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Preface

This book on recent investigations of the dynamics of celestial bodies in the solar
and extra-Solar System is based on the elaborated lecture notes of a thematic school
on the topic, held as a result of cooperation between the SYRTE Department of
Paris Observatory and the section of astronomy of the Vienna University. Each
chapter corresponds to a lecture of several hours given by its author(s). The book
therefore represents a necessary and very precious document for teachers, students,
and researchers in the field.

The first two chapters by A. Lemaı̂tre and H. Skokos deal with standard topics
of celestial mechanics: the first one explains the basic principles of resonances in
mechanics and their studies in the case of the Solar System. The differences between
the various cases of resonance (mean motion, secular, etc.) are emphasized together
with resonant effects on celestial bodies moving around the Sun. The second one
deals with approximative methods of describing chaos. These methods, some of
them being classical, as the Lyapounov exponents, other ones being developed in
the very recent past, are explained in full detail. The second one explains the basic
principles of resonances in mechanics and their studies in the case of the Solar
System. The differences between the various cases of resonance (mean motion, sec-
ular, etc.) are emphasized together with resonant effects on celestial bodies moving
around the Sun.

The following three chapters by A. Cellino, by P. Robutel and J. Souchay, and
by M. Birlan deal with the recent improvements in the knowledge of the celestial
mechanics of the Solar System and of the extra-Solar System. The discovery and
the determination of various asteroid families in the two last decades from both
their dynamical features and their physical characteristics constitute a tremendous
step in the understanding of the constitution and the evolution of the asteroid belt
as well as the Trojans. We explain how numerical integrations at a very large time
scale can associate various bodies from a single parent one.

The astrometric space mission Gaia, to be launched in early 2012, will constitute
a revolution in the precision of position and velocity determinations of celestial
objects among which are the asteroids and the comets. In an extensive chapter
Hestroffer, A. dell’Oro, A. Cellino, and P. Tanga present our current understanding
relating to astro-photometric measurements and the dynamical properties of these
bodies, as well as the dramatic improvements expected from the Gaia mission.

v



vi Preface

Comets are still a subject of deep investigation concerning their origins and
the characteristics of the Oort’s cloud, from which they are assumed to originate.
Their dynamical evolution inside the Solar System strongly depends on their pos-
sible interactions with the large planets, in particular with Jupiter. A complete
review on these objects is given by H. Rickmann. This is followed by a chapter by
M. Fouchard explaining in full detail the way by which a perturbation from galac-
tic tides and passing stars can trigger a mechanism leading to deviation of comets
toward the inner Solar System.

A large part of the studies in celestial mechanics and dynamical astronomy is
based on numerical integration. In an extensive chapter S. Eggl and R. Dvorak
present various numerical methods used for solving the gravitational N-body prob-
lem and discuss their main properties.

Finally, the always-increasing number of recorded stellar systems with their
escort of exoplanets leads to the fundamental questions of their dynamical stabil-
ity as well as the existence of the zones in which conditions for life are gathered.
E. Lohinger presents abundant examples of such systems and shows how their
dynamical stability can be addressed.

We are sure that the present book will be very useful for any graduate student or
specialist aiming at an up-to-date review of the most exciting topics in the fields of
celestial mechanics and planetology of solar and extra-Solar Systems.

Both editors thank very strongly the Springer Editorial Board as well as the
authors for their acceptance of the work and their nice contributions.

Paris, France J. Souchay
Vienna, Austria R. Dvorak

July 2009
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Resonances: Models and Captures

A. Lemaı̂tre

Abstract The resonances in the Solar System are present everywhere and can be
represented by simple models. This chapter presents a review of the main cases:
mean motion, secondary, secular, spin orbit and gravitational resonances are intro-
duced and modelled up by pendulum like or more sophisticated models. Dissipative
mechanisms introducing slow variations of the parameters can produce capture into,
jumps over or escapes from resonances. Hamiltonian dynamics and adiabatic invari-
ant are combined to reproduce and understand these behviours.

1 Introduction

This chapter presents the basic models of resonance, playing a role (as first approx-
imations) in the main situations of planetary systems: mean motion resonances,
secular resonances, secondary resonances, spin–orbit resonances, and gravitational
resonances. It shows how to reduce a complex problem to its most important res-
onant contribution and how to calculate captures into resonances or escapes from
these resonances.

Of course most of these models are far too simple to describe the complex reality
of a resonant N -body problem; however, they can give a qualitative idea about the
dominant dynamics; the superposition of the various levels of resonance creates
chaotic zones to be estimated and located.

This chapter is written in Hamiltonian formalism and intends to give the main
tools to manipulate and model up a resonance in any context; it is not a review
of the present state of the art of the resonances and their present knowledge. The
references chosen in this chapter correspond to this peculiar and specific approach.

A. Lemaı̂tre (B)
Unité de Systèmes Dynamiques, Département de Mathématique, FUNDP, Rempart de la Vierge 8,
B5000 Namur, Belgium, anne.lemaitre@fundp.ac.be

Lemaı̂tre, A.: Resonances: Models and Captures. Lect. Notes Phys. 790, 1–62 (2010)
DOI 10.1007/978-3-642-04458-8 1 c© Springer-Verlag Berlin Heidelberg 2010



2 A. Lemaı̂tre

2 The Hamiltonian Theory

First of all, let us remind the fundamental characteristics of the Hamiltonian for-
malism. A one degree of freedom Hamiltonian system is defined by a function H
(called the Hamiltonian), function of q , p, and t , where q designates the variable, p
the momentum, and t the time,

H = H(q, p, t)

and an associated set of two differential equations:

q̇ = ∂H
∂p

(q, p, t),

ṗ = −∂H
∂q

(q, p, t).

The Hamiltonian H is called autonomous if it does not depend explicitly on the
time: in this case, it is a first integral or a constant of the motion:

dH
dt

= ∂H
∂q

q̇ + ∂H
∂p

ṗ = 0.

We introduce a new set of variables (Q, P) depending on q, p, and t , defined by

Q = Q(q, p, t),

P = P(q, p, t).

We consider that the inverse of this time-dependent transformation � is also defined
symbolically by

q = q(Q, P, t),

p = p(Q, P, t).

This transformation is canonical if for any Hamiltonian H(q, p, t) there exists a
function K(Q, P, t) so that the differential equations system associated to H is
transformed into a new system with respect to K which is also Hamiltonian, i.e.,
which can be written as

Q̇ = ∂K
∂P

(Q, P, t) Ṗ = − ∂K
∂Q

(Q, P, t).

The Hamiltonian of the problem expressed in Q and P is given by

K(Q, P, t) = μ H(q(Q, P, t), p(Q, P, t), t) +R(Q, P, t),
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where μ(t) is called the multiplier and R the remaining function; they depend on the
transformation T and not on the initial Hamiltonian H (see [11] for more details).
If the transformation T is independent of t , R = 0.

The role of μ(t) is not fundamental; a simple scaling can easily eliminate this
parameter:

Q′ = α Q and P ′ = β P with
1

μ
= α β.

The canonical transformations of parameter μ = 1 are also called the symplectic
transformations.

This new canonical set (Q, P) is not always given by an explicit relationship with
q, p, and t ; it can be introduced in a more implicit way, through a generic function
S = S(q, P, t) (function of the old variable q and of the new momentum P) which
defines the canonical transformation by the partial differential equations:

p = ∂S
∂q

and Q = ∂S
∂P

.

For example, for the identical transformation, this generic function is simply
S(q, P) = q P .

We can generalize this one degree of freedom approach to n degrees of freedom;
the phase space is then of dimension 2n, n dimensions for the variables qi or Qi ,
and n dimensions for the momenta pi or Pi .

3 The Action-Angle Variables

Let us first consider a one degree of freedom autonomous integrable Hamiltonian:
H (q, p) = h. Even in simple models, the frequency associated to the variable q is
not constant, it is dependent on the momentum p and on q itself: q̇ = ∂H

∂p (q, p).
Among all the possible canonical transformations, we are interested in the so-

called action-angle ones, resulting in a Hamiltonian function depending only on the
new momentum (and not on the new angle Ψ ):

(q, p) ⇒ (Ψ, J ) so that H (q, p) = K(−, J ) = K (J ). (1)

We introduce a generic function S(q, J ) so that p = ∂S
∂q and Ψ = ∂S

∂ J , determined
by the Hamilton–Jacobi equation:

H

(
q,

∂S
∂q

(q, J )

)
= K (J ).

If we impose that Ψ is an angular variable, increasing by 2π along a complete circuit
on a periodic orbit, we can identify J (with a correcting factor 2π ) with the area
enclosed by the trajectory, and the (constant) frequency is now ω (see again [11]):
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J = 1

2π

∮
p dq and ω = Ψ̇ = ∂K

∂ J
.

4 The Restricted Three-Body Problem

Let us remind first the physical context in which the different types of resonances
will be encountered. For this first part, the bodies are considered as point masses
and their motions are described by pure gravitational interactions.

The simplest model to encounter a resonance is the restricted three-body prob-
lem, starting with a classical two-body configuration, where the small mass is then
perturbed by a larger external body on a simplified orbit.

4.1 Two-Body Hamiltonian Formulation

Let us start with the two-body problem, where the central mass is denoted by M; we
follow the motion of a test mass m. Its orbit is an ellipse, and the focus of this ellipse
is the barycenter of both masses. With respect to an inertial frame, we introduce the
classical and less classical elliptic elements (Fig. 1):

a the semi-major axis
e the eccentricity
i the inclination
ω the argument of the pericenter
Ω the longitude of the ascending node
M the mean anomaly (υ is the true anomaly)

Fig. 1 Definition of the elliptic elements: a, e, i , ω, Ω , and υ
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This set of elements is not canonical; to write them in a Hamiltonian formalism,
we keep three angles as variables and we calculate the associated momenta (by a
transformation of Matthieu) to get Delaunay elements:

Variables Associated momenta Dynamical equations

M L = √
μa Ṁ = ∂H

∂L
L̇ = − ∂H

∂M

ω G = L
√

1 − e2 ω̇ = ∂H
∂G

Ġ = −∂H
∂ω

Ω H = G cos i Ω̇ = ∂H
∂H

Ḣ = − ∂H
∂Ω

where

μ = GM3

(M+ m)2
� GM if M >> m, with G the gravitational constant.

The Hamiltonian H coincides with the energy of the two-body problem called
H2B :

H = H2B = − μ

2a
= − μ2

2L2
,

and we conclude obviously that L , G, H (and consequently a, e, and i), ω, and Ω

are constants of motion; M = nt + M0 where M0 is the sixth initial condition and

n = ∂H2B

∂L
= μ2

L3
is the mean motion.

This set is degenerate for e = 0 (no definition of ω) and for i = 0 (no definition
of Ω). This is the reason for which we prefer another set of variables—momenta,
called the modified Delaunay elements and defined as

Variables Associated momenta Dynamical equations

λ = M + ω +Ω L λ̇ = ∂H
∂L

L̇ = −∂H
∂λ

p = −ω −Ω P = L − G ṗ = ∂H
∂P

Ṗ = −∂H
∂p

q = −Ω Q = G − H q̇ = ∂H
∂Q

Q̇ = −∂H
∂q

The choice here is to keep the new momenta P and Q positive for the ellipses
(e < 1), which induces the changes of signs in the angles p and q. If we choose to
keep the initial signs of the angles, we have to pay attention to the negative signs of
the momenta in the canonical transformation to cartesian coordinates.

The momentum P is proportional to the square of the eccentricity and Q to the
square of (the sine of) the inclination.
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4.2 The Third Body Perturbation

The potential generated by a third body (of mass m ′ and of position s in the chosen
reference frame) introduces a perturbation on the motion of the small body (of mass
m and position r) which can be expressed by

V = −Gm ′
(

1

Δ
− s · r

s3

)

where Δ = ‖r − s‖.

We introduce the elliptic elements for both masses: a, e, i , ω, Ω , M , and λ have
already been introduced for m, completed by υ the true anomaly and θ = υ+ω+Ω

the true longitude, and similar quantities but primed for the mass m ′: a′ the semi-
major axis, e′ the eccentricity, i ′ the inclination, ω′ the argument of pericenter, Ω ′

the longitude of the ascending node, M ′ the mean anomaly, λ′ = M ′ + ω′ +Ω ′ the
mean longitude, υ ′ the true anomaly, and θ ′ = υ ′ + ω′ +Ω ′ the true longitude. Of
course the corresponding modified Delaunay angles are also defined for m ′, called
p′ and q ′, and are associated to the momenta P ′ and Q′, linked to L ′ = √

μ′a′. n′

denotes the mean motion of the third body, n′ = μ′2
L ′3 , with μ′ = GM3

(M+m ′)2 .
As we are interested in the motion of the small mass m, we consider in the

restricted problem that the mass m ′ is not affected by m; consequently, all the primed
variables are known functions of time, solutions of a two-body problem in the sim-
plest cases, or of a full body planetary problem (not including the test mass m) in
the most complete analyses.

We introduce the Legendre polynomials (here in the case of an outer perturber,
with s > r ):

V = −Gm ′

s

∞∑
l=2

(r

s

)l
Pl (cosΨ ) with r • s = rs cosΨ,

where the symbol • designates the scalar product. Using the series expansions in e
and i and Fourier developments (see classical references, like [37]), we can write
the potential in the following form:

V = − Gm ′ ∑
(
)=(
1,
2,
3,
4,
5,
6)

S(
)(a, a′, e,′ e, i, i ′) cos (
1λ
′ + 
2λ+ 
3ω

′ + 
4ω

+ 
5Ω
′ + 
6Ω), (2)

which we express in Delaunay-modified canonical variables and momenta:

V = V (λ, p, q, L , P, Q, λ′, p′, q ′, L ′, P ′, Q′)

to add to the two-body Hamiltonian H2B :
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H = − μ2

2L2
+ V (λ, p, q, L , P, Q, λ′, p′, q ′, L ′, P ′, Q′︸ ︷︷ ︸

known functions of t

)

= − μ2

2L2
+ V (λ, p, q, L , P, Q, t). (3)

A similar expression can be deduced for the case s < r (see [37]).
In most problems of the Solar System, M >> m ′ >> m as in the problem

Sun-Jupiter-Asteroid or Earth-Moon-artificial satellite or Saturn-natural satellite-
particle, for which we assume that μ = G(M + m) � G(M + m ′) � GM .

4.3 The Angles and Their Frequencies

The next step is to classify the frequencies of the different angles with respect to
each other. In our Solar System, we have clear separations of the frequencies, which
means of the associated periods. Again, we are going to take this scale for this
chapter, but it is obvious that other orders of magnitude could also be considered
and treated by the same tools.

In this context we can conclude, from the Hamiltonian differential equations, that
λ′ and λ have larger frequencies (and then shorter periods) than p, p′, q, and q ′. We
shall, therefore, refer to λ and λ′ as short periodic angles and to p, p′, q, and q ′ as
long periodic or secular angles.

As an example, for an asteroid in the main belt, the period of λ is about a few
years, while the periods of p and q are of the order of 104 or 105 years.

5 The Mean Motion Resonances

5.1 Simplifications

First of all, we are looking for resonances between the short periodic angles, which
means λ and λ′; their frequencies are given in first approximations by the mean
motions n and n′. We introduce a series of hypotheses which lead to a simplified
model, describing this type of resonance.

As first simplification, we consider that both orbits are coplanar (we choose i =
i ′ = 0) which means that Q = Q′ = 0 and that q and q ′ do not appear anymore (by
D’Alembert characteristic) which leads to a reduced potential V :

V = − μm ′

M
∑

k,i1,i2, j1, j2

Pk
i1,i2, j1, j2 (a, a′) e2i1+| j1|e′ 2i2+| j2| cos [(k + j1)λ− (k − j2)λ′

+ j1 p + j2 p′]. (4)

The coefficients Pk
i1,i2, j1, j2

are functions of a and a′ combinations of Laplace coeffi-
cients.
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This expression is written with explicit reference to the powers of the two eccen-
tricities, e and e′, because it checks the D’Alembert characteristic: it means that the
powers of the eccentricities are always greater than the corresponding multiples of
the pericenter and that these two integers have the same parity:

2is + | js | ≥ js, 2is + | js | has the same parity as js for s = 1, 2.

Let us remind that, to refer to the Hamiltonian variables and momenta, e = e(L , P)
and a = a(L).

In the general case, a′ = a′(t), e′ = e′(t), and p′ = p′(t), but in this present
simplified context, we shall consider that the third body evolves on a fixed (planar)
Keplerian orbit, a′ = a′0, e′ = e′0 and p′ = p′0, characterized by a constant mean
motion n′.

We obtain a two degree of freedom Hamiltonian, time dependent through the
(known) motion of m ′ (through the mean longitude λ′ = n′t + λ′0), with the dispari-
tion of two variables, λ and p, and two momenta, L and P .

Finally, for the most simplified case, we consider that the perturbing body m ′ lies
on a circular orbit, which means e′0 = 0 and the disappearing of p′0, to get

H(λ, L , p, P, t) = − μ2

2L2
−μm ′

M
∑

k,i1, j1

Pk
i1, j1 (a, a′) e2i1+| j1| cos[(k+ j1)λ−k λ′+ j1 p],

(5)
in which e′ has disappeared, as well as the longitude of the pericenter p′; the only
angle still defined for the perturbing mass m ′ is λ′, the mean longitude.

5.2 The Resonance

We can now introduce the mean motion resonance. The two resonant frequencies
are here the mean motions of the masses m and m ′. The motion is resonant if the
ratio of the two frequencies is very close to the ratio of two small integers, i.e.,

n

n′
= j + i

j
with ( j + i) and j incommensurable small integers.

It means that the mass m performs j + i revolutions, while the mass m ′ performs j
revolutions. If a < a′ the resonance is internal or inner, the orbit of m is inside the
orbit of m ′ and j > 0; if a > a′ the resonance is external or outer, the orbit of m is
outside that of m ′ and j < 0 (Fig. 2).

This also means that the ratio of the two semi-major axes is blocked to a specific
value given by

n

n′
= μ

1
2

a
3
2

a′
3
2

μ
1
2

=
(

a′

a

) 3
2

= j + i

j
⇒ ares =

(
j

j + i

) 2
3

a′. (6)
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Fig. 2 Schematic view of a mean motion resonance: the inner planet performs ( j + i) revolutions
when the outer (perturbing) one performs j revolutions

The integer i = ( j + i) − j (difference between the numerator and denominator
of the quotient) is called the order of the resonance.

The main resonances are given by the following ratios of the mean motions (as
for the Galilean satellites represented in Fig. 3)

n/n′ 2/1 3/2 3/1 5/2 7/3 1/2 2/3 1/3
j 1 2 1 2 3 −2 −3 −3

i = order 1 1 2 3 4 1 1 2 .

The coefficients Pk
i1, j1

(a, a′) are functions of the ratio a
a′ or a′

a (corrected by a
power of a′ = a′0) following the type of the resonance, inner or outer. This develop-

1 Ganymede day = 2 Europa days = 4 lo days

Fig. 3 Three Galilean satellites (Io, Europa, and Ganymede) blocked in mean motion resonances:
the periods of revolution are in the ratios 1, 2, and 4
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ment comes from an expansion, which means that this ratio has to be smaller than 1.
The case of the resonance 1/1, like the Trojans asteroids, is analyzed through a
different approach which will not be presented in this chapter (see Chap. 4).

5.3 The Time Dependence

The two degree of freedom Hamiltonian (5) is time dependent through the variable
λ′ = n′t +λ′0; it means that any canonical transform performed on this Hamiltonian
will depend on time and will introduce corrective terms in the Hamiltonian function.
However, because this dependence in time is purely linear, the usual way of tackling
the problem is to introduce a third variable λ′ combined to an artificial corresponding
momentum Λ′ so to get an autonomous three degree of freedom Hamiltonian H′ =
H+ n′Λ′:

H′(λ, L , p, P, λ′,Λ′) = − μ2

2L2
+ n′Λ′ − μm ′

M
∑

k,i1, j1

Pk
i1, j1 (L) e(L , P)2i1+| j1|

cos [(k + j1)λ− k λ′ + j1 p].

The third degree of freedom is associated with the differential equations:

λ̇′ = ∂H′

∂Λ′ = n′ (already known) and Λ̇′ = −∂H′

∂λ′
(never used).

5.4 The Resonant Angle

In a specific region, where the semi-major axis a � ( j
j+i )

1
3 a′, there is a resonant

combination of the two angles λ and λ′ which has a smaller frequency (close to 0)
than all the other linear combinations of these two angles, which should induce a
long periodic motion.

The idea of a resonant model is then to isolate this specific frequency, to follow its
long-term dynamics and to forget about all the other small short periodic variations.
The technique consists in isolating this combination in a specific canonical variable,
in averaging over all the other angles except the selected one and in reducing the
problem to a one degree of freedom averaged resonant problem.

Let us define the resonant angle σ to be introduced in the canonical transformation:

σ = j + i

i
λ′ − j

i
λ+ p.

σ has a frequency close to 0, because of the resonance between λ and λ′, and because
p = −ω −Ω is a slow angle.
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We introduce a canonical transformation:

(λ, L , p, P, λ′,Λ′) ⇒ (λ, N , σ, S, λ′, Γ ′),

with the three new momenta

N = L + j

i
P, S = P, and Γ ′ = Λ′ − j + i

i
P

easily deduced from the (sufficient) condition of canonicity, i.e., the conservation of
a differential form:

N dλ+ S dσ + Γ ′ dλ′ = L dλ+ P dp +Λ′ dλ′.

The next step is to introduce the new variables and momenta in the (autonomous
three degree of freedom) Hamiltonian H′:

H′(λ, N , σ, S, λ′, Γ ′) = − μ2

2L2
+n′Γ ′−n′

j

i
S−μ

m ′

M
∑

k,i1, j1

Pk
i1, j1 e2i1+| j1| cosφk, j1 ,

where L = N − j
i P , e = e(N , S) and

φk, j1 = (k + j1)λ− k λ′ + j1 p

= (k + j1)λ− k λ′ + j1

(
σ − j + i

i
λ+ j

i
λ′
)

= j1 σ +
(

k + j1 − j1
j + i

i

)
λ+

(
j1

j

i
− k

)
λ′

= j1 σ +
(

k − j1
j

i

)
λ+

(
j1

j

i
− k

)
λ′.

If k = k� = j1
j
i in the summation (if this value is an integer), all the short periodic

terms are eliminated. For this particular value of k = k� (and after elimination of all
the other angular combinations by averaging), we end up with the Hamiltonian:

H�(λ, N , σ, S, λ′, Γ ′) = − μ2

2L2
+n′Γ ′−n′

j

i
S−μ

m ′

M
∑
i1, j1

Pk�

i1, j1 e2i1+| j1| cos( j1 σ ).

(7)

The variables and momenta present in this Hamiltonian H� are now averaged
quantities; for the sake of simplicity, we designate them by the same letters as the
corresponding non-averaged ones, but formally we should designate them by λ̄, N̄ ,
σ̄ , S̄, λ̄′, and Γ̄ ′.

The artificially introduced third degree of freedom (connected to λ′) does not
play any role anymore; consequently, the term n′Γ ′ can be dropped. Let us also
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Fig. 4 The curves N = constant in the plane (a, e) for the resonance 2:1

note that the variable λ is not present anymore in the Hamiltonian. Then its conju-
gated momentum N is a constant (Fig. 4). Finally, the degree of freedom variable—
momentum (σ, S) describes the whole (averaged) dynamics.

As N = L + j
i P , each constant value of N corresponds to a set of coupled

values of a and e; however, very often, it is associated to a specific value of a, the
value a� corresponding to the circular orbit on the plane identified by N = N0 :
N0 = N (a, e) = N (a�, 0). With this convention, we can designate by Nres the value
of N defined by Nres = N (ares, 0).

5.5 Position of the Mean Motion Resonances

The important mean motion resonances between Jupiter and an asteroid are known
since 1866, on the diagrams of Kirkwood, with a few hundreds of asteroids; they
are obvious in Fig. 5.

5.6 The Models of Mean Motion Resonances

If we analyze the value of k�, we see that the order of the resonance plays a role
in its calculation. Indeed, if i = 1, k� = ± j j1 is always an integer; then, the first
resonant term appears for j1 = ±1 and the first power of e (obtained for i1 = 0)
is 1.

On the opposite, if i = 2, k� = ± j
2 j1; let us now remind that j + i and j should

be incommensurable integers, it means that here j is odd. So k� is half an integer
for j1 = ±1, which is impossible for a summation index. In consequence, the first
possible value of j1 is ±2 and the first corresponding value of the eccentricity power
is 2.
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Fig. 5 Histogram of the minor planets of the main belt (May 2008) produced by the Minor Planet
Center

If we generalize to any order of resonance, if the order of the resonance is i , the
first value of j1 acceptable is ±i and the first power of the eccentricity is i . The first
resonant term is always proportional to ei cos iσ .

For small values of the eccentricity, this means that the amplitude of the resonant
terms decreases rapidly, with the order of the resonance. In order words, only low-
order resonances really play a significant role in the dynamics.

A last point before describing the fundamental reference models is to develop the
first part of the Hamiltonian with the same level of approximation as the perturbation
term; let us analyze the L momentum in the new set of momenta.

L = N − j

i
S where N is a constant and S = P is proportional to e2.

Having used series expansions of e in the perturbation, it seems logical to perform
and truncate the term of the two-body problem in the same way:

− μ2

2L2
− n′

j

i
S = −μ2

2

(
N − j

i
S

)−2

+ n′
j + i

i
S (8)

= − μ2

2N 2

(
1 − j

i

S

N

)−2

+ n′
j + i

i
S (9)

= − μ2

2N 2

(
1 + 2

j

i

S

N
+ 3

(
j

i

)2 ( S

N

)2

+ · · ·
)
+ n′

j + i

i
S

= C(N ) + α(N ) S + β(N ) S2 + · · ·
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where C(N ) is a constant term which can be dropped, α(N ) = − μ2

N 3
j
i + n′ j+i

i and

β(N ) = − 3μ2

2N 4 ( j
i )2; α(N ) measures the distance between the mean motion and the

exact resonance; there is a value of the first integral N which exactly coincides with
the resonance:

α(N ) = 0 ⇔ μ2

N 3
= n′

j + i

j
⇔ N 3 = μ2

n′
j

i + j
= N 3

res .

The value of N obtained by putting α = 0 is Nres , corresponding to the value of
the exact resonance in semi-major axis given by (6).

In summary, with the help of (7) and (10), for a first-order resonance, we obtain
the second fundamental model of resonance [9] or Andoyer model:

H1(N , σ, S) = α(N ) S + β(N ) S2 − μ
m ′

M Pk�

0,1 e cos σ

= α(N ) S + β(N ) S2 + ε(N )
√

2S cos σ (10)

where

ε(N ) = −μ
m ′

M Pk�

0,1(N )
1√
N

and e2 � 2S

N
.

For a second-order resonance, we obtain

H2(N , σ, S) = α(N ) S + β(N ) S2 − μ
m ′

M Pk�

0,2 e2 cos 2 σ

= α(N ) S + β(N ) S2 + ε(N ) 2S cos 2 σ ,

where

ε(N ) = −μ
m ′

M Pk�

0,2(N )
1

N
.

For a third-order resonance:

H3(N , σ, S) = α(N ) S + β(N ) S2 − μ
m ′

M Pk�

0,3 e3 cos 3 σ

= α(N ) S + β(N ) S2 + ε(N ) (
√

2S)3 cos 3 σ .

All these models can still be simplified if the variation of S is supposed to be
very small around a specific value S0; in that case all these models reduce to a
simple (translated) pendulum called the First fundamental model of resonance:

H0(N , Ψ, S) = α(N ) S + β(N ) S2 + ε(N , S0) cosΨ, (11)

where Ψ = i σ , i being the order of the resonance.
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On the opposite, some of these models suffer from the sharp truncation in S
(which means in eccentricity) to represent correctly the physical or topological
situations. This is why we keep a term further in the expansion of the perturbation:

Hc
1(N , σ, S) = α(N ) S + β(N ) S2 + ε(N ) cos σ + η(N ) cos 2σ . (12)

The angle σ in all these models becomes a slow angle in comparison with the
fast angles λ and λ′ (see [1, 18]).

6 The Secondary Resonances

The secondary resonances appear in a primary resonance problem, described by an
angle σ , when a second degree of freedom, characterized by an angle ν or one of
its multiples, enters in resonance with σ . We present here the secondary resonances
inside a mean motion resonance; it is clear that the situation described here can be
adapted to any other resonance case.

Let us consider, in our mean motion resonance hypothesis, that the third body
evolves on a non-circular Keplerian coplanar orbit, characterized by non-zero values
of e′ and p′:

V = − μm ′

M
∑

k,i1,i2, j1, j2

Pk
i1,i2, j1, j2 (a, a′) e2i1+| j1|e′ 2i2+| j2|

cos [(k + j1)λ− (k − j2)λ′ + j1 p + j2 p′].

In that case, we introduce a second resonant angle ν taking into account p′:

ν = − j + i

i
λ′ + j

i
λ− p′.

We introduce a canonical transformation:

(λ, L , p, P, λ′,Λ′) ⇒ (ν,N , σ, S, λ′, Γ ′′),

with the three new momenta:

N = i

j
L + P, S = P, and Γ ′′ = Λ′ + j + i

i
P.

The linear transformation is easily checked by the conservation of the differential
form:

dλ L + dp P + dλ′ Λ′ = dν N + dσ S + dλ′ Γ ′′.
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The momentum N is related to N by a simple factor: N = i
j N . A function of N is

then a function of N .
The argument of the cosine can be written as

(k + j1)λ− (k − j2)λ′ + j1 p + j2 p′

= (k + j1)λ− (k − j2)λ′ + j1(σ − j + i

i
λ+ j

i
λ′) + j2(−ν − j + i

i
λ+ j

i
λ′)

= j1σ − j2ν + (k − j1
j

i
− j2

j + i

i
)λ+ (−k + j2 + j1

j

i
+ j2

j

i
)λ′.

To eliminate the short periodic terms in λ and λ′, we choose the value k� of k:

k� = j1
j

i
− j2

j + i

i
.

In that case, for example, an averaged first-order resonant model, with a third
body on a elliptic orbit, is characterized by the Hamiltonian:

H(σ, S, ν,N ) = α(N ) + β(N )S2 +
√

2S
∑
i2, j2

εi2, j2 (N ) e′2i2+| j2| cos(σ − j2ν).

The angles σ and ν are both long periodic; a secondary resonance can occur
where the angle σ (the resonant angle of the primary resonance) enters into reso-
nance with a multiple of ν: σ̇ = j2ν̇, i.e.,

j + i

i
λ̇− j

i
λ̇′ + ṗ = j2

(
− j + i

i
λ̇+ j

i
λ̇′ − ṗ

)

ṗ + j2 ṗ′ = (1 + j2)

[
j

i
λ̇′ − j + i

i
λ̇

]

1

1 + j2
[ ṗ + j2 ṗ′] = j

i
λ̇′ − j + i

i
λ̇.

It means that the primary resonance is characterized by a frequency as small as
some combination of the pericenter frequencies. We consider that the pericenters
are not in resonance.

The secondary resonances can be represented locally by a pendulum-like model,
the angle of which is Ψ = σ − j2ν. We can indeed perform a canonical transforma-
tion:

(σ, S, ν,N ) ⇒ (Ψ, S, ν,N ),

and by the sufficient condition of canonicity dσ S+dνN = dΨ S+dνN ′, we can
deduce that N ′ = N + j2 S.
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After an averaging over ν, considered now as a fast variable in comparison with
Ψ , the dynamics is given by [Ψ, S) on a plane N ′ = N ′

0. Indeed, N is constant
because its associated variable ν is not present anymore in the Hamiltonian after
this last averaging process.

Again, we should have replaced all the variables and momenta by their mean
values, and describe the dynamics in (Ψ̄ , S̄) on planes N̄ constant; however, we use
the same notations as before, even if they designate other quantities.

The position of the secondary resonances inside the mean motion resonances has
been analyzed by several authors, in particular [10, 29, 30].

7 The Secular Resonances

The secular resonances concern the slow angles, like the arguments of the pericen-
ters or the longitudes of the nodes (Fig. 6). We first make the hypothesis that there
is no efficient mean motion resonance in the neighborhood of the small mass m.

Fig. 6 Schematic graphic of a secular resonance with Jupiter or Saturn

7.1 The Keplerian Case: Kozai Resonances

We can rewrite the three-dimensional non-resonant Hamiltonian (3) in the Keplerian
case, where L ′, P ′, Q′, p′, and q ′ are constants. Let us assume that the perturbing
body is on a circular and planar orbit.

The only remaining function of time is λ′:

H = − μ2

2L2
+ V (λ, p, q, L , P, Q, λ′).

We average over the two short periodic angles λ and λ′. The resulting Hamilto-
nian is a two degree of freedom function given by V̄ (p, P, q, Q). Developing this
function in Fourier’s series, we can write [20]
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V̄ (p, P, q, Q) =
∑

i

F2i (P, Q) cos 2i(p − q),

where q − p = −Ω + ω +Ω = ω the argument of the pericenter.
We define a new set of canonical variables: Ψ = p − q (conjugated to P) and q

(conjugated to a new momentum M) so that

Pdp + Qdq = PdΨ + Mdq ⇔ Pdp + Qdq = Pdp − Pdq + Mdq,

which gives M = P + Q = L − G + G − H = L − H .
In this set of variables, the Hamiltonian reduces to

V̄ (p, P, q, Q) = V̄ (Ψ, P, q, M) =
∑

F2i (P, M) cos 2iΨ.

Let us note that P = L − G � L e2

2 .
The dynamics is given by the differential equations:

Ψ̇ = ∂ V̄

∂P
, Ṗ = − ∂ V̄

∂Ψ
, and M = M0.

This is a one degree of freedom Hamiltonian system, in the phase space (Ψ, P),
parametrized by the values of M .

M is a function of e and i given by M = L(1 − √
1 − e2 cos i). It can be

associated with a maximum value of the inclination, imax , corresponding to e = 0:

M = M0 = L(1 −
√

1 − e2 cos i) = L(1 − cos imax ).

Indeed, on the same plane M = M0, any positive value of e will give a smaller value
of

√
1 − e2 to be compensated by a larger value of cos i , which means a smaller

value of i . So imax is obtained for e = 0. The case i = 0 gives the maximal value of
e called emax on the plane M = M0:

M = M0 = L(1 −
√

1 − e2 cos i) = L

(
1 −

√
1 − e2

max

)
.

The numerical integration of the differential equations shows that for values of imax

quite small, the phase space (see Figs. 7a and b) has a simple target-like look, with a
stable equilibrium at e = 0 and circulation of the argument of pericenter; for higher
values of imax (see Fig. 7c), the circular orbit is unstable, and two stable equilibria
appear for ω = π

2 and ω = 3π
2 . A separatrix (called Kozai separatrix) separates the

circulation zone of the pericenter from the two librating (North and South) regions.
We can also say that an exact Kozai resonance is characterized by ω̇ = 0 = q̇− ṗ

or ṗ = q̇.
In the two libration regions, the pericenter is blocked in a Kozai resonance. Let

us remind that this behavior only concerns orbits with high values of imax and emax .
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Fig. 7 Phase spaces in Cartesian coordinates related to the eccentricity and longitude of the peri-
center for three different values of M0 corresponding to imax = 10◦ and emax = 0.15 for the left
figure, imax = 20◦ and emax = 0.325 for the central one, and imax = 30◦ and emax = 0.5 for the
right one. The border circle corresponds to i = 0◦ and the center to e = 0 in the three cases (taken
from [35]

7.2 The Non-Keplerian Case

Let us assume now that p′ = ω′ −Ω ′ and q ′ = −Ω ′ are time dependent and given
by linear functions of the time:

p′ = g′t + p′0,
q ′ = s ′t + q ′

0.

To avoid to work with a time-dependent Hamiltonian, we introduce p′ and q ′ as two
supplementary degrees of freedom to which we associate artificial momenta called
P ′ and Q′. After averaging the potential (2) over the two fast angles λ and λ′, the
autonomous Hamiltonian is given by

K(p, P, q, Q, p′, P ′, q ′, Q′) = V̄ (p, q, P, Q, p′, q ′) + g′P ′ + s ′Q′,

with

V̄ = −Gm ′ ∑
(
)=(
3,
4,
5,
6)

S(
)(a, a′, e, e′, i, i ′) cos (
3 p′ + 
4 p + 
5q ′ + 
6q).

A linear secular resonance is present when the frequency associated to the angle
Ψ(l) = 
3 p′ +
4 p+
5q ′ +
6q becomes very close to zero. It means that the motion
of the pericenter or of the node (or a linear combination of the two) of the massless
body follows the linear motion of the pericenter or the node of one of the perturbers
(or a linear combination of the two) and remains blocked in this configuration for
long periods of time. For an asteroid, we can identify secular resonances like g = g5,
g = g6, h = s6, g + s = g5 + s6, g + s = g6 + s6, g − s = g5 − s6, g − s = g6 − s6,
and 2g = g5 + g6 for the most important ones, where g6 and s6 are g′ and s ′ when
the perturber is Saturn, and g5 is g′ when it is Jupiter (Fig. 8).

g and s represent the frequencies of p and q , which are not constant: they depend
on the values of the eccentricity and of the inclination. Strictly speaking, g and s
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Fig. 8 Position of the main secular resonances with Jupiter or Saturn in the plane (a, i) (taken from
[35]) for e = 0.1. The numbers correspond to the following secular resonances: 1 ≡ g = g5,
2 ≡ g = g6, 3 ≡ h = s6, 4 ≡ g + s = g5 + s6, 5 ≡ g + s = g6 + s6, 10 ≡ g − s = g5 − s6,
11 ≡ g − s = g6 − s6, and 9 ≡ 2g = g5 + g6

are the frequencies of the angles, after local transformation of the variables into
action-angle variables (in which the angle is always a linear function of time). g
and s can be considered as mean values of the frequencies of p and q; they are also
called the proper frequencies of p and q .

A secular resonance means that a critical combination of two (or four) slow
angles becomes a very slow angle, ten or hundred times slower than the two secular
initial ones.

Once the resonant combination is isolated (for a specific set of values for 
i ,
i = 3, . . . , 6, denoted by 
∗i ), after having defined a resonant angle σ by

σ = 
∗3ω
′ + 
∗4ω + 
∗5Ω

′ + 
∗6Ω,

we can average over all the other combinations of the secular angles and obtain
again a pendulum-like Hamiltonian as first approximation or one of the classical
models of resonance following the terms kept in the expansion.

For example, Morbidelli and Henrard [35], for the resonance g = g6, obtained
a phase space (limited by a circle) very similar (topologically) to the second funda-
mental model of resonance. The resonant angle σ represents, after passage to angle
variables and averaging, the difference � −�6 (Fig. 9).

The calculation of the positions of the secular resonances inside the main mean
motion resonances (in the inner and outer minor planet belt) has contributed to
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Fig. 9 Phase space for the secular resonance g6 for a specific value of the semi-major axis a =
2.6 AU and for different values of imax [36]

understand much better the dynamics of the small bodies of the Solar System; it has
been determined by the tools described in this chapter but with many more variables
and degrees of freedom, by semi-numerical techniques to avoid series expansions in
eccentricities and inclinations (see [32–34] or [31]).

8 The Pendulum

As we have seen, many problems of resonances (mean motion, secondary, or sec-
ular) have a pendulum-like dynamics as first approximation. Let us formulate the
pendulum differential equations and comment on the associated motions.

8.1 Formulation and Scaling

The first model of resonance is the pendulum, as already mentioned in (11); in
celestial mechanics cases (development of the third body perturbation, spin–orbit
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resonance, geostationary resonances), it is generally given first in the following
Hamiltonian form:

H(σ, S) = αS2 + βS + ε cos(σ − σ0).

We introduce a change of phase to make σ0 disappear (r = σ − σ0) and a trans-
lation on S to get rid of the linear term: R = S − S0. H becomes

H(r, R) = α (R + S0)2 + β (R + S0) + ε cos r

= αR2 + 2αR S0 + αS2
0 + βR + βS0 + ε cos r

= αR2 + ε cos r + C0,

if we choose S0 = − β

2α . C0 is a constant term depending on S0. After addition of a
constant and a scaling, the Hamiltonian H is replaced by K given by

K (r, R) = 1

2α
(H(r, R) − C0) = R2

2
− b cos r,

with b = − ε
2α the unique parameter of the model.

8.2 Equilibria and Phase Space

The dynamics of the system is given by the differential equations:

ṙ = ∂K

∂R
= R

Ṙ = −∂K

∂r
= −b sin r.

The equilibria are characterized by R = 0 and sin r = 0, which means r = 2kπ
or r = π + 2kπ , k is an integer. The stable equilibria (corresponding to a minimum
of K ) are r = 2kπ and R = 0, the unstable ones R = 0 and r = (2k + 1)π . We
choose the interval [−π, π[ to represent the periodic motion.

Starting from −π and arriving to π (R > 0) or starting from π and going to −π

(R > 0) in an infinite time, the two separatrices (called C1 and C2) divide the phase
space into three distinct regions called, in reference with the classical pendulum in
mechanics, positive circulation, negative circulation, and resonance (Fig. 10).

The equation of the separatrix (corresponding to the level curves K = b) is given
by
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Fig. 10 The three regions of the pendulum

b = R2

2
− b cos r

R2

2
= b (1 + cos r )

R2 = 4b cos2 r

2
.

The corresponding action (the area enclosed by the two separatrices, C1 and C2,
divided by 2π ) can be calculated as follows:

JSeparatrix = JS = 1

2π

∫
C1∪C2

R dr = 4

2π

∫ π

0
R dr = 4

√
b

π

∫ π

0
cos

r

2
dr = 8

√
b

π
.

8.3 Action-Angle Variables

Action-angles variables can be introduced in the two types of dynamics: circulation
or resonance. Both cases are characterized by values of K = h, giving the curve
implicit equation

h = R2

2
− b cos r or R2 = 2(h + b cos r ).

The idea, as already described in (1), is to introduce for each level curve, a canonical
transformation from (r, R) to (Ψ, J ) so that the Hamiltonian only depends on J ,
which means that Ψ is automatically a linear function of time.
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8.3.1 Circulation case : h > b

The action J is the area (divided by 2π ) enclosed between the level curve h and the
r -axis and vertically between the axes r = −π and r = π (Fig. 11).

Fig. 11 The positive circulation case

By obvious symmetry, it can be reduced to twice the calculation on the interval
[0, π [,

2π J = 2
∫ π

0

√
2(h + b cos r ) dr

= 2
∫ π

0

√
2(h + b − 2b sin2 r

2
) dr

= 4
√

2
∫ π

2

0

√
h + b − 2b sin2 u du where r = 2u

= 4
√

2
∫ π

2

0

√
h + b − 2b sin2 u du

= 4
√

2(h + b)
∫ π

2

0

√
1 − k2 sin2 u du where k2 = 2b

h + b

= 4
√

2(h + b) E(k),

where E(k) = ∫ π
2

0

√
1 − k2 sin2 u) du is the classical complete elliptic integral.

We can easily deduce ∂ J
∂h :
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2π
∂ J

∂h
= 4√

2(h + b)
E(k) + 4

√
2(h + b)

dE(k)

dk

dk

dh

= 4√
2(h + b)

E(k) + 4
√

2(h + b) [
E(k) − K(k)

k
]

−b

k(h + b)2

= 4√
2(h + b)

K(k),

where K(k) = ∫ π
2

0
1√

1−k2 sin2 u)
du is the other complete elliptic integral. The fol-

lowing relation is easy to check by derivation with respect to k:

dE(k)

dk
= d

dk

∫ π
2

0

√
1 − k2 sin2 u du = E(k) − K(k)

k
.

It means that each trajectory is characterized by a different frequency ω = ∂K
∂ J =

1
∂ J
∂h

.

The angle Ψ is defined as

Ψ − Ψ0 = ∂K

∂ J
t

= 1
∂ J
∂h

∫ t

0
dt = 1

∂ J
∂h

∫ r

0

dt

dr
dr == 1

∂ J
∂h

∫ r

0

1

Ṙ
dr,

= π

K(k)
F(

r

2
, k)

where F(x, k) = ∫ x
0

1√
1−k2 sin2 u

du is the incomplete elliptic integral (F(π2 , k) =
K(k)).

8.3.2 Resonance case: −b < h < b

The action J is here related to the area (divided by 2π ) enclosed by a complete
closed curve C and by symmetry, four times the same area between r = 0 and
r = r0. r0 is the value of r when R = 0, which means cos r0 = − h

b (Fig. 12),
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Fig. 12 The resonance case

2π J =
∮

C

√
2(h + b cos r ) dr

= 4
√

2
∫ r0

0

√
h + b − 2b sin2 r

2
dr

= 8
√

2
∫ r0

2

0

√
h + b − 2b sin2 u du

= 8
√

2
∫ π

2

0

√
h + b − 2b sin2 r0

2
sin2 v

du

dv
dv (13)

where

sin u = sin
r0

2
sin v. (14)

Let us calculate du
dv ,

cos u du = sin
r0

2
cos v dv,

√
1 − sin2 r0

2
sin2 v du = sin

r0

2
cos v dv,

du

dv
= sin

r0

2

cos v√
1 − sin2 r0

2 sin2 v

dv, (15)

and the square root in the integral,

h + b − 2b sin2 r0

2
sin2 v = h + b − 2b (1 − h2

b2
) sin2 v. (16)
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We introduce (15) and (16) in (13) to obtain

2π J = 8

π

√
b [K(k)(k2 − 1) + E(k)].

This gives J as a function of k, and then as a function of h, from which we can
extract the inverse of the frequency:

∂ J

∂h
= 2K(k)

π
√

b
.

The angle Ψ is obtained by the same way as in the circulation case:

Ψ − Ψ0 = ∂K

∂ J
t

= π

2K(k)
F(s, k), where sin s = k sin

r

2
.

8.4 The Harmonic Oscillator

When h is close to −b, which means that the curve is close to the stable equilib-
rium, the pendulum can be approximated by a simple harmonic oscillator; it also
corresponds to the approximation cos r = 1 − r2

2 . The Hamiltonian writes

K = R2

2
− b(1 − r2

2
) or K + b = R2

2
+ b

r2

2
. (17)

In that case, the action-angle canonical coordinates Ψ and J are introduced in an
easy way, without any elliptic integral:

R = ν
√

2J cosΨ,

r = 1

ν

√
2J sinΨ,

where ν is a constant to be determined by the ellipsoid equation (17). Indeed, let us
replace these new variables in the Hamiltonian:

K = K + b = R2

2
+ b

r2

2

= ν2 J cos2 Ψ + b
1

ν2
J sin2 Ψ

= ν2 J if ν2 = b
1

ν2
or ν4 = b

=
√

b J.
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This gives automatically the fundamental frequency of the resonance:

Ψ̇ = ∂K
∂ J

= ω =
√

b.

8.5 Generalization

This procedure can be generalized and applied about any stable equilibrium (center);
let us start with a Hamiltonian H = H(q, p) and consider a stable equilibrium
(q0, p0) solution of ∂H

∂q = 0 = ∂H
∂p .

In the neighborhood of (q0, p0), we develop the Hamiltonian:

H = H(q, p)

= H(q0, p0) + ∂H
∂q q0,p0

(q − q0) + ∂H
∂p q0,p0

(p − p0)

+1

2

(
∂2H
∂q2

q0,p0

(q − q0)

2

+ 2
∂2H
∂q∂p q0,p0

(q − q0)(p − p0)

+ ∂2H
∂p2

q0,p0

(p − p0)2

)
+ · · · ,

which gives

H−H(q0, p0) = 1

2
(a (Δq)2 + 2b ΔqΔp + c (Δp)2 + · · · ),

with a, b, and c representing the second partial derivatives: Δq = q − q0 and
Δp = p − p0.

The problem is now a simple reduction of conic; we introduce first a rotation (of
angle θ ) to get rid of the ΔqΔp term, followed by a scaling transformation similar
as that of the harmonic oscillator, to obtain

p′ = Δq sin θ +Δp cos θ = ν
√

2J cosΨ,

q ′ = Δq cos θ −Δp sin θ = 1

ν

√
2J sinΨ.

The angle θ is defined by the equation

(a − c) sin 2θ + 2b cos 2θ = 0.

The Hamiltonian is then

H−H(q0, p0) = 1

2
(A q ′2 +C p′2) = A

1

ν2
J sin2 Ψ +C ν2 J cos2 Ψ = C ν2 J,



Resonances: Models and Captures 29

where A
ν2 = C ν2 or A

C = ν4. A and C are related to a, b, c, and θ by the relations:

A = a cos2 θ − 2b sin θ cos θ + c sin2 θ,

C = a sin2 θ + 2b sin θ cos θ + c cos2 θ.

The fundamental frequency associated with this stable equilibrium is then

C ν2 =
√

AC = Ψ̇ and H−H(q0, p0) =
√

AC J.

The passage to action-angle variables is the only correct way of calculating such
a frequency, in the case of libration; it replaces a librating angle by a circulating
angle Ψ , for which it is meaningful to calculate a frequency (or a period) around the
center.

9 The Second Fundamental Model of Resonance

The following toy model of resonance (called the second fundamental model of
resonance or also Andoyer’s model) allows us to introduce a non-constant amplitude
in front of the cosine term (10); this amplitude is here dependent on the momentum
S. The dynamics of such a model is less symmetric than the pendulum one. Let us
write the simplest formulation of this Hamiltonian:

H = αS + βS2 + ε
√

2S cos σ.

As already mentioned, the parameters α, β, and ε are functions of N , constant in
this context. To perform the analysis of the model, it seems adequate to reduce those
three parameters to a unique one. The procedure consists in changing the time and
the momentum scales and modifying the sign and the phase of the angle σ .

9.1 Reduction to One Parameter

Let us describe this procedure for this model; we introduce a new time τ , a new
momentum R, and a new angle r related to our initial set through the relations

τ = a t,

R = b S,

r = cσ + d.

The constants a ≥ 0, b ≥ 0, c = ±1, and d have to be calculated to keep a Hamil-
tonian formulation in the new set of variable—momentum (r, R) with reference to
a new time τ (see [9]).
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It also induces a rescaling of the Hamiltonian; in other words, the related trans-
formation is not completely canonical, but only canonical of parameter μ). The new
Hamiltonian is called K and is linked to the initial one by the relation:

K (r, R) = μ H(σ (r ), S(R)) = μ H
(

r − d

c
,

R

b

)
,

where μ = μ(a, b, c, d) and the differential equations associated are as follows:

dr

dτ
= ∂K

∂R
,

d R

dτ
= −∂K

∂r
.

If we connect this system to the initial one, we obtain, through a succession of partial
derivatives

dr

dσ

dσ

dt

dt

dτ
= d K

dH
∂H
∂S

d S

d R
,

which means c
dσ

dt

1

a
= μ

∂H
∂S

1

b
,

d R

d S

d S

dt

dt

dτ
= −d K

dH
∂H
∂σ

dσ

dr
,

which means b
d S

dt

1

a
= −μ

∂H
∂σ

1

c
.

We obtain μ = bc
a .

We choose a very simple form for K , with a unique constant Δ:

K (r, R) = ΔR + R2 − 2
√

2R cos r. (18)

In this formulation we keep the unique parameter in the linear term in R; this is
purely arbitrary and other transformations would have introduced a unique param-
eter in front of the quadratic term or in front of the trigonometric contribution. We
are now going to prove that there exists a canonical transformation arriving to such
an Hamiltonian.

We can write

K (r, R) = μ H(σ (r ), S(R))

= μ H
(

r − d

c
,

R

b

)

= μ α
R

b
+ μ β

(
R

b

)2

+ μ ε

√
2R

b
cos

(
r − d

c

)
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= μ α

b
R + μ β

b2
R2 + μ ε√

b

√
2R cos(r − d) because c = ±1

= ΔR + R2 − 2
√

2R cos r

and consequently,

Δ = μ α

b
= bc

a

α

b
= c

α

a
,

1 = μ β

b2
= bc β

a b2
= c

β

a b
,

−2 cos r = μ ε√
b

cos(r − d) = bc ε

a
√

b
cos(r − d),

= c

√
b ε

a
cos(r − d).

As a ≥ 0 and b ≥ 0, the second equation allows to choose c = ±1; if β > 0,
c = +1, and if β < 0, c = −1, i.e.,

c = sign β.

The third equation determines d according to the sign of (βε):

−2 cos r = sign β

√
b ε

a
cos(r − d) = sign (βε)

√
b |ε|
a

cos(r − d).

If βε < 0, d = 0 and if βε > 0, d = π .

To find a ≥ 0 and b ≥ 0, we use ab = |β| and
√

b |ε|
a = 2 to obtain

b =
(

2 |β
ε
|
) 2

3

and a =
( |β|ε2

4

) 1
3

,

which gives

μ = bc

a
= sign β

(
16β2

ε4

) 1
3

and

Δ = sign β α

(
4

|β|ε2

) 1
3

= α

(
4

βε2

) 1
3

.

9.2 Equilibria

We calculate the equilibrium of the Hamiltonian K (r, R) by equating the partial
derivatives of K to zero. To avoid the well-known singularities in polar coordinates,
we introduce a canonical transformation to introduce Cartesian coordinates:



32 A. Lemaı̂tre

x =
√

2R cos r the momentum,

y =
√

2R sin r the variable,

and the Hamiltonian becomes

K (x, y) =
(

x2 + y2

2

)2

+Δ

(
x2 + y2

2

)
− 2x . (19)

The associated dynamical system is equating to zero to find the equilibria:

dy

dτ
= ∂K

∂x
= (x2 + y2

)
x +Δ x − 2 = 0,

dx

dτ
= −∂K

∂y
= − (x2 + y2

)
y −Δ y = 0.

From the second equation, we deduce

y = 0 or x2 + y2 = −Δ.

Replacing the second solution in the first equation leaves to −2 = 0; so all the
equilibria are characterized by the condition y = 0 and x satisfies a cubic equation:

x3 +Δx − 2 = 0,

which gives 1 or 3 real roots, following the values of Δ.
To distinguish clearly the cases with 1 or 3 roots, we introduce a new parameter

δ to replace Δ:

Δ = −3(δ + 1).

The case δ < 0 will correspond to the phase spaces with only one equilibrium, the
case δ > 0 to the phase spaces with three equilibria.

Let us remind here the expression of the first root of a cubic equation given in
the following general formulation: a3x3 + a2x2 + a1x + a0 = 0,

x =
(

R +
√

r2 + Q3
) 1

3 +
(

R −
√

r2 + Q3
) 1

3
if Q3 + R2 ≥ 0,

x = 2
√−Q cos

(
1
3 arccos R√

−Q3

)
− a2

3a3
if Q3 + R2 < 0,

with

Q = − a2
2

9a2
3

+ a1

3a3
and R = − a0

2a3
+ a1a2

6a2
3

− a3
2

27a2
3

.

Applying these expressions to our case, a3 = 1, a2 = 0, a1 = Δ = −3(δ + 1),
and a0 = −2, we obtain the analytical formulation of the equilibria.
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When δ < 0 the unique real equilibrium x1 is given by

x1 = (1 + γ )
1
3 + (1 − γ )

1
3 (20)

with γ 2 = 1 − (δ + 1)2, and when δ > 0 the three real equilibria x1, x2, and x3 are
explicitly calculated as follows:

x1 = 2 s cosΔ,

x2 = −s cosΔ−
√

3 s sinΔ,

x3 = −s cosΔ+
√

3 s sinΔ,

with s = √
δ + 1 and cos 3Δ = 1

s3 .
The stability of these equilibria is easily obtained by the calculation of the second

partial derivatives of K for each of them: x1 is stable for any δ, x2 is stable, and x3

unstable for δ > 0.

9.3 The Phase Space

The Hamiltonian (19) is a function of x and y and of the parameter δ; for each value
of δ, we can draw the curves K = constant, in the Cartesian phase space (x, y).
Different cases are represented in Fig. 13: δ = −3, δ = −1, δ = 2, and δ = 5.
The first two cases correspond to negative values of δ, with only one stable real
equilibrium. The level curves are almost ellipses for δ = −3, far from the resonance,
giving a target-like global picture; for δ = −1 this is not the case anymore and the
curves are different, their behavior already showing the proximity of the resonance.
For the last two cases, corresponding to positive values of δ, we see clearly the three
equilibria and the two separatrices (C1 and C2) dividing the phase space in three
regions: an internal, a resonant, and an external region. For large values of δ, the
separatrices are far away from the origin (x = 0, y = 0) and the phase space, near
the origin, looks again like a target.

The case δ = 0 is characterized by the apparition of two separatrices C1 and
C2 emerging from the unstable equilibrium x3; for any positive value of δ, these
separatrices are present. Their intersection points with the axis y = 0, x4 and x5 can
be calculated ([2]) as functions of δ:

x4 = ±
√

2Rmin and Rmin = s2

2
(6 − t2) − 2

√
st,

x5 =
√

2Rmax and Rmax = s2

2
(6 − t2) + 2

√
st,

with t = cosΔ+√
3 sinΔ.

We can also explicitly calculate the area enclosed by these two curves C1 and C2,
which are functions of the parameter δ: the function A1(δ) corresponds to the area
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Fig. 13 The phase spaces for δ = −3, δ = −1, δ = 2, and δ = 5

(divided by 2π as in the action-angle variables) of the curve C1 starting from x3,
crossing the axis y = 0 at x4 and encircling the stable equilibrium x2; the function
A2(δ) corresponds to the area (divided by 2π ) of the curve C2 starting from x3,
crossing the axis y = 0 at x5 and encircling the two stable equilibria x1 and x2

(Figs. 14 and 15).
Their analytical expressions are quite simple ([2, 21]):

A1(δ) = 6 s2
(π

2
− (arcsin st)−

3
2

)
− 6

st

√
(st)3 − 1,

A2(δ) = 6 s2
(π

2
− (arcsin st)−

3
2

)
+ 6

st

√
(st)3 − 1.

