropy, hKS .
The KS entropy can be thought of as a number measuring the rate of flow
of information, as a chaotic orbit evolves in time.6 Therefore the KS entropy
6 Note that whether this flow is considered as loss or gain depends on the point of

view we observe this process.
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Fig. 11. The motion on the surface of a 2-torus with a hole is mixing (from [6])

Fig. 12. Trajectories on a surface with negative curvature have positive Lyapunov
numbers. On such a surface two trajectories, that are initially at some point close
and parallel, separate exponentially both in the past and in the future. This is not
so for trajectories on a spherical surface (from [6])

should be related, in some sense, to the average rate of exponential divergence
of nearby trajectories, i.e. to the Lyapunov exponents. In Hamiltonian systems
the LCNs are related to the KS entropy through the relation

hKS =
∫

M


 ∑

σi(x)>0

σi(x)


 dµ (58)

where the sum is over all positive Lyapunov exponents and the integral is
over a specified region of phase space, M . If we restrict our study to a single
connected chaotic region of phase space (excluding regular regions with KAM
tori), the σs are independent of x and the integral over M is unity,
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hKS = Σσi
σi (59)

For a two-degrees of freedom autonomous Hamiltonian, only σ1 is greater
than zero and

hKS = σ1 (60)

It should be emphasized that the KS-entropy, hKS, differs from the usual
thermodynamic quantity (as appearing in Boltzmann’s theory), S, in that it
gives the rate of flow (gain or loss) of information, while the usual entropy
describes the total information of the system.

Properties of K-Systems

The only systems that can be described in a rigorous mathematical way by
the tools of Statistical Physics are those belonging to the class of Markovian
processes. A discrete dynamical system is said to be a Markovian process if
the value of any variable at a time ti+1 depends only on the value at ti and not
on t < ti, i.e. not on the “history” of the trajectory up to this time. A similar
definition applies to flows. Therefore, a Markovian process has no memory.
However this property is in direct contradiction with the fact that “real”
dynamical systems are described by differential (or difference) equations, so
that the initial conditions of a trajectory define uniquely its future evolution.
The next best choice for the mathematical study of a “real” chaotic dynamical
system is to model it as a C-system (see next paragraph). But this class of
dynamical systems is very restrictive as well, since it assumes that the system
has a dense set of periodic orbits and that all of them are unstable. It is
therefore evident that the next best approximation of a chaotic dynamical
system should be by modeling it as a system with positive K-entropy. In what
follows we will prove, in a heuristic way, the principal property of a K-system,
which is a positive K-entropy, and find its relations with the mixing property,
the Lyapunov Characteristic Exponent and the coarse- graining of the phase
space.

As mentioned already, the Lyapunov characteristic exponent, λ, measures
the exponential divergence of nearby trajectories in a mixing dynamical sys-
tem; its inverse, TL = 1/λ, gives the time interval over which a trajectory of
the dynamical system “forgets” its initial conditions. A large Lyapunov time
implies a weekly chaotic motion, while a short Lyapunov time implies a strong
one. Of course whether a time interval can be considered either as “long” or
“short” depends on the typical time scale of a particular dynamical system.
A Lyapunov time of 100 years corresponds to a very chaotic trajectory of
a body in our Solar System but to a very stable trajectory of a particle in
an accelerator. A Lyapunov time of 108 years corresponds to a very chaotic
trajectory of a star in our Galaxy but to a weekly chaotic trajectory of an
asteroid in our Solar System.

The autocorrelation time, tC , gives the time interval over which a tra-
jectory keeps memory of its past and it is estimated by calculating the au-
tocorrelation function, (53). The “physical” meaning of the autocorrelation
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function becomes clear if we note that the autocorrelation function, up to a
normalization constant, is a function of the time-delay, τ , through the integral

C(τ) =
∫ ∞

0

f(t)f(t− τ) (61)

If the trajectory is periodic or quasi-periodic, that is regular, the autocorre-
lation function oscillates about zero and, in particular, between the values
−1 and +1 for a proper normalization of the integral. If, on the other hand,
the trajectory is chaotic, the autocorrelation function has a damped wavy
form, whose envelope is a decreasing function of time. The value of the au-
tocorrelation time, tC , is then defined as the first time at which the value of
the autocorrelation function drops below 1/e and never rises above this value
at later times. As discussed in [28], in a mixing dynamical system the Lya-
punov time and the autocorrelation time are of the same order of magnitude,
TL ≈ tC .

Now, as discussed already, a K-system is mixing as well. Therefore there
is a relation between the main property of a K-system, on one hand, which
is h > 0, and TL and tC on the other. This relation was introduced in [24],
but it was based on the work of Kolmogorov, who was able to relate the
mixing properties of a chaotic system with the notion of entropy, introduced
by Clausius and Boltzmann in thermodynamics. As it is well known, we can
consider the evolution of a system of n particles as the motion of a point in
a 6n-dimensional phase space, Γ . If we divide Γ in a number of cells, then
the entropy of the system of the particles, Si, is given by the relation (the
Boltzmann equation,

Si = k lnWi (62)

where Wi is the probability that the point representing the system is in the
i-th cell and k is Boltzmann’s constant.

Now, as argued by [28], the states of the system are distributed uniformly
within a region of phase space ∆Γ . Hence

W ≈ ∆Γ

Γ0
(63)

so that Boltzmann’s equation becomes

S = k ln∆Γ − k lnΓ0 (64)

At this point it will become clear how the introduction of the coarse-graining
of the phase space, in combination with the above formula, leads naturally
to the notion of the K-entropy. As shown by Liouville, a set of trajectories
of complete measure in phase space evolves as an incompressible fluid, i.e.
the volume of an element of phase space is conserved. If we consider the
evolution of a volume element ∆Γ (0) in phase space, we see that, by virtue
of Liouville’s theorem,
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∆Γ (t) = ∆Γ (0) (65)

The shape, however, of this volume element changes with time. If the
system is non-mixing, the shape is distorted but nothing spectacular happens.
In contrast, if the system is mixing, the volume element is elongated in certain
directions and contracted in some other, so that the volume is filamented (see
Fig. 9). Since the phase space is finite, the filaments after a while “turn back”
and intermingle more and more, becoming at the same time finer and finer,
while their surface area becomes larger and larger.

Lets now introduce a quantity ε, with the dimensionality 6n of the phase
space, and extend the boundary of the filaments by ε. In this way the volume
of phase space, occupied by the volume element, increases and the increase
is proportional to the total area of the surface. In the case of a non-mixing
system this increase is unimportant, while in the case of a mixing system not
only the increase is important, but it is a function of time as well. Since the
volume of a filament is equal to the minimum “width” of the filaments, ε,
times their “length”, we see that

∆Γ (t) = ∆Γ0e
ht (66)

where h is an appropriate average of the maximal Lyapunov exponent, charac-
terizing the mixing system, over the phase space volume. If we now substitute
(66) into (64), we find

S = k ln(∆Γ0e
ht) − k lnΓ0 = ht + k ln(∆Γ0) − k lnΓ0 (67)

Now without loss of generality we can take Γ0 = 1, select units so that k = 1
and take ∆Γ0 = ε, since through the coarse graining of phase space we cannot
“measure” volumes with a value less than ε. Then the average rate of change
of entropy, S, is given by taking the limit ε → ∞

〈
dS

dt

〉
= lim

ε→0
lim

t→∞

1
t

ln(∆Γ (t)) = lim
ε→0

lim
t→∞

1
t
(ht + ln ε) = h (68)

From its definition it is obvious that the K-entropy, h, gives the average rate
of change of Boltzmann’s entropy, S, due to the mixing of trajectories in
phase space. It can be proven that h is a metric invariant of a dynamical
system, i.e. its value does not depend neither on the way the phase space is
divided into cells nor on the way the phase space is coarsened. Moreover from
(66) it is evident that h ∼ λ, so that finally we have that h ∼ λ ∼ 1/tC .

Before we move to the next topic, it is interesting to briefly discuss
a apparent disagreement between the definitions of Boltzmann’s and Kol-
mogorov’s entropy: If the rate of change of S is a constant, h, how is it
possible for S to reach a maximum, as postulated by Clausius for a closed
system? The answer lies in the fact that we cannot measure phase space
volume with an infinite accuracy! Then if we fix a smallest coarsening of
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the phase space, ε0, we can find from (66) a time t0, after which the region
∆Γ0 = ε0 expands to the value δΓ = 1:

t0 =
1
h

ln
1
ε0

(69)

The value of S corresponding to the time t0 is the maximum value of the
entropy of this dynamical system.

Anosov-Systems

Anosov-systems are abstract dynamical systems, which are assumed to be as
chaotic as a Hamiltonian dynamical system can be. Loosely speaking we can
say that an Anosov system has a phase space characterized by two directions:
one where the trajectories diverge exponentially and one where the trajecto-
ries converge exponentially. Thus the region around any point of phase space
has a topological structure similar to that around a hyperbolic fixed point,
where chaotic motion develops in Hamiltonian systems. In other words, in
a C-system all periodic trajectories are unstable. This is a very strong con-
dition, which “ordinary” Hamiltonian systems never satisfy, since in all real
systems studied up to now arbitrarily close to any hyperbolic point there are
always elliptic (stable) fixed points. It has been shown that Anosov-systems
are an open set in the superset of all dynamical systems and, therefore, they
are structurally stable, i.e. a perturbed Anosov-system remains an Anosov-
system. An example of a simple dynamical system belonging to the class of
Anosov-systems is the following area preserving mapping, known as Arnold’s
cat map (from the figure Arnold used to depict its action, see Fig. 13):

(xn+1, yn+1) = ((xn + yn), (xn + 2yn)) (mod 1) (70)

From Fig. 13 it is clear that the procedure of mapping back onto the unit
square continually filaments the cat (the phase space) and, furthermore, mixes
the filaments. In the case of this map it is possible to calculate analytically
the Lyapunov numbers. We first find the eigenvalues of the mapping

λ1,2 =
3 ±

√
5

2
(71)

by solving the characteristic equation
∣∣∣∣
1 − λ 1

1 2 − λ

∣∣∣∣ = 0 (72)

We can see that, as it should be for an area preserving mapping, λ1 = 1
λ2

and that
λ1,2 = e±σ (73)
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Fig. 13. Graphical representation of the Arnold’s cat map

where σ = ln (3+
√

5)
2 . It is easy to see that this mapping has one direction

which is always expanding and another one which is contracting. Moreover
σ1 > 0 ,∀(xn, yn), so that the cat mapping is a K-system. It has been shown
[4] that C-systems are a subset of K-systems. For the cat mapping of (70) we
have the particularly simple result

hKS = σ1 = ln
[
1
2
(3 +

√
5)
]

(74)

Bernoulli Shifts

There are systems even “more” chaotic than C-systems, known as Bernoulli
shifts. These systems are equivalent to Markov processes (see Sect. 4.1) in the
sense that, if we are presented with two sequences of 0s and 1s, one sequence
which is a “trajectory” of a Bernoulli shift and another sequence, which is
the result of a coin toss, we cannot tell the difference between the two. Or,
in other words, in an infinite sequence of 0s and 1s, produced by a coin toss,
we can find always a sub-sequence, which is identical to a “trajectory” of a
Bernoulli shift.

If, in the toss of a coin, we denote “head” by “1” and “tail” by “0”, then
the “motion” is described by a random binary sequence, such as

0111011
It can be proven that the KS entropy of such a sequence, consisting of the
permutations of n symbols from a set of M different symbols (n > M), is
given by

hKS = lnM (75)

As an example, the “trajectory” given above has a KS entropy equal to ln 2.
On the contrary the “usual” (i.e. thermodynamic) entropy is given, in general,
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by the relation
S = nhKS (76)

which, for the “trajectory” given above, is equal to 7 ln 2 (since the sequence
0111011 consists of 2 symbols and 7 digits). Therefore the KS entropy repre-
sents the rate of growth of S with the “time” n. As a result the thermody-
namic entropy, S, increases without bound as n → ∞.

A typical example of a Bernoulli shift is the well known baker’s transfor-
mation (Fig. 14)

(xn+1, yn+1) =




(2xn,
1
2yn), 0 < xn < 1

2

(2xn − 1, 1
2 (yn + 1)), 1

2 < xn < 1
(77)

Fig. 14. Graphical representation of the baker’s transformation

It can be proven that the baker’s transformation is isomorphic to a Bernoulli
shift with equal probabilities for “head” and “tail”, p = q = 1/2.

Hierarchy of Chaos - Real World

To wrap up things, from the five classes of chaotic behavior four belong to
an hierarchy of ideal dynamical systems, in which each successive class is a
subset of the previous

ergodic systems ⊃ mixing systems ⊃ K − systems ⊃ C − systems. (78)

The weakest chaotic condition is ergodicity, by which we mean that any
single orbit visits all accessible phase space. This condition is met even by
the ordered trajectories of integrable systems and, therefore, is not related to
the phenomenon of chaos in non-integrable systems. The next more chaotic
class consists of mixing systems, which approach equilibrium in the sense that
Boltzmann had in mind when he defined ergodicity. An even more chaotic
dynamical system is a K-system, which has a positive Kolmogorov-Sinai en-
tropy, i.e. a positive average divergence rate of trajectories. This means that
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a trajectory selected at random has at least one positive Lyapunov exponent,
while there may be also a set of periodic orbits of zero measure with all Lya-
punov numbers equal to zero. Finally in a C-system all trajectories diverge
exponentially in every part of phase space (and not just those of complete
measure).

All the above classes represent, in a sense, ideal dynamical systems which
are not really stochastic, in the Markovian sense. The fifth class of chaotic
dynamical systems however, the Bernoulli shifts, are as chaotic as the toss
of a coin and, therefore, can be described as Markov chains. We could say
that Bernoulli shifts are “more chaotic” than C-systems but it is not yet
proven whether they are a subset of them or not. From the above it becomes
clear that, strictly speaking, only Bernoulli shifts can be described by the
tools of Statistical Physics, e.g. as random walks. However, if we consider the
“position” of a trajectory at consecutive “steps” of finite length, then under
some not very restrictive conditions we may assume that a chaotic dynamical
system, such as a K-system or a C-system, is described by a Markov chain,
although this is not strictly true.

Here we give some examples, in order to differentiate among the various
classes of chaotic behavior. A typical example of an ergodic dynamical sys-
tem, which is not mixing, is the motion on a torus of an integrable system,
characterized by an irrational winding number. Presently a “physical” ex-
ample of a mixing system, that is not a K-system as well, is not available.
Typical examples of K-systems, which are neither C-systems nor Bernoulli
shifts, are the hard sphere gas of Sinai and the stadium billiard, in which
a ball moves in a horizontal billiard made from two semi-circles connected
with straight lines. A typical example of a C-system is Arnold’s cat. Finally
a typical example of a Bernoulli shift is the baker’s transformation.

Perturbed integrable systems such as the Hénon-Heiles one, in which reg-
ular and chaotic regions are dense in phase space, do not fall into any of
the above categories. That is why we prefer to describe them as chaotic, a
word that has not any well defined meaning in Mathematics. However, the
motion near a homoclinic point in a chaotic region is locally equivalent to
the baker’s transformation and, therefore, shows the random behavior of a
Bernoulli shift. Furthermore, there is strong numerical evidence that each
connected stochastic region, such as a separatrix layer, has positive KS en-
tropy, and thus it has the properties of a K-system.

5 Resonance Overlap Criterion

If one perturbs an integrable dynamical system more and more, then more
and more ordered trajectories become chaotic. However one of the conclusions
of Hénon and Heiles was that, the measure of phase space regions dominated
by chaotic trajectories is not a “smooth” function of the strength of the per-
turbation. Instead the, initially, very slow increase, during which the chaotic
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regions cannot be detected easily, is followed by an explosive one, after which
the chaotic regions dominate more or less the available phase space. There-
fore macroscopically it appears that a threshold value of the perturbation
exists, below which the measure of chaotic regions in phase space is van-
ishingly small and above which becomes of order unity. This value is called
stochasticity threshold and is of importance if we are attempting a statistical
description of a “physical” dynamical system, since this description usually
holds only for values of the perturbation considerably larger than the sto-
chasticity threshold. The calculation of this threshold is performed by the
so-called resonance overlap criterion. This criterion is based on the assump-
tion that chaos appears as a result of the “interaction of resonances”. In
the simplest case of a 2-D conservative dynamical system, the stochasticity
threshold is computed by equating the distance between the centers of two
neighboring islands on a surface of section with the sum of the “radii” of
these islands. We show here in detail how this calculation is done, following
the “standard” procedure analyzed in detail in [21] and [13].

The simplest class of dynamical systems, to which we can apply the res-
onance overlap criterion in order to estimate the stochasticity threshold, is
the class consisting of 1-D time-dependent Hamiltonians. Sometimes these
dynamical systems are referred to as 1 1

2 -D systems since, as we will see at
the end of this section, by a trivial canonical transformation they can be
written as 2-D systems, whose Hamiltonian function is identically equal to
zero. From the class of all time-dependent 1-D Hamiltonian systems we select
to study those who can be considered as 1-D autonomous systems (which,
by definition, are integrable), perturbed by a time-dependent function. Let’s
assume that we have written the Hamiltonian of the autonomous system, i.e.
the unperturbed part, in action-angle variables, I−θ. Then the most general
form of the full, perturbed Hamiltonian is

H = H0(I) + ε
∑
m,n

Vm,n cos(mθ − nΩt) (79)

As we have already discussed, for ε = 0 the phase space trajectories of
this system lie on nested toroidal surfaces. If the integrable system is non-
degenerate, the unperturbed frequency

ω(I) =
dH0

dI
(80)

has a non-zero second derivative (see Sect. 3.4). When the rotation number,
i.e. the ratio ω

Ω , is rational, i.e. when

ω(I)
Ω

=
P

Q
(81)

where P and Q are integers, the trajectories of the unperturbed system are
periodic and close after making P revolutions in the toroidal direction, which
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we take to represent the time variable, and Q revolutions in the poloidal
direction of the torus, which we take to represent the angle variable. When
the rotation number is irrational, the trajectories cover ergodically the nested
toroidal surfaces.

Now let’s study the effect of the perturbation term to the integrable part
of the Hamiltonian, through the surface of section of the nested toroidal sur-
faces, say at the value of the toroidal angle Ωt = 2kπ, k = 0, 1, 2, . . . , n. For
ε = 0 the surface of section is covered by topological circles; those correspond-
ing to an irrational rotation number consist of the consequents of only one
trajectory, while those corresponding to a rational rotation number consist
of an infinite number of periodic orbits. The introduction of the perturbation
term has an important qualitative change on the appearance of the surface
of section. As the integrable systems are of zero measure in the set of all dy-
namical systems, the perturbed system, as a rule, is not any more integrable.
The result is that the invariant curves corresponding to rational rotation
numbers cease to exist. In general they are replaced by a finite number of pe-
riodic orbits, half of them stable and half of them unstable, which appear on
the surface of section as fixed points.7 Around each one of the stable periodic
orbits “resonant” invariant curves appear, while, if the system would be inte-
grable, the unstable invariant curves emanating from the unstable invariant
point (see [21]) would join smoothly. However, since the perturbed system is
non-integrable, the consequents around the unstable periodic orbits do not
lie on smooth curves and chaos appears in this region. We loosely name the
set of the resonant islands around the stable periodic orbits, together with
the chaotic strip around the unstable periodic orbits, a resonant structure.
Resonant structures appear at all regions where the rotation number is ratio-
nal, but they are separated by invariant curves, as guaranteed by the KAM
theorem. If, however, the strength of the perturbation (i.e. ε in (79)) is in-
creased, the width of the resonant structure becomes wider, as it was found
by Hénon and Heiles, and so does the chaotic strip around the unstable pe-
riodic orbits. At some point the invariant curves, separating two neighboring
chaotic strips, cease to exist and the two chaotic strips join together. One way
to look at this process is to postulate that the last invariant curve separating
two consecutive resonance structures is “squeezed out” when the sum of the
widths of the two resonance structures is equal to the distance (in i-space)
between them. This is the resonance overlap criterion. In order to apply the
resonance overlap criterion we should be able to estimate (i) the distance be-
tween two resonant structures and (ii) the width of each resonant structure,
as functions of the strength of the perturbation, ε. First we start by selecting
a rational value of the rotation number, say P/Q. From (81) we see that the
resonance structure is close to the torus I = I0, where ω(I0)/Ω = P/Q. The
dominant terms in the perturbation part of the Hamiltonian are those with
7 The terminology comes from the fact that, on the surface of section, these points

are mapped, through the equations of motion, on themselves.
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n/m = P/Q since, if we construct the solution of the equations of motion
in a formal series form, they will correspond to the terms with the small
divisor Qn−Pm. Assuming that the coefficients of the higher harmonics fall
off rapidly with the order of the harmonics, we can approximate the motion
near the resonant structure by the resonant Hamiltonian

HR = H0(I) + εVQ,P (I) cos(Qθ − PΩt) (82)

The resonant Hamiltonian contains only one trigonometric term and it is
integrable, since by a suitable canonical transformation we can “remove” the
time. Indeed, through the generating function of the third kind

F3 = −(I − I0)
ψ + PΩt

Q
(83)

we arrive at the canonical transformation from (I, θ) to (p, ψ)

θ = −∂F3

∂I
=

ψ + PΩt

Q
p = −∂F3

∂ψ
=

(I − I0)
Q

(84)

or, in other words, the argument of the cosine function is the new angle, while
the new action is the difference of the old action from the value correspond-
ing to the unperturbed torus. The Hamiltonian is then written in the new
variables

HR = H(I(p), θ(ψ)) +
∂F3

∂t

= H0(I(p)) + εVQ,P (I(p)) cos(ψ) − (I − I0)PΩ

Q

= H0(I(p)) + εVQ,P (I(p)) cos(ψ) − pPΩ (85)

This Hamiltonian is 1-D and autonomous (i.e. time-independent) and,
therefore, integrable. This of course does not mean that by a “suitable”
canonical transformation we have changed a chaotic dynamical to a regu-
lar one. We simply approximate the phase portrait of the initial Hamiltonian
close to the center of an island, where the chaotic nature of the initial system
is not apparent. But now we can estimate analytically the width of the island
as a function of the perturbation’s strength, i.e. ε. To do so we expand HR

around p = 0 in a Taylor series

HR = HR(p = 0)+
dHR

dI

dI

dp
p+

d2HR

dI2

(
dI

dp

)2

p2 + εVQ,P (I(p)) cos(ψ)−PΩp

(86)
But according to (80) (

dH

dI

)(
dI

dp

)
p = PΩp (87)

so that, keeping terms up to second order, HR becomes
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HR = H0(I0) +
1
2
q2H ′′(I0)p2 + εVQ,P (I0) cos(ψ) = hR (88)

which is identical to the Hamiltonian of the pendulum discussed in Sect. 3.4,
if we move the constant term H0(I0) to the right hand side. We know that
the separatrix corresponds to the value of ε for which

hR −H0(I0) = εVP,Q(I0) (89)

and its width is

∆p = 4

√
εVP,Q(I0)
Q2H ′′

0 (I0)
(90)

or, going back to the old variables, we find that the width of the island, ∆I
is given by the relation

∆I = 4

√
εVP,Q(I0)
H ′′

0 (I0)
(91)

On the other hand the overlap criterion depends on the distance between
islands too. Here enters the non-degeneracy condition we have assumed in
the beginning. By differentiating (80) we find that the distance between two
tori characterized by a difference ∆ω in the rotation number is given by the
relation

(δI)ω =
Ω∆R

H ′′
0

(92)

which cannot be defined if the second derivative of the zero-th order Hamil-
tonian is zero. Now we have to decide which value of ∆ω we will use in (92).
This can be done if we express the difference in rotation numbers through
the theory of the continued fractions. The expansion of the rotation number
ω as a continued fraction is

ω

Ω
= a0 +

1
a1 + 1

a2+...