We can note that if δ = 0, s = 1, then A1(0) = 0 and A2(0) = 6π .
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Fig. 14 The three equilibria (x1, x2, and x3) and the two limits of the separatrix on the x-axis (x4

and x5) on the horizontal axis, for each value of δ on the vertical axis

δ

Fig. 15 The two critical areas included in both parts of the separatrix, A1(δ) and A2(δ)
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The derivatives of the two functions A1 and A2 with respect to δ which we shall
need later, d A1

dδ and d A2
dδ , can be calculated and are also functions of δ. We can also

notice that in the most interesting region for resonant motions (between, for exam-
ple, δ = 2 and δ = 4, i.e., for positive but not too large values of δ) these derivatives
are quasi-constants but not equal:

d A1

dδ
� 8.4 and

d A2

dδ
� 10.4.

9.4 The Three Zones

These two separatrices C1 and C2 divide the phase space into three zones or regions:
the internal zone inside the curve C1, the external zone outside the curve C2, and
the resonant zone between the two curves. Many authors refer to this last zone as
the libration zone which emphasizes the fact that the angle σ is (in most cases) not
circulating, but oscillating between two extrema. However, let us remark that some
orbits in the internal zone could also librate, and that this property of libration can
be easily destroyed by a simple translation of the origin. On the opposite, the reso-
nance zone definition is a topological characteristic, invariant by change of reference
frames.

9.5 The Resonant Frequency

For the stable equilibrium x1 in the resonant region (for δ ≥ 0), we can calculate
the fundamental resonant frequency by the passage to local action-angle variables,
as described in (1), using the Cartesian canonical variables x and y, around x = x1

and y = 0 (Fig. 16).

δ

Fig. 16 The fundamental frequency associated to the resonant equilibrium x1
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It leads to a frequency ω1 given by

dΨ

dτ
= ω = √

ac,

where

a = −3(δ + 1) + x2
1 ,

c = −3(δ + 1) + 3 x2
1 .

Let us give an example on the plane δ = 2, we select a curve very close to the
equilibrium x1; we calculate its period (here, 1.75 units of the time called τ ); if we
check the fundamental frequency for δ = 2, we obtain ω1 = 3.58 (per unit of time).
It is easy to check (Fig. 17) that

Period = 2π

ω1
= 2π

3.58
= 1.75 units of time.

Fig. 17 A curve close to the exact resonance on the plane δ = 2: (x, y) on the left, (t, x) on the
right

10 The Probability of Capture

Let us start with a one degree of freedom Hamiltonian, expressed in coordinates
σ (the variable) and S (the momentum) and depending on a parameter δ, slowly
varying with time:

H (σ, S, δ) with σ̇ = ∂H

∂S
and Ṡ = −∂H

∂σ
.
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10.1 Conservative Dynamics

We first consider that, for δ constant, the problem is integrable (H = h) and that
suitable action-angle variables (Ψ, J ) can be introduced through a generating func-
tion F(σ, J, δ), such that the new Hamiltonian K is only dependent on the action J
and not on the angle Ψ :

h = H (σ, S, δ) = K (−, J, δ) with S = ∂F
∂σ

and Ψ = ∂F
∂ J

.

The Hamilton–Jacobi equation becomes

h = H (σ,
∂F
∂σ

, δ) = K (−, J, δ), (21)

with its implicit solution

S = ∂F
∂σ

= S(σ, J, δ),

or starting with an initial value σ0:

F(σ, J, δ) =
∫ σ

σ0

S(σ ′, J, δ) dσ ′.

Ψ is chosen such that it makes a revolution of 2π along any closed trajectory char-
acterized by H = h. We introduce the generating function G corresponding to F on
a closed trajectory:

G(J, δ) =
∮

S(σ ′, J, δ) dσ ′.

Because Ψ = ∂F
∂ J , on a closed trajectory it becomes

2π = ∂G
∂ J

or J = G
2π

= 1

2π

∮
S(σ ′, J, δ) dσ ′,

which corresponds to the oriented area of the closed trajectory divided by 2π .
We call oriented area the area of the trajectory when it is followed clockwise and

minus the area of the trajectory when it is followed counterclockwise.

Let us remark that
∂G
∂ J

=
∮

∂S

∂ J
(σ ′, J, δ) dσ ′ and that S depends on J through

the Hamilton–Jacobi equation (21), which means through K = K (J ):

∂S

∂ J
= ∂S

∂K

∂K

∂ J
= 1

∂H
∂S

∂K

∂ J
= 1

σ̇

∂K

∂ J
,
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σ̇ = 0 at the unstable equilibrium, which means that this calculation as no meaning
for closed orbits near the separatrices.

Another useful expression for J and consequently for the oriented area is given
by

J = 1

2π

∮
Sdσ = − 1

2π

∮
σ d S = 1

4π

∮
(Sdσ − σd S).

10.2 Dissipative Dynamics

Let us now remind that δ is a parameter slowly varying with time which means, in
mathematical context:

|δ̇| ≤ ζ and |δ̈| ≤ ζ 2,

where ζ is a slow parameter with respect to the characteristic periods of the closed
trajectories (at least a factor 10 slower).

We perform the same canonical transformation to action-angle variables as in the
conservative case; however, the Hamiltonian H and the generating function F are
time dependent through δ; this means that the new Hamiltonian K is obtained by a
corrected formula with respect to H :

H (σ, S, δ) − ∂F
∂t

= K (−, J, δ).

The Hamiltonian writes

K(Ψ, J, δ) = H (σ (Ψ, J, δ), S(Ψ, J, δ), δ)

= K (−, J, δ) + ∂F
∂t

= K (−, J, δ) + δ̇
∂F
∂δ

(Ψ, J, δ)

and is associated to the dynamics:

Ψ̇ = ∂K
∂ J

= ∂K

∂ J
+ O(η) and J̇ = − ∂K

∂Ψ
= O(η).

We can conclude that for small η the area J is quasi-constant, as long as we avoid
the separatrices regions, and for times smaller than 1

η
. We follow the behavior of

the dynamical system by the help of a guiding trajectory, the area of which is
quasi-constant; δ is slowly changing with time, but at each time we fix its value
and calculate the enclosed area, we get a quasi-constant quantity (with variations
smaller than η for times smaller than 1

η
). We give in Fig. 18 an example of this

behavior, for a pendulum of parameter δ, evolving from δ = δ0 to δ = δ1: the eye
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Fig. 18 The area enclosed by the guiding trajectory is kept constant on different phase spaces

of the cat is growing, the guiding trajectory evolves, but keeps a constant enclosed
area, which allows to identify it from phase space to phase space.

10.3 Crossing of Separatrices

The interesting situation for capture (or escape) in resonance is obvious when the
guiding trajectory approaches a separatrix.

Let us take any of the models that we have presented before, with an unstable
equilibrium, from which two critical curves C1 and C2 start, dividing the space
phase in three distinct regions, called 1, 2, or 3; they correspond to the positive
circulation, the libration, and the negative circulation regions for the pendulum, and
to the internal, the resonant and the external zones for the second fundamental model
of resonance (Fig. 19).

Here we assume that the area enclosed by the guiding trajectory coincides, for a
specific value of δ, with the area enclosed by one of the separatrices.

The adiabatic invariant approach fails and has to be replaced by a calculation of
jumps from a region i to a region j , associated with a probability. Let us denote the
unstable equilibrium by σ� and S� and let us consider a new Hamiltonian B relative
to this equilibrium:

Fig. 19 The zones 1, 2, and 3 for the pendulum and the second fundamental model of resonance
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B(σ, S, δ) = H (σ, S, δ) − H (σ�, S�, δ).

It means that the two separatrices (joining at the unstable point) are characterized
by a level B = 0:

d B

dt
= δ̇

d B

dδ
.

We can associate a sign, denoted by si , to B for each of the regions i , with the
following characteristic: s1 s3 > 0 and s1 s2 < 0.

We also introduce a curve γi in each region i , which corresponds to a closed
curve following the separatrix in this region (Fig. 20).

The energy (lost or gained) along a revolution on the curve γi can be approxi-
mated by the quantity Bi given by

Bi =
∮
γi

d B =
∫ ∞

−∞
δ̇

d B

dδ
dt

=
∫ ∞

−∞
δ̇

(
∂B

∂σ

∂σ

∂δ
+ ∂B

∂S

∂S

∂δ
+ ∂B

∂δ

)
dt

� δ̇

∫ ∞

−∞

(
∂B

∂σ

∂σ

∂δ
+ ∂B

∂S

∂S

∂δ
+ ∂B

∂δ

)
dt

� δ̇
∂

∂δ

[ ∫ ∞

−∞

(
∂B

∂σ
σ + ∂B

∂S
S + B

)
dt
]
+ O(δ̇2)

� δ̇
∂

∂δ

[ ∫ ∞

−∞
(−Ṡ σ + σ̇ S) dt

]
+ O(δ̇2) (B = 0 on γi )

= δ̇
∂

∂δ

[ ∮
γi

(−d S σ + dσ S) dt
]
+ O(δ̇2)

= 2πδ̇
∂Ai

∂δ
,

where Ai is the oriented area of γi .

Fig. 20 The three curves γi (i = 1, 2, 3) following the separatrices (C1 and/or C2) in the regions 1,
2, or 3 for the pendulum model and for the SFMR model
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For the pendulum (A is the area of the libration region):

A1 = A

2
, A2 = A, A1 = − A

2
,

and for the second fundamental model of resonance:

A1 = A1, A2 = −(A2 − A1), A1 = −A2.

The balance of energy gives

s1 B1 + s2 B2 + s3 B3 = 0.

10.4 Probability of Capture

We start with a trajectory in region i ; we calculate the local situation of the
energy: si Bi .

• si Bi > 0: it means that either we gain energy (Bi > 0) in a region where the
separatrix has the minimum energy level (si > 0) or we loose energy (Bi < 0)
in a region where the separatrix has the maximum energy level (si > 0); in
both cases, we leave the separatrix and enter deeper in region i ; no crossing of
separatrix occurs and the orbit does not leave the region i .

• si Bi < 0: a gain or a loss of energy corresponds to getting closer to the separatrix;
the crossing of the separatrix is then obvious, but to which other region, j or k ?
(i, j, k being different and ∈ {1, 2, 3}). From the balance of energy, we know that
s j B j + sk Bk > 0 and then two cases are possible:

– s j B j > 0 and sk Bk < 0: it means that if we enter the region k, by our previous
discussion, we are going out quite immediately. So the capture in the region j
is the only possibility.

– s j B j > 0 and sk Bk > 0: the capture in regions j and k is possible, both
behaviors are associated with probabilities of capture given by the following
expressions:

Pri→ j = s j B j

s j B j + sk Bk
(22)

= − s j B j

si Bi

Pri→k = sk Bk

s j B j + sk Bk
(23)

= − sk Bk

si Bi
. (24)
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Fig. 21 A soft capture into resonance, without jump, observed in the second fundamental model
of resonance from an initial external orbit: the trajectory for negative values of δ is a (deformed)
ellipse, and when δ increases and reaches positive values, the trajectory is continuously moving to
the resonant region, keeping its enclosed area constant

Another way of describing these probabilities is to say that the phase of the
system at the capture is unknown, and that the transition to region j or k
depends on the phase of the system at that moment. Using a probability argu-
ment means that we assume that all phases are equiprobable.

We see in (24) that the probability of capture is not dependent on δ̇ (at first order)
and is directly linked to the increasing or decreasing of the critical areas as functions
of δ.

When the capture does not occur, the same formulae could explain a jump from
an external to an internal orbit or from a positive to a negative circulation (Figs. 21

Fig. 22 A jump observed in the second fundamental model of resonance from an initial external
orbit to an internal one
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and 22). These parts of the theory have been used, in particular, to explain the
depletion of the Kirkwood gaps in the asteroid main belt [22] and the differences
between several resonances [23].

This is the simplest formula of capture into resonance that we can give; it can
be applied and completed in several more specific contexts. For example, Malhotra
calculated probabilities of capture in a secondary resonance and applied it to the
case of Miranda and Umbriel in the Uranian system [26, 27]. Let us also mention
the sweeping of secular resonances analyzed by the same model [24].

11 More Complicated Models: SFMRAS

Similar studies can be performed in more complicated models in which the num-
ber of equilibria, their stability, and the number of topological zones can be more
important (Fig. 23).

For the resonances of order 2 and 3, the models can be described by a unique
parameter (the δ parameter) and simple expressions for the probabilities of capture
can be deduced [21].

For the order 4 a second parameter (called b) is already introduced, which com-
plicates the topology of the phase space; however, this parameter is, for many appli-
cations, much more stable than δ and can be assigned to a specific constant value in
local approaches.

For the second fundamental model of resonance with asymmetric equilibria,
there are also two parameters, δ and b: indeed, if we start with the expression given
by (12)

Hc
1(N , σ, S) = α(N ) S + β(N ) S2 + ε(N ) cos(σ ) + η(N ) cos 2σ,

we can introduce the same scalings (of time and momentum) and change of phase
as for the classical case with symmetric equilibria (see (18)):

Fig. 23 Stability of symmetric and asymmetric equilibria in the second fundamental model of
resonance with asymmetric equilibria (taken from [19])
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Fig. 24 Capture of a trajectory in an asymmetric equilibrium; δ varies from −1 to −0.75

K (r, R) = −3 (δ + 1) R + R2 − 2
√

2R cos r + 2 b R cos 2r.

The stability of the symmetric and asymmetric equilibria can be very different fol-
lowing their sign and values as functions of δ and b [19]. If a slow dissipation is
introduced in the model, the parameters δ and b slowly change with respect to the
time, giving adiabatic behavior of the trajectories. The areas are conserved as far as
no critical curve is encountered. For the crossings of the separatrices, appropriate
formulas of probability of capture are calculated (see Jancart 2004). As an illus-
tration, we give a case of capture in asymmetric equilibrium; the initial value of δ
is −1, b is kept constant (b = 2), and the dissipation is introduced by the coefficient
δ̇ = 0.05. The parameter δ evolves from −1 to −0.75. Figure 24 clearly shows the
capture in the upper asymmetric equilibrium.

12 The Spin–Orbit Resonance

A very interesting class of resonances concerns the synchronous rotations, like the
Moon, the Jovian, or the Saturnian satellites, and also the unique case of spin–orbit
resonance 3:2, Mercury (Fig. 25).

12.1 The Rotation Variables

Let us assume that the body is not a point mass anymore. It is here considered as
a rigid body, of mass M with three momenta of inertia A, B, and C , chosen as
A ≤ B ≤ C .

We will use Andoyer’s variables [5] to describe the rotation of the rigid body
around its center of mass. They are based on two linked sets of Euler’s angles
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1

2

74

3 56

Fig. 25 A schematic view of a synchronous rotation, like the Moon or the Galilean satellites where
the period of rotation equals the period of revolution around the primary, and the case of Mercury,
where the period of rotation is 2/3 of the period of revolution

(Fig. 26). The first set (h, K , g) locates the position of the angular momentum vector
G in an inertial frame of reference (the ecliptic plane at some epoch, for example);
the second Euler’s set (g, J, l) locates the body frame (the axis of inertia) in the

Fig. 26 The linked sets of Euler angles (l, K , g) and (g, J, h) from which the Andoyer’s angular
variables are defined. They locate the body frame (f1, f2, f3) with respect to the inertial frame
(e1, e2, e3)
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previous frame tied to the angular momentum. The origin of both frames is the
center of mass as origin, and the axes are the principal axes of inertia of the body.

The canonical set of Andoyer’s variables consists of the three angular variables
l, g, h and of their conjugated momenta defined by the norm G of the angular
momentum and two of its projections: L is its projection onto the axis of figure
and H onto the inertial axis.

Therefore, we define the following set of Andoyer’s variables:

Variables Momenta
l L = G cos J
g G
h H = G cos K

With these variables the vectors ω (the instantaneous rotation vector) and G (the
angular momentum vector referred to the center of mass) can be computed. Their
components in the frame of the principal axis of the body are

ω = (A−1G sin J sin l, B−1G sin J cos l,C−1G cos J ),

G = (G sin J sin l,G sin J cos l,G cos J ).

The kinetic energy of the rotation is thus

T = 1

2
( ω | G )

= 1

2
G2 sin2 J

[
sin2 l

A
+ cos2 l

B

]
+ G2 cos2 J

2C

= 1

2
(G2 − L2)

[
sin2 l

A
+ cos2 l

B

]
+ L2

2C
. (25)

Notice that the only angular variable appearing in it is l. Hence the dynamics
of the free motion is reduced to a one degree of freedom (l, L) problem, the phase
space of which is described in [5].

Andoyer’s variables present so-called virtual singularities; when J = 0 the angu-
lar variables l and g are undefined but their sum is well defined; when K = 0, the
angles g and h are not defined, although their sum is well defined. In order to avoid
these singularities, we shall thus use the following modified Andoyer’s variables:

λ1 = l + g + h, Λ1 = G,

λ2 = −l, Λ2 = G − L = G(1 − cos J ) = 2G sin2 J

2
,

λ3 = −h, Λ3 = G − H = G(1 − cos K ) = 2G sin2 K

2
.
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This set of variables—momenta (λi ,Λi ) is canonical and called the set of modi-
fied Andoyer’s elements, which partially solves the problem of virtual singularities.

The fast spin motion is given by the variable g in Andoyer’s variables, which
means by the first variable λ1 in the modified set of variables. The spin velocity is
given by the main contribution:

λ̇1 = ∂T

∂Λ1
=� Λ1

C
. (26)

We can associate canonical Cartesian coordinates to (λ2,Λ2) by the usual trans-
formation: (ξ = √

2Λ2 sin λ2, η = √
2Λ2 cos λ2). Then the Hamiltonian takes the

following form:

H = Λ2
1

2C
+ 4Λ1 − ξ 2 − η2

8C

[
γ1 + γ2

1 − γ1 − γ2
ξ 2 + γ1 − γ2

1 − γ1 + γ2
η2

]
, (27)

where

γ1 = (2C − A − B)/2C and γ2 = (B − A)/2C. (28)

12.2 Perturbation

To introduce a spin–orbit resonance, we need to mix the rotation dynamics (mainly
the angle λ1) with the orbital motion (mainly the mean longitude).

Let us consider that the orbital dynamics of the rigid body of mass M is perfectly
known; in the simplest cases, it is given by a Keplerian orbit, in a two-body config-
uration with a point mass m (the Earth for the lunar motion, the Sun for Mercury’s
orbit). In the reference frame linked to M , the orbit of m is described by elliptic ele-
ments (a, e, i, ω,Ω, 
) defined as always: a the semi-major axis, e the eccentricity,
i the inclination, 
 the mean anomaly, ω the argument of the pericenter, and Ω the
longitude of the node, defined with respect to the selected inertial frame.

We also introduce the mean motion of m denoted by n =
√

G (M+m
a3 .

The gravitational potential due to the presence of m can be expressed by

V = −G m
∫∫∫

W

ρ dW

r ′
,

where ρ is the density inside the volume W of the body and r ′ is the distance
between m and any volume element dW inside the body.

Using the usual expansion of the potential in spherical harmonics, we find
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V = −Gm

r

{
1 +

∑
n≥1

1

rn

n∑
m=0

Pm
n (sinφ)

[
Cm

n cos mΨ + Sm
n sin mΨ

]}
,

where Ψ and φ are the longitude and latitude of m in the body frame, and r is the
distance between m and the center of mass of the body.

We limit the expansion to the second order terms; the first term G m
r will be

taken into account later on, it has no direct effect on the rotation. Then we limit
the potential to the following formula:

V = 3Gm

2r3

[
C0

2 (x2 + y2) − 2C2
2 (x2 − y2)

]
. (29)

where (x, y, z) are the components, in the body frame, of the unit vector pointing to
m (x2+ y2+z2 = 1). The unscaled coefficients C0

2 = A+B−2C
2 and C2

2 = B−A
4 in the

potential are related to their usual scaled coefficients J2 and C2 by C0
2 = −M R2 J2

and C2
2 = M R2C22.

The potential now reads:

V = n2C
(a

r

)3 [
δ1(x2 + y2) + δ2(x2 − y2)

]
, (30)

with

δ1 = −3

2

m γ1

m + M
= −3

2

m

m + M

M R2

C
J2,

δ2 = −3

2

m γ2

m + M
= 3

m

m + M

M R2

C
C22,

The Hamiltonian is time dependent through the orbital motion of m; we introduce
a new angular variable, the mean longitude of m, λ = 
 + ω + Ω = n t + λ0 to
which we associate a momentum Λ.

The complete Hamiltonian, obtained by the summation of the kinetic energy (25),
the orbital motion (classical two-body potential), and the perturbing potential (30),
becomes

H = nΛ+ Λ2
1

2C
+ 4Λ1 − ξ 2 − η2

8C

[
γ1 + γ2

1 − γ1 − γ2
ξ 2 + γ1 − γ2

1 − γ1 + γ2
η2

]

+ n2C
(a

r

)3 [
δ1(x2 + y2) + δ2(x2 − y2)

]
. (31)

The first term is the two-body energy, in which the term Gm

r
of the gravitational

potential is inserted.
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12.3 The 1:1 Resonance

We then introduce the set of resonant canonical variables, with the apparition of
the difference between the two quasi-synchronous variables following [12] but
also [28]:

σ = λ1 − λ S = Λ1

λ Γ = Λ+Λ1

The spin velocity of the body, given by its first approximation (26), i.e. by S/C ,
is assumed to be almost equal to its orbital velocity given by n. λ is then a fast
variable while σ in a 1 :1 spin-orbit case, becomes much slower.

The next step in the theory of the rotation is to perform an averaging canonical
transformation in order to eliminate the fast variable (which is hidden in x and y)
from the expression of the Hamiltonian and to follow the dynamics of the resonant
angle σ . As it is well known and already applied in the previous sections, the effect
of a first-order averaging transformation is simply to remove all the terms which
contain this variable. We assume that this step has been performed and we finally
obtain the averaged Hamiltonian (33).

In other words, the original Hamiltonian contains periodic terms with linear com-
binations of the angles σ , λ, and λ3 +Ω; we average over the short periods, which
means over λ. The remaining Hamiltonian (for a circular orbit and neglecting the
terms of fourth order in ξ and η) becomes

H = nΓ − nS + S2

2C
+ S

2C

[
γ1 + γ2

1 − γ1 − γ2
ξ 2 + γ1 − γ2

1 − γ1 + γ2
η2

]
(32)

+ n2C
[
δ1(x2 + y2) + δ2(x2 − y2)

]
,

with

x2 + y2 = F0 + F1 cos ν + F2 cos 2ν

− (ξ 2 + η2) [G0 + G1 cos ν + G2 cos 2ν]

− (ξ 2 − η2)
5∑

i=0

Bi cos (2σ + iν)

+ 2 ξ η
5∑

i=0

Ai sin (2σ + iν),

x2 − y2 = (2 − ξ 2 − η2)
5∑

i=0

Ci cos (2σ + iν)

− (ξ 2 − η2) [H0 + H1 cos ν + H2 cos 2ν]

+ 2 ξ η
5∑

i=0

Di sin (2σ + iν), (33)
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where ν = λ3 +Ω . The functions Fi , Gi , Hi , Ai , Bi , ci , and Di are polynomials in
cos K , sin K , cos i , and sin i (see [12] for explicit formulations), which also means
functions of S and Λ3. Γ is now a constant because its conjugate variable λ (the
fast variable) is not present anymore in the averaged Hamiltonian H; then it can be
forgotten.

12.4 Precessing Motion

To give an immediate and interesting generalization, we can assume that m is on
a slowly precessing circular orbit, with a precession frequency Ω̇ measured on the
same inertial frame, centered on M .

In that case, we also introduce a fictitious momentum P associated to Ω and a
term Ω̇ P in the Hamiltonian. The variables and momenta are now:

(σ, ξ, λ3,Ω, S, η,Λ3, P),

and if we use ν = λ3 + Ω instead of λ3 and if we introduce the momentum P ′ =
P −Λ3, we obtain the following new set of variables:

(σ, ξ, ν,Ω, S, η,Λ3, P ′).

The corresponding Hamiltonian becomes

H = Ω̇ (P ′ +Λ3) − nS + S2

2C
+ S

2C

[
γ1 + γ2

1 − γ1 − γ2
ξ 2 + γ1 − γ2

1 − γ1 + γ2
η2

]

+ n2C
[
δ1(x2 + y2) + δ2(x2 − y2)

]
.

12.5 The Equilibrium

Writing up the differential equations generated by this Hamiltonian, we calculate
the equilibria by putting them to zero.

The interesting stable equilibrium (the exact spin–orbit resonance) is character-
ized by

• σ = 0 : the axis of smallest moment of inertia points toward the perturber.
• ξ = 0 = η : the axis of largest moment of inertia is aligned with the angular

momentum.
• ν = 0 : the lines of node of the orbit and of the equator are aligned.
• The equation ∂H

∂Λ3
= 0 fixes the value of the obliquity K � of the equilibrium by

the equation:

4 Ω̇ sin K � − n2 C

S

(
(2 δ1 + δ2) sin (2K � − 2 i) + 2δ2 sin (K � − i)

)
= 0. (34)
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• The equation ∂H
∂S = 0 gives the value of S at the equilibrium:

S�

C
= n − n2 C (1 − cos K �)

4S

(
(2 δ1 + δ2) sin (2K � − 2 i) + 2δ2 sin (K � − i)

)
.

(35)

Let us notice that if we neglect the precession rate (Ω̇ = 0) in (34), the obliquity
at the equilibrium K � coincides with the inclination i , and the two frequencies are
exactly equal: S� = nC .

On the opposite, if Ω̇ �= 0, there is a difference between K � and i and (35) shows
the correction to add on the exact commensurability.

If the inclination i is very small (sin i � i and cos i � 1), the equilibrium equa-
tion gives an analytical solution for K �:

K � = δ1 + δ2

δ1 + δ2 − S� Ω̇
n2 C

i.

The sign of this quantity is the sign of its denominator: let us first remark that at first
order, we can write

S� Ω̇

n2 C
= S�

nC

Ω̇

n
� Ω̇

n
.

Consequently,

• if δ1 + δ2 < Ω̇
n the value of K � < 0, as for the Moon, for example, where Ω̇ is

large;
• if δ1+δ2 > Ω̇

n the value of K � > 0, as in the case of Europa, where the precession
rate Ω̇ is smaller.

12.6 The Models

If we want a very simple one degree of freedom model of resonance for the spin–
orbit motion, it is quite easy by eliminating the precession (Ω̇ = 0) and keeping
two degrees of freedom to their values at the equilibrium: we simply assume that
ξ = 0 = η, ν = 0 and K � = i .

We can show that x2 + y2 is then reduced to a constant term (that we drop) and
x2−y2 is proportional to cos 2σ . The only degree of freedom is the couple (σ, S).

The Hamiltonian (after elimination of the constants) is reduced to
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H = −nS + S2

2C
+ n2C δ2 ε cos 2σ

= −nS + S2

2C
+ n2C

3m

m + M

M R2

C
C22 ε cos 2σ

= −nS + S2

2C
+ n2 3m

m + M
M R2C22 ε cos 2σ

= −nS + S2

2C
+ n2 3m

m + M

(B − A)

4
ε cos 2σ ,

where ε is a numerical factor depending on the functions defined in (33).
We obtain a classical pendulum model, which describes the averaged motion

in the case of the spin–orbit resonance. The linear term is easily eliminated by a
translation around S� = nC and the final momentum is ΔS = S − S�:

−nS + S2

2C
= −n (ΔS + S�) + (ΔS + S�)2

2C

= −n ΔS − n S� + ΔS2

2C
+ 2 ΔS S�

2C
+ (S�)2

2C

= ΔS2

2C
+ΔS (−n + S�

C
) + constant terms

≡ ΔS2

2C
.

If we reintroduce the short periodic terms, we get time-dependent contributions
which affect the dynamics of the pendulum, especially in the region of the separatri-
ces. These models have been developed and analyzed by several authors, especially
[4, 3], based on the differential equation (perturbed pendulum):

σ̈ + ε
∑

j

A j (e) sin (2σ − jnt) = 0.

12.7 The Fundamental Frequencies

Let us calculate the three fundamental proper frequencies (often called free frequen-
cies) associated to the three-dimensional equilibrium. We assume to be very close to
the equilibrium, and we expand the Hamiltonian in powers of six small quantities;
they represent the distances from each variable or momentum to its value at the
equilibrium:

Δσ = σ ΔS = S − S�

Δν = ν ΔΛ = Λ3 −Λ�
3

Δξ = ξ Δη = η
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and the expansion gives

2H � = a1 Δ
2
σ + 2 a2 Δσ Δν + a3 Δ

2
ν

+ b1 Δ
2
S + 2 b2 ΔS ΔΛ + b3 Δ

2
Λ

+ c1 Δ
2
ξ + c2 Δ

2
η,

where ai , bi , and ci are the second partial derivatives of the Hamiltonian evaluated
at the equilibrium coordinates (see [12] for explicit expressions).

An untangling transformation [16] is necessary to dissociate the contributions of
the first and second degrees of freedom; a final scaling allows to write the Hamilto-
nian (written in action-angle variables) as a summation of three momenta multiplied
by a frequency:

H = ω1 J1 + ω2 J2 + ω3 J3.

The three frequencies ωi (and the corresponding periods Ti ) are the fundamental
frequencies of the rotation: the free motion is a quasi-periodic function of these three
motions, perturbed by forced terms coming from external bodies or interactions.
Of course, in non-averaged models, the orbital period is also present as the fourth
period.

This formalism has been developed not only for the Galilean satellites, Europa
and Io [13–15, 17], but also for Titan [38].

12.8 The Case of Mercury

The case of Mercury is slightly different from these mentioned above: it is blocked
in a 3:2 spin-orbit resonance, which means that the basic (kernel) model depends on
the eccentricity, which is not the case for the 1:1 commensurability. The influence of
the precession of the orbit (Ω̇) is much less important, the equilibrium obliquity K �

is moved by a quantity of the order of 2′ from the inclination of Mercury, which is
about 7◦ with respect to the ecliptic. One of the first analyses of this 3 : 2 spin-orbit
was done by [41] with very recent contributions [40, 39].

A complete Hamiltonian analysis of this spin-orbit resonance can be found in
[6] for the first two frequencies, [7] for the third frequency, and [42] for the cou-
pling (and untangling) of the first two degrees of freedom (σ, S) and (ν,Λ3). The
three fundamental periods for Mercury are (depending on the values for C22), and
calculated in the case of a rigid body, of the order of

• For σ , the longitude of the libration in longitude: between 10 and 15 years
• For ν, the nodes commensurability: around 1060 years
• For ξ , the wobble: around 585 years
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and the fourth period is, of course, 88 days which corresponds to the orbital period.
For a more complete analysis, let us refer to [25]. The frequencies change drastically
if Mercury is assumed to have a liquid core [8].

13 The Gravitational Resonances

Another interesting family of resonances concerns the commensurabilities between
the orbital period of a first object (called here the satellite) orbiting a second body
(called here the planet) with the rotation period of this planet; typically the geosta-
tionary situation of an artificial satellite in gravitational resonance 1:1.

13.1 The Potential of the Earth

The apparition of such a resonance comes from the fact that the planets are neither
spherical nor homogeneous. The potential function induced by such a body on an
external body is written as

U (r) = μ

∫
V

ρ(rp)

‖r − rp‖ dV ,

where ρ(rp) stands for the density at some position rp inside the planet, ‖r− rp‖ is
the distance between the body and any particular volume element located at rp, and
μ = G M , with G is the gravitational constant and M the mass of the planet.

This potential is developed in several steps. First, we introduce the Legendre
polynomials:

1

‖r − rp‖ = 1

r

∞∑
n=0

(rp

r

)n
Pn (cos Ψ ) where

‖rp‖
‖r‖ = rp

r
,

where Ψ is the geocentric angle between r and rp and Pn are the Legendre polyno-
mials of degree n.

Second, by introducing the spherical coordinates in the planet-fixed reference
frame, i.e., the longitude λ and the latitude φ of the body of position r and of
coordinates x , y, and z:

x = r cosφ cos λ
y = r cosφ sin λ
z = r sinφ ,

as well as the corresponding quantities λp and φp for the volume element at rp, and
by using the decomposition formula, the Legendre polynomials can be expanded
into spherical harmonics
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Pn(cos Ψ ) =
n∑

m=0

(2 − δ0m)
(n − m)!

(n + m)!
Pm

n (sinφp) cos(m(λ− λp)) ,

where δi j = 1 for i = j and zero otherwise. Pm
n are the so-called associated

Legendre functions. We write the gravity potential in the form

U (r, λ, φ) = −μ

r

∞∑
n=0

n∑
m=0

(
Re

r

)n

Pm
n (sinφ)(Cnm cos mλ+ Snm sin mλ) , (36)

where Re is the equatorial radius of the planet and where the quantities Cnm and Snm

are the spherical harmonics coefficients which are given by

Cnm = 2 − δ0m

M⊕

(n − m)!

(n + m)!

∫
V

(
rp

Re

)n

Pm
n (sinφp) cos (mλp) ρ(rp) dV,

Snm = 2 − δ0m

M⊕

(n − m)!

(n + m)!

∫
V

(
rp

Re

)n

Pm
n (sinφp) sin (mλp) ρ(rp) dV .

The coefficient C00 is equal to 1; all terms Sn0 are obviously zero, the coefficients
C10, C11, and S11 correspond to the center of mass coordinates divided by the equa-
torial radius. Therefore, these coefficients are zero if the coordinate system refers
to the planet center of mass. Similarly, the coefficients C21 and S21 are zero if the
z-axis is aligned with the planet main axis of inertia. Finally, it can be shown that

J2 = −C20 = 2C − B − A

2 M R2
e

and C22 = B − A

4 M R2
e

,

where A, B, and C (with A < B < C) are the principal moments of inertia of the
planet.

With these choices, the potential is expressed in the following form, with a single
cosine term, a phase difference λnm as well as a new Jnm coefficient:

U (r, λ, φ) = −μ

r
+ μ

r

∞∑
n=2

n∑
m=0

(
Re

r

)n

Pm
n (sinφ) Jnm cos m(λ− λnm),

using the definitions for n ≥ m ≥ 0

Cnm = −Jnm cos (mλnm), Snm = −Jnm sin (mλnm),

Jnm =
√

C2
nm + S2

nm, m λnm = arctan

(−Snm

−Cnm

)
.

The next step is to develop the gravity field in terms of the satellite orbital
elements (a, e, i,Ω,ω, M)
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U (r, λ, φ) = −μ

r
−

∞∑
n=2

n∑
m=0

n∑
p=0

+∞∑
q=−∞

μ

a

(
Re

a

)n

Fnmp(i) Gnpq (e) Snmpq (Ω,ω, M, θ ) ,

where the functions Snmpq depend on the geopotential coefficients Cnm and Snm

Snmpq (Ω,ω, M, θ ) =
[+Cnm

−Snm

]n−m even

n−m odd
cos Θnmpq (Ω,ω, M, θ )

+
[+Snm

+Cnm

]n−m even

n−m odd
sin Θnmpq (Ω,ω, M, θ ) ,

and the angle is defined by

Θnmpq (Ω,ω, M, θ ) = (n − 2p)ω + (n − 2p + q) M + m(Ω − θ ) .

where θ is the sidereal time. The subscript indexes represented by n,m, p, q are
integers that identify the terms in the so-called inclination functions Fnmp(i) and
eccentricity functions Gnpq (e) for a particular harmonic (n,m).

13.2 Resonance with the Rotation of the Planet

The orbital period of an object in orbit is said to be in resonance with the rotation
of the planet if a small integer number q1 of sidereal days of the planet is equal to a
small integer number q2 of revolution periods of the object, that is,

PR

Pobj
= q1

q2
,

where PR is the rotational period of the planet, that is, 2π/nR = 1 planetary day
(nR = θ̇ ) and Pobj is the orbital period of the satellite orbiting the planet.

These resonances occur when the rate of the Kaula gravitational argument is
close to zero, that is,

Θ̇nmpq (Ω̇, ω̇, Ṁ, θ̇ ) = (n − 2p) ω̇ + (n − 2p + q) Ṁ + m(Ω̇ − θ̇ ) � 0 .

Typically, when the condition q = 0 is satisfied (when we consider a zero-order
expansion with respect to the eccentricity), we have

(n − 2p) (ω̇ + Ṁ) � m (θ̇ − Ω̇) ,

or similarly
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ω̇ + Ṁ

θ̇ − Ω̇
� q1

q2
. (37)

Such resonances are also said to be Repeat Ground-Track Resonances. The rates of
both ω and Ω are small and the simplified resonance condition reads

Ṁ

θ̇
� λ̇

θ̇
� q1

q2
.

When the ratio q1/q2 is close to 1, the resonance is clearly associated with the geo-
stationary orbit whereas it is close to 2 for the GPS satellites.

13.3 Resonant Hamiltonian Formalism—the Resonance Angle

Let us write the potential truncated at the second order and degree harmonic,
denoted by UJ22 :

UJ22 = 3
μ4 R2

e

L6

[
C22 (x̄2 − ȳ2) + S22 (2x̄ ȳ)

]
,

where x̄ = x/r and ȳ = y/r and let us confine ourselves to the circular orbits
in the equatorial plane (i = 0 and e = 0). Within these assumptions and in order
to outline the main features of the 1:1 resonance, we consider the following “min-
imum” resonant Hamiltonian H including the two-body problem, the (simplified)
potential UJ22 and a contribution coming from the external angle θ , the sidereal
time, which introduces the rotation of the planet in the dynamics and is associated
to a momentum Λ:

H(λ, L , θ,Λ) = − μ2

2L2
+ θ̇Λ+ UJ22 (λ, L , θ,Λ),

where λ is the mean longitude and L is the Delaunay-associated momentum,
L = √

G Ma.
In the case of a 1 : 1 gravitational resonance, we define the resonant angle σ by

σ = λ− θ .
In order to keep a canonical set of variables with L associated to σ , we use the

following symplectic transformation (see [43]) :

dσ L ′ + dθ ′Λ′ = dλ L + dθ Λ,

leading to the new set of canonical variables

σ = λ− θ, L ′ = L , θ ′ = θ, Λ′ = Λ+ L ,
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and the new Hamiltonian formulation including the resonant angle

H(σ, L , θ,Λ′) = − μ2

2L2
+ θ̇(Λ′ − L) + UJ22 (σ, L , θ,Λ′).

13.4 Simplified Analytical Averaged Model

To get the final model of resonance, we average the Hamiltonian function over the
fast angular variable θ , and we obtain the following result:

H̄(L̄, σ̄ , Λ̄) = − μ2

2L̄2
− θ̇ L̄ + 1

L̄6
[α1 cos 2σ̄ + α2 sin 2σ̄ ] ,

in which the quantities are all averaged; for simplicity we shall use again the same
letters (without bars) in the calculations of the equilibria.

The numerical values of α1 and α2 come from the coefficients C22 and S22. For
the Earth, their values are

α1 � 0.1077 × 10−6, α2 � −0.6204 × 10−7 .

Two stable equilibria (σ ∗
11, L∗

11), (σ ∗
12, L∗

12) as well as two unstable equilibria
(σ ∗

21, L∗
21), (σ ∗

22, L∗
22) are found to be solutions of

∂H
∂L

= ∂H
∂σ

= 0 ,

where

σ ∗
11 = λ∗ σ ∗

12 = λ∗ + π

σ ∗
21 = λ∗ + π

2
σ ∗

22 = λ∗ + 3π

2
,

as well as

L∗
11 = L∗

12 = 0.99999971, L∗
21 = L∗

22 = 1.00000029,

where the distance unit has been set to the exact resonant position, namely 42,
164 km for the Earth. Again for the Earth, the angular value λ∗ is the first quadrant
solution of

tan 2λ∗ = S22

C22
= α2

α1
,

that is, λ∗ � 75.07◦. (Fig. 27)
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13.5 The Resonant Frequency

The Hamiltonian is reduced to a quadratic form in a neighborhood of the stable
equilibrium point.

Let us introduce the resonant Cartesian coordinates (x = √
2L cos σ, y =√

2L sin σ ) and at any equilibrium (x∗ = √
2L∗ cos σ ∗, y∗ = √

2L∗ sin σ ∗). Devel-
oping the Hamiltonian function in Taylor series around one of the stable equilibria
(x∗, y∗), up to the second order, we find, after having dropped the constant additive
terms and setting X = (x − x∗) and Y = (y − y∗):

H∗(X, Y ) = 1

2
(aX2 + 2bXY + cY 2) + · · · .

The values a, b, and c stand for the second-order derivatives

a = ∂2H
∂x2

∣∣∣∣
(L∗,σ ∗)

, b = ∂2H
∂x∂y

∣∣∣∣
(L∗,σ ∗)

, c = ∂2H
∂y2

∣∣∣∣
(L∗,σ ∗)

,

where (L∗, σ ∗) are the values of (L , σ ) evaluated at the first stable equilibrium. We
use the reducing transformation from (X, Y ) to (q, p) by means of the rotation angle
Ψ :

X = p cosΨ + q sinΨ and Y = −p sinΨ + q cosΨ ,

where Ψ is solution of (a − c) sin 2Ψ + 2b cos 2Ψ = 0.
As a consequence, we find the new Hamiltonian formulation

H∗(p, q) = 1

2

[
A p2 + C q2

]
,

with A = a cos 2Ψ−2b sinΨ cosΨ+c sin 2Ψ and C = a sin 2Ψ+2b sinΨ cosΨ+
c cos 2Ψ .

A last scaling canonical transformation of the form p = α p′ and q = 1
α

q ′

obtained by solving the following equation A α2 = C

α2
allows us to write the new

Hamiltonian as

H(J, φ,Λ) =
√

AC J, where p′ =
√

2J cosφ and q ′ =
√

2J cosφ

J and φ are the corresponding action-angle variables.
Subsequently, we find the resonant fundamental frequency ν f at equilibrium.

ν f = ∂H
∂ J

=
√

AC .
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Fig. 27 The resonant phase space in the case of the Earth

Numerical computation for the Earth leads to the following value ν f = 7.674 ×
10−3/days, that is a period of 818.7 days.

13.6 Width of the Resonance

By a similar approach, we can easily estimate the width of the resonant zone; we
take the Hamiltonian level curve corresponding to one of the unstable equilibria Lu

and σu

H(Lu, σu) = Hu = − μ2

2L2
− θ̇L + 1

L6
[α1 cos 2σ + α2 sin 2σ ] ,

and we find the maxima and minima of this “banana curve,” corresponding to the
values of σ at the stable equilibria; by a quadratic approximation about Lu , we
obtain the width of the banana at the stable points, i.e., the width Δ of the resonant
zone. It can be approached by

Δ =
√
γ 2 + 8δβ

β2
, δ = α1

L6
u cos 2σu

, β = −3

2

μ2

L4
u

, γ = μ2

L3
u

− θ̇ . (38)

The numerical value of the width of the geostationary resonant zone is of the
order of 69 km.
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For want of a nail the shoe was lost.
For want of a shoe the horse was lost.
For want of a horse the rider was lost.
For want of a rider the battle was lost.

For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

For Want of a Nail (proverbial rhyme)

Abstract We present a survey of the theory of the Lyapunov Characteristic
Exponents (LCEs) for dynamical systems, as well as of the numerical techniques
developed for the computation of the maximal, of few and of all of them. After
some historical notes on the first attempts for the numerical evaluation of LCEs, we
discuss in detail the multiplicative ergodic theorem of Oseledec [102], which pro-
vides the theoretical basis for the computation of the LCEs. Then, we analyze the
algorithm for the computation of the maximal LCE, whose value has been exten-
sively used as an indicator of chaos, and the algorithm of the so-called standard
method, developed by Benettin et al. [14], for the computation of many LCEs. We
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1 Introduction

One of the basic information in understanding the behavior of a dynamical system
is the knowledge of the spectrum of its Lyapunov Characteristic Exponents (LCEs).
The LCEs are asymptotic measures characterizing the average rate of growth (or
shrinking) of small perturbations to the solutions of a dynamical system. Their
concept was introduced by Lyapunov when studying the stability of nonstationary
solutions of ordinary differential equations [96] and has been widely employed in
studying dynamical systems since then. The value of the maximal LCE (mLCE) is
an indicator of the chaotic or regular nature of orbits, while the whole spectrum of
LCEs is related to entropy (Kolmogorov-Sinai entropy) and dimension-like (Lya-
punov dimension) quantities that characterize the underlying dynamics.

By dynamical system we refer to a physical and/or mathematical system consist-
ing of (a) a set of l real state variables x1, x2 . . . , xl , whose current values define
the state of the system, and (b) a well-defined rule from which the evolution of the
state with respect to an independent real variable (which is usually referred as the
time t) can be derived. We refer to the number l of state variables as the dimension
of the system and denote a state using the vector x = (x1, x2 . . . , xl ), or the matrix
x = [ x1 x2 . . . xl ]

T
notation, where (T) denotes the transpose matrix. A particular

state x corresponds to a point in an l-dimensional space S, the so-called phase space
of the system, while a set of states x(t) parameterized by t is referred as an orbit of
the dynamical system.

Dynamical systems come in essentially two types:

1. Continuous dynamical systems described by differential equations of the form

ẋ = dx
dt

= f(x, t),

with dot denoting derivative with respect to a continuous time t and f being a set
of l functions f1, f2 . . . , fl known as the vector field.

2. Discrete dynamical systems or maps described by difference equations of the
form

xn+1 = f(xn),

with f being a set of l functions f1, f2 . . . , fl and xn denoting the vector x at a
discrete time t = n (integer).

Let us now define the term chaos. In the literature there are many definitions. A
brief and concise presentation of them can be found, for example, in [90]. We adopt
here one of the most famous definitions of chaos due to Devaney [35, p. 50], which
is based on the topological approach of the problem.

Definition 1. Let V be a set and f : V → V a map on this set. We say that f is
chaotic on V if
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1. f has sensitive dependence on initial conditions.
2. f is topologically transitive.
3. periodic points are dense in V .

Let us explain in more detail the hypothesis of this definition.

Definition 2. f : V → V has sensitive dependence on initial
conditions if there exists δ > 0 such that, for any x ∈ V and any neighborhood
Δ of x, there exist y ∈ Δ and n ≥ 0, such that |fn(x)− fn(y)| > δ, where fn denotes
n successive applications of f.

Practically this definition implies that there exist points arbitrarily close to x which
eventually separate from x by at least δ under iterations of f. We point out that not
all points near x need eventually move away from x under iteration, but there must
be at least one such point in every neighborhood of x.

Definition 3. f : V → V is said to be topologically transitive if for any
pair of open sets U, W ⊂ V there exists n > 0 such that fn(U ) ∩ W �= ∅.

This definition implies the existence of points which eventually move under iteration
from one arbitrarily small neighborhood to any other. Consequently, the dynamical
system cannot be decomposed into two disjoint invariant open sets.

From Definition 1 we see that a chaotic system possesses three ingredients: (a)
unpredictability because of the sensitive dependence on initial conditions, (b) inde-
composability because it cannot be decomposed into noninteracting subsystems due
to topological transitivity, and (c) an element of regularity because it has periodic
points which are dense.

Usually, in physics and applied sciences, people focus on the first hypothesis of
Definition 1 and use the notion of chaos in relation to the sensitive dependence
on initial conditions. The most commonly employed method for distinguishing
between regular and chaotic motion, which quantifies the sensitive dependence on
initial conditions, is the evaluation of the mLCE χ1. If χ1 > 0 the orbit is chaotic.
This method was initially developed at the late 1970s based on theoretical results
obtained at the end of the 1960s.

The concept of the LCEs has been widely presented in the literature from a prac-
tical point of view, i.e., the description of particular numerical algorithms for their
computation [54, 44, 62, 92, 36]. Of course, there also exist theoretical studies on the
LCEs, which are mainly focused on the problem of their existence, starting with the
pioneer work of Oseledec [102]. In that paper the Multiplicative Ergodic Theorem
(MET), which provided the theoretical basis for the numerical computation of the
LCEs, was stated and proved. The MET was the subject of several theoretical studies
afterward [108, 114, 76, 141]. A combination of important theoretical and numerical
results on LCEs can be found in the seminal papers of Benettin et al. [13, 14], written
almost 30 years ago, where an explicit method for the computation of all LCEs was
developed.

In the present report we focus our attention both on the theoretical framework
of the LCEs and on the numerical techniques developed for their computation. Our
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goal is to provide a survey of the basic results on these issues obtained over the
last 40 years, after the work of Oseledec [102]. To this end, we present in detail the
mathematical theory of the LCEs and discuss its significance without going through
tedious mathematical proofs. In our approach, we prefer to present the definitions
of various quantities and to state the basic theorems that guarantee the existence
of the LCE, citing at the same time the papers where all the related mathemat-
ical proofs can be found. We also describe in detail the various numerical tech-
niques developed for the evaluation of the maximal, of few or even of all LCEs,
and explain their practical implementation. We do not restrict our presentation to
the so-called standard method developed by Benettin et al. [14], as it is usually
done in the literature (see e.g., [54, 44, 92]), but we include in our study modern
techniques for the computation of the LCEs like the discrete and continuous meth-
ods based on the singular value decomposition (SVD) and the QR decomposition
procedures.

In our analysis we deal with finite-dimensional dynamical systems and in partic-
ular with autonomous Hamiltonian systems and symplectic maps defined on a com-
pact manifold, meaning that we exclude cases with escapes in which the motion can
go to infinity. We do not consider the rather exceptional cases of completely chaotic
systems and of integrable ones, i.e., systems that can be solved explicitly to give
their variables as single-valued functions of time, but we consider the most general
case of “systems with divided phase space” [30, p. 19] for which regular1 (quasiperi-
odic) and chaotic orbits co-exist. In such systems one sees both regular and chaotic
domains. But the regular domains contain a dense set of unstable periodic orbits,
which are followed by small chaotic regions. On the other hand, the chaotic domains
contain stable periodic orbits that are followed by small islands of stability. Thus,
the regular and chaotic domains are intricately mixed. However, there are regions
where order is predominant, and other regions where chaos is predominant.

Although in our report the theory of LCEs and the numerical techniques for their
evaluation are presented mainly for conservative systems, i.e., system that preserve
the phase space volume, these techniques are not valid only for such models. For
completeness sake, we also briefly discuss at the end of the report the computation
of LCEs for dissipative systems, for which the phase space volume decreases on
average, and for time series.

We tried to make the paper self-consistent by including definitions of the used
terminology and brief overviews of all the necessary mathematical notions. In addi-
tion, whenever it was considered necessary, some illustrative examples have been
added to the text in order to clarify the practical implementation of the presented
material. Our aim has been to make this review of use for both the novice and the
more experienced practitioner interested in LCEs. To this end, the reader who is
interested in reading up on detailed technicalities is provided with numerous sign-
posts to the relevant literature.

1 Regular orbits are often called ordered orbits (see, e.g., [30, p. 18]).
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Throughout the text bold lowercase letters denote vectors, while matrices are
represented, in general, by capital bold letters. We also note that the most frequently
used abbreviations in the text are LCE(s), Lyapunov characteristic exponent(s);
p-LCE, Lyapunov characteristic exponent of order p; mLCE, maximal Lyapunov
characteristic exponent; p-mLCE, maximal Lyapunov characteristic exponent of
order p; MET, multiplicative ergodic theorem; SVD, singular value decomposition;
PSS, Poincaré surface of section; FLI, fast Lyapunov indicator; GALI, generalized
alignment index.

This chapter is organized as follows.
In Sect. 2 we present the basic concepts of Hamiltonian systems and symplectic

maps, emphasizing on the evolution of orbits, as well as of deviation vectors about
them. In particular, we define the so-called variational equations for Hamiltonian
systems and the tangent map for symplectic maps, which govern the time evolution
of deviation vectors. We also provide some simple examples of dynamical systems
and derive the corresponding set of variational equations and the corresponding tan-
gent map.

Section 3 contains some historical notes on the first attempts for the application
of the theoretical results of Oseledec [102] for the actual computation of the LCEs.
We recall how the notion of exponential divergence of nearby orbits was eventually
quantified by the computation of the mLCE, and we refer to the papers where the
mLCE or the spectrum of LCEs were computed for the first time.

The basic theoretical results on the LCEs are presented in Sect. 4 following
mainly the milestone papers of Oseledec [102] and Benettin et al. [13, 14]. In
Sect. 4.1 the basic definitions and theoretical results of LCEs of various orders are
presented. The practical consequences of these results on the computation of the
LCEs of order 1 and of order p > 1 are discussed in Sects. 4.2 and 4.3, respectively.
Then, in Sect. 4.4 the MET of Oseledec [102] is stated in its various forms, while
its consequences on the spectrum of LCEs for conservative dynamical systems are
discussed in Sect. 4.5.

Section 5 is devoted to the computation of the mLCE χ1, which is the oldest
chaos indicator used in the literature. In Sect. 5.1 the method for the computation
of the mLCE is discussed in great detail and the theoretical basis of its evaluation is
explained. The corresponding algorithm is presented in Sect. 5.2, while the behavior
of χ1 for regular and chaotic orbits is analyzed in Sect. 5.3.

In Sect. 6 the various methods for the computation of part or of the whole spec-
trum of LCEs are presented. In particular, in Sect. 6.1 the standard method devel-
oped in [119, 14] is presented in great detail, while the corresponding algorithm
is given in Sect. 6.2. In Sect. 6.3 the connection of the standard method with the
discrete QR decomposition technique is discussed and the corresponding QR algo-
rithm is given, while Sect. 6.4 is devoted to the presentation of other techniques for
computing few or all LCEs, which are based on the SVD and QR decomposition
algorithms.

In Sect. 7 we briefly refer to various chaos detection techniques based on the
analysis of deviation vectors, as well as to a second category of chaos indicators
based on the analysis of the time series constructed by the coordinates of the orbit
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under consideration. The relation of two chaos indicators, namely the fast Lyapunov
indicator (FLI) and the generalized alignment index (GALI), to the computation of
the LCEs is also discussed.

Although the main topic of our presentation is the theory and the computation
of the LCEs for conservative dynamical systems, in the last section of our report
some complementary issues related to other types of dynamical systems are con-
cisely presented. In particular, Sect. 8.1 is devoted to the computation of the LCEs
for dissipative systems, while in Sect. 8.2 some basic features on the numerical
computation of the LCEs from a time series are presented.

Finally, in Appendix we present some basic elements of the exterior algebra
theory in connection to the evaluation of wedge products, which are needed for
the computation of the volume elements appearing in the definitions of the various
LCEs.

2 Autonomous Hamiltonian Systems and Symplectic Maps

In our study we consider two main types of conservative dynamical systems:

1. Continuous systems corresponding to an autonomous Hamiltonian system of N
degrees (ND) of freedom having a Hamiltonian function

H (q1, q2, . . . , qN , p1, p2, . . . , pN ) = h = constant, (1)

where qi and pi , i = 1, 2, . . . , N are the generalized coordinates and conjugate
momenta, respectively. An orbit in the l = 2N -dimensional phase space S of
this system is defined by a vector:

x(t) = (q1(t), q2(t), . . . , qN (t), p1(t), p2(t), . . . , pN (t)),

with xi = qi , xi+N = pi , i = 1, 2, . . . , N . The time evolution of this orbit is
governed by the Hamilton equations of motion, which in matrix form are given
by

ẋ = f(x) =
[

∂H
∂p − ∂H

∂q

]T
= J2N · DH, (2)

with q = (q1(t), q2(t), . . . , qN (t)), p = (p1(t), p2(t), . . . , pN (t)), and

DH =
[

∂H
∂q1

∂H
∂q2

· · · ∂H
∂qN

∂H
∂p1

∂H
∂p2

· · · ∂H
∂pN

]T
.

Matrix J2N has the following block form:

J2N =
[

0N IN

−IN 0N

]
,
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with IN being the N × N identity matrix and 0N being the N × N matrix with
all its elements equal to zero. The solution of (2) is formally written with respect
to the induced flow Φ t : S → S as

x(t) = Φ t (x(0)) . (3)

2. Symplectic maps of l = 2N dimensions having the form

xn+1 = f(xn). (4)

A symplectic map is an area-preserving map whose Jacobian matrix

M = Df(x) = ∂f
∂x

=

⎡
⎢⎢⎢⎢⎣

∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂x2N
∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂x2N

...
...

...
∂ f2N

∂x1

∂ f2N

∂x2
· · · ∂ f2N

∂x2N

⎤
⎥⎥⎥⎥⎦ ,

satisfies

MT · J2N · M = J2N . (5)

The state of the system at the discrete time t = n is given by

xn = Φn (x0) = (f)n (x0) , (6)

where (f)n (x0) = f(f(· · · f(x0) · · · )), n times.

2.1 Variational Equations and Tangent Map

Let us now turn our attention to the (continuous or discrete) time evolution of devi-
ation vectors w from a given reference orbit of a dynamical system. These vectors
evolve on the tangent space TxS of S. We denote by dxΦ

t the linear mapping which
maps the tangent space of S at point x onto the tangent space at point Φ t (x), and so
we have dxΦ

t : TxS → T Φ
t
(x)S with

w(t) = dxΦ
t w(0), (7)

where w(0), w(t) are deviation vectors with respect to the given orbit at times t = 0
and t > 0, respectively.

In the case of the Hamiltonian system (1) an initial deviation vector
w(0) = (δx1(0), δx2(0), . . . , δx2N (0)) from the solution x(t) (3) evolves on the tan-
gent space TxS according to the so-called variational equations:
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ẇ = Df(x(t)) · w = ∂f
∂x

(x(t)) · w = [J2N · D2H(x(t))
] · w =: A(t) · w , (8)

with D2H(x(t)) being the Hessian matrix of Hamiltonian (1) calculated on the ref-
erence orbit x(t) (3), i.e.,

D2H(x(t))i, j = ∂2 H

∂xi∂x j

∣∣∣∣
Φ

t
(x(0))

, i, j = 1, 2, . . . , 2N .

We underline that (8) represents a set of linear differential equations with respect to
w, having time-dependent coefficients, since matrix A(t) depends on the particular
reference orbit, which is a function of time t . The solution of (8) can be written as

w(t) = Y(t) · w(0), (9)

where Y(t) is the so-called fundamental matrix of solutions of (8), satisfying the
following equation.