= [a0, a1, a2, ...] (93)

It is well known that the successive truncations of the above continued frac-
tion give, at every order, the best rational approximation to ω. In this way
we can write

ω

Ω
= R =

P

Q
= [a1, a2, a3, . . . , an] (94)

and

ω + ∆ω

Ω
= R + ∆R =

P+

Q+
= [a1, a2, a3, . . . , an + 1] (95)

From the above relations we find
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∆ω

Ω
= ∆R =

1
Q(Q + Q−)

(96)

where

P−
Q−

= [a1, a2, a3, . . . , an−1] (97)

By combining (90-97) we find that, according to the resonance overlap cri-
terion, chaotic motion sets on in the neighborhood of the torus with rotation
number equal to P/Q when

β =
(∆I)R

(∆I)ω
>

4Q
Ω

(Q + Q−)
√

εVP,QH ′′
0 (I0) ≈

8Q2

Ω

√
εVP,QH ′′

0 (I0) (98)

The extension of this method to the case of a “pure” 2-D Hamiltonian
system is straightforward, assuming that the Hamiltonian of the integrable,
non-perturbed, part has been written in action-angle variables. Simply the
degeneracy condition is slightly more complicated and the role of the second
angle is played by the time in the above example. The role of the second
action is played by the numerical value of the Hamiltonian, HRes, which in
the above example enters in the “new” Hamiltonian through the term ∂F

∂t of
the transformation, while in the 2-D case enters directly from the canonical
transformation.

The situation is considerably more complicated if the degeneracy condi-
tion does not hold. In that case the two neighboring resonances, the interac-
tion of which creates the chaotic behavior, are not both appearing explicitly
in the Fourier expansion of the original Hamiltonian. At least one of them
(and some times both) is a “secondary” resonance, one which appears at a
higher order (with respect to the “strength of the perturbation”, ε), when one
tries to find a perturbative solution of the problem, using series expansions
of the variables. A good discussion on this subject appears in [21].

References

1. D.V. Anosov: Sov. Math. Dokl. 3, 1068 (1962)
2. D.V. Anosov: Sov. Math. Dokl. 4, 1153 (1963)
3. V.I. Arnold: Mathematical Methods of Classical Mechanics (Springer, Berlin,

1989) 143, 151, 157
4. V.I. Arnold and A. Avez: Ergodic problems of Classical Mechanics (Benjamin,

New York, 1968) 176
5. G. Benettin, L. Galgani, A. Giorgilli and J.M. Strelcyn: Meccanica, March, 21

(1980)
6. M.V. Berry: Regular and irregular motion. In: Topics in nonlinear dynamics,

vol 46, ed by S. Jorna (AIP, New York, 1978) pp. 16-120 143, 144, 145, 152, 154, 155, 171
7. B.V. Chirikov: Sov. Phys. Dokl. 4, 390 (1959)



184 Harry Varvoglis

8. B.V. Chirikov: Phys. Rep. 52, 265, (1979) 143
9. G. Contopoulos: Bull. Astron. 3e ser. 2, Fasc. 1, 223 (1967)

10. G. Contopoulos: Order and Chaos in Dynamical Astronomy (Springer, Berlin,
2002) 143

11. J. Ford, S.D. Stoddard and J.S. Turner: Progr. Theoret. Phys. 50, 1547 (1973)
12. J. Ford: The Statistical Mechanics of Classical Analytical Dynamics. In: Fun-

damental Problems in Statistical Mechanics, vol 3, ed by E.D.G. Cohen (North
Holland, Netherlands, 1975) pp. 215-255 143

13. J. Ford: A Picture Book in Stochasticity. In: Topics in nonlinear dynamics, vol
46, ed by S. Jorna (AIP, New York, 1978), pp. 121-146 143, 179
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1 Introduction

Motivating the study of planet formation is not difficult for any curious au-
dience. One of the fundamental human questions is that of origins: “where
did I come from?”. Breaking this down into constituents produces a series of
questions. How did the Universe begin? How did stars form? How did planets
form? How did life begin? How did intelligent life develop? It is therefore
obvious how the origins of planetary systems is a central issue to origins in
general.

Theories for the formation of the Solar System have been around since
Laplace and Kant, but in the past 10 years, theoretical research has become
more focused for several reasons. These include:

1. Observations of planetary systems other than our own. The discovery of a
Jupiter size planet in a close orbit around 51 Peg [29] gave us the first clue
about the variety of planetary systems. Since then over 100 extra-solar
planets have been discovered, and we can now talk statistically about the
properties of these systems.

2. Surveys of planet forming regions. Infra-red and millimeter observations
of the interstellar medium have allowed us to peer into the dusty star
forming regions and get constraints on the conditions there. High reso-
lution observations have even allowed us to estimate protoplanetary disk
masses and temperatures.

3. Predictive theories of planet formation pushed forward by computational
advances. The physics of planet formation is complex and non-linear.
Numerical simulation has been necessary to fully model it. The possibility
of doing computationally intensive calculations has had particular impact
on the long term dynamics of planetary systems both for small bodies
and planets.

1.1 Major Issues for Solar System Formation

Theories of planet formation need to come to grips with a number of issues
which are summarized here.

T. Quinn: Planet Formation, Lect. Notes Phys. 683, 187–217 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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• What caused it to form?
We certainly need to understand this if we are to know anything about
planet formation in other parts of the galaxy or in other parts of the Uni-
verse. Since this is intimately connected with star formation, this question
not only has implications for planet formation, but also for the entire his-
tory of the visible Universe.

• What was the nebula really like in terms of pressure, temperature, and
the timescales for processes?
For planet and star formation theories, this is the question of initial con-
ditions. What are the properties of the ISM in which planets form?

• What are the processes involved in planet formation?
We are all familiar with the Kant nebular hypothesis: a disk of gas frag-
ments into disk of planets, but what are the actual physical processes?
Clearly gravity as the dominant astrophysical force is significant; how-
ever, a variety of other forces play rôles as well. These range from mag-
netic fields and hydrodynamic shocks on large scales down to the material
properties of dust particles.

• What is the rôle of condensation?
The planets (particularly the terrestrial planets) are not of cosmological
abundance. How did they get enhanced? This is the primary evidence that
non-gravitational forces played a significant part in planet formation.

• How Universal are the processes?
Here we introduce issues that relate to the uniqueness of our own solar
system and the ubiquity of planets around other stars. The possible ques-
tions are numerous: Are the terrestrial planets always near the Star? What
is the rôle of the Giant Planets? How do the small bodies, Comets and
Asteroids, fit in? What determines the planets’ spacing? What determines
their orbits? Are all planetary systems similar? How are compositions and
atmospheres determined?

2 Planet Formation: the Standard Model

Following is an overview of the Standard, or planetesimal, model broken
down into stages. We will then describe each stage in more detail. For a more
complete review see [23].

1. Initial stage:
This is the connection to star formation: one assumes a circumstellar disk
with solar abundance around the Sun. It gives a natural explanation for
the coplanar motions of the planets. The total mass of the nebula should
also give a rough estimate of the mass of the planets. As the formation
of this disk has more to do with star formation and the collapse of the
protostar within the molecular cloud, it will not be covered further here.
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2. Early Stage:
As the disk cools (because the infall slows down) materials can condense.
One expects (for solar composition) silicates and iron compounds to con-
dense first. In the outer regions (asteroid belt and beyond) ices can form.
This is a natural explanation for the compositions of the planets. Rocky
bodies like the terrestrial planets will form close to the parent star where
only silicates and iron can condense, while the gas giants and ice giants
have a much larger fraction of light gases.

3. Middle Stage:
At this stage the condensed dust collects in km-sized objects via a grav-
itational instability (see below). We will call these bodies planetesimals.
They will interact with each other gravitationally, and occasionally col-
lide, building up into larger bodies. This provides a natural connection
between the planets and the small bodies. Planetesimals that do not ac-
crete onto larger bodies remain and provide the origin of comets and
asteroids.

4. Late Stage:
The middle stage ends with dozens of lunar-size bodies, which we refer to
as protoplanets, in the terrestrial region. These interact over a long time
scale, occasionally colliding to form large bodies, and clearing the region
of the small bodies. At the end of this stage, we have a few bodies whose
masses and orbital separations match those of the terrestrial planets. The
rotation of these planets can also be explained via the angular momentum
imparted during the last major impact.
In the outer regions, the end-state of this process produces a core of
tens of Earth masses onto which gas and cometary material accretes.
Hence the gas giants have a core-envelope structure, and the ice giants
are presumably cores that did not form in time to accrete any nebular
gas.

2.1 Initial Stage: the Solar Nebula

Protoplanetary Disk Structure

Although protoplanetary disks tend to be modeled as smooth and axisym-
metric they are probably not uniform, having both radial (i.e. gaps) and and
vertical structure. They are heated on the surface by stellar radiation, and
internally by accretion energy. Observations of disk disk spectral energy dis-
tributions (SEDs) indicate that they are flared so that a significant portion
can be heated by the star. Observations also constrain the size to be a few
to 100 AU, and the mass of the disk to be 0.001 to 0.1 M�. However, the
observations tend to be of the dust emission, and one has to assume a dust
to gas ratio in order to estimate the total masses of these disks. Nevertheless,
these mass estimates nicely match the “minimum mass solar nebula” that
can be gotten from our own Solar System in the following manner. Enhance
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Fig. 1. Mass surface density of the planets after being enhanced to solar abundance
(the line is an r−3/2 power law)

all the planets’ masses so that their composition is solar, then spread that
mass in annuli with widths given by the separations in semi-major axis. The
result is shown in Fig. 1 and the total mass obtained is about 0.01 solar
masses. The disks are optically thick, and the opacity is determined mainly
by dust. Because the dust properties are a strong function of composition,
and the dust composition is determined by what can condense, the opacity is
a strong function of temperature. [31] Hence radiative transport is important
for determining disk temperatures. Of particular note is that the possible
strong drops in temperature as one moves outward in the disk due to opacity
changes could lead to convective instabilities. For example there is a large
drop in opacity at 500 K due to the evaporation of “refractory organics”.
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Temperatures

As well as the instabilities mentioned above, MHD instabilities, in particular,
the magneto-rotational instability can develop if the gas becomes ionized.
Therefore it is important to understand the temperature structure of the
protoplanetary disks. For a fuller review of constraints on disk temperature
profiles see [7]. The observed SEDs give us a constraint on the surface tem-
peratures of the disk. This is done by fitting power law disk models, and it is
typically found that Ts ∝ r−1/2, with T1AU ∼ 150K. The model temperatures
(at least at r < 1AU) seem to be constant over ∼ 106 years, that is, over
most of the time that planets take to form. However, it should be noted that
the midplane temperatures are higher.

Temperatures in the midplane can be understood theoretically from vis-
cous accretion models. In these models, the gravitational potential energy
released as gas slowly flows inward due to viscous forces is turned into ther-
mal energy. Such models predict a steeper temperature profile: T ∝ r−3/4.

Disk Chemistry

Other constraints come from the composition of planets and small bodies, and
therefore the disk chemistry needs to be understood. Condensation arguments
imply that the T ∼ r−1.1. Since this more closely matches the midplane
temperature profile, it implies that the grains that ultimately end up in the
planetesimals formed in an optically thick region.

The most reliable determination of temperature is the low abundances of
volatile elements (such as potassium and sulfur) compared to more refrac-
tory elements. This implies temperatures in the range of 1200-1400K in the
terrestrial region. In contrast, the ice-rock cores of the giant planets require
temperatures less than 160 K at 5 AU. Comets contain HS, CO, methanol, N2
and H2O. This suggests that their formation temperatures are even colder,
∼ 25 − 50K.

Calcium Aluminum Inclusions (CAIs) in meteorites (in particular the
primitive Allende meteorite) are dated to be the oldest objects in the So-
lar System. They are where the evidence for the short lived isotope, 26Al, is
found giving further evidence for being formed very early. These meteorites
also indicate condensation temperatures of 1400K from chemical and tex-
tural properties. In particular, some CAIs have rounded shapes indicative of
partial melting. This requires heating to at least 1700K for a short period of
time. Crystal patterns indicate that they cooled quickly at the rate of 2-50
K/hour. Some have multiple rims that indicate they experienced more than
one flash heating event.

Chondrules are millimeter sized igneous spherules in primitive meteorites.
They contain more volatiles and require formation at temperatures lower than
650K. But they also appear to be flash heated (they are igneous after all),
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Fig. 2. Temperature vs radius is plotted for several models and compared with
cosmochemical constraints (taken from [7])

but cooled at 100-1000K/hour. It therefore appears that CAIs formed first
in a hot nebula, and then chondrules in a warm nebula. How they end up
together in the same meteorite is a problem, perhaps indicating some degree
of radial mixing.

These temperature constraints are compared with disk models in Fig. 2
taken from [7]. The accretion models are Boss’s models with different mass
accretion rates. These models are axisymmetric collapse calculations. A ra-
diative hydro code was used to determine the thermal structure, but the
radial density profile was constrained to be Σ ∝ r−1/2. The viscous accretion
disk is a calculation of the style of Lynden-Bell and Pringle [25]. The jumps
are associated with sublimation and condensation of grains at the different
temperatures. Note again, that some such jumps would be unstable to con-
vection. However, convective turbulence seems to stop accretion. Also note
that there may be a thermostat effect going on: if the gas is cool enough that
grains condense, then it gets optically thick, and the temperature goes back
up. Hence the disk could be kept right at the grain condensation temperature.

On the other hand, the surface temperatures are slightly less sensitive to
disk mass. This is because the disk is optically thick. This also means that
the midplane disk temperature is decoupled from the stellar radiation.

In summary, the models predict a relatively uniform midplane temper-
ature which is matched by volatile depletions. In particular there are no
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systematic variations with r within the terrestrial region. Also, the gradual
cooling of the disk by becoming optically thinner matches volatile depletion
in chondritic meteorites. This gives the obvious conclusion: we expect silicate
and iron rich planets to form inside 4 AU, and ice rich planets outside 5 AU.
Furthermore, there could have been a cold trap at 5 AU, if water vapor could
circulate radially [38]. As water vapor circulates inside 5 AU, it freezes and
is trapped right at the ice line. The resulting enhancement of icy solids there
would make Jupiter the dominant planet.

One caveat to keep in mind when considering the disk chemistry is that
the densities are very low. Therefore, it is only at temperatures above 2000
K that the chemistry will be in equilibrium. In that case, the reaction rates
are fast compared to the cooling rate of the disk. Otherwise, the reactions
“freeze-out” and the equilibrium abundances are never reached. For example,
we see N2 and CO ices on Triton and Pluto, whereas all the N and C should
be in the form of CH4 and NH3 at low temperatures. Therefore, the outer
parts of the nebula did not reach chemical equilibrium.

So the chemical evolution is quite complex. As well as the long reaction
times one must keep in mind the fact that there were primordial interstel-
lar grains, evaporation of grains by shocks and temperature discontinuities,
and ionization of gas by cosmic rays and UV radiation that in turn affects
the molecular chemistry. Nevertheless, the basic picture seems to hold up as
evidenced by our ability to explain the basic compositional characteristics of
the planets.

Disk Clearing

At some point the gaseous disk gets cleared away; however, the process by
which this happens is not clear. One possible explanation is that the accreting
sun had a luminosity 20-30 times larger than it currently has. This could drive
a solar wind which could clear out the disk, or if the star were significantly
hotter, UV radiation could photoevaporate the faces of the disk.

Recent observations have shed light on the fact that stars almost always
form in groups. Hence UV photons from nearby massive stars are a viable
candidate for clearing the disk. The stunning HST observations of the Eagle
nebula seem to show this process in action. Such a process gives a nice expla-
nation for Uranus and Neptune. All giant planets have the same amount of
rock and ice forming elements, but Uranus and Neptune have a factor of 100
less H and He. If the UV came from the outside, as in this scenario, Uranus
and Neptune’s accretion could have been interrupted before that of Saturn
or Jupiter.
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2.2 Early Stage: Growth of Grains into Planetesimals

Dust growth

Data from soot and numerical simulations [35] indicate that dust can grow
into loosely packed fractal structures held together via van der Waals forces.
The existence of many chondrules (i.e. small igneous inclusions 1mm in size)
in meteorites means that these fluffy aggregates had to be rapidly heated and
cooled before they were incorporated into larger bodies.

Dust Dynamics

To get an understanding of dust dynamics in the protoplanetary nebula, let
us review the relevant forces that apply to dust grains.

Radiation Force

For micron sized particles, the radiation pressure force can be significant. It
is given by:

F rad =
L�A

4πcr2
Qpr r̂

where A is cross section of the particle, r is the distance to the Sun, and
Q is a radiation pressure coefficient that accounts for scattering and absorp-
tion. If we define the parameter β as the ratio of the radiation force to the
gravitational force then

β ≡ Frad

Fg
= 5.7 × 10−5 Q

ρR

where ρ is the density of the grain material in gm/cc and R is the grain radius
in cm. Given the typical grain densities, this instantly shows that Frad can
only be important for sub micron size objects. Furthermore, if the grains
get much smaller than that, they become comparable to or smaller than the
wavelength of the light and Q starts to become small.

Note that the ratio of forces, β, is independent of the distance from the
Sun because both gravity and light drop off as 1/r2. So if β > 1, then the net
force will always be outward and the dust will obviously be ejected. If β > 0.5
then a dust grain will be on a hyperbolic orbit if it is released on what would
be a circular orbit in the absence of radiation pressure and therefore also be
ejected.

Poynting–Robertson Drag

As grains become of order a centimeter in size, direct radiation pressure be-
comes less important, but a secular effect occurs because as radiation is ab-
sorbed and re-radiated by the particle, the re-radiated radiation is anisotropic
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in the rest frame of the sun. This results in a drag force opposite the direction
of motion of the particle referred to as Poynting–Robertson Drag.

The total radiation force including this effect to first order in v/c is:

F rad =
L�QprA

4πcr2

[(
1 − 2vr

c

)
r̂ − vθ

c
θ̂

]

where L� is the solar luminosity, r is the radius of the particle, and vr and vθ

are the radial and tangential component respectively of the particle velocity
in the frame of the Sun. The first term in this expression is the radiation
pressure, and the second and third terms are the Poynting–Robertson drag.
There is a factor of 2 in the second radial term because of the combination
of Doppler shift in absorbing radiation and Doppler shift in emission.

Plugging in the current solar luminosity, one can obtain the decay time
for a particle on a circular orbit:

τpr ∼ 400
r2(AU)

β
years.

An obvious application of this formula is source of the zodiacal light. It is
emitted from 20 to 200 µm particles, and by the above formula their lifetimes
are 105 years. Therefore there needs to be a source to replenish these particles.
Possibilities include dust from comets and collisions in the asteroid belt.

The Yarkovski Effect

Radiation based drag forces can also be relevant for meter to kilometer sized
bodies. For a rotating body, the evening surface temperature is warmer than
the morning surface. The resulting anisotropy in the thermal radiation from
the body results in a net force called the Yarkovski effect. Since the force per
unit area from thermal emission is:

dF =
2σT 4dA

3c

where T is the temperature and σ is the Stefan-Boltzmann constant, we have

FY =
8
3
πR2 σT 4

c

∆T

T
cosψ

where ψ is the obliquity of the body, and ∆T is the evening-morning temper-
ature difference. The force is therefore in the direction of motion for direct
rotators and a drag force for retrograde rotators.

The exact magnitude of this effect is hard to calculate. It depends on
detailed surface properties of the asteroids which are not well known. Never-
theless it is postulated as a mechanism for moving asteroids through the belt
over long timescales.
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Gas Drag

Unlike gas drag on small particles in the lab, where the small particles even-
tually reach the speed of the gas, gas drag on dust in a Keplerian disk usually
results in long term evolution. This is because the drag decreases the energy
of the particle, which will ultimately increase the speed of the particle in
a Keplerian potential. There are several limiting regimes to the drag force.
Stokes drag is given by

FD = −CDAρv2

2
where CD is a dimensionless coefficient, A is the cross-sectional area of the
particle, and ρ is the density of the gas, and is appropriate for high Reynolds
number flows. Epstein drag is appropriate when the mean free path of the
gas particles is greater than the physical size of the dust particle, and is given
by

FD = −Aρvcs,

where cs is the sound speed of the gas. In the protoplanetary disk, the drag
can have long term effects on intermediate size particles since the gas is not
rotating at Keplerian speed. This is because the force that the gas feels is

geff = −GM�
r2

− 1
ρ

dP

dr
,

where P is the gas pressure. Since the pressure is rising inward, the pressure
gradient opposes gravity, and the gas moves slower than Keplerian. Therefore
any particle that is only loosely coupled to the gas will experience a headwind,
and spiral inward due to the drag forces given above.

Application to the Planetesimal Disk

The typical timescales for inward motion are slow for small bodies because
they are tightly coupled to the gas. It is also slow for large bodies, because
their momentum is relatively large compared to the gas drag force. For solar
nebula conditions, meter size bodies have the shortest decay times of ∼ 100
years. Bodies smaller or larger than this will have longer decay times.

For dust grains, settling in the vertical direction is important because it
may lead to a gravitational instability (the Goldreich-Ward instability, see
below) in the dust. The equation of motion in the vertical direction for the
dust with Epstein drag is

dvz

dt
= −ρgcs

Rρ
vz − n2z

where ρg is the density of the gas, ρ is the density of the dust, R is the dust

radius and n =
√

GM
r3 is the mean motion. If the drag is large then there is

a terminal velocity of
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vz =
n2zρR

ρgcs

For conditions in the terrestrial portion of the protoplanetary nebula (T =
500−800K, cs = 2.5km/s) this velocity gives a settling timescale, z/vz, of 106

years. Furthermore, we need many settling times to concentrate the dust into
larger bodies. This settling rate gets shorter as the grains get larger, although
if they grow into fluffy aggregates their cross-section to volume ratio would
stay large. Nevertheless, grain growth may shorten lifetimes to as little as 104

years.

Goldreich-Ward Instability

There are a couple prevalent theories for getting to larger (100 m to 1 km) size
bodies. One is that aggregation of dust can occur within turbulent eddies [39].
The more popular theory is that if the dust settles into a cold disk in the
plane, it would be susceptible to gravitational instabilities, known as the
Goldreich-Ward instability [14].

This instability is essentially the Toomre instability for rotating disks. For
the Toomre instability, there is a critical wavelength

λ =
4π2GΣ

κ2
,

where Σ is the surface density and κ is the epicyclic frequency. This wave-
length is set by the scale at which the rotational shear is able to overcome
gravity independent of the velocity dispersion of the dust. Therefore, if the
dust is dynamically cold enough, it will fragment into clumps of about this
size. We therefore expect a critical mass of

Mp ∼ Σλ2 ∼ 16π4G2Σ3

κ4

If the density of the forming planetesimal is about 1 gm/cc then this critical
mass would produce a body of roughly 1 km in size in the inner regions of
the solar nebula.

This is a rather elegant result in that the final size of the objects formed
is relatively independent of the conditions in the solar nebula other than
the dust surface density, and presumably this can be directly constrained
by SEDs of protoplanetary disks. Secondly, it gives relatively simple initial
conditions for the next stage of planet formation: a cold disk of mono-disperse
bodies. However, getting the dust to this thin layer has a lot of unknowns.
What with turbulence, solid body collisions, and large radial motions, we
don’t understand this era of planet formation very well.
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2.3 Middle Stage: Planetesimal Accretion

Now we come to the crux of the “planetesimal hypothesis”: the building of
large bodies out of the 1 km size bodies produced at the end of the early stage.
As well as providing a mechanism for building the planets, it also makes the
connection between those planets and the small bodies.

The simplest accretion picture was first quantified by Safranov [37]. Con-
sider a sphere of radius s moving with velocity v through a uniform medium
of density ρ. Then the accretion rate is

dm

dt
= πs2ρv.

However, the gravity of the body plays a rôle by gravitationally enhancing
the cross-section. This gravitational cross-section can be calculated as follows.
Consider the particle that just grazes the surface of the planetesimal as it
goes by. From angular momentum conservation we have: vis = v0d, where
vi is the velocity at impact, v0 is the encounter velocity and d is the impact
parameter. From energy conservation we have −v2

esc + v2
i = v2

0 where vesc is
the escape velocity from the surface of the planetesimal. Solving for d2/s2,
we have

d2

s2
= 1 +

(
vesc

v0

)2

.

Since all particles with an impact parameter less than d will strike the body,
πd2 is an effective cross-section, and the above accretion rate should be mul-
tiplied by this factor to account for the gravitational focusing.

Clearly the growth rate will be a strong function of the ratio of the en-
counter velocity to the escape velocity from the surface of the planetesimals.
Therefore, the velocity distribution of planetesimals is a key ingredient to
the outcome of this stage. Work in this field has progressed using the kinetic
theory of gases, and for that we turn to the Boltzmann equation.

Boltzmann Equation

The evolution of the distribution function f(r
¯
, v
¯
) can be described by the

collisional Boltzmann equation,

∂f

∂t
+ v

¯
· ∇rf −

[
GM�r

¯
r3

+ (v
¯

+ v
¯K) · ∇v

¯K

]
· ∇vf =

df

dt

∣∣∣∣
coll

,

where we have split the velocity into a Keplerian, v
¯K , and random component.

One typically solves this equation by assuming a form for f , and working
out the evolution rate. For the planetesimal case at a particular radius, one
usually assumes that the planetesimals start out with a Rayleigh distribution.
That is, we assume that planetesimals are distributed according to
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f(e, i) = 4
Σ

m

ei

〈e2〉〈i2〉 exp
[
− e2

〈e2〉 −
i2

〈i2〉

]
.

where Σ is the surface mass density, m is the mass of the planetesimals, e is
the orbital eccentricity and i is the inclination. In the Epicycle approximation,
that is, small eccentricities and inclinations, this is equivalent to

f(z, v
¯
) =

ΩΣ

2π2c2rc
2
zm

exp
[
−v2

r + 4v2
θ

2c2r
− v2

z + Ω2z2

2c2z

]

where 2cr = 〈e2〉v2
K , 2c2z = 〈i2〉v2

K , vK =
√

GM�/r, and Ω = vK/r. In
the absence of collisions cz and cr would be completely independent, but
numerical simulations of the accretion process show that cz/cr = 0.5.

There are a number of possible contributions to the collision term, but the
dominant one that we will consider is stirring from gravitational scattering.
The natural scale for the gravitational scattering is set by the escape velocity
of the particles, so we define

(
vesc

v0

)2

≡ 2θ

where θ is the Safronov number.
Now the scale height of the disk is h = v/Ω because the vertical motion

is dominated by the gravity of the Sun. Therefore, the density can be gotten
from Σ = ρh, and we can derive the accretion rate in terms of the Safronov
number as

dm

dt
= πs2ΣΩ(1 + 2θ)

Note that the flux is now no longer explicitly a function of v, but is constant
at a given radius.

If we now assume (as Safronov [37] did), that θ is a constant, we can
substitute for the mass of the planetesimal m = 4/3πR3

plρpl and obtain the
growth rate of the radius as

dRpl

dt
=

ΣΩ

4ρpl
(1 + 2θ).

Turning this into a growth rate gives us

tgrow =
Rpl4ρpl

ΣΩ(1 + 2θ)
.

Now let’s apply this formula to the terrestrial planet region. Assuming the
radius of the Earth R⊕, the density of the Earth, ρ⊕ = 6 gm/cc, a density of
Σ = 10 gm/cm2, and θ = 3, one gets a growth timescale of tgrow = 3 × 107

years. This is a bit long. Furthermore, for constant θ, dR
dt ∝ r−3, where r

is the distance from the Sun. Hence at Saturn’s radius of 10 AU, we have
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τ ∼ 3× 1010 years. We could never grow the outer planets or their cores this
way.

There are other collisional terms that can contribute to the Boltzmann
equation. These include stirring from collisional scattering, damping from
inelastic collisions, damping from gas drag and dynamical friction. Of these
terms, dynamical friction may play the most significant rôle. One way to think
of dynamical friction is that a large body will create a wake of smaller bodies
behind it as it moves through them. The gravitational attraction between
the large body and this wake will act as a drag to slow the large body down.
Another way to think of dynamical friction is as a mechanism to establish
equipartition: the large bodies will increase the velocity dispersion of the
small bodies. Thought of in this way, one gets that the velocity dispersion
should scale as v2 ∼ 1/m.

Runaway Growth

We expect a larger planetesimal to have a larger growth rate because: 1) gravi-
tational focusing is greater and 2) dynamical friction on smaller planetesimals
decreases their velocities. Hence we will modify the growth timescale given
above for the largest planetesimals. This will lead to a phenomenon referred
to as runaway growth.

A simple way to look at this is to note that if the escape velocity v2
esc ∼

GρR2 grows large, while the typical encounter speed with the small bodies,
v0, remains constant then the growth rate will scale as R2, rather than R
as derived above. This larger growth rate will only be valid for the largest
bodies in the region, and so we have the result that the “rich get richer”, and
large bodies will break away from the general mass distribution.

This breakaway has been seen in numerical simulations such as those in
[19] and [36]. The results from [36] are shown in Fig. 3. Note how at the last
timestep, the most massive particles have significantly smaller eccentricities
than the general population, presumably because they have been damped by
dynamical friction. Also note how quickly the large masses have grown. With
runaway accretion, the timescales for growth reduce to 105yrs.

Oligarchic Growth

However, the simulations indicate that there are limits to runaway growth.
They finish with a bi-modal distribution of bodies with the larger bodies being
separated by about 4 Hill radii. This is referred to as Oligarchic growth, and
the final mass of the large bodies is determined by the mass available within
the feeding zone.

Miso ∼ 2πr(8RH)Σ,

where RH is the Hill radius (see below) of the body. Once the body has eaten
up this mass, it has depleted the feeding zone and becomes isolated. The size
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Fig. 3. Evolution of the eccentricities and masses of planetesimals in a simulation
of the middle stage from [36]. Eccentricity is plotted against semimajor axis for 3
different times in an N-body simulation of planetesimal accretion. The size of the
points is proportional the mass of the particles. For the snapshot at 20000 years, 5
Hill radii are plotted for the most massive bodies
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of this feeding zone can be determined by considering the 3-body problem
for nearly circular orbits.

The 3-Body Problem and the Hill Sphere

If we scale the distances in the 3-body problem by the Hill radius

RH =
(

mp

3M�

)1/3

a,

then the 3-body problem is independent of mp/M� (if it is small). We can
define

eH ≡ ea

RH
, iH ≡ ia

RH
, bH ≡ (a2 − a1)

RH
.

where a1 and a2 refer to the semimajor axes of nearby bodies.
In terms of these quantities the 3-body integral of motion is

Γ ≡ 3
4
b2H − e2

H − i2H .

A particle can’t enter a protoplanet’s Hill sphere if Γ > 9. Therefore, if a
planetesimal starts out with a circular orbit, it can not be accreted onto a
neighboring protoplanet unless its semimajor axis is such that bH < 4. Hence
we derive the size of the feeding zone given above.

Substituting in the value for the Hill radius in the isolation mass, we have:

M ∼ 16πr2

(
M

3M�

)1/3

Σ

or

Miso ∼ (16πr2Σ)3/2

(3M�)1/3

or if we consider solar values

Miso ∼ 1.6 × 1025gm(r2
AUΣgm/cc)3/2

which gives a few lunar masses for the minimum mass solar nebula at the
Earth’s radius, and roughly an Earth mass at Jupiter.

Therefore at the end of runaway growth we get proto-planets, not planets.
Can we fix this up so that we obtain larger masses? One possibility to get
larger masses is to start with more than the minimum solar nebula of material;
however, the excess solids will need to be cleared out. This can easily happen
in the neighborhood of Jupiter as that planet is large enough to eject the
bodies, but in the terrestrial region it is not clear how the extra material
would be lost.

This picture also gives an explanation for the existence of the asteroid
belt: if the velocity dispersion is increased by an early Jupiter, then growth
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rates will remain small. Of course this means having a significant mass in
Jupiter before runaway can get started in the asteroid belt. At first this
would seem implausible because the growth timescales tend to increase as
one moves outward in the solar nebula; however, the existence of an ice line
at 5 AU could make Jupiter grow quickly because of the resulting enhanced
surface density of solids.

Is there a way to continue growth once the isolation mass has been
reached? Two possibilities have been brought up.

• The diffusion of more material into the feeding zone from neighboring
regions. This could be caused by the perturbations of neighboring proto-
planets.

• The migration of the protoplanet into a new feeding zone via either grav-
itational torques or gas drag. We will discuss planet migration in general
below.

2.4 Late Stage

At the end of the middle stage we have a regular distribution in a of proto-
planets with roughly constant mass. There is also a swarm of smaller plan-
etesimals, which may or may not be relevant. Since most of the mass is in
the large bodies, dynamical friction is no longer playing a significant rôle in
their orbital evolution. These are the initial conditions for the late stage.

This is the few body problem. It isn’t analytically tractable, and there
are too few bodies to use statistical methods as could be done in the middle
stage. There isn’t much else to do but to numerically follow the orbits of
these bodies for 108 years. In such a calculation, there are several things
that need to be considered. First, the full N2 forces among the bodies need
to be calculated. This problem is similar to the planetary stability problem,
so all the techniques described elsewhere in this book are applicable here.
Using these types of codes for the planetesimal case was pioneered by [11].
Secondly, every so often collisions occur. Almost all simulations performed
to date assume that the collisions are inelastic, (a reasonable assumption)
and all the material in the colliding bodies ends up in the collision remnant.
This last assumption is rather wishful, given that detailed SPH simulations
of colliding protoplanets show significant ejecta. [10, 3]

Typical results from the simulations are shown in Fig. 4 from [34]. As
can be seen from the figure, a few planets of roughly terrestrial-planet mass
are indeed formed. However, the general trend is that eccentricities and in-
clinations are gradually increased by the mutual gravitational interactions.
Therefore the eccentricities coming out at the end of the simulations tend to
be larger than observed in the Solar System.
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Fig. 4. Eccentricity is plotted against semimajor axes for a simulation of gravita-
tionally interacting and colliding protoplanets during the late stage as they evolve
through time. The size of the points is proportional to the cube root of the masses
of the protoplanets. The color scale indicates the mass fraction of water (taken
from [34])

2.5 Outer Planets: Gas Envelope Accretion

The giant planets are enhanced in the heavy elements as well. Even with
the uncertainty in the core mass, the mass of elements in the envelope leads
to an enhancement in heavy elements over solar abundances of at least 5 for
Jupiter. This suggests that the planetesimal accretion model also plays a part
for the outer planets, but augmented with a later gas accretion stage.

Therefore we expect the following sequence for the stages of giant planet
formation:

• Runaway growth of a solid core which clears out a few RH .
• A gas envelope starts to accrete.
• Planetesimals interact with gas envelope, depositing energy and metals.

These processes have been modeled in detail by several groups [42, 32].
The way these models work is very similar to stellar interior modeling. One
self-consistently solves for density and temperature as a function of radius,
assuming that pressure gradients are balanced by gravity. As the radiation
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can diffuse out, the temperature structure changes, and one iterates to a
new solution. The difference from standard stellar modeling is that the en-
ergy comes from gravitational energy deposited by planetesimals, not nuclear
burning.

The models are then updated to a later time based on the relevant in-
formation. First, mass and energy are injected by accreting planetesimals
(estimated from the feeding zone). Orbits of the planetesimals with the the
envelope including gas drag, and vaporization rate are calculated to deter-
mine where in the envelope the mass and energy are deposited. Second, the
envelope contractions due to energy lost due to radiative transfer. As the
planet contracts, nebular gas is added to the outer part. The outer radius is
the minimum of the Hill radius, and an accretion radius

Ra =
GMp

c2s
,

where cs is the sound speed of the gas in the nebula.
An issue that has already been mentioned concerns Uranus and Neptune.

What happened to their envelopes? Several solutions have been offered. The
gaseous nebula could have been dissipated before the exponential phase of en-
velope accretion. This brings up a fine tuning problem: why did the timescales
match so that Jupiter and Saturn got envelopes, but Uranus and Neptune did
not? Wuchterl [42] proposes another solution. A dynamical instability similar
to the “κ” mechanism in Cepheids would drive an “overstability” that could
remove the outer envelope.

A key result from these accretion calculations is that the growth of the en-
velope requires millions to tens of millions of years. This is long compared to
observational constraints on lifetimes of protoplanetary nebula. Furthermore,
an initial nebula with 3 to 4 times the mass of the minimum mass solar nebula
is needed to get even these timescales. However, there are obvious improve-
ments to the calculations that may modify these results. These include better
opacities, a better treatment of convection, and perhaps a small amount of
migration of the planet as it grows.

3 Small Bodies and Planet Formation

Within the planetesimal hypothesis, the small bodies we observe today play a
very important rôle. They are essentially the “fossils” of the planet formation
process, and as such provide valuable clues to the history of the Solar System.
Particularly the comets and the small bodies in the outer Solar System are
helpful since they have been relatively unprocessed since their formation.

3.1 Theoretical Considerations

A key theoretical consideration is taken from the stability of the orbits of
small bodies. Long term orbit integrations been done for small bodies starting
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with circular orbits at a variety of semimajor axes [17]. These have shown that
only bodies that start their orbits with semimajor axes between 2 and 3.5 AU
or beyond 35 AU are able to remain on stable orbits for the age of the Solar
System. Hence it is only Main Belt Asteroids and Kuiper belt objects that are
on stable orbits and can be in their original location. All other small bodies
must be injected into their current orbits from some longer-lasting reservoir.
Furthermore the delivery mechanism from that reservoir must operate on a
timescale of billions of years. If it were any shorter, the reservoir would be
depleted.

3.2 Near Earth Asteroids

Objects with perihelia less than 1.3 AU and aphelia greater than 0.983 AU
are classified as Near Earth Asteroids (NEAs). The orbital lifetimes of these
objects are only tens of millions of years so they must originate from another
source. Possibilities include the Main Belt and extinct comets. Some of the
bodies may also be ejecta from the Moon or Mars when they are impacted
by other asteroids. Of course these bodies also impact the Earth and so
are very relevant to Earth’s geological and biological history. Since they are
also the source of meteorites, these bodies are invaluable for determining the
composition and early thermal history of the Solar System.

Determining their complete orbital distribution is very model dependent
because the observations are so incomplete. Bottke [9] has developed a sophis-
ticated procedure for doing this. First orbits of small bodies are integrated
starting from a number of proposed source regions. These are different regions
of the main belt and the short period comets. A best fit model is then created
by varying the relative contributions of these sources in order to match the
distribution of the known orbits. They find that 61% of NEAs come from
the inner Asteroid belt, 24% from the middle, and 8% from the outer belt.
Extinct comets provide 6% of the NEAs.

3.3 Main Belt Asteroids

Most of the known asteroids are in the Main Belt with semi-major axes be-
tween 2.1 AU and 3.3 AU. Their distribution in semi-major axis is remarkable
because of a number of gaps referred to as Kirkwood gaps. These coincide
with mean motion resonances with Jupiter indicating that Jupiter has played
a significant rôle in the dynamical evolution of the belt.

A detailed study of the orbital elements show that there are a large num-
ber of families that are concentrated around particular orbital elements. Fur-
thermore [18] has shown that these families have similar colors indicating
that their composition is identical. This leads to the hypothesis that these
families are created by collisions or break-ups of larger bodies, and gener-
ally indicates that there is a significant amount of collisional evolution in the
Asteroid Belt.
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3.4 Centaurs and Trans-Neptunian Objects

Between the orbits of Jupiter and Neptune are the Centaur objects. There
are only a handful of these known. They typically have orbits that cross the
semi-major axis of one or more planets, therefore they have a very short
dynamical lifetime. Orbital integrations indicate that they are in transit be-
tween the Kuiper belt and short-period comets [21]. The Kuiper belt refers to
objects in low inclination orbits with semi-major axes beyond Neptune. Their
dynamical lifetimes are very long so they are presumably remnants from the
formation of the Solar System. That is, they are the remaining “planetesi-
mals” discussed above. They are also postulated to be the source of the short
period comets [33].