Ẏ(t) = Df(x(t)) · Y(t) = A(t) · Y(t) , with Y(0) = I2N . (10)

In the case of the symplectic map (4) the evolution of a deviation vector wn , with
respect to a reference orbit xn , is given by the corresponding tangent map:

wn+1 = Df(xn) · wn = ∂f
∂x

(xn) · wn =: Mn · wn. (11)

Thus, the evolution of the initial deviation vector w0 is given by

wn = Mn−1 · Mn−2 · . . . · M0 · w0 =: Yn · w0, (12)

with Yn satisfying the relation

Yn+1 = Mn · Yn = Df(xn) · Yn, with Y0 = I2N . (13)

2.2 Simple Examples of Dynamical Systems

As representative examples of dynamical systems we consider (a) the well-known
2D Hénon–Heiles system [72], having the Hamiltonian function
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H2 = 1

2
(p2

x + p2
y) + 1

2
(x2 + y2) + x2 y − 1

3
y3, (14)

with equations of motion

ẋ =

⎡
⎢⎢⎣

ẋ
ẏ
ṗx

ṗy

⎤
⎥⎥⎦ = J4 · DH2 = J4 ·

⎡
⎢⎢⎣

x + 2xy
y + x2 − y2

px

py

⎤
⎥⎥⎦⇒

⎧⎪⎪⎨
⎪⎪⎩

ẋ = px

ẏ = py

ṗx = −x − 2xy
ṗy = −y − x2 + y2

, (15)

and (b) the 4-dimensional (4d) symplectic map

x1,n+1 = x1,n + x3,n

x2,n+1 = x2,n + x4,n

x3,n+1 = x3,n − ν sin(x1,n+1) − μ[1 − cos(x1,n+1 + x2,n+1)]
x4,n+1 = x4,n − κ sin(x2,n+1) − μ[1 − cos(x1,n+1 + x2,n+1)]

(mod 2π ), (16)

with parameters ν, κ , and μ. All variables are given (mod 2π), so xi,n ∈ [π, π ),
for i = 1, 2, 3, 4. This map is a variant of Froeschlé’s 4d symplectic map [52] and
its behavior has been studied in [31, 123]. It is easily seen that its Jacobian matrix
satisfies Eq. (5).

2.3 Numerical Integration of Variational Equations

When dealing with Hamiltonian systems the variational equations (8) have to be
integrated simultaneously with the Hamilton equations of motion (2). Let us clarify
the issue by looking to a specific example. The variational equations of the 2D
Hamiltonian (14) are the following:

ẇ =

⎡
⎢⎢⎣

δ̇x
δ̇y
δ̇px

δ̇py

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 − 2y −2x 0 0
−2x −1 + 2y 0 0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

δx
δy
δpx

δpy

⎤
⎥⎥⎦⇒

⎧⎪⎪⎨
⎪⎪⎩

δ̇x = δpx

δ̇y = δpy

δ̇px = (−1 − 2y)δx + (−2x)δy
δ̇py = (−2x)δx + (−1 + 2y)δy

.

(17)

This system of differential equations is linear with respect to δx , δy, δpx , δpy , but
it cannot be integrated independently of system (15) since the x and y variables
appear explicitly in it. Thus, if we want to follow the time evolution of an initial
deviation vector w(0) with respect to a reference orbit with initial condition x(0),
we are obliged to integrate simultaneously the whole set of differential equations
(15) and (17).
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A numerical scheme for integrating the variational equations (8), which exploits
their linearity and is particularly useful when we need to evolve more than one
deviation vectors is the following. Solving the Hamilton equations of motion (2)
by any numerical integration scheme we obtain the time evolution of the refer-
ence orbit (3). In practice this means that we know the values x(ti ) for ti = i Δt ,
i = 0, 1, 2, . . ., where Δt is the integration time step. Inserting this numerically
known solution to the variational equations (8) we end up with a linear system of
differential equations with constant coefficients for every time interval [ti , ti +Δt),
which can be solved explicitly.

For example, in the particular case of Hamiltonian (14), the system of variational
equations (17) becomes

δ̇x = δpx

δ̇y = δpy

δ̇px = [−1 − 2y(ti )] δx + [−2x(ti )] δy
δ̇py = [−2x(ti )] δx + [−1 + 2y(ti )] δy

, for t ∈ [ti , ti +Δt), (18)

which is a linear system of differential equations with constant coefficients and thus,
easily solved. In particular, (18) can by considered as the Hamilton equations of
motion corresponding to the Hamiltonian function:

HV (δx, δy, δpx , δpy) =
1

2

(
δp2

x + δp2
y

)+ 1

2

{
[1 + 2y(ti )] δx2 + [1 − 2y(ti )] δy2 + 2 [2x(ti )] δxδy

}
. (19)

The Hamiltonian formalism (19) of the variational equations (18) is a specific
example of a more general result. In the case of the usual Hamiltonian function

H (q,p) = 1

2

N∑
i=1

p2
i + V (q), (20)

with V (q) being the potential function, the variational equations (8) for the time
interval [ti , ti +Δt) take the form (see, e.g., [12])

ẇ =
[

δ̇q
δ̇p

]
=
[

0N IN

−D2V(q(ti )) 0N

]
·
[

δq
δp

]

with δq = (δq1(t), δq2(t), . . . , δqN (t)), δp = (δp1(t), δp2(t) . . . , δpN (t)), and

D2V(q(ti )) jk = ∂2V (q)

∂q j∂qk

∣∣∣∣
q(ti )

, j, k = 1, 2, . . . , N .

Thus, the tangent dynamics of (20) is represented by the Hamiltonian function (see,
e.g., [105])
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HV (δq, δp) = 1

2

N∑
j=1

δp2
i +

1

2

N∑
j,k

D2V(q(ti )) jkδq jδqk .

2.4 Tangent Dynamics of Symplectic Maps

In the case of symplectic maps, the dynamics on the tangent space, which is
described by the tangent map (11), cannot be considered separately from the phase
space dynamics determined by the map (4) itself. This is because the tangent map
depends explicitly on the reference orbit xn .

For example, the tangent map of the 4d map (16) is

δx1,n+1 = δx1,n + δx3,n

δx2,n+1 = δx2,n + δx4,n

δx3,n+1 = anδx1,n + bnδx2,n + (1 + an)δx3,n + bnδx4,n

δx4,n+1 = bnδx1,n + cnδx2,n + bnδx3,n + (1 + cn)δx4,n

, (21)

with

an = −ν cos(x1,n+1) − μ sin(x1,n+1 + x2,n+1)
bn = −μ sin(x1,n+1 + x2,n+1)
cn = −κ cos(x2,n+1) − μ sin(x1,n+1 + x2,n+1)

,

which explicitly depend on x1,n , x2,n , x3,n , x4,n . Thus, the evolution of a devia-
tion vector requires the simultaneous iteration of both the map (16) and the tangent
map (21).

3 Historical Introduction: The Early Days of LCEs

Prior to the discussion of the theory of the LCEs and the presentation of the various
algorithms for their computation, it would be interesting to go back in time and see
how the notion of LCEs, as well as the nowadays taken-for-granted techniques for
evaluating them, were formed.

The LCEs are asymptotic measures characterizing the average rate of growth
(or shrinking) of small perturbations to the orbits of a dynamical system, and their
concept was introduced by Lyapunov [96]. Since then they have been extensively
used for studying dynamical systems. As it has already been mentioned, one of
the basic features of chaos is the sensitive dependence on initial conditions and the
LCEs provide quantitative measures of response sensitivity of a dynamical system
to small changes in initial conditions. For a chaotic orbit at least one LCE is positive,
implying exponential divergence of nearby orbits, while in the case of regular orbits
all LCEs are zero. Therefore, the presence of positive LCEs is a signature of chaotic
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behavior. Usually the computation of only the mLCE χ1 is sufficient for determining
the nature of an orbit, because χ1 > 0 guarantees that the orbit is chaotic.

Characterization of the chaoticity of an orbit in terms of the divergence of nearby
orbits was introduced by Hénon and Heiles [72] and further used by several authors
(e.g., [48, 51, 52, 131, 22, 21]). In these studies two initial points were chosen
very close to each other, having phase space distance of about 10−7 − 10−6, and
were evolved in time. If the two initial points were located in a region of regular
motion their distance increased approximately linearly with time, while if they were
belonging to a chaotic region the distance exhibited an exponential increase in time
(Fig. 1).

Fig. 1 Typical behavior of the time evolution of the distance D between two initially close orbits
in the case of regular and chaotic orbits. The particular results are obtained for a 2D Hamiltonian
system describing a Toda lattice of two particles with unequal masses (see [22] for more details).
The initial Euclidian distance of the two orbits in the 4-dimensional phase space is D0 = 10−6.
D exhibits a linear (on the average) growth when the two orbits are initially located in a region of
regular motion (left panel), while it grows exponentially in the case of chaotic orbits (right panel).
The big difference in the values of D between the two cases is evident since the two panels have
the same horizontal (time) axis but different vertical ones. In particular, the vertical axis is linear
in the left panel and logarithmic in the right panel (after [22])

Although the theory of LCEs was applied to characterize chaotic motion by
Oseledec [102], quite some time passed until the connection between LCEs and
exponential divergence was made clear [10, 106]. It is worth mentioning that
Casartelli et al. [21] defined a quantity, which they called “stochastic parameter,”
in order to quantify the exponential divergence of nearby orbits, which was realized
afterward in [10] to be an estimator of the mLCE for t →∞.

So, the mLCE χ1 was estimated for the first time in [10], as the limit for
t → ∞ of an appropriate quantity X1(t), which was obtained from the evolution of
the phase space distance of two initially close orbits. In this paper some nowadays
well-established properties of X1(t) were discussed, like for example, the fact that
X1(t) tends to zero in the case of regular orbits following a power law ∝ t−1, while
it tends to nonzero values in the case of chaotic orbits (Fig. 2). The same algorithm



Lyapunov Characteristic Exponents 75

Fig. 2 Evolution of X1(t) (denoted as kn) with respect to time t (denoted by n × τ ) in log–log
scale for several orbits of the Hénon–Heiles system (14). In the left panel X1(t) is computed for
five different regular orbits at different energies H2 (denoted as E) and it tends to zero following
a power law ∝ t−1. A dashed straight line corresponding to a function proportional to t−1 is also
plotted. In the right panel the evolution of X1(t) is plotted for three regular orbits (curves 1–3) and
three chaotic ones (curves 4–6) for H2 = 0.125. Note that the values of the initial conditions given
in the two panels correspond to q1 = x , q2 = y, p1 = px , p2 = py in (14) (after [10])

was immediately applied for the computation of the mLCE of a dissipative system,
namely the Lorenz system [99].

The next improvement of the computational algorithm for the evaluation of the
mLCE was introduced in [34], where the variational equations were used for the
time evolution of deviation vectors instead of the previous approach of the simulta-
neous integration of two initially close orbits. This more direct approach constituted
a significant improvement for the computation of the mLCE since it allowed the
use of larger integration steps, diminishing the real computational time and also
eliminated the problem of choosing a suitable initial distance between the nearby
orbits.

In [11] a theorem was formulated, which led directly to the development of a
numerical technique for the computation of some or even of all LCEs, based on
the time evolution of more than one deviation vectors, which are kept linearly inde-
pendent through a Gram-Schmidt orthonormalization procedure (see also [9]). This
method was explained in more detail in [119], where it was applied to the study of
the Lorenz system, and was also presented in [12], where it was applied to the study
of an ND Hamiltonian system with N varying from 2 to 10.

The theoretical framework, as well as the numerical method for the computation
of the maximal, some or even all LCEs were given in the seminal papers of Benettin
et al. [13, 14]. In [14] the complete set of LCEs was calculated for several different
Hamiltonian systems, including 4- and 6-dimensional maps. In Fig. 3 we show the
results of [14] concerning the 3D Hamiltonian system of [34]. The importance of the
papers of Benettin et al. [13, 14] is reflected by the fact that almost all methods for
the computation of the LCEs are more or less based on them. Immediately the ideas
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Fig. 3 Time evolution of appropriate quantities denoted by X (t)
p , p = 1, 2, 3, having, respectively,

as limits for t → ∞ the first three LCEs χ1, χ2, χ3, for two chaotic orbits (left panel) and one
regular orbit (right panel) of the 3D Hamiltonian system initially studied in [34] (see [14] for
more details). In both panels X (t)

3 tends to zero implying that χ3 = 0. This is due to the fact
that Hamiltonian systems have at least one vanishing LCE, namely the one corresponding to the
direction along the flow (this property is explained in Sect. 4.5). On the other hand, χ1 and χ2 seem
to get nonzero values (with χ1 > χ2) for chaotic orbits, while they appear to vanish for regular
orbits (after [14])

presented in [13, 14] were used for the computation of the LCEs for a variety of
dynamical systems like infinite-dimensional systems described by delay differential
equations [46], dissipative systems [44], conservative systems related to Celestial
Mechanics problems [53, 55], as well as for the determination of the LCEs from a
time series [144, 118].

4 Lyapunov Characteristic Exponents: Theoretical Treatment

In this section we define the LCEs of various orders presenting also the basic the-
orems which guarantee their existence and provide the theoretical background for
their numerical evaluation. In our presentation we basically follow the fundamental
papers of Oseledec [102] and of Benettin et al. [13] where all the theoretical results
of the current section are explicitly proved.

We consider a continuous or discrete dynamical system defined on a differen-
tiable manifold S. Let Φ t (x) denote the state at time t of the system which at time
t = 0 was at x (see (3) and (6) for the continuous and discrete case respectively). For
the action of Φ t over two successive time intervals t and s we have the following
composition law:

Φ t+s = Φ t ◦Φs .
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The tangent space at x is mapped onto the tangent space at Φ t (x) by the dif-
ferential dxΦ

t according to (7). The action of Φ t (x) is given by (9) for continuous
systems and by (12) for discrete ones. Thus, the action of dxΦ

t on a particular initial
deviation vector w of the tangent space is given by the multiplication of matrix Y(t)
for continuous systems or Yn for discrete systems with vector w. From (9) and (12)
we see that the action of dxΦ

t over two successive time intervals t and s satisfies
the composition law:

dxΦ
t+s = dΦ s

(x)Φ
t ◦ dxΦ

s . (22)

This equation can be written in the form

R(t + s, x) = R(t, Φs(x)) · R(s, x), (23)

where R(t, x) is the matrix corresponding to dxΦ
t . We note that since

Y(0) = Y0 = I2N we get dxΦ
0w = w and R(0, x) = I2N . A function R(t, x) satis-

fying relation (23) is called a multiplicative cocycle with respect to the dynamical
system Φ t .

Let S be a measure space with a normalized measure μ such that

μ(S) = 1 , μ
(
Φ tA

) = μ(A) (24)

for A ⊂ S. Suppose also that a smooth Riemannian metric ‖ ‖ is defined on S.
We consider the multiplicative cocycle R(t, x) corresponding to dxΦ

t and we are
interested in its asymptotic behavior for t →±∞. Since, as mentioned by Oseledec
[102], the case t →+∞ is analogous to the case t →−∞, we restrict our treatment
to the case t → +∞, where time is increasing. In order to clarify what we are
practically interested in let us consider a nonzero vector w of the tangent space TxS
at x. Then the quantity

λt (x) = ‖dxΦ
t w‖

‖w‖
is called the coefficient of expansion in the direction of w. If

lim sup
t→∞

1

t
ln λt (x) > 0

we say that exponential diverge occurs in the direction of w. Of course the basic
question we have to answer is whether the characteristic exponent (also called char-
acteristic exponent of order 1)

lim
t→∞

1

t
ln λt (x)

exists.
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We will answer this question in a more general framework without restrict-
ing ourselves to multiplicative cocycles. So, the results presented in the following
Sect. 4.1 are valid for a general class of matrix functions, a subclass of which con-
tains the multiplicative cocycles which are of more practical interest to us, since
they describe the time evolution of deviation vectors for the dynamical systems we
study.

4.1 Definitions and Basic Theorems

Let At be an n × n matrix function defined either on the whole real axis or on the
set of integers, such that A0 = In , for each time t the value of function At is a
nonsingular matrix and ‖At‖ the usual 2-norm of At .2 In particular, we consider
only matrices At satisfying

max
{‖At‖, ‖A−1

t ‖} ≤ ect (25)

with c > 0 a suitable constant.

Definition 4. Considering a matrix function At as above and a nonzero vector w of
the Euclidian space R

n the quantity

χ (At ,w) = lim sup
t→∞

1

t
ln ‖At w‖ (26)

is called the 1-dimensional Lyapunov Characteristic Exponent
or the Lyapunov Characteristic Exponent of order 1 (1-LCE)
of At with respect to vector w.

For simplicity we will usually refer to 1-LCEs as LCEs.
We note that the value of the norm ‖w‖ does not influence the value of χ (At ,w).

For example, considering a vector βw, with β ∈ R a nonzero constant, instead of w
in Definition 4, we get the extra term ln |β|/t (with | | denoting the absolute value)
in (26) whose limiting value for t → ∞ is zero and thus does not change the value
of χ (At ,w). More importantly, the value of the LCE is independent of the norm
appearing in (26). This can be easily seen as follows: Let us consider a second norm
‖ ‖′ satisfying the inequality

β1‖w‖ ≤ ‖w‖′ ≤ β2‖w‖

2 The 2-norm ‖A‖ of an n×n matrix A is induced by the 2-norm of vectors, i.e., the usual Euclidean
norm ‖x‖ = (∑n

i=1 x2
i

)1/2
, by

‖A‖ = max
x �=0

‖Ax‖
‖x‖ ,

and is equal to the largest eigenvalue of matrix
√

ATA.
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for some positive real numbers β1, β2, and for all vectors w. Such norms are called
equivalent (see, e.g., [73, Sect. 5.4.7]). Then, by the above-mentioned argument it is
easily seen that the use of norm ‖ ‖′ in (26) leaves unchanged the value of χ (At ,w).
Since all norms of finite-dimensional vector spaces are equivalent, we conclude that
the LCEs do not depend on the chosen norm.

Let wi , i = 1, 2, . . . , p be a set of linearly independent vectors in R
n , E p be the

subspace generated by all wi and volp(At , E p) be the volume of the p-parallelogram
having as edges the p vectors At wi . This volume is computed as the norm of the
wedge product of these vectors (see Appendix for the definition of the wedge prod-
uct and the actual evaluation of the volume)

volp(At , E p) = ‖At w1 ∧ At w2 ∧ · · · ∧ At wp‖.

Let also volp(A0, E p) be the volume of the initial p-parallelogram defined by all
wi , since A0 is the identity matrix. Then the quantity

λt (E p) = volp(At , E p)

volp(A0, E p)

is called the coefficient of expansion in the direction of E p and it depends only on
E p and not on the choice of the linearly independent set of vectors. Obviously for
an 1-dimensional subspace E1 the coefficient of expansion is ‖At w1‖/‖w1‖. If the
limit

lim
t→∞

1

t
ln λt (E p)

exits it is called the characteristic exponent of order p in the direction of E p.

Definition 5. Considering the linearly independent set wi , i = 1, 2, . . . , p and the
corresponding subspace E p of R

n as above, the p-dimensional Lyapunov
Characteristic Exponent or the Lyapunov Characteristic
Exponent of order p (p-LCE) of At with respect to subspace E p is
defined as

χ (At , E p) = lim sup
t→∞

1

t
ln volp(At , E p). (27)

Similarly to the case of the 1-LCE, the value of the initial volume volp(A0, E p), as
well as the used norm, do not influence the value of χ (At , E p).

From (25) and the Hadamard inequality (see, e.g., [102]), according to which the
Euclidean volume of a p-parallelogram does not exceed the product of the lengths
of its sides, we conclude that the LCEs of (26) and (27) are finite.

From the definition of the LCE it follows that

χ (At , c1w1 + c2w2) ≤ max {χ (At ,w1), χ (At ,w2)}
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for any two vectors w1,w2 ∈ R
n and c1, c2 ∈ R with c1, c2 �= 0, while the

Hadamard inequality implies that if wi , i = 1, 2, . . . , n is a basis of R
n then

n∑
i=1

χ (At ,wi ) ≥ lim sup
t→∞

1

t
ln | det At |, (28)

where det At is the determinant of matrix At .
It can be shown that for any r ∈ R the set of vectors {w ∈ R

n : χ (At ,w) ≤ r} is
a vector subspace of R

n and that the function χ (At ,w) with w ∈ R
n , w �= 0 takes

at most n different values, say

ν1 > ν2 > · · · > νs with 1 ≤ s ≤ n. (29)

For the subspaces

Li =
{
w ∈ R

n : χ (At ,w) ≤ νi
}
, (30)

we have

R
n = L1 ⊃ L2 ⊃ · · · ⊃ Ls ⊃ Ls+1

def= {0} , (31)

with Li+1 �= Li and χ (At ,w) = νi if and only if w ∈ Li \ Li+1 for i = 1, 2, . . . , s.
So in descending order each LCE “lives” in a space of dimensionality less than
that of the preceding exponent. Such a structure of linear spaces with decreasing
dimension, each containing the following one, is called a filtration.

Definition 6. A basis wi , i = 1, 2, . . . , n of R
n is called normal if

∑n
i=1 χ (At ,wi )

attains a minimum at this basis. In other words, the basis wi , is a normal basis
if

n∑
i=1

χ (At ,wi ) ≤
n∑

i=1

χ (At , gi ),

where gi , i = 1, 2, . . . , n is any other basis of R
n .

A normal basis wi , i = 1, 2, . . . , n is not unique but the numbers χ (At ,wi ) depend
only on At and not on the particular normal basis and are called the LCEs of function
At . By a possible permutation of the vectors of a given normal basis we can always
assume that χ (At ,w1) ≥ χ (At ,w2) ≥ · · · ≥ χ (At ,wn).

Definition 7. Let wi , i = 1, 2, . . . , n be a normal basis of R
n and

χ1 ≥ χ2 ≥ · · · ≥ χn , with χi ≡ χ (At ,wi ), i = 1, 2, . . . , n, the LCEs of these
vectors. Assume that value νi , i = 1, 2, . . . , s appears exactly ki = ki (νi ) > 0
times among these numbers. Then ki is called the multiplicity of value νi and
the collection (νi , ki ) i = 1, 2, . . . , s is called the spectrum of LCEs.
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In order to clarify the used notation we stress that χi , i = 1, 2, . . . , n are
the n (possibly nondistinct) LCEs, satisfying χ1 ≥ χ2 ≥ · · · ≥ χn , while
νi , i = 1, 2, . . . , s represent the s (1 ≤ s ≤ n), different values the LCEs have,
with ν1 > ν2 > · · · > νs .

Definition 8. The matrix function At is called regular as t → ∞ if for each
normal basis wi , i = 1, 2, . . . , n it holds that

n∑
i=1

χ (At ,wi ) = lim inf
t→∞

1

t
ln | det At |,

which, due to (28) leads to

lim inf
t→∞

1

t
ln | det At | = lim sup

t→∞
1

t
ln | det At |

guaranteeing that the limit

lim
t→∞

1

t
ln | det At |

exists, is finite, and is equal to

lim
t→∞

1

t
ln | det At | =

n∑
i=1

χ (At ,wi ) =
s∑

i=1

kiνi .

We can now state a very important theorem for the LCEs:

Theorem 1. If the matrix function At is regular then the LCEs of all orders are given
by (26) and (27) where the lim sup

t→∞
is substituted by lim

t→∞

χ (At ,w) = lim
t→∞

1

t
ln ‖At w‖ (32)

χ (At , E p) = lim
t→∞

1

t
ln volp(At , E p). (33)

In particular, for any p-dimensional subspace E p ⊆ R
n we have

χ (At , E p) =
p∑

j=1

χi j , (34)

with a suitable sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ i p ≤ n.
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The part of the theorem concerning equations (32) and (33) was proved by Oseledec
in [102], while (34), although was not explicitly proved in [102], can be considered
as a rather easily proven byproduct of the results presented there. Actually, the valid-
ity of (34) was shown in [13].

4.2 Computing LCEs of Order 1

Let us now discuss how we can use Theorem 1 for the numerical computation of
LCEs, starting with the computation of LCEs of order 1.

As we have already mentioned in (29), the LCE takes at most n different values
νi , i = 1, 2, . . . , s, 1 ≤ s ≤ n. If we could know a priori the sequence (31) of
subspaces Li i = 1, 2, . . . , s of R

n we would, in principle, be able to compute the
values νi of all LCEs. This could be done by taking an initial vector wi ∈ Li \ Li+1

and compute

νi = lim
t→∞

1

t
ln ‖At wi‖ , i = 1, 2, . . . , s. (35)

Now apart from L1 = R
n all the remaining subspaces Li , i = 2, 3, . . . , s have

positive codimension codim(Li ) (= dim R
n − dim Li > 0) and thus, vanishing

Lebesgue measure. Then a random choice of w ∈ R
n would lead to the computation

of χ1 from (35), because, in principle w will belong to L1 and not to the subspaces
Li i = 2, . . . , s. Let us consider a simple example in order to clarify this statement.

Suppose that L1 is the usual 3-dimensional space R
3, L2 ⊂ L1 is a partic-

ular 2-dimensional plane of R
3, e.g., the plane z = 0, L3 ⊂ L2 is a particu-

lar 1-dimensional line, e.g., the x axis (Fig. 4a) and the corresponding LCEs are
χ1 > χ2 > χ3 with multiplicities k1 = k2 = k3 = 1. For this case we have
dim L1 = 3, dim L2 = 2, dim L3 = 1 and codim(L1) = 0, codim(L2) = 1,
codim(L3) = 2. Concerning the measures μ of these subspaces of R

3, it is obvi-
ous that μ(L2) = μ(L3) = 0, since the measure of a surface or of a line in the
3-dimensional space R

3 is zero.
If we randomly choose a vector w ∈ R

3 it will belong to L1 and not to L2,
i.e., having its z coordinate different from zero and thus, (35) would lead to the
computation of the mLCE χ1. Vector w1 in Fig. 4(b) represents such a random
choice. In order to compute χ2 from (35) we should choose vector w not ran-
domly but in a specific way. In particular, it should belong to L2 but not to L3,
so its z coordinate should be equal to zero. Thus this vector should have the form
w = (w1, w2, 0) with w1, w2 ∈ R, w2 �= 0, like vector w2 in Fig. 4b. Our choice
will become even more specific if we would like to compute χ3 because in this case
w should be of the form w = (w1, 0, 0) �= 0 with w1 ∈ R. Vector w3 of Fig. 4b is a
choice of this kind.

From this example it becomes evident that a random choice of vector w in (35)
will lead to the computation of the largest LCE χ1 with probability one. One more
comment concerning the numerical implementation of (35) should be added here.



Lyapunov Characteristic Exponents 83

z

x

y

L1

L3

L2

b

w2

w1

w3

z

x

y

L1

L3

L2

a

Fig. 4 (a) A schematic representation of the sequence of subspaces (31) where L1 identifies with
R

3, L2 ⊂ L1 is represented by the xy plane and the x axis is considered as the final subspace
L3 ⊂ L2. (b) A random choice of a vector in L1 ≡ R

3 will result with probability one to a vector
belonging to L1 and not to L2, like vector w1. Vectors w2, w3 belonging, respectively, to L2 \ L3

and to L3 are not random since their coordinates should satisfy certain conditions. In particular,
the z coordinate of w2 should be zero, while both the z and y coordinate of w3 should vanish. The
use of w1, w2, w3 in (35) leads to the computation of χ1, χ2, and χ3, respectively

Even if in some special examples one could happen to know a priori the subspaces
Li i = 1, 2, . . . , s, so that one could choose w ∈ Li \ Li+1 with i �= 1 then the
computational errors would eventually lead to the numerical computation of χ1.
Such an example was presented in [14].

4.3 Computing LCEs of Order p > 1

Let us now turn our attention to the computation of p-LCEs with p > 1. Equation
(34) of Theorem 1 actually tells us that the p-LCE χ (At , E p) can take at most(

n
p

)
distinct values, i.e., as many as all the possible sums of p 1-LCEs out of n

are. Now, as the choice of a random vector w ∈ R
n , or in other words, of a random

1-dimensional subspace of R
n produced by w, leads to the computation of the max-

imal 1-LCE, the random choice of a p-dimensional subspace E p of R
n , or equiva-

lently the random choice of p linearly independent vectors wi i = 1, 2, . . . , p, leads
to the computation of the maximal p-LCE (p-mLCE) which is equal to the sum of
the p largest 1-LCEs

χ (At , E p) =
p∑

i=1

χi . (36)
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This relation was formulated explicitly in [11, 9] and proved in [13] but was implic-
itly contained in [102]. The practical importance of (36) was also clearly explained
in [119]. Benettin et al. [13] gave a more rigorous form to the notion of the random
choice of E p, which is essential for the derivation of (36), by introducing a con-
dition that subspace E p should satisfy. They named this condition Condition R (at
random). According to Condition R a p-dimensional space E p ⊂ R

n is chosen at
random if for all j = 2, 3, . . . , s we have

dim(E p ∩ L j ) = max

{
0, p −

j−1∑
i=1

ki

}
, (37)

where L j belongs to the sequence of subspaces (31) and ki is the multiplicity of the
LCE νi (Definition 7).

In order to clarify these issues let us consider again the example presented in
Fig. 4, where we have three distinct values for the 1-LCEs χ1 > χ2 > χ3 with
multiplicities k1 = k2 = k3 = 1. In this case the 2-LCE can take one of the three
possible values χ1 + χ2, χ2 + χ3, χ1 + χ3, while the 3-LCE takes only one possible
value, namely χ1 + χ2 + χ3.

The computation of the 2-LCE requires the choice of two linearly indepen-
dent vectors w1, w2 and the application of (33). The two vectors w1, w2 define a
2-dimensional plane E2 in R

3 and χ (At , E2) practically measures the time rate of
the coefficient of expansion of the surface of the parallelogram having as edges the
vectors At w1, At w2.

By choosing the two vectors w1, w2 randomly we define a random plane E2 in
R

3 which intersects the subspace L2 (plane xy) along a line, i.e., dim(E2 ∩ L2) = 1
and the subspace L3 (x axis) at a point, i.e., dim(E2 ∩ L3) = 0 (Fig. 5a). This
random choice of plane E2 satisfies Condition R (37) and thus, (33) leads to the
computation of the 2-mLCE, namely χ1 + χ2. This result can be also understood
in the following way. Plane E2 in Fig. 5a can be considered to be spanned by two
vectors w1, w2 such that w1 ∈ L1 but not in its subspace L2 and w2 ∈ L2 but not in
its subspace L3. Then the expansion of w1 ∈ L1 \ L2 is determined by the LCE χ1

and the expansion of w2 ∈ L2 \ L3 by the LCE χ2. These 1-dimensional expansion
rates result to an expansion rate equal to χ1 + χ2 for the surface defined by the two
vectors.

Other more carefully designed choices of the E2 subspace lead to the computa-
tion of the other possible values of the 2-LCE. If for example w1 ∈ L2 \ L3 and
w2 ∈ L3 (Fig. 5b) we have E2 = L2 with dim(E2 ∩ L2) = 2 and dim(E2 ∩ L3) = 1.
In this case the expansion of w1 is determined by the LCE χ2 and of w2 by χ3, and
so the computed 2-LCE is χ2 + χ3. Finally, a choice of E2 of the form presented
in Fig. 5c leads to the computation of χ1 + χ3. In this case the plane E2 is defined
by w1 ∈ L1 \ L2 and w2 ∈ L3 and intersects subspaces L2 and L3 along the line
corresponding to L3, i.e., dim(E2 ∩ L2) = 1 and dim(E2 ∩ L3) = 1. It can be easily
checked that for the last two choices of E2 (Fig. 5b, c) for which the computed
2-LCE does not take its maximal possible value, Condition R (37) is not satisfied,
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Fig. 5 Possible choices of the 2-dimensional space E2 for the computation of the 2-LCE in the
example of Fig. 4, where R

3 is considered as the tangent space of a hypothetical dynamical
system. In each panel the chosen “plane” E2 is drawn, as well as one of its possible basis con-
stituted of vectors w1, w2. (a) A random choice of E2 leads to a plane intersecting L2 along
line ε (dim(E2 ∩ L2) = 1) and L1 at point A (dim(E2 ∩ L3) = 0). In this case (33) gives
χ (At , E2) = χ1 + χ2. More carefully made choices of E2 (which are obviously not made at
random) results to configurations leading to the computation of χ2 + χ3 (b) and χ1 + χ3 (c) from
(33). In these cases E2 does not satisfy Condition R (37) since dim(E2∩L2) = 2, dim(E2∩L3) = 1
in (b) and dim(E2 ∩ L2) = 1, dim(E2 ∩ L3) = 1 in (c)

as one should have expected from the fact that these choices correspond to carefully
designed configurations and not to a random process.

Similarly to the case of the computation of the 1-LCEs we note that, even if in
some exceptional case one could know a priori the subspaces Li i = 1, 2, . . . , s, so
that one could choose wi i = 1, 2, . . . , p to span a particular subspace E p in order to
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compute a specific value of the p-LCE, smaller than
∑p

i=1 χi (like in Fig. 5b c), the
inevitable computational errors would eventually lead to the numerical computation
of the maximal possible value of the p-LCE.

Summarizing we point out that the practical implementation of Theorem 1 guar-
antees that a random choice of p initial vectors wi i = 1, 2, . . . , p with 1 ≤ p ≤ n
generates a space E p which satisfies Condition R (37) and leads to the actual com-
putation of the corresponding p-mLCE, namely χ1 +χ2 + . . .+χp. This statement,
which was originally presented in [11, 9], led to the standard algorithm for the com-
putation of all LCEs presented in [14]. This algorithm is analyzed in Sect. 6.1.

4.4 The Multiplicative Ergodic Theorem

After presenting results concerning the existence and the computation of the LCEs
of all orders for a general matrix function At , let us restrict our study to the case
of multiplicative cocycles R(t, x), which are matrix functions satisfying (23). The
multiplicative cocycles arise naturally in discrete and continuous dynamical systems
as was explained in the beginning of Sect. 4.

In particular, we consider the multiplicative cocycle dxΦ
t which maps the tangent

space at x ∈ S to the tangent space at Φ t (x) ∈ S for a dynamical system defined on
the differentiable manifold S. We recall that S is a measure space with a normalized
measure μ and that Φ t is a diffeomorphism on S, i.e., Φ t is a measurable bijection
of S which preserves the measure μ (24) and whose inverse is also measurable.
We remark that in measure theory we disregard sets of measure 0. In this sense Φ t

is called measurable if it becomes measurable upon disregarding from S a set of
measure 0. Quite often we will use the expression “for almost all x with respect to
measure μ” for the validity of a statement, implying that the statement is true for all
points x with the possible exception of a set of points with measure 0.

A basic property of the multiplicative cocycles is their regularity, since Theorem
1 guarantees the existence of characteristic exponents and the finiteness of the LCEs
of all orders for regular multiplicative cocycles. Thus, it is important to determine
specific conditions that multiplicative cocycles should fulfill in order to be regular.
Such conditions were first provided by Oseledec [102] who also formulated and
proved the so-called Multiplicative Ergodic Theorem (MET), which is often referred
as Oseledec’s theorem.

The MET gives information about the dynamical structure of a multiplicative
cocycle R(t, x) and its asymptotic behavior for t → ∞. The application of the
MET for the particular multiplicative cocycle dxΦ

t provides the theoretical frame-
work for the computation of the LCEs for dynamical systems. The MET is one of
the milestones in the study of ergodic properties of dynamical systems and it can
be considered as a sort of a spectral theorem for random matrix products [113].
As a testimony to the importance of this theorem one can find several alternative
proofs for it in the literature. The original proof of Oseledec [102] applies to both
continuous and discrete systems. In view to the application to algebraic groups,
Raghunathan [108] devised a simple proof of the MET, which nevertheless could
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not guarantee the finiteness of all LCEs. Although Raghunathan’s results apply
only to maps, an extension to flows, following the ideas of Oseledec, was given by
Ruelle [114]. Benettin et al. [13] proved a somewhat different version of the theorem
being mainly interested in its application to Hamiltonian flows and symplectic maps.
Alternative proofs can also be found in [76, 141].

In [102] Oseledec proved that a multiplicative cocycle R(t, x) is regular and thus,
the MET is applicable to it, if it satisfies the condition

sup
|t |≤1

ln+ ‖R±(t, x)‖ ∈ L1(S, μ)3, (38)

where ln+ a = max {0, ln a}. From (38) we obtain the estimate

‖R(t, x)‖ ≤ eJ (x)|t |, (39)

for t →±∞ for almost all x with respect to μ, where J (x) is a measurable function.
From (39) it follows that R(t, x), considered as a function of t for fixed x, satisfies
(25). Benettin et al. [13] considered a slightly different version of the MET with
respect to the one presented in [102]. Their version was adapted to the framework of
a continuous or discrete dynamical system with Φ t being a diffeomorphism of class
C1, i.e., both Φ t and its inverse are continuously differentiable. They formulated the
MET for the particular multiplicative cocycle dxΦ

t , which they proved to be regular.
Since our presentation is mainly focused on autonomous Hamiltonian systems and
symplectic maps we will also state the MET for the specific cocycle dxΦ

t . The
version of the MET we present is mainly based on [102, 114, 13] and combines
different formulations of the theorem given by various authors over the years.

Theorem 2 (Multiplicative Ergodic Theorem—MET). Consider a dynamical sys-
tem as follows: Let its phase space S be an n-dimensional compact manifold with a
normalized measure μ, μ(S) = 1, and a smooth Riemannian metric ‖ ‖. Consider
also a measure–preserving diffeomorphism Φ t of class C1 satisfying

Φ t+s = Φ t ◦Φs ,

with t denoting time and having real (continuous system) or integer (discrete system)
values. Then for almost all x ∈ S, with respect to measure μ we have:

1. The family of multiplicative cocycles dxΦ
t : TxS → T Φ

t
(x)S, where TxS

denotes the tangent space of S at point x, is regular.
2. The LCEs of all orders exist and are independent of the choice of the Riemannian

metric of S.

3 We recall that a measurable function f : S → R (or C) of the measure space (S, μ) belongs to
the space L1(S, μ) if its absolute value has a finite Lebesgue integral, i.e.,∫

| f |dμ < ∞.



88 Ch. Skokos

In particular, for any w ∈ TxS the finite limit

χ (x,w) = lim
t→∞

1

t
ln ‖dxΦ

t w‖ (40)

exists and defines the LCE of order 1 (1-LCE). There exists at least one normal
basis vi , i = 1, 2, . . . , n of TxS for which the corresponding (possibly nondis-
tinct) 1-LCEs χi (x) = χ (x, vi ) are ordered as

χ1(x) ≥ χ2(x) ≥ · · · ≥ χn(x). (41)

Assume that the value νi (x), i = 1, 2, . . . , s with s = s(x), 1 ≤ s ≤ n appears
exactly ki (x) = ki (x, νi ) > 0 times among these numbers. Then the spectrum of
LCEs (νi (x), ki (x)), i = 1, 2, . . . , s is a measurable function of x, and as w �= 0
varies in TxS, χ (x,w) takes one of these s different values

ν1(x) > ν2(x) > · · · > νs(x). (42)

It also holds

s∑
i=1

ki (x)νi (x) = lim
t→∞

1

t
ln | det dxΦ

t |. (43)

For any p-dimensional (1 ≤ p ≤ n) subspace E p ⊆ TxS, generated by a
linearly independent set wi , i = 1, 2, . . . , p the finite limit

χ (x, E p) = lim
t→∞

1

t
ln volp(dxΦ

t , E p), (44)

where volp(dxΦ
t , E p) is the volume of the p-parallelogram having as edges the

vectors dxΦ
t wi , exists, and defines the LCE of order p (p-LCE). The value of

χ (x, E p) is equal to the sum of p 1-LCEs χi (x), i = 1, 2, . . . , n.
3. The set of vectors

Li (x) = {w ∈ TxS : χ (x,w) ≤ νi (x)} , 1 ≤ i ≤ s

is a linear subspace of TxS satisfying

TxS= L1(x) ⊃ L2(x) ⊃ · · · ⊃ Ls(x) ⊃ Ls+1(x)
def= {0}. (45)

If w ∈ Li (x) \ Li+1(x) then χ (x,w) = νi (x) for i = 1, 2, . . . , s. The multiplicity
ki (x) of values νi (x) is given by ki (x) = dim Li (x) − dim Li+1(x).

4. The symmetric positive-defined matrix

Λx = lim
t→∞

(
YT(t) · Y(t)

)1/2t
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exists. Y(t) is the matrix corresponding to dxΦ
t and is defined by (10) and (13)

for continuous and discrete dynamical systems, respectively. The logarithms of
the eigenvalues of Λx are the s distinct 1-LCEs (42) of the dynamical system.
The corresponding eigenvectors are orthogonal (since Λx is symmetric), and for
the corresponding eigenspaces V1(x), V2(x), . . . , Vs(x) we have

ki (x) = dim Vi (x) , Li (x) =
s⊕

r=i

Vr (x) for i = 1, 2, . . . , s.

Thus, TxS is decomposed as

T xS = V1(x) ⊕ V2(x) ⊕ · · · ⊕ Vs(x),

and for every nonzero vector w ∈ Vi (x), i = 1, 2, . . . , s, we get

χ (x,w) = νi (x).

A short remark is necessary here. The regularity of dxΦ
t , which guarantees the

validity of (40) and (44) and the finiteness of the LCEs of all orders, should not be
confused with the regular nature of orbits of the dynamical system. Regular orbits
have all their LCEs equal to zero (see also the discussion in Sect. 5.3).

Benettin et al. [11, 13] have formulated also the following theorem which pro-
vides the theoretical background for the numerical algorithm they presented in [14]
for the computation of all LCEs.

Theorem 3. Under the assumptions of the MET, the p-LCE of any p-dimensional
subspace E p ⊆ TxS satisfying Condition R (37) is equal to the sum of the p largest
1-LCEs (41):

χ (x, E p) = lim
t→∞

1

t
ln volp(dxΦ

t , E p) =
p∑

i=1

χi (x). (46)

4.5 Properties of the Spectrum of LCEs

Let us now turn our attention to the structure of the spectrum of LCEs for ND
autonomous Hamiltonian systems and for 2Nd symplectic maps, which are the main
dynamical systems we are interested in. Such systems preserve the phase space
volume, and thus, the r. h. s. of (43) vanishes. So for the sum of all the 1-LCEs we
have

2N∑
i=1

χi (x) = 0. (47)
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The symplectic nature of these systems gives indeed more. It has been proved in
[13] that the spectrum of LCEs consists of pairs of values having opposite signs

χi (x) = −χ2N−i+1(x) , i = 1, 2, . . . , N . (48)

Thus, the spectrum of LCEs becomes

χ1(x) ≥ χ2(x) ≥ · · · ≥ χN (x) ≥ −χN (x) ≥ · · · ≥ −χ2(x) ≥ −χ1(x).

For autonomous Hamiltonian flows we can say something more. Let us first
recall that for a general differentiable flow on a compact manifold without stationary
points at least one LCE must vanish [13, 70]. This follows from the fact that, in the
direction along the flow a deviation vector grows only linearly in time. So, in the
case of a Hamiltonian flow, due to the symmetry of the spectrum of LCEs (48), at
least two LCEs vanish, i.e.,

χN (x) = χN+1(x) = 0,

while the presence of any additional independent integral of motion leads to the
vanishing of another pair of LCEs.

Let us now study the particular case of a periodic orbit of period T , such that
ΦT (x) = x, following [9, 12]. In this case dxΦ

T is a linear operator on the tangent
space TxS so that for any deviation vector w(0) ∈ TxS we have

w(T ) = Y · w(0), (49)

where Y is the constant matrix corresponding to dxΦ
T . Suppose that Y has 2N

(possibly complex) eigenvalues λi , i = 1, 2, . . . , 2N , whose magnitudes can be
ordered as

|λ1| ≥ |λ2| ≥ . . . ≥ |λ2N |.

Let ŵi , i = 1, 2, . . . , 2N , denote the corresponding unitary eigenvectors. Then for
w(0) = ŵi (49) implies

w(kT ) = λk
i ŵi , k = 1, 2, . . . (50)

and so we conclude from (40) that

χ (x, ŵi ) = 1

T
ln |λi | = χi (x), i = 1, 2, . . . , 2N .

Furthermore for a deviation vector

w(0) = c1ŵ1 + c2ŵ2 + . . .+ c2N ŵ2N
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with ci ∈ R, i = 1, 2, . . . , 2N , it follows from (50) that the first nonvanishing
coefficient ci eventually dominates the evolution of w(t) and we get χ (x,w) = χi .
In this case we can define a filtration similar to the one presented in (45) by defin-
ing L1 = [ŵ1, ŵ2, . . . , ŵ2N ] = TxS, L2 = [ŵ2, . . . , ŵ2N ], . . . , L2N = [ŵ2N ],
L2N+1 = [0], where [ ] denotes the linear space spanned by vectors ŵ1, ŵ2, . . . , ŵ2N

and so on. It becomes evident that a random choice of an initial deviation vector
w(0) ∈ TxS will lead to the computation of the mLCE χ1(x) since, in general,
w(0) ∈ L1 \ L2.

So, in the case of an unstable periodic orbit where |λ1| > 1 we get χ1(x) >

0, which implies that nearby orbits diverge exponentially from the periodic one.
This orbit is not called chaotic, although its mLCE is larger than zero, but simply
“unstable”. In fact, unstable periodic orbits exist also in integrable systems. Since
the measure of periodic orbits in a general dynamical system has zero measure,
periodic orbits (stable and unstable) are rather exceptional.

In the general case of a nonperiodic orbit we are no more allowed to use con-
cepts as eigenvectors and eigenvalues because the linear operator dxΦ

t maps TxS
into T Φ

t
(x)S �= TxS, while eigenvectors are intrinsically defined only for lin-

ear operators of a linear space into itself. Nevertheless, in the case of nonperi-
odic orbits the MET proves the existence of the LCEs and of filtration (45). In
a way, the MET provides an extension of the linear stability analysis of periodic
orbits to the case of nonperiodic ones, although one should always keep in mind
that the LCEs are related to the real and positive eigenvalues of the symmetric,
positive-defined matrix YT(t) · Y(t) [63, 98]. On the other hand, linear stability
analysis involves the computation of the eigenvalues of the nonsymmetric matrix
Y(t), which solves the linearized equations of motion (10) for Hamiltonian flows
or (13) for maps. These eigenvalues are real or come in pairs of complex conju-
gate pairs and, in general, they are not directly related to the LCEs which are real
numbers.

An important property of the LCEs is that they are constant in a connected chaotic
domain. This is due to the fact that every nonperiodic orbit in the same connected
chaotic domain covers densely this domain, thus, two different orbits of the same
domain are in a sense dynamically equivalent. The unstable periodic orbits in this
chaotic domain have in general LCEs that are different from the constant LCEs of
the nonperiodic orbits. This is due to the fact that the periodic orbits do not visit
the whole domain, thus, they cannot characterize its dynamical behavior. In fact,
different periodic orbits have different LCEs.

5 The Maximal LCE

From this point on, in order to simplify our notation, we will not explicitly write the
dependence of the LCEs on the specific point x ∈ S. So, in practice, considering
that we are referring to a specific point x ∈ S, we denote by χi the LCEs of order 1
and by χ

(p)
i the LCEs of order p.
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For the practical determination of the chaotic nature of orbits a numerical com-
putation of the mLCE χ1 can be employed. If the studied orbit is regular χ1 = 0,
while if it is chaotic χ1 > 0, implying exponential divergence of nearby orbits. The
computation of the mLCE has been used extensively as a chaos indicator after the
introduction of numerical algorithms for the determination of its value at late 1970s
[10, 99, 8, 34, 14].

Apart from using the mLCE as a criterion for the chaoticity or the regularity of
an orbit its value also attains a “physical” meaning and defines a specific timescale
for the considered dynamical system. In particular, the inverse of the mLCE, which
is called Lyapunov time,

tL = 1

χ1
, (51)

gives an estimate of the time needed for a dynamical system to become chaotic and
in practice measures the time needed for nearby orbits of the system to diverge by e
(see e.g, [30, p. 508]).

5.1 Computation of the mLCE

The mLCE can be computed by the numerical implementation of (40). In Sect. 4.2
we showed that a random choice of the initial deviation vector w(0) ∈ TxS leads to
the numerical computation of the mLCE. We recall that the deviation vector w(t) at
time t > 0 is determined by the action of the operator dxΦ

t on the initial deviation
vector w(0) according to (7)

w(t) = dxΦ
t w(0). (52)

This equation represents the solution of the variational equations (8) or the evolution
of a deviation vector under the action of the tangent map (11) and takes the form
(9) and (12), respectively. We emphasize that, both the variational equations and the
equations of the tangent map are linear with respect to the tangent vector w, i.e.,

dxΦ
t (a w) = a dxΦ

t w, for any a ∈ R. (53)

In order to evaluate the mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of a deviation
vector w from this orbit with initial condition w(0). In the case of a Hamiltonian
flow (continuous time) we solve simultaneously the Hamilton equations of motion
(2) for the time evolution of the orbit and the variational equations (8) for the time
evolution of the deviation vector. In the case of a symplectic map (discrete time)
we iterate the map (4) for the evolution of the orbit simultaneously with the tangent
map (11), which determines the evolution of the tangent vector. The mLCE is then
computed as the limit for t →∞ of the quantity
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X1(t) = 1

t
ln
‖dx(0)Φ

t w(0)‖
‖w(0)‖ = 1

t
ln

‖w(t)‖
‖w(0)‖ , (54)

often called finite time mLCE. So, we have

χ1 = lim
t→∞ X1(t). (55)

The direct numerical implementation of (54) and (55) for the evaluation of χ1

meets a severe difficulty. If, for example, the orbit under study is chaotic, the norm
‖w(t)‖ increases exponentially with increasing time t , leading to numerical over-
flow, i.e., ‖w(t)‖ attains very fast extremely large values that cannot be represented
in the computer. This difficulty can be overcome by a procedure which takes advan-
tage of the linearity of dxΦ

t (53) and of the composition law (22). Fixing a small
time interval τ we express time t with respect to τ as t = kτ , k = 1, 2, . . .. Then
for the quantity X1(t) we have

X1(kτ ) = 1

kτ
ln
‖w(kτ )‖
‖w(0)‖

= 1

kτ
ln

( ‖w(kτ )‖
‖w((k − 1)τ )‖

‖w((k − 1)τ )‖
‖w((k − 2)τ )‖ · · ·

‖w(2τ )‖
‖w(τ )‖

‖w(τ )‖
‖w(0)‖

)

= 1

kτ

k∑
i=1

ln
‖w(iτ )‖

‖w((i − 1)τ )‖ ⇒

X1(kτ ) = 1

kτ

k∑
i=1

ln
‖dx(0)Φ

iτ w(0)‖
‖dx(0)Φ

(i−1)τ w(0)‖ . (56)

Denoting by D0 the norm of the initial deviation vector w(0)

D0 = ‖w(0)‖,

we get for the evolved deviation vector at time t = kτ

dx(0)Φ
iτ w(0) = dx(0)Φ

τ+(i−1)τ w(0)
(22)= d

Φ (i−1)τ
(x(0))

Φτ
(
dx(0)Φ

(i−1)τw(0)
)

(53)= ‖dx(0)Φ
(i−1)τ w(0)‖
D0

d
Φ (i−1)τ

(x(0))
Φτ

(
dx(0)Φ

(i−1)τw(0)

‖dx(0)Φ
(i−1)τ w(0)‖ D0

)
⇒

dx(0)Φ
iτ w(0)

‖dx(0)Φ
(i−1)τ w(0)‖ =

d
Φ (i−1)τ

(x(0))
Φτ

(
dx(0)Φ

(i−1)τ
w(0)

‖dx(0)Φ
(i−1)τ

w(0)‖
D0

)

D0
. (57)

Let us now denote by

ŵ((i − 1)τ ) = dx(0)Φ
(i−1)τw(0)

‖dx(0)Φ
(i−1)τ w(0)‖D0,
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the deviation vector at point Φ(i−1)τ (x(0)) having the same direction with w((i−1)τ )
and norm D0, and by Di its norm after its evolution for τ time units

Di = ‖dΦ (i−1)τ
(x(0))

Φτ ŵ((i − 1)τ )‖.

Using this notation we derive from (57)

ln
‖dx(0)Φ

iτ w(0)‖
‖dx(0)Φ

(i−1)τ w(0)‖ = ln
Di

D0
= lnαi , (58)

with αi being the local coefficient of expansion of the deviation vector for a
time interval of length τ when the corresponding orbit evolves from position
Φ (i−1)τ (x(0)) to position Φ iτ (x(0)) (lnαi/τ is also called stretching number [135],
[30, p. 257]).

From (55), (56), and (58) we conclude that the mLCE χ1 can be computed as

χ1 = lim
k→∞

X1(kτ ) = lim
k→∞

1

kτ

k∑
i=1

ln
Di

D0
= lim

k→∞
1

kτ

k∑
i=1

lnαi . (59)

Since the initial norm D0 can have any arbitrary value, one usually sets it to D0 = 1.
Equation (59) implies that practically χ1 is the limit value, for t → ∞, of the mean
of the stretching numbers along the studied orbit [14, 57, 135].

5.2 The Numerical Algorithm

In practice, for the evaluation of the mLCE we follow the evolution of a unitary
initial deviation vector ŵ(0) = w(0), ‖w(0)‖ = D0 = 1 and every t = τ time units
we replace the evolved vector w(kτ ), k = 1, 2, . . ., by vector ŵ(kτ ) having the same
direction but norm equal to 1 (‖ŵ(kτ )‖ = 1). Before each new renormalization the
corresponding αk is computed and χ1 is estimated from (59).

More precisely at t = τ we have α1 = ‖w(τ )‖. Then we define a unitary vector
ŵ(τ ) by renormalizing w(τ ) and using it as an initial deviation vector we evolve it
along the orbit from x(τ ) to x(2τ ) according to (52), having w(2τ ) = dx(τ )Φ

τ ŵ(τ ).
Then we define α2 = ‖w(2τ )‖ and we estimate χ1 (see Fig. 6). We iteratively
apply the above-described procedure until a good approximation of χ1 is achieved.
The algorithm for the evaluation of the mLCE χ1 is described in pseudo-code in
Table 1.

Instead of utilizing the variational equations or the tangent map for the evolution
of a deviation vector in the above-described algorithm, one could integrate (2) or
iterate (4) for two orbits starting nearby and estimate w(t) by difference. Indeed, this
approach, influenced by the rough idea of divergence of nearby orbits introduced
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x(0)

x(τ)

x(2τ)

w(τ)

w(2τ)

w(τ)

w(2τ)

w(0) = w(0)

Fig. 6 Numerical scheme for the computation of the mLCE χ1. The unitary deviation vector
ŵ((i −1)τ ), i = 1, 2, . . ., is evolved according to the variational equations (8) (continuous time) or
the equations of the tangent map (11) (discrete time) for t = τ time units. The evolved vector w(iτ )
is replaced by a unitary vector ŵ(iτ ) having the same direction with w(iτ ). For each successive
time interval [(i − 1)τ, iτ ] the quantity αi = ‖w(iτ )‖ is computed and χ1 is estimated from (59)

Table 1 The algorithm for the computation of the mLCE χ1 as the limit for t → ∞ of X1(t)
according to (59). The program computes the evolution of X1(t) as a function of time t up to a
given upper value of time t = TM or until X1(t) attains a very small value, smaller than a low
threshold value X1m

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Initial condition for the orbit x(0).
3. Initial unitary deviation vector w(0).
4. Renormalization time τ .
5. Maximal time: TM and minimum allowed value of X1(t): X1m .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the deviation vector from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and w(kτ ).

Step 3 Compute current value of αk = ‖w(kτ )‖.
Compute and Store current value of X1(kτ ) = 1

kτ

∑k
i=1 lnαi .

Step 4 Renormalize deviation vector by Setting w(kτ ) ← w(kτ )/αk .
Step 5 Set the counter k ← k + 1.
Step 6 If [(kτ > TM ) or (X1((k − 1)τ ) < X1m )] Then

Set SF ← 1.
End If

End While
Step 7 Report the time evolution of X1(t).

in [72], was initially adopted for the computation of the mLCE [10, 99, 8]. This
technique was abandoned after a while as it was realized that the use of explicit
equations for the evolution of deviation vectors was more reliable and efficient [34,
119, 14], although in some cases it is used also nowadays (see, e.g., [145]).
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5.3 Behavior of X1(t) for Regular and Chaotic Orbits

Let us now discuss in more detail the behavior of the computational scheme for the
evaluation of the mLCE for the cases of regular and chaotic orbits.

The LCE of regular orbits vanish [10, 23] due to the linear increase with time
of the norm of deviation vectors. We illustrate this behavior in the case of an ND
Hamiltonian system, but a similar analysis can be easily carried out for symplectic
maps. In such systems regular orbits lie on N -dimensional tori. If such tori are
found around a stable periodic orbit, they can be accurately described by N formal
integrals of motion in involution, so that the system would appear locally integrable.
This means that we could perform a local transformation to action-angle variables,
considering as actions J1, J2, . . . , JN the values of the N formal integrals, so that
Hamilton’s equations of motion, locally attain the form

J̇i = 0, θ̇i = ωi (J1, J2, . . . , JN ), i = 1, 2, . . . , N . (60)

These equations can be easily integrated to give

Ji (t) = Ji0, θi (t) = θi0 + ωi (J10, J20, . . . , JN0) t, i = 1, 2, . . . , N ,

where Ji0, θi0, i = 1, 2, . . . , N are the initial conditions of the studied orbit.
By denoting as ξi , ηi , i = 1, 2, . . . , N small deviations of Ji and θi respectively,

the variational equations (8) of system (60) describing the evolution of a deviation
vector are as follows:

ξ̇i = 0, η̇i =
N∑

j=1

ωi j · ξ j , i = 1, 2, . . . , N ,

where

ωi j = ∂ωi

∂ Jj

∣∣∣∣
J0

, i, j = 1, 2, . . . , N ,

and J0 = (J10, J20, . . . , JN0) = constant represents the N–dimensional vector of
the initial actions. The solution of these equations is

ξi (t) = ξi (0)

ηi (t) = ηi (0) +
[∑N

j=1 ωi jξ j (0)
]

t,
i = 1, 2, . . . , N . (61)

From (61) we see that an initial deviation vector w(0) with coordinates ξi (0),
i = 1, 2, . . . , N in the action variables and ηi (0), i = 1, 2, . . . , N in the angles,
i.e., w(0) = (ξ1(0), ξ2(0), . . . , ξN (0), η1(0), η2(0), . . . , ηN (0)), evolves in time in
such a way that its action coordinates remain constant, while its angle coordinates
increase linearly in time. This behavior implies an almost linear increase of the norm
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of the deviation vector. To see this, let us assume that vector w(0) has initially unit
magnitude, i.e.,

N∑
i=1

ξ 2
i (0) +

N∑
i=1

η2
i (0) = 1

whence the time evolution of its norm is given by

‖w(t)‖ =

⎧⎪⎨
⎪⎩1 +

⎡
⎢⎣

N∑
i=1

⎛
⎝ N∑

j=1

ωi jξ j (0)

⎞
⎠

2
⎤
⎥⎦ t2 +

⎡
⎣2

N∑
i=1

⎛
⎝ηi (0)

N∑
j=1

ωi jξ j (0)

⎞
⎠
⎤
⎦ t

⎫⎪⎬
⎪⎭

1/2

.

This implies that the norm for long times grows linearly with t :

‖w(t)‖ ∝ t. (62)

So, from (54) we see that for long times X1(t) is of the order O(ln t/t), which
means that X1(t) tends asymptotically to zero, as t → ∞ like t−1. This asymptotic
behavior is evident in numerical computations of the mLCE of regular orbits, as we
can see, for example, in the left panel of Fig. 2.

The asymptotic behavior of X1(t) for regular orbits, described above, represents
a particular case of a more general estimation presented in [63]. In particular, Gold-
hirsch et al. [63] showed that, in general, after some initial transient time the value
of the mLCE χ1 is related to its finite time estimation by

X1(t) = χ1 + b + z(t)

t
, (63)

where b is a constant and z(t) is a “noise” term of zero mean. According to their
analysis, this approximate formula is valid for both regular and chaotic orbits. It is
easily seen that from (63) we retrieve again the asymptotic behavior X1(t) ∝ t−1

for the case of regular orbits (χ1 = 0).
In the case of chaotic orbits the variation of X1(t) is usually irregular for rela-

tively small t and only for large t the value of X1(t) stabilizes and tends to a constant
positive value which is the mLCE χ1. If, for example, the value of χ1 is very small
then initially, for small and intermediate values of t , the term proportional to t−1

dominates the r.h.s. of (63) and X1(t) ∝ t−1. As t grows the significance of term
(b+ z(t))/t diminishes and eventually the value of χ1 becomes dominant and X1(t)
stabilizes. It becomes evident that for smaller values of χ1 the larger is the time
required for X1(t) to reach its limiting value, and consequently X1(t) behaves as in
the case of regular orbits, i.e., X1(t) ∝ t−1 for larger time intervals. This behavior
is clearly seen in Fig. 7 where the evolution of X1(t) of chaotic orbits with small
mLCE is shown. In particular, the values of the mLCE are χ1 ≈ 8 × 10−3 (left
panel) and χ1 ≈ 1.6 × 10−7 (right panel). In both panels the evolution of X1(t) of
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Fig. 7 Evolution of X1(t) (denoted as L N ) with respect to the discrete time t (denoted as N ) in
log–log scale for regular (grey curves) and chaotic (black curves) orbits of the 4d map (16) (left
panel) and of a 4d map composed of two coupled 2d standard maps (right panel) (see [122] for
more details). For regular orbits X1(t) tends to zero following a power law decay, X1(t) ∝ t−1.
For chaotic orbits X1(t) exhibits for some initial time interval the same power law decay before
stabilizing to the positive value of the mLCE χ1. The length of this time interval is larger for
smaller values of χ1. The chaotic orbits have χ1 ≈ 8 × 10−3 (left panel) and χ1 ≈ 1.6 × 10−7

(right panel) (after [122])

regular orbits (following the power law ∝ t−1) is also plotted in order to facilitate
the comparison between the two cases.

6 Computation of the Spectrum of LCEs

While the knowledge of the mLCE χ1 can be used for determining the regular
(χ1 = 0) or chaotic (χ1 > 0) nature of orbits, the knowledge of part, or of the whole
spectrum of LCEs, provides additional information on the underlying dynamics and
on the statistical properties of the system and can be used for measuring the fractal
dimension of strange attractors in dissipative systems.

In Sect. 4.5 it was stated that for Hamiltonian systems the existence of an integral
of motion results to a pair of zero values in the spectrum of LCEs. As an example of
such case we refer to the Hamiltonian system studied in [12]. This system has one
more integral of motion apart from the Hamiltonian function and so four LCEs were
always found to be equal to zero. Thus, the determination of the number of LCEs
that vanish can be used as an indicator of the number of the independent integrals
of motion that a dynamical system has.

It has been also stated in Sect. 4.5 that the spectrum of the LCEs of orbits in
a connected chaotic region is independent of their initial conditions. So, we have
a strong indication that two chaotic orbits belong to connected chaotic regions if
they exhibit the same spectrum. As an example of this situation we refer to the case
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studied in [3] of two chaotic orbits of a 16D Hamiltonian system having similar
spectra of LCEs but very different initial conditions.

Vice versa, the existence of different LCEs spectra of chaotic orbits provides
strong evidence that these orbits belong to different chaotic regions of the phase
space that do not communicate. In [14] two chaotic orbits, previously studied in
[34], were found to have significantly different spectra of LCEs and they were
considered to belong to different chaotic regions which were called the “big” (cor-
responding to the largest χ1) and the “small” chaotic sea. It is worth mentioning
that the numerical results of [14] suggested the possible existence of an additional
integral of motion for the “small” chaotic sea, since χ2 seemed to vanish. This
assumption was in accordance to the results of [34] where such an integral was
formally constructed.

The spectrum of LCEs is also related to two important quantities namely, the
metric entropy, also called Kolmogorov–Sinai (KS) entropy h, and the information
dimension D1, which are trying to quantify the statistical properties of dynamical
systems. For the explicit definition of these quantities, as well as detailed discussion
of their relation to the LCEs the reader is referred, for example, to [9, 46, 54, 44]
[92, pp. 304–305] for the KS entropy and to [79, 46, 47, 66, 44] for the information
dimension.

In particular, Pesin [106] showed that under suitable smoothness conditions the
relation between the KS entropy h and the LCEs is given by

h =
∫
M

⎡
⎣ ∑

χi (x)>0

χi (x)

⎤
⎦ dμ,

where the sum is extended over all positive LCEs and the integral is defined over a
specified region M of the phase space S.

Kaplan and Yorke [79] introduced a quantity, which they called the Lyapunov
dimension

DL = j +
∑ j

i=1 χi

|χ j+1| , (64)

where j is the largest integer for which χ1 + χ2 + . . . + χ j ≥ 0. The Kaplan–
Yorke conjecture states that the information dimension D1 is equal to the Lyapunov
dimension DL , i.e.,

D1 = DL , (65)

for a typical system, and thus, it can be used for the determination of the frac-
tal dimension of strange attractors. The meaning of the word “typical” is that it
is not hard to construct examples where (65) is violated (see, e.g., [47]). But the
claim is that these examples are pathological in that the slightest arbitrary change
of the system restores the applicability of (65) and that such violation has “zero
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probability” of occurring in practice. The validity of the Kaplan–Yorke conjecture
has been proved in some cases [146, 87] although a general proof has not been
achieved yet. We note that in the case of a 2ND conservative system DL is equal to
the dimension of the whole space, i.e., DL = 2N , because j = 2N in (64) since∑2N

i=1 χi = 0 according to (47).
So, it becomes evident that developing an efficient algorithm for the numerical

evaluation of few or of all LCEs is of great importance for the study of dynamical
systems. In this section we present the different methods developed over the years
for the computation of the spectrum of LCEs, focusing on the method suggested by
Benettin et al. [14], the so-called standard method.

6.1 The Standard Method for Computing LCEs

The basis for the computation of few or even of all LCEs is Theorem 3, which
states that the computation of a p-LCE from (44), considering a random choice of p
(1 < p ≤ 2N ) linearly independent initial deviation vectors, leads to the evaluation
of the p-mLCE χ

(p)
1 , which is equal to the sum of the p largest 1-LCEs (46).

In order to evaluate the p-mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of p linearly inde-
pendent deviation vectors with initial conditions w1(0),w2(0), . . . ,wp(0) (using
the variational equations (8) or the equations of the tangent map (11)). Then, the
p-mLCE is computed as the limit for t →∞ of the quantity

X (p)(t) = 1

t
ln

volp
(
dx(0)Φ

t w1(0), dx(0)Φ
t w2(0), · · · , dx(0)Φ

t wp(0)
)

volp
(
w1(0),w2(0), . . . ,wp(0)

)

= 1

t
ln

‖w1(t) ∧ w2(t) ∧ · · · ∧ wp(t)‖
‖w1(0) ∧ w2(0) ∧ · · · ∧ wp(0)‖ = 1

t
ln

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ , (66)

which is also called the finite time p-mLCE. So we have

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

t→∞ X (p)(t). (67)

We recall that the quantity volp
(
w1,w2, . . . ,wp

)
appearing in the above definition

is the volume of the p-parallelogram having as edges the vectors w1,w2, · · · ,wp

(see (106) and (105) in Appendix).
The direct numerical implementation of (66) and (67) faces one additional dif-

ficulty apart from the fast growth of the norm of deviation vectors discussed in
Sect. 5.1. This difficulty is due to the fact that when at least two vectors are involved
(e.g., for the computation of χ (2)

1 ), the angles between their directions become too
small for numerical computations.

This difficulty can be overcome on the basis of the following simple remark:
an invertible linear map, as dx(0)Φ

t , maps a linear p-dimensional subspace onto
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a linear subspace of the same dimension, and the coefficient of expansion of any
p-dimensional volume under the action of any such linear map (for example,∥∥∧p

i=1 wi (t)
∥∥ / ∥∥∧p

i=1 wi (0)
∥∥ in our case) does not depend on the initial volume

[14]. Since the numerical value of
∥∥∧p

i=1 wi (0)
∥∥ does not depend on the choice of

the orthonormal basis of the space (see Appendix for more details), in order to show
the validity of this remark we will consider an appropriate basis which will facilitate
our calculations.

In particular, let us consider an orthonormal basis
{
ê1, ê2, . . . , êp

}
of the

p-dimensional space E p ⊆ Tx(0)S spanned by
{
w1(0),w2(0), . . . ,wp(0)

}
. This

basis can be extended to an orthonormal basis of the whole 2N -dimensional space{
ê1, ê2, . . . , êp, êp+1, . . . , ê2N

}
and E p ⊆ Tx(0)S can be written as the direct sum of

E p and of the (2N − p)-dimensional subspace E ′ spanned by
{
êp+1, . . . , ê2N

}
Tx(0)S = E p

⊕
E ′.

Consider also the 2N × p matrix W(0) having as columns the coordinates of vec-
tors wi (0), i = 1, 2, . . . , p with respect to the complete orthonormal basis ê j ,
j = 1, 2, . . . , 2N , in analogy to (102). Since wi (0) ∈ E p this matrix has the form

W(0) =
[

W̃(0)
0(2N−p)×p

]
,

where W̃(0) is a square p× p matrix and 0(2N−p)×p is the (2N − p)× p matrix with
all its elements equal to zero. Then, according to (105) and (106) the volume of the
initial p-parallelogram is ∥∥∥∥∥

p∧
i=1

wi (0)

∥∥∥∥∥ =
∣∣det W̃(0)

∣∣ , (68)

since det W̃
T
(0) = det W̃(0) for the square matrix W̃(0).

Each deviation vector is evolved according to (7) and it can be computed through
(9) or (12), with Y(t) being the 2N × 2N matrix representing the action of dx(0)Φ

t .
By doing a similar choice for the basis of the T Φ

t
(x(0))S space, (102) gives for the

evolved vectors

[
w1(t) w2(t) · · · wp(t)

] = [ ê1 ê2 · · · êp
] · Y(t) · W(0) = [ ê1 ê2 · · · êp

] · W(t).

Writing Y(t) as

Y(t) = [Y1(t) Y2(t)
]
,

where Y1(t) is the 2N × p matrix formed from the first p columns of Y(t) and Y2(t)
is the 2N × (2N − p) matrix formed from the last 2N − p columns of Y(t), W(t)
assumes the following form:

W(t) = Y1(t) · W̃(0).
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Then from (105) we get

∥∥∥∥∥
p∧

i=1

wi (t)

∥∥∥∥∥ =
√

det
(

W̃
T
(0) · YT

1 (t) · Y1(t) · W̃(0)
)

=
√

det W̃
T
(0) det

(
YT

1 (t) · Y1(t)
)

det W̃(0)

= | det W̃(0)|
√

det
(
YT

1 (t) · Y1(t)
)
. (69)

Thus, from (68) and (69) we conclude that the coefficient of expansion

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ =
√

det
(
YT

1 (t) · Y1(t)
)

does not depend on the initial volume but it is an intrinsic quantity of the subspaces
defined by the properties of dx(0)Φ

t . Note that in the particular case of p = 2N
the coefficient of expansion is equal to | det Y(t)| in accordance to (43). An alter-
native way of expressing this property is that, for two sets of linearly independent
vectors

{
w1(0),w2(0), . . . ,wp(0)

}
and

{
f1(0), f2(0), . . . , fp(0)

}
spanning the same

p-dimensional subspace of Tx(0)S, the relation

∥∥∧p
i=1 wi (t)

∥∥∥∥∧p
i=1 wi (0)

∥∥ =
∥∥∧p

i=1 fi (t)
∥∥∥∥∧p

i=1 fi (0)
∥∥ (70)

holds [119].
Let us now describe the method for the actual computation of the p-mLCE. Sim-

ilarly to the computation of the mLCE we fix a small time interval τ and define
quantity X (p)(t) (66) as

X (p)(kτ ) = 1

kτ

k∑
i=1

ln
‖∧p

j=1 dx(0)Φ
iτ w j (0)‖

‖∧p
j=1 dx(0)Φ

(i−1)τ w j (0)‖ = 1

kτ

k∑
i=1

ln γ (p)
i , (71)

where γ
(p)
i , i = 1, 2, . . ., is the coefficient of expansion of a p-dimensional volume

from t = (i − 1)τ to t = iτ . According to (70) γ (p)
i can be computed as the coef-

ficient of expansion of the p-parallelogram defined by any p vectors spanning the
same p-dimensional space. A suitable choice for this set is to consider an orthonor-
mal set of vectors

{
ŵ1((i − 1)τ ), ŵ2((i − 1)τ ), . . . , ŵp((i − 1)τ )

}
giving to (71) the

simplified form

X (p)(kτ ) = 1

kτ

k∑
i=1

ln γ (p)
i = 1

kτ

k∑
i=1

ln

∥∥∥∥∥∥
p∧

j=1

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ )

∥∥∥∥∥∥ . (72)
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Thus, from (67) and (72) we get

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

k→∞
1

kτ

k∑
i=1

ln γ (p)
i (73)

for the computation of the p-mLCE. This equation is valid for 1 ≤ p ≤ 2N since
in the extreme case of p = 1 it is simply reduced to (59) with αi ≡ γ

(1)
i . In order

to estimate the values of χi , i = 1, 2, . . . , p, which is our actual goal, we compute
from (73) all the χ

(p)
1 quantities and evaluate the LCEs from

χi = χ
(i)
1 − χ

(i−1)
1 , i = 2, 3, . . . , p, (74)

with χ
(1)
1 ≡ χ1 [119].

Benettin et al. [14] noted that the p largest 1-LCEs can be evaluated at once by
computing the evolution of just p deviation vectors for a particular choice of the
orthonormalization procedure, namely performing the Gram-Schmidt orthonormal-
ization method.

Let us discuss the Gram-Schmidt orthonormalization method in some detail. Let
w j (iτ ), j = 1, 2, . . . , p be the evolved deviation vectors ŵ j ((i − 1)τ ) from time
t = (i − 1)τ to t = iτ . From this set of linearly independent vectors we construct a
new set of orthonormal vectors ŵ j (iτ ) from equations

u1(iτ ) = w1(iτ ), γ1i = ‖u1(iτ )‖, ŵ1(iτ ) = u1(iτ )

γ1i
,

u2(iτ ) = w2(iτ ) − 〈w2(iτ ), ŵ1(iτ )〉ŵ1(iτ ),

γ2i = ‖u2(iτ )‖, ŵ2(iτ ) = u2(iτ )

γ2i
,

u3(iτ ) = w3(iτ ) − 〈w3(iτ ), ŵ1(iτ )〉ŵ1(iτ ) − 〈w3(iτ ), ŵ2(iτ )〉ŵ2(iτ ),

γ3i = ‖u3(iτ )‖, ŵ3(iτ ) = u3(iτ )

γ3i
,

...

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(75)

which are repeated up to the computation of ŵp(iτ ). We remark that 〈w,u〉 denotes
the usual inner product of vectors w, u. The general form of the above equations,
which is the core of the Gram-Schmidt orthonormalization method, is

uk(iτ ) =wk(iτ ) −
k−1∑
j=1

〈wk(iτ ), ŵ j (iτ )〉ŵ j (iτ ),

γki =‖uk(iτ )‖, ŵk(iτ ) = uk(iτ )

γki
,

(76)

for 1 ≤ k ≤ p.
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As we will show in Sect. 6.3 the volume of the p-parallelogram having as edges
the vectors dx((i−1)τ )Φ

τ ŵ j ((i − 1)τ ) = w j (iτ ), j = 1, 2, . . . , p is equal to the
volume of the p-parallelogram having as edges the vectors u j (iτ ), i.e.,

∥∥∥∥∥∥
p∧

j=1

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ )

∥∥∥∥∥∥ =
∥∥∥∥∥∥

p∧
j=1

u j (iτ )

∥∥∥∥∥∥ . (77)

Since vectors u j (iτ ) are normal to each other, the volume of their p-parallelogram
is equal to the product of their norms. This leads to

γ
(p)
i =

∥∥∥∥∥∥
p∧

j=1

u j (iτ )

∥∥∥∥∥∥ =
p∏

j=1

γ j i . (78)

Then, (73) takes the form

χ
(p)
1 = χ1 + χ2 + · · · + χp = lim

k→∞
1

kτ

k∑
i=1

ln

⎛
⎝ p∏

j=1

γ j i

⎞
⎠ .

Using now (74) we are able to evaluate the 1-LCE χp as

χp = χ
(p)
1 − χ

(p−1)
1 = lim

k→∞
1

kτ

k∑
i=1

ln

∏p
j=1 γ j i∏p−1
j=1 γ j i

= lim
k→∞

1

kτ

k∑
i=1

ln γpi .

In conclusion we see that the value of the 1-LCE χp with 1 < p ≤ 2N can be
computed as the limiting value, for t →∞, of the quantity

X p(kτ ) = 1

kτ

k∑
i=1

ln γpi ,

i.e.,

χp = lim
k→∞

X p(kτ ) = lim
k→∞

1

kτ

k∑
i=1

ln γpi , (79)

where γ j i , j = 1, 2, . . . , p, i = 1, 2, . . . are quantities evaluated during the suc-
cessive orthonormalization procedures ((75) and (76)). Note that for p = 1 (79) is
actually (59) with αi ≡ γ1i .
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6.2 The Numerical Algorithm for the Standard Method

In practice, in order to compute the p largest 1-LCEs with 1 < p ≤ 2N we fol-
low the evolution of p initially orthonormal deviation vectors ŵ j (0) = w j (0) and
every t = τ time units we replace the evolved vectors w j (kτ ), j = 1, 2, . . . , p,
k = 1, 2, . . . by a new set of orthonormal vectors produced by the Gram–Schmidt
orthonormalization method (76). During the orthonormalization procedure the quan-
tities γ jk are computed and χ1, χ2, . . . , χp are estimated from (79). This algorithm
is described in pseudo-code in Table 2 and can be used for the computation of few or
even all 1-LCEs. A Fortran code of this algorithm can be found in [144], while [117]
contains a similar code developed for the computer algebra platform “Mathematica”
(Wolfram Research Inc.).

Let us illustrate the implementation of this algorithm in the particular case of
the computation of the two largest LCEs χ1 and χ2. As shown in Fig. 8 we start
our computation with two orthonormal deviation vectors w1(0) and w2(0) which
are evolved to w1(τ ), w2(τ ) at t = τ . Then according to the the Gram-Schmidt
orthonormalization method (75) we define vectors u1(τ ) and u2(τ ). In particular,

Table 2 The standard method. The algorithm for the computation of the p largest LCEs
χ1, χ2, . . . , χp as limits for t → ∞ of quantities X1(t), X2(t), . . . , X p(t) (71), according to (79).
The program computes the evolution of X1(t), X2(t), . . . , X p(t) with respect to time t up to a
given upper value of time t = TM or until any of the quantities X1(t), X2(t), . . . , X p(t) attain a
very small value, smaller than a low threshold value Xm

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.
3. Initial condition for the orbit x(0).
4. Initial orthonormal deviation vectors w1(0), w2(0), . . ., wp(0).
5. Renormalization time τ .
6. Maximal time: TM and minimum allowed value of X1(t),

X2(t), . . ., X p(t): Xm .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the deviation vectors from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and w1(kτ ), w2(kτ ), . . ., wp(kτ ).

Step 3 Perform the Gram-Schmidt orthonormalization procedure
according to (76):
Do for j = 1 to p

Compute current vectors u j (kτ ) and values of γ jk .
Compute and Store current values of X j (kτ ) = 1

kτ

∑k
i=1 ln γ j i .

Set w j (kτ ) ← u j (kτ )/γ jk .
End Do

Step 4 Set the counter k ← k + 1.
Step 5 If [(kτ > TM ) or (Any of X j ((k − 1)τ ) < Xm , j = 1, 2, . . . , p)] Then

Set SF ← 1.
End If

End While
Step 6 Report the time evolution of X1(t), X2(t), . . . , X p(t).
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Fig. 8 Numerical scheme for the computation of the two largest LCEs χ1, χ2 according to the
standard method. The orthonormal deviation vectors w1(0), w2(0) are evolved according to the
variational equations (8) (continuous time) or the equations of the tangent map (11) (discrete time)
for t = τ time units. The evolved vectors w1(τ ), w2(τ ), are replaced by a set of orthonormal vectors
ŵ1(τ ), ŵ2(τ ), which span the same 2-dimensional vector space, according to the Gram–Schmidt
orthonormalization method (76). Then these vectors are again evolved and the same procedure is
iteratively applied. For each successive time interval [(i − 1)τ, iτ ], i = 1, 2, . . ., the quantities
γ1i = ‖u1(iτ )‖, γ2i = ‖u2(iτ )‖ are computed and χ1, χ2 are estimated from (79)

u1(τ ) coincides with w1(τ ) while, u2(τ ) is the component of vector w2(τ ) in the
direction perpendicular to vector u1(τ ). The norms of these two vectors define
the quantities γ11 = ‖u1(τ )‖, γ21 = ‖u2(τ )‖ needed for the estimation of χ1,
χ2 from (79). Then vectors ŵ1(τ ) and ŵ2(τ ) are defined as unitary vectors in the
directions of u1(τ ) and u2(τ ), respectively. Since the unitary vectors ŵ1(τ ), ŵ2(τ )
are normal by construction they constitute the initial set of orthonormal vectors
for the next iteration of the algorithm. From Fig. 8 we easily see that the paral-
lelograms defined by vectors w1(τ ), w2(τ ) and by vectors u1(τ ) and u2(τ ) have
the same area. This equality corresponds to the particular case p = 2, i = 1 of
(77). Evidently, since vectors u1(τ ), u2(τ ) are perpendicular to each other, we have
vol2 (u1(τ ),u2(τ )) = γ11γ21 in accordance to (78).

6.3 Connection Between the Standard Method
and the QR Decomposition

Let us rewrite (75) of the Gram-Schmidt orthonormalization procedure, by solving
them with respect to w j (iτ ), j = 1, 2, . . . , p, with 1 < p ≤ 2N

w1(iτ ) = γ1i ŵ1(iτ )

w2(iτ ) = 〈ŵ1(iτ ),w2(iτ )〉ŵ1(iτ ) + γ2i ŵ2(iτ )

w3(iτ ) = 〈ŵ1(iτ ),w3(iτ )〉ŵ1(iτ ) + 〈ŵ2(iτ ),w3(iτ )〉ŵ2(iτ ) + γ3i ŵ3(iτ )

...

(80)
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and get the general form

wk(iτ ) =
k−1∑
j=1

〈ŵ j (iτ ),wk(iτ )〉ŵ j (iτ ) + γki ŵk(iτ ), k = 1, 2, . . . , p.

This set of equations can be rewritten in matrix form as follows:

[
w1(iτ ) w2(iτ ) · · · wp(iτ )

] = [ ŵ1(iτ ) ŵ2(iτ ) · · · ŵp(iτ )
] ·

·

⎡
⎢⎢⎢⎢⎢⎣

γ1i 〈ŵ1(iτ ),w2(iτ )〉 〈ŵ1(iτ ),w3(iτ )〉 · · · 〈ŵ1(iτ ),wp(iτ )〉
0 γ2i 〈ŵ2(iτ ),w3(iτ )〉 · · · 〈ŵ2(iτ ),wp(iτ )〉
0 0 γ3i · · · 〈ŵ3(iτ ),wp(iτ )〉
...

...
...

...
0 0 0 γpi

⎤
⎥⎥⎥⎥⎥⎦
.

So the 2N × p matrix W(iτ ) = [
w1(iτ ) w2(iτ ) · · · wp(iτ )

]
, having as columns

the linearly independent deviation vectors w j (iτ ), j = 1, 2, . . . , p is written as a
product of the 2N × p matrix Q = [ ŵ1(iτ ) ŵ2(iτ ) · · · ŵp(iτ )

]
, having as columns

the coordinates of the orthonormal vectors ŵ j (iτ ), j = 1, 2, . . . , p and satisfying
QTQ = Ip, and of an upper triangular p × p matrix R(iτ ) with positive diagonal
elements

R j j (iτ ) = γ j i , j = 1, 2, . . . , p, i = 1, 2, . . . .

From (80) we easily see that 〈ŵ j (iτ ),w j (iτ )〉 = γ j i and so matrix R(iτ ) can be
also expressed as

R(iτ ) =

⎡
⎢⎢⎢⎣
〈ŵ1(iτ ),w1(iτ )〉 〈ŵ1(iτ ),w2(iτ )〉 · · · 〈ŵ1(iτ ),wp(iτ )〉

0 〈ŵ2(iτ ),w2(iτ )〉 · · · 〈ŵ2(iτ ),wp(iτ )〉
...

...
...

0 0 〈ŵp(iτ ),wp(iτ )〉

⎤
⎥⎥⎥⎦ .

The above procedure is the so-called QR decomposition of a matrix. In practice,
we proved by actually constructing the Q and R matrices via the Gram-Schmidt
orthonormalization method, the following theorem.

Theorem 4. Let A be an n × m (n ≥ m) matrix with linearly independent columns.
Then A can be uniquely factorized as

A = Q · R,

where Q is an n × m matrix with orthogonal columns, satisfying QTQ = Im and R
is an m × m invertible upper triangular matrix with positive diagonal entries.
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Although we presented the QR decomposition through the Gram–Schmidt
orthonormalization procedure this decomposition can also be achieved by others,
computationally more efficient techniques like for example the Householder trans-
formation [62] [107, Sect. 2.10].

Observing that the quantities γ j i , j = 1, 2 . . . , p, i = 1, 2 . . ., needed for the
evaluation of the LCEs through (79) are the diagonal elements of R(iτ ) we can
implement a variant of the standard method for the computation on the LCEs, which
is based on the QR decomposition procedure [44, 62, 36, 40]. Similarly to the pro-
cedure followed in Sect. 6.2, in order to compute the p (1 < p ≤ 2N ) largest LCEs
we follow the evolution of p initially orthonormal deviation vectors ŵ j (0) = w j (0),
j = 1, 2 . . . , p, which can be considered as columns of a 2N×p matrix Q(0). Every
t = τ time units the matrix W(iτ ), i = 1, 2, . . ., having as columns the deviation
vectors

dx((i−1)τ )Φ
τ ŵ j ((i − 1)τ ) = w j (iτ ), j = 1, 2, . . . , p,

i.e., the columns of Q((i − 1)τ ) evolved in time interval [(i − 1)τ, iτ ] by the action
of dx((i−1)τ )Φ

τ , undergoes the QR decomposition procedure

W(iτ ) = Q(iτ ) · R(iτ ) (81)

and the new Q(iτ ) is again evolved for the next time interval [iτ, (i+1)τ ], and so on
and so forth. Then the LCEs are estimated from the values of the diagonal elements
of matrix R(iτ ) as

χp = lim
k→∞

1

kτ

k∑
i=1

ln Rpp(iτ ). (82)

The corresponding algorithm is presented in pseudo-code in Table 3. From the
above-presented analysis it becomes evident that the standard method developed
by Shimada and Nagashima [119] and Benettin et al. [14] for the computation of
the LCEs is practically a QR decomposition procedure performed by the Gram–
Schmidt orthonormalization method, although the authors of these papers formally
do not refer to the QR decomposition. We note that both the standard method and
the QR decomposition technique presented here can be used for the computation of
part (p < 2N ) or of the whole (p = 2N ) spectrum of LCEs.

As a final remark on the QR decomposition technique let us show the validity
of (77) by considering the QR decomposition of matrix W(iτ ) (81). According to
(105) and (106) we have
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Table 3 Discrete QR decomposition. The algorithm for the computation of the p largest LCEs
χ1, χ2, . . . , χp according to the QR decomposition method. The program computes the evolution
of X1(t), X2(t), . . . , X p(t) with respect to time t up to a given upper value of time t = TM or until
any of the these quantities becomes smaller than a low threshold value Xm

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.
3. Initial condition for the orbit x(0).
4. Initial matrix Q(0) having as columns orthonormal deviation vectors

w1(0), w2(0), . . ., wp(0).
5. Time interval τ between successive QR decompositions.
6. Maximal time: TM and minimum allowed value of X1(t),

X2(t), . . ., X p(t): Xm .

Step 1 Set the stopping flag, SF ← 0, and the counter, k ← 1.
Step 2 While (SF = 0) Do

Evolve the orbit and the matrix Q((k − 1)τ ) from time t = (k − 1)τ
to t = kτ , i. e. Compute x(kτ ) and W(iτ ).

Step 3 Perform the QR decomposition of W(iτ ) according to (81):
Compute Q(kτ ) and R(kτ ).
Compute and Store current values of X j (kτ ) = 1

kτ

∑k
i=1 ln R j j (iτ ),

j = 1, 2 . . . , p.
Step 4 Set the counter k ← k + 1.
Step 5 If [(kτ > TM ) or (Any of X j ((k − 1)τ ) < Xm , j = 1, 2, . . . , p)] Then

Set SF ← 1.
End If

End While
Step 6 Report the time evolution of X1(t), X2(t), . . . , X p(t).

∥∥∥∥∥∥
p∧

j=1

w j (iτ )

∥∥∥∥∥∥ =
√

det
(
WT(iτ ) · W(iτ )

)

=
√

det
(
RT(iτ ) · QT(iτ ) · Q(iτ ) · R(iτ )

)

=
√

det RT(iτ ) det R(iτ ) = |det R(iτ )|

=
p∏

j=1

γ j i =
p∏

j=1

∥∥u j (iτ )
∥∥ =

∥∥∥∥∥∥
p∧

j=1

u j (iτ )

∥∥∥∥∥∥ ,

where the identities QTQ = Ip and det R(iτ ) =∏p
j=1 γ j i have been used.

6.4 Other Methods for Computing LCEs

Over the years several methods have been proposed and applied for computing the
numerical values of the LCEs. The standard method we discussed so far is the
first and probably the simplest method to address this problem. As we showed
in Sect. 6.3 the standard method, which requires successive applications of the
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Gram-Schmidt orthonormalization procedure, is practically equivalent to the QR
decomposition technique.

The reorthonormalization of deviation vectors plays an indispensable role for
computing the LCEs and the corresponding methods can be distinguished in discrete
and continuous methods. The discrete methods iteratively approximate the LCEs in
a finite number of (discrete) time steps and therefore apply to both continuous and
discrete dynamical systems [62, 36, 40]. The standard method and its QR decompo-
sition version are discrete methods. A method is called continuous when all relevant
quantities are obtained as solutions of certain ordinary differential equations, which
maintain orthonormality of deviation vectors continuously. Therefore such methods
can only be formulated for continuous dynamical systems and not for maps. The
use of continuous orthonormalization for the numerical computation of LCEs was
first proposed by Goldhirsch et al. [63] and afterward developed by several authors
[67, 62, 36, 40, 26, 110, 109, 94, 38].

Discrete and continuous methods are based on appropriate decomposition of
matrices performed usually by the QR decomposition or by the SVD procedure.
The discrete QR decomposition which has already been presented in Sect. 6.3 is
the most frequently used method and has proved to be quite efficient and reliable.
The continuous QR decomposition and methods based on the SVD procedure are
discussed in some detail at the end of the current section.

Variants of these techniques have been also proposed by several authors. Let us
briefly refer to some of them. Rangarajan et al. [110] introduced a method for the
computation of part or of the whole spectrum of LCEs for continuous dynamical
systems, which does not require rescaling and renormalization of vectors. The key
feature of their approach is the use of explicit group theoretical representations of
orthogonal matrices, which leads to a set of coupled ordinary differential equations
for the LCEs along with the various angles parameterizing the orthogonal matri-
ces involved in the process. Ramasubramanian and Sriram [109] showed that the
method is competitive with the standard method and the continuous QR decompo-
sition.

Carbonell et al. [20] proposed a method for the evaluation of the whole spectrum
of LCEs by approximating the differential equations describing the evolution of an
orbit of a continuous dynamical system and their associated variational equations by
two piecewise linear sets of ordinary differential equations. Then an SVD or a QR
decomposition-based method is applied to these two new sets of equations, allowing
us to obtain approximations of the LCEs of the original system. An advantage of
this method is that it does not require the simultaneous integration of the two sets of
piecewise linear equations.

Lu et al. [94] proposed a new continuous method for the computation of few or
of all LCEs, which is related to the QR decomposition technique. According to their
method one follows the evolution of orthogonal vectors, similarly to the QR method,
but does not require them to be necessarily orthonormal. By relaxing the length
requirement Lu et al. [94] established a set of recursive differential equations for
the evolution of these vectors. Using symplectic Runge–Kutta integration schemes
for the evolution of these vectors they succeeded in preserving automatically the
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orthogonality between any two successive vectors. Normalization of vectors occurs
whenever the magnitude of any vector exceeds given lower or upper bounds.

Chen et al. [24] proposed a simple discrete QR algorithm for the computation
of the whole spectrum of LCEs of a continuous dynamical system. Their method
is based on a suitable approximation of the solution of variational equations by
assuming that the Jacobian matrix remains constant over small integration time
steps. Thus, the scheme requires the numerical solution of the 2N equations of
motion but not the solution of the (2N )2 variational equations since their solution is
approximated by an explicit expression involving the computed orbit. This approach
led to a computationally fast evaluation of the LCEs for various multidimensional
dynamical systems studied in [24].

It is worth mentioning here a completely different approach, with respect to the
above-mentioned techniques, which was developed at the early 1980s. In particular,
Frøyland proposed in [60] an algorithm for the computation of LCEs, which he
claimed to be quite efficient in the case of low-dimensional systems, and applied it
to the Lorenz system [61]. The basic idea behind this algorithm is the implemen-
tation of appropriate differential equations describing the time evolution of volume
elements around the orbits of the dynamical system, instead of defining these vol-
umes through deviation vectors whose evolution is governed by the usual variational
equations (8).

Apart from the actual numerical computation of the values of the LCEs, methods
for the theoretical estimation of those values have been also developed. For example,
Li and Chen [90] provided a theorem for the estimation of lower and upper bounds
for the values of all LCEs in the case of discrete maps. These results were also
generalized for the case of continues dynamical systems [91]. The validity of these
estimates was demonstrated by a comparison between the estimated bounds and
the numerically computed spectrum of LCEs of some specific dynamical systems
[90, 91].

Finally, let us refer to a powerful analytical method which allows one to verify
the existence of positive LCEs for a dynamical system, the so-called cone technique.
The method was suggested by Wojtkowski [142] and has been extensively applied
for the study of chaotic billiards [142, 143, 43, 97] and geodesic flows [41, 42, 19].
A concise description of the techniques can also be found in [7] [25, Sect. 3.13].
Considering the space R

n a cone Cγ , with γ > 0, centered around R
n−k is

Cγ = {(u, v) ∈ R
k × R

n−k : ‖u‖ < γ ‖v‖} ∪ (0, 0). (83)

Note that {0} × R
n−k ⊂ Cγ for every γ . In the particular case of n = 3, k = 2, Cγ

corresponds to the usual 3-dimensional cone, while in the case of the plane (n = 2)
a cone Cγ around an axis L is the set of vectors of R

2 that make angle φ < arctan γ
with the line L . In the case of Hamiltonian systems (and symplectic maps) a cone
can get the simple form δq·δp > 0. Finding an invariant family of cones (83) in TxS,
which are mapped strictly into themselves by dxΦ

t , guarantees that the values of the
n− k largest LCEs are positive [142, 143]. We emphasize that the cone technique is
not used for the explicit numerical computation of the LCEs, but for the analytical
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proof of the existence of positive LCEs, providing at the same time some bounds
for their actual values.

6.4.1 Continuous QR Decomposition Methods

The QR decomposition methods allow the computation of all or of the p (1 < p <

2N ) largest LCEs. Let us discuss in more detail the developed procedure for both
cases following mainly [62, 36, 94].

Computing the complete spectrum of LCEs

The basic idea of the method is to avoid directly solving the differential equation
(10), by requiring Y(t) = Q(t)R(t) where Q(t) is orthogonal and R(t) is upper tri-
angular with positive diagonal elements, according to Theorem 4. With this decom-
position, one can write (10) into the form

QTQ̇ + ṘR−1 = QTAQ,

where, for convenience, we dropped out the explicit dependence of the matrices on
time t , i.e., Q(t) ≡ Q. Since QTQ̇ is skew and ṘR−1 is upper triangular, one reads
off the differential equations

Q̇ = QS, (84)

where S is the skew-symmetric matrix

S = QTQ̇

with elements

Si j =
⎧⎨
⎩

(QTAQ)i j i > j
0 i = j

−(QTAQ) j i i < j
, i, j = 1, 2, . . . , 2N , (85)

and

Ṙpp

Rpp
= (QTAQ)pp, p,= 1, 2, . . . , 2N (86)

where Rpp are the diagonal elements of R. As we have already seen in (82) the
LCEs are related to the elements Rpp, through

χp = lim
t→∞

1

t
ln Rpp(t).
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Thus, in order to compute the spectrum of LCEs only (84) and (86) have to be
solved simultaneously with the equations of motion (2). In practice, the knowledge
of matrix R is not necessary for the actual computation of the LCEs. Noticing that

d

dt

(
ln Rpp

) = Ṙpp

Rpp
= (QTAQ)pp = qp · Aqp, (87)

where qp is the pth column vector of Q, we can compute the LCEs using

χp = lim
t→∞

1

t

∫ t

0
qp · Aqpdt.

In practice, the LCEs can be estimated through a recursive formula. Let

X p(kτ ) = 1

kτ

∫ kτ

0
qp · Aqpdt.

Then we have

X p ((k + 1)τ ) = 1

(k + 1)τ

∫ (k+1)τ

0
qp · Aqpdt

= 1

(k + 1)τ

∫ kτ

0
qp · Aqpdt + 1

(k + 1)τ

∫ (k+1)τ

kτ
qp · Aqpdt.

Replacing the first integral with kτ X p(kτ ) we get

X p ((k + 1)τ ) = k

k + 1
X p(kτ ) + 1

(k + 1)τ

∫ (k+1)τ

kτ
qp · Aqpdt, (88)

and

χp = lim
k→∞

X p(kτ ). (89)

The basic difference between the discrete QR decomposition method presented in
Sect. 6.3, and the continuous QR method presented here, is that in the first method
the orthonormalization is performed numerically at discrete time steps, while the
latter method seeks to maintain the orthogonality via solving differential equations
that encode the orthogonality continuously.

Computation of the p > 1 largest LCEs

If we want to compute the p largest LCEs, with 1 < p < 2N , we change (10) to

Ẏ(t) = A(t) Y(t) , with Y(0)TY(0) = Ip, (90)
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where Y(t) is in practice, the 2N × p matrix having as columns the p deviation vec-
tors w1(t),w2(t), . . . ,wp(t). Applying Theorem 4 we get Y(t) = Q(t)R(t) where
Q(t) is orthogonal so that the identity QTQ = I holds but not the QQT = I. Then
from (90) we get

Ṙ = (QTAQ − S
)

R,

where S = QTQ̇ is a p × p matrix whose elements are given by (85) for
i, j = 1, 2, . . . , p. Since R is invertible, from the relations

ṘR−1 = QTAQ − S

and

Q̇ = AQ − QṘR−1, (91)

we obtain

Q̇ = (A − QQTA + QSQT)Q,

or

Q̇ = H(Q, t)Q, (92)

with

H(Q, t) = A − QQTA + QSQT.

Notice that the matrix H(Q, t) in not necessarily skew-symmetric, and the term
QQT is responsible for lack of skew-symmetry in H. Of course for p = 2N (92)
reduces to equation Q̇ = QS (84). The evolution of the diagonal elements of R are
again governed by (86), but for p < 2N , and so the p largest LCEs can be computed
again from (87, 88, 89).

The main difference with respect to the case of the computation of the whole
spectrum is the numerical difficulties arising in solving (92), since H is not skew-
symmetric as was matrix S in (84). Due to this difference usual numerical integration
techniques fail to preserve the orthogonality of matrix Q.

A central observation of [36] is that the matrix H has a weak skew-symmetry
property. The matrix H is called weak skew-symmetric if

QT (H(Q, t) + HT(Q, t)
)

Q = 0, whenever QTQ = Ip.

A matrix H is said to be strongly skew-symmetric if it is skew-symmetric, i.e.,
HT = −H. Christiansen and Rugh [26] proposed a method according to which, the
numerically unstable equations (91) for the continuous orthonormalization could be
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stabilized by the addition of an appropriate dissipation term. This idea was also used
in [18], where it was shown that it is possible to reformulate (92) so that H becomes
strongly skew-symmetric and thus, achieve a numerically stable algorithm for the
computation of few LCEs.

6.4.2 Discrete and Continuous Methods Based on the SVD Procedure

An alternative way of evaluating the LCEs is obtained by applying the SVD pro-
cedure on the fundamental 2N × 2N matrix Y(t), which defines the evolution of
deviation vectors through (9) and (12) for continuous and discrete systems, respec-
tively. According to the SVD algorithm a 2N × p matrix (p ≤ 2N ) B can be written
as the product of a 2N × p column-orthogonal matrix U, a p× p diagonal matrix F
with positive or zero elements σi , i = 1, . . . , p (the so-called singular values), and
the transpose of a p × p orthogonal matrix V:

B = U · F · VT.

We note that matrices U and V are orthogonal so that

UT · U = VT · V = Ip. (93)

For a more detailed description of the SVD method, as well as an algorithm for its
implementation the reader is referred to [107, Sect. 2.6] and references therein. The
SVD is unique up to permutations of corresponding columns, rows, and diagonal
elements of matrices U, V, and F respectively. Advanced numerical techniques for
the computation of the singular values of a product of many matrices can be found
for example in [130, 101].

So, for the purposes of our study let

Y = U · F · VT, (94)

where we dropped out as before, the explicit dependence of the matrices on time
t . In those cases where all singular values are different, a unique decomposition
can be achieved by the additional request of a strictly monotonically decreasing
singular value spectrum, i.e., σ1(t) > σ2(t) > · · · > σ2N (t). Multiplying (94) with
the transpose

YT = V · FT · UT,

from the left we get

YT · Y = V · FT · UT · U · F · VT = V · diag(σ 2
i (t)) · VT, (95)

where (93) has been used. From (95) we see that the eigenvalues of the diagonal
matrix diag(σ 2

i (t)), i.e., the squares of the singular values of Y(t), are equal to the
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eigenvalues of the symmetric matrix YTY. Then from point 4 of the MET we con-
clude that the LCEs are related to the singular values of Y(t) through [62, 130]

χp = lim
t→∞

1

t
ln σi (t), p = 1, 2, . . . , 2N ,

which implies that the LCEs can be evaluated as the limits for t → ∞ of the time
rate of the logarithms of the singular values.

Theoretical aspects of the SVD technique, as well as a detailed study of its ability
to approximate the spectrum of LCEs can be found in [101, 37, 38]. Continuous
[67, 62, 39] and discrete [130] versions of the SVD algorithm have been applied for
the computation of few or of all LCEs, although this approach is not widely used. A
basic problem of these methods is that they fail to compute the spectrum of LCEs if
it is degenerate, i.e., when two or more LCEs are equal or very close to each other,
due to the appearance of ill-conditioned matrices.

7 Chaos Detection Techniques

A simple, qualitative way of studying the dynamics of a Hamiltonian system is by
plotting the successive intersections of its orbits with a Poincaré surface of sec-
tion (PSS) (e.g., [72] [92, pp. 17–20]). Similarly, in the case of symplectic maps
one simply plots the phase space of the system. This qualitative method has been
extensively applied to 2d maps and to 2D Hamiltonians, since in these systems the
PSS is a 2-dimensional plane. In such systems one can visually distinguish between
regular and chaotic orbits since the points of a regular orbit lie on a torus and form a
smooth closed curve, while the points of a chaotic orbit appear randomly scattered.
In 3D Hamiltonian systems (or 4d symplectic maps), however, the PSS (or the phase
space) is 4-dimensional and the behavior of the orbits cannot be easily visualized.
Things become even more difficult and deceiving for multidimensional systems.
One way to overcome this problem is to project the PSS (or the phase space) to
spaces with lower dimensions (see, e.g., [139, 140, 105]) although these projections
are often very complicated and difficult to interpret. Thus, we need fast and accurate
numerical tools to give us information about the regular or chaotic character of
orbits, mainly when the dynamical system has many degrees of freedom.

The most commonly employed method for distinguishing between regular and
chaotic behavior is the evaluation of the mLCE χ1, because if χ1 > 0 the orbit is
chaotic. The main problem of using the value of χ1 as an indicator of chaoticity
is that, in practice, the numerical computation may take a huge amount of time,
in particular for orbits which stick to regular ones for a long time before showing
their chaotic behavior. Since χ1 is defined as the limit for t → ∞ of the quantity
X1(t) (54), the time needed for X1(t) to converge to its limiting value is not known
a priori and may become extremely long. Nevertheless, we should keep in mind that
the mLCE gives us more information than just characterizing an orbit as regular or
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chaotic, since it also quantifies the notion of chaoticity by providing a characteristic
timescale for the studied dynamical system, namely the Lyapunov time (51).

In order to address the problem of the fast and reliable determination of the
regular or chaotic nature of orbits, several methods have been developed over the
years with varying degrees of success. These methods can be divided in two major
categories: Some are based on the study of the evolution of deviation vectors from
a given orbit, like the computation of χ1, while others rely on the analysis of the
particular orbit itself.

Among other chaoticity detectors, belonging to the same category with the eval-
uation of the mLCE, are the fast Lyapunov indicator (FLI) [58, 59, 56, 89, 49, 69]
and its variants [4, 5], the smaller alignment index (SALI) [122, 124, 125] and its
generalization, the so-called generalized alignment index (GALI) [126, 127], the
mean exponential growth of nearby orbits (MEGNO) [28, 29], the relative Lyapunov
indicator (RLI) [115, 116], the average power law exponent (APLE) [95], as well as
methods based on the study of spectra of quantities related to the deviation vectors
like the stretching numbers [57, 93, 135, 138], the helicity angles (the angles of
deviation vectors with a fixed direction) [32], the twist angles (the differences of
two successive helicity angles) [33], or the study of the differences between such
spectra [88, 136].

In the category of methods based on the analysis of a time series constructed by
the coordinates of the orbit under study, one may list the frequency map analysis of
Laskar [83, 86, 84, 85], the “0–1” test [64, 65], the method of the low-frequency
spectral analysis [137, 81], the “patterns method” [120, 121], the recurrence plots
technique [147, 148], and the information entropy index [100]. One could also refer
to several ideas presented by various authors that could be used in order to distin-
guish between chaoticity and regularity, like the differences appearing for regular
and chaotic orbits in the time evolutions of their correlation dimension [50], in the
time averages of kinetic energies related to the virial theorem [74], and in the sta-
tistical properties of the series of time intervals between successive intersections of
orbits with a PSS [80].

A systematic and detailed comparative study of the efficiency and reliability of
the various chaos detection techniques has not been done yet, although comparisons
between some of the existing methods have been performed sporadically in studies
of particular dynamical systems [122, 125, 132, 133, 82, 95, 6].

Let us now focus our attention on the behavior of the FLI and of the GALI and
on their connection to the LCEs. The FLI was introduced as an indicator of chaos
in [58, 59] and after some minor modifications in its definition, it was used for the
distinction between resonant and not resonant regular motion [56, 49]. The FLI is
defined as

FLI(t) = sup
t

ln ‖w(t)‖,

where w(t) is a deviation vector from the studied orbit at point x(t), which initially
had unit norm, i.e., ‖w(0)‖ = 1. In practice, FLI(t) registers the maximum length
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that an initially unitary deviation vector attains from the beginning of its evolution
up to the current time t . Using the notation appearing in (59), the FLI can be com-
puted as

FLI(kτ ) = sup
k

k∑
i=1

ln
Di

D0
= sup

k

k∑
i=1

lnαi ,

with the initial norm D0 of the deviation vector being D0 = 1.
According to (62) the norm of w(t) increases linearly in time in the case of regular

orbits. On the other hand, in the case of chaotic orbits the norm of any deviation vec-
tor exhibits an exponential increase in time, with an exponent which approximates
χ1 for t → ∞. Thus, the norm of a deviation vector reaches rapidly completely
different values for regular and chaotic orbits, which actually differ by many orders
of magnitude. This behavior allows FLI to discriminate between regular orbits, for
which FLI has relatively small values, and chaotic orbits, for which FLI gets very
large values.

The main difference of FLI with respect to the evaluation of the mLCE by (59)
is that FLI registers the current value of the norm of the deviation vector and does
not try to compute the limit value, for t → ∞, of the mean of stretching numbers
as χ1 does. By dropping the time average requirement of the stretching numbers,
FLI succeeds in determining the nature of orbits faster than the computation of the
mLCE.

The generalized alignment index of order p (GALIp) is determined through the
evolution of 2 ≤ p ≤ 2N initially linearly independent deviation vectors wi (0), i =
1, 2, . . . , p and so it is more related to the computation of many LCEs than to the
computation of the mLCE. The evolved deviation vectors wi (t) are normalized from
time to time in order to avoid overflow problems, but their directions are left intact.
Then, according to [126] GALIp is defined to be the volume of the p-parallelogram
having as edges the p unitary deviation vectors ŵi (t), i = 1, 2, . . . , p

GALIp(t) = ‖ŵ1(t) ∧ ŵ2(t) ∧ · · · ∧ ŵp(t)‖. (96)

In [126] the value of GALIp is computed according to (105), while in [2, 127] a
more efficient numerical technique based on the SVD algorithm is applied. From the
definition of GALIp it becomes evident that if at least two of the deviation vectors
become linearly dependent, the wedge product in (96) becomes zero and the GALIp

vanishes.
In the case of a chaotic orbit all deviation vectors tend to become linearly depen-

dent, aligning in the direction which corresponds to the mLCE and GALIp tends to
zero exponentially following the law [126]:

GALIp(t) ∼ e−[(χ1−χ2)+(χ1−χ3)+···+(χ1−χp)]t ,
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where χ1, χ2, . . . , χp are the p largest LCEs. On the other hand, in the case of
regular motion all deviation vectors tend to fall on the N -dimensional tangent space
of the torus on which the motion lies. Thus, if we start with p ≤ N general devi-
ation vectors they will remain linearly independent on the N -dimensional tangent
space of the torus, since there is no particular reason for them to become linearly
dependent. As a consequence GALIp remains practically constant for p ≤ N . On
the other hand, GALIp tends to be zero for p > N , since some deviation vectors
will eventually become linearly dependent, following a particular power law which
depends on the dimensionality N of the torus and the number p of deviation vectors.
So, the generic behavior of GALIp for regular orbits lying on N -dimensional tori is
given by [126]:

GALIp(t) ∼
{

constant if 2 ≤ p ≤ N
1

t2(p−N ) if N < p ≤ 2N
. (97)

The different behavior of GALIp for regular orbits, where it remains different
from zero or tends to zero following a power law, and for chaotic orbits, where
it tends exponentially to zero, makes GALIp an ideal indicator of chaoticity inde-
pendent of the dimensions of the system [126, 127, 15]. GALIp is a generalization
of the SALI method [122, 124, 125] which is related to the evolution of only two
deviation vectors. Actually GALI2 ∝ SALI. However, GALIp provides significantly
more detailed information on the local dynamics and allows for a faster and clearer
distinction between order and chaos. It was shown recently [27, 127] that GALIp

can also be used for the determination of the dimensionality of the torus on which
regular motion occurs.

As we discussed in Sect. 6.1 the alignment of all deviation vectors to the direction
corresponding to the mLCE is a basic problem for the computation of many LCEs,
which is overcome by successive orthonormalizations of the set of deviation vectors.
The GALIs on the other hand, exploit exactly this “problem” in order to determine
rapidly and with certainty the regular or chaotic nature of orbits.

It was shown in Sect. 4.1 that the values of all LCEs (and therefore the value of
the mLCE) do not depend on the particular used norm. On the other hand, the quan-
titative results of all chaos detection techniques based on quantities related to the
dynamics of the tangent space on a finite time, depend on the used norm, or on the
coordinates of the studied system. For example, the actual values of the finite time
mLCE X1(t) (54) will be different for different norms, or for different coordinates,
although its limiting value for t → ∞, i.e., the mLCE χ1, will be always the same.
Other chaos detection methods, like the FLI and the GALI, which depend on the
current values of some norm-related quantities and not on their limiting values for
t → ∞ will attain different values for different norms and/or coordinate systems.
Although the values of these indices will be different, one could expect that their
qualitative behavior would be independent of the chosen norm and the used coor-
dinates, since these indices depend on the geometrical properties of the deviation
vectors. For example, the GALI quantifies the linear dependence or independence
of deviation vectors, a property which obviously does not depend on the particular
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used norm or coordinates. Indeed, some arguments explaining the independence of
the behavior of the GALI method on the chosen coordinates can be found in [126].
Nevertheless, a systematic study focused on the influence of the used norm on the
qualitative behavior of the various chaos indicators has not been performed yet,
although it would be of great interest.

8 LCEs of Dissipative Systems and Time Series

The presentation of the LCEs in this report was mainly done in connection to con-
servative dynamical systems, i.e., autonomous Hamiltonian flows and symplectic
maps. The restriction to conservative systems is not necessary since the theory of
LCEs, as well as the techniques for their evaluation are valid for general dynamical
systems like dissipative ones. In addition, within what is called time series analysis
(see, e.g., [78]) it is of great interest to measure LCEs in order to understand the
underlying dynamics that produces any time series of experimental data. For the
completeness of our presentation we devote the last section of our report to a concise
survey of results concerning the LCEs of dissipative systems and time series.

8.1 Dissipative Systems

In contrast to Hamiltonian systems and symplectic maps for which the conservation
of the phase space volume is a fundamental constraint of the motion, a dissipative
system is characterized by a decrease of the phase space volume with increasing
time. This leads to the contraction of motion on a surface of lower dimensionality
than the original phase space, which is called attractor. Thus any dissipative dynam-
ical system will have at least one negative LCE, the sum of all its LCEs (which
actually measures the contraction rate of the phase space volume through (43)) is
negative and after some initial transient time the motion occurs on an attractor.

Any continuous n-dimensional dissipative dynamical system without a stationary
point (which is often called a fixed point) has at least one LCE equal to zero [70] as
we have already discussed in Sect. 4.5. For regular motion the attractor of dissipa-
tive flows represents a fixed point having all its LCEs negative, or a quasiperiodic
orbit lying on a p-dimensional torus (p < n) having p zero LCEs while the rest
n − p exponents are negative. For dissipative flows in three or more dimensions
there can also exist attractors having a very complicated geometrical structure which
are called “strange.”

Strange attractors have one or more positive LCEs implying that the motion on
them is chaotic. The exponential expansion indicated by a positive LCE is incompat-
ible with motion on a bounded attractor unless some sort of folding process merges
separated orbits. Each positive exponent corresponds to a direction in which the sys-
tem experiences the repeated stretching and folding that decorrelates nearby orbits
on the attractor. A simple geometrical construction of a hypothetical strange attrac-
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tor where orbits are bounded despite the fact that nearby orbits diverge exponentially
can be found in [92, Sect. 1.5].

The numerical methods for the evaluation of the mLCE, of the p (1 < p < n)
largest LCEs and of the whole spectrum of them, presented in Sects. 5 and 6, can be
applied also to dissipative systems. Actually, many of these techniques were initially
used in studies of dissipative models [99, 119, 61, 62]. For a detailed description of
the dynamical features of dissipative systems, as well as of the behavior of LCEs
for such systems the reader is referred, for example, to [103, 44] [92, Sect. 1.5,
Chaps. 7, and 8] and references therein.

8.2 Computing LCEs from a Time Series

A basic task in real physical experiments is the understanding of the dynamical
properties of the studied system by the analysis of some observed time series of
data. The knowledge of the LCEs of the system is one important step toward the
fulfillment of this goal. Usually, we have no knowledge of the nonlinear equations
that govern the time evolution of the system which produces the experimental data.
This lack of information makes the computation of the spectrum of LCEs of the
system a hard and challenging task.