One interesting question concerning the Kuiper Belt objects is the status
of Pluto. Pluto has an orbit similar to a number of the Kuiper Belt objects
leading to the speculation that it is simply the largest body of this population.
Although there is a considerable gap between Pluto, Chiron and the largest
Kuiper belt object, models of the mass distribution predict roughly one Pluto
size body.

3.5 Comets

Comets are divided into a number of classes based on their orbital elements.
There are several ways to make the division into classes; one way is as follows.
Jupiter family comets have periods less than 20 years; Halley family comets
have periods between 20 and 200 years; long period comets have periods
greater than 200 years but semi-major axes less than 10,000 AU, and Oort
cloud comets have semi-major axes greater than 10,000 AU. There may be an
inner Oort cloud with smaller semi-major axes. Because comets have spent
most of their lifetime far from the Sun, they are relatively pristine objects
with connections to Solar System formation.

Short Period Comets

Short period comets have inclinations such that they are concentrated in the
ecliptic plane. As shown in Fig. 5, there are several peaks in the semi-major
axis distribution with the largest at 3 AU. The peaks are more pronounced
in the aphelion distribution where they correspond to the semi-major axes of
the outer planets. The argument of perihelion distribution peaks at 0 and 180
degrees, meaning that as the comets go through aphelion they are in the plane
of the planets. Because this orbital configuration favors close approaches to
Jupiter and Saturn, the short period comets are dynamically controlled by
the giant planets

This strong interaction with the outer planets means that their dynamical
lifetime is very short, of order 1 million years. They are not in a stable distrib-
ution, and must be injected into their current orbits from some larger reservoir



208 Thomas Quinn

Fig. 5. The distribution of the short period comets in semi-major axis, aphelion,
inclination and argument of perihelion is plotted (taken from [33])

that can survive the age of the Solar System. It was originally thought that
the long period comets could be this source. However, simulations [12] show
that such a scenario is incompatible with their current orbital distribution.
First, such a source would produce a much broader inclination distribution,
and second the argument of perihelion would peak at 90 and 270 degrees
due to a secular evolution of the comet orbits. The conclusion is that a low
inclination belt of bodies beyond Neptune could produce short period comets
with a much better match to the observed orbital distribution. The first of
these Kuiper belt objects was discovered several years after these simulations
were published.

Long Period Comets and Oort Cloud

The distribution of longer period comets is remarkable because of a sharp
peak at a semi-major axis of about 20,000 AU. The inclinations are isotropic
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and the perihelion distribution seems uniform. The energy distribution is
consistent with all comets being marginally bound within the observational
errors. The implication is that the observed comets are the very eccentric
subsample of comets in a large reservoir at a = 104 AU: the Oort cloud.

The likely origin of the Oort cloud is also a disk in the outer Solar Sys-
tem [12]. The scenario is as follows, and a typical trajectory is shown in
Fig. 6. Planetesimals between the planets in the outer Solar System are ini-
tially perturbed by interactions with those planets. If the planetesimals are
scattered outward, the planetary perturbations tend to cause random walks
in a at fixed perihelion and inclination. They therefore diffuse outward in
semi-major axis until the orbits are large enough that Galactic tides and
passing stars start to influence their orbits. The tides and passing stars tend
to change the angular momentum without changing energy. The change in
angular momentum will lift the perihelion out of the planetary region, and
the comets will start to evolve at constant semi-major axis, and the orbits
will become isotropic. Of course, those same tides will bring comets back into
high eccentricity orbits which gives us the comets we see today.

Fig. 6. Evolution in x ≡ 1/a and q of a typical Oort cloud comet from [12]. The
comet first diffuses in a because of perturbations by the planets. When a becomes
large, q gets increased because of galactic tides and stellar encounters
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3.6 Unifying Small Body and Planet Origins

In summary the planetesimal hypothesis gives us a mechanism to link to-
gether all the small body populations in the context of planet formation.
During the middle stage we have many icy and rocky bodies. As the outer
planets grow via accretion, they scatter most of the original planetesimals out
of the region. Planetesimals scattered to higher semi-major axis slowly diffuse
outward until tides lift them out of the planetary region and they become
Oort cloud comets. Planetesimals outside Neptune do not feel strong enough
planetary perturbations to diffuse rapidly and remain as the Kuiper belt ob-
jects. They subsequently slowly supply the short period comets. The only
other planetesimals that remain are the Main Belt asteroids, which become
a source for the Near Earth Asteroids.

4 Planet Formation: the Fragmentation Model

The model outlined in the previous two sections has had great success in
explaining the characteristics of our own Solar System; however, observations
of planets around other stars, and observations of protoplanetary disks have
raised some challenges. The first thing that these observations indicate is that
planet formation (or at least, formation of giant planets) is fairly ubiquitous.
Roughly 10% of the surveyed stars have had planets discovered around them
[26], and when considering selection effects due to inclinations and masses,
the real fraction must be higher than this. This indicates that whatever the
formation mechanism, it must be efficient.

The second observational evidence impacting our theories of planet for-
mation are the studies of star forming regions. On the one hand, large scale
millimeter surveys indicate that most stars form in OB associations [2]. How-
ever, studies of the circumstellar disks in these regions indicate that the
lifetimes of those disk are only .1 million years. Presumably the strong UV
flux from the nearby bright stars quickly ablate the disks.

Since the formation of the gas giants must happen before the disk is dis-
sipated, and the core-accretion model described above generally happens on
a longer timescale than typical disk lifetimes, we must conclude that either
planet formation is rare, or there is another quicker mechanism for it to hap-
pen. Combining this argument with the fact that giant planets are relatively
common pushes us to consider other theories. There are a couple of other
issues with the core-accretion model, such as gap formation (not included
in the above calculations) prematurely terminating accretion, and ice giants
have a hard time forming in the outer solar system because the escape veloc-
ity from the forming cores becomes comparable to the orbital velocity so that
most material gets scattered out instead of accreting. This could be solved
by forming Uranus in the Jupiter-Saturn region [40].
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Gravitationally driven fragmentation of a gas disk is an idea that goes
back to Kuiper [20], but has recently been revived [5, 6, 8]. The idea is
that if the disk is massive enough, the disk can fragment gravitationally in a
short time. The condition for local instability to gravitational collapse is the
Toomre criterion:

Q =
csκ

πGΣ
< 1,

where κ is the epicyclic frequency and Σ is the surface density. Furthermore,
numerical simulations show that 1 < Q < 2 allows global instabilities, and
these may fragment. If we take the temperature constraints above and use
densities corresponding to the “minimum solar nebula”, we obtain a proto-
solar disk with a mass of .01M�. This would imply Q > 2 everywhere, so
we would need more mass than this to drive such an instability. The mass of
disks around other stars can be obtained from radiative transfer modeling,
however the gas/dust ratio must be assumed. If we assume an interstellar
gas/dust ratio of ∼ 100 then the implied disk mass is M ∼ 0.05 to 0.1M�.
With typical temperatures this will give a Q ∼ 1.5 for R > 5 AU. This is
not that much more massive than the masses needed for envelope accretion
models.

Whether the spiral arms that develop within the unstable disks actually
collapse into protoplanets is an outstanding issue, the answer to which is lim-
ited by the quality of simulations that can be performed. Since the modeling
has to follow scales of many AU down to the Hill sphere of the planet, the
dynamic range is quite challenging, and most simulations have been limited
by their spatial resolution.

Recently simulations with Smooth Particle Hydrodynamics (SPH) have
been attempted [27, 28]. These simulations fixed the temperature profile to
that obtained from static radiative transfer simulations [4, 6]. If the disk was
massive enough such that Q ∼ 1.4, then the spiral arms did indeed fragment
into protoplanets. Furthermore the masses and eccentricities of the formed
planets are similar to the masses of observed extra solar planets.

The fixed temperature profile is a significant limitation to these simula-
tions. Clearly as the gas gets denser, radiative diffusion out of the clumps will
become more difficult. Other simulations with constant cooling time show sig-
nificant clump formation only when the cooling time is of order the orbital
time [13]. Modifying the equation of state so that it becomes adiabatic after
the clumps become sufficiently dense still results in protoplanet formation,
but the issue will not be fully resolved until there are high resolution simu-
lations that include radiative transfer.

4.1 Long Term Evolution

The long term evolution of planets formed by disk fragmentation is signifi-
cantly different than the standard model. This is because in the fragmentation
model a handful of planets will form at the same radius from a single spiral



212 Thomas Quinn

arm, whereas in the core-accretion model, it is assumed that the planets are
well separated when they form. The result is that there are many mergers
and scatterings during the evolution. This can be exacerbated via “seeded”
planet formation [1]. Once a single giant planet forms, it excites strong spi-
ral waves at its Linblad resonances which in turn fragment into more giant
planets.

This seeding may also have implications for terrestrial planet formation.
It could be that the perturbations from the gas giants are needed to get
the terrestrial protoplanets on crossing orbits so that they collide to build
larger objects. Furthermore if we are to explain the asteroid belt by planet
formation being suppressed by the presence of Jupiter, the gas giant needs
to have formed quickly before runaway growth in the asteroid belt can get
going. This is natural in the fragmentation model where the giant planets
form quickly.

After hundreds of years of evolution the distribution of planets has the
following characteristics.

1. The eccentricity distribution matches the “non-hot Jupiter” (that is a >
.25 AU) distribution observed in the extrasolar planets. Eccentricities can
be as high as 0.7.

2. The entire mass range from “super-Jupiters” down to Saturn mass objects
are generated, depending on the initial mass of the nebula.

3. Because of the mergers, we expect the obliquity distribution to have some
outliers with very large obliquities as that of Uranus.

4. There are high accretion rates onto the star. The strong interactions
among the planets and between the planets and the gas drives a signif-
icant amount of mass inwards. This a mechanism to clear out the disk
quickly. Episodic flows onto the star could explain the FU Orionis out-
burst phenomenon.

4.2 Arguments against Fragmentation

The fragmentation model is attractive because it neatly solves the timescale
problem. However, there are a number of problems which make the core-
accretion model more favorable. First there is the evidence that the outer
planets contain cores. Observations of Jupiter do not rule out a zero mass
core mostly due to uncertainties in the equation of state of hydrogen at
very high densities and temperatures. Nevertheless, a zero mass core is not
the favored fit. In the fragmentation model one would not expect to see
an enhanced core since high Z material added after the collapse should be
thoroughly mixed in the envelope. Settling could happen if the planet was
non-turbulent (i.e. non-convective); there are disagreements as to whether
this is the case. However, Haghighipour and Boss [16] show that small solids
of size centimeters to meters can migrate quickly (1000 years) to the pressure
maximum and thereby enhance the abundances of the giant planets in the
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fragmentation model. Note that even the envelopes of gas giants are enriched,
implying that we need the solid condensation picture anyway.

The ice giants, Neptune and Uranus are problems in both formation mod-
els; they don’t naturally occur in the fragmentation model. However, they
could be formed via fragmentation as Jupiter and Saturn are, and then their
envelopes get ablated away via EUV radiation from nearby massive stars.
Jupiter and Saturn keep their envelopes because they are more deeply em-
bedded in the protoplanetary nebula.

Whether the fragmentation model works depends significantly on the de-
tails of the gas dynamics and radiative transfer. This is difficult to calculate,
and a lot of detailed numerical work will be needed to confirm or rule out
this model.

5 Planet Migration

The “hot Jupiters” that comprise about one quarter of the extrasolar planets
observed pose a problem in either of the planet formation scenarios discussed
above. They can not be formed in the core accretion model because the ices
(and indeed many rocky compounds) don’t condense at the temperatures
seen so close to the star. In the fragmentation model Q tends to be high
near the star both because the temperature, and hence cs is high, and the
shear, i.e. κ, is large. The obvious explanation is that planets form further
out where the theories predict they do, but then migrate significantly due to
their interaction with a disk.

The interaction between the planet and the disk can be calculated using
spiral density wave theory [15]. In this theory, the coupling to the disk is
expected to be strongest at resonances. Of particular importance are the
Linblad resonances:

m(Ω −Ωps) = ±κ

where plus refers to the inner and minus refers to the outer Linblad resonance
and m is the azimuthal wave number (m = 1 for a one arm spiral). Consider
a frame rotating with the Keplerian velocity of the outer Linblad resonance
(OLR). If the gas moves in an elliptical orbit, it is equivalent to an epicycle
in this frame. Once per epicycle, the pattern comes by, so it is resonantly
perturbed by always seeing the perturbation at the same point in its epicycle
and a secular transfer of energy and angular momentum can happen.

5.1 Type I Migration

The inner Linblad resonance (ILR) increases the angular momentum of the
planet, while the OLR decreases the angular momentum. However, these two
effects don’t quite cancel out, and there is a net loss of angular momentum
to the disk by the planet [41]. This is referred to as Type I migration.
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The migration timescale can be calculated from the linear theory and is:

τ =
1

CaΩ

(
M�
Mp

)(
M�
Σr2

)( cs

rΩ

)2

where Ca is of order unity. Note that the migration rate scales linearly with
the planet mass, Mp, and the disk mass (proportional to Σ), and inversely
with the temperature of the disk. The scaling with planet mass assumes that
the strength of the perturbation in the disk is proportional to the mass of the
planet. However, numerical simulations [30] indicate that this perturbation
may saturate, and then the migration rate becomes independent of planet
mass.

This phenomenon is fundamentally equivalent to dynamical friction: the
gravitational interaction of the planet produces a wake, and the wake gravi-
tationally back-reacts on the planet.

5.2 Type II Migration

If the planet is massive enough then a gap forms in the disk. This occurs if
the torquing of the disk by the planet exceeds the “viscous torquing” of the
disk by itself. That is the planet pushes material away from it faster than
disk viscous forces can bring material in.

In contrast to Type I, the planet is now fixed in the disk, and evolves along
with it. Therefore the migration rate is purely determined by disk properties:

ṙ = cIIα
( cs

rΩ

)2

rΩ

where the kinematic viscosity of the disk is parameterized by ν = αcsH
where H is the mixing length, and cII is a parameter of order unity. These
timescales tend to be much longer than the timescales associated with type
I migration.

5.3 Stopping Migration

If we are to end up with hot Jupiters, we need to have migration terminate
before the planet falls into star. In type I, the ILR gets lost because there is
no more disk in which it can be raised. Since the ILR contributes an outward
torque, this means the migration should speed up onto the star. If the OLR
can be lost, then migration will halt. Perhaps the X wind region around the
star could clear out a large enough region around the star for this to happen.

Tidal interaction with the star can also stop migration [22], but the star
must in general be spinning faster than the orbital period. Eventually the
star should slow down, and then the migration would continue.

On the other hand migration may only stop when the disk disappears.
Planets continue to form and migrate, and the ones we observe are the ones
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that happen to be left when the gas disk disappears. Such a migration prob-
ably did not happen in our own solar system for two reasons. First the aster-
oid belt seems to be chemically stratified in the radial direction. One would
expect radial migration of Jupiters to stir it up and thoroughly mix the as-
teroid types. Secondly, it would be difficult to form the terrestrial planets if
the planetesimals were scattered away by a migrating Jupiter.

5.4 Migration and Disk Fragmentation

As pointed out above, the migration rate depends on the disk mass. Therefore,
the migration rate indirectly depends on Q the stability criterion. Simulations
show [24] that for typical mass planets (of order a Jupiter mass) disks with
lower Q, (less than 7) will have gaps, but higher Q disks will experience type
I migration. Therefore, in disks unstable to fragmentation, migration would
naively be very slow. However, as discussed above, multiple planets can form
and significant “migration” can occur due to the interaction between these
planets.
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Abstract. This paper is an updated version of lectures given at the Helmholtz
Summer School on Extrasolar Planetary Systems (Potsdam, 2003). It includes five
sections: Orbit determination, the known planetary systems, chaos, transition from
secular to resonant dynamics and planetary migration. The first section is mainly
devoted to problems arising in the orbit determination of systems with 2 or more
planets from data on the radial velocity of the central star. In the second section, an
attempt of classification is done in which the known planetary systems are grouped
in 4 classes, one of which includes 47 UMa and our Solar System (orbits with
low period ratio and small eccentricities). The phenomena related to mean-motion
resonances (MMR) are studied with some detail in the remaining sections, since
they may directly affect the stability of many systems. In the appendix, the FFT
techniques used in the paper to assess the stability of a system are reviewed.

1 Introduction

This paper deals mainly with systems of planets. More than a dozen planetary
systems with 2 to 4 planets are currently known and others are just waiting
confirmation. Fig. 1 shows four examples of extra-solar planetary systems and
compares the orbits of their planets to those of our own planetary system.
The two shown in the top figures have planets in large orbits: υ Andromedae
and 55 Cancri. υ And was the first system with several planets to be found
around a main-sequence star [9]. The outer planet of 55 Cnc has the widest
orbit among known planets [47]. 55 Cnc is an example of a hierarchical system
in which some planets lie very close to the star (a < 0.24 AU) while the other
is far away (a ∼ 6 AU). Many of the discovered systems are hierarchical. The
orbit of the innermost planet of 55 Cnc, at ∼ 0.04 AU from the star, is not
shown because in the scale of the figure it would appear just as a spot in
the center. The two planetary systems shown in the bottom figures are much
smaller. The orbits of the two planets of GJ 876 [46] are smaller than the
orbit of Mercury. The peculiarity of this system is that the two planets move
in orbits with commensurable periods. It is the paradigm of stable resonant
planetary systems. In GJ 876, the two apsidal lines almost coincide and the
two periastra are aligned. In addition, the common apsidal line rotates slowly
in such a way that at each 61 days the two planets come close to a symmetric

S. Ferraz-Mello et al.: Extrasolar Planetary Systems, Lect. Notes Phys. 683, 219–271 (2005)
www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Orbits in four extra-solar planetary systems compared to Solar System
orbits

conjunction in which the two planets pass almost simultaneously through the
aligned periastra.

The other planetary system in Fig. 1 is included to remind us that long
before the first planet around a main-sequence star was discovered, a system
of planets has been discovered around the pulsar PSR B1257+12 [70].

Even today, we do not know how a system of planets could have been
formed around a pulsar. This is a very exceptional event and only one more
pulsar planet is known in addition to the three orbiting PSR B1257+12. The
planets of PSR B1257+12 are much smaller than the planets known around
main-sequence stars. While those planets have masses generally between 0.1
and 10 Jupiter masses, the mass of the largest planet around PSR B1257+12
is only 4.3 Earth masses.

At variance with planets in hierarchical systems, the planets in GJ 876
and PSR B1257+12 (and the innermost planets of 55 Cnc) have comparable
semi-major axes and may come close one to another, allowing important
gravitational interactions between them.
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Fig. 2. The sinuous motion of one star due to the presence of a planetary compan-
ion. The faint field stars are used as a reference frame

The discovery of planets around main-sequence stars was one of the great-
est achievements of Astronomy in the past ten years. Planets are billions of
times less luminous than the stars around which they move. The techniques
used to discover them consist in observing the star and detecting the effects
of the presence of a planet. The most obvious way is the observation of the
stellar motion around the common barycenter. We may either observe the
displacement of the star or its changing velocity.

The astrometrical technique developed half-century ago to search plane-
tary companions of stars is conceptually very simple [69]. Initially, a set of
faint stars is chosen around the star whose displacement is to be studied.
Faint stars are very distant objects and can be assumed as fixed during a
long time. The field is imaged with the help of a long-focus astrometrical
telescope (which allows a large scale on the focal plane) and the star under
study is located with respect to the selected field stars (Fig. 2). Relative mea-
surements show the displacement of the star due to its proper motion and, if
it is the case, the existence of a planetary companion.1

This technique was able to detect the existence of several dark compan-
ions in orbit around some stars of the solar neighborhood. Some of these
companions were dwarf stars, some were not confirmed by later observations
and one of them, Lalande 21185, is still on the list of possible, but uncon-
firmed planets. Recently, the astrometrical technique was used to measure the
displacement of GJ 876, due to its outermost planet, with the fine guidance
sensor of the Hubble Space Telescope [5].

If the displacement of stars due to planets and planetary companions could
only be observed in a very few cases, the use of new technology spectrographs
allowing the radial velocity of the stars to be measured with precisions down
to a few m/s revealed the presence of more than one hundred planets (Fig. 3).

The importance of the new spectrographs is clearly seen in Fig. 4, which
shows the distribution of the discovered planets (updated December 2004) in

1 The sinuous motions of Sirius and Procyon were observed by Bessel and Auwers,
respectively, many decades before the discovery of their stellar companions.
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Fig. 3. Radial velocity measurements of the star HD 65216 showing variations due
to a Jupiter-size planet (taken from [48])

a graph whose axes correspond to the mass of the planet and its distance to
the central stars, weighted by the sine of the inclination (unknown in all but a
very few cases) and the star mass, respectively.2 Some amplitudes of variation
of the radial velocity of the central stars are also shown. In Fig. 4, the planets
discovered before June 1999 are shown by circles, planets discovered after May
2003 are shown by open squares and all others are shown by triangles. This
differentiation serves to show how the techniques have progressed since the
discovery of the first exoplanet around a main-sequence star in 1995. It is
worth stressing that, at variance with many recent astronomical discoveries,
the discovery of extra-solar planets was not a product of the use of large
telescopes or space telescopes, but of the use of new technology spectrographs.