The methods developed for the determination of the LCEs from a scalar time
series have as starting point the technique of phase space reconstruction with delay
coordinates [104, 134, 112] [78, Chaps. 3 and 9]. This technique is used for recre-
ating a d-dimensional phase space to capture the behavior of the dynamical system
which produces the observed scalar time series.

Assume that we have ND measurements of a dynamical quantity x taken at times
tn = t0 + nτ , i.e., x(n) ≡ x(t0 + nτ ), n = 0, 1, 2, . . . , ND − 1. Then we produce
Nd = ND − (d − 1)T d-dimensional vectors x(tn) from the x’s as

x(tn) = [ x(n) x(n + T ) . . . x(n + (d − 1)T )
]T

,

where T is the (integer) delay time. With this procedure we construct Nd points in
a d-dimensional phase space, which can be treated as successive points of a hypo-
thetical orbit. We assume that the evolution of x(tn) to x(tn+1) is given by some map
and we seek to evaluate the LCEs of this orbit.

The first algorithm to compute LCEs for a time series was introduced by Wolf et
al. [144]. According to their method (which is also referred as the direct method),
in order to compute the mLCE we first locate the nearest neighbor (in the Euclidean
sense) x(tk) to the initial point x(t0) and define the corresponding deviation vector
w(t0) = x(t0) − x(tk) and its length L(t0) = ‖w(t0)‖. The points x(t0) and x(tk) are
considered as initial conditions of two nearby orbits and are followed in time. Then
the mLCE is evaluated by the method discussed in Sect. 5.2, which approximates
deviation vectors by differences of nearby orbits. So, at some later time tm1 (which
is fixed a priori or determined by some predefined threshold violation of the vector’s
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length) the evolved deviation vector w′(tm1 ) = x(tm1 ) − x(tk+m1 ) is normalized and
its length L ′(tm1 ) = ‖w′(tm1 )‖ is registered. The “normalization” of the evolved
deviation vector is done by looking for a new data point, say x(tl), whose distance
L(tm1 ) = ‖x(tm1 ) − x(tl)‖ from the studied orbit is small and the corresponding
deviation vector w(tm1 ) = x(tm1 ) − x(l) has the same direction with w′(tm1 ). Of
course with finite amount of data, one cannot hope to find a replacement point x(l)
which falls exactly on the direction of w′(tm1 ) but chooses a point that comes as
close as possible. Assuming that such point is found the procedure is repeated and
an estimation X1(tmn ) of the mLCE χ1 is obtained by an equation analogous to (56):

X1(tmn ) = 1

tmn − t0

n∑
i=1

ln
L ′

1(tmi )

L(tmi−1 )
,

with m0 = 0. A Fortran code of this algorithm with fixed time steps between
replacements of deviation vectors is given in [144].

Generalizing this technique by evolving simultaneously p > 1 deviation vectors,
i.e., following the evolution of the orbit under study, as well as of p nearby orbits,
we can, in principle, evaluate the p-mLCE χ

(p)
1 of the system, which is equal to the

sum of the p largest 1-LCEs (see (67)). Then the values of χi i = 1, 2, . . . , p can be
computed from (74). This procedure corresponds to a variant of the standard method
for computing the LCEs, presented in [119] and discussed in Sect. 6.1, in that devi-
ation vectors are defined as differences of neighboring orbits. The implementation
of this approach requires the repeated replacement of the deviation vectors, i.e., the
replacement of the p points close to the evolved orbit under consideration, when
the lengths of the vectors exceed some threshold value. This replacement should be
done in a way that the volume of the corresponding p-parallelogram is small, and
in particular smaller than the replaced volume, and the new p vectors point more or
less to the same direction like the old ones. This procedure is explained in detail in
[144] for the particular case of the computation of χ (2)

1 = χ1 + χ2, where a triplet
of points is involved.

It is clear that in order to achieve a good replacement of the evolved p vectors,
which will lead to a reliable estimation of the LCEs, the numerical data have to
satisfy many conditions. Usually this is not feasible due to the limited number of
data points. So the direct method of [144] does not yield very precise results for the
LCEs. Another limitation of the method, which was pointed out in Wolf et al. [144],
is that it should not be used for finding negative LCEs which correspond to shrink-
ing directions, due to a cut off in small distances implied mainly by the level of
noise of the experimental data. An additional disadvantage of the direct method is
that many parameters which influence the estimated values of the LCEs like the
embedding dimension d , the delay time T , the tolerances in direction angles during
vector replacements and the evolution times between replacements have to be tuned
properly in order to obtain reliable results.

A different approach for the computation of the whole spectrum of LCEs is based
on the numerical determination of matrix Yn , n = 1, 2, . . ., of (12), which defines
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the evolution of deviation vectors in the reconstructed phase space. This method
was introduced in [118] and was studied in more detail in [44, 45] (see also [78,
Chap. 11]). According to this approach, often called the tangent space method,
matrix Yn is evaluated for each point of the studied orbit through local linear fits
of the data. In particular, for every point x(tn) of the orbit we find all its neighboring
points, i.e., points whose distance from x(tn) is less than a predefined small value ε.
Each of these point define a deviation vector. Then we find the next iteration of all
these points and see how these vectors evolve. Keeping only the evolved vectors hav-
ing length less than ε we evaluate matrix Yn through a least-square-error algorithm.
By repeating this procedure for the whole length of the studied orbit we are able to
evaluate at each point of the orbit matrix Yn which defines the evolution of deviation
vectors over one time step. Then by applying the QR decomposition version of the
standard method, which was presented in Sect. 6.3, we estimate the values of the
LCEs. The corresponding algorithm is included in the TISEAN software package
of nonlinear time series analysis methods developed by Hegger et al. [71]. It is also
worth mentioning that Brown et al. [17] improved the tangent space method by
using higher order polynomials for the local fit.

If, on the other hand, we are interested only in the evaluation of the mLCE of
a time series we can apply the algorithm proposed by Rosenstein et al. [111] and
Kantz [77]. The method is based on the statistical study of the evolution of dis-
tances of neighboring orbits. This approach is in the same spirit of Wolf et al. [144]
although being simpler since it compares distances and not directions. A basic dif-
ference with the direct method is that for each point of the reference orbit not one,
but several neighboring orbits are evaluated leading to improved estimates of the
mLCE with smaller statistical fluctuations even in the case of small data sets. This
algorithm is also included in the TISEAN package [71], while its Fortran and C
codes can be found in [78, Appendix B].
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Appendix A:
Exterior Algebra and Wedge Product: Some Basic Notions

We present here some basic results of the exterior algebra theory along with an
introduction to the theory of wedge products following [1] and textbooks such as
[128, 68, 129]. We also provide some simple illustrative examples of these results.

Let us consider an M-dimensional vector space V over the field of real numbers
R. The exterior algebra of V is denoted by Λ(V ) and its multiplication, known as
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the wedge product or the exterior product, is written as ∧. The wedge product is
associative:

(u ∧ v) ∧ w = u ∧ (v ∧ w),

for u, v,w ∈ V and bilinear

(c1u + c2v) ∧ w = c1(u ∧ w) + c2(v ∧ w),

w ∧ (c1u + c2v) = c1(w ∧ u) + c2(w ∧ v),

for u, v,w ∈ V and c1, c2 ∈ R. The wedge product is also alternating on V

u ∧ u = 0,

for all vectors u ∈ V . Thus we have that

u ∧ v = −v ∧ u,

for all vectors u, v ∈ V and

u1 ∧ u2 ∧ · · · ∧ uk = 0, (98)

whenever u1,u2, . . . ,uk ∈ V are linearly dependent. Elements of the form
u1 ∧ u2 ∧ · · · ∧ uk with u1,u2, . . . ,uk ∈ V are called k-vectors. The subspace of
Λ(V ) generated by all k-vectors is called the k-th exterior power of V and denoted
by Λk(V ).

Let {ê1, ê2, . . . , êM} be an orthonormal basis of V , i.e., êi , i = 1, 2, . . . , M are
linearly independent vectors of unit magnitude and

êi · ê j = δi j ,

where “ · ” denotes the inner product in V and

δi j =
{

1 for i = j
0 for i �= j

.

It can be easily seen that the set

{êi1 ∧ êi2 ∧ · · · ∧ êik | 1 ≤ i1 < i2 < · · · < ik ≤ M} (99)

is a basis of Λk(V ) since any wedge product of the form u1 ∧ u2 ∧ · · · ∧ uk can
be written as a linear combination of the k-vectors of (99). This is true because
every vector ui , i = 1, 2, . . . , k can be written as a linear combination of the basis
vectors êi , i = 1, 2, . . . , M and using the bilinearity of the wedge product this can
be expanded to a linear combination of wedge products of those basis vectors. Any
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wedge product in which the same basis vector appears more than once is zero, while
any wedge product in which the basis vectors do not appear in the proper order can
be reordered, changing the sign whenever two basis vectors change places. The
dimension dk of Λk(V ) is equal to the binomial coefficient:

dk = dimΛk(V ) =
(

M
k

)
= M!

k!(M − k)!
.

Ordering the elements of basis (99) of Λk(V ) according to the standard lexico-
graphical order

ωi = êi1 ∧ êi2 ∧ · · · ∧ êik , 1 ≤ i1 < i2 < · · · < ik ≤ M, i = 1, 2, · · · , dk, (100)

any k-vector ū ∈ Λk(V ) can be represented as

ū =
dk∑

i=1

ūiωi , ūi ∈ R. (101)

A k-vector which can be written as the wedge product of k linear independent vec-
tors of V is called decomposable. Of course, if the k vectors are linearly dependent
we get the zero k-vector (98). Note that not all k-vectors are decomposable. For
example, the 2-vector ū = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4) is not decomposable as it
cannot be written as u1 ∧ u2 with u1,u2 ∈ R

4.
Let us consider a decomposable k-vector ū = u1 ∧ u2 ∧ · · · ∧ uk . Then the coef-

ficients ūi in (101) are the minors of matrix U having as columns the coordinates of
vectors ui , i = 1, 2, . . . , k with respect to the orthonormal basis êi , i = 1, 2, . . . , M .
In matrix form we have

[
u1 u2 · · · uk

] = [ ê1 ê2 · · · êM
] ·
⎡
⎢⎢⎢⎣

u11 u12 · · · u1k

u21 u22 · · · u2k
...

...
...

uM1 uM2 · · · uMk

⎤
⎥⎥⎥⎦ = [ ê1 ê2 · · · êM

] · U,

(102)
where ui j , i = 1, 2, . . . , M , j = 1, 2, . . . , k are real numbers. Then, the wedge
product u1 ∧ u2 ∧ · · · ∧ uk is written as

ū = u1 ∧ u2 ∧ · · · ∧ uk =
dk∑

i=1

ūiωi =

∑
1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣
êi1 ∧ êi2 ∧ · · · ∧ êik ,

(103)
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where the sum is performed over all possible combinations of k indices out of the
M total indices and | | denotes the determinant. So, the coefficient of a particular
k-vector êi1 ∧ êi2 ∧ · · · ∧ êik is the determinant of the k × k submatrix of the M × k
matrix of coefficients appearing in (102) formed by its i1, i2, . . ., ik rows.

The inner product on V induces an inner product on each vector space Λk(V ) as
follows: Considering two decomposable k-vectors

ū = u1 ∧ u2 ∧ · · · ∧ uk and v̄ = v1 ∧ v2 ∧ · · · ∧ vk,

with ui , v j ∈ V , i, j = 1, 2, . . . , k, the inner product of ū, v̄ ∈ Λk(V ) is defined by

〈ū, v̄〉k
def=

∣∣∣∣∣∣∣∣∣

u1 · v1 u1 · v2 · · · u1 · vk

u2 · v1 u2 · v2 · · · u2 · vk
...

...
...

uk · v1 uk · v2 · · · uk · vk

∣∣∣∣∣∣∣∣∣
= ∣∣UT · V

∣∣ , (104)

where U, V are matrices having as columns the coefficients of vectors ui , vi ,
i = 1, 2, . . . , k with respect to the orthonormal {ê1, ê2, . . . , êM} (see (102)). Since
every element of Λk(V ) is a sum of decomposable elements, this definition extends
by bilinearity to any k-vector. Obviously for the basis (100) of Λk(V ) we have

〈ωi ,ω j 〉k = δi j , i, j = 1, 2, . . . , dk,

implying that the basis is orthonormal. Inner product (104) defines a norm ‖ ‖ for
k-vectors by

‖ū‖ =
√
〈ū, ū〉k =

√∣∣UT · U
∣∣.

Thus, the norm of a decomposable k-vector (103) is given by

‖ū‖ = ‖u1 ∧ u2 ∧ · · · ∧ uk‖ =
√∣∣UT · U

∣∣ =
(

dk∑
i=1

ū2
i

)1/2

=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣

2⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1/2

,

(105)

and it measures the volume vol(Pk) of the k-parallelogram Pk having as edges the k
vectors u1,u2, · · · ,uk , since this volume is defined as (see, e.g., [75, p. 472])

vol(Pk) =
√∣∣UT · U

∣∣ . (106)
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The use of a different orthonormal basis does not change the numerical value of
vol(Pk). This can be easily seen as follows: Let f̂i , i = 1, 2, · · · , M be a different
orthonormal basis of V related to basis êi through

[
ê1 ê2 · · · êM

] = [ f̂1 f̂2 · · · f̂M

] · A,

where A is an orthogonal M × M matrix, i.e., A−1 = AT. From (102) we get

[
u1 u2 · · · uk

] = [ f̂1 f̂2 · · · f̂M

] · A · U,

whence the volume vol′(Pk) with respect to the new basis f̂i , i = 1, 2, · · · , M is
given by

vol′(Pk) =
√∣∣(A · U)T · A · U

∣∣ =
√∣∣UT · A−1 · A · U

∣∣ =
√∣∣UT · U

∣∣ = vol(Pk),

where the orthogonality of A was used. This result is not surprising since an orthog-
onal matrix corresponds to a rotation that leaves unchanged the norms of vectors
and the angles between them.

Finally we note that the equality

∣∣UTU
∣∣ = ∑

1≤i1<i2<···<ik≤M

∣∣∣∣∣∣∣∣∣

ui11 ui12 · · · ui1k

ui21 ui22 · · · ui2k
...

...
...

uik 1 uik 2 · · · uik k

∣∣∣∣∣∣∣∣∣

2

appearing in (105) is the so-called Lagrange identity (e.g., [68, p. 108], [16, p. 103]).

An Illustrative Example

In order to illustrate the content of the previous section we consider here a specific
example. Let V be the vector space of M = 4-dimensional real vectors, i.e., V = R

4

and

ê1 = (1, 0, 0, 0) , ê2 = (0, 1, 0, 0) , ê3 = (0, 0, 1, 0) , ê4 = (0, 0, 0, 1) , (107)

the usual orthonormal basis of R
4. Then the lexicographically ordered orthonormal

basis (100) of the d2 = 6-dimensional vector space Λ2(R4) is

ω1 = ê1 ∧ ê2 , ω2 = ê1 ∧ ê3 , ω3 = ê1 ∧ ê4 ,

ω4 = ê2 ∧ ê3 , ω5 = ê2 ∧ ê4 , ω6 = ê3 ∧ ê4 .
(108)

The Λ3(R3) vector space has dimension d3 = 4 and the set
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y1 = ê1 ∧ ê2 ∧ ê3 , y2 = ê1 ∧ ê2 ∧ ê4 ,

y3 = ê1 ∧ ê3 ∧ ê4 , y4 = ê2 ∧ ê3 ∧ ê4 ,

as an orthonormal basis, while the d4 = 1-dimensional vector space Λ4(R4) is
spanned by vector:

x1 = ê1 ∧ ê2 ∧ ê3 ∧ ê4.

Let us now consider four linearly independent vectors u1, u2, u3, u4 of R
4 and

the matrix

U = [ui j ] = [ u1 u2 u3 u4 ] =

⎡
⎢⎢⎣

u11 u12 u13 u14

u21 u22 u23 u24

u31 u32 u33 u34

u41 u42 u43 u44

⎤
⎥⎥⎦ , i, j = 1, 2, 3, 4,

having as columns the coordinates of these vectors with respect to the basis (107) of
R

4.
Considering basis (108) of Λ2(R4) the 2-vector u1 ∧ u2 is given by

u1 ∧ u2 =
∣∣∣∣u11 u12

u21 u22

∣∣∣∣ω1 +
∣∣∣∣ u11 u12

u31 u32

∣∣∣∣ω2 +
∣∣∣∣u11 u12

u41 u42

∣∣∣∣ω3 +

+
∣∣∣∣ u21 u22

u31 u32

∣∣∣∣ω4 +
∣∣∣∣u21 u22

u41 u42

∣∣∣∣ω5 +
∣∣∣∣u31 u32

u41 u42

∣∣∣∣ω6,

according to (103). For the norm of this vector we get from (104) and (105):

‖u1 ∧ u2‖2 =
∣∣∣∣ ‖u1‖2 u1 · u2

u2 · u1 ‖u2‖2

∣∣∣∣ =
∣∣∣∣ u11 u12

u21 u22

∣∣∣∣
2

+
∣∣∣∣u11 u12

u31 u32

∣∣∣∣
2

+

+
∣∣∣∣ u11 u12

u41 u42

∣∣∣∣
2

+
∣∣∣∣ u21 u22

u31 u32

∣∣∣∣
2

+
∣∣∣∣u21 u22

u41 u42

∣∣∣∣
2

+
∣∣∣∣u31 u32

u41 u42

∣∣∣∣
2

,

where ‖ ‖ is used also for denoting the usual Euclidian norm of a vector.
In a similar way we conclude that the norm of the 3-vector produced by u1, u2,

u3

u1 ∧ u2 ∧ u3 =
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣ y1 +
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u41 u42 u43

∣∣∣∣∣∣ y2 +

+
∣∣∣∣∣∣
u11 u12 u13

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣ y3 +
∣∣∣∣∣∣
u21 u22 u23

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣ y4

is
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‖u1 ∧ u2 ∧ u3‖2 =
∣∣∣∣∣∣
‖u1‖2 u1 · u2 u1 · u3

u2 · u1 ‖u2‖2 u2 · u3

u3 · u1 u3 · u2 ‖u3‖2

∣∣∣∣∣∣
=
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u31 u32 u33

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u11 u12 u13

u21 u22 u23

u41 u42 u43

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u11 u12 u13

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣
2

+
∣∣∣∣∣∣
u21 u22 u23

u31 u32 u33

u41 u42 u43

∣∣∣∣∣∣
2

,

while the norm of the 4-vector produced by u1, u2, u3, u4

u1 ∧ u2 ∧ u3 ∧ u4 = |U| x1

is given by

‖u1 ∧ u2 ∧ u3 ∧ u4‖2 =

∣∣∣∣∣∣∣∣

‖u1‖2 u1 · u2 u1 · u3 u1 · u4

u2 · u1 ‖u2‖2 u2 · u3 u2 · u4

u3 · u1 u3 · u2 ‖u3‖2 u3 · u4

u4 · u1 u4 · u2 u4 · u3 ‖u4‖2

∣∣∣∣∣∣∣∣
= |U|2 .
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4. Bario, R.: Sensitivity tools vs. Poincaré sections. Chaos Solit. Fract. 25, 711–726 (2005) 117
5. Bario, R.: Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bif.

Chaos 16, 2777–2798 (2006) 117
6. Bario, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos

Solit. Fract. (in press) (2009) 117
7. Barreira, L., Pesin, Y.: Smooth ergodic theory and nonuniformly hyperbolic dynamics. In:

Hasselblatt, B., Katok, A. (eds.): Handbook of Dynamical Systems, vol. 1B, 57–263. Else-
vier (2006)

8. Benettin, G., Strelcyn, J.-M.: Numerical experiments of the free motion of a point mass
moving in a plane convex region: Stochastic transition and entropy. Phys. Rev. A 17,
773–785 (1978) 92, 95

9. Benettin, G., Galgani, L.: Lyapunov characteristic exponents and stochasticity. In: Laval, G.,
Grésillon, D. (eds.): Intrinsic Stochasticity in Plasmas, 93–114, Edit. Phys. Orsay (1979) 75, 84, 86, 90, 99

10. Benettin, G., Galgani, L., Strelcyn, J.-M.: Kolmogorov entropy and numerical experiments.
Phys. Rev. A 14, 2338–2344 (1976) 74, 75, 92, 95, 96

11. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Tous les nombres caractéristiques
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54. Froeschlé, C.: The Lyapunov characteristic exponents and applications. J. de Méc. Théor. et
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100. Núñez, J.A., Cincotta, P.M., Wachlin, F.C.: Information entropy. An indicator of chaos. Cel.
Mech. Dyn. Astron. 64, 43–53 (1996) 117

101. Oliveira, S., Stewart, D.E.: Exponential splittings of products of matrices and accurately
computing singular values of long products. Lin. Algebra Appl. 309, 175–190 (2000) 115, 116

102. Oseledec, V.I.: A multiplicative ergodic theorem. Ljapunov characteristic numbers for
dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968) 63, 65, 66, 67, 74, 76, 77, 79, 82, 84, 86

103. Ott, E.: Strange attractors and chaotic motions of dynamical systems. Rev. Mod. Phys. 53,
655–671 (1981)

104. Packard, N.H., Crutchfield, J.P., Farmer, J.D., Shaw, R.S.: Geometry from time series. Phys.
Rev. Let. 45, 712–716 (1980)

105. Paleari, S., Penati, S.: Numerical Methods and Results in the FPU Problem. Lect. Notes
Phys. 728, 239–282 (2008) 72, 116

106. Pesin, Ya. B.: Characteristic Lyapunov exponents and smooth ergodic theory. Russian Math.
Surveys 32, 55–114 (1977) 74, 99

107. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran.
The Art of Scientific Computing. Cambridge University Press, Cambridge (2007) 115

108. Raghunathan, M.S.: A proof of Oseledec’s multiplicative ergodic theorem. Isr. J. Math. 32,
356–362 (1979) 65, 86

109. Ramasubramanian, K., Sriram, M.S.: A comparative study of computation of Lyapunov
spectra with different algorithms. Physica D 139, 72–86 (2000) 110

110. Rangarajan, G., Habib, S., Ryne, R.D.: Lyapunov exponents without rescaling and reorthog-
onalization. Phys. Rev. Let. 80, 3747–3750 (1998) 110

111. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest
Lyapunov exponents from small data sets. Physica D 65, 117–134 (1993) 123

112. Roux, J.-C., Simoyi, R.H., Swinney, H.L.: Observation of a strange attractor. Physica D 8,
257–266 (1983)



134 Ch. Skokos

113. Ruelle, D.: Analycity properties of the characteristic exponents of random matrix products.
Adv. Math. 32, 68–80 (1979) 86

114. Ruelle, D.: Ergodic theory of differentiable dynamical systems. IHES Publ. Math. 50,
275–306 (1979) 65, 87
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Asteroid Dynamical Families

A. Cellino and A. dell’Oro

Abstract Asteroid dynamical families are extremely important for our understand-
ing of the origin, evolution, and general physical properties of the asteroid pop-
ulation. First identified on the basis of their dynamical properties, families have
been soon recognized as the products of well-defined physical processes, namely
the disruption of single parent bodies as the consequence of energetic collisional
events. The identification of dynamical families has opened important perspectives
in all fields of research in asteroid science. The “paradigm” of interpretation of
family data has been quickly evolving during the last decade and is now based on
the evidence of a complex interplay of different physical and dynamical processes,
some of which only recently have been fully recognized. In this chapter, we attempt
to give a general and comprehensive review of the subject.

1 Introduction

Asteroid dynamical families are still a very important and fascinating subject in
asteroid science, in spite of being a long debated topic that is now about 100 years
old. It is difficult to find a line of research in asteroid science that does not lead
sooner or later to face the enigmas posed by the families, as schematically shown in
Fig. 1.

First discovered at the beginning of the twentieth century by Hirayama [1, 2],
families were very soon interpreted as the likely products of collisional events taking
place in the asteroid main belt. Any progress in the study of families, however, was
long hampered by the difficulty in developing objective methods of family identi-
fication and by correspondingly huge discrepancies among the results obtained by
different authors, as extensively discussed in [3].
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Fig. 1 Schematic view of the
relations existing between
family studies and the most
important topics in asteroid
science

Starting from the year 1990, new reliable methods of family identification led to
the identification of at least 20 statistically robust asteroid families. This triggered
a lot of activity in theoretical and observational studies of these groupings that led
to important results and produced a general “paradigm” of interpretation. At the
beginning of the new century, however, new theoretical and observational facts led to
a deep change in this general paradigm of family interpretation. Currently, however,
a new paradigm has not yet been completely established, some controversies are still
open, and in general the interpretation of families is in a phase of general transition,
in which most of the new developments are accepted, but the real extent to which
some old results must be considered as fully incorrect is not yet completely clear.

In this chapter, we do not want to follow strictly a historical approach, but, start-
ing from the most important pieces of evidence that have been accumulating with
time, we try to give a comprehensive overview of the importance of dynamical fam-
ilies in the most general context of asteroid science. According to previous consid-
erations, we pay particular attention to the important discontinuity that occurred in
the general interpretation of family properties starting approximately since the year
2000, when the realization of the importance of new dynamical mechanisms that
had not been previously taken into account has produced a big change of paradigm
in the interpretation of family data. In particular, we focus on a number of subjects
which are still debated, and we make a few predictions about possible developments
in the future.

2 Families in the Twentieth Century

Figure 2 shows the observational evidence that was available to any attempt of iden-
tifying dynamical families in the asteroid main belt in the mid-1990s. This figure
shows the plots of proper eccentricity and sinus of proper inclination versus proper
semi-major axis, respectively. To understand the meaning of these plots, it is neces-
sary first to understand what the proper orbital elements are. As is well known, the
orbits of the bodies of our Solar System are not constant in time like in the ideal
case of a two-body system, but they vary continuously due to the effect of mutual
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Fig. 2 Plots of proper eccentricity and proper inclination as a function of proper semi-major axis,
using the data available in the early 1990s

gravitational perturbations between the many bodies present in the system. These
effects may be very important for minor bodies like the asteroids, whose motion
may be strongly perturbed by the major planets, and particularly by Jupiter. For
this reason, the orbit of any given object at a certain epoch is described by a set of
orbital elements, called osculating elements, which are not constant in time. If we
want to make some quantitative analysis of the similarity of the orbits of different
asteroids, therefore, we need to use, if possible, some quantities which may be more
stable over time than the simple osculating elements. A classical definition states
that what we call proper elements are quasi-integrals of the motion and that they are
therefore nearly constant in time. Alternatively, one can say that proper elements
are true integrals, but of a conveniently simplified dynamical system. In any case,
proper elements are obtained as a result of the elimination of short- and long-term
periodic perturbations from their instantaneous, osculating counterparts (the oscu-
lating elements) and thus represent a kind of “average” characteristics of motion,
which normally varies very little over long timescales [4].

Since the early 1990s, the development of refined and fast techniques to compute
proper elements [5] put at disposal of family searches increasingly larger databases
of asteroid proper elements, much larger than those adopted in previous analyses.
An example is given in Fig. 2. If one looks at this figure, it is easy to see that the main
belt asteroids are not uniformly distributed in the space of orbital proper elements.
Apart from the evident presence of forbidden zones that appear to be empty (like the
vertical narrow strips known as “Kirkwood gaps”), which correspond to resonant
orbits that are not stable [6]; it is clear that the distribution of the objects, in the
populated regions of the proper elements space, is very irregular, and even a quick
visual inspection is sufficient to find evidence of several more or less pronounced
clusters of objects. According to the meaning of proper elements, these clusters
represent groups of objects that have very similar orbits, even over long timescales.
These clusters of objects sharing similar orbits are what we call dynamical families.
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What is the interpretation of the existence of these families? There are not purely
dynamical mechanisms that should be expected to be able to produce some very
compact and sharp clusterings of orbits like some of those that are evident in Fig. 2,
starting from some more homogeneous distribution of orbits. On the other hand, it is
hard to imagine that asteroids were originally accreted in clusters, and they are still
there after 4 billions of years. To understand the origin of families, we must con-
sider what are the most important mechanisms that have determined the evolution of
the asteroidal population since the epoch of its formation. In this respect, although
there are still some uncertainties on the very early stages of the asteroids’ history,
in particular concerning the process that was responsible for the early depletion of
over 99% of the solid matter originally located in this region of the Solar System
[7], it is widely accepted that catastrophic collisions have been the major physical
process that has governed the evolution of the asteroid population for most of the
time passed since the early epochs of planetary accretion.

In particular, collisions may naturally explain the existence of dynamical fam-
ilies. The idea is that a family is a swarm of fragments created by the collisional
disruptions of an original parent body. This is a nice example of a situation in
which dynamical properties provide convincing evidence of the occurrence of very
interesting physical processes. Asteroid families become, like the tilt of the Uranus’
spin axis, the existence of our Moon, the presence of great impact basins on all
atmosphereless bodies observed remotely and in situ, new witnesses of the complex
collisional history of our Solar System.

The idea that families are collisional outcomes can be expressed in a more quan-
titative way. In particular, let us assume that a given body orbiting the Sun suffers
a sudden velocity change due to some reason, like in the case of a fragment ejected
from its parent body in a catastrophic collision event. As a consequence of this
change of its velocity vector, the body will achieve a new orbit, described by a
new set of orbital parameters. The relation between the velocity change experienced
by the body and the variation of its orbital elements is well known. In particular,
the conversion from velocities to orbital elements or vice versa is expressed by the
so-called Gauss formulae, that can be written as follows, under the assumption that
the velocity change is much smaller than the initial orbital velocity of the body:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δa/a = 2

na(1 − e2)1/2
[(1 + e cos f )δVT + (e sin f )δVR]

δe = (1 − e2)1/2

na

[
e + 2 cos f + e cos2 f

1 + e cos f
δVT + (sin f )δVR

]

δ I = (1 − e2)1/2

na

cos (ω + f )

1 + e cos f
δVW

, (1)

where n is the mean motion around the Sun, na is the mean orbital velocity, and
δVT , δVR , and δVW are the components of the velocity vector change (ejection
velocity) along the direction of the motion, radial, and normal to the orbital plane,
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respectively. The parameters f and ω are the a priori unknown true anomaly and
argument of perihelion of the body at the epoch of the velocity change on its original
orbit. If we consider the case of a fragment ejected from a parent body in a typical
collisional event, we see that the condition that the velocity change is much smaller
than the original orbital speed of the parent body is well satisfied. In fact, typical
orbital velocities for main belt asteroids are of the order of 10 km/s, whereas the
typical ejection velocities are generally more than one order of magnitude lower,
according to current physical models of these events [8].

The Gauss equations (1) are fundamental in many respects in family studies, and
we will refer often to them in this chapter. At this point we only note that they
can be used to demonstrate that the collisional disruption of a parent body must
necessarily be expected to produce a swarm of fragments with very similar orbits
that, in the space of the orbital elements, should appear as a cluster of objects. Since
the orbits are subject to perturbations and are subject to short- and long-timescale
variations, the similarity of the original orbits will be kept more evident over longer
times in the space of the proper elements, which are much less subject to time
variations.

Having recognized that dynamical families are collisional outcomes, the first
problem that was encountered in the early family studies was that of the reliable
identification of these groupings. In other words, by looking at plots like those
shown in Fig. 2, a fundamental question is which ones among the apparent clusters
are real and correspond to true collisional processes, and which ones are local over-
densities of objects in the proper elements space due only to chance and not to phys-
ical processes. This is the first problem that was faced by the family studies that were
carried out in the twentieth century. The following sections are aimed at presenting
in a schematic way what happened in the field of asteroid families starting since
the last decade of the past century, when family studies experienced a moment of
very intense development. In Sect. 3, we will then focus on what happened starting
from the early years of the present century, when the importance of new dynamical
mechanisms was realized, leading to new concepts and interpretations of available
data.

2.1 Family Identification

We cannot make here a comprehensive summary of all the results produced by
different authors in their identifications of dynamical families since the epoch of
discovery of these groupings. Here we only recall the fact that the most notable
property of the early results in this field was that different family searches wildly
disagreed with each other, the number of identified families ranging from a few up
to more than 100. This was due to big differences between the data sets of proper
elements used by different authors, as well as by differences in the adopted identifi-
cation criteria, which were often based on subjective analyses of the available data.
A review of this topic can be found in [9].
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Starting since 1990, a couple of new identification methods, based on repro-
ducible and well-defined algorithms, were independently developed by two teams
in Torino (Italy) and Nice (France). These two methods, named HCM (standing for
hierarchical clustering method) and WAM (standing for wavelet analysis method),
were completely independent, being based on a classical multivariate clustering
analysis approach (HCM) and on a wavelet-based technique for local overdensity
recognition (WAM), respectively. Both techniques had in common the idea of quan-
tifying the distance between two points in the proper element space by introducing a
suitable metric (a definition of distance) in that space. An identical standard metric
was adopted, complemented by another alternative metric to be used as a check in
order to test the stability of family identification upon the metric choice.

Due to the relation existing between differences in orbital elements and differ-
ences in fragment ejection velocity in an impact event (expressed by the Gauss
equations (1) seen above), the distance in the space of proper elements was cho-
sen to have the dimension of a velocity, expressed in m/s. Based on a number of
considerations explained in a classical paper by Zappalà et al. [10], the adopted
standard metric had the form

∂v = na′
√

5/4(δa′/a′)2 + 2(δe′)2 + 2(δ sin i ′)2,

where ∂v is the distance between two points in the proper element space (corre-
sponding to two orbits) expressed in m/s, and according to Gauss’ equations, n is
the mean motion and na′ is correspondingly the mean orbital velocity of the first
orbit.

Having defined a metric in the space of proper elements, the next step was to
develop algorithms to identify clusters of objects that, from a statistical point of
view, had zero probability to be due to chance. HCM and WAM differed in the
way they identified object clusters, but apart from that both of them were based on
the idea of eventually comparing the identified clusters with those resulting from a
randomly generated synthetic population of objects. In other words, the idea was to
compare the real clusters of objects present in a given region of the proper element
space with those that may be produced by a random distribution of objects in the
same region.

More in particular, it was thought that doing a purely random generation of
objects in the same volume of the proper element space occupied by a given pop-
ulation of real objects could be misleading. The reason is that such a fully random
population could be distributed in a too much different way with respect to the real
objects present the same region of the proper element space, and any comparison
between the real and the simulated objects might be questionable. For instance,
in a given volume of the proper element space the real objects might be found to
fill preferentially some regions of the volume, for a variety of reasons related to
the overall history and dynamical properties of the asteroid main belt, whereas a
fully random population would tend to fill the same volume in a homogeneous way.
For this reason, in order to generate synthetic populations having something to do
with the real objects, the synthetic objects were created imposing as an additional
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constraint that the overall distribution of their three proper elements should
separately fit the observed a′, e′, and i ′ distributions of the real objects.

In other words, the a′, e′, and i ′ histograms of the simulated populations can-
not be distinguished from the analogous histograms of the real population, but the
synthetic population does not contain any correlation between the a′, e′, and i ′

coordinates of each object. The synthetic populations generated in this way were
called quasi-random populations. The general idea of the family identification algo-
rithms was then to compare the clusters of the real and quasi-random population in
a given region of the proper element space. The quasi-random population was used
to identify the maximum local overdensity that can be randomly created among a
population of objects distributed in some way in a given region of the proper ele-
ment space. Families had to be clusters more compact and more populous than those
produced by any quasi-random population, corresponding to groupings that could
not be due to pure chance. Figure 3 shows, as an example, the comparison between
the population of real objects present in an arbitrary volume of the proper element
space and a corresponding quasi-random population built according to the above
explanation. In particular, the figure shows the comparison in the a′– sin i ′ plane.

The HCM method is particularly suitable to explain in practice how the above
approach can be actually implemented. Having introduced a metrics, the first step
consists of computing all the mutual distances between each couple of objects of the
considered sample. Having at disposal this distance matrix, an iterative procedure is
performed, consisting of the following operations at each step:

Fig. 3 Distribution in the (a′, sin i ′) plane of the real asteroid population in a region of the main
belt (left) and of the corresponding quasi-random population (right)
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1. Identification of the two mutually closest objects (i, j) of the sample.
2. Conglomeration of i and j : this means that from this moment this couple counts

as one single object i ∪ j , and by definition the distance d of any object k from
i ∪ j is assumed to be the minimum between d(k, i) and d( j, k).

3. The matrix of the distances is updated (it loses one row and one column) and go
back to step (1).

The above procedure is iterated until there is only one remaining object, correspond-
ing to the conglomeration of all the original objects of the considered sample.

In this way, a dendrogram can be built, which allows one to get immediately,
being given some desired value of mutual distance, how many objects are clustered
at that level of distance and also the identity of the members of the resulting group-
ings. In [10] it was introduced for the first time a kind of diagram that proved to be
very useful to represent in a graphical way the results of the above analysis. One
example of these diagrams, called stalactite diagrams, is shown in Fig. 4.

0 2000 4000 6000
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Fig. 4 Example of a stalactite diagram for a sample of main belt asteroids having proper semi-
major axis between 2.501 and 2.825 AU. The vertical axis gives the mutual distance (in m/s) while
the horizontal axis shows the number of objects that are included in separate clusters as a function
of the distance level. The tips of the stalactites represent then very compact groupings formed by
objects strictly similar in orbital proper elements
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As one can see in this figure, as far as the considered level of distance increases,
the objects tend to group together in increasingly bigger clusters, whereas only a
few, compact groupings are found at small distance levels. Of course, the most
compact and deepest groupings are the most interesting ones, since they correspond
to very dense clusters of orbits. By producing stalactite diagrams for quasi-random
populations in the same volume of the proper element space, it is possible to intro-
duce some criteria for the identification of dynamical families, that is, groupings that
cannot be due to pure chance. In several papers based on the HC M starting since
1990, the adopted criterion was, generally speaking, that families are either deeper
than the deepest stalactites produced by the quasi-random population or they reach
the same depth, but include much larger numbers of members. A minimum critical
number of objects was introduced in this respect, and the reader should address to
the original papers for a whole explanation. In addition, tests to check the statisti-
cal robustness of the resulting families for possible changes of the adopted metrics
(distance function) and for variations of the proper elements of the objects corre-
spondingly with the nominal accuracy of the proper elements computation were
done.

This kind of analysis produced for the first time results that were based on a well-
defined “objective” algorithm, did not depend on a visual inspection of the data, and
were reproducible. This was a big step forward, and the result was the unambiguous
identification of about 20 dynamical families, plus a number of other more uncertain
groupings whose real interpretation was postponed to later times, when larger data
sets of proper elements might become available. The last peer-reviewed paper in
this series of family searches was published in 1995 [11]. It included the analysis
of a sample of more than 12,000 proper elements, limited to objects having proper
eccentricity and sinus of proper inclination both smaller than 0.3. For the first time,
both HCM and WAM results were presented at the same time for the same sample
of objects. This paper has been the reference for family studies for many years. The
most important families identified in this analysis are listed in Table 1, while the
families identified by the HCM (only) are shown in Fig. 5 (in the a′–e′ plane) and 6
(in the plane a′–sin i ′).

2.2 Spectroscopic Confirmations

In the early 1990s, in a situation characterized by a big confusion in the field of
family identification, the introduction of new methods like HCM and WAM could
not be seen as a very important achievement in the absence of some convincing
confirmation of their reliability. This kind of confirmation came soon, however,
when Binzel and Xu carried out a spectroscopic survey of the Vesta family recently
identified by the HCM [10].

A spectroscopic study of Vesta family members was at that time an ideal tool
to test the supposedly collisional origin of this family. The reason is that Vesta had
been for a long time a unique object among the asteroid population in terms of
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Table 1 A comparison between the most prominent dynamical families identified by [11] in a
joint analysis in which both the HCM and the WAM were applied to an identical sample of more
than 12, 400 asteroids. Each family of the list is indicated using the name of its resulting least
numbered member (that can be different for HCM and WAM). Only families having an intersection
(numbers of objects in common) of 75% (upper block) or 50% (lower block) are listed. These
families represent, therefore, the most reliable groupings identified in that analysis

Identified families Number of members

HCM WAM HCM WAM

8 Flora 43 Ariadne 604 575
44 Nysa 135 Hertha 381 374

4 Vesta 4 Vesta 231 242
163 Erigone 163 Erigone 45 49

1 Ceres 83 Minerva 89 88
170 Maria 170 Maria 77 83
668 Dora 168 Dora 77 79
145 Adeona 145 Adeona 63 67
808 Merxia 808 Merzia 26 29
569 Misa 569 Misa 25 27
410 Chloris 410 Chloris 21 27

1644 Rafita 1644 Rafita 21 23
1128 Astrid 1128 Astrid 10 11

24 Themis 24 Themis 550 517
221 Eos 221 Eos 477 482
158 Koronis 158 Koronis 325 299
137 Meliboea 137 Meliboea 13 16
845 Naema 845 Naema 6 7

20 Massalia 20 Massalia 49 45
15 Eunomia 15 Eunomia 439 393

110 Lydia 110 Lydia 26 50
128 Nemesis 58 Concordia 20 38

1639 Bower 342 Endymion 10 15
10 Hygiea 10 Hygiea 103 175

490 Veritas 92 Undina 22 36
293 Brasilia 293 Brasilia 10 18

spectroscopic properties and corresponding mineralogic composition. At the begin-
ning of the 1990s Vesta was still a fairly unique object characterized by a reflectance
spectrum similar to that of terrestrial basalts, characterized by deep absorption fea-
tures at wavelengths around 1 and 2 μm. As a consequence of these properties,
Vesta was the prototype of a unique taxonomic class, named V after its name. The
interpretation of its spectrum was that Vesta should likely be considered as a unique
example of a fully differentiated asteroid, with the likely presence of a metallic
core surrounded by an olivine mantle and a lighter basaltic crust. From the point
of view of the studies of collisional evolution of the asteroid population, Vesta was
considered to put some important constraint on the collision rate. In fact, any model
of the collisional evolution process should have been constrained by the fact that
the fragile basaltic crust of Vesta has remained intact until our days. On the other
hand, the presence of a large, hemispheric-sized albedo spot, possibly due to the
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Fig. 5 Locations in the a′–e′ plane of the families identified by the HCM according to [11]

presence of a large impact crater on the surface, had been discovered by means of
polarimetric and photometric studies of this asteroid [12].

The presence of a dynamical family associated with Vesta was therefore not
discouraged by the observational evidence available at that time, provided that the
family could have been produced by an energetic cratering event, able to excavate
a large crater on the surface, but without being able to break the object apart. At
the same time, spectroscopy was the ideal tool to test the hypothesis of a dynam-
ical family of Vesta, since the members of this supposed family would have been
presumably sharing the unique spectral reflectance properties of Vesta itself, then
should have been expected to belong to the V taxonomic class.

The results of the first spectroscopic investigation of the Vesta family published
in 1993 [13] were a spectacular confirmation of the real collisional origin of the
family identified by the new methods. Not only a sample of objects listed as Vesta
members by an HCM analysis turned out to be V -type, but even a number of
other, small objects not belonging to the family, but orbiting with orbital semi-major
axes between that of Vesta and the inner border of the 3:1 mean motion resonance
with Jupiter at 2.50 AU, corresponding to one of the major forbidden zones in the
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Fig. 6 Locations in the a′–sin i ′ plane of the families identified by the HCM according to [11]

asteroid belt (Kirkwood gaps), were found to have V -type spectra. These findings
not only confirmed the existence of the Vesta family, but they also suggested that
many fragments might have been ejected at large velocities, reaching a so large dis-
tance from the parent body that they cannot be recognized as family members. The
fragments that might possibly have reached the 3:1 resonance, which is an effective
“dynamical engine” to move objects from the asteroid main belt to the region of the
terrestrial planets, as we will discuss in separate sections, might have become the
parent bodies of HED achondrites, as well of the V -type near-Earth asteroids that
were found around those years. A copy of the original plot showing the results of
Binzel and Xu is shown in Fig. 7.

After the successful observations of the Vesta family, spectroscopic studies of
families became very popular starting since the mid-1990s. The many studies pub-
lished before 2002 are reviewed in the “Family Spectroscopy” chapter of the Aster-
oids III book [14]. One fundamental result of these campaigns was that families
turn out to be quite homogeneous in spectral reflectance properties, and hence they
are also likely homogeneous in composition. On one hand, this fact can be seen as
a further proof that families identified by modern identification methods are real.
In fact, no “impossible” assemblages of objects with spectra incompatible with the
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Fig. 7 Copy of the plots originally published by Binzel and Xu [13]. The small dots in bold are the
supposed Vesta family members found at that time. Among them, those surrounded by a circle are
objects found to exhibit a Vesta-like reflectance spectrum. The full squares indicate other Vesta-like
objects not belonging to the Vesta membership list

hypothesis of a common origin have been found among families. Only in some cases
some objects are found to have distinctly inconsistent spectra with respect to the
majority of other members of the same family. In these cases, however, there are, in
general, good reasons to suspect that the discrepant objects are random interlopers,
not belonging to the family. As an example, Fig. 8 shows a sample of the bright-
est and largest members of the Dora family. This figure represents these objects
as points in the a′-diameter and in the e′-diameter planes, where a′ and e′ are as
usual the proper semi-major axis and eccentricity, respectively, and the diameter

Fig. 8 a′–D (left) and e′–D (right) plots for some of the largest members of the Dora family.
Filled symbols identify objects that have been found to have spectral reflectance properties hardly
compatible with those of the majority of family members. Due also to their anomalous locations
in these plots, these objects are thought to be likely interlopers in this family (see text)
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in kilometers is derived from the known albedos and absolute magnitudes of the
objects using the formula

log D = 3.1236 − 0.2 H − 0.5 log(pV ), (2)

where D is the diameter in km, H is the absolute magnitude, and pV is the albedo,
and the value of 3.1236 constant is due to the definition of magnitude and the choice
of expressing the sizes in kilometers.

Looking at Fig. 8, it is easy to see that the objects tend to occupy triangular
domains in the a′–D and e′–D plots. In particular, smaller objects tend to have more
spread proper elements. Thus, smaller objects are, in general, more dispersed in the
proper elements space than larger ones. This is a fairly natural phenomenon if we
interpret this in terms of ejection from an original parent body, since smaller objects
may have been ejected at higher velocities and/or have experienced a more intense
orbital evolution. We touch here some delicate point that will be more extensively
discussed in Sect. 2.3. The filled circles in the figure represent objects that have
anomalous spectra with respect to those that are normal for this family. If one looks
at the plots, it is easy to say that these discrepant objects tend to occupy positions in
the plots that are outside the triangular domains occupied by most family members.
For this reason, we do believe that the discrepant objects are actually random inter-
lopers, that only by chance share the same range of proper elements that character-
izes the Dora family. The presence of random interlopers in the nominal membership
lists is not unexpected. Due to the statistical criteria adopted to identify families, it is
always possible that some objects that have nothing to do with a family are actually
included in the member lists [15]. Another possibility is also just the opposite: in
the case that the adopted criteria for family memberships are too conservative, it is
possible to exclude from the member lists large numbers of actual family members.
These facts are always to be taken into account, as we will see later, since it is
always possible to infer erroneous conclusions on the family members inventory,
simply looking at the nominal member lists.

The quoted example of Dora is fully representative of what is found in general
among other families. Spectroscopy becomes in this way a very powerful tool not
only for confirming the collisional origin of families but also to identify among the
member lists some likely interlopers.

The fact that families turn out to be spectrally homogeneous has been seen as a
fairly disappointing fact by some observers. The reason was that for some time, the
Holy Graal of spectroscopic campaigns was to find evidence of some heterogeneous
family, compatible with the scenario expected for the complete disruption of a fully
differentiated object like Vesta, which means to find a number of M-type members
(supposed to be metal-rich), in a larger cloud of V -type and A-type (the taxonomic
class believed to be most likely diagnostic of an olivine composition). The fact that
such a kind of family has not been found may put some further constraints to the
models of collisional evolution of the main belt population. In particular, if at least
some of the asteroids belonging to the M taxonomic class are really metallic in com-
position, we may conclude that Vesta is not a unique example of fully differentiated
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asteroid, and other objects of this kind were produced in the early phases of the
Solar System history (as shown in any case by the existence of metallic meteorites).
However, if these differentiated objects were destroyed by collisions, the supposedly
big families that were produced by these events are no longer recognizable today.
According to some authors [16] this fact is surprising and can hardly be explained, if
we do not conclude that these events took place very early, possibly in an era when
a much larger total mass of planetesimals was still present in the region presently
occupied by the asteroid main belt.

Apart from the discovery that families are likely homogeneous in surface com-
position, the spectroscopic campaigns led to other exciting discoveries. One of them
is shown in Fig. 9.

This figure shows the results of comparative analysis of the reflectance spec-
tra of members of the big Eos family, and those of a handful of objects that are
currently located inside the 9:4 mean motion resonance with Jupiter. This reso-
nance is known to be not among the most efficient resonant strips in the asteroid

Fig. 9 These two plots in the a′–e′ and a′–sin i ′ planes show the Eos family as it was known in the
mid-1990s. Small symbols are the family members. Open circles represent a sample of asteroids
not belonging to the family and located into the 9:4 mean motion resonance with Jupiter. Filled
circles are a sample of the above objects that were observed spectroscopically [17] and were found
to share the same unusual reflectance spectrum of the members of the Eos family
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main belt, nevertheless dynamical studies show that objects injected into it start to
undergo wide oscillations in eccentricity and inclination, and eventually are decou-
pled from the resonance as a consequence of planetary perturbations, to be either
ejected from the solar system or with a much smaller probability, to be captured by
Mars, eventually becoming near-Earth asteroids [17]. The resonant objects observed
during the spectroscopic campaign did not belong to the Eos family, being clearly
decoupled from it in the proper element space, as shown in Fig. 9. Their reflectance
spectra, however, were unambiguously found to be similar to those of Eos family
members. This result was made easier by the fact that the Eos family is composed
of objects belonging to an unusual taxonomic class, named K , that can be clearly
distinguished from more usual taxonomic classes. Since the observed objects in the
9:4 resonance were found to be K -type, it was natural to conclude that these objects
came originally from the Eos family, and are seen now just at the beginning of a
complex dynamical evolution that will eject them out of the asteroid main belt, a
quite remarkable result.

The case of the Eos family, composed of uncommon K -type asteroids, is not
unique. Actually, a surprisingly high number of families have been found to be
composed of objects belonging to rare taxonomic classes, like F , L , K . Among
them, the Polana family is a remarkable cluster of F-type objects located in a region
of the inner belt where low-albedo objects like those belonging to the F class are
quite rare. The Polana family is one of two overlapping families that were found to
be clearly distinguishable only on the base of spectroscopic properties [18].

The interpretation of the evidence of a relative overabundance of families com-
posed of objects belonging to rare taxonomic classes [14] has long been a puzzle,
and the situation is still not clear. Some evidence of the presence of collisional heat-
ing seems to be present in some meteorites [19], but this subject has not been very
deeply investigated so far.

What can certainly be said when mentioning spectroscopic observations of fam-
ilies is that this technique is becoming increasingly important as a powerful tool not
only to analyze existing families and to look for interlopers, as mentioned above, but
also to complement the family searches in the proper elements space, by adding a
full new dimension to the problem. In fact, as we will see in Sect. 2.3, the number of
objects for which there are currently computed proper elements is steadily growing,
and we have now nearly 30 times the number of objects that were analyzed in the
family searches carried out in the 1990s. This does not mean, however, that things
are easier today. The situation is just the opposite in some respects. In particular, due
to the huge number of objects in the current databases, it is extremely more difficult
now to disentangle between different families in the regions of the proper element
space where they tend to overlap. In these situations, only spectroscopy may be an
effective tool to decide whether some objects belong to a family or to another.

2.3 Size Distributions

In the years between 1990 and 1995 the problem of family identification could be
considered to have been convincingly solved, mainly after the first confirmations
coming from spectroscopic studies. At that point, the attention started to focus on
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the task of deriving from these families as much information as possible about the
physical processes that had been responsible of their formation, namely collisions.

By researchers interested in the outcomes of catastrophic disruption processes,
families can be seen as the results of experiments that are many orders of magnitude
beyond what we can do in our laboratories in terms of energy in play. In the labora-
tory, it is possible to set up experiments of hypervelocity collisions in which targets
having sizes of some centimeters can be disrupted, in order to analyze the outcomes
of these events, including the size distribution of the fragments, the ejection velocity
distributions, and the spin properties of the fragments. But there is no hope to have
the possibility of disrupting bodies up to hundreds of kilometers in size, by means of
collisions with projectiles with sizes between hundreds of meters and some kilome-
ters, impacting the targets at typical speeds of 5 km/s. Nature performed for free this
kind of experiments, when asteroid families were produced, because family-forming
events exactly correspond to the kind of collisions just described above.

Since the physics of catastrophic collisions is obviously required to understand
and develop models of the collisional history of the asteroid population, when fam-
ilies were finally identified in an unambiguous way, they quickly became a major
source of information in this field and the objects of many researches.

One of the first topics of interest was the size distribution of these groupings.
Figure 10 shows the cumulative size distributions of five of the most prominent
asteroid families as they appeared to be about 10 years ago. The plots show the
log of the numbers of objects larger than a given size D as a function of log D.
The log–log representation is due to the well-known fact that the size distributions
of family (and non-family) asteroids are generally well fitted by power-laws, with
the number of increasingly smaller objects increasing exponentially for decreasing
sizes.

What turned out to be really remarkable in the early studies of family size dis-
tributions is the fact that these distributions, down to the values of size for which
the family inventory is complete (objects of that size are all sufficiently bright to
have been discovered) are really steep. To be more precise, family size distributions
turned out to be much steeper than the theoretical slope of a collisionally relaxed
population.

Some ancillary information is needed here. In the 1970s and 1980s, there was
a lot of activity in the field of modeling the collisional history of the asteroid pop-
ulation. One of the first theoretical studies on this subject was done by Dohnanyi,
who developed a model in which the disruption of a single object produced a swarm
of fragments with a given size distribution [21, 22]. It was also assumed that this
process is size-invariant, in the sense that the disruptions of bodies of very different
sizes should behave in the same way, producing swarms of fragments whose size
distributions scale with the size of the parent body. Under these assumptions, it
was shown that a population of such objects, subject only to the evolutive pro-
cess given by mutual collisions among its members, tends to quickly relax to a
fixed cumulative size distribution described by a power-law with an exponent equal
to −2.5.



154 A. Cellino and A. dell’Oro

Fig. 10 Cumulative size distributions of the families of Flora, Eos, Themis, Koronis, and Vesta
according to [20]

As opposite, starting since the early studies of the size distributions of families
and non-family asteroids [23] it was found that the families have power-law expo-
nents well beyond the −2.5 limit, in some cases even beyond −3, the limit value
that gives an infinite reconstructed mass. For this reason, it was believed that at
sizes smaller than the completeness limit these family size distributions had to relax
to more moderate values, although it was not clear at all at which size this change
of slope would usually take place.

At this point, historically a few years before the end of the twentieth century,
two main problems were open: to discuss the consequences of what had been found
concerning the steep size distributions of families and to understand how these size
distributions could be so steep.

Let us start first with the latter problem. Let us make, as it was actually done in
those years [24] two simple assumptions: (1) in a catastrophic collision the mass of
the parent body is conserved (it is equal to the sum of the masses of its fragments);
(2) the mass distribution of the fragments is represented by a bi-truncated power-
law, in a range of masses between an upper limit, corresponding to the mass of
the largest fragment (the largest remnant, as it is usually named), and a lower limit
corresponding to the smallest produced fragment. The latter limit may well be very
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low, corresponding to dust grains, but it is not zero. Now, by making the above
two assumptions, and making a few computations, it is possible to derive some
well-defined predictions for the size distributions of families. In particular, a well-
defined relation can be found between the slope of the cumulative size distribution
of the family’s and the value of the ratio mL R/m P B between the mass of the family’s
largest remnant and the mass of the original parent body. Such a relation is shown
in Fig. 11.

As can be seen, the slope of the power-law which describes the size distribution
turns out to be increasingly steeper for decreasing values of the mL R/m P B mass
ratio. This is not surprising in the framework of this model, because a more massive
largest member means that a smaller amount of mass is left to be distributed among
the other fragments. Unfortunately, this predicted trend is spectacularly contradicted
by the behavior exhibited by real families. If we go back to Fig. 10, we may see that
the steepest size distribution is that of families with a very big largest remnant, like
in the case of Vesta, whereas a much shallower trend is exhibited by the family
of Koronis, which is characterized by a large number of largest fragments having

Fig. 11 Predicted size distributions of asteroid families characterized by different mass ratios
between the largest remnant and the parent body (indicated in the figure) according to the purely
mathematical model [24] (See text. Plot taken from [20])
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approximately the same size. Then, something is wrong in the model expectations,
and this must be explained in some way.

If one looks again at the size distribution of the Vesta family shown in Fig. 10,
it is easy to see that the trend is characterized by a long straight segment link-
ing the size of Vesta to that of the second largest member of the family. Starting
from this object, the size distribution becomes a continuous curve composed of
a large number of points, distributed according to a very steep power-law. This
behavior is the key to understand the explanation that was given to the observed
family size distributions in a classical paper in 1999 [20]. The argument is the
following: any prediction based on an abstract mathematical form of the size dis-
tribution and on mass conservation must fail if it does not take into account some
geometrical constraints imposed by the sizes of the individual fragments. In par-
ticular, different fragments cannot mutually overlap, and the space at disposal is
limited by the finite volume of the parent body. Let us suppose for sake of sim-
plicity that both the parent body and the fragments have all spherical shapes (an
assumption which is not critical for the conclusions of this argument). Now, if the
parent body has a diameter of, say, 100 km, and the largest remnant has a diam-
eter of, say, 60 km, there is not any possibility for the second largest fragment to
have a diameter larger than 40 km in the best possible case. In other words, the
volume of each single fragment limits the space available to the formation of the
others.

It is clear that we are implicitly making an oversimplification of the process of
fragmentation, since real fragments are produced as a complicated effect of propa-
gation of mechanical waves in the volume of the parent body. The latter is charac-
terized by its own properties, including the presence of pre-existing material faults
and cracks, and it is clear that the fragments are not obliged a priori to have prede-
termined shapes. Moreover, the final fragments may also be affected by effects of
mutual reaccumulation. Bearing in mind these obvious objections, in order to avoid
overinterpretation of the results, one can nevertheless write some simple numerical
algorithm which simulates the formation of fragments taking into account the con-
straint of non-mutual overlapping and non-extrusion from the original parent body’s
volume. This exercise was first done in 1999 [20], and the results were striking. The
resulting size distributions give an excellent fit of the observed size distributions of
real families. Figure 12 is the same as Fig. 11, but this time it shows the predictions
based on the geometric model just mentioned above. This time, the behavior is in
good agreement with the trend shown by real families in Fig. 10. Families with a
very big largest remnant, like Vesta, exhibit the steepest size distribution, whereas a
more “democratic” family like Koronis, having a large number of largest fragments
approximately equal in size, exhibits a much shallower slope.

Some fits of individual families, obtained by using the geometric model and
looking for the values of the parent body size and the mL R/m P B mass ratio which
produces a best fit to the data, are shown in Fig. 13. As can be seen, the fits appear
quite good, even surprisingly good by taking into account the above-mentioned
oversimplifications of this geometric model.
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Fig. 12 Predicted size distributions of asteroid families characterized by different mass ratios
between the largest remnant and the parent body (indicated in the figure) according to the geometric
model [20]

After the publication of the paper presenting the geometric model [20], the steep
slopes of the size distributions of asteroid families could be, at least qualitatively,
explained. The geometric model not only gave some excellent fits of the size distri-
butions exhibited by the major families known at that time, but also could be used
to derive at least some indication concerning the a priori unknown values of the
original parent bodies’ sizes and the mL R/m P B mass ratios for these families. The
general results of this exercise are summarized in Table 2. As can be seen, many
families were formed, according to this kind of modeling, by the disruptions of
objects up to 300–400 km in size. Moreover, some families are likely the outcomes
of extremely energetic events, capable of producing largest remnants with masses
only a few hundredths of the parent body.

We stress again that, due to obvious oversimplifications of the basic assumptions
of the geometrical model, the results shown in Table 2 cannot be taken too literally
and should be interpreted mostly in a statistical way than as an accurate fit of single
families.

On the other hand, it is also worth to remind that since a long time it is known that
some dust belts identified in the sky by thermal infrared surveys are associated with



158 A. Cellino and A. dell’Oro

Fig. 13 Best fits of the size distributions of the families of Eos, Adeona, Eunomia, and Flora,
obtained by applying the geometric model [20]. The thickness of the observed family size distri-
butions is due to uncertainties in the sizes of the objects

some families. This is another reason to conclude that family-forming events, possi-
bly followed by further second-generation object disruptions, may actually produce
huge amounts of fragments down to very small sizes.

2.4 The Role of Families in the Asteroid Inventory

Figure 14 shows that, even qualitatively, asteroid families tend to become more
evident if increasingly larger samples of asteroid proper elements are considered.
According to this and other kinds of evidence discussed in Sect. 2.3, there was
growing evidence in the 1990s that the size distributions of asteroid families were
described by quite steep power-laws, much steeper than those found to describe
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Table 2 The parent body size DP B and the mL R/m P B mass ratio for some major asteroid families
analyzed by [25]

Family DP B (km) mL R/m P B

Adeona 189 0.51
Dora 88 0.03
Eos 218 0.11
Erigone 91 0.50
Eunomia 284 0.73
Flora 164 0.57
Gefion 74 0.06
Hygiea 481 0.61
Koronis 119 0.04
Maria 130 0.05
Massalia 151 0.90
Merxia 42 0.35
Themis 369 0.31
Vesta 468 0.95

the size distribution of non-family objects in different regions of the asteroid main
belt. In particular, it turned out that non-family asteroids exhibited exponents of the
size distribution shallower than the −2.5 theoretical value for a collisionally relaxed
population, according to Dohnanyi’s theory, as explained above. As opposite, fam-
ilies exhibited much steeper slopes than the Dohnanyi value. This fact had been
already apparent based on a preliminary analysis of the database of asteroid sizes
and albedos produced by the thermal IR observations of the IRAS satellite [23], as
shown in Fig. 15.

Taken at face value, the above-mentioned results concerning the different size
distribution of family and non-family asteroids have some important consequence
on the inventory of the main belt population down to small sizes. In particular, if
family size distributions are so much steeper than the size distribution of the popu-
lation of non-family objects, it follows that at small sizes, below the limit of com-
pleteness of the observed population, family members should dominate the asteroid
inventory.

Some care is needed, however, before drawing conclusions that might be shown
to be erroneous. To better understand this delicate point, it may be useful to examine
the plot shown in Fig. 16, which shows the size distribution of the Eunomia family
according to data available around 1995.

The figure clearly shows that the size distribution of this, as of most families, is
characterized by a trend corresponding to a steep power-law exponent down to some
limit size value. At smaller sizes, the curve starts to become shallower, until the
number of objects becomes constant, corresponding to the total number of known
family members. The fact that the size distribution becomes shallower at small sizes
should not be interpreted as an intrinsic property of the size distribution, because it
is simply due to the fact that starting at some critical size level, the completeness
of the sample is no longer full, or in other words we do not have yet observed all
the really existing objects smaller than the completeness limit. The completeness
size limit corresponds to the size value at which the cumulative distributions exhibit
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Fig. 14 Proper eccentricity versus proper semi-major axis plots for increasingly larger samples
of asteroids. The plots show numbered asteroids up to N = 1,000 (top left), up to N = 3,000
(top right), up to N = 5,000 (bottom left), and N = 12,000 (bottom right). From the plots, it is
apparent that asteroid families become progressively more evident when considering increasingly
larger samples of objects

a change of slope and start to become shallow. In the figure, it turns out that the
completeness limit for the Eunomia family as it was known a dozen of years ago is
about 10 km.

To estimate the number of existing family members at sizes smaller than the com-
pleteness limit, some extrapolation is thus necessary. Such extrapolation, however,
is a delicate affair.

In 1996 [26] this problem was analyzed using the following approach: the size
distribution extrapolation was done down to a value of 1 km using two different
methods. One method was a simple extrapolation of the observed size distribution
above the completeness level. In this way, one gets some resulting n1 number of
objects larger than 1 km, as shown in Fig. 16. This led to an upper limit of the
number of 1-km family members. Such kind of extrapolation may be questionable,
however, because in many cases the size distribution above the completeness value is
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Fig. 15 Log–log plots of the size distribution of non-family main belt asteroids compared with
that of some families as they were known in 1991 [23]

really very steep, so that a simple extrapolation of it may possibly lead to some likely
overestimate of the number of objects at small sizes. When the size distribution
exponent is above the −3 value, moreover, it is certain that the slope must relax
to more moderate values at some size below the completeness limit, just because a
simple extrapolation down to zero would give an infinite number of family members,
corresponding to an infinite mass of the parent body. Unfortunately, on the other
hand, there is not any a priori reason to believe that the size distribution should
change at some known value of size, nor is it clear to which value of the exponent
the size distribution should converge, if any.

The second extrapolation method adopted by [26] consisted of an extrapolation
of the observed size distribution composed by two parts: the first one was a sim-
ple extrapolation of the observed size distribution, but limited only to the interval
between the completeness size limit and a size of 5 km (chosen arbitrarily). Below 5
km, it was assumed that the size distribution followed a Dohnanyi law, characterized
by a −2.5 power-law exponent. This led to an alternative value n2 for the number
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Fig. 16 The size distribution of the Eunomia family as it was known around the year 1995. The
plot shows the size completeness limit at that epoch, as well as two possible extrapolations of the
size distributions down to 1 km in size

of objects larger than 1 km. Figure 16 gives a graphical representation of the two
methods.

The result of this analysis was that, although with large uncertainties, the contri-
bution of asteroid families to the inventory of the main belt population is extremely
important. While at a size of 10 km, family and non-family asteroids contribute
approximately for a 50% each of the population, at smaller sizes the contribution of
family members, mainly from a few very big ones like Themis, increases very much.
The nominal value of the family contribution at a size of 1 km turned out to be 99%.

These results have never been universally accepted. Even in those same years,
some analyses of the likely inventory and size distribution of the asteroid popula-
tion, based on an assessment of the discovery efficiency of objects having different
apparent magnitudes, concluded that the size distribution of main belt asteroids is
not very steep at small sizes, and there is not any evidence of a likely domination of
family members [27]. A more detailed discussion of the situation taking into account
the observational evidence that is available today will be presented in Sect. 3.

A main belt population dominated by asteroid families would have several con-
sequences, and some of them will be discussed in the following sections. Here, we
only note that, among them, one would be an important effect on the intrinsic col-
lision probability throughout the main belt. In particular, in a main belt dominated
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by a few very populous families, the collision probability would be higher in the
regions of the semi-major axis—eccentricity plane swept by the members of these
families [28].

2.5 The Reconstruction of Family Velocity Fields

We have seen in Sect. 2 that a relation exists between the components of the ejection
velocity of a fragment escaping from its parent body and the resulting difference
between its orbital elements and those of the parent body. This relation is expressed
by the Gauss equations (1). As a consequence, we have that in principle one could,
having at disposal a family, try to infer the values of the original ejection veloc-
ity components of each family member by simply looking at its coordinates in the
proper element space. The idea is that, if we assume that each object was ejected
from the location of the current family barycenter, one could compute the com-
ponents of its original ejection velocity from the parent body, by simply using the
Gauss equations, knowing the differences in proper elements between the object and
the family barycenter.

Of course, this would be in principle a very interesting result in many respects. In
particular, a reliable reconstruction of the kinematical properties of an event of catas-
trophic disruption would provide very important constraints to the physical models
of these events and possibly would shed some light on some structural properties of
the family parent bodies.

However, the idea of reconstructing the original ejection velocity fields of family-
forming events must face two fundamental problems. One, that will be discussed in
Sect. 3, is related to the fact that it is not granted for sure that current family mem-
bers have not experienced significant dynamical evolution since the time of their
creation. In fact, if the proper elements of current family members have changed for
any reason with respect to their original values, any attempt at deriving information
on the original ejection velocity values starting from the present proper element
values is intrinsically dangerous and might lead to misleading, or completely wrong,
results. As quoted above, this problem will be more extensively discussed in Sect. 3,
then for the moment let us forget it.

The second problem is that, if one looks at Gauss’ equations, it is easy to see
that the link between velocity components and proper element differences is not
immediate, but it depends on the values of two a priori unknown parameters, namely
the true anomaly f of the family parent body at the epoch of its disruption and the
value of its argument of perihelion ω at the same epoch.

The problem that f and ω are unknown seems in principle a fundamental one.
Any method of reconstruction of the original ejection velocity field of the fragments
should be in principle able to produce some reliable estimate of these unknown
angles, but it is hard to imagine how this could be achievable in practice. However,
an analysis carried out in 1996 [29] showed that the problem is not hopeless. The
basic idea is the following: if one tries to invert Gauss equations using the right
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values of f and ω, the correct ejection velocity field will be obtained. The resulting
field will be instead increasingly wrong as one chooses increasingly wrong values
of the unknown angles. If the ejection velocity fields could be assumed to be com-
pletely random, with structures not showing any predictable properties, the inversion
of the Gauss equations would not be possible in principle. But laboratory experi-
ments tell us that the situation is different. Some common properties of the ejection
velocity fields observed in laboratory hypervelocity collisions show that the ejection
velocity fields generally present some characteristic properties. The most common
and general property is that the fields turn out to be noticeably axisymmetric. The
symmetry axis generally coincides with the diameter connecting the center of the
disrupted object and the impact point.

According to the above considerations, one cannot pretend that the ejection
velocity values of single fragments can be accurately predicted. However, based
on the symmetry properties of the ejection velocity field, one can expect, in general,
that the distributions of the velocity components VT , VR , and VW are not simply ran-
dom, but they satisfy some properties dictated by the general structure of the velocity
field. This fact can be directly exploited to obtain an estimate of the unknown angles
in Gauss equations. Focusing on the VT , VR velocity components, which are affected
by the f angle only, some dimensionless parameters were built, which are functions
of the unknown f angle in the Gauss equations. The following two were used in
[29]:

Z =
∑

i V 2
Ri
−∑i V 2

Ti∑
i V 2

Ri
+∑i V 2

Ti

and

α =
∑

i (VTi · VRi )√∑
i V 2

Ri
·∑i V 2

Ti

.

The above Z and α parameters can be used as indicators of the overall symmetry
of the field and vary as a function of the assumed value of the unknown f angle. The
dependence of Z and α upon f was tested in a number of numerical simulations
in which synthetic ejection velocity fields were created, being characterized by a
variety of possible structures (spherical fields, ellipsoidal fields, conic fields, etc.)
and using different values of the “true” f angle. The result was that the hypothesis
of axial symmetry of the resulting field could be translated into the requirement
that the Z parameter reaches a minimum, or that α becomes equal to zero. These
requirements were found to be sufficient to find a corresponding value of the f
angle satisfactorily close to the “true” value used to build the simulations. In other
words, the symmetry properties of the velocity field could be used to derive a fairly
good estimate of the unknown f angle appearing in Gauss’ equations. The same
was found to be true also for the other unknown angle, ω, although in this case the
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Fig. 17 Plot of the estimated angles f versus the “true” f0 angles for a large set of simulations.
Different symbols refer to conic (crosses), off-center spherical (circles), biaxial ellipsoidal (trian-
gles), and asymmetric triaxial ellipsoidal (squares) fields, respectively. This figure is taken from
the original paper [29]

uncertainty was larger. The results of this analysis are shown in Fig. 17 and 18,
respectively.

The results of this analysis [29] were thus quite encouraging, and indicated that,
in a large variety of simulated cases, the reconstructed fields obtained by apply-
ing this technique were on the average similar to the simulated fields, as shown in
Fig. 19.

Based on this technique, it was possible to derive the overall structures of the
fields of several families. A couple of results, referring to the families of Vesta and
Maria, are shown in Figs. 20 and 21, respectively. In Fig. 20, both the apparent
structure of the Vesta family in the proper element space is shown, as well as the
corresponding structure in the space of ejection velocity components. Figure 21
only shows one projection of the Maria family structure in the velocity space. The
overall kinematical structures of the two families look “reasonable” when compared
with similar plots referring to the outcomes of experiments of catastrophic disrup-
tion in the laboratory. In both figures, the size of the symbols used to represent
family members is directly proportional to the corresponding size of the object in
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Fig. 18 The same as Fig. 17, but for the ω + f angle

kilometers. Since in this way the asteroid (4) Vesta would appear exceedingly big,
it has not been included in Fig. 20, and its location is indicated by the intersection
of two perpendicular lines in the plot. In Fig. 21 the plot also includes the locations
of the borders of the strong 3:1 mean motion resonance with Jupiter in the velocity
space. It is evident that the family is just hanging on “3:1 precipice,” and this leads
us to Sect. 2.6.

2.6 Families as Sources of Asteroid Showers on the Earth

The case of the Maria family, which appears to be located just on the border of one
strong resonance, as shown in Fig. 21, is certainly not unique. Several important
families are located on the border of one or more resonances. A list includes, in
addition to Maria, the families of Themis, Eos, Koronis, Dora, and Gefion. The
above list includes then several of the most important and populous families in the
main belt. It is known that the most important mean motion resonances with Jupiter
correspond to the well-known Kirkwood gaps in the asteroid main belt, namely
some narrow strips corresponding to forbidden values of the orbital semi-major
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Fig. 19 Example of an application of the method of ejection velocity field reconstruction in a
simulated case of a velocity field having an overall conic structure. Above, two projections of the
simulated velocity field. Bottom, the same projections, but for the reconstructed field. Plot taken
from [29]

axis. The same is true for the secular ν6 secular resonance, as well as for a number
of other resonances which are found to cross the proper element space in the region
of the asteroid main belt. Figure 22, taken from [30], shows a visual representa-
tion of several of these resonances. The mean motion resonances with Jupiter, that
produce the Kirkwood gaps, are also evident in other figures, for instance Fig. 2.
The important fact is that all these resonances are associated with the notion of
chaotic motion. In other words, any object whose orbital elements are such as to fall
into one of these resonant zones, is subject to a chaotic dynamical evolution, which
rapidly produces wide oscillations of the orbital elements, mainly eccentricity and
inclination, possibly leading to close encounters with some major planet, producing
big changes in orbital semi-major axis and consequent removal from the region of
the asteroid belt.

The fact that many important families appear to be sharply cut by some neigh-
boring resonance was interpreted in the 1990s as an indication that the original
disruption events that produced these families had been sufficiently energetic as
to eject many fragments into such resonances. These objects are no longer there,
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Fig. 20 The reconstruction of the ejection velocity field of the Vesta family according to [29]. The
two plots on the top show the structure of the family in the proper elements space, whereas the
two plots at bottom show the same, but in the space of the velocity ejection components. The sizes
of the symbols are directly proportional to the corresponding sizes of the asteroids in kilometers.
Since the very big (4) Vesta asteroid would be represented by an exceedingly large symbol in this
plot, it is not represented in the plots, but the location of Vesta is indicated by the intersection of
two perpendicular lines drawn throughout the plots

because they have experienced a chaotic dynamical evolution and have long been
removed from the asteroid belt. In particular, many of them may have been moved
to the region of the terrestrial planets, contributing to the inventory of near-Earth
objects (NEOs).

It is known that the NEO population is composed by objects having short
dynamical lifetimes and cannot exist for long times before being either disrupted
or removed from the NEO region. For this reason, new objects must be steadily
supplied by some mechanisms. In the 1990s, the discovery that many families are
just on the border of some powerful resonances led to the natural idea that these
families might be an important source of NEOs, and numerical simulations were
performed to test this hypothesis.

In 1997 a fundamental paper [31] was published, presenting the results of an
extensive analysis based on simulations of the orbital evolution of a large number of
simulated family members injected into nearby resonances. The simulations were
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Fig. 21 The reconstruction of the Maria family according to [29]. Only one projection in the space
of the components of ejection velocity is shown. The sizes of the symbols are proportional to the
corresponding sizes of the Maria family members. Note that the sizes of the objects shown in this
plot are not negligible, being in general of the order of 10 km or larger. The location in this plot
of the borders of the 3:1 mean motion resonance with Jupiter is also shown. The two semi-circles
have not any particular meaning, but for the fact of showing how an isotropic ejection velocity field
(considered at two different values of velocity) appear to be cut and destroyed by the presence of
the resonance, which is a strongly chaotic region in the space of orbital elements. Note also that
the two objects in the plot located beyond the left border of the 3:1 resonance are likely not real
family members

based on reasonable extrapolations of the possible original structures of a number
of current families which are known to be cut by some resonance. Many of these
family members were found to fall into these resonances, and their orbital evolution
was numerically integrated to analyze their final fates.

The results of this analysis were striking. The orbital evolution of the objects
injected into resonances were very fast. Objects injected into the 3:1 or ν6 reso-
nances were led to impact the Sun itself, as a consequence of orbital eccentricity
being pumped up to the point that the perihelion distance becomes smaller than the
Sun’s size. It is worth to note that objects following such kind of evolution have also
non-zero probability to impact the terrestrial planets during their evolution. Many
other objects turned out to be quickly removed from the Solar System. This was
mostly the case for objects injected into resonances in the outer region of the main
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Fig. 22 The location of several of the most important resonances crossing the asteroid main belt.
The plot is taken from [30]

belt, for which an eccentricity increase likely leads to close encounters with Jupiter.
The typical timescales of the evolutions of objects injected into different resonances
are shown in Fig. 23.

The simulation [31] showed clearly that the lifetimes of objects injected into
resonances like the 3:1 or the ν6 are extremely fast, even too fast, as we will dis-
cuss below. Taken at face value, and under the above-mentioned hypothesis that
family members were immediately and directly injected into nearby resonances at
the epoch of the disruption of the family parent body, the results show that family-
forming events could produce real asteroid “showers” [32] which could affect the
terrestrial planets. Table 3 summarizes for different families the number of 1-km
family members that could be expected to have impacted the Earth as a consequence
of family formation and the duration of these showers in Myr. The resulting number
of potential impactors and the duration of the shower is a complicated function of
the family structure, location, and efficiency of the involved resonance(s). In several
cases it appeared that the expected showers could have been sufficiently energetic as
to produce likely consequences on the evolution of the terrestrial biosphere, a quite
interesting result per se.

It is important to note already at this stage that the dynamical evolutions of
objects injected into resonances like 3:1 or ν6 turned out to be unexpectedly fast
at the epoch when these results were first obtained [31]. A couple of fundamental
difficulties were that, to sustain the NEO population in a steady state, the required
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Fig. 23 This plot, taken from
[31], shows the number of
remaining objects (expressed
in percent) as a function of
time for samples of simulated
family members injected into
different resonances. The
remaining objects are those
that, as a function of time, are
still existing, not having been
removed from the Solar
System and not having
impacted the Sun (see text).
For a comparison, the
evolution of known
near-Earth asteroids (NEAs)
is also shown

flux of family members would be exceedingly high, if the evolution of these objects
are so fast. In other words, to supply a steady state of NEOs able to explain the
population that exists today, many family-forming events should be assumed to be
necessary, if direct injection into resonance was the only one or the most important
mechanism of NEO supply. There would be thus a problem of “missing families,”
since those that we identify today are not sufficient to justify a steady state NEO
population over long timescales.

Table 3 Summary of predicted “asteroid showers” following the formation of different families
according to [32]

Family Resonance Nimpacts Duration (Myr)

Flora ν6 4–11 30
Vesta 3:1 0–1 10
Eunomia 3:1 12–135 10
Eunomia ν6 0–4 15
Gefion 5:2 2–30 5
Dora 5:2 2–14 5
Koronis 5:2 0–2 5
Eos 9:4 2–10 140
Themis 2:1 3–7 90

The different columns give the family number, the resonance through
which fragments are delivered to Earth, the range of predicted impacts
by fragments 1 km in size, and the overall duration of the expected
shower
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Another great problem was that the resulting orbital evolutions, with typical life-
times of 2 or 3 millions of years were exceedingly fast also when compared with
the observed cosmic rays exposure ages exhibited by meteorites. Meteorite analyses
show that these objects have been subject to irradiation from cosmic rays and solar
wind over timescales much longer than the resulting dynamical lifetimes of their
supposed progenitors, if we have to believe that direct injection into resonance fol-
lowing collisional events is the only one mechanism to supply NEOs and meteorites.

The solution of this paradox will be discussed in Sect. 3. Here, we only note that,
in any case, whatever is the duration of the dynamical evolution of family members
eventually injected into some resonant zone, it is in any case true that the events
that produced big families must be expected to have produced large numbers of
fragments that, possibly with a larger variety of possible timescales as it will be
discussed in Sect. 3, may later have been delivered to the NEO region.

2.7 The Size–Ejection Velocity Relation in Families

The last logical step in the studies of the physical properties performed between
1990 and 2000 was an analysis of a possible size–ejection velocity relation among
family members. We have seen above (see 2) that the sizes of the objects may be
derived from knowledge of their absolute magnitudes and using an average albedo
value for each family, as suggested by the overall homogeneity in surface composi-
tion of family members resulting from spectroscopic studies. On the other hand, the
ejection velocity of a family member may also be derived from knowledge of the
difference in its proper elements and those of the family barycenter, as we have also
seen in Sect. 2.5.

In 1999, an extensive analysis of a size–velocity relation among family members
was published [33]. The basic idea developed in that paper was that one may gener-
alize to families a result found in laboratory experiments, namely that in a collisional
event a fraction fK E of the specific impact energy E/M is converted into kinetic
energy of the fragments. Here, E indicates the impact energy, practically equal to
the kinetic energy of the impacting body, while M is the mass of the impacted
body. If one assumes that the resulting kinetic energy of ejection of any fragment
is 1/2mv2, where m is the fragment’s mass and v is its ejection velocity, one has
that, assuming that a given fragment has a fraction A of the total amount of energy
converted into kinetic energy of the fragments, it is possible to write

1

2

m

M
v2 = A fK E

E

M
.

By developing the above relation, one has that

log(d/D) = −2

3
log v − K ′,
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and

K ′ = −1

3
log(2A fK E

E

M
),

where d is the size of the fragment and D is the size of the parent body. This relation
should hold for all fragments. In other words, if one plots log(d/D) versus log(v) for
the members of a family, it should be expected that the domain occupied by family
members should be delimited by a straight line having a −2/3 angular coefficient,
corresponding at each size to some permitted maximum value of kinetic energy.
Since it is not reasonable to expect that a strict energy equipartition principle holds,
the velocity of ejection of a fragment is not expected to be uniquely determined by
its size. Instead, it may be expected that, at each size, family members should be dis-
tributed over an interval of possible velocities, up to a maximum limit depending on
the size itself. These expectations were qualitatively confirmed as shown in Fig. 24.

Fig. 24 Size–ejection velocity relation for some asteroid families, as published in [33]. The lines
displayed in each plot have an angular coefficient equal to −2/3, the value predicted according
to some simple physical considerations, considering a weak version of an energy equipartition
principle (see text and quoted paper)
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Although the plot shown in Fig. 24 looks fairly encouraging and in agreement
with the expectations, some caveats are needed in order to avoid to overinterpret it.
In particular, one basic assumption is implicit in this analysis, as well as in many
other physical studies of families carried out in the same years: this implicit assump-
tion, that we have already mentioned previously, is that the family members have not
been dynamically evolving since the time of their formation. Under this hypothesis,
the current proper elements correspond to those originally achieved at the epoch of
the disruption from the parent body. We will see that this assumption has been found
to be non-realistic when new dynamical effects, discussed in Sect. 3, have started to
be taken into account.

The fact that something could be wrong in the physical studies of families carried
out in the 1990s was already starting to emerge mainly for what concerns some
apparent problems with the reconstruction of the ejection velocity fields of fami-
lies derived by means of the methods described in Sect. 2.5, as it will be briefly
mentioned in what follows.

2.8 Known Problems

We have seen in Sect. 2.5 that a method was developed in 1996 to carry out a recon-
struction of the original ejection velocity fields of asteroid families. The method
was able to estimate the values of the a priori unknown f and ω angles appearing
in the Gauss equations (1). Numerical simulations were performed to show that the
method was reasonably efficient and reliable.

When an analysis of the distribution of the f angle (the true anomaly of the par-
ent body at the epoch of its disruption) was carried out, however, some unexpected
feature became apparent. A priori, one should expect that, when analyzing several
families, the resulting f angles should turn out to be uniformly distributed in the
(0◦, 180◦) range. The reason is that an analysis of the impact probabilities among
asteroids predicts that the true anomaly of the impacted bodies should be distributed
in a fairly homogeneous way, without any particular preference. A glance at Fig. 25,
however, shows the distribution of the resulting f values turning out from a recon-
struction of the ejection velocity fields of known families.

It is easy to see that the histogram of the resulting f values is strongly peaked on
a value of about 90◦. This fact, which cannot be easily explained, triggered a more
detailed analysis [34] that, although published in 2004, is already described in this
section, also because this analysis is strictly related to another problem in asteroid
family studies that was well known since a long time. In particular, this is the prob-
lem of the apparent asymmetry of families. In [34] extensive numerical simulations
were performed to derive what should be the statistically expected dispersions in
orbital semi-major axis and eccentricity, resulting from a large number of collisions
producing completely symmetric ejection velocity fields (spherical velocity fields)
and occurring according to a uniform distribution of the values of the true anomaly
angle f .
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Fig. 25 Histogram of the f
angles resulting from a
reconstruction of the ejection
velocity fields of known
asteroid families using the
method described in [29]

According to [34], if one calls a0 the value of the semi-major axis of a family
barycenter, Δa the range of semi-major axes of the members of the same family, and
Δe and Δi the corresponding ranges of eccentricity and inclination, respectively,
statistics predicts that for spherical velocity fields one should expect that for a large
number of families one should find Δe � 0.77Δa/a0 and Δi � 0.35Δa/a0. If one
looks at real families, however, one finds that Δe turns out to be about 1.2 times
the predicted value, while ΔI turns out to be about twice the predicted value. As
mentioned above, moreover, the distribution of the f angle should be expected to
be fairly homogeneous, whereas this certainly not the case with real families.

In [34], some explanation of the above discrepancies was attempted. In particular,
it was investigated whether some evolution of the orbital semi-major axis and eccen-
tricity with respect to their original values achieved at the epoch of family formation
could be responsible of the observed family asymmetries and non-homogeneous
distribution of the f angle.

The result was that the observed asymmetries and f distributions could be
explained if we assume that the current eccentricities of family members have been
increased by a factor between 1.4 and 1.9, and at the same time the semi-major
axes have been increased by a factor between 1.3 and 1.8, since the time of their
formation. This analysis did not propose any particular mechanism to justify the
above resulting orbital element increases, but it showed that such kind of diffusion
would at the same time produce a distribution of f angles in complete agreement
with the results of the reconstruction of real families. A very important conclusion
of this study was that families that we see today should be on the average between
1.5 and 2 times more diffused in semi-major axis and eccentricity with respect to
their original structures.

It is important to note that the above conclusions are not based on any assump-
tion about the possible evolutive mechanisms of asteroid families, but are based on
purely statistical arguments. The importance of these results will be more evident in
Sect. 3.
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2.9 Summary: The Twentieth Century Family “Paradigm”

To summarize the great body of results obtained in asteroid family studies in the
years between 1990 and 2000, let us summarize now the “twentieth century family
paradigm” as it appeared at the end of the above decade.

– Families exist and can be reliably identified.
– Families have a collisional origin.
– Family members dominate the asteroid inventory at small sizes.
– The original ejection velocity fields can be reconstructed from analysis of the

current distribution of family members in the proper element space.
– Family members were ejected at high velocities, up to some hundreds of meters

per second, and following some general size velocity relation.
– Families can be (or have been) important sources of NEOs through direct injec-

tion into neighboring resonances.
– The creation of big families triggers the collisional evolution of the whole aster-

oid population.
– The original parent bodies of asteroid families were not differentiated.

Some problems, like the real role played by family members in the overall asteroid
inventory and the reasons of the observed structural asymmetries of many families
and the anomalous distribution of the reconstructed f angles (see Sect. 2.8), were
already apparent at this stage, but they were not yet considered so strong as to rule
out the overall correctness of the above paradigm.

New facts, however, were going to be recognized in the immediately following
years, leading to a general conceptual revolution whose full implications are not yet
completely clear at the moment of writing this chapter.

3 Families in the Twenty-First Century

Since we have just explained above what we call in this chapter the “twentieth cen-
tury” family paradigm, and we have mentioned several times that there has been in
recent years a deep revision of common ideas about families, let us start this section
by giving what seems to be the “twenty-first century” family paradigm, in order
to directly introduce the changes that have taken place in recent years. The new
paradigm is the following:

– Families exist and can be reliably identified.
– Families have a collisional origin.
– Family members do not dominate the asteroid inventory.
– Families did not eject collisional fragments at high velocities.
– Families have been strongly modified by evolutionary mechanisms.
– The original ejection velocity fields can hardly be reconstructed.
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– Family ages can be evaluated.
– Family members are mostly re-accumulated.
– The original parent bodies of asteroid families were not differentiated.

As can be seen, some fundamental items in the family paradigm are still there (for-
tunately, the fact that families exist, can be identified and have a collisional origin
has not been questioned!). On the other hand, several items in the above list directly
contradict some ideas contributing to twentieth century paradigm. In particular, the
most important change is that family members are now believed to have experienced
important evolutionary processes, and this fact implies that several conclusions of
the twentieth century paradigm, based on the implicit assumptions that family mem-
bers are still directly reminiscent of the process of their formation, can no longer be
accepted. As a consequence, the reconstruction of the ejection velocity fields of
families as it was done in the 1990s [29] seems to be currently to the majority of
researchers working in this field as a sterile exercise leading to misleading results.

In addition to this, it is now generally believed that families do not dominate
the asteroid inventory even at small sizes, based on the results of some observing
campaigns like the Sloan Digital Sky Survey (SDSS).

An important new item in the twenty-first century family paradigm is the idea
that family ages can now be determined, something that was not considered to be
possible in the framework of the older paradigm. Finally, there is the general idea
that family members are mostly re-accumulated objects. This result comes from a
number of numerical simulations based on refined hydrocodes used to study the
fragmentation and fragment ejection process, followed by an N -body numerical
integrator used to follow the trajectories and mutual interactions of the fragments
immediately after their ejection.

In the following sections we will separately discuss the major facts that have led
to the present family paradigm. Some problems that are apparently still unsolved
will also be mentioned.

3.1 The Yarkovsky and YORP Effects

A big development in asteroid science that occurred in recent years has been the
realization of the importance of the so-called Yarkovsky effect [35].

The physical process at the base of the Yarkovsky effect is the re-emission at
thermal infrared wavelengths of the heat absorbed from the Sun. Two different ver-
sion of the effect, named diurnal and seasonal Yarkovsky effect, respectively, exist.
Since the seasonal effect turns out to be much weaker, we focus in what follows on
the diurnal version of the effect. The mechanism is schematically shown in Fig. 26
and is briefly summarized in what follows. A rotating asteroid is exposed to incident
sunlight. A minor fraction of the incident radiation is immediately scattered by the
surface, but the rest is absorbed and delivers heat to the surface. The surface then
irradiates the absorbed heat at thermal IR wavelengths. At this point, two processes
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Fig. 26 Visual representation
of the mechanism of the
diurnal Yarkovsky effect. Plot
derived from an original
figure in [36]

take place, which determine the diurnal Yarkovsky effect. First, the asteroid surface
is not an ideal medium, and some thermal inertia determines that the thermal flux is
emitted not instantaneously with respect to the absorption of sunlight, but with some
delay. Second, the object rotates around its spin axis, then the peak of the thermal
emission is not directed toward the Sun, but along a direction that makes a small
angle with respect to the direction of the star, due to the effect of rotation.

As a consequence, the irradiated thermal flux produces an impulse that can be
either along the direction of the orbital motion or in the opposite direction, depend-
ing on the sense of rotation of the object. Consequently, the orbital motion of the
body is either accelerated or decelerated, and its orbital semi-major axis changes
accordingly. The net effect of the diurnal Yarkovsky effect is then a drift in orbital
semi-major axis.

The efficiency of the effect is a function of many parameters. First, it depends
on the obliquity angle of the asteroid, namely the angle between the plane of orbital
motion and the direction of the polar axis of the object. Asteroids whose spin axis is
directed toward the Sun do not experience a diurnal Yarkovsky effect. On the other
hand, the effect is maximum when the obliquity angle is 90◦. In addition, the effect
is inversely proportional to the object’s size and depends on the spin rate, thermal
inertia, and the heliocentric distance. In particular, it turns out that the drift in orbital
semi-major axis decreases approximately with the square of the orbital semi-major
axis itself. The reason is, of course, that bodies orbiting at large heliocentric dis-
tances are more scarcely heated up by solar radiation.

The Yarkovsky effect is a nice example of a link between physical and dynamical
mechanisms. The effectiveness of the effect has been estimated by several authors as
a function of the different parameters mentioned above. According to [36], typical
values of the drift in semi-major axis experienced by main belt asteroids of 1 km
in size are around 10−4 AU per million of years, with an uncertainty of the order
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of a factor of 2 or 3, depending on the value of the thermal inertia of the surface.
For objects of 10 km in diameter the corresponding drift is ten times smaller. In
the same paper, an estimate of the total drift in semi-major axis experienced by
objects of different sizes during their expected collisional lifetimes is also given.
The corresponding values are between 0.02 and 0.08 AU depending on the thermal
inertia. For 10-km objects the corresponding interval is between 0.03 and 0.05 AU.
A direct confirmation of the existence of a measurable Yarkovsky effect has also
been obtained through radar ranging observations of the near-Earth asteroid (6489)
Golevka [37].

The importance of the Yarkovsky effect for asteroid family studies is that it
introduces an evolutionary mechanism that had not been taken into account in the
twentieth century analyses. The idea is that newly born family members start to drift
in semi-major axis due to the Yarkovsky effect. The families start then to diffuse
in semi-major axis, mainly and more quickly at smaller sizes. Due to their semi-
major axis drift, family members may be injected into resonant zones of the orbital
element space. As a consequence, they experience chaotic changes in eccentricity
and inclination, and they may be removed from their family, and start a complex
dynamical evolution that may lead them to have close encounters with major planets,
causing them to be injected in the region of the terrestrial planets or to be removed
from the Solar System. Another possibility is also, for asteroids located in the inner
region of the main belt, to steadily drift to smaller values of semi-major axis, until
they become Mars-crossers. Close encounters with Mars lead them subsequently to
become NEOs [38].

An example of the resulting evolution of a simulated Koronis family, based on
numerical integrations of the orbits taking into account a model of the Yarkovsky
effect, is shown in Fig. 27. The figure shows in the semi-major axis–eccentricity
plane the time evolution of the simulated family. The simulated objects are indi-
cated by segments showing their total orbital evolution at three epochs after the
family formation. The members of the real Koronis family are shown as dots in the
background. The plots show that the simulated objects progressively tend to mimic
the distribution of the real asteroids, and in particular, it is possible to see that as
objects cross a narrow resonance strip, which is found to cross the family, they
start to increase their eccentricity and form the strange “tail” of family members
exhibiting a larger eccentricity in the outer part of the family. Although the fit of the
real family members is not really perfect, nevertheless the unusual structure of the
family is qualitatively fit in a reasonable way, something that had not been possible
to do in the pre-Yarkovsky era.

An indirect proof of the correctness of the Yarkovsky-based model is the fact
that it explains why families are practically never found to include objects located
beyond the borders of some powerful neighboring resonance, like the 3:1 or 5:2
mean motion resonances with Jupiter. The idea is that, if family members were
originally ejected at high speeds, sufficient to reach these resonances and to inject
bodies into them, then it would be strange that no objects are found today beyond
the borders of these resonances. As opposite, by assuming that families were orig-
inally more compact and have been only subsequently spread in semi-major axis



180 A. Cellino and A. dell’Oro

Fig. 27 Time evolution of a
simulated Koronis family
taking into account a model
of the Yarkovsky effect in the
numerical integration of the
orbital motion of the
simulated objects. The real
Koronis members are shown
as dots in the background.
Plot taken from [36]

due to the Yarkovsky effect, one can explain why there are not resonance-crossing
family members beyond very powerful resonances. If the objects underwent a slow
Yarkovsky-driven orbital drift, it is reasonable to assume that, when reaching very
powerful resonances like the 3:1 Kirkwood gap, they were quickly removed from
the asteroid main belt and could not “reach the opposite shore of the river.”

Another advantage of the Yarkovsky-based paradigm is that it naturally recon-
ciles the extremely rapid dynamical evolutions of asteroids injected into the most
important resonances [31] (see Sect. 2.6), with the much longer cosmic rays expo-
sure ages exhibited by meteorites. The idea is that an immediate injection into



Asteroid Dynamical Families 181

resonance of family members at the epoch of family creation would imply exceed-
ingly short lifetimes for these objects, whereas a slower Yarkovsky drift in semi-
major axis, eventually leading to injection into resonances, could reconcile the
dynamical lifetimes of these objects with cosmic rays exposure ages of meteorites.
At the same time, a slower process of delivery of objects into resonances, would also
be more easily reconciled with a reasonable rate of NEO supply from the asteroid
main belt.

After the realization of the importance of the Yarkovsky effect, numerical simu-
lations have been performed to reproduce the observed structures of several families
in the proper element space [39–41]. In these studies it was found that a better fit of
the observed families may in several cases be obtained when one also includes in the
model the role of the so-called Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP)
effect.

Like the Yarkovsky effect, the YORP effect is also due to a mechanism of thermal
irradiation from the surface. What is important here, however, is the fact that due
to the irregular shape of real objects, the thermal irradiation may well produce net
torque effects which progressively modify the angular momentum of an object. In
particular, since the moment of inertia remains constant as the object keeps its shape,
what does change is the state of rotation. In particular, the YORP effect can modify
both the spin period and the direction of the spin axis of an object [42].

Again, we deal here with a physical mechanism which depends in a complicate
way upon many parameters, some of whom are poorly known. In particular, there
is a dependence on the objects’s shape, size, thermal conductivity, heliocentric dis-
tance, and spin axis orientation.

As for the shape, an object must have some “windmill” asymmetry for YORP to
work, as shown in Fig. 28, taken from [36]; energy re-radiated from a fully sym-
metrical body (e.g., a sphere or an ellipsoid) produces no net YORP torque [42, 36].
These ideal shapes, however, are not encountered in the real world, so it may be

Fig. 28 Spin up of a simulated asteroid, ideally modeled as a sphere with two wedges attached
to the equator. It is assumed that the asteroid is an ideal black body, so it absorbs all incident
solar radiation and then re-emits it at infrared wavelengths as thermal radiation. Because the kicks
produced by photons leaving the wedges are in different directions (note that the two wedges in
the plot are not coplanar), a net torque is produced that, in the situation illustrated in this plot, with
the object spinning as shown, causes the asteroid to spin up. Plot taken from [36]



182 A. Cellino and A. dell’Oro

expected that YORP torques always take place with real objects, although its actual
effectiveness may vary much, depending on the exact shape and direction of the spin
axis. Of course, the response of a body to the YORP torque is inversely proportional
to its mass, then bigger objects are much less affected than small ones.

YORP can either spin up or spin down an object depending on its shape and
rotation. YORP torque produces also a change of obliquity angle. The obliquity
angle tends to reach an asymptotic value. In turn, however, when the obliquity angle
increases sufficiently, the rotation rate may change, and possibly tumbling rotation
occurs before a new stable rotation state is reached again, and so on, leading to the
possible occurrence of YORP cycles [36].

It is now generally believed that including the YORP effect in the models of
the evolution of the rotation state of main belt asteroids may be very important
to explain the basic features of the distribution of measured rotation periods, in
particular at small sizes, where there is abundance of both slow and fast rotators
[43]. Moreover, another indirect proof of the role played by the YORP effect is also
given by the discovery of an apparent bimodality in the distribution of the spin axis
directions and spin rates of the members of the Koronis family [44]. More precisely,
the observed bimodality of Koronis members should be due to the interplay of the
YORP effect and a mechanism of spin–orbit resonance [45].

Of course, the YORP effect is important in affecting the effectiveness of the
Yarkovsky evolution since it affects the rotation state, and the Yarkovsky effect
depends on the direction of the spin and also on the spin rate. For instance, an
ideally non-rotating body is not subject to the Yarkovsky effect. Similarly, objects
rotating so rapidly as to become isothermal are neither affected by the Yarkovsky
effect.

It is important to note that, when performing simulations of asteroids evolving
under the effect of the Yarkovsky and YORP effects, it has to be taken into account
that collisions also play a role in this game, since they may affect the rotation state by
changing the angular momentum vector in such a way as to have a significant effect
on the effectiveness of the thermal radiation mechanisms. The typical collision rates
and collisional lifetimes for objects having different sizes thus become other non-
negligible factors to be taken into account in simulations.

According to several studies, the inclusion of the YORP effect in numerical sim-
ulations seems to improve the fit of real families modeled by taking into account
the Yarkovsky drift in semi-major axis. Some improved estimates of likely family
ages come from these simulations, although the dynamical evolution of the objects
masks the original ejection velocity fields and makes it difficult to evaluate ages
of very old and/or small families [36]. Moreover, also some estimate of the initial
ejection velocities of family members may be obtained as we will see below.

3.2 Ejection Velocities

We have seen that family studies performed in the 1990s were accepting as typ-
ical for the ejection velocity of small family members values up to 100 m/s or
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even beyond. Such values resulted from interpreting the observed differences in
semi-major axis between the smallest family members and the family barycenter in
terms of ejection velocities according to Gauss’ equations (1). This interpretation,
according to more recent ideas, is wrong, because it does not take into account that
the semi-major axis values of family members, mainly at smaller sizes, have been
strongly affected by a Yarkovsky-driven drift.

Moreover, high values for the original ejection velocities of family members have
always been hard to reconcile with the results of simulations of catastrophic disrup-
tion events [46, 47].

The importance of the initial ejection velocity values in family-forming events
is that they represent the initial conditions to any simulation of the evolution of
family members subject to the Yarkovsky effect. This leads to the possibility in
principle to estimate the ages of asteroid families, by computing the rate of spread-
ing in semi-major axis due to the Yarkovsky drift. Knowing the current width of
families in semi-major axis, it becomes then possible to derive the time needed to
reach the observed dispersions, starting from the initial conditions, namely the initial
distributions of semi-major axis values of family members.

In the first analyses, the initial dispersion in semi-major axis of families was
generally assumed to be very small, if not negligible, corresponding to very low
values of the original ejection velocities, according to the results of hydrocode sim-
ulations. The most recent analyses, which include also the YORP effect, however,
are more detailed and look for a simultaneous solution for the family age and the
initial ejection velocities of family members.

According to a recent analysis of the Eos family [41], the original ejection veloc-
ity values for this family turn out to be of the order, on the average, of several tens of
meters per second. The results indicate also that the original, post-impact width of
the family in semi-major axis was about one half of what is observed today. By the
way, such a result is in a very good agreement with the estimate of the average family
spreading done by [34], based on the observed family asymmetry and distribution
of the computed values of the f angle, as mentioned in Sect. 2.8.

A more systematic analysis of several families subject to the Yarkovsky and
YORP effects has been recently published [48]. Typical ejection velocity values
of a few tens of meters per second for family members having sizes of the order
of 5 km were found. Although the authors claim that such values are in agreement
with hydrocode results, taken at face value and assuming a simple dependence of the
ejection velocity upon the inverse of size, the obtained values would imply ejection
velocities of the order of 100 m/s for fragments having sizes of 1 km. Moreover,
once again, the resulting initial spread of family members in semi-major axis turned
out to be between 30 and 50% of the currently observed values, in good agreement
with the independent above-mentioned estimates of the post-impact evolution of
families based on the apparent asymmetries of the ejection velocity fields derivable
by the current structures of families in the proper element space [34].

We think that the coincidence between the results of these completely indepen-
dent results concerning the initial spreading in semi-major axis of asteroid families
and the corresponding typical values of the ejection velocities of family members
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are very remarkable and may suggest that the problem of evaluating these initial
velocities seems to be close to a definitive solution.

This means also that the estimated values of the initial ejection velocities of fam-
ily members are raising again somewhat, according to the most updated analyses,
with respect to the assumptions made by the first Yarkovsky-based numerical inte-
grations. This also means that the initial velocity values might have been not really
so low for the smallest objects, and some revision of the hydrocode results might be
necessary.

We note, finally, that the expected dispersion in eccentricity and inclination com-
ing out from numerical simulations including the Yarkovsky and YORP effects turn
out to be generally smaller by a factor of about 2 with respect to the observed values.
We will come back to this point in Sect. 3.5

3.3 Inventory and Size Distributions

As mentioned in Sect. 2.3, the surprisingly steep slopes of family size distributions
and their interpretation in terms of a dominance of small family members in the
asteroid inventory have been long debated [25]. Recently, the results concerning the
slope and shape of family size distributions based on the simple geometric model
[20] mentioned in Sect. 2.3 has been generally confirmed by detailed hydrocode +
N -body modeling, as shown in Fig. 29.

In the last years, the assumption that family size distributions are steeper than the
size distributions of non-family asteroids down to small sizes has been adopted to
develop a so-called statistical asteroid model (SAM), aimed at simulating the inven-
tory and distributions of size, albedo, and orbital elements of main belt asteroids
down to 1 km in size [50].

The dominance of family members at small sizes, however, has been questioned
by several authors. From the point of view of the consequences of the previously
neglected Yarkovsky effect, the idea is that the Yarkovsky drift should produce

Fig. 29 A couple of size distribution frequencies (SFD) obtained by [49]. The obtained trends are
in good agreement with previous results obtained by means of a much simpler model [20]
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a rapid removal of the smallest family members. The final fate of these objects
should be a complete removal from the main belt over fairly short timescales, due
to resonance crossing occurring during their drift in semi-major axis. This seems
confirmed by the fact that the SDSS [51] has found that the general size distribution
of the asteroid main belt population is described by a power-law having an exponent
much less steep than the value that would be predicted based on an extrapolation of
the family size distributions observed beyond the limit of completeness.

In this respect, according to a study of SDSS results carried out a few years ago
[52], it turns out that asteroid family size distributions at small diameters might be
even less steep than the size distributions exhibited by non-family objects. Other
authors have noted that such SDSS-based findings are not conclusive since SDSS
data seem to be not always self-consistent [53]. In particular, it was noted that the
SDSS-based inference about quite shallow slopes of family size distributions at
small sizes would be in contradiction with another independent conclusion about
the dominance of families in the overall asteroid inventory based on SDSS color
data [54].

As a matter of fact, the fundamental problem seems to be that observations have
not yet provided a conclusive evidence about the inventory and size distribution
of the asteroid population. In particular, the results of different surveys are con-
tradictory, and the interpretation of the data in terms of asteroid sizes is also not
straightforward, as we will see in a moment.

On one hand, the SDSS data and the Subaru surveys [55, 56], both carried out
from the ground at visible wavelengths, both found a quite shallow size distribution
of the main belt population down to sizes smaller than 5 km. On the other hand,
space-based surveys carried out at thermal infrared wavelengths find a much larger
number of objects in the same size range [57]. The difference between ground-based
and space-based surveys for objects 1 km in size turns out to be of the order of
a factor between 2 and 3. This means that the results of thermal IR surveys are
still compatible with predictions based on a predominance of family members [50],
whereas ground-based surveys are not.

When deriving asteroid size distributions from sky surveys, one should always
take into account that what is observed and recorded is a distribution of apparent
magnitudes, not directly of sizes. The conversion from apparent magnitudes to sizes
is done by converting apparent magnitudes into absolute magnitudes, and assuming
some value of the albedo, according to Eqn. (2). Both the conversion to absolute
magnitude and the assignment of an albedo value are important sources of errors.

Some recent studies have been based on the idea that the SDSS distribution of
absolute magnitudes has a correct slope, and that a de-biased distribution of abso-
lute magnitudes must be based on that slope value, but complementing it with the
known number of asteroids having absolute magnitude H < 12. Having done so,
the corresponding size distribution has been obtained by assigning to the objects an
average albedo value equal to 0.092 [58]. According to this study, there should be
about 1.2 × 106 main belt asteroids larger than 1 km. The above estimate is just in
between the SDSS-based estimate of about 7 × 105 objects and the SAM estimate
of 1.7 × 106.
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As mentioned above, however, the derived size distributions are still quite uncer-
tain. On one hand, the albedo is a parameter that may vary over an order of mag-
nitude (between about 0.05 and 0.5), and is also dependent on the heliocentric
distance, since darker objects are more abundant in the outer asteroid belt. Then,
any albedo assignment based on an average value is intrinsically dangerous. On
the other hand, another big problem has been becoming increasingly manifest in
recent times, namely the problem of the reliability of the absolute magnitudes H . We
remind that the absolute magnitude of an asteroid is an abstract parameter, having
the meaning of the apparent magnitude that the object would exhibit if observed at
unit distance from both the observer and the Sun and at zero phase angle (perfect
Sun opposition). The values of H listed in asteroid catalogs are then derived from an
extrapolation to zero phase angle of apparent magnitudes observed at (often, few)
different epochs at corresponding phase angles different from zero. What seems
currently to be a big problem is that the listed values of absolute magnitude seem to
be very often extremely inaccurate, as shown in Fig. 30. The figure shows that the
currently adopted H values may be wrong, in many cases dramatically wrong, due to
the presence of both random and systematic errors, as a function of the magnitude
itself. If this is the situation, any conclusion on the size distribution of the main
belt population, and on the possible dominance of family members in the asteroid
inventory at small sizes, seems premature. The problem is still open, and only new
observations and a drastic correction of available catalogs of asteroid absolute mag-
nitudes may lead to a real solution.

Fig. 30 Differences between the values of H absolute magnitudes of a sample of objects as they
are listed in the JPL Horizon orbital element database and the H values derived from direct obser-
vations during a recent observing campaign (Plot taken from [25])
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3.4 New Young Families and Implications

One big achievement of family studies in the last decade has been the discovery of a
few very young families. In particular, the discovery of the Karin family [59]. This
is a small clustering of objects within the much bigger Koronis family. It is likely
the outcome of a second-generation collision involving an original member of the
Koronis family, having a size around 30 km. The mass ratio between the parent body
and the largest surviving fragment, (832) Karin, is about 0.15–0.2. The Karin family
has been identified due to its peculiar structure in the proper element space, being
characterized by a filament-like structure in the a′–e′ plane. This kind of structure is
expected, according to Gauss equations, in cases in which the true anomaly of the
parent body, f , was very close to 0◦ to the epoch of the impact.

Numerical integrations back in time have directly shown that the Karin family
should have an age around only 5.8 millions of years, and it is thus extremely young.
It represents, therefore, an ideal grouping to test current ideas about the properties of
asteroid families immediately after their formation. The cumulative size distribution
of the family is shown in Fig. 31. As it can be seen, the size distribution is very
steep and is fitted by a power-law having an exponent of −5.3 [60]. This family
provides, therefore, a nice confirmation of the steep size distributions characterizing
the outcomes of family-forming events.

According to [60] the ejections speeds of small fragments produced by the event
were larger than those of larger fragments, in qualitative agreement with the general
“twentieth century” idea of an original size–velocity relation for the members of
asteroid families [33]. In particular it has been found that the ejection velocity shows
a simple dependence on the inverse of size. It must be noted, however, that the

Fig. 31 The cumulative size
distribution of the Karin
family. Plot taken from [60]
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smallest Karin members are still undiscovered, due to their apparent faintness. The
mean ejection speeds of fragments above 3 km in diameter have been found to be
of the order of 10 m/s, but the morphology of the observed ejection velocity field
derived from the structure of the family in the proper element space has been found
to be not easily reproducible using the approach adopted by [60]. It is also worth
to note that, in spite of its youth, current models of the family evolution include
some small Yarkovsky-driven evolution to improve the fit between the models and
the appearance of the real family.

Another recent discovery has been that of the likely disruption of a parent body
that produced the asteroid (298) Baptistina, an object previously included in the big
Flora clan in the inner belt [11]. The Flora family has long been considered to be a
puzzle, due to the fact that it is very big and dispersed, and there is the possibility
that it might consist of the overlapping of separate groupings. According to [61],
the collision that produced a family including (298) Baptistina may have occurred
recently, about 100 millions of years ago. Such event, according to simulations,
might have been responsible of an asteroid shower (see Sect. 2.6), which led to an
increase of the lunar and terrestrial cratering rate during the last 100 Myr and was
likely including the big impact occurred at the end of the Cretaceous about 65 Myr
ago. This was the impact that, according to a consistent body of evidence, produced
the Chicxulub crater in Yucatan and was likely responsible of the mass extinction
event leading to the disappearance of dinosaurs.

3.5 Some Problems

The twenty-first century family paradigm is based on a convincing body of evidence,
coming both from theory and observations. The inclusion of the Yarkovsky and
YORP effects, in particular, constitutes certainly a big step forward in the interpre-
tation of the properties of asteroid families.

Having clearly made the above statement, we cannot yet conclude that everything
is now clear and that there are no pending problems. A list of problems affecting
current ideas about families is the following (not in any particular order):

1. Up to which size the Yarkovsky effect is really effective?
2. Does YORP eventually strengthen or weaken Yarkovsky?
3. What is the explanation of the D versus proper elements relations observed for

families?
4. How to put together consistently dynamical and physical effects having different

and size-dependent timescales (resonance crossing, resonance-driven dynamical
evolution, spin axis collisional realignment)?

5. How to explain why real families have e′ and i ′ distributions which look often
more dispersed than the results of Yarkovsky-based simulations?

6. The initial family structures are not directly known and are mostly derived from
numerical simulations. Can they be estimated from the distributions of the largest
members of families?
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Item (1) in the above list is strictly related to item (6). The idea is that we know
that the effectiveness of the Yarkovsky effect decreases with the size of the objects.
In other words, the Yarkovsky-driven drift in semi-major axis is inversely propor-
tional to the mass of the object. The net effect of the Yarkovsky drift is then that of
mimicking a size–ejection velocity relation in orbital semi-major axis. On the one
hand, this precludes the possibility to infer information on the original structure of
families directly from a simple and direct inspection of the distribution of the current
proper elements of family members at small sizes. On the other hand, however, it
is still true that large family members, not appreciably affected by the Yarkovsky
force, should be more directly reminiscent of their original ejection velocity values.
The problem is to make a reliable assessment of a size limit beyond which we may
assume that the Yarkovsky drift has been negligible. This depends on the age of
the family and on the complicated dependence of the Yarkovsky effect itself upon
many physical parameters, which are also subject to changes due to collisions, like
the rotation period and the spin axis orientation. As a general comment, we note
that the reconstruction of the ejection velocity fields of several families done in the
pre-Yarkovsky era [29] included in general many family members that were fairly
large, due to the effect that the family membership lists derived in the 1990s were
limited to fairly small databases not including the proper elements of many small
and faint objects that are available today. For this reason, it is not sure that all the
old results are completely and systematically wrong, although it is clear that they
should be deeply revised, taking also into account the indications coming from the
uneven resulting distribution of the resulting f angles [34] (see Sect. 2.5).

The item (2) in the previous list expresses some uncertainty concerning the inter-
play between the Yarkovsky and YORP effects. The reason is that both effects
depend on many parameters, and the resulting evolution determined by YORP is
also related to complicated effects of spin–orbit resonance [45]. In this situation,
it is not completely clear whether the YORP effect really makes Yarkovsky more
effective, as it might look reasonable at a first glance, assuming that YORP simply
tends to bring the obliquity angle to reach a value of 90◦. The situation seems more
complicated, and further analyses and modeling seem necessary.