Figure 5 shows the distribution of the semi-major axes and eccentricities,
of the known exoplanets. The histogram in the right panel shows a peak in
the interval 0− 0.1 which is due to the fact that all exoplanets with a < 0.06
AU have eccentricities less than 0.1 and also by the fact that in ill determined
cases, a small eccentricity and even e = 0 is assumed. In the interval 0.1-0.5
the eccentricities are more or less equally distributed with an average: 20± 5
per class. The decrease starts at e = 0.4− 0.5 and becomes sharp at e = 0.7.

It is still too soon to get general taxonomic conclusions about the planet
orbits and masses since the discovered sample is strongly biased by the main
technique used, the measurement of star radial velocities, and its current
capability: high planetary masses and orbital periods not larger than a few
years (see Fig. 4).

2 The coordinates in Fig. 4 are the parameters entering in the definition of the
half-amplitude of variation of the radial velocities, IK, to be introduced in the
next section.
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The first planets inducing radial velocity variations below the limit of
10 m/s have just been discovered. In addition, at this very moment, discov-
eries of planets as big as Jupiter, very close to the central star (the so-called
“very-hot Jupiters”) are being announced. They were not discovered using
radial velocity measurements as almost all others, but through the slight
diminution of the observed star luminosity when the planet passes in front
of it (see Fig. 6). The planets discovered in this way are shown by crosses in
Fig. 4. The “transit” technique is only at its beginning, but when used from
space telescopes such as CoRoT and Kepler, to be placed in orbit around the
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Fig. 6. Light-curve of the star OGLE-TR-113 showing the decrease of the measured
light when the planet passes in front of the star (taken from [37])

Earth in the forthcoming years, it may completely change our knowledge of
the extra-solar systems.

Another detection technique, the timing of radio-pulses, has allowed the
first extra-solar planetary system ever known to be discovered around pulsar
PSR B1257+12, but it is only restricted to this kind of objects. At last, for
completeness, we mention the occasional microlensing by a star with a planet,
whose observational signature allows the detection of the planet (see [59]).
One planet was discovered in this way around the star OGLE-235, but is not
plotted in Fig. 4 because the star type and mass are unknown.

2 Orbit Determination

The basic techniques used to derive orbital elements and masses of extra-
solar planets from radial velocity measurements were established long ago.
We recall that the first spectroscopic binary stars were discovered by Picker-
ing (Harvard) and Vogel (Potsdam) in 1889-1890. The principles developed
for the study of these stars may be found in many classical texts. See for
instance [60].

Doppler measurements give the value of the projection on the line of sight
of the velocity of the observed star with respect to the observer. Thus, we
have to consider the motion in both ends of the light path.

2.1 The Motion of the Observer

To reduce the observations to an inertial frame, it is necessary to consider
the motion of the observer with respect to that frame. Some steps are easily
described. First, the observer is on the Earth and the Earth is rotating. The
Earth rotation carries the observer with a velocity ≈ 460m/s cosφ (φ is the
latitude of the observing site) along the Earth’s geographic parallel. Second,
we have to consider that the Earth belongs to a binary system and is moving
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with a strongly perturbed elliptic motion around the barycenter of the Earth-
Moon system. Its velocity with respect to the system barycenter is ≈ 13m/s
with a ≈ 28-day period. Third is the elliptic motion of the Earth-Moon
system around the Sun with an average velocity of ≈ 29.8 km/s. However,
because of the eccentricity of the Earth, this velocity is not constant and has
a main oscillation of ≈ 0.5 km/s. Next, we have to consider that the Sun is
itself moving around the barycenter of the Solar System mainly due to the
giant planets. Jupiter, for instance, causes a motion of the Sun around the
barycenter of the Solar System of ≈ 13m/s.

The standard error of a radial velocity measurement, during most of the
20th century, was not better than 1 km/s and it was enough to consider a
very simplified model to correct the measurements from the motion of the
observer with respect to the barycenter of the Solar System.

Nowadays, relative measurements are getting close to 1 m/s, and simpli-
fied models are no longer enough to guarantee a good result. Several public
routines exist for that sake. The more precise routines are based on sev-
eral versions of Bretagnon’s VSOP planetary theory [7] and the lunar theory
ELP2000/82 of Chapront-Touzé and Chapront [12]. They are the routine
VSOP87E, by Bretagnon and Francou [8], downloadable from the Centre de
Données Stellaires (ref: VizieR VI/81) and the expansion published by Ron
and Vondrák [63]. Ron and Vondrák’s expansion is founded on VSOP 82 and
has the nominal precision of 10−7 AU/d (that is, ∼ 2cm/s). The routine
VSOP87E is founded on VSOP 87 and its comparison to JPL ephemerides DE
403 confirms the authors estimate that the precision is around 0.5 cm/s (Fran-
cou, pers.comm.). Other available routines are bcvcorr, developed by the
SAO Telescope Data Center, and SLA EVP, found in the SLALIB Positional
Astronomy Library (Starlink Project). These two routines use the planetary
perturbation codes BARVEL written by Stumpff [66], whose comparison to the
JPL ephemerides DE96 showed differences less than 42 cm/s in the velocity
components. At last, it is worth mentioning the routine rvcorrect of the
IRAF software package, which does not consider the planetary perturbations
and whose nominal precision is only 5 m/s. An alternative to the use of the
above-mentioned routines is the direct calculation of the barycentric velocity
of the Earth from JPL ephemerides DE 405. In this case, the barycentric co-
ordinates of the Earth must be interpolated from tables and used to obtain
the velocity components. The precision in this case is better than a few mm/s
(E. M. Standish, pers.comm.).

In the transition of the old O(km/s) measurements to the new O(m/s)
measurements, we mention the discovery, around 1990, of one “planet” with
a period ≈ 180 days, a period just half the period of the Earth around the
Sun. It was certainly only the consequence of some inaccuracy in the adopted
second harmonic of the Earth motion around the Sun. The current routines
allow a precise reduction of radial velocity measurements to the barycenter
of the Solar System.
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A second correction to be introduced comes from the fact that the light
takes about 1000 seconds (∼ 0.01 d) to go from one point in the Earth’s
orbit to the point diametrically opposed to it. This means that the time of
one phenomenon will not be the same if the Earth is in one or another point
of its orbit. In order to circumvent this problem, it is important to reduce the
date of a given observation to a virtual clock located in the Sun, or, better,
in the barycenter of the Solar System.

The “heliocentric” and “barycentric” date of one phenomenon are the
dates in which it would have been observed by a virtual observer placed in
the Sun or in the barycenter of the Solar System, respectively. This correc-
tion is easily obtained: it is equal to the time spent by the light to have a
displacement equal to the projection of the Earth’s radius vector on the line
of sight, that is,

∆t =
1
c




cos δ cosα
cos δ sinα

sin δ




T 


xE

yE

zE


 (1)

where α, δ are the right ascension and declination of the star and xE , yE , zE

the components of the Earth’s position vector in the same equatorial system
of reference (astrocentric or barycentric). Dates in published radial veloc-
ity measurements are given in either “barycentric” or “heliocentric” Julian
date. For data on exoplanetary systems, both dates are acceptable since the
consideration of the motion of the Sun around the barycenter of the Solar
System has a maximum difference 10−4 d, that is, ten times smaller than
the current time accuracy of the observations (10−3 d). It is worth stressing
that the correction considered here just accounts for the differences due to
the finite velocity of the light and is not relativistic.

Before closing this introduction, we should mention the more critical case
of the reduction of the observed times of arrival of radio pulses coming from
a pulsar. The measurement of the time elapsed between the arrival of two
consecutive pulses is akin to a radial velocity measurement. However, the
high accuracy of clocks makes these measurements equivalent to cm/s in ra-
dial velocity scale. In that case, we have to know the motion of the Earth
with respect to the Solar System barycenter with very high accuracy. It is
necessary to use routines founded on accurate barycentric ephemerides of the
planets taking into account all planets. Besides, it is not enough to reduce the
observed date to the system barycenter as in the case of Doppler measure-
ments. The clock is also moving with 10−4 of light speed, and the relativistic
difference between the measured time and the time given by an inertial clock
can no longer be neglected. (For a complete list of the effects to be considered
in the reduction, in this case, see [11]).
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2.2 One-Planet Kinematics

Would the star be isolated, its radial velocity would be constant (at least
for times short as compared to the galactic motions time scale). However, if
it has one or more companions, no matter if stars or planets, the star will
move around the common barycenter (B) of the system. The velocity of this
motion (with respect to the observer) is the quantity that is measured from
Earth. Let us use the kinematics of planetary motion to derive it.

In a reference frame centered in the star, the position and velocity of one
planet are given by

r = r cos f i + r sin f j (2)

v = − 2πa
T
√

1 − e2
[sin f i − (e + cos f) j] (3)

where

r =
a(1 − e2)
1 + e cos f

,
df

dt
=

2πa2

Tr2

√
1 − e2, (4)

r = |r|, f is the true anomaly, a is the astrocentric semi-major axis, T is the
orbital period, e is the eccentricity, i and j are two unit vectors in the plane
of the motion: i is in the direction of the periastron and j is orthogonal to it.

The astrocentric position vector r of the planet may be trivially converted
into the barycentric position vector R of the star (see Fig. 7). The conversion
of Eq. (3) to the velocity of the star with respect to the barycenter is done
in the same way:

V =
m

IM
2πa

T
√

1 − e2
[sin f i − (e + cos f) j] (5)

where m is the mass of the planet, M is the mass of the star and IM = M +m
is the total mass of the system.

The next step is to project this velocity on the line of sight. It is conve-
nient, beforehand, to introduce a reference frame to be used in these studies.
The first reference system used in the study of visual double stars was Her-
schel’s astrocentric frame where the x− and y−axes are tangent to the ce-
lestial sphere and directed toward North and East, respectively. The z−axis

                R 

r
Fig. 7. Barycentric position vector of the star (R) and astrocentric position vector
of the planet (r). The cross shows the barycenter of the system
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is directed along the line of sight, away from the observer. For the sake of
studying spectroscopic binaries, astronomers modified Herschel astrocentric
frame rotating it around the z−axis and placing the x−axis along the nodal
line defined by the intersection of the orbital plane with the sky tangent plane
(see [32]). This change was introduced because radial velocity measurements
do not allow the position of the intersection line to be known. This system is
being used as reference for the orbit of the extra-solar planets. The x−axis
is taken along the intersection line and directed towards the point crossed by
the planet when moving towards the observer. The y−axis is defined so that
the system is right-handed.

The adopted definition of the x− axis corresponds to the practice of mea-
suring the position angle of the periastron from the intersection (γ) where the
planet is moving towards the observer (the star is receding from the observer
and near the radial velocity maximum).3 For instance, the planet of the star
HD 65216, whose radial velocity curve is shown in Fig. 3, is at periastron
on JD 2,452,601, a short time after the minimum of the light curve, and the
position angle of the periastron is ω = 198◦.

In the adopted system, the vectors i, j and k are given by:

i =




cosω
sinω cos i
− sinω sin i


 j =




− sinω
cosω cos i
− cosω sin i


 k =




0
sin i
cos i


 (6)

These vectors are the same classically used to give the unit vectors associated
with the orbital plane on an arbitrary reference frame, with Ω = 180◦, incli-
nation i and argument of periastron ω + 180◦. The use of ω + 180◦ (instead
of ω as in classical formulas) is due to the use of the point γ located in the
opposite side of the ascending node N as origin.

In the dynamical study of systems with two or more non co-planar planets,
we no longer use the plane of the sky as the fundamental reference frame.
A new reference plane, closer to the orbital planes (the invariable plane, for
instance) is a better choice in this case. New angles are then defined. It is
important to recognize from the very beginning that the position angle ω is
measured from the intersection with the sky plane and is akin to a longitude.
Even if a new reference frame is used, the distance from the periastron to the
sky plane should be ω as given in the orbit determination. If the longitude of
a hypothetical node is added to ω, as sometimes done, the resulting orbit is
no longer the orbit issued from the observations.

The measured radial velocity is the component of the vector V along the
z−axis plus the radial velocity of the system barycenter, that is:

Vz = IK [cos(f + ω) + e cosω] + Vr (7)

where
3 The radial velocity is considered positive if the star is receding from the observer

and negative if it is approaching him.
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Fig. 8. The rotated astrocentric reference frame showing the planet orbit plane,
the plane tangent to the celestial sphere (sky) and their intersection. The origin of
reckoning of the angles is the intersection (γ) in which the planet is moving towards
the observer

IK =
m

IM
2πa
T

sin i√
1 − e2

. (8)

IK is the half-amplitude of variation of the radial velocity.
Two typical examples are obtained using data from our own planetary

system: For a Jupiter-like planet in a Jupiter-like orbit around a Sun-like star
(and i ≈ 90◦), IK = 12.7 m/s; in the same case, but for an Earth-like planet in
an Earth-like orbit we have instead, IK = 9.2 cm/s. For a Jupiter-like planet
in an Earth-like orbit, we have IK = 29m/s. It is worth stressing that the
variation of f is not uniform and, therefore, the curve Vz(t) is not a sinusoid,
except when e = 0. When e �= 0 the curve presents a skewness that allows
us to determine the eccentricity and the position angle of the periastron. Eq.
(7) has 6 unknowns: Vr, IK, T , e, ω and the time of periastron (necessary
to obtain the true anomaly f at the date of each observation). There are
some classical formulations to determine these parameters from the curve of
radial velocity (see [60]), however, it is generally easy to use a best-fit routine
starting from simple guesses to determine them.
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We may use the third Kepler law:

a3

T 2
=

G(M + m)
4π2

to relate a and T and separate, in Eq. (8), the known and unknown parts.
We obtain,

m3

IM2 sin3 i =
IK3T

2πG
(1 − e2)3/2. (9)

The left-hand side:

f(M,m, i) =
m3

IM2 sin3 i =
(m

IM
sin i

)3

IM (10)

is the so-called mass-function.
In the 1-planet problem, there is no way to separate the three quantities

involved in the mass function. Usually, the mass of the star is taken from so-
phisticated models. However, one must keep in mind that even for Hipparcos
stars having the best available spectroscopy and astrometry, the more accu-
rate models do not allow to know the masses better than ≈ 8 percent [1]. This
fact supersedes some discussions on the nature of the published planetary el-
ements, if astrocentric or barycentric. The difference between coordinates in
these systems is much smaller than the uncertainty in our knowledge of the
star mass.

It is worth repeating that it is impossible to know the orientation of the
intersection line on the sky tangent plane from spectroscopic (and photomet-
ric) observations only.

2.3 Primary and Derived Parameters. Planetary Aberration

We define as primary parameters those issued from the fit of the observations
to a Keplerian model. Table 1 shows the parameters determined from the
radial velocities of the star HD 65216 (the same star whose radial velocity
curve is shown in Fig. 3).

The parameters shown in Table 2 are deduced from those given in Table
1. For their derivation, we have to adopt a mass for the star. In the values
given in the first column (Case I), we adopted the same star mass given by
Mayor et al. [48]. In the last column (Case II), we considered exactly 1 solar
mass, a value about 10 percent larger than the given one. This is perhaps an
exaggeration of the incertitude on the star mass, but it was chosen to allow
the reader to see how the adopted mass affects the results. For the same
reason, results are given with one digit beyond what would be reasonable. It
is worth noting that some parameters show only a weak dependence on the
chosen star mass, while others are affected in almost the same proportion.

We also have to consider that the star is moving and, because of that
motion, the time scale of the motion measured with a clock moving with
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Table 1. Parameters determined from the observed radial velocities of HD
65216 [48]

parameter planet HD 65216 b

IK (m/s) 33.7 ± 1.1
Apparent Period (days) 613.1 ± 11.4

Periastron time(†) 50,762 ± 25
Eccentricity 0.41 ± 0.06
ω (degrees) 198 ± 6

Vr (km/s) 42.674 ± 0.002
† barycentric Julian date) − 2,400,000.

Table 2. Parameters derived from those in Table 1. Epoch= BJD 2,452,000

parameter case I† case II‡

Mean Longitude at the epoch (degrees) 204.9 204.9
a (AU) (osculating) 1.374 1.413
f(M, m, i) (10−9M�) 1.845 1.845
m sin i (MJup) 1.216 1.286
m sin i (10−3Mstar) 1.262 1.227
† assuming for the star mass M = 0.92M�.
‡ assuming for the star mass M = 1.0M�.

the star is not the same as that resulting from measurements made from
Earth. This is the same effect known as planetary aberration, which affects
the astrometrical observations of a solar-system body. It is easy to see that
a phenomenon whose duration measured with a clock moving with the star
is ∆ts, has a duration

∆t⊕ = ∆ts

(
1 +

Vr

c

)
(11)

when measured by a clock on Earth. For instance, if the star is receding
(Vr > 0), the period of the motion measured from Earth will be larger than
the actual one. Typical radial velocities in nearby stars are of the order of
some tens of km/s, thus affecting the fourth digit of the period. In some cases,
they may reach 100 km/s and the relative correction to the periods is 3×10−4.
Many stars already have nominal periods determined with a relative precision
better than 10−4 what means that the aberration of light has to be taken
into account. In the case of the star HD 65216, the actual osculating period
of the planet around the star is smaller than the apparent period by ∼ 0.08
days. In this case, the difference is much smaller than the incertitude in the
period determination. However, as the precision in the period determination
increases with a longer observation time span, the time scale correction will
become important even for stars with moderate radial velocities.
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2.4 The Case of Two Planets

In an isolated system formed by one star with mass M and two planets
with masses m1,m2, the barycentric velocities are such that MV + m1V1 +
m2V2 = 0. Substituting the barycentric velocities of the planets by their
astrocentric velocities vk = Vk − V, there follows

V = −m1

IM
v1 −

m2

IM
v2 (12)

IM is the sum of all masses in the system. The measured radial velocity is
the component of the vector V along the z-axis, plus the radial velocity of
the system barycenter. If the mutual attraction of the planets is disregarded,
we have

Vz =
∑

k

IKk[cos(fk + ωk) + ek cosωk] + Vr (13)

where IKk is, for each planet, the same parameter obtained in the 1-planet
case (Eq. 8). The mass function is now

f(M,mk, ik) =
m3

k(M + mk)
IM3 sin3 ik. (14)

The cancellation of IM and M + mk done to obtain Eq. (10) cannot be done
here.

Another point to be taken into account is the fact known since Laplace
(at least), that mutual perturbations affect the mean value of osculating ele-
ments. Two of these variations are particularly important: the mean pertur-
bations in semi-major axis and the mean longitude at the epoch. The latter
one is a drift of that value that directly affects the period of the motion. The
classical first-order formulas giving these effects ([67]; see also [19]) are the
following:

âk =< rk >= ak

(
1 − 1

2
σk

)
, T̂k = Tk(1 − σk) (15)

where, assuming that a1 < a2, we have

σ1 =
m2

M + m1
α2

db01/2

dα
, σ2 = − m1

M + m2
(α

db01/2

dα
+ b01/2); (16)

α = a1
a2

and b01/2(α) is the lowest order Laplace coefficient. For α ≈ 0.636 (as
in planets close to a 2/1 commensurability of periods), we have b01/2 ≈ 2.268,
db01/2/dα ≈ 1.132 and

σ1 = −0.46
m2

M + m1
, σ2 = 3.0

m1

M + m2
. (17)

The 1-planet kinematical model assumes that the motion is Keplerian and
lies on an ellipse of semi-major axis â with period T̂ . When two (or more)
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planets are involved, this ellipse is no longer the osculating one. Therefore,
the use of Kepler’s third law is not correct.

Let us keep the notation a, T for the osculating elements and write,
instead of Eq. (8),

IKk =
mk

IM
2πâk

T̂k

sin ik√
1 − e2

k

. (18)

for each planet. From the given definitions of âk and T̂k and Kepler’s law (for
the osculating elements), we obtain

f(M,mk, ik)
(

1 +
1
2
σk

)
=

IK3
kT̂k

2πG
(1 − e2

k)3/2. (19)

One important result derived from the above equations is that the ratio

m1 sin i1
m2 sin i2

is not affected by the indetermination of the inclinations and star mass.
Therefore, if the two planets are coplanar, the mass ratio may be known
from the observations. This is a very important point, since adiabatic evo-
lutions follow lines of constant mass ratio and are only weakly dependent
on the actual masses of the planets. (see [3, 4, 23]; see Sect. 6). However,
we have to keep in mind that, while plausible on the ground of planetary
formation theories, coplanarity cannot be known from a kinematical orbit
determination.

2.5 3-Body Fits

Let us start this section by comparing the predicted evolution of the orbits
in two non-interacting Keplerian orbits and the actual evolution given by the
numerical integration of a 3-body model. The example chosen is the radial ve-
locity curve of the star HD 82943. The planetary system of this star is one of
the two confirmed paradigms of systems near a 2/1 commensurability of pe-
riods. Fig. 9 shows the computed radial velocity curves in the two cases and,
with a solid line, the difference between them (kinematical minus dynami-
cal). This line shows that in the whole interval of the available observations,
1999.1−2003.4, there is no significant difference between the results given by
the two models. However, for a larger interval, important differences appear
and a Keplerian fit can no longer be used. An orbit determination taking into
account the gravitational interaction of the two bodies will be necessary.

One important point when comparing 3-body radial velocity curves is
that they can give an independent way of assessing the planetary masses.
In the 3-body model used to construct the curves of Fig. 9, the masses of
the two planets are the published values of m. sin i; that is, it is assumed
that the planetary orbits are being seen exactly edge-on. If the observations
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Fig. 9. Radial Velocity of the star HD 82943 following kinematical (gray
dots) and dynamical (black dots) models corresponding to [48] elements and
masses and coinciding at the date 2001.247. (the solid line shows the difference
kinematical−dynamical (sin i = 1))

done in the next 4 years show a difference with the Keplerian model larger
than that predicted in Fig. 9, it will mean that the actual masses of the
planets are larger than m. sin i, (that is, sin i < 1, and i < 90◦). Therefore,
the extended observation of systems of planets with significant gravitational
interaction may allow us to know their actual masses. However, if a new
unknown (for instance, the inclination) is introduced in the fitting of a 3-
body model to the observed radial velocity of that star, now, it will give rise
to a correlation factor close to 1 between some derivatives making impossible
to get the solution. A more extended observing time span is necessary to
solve the indetermination.

The above discussion considered only the indetermination concerning the
inclination. Another factor to be taken into account is the incertitude in the
value of the star mass and its propagation to other quantities in the process.
We adopted in the 3-body model used to construct Fig. 9 the mass Mstar =
1.15±0.09M� as determined with the Geneva stellar evolutionary models [48].
However, other values of Mstar may be found in the recent literature, for
instance 0.93 ± 0.09M� [1], 1.05M� (Geneva planet search web page, July
31th, 2002) and 1.11M� [13].

In order to avoid polluting the 3-body simulations with the inaccuracy
of the star mass, it is convenient to use an adimensional formulation of the
equations of motion. For that sake, we introduce a change in the units in
which the star mass is equal to 1 and the distance unit is such that the value
of G does not change (this is necessary to avoid transferring the inaccuracy
on M to the gravitational constant G). We may adopt one of the usual time
units and fix the value of G. For instance, we may adopt the day as time unit
and take for G the standard value [17]
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G =
(

2π
365.2568983263

)2

= (0.01720209895)2. (20)

The corresponding length unit is a modified astronomical unit (MAU) for the
exoplanetary system considered. It is easy to see that

1 MAU = 1 AU 3

√
Mstar

M�

The adimensional formulation depends on only two parameters: the
masses of the planets in units of the star mass. The other external para-
meters are only introduced when a solution of the adimensional problem is
compared to the radial velocity measurements. For that sake they are first
projected on the line of sight and then the units are converted to our units
by multiplying them first by the gauges

γk = 3

√
Mstar

M�
sin ik (k = 1, 2)

and then by the factor 1731.4568 to convert AU/d into km/s. In order to
continue this discussion, we have to assume that during the period of the
observations, the inclinations remained constant. Should a variation of the
inclinations in the observational period to be taken into account, the proce-
dure would become much more intricate even if simplified by the introduction
of the invariable plane. The equations in the general case were not yet derived.

Therefore, the four undetermined parameters related to masses and incli-
nations in the dynamical orbit determination are m1/M,m2/M, γ1, γ2. If the
two planet orbits may be assumed as coplanar, γ1 = γ2 = γ and the number of
unknowns is reduced to three: m1/M,m2/M, γ1. However, these three involve
four unknown parameters: M,mi,m2, sin i showing that we cannot produce
an independent determination of the star mass M by radial velocities mea-
surements only, and we are tied to use the values coming from astrophysical
models. At least, in the above given procedure, the results are not affected
by the inaccuracy in the value of the star mass.

As already discussed in Sect. 2.4, the ratio of the 2 planetary masses is
not affected by the indetermination and may be determined from the obser-
vations.

3 The Known Planetary Systems

Currently (February 2005), 15 systems with 2 to 4 planets around main-
sequence stars are known.4

4 cf. “Extra-solar Planets Encyclopedia”http://www.obspm.fr/planets
( c©J.Schneider) ε Eri was not considered here since the second planet of
this star is excessively uncertain.
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At variance with the rest of this paper, this section is deeply rooted on
the existing observational data. The data collected in the next tables can be
substantially modified in a short time because of the new spectrographs in
use since 2004, the increase of telescope time availability for transit detections
and also the continuous disclosure of long-period planets due to the long span
of observation accumulated during the past 10 years. For a frequent update,
see http://www.astro.iag.usp.br/∼dinamica/exosys.htm.

When the ratio of orbital periods in each pair of planets in consecutive
orbits is plotted (Fig. 10), we see a more or less continuous distribution (at
least in a logarithmic scale) between two extreme cases: In the lower end, we
have planet pairs with P2/P1 ≈ 2 and, at the upper end, P2/P1 > 150.

1
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Fig. 10. Ratio of the orbital periods of pairs of planets in consecutive orbits in
increasing order. Open circles indicate pairs for which the existence of one of the
components is still under discussion

Class Ia. Planets in Mean-motion Resonance (MMR)

We put in Class I those planets at the lower end of the distribution shown
in Fig. 10. Having large masses and eccentricities and orbiting in relatively
close orbits, these planets are liable to strong gravitational interaction and
are significantly perturbed in orbital timescales. They are unable to remain
stable if not tied by a mean-motions resonance (MMR). They are among the
more interesting extra-solar systems for Celestial Mechanics studies. The first
two pairs are the two well-known pairs in 2:1 mean-motion resonance: HD
82943 and GJ 876 (= Gliese 876). The next three pairs appear in Fig. 10
with open circles because of doubts concerning one of the planets in the pair.
They are HD 128311, 47 UMa and the planets b and c of 55 Cnc (= ρ1 Cnc).
The data on the outer planet of HD 128311 still are very uncertain; in what
concerns the other two, there is no consensus among the observers about the
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existence of the outer planet in the pair [56]. If the existence of these outer
planets and the resonances are confirmed, they will be added to the three
known resonant cases to form a set of examples whose study may contribute
to our understanding of the physics underneath the capture of exoplanets into
resonance. However, exactly in reason of this importance, we should be very
careful and accept them only after the current doubts are dissipated. We note
that the planets of 47 UMa have small eccentricities and may remain stable
even in non-resonant orbits. For this reason, this system was not included in
this class (Ia). It is being considered as paradigm of a separate sub-class (Ib),
which will be discussed at the end of this section.

We also include in class Ia, the planet pairs of HD 128311 and HD 202206.
The given elements of HD 128311 do not show a MMR, but simulations with
the given data show instability in short time (even choosing the most favor-
able values for the unknown perihelia and relative positions). With the given
large masses and eccentricities, they should not survive out of a resonance.
The orbits of HD 202206 b,c are well known, but the mass of one of the com-
panions allows to class it rather as a low-mass brown dwarf than as a planet.
The large mass of HD 202206b is certainly responsible for the capture of HD
202206c in a high-order resonance (other planet pairs with the same period
ratio are non-resonant and belong to Class II).

One may note that in the two first systems in Table 3, the outer planet
was discovered before the inner one and the names b,c appear in inverse
alphabetical order. This is a prosaic fact without a particular importance, but
it deserves to be pointed because it is responsible for errors in some Internet

Table 3. Planets in mean-motion resonance

Star Planet mass × sin i Period Period Semi-major Eccentricity
Star mass (mJup) (days) ratio axis (AU)

HD 82943(1) c 1.7 219.5
1.99

0.75 0.39

1.15M� b 1.8 436.2 1.18 0.15

GJ 876(2) c 0.597 30.38
2.01

0.13 0.218

0.32M� b 1.90 60.93 0.21 0.029

HD 128311(3) b 2.58 420.5 ∼ 2
1.02 0.30

0.80M� c 3.24 919 (?) 1.74 0.29 (?)

55 Cnc(4) b 0.784 14.67
2.99

0.115 0.02

1.03M� c (?) 0.217 43.93 0.24 0.44

HD 202206(5) b 17.5 256.2
5.06

0.83 0.433

1.15M� c 2.41 1296.8 2.44 0.284

(1) Ref: Ferraz-Mello et al. [24]
(2) (= Gliese 876) Ref: Laughlin et al. [41]
(3) Ref: California & Carnegie web page (exoplanets.org)
(4) (=ρ1 Cnc) Ref: McArthur et al. [49]
(5) Ref: Correia et al. [15]
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posted data where the reverse alphabetical order led to the interchange of
some elements of the 2 planets.

Class II. Non-Resonant Planets with Significant Secular Dynamics

The period ratios of the planet pairs considered in this class lie above 4.6
making difficult a capture into a MMR. The gravitational interaction be-
tween these planets may be strong, but the angular momentum conservation
limits the eccentricity variations allowing them to remain stable even if not
in a MMR. They present long-term variations, primarily described by secular
perturbations, large variation of the eccentricities and interesting dynamical
effects such as the alignment and anti-alignment of the apsidal lines (see [54]).

Among the extra-solar planetary systems, the best-known example in this
class is the system formed by the outer planets of υ And. They do not seem
to be in MMR or close to one and are paradigms of systems showing apsidal
lock due to a non-resonant secular dynamics.

The distinction between planets of this class and the next one is only
circumstantial. One could be tempted to define the class by the presence
of alignment or anti-alignment of the apsidal lines (the feature improperly
called “secular resonance”). However, as discussed by Michtchenko and Mal-
hotra [54], for every given mass and semi-axis ratios, one may have alignment,
anti-alignment or circulation of ∆� as well, just as a function of initial ec-
centricities and ∆�. This is a kinematical feature, not a dynamical one: all
possible motions belong to a same continuous family of solutions (see the
discussion in Sect. 5). Thus, we have used as a tracer, the variation of ∆�.
If ∆� is oscillating about 0 or π, or if it does not oscillate, but varies in a
tortuous way, the system (or pair of planets) belongs to class II. If ∆� varies
almost uniformly, the system (or pair of planets) belongs to class III.

Another difference between classes II and III is the sensitivity to varia-
tions of the elements. The stability of the orbits of planet pairs in class II
depends critically on the parameters and may become unstable if they are
slightly changed. Because of this sensitivity, published orbits often lead to
catastrophic events in short times. This, obviously, does not mean that a
catastrophe will occur. It just means that the current accuracy of the orbit
determinations is not good.

The first pair of planets in Table 4 is formed by the outermost planets
of µ Ara (= HD 160691). The first orbit determination of these planets led
to guess that they were in a 2:1 MMR, but recent determinations indicate a
much higher orbit for µ Ara c. The orbit of the last pair included in Table 4,
HD 37124, is poorly known. Different choices of elements may lead either to
a very unstable orbit in which ∆� oscillate about 180◦ or to a stable orbit
with almost uniformly circulating ∆�. The current elements do not allow
deciding between classes II and III.
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Table 4. Non-resonant planet pairs with a significant secular dynamics

Star/ Planet mass × sin i Period Period Semi-major Eccentricity
Star mass (mJup) (days) ratio axis (AU)

µAra(1) b 1.67 645.5
4.63

1.50 0.20

1.08M� c 3.1 2986 4.17 0.57

55 Cnc(2) e 0.045 2.808
5.2

0.038 0.17

1.03M� b 0.784 14.67 0.115 0.02

υAnd(3) b 0.64 4.6171
52.2

0.058 0.019

1.3M� c 1.79 241.18
5.32

0.805 0.26

d 3.53 1282.6 2.543 0.25

HD 12661(3) b 2.30 263.6
5.48

0.83 0.35

1.07M� c 1.57 1444.5 2.56 0.20

HD 169830(4) b 2.88 225.62
9.32

0.81 0.31

1.4M� c 4.04 2102 3.6 0.33

HD 37124(5) b 0.72 153 ∼ 10
0.54 0.1

0.91M� c 1.3(?) 1595 (?) 2.5 (?) 0.7 (?)

(1) (= HD 160691) Ref: McCarthy et al. [50]
(2) (=ρ1 Cnc) Ref: McArthur et al. [49]
(3) Ref: Fischer et al. [25]
(4) Ref: Mayor et al. [48]
(5) Ref: California & Carnegie web page (exoplanets.org)

We have included in class II the whole υ And system, notwithstanding
the high period ratio of the two first planets: 52.2. The planet υ And b has
indeed many characteristics of one planet belonging to one class III pair: a
large long-period variation of the eccentricity (the eccentricity grows from 0 to
0.39 in the half-period 150,000 years). However, the periastron of this planet
oscillates with the mentioned long period around the periastron of υ And c
(see Fig. 11). Even though the current longitude of the perihelion of υ And b is
ill determined and a new determination may change the result presented here,
this example shows the difficulty of finding a significant absolute criterion to
classify non-resonant planet pairs in these two classes.

Class III. Hierarchical Planet Pairs

Lee and Peale [43] used the denomination “hierarchical” in the same sense as
here, that is to indicate planets with large ratio P2/P1. The extreme example
is HD 38529 where P2/P1 ∼ 150.

However, they used a limit lower than here and used the word to desig-
nate several planetary system, including HD 12661 for which P2/P1 = 5.48.
They have shown that the apsidal lines of the HD 12661 planets oscillate
about anti-alignment and for this reason, following the criterion here intro-
duced, it was included in class II. We included in class III only planets at the
right of the jump seen in Fig. 10. The large period ratios (> 30) allow the
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Fig. 11. Long-period oscillation of the difference between the periastra of the υ
And b and c (�c − �b)

existing gravitational interaction between these planets to be weaker than in
the previous classes and the probability of capture in a MMR is negligible.
The interaction leads to long-period variations in the eccentricities, uniform
or almost uniform variation of ∆� and variations in the osculating elements
associated with the wobbling of the system barycenter. One exception is the
inner pair of planets of υ And that have been included in class II notwith-
standing the high period ratio (52.2). In hierarchical pairs, the variation in
the eccentricity of the inner planet may be large. For instance, the eccentricity
of HD 74156 b has a total variation of 0.3.

It is worth noting that some planets in this class have large masses and
one of the planets of HD 168443 is probably a low-mass brown dwarf rather
than a planet.

One consequence of the weaker gravitational interaction is the low sen-
sitivity of the published orbits to small variations. The orbits in this class
are probably worse than are those of the previous classes (since they involve
planets with long periods), but simulations always show stable motions.

Class Ib. Low-Eccentricity Near-Resonant Planet Pairs

This is a special class including systems with low-eccentricity planets in suc-
cessive orbits with small period ratio but with circumstances making the
gravitational interaction between the planets less important. No confirmed
extra-solar system of this kind is yet known around MS stars. 47 UMa will
be included here if forthcoming observations confirm that 47 UMa c indeed
exists and that the planets of this system are not tied to a MMR. We put
in this class the planets pairs of the pulsar PSR B1257+12. We may also
include here the planets of the two sub-systems of the Solar System. In the
planetary system of the pulsar PSR B1257+12 (see Table 7), as well as in
the inner Solar System, the orbits are close one to another, but the masses
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Table 5. Hierarchical planet pairs

Star/ Planet mass × sin i Period Period Semi-major Eccentricity
Star mass (mJup) (days) ratio axis (AU)

HD 168443(1) b 7.7 58.116
29.9

0.29 0.529

1.01M� c 16.9 1739.5 2.85 0.228

HD 74156(2) c 1.86 51.643
39.2

0.294 0.636

1.27M� b 6.17 2025 3.40 0.583

HD 11964(3) b 0.11 37.82
51.3

0.229 0.15

1.12M� c 0.70 1940 3.167 0.3

µAra(4) d 0.044 9.55
67.6

0.09 −
1.08M� b 1.67 645.5 1.50 0.20

55 Cnc(5) c (?) 0.217 43.93
103

0.24 0.44

1.03M� d 3.912 4517.4 5.257 0.33

HD 38529(6) b 0.78 14.309
152

0.129 0.29

1.39M� c 12.7 2174.3 3.68 0.36

(1) Ref: Udry et al. [68]
(2) Ref: Naef et al. [56]
(3) Ref: California & Carnegie web page (exoplanets.org)
(4) (= HD 160691) Refs: Santos et al [64], McCarthy et al. [50]
(5) Ref: McArthur et al. [49]
(6) Ref: Fischer et al. [25]

are relatively small. In the outer Solar System, the masses are larger, but the
distances between the planets are always large allowing this system to show
long-term stability notwithstanding the fact that the planets have low period
ratios and are not in MMR.

In this class, one characteristic is the presence of a large number of pairs
in near resonance. (But the sample is small and near-resonance may be just
a coincidence). The most conspicuous examples are the pair Jupiter-Saturn
with a period ratio ∼ 2.5 (5:2 MMR) (see [53]) and the two outer planets of
the pulsar PSR B1257 +12 with period ratio ∼ 1.5 (3:2 MMR). The closeness
of the pulsar outer planets to commensurability produces perturbations in
longitude (“great inequality”) large enough to be observed from Earth thus
allowing the very existence of the planets to be confirmed in a few years of
continuous observations ([62, 45]).

Table 6. Low-eccentricity Near-resonant Planet Pairs

Star/ Planet mass × sin i Period Period Semi-major Eccentricity
Star mass (mJup) (days) ratio axis (AU)

47 UMa(1) b 2.9 1079.2
2.64

2.1 0.05

1.03M� c (?) 1.1 2845.0 4.0 0

(1) Ref: Fischer et al. [25]
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Table 7. Planetary System of the pulsar PSR B1257+12(1)

Planet Mass Period Period Semi-major Eccentricity Inclination
(mEarth) (days) ratio axis (AU) (degrees) (2)

A 0.020(3) 25.262
2.63

0.19 0.

B 4.3 66.5419
1.47

0.36 0.0186 53

C 3.9 98.2114 0.46 0.0252 47

(1) Ref: Konacki and Wolszczan [36]. Adopted pulsar mass: 1.4M�
(2) over the tangent plane to the celestial sphere
(3) adopting the inclination i = 50◦

Table 8. Outer Solar System

Star Planet Mass Period Period Semi-major Eccentricity
(mJupiter) (years) ratio axis (AU)

Sun Jupiter 1.0 11.866
2.500

5.204 0.0489

Saturn 0.30 29.668
2.831

9.584 0.0571

Uranus 0.046 83.987
1.958

19.178 0.0468

Neptune 0.054 164.493 30.004 0.0112

4 Chaos

Chaos is a common feature in systems with many degrees of freedom and
is, nowadays, part of the standard knowledge in Dynamical Astronomy. A
superb introduction to the aspects of the phenomenon was recently given by
Contopoulos [14].

4.1 The Outer Solar System

The neighborhood of the outer Solar System planets is filled by mean-motion
resonances. The actual motion of these planets occur very near to two-planet
MMR giving raise to a dense set of three-planet resonances, which occurs
when the periods corresponding to two two-planet MMR form critical linear
combinations. Jupiter and Saturn lie very close to the 5:2 MMR, Uranus is
confined between the domains of the overlap of the 7:1 MMR with Jupiter
and the 2:1 MMR with Neptune in one side, and the 3:1 MMR with Saturn
in the other; finally, Neptune is close to the 2:1 resonance with Uranus.

The resonant structure of the Solar System was studied by Michtchenko
and Ferraz-Mello [52] by means of dynamical maps constructed in the neigh-
borhood of the four planets whose equations of motion were integrated using
the accurate Everhart’s RA-15 integrator [18]. The initial values of the semi-
major axis and eccentricity of one planet were uniformly distributed on a
rectangular grid covering the vicinity of the actual position of the planet,
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while the initial positions of the other planets were chosen to be the actual
ones at epoch JD2451100.5. The initial inclination and angular orbital ele-
ments of the chosen planet were fixed at their present values. The short-term
oscillations (of the order of the orbital periods) were eliminated by employing
a low-pass filtering procedure on-line with the numerical integration. The re-
sulting semi-major axes were used to construct dynamical maps as described
in the Appendix. The spectral number N was defined as the number of spec-
tral peaks above 5% of the largest peak. The counting is stopped at N = 100
and logN is plotted on the (a0,e0)-plane.

Uranus neighborhood

As an illustration, we present here the dynamical map of the neighborhood
of Uranus (Fig. 12). This neighborhood is dominated by three two-planet
resonances: 2:1 with Neptune, 3:1 with Saturn and 7:1 with Jupiter. There
are also several narrow bands of chaotic motion associated with three-planet
MMR (see Table 9). The small hatched domains in Fig. 12 are those in which
collisions (i.e. disrupting close approaches) occur in the time span of the
numerical integration (50 Myr).
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Fig. 12. Dynamical map of the neighborhood of Uranus. The main apparent MMR
are indicated on top of the figure by the letters a-h and identified in Table 9. The
mapped quantity is the spectral number N (see the Appendix). The star indicates
the actual position of Uranus
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Table 9. Main MMR in Uranus’ neighborhood

Position (fig12) MMR† Remarks (beat)

a J–S–4U beat of J–7U and S–3U
b 3J–10S+7U beat of 2(2J–5S) and J–7U
c U–2N
d J–7U
e 2J–6S+3U beat of 2J–5S and S–3U
f 2J–6S+3U beat of 2J–5S and 2(S–3U)
g S–3U
h 2J–3S+6U beat of 2J–5S and –2(S–3U)

† k1J ± k2S ± k3U ± k4N means the MMR k1nJ ± k2nS ± k3nU ± k4nN ≈ 0

1 8 . 6 1 8 . 8 1 9 . 0 1 9 . 2 1 9 . 4 1 9 .6 1 9 .8 2 0 .0 2 0 . 2
S E MI -MAJOR  AXI S  (AU )

0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

< e>

Fig. 13. Mean eccentricities over 50 Myr of solutions whose initial conditions are
in the domain a = 18.5 − 20.2 AU, e = 0 − 0.2. Each line correspond to a value of
the initial eccentricity, which was sampled at each ∆e = 0.02

It is interesting to compare this dynamical map with a plot showing the
amplitude of the perturbations of the motion for each initial condition in the
grid. Fig. 13 shows the average eccentricities over 50 million years for solutions
starting at each point of a grid similar to that used in Fig. 12, but with
eccentricities sampled at each ∆e = 0.02 to avoid a clumsy plot. This figures
shows that the S-3U MMR is the one where the perturbations in eccentricity
are the largest. If the initial eccentricity is larger than 0.15 the perturbation is
large and many solutions in this domain were bound to a catastrophic event
in less than 50 Myr (hatched areas in Fig. 12). In the neighborhood of the
U-2N MMR, the perturbations are also large but less important than in the
S-3U MMR. We may note that the more important perturbations accumulate
in the V-shaped border of the U-2N MMR resonance, while the perturbations
are very small in the central part of the resonance. This result is consistent
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with the known dynamics of the U-2N MMR, which is characterized by thin
chaotic regions along the seperatrices and almost regular motions far from
them ([10]; see Sect. 5).