The other items of the above problem list are different aspects of the following
general problem: the effect of the Yarkovsky effect on the evolution of orbital eccen-
tricity and inclination is eminently indirect. The effect itself has only a weak direct
influence on the evolution of the eccentricity and no effect at all on the evolution
of orbital inclination. Eccentricity and inclination change mostly because during its
drift in semi-major axis under the effect of the Yarkovsky effect, an object may enter
some resonant zone, and start wide chaotic oscillations in eccentricity and inclina-
tion. While being located in a resonant strip, the object still continues its drift in
semi-major axis, and more or less quickly, depending on its mass, reaches the other
border of the resonance, taking again a state of regular orbital motion. Of course, if
it enters a wide and powerful resonance, like the 3:1 mean motion resonance with
Jupiter, the chances of the object to be strongly perturbed and removed from the
asteroid main belt before leaving the resonance are high, yet the main belt is crossed
by many weaker resonances, that may be progressively reached by any single object
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during its drift in semi-major axis, mainly if it is small and consequently its drift is
more rapid. The residence time in any given resonance and the number of resonances
crossed in a given time are then size dependent. At the same time, the object is also
subject to a collisional evolution that may change its size and rotational state. The
net result of such kind of complex evolution seems, therefore, quite complicated and
hardly predictable. It is then not really surprising that Yarkovsky-based models do
not produce in general very good fits of the structures of the families in eccentricity
and inclination and of the resulting relations between size and the above orbital
parameters.

The very surprising fact, however, is that the size–eccentricity and size–inclination
relations appear to be fairly simple and regular, as shown in Fig. 32. In particular, in
spite of complications related in several cases to the presence of nearby resonances,
that may have some evident role in shaping the borders of the families in semi-major
axis, it turns out that the dispersions of eccentricities and inclinations generally
turn out be inversely proportional to the asteroid size, as it would be expected by
assuming that a size–velocity relation holds. The problem then is: Can this apparent
relation be simply explained by a mechanism based on a pure Yarkovsky-based evo-
lution? Some further work seems still necessary to properly deal with this problem.
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Fig. 32 The a′, e′, and sin i ′ versus size relations exhibited by the Themis, Koronis, and Eos
families (from top to bottom). Plots based on still unpublished 2007 data

4 Discussion and Conclusions

In spite of tremendous improvements in our models, especially following the real-
ization of the importance of thermal radiation mechanisms, a lot of work seems still
necessary to achieve a really satisfactory comprehension of the whole family puzzle.
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Based on the overall discussion made in the previous sections, it seems that a
list of lines of research that should deserve a careful attention in planning future
activities in this field includes the following:

– New, updated family lists are needed.
– More spectroscopic data are needed to identify interlopers and help in the assign-

ing members to mutually overlapping groupings in the proper element space.
– Better estimates of Yarkovsky effectiveness seem desirable.
– A refined interpretation of the proper elements versus size plots are needed.
– A better assessment of what remains of the primordial structures of asteroid fam-

ilies in spite of the Yarkovsky evolution is needed. This mainly refers to the
biggest objects belonging to family member lists.

– New photometric data are needed to test the possible existence of systematic
trends in the orientations of the spin axes and on the rotation periods of the mem-
bers of a same family, as in the case of the Koronis family discussed above [44].
These data will certainly be produced by the next generation of ground-based
(Pan-STARRS) and space-based (Gaia) sky surveys.

For what concerns the need of new family lists, some attempts have been already
done in recent years, but the situation is intrinsically difficult due to the effect of
mutual family overlapping. This is an undesirable consequence of having at dis-
posal, in the present situation, huge data sets of asteroid proper elements, containing
much more small objects with respect to the databases adopted for family identifi-
cation in the 1990s. We note also that the criterion adopted for establishing family
membership is crucial, and a lot of care must be devoted to this problem. The rea-
son is that a too liberal criterion may produce family member lists including large
numbers of interlopers, or of actual members of other families. As opposite, a too
restrictive criterion may produce member lists depleted of large numbers of actual
family members, so increasing artificially the inventory of non-family objects. For
the above reasons some improved methods of family identification must probably
be developed, and at the same time the role played by ancillary spectroscopic data
is going to become increasingly important.
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50. Tedesco, E.F., Cellino, A., Zappalá, V.: Astron. J. 129, 2869 (2005) 184, 185
51. Ivezic, Z., Tabachnik, S., Rafikov, R., Lupton, R.H., Quinn, T., Hammergren, M., et al.: Astron.

J. 122, 2749 (2001) 185
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An Introduction to the Dynamics of Trojan
Asteroids

P. Robutel and J. Souchay

Abstract The dynamics of Trojan asteroids constitutes one of the richest fields of
celestial mechanics, as a real application of the three-body problem. It involves the
L4 and L5 Lagrange points and the conditions of stability around these two points.
In this chapter we propose to present the fundamentals of the dynamics of Trojan
asteroids. After a brief historical overview, we come back to the definitions and
characteristics of the collinear Lagrange points L1, L2, and L3, as well as the tri-
angular ones, L4 and L5. We show how observational data of Trojan asteroids have
confirmed the existence of real bodies librating around these two last points. Then
we focus on the linearization of the equations of motion around L4 and L5 from a
general and purely theoretical point of view. In addition, we show how qualitative
results can be extracted to describe the properties of Trojan asteroids. We complete
our study by summarizing many previous and up-to-date investigations, which focus
on their dynamical behavior.

1 Introduction

Dynamics of Trojans is directly linked with the notion of Lagrange points, tra-
ditionally called L points. These five points correspond to positions in which an
object with a small mass, when subjected to the sole gravitational attraction of two
other objects with a much larger mass, can theoretically be stationary relative to
these objects in such a way that the geometrical configuration of the three objects
remains permanently the same. If the mass of the small body is in fact negligible
with respect to the two other masses (which corresponds to the so-called Restricted
three-body problem), we can explain the presence of the stationary positions in the
following way: the two large bodies undergoing a Keplerian motion, in the frame
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of the two-body problem, we can simplify the problem by considering a circular
motion. Thus we consider a rotating reference frame with the same period as the
co-orbiting bodies.

Then the Lagrange points can be viewed as the positions where the combined
gravitational attraction of the two large bodies on the third one and the centrifugal
force are in balance, so that the third body is at rest in the rotating frame. Notice that
the presence of these points of equilibrium still exists when we adopt an elliptical
motion for the primaries, instead of a circular one. Among the five Lagrange points,
three of them (L1, L2, and L3) are collinear, along the line joining the two large
bodies. The two remaining ones are symmetrical with respect to this line, in such a
way that they form an equilateral triangle.

This chapter is devoted to the basic analytical development explaining the dynam-
ical behavior of test particles around the L4 and L5 Lagrange equilateral positions
and to the real case represented by the Trojans asteroids influenced by the combined
gravitational torque of Jupiter and of the Sun. Our aim is principally to give the
reader in the most detailed manner the theoretical foundations on which classical
investigations of the dynamics of Trojan asteroids are carried out. Describing an
exhaustive account of the recent and up-to-date developments is largely beyond the
scope of this chapter. Despite this, we hope that it will be informative enough to
allow any graduate student to easily acquaint themselves with the subject.

At first we will explain intuitively and without any calculation the physical mean-
ing of the five Lagrange points. Then we will give a historical account of the sub-
ject, both on a theoretical and on an observational level. After that we will write
the fundamental equation of the dynamics for the restricted three-body problem,
thus showing the theoretical existence of the Lagrange points. A particular attention
will be paid to the dynamical behavior of the equilibrium points L4 and L5 in the
framework of the restricted three-body problem. The last section will present a brief
discussion concerning the stability of (hypothetical) Trojan swarms harbored by the
eight planets of the Solar System, including a substantial bibliography.

2 Intuitive Explanations of the Lagrange Points

In order to understand the meaning and characteristics of the Lagrange points, let us
consider a planet P with mass MP orbiting around the Sun S with mass MS , on a
circular orbit. According to the Kepler’s third law, the closer a planet is to the Sun,
the faster it will move around it, in terms of both angular velocity and amplitude of
the velocity.

2.1 The L1, L2, and L3 Lagrange Points

Following this principle, a body M with negligible mass orbiting on a circular orbit
around the Sun at a distance smaller than S P will not be able to remain fixed with
respect to the S P line. In fact this is not always true. If M is placed between the
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Sun and the planet on the S P line, the gravity exerted by P pulls it in the opposite
direction than that exerted by the Sun and cancels some of the attraction exerted by
the Sun. Therefore, with a weaker pull toward the Sun, M will need less speed to
maintain its orbit. The distance SM can be calculated so that the period of revolution
of M will be exactly equal to the period of revolution of the planet. This distance
corresponds to the Lagrange point L1. Then, the three points S, M , and P remain
aligned in that order.

We can explain the presence of L2 with exactly the same kind of demonstration as
for L1: suppose now that M is aligned along S P with SM > S P . Then the period of
revolution of M is a priori longer than the period of revolution of P , since its angular
velocity is slower. In fact this is not always the case. The gravitational attraction of P
on M is superimposed to that of the Sun. Therefore the central acceleration is bigger
than the Keplerian motion and this allows M to move faster. If the distance P M is
suitably chosen, the acceleration is such that the corresponding angular velocity is
rigorously equal to that of P , and the three bodies S, P , and M remain aligned in
that order.

The last aligned Lagrange point, L3, is located at the opposite side of the Sun
with respect to the planet P . Here, M is still subjected to the double attraction of
S and P , as was the case in the L2 configuration. This still causes an increase of
orbital velocity with respect to a purely Keplerian motion, and if the distance S P is
suitably chosen, the orbital period of M might become exactly identical to that of P .

Notice that if the mass of M is negligible with respect to the mass of P , as we
have supposed above, then L1 and L2 are at approximately equal distances rH from
the secondary object. rH corresponds to the radius of the Hill sphere, given by:
rH ≈ R(MP/3MS)1/3. In the case of the Sun–Earth system, the third mass should
be placed at 1.5 × 106 km away from the Earth, and in the case of the Earth–Moon
system it should be placed at 61,500 km away from the Moon.

The L1, L2, and L3 Lagrange points are unstable, which means that if M slips off
these positions, then it will softly drift away and irreparably leave the equilibrium.

2.2 The Lagrange Points L4 and L5

Still considering the planet P orbiting the Sun on a circular orbit, the two Lagrange
points L4 and L5 lie at the same distance S P = SM at 60◦ ahead of and behind P
so that (S, P, M) are forming an equilateral triangle. This case is less easy to under-
stand intuitively. In this situation, the ratio of the gravitational attraction exerted by
the two massive bodies S and P on the third one M is the same as the mass ratio
of the two bodies. As a consequence, the resultant force acts through the barycenter
of the system. In addition, the fact that the three bodies lie on the avertices of an
equilateral triangle ensures that the resultant acceleration is to the distance from the
barycenter in the same ratio as that of the two massive bodies. This is exactly what
is required to keep the body M in orbital equilibrium with the rest of the system.

Notice that the Lagrange points L4 and L5 correspond to neutral equilibrium
points, which means that when M is gently pushed away from these positions of
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equilibrium, it orbits around these positions without drifting farther and farther.
This, in particular, is the start point of all the very interesting analytical develop-
ments of the next chapters.

3 A Few Historical Points

The three collinear Lagrange points L1, L2, and L3 were first discovered by Euler
(1707–1783) in 1765. He applied his calculations to the system Sun–Earth with
the Moon as a test particle. He mentioned that if the Moon were four times more
distant from the Earth than it is presently, then its motion would be such that it
would be permanently in a full Moon configuration. In 1736 the mathematician
Joseph Louis Lagrange was born in Torino (Piemont) and moved to Paris in 1787,
where he remained until his death in 1813. In 1772, he worked actively on the three-
body problem among other topics of celestial mechanics. Investigating the relative
positions and velocities of the three bodies starting from the gravitational attraction,
he found the famous equilibrium configurations where the three bodies are located
at the vertices of an equilateral triangle1.

A half-century later the French mathematician Joseph Liouville examined the
position of equilibrium proposed by Euler concerning the Moon. In 1842, he demon-
strated that this position was unstable. Notice that this had some philosophical
impact. Indeed, Laplace in his Exposition du Systême du monde maintained that
the Moon was created in order to shine on the Earth by night, and argued that
the Moon would have been placed initially in the position of equilibrium men-
tioned above. By pointing the instability of the configuration, Liouville invalidated
Laplace’s argument.

One year later, in 1843, a fundamental property was found by Gascheau [26]
when, while making specific studies about the equilateral configuration, he proved
that for a circular motion of the three bodies, the positions of the three bodies at the
vertex of an equilateral triangle were stable if their masses satisfied:

(m0 + m1 + m2)2

m0m1 + m0m2 + m1m2
> 27.

In the case for which m2 is negligible with respect to m0 and m1, this leads to
μ(1 − μ) < 1/27 with μ = m1

(m0+m1) . The corresponding value is: μ = 1
2 (1 −√

23/27) ≈ 0.0385. Notice that we consider only the values of μ < 1
2 for which

m1 < m0 (the opposite case being symmetrical). For instance we can immediately
deduce from this law that in the case of the pair Sun–Jupiter (μ ≈ 0.001) and
Earth–Moon (μ ≈ 0.012) the equilibrium is stable, whereas in the case of the pair
Pluton–Charon (μ ≈ 0.083) it is unstable.

1 This configurations lead to the two relative equilibria L4 and L5 when the mass of one of the
bodies is negligible with respect to the masses of the others.
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3.1 Physical Existence of the Lagrange Equilibria: Trojans
satellites and other cases.

For more than one century the Lagrange points were only a subject of theoretical
investigations, without any confirmation in the nature. In February 1906, the Ger-
man astronomer Max Wolf put an end to this situation when discovering the first
Trojan asteroid Achilles, with the number 588, at the L4 Lagrange point. After a
few months, the strangeness of its orbit was noticed, and soon after that other aster-
oids were discovered close to the L4 and L5 points of Jupiter, as Hector, the largest
Trojan asteroid, was discovered in February 1907 by August Kopff, another German
astronomer. With dimensions of 370 km × 200 km, Hector is particularly elongated
with respect to other celestial objects of the same size. The theory which claims
Hector should be a dual asteroid was suspected for a long time, and finely confirmed
by a recent observation in July 2006 by the Keck 10 m telescope, with a resolution
of 0.06 arcsec. All the asteroids found at the L4 and L5 points of Jupiter accepted
names associated with Iliade. The L4 group is named “group of Achilles” whereas
the L5 group is called group of Trojans, also called the “Patroclus group” to avoid
confusion. In fact the Trojans group traditionally corresponds to the combination of
the two above groups.

The drastic improvement of observational techniques led to the discovery of a
large number of Trojans asteroids, more than one thousand in the two symmetric
Lagrange points. As shown in Fig. 1, the Trojan asteroids can be found at very large
distance from their respective Lagrange points, both for their projection on Jupiter’s
orbital plane (Fig. 1a) and on the plane perpendicular to the Sun–Jupiter line
(Fig. 1b), for which the angular difference can reach ±40◦. Figure 2 shows the
cumulative number of recorded L4 and L5 Trojans at a given year from 1900
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Fig. 1 Bi-dimensional positions of the first 400 recorded Trojan asteroids with respect to Jupiter
(small circle). (a) Planar positions (projection on Jupiter’s orbital plane). (b) Vertical positions
(projections on the plane perpendicular to the Sun–Jupiter line)
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Fig. 2 Histograms representing the cumulative number of known Trojans asteroids at the L4 and
L5 Lagrange points for a given year, between 1960 and 1980 (a) and between 1980 and 2008 (b).
The corresponding histograms (c) represent the ratio of the numbered L4 asteroids to the numbered
L5 ones. (d) Same as (b) for all observed Jovian Trojans (numbered as well as unnumbered)

to 1980 (Fig. 2a), from 1980 to 2008 (Fig. 2b), with the L4/L5 respective ratio
(Fig. 2c). In contrast to Fig. 2b, c where only numbered Trojans2 are taken into
account, Fig. 2d gives the cumulative number are all observed bodies, numbered as
well as unnumbered.

We can observe that the number of L4 asteroids at a given date have always been
larger than the corresponding number of L5 ones. In some periods (for instance
between 1960 and 1980), the abnormally large value of the ratio is obviously due to
an observational bias (the L4 zone being largely more explored than the L5 one).

The Trojans can be, for instance, manually identified from their short trails
compared to those of the main-belt asteroids. Close to opposition this proved to
work fine, but with larger phase angles problems occur as explained by Lagerkvist

2 A number is assigned to a given body after accurate orbital elements have been determined.
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et al. [33]. A survey of for L4 Trojans was made by Van Houten et al. [68] with
the Palomar Schmidt telescope. They gave an estimate of around 700 objects
down to absolute magnitude H = 13. This first survey was accompanied by
additional ones during several apparitions in September 1973 for L4, in March
1971, and October 1977 for L5. They were, respectively called T1, T3 and T2.
Lagerkvist et al. used the ESO Schmidt telescopes during apparitions in 1996,
1997, 1998 to study the L4 point of Jupiter. For instance their first survey in 1996
covered a field of view of about 700 square degrees and they found 399 mov-
ing objects classified as Trojans. From this they concluded that about 1100 Tro-
jans are present down to the absolute magnitude H = 13. These various system-
atic surveys carried out during limited time span explain the big jumps appear-
ing in Fig. 2. On January 19, 2009, 1632 numbered Trojans were recorded at the
L4 point, 1277 at the L5 one. Notice that a complete and up-to-date database of
Jupiter Trojans discovered and confirmed, can be found at the following URL:
http://www.cfa.harvard.edu/iau/lists/JupiterTrojans.html.

The equilateral triangle configuration has also been discovered in the Satur-
nian system. Saturn’s moon Thetys is in relation with two small bodies located at
the Saturn–Thetys’ L4 and L5 Lagrange points, named respectively, Telesto and
Calypso. The other Saturnian moon Dione is another example, with Helena at the
L4 point and Polydeuces at the L5 one. These two bodies present large longitude
variations with respect to the Saturn–Dione line, reaching more than 30◦ degrees in
the case of Polydeuces.

In addition the Sun–Earth system and the Earth–Moon system are subject to some
concentration of dust at their respective L4 and L5 points, called Kordylewski clouds
in the second case (see [37]).

Mars itself possess four asteroids located at L4 and L5, which were discovered in
1990 (Eureka), 1998, 1999, and 2007. Neptune has six trojans discovered between
2001 and 2007.

At last the Earth companion Cruithne (3753) has a dynamical behavior similar
to that of the Trojans. It alternates between two kinds of orbits due to close encoun-
ters with the Earth. When the asteroid is in the smallest and fastest orbit it gains
orbital energy when close to the Earth, and then moves on the larger and slower
orbit. A similar case of exchange of energy happens for the two satellites of Saturn
Epimetheus and Janus.

3.2 Lagrange Collinear Points Artificial Population

The collinear Lagrange points L1 and L2 have recently been a big source of interest
for people involved in present and future space missions. The Sun–Earth L1 point
is ideal for making observations of the Sun. Objects there are never shadowed by
the Earth or by the Moon. The Sun–Earth L2 point is a well-suited spot to carry out
space-based observatories. One of the reasons is that a probe in the neighborhood of
L2 will always maintain the same orientation with respect to the Sun–Earth system,
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and for this reason, shielding and calibration are much simpler. At the L2 point,
a spacecraft would not have to make constant orbits around the Earth, resulting in
it passing in and out of the Earth’s shadow and causing it to heat up and down,
thus perturbing its observing mission. Free from that inconvenience and far away
from the heat radiated by the Earth, the Sun–Earth L2 point provides a very stable
viewpoint.

Although the L1 and L2 points are nominally unstable, it is possible to find stable
periodic orbits around these points, in the frame of the restricted three-body prob-
lem. These orbits can be ranged in three categories: vertical Lyapounor, horizontal
Lyapounor and “halo” orbits. This classification is not obvious when the third body
with negligible mass is undergoing the small gravitational perturbations exerted by
other celestial bodies in the context of n-body problem, which is the case of the
Solar System. Nevertheless, quasiperiodic orbits can be found following Lissajous
curve trajectories in the N-body system. Although the orbits are not perfectly stable,
a relatively small ballistic effort can allow a space probe to stay in a Lissajous orbit
for a long period of time.

3.2.1 Recent Missions

• The ISEE-3 (International Sun Earth Explorer) was a probe launched on Septem-
ber 12, 1978 and sent directly on the L1 Sun–Earth Lagrange point around which
it described a halo to study the interactions between the Sun and the Earth, in
particular the solar wind, the magnetosphere and the rays at high energy.

• The WIND probe describes a Lissajous orbit around the Sun–Earth L1 point,
after undergoing a swing-by around the Moon. It was launched on November 1,
1994 to study the solar wind.

• The SOHO (Solar Heliospheric Observatory) was launched on December 2, 1995
with the purpose of studying the Sun from the core to the corona. It reached
directly the L1 Sun–Earth Lagrange point after a direct transfer. Its orbit is a halo
around the L1 point.

• The ACE (Advanced Composition Explorer) launched on August 25, 1997.
• The WMAP (Wilkinson Microwave Anisotropy Probe) launched on June 30,

2001 reached the L2 Sun–Earth Lagrange point after a 2 month travel and is
now librating around it, taking huge data on the cosmic microwave background
which represents the signature of the big bang. The probe lost only 1/10 of its
total fuel after reaching its location, and the remaining fuel will allow the probe
to hang around the unstable L2 point for nearly a century.

3.2.2 Future Missions

Because of the advantages mentioned above, the Sun–Earth L2 Lagrange point is
rapidly establishing itself as a prominent location for spacecrafts. For instance ESA
has a number of missions that will make use of this very well-suited spot. As mis-
sions we can mention Herschel, Planck, Eddington, Gaia, the James Webb Space
Telescope, and Darwin.
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4 Restricted Three-Bodies Problem and the Lagrange’s
Equilibrium Points

4.1 n + 1 Body Problem: General Setting

Let us consider n + 1 bodies noted (P0, P1, . . . , Pn) with respective masses
(m0,m1, . . . ,mn) each of them undergoing the sole gravitational attraction exerted
by the other ones. Let us consider the vector ui such that

ui = G Pi where G is the center of masse of the system. The fundamental equa-
tion of the dynamics writes

üi = G
j �=i∑

0≤ j≤n

m j
u j − ui∥∥u j − ui

∥∥3 . (1)

Note that the equation is invariant by translation:

ui �−→ ui + v v ∈ R
3,

which is equivalent to the conservation of the linear momentum:

Ṗ =
∑

0≤i≤n

mi üi = 0.

An usual and advantageous way to perform this reduction is to use coordinates ri

relative to one of the bodies, let us say P0, so that we get the following relationships:

⎧⎨
⎩

ri = ui − u0, 1 ≤ i ≤ n

r0 = m0

m
u0 + · · · + mn

m
un = 0, m = m0 + · · · + mn

. (2)

Consequently, using relative coordinates (2) the (1) can be written as:

⎧⎪⎨
⎪⎩

r̈0 = 0

r̈i = −G
m0 + mi

‖ri‖3 ri +
∑ j �=i

1≤ j≤n Gm j

(
r j − ri∥∥r j − ri

∥∥3 − r j∥∥r j

∥∥3

)
. (3)

We are left with a 3n degrees of freedom system rather than 3(n + 1). It is always
possible to reduce the number of degrees of freedom of the differential system, by
taking into account the conservation of angular momentum [7, 15] or by using the
Jacobi reduction [58], or partial reduction [38], but in the following sections, we
will not need these techniques.
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4.2 Application to the Three-Body Problem: The Lagrance Points

In the case of the three-body problems (three bodies P0, P1, and P2 with respective
masses m0, m1, and m2) (3) become:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̈0 = 0

r̈1 = −G
m0 + m1

‖r1‖3 r1 + Gm2

(
r2 − r1

‖r2 − r1‖3 − r2

‖r2‖3

)

r̈2 = −G
m0 + m2

‖r2‖3 r2 + Gm1

(
r1 − r2

‖r1 − r2‖3 − r1

‖r1‖3

) (4)

4.2.1 Collinear Solutions of Equilibrium L1, L2, and L3

First of all we can investigate the existence of collinear positions of equilibrium,
simply by setting r2 = αr1. Notice that in that case α can a priori depend on t . Then
r1 − r2 = (1 − α)r1. By substitution in (4) we find

⎧⎪⎪⎨
⎪⎪⎩

r̈1 = −G
(

m0 + m1 + m2(
α

| α |3 + 1 − α

| 1 − α |3 )

)
r1

‖r1‖3

r̈2 = −G
(

m0 + m2 + m1
| α |3
α

(1 − 1 − α

| 1 − α |3 )

)
r2

‖r2‖3

. (5)

In addition, r2 = αr1 leads to r̈2 = αr̈1. This condition mixed with the equations
above gives

m0 + m1+m2(
α

| α |3 + 1 − α

| 1 − α |3 ) =

1

| α |3
(

m0 + m2 + m1
| α |3
α

(1 − 1 − α

| 1 − α |3 )

)
.

(6)

It can be shown that, when removing the absolute values, (6) leads to three differ-
ent polynomial equations of degree 5 possessing only one real root each. These three
real solutions of (6) verify α3 < 0 < α1 < α2. If the condition r2 ∧ ṙ2 = α2

i r1 ∧ ṙ1

is verified for i = 1, 2, 3 then the three points P1, P2, and P3 are permanently
aligned. The orbits of P1 and P2 around P0 are two conics around P0, coplanar and
homothetic with the ratio αi . The semi-major axes of these conics are aligned and
they have the same eccentricity.

4.2.2 Equilateral Positions of Equilibrium L4 and L5

In order to understand the possibility of equilibrium in an equilateral triangle con-
figuration, let us transform (4) in the following form:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̈0 = 0

r̈1 = −G
m0 + m1 + m2

‖r1‖3 r1 + Gm2

(
r2 − r1

‖r2 − r1‖3 − r2

‖r2‖3 + r1

‖r1‖3

)

r̈2 = −G
m0 + m1 + m2

‖r2‖3 r2 + Gm1

(
r1 − r2

‖r1 − r2‖3 − r1

‖r1‖3 + r2

‖r2‖3

) . (7)

Then if we set the following equalities | r1 |=| r2 |=| r1 − r2 |, the second
part of the right-hand side annulates and the equations above can be written in the
simplified manner:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r̈0 = 0

r̈1 = −G(m0 + m1 + m2)
r1

‖r1‖3

r̈2 = −G(m0 + m1 + m2)
r2

‖r2‖3

. (8)

The conditions of equalities of the three distances above are satisfied at the con-
dition that the three points P0, P1, and P2 are located at the vertices of an equilateral
triangle, whereas the two last correspond to the classical two-body problem. There-
fore these conditions and these equations can be satisfied simultaneously if P1 and
P2 are describing coplanar orbits around P0, with the same semi-major axis and the
same eccentricity, in fact if these orbits are the same but shifted by a 60◦ rotation
angle around P0. Moreover as the gravitational constant μ = G(m0 + m1 + m2)
is the same for the two Keplerian equations (8), the motions along the two orbits
will be synchronous, with the same period in the case for which the two orbits are
elliptic.

4.3 Equilateral Configurations in the Restricted-Three-Body
Problem

In this section, we consider the restricted three-body problem, which means that
one of the masses is zero. For instance we put m2 = 0. Then the motion of P1 with
respect to P0 becomes a two-body problem, and we are interested only in the motion
of the third body P2 with zero mass. As the motion of P2 is the only subject of study,
and for the sake of simplicity, we take r = r2 Thus, the equations become:

⎧⎪⎪⎨
⎪⎪⎩

r̈1 = −G
(m0 + m1)
‖r1‖3 r1

r̈ = −G
(m0 + m1)

‖r‖3 r + Gm1

(
r1 − r

‖r1 − r‖3 − r1

‖r1‖3 + r
‖r‖3

) . (9)

Denoting, respectively, by μ0 and μ1 the quantities G(m0 + m1) and Gm1, the
previous equation can be writen as:
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⎧⎪⎪⎨
⎪⎪⎩

r̈1 = −μ0
r1

‖r1‖3

r̈ = −μ0
r

‖r‖3 + μ1

(
r1 − r

‖r1 − r‖3 − r1

‖r1‖3 + r
‖r‖3

) . (10)

If we assume that each of these three bodies is located at a vertices of an equi-
lateral triangle and that the primaries do not evolve on a straight line, we will show
that this configuration is conserved at any instant if and only if this triangle lies in
the plane of the motion of the two primaries.

Indeed, if the mutual distances between the three bodies are equal (but not nec-
essarily constant), that is ‖r‖ = ‖r1‖ = ‖r − r1‖ = ρ(t), the last factor of the
second line of (10) vanishes. Consequently, the two vectors r and r1 satisfy the
same differential equation:

ẍ = −μ0
x

‖x(t)‖3 . (11)

It turns out that if the equilateral configuration is preserved, the motions of the
bodies are Keplerian. Let us now assume that the motion of the primaries is bounded,
that is to say elliptic (the following proofs are quite identical when the trajectories
are parabolic or hyperbolic).

As ‖r(t)‖ = ‖r1(t)‖ for all t and knowing that

‖r‖ = a(1 − e cos E) and ‖r1‖ = a1(1 − e1 cos E1), (12)

we can make the following remarks: in the two ellipses we have the same minimum
and maximum distances for P0 P1 and P0 P2 . Thus the two ellipses have the same
semi-major axis and eccentricity: a = a1, e = e1. Consequently, we have E(t) =
E1(t) for all t . In other words P1 and P2 describe exactly the same ellipse shifted
with 60◦ and the eccentric anomalies E and E1, as well as the true anomalies v and
v1 at any instant are the same.

It remains to show that the two ellipses lie in the same plane. In order to facilitate
the demonstration, we can adopt the following reference frame: the plane (P0, x, y)
is the orbital plane of P1 around P0 and the axis (P0, x) is chosen in such a way that
it is directed toward the perihelion. Then we adopt the classical orbital parameters
Ω , ω, v, i , and � to represent the motion of P2 in (P0, x, y, z).

If S is the angle between r and r1 the relation cos S = 1/2 must be satisfied, for
the angle between the two points P1 and P2 is 60◦. As v1 = v, the coordinates of
the two vectors can be written as:

r1 = ‖r1‖
⎛
⎝cos v

sin v
0

⎞
⎠ , (13)
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r = ‖r‖
⎛
⎝cos(ω + v) cosΩ − sin(ω + v) sinΩ cos i

cos(ω + v) sinΩ + sin(ω + v) cosΩ cos i
sin i sin(ω + v)

⎞
⎠ , (14)

which is equivalent to

r = ‖r‖
⎛
⎝cos(Ω + ω + v) + (1 − cos i) sinΩ sin(ω + v)

sin(Ω + ω + v) − (1 − cos i) cosΩ sin(ω + v)
sin i sin(ω + v)

⎞
⎠ . (15)

A straightforward computation gives

∀ v :
1

2
= cos S = r · r1

‖r‖ ‖r1‖
= cos(Ω + ω) + (cos i − 1) sin(ω + v) sin(v −Ω).

(16)

If v = −ω we get cos(Ω+ω) = 1
2 consequently, the condition (16), is equivalent

to

{
cos(Ω + ω) = 1

2
(cos i − 1) sin(ω + v) sin(v −Ω) = 0 ∀ v that is

{
Ω + ω = ±π

3
i = 0

. (17)

As a result, the two ellipses possess the same elliptic elements, excepted their
arguments of the perihelia which is translated by ±π

3 .

5 Behavior of the Trajectories in a Neighborhood of Equilateral
Points L4 and L5

In this section, we analyze in details the study of the motion of the massless particle
P2 in the vicinity of the Lagrange points L4 and (or) L5. For that purpose, we assume
that the motion of the two primaries P0 and P1 is a bounded Keplerian motion such
that r1 ∧ ṙ1 �= 0. We have seen in Sect. 4 that the points L1 to L5 lie on the plane of
the motion of the primaries, but in order to study their local stability, it is necessary
to consider both planar and spatial (vertical) variations. To this aim, the motion of
the primaries do not lying on a straight line, we define the normal unit vector k by

k = r1 ∧ ṙ1

‖r1 ∧ ṙ1‖
such that the basis (r1, ṙ1,k) is direct.

Consequently, the vector r = P0P2 splits naturally in r = rp + z where rp is the
orthogonal projection of r on the plane of the primaries (i.e., the plane generated by
(r1, ṙ1)), and z is the projection of r on k.
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5.1 Linearization of the Equation of the Motion in a Neighborhood
of the Equilateral Points

Let us assume that s0(t) is a solution of the restricted three-body problem. In order to
study the dynamics around this trajectory, the first step leads in the derivation of the
variational equation (linearization of the equations of the motion along the solution
s0). In other words, if s0 satisfy the equation ẍ = f(x) the variational equation along
s0 is obtained by the linearization in the neighborhood of s0 of the equation: s̈0+η̈ =
f(s0 + η), that is

η̈ = Df(s0(t))η, (18)

where Df(s0) is the differential of the function f (which can be identified to the
Jacobian matrix f) evaluated on the vector s0. Equation (18) is of great interest in
the sense that its solutions drive the dynamics in a neighborhood of the trajectory
s0. In particular, if η is small enough, the temporal evolution of η tells us what is
the behavior of the neighboring solutions of s0, namely the solution s0 + η. If η(t)
remains always small, the solution s0(t) + η(t) evolves around s0(t), and we will
talk of linear stability. In the contrary if ‖η‖ goes to infinity with t , we will talk of
instability, in the sense that the difference between the two neighbor solutions s0(t)
and s0(t) + η(t) diverge.

In order to derive the variational equations around the solution s0 of the equation:

r̈ = −μ0
r

‖r‖3 + μ1

(
r1 − r

‖r1 − r‖3 − r1

‖r1‖3 + r

‖r‖3

)
, (19)

we first expend the right hand side of (19) at order one in η, where r = s0 + η.
If x and y are two vectors of R

3, we denote by x · y their usual scalar product
and by x2 the scalar product of x by itself. Using this notations, the expansion of
(x + η)/‖x + η‖3 at first order in η writes

x + η

‖x + η‖3 = (x + η)(x2 + 2x · η + η2)−3/2

= x
‖x‖3 + η

‖x‖3 − 3x · η x
‖x‖5 + O(η2).

(20)

This expression leads to the expansions

s0 + η

‖s0 + η‖3 = s0

‖s0‖3 + η

‖s0‖3 − 3s0 · η
s0

‖s0‖5 + O(η2) (21)
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and

r1 − s0 − η

‖r1 − s0 − η‖3 = r1 − s0

‖r1 − s0‖3 − η

‖r1 − s0‖3

+3(r1 − s0) · η r1 − s0

‖r1 − s0‖5 + O(η2).
(22)

Replacing (21) and (22) in (19) we get

s̈0 + η̈ = −μ0
s0

‖s0‖3 + μ1

(
r1 − s0

‖r1 − s0‖3 − r1

‖r1‖3 + s0

‖s0‖3

)

−μ0

(
η

‖s0‖3 − 3s0 · η s0

‖s0‖5

)

+μ1

(
η

‖s0‖3 − 3s0 · η s0

‖s0‖5 − η

‖r1 − s0‖3 + 3(r1 − s0) · η r1 − s0

‖r1 − s0‖5

)

+O(η2)
(23)

and finally, the variational equation can be written as:

η̈ = −(μ0 − μ1)

(
η

‖s0‖3 − 3s0 · η
s0

‖s0‖5

)

− μ1

(
η

‖r1 − s0‖3 − 3(r1 − s0) · η r1 − s0

‖r1 − s0‖5

)
.

(24)

This second-order linear differential system which describes the infinitesimal vari-
ations around the solution s0(t) is in general time dependent and consequently not
integrable. We will see later that, when s0(t) is an equilateral solution of the circular
restricted three-body problem, this equations become independent of the time, and
then can be solved.

Before going further, let us assume that the solution s0(t) lies on the plane of
the primaries. In this particular case, the vertical component (perpendicular to the
primaries plan) of the variational equation (24) can be drastically simplified. Indeed,
setting η = h + z = h + zk, where h is the planar component of η and z its vertical
one, the because s0 · k = r1 · k = 0, (24) splits in two equations: the horizontal
variational equation given by

ḧ = −(μ0 − μ1)

(
h

‖s0‖3 − 3s0 · h
s0

‖s0‖5

)

− μ1

(
h

‖r1 − s0‖3 − 3(r1 − s0) · h
r1 − s0

‖r1 − s0‖5

) (25)

and the vertical variational equation:
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z̈ = −μ0
z

‖s0‖3 + μ1

(
1

‖s0‖3 − 1

‖r1 − s0‖3

)
z. (26)

5.2 The Linear Vertical Variations

The linear equation (26) given the vertical infinitesimal variations of a planar solu-
tion of (19) is generally time dependent, but in some particular cases, its solution can
be find easily. Let the trajectory s0(t) be an equilateral solution restricted three-body
problem, circular as well as elliptic. In both cases, the relation ‖s0‖ = ‖r1 − s0‖ =
‖r1‖ holds, and the differential equation gives

z̈ = − μ0

‖r1‖3 z. (27)

If the motion of the primaries is circular, the vector ‖r1‖ is constant. Thus, (27) is

the equation of an harmonic oscillator whose eigenvalues are equal to ±i
√
μ0/a3

1 =
±in1. This implies linear stability in the vertical direction and imposes the solutions
of the vertical variational equation to be 2π/n1 periodic. It worth mentioning that
the “vertical frequency” and the orbital frequency are in 1:1 resonance.

When the planetary trajectory is an ellipse, ‖r1‖ is no more constant and (27) is
not autonomous, and its general solution is usually unknown. But here again, a very
simple argument yields the explicit solution of (27). Indeed, the vector r1 satisfies
the differential equation:

r̈1 = − μ0

‖r1‖3 r1, (28)

which is obviously not a linear equation. But the motion of the primaries being
given, ‖r1‖ can be considered as a known time-dependent function. Therefore, x1,
y1, and z (it is also true for x and y) are solution of the linear scalar differential
equation:

Ẍ = − μ0

‖r1(t)‖3 X. (29)

According to the theory of the linear differential equations, every solutions of (29)
are a linear combination of two linearly independent particular solutions of (29).
The determinant

∣∣∣∣x1(t) y1(t)
ẋ1(t) ẏ1(t)

∣∣∣∣
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being different from zero for all time,3, there exist two real numbers α and β,
depending on the initial conditions z(0) and ż(0) such that

z(t) = αx1(t) + βy1(t). (30)

It turns out that the infinitesimal vertical variation is a periodic function which the
frequency is equal to the mean motion n1 of the primaries. As for the circular
restricted three-body problem, the equilateral solutions are linearly stable in the
vertical direction.

It worth mentioning that, using the same arguments, the solution (30) can also be
written as

z(t) = α′x(t) + β ′y(t), (31)

where x and y are the two co-ordinates of the vector s0 and (α′, β ′) two real numbers
depending only on z(0) and ż(0). Therefore, the trajectories associated to infinites-
imal inclinations lie on a fixed plane. This implies that the precession frequency of
the ascending node of an asteroid evolving in a neighborhood of L4 or L5 tends to
zero with its inclination.

5.3 The Horizontal Variational Equation

We have seen in Sect. 5.1 that the variational equation (24) could be split in two
independent systems of equation: one driving the vertical variations and the other
one associated to the linearized motion in the plane of the primaries. The vertical
equation derived from an equilateral solution was solved easily, even in the elliptic
case. It will not be so straightforward for the horizontal equation (25). Let us first
investigate the simplest situation of the circular restricted three-body problem.

5.3.1 The Case of the Circular Three-Body Problem

When the orbit of the trajectory s0 is circular, even if the quantities ‖s0‖ and
‖r1 − s0‖ are constant, (25) is not autonomous. But, as along this solution the
mutual distances between the bodies remain constant, in a reference frame rotating
with the two primaries the solution s0 becomes a fixed point. Consequently, in a suit-
able coordinates system the horizontal variational equation is a linear autonomous
differential system. In order to derive this system, let us chose the most massive
body P0 as the origin of the mobile reference frame, its basis (e1, e2) being defined
by e1 = P0 P1 and e2 = R(π/2)e1, where R(π/2) is the rotation of angle π/2 in the
plane of the primaries. More generally, the matrix of R(θ ) (rotation of angle θ ) is
given by

3 The motion being elliptic, the two vectors r1 and ṙ1 are always linearly independent.
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R(θ ) =
(

cos θ − sin θ
sin θ cos θ

)

in the basis (e1, e2). Let us notice that, as we consider in this section only planar
motions, it is necessary to use a 3-dimensional co-ordinate system.

Let ρ and ρ1 be the position of P and P1 in the mobile reference frame. We have

ρ1 =
(

a1

0

)
, r1(t) = R(n1t)ρ1 and r(t) = R(n1t)ρ(t). (32)

As

dn

dθn R(θ ) = R(θ + nπ/2),

the second derivative of the vector r with respect to t expressed in the mobile frame
writes

r̈(t) = n2
1 R(n1t + π )ρ + 2n1 R(n1t + π/2)ρ̇ + R(n1t)ρ̈

= R(n1t)
[
ρ̈ + 2n1 R(π/2)ρ̇ − n2

1ρ
]
.

(33)

Using formulas (32), the right-hand side of (19) gives

r̈(t) = R(n1t)

[
−μ0

ρ

‖ρ‖3 + μ1

(
ρ1 − ρ

‖ρ1 − ρ‖3 − ρ1

‖ρ1‖3 + ρ

‖ρ‖3

)]
(34)

and plugging the transformation (33) in the above equation, the equation of the
motion of the massless body in the rotating frame is

ρ̈+2n1 R(π/2)ρ̇−n2
1ρ = −(μ0 −μ1)

ρ

‖ρ‖3 +μ1

(
ρ1 − ρ

‖ρ1 − ρ‖3 − ρ1

‖ρ1‖3

)
. (35)

In order to derive the horizontal variational equation in the mobile frame, two
paths can be followed: First, we can linearize the previous equation in the neighbor-
hood of ρ (which is a fixed point in the mobile frame). Second, in a more straightfor-
ward manner, the horizontal variational equation (25) is directly written in rotating
coordinates by the mean of the transformation (32). The relations between the main
quantities in fixed reference frame and in mobile frame are

s0(t) = R(θ )r1(t) = R(θ + n1t)ρ1, (36)

where θ = π/3 if we consider L4 and −π/3 if it is L5, and

r1(t) = R(n1t)ρ1, h(t) = R(n1t)u(t), (37)
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where u if the infinitesimal horizontal variation in the rotating frame.
In the mobile frame the left-hand side of (25) becomes

ḧ = R(n1t)
[
ü + 2n1 R(π/2)u̇ − n2

1u
]
. (38)

Now, let us transform terms by terms on the right-hand side of (25). First of all,
according to (36), (37), and because the motion of the primaries is circular, we have

h

‖r1 − s0‖3 = h

‖s0‖3 = h

a3
1

= R(n1t)
u

a3
1

, (39)

identically we have

s0

‖s0‖5 = R(n1t)R(θ )
ρ1

a5
1

(40)

and

r1 − s0

‖r1 − s0‖5 = R(n1t)
ρ1 − R(θ )ρ1

a5
1

= R(n1t)R(−θ )
ρ1

a5
1

, (41)

the last equation being satisfied as long as θ = ±π/3. these formulas lead to the
following expressions:

s0 · h
s0

‖s0‖5 = (R(θ )ρ1 · u) R(n1t)R(θ )
ρ1

a5
1

(42)

and

(r1 − s0) · h
r1 − s0

‖r1 − s0‖5 = (R(−θ )ρ1 · u) R(n1t)R(−θ )
ρ1

a5
1

. (43)

The two previous expressions are linear in u and thus can be written as Mu, where
M is a 2 × 2 real matrix. Noticing that these two expressions can be written (if
we forget the constant a−5

1 and the matrix R(n1t) which will be factorized later) as
(x · u)x , the matrix M = xxT can be derived from the identities:

(x · u)x = x(x · u) = x(xT u) = (xxT )u = Mu (44)

Consequently, we get
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s0 · h
s0

‖s0‖5 = 1

4a3
1

R(n1t)Mεu,

(r1 − s0) · h
r1 − s0

‖r1 − s0‖5 = 1

4a3
1

R(n1t)M−εu with

Mε = 4

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
=
(

1 ε
√

3
ε
√

3 3

)
where ε = θ

|θ | .

(45)

Finally, using the expressions (36), (37), (38) and (42), (43), (44), (45), and after
having eliminated the matrix R(n1t) from the equations, the horizontal variational
equation (25) written in the rotation frame leads to

ü + 2n1 R(π/2)u̇ − n2
1u = −μ0

a3
1

u + 3μ0

4a3
1

(Mε + μ (M−ε − Mε)) u, (46)

with μ = μ1/μ0 = m1/(m0 + m1). According to the Kepler’s third law, we have
n2

1 = μ0/a3
1 , and the terms n2

1u and μ0/a3
1u vanish. This leads to the second-order

differential equation in R
2:

ü + 2n1 R(π/2)u̇ − 3

4
n2

1 Mε,μu = 0 with

Mε,μ =
(

1 ε
√

3(1 − 2μ)
ε
√

3(1 − 2μ) 3.

) (47)

In order to solve this second differential system of second order in R
2, a classical

process is to bring it back to a differential system of order one in R
4. Introducing

u1 = u and u2 = u̇, we get

u̇1 = u2

u̇2 = ü = −2n1 R(π/2)u2 +
3

4
n2

1 Mε,μu1,
(48)

or

U̇ = d

dt

(
u1

u2

)
=
⎛
⎝ 0 I

3
4

n2
1 Mε,μ −2n1 R(π/2)

⎞
⎠
(

u1

u2

)
= A

(
u1

u2

)
= AU. (49)

The matrix of this linear system takes the form:

A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
α β 0 δ

β γ −δ 0

⎞
⎟⎟⎠ , (50)
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where

α = 3

4
n2

1, β = 3

4
ε
√

3(1 − 2μ)n2
1, γ = 9

4
n2

1, , δ = 2n1. (51)

Now the horizontal variational equation is reduced to a linear and homogeneous
differential system of order one in R

4. In order to study its stability (that is the
linear stability of the fixed points L4 and L5), we will use some classical results of
the theory of the linear ordinary differential equations. For details concerning this
theory, the reader will refer, for example, to [2, 56]. For the sake of simplicity, we
assume that the matrix A is diagonalizable4 (eventually in C). In this case, their
exists a basis, made of eigenvectors of A, such that the expression of A in this basis
(denoted by D) is diagonal. The diagonal entries of D are the eigenvalues of A. If
λ is an eigenvalue of A, i.e., a root of the characteristic polynomial of A given by
PA(λ) = det(λI − A), we will denote by eλ an eigenvector of A associated to λ.
Obviously, this vector satisfies the relation Aeλ = λeλ. Using a decomposition in a
basis of eigenvectors, the solution of (49) takes the form: U(t) = ∑1≤ j≤4 u j (t)eλ j .
By replacing this expression in (49), we get

U̇ = AU =
∑

1≤ j≤4

u̇ j eλ j =
∑

1≤ j≤4

u j Aeλ j =
∑

1≤ j≤4

u jλ j eλ j . (52)

By uniqueness of the decomposition we obtain for all j the equation u̇ j = λ j u j

whose solutions are given by u j (t) = eλ j t c j where c j is an arbitrary constant num-
ber. Therefore, the general solution of (49) is

U(t) =
∑

1≤ j≤4

c j e
λ j t eλ j . (53)

If the eigenvalues are all real numbers, their eigenvectors have real co-ordinates and
U(t) has real coefficients as long as the c j are real. In this case, if one of the λ j is
strictly positive, the solution U(t) tends to infinity when t �→ +∞. The fixed point
is unstable. In the other cases, the solution remains bounded and the equilibrium is
stable.

If an eigenvalue of A is complex, the solution given by (53) is no more valid,
because the coefficients of U become complex numbers. But this difficulty can be
overcome quite easily. Indeed, the coefficients of the characteristic polynomial PA

being real, if λ is one of its complex roots, the conjugated quantity λ̄ is a root too.
The corresponding eigenvectors, whose coefficients are complex themselves, satisfy
the relationship: eλ̄ = eλ. If we define the two real vectors fλ and gλ by eλ = fλ+igλ,
a straightforward computation shows that the projection of the vector U(t) on the
subset spanned by the complex eigenvectors eλ and eλ̄ can be replaced by the real
quantity:

4 This hypothesis is not always satisfied, in this case Jordan’s reduction is applied.
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eαt [(a cos(βt) − b sin(βt))fλ + (b cos(βt) + a sin(βt))gλ] , (54)

where a and b are constant real numbers and α and β the real and imaginary parts of
λ. This expression shows that in the plane spanned by the two vectors fλ and gλ, the
trajectories spirals toward the fixed point if α < 0 and toward infinity when α > 0.
In the special case α = 0 (pure imaginary eigenvalues), the trajectory rotates around
the fixed point with a frequency equal to β. This case, called center, is stable.

Let us now come back to the Lagrange points. According to (50), the character-
istic polynomial of A is equal to

PA(λ) = λ4 + (δ2 − α − γ )λ2 + αγ − β2 = 0. (55)

It turns out that if λ is one of its roots, −λ is a root too. Consequently, if, for the
sake of simplicity, we eliminate the degenerated cases where zero is a double or
quadruple root of PA, we are left with four distinct dynamical situations.

(a) Hyperbolic fixed point: Saddle×Saddle (Fig. 3a).
The eigenvalues of A are equal to (α1,−α1, α2,−α2) with α j > 0. In the two
planes generated, respectively, by (eα1 , e−α1 ) and (eα2 , e−α2 ), the trajectories are
hyperbolas defined by the parametric representation (aeα j t , be−α j t ), unless a =
0 or b = 0. Let us notice that these two conditions correspond, respectively,
to the contracting and to the expending directions. Because the product of the
expansion factor eα j with the contraction factor e−α j is equal to one, the area
of a given close domain is preserved by the flow of the system. Unless the
initial condition is proportional to one of the two contracting eigenvectors e−α j ,
the solution tends to infinity with the time t . The fixed point is consequently
unstable. Figure 3a shows the dynamics on this two planes.

(b) Hyperbolic fixed point: Saddle×Center (Fig. 3b)
This situation arises when one of the eigenvalues is real and another one
pure imaginary. The four eigenvalues are thus given by (α,−α, iβ,−iβ) with
α, β > 0. In the plane generated by (eα, e−α) the trajectories are almost always
hyperbolas, as mentioned above, while in the plane (fiβ, giβ ) the trajectories are
ellipses described periodically with a frequency equal to β. In this case too, the
fixed point is unstable.

(c) Elliptic fixed point: Center×Center (Fig. 3c)
When the four roots are pure imaginary: (iβ1,−iβ2, iβ1,−iβ2), the equilibrium
is stable. The trajectories lie on a torus of dimension two in R

4. If the fre-
quencies β1 and β2 are commensurable (their ratio is a rational number), the
motion is periodic. If the two frequencies are not commensurable, the motion is
quasiperiodic, and the trajectory becomes dense in the torus.

(d) Hyperbolic fixed point: (stable) Focus× (unstable) Focus (Fig. 3d)
If λ = α + iβ, with α > 0 and β > 0, the eigenvalues are (α + iβ, α −
iβ,−α + iβ,−α − iβ). The planes spanned by (fλ, gλ) and (f−λ, g−λ) are
invariant by the flow of the system. In the first plane the trajectories spiral
outward to infinity, while in the second one the trajectories spiral inward.
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(a) (a) (a)

(b) (b) (b)

(d) (d) (d)

(c) (c) (c)

Fig. 3 Four different dynamical behaviors of the linear differential system in R
4 associated to the

matrix A. In the first column are plotted the four eigenvalues of A in the complex plan where
the real axis (horizontal line) and the pure imaginary axis (vertical line) are represented. The two
others columns represents the dynamics on two independent eigensubspaces. The lines labeled,
respectively, by (a), (b), (c), and (d) correspond to the four situation described in the text. Among
these four different kinds of dynamics, only the case (c) is stable

Unless the initial condition belongs to the contracting plane (the second one),
the associated trajectory goes to infinity, and the equilibrium is unstable.

After these general considerations, let us return to the Trojans. According to (51)
and (55) the characteristic polynomial of the matrix A is equal to

PA(λ) = λ4 + n2
1λ

2 + 27

4
μ(1 − μ)n4

1. (56)

Its discriminant is given by

Δ = (1 − 27μ(1 − μ))n4
1 = (1 − a)n4

1, (57)

where a = 27μ(1 − μ). Consequently, the square of the roots of PA satisfies
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λ2 = (−1 ±√
1 − a)

n2
1

2
(58)

The dynamical behavior of the equilibrium point depending on the location of its
eigenvalues in the complex plane, let us first notice that λ2 ∈ R if and only if a ≤ 1,
that is μ ∈ [0, μc], where μc has been defined at the end of Sect. 3.2. a being, in
this case always positive, we have: λ2 ≤ 0. Thus the roots of PA are pure imaginary
quantities given by λ j = ±iω j with

ω1 = n1

√
(1 −√

1 − a)/2 = n1

(√
27
4
μ+ O(

√
μ)

)

ω2 = n1

√
(1 +√

1 − a)/2 = n1

(
1 − 27

8
μ+ O(μ)

)
.

(59)

We are left with an elliptic fixed point of the kind Centre×Center (see Fig. 3a) which
insures the linear stability of the equilibrium. Let us notice that the two bounds of the
interval of stability [0, μc] correspond to particular situations. When μ = 0, we are
in the presence of the well-known case of linearization along the Keplerian problem
in the rotating frame, which is obviously degenerated. Indeed, on the opposite of
the case μ �= 0 where 2 equilibrium points exist on the circle of radius a1 centered
at the most massive body, all the points of this circle are invariant. For this reason
the problem is degenerated, imposing two eigenvalues to be equal to zero and to the
other ones to be equal to ±in1.

The upper bound of the interval, which limits the linear stability of the equilateral
points is also of interest. Indeed, according to formulas (59),

ω1 = ω2 =
n1√

2
(60)

corresponds to a 1:1 resonance between these two frequencies. For μ = μc, a
bifurcation arises and changes deeply the dynamical behavior of the fixed points.
For μ ∈]μc, 1/2], the system becomes now unstable. In this interval, 1 − a is neg-
ative, and from (58), we deduce that the squares of the roots of the characteristic
polynomial PA become complex numbers. This corresponds to the unstable situa-
tion described in Fig. 3d. Thus, the four eigenvalues take the form λ = ±α ± iβ
with

α =
√√

a − 1

2
n1 and β =

√√
a + 1

2
n1. (61)

The quantity −α is associated to convergence speed toward the fixed point, α to the
divergence speed from the fixed point, while β is the rotation frequency around the
equilibrium point. Let us notice that the combination of these two motions, rotation
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Fig. 4 Eigenvalues (divided by n1) in the complex half-plane !(z) ≥ 0. See the text for more
details

plus convergence or divergence, leads the Trojan to spiral inward or outward (see
Fig. 3d). Figure 4 summarizes the evolution of the eigenvalues of the triangular
equilibrium points under the variation of the mass ratio μ from 0 to 1/2. Due to the
symmetry of the eigenvalues with respect to the real axis, λ and λ̄ are both roots
of the characteristic polynomial, only the two eigenvalues with positive imaginary
part are represented. When μ = 0 one of the eigenvalue starts at 0 and the other
one starts at in1; then, the first one increases (more precisely, its imaginary part),
while the other one decreases until they collide for μ = μc. At this point, the stable
behavior of the fixed points vanishes while the eigenvalues leave the imaginary axis.
For μ > μc these values evolve along two different branches symmetric with respect
to the imaginary axis which end at

±
√√

27 − 2

2
√

2
+ i

√√
27 + 2

2
√

2
≈ ±0.63208 + i 0.94842,

when μ = 1/2.

5.3.2 What Happens in the Elliptic Three-Body Problem

Let us assume that the motion of the planet harboring the Trojan is now elliptic. We
have shown in Sect. 4 that the equilateral configurations still exist and that the ellip-
tic elements of the test particle are the same as the elements of the planet, except the
argument of the perihelion which is translated from ±π/3. Consequently, if we use,
as in the circular case, a reference frame in uniform rotation whose angular velocity
is the planet mean one, the equilateral configurations will not be equilibrium points.
In order to get fixed points, another way to proceed is to rewrite the equations of the
motion in a rotating–pulsating reference frame related to the planet. In other words,
we first chose a co-ordinate system in non-uniform rotation (the angle of rotation
being the true anomaly of the planet) and rescale this system by a factor 1/r2

1(t). In
this new co-ordinate system, the planet and the equilateral configurations are both
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at rest. The derivation of the equation of the motion being straightforward but quite
long, we prefer to refer the reader to classical books of celestial mechanics like [66].
The next step lies in the linearization of the differential system in the neighborhood
of the fixed points L4 and L5. In contrast to the circular case, the linearized system
is not autonomous, but depends periodically on the time (the period being equal
to 2π/n1). Although the solutions of this kind of system cannot, in general, be
expressed in a closed form, Floquet’s theory (see for example [42, 56]) proves that
a fundamental system of solutions X (t) can be written as

X (t) = P(t)B,

where P(t) is a matrix with periodic coefficients, and B a matrix which is inde-
pendent of the time. As in the case of autonomous systems, the stability of the
equilibrium can be deduced from the eigenvalues of the matrix B. This matrix being
not explicitly known, two different approaches have been followed in order to under-
stand the dynamical nature of the equilibria. The first one lies in numerical integra-
tions of the linear system in order to compute the eigenvalues of B [12, 57], while the
second one is based on an expansion of the system in power series of the planetary
eccentricity, followed by the reduction of the equations to a normal form[44]. The
results of these two approaches are presented in Fig. 5. In this figure, the X-axis is
related to the mass of the two bodies by the parameter σ = √

27μ(1 − μ), while
the Y-axis corresponds to the eccentricity of the planet. For e = 0, the stability
domain coincides with the one obtained in the circular problem, because σ = 1
is equivalent to μ = μc. For e �= 0, the stability domain is split into two regions
intersecting at the point of coordinates (σ, e) = (

√
3

2 , 0). This value of σ is reached

for μ = (3 − 2
√

2)/6 ≈ 0.02859548. On both sides of these points linear stability
exist for non zero eccentricities. The right part of the stability domain shows that

0.2 0.4 0.6 0.8 1
σ

0.2

0.4

0.6

0.8

1

e

Fig. 5 Stability diagram of the equilateral solutions in the elliptic restricted three-body problem.
The X-axis represents the quantity σ related to the mass ratio of the massive bodies by the relation
σ 2 = 27μ(1 − μ). The eccentricity of the planet (of relative mass μ) is represented by the Y-axis.
The fixed point is linearly stable in the hatched regions, while it is unstable outside
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eccentricity of the orbits of the primaries have a stabilizing effect on the linearized
problem, since it can be stable for μ > μc. Indeed, the coordinates of the extremal
point of the right part of the stability domain are (μ, e) ≈ (0.04698, 0.3143).