4.2 The Angular Momentum Constraint

One characteristic of chaotic domains is that two orbits with neighbor initial
conditions may evolve in a completely different way. One common assumption
is that one solution may evolve to reach any point in the chaotic domain and
it is often true in the dynamics of asteroids. In that restricted case, the
disturbing planet acts as an infinite source of energy and angular momentum
and the asteroid may move in an almost arbitrary way in the chaotic domain
as long as a topological barrier does not constrain its motion. In the case of a
planetary system, the planets are themselves the only sources of energy and
angular momentum and the evolution may obey at the conservation laws of
these quantities. The domains of initial conditions shown in dynamical maps
do not correspond to solutions of equal energy or angular momentum.

Both conservation laws are important, but the angular momentum plays
a key role (see [39]). The z-component of the angular momentum of a system
of N planets is

Lz =
N∑

k=1

mknka
2
k

√
(1 − e2

k) cos ik. (21)

This equation is exact when Keplerian elements associated with Poincaré or
Jacobi canonical variables are used (see [23]), but it also holds when using
astrocentric (or barycentric) Keplerian elements with an error O(m2

k). The
angular momentum constrains the semi-major axes, eccentricities and incli-
nations of the planets of a system (The mean-motions nk are linked to the
semi-major axes through the third Kepler’s law).

In the case of almost coplanar planets, taking a reference plane close to
the planes of their motions, we have

Lz ≈
N∑

k=1

mknka
2
k

√
(1 − e2

k). (22)

The semi-major axes are inversely proportional to the energies of the planets
and the variation of the energy of one planet is the work done by the forces
disturbing its motion around the star. If no close approaches occur, the energy
variations compensate themselves to give an average variation close to zero.
This means that in absence of close approaches, the quantities ak in the above
equation may be regarded as constants. The other quantities in Eq. (22)
are the functions

√
(1 − e2

k) whose values vary monotonically in the interval
[0,1]. When the eccentricity of the planet increases,

√
(1 − e2

k) decreases.
Then, when the eccentricity of one planet increases, to keep Lz constant,
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Fig. 14. Variation of the eccentricities of the υ And planets

the eccentricity of at least one of the other planets may decrease. However,
they cannot decrease below zero, and this constrains the increasing of the
eccentricity of the planets. Since the Angular Momentum of the system does
not allow the planetary eccentricities to grow, close approaches are avoided,
and the system may survive for a long span of time. The most notorious
example in the outer solar system is the interaction between Jupiter and
Saturn. Simulations lasting almost 1 billion years have shown that a fictitious
outer solar system starting with the current eccentricities and inclinations
and in which Jupiter and Saturn are inside the chaotic domain of the MMR
2J− 5S evolves without dramatic eccentricity increases and close approaches
[52].

The e-e coupling due to the constant angular momentum is more easily
seen if we introduce, instead of L the so-called Angular Momentum Deficit:

A ≈
N∑

k=1

mknka
2
k (1 −

√
(1 − e2

k)). (23)

The Angular Momentum Deficit is related to the z-component of the Total
Angular Momentum through A =

∑N
k=1 mknka

2
k − Lz and is thus a con-

stant as long as the semi-major axes ak may be regarded as constants. If we
introduce the approximation 1 −

√
(1 − e2

k) ≈ 1
2e

2
k, Eq.(23) becomes

A ≈ 1
2

N∑
k=1

mknka
2
ke

2
k,

which is a weighted sum of squares. The e-e coupling is then a consequence
of the fact that if one of the terms in this sum (that is, one eccentricity)
increases, others must decrease to keep the sum unaltered. For instance, in
the case of two planets, if one eccentricity increases, the other decreases; in
addition, since one eccentricity cannot decrease below zero, the other cannot
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Fig. 15. Top: Surfaces of Section of the averaged Low-Eccentricity planetary
system in the neighborhood of the 2:1 resonance for two energy levels. Axes
x = eU cos ∆�, y = eU sin ∆�. Bottom: Dynamic power spectra of the solutions
shown in the surfaces of section parameterized by the value of x corresponding to
y = 0. Frequencies in yr−1 (see [10])

increase indefinitely, and if A is not large the eccentricities cannot grow to
reach values allowing a close approach of the two planets.

5 Transition from Secular to Resonant Dynamics

We summarize in this section some results of the study of the low-eccentricity
dynamics of the U–2N MMR by Callegari et al. [10] and show how the dy-
namics of a system of 2 planets evolves when it passes from outside to inside
the MMR.

Figure 15 shows two surfaces of section of planetary motion defined by
the condition θ1 = 2λN − λU − �U = 0 and represented on the plane (x =
eU cos∆�, y = eU sin∆�) with ∆� = �U − �N, for two different energy
levels.
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At the lower energy level, (Fig. 15, left) the system is outside the 2:1 MMR
and its dynamics is dominated by secular interactions and characterized by
two secular modes of motion known from the linear secular theories (see [58]).
There are two periodic solutions: one where ∆� = 0 and another one where
∆� = π. In the surfaces of section, these solutions appear as fixed points.
These periodic orbits and the domains around them are indicated as Mode I
and Mode II. The Mode I of motion is always located on the right-hand side
of the section, while Mode II is located on the left-hand side.

The smoothed curves around the fixed points are quasi-periodic solutions.
Around Mode I, the angle ∆� oscillates about 0, while around Mode II,

∆� oscillates about π; in both cases, the eccentricities of the planets vary
regularly around their values in the periodic orbits. Between the two cases,
the angle ∆� is in retrograde circulation, and the motion is a composition of
the two main oscillations. It can be shown that, in this near resonance zone,
the critical angles

θ1 = 2λN − λU −�U

θ2 = 2λN − λU −�N

are in circulation. No infinite-period separatrix exists between the solutions
around Mode I and Mode II and they form just one continuous family of
solutions.

This fact is clearly shown in the dynamic power spectrum given at the
bottom left frame of Fig. 15 where only two fundamental frequencies and
a few harmonics appear. The lower line (at ∼ 3 × 10−6 yr−1) corresponds
to one of the fundamental frequencies. We can see that the line shows a
discontinuity near the fixed points, indicating that the amplitude associated
to the secular frequency tend to zero in these solutions. The secular period
is ∼ 400, 000 years around Mode I and ∼ 300, 000 years around Mode II.
The second fundamental frequency can also be seen in the dynamic power
spectrum (at ∼ 10−4 yr−1). It is the frequency associated with the circulation
of the critical angles (transversal to the surface of section).

At the higher energy level, (Fig. 15 right), the resonance 2/1 is already
visible. The surface of section seems to be the same as the previous one, but
the dynamic power spectrum shows that an important difference exists. The
two vertical broad lines seen in the dynamic power spectrum indicate that
the curve labeled by S1 in the surface of section is indeed a separatrix (even
if it does not show any visible feature of a separatrix). The domain inside
S1 corresponds to a new regime of motion (called Regime III by Callegari et
al. [10]) in which the critical angles θ1 and θ2 oscillate (librate) about 0 and
π, respectively. Their difference ∆� librates around π.

These surfaces of section show why the evolution of a system of two
low-eccentricity planets towards resonance is always driven to the condition
known as resonance corotation, with anti-aligned periastra (see Sect. 6).
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The study of the surfaces of section with energies intermediary between
the two shown in Fig. 15 shows that the separatrix S1 emanates from the
very position of the periodic orbit labeled Mode II in the secular dynamics.
It then grows to encompass the whole domain of solutions about ∆� = π and
even large amplitude oscillations around ∆� = 0. For higher energies, the
domain inside S1 shows the rise of centers and saddles corresponding to true
secular resonances and to new regimes of motion inside the MMR domain
(Fig. 16). For a detailed discussion, see [10].
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Fig. 16. Same as Fig. 15 for a higher energy level showing a secular resonance
inside the MMR (see [10])

Secular Resonance

The denomination “secular resonance” is currently used with two different
meanings and this is a nuisance. We will try to set the strong dynamical
difference of the two situations in which this name is used.

Generally, it is said that a secular resonance occurs when the motion of
the periastron (perihelion) or of the node is trapped by a forced frequency
(for instance by another periastron or node). For instance, an asteroid is said
to be in secular resonance when the perihelion of its orbit oscillates about
the perihelion of Jupiter. The controversy comes from the fact that from the
dynamical point of view, this oscillation is not a resonance at all. Looking
at the equations of this oscillation, we see that the main perturbations of
the eccentricity and perihelion are given by two periodic terms having as
frequencies, the forced frequency of the motion of Jupiter’s perihelion and a
proper frequency associated with the asteroid’s perihelion. The amplitude of
the forced oscillation is a given function of the masses and elements while
the amplitude of the proper oscillation is an arbitrary constant depending
only on the initial conditions. In asteroids whose initial conditions are such
that the amplitude of the proper oscillation is smaller than the amplitude
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of the forced oscillation, the forced oscillation dominates; consequently, in a
reference system rotating with the orbit of Jupiter, the motion of the peri-
helion of the asteroid is an oscillation. At variance, if the amplitude of the
proper oscillation is larger than the amplitude of the forced oscillation, the
perihelion of the asteroid circulates. In the first case, it is often said that
a “secular resonance” occurs. However, from the dynamical point of view
there are no differences between the two cases depicted. One solution may
pass from one case to another by continuously varying the amplitude of the
proper oscillation.

In the case of two planets, the phenomenon is the same. It was shown in
the previous section that outside the MMR, the dynamics is characterized by
two periodic solutions: the two centers seen in the surface of section. These
periodic orbits and the domains around them are indicated as Mode I and
Mode II. In Mode II, ∆� always oscillates about π; In Mode I, we see both:
solutions in which the angle ∆� oscillates about 0 and solutions in which the
angle ∆� is in circulation. In the latter case, the torus section enclosing the
Mode I center also encloses the origin and the angle ∆� reaches all values
between 0 and 2π.

From the dynamical or topological point of view, to have a “resonance”
would mean to have the apsidal proper frequency vanishing. The dynamic
power spectrum of Fig. 15 (bottom) shows that this does not occur. The ap-
sidal proper frequency is always different of zero and the frequency variation
from Mode II oscillations to circulations and to Mode I oscillations (from
right to left in the surface of section of Fig. 15 (top)) is smooth (continuous).

Nevertheless, situations exist in which a true secular resonance exists.
In the asteroid case, true secular resonances were the subject of a great

deal of results in the past 25 years (for a thorough discussion see [55]). In the
planetary case, examples of true secular resonance were given [52, 54, 10]. The
example given by Callegari et al. [10] is of a true secular resonance inside the
U-2N MMR. It is shown in Fig. 16. The main qualitative difference between
this figure and Fig. 15 (right) is the appearance inside the MMR domain
(inside the separatrix S1), of a second separatrix (S2). The dynamic power
spectrum shows that the lower frequency becomes equal to zero at the two
points corresponding to the intersections of S2 with the x-axis. The direction
of the phase flow inside the separatrix S2 is inverted with respect to what
it is outside that separatrix. A true resonance happens (with one proper
frequency passing through zero). The dynamic power spectrum also shows
that the solutions in the immediate neighborhood of S2 are chaotic.

6 Apsidal Corotation Resonances (ACR)

The surfaces of section in Fig. 15 show that the anti-aligned periastra of the
solutions in Mode II of the 2:1 MMR are preserved in the evolution of a
system of two low-eccentricity planets towards resonance (notwithstanding
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the transition of the critical angles from circulation to libration). This is a
situation completely different of that occurring in the capture of a particle
into a resonance with one planet (or satellite). In the latter case, the capture
happens when the sidereal periods of particle and planet (or satellite) become
approximately commensurable, the critical angle5

θ1 = (p + q)λ′ − pλ− q�

is trapped in the neighborhood of 0 or π, but the periastron of the particle
orbit (whose longitude is �) continues to rotate. That is, ∆� = �−�′ varies
monotonically. However, for some well defined values of the eccentricity of
the planet (satellite) orbit, it happens that not only the angle θ1 but also the
angle

θ2 = (p + q)λ′ − pλ− q�′

is trapped into a resonance as well. Consequently ∆� is no longer circulating,
but librating [20]. This phenomenon is known as “corotation resonance” in
disc and ring dynamics (motion accompanying the resonance pattern speed),
extending that denomination to beyond the narrow 1:1 resonance case of the
epicyclical orbits theory. The characterization of corotation resonance is given
by Greenberg and Brahic [29]: “resonance that depends on the eccentricity
of the perturbing satellite, rather than on the eccentricity of the perturbed
particle”, means that we have a corotation resonance when θ2 is in libration.
However, in the restricted problem, θ2 cannot be in libration if θ1 is circu-
lating. Therefore, the simultaneous libration of ∆� and θ1 is synonymous of
corotation resonance.

The resonant planar planetary three-body problem (averaged over short-
period terms) is a two-degrees of freedom system (see [3]). A stationary so-
lution of it is a solution for which the angles

θ1 = (p + q)λ2 − pλ1 − q�1

θ2 = (p + q)λ2 − pλ1 − q�2. (24)

and their conjugated momenta I1, I2 remain constant in time. It is important
to notice that the stationary solutions of the averaged model correspond to
periodic orbits of the non-averaged model. In general, corotation resonances
are periodic solutions of the averaged equations (quasi-periodic solutions of
the non-averaged equations): they are oscillations around the fixed point of
the averaged system. One such solution with finite amplitude oscillations will
be generically refereed to as “Apsidal Corotation Resonance” (ACR).

Although corotation resonances have gained certain notoriety in exoplan-
etary dynamics, they are not new and can be found in our own Solar System.
It has long been known that the Io-Europa pair is trapped in a 2:1 MMR and
5 the unprimed quantities refer to the trapped particle and the primed ones to the

trapping planet (or satellite).
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Fig. 17. Symmetric stationary solutions in the 2:1 MMR. Left: (0, π)-ACR − The
conjunction occurs with the inner planet in the periastron and the outer planet
in the apastron (|∆�| = 180◦); Right: (0, 0)-ACR − The conjunction occurs with
both planets in the periastron (∆� = 0◦).

is in corotation resonance (see [19]). Both θ1 and θ2, and consequently ∆�,
oscillate (with very small amplitude) around fixed values.

The exact ACR is defined, in this case, by θ1 = 0 and ∆� = π. This
case is referred to as a (0, π)-ACR, a denomination more accurate than just
saying that the apsides are anti-aligned.

GJ 876, the first extra-solar resonant planetary system ever discovered,
also exhibits corotation resonance, although in its case the angular variables
oscillate around θ1 = 0 and ∆� = 0 (see [41]).

This case is referred to as a (0, 0)-ACR (the apsides are aligned). The
other extra-solar system discovered in the same commensurability (HD82943)
also shows corotation resonance (see [24]). These examples seem to show that
ACR constitutes a strong stabilizing mechanism for high-eccentricity resonant
planets orbiting in nearby orbits.

Another important class of corotation resonance exists, in the 2:1 MMR,
in which the apsidal lines are trapped in an asymmetric way, where the equi-
librium values of the angles are not equal to zero or π, as shown in Fig. 18
[21, 42, 22, 3]. These “asymmetric ACR” were found in both the 2:1 and
3:1 MMR and the published orbits of the inner planets of 55 Cnc seem to
correspond to such an asymmetric configuration [3, 71].

The diversity of apsidal corotations does not stop here. Numerical studies
of the system HD82943 [31, 33] have shown a new type of stationary solutions
at very high eccentricities. Although symmetric, they correspond to equilib-
rium values θ1 = π, ∆� = π. We have called them (π, π)-ACR. The orbital
elements initially published for HD82943 (Geneva planet search web page,
July 31th, 2002) seemed to correspond to such a configuration. In that case,
the conjunction occurs with the inner planet in the apastron and the outer
planet in the periastron. It is worth emphasizing that the apastron of the
inner planet is more distant from the star than the periastron of the outer
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Fig. 18. Asymmetric stationary solutions in the 2:1 MMR. Left: Stationary solution
with |∆�| = 84◦, e1 = 0.286 and e2 = 0.3. Right: Stationary solution with |∆�| =
104◦, e1 = 0.17 and e2 = 0.38. The conjunctions occur in a position between the
two periastra

 conj unction l ine
Π                                        Π      1                                            2

Fig. 19. Symmetric stationary solutions in the 2:1 MMR with e1 = e2 = 0.4:
(π, π)-ACR − The conjunction occurs with the inner planet in the apastron and
the outer planet in the periastron (|∆�| = 180◦)

planet. Then, the orbits intersect themselves and, at conjunction, the inner
planet is further away from the star than the outer planet. Lee [44] used
numerical simulations with differential migration to map the extent of this
new family finding that stable solutions are located beyond the line corre-
sponding to two colliding anti-aligned orbits: a1(1 + e1) = a2(1 − e2). It is
obvious that solutions close to this line can only be stable if the masses of
the planets are very small and that the true limit of the stable (π, π)-ACR
should be a function of the planet masses. The used model is not valid if the
two planets come very close one to another, the minimal distance allowed
being proportional to the cube root of the planet masses (see [26]).

Systematic searches using averaged analytical models and numerical sim-
ulations with adiabatic migration, [3, 22, 44, 4] made it possible to map the
domains of existence of each type of ACR in the (e1, e2)−plane, in the 2:1
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Fig. 20. Domains of existence of the 2:1 MMR stationary solutions, in the
(e1, e2)−plane. The domains of existence of the main ACR are shown in light and
dark gray. The domain of existence of the (π, π)-ACR is not colored since it overlaps
with the others. The broken line is the planet collision limit for (π, π) stationary
solutions. The lower limit of the domain of existence of (π, π)-ACR for real planets,
is situated somewhere above that line

and 3:1 MMR. The main results for the 2:1 resonance are shown in Fig. 20.
It is worth noting that the domain of existence of the (π, π)-ACR overlaps
with the domains of existence of apsidal corotations of other types. The figure
also shows the planet collision limit for (π, π) stationary solutions. The lower
limit of the domain of existence of these solutions, for real planets, depends
on their masses and is situated somewhere above that line.

Stationary solutions are equilibrium points of the averaged equations [3,
4]. It can be easily shown that, on a given resonance, these solutions depend
almost only on the ratio of the masses of the two planets [23]. They depend
only weakly on the actual masses of the planets as long as these masses are
not large enough to impair the stability of the solution. For example, if both
eccentricities are smaller than 0.3, the given solutions are stable, provided
the masses of the planets are smaller than 1− 2 percent of the star mass [3].
In the domain of the (π, π)-ACR, this limit may be more stringent, mainly in
the neighborhood of the inner boundary of the domain because this boundary
corresponds to a true collision of the two planets.

Theoretical models and numerical simulations have shown that the sta-
tionary solutions inside each family are linked by isopleths of equal mass ratio
m2/m1. In Fig. 21 every line corresponds to a well-defined mass ratio and a
given two-planet system may exhibit only those types of apsidal corotation
whose domains of existence are crossed by the corresponding isopleth.

For instance, if in a 2:1 resonant system the mass of the outer planet
is significantly larger than the mass of the inner planet (m2/m1 >> 1), all
possible ACR are symmetric.

Solutions found for given values of the six-parameter set
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Fig. 21. Stationary solutions in the 2:1 MMR: Isopleths m2/m1 = const.

(m2/m1, α, e1, e2, θ1,∆�)

are valid for any exoplanetary system with these parameters, independent of
their proximity to the star or of the individual planet masses.

7 Planetary Migration

ACR is a necessary condition for the survival of massive planets in nearby
high-eccentricity orbits. The fact that several extra-solar planetary systems
of this kind exist raises some questions about their origin: Were the planets
formed in MMR? Or did they evolve towards a MMR?

In the outer Solar System, the existence of several pairs of resonant satel-
lites is explained by aeons of smooth variation of their semi-major axes due
to tidal interactions: the current configuration is due to a “migration” of pri-
mordial non-resonant orbits towards a commensurability of periods allowing
the system to be trapped into a MMR. After the trapping, the satellites re-
mained locked in the stable MMR. If the agent responsible for the migration
continues to act, the orbits continue to migrate but in such a way that the
resonance relationship is preserved. To say that a similar scenario occurred
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in extrasolar planetary systems depends on two things: (i) to find plausible
driving mechanisms for planetary migration, compatible with the formation
process of the system, and (ii) to prove that the orbital evolution allows a
capture into ACR.

It seems that the most probable migration process stems from the inter-
action between the planets and the gaseous primordial disk. Hydrodynamic
simulations ([34, 35, 65, 57] and others) have shown that an adequate choice of
the parameters of the gaseous disk can favor both, a large-scale inward migra-
tion and a MMR trapping. Even though there are significant uncertainties in
this model, particularly with respect to the timescale of this process and the
stopping mechanism for the planets at their present semi-major axes, in gen-
eral this scenario seems to work very well. Fundamentally, it can explain the
current orbits of resonant exoplanets starting from primordial quasi-circular
orbits far from the star.

However, not all ACR can result from this scenario. In the case of the 2:1
MMR, Fig. 21 shows that the different families of stationary solutions can be
of two distinct types:

• Type I. Families that can be obtained through analytical continuation
from low-eccentricity orbits with e1 ∼ 0 and e2 ∼ 0. They are the (0, π),
(0, 0) and the asymmetric ACR;

• Type II. Families that do not appear to be reachable from initial low-
eccentricity orbits through a smooth variation. They include the (π, π)-
ACR.

From the point of view of planetary migration, only Type I corotation
resonances can be attained through a smooth orbital evolution starting from
quasi-circular orbits. Thus, if the planetary migration hypothesis is correct,
and if all exoplanets entered the mean-motion resonance in quasi-circular
orbits, then we should only expect to observe Type I solutions in real systems.
The extra-solar planetary systems presently confirmed in the 2/1 resonance:
GJ 876 and HD82843 show Type I ACR. In the 3/1 resonance, the published
orbit of 55 Cnc also corresponds to a Type I ACR ([3], [71]).

This is not the case of the (π, π)-ACR, which do not appear to be reachable
via a smooth variation of the parameters from a path starting from the low-
eccentricity domains. Even in the domain where (0, 0) and (π, π) overlap
(in the e1, e2-plane), it does not seem possible to have a smooth change
of one into another. In fact, there is only one system for which a Type II
ACR has been proposed: µ Ara (=HD 160691) [6]. However, the more recent
observations have shown that the second planet has a larger orbital period [28,
49]. Therefore, even if in a 2:1 MMR, it would be unlikely that this system
shows a (π, π)-ACR, since no adiabatic evolutionary process starting from
low eccentricity orbits able to drive the system to such a situation is known.
It could only appear in the event of an impulse perturbation able to impart
a huge modification in one planet’s orbit.
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7.1 Capture into Corotation Resonance

In this section, we present the results of a series of numerical simulations of
the dynamical evolution of fictitious pairs of planets under the action of a
non-conservative perturbation that adds angular momentum and energy to
the orbit of the innermost planet. The planets are small (some 10−5 of the
central body mass) and the mass ratio is m2/m1 = 0.538 [22].

The initial distances of the planets to the star are just behind the 2:1
resonance: α = a1/a2 = 0.612. When the semi-major axis of m1 increases,
a1 increases and the mean-motion resonance (α = 0.63) between m1 and m2

is reached. Capture then can take place. The probability of capture depends
on the rate of variation of a1: if the rate is high, the orbit crosses the res-
onance without capture, one phenomenon very well studied in the case of
one massless particle. Other factors influencing the probability of capture are
the orbital eccentricities: Capture is more probable when orbital eccentric-
ities are small [16, 27]. In our calculations, initial eccentricities were lower
than 0.001 and the physical parameters were adjusted to have an adiabatic
approximation to resonance. Fig. 22 shows the evolution of the semi-major
axes.

In this simulation, the system evolves with the innermost orbit receding
from the central body (instead of having the outermost orbit approaching
to the planet as in the case of interaction with an outer gas disk) up to the
moment where the system is captured into a MMR, a2 is almost constant.
When the 2:1 MMR is reached, the system is trapped by the resonance.
As known since Laplace, after the capture, m1 continuously transfers one
fraction of the energy (and angular momentum) that it is getting from the
non-conservative source to m2, so that a2 also increases. One may note in
Fig. 22 that, after the capture into the resonance, a1 increases at a smaller
pace than before the capture. The increase of the semi-major axes is such
that the ratio a1/a2 remains constant.

T I ME
5 .5

6 .0

6 .5

7 .0

SE
M

I-
M

AJ
O

R
 A

XI
S

a1

T I ME
9.2

9 .6

1 0 .0

1 0 .4

a2

Fig. 22. Evolution of the semi-major axes before and after the capture into res-
onance. Triangles mark the moment of the capture. Dashed lines extrapolate the
evolution before the capture and show the change in slope of the evolution lines
(Arbitrary units)
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Fig. 23. Variation of the eccentricities, critical angles (θi) and ∆� in the same
time interval as Fig. 22. The vertical dotted lines show the moment of the resonance
capture. ∆� is only shown in the final part since it does not differ significantly from
θ2 in the time interval between the capture into resonance and the bifurcation

Figure 23 shows the variation of the eccentricities, critical angles θ1, θ2

and ∆� in the same time interval as the previous figures. They show that,
after capture, the two critical angles become trapped in the neighborhood
of 0 and π, respectively and, consequently, the angle ∆� is trapped in the
neighborhood of π. The capture into a (0, π)-ACR (anti-aligned periastra) is
thus simultaneous with the capture into the MMR.

7.2 Evolution after Capture

Figure 23 also shows that, after some time, θ2 jumps from π to 0 and the
(0, π)-ACR becomes a (0, 0)-ACR (with aligned periastra). This change is
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not the result of a discontinuous process. The change happens when the
eccentricity e2 is zero. Thus, we may describe the process by a momentary
circularization of the orbit such that, when it becomes an ellipse again, the
periastron is not at the same side as before. The large transients shown by
the variation of the angle θ2 are just due to the sensitivity of this angle to
small changes when e2 ∼ 0.

The (0, 0)-ACR also does not last forever. Fig. 23 (bottom) shows that the
angles depart from zero and the ACR becomes asymmetric. At this moment,
there is a discontinuity in the rates of variation of the eccentricities (the
elbows seen in the curves ei(t)).

It is interesting to note that this evolution has a counterpart in the study
of periodic orbits of the 3-body problem. The study of symmetric periodic
solutions shows the existence of two separated stable branches with aligned
periastra; these two branches are tied with continuity by a branch of unsta-
ble periodic orbits [30]. In Fig. 21, this branch would appear along the line
separating symmetric and asymmetric ACR as a shortcut tying the initial
and final segments of stable (0, 0)-ACR.

7.3 The 3:1 MMR

The previous sections considered almost only the 2:1 MMR. This choice is
justified by the fact that the best-known resonant pairs are in 2:1 MMR.
However, the innermost pair of 55 Cnc (if the existence of planet 55 Cnc c
is confirmed) is in 3:1 resonance. The available results on this resonance [22]
show two main ACR families: One family of symmetric (π, π)-ACR, situated
below e2 ∼ 0.11 (i.e. below the elbows line in Fig. 24), and a family of
asymmetric ACR for e2 above this limit.6

The mass ratios m2/m1 of the solutions shown in Fig. 24 are in the range
0.1− 1.2. This is a new fact in what concerns asymmetric ACR. Asymmetric
librations are known to happen in the asteroids in p:1 resonance with Jupiter
only when the asteroid is external to the orbit of Jupiter [2]. With the con-
vention that m1,m2 are the mass of the bodies, respectively, in the inner and
outer orbits, this means m2/m1 < 1. In the 2:1 MMR studied in Sect. 6, this
limit was slightly above 1 (∼ 1.03), repeating more or less the result known
for asteroids. However, in the 3:1 resonance, at least in the range studied, the
behavior is independent of the mass ratio, up to the limit corresponding to a
curve whose elbow occurs for e1 ∼ 1. Beyond this case, only symmetric ACR
are expected to exist what would be consistent with the fact that we do not
know asymmetric librations in the restricted case, when the asteroid orbit is
internal to the orbit of Jupiter.
6 cf. Eqs. (24), in this MMR we have θi = 3λ2−λ1−2�i (The angles σi = θi/2 are

also often used). (π, π)-ACR means that the stationary solutions corresponding
to the lower part of Fig. 24 are such that θ1 = π and ∆� = π.
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Fig. 24. ACR families in the 3:1 MMR. The line formed by the elbows of the
curves, at e2 ∼ 0.11, separates the symmetric (π, π)-ACR (below) and asymmetric
ACR (above). The mass ratios m2/m1 are in the range 0.11 − 1.22 (from left to
right)

Figure 24 was obtained through a simulation of planets suffering an adi-
abatic migration. As in the case of the 2:1 MMR, as soon as the system is
captured into the MMR, it is in corotation resonance and ∆� reaches 180◦.
The system remains in a (π, π)-ACR up to reach a bifurcation where the
corotation resonance becomes asymmetric. Stationary solutions with aligned
periastra were not found, although, in the very beginning of the simulations,
∆� appeared temporarily oscillating about 0◦ with a large amplitude.

Figure 25 shows the evolution of the angle ∆� during the migration, for
the same solutions shown in Fig. 24. It is worth stressing the fact that for all
of them the change from symmetric to asymmetric ACR occurs at almost the
same value of e2. It shows a pitchfork bifurcation. The system evolves in a
stable (π, π)-ACR, with increasing e2, up to reach the critical value. At that
point, the corotation resonance becomes asymmetric with equal probability
for the two possible branches (∆� less or greater than 180◦). We may guess
that for e2 >∼ 0.11 symmetric stationary solutions continue to exist, but
are unstable. In the 2:1 MMR, if the migration is continued for long time,
the two branches reunite in a new bifurcation point and become symmetric
again. This was not observed in the 3:1 MMR notwithstanding the fact that
in one of the simulations e2 was pushed up to values larger than 0.5.

8 Conclusion

Up to a very recent date, the dynamics of planetary systems was restricted
to study the solar system: one system of 8 planets and several systems of
inner satellites. These systems were characterized by almost coplanar and
generally low-eccentricity orbits. In addition, in the case of inner planetary
satellites, the dominant perturbation was due to the oblateness of the central
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Fig. 25. Variation of ∆� in the same solutions shown in Fig. 24, showing a pitch-
fork bifurcation at e2 ∼ 0.11

body. The discovery of planets around the PSR B1257+12 added one new
example of planetary system, but it was very similar to the solar one: low
eccentricities and near resonant orbits (see Sect. 3). The discovery of a dozen
multi-planet systems around main-sequence stars opened a new front in plan-
etary dynamics. The new planetary systems, even if they are yet only a few,
already present an unexpected diversity. In the discussion done in Sect. 3, we
have introduced three main classes founded on the strength of the gravita-
tional interaction between the planets. As a guiding parameter, we have used
the period ratio of their motions. For low period ratios (say, P2/P1 < 3), we
had to consider two sub-classes: Class Ia with planet pairs in mean-motion
resonance and class Ib with planets in low-eccentricity orbits. One additional
pair in class Ia, HD 202206, has a larger period ratio (∼ 5) but the relatively
large P2/P1 is compensated by the large masses of the planets (one of them
is a low-mass brown-dwarf). In the next classes, the period ratios are larger.
In class II, we included planet pairs showing a significant secular dynamics
and, in class III, those planets so away one to another that the gravitational
interaction only introduces long-period perturbations that cannot impair the
stability of the system.

Other conclusions included in this review concern the orbit determina-
tion from radial velocity data. The basic equations of the process were es-
tablished one century ago to study spectroscopic binary stars. However, their
application to exoplanets needs some precautions. One of them is the careful
reduction to the barycenter of the solar system of both radial velocities and
timings, because of the much low radial velocity variation due to exoplanets.
The other concerns the critical dependence of the results on the adopted star
mass: the inaccuracy in the star mass is almost reproduced in the planet
masses (one factor almost never considered when transforming the raw data
into elements and planet masses). Even N-body fits will leave some gauge
factor involving the inclinations and the star mass undetermined.
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The sections on chaos and mean-motion resonances review mostly already
published results. However, some results on the several kinds of apsidal coro-
tation resonance, in the 2:1 MMR [44, 4] deserve some comments. These
results are summed up in Figs. 20 and 21. The first shows the domains
of existence of stable ACR in the 2:1 MMR and the second the isopleths
m2/m1 = const. From these two figures one may see that symmetric (0, 0),
(0, π) and asymmetric ACR may be obtained by continuous transformation
of almost circular motions after they are trapped into the 2:1 resonance. At
variance, symmetric (π, π) ACR cannot be obtained in such a way and we
should not expect this kind of ACR to be found among extrasolar systems if
the evolutionary processes are adiabatic.

A Appendix

A.1 FFT Techniques to Study Chaos

A review of the many techniques used to map chaos is found in Contopoulos
([14]; Sect. 2.10). We do not review the whole set of techniques here, but
just explain the ones used in Sect. 4. Each technique has its own virtues and
limitations and often their combination is convenient to get a better under-
standing of the dynamics of one system. Their common shortcoming is the
nonexistence of an exact correlation between their results and the macro-
scopic instability of the motion. It is our understanding that it is impossible
to reduce the qualitative analysis of a planetary system to the blind applica-
tion of one particular map technique.

The spectral analysis method used in Sect. 4 to detect the chaotic do-
mains in a planetary system is based on the well-known features of power
spectra [61]. It involves two main steps. The first is the numerical integration
of the chosen model, with on-line filtering of the short-periodic terms. The
choice of the model requires a careful previous analysis of the system, since
computing time in the construction of dynamical maps is large. The applica-
tion of the digital filtering procedure is an essential step in the construction
of dynamical maps. The typical output of a long numerical integration con-
sists of time series of osculating orbital elements that include both short- and
long-periodic terms. Since we are interested only in the long-term features of
the system behavior, the information about the short-term oscillations is un-
necessary. Moreover, these short-period terms generate too large data output
and make the identification of the long-term oscillations inefficient. For this
reason, the time series of the planets osculating elements should be smoothed
by digital filtering, to remove the short-period oscillations (those of the order
of the orbital periods). The filtering procedure should be implemented on-line
with the numerical integration, as described in detail in [51].

The second step of the technique is the spectral analysis of the output of
the numerical integrations. The series giving the variation of chosen planetary
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orbital elements are Fourier-transformed using a standard FFT algorithm.
The Fourier transforms of the output allow one to distinguish between regular
and chaotic motion.

Regular orbits

Regular motions are conditionally periodic and any orbital element ele(t)
depends on time as a function:

ele(t) =
∑
k

Ak exp(2πikf t) (25)

where f is a frequency vector whose components are the fundamental frequen-
cies of motion and k ∈ ZN . When the independent frequencies are constant
in time, the spectral decomposition of the motion may be obtained from its
Fourier transform.

For a smooth function ele(t), the amplitudes Ak decrease rapidly with
|k|, so that the sum in Eq. (25) is dominated by a few terms. Therefore, the
spectrum of regular motion is characterized by a countable (and generally
small) number of frequency components. It consists of the lines associated
with the independent frequencies, whose number is equal to the number of
degrees of freedom of the dynamical system, as well as those corresponding to
higher harmonics and to linear combinations of the independent frequencies.
The half-width of the each line is of the order of ∆f = 1/T , where T is the
time span of the integration. T defines the transforms resolution: the longer
the time T , the smaller is ∆f , and the finer are the details in the Fourier
spectrum that can be distinguished. For sufficient large T , each spectral peak
may be approximated by a Dirac δ-function.

We illustrate a power spectrum of regular motion in the left panel of
Fig. 26, which shows the spectrum of the semi-major axis of a regular resonant
asteroid orbit obtained with the current initial configuration of the outer
Solar System. In this example, the number of significant lines in the power
spectrum is equal to 3.

Chaotic orbits

Chaotic motions are no longer conditionally periodic and the fundamental
frequencies of the system vary in time. The Fourier transform of the orbital
elements is not a sum of Dirac δ-functions: the power spectrum of chaotic
motion is not discrete, showing broadband components. If the fundamental
frequencies variations are enough large and rapid to allow a diffusion over
the chosen time span T to occur, the power spectrum yields a large quantity
of peaks. If the variation of the main frequencies is large and fast enough to
be detected on the chosen time span T , the power spectrum yields a large
amount of spectral peaks.

We illustrate a power spectrum of a chaotic motion in the right panel of
Fig. 26, which shows the spectrum of the semi-major axis of the same asteroid
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Fig. 26. Left: Power spectrum of the semi-major axis of a regular orbit. Right:
Power spectrum of the semi-major axis of a chaotic orbit. In each case, N is the
associated spectral number

as before when Saturn’s semi-major axis is incremented by 0.03 AU to put the
Jupiter-Saturn system inside the domain of the 5:2 mean-motions resonance.
The number of significant lines in the power spectrum is very large.

A.2 The Spectral Number

In each power spectrum, we can determine the number of peaks that are
above an arbitrarily defined “noise” level. The number thus obtained is called
spectral number. In other words, the spectral number N is the number of
significant peaks in the power spectrum of the chosen variable. In general,
we consider in this reckoning those peaks with amplitude larger than 5% of
the largest peak amplitude. To the case shown in the left panel of Fig.. 26,
we associate the spectral number N = 3, while to the case shown in the
right panel, where the number of peaks is so large that an exact reckoning
is meaningless, we assign the value of an arbitrary upper limit. (In the cases
studied in this paper, we have used N = 100.)

The spectral number N can be used to qualify the chaoticity of the system
in the following way: small values of N correspond to regular motion, large
values of N indicate the onset of chaos. It should be noted, however, that an
orbit classified as regular can appear as chaotic if a larger time span is used
in the integrations. Indeed, if the diffusion rate of the main frequencies is
below the Fourier Transform resolution (defined by the time span), the spec-
tral analysis methods are unable to detect chaos. The total integration time
should be chosen large enough to allow one to distinguish chaos generated
by mean motion resonances. Higher order resonances should appear in the
dynamical map just by extending the integration time.

A.3 Dynamical Maps

Dynamical maps allowing chaotic domains to be identified are useful tools
in the study of the stability of a planetary system. The dynamical maps
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shown in this paper map the spectral numbers N . Once N is determined for
all initial conditions on a grid, we plot it on the plane of initial conditions
using a gray level scale that varies (logarithmically) from white (N = 1) to
black (N maximum). Figure 27 shows the dynamical map of the well-known
Taylor-Chirikov standard map

xi+1 = xi + ε sin(xi + yi) (mod 2π)
yi+1 = xi + yi (mod 2π)

for ε = −1.3, on a grid of 401 × 401 initial conditions.
Since large values of N indicate the onset of chaos, the gray tones indicate

degrees of stochasticity of solutions with initial conditions starting at the map
points: lighter regions correspond to regular motion, darker tones indicate
chaotic motion (see the discussion in next paragraph). One may appreciate
the finesse of details shown by the dynamical map inside and around the
main regularity islands of the map.

A.4 Dynamic Power Spectrum

Power spectra, as shown in Fig. 26, are plots of the amplitude of the Fourier
Transform against frequency. In order to see how the spectra change when

N= 10 0

N= 10

N= 1

Fig. 27. Dynamical Map of the standard map for ε = −1.3 on a grid of 401 × 401
initial conditions. For each initial condition, the degree of chaoticity is given by the
spectral number using a uniform logarithmic scale
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initial conditions vary, we should plot and compare a large number of spectra.
The joint representation of the results thus obtained is cumbersome. In some
analyses done in this paper, we have adopted a dynamic power spectrum
(or Frequency map) obtained by marking the points where the frequency is
larger than a chosen limit above noise level in a plane whose axes are one
parameter describing a family of solutions (as abscissas) and the frequency
of the peaks. For instance, Fig. 28 shows the dynamic power spectrum of a
set of solutions of the Taylor-Chirikov standard map with initial condition
y = 0 (the line shown in the map section in the upper part of Fig. 28).
The family is parameterized by the initial x. Obviously, one chaotic solution
has a huge number of significant amplitude peaks and appear in the dynamic
power spectrum as a dark vertical line, and a chaotic region as a dark vertical
band. The periodic orbit inside an island appears as one point at the ordinate
corresponding to the periodic orbit frequency. Neighbor solutions still show
only this frequency but as the initial condition goes away from this value,
new frequencies appear: the arcs at several levels seen around x = −2.4.
The selected island is a thin one and the transition to chaos is abrupt. A
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Fig. 28. Dynamic power spectrum of the solutions of the standard map. Each
feature in the spectrum corresponds to the initial condition with the same abscissa
on the line y = 0 (shown by a horizontal line on the map section in top of the
figure). The abscissas in the dynamic power spectrum and in the dynamical map
section are the same.
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more continuous picture is seen at the left of x = −2.82 where the number
of points increases continuously up to reach the maximum at the border
of the chaotic region. Another interesting feature may be seen at x = −1.22
(which corresponds to a saddle point in the standard map). One dark vertical
segment is shown in this position and we may see the confluence of many
lines showing the increasing number of frequencies whose amplitude becomes
larger than the noise level as the saddle point is approached. The remaining
parts are repetitions of these basic behaviors.

In dynamic power spectra, the lines have the same behavior found in fre-
quency analysis: frequencies remain almost constant inside resonance islands,
have a vertical displacement when crossing a saddle point and become erratic
when a chaotic layer is reached [38].

Dynamic power spectra are not only important complements when study-
ing chaoticity through dynamical maps. In systems with two degrees of free-
dom, in which the chaoticity may be studied with the help of Poincaré maps
(surfaces of section), dynamic power spectra allow us to understand the dy-
namics of the systems in areas where the maps show intricate features or in
which the features are too thin to be visible. They were used in the discussion
of the transition from secular dynamics to the 2:1 MMR (Sect. 5; [10]) and
in the study of the low-eccentricity dynamics of the 5:2 MMR [53].
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