5.4 Beyond the Linear Stability

The linear stability of a fixed point is not a property that persists under perturbation.
Practically, the stability properties of the equilateral solutions of the restricted three-
body problem discussed above may disappear considering higher order expansion
of the equation of the motion around the equilibrium point. When we consider the
linearized system around an elliptic fixed point, every initial condition leads to a
quasiperiodic trajectory. Consequently, a solution starting near the fixed point will
always stay close to it. But this strong stability property does not, in general, persist
when expansion of higher degrees is considered (even in Hamiltonian systems).
Indeed, perturbations of the linear system may generate unstable directions along
which the massless body escapes; and even if it is not the case, a lot of quasiperiodic
trajectories mentioned above may not subsist, giving rise to diffusion phenomena.
In Hamiltonian systems,5 the behavior of quasiperiodic trajectories is at the core
of KAM theory (see [3, 4, 52]). To give a very rough idea of this theory, we can
say that starting with an integrable Hamiltonian system whose phase space is the
union of invariant tori filled with quasiperiodic trajectories, under suitable condi-
tions, a large amount of tori is preserved under a sufficiently small Hamiltonian
perturbation. For Hamiltonian systems of 2 degrees of freedom, this theory allows
to prove the stability in numerous situations. Indeed, for a Hamiltonian system of n
degrees of freedom, the dimension of the phase space is 2n. Due to the invariance
of the Hamiltonian, a trajectory evolves on a (2n−1)-dimensional space, and there-
fore, the codimension of a torus is n − 1. Consequently, in a 2-degrees of freedom
Hamiltonian system, a KAM torus is a surface of codimension 1 which divides
the phase space in two disconnected parts. In this case, the existence of KAM tori
imposes a property of confinement which leads to stability for infinite time. The
circular and planar restricted three-body problem corresponding to a 2-degrees of
freedom Hamiltonian system, KAM theory can be applied to prove the stability in
some particular domains of its phase space. This is the reason why KAM theory has
been wildly employed in the aim to prove the stability of the equilateral solutions
of the circular restricted three-body problem. According to [34], a direct application
of KAM theory proves that invariant tori exist in the neighborhood of the points
L4,5 for almost all μ in the interval [0, μc]. More recent studies [16, 43] show
that the equilateral solutions are stable for all μ in [0, μc] except for two values:
μ = (1 − √

213/15)/2 ≈ 0.013516 and μ = (1 − √
1833/45)/2 ≈ 0.024294,

for which instabilities take place [39]. Regarding the spatial three-body problem or

5 The restricted three-body problem, like the general n-body, can be written in Hamiltonian form
(see [52]).
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the planar and elliptic three-body problem, KAM theory does not allow to bound
the trajectories. Indeed, for more than 2 degrees of freedom, the tori which are
of codimension three or more do not separate the phase space anymore, leading
to Arnold’s diffusion phenomena [1]. Nevertheless, Nekhoroshev theorem makes
possible to bound the diffusion on a finite, but exponentially long time [54]. In
[6], the authors show that L4 and L5 are stable in the sense of Nekhoroshev for
all but a few values of μ up to the Gascheau value μc. But this result, like the
direct applications of KAM theory, does not give any information concerning the
size of the stable neighborhood. Nevertheless, Nekhoroshev theorem leads to the
concept of “effective stability” of the considered differential system, the idea being
the following: a system is effectively stable if the time needed to observe significant
changes is longer than the expected lifetime of the system itself (see [22]). This
idea is particularly efficient in the case of Jovian Trojans. Indeed, numerous Trojans
orbiting near L4 or L5 seem to be stable for billion years. This was first applied
in [27], where the authors show, using Nekhoroshev-like estimations, that Jovian
Trojans cannot escape from a bowl of radius R centered at L4,5 before a period of
time comparable to the age of the Solar System. This nice result, which is developed
in the framework of the circular and planar restricted three-body problem is unfor-
tunately valid only for R lower that 10 km (the closest observed Jovian Trojans orbit
at more that 106 km from the Lagrangian points). By significant improvements of
the estimates employed in [27] several authors [10, 28, 65] obtain stability radius
big enough to include a few known Trojan asteroids. More sophisticated models and
estimates of the stability radius have been developed recently [19, 22–24, 36], but
in spite of all these efforts, this kind of methods seem far from being applicable to
realistic models. Indeed, even if the elliptic and spatial restricted three-body problem
provides a reasonable approximation of the motion, a lot of important dynamical
phenomena arise when the gravitational perturbations of the four giant planets of
the Solar system are taken into account (the phenomena already appear considering
the asteroid–Sun–Jupiter–Saturn model [25, 60]). But these models possessing at
least highest degrees of freedom are beyond the reach of the methods based on
Nekhoroshev-like estimates.

6 Further Reading

This last section gathers some results dealing with the dynamics of Trojans in the
solar system. It does not pretend to give a complete review of the subject and will
not furnish an exhaustive bibliography. Its purpose is only to give some tracks for
the interested reader. We have already mentioned in the previous section that the
restricted three-body problem does not give a good approximation of the real trajec-
tories of the Trojans of Jupiter and that the gravitational influence of the other giant
planets, at least Saturn, must be taken into account. An important pioneer work was
done by Erdi (see [20] and references therein), in the aim of increasing the precision
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of the calculations of the Trojan orbits including the perturbations of the other plan-
ets. The most precise models are used at the present time for the calculation of the
proper elements of the Jupiter Trojans. These quantities, which can be viewed as
approximated integrals of the motion, i.e., as quantities varying in a very small and
slow manner characterizing a given celestial object, have been introduced by J. G.
Williams in 1969 [69]. In the case of an asteroid whose the motion is regular enough
(in particular in the case of the lack of specific resonances), these proper elements
are perfectly defined (although there are several ways to define them) and very sta-
ble in function of the time. On the opposite, for less regular orbits, the temporal
variations of the proper elements can give a measurement of the irregularity of the
motion (i.e. the orbital diffusion). One of the principal applications of the calcu-
lations of proper elements is the determination of the dynamical asteroid families.
Asteroid families are clustering in the proper elements space, which are the result
of the catastrophic disruption of a parent body after collision.

The calculation of the proper elements developed in the frame of the dynamical
study of the asteroid belt (see [49]) has been applied to the Jupiter Trojans [5, 47, 48,
64] and has enabled to prove the existence of Trojan dynamical families (see [61]) as
in the case of numerous ones in the asteroid belt (see Cellino in this volume). From
the calculations of their proper elements, A. Milani [47] showed that some Trojans
are subject to unstable behaviors, ranging from a bounded diffusion to the ejection
from the swarm. In [35] the authors showed, starting from a numerical integration
of the Jupiter Trojans for one billion years, that the swarms were not permanently
stable. Some of the objects could escape from the swarm, their lifetime inside it
depending on the distance to the Lagrange point. This phenomenon of slow erosion
was confirmed a posteriori by [45, 55] which showed that unstable structures exist
inside the swarms themselves. These unstable structures were studied exhaustively
in [60, 59] where the authors showed that several Trojans known as unstable ones
were evolving inside resonances. They also proved that diffusion phenomena along
resonances could lead some objects orbiting deep inside the swarms to be ejected in
a timescale of the order of 1 billion years. This phenomenon is related to the slow
erosion suggested by [35].

Another important question concerns the high inclinations of some Trojans with
respect to Jupiter’s orbital plane. In some cases this inclination exceeds 40◦ as was
shown in Fig. 1. Indeed, it is very unlikely that a population having a small initial
inclination could reach more than 25◦ of inclination (see[40, 59]). Consequently, in
order to reproduce the range of inclinations reached by the Trojans in the present
Solar System, it seems necessary to have, in the initial population, Trojans with
high inclinations. Moreover, if the dynamical mechanisms inside the Trojan swarms
seem to be well understood now, except a few specific points, the question of the
dissymmetry which seems to exist between the populations around the L4 point and
the L5 one, as shown in Fig. 2, is not entirely solved. On this topic, an observational
bias is no more considered as a suitable explanation. Moreover the cause of the
dissymmetry does not seem to be linked to a dynamical effect as this was suggested
by [18, 55, 60] for the Jupiter Trojans and by [17] for Neptune Trojans. The origin



224 P. Robutel and J. Souchay

of the dissymmetry might be found somewhere else, for instance in the formation
of swarms inside a Solar System initially very dense and dominated by collisions
between small bodies (see [13]).

If we have only very few clues about this last point, an effective scenario devel-
oped by Gomes, Levison, Morbidelli, and Tsiganis in 2005 seems to give a rea-
sonable explanation to the formation and inclination problems. Indeed, it is shown
for the first time in [29, 53, 67] that the planetary migration is compatible with the
hypothesis that the Jupiter’s Trojans are captured just after the crossing of the 1:2
mean motion resonance between Jupiter and Saturn. Moreover, these numerical sim-
ulations give a distribution of the Trojans inclination that agrees with the observed
one.

In 1989, although no Trojan related to another planet than Jupiter was discov-
ered, Innanen and Mikkola [31] presented a study of the dynamics of hypothetical
Trojan swarms associated to the four giant planets using a numerical integration
over 10 million years. They confirmed the existence of large regions of stabil-
ity in the neighborhood of the Lagrange points L4 and L5 of Jupiter and showed
that the same property held for Uranus and Neptune. On the opposite, their study
showed the existence of strong instabilities around the equilateral configurations of
Saturn.

These instabilities were confirmed and investigated more deeply by M. J. Holman
and J. Wisdom [30]. The interesting dynamical situation of Saturn Trojans was
detailed in other papers as [14, 40, 41]. According to these authors, the combination
of the perturbations generated simultaneously by secular resonances and the quasi-
resonance 2:5 between Jupiter and Saturn (called the “great inequality”) leads to the
instability as it is observed. The dynamical behavior of the Uranus and Neptune Tro-
jans was also studied by Nesvorny and Dones [55], who predicted in which region of
the sky they should be located in the case they really exist. It is inside such a region
that the first Neptune Trojan, 2001QR322 was discovered. Some complementary
studies can be found on the subject (see for instance [41, 32]).

Let us finish this section by some ideas about the Trojans of the tellurian planets.
Numerous studies were devoted on their existence. We can refer for instance to
[8, 9, 11, 21, 46] or [63, 62] for specific studies about Venus or Mars Trojans.

Except the planet Mars for which the four co-orbital objects discovered recently
have a stable motion for a very long time, the possibility to discover stable Tro-
jan swarms is fairly small. Indeed, according to the studies mentioned above, these
regions are strongly unstable and do not harbor long-life Trojans. More precisely,
according to [50, 51] the lifetime inside these regions should not exceed several
millions years. But on the other hand, temporary populations of Trojans supplied by
flux of asteroids visiting the inner Solar System might exist. But the conditions of
observation of these potential bodies are hardly determined, in particular because of
their small elongation with respect to the Sun.
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The Physics of Asteroids and Their Junction
with Dynamics

M. Birlan and A. Nedelcu

Abstract The study of asteroid families is an important current topic. New insights
obtained by dynamical considerations motivating the interest in completing the
knowledge of the physics and the composition inside asteroid families. The dis-
covery of young families offers a new frame of study of interaction between the
family members, the family and the other solar system bodies, the consequence of
a “hostile” medium for asteroid surface, the importance of cumulative, and long-
term, non-gravitational effects. The last decade has shown that long-term dynamics
of family objects can be explained by accounting for new physical effects such
as Yarkovsky and Yarkovsky–O’Keefe–Radzievskii–Paddack effects. A review of
these topic reveals the complexity and the importance of interdisciplinary research
on these bodies.

1 Introduction

The asteroids are a population of objects in the solar system containing more than
404,923 objects.1 Due to their large number and the location in their inner planetary
system, this population represents a laboratory of study for celestial mechanics prob-
lems such as the dynamics of orbits, stability, chaos, and the long-term evolution of
orbits.

New remote-sensing capabilities have opened the early history of individual
asteroids and their parent bodies to sophisticated investigation. Based on the small
size of the planetesimals and on meteorite chronologies, it is known that all signifi-
cant chemical processes that affected these minor planets were essentially complete
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within the first 0.5% of solar system history. Asteroids represent the sole surviv-
ing in situ population of early inner solar system planetesimals, bodies from which
the terrestrial planets subsequently accreted. Thus, one of the central questions of
current asteroid physical studies concerns the geologic issues related to the original
compositions of asteroidal parent bodies and the chemical and thermal processes
that altered the original planetesimals [35].

The asteroid families are widely believed to be produced by large collisions
over the solar system history. A short definition of the syntagma “asteroid family”
is a cluster of objects which are genetically and dynamically linked, a result of
a catastrophic event (collision of two bodies followed by the destruction of both
target and impactor). As a corollary, clusters that are recognizable only because
they occupy peculiar zones in the orbital elements space, which are isolated by
the presence of secular and mean motion resonances, should not be termed as
“family” [99].

Historically, the existence of families of asteroids was suggested by Hyraiama in
1918, who noticed “condensation here and there” in the distribution of the asteroids
with respect their orbital elements, in particularly the mean motion n, the eccentric-
ity e, and the inclination i [41]. Depicted by Hirayama as “curiously,” “still curi-
ously”, or “remarkable coincidence,” the distributions of some asteroids around the
same value of orbital elements outline the major families of 158 Koronis, 221 Eos,
and 24 Themis.

Asteroid families research has become a hot topic in the last decade [92]. This
increasing interest will be developed in the following sections. The second sec-
tion will treat briefly the dynamical aspects linked to families (both old and young
ones). The overview of new, interesting physical aspects will be developed in the
third section. The scientific aspects linked to the young families of asteroids will be
developed in the fourth section of this article. Finally, some ideas and directions of
research are proposed as conclusions.

2 Dynamical Considerations

2.1 Identification of Asteroid Families: Choice of Orbital Elements

The time variation of osculating elements of asteroids is due to the presence of
several gravitational fields (major planets and other minor bodies). Jupiter’s gravi-
tational field is the most important for the evolution of the osculating elements of
main-belt asteroids, but contributions of other planet gravitational fields should be
also taken into account. This variation of osculating elements makes them inappro-
priate for the purposes of asteroid family identification [99].

The research of time-invariant orbital elements was developed in numerous arti-
cles [14, 1, 95, 22, 95, 46]. The appropriate semantics accepted by the researchers
is “orbital proper elements” and designates the quasi-integrals of motion which are
nearly constant in time [47].
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Depending on the scientific approach, the computation of proper elements is
based on analytical, semi-analytical, or synthetic methods [61–63, 52, 53, 47].
Knežević et al. [47] emphasized some particular cases (asteroids near resonances,
Hildas, Trojans) of asteroids with proper elements on which different approaches
could give different results. They also point out the importance of the accuracy,
reliability, and the time-interval stability of the proper elements of minor bodies.

The importance of high-accuracy proper elements is crucial in the age determi-
nation of young families [73, 92]. These articles (along with others [71, 74, 21]
use numerical integration in order to find the moment of nearly identical orbital
elements of the family. However, orbital element integration backward in time, used
as a direct method of age determination, is limited to families younger than 10 Myr
[92]. Orbital element convergence of the family members becomes more precise
when cumulative, non-gravitational, long-term forces [74] are taken into account.

2.2 Dynamics of the Families and the Dust Bands

The main belt is most probably a population dynamically relaxed which contained
at least several times as much mass during planet formation as it does nowadays.
Numerical simulations suggest that the asteroid belt was excited and depleted before
the terrestrial planets completed their growth process [79]. In the assumption of
giant planet migration proposed as the cause of the Late Heavy Bombardment
(LHB), the asteroid belt was strongly perturbed [55]. The LHB largely erases the
traces of the original distribution of objects in the region between Mars and Jupiter
[65, 37]. Catastrophic collisions followed by the competition of superimposed grav-
itational influences of the Sun and planets “sculpted” the actual dynamical distribu-
tion of the main belt.

Main-belt collisions followed by disruption can liberate a wide range of frag-
ments from micrometers to tens of kilometers. Two processes will differentiate the
asteroid-sized fragments from the micrometer-sized ones. The large fragments will
gravitationally evolve. Depending on their relative velocities, large fragments also
will be spread somewhat in the interplanetary space. For low relative velocity frag-
ments, the process of reaccretion(coalescence) could play an important role. Most
of the asteroid-sized fragments which remain near the location of the parent body
are identified nowadays as asteroid family members. Both family members and the
small-size particle (sometimes defined as by-product of the collision) could give
important insights on the main-belt evolution.

Numerical simulations of the collisional disruption of large asteroids were per-
formed using sophisticated 3D codes [57, 56, 58, 60] and the gravitational inter-
action and evolution of the resulted fragments were traced. One of the simulation
objectives was to deduce the formation process of big families such are Eunomia,
Koronis, or Flora. Some major conclusions are drawn from the simulations, such as
(i) all large family members must contain gravitationally re-accumulated fragments,
(ii) the family distribution is composed of a large body and the rest of members
follows a quasi-linear size–frequency distribution (SFD). New studies [29] suggest
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that about 20 observed main-belt families are produced over the age of the solar
system by catastrophic collisions of parent bodies larger than 100 km.

The small fragments produced by a disruptive collision have a different evolu-
tion. Models of interplanetary dust based on a variety of dynamical and physical
processes (planetary perturbations, Poynting–Robertson drag, radiation pressure,
electromagnetic forces, mutual collisions, sublimation, etc.) are used to explain the
presence and evolution of fragments through a dust band. The origin of zodiacal
dust bands2 was related to the Eos, Koronis, and Themis large families of asteroids
[27] and to newly identified young families of Karin and Veritas [73]. New studies
of the evolution of dust trails into bands in the main-belt region suggest other very
young families (e.g., Datura) reside at the origin of other zodiacal dust bands [94].
The budget of dust particles seems to be favorable to the younger families rather
than the older ones. Morbidelli et al. [66] conclude there is collisional equilibrium
for objects with diameter lower than 5 km inside the families of Eos, Themis, and
Koronis, which limit their ability to produce dust particles.

The actual science of asteroid families is very well synthesized into the paradigm
of Cellino et al. [23] in the frame of Yarkovsky and YORP non-gravitational forces.
The post-Yarkovsky3 paradigm allows plausible/reliable explanation for open prob-
lems such as [23]: (i) a better agreement for the size distribution objects in the main
belt with some observational data; (ii) a better agreement between the observed
structures of families and the hydrocode simulations; (iii) a natural explanation for
the confinement of large families between powerful mean motion resonances.

Some asteroid families also contribute to the current population of near-Earth
asteroids (NEAs). Large families as Themis and Eos were strongly depleted by the
mean motion resonances 9:4 and 2:1 [64]. Numerical integrations [36] show that
some objects injected in these resonances later achieve near-Earth-like orbits in only
few million years. This is an indication that the NEA population and the impact rate
to the terrestrial planets are related with collisional events in the main belt. From the
analysis of terrestrial craters it was found a twofold increase of the impact flux from
kilometer-sized bodies over the last 100 Myr. This apparent surge was produced
by a catastrophic, family-forming impact in the inner region of the main belt 160
Myr ago [13]. The breakup of a 170 km parent body produced the current Baptistina
family. This event was most likely the source of Chicxulub impactor that produced
the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.

2 The zodiacal dust bands were discovered by the satellite IRAS and could be defined as extended
regions with strong emissions in the infrared region, slightly inclined to the ecliptic. The particles
have a toroidal distribution located between Mars and Jupiter, but the ratio between the zodiacal
dust produced by comets and that produced by asteroid collisions is not known.
3 Yarkovsky effect is a thermal effect consisting of the absorption of solar radiation by a body
and its subsequent anisotropic thermal reemission. The temperature differences on the surface,
together with an irregular shape, produce a force and a torque. The strength of the reradiation
force varies along the orbit as a result of thermal inertia. We can distinguish between a seasonal
effect and a diurnal one. In the literature this thermal effect can be referenced as Yarkovsky and/or
Yarkovsky/YORP [12].
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Similar studies [78] were developed as a possible explanation of delivering mete-
orites from the ν6 secular resonance to Earth-crossing orbits, and the authors under-
line the possibility of such “express delivery” scenario for explaining an L-chondrite
meteorite falling in Sweden ≈470 Myr ago.

Investigation of the important link between the main belt and NEA populations
requires a combined knowledge of their dynamical and physical evolutions and
properties.

3 Physical Considerations

3.1 Physical Properties Inside a Family

In the case of asteroids, the physical properties of these bodies globally follow
dynamical ones. Observations of physical properties were also enlarged to other
wavelength regions, other than the visible region, from the ultraviolet to the infrared
and the radio.

Two aspects will be developed during this subsection: insights in the asteroid
population obtained by spectroscopy and constraints imposed by the spin of mem-
bers of families of asteroids.

The visible spectroscopy of asteroids has become a dominant method of physical
investigation during the last decade of the twentieth century. Results of large spec-
troscopic surveys [97, 20, 50], as well as spectral data of large families members,
were published [28, 31, 32, 51].

Based on the visible spectroscopy, the family members share, globally, the same
spectral behaviors [28, 31, 32, 51]. However, the articles that treat large families
must deal with the spectra spanning a certain range of slopes, must speculate on
the presence of interlopers in the observed sample, and must extrapolate the results
obtained for a few dozen objects to the entire family.4 Figures 1 and 2 present the
visible spectra of families Flora and Eunomia available from the SMASSII [20]
database,5 with respect to the families determined by Zappala et al. [100].

One of the key parameters for statistical studies of the spectra of a family is the
spectral slope, usually obtained using data from the spectral region 0.50–0.75 μm.
The family members span a wide range of this spectral slope for each major family
(e.g., Eos, Flora, Eunomia). Several scenarios were proposed in support of such
variety, starting with a partially differentiated genitor of the family and finishing
with subtle mechanisms of different surface alteration of family members by cosmic
rays, solar wind, irradiation processes, etc., for which the generic term is space
weathering.

4 The families of Eos, Koronis, and Flora contain more than 300 objects each, thus these statistics
concern roughly less than 10% of the largest bodies inside the family.
5 Data are available online at http://smass.mit.edu
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Fig. 1 Smoothed visible spectra of 45 asteroids belonging to Flora family extracted from SMASSII
[20]. Two objects (asteroids 1324 and 2952) present distinct spectra. These two objects were not
observed in S2OS3 [50]. These spectra were completed with spectra of 14 objects from SMASS-
IR, obtained in the spectral region of 0.9–1.6 μm [18]. The spectra are normalized to 0.55 and
1.25 μm, respectively, and the family members were selected from Zappala et al. [100]. With some
exceptions, these spectra reveal good similitude

Each spectroscopic study of asteroid families must also deal with the interlopers
problem. For example, several authors identified objects whose spectra are quite
different for the majority of the observed family members [28, 31, 32, 49]. Some-
times the percentage of objects with different spectra can reach 10% of the observed
sample family. These objects are usually treated as objects non-genetically related
to the family. Some explanations are based on the background objects sharing the
same space as the family and the limitation of methods—the boundary limits [51]
and the choice of metrics [75]—of family identification. The term of “clan” [30] was
proposed as a designation, for groups for which unequivocal membership and/or
separation from other background groups is not possible. This seems to be a good
compromise because it answers the dilemma created by the presence of spectral
characteristics for both primitive (B-,C-type asteroids) and evolved (E-, S-, A-types)
among objects of the same family.

If we discuss our relative knowledge of spectral behaviors in the visible spectral
range for some big asteroid families, the near-infrared (NIR) spectral properties
are still poorly known. We can emphasize the efforts of Burbine and Binzel [18]
who performed a spectral survey of about 181 objects in the frame of the MIT
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Fig. 2 Visible smoothed spectra of 16 asteroids belonging to the Eunomia family, extracted from
SMASSII [20]. The spectra are normalized to 0.55 μm and the family members were selected from
Zappala et al. [100]. The spectra span a wide range of slopes in the visible range. The asteroids 85,
141, and 1094 present flat no-features spectra, typical for C-F-X asteroids. A similar plot could be
seen in Bus [19]

program Small Main-Belt Asteroid Spectroscopic Survey.6 As long as the program
was devoted to the main belt as a whole, the observed number of a certain family
is limited (as it can be seen in Fig. 1); thus, general conclusions for families are
difficult to be drawn.

Recently, a mineralogical analysis of 30 members of Eos family [69] was pub-
lished using the spectral range 0.8–2.5 μm. The major conclusion is that the surface
of the majority of their sample is dominated by forsteritic olivine, consistent with
carbonaceous chondrites. One of the most plausible explanations is that Eos family
(or at least their sample) might be composed by pieces of the mantle of a partial
differentiated parent body.

These recent spectroscopic results bring forth the importance of a global visi-
ble+NIR spectral investigation extended to at least 2.5 μm. Indeed, this region con-
tains a series of features (broadbands around 0.4, 1, and 2 μm, shallow absorption
around 0.7 μm, etc.) that must be considered together when a mineralogical solution
is computed.

Observations of rotation lightcurves for the family members is an important
topic in deciphering the history of asteroid families. According to post-Yarkovsky
paradigm [23], the family members should exhibit some preferential spin axis align-
ment. Laborious, long-term work on lightcurves for the Koronis family members

6 The survey was performed in the spectral range 0.9–1.65 μm.
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revealed a correlation between the lightcurve amplitude and the ecliptic longitude
[5]; this correlation is a consequence of the alignment of spin axes [84]. This Slivan
state deduced for the obliquity of spin axis was detailed later7 [85]. This result could
be corroborated to explain the rotation period distribution of 40 members of Koronis
family [86]. This new result concludes a non-Maxwellian distribution of rotation
rates inside this family strengthening the excesses in both slow- and fast-rotator
objects.

The interpretation of such distribution of rotational period and spin axis orienta-
tion inside the Koronis family could be seen as a consequence of the YORP effect
[91]. Thus, for the objects with prograde spin, the synodic periods are in the range
7.5–9.5 h and obliquities in the range of 42◦–50◦, while for the objects with ret-
rograde rotation, the objects are slow (Psyn ≥ 15 h) and fast (Psyn ≤ 5 h) rotators,
and the obliquity is in the range of 154◦–169◦. The non-random distribution of the
orientations axis and of the synodic periods is considered as the consequence of the
diurnal Yarkovsky effect. Moreover, the authors suggested that this thermal torque
may be more important than collisions in changing the spin state of asteroids greater
than 40 km in diameter.

3.2 Space Weathering and Asteroids Spectral Properties

Space weathering is defined by Chapman in 2004 [24] as being the observed phe-
nomena caused by those processes (known or unknown) operating at or near the
surface of an atmosphereless Solar System body that modify the remotely sensed
properties of the body’s surface from those of the unmodified, intrinsic, subsurface
bulk of the body.

This definition stresses the difficulty of assessing a specific mineralogy of an
atmosphereless body via remote observations. Indeed, accretion or erosion of partic-
ular materials, or modification of materials in situ by energetic impacts or irradiation
will modify and contaminate the asteroid surface over a long period of time. The
phenomenon of space weathering was first evidenced in the lunar soils. Labora-
tory analysis of the returned lunar soils revealed optical properties that differ from
those of pristine lunar rocks.8 These differences were attributed to several types of
processes associated into the generic term of space weathering: regolith vitrification
by high-speed micrometeorites, creation of grains (1–30 μm in size) of metallic iron
(nanophase metallic iron), saturation of minerals by hydrogen implanted by the solar
wind, and melted by micrometeoritic impacts.

7 The article reveals a preferential spin axis alignment using the pole solution of 10 members of
Koronis family, including the asteroid 243 Ida observed by Galileo spacecraft.
8 The mature soil generally shows only the weak absorption features and red slope compared to
the spectrum of the fragmental breccia.
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In the case of asteroids, the phenomenon of space weathering is a very interesting
subject for several reasons. One of the most important is linked to the OC paradigm.9

From the 1970s, during several decades, the debate concerning the origin of ordinary
chondrite meteorites proposed objects located in the inner part of main belt, or the
extinct comets, or bodies which are delivered from the chaotic zones located inside
secular resonances [67]. The association between some S-type10 asteroids and OCs
is still an open subject.

Another direction involving space weathering processes is that of explaining the
spectral trend of Vesta or Vesta-like asteroids. The Vesta family is considered as the
origin of most HED11 meteorites. Their spectra exhibit features similar to a pristine,
unaltered surface. While the maturation effect on asteroids surface from microme-
teorite bombardment was estimated to be around two or three order of magnitude
lower than on the Moon surface [33] the simple extrapolation of space weathering
mechanisms explaining the Moon soils cannot be used. However, the long exposure
of the surface to the solar wind must heavily alter its spectral properties, which is not
the case for Vesta-like objects. New laboratory studies by irradiation of meteorites
suggest that the pristine surface, such is that on Vesta asteroid, could be preserved
in the presence of a remnant magnetic field of about 0.2 μT [87], acting like a shield
against charged particles of the solar wind.12 If this hypothesis seems to work for
large, differentiated asteroids such as Vesta, the question of pristine materials on
smaller ones, most probable fragments of Vesta crust and mantle, remains open.

Laboratory experiments might be also useful in simulating potential space weath-
ering processes. These experiments allow the modification of the central wavelength
of the 0.9–1.0 μm absorption band [68]. Such an alteration processes could allow
different combinations of minerals which can simulate the central wavelength of
the large band presented in asteroids spectra. Thus, space weathering is at the core
of the debate of non-unique mineralogical interpretation of the surface of asteroids
belonging to the same taxonomic class.

Experiments with pulse lasers [80], simulating micrometeorite impacts, conclude
the modification of surface properties of samples and the production of nanophase
iron deposits. The relevant timescale for the space weathering in this case was esti-
mated to be of order of 100 Myr.

Space weathering becomes an interesting subject of study in the frame of catas-
trophic collisions in the main belt, namely (i) the young families discovered in the
last decade and (ii) asteroids complexes (double, multiple, or binary asteroids).
Indeed, the members of young families may exhibit surfaces younger (or rejuve-
nated) than the original parent body. This could be evidenced by spectroscopic mea-

9 The ordinary chondrite (OC’s) are by far the largest class of samples among meteorite falls; up
to now there is no main-belt asteroid having spectral properties identical to that of OCs.
10 We refer the reader to the articles of Gaffey et al. [34], Belton et al. [2, 3], Binzel et al. [6–8],
Chapman [24].
11 Group of Howardite, Eucrite, Diogenite meteorite classes.
12 The presence of magnetic field of asteroids and its interaction with the solar wind was studied
by Greenstadt [38], and Ip and Herbert [42].
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surements and may give quantitative constraints on the timescale of space weather-
ing alteration processes. In the case of binary or multiple asteroids, the spectroscopy
of each component of the system could reveal differences in spectra. These differ-
ences could be interpreted in terms of homogeneity/heterogeneity of the original
body, but also as a consequence of different ages of the surfaces.

Last but not least, observations “in situ” of spacecraft instruments reveal impor-
tant clues about the asteroid surfaces. Spectral analysis (by NEAR-Shoemaker
spacecraft) of (433) Eros craters shows albedo contrasts of order of factor of two
[26], with fresh material on the rims and the crater walls. In the case of the asteroid
(25143) Itokawa, recently visited by Hayabusa mission, spectroscopic observations
reveal a single-scatter albedo 30–40% lower than that of Eros [45].

4 Young Families of Asteroids

Emerging directions in asteroid research which may bring forth the link between
family members dynamics and their surface properties are being investigated. The
most promising in this sense seem to be the study of young families [72–76]. Three
families with ages between 1 and 10 Myr were identified during the last decade: the
Iannini family (1–5 Myr old), Karin (5.75 ± 0.05 Myr old), and Veritas (8.3 ± 0.1
Myr old). Among them, the Karin cluster is located in a densely populated region
of the large Koronis family,13 while Iannini and Veritas are families with inclinated
orbits (12◦.15 and 9◦.26, respectively).

A new family was identified [76] around the asteroid (1270) Datura. This is a
small family (only 7 members were identified) and it is considered as the result of a
breakup of a main-belt asteroid approximately 450,000 years ago.

Using the osculating elements and a modified metric for the identification of
young families [75], new clusters were proposed. This technique allows identifica-
tion of three new clusters and to partially find again the families of Karin, Iannini,
and Datura. These new clusters, each of them composed by three objects are (14627)
Emilkowalski, 1992YC2,14 and (21509) Lucascavin (Table 1 of [75]). The age esti-
mation for the new clusters was less than 800,000 years for Emilkowalski members
and less than 250,000 years for the other two clans. Recently [48, 90] efforts for
characterizig these new families were published.

The synthesis of the young families currently proposed is given in Table 1.
It is important to mention the utilization of fine tuning induced by the Yarkovsky

effect [15, 93] in the numerical integration backward in time for finding the origin
of the catastrophic event at the origin of the young families.

13 The largest body of the Karin family is the asteroid (832) Karin, identified previously also as
member of the larger (and older) Koronis family.
14 Identified also as 1989 AH5.
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Table 1 The current knowledge of the young (less than 10 Myr old) families of asteroids. Family
name, number of members, semi-major axis, eccentricity, and inclination of the largest member of
the family (the osculating elements at April 16, 2008), and references are presented

Family Number of a e i References
name members AU ◦

Karin 90 2.864719 0.07861 1.00525 [74]
Iannini 49 2.642372 0.31233 11.09786 [96]
Veritas 259 3.168739 0.09886 9.2649 [73]
Datura 7 2.234749 0.20768 5.98964 [75]
Emilkowalski 3 2.598794 0.15047 17.73248 [75]
Lucascavin 3 2.280641 0.11288 5.98683 [75]
1992 YC2 3 2.622319 0.2188 1.62903 [75]

Two subjects must be mentioned, presented here as questions:
(1) What is the number of families that can be identified in the main belt? Can we
talk about the completeness of the families in the main belt?
(2) How relevant are the physical parameters (and the parameters derived from
spectroscopic measurements) in the general context of the new (young) families
proposed by dynamicists?

4.1 Generalities on Karin Family

Older asteroid families (∼1 Gyr) have been substantially eroded and dispersed,
making difficult the accurate determination of the age or the nature of the family
formation after the catastrophic impact. The younger families instead, experiencing
little dynamical and collisional evolution after the breakup event, provide us with
a valuable tool to understand disruptive asteroids collisions and even more subtle
processes such as the dispersion of the asteroid families due to the Yarkovsky effect.

The announcement of the new family around the asteroid (832) Karin was made
in 2002 [72]. This result proposed a cluster of 39 bodies on which the first two
larger ones have comparable sizes ((832) Karin and (4507) 1990 FV). This new
configuration stimulated the interests of scientists involved in collisional process
within the main belt [59, 60].

The catastrophic disruption of the parent body asteroid was traced back in time
by numerically integrating 13 numbered asteroids from the cluster of 39 asteroids
in the (ap, ep, i p space) [72]. It was found a remarkable agreement of the Ω and ω

(nodal longitude and perihelion argument) for all the 13 asteroids 5.8± 0.2 Myr ago.
Accordingly, at this time, they were following nearly identical orbits. Accounting
for the undetected family members the diameter of the parent body was estimated
at 24.5 ± 1 km. Later the age of Karin family was revised by numerically integrat-
ing a larger number of asteroids having osculating elements similar to those of the
Karin cluster asteroids [74]. The output of the numerical integration was digitally
filtered to suppress high frequencies retaining all the periods longer than ∼5 kyr.
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The filtered signal was analyzed using the frequency-modified Fourier transform
[83] to eliminate the terms corresponding to the secular planetary frequencies and
to finally obtain the synthetic proper elements ap, ep, i p, and the proper perihelion
and nodal frequencies g and s. Applying HCM (hierarchical clustering method)
on this proper elements set, 97 Karin cluster members, were identified. Seven of
them were found to be interlopers since their nodal and perihelion longitude were
not aligned with those of (832) Karin at t = −5.8 Myr. Among them was (4507)
1990 FV, previously considered as the second largest member of the cluster. How-
ever small (± 40◦), the spread of Ω , ω̄ (nodal and perihelion longitudes) for the
Karin cluster at t = −5.8 Myr is still too large to be a consequence of the breakup
event itself that could account for ∼1◦ in both angles. A semi-major axis drift due
to a non-gravitational effect was proposed as an explanation of this discrepancy
and it was validated using a numerical integrator that explicitly accounted for the
Yarkovsky effect [16]. The new integration15 by improving the convergence of the
proper elements provides a new estimate of the cluster age: 5.75 ± 0.05 Myr and,
for the first time, the direct detection of the Yarkovsky effect for main-belt asteroids.
With (4507) 1990 FV classified as an intruder, the size of the family parent body
was revised to ∼20 km. Thus, the SFD of the Karin family becomes a classical
one, containing a large body and a continuum of small members. Extrapolating the
current semi-major axis drift rates, it was found that in ∼100 My the Yarkovsky
effect will erase the genetic link between the cluster members making the family
indistinguishable from the background asteroids for the HCM.

Hydrocode simulations which take into account the unobserved sub-kilometer
fragments, which are believed to represent a large fraction of the parent body mass,
obtain an estimate for the parent body of about 33 km in size [77]. The parent body
of the Karin cluster was produced by the earlier collision that created the larger
family of Koronis about 2–3 Gyr ago.

The discovery of young families (Karin being the most studied among them)
offers an excellent opportunity for physical studies of the members that apparently
suffered limited dynamical and collisional erosion. The spectroscopic investigation
of the family members allows information on the structure and composition of the
parent body. Thus, similar spectral features of the members are an indicator of the
possible homogeneous composition of the parent body, while some differences in
behavior or wavelength position of the spectral features could give some information
about a possible differentiated structure of the parent body [88].

The processes of irradiation by cosmic and solar wind ions, the bombardment
by interplanetary dust particles (micrometeorites), induce relevant surface modifi-
cations on atmosphereless bodies. Generally, the alteration affects the spectral prop-
erties of asteroids, induces progressive darkening, and reddening of solar reflectance

15 The SWIFT code of Levison and Duncan [54] was principally used. Following the authors,
several integration methods could be used via SWIFT: Wisdom–Holman Mapping (WHM or
MVS), regularized mixed variable symplectic (RMVS), a fourth order T+U symplectic (TU4),
and Burlisch–Stoer (BS). A particular package (SWIFT-RMVSY), which takes into account the
Yarkovsky effect and the second-order symplectic integration scheme (MVS2) is also available
and was used for backward integration for the young families.
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spectra in the range 0.2–2.7 μm. The differences in the distribution of the spectral
slopes of members inside the family can also be used for the evaluation of degree
of space weathering . The precise dating of young family members (corresponding
to the catastrophic collision) allows the link between remote spectroscopy and the
laboratory data of irradiation experiments.

4.2 Physical Properties Inside the Karin Family

The dynamical considerations about this family should be completed by observa-
tions concerning the physics and the reflectance properties. Except for limited phys-
ical data for the asteroid (832) Karin, no physical properties were known for family
members before the identification of the family.

4.2.1 Photometry

The most accessible member for observations is the asteroid (832) Karin. The first
determination of its synodic period yielded 18.82 ± 0.01 h and the lightcurve dis-
played an amplitude of 0m .32 [4]. A new campaign of observations (performed dur-
ing the opposition of 2003) revised these values to 18.35 ± 0.02 h for the synodic
period and to 0m .61 ± 0m .02 for the composite lightcurve amplitude [98]. However,
the authors mention a possible second period of 19.00 ± 0.03 h. The slope parameter
was estimated of 0.19 ± 0.04.

Photometric observations were performed during the object’s opposition in 2005,
using the 1.2 m telescope at the Observatoire de Haute-Provence, France. The
observations were obtained in February 9 and 11, 2005. Figure 3 presents these
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Fig. 3 Composite lightcurve of the asteroid (832) Karin. The observation points (with errorbars)
were obtained on February 9 and 11, 2005, at Observatoire de Haute-Provence, France (in blue)
and were superimposed by the composite lightcurve (red color) of Yoshida et al. [98]
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observations (in blue) superimposed on the composite lightcurve obtained during
the 2003 opposition [98]. These data are less dense but globally in accordance with
the period previously proposed by Yoshida et al. [98].

B–V and U–B colors were reported in 1987 [4] while B–V, V–R, and V–I colors
were reported in 2004 [98]. We underline the color variation over the rotational
phase [98, 43] and the hypothesis concerning the inhomogeneity of Karin surface.

Both articles [4, 98] conclude for Karin having colors typical of S-type asteroids.
In the assumption of an albedo of 0.2, Yoshida et al. [98] estimated the object size
of an ellipsoid of 20.1 × 11.5 km.

Two other members of Karin family were observed recently [39]: (11728) Einer
and (93690) 2000VE21. The rotational period was estimated to 12.92 ± 0.16 h, a
lightcurve amplitude of 0m .19 for (11728) Einer, and no relevant discernable period
for the asteroid (93690) 2000VE21.

As can be seen, efforts for characterizing this family in terms of rotational periods
are still incipient, and at present these data do not allow a general conclusion.

4.2.2 Spectroscopy of the Karin Family

Spectroscopic results are more consistent for the Karin family, mainly due to a coor-
dinated campaign [88] involving several observatories and telescopes. Visible spec-
troscopy was performed with NTT/EMMI (La Silla, Chile), CFHT/MOS (Mauna
Kea, Hawaii), and TNG/Dolores (La Palma, Gran Canaria Island) for 24 members
of Karin family, while 0.8–2.5 μm near-infrared spectroscopy was obtained using
IRTF/SpeX (Mauna Kea, Hawaii) and TNG/NICS (La Palma, Gran Canaria Island)
for six members. Observations with IRTF/SpeX were performed remotely using
CODAM [9] infrastructure at the Paris Observatory.

By far, the Karin family is the most completely observed one in the visible range
by spectroscopic techniques. Indeed we can find in the literature [88] the visible
spectra for 26% of the family members.

The sixth-order polynomial function fitting the visible spectra are presented in
Fig. 4. This representation of polynomial fit is preferred to the real data for qual-
itative considerations on the family as a whole. The global trend of the spectra is
typical for a surface rich in silicates. Depending on Fe and Ca content in the olivine
and pyroxene on the asteroid’s surface, the maximum of spectra varies around
0.75 ± 0.02 μm. The wavelength variation for the maximum could be associated
either with space weathering processes or with surface diversity (i.e., different min-
eralogies) among the family members.

Another variable used to describe the spectral trend is the slope parameter. For
23 objects the average slope is roughly 0.23 ± 0.19 μm−1; the slope of one object
(the asteroid (20089) 1994PA14) was estimated to have a value of 0.58 μm. A total
of 40% of the family objects share the slope range similar to that obtained from the
analysis of spectra of 300 ordinary chondrites16 [49]. This result is consistent with

16 The study of Lazzarin et al. [49] reveals that 95% of the OC slopes are below 0.208 μm−1; they
associate this value as an indicator of detection of space weathering processes.
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Fig. 4 Karin family spectra is depicted as sixth-order polynomial function fitting for 24 visible
spectra and normalized to unity at 0.55 μm. The spectral trend is compatible with the presence of
silicates for all the members and a slight difference in spectra is revealed. The red line represents
the polynomial fit for the asteroid (832) Karin

the analysis of colors of Koronis members (especially objects from Karin family) of
Sloan Digital Sky Survey Moving Object Catalog and the OC meteorites [44, 70].
These values may suggest that spectra of Karin family members are redder than the
OCs and this trend could be associated to a low (but measurable) degree of space
weathering.

How are the visible spectra of Karin family placed in the context of the Koronis
family, at the origin of parent body of Karin clan? Figure 5 presents the spectral
range of the Karin members (the domain is bordered by red color) in the context
of other Koronis family members (green lines) obtained from the SMASS database.
This comparison shows that the spectra of Karin members are less red that the ones
of Koronis family.

NIR spectra (0.8–2.5 μm) of six members of the Karin family are also presented
in the literature [11, 88, 17, 89, 25]. With one exception (the asteroid (832) Karin17)
the data are very noisy and their interpretation is speculative. All the objects exhibit
a detectable absorption band around 1 μm. Tentative interpretation (desirable to be
improved in the future) of this spectral domain was done [88].

We can emphasize spectroscopy as a powerful tool to detect intruders inside a
family. If we assume that Karin family members spectra are quite similar (i.e., com-
ing from a relative homogeneous parent body), any asteroid having a spectral trend
far from the majority of members is highly suspected to be an interloper.

17 Karin spectra will be discussed in detail, the NIR counterpart of its composite spectrum is our
basis for its mineralogical interpretation.
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Fig. 5 The spectra of the Koronis family members (green lines) obtained from the SMASS
database. In red, the domain representing 92% of the Karin members spectra. In blue, from bottom
to top: the mean S-type spectrum and the mean S-type spectrum [20]. The slopes of Koronis mem-
bers are greater than the ones of Karin young family. These values could be related to surfaces
experiencing an important degree of space weathering for the Koronis members. The figure is
reproduced from Vernazza et al. [87, 88]

The case of the asteroid (47640) 2000CA30 is interesting to be noted. The aster-
oid was observed on two nights, in November 4 and 5, 2003 using SpeX/IRTF. NIR
spectrum shows a highly positive slope (0.82±0.02 μm−1) and no absorption feature
(Fig. 6). The visible counterpart, obtained with Dolores/TNG used in LR-B mode
on October 28, 2003, completes this figure. Considering the asteroid spectrum, there
is a strong probability that (47640) 2000CA30 is a intruder. While low S/N spectra
are recorded, new data are needed to confirm the asteroid spectrum.

This case of the asteroid (4507) 1991FV is puzzeling. Initially the asteroid was
considered as member of Karin family [72]. However, its recently observed NIR
spectrum is relatively close to the one of (832) Karin (Fig. 7).

4.2.3 Spectroscopy of (832) Karin

Soon after the publication of dynamical detection of the young family of Karin,
efforts for observing spectroscopically the asteroid (832) Karin were undertaken.
Near-infrared (0.8–2.5 μm) observations with CISCO/Subaru system were reported
[81, 82]. The authors presented three spectra, identifying them on the composite
lightcurve of (832) Karin obtained by Yoshida et al. [98] and discussed the differ-
ences among the observed spectra.18 They noted a correlation of one of the spectrum

18 The photometry was performed mainly during the 2003 opposition, and the spectral observa-
tions were carried out in September 2003.
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Fig. 6 Visible and NIR spectra of (47640) 2000CA30. The visible spectrum was obtained using
Dolores/TNG used in LR-B mode. Data reduction was performed using the Hya64 standard star.
NIR spectrum was obtained using SpeX/IRTF and reduced using the Landolt 93–101 standard star

Fig. 7 NIR spectrum of the asteroid (4507) 1991 FV, initially considered as belonging to the Karin
family. The observations were performed in January 27, 2009, using SpeX/IRTF and CODAM
infrastructure. Data reduction was performed using Landolt 102-1081 standard star. The NIR
spectrum (with errorbars and normalized to 1.25 μm) is similar to an S-type asteroid. The visible
counterpart is presented by Vernazza et al. [87, 88]
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with the color variation observed in Yoshida et al. [98]. The main conclusions were
(i) Karin asteroid belongs to the S-type taxonomic class and (ii) because of spectral
differences, Karin asteroid should have both mature and fresh surfaces, consequence
of space weathering mechanisms.

This 0.8–2.5 μm spectral region was observed on November 4 and 5, 2003, using
SpeX/IRTF [10]. These spectra, presented in Fig. 8, are in relatively good agreement
with two of spectra published by Sasaki et al. [81, 82]. However, the absorption band
around 1 μm exhibits a different depth, which cannot be explained by the error bars
in the spectra. This may suggest that the surface spectral variation is real. However,
this result shoud be reconsidered after some spectral anomalies reported on SpeX
by Hardersen et al. [40].
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New results were published recently [89, 25] based on observations in the vis-
ible and the near-infrared spectral regions. The new observations were performed
between January and April 2006. These new results, obtained by two independent
team of scientists, show no spectral variation in the Karins’ spectra and sustain the
hypothesis of a homogeneous superficial layer being at the origin of the reflected
spectrum.

One of the questions that requires an answer is the following: What is the asteroid
aspect during the 2003 opposition, compared to the 2006 one? This question could
not have a trivial answer as long as the pole position of Karin is not determined yet.
Thus, for this case our choice was to take into account all the possible pole solutions
for the 2003 opposition and to see how they are placed during the 2006 opposition.
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Fig. 9 Karin’s sub-Earth latitudes for September 2003 and January 2006 as a function of all the
possible pole solutions. The sub-Earth latitude is color coded; the domain yielding a near-equatorial
(yellow color) aspect (sub-Earth latitude in the range [−15deg: +15deg]) is delimited by the black
lines. All the possible aspect angles (sub-Earth latitudes) that Karin could take assuming an equato-
rial aspect during the September 2003 observations are clearly displayed on both figures. To avoid
the redundancy of figures, we eliminate the representation from April 2006 while it is similar to
that of January 2006

The result is presented in Fig. 9. We consider a near-equatorial aspect of the asteroid
during the 2003 opposition and the comparison of sub-Earth latitudes for 2003 and
2006. From the region delimited by the black lines we can derive a high probability
that Karin was at an equatorial aspect for both runs (Fig. 10). While the new spectral
results [89, 25] cover all the rotational phase of the asteroid, the conclusion of a
homogeneous surface is the most probable.

Quantitative results for space weathering were proposed [17] using both labora-
tory minerals and Karin reflectance spectra. Laboratory experiments on silicates by
ion irradiation were modeled in terms of space weathering and accounting the Shku-
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ratow law of diffusion. The proposed model (a mineralogical solution 58.5% olivine
and 38% of orthopyroxene) was applied to the composite visible+NIR spectrum of
(832) Karin. The results highlighted irradiation exposure time slightly lower than
the dynamical age of the Karin family could be interpreted in terms of mechanisms
allowing the renewal of surface with fresh materials.

5 Conclusions

The study of asteroid families is an important, current topic. New insights obtained
by dynamical considerations (family identification research and procedures, discov-
ery of young families, relation between families, and interplanetary dust bands)
are also reflected by the increasing interest for completing the knowledge of the
physics and the composition inside these families. In particular, the discovery of
young families offers a new opportunity to study the interaction between the family
members, the family and the other solar system bodies, the impact of a “hostile”
medium for the asteroid surface, the importance of cumulative, and the long-term,
non-gravitational effects. The last decade shows that long-term dynamics of family
objects can be explained by accounting for new physical effects such as Yarkovsky
and Yarkovsky–O’Keefe-Radzievskii–Paddack effects. Thus dynamics and physics
of family members must be analyzed together while we must derive general proper-
ties for the whole family. This is what we call a necessary junction between dynam-
ical concepts and the physical characterics of the family members.
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51. Lazzaro, D., Mothé-Diniz, T., Carvano, J.M., et al.: Icarus 142, 445 (1999) 233, 234



250 M. Birlan and A. Nedelcu

52. Lemaı̂tre, A.: Cel. Mech. Dyn. Astron. 56, 103 (1993) 231
53. Lemaı̂tre, A., Morbidelli, A.: Cel. Mech. Dyn. Astron 60, 29 (1994) 231
54. Levison, H., Duncan, M.: Icarus 108, 18 (1994) 240
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Abstract The Gaia space mission to be operated in early 2012 by the European
Space Agency (ESA) will make a huge step in our knowledge of the Sun’s neigh-
bourhood, up to the Magellanic Clouds. Somewhat closer, Gaia will also provide
major improvements in the science of asteroids, and more generally to our Solar
System, either directly or indirectly. Gaia is a scanning survey telescope aimed to
perform high-accuracy astrometry and photometry. More specifically, it will pro-
vide physical and dynamical characterisation of asteroids; a better knowledge of
the solar system composition, formation and evolution; local test of the general rel-
ativity; and linking the dynamical reference frame to the kinematical ICRS. We
develop here the general aspects of asteroid observations and the scientific har-
vest in perspective of what was achieved in the pre-Gaia era. In this lecture we
focus on the determination of size of asteroids, shape and rotation, taxonomy, orbits
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general.
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assiduous participant to such winter schools of the CNRS and did always share his
bright mind and high excitement in science and research.

Foreword

This chapter is a compulsion of several of this CNRS school courses given in Bad
Hofgastein completed by some additional material. It is not intended to give a com-
plete review of the Gaia capabilities for asteroids science or of the treatment of orbit
determination and improvement since the beginning of orbit computation. Neither
will it cover each of the different techniques used for any particular problem. We
hope, however, that it gives an overview of the Gaia mission concept, astrometry
and photometry of asteroids (and small bodies) in particular from space, and cur-
rent developments in this research topic. Besides, this school being French in a
German-speaking place, some French and German bibliography have sometimes
been favoured or added.

1 Introduction

Before entering into the description of the Gaia mission observations and the dis-
cussion of the expected results for asteroids science, we will briefly remind the
basic principles from the Hipparcos mission and then give an overview of the Gaia
objectives (Sect. 2). We will present the Gaia satellite and instruments as well as
its operational mode (Sect. 3) and expected scientific results for the Solar System
(Sect. 4). In the next sections we will develop more specifically three aspects: the
astrometric CCD signal yielding the fundamental astrometric position and marginal
imaging capabilities (Sect. 5), the photometric measure yielding physical proper-
ties of asteroids (Sect. 6) and the dynamical model from the asteroids astrometry
(Sect. 8). This provides a solid overview of what can be achieved in the domain
of planetology and dynamical planetology of asteroids. The following sections
are more general and not exclusively related to Gaia. There, we develop the gen-
eral problem of orbit determination and improvement for the case of asteroids
orbiting around the Sun (Sect. 9), we give a short description of both historical
and modern methods. Finally, we treat the case of orbit determinations of bina-
ries (Sect. 10) focusing mainly on resolved binaries. But since the problem of
orbit reconstruction for extra-planetary systems appeared to be of importance for
this school, it has been briefly addressed here through the problem of astromet-
ric binaries (Sect. 10.4). Extra-solar planets is another topic actually addressed
by Gaia, but this is out of the Solar System and out of the topic of the present
lecture.
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2 Gaia—The context

2.1 Before Gaia—The Hipparcos Legacy

Ten years have passed since the publication of the Hipparcos catalogue in 1997.
This space mission did provide a scientific harvest in many fields of astronomy and
even, indirectly, in Earth science [91]. The Hipparcos mission provided a homo-
geneous astrometric catalogue of stars with more sources and more precise than
were the Fundamental Katalog series during the twentieth century. The acronym
“High Precision Parallax Collecting Satellite”—in honour of the Greek astronomer
Hipparchus—recalls that the basic output is, of course, the measure of the parallax
of stars and their proper motions. In fact there were two programmes or instru-
ments on board the satellite: Hipparcos and Tycho. Both provide astrometry and
photometry of the celestial sources that were observed over the period 1989–1993,
and two catalogues of stars were derived as well, the Hipparcos and Tycho cata-
logues. The Tycho data are based on the “sky mapper” which gives the detection
of sources and triggers the main astrometric field observations for Hipparcos. It is
hence less precise than Hipparcos but has more targets (about 2,500,000 stars in
its second version Tycho2 in the year 2000) than Hipparcos (about 120,000) and
provides two-dimensional astrometry as well as photometry in two bands close to
the Johnson B and V. Additional treatment of the raw data has been undertaken
[123]. Further details on the Hipparcos/Tycho missions and instrumentation can
be found in, e.g. [59, 60] in the context of high-accuracy global astrometry, and
[45, 49, 90, Vol. 1, Sect. 2.7] for all details on the solar system objects observations
and catalogues. The Hipparcos and Tycho Solar System Annex files (solar ha,
solar hp,solar t) are available on the CDS database.1 While Hipparcos and
Tycho were designed to observe stars, they nevertheless could also provide data
for solar system objects: 48 asteroids, 5 planetary satellites and 2 major planets.2

There were different limiting factors depending on the programme instrumenta-
tion: for Hipparcos, magnitude brighter than V ≤ 12.4 and size smaller than
φ ≤ 1 arcsec and for Tycho, magnitude brighter than V ≤ 11.5 and size smaller than
φ ≤ 4 arcsec. But the more stringent one was that Hipparcos could only observe a
very limited number of objects in its field of view (FOV), both for stars or asteroids.

The basic principle of the mission was to derive relative positions of targets
observed simultaneously in two well-separated fields of view. The measure principle
consists basically in observing the target while it crosses the field of view with a pho-
tometer and to record the photon flux as modulated by a periodic grid. In addition
to the relative astrometry given by the grid, the photometers also recorded the total
flux, providing the magnitudes in the broad H p ≈ VJ + 0.3035 (B − V ) system for
Hipparcos and in two (red and blue) bands for Tycho. The Tycho astrometric and

1 URL: http://webviz.u-strasbg.fr/viz-bin/VizieR?-source=I/239/
2 Pluto was not observed which spares us the trouble of having to name this object observed in the
past, before last IAU resolution.
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photometric data are less precise than their Hipparcos counterpart and concern only
6 asteroids compared to 48 asteroids observed within the Hipparcos mission.

The Hipparcos measure of position and magnitude of these selected solar system
objects provided many scientific outcomes. We list a few, showing the diversity of
the applications:

– From the observed positions of the satellites, and taking one model for their
ephemerides, one can derive the (pseudo-)position of the system barycentre,
and/or the centre of mass of the planet, as well. Such positions are model depen-
dent since one uses the theory for the orbits of the satellites, but they are far more
precise than direct observations of the planets themselves [78];

– The particular photometry derived by one of the data reduction consortium
(FAST) comprises the classical apparent magnitude together with an additional
one that is biased for non-point-like sources. This allowed to indirectly resolve
the object and derive information on its size and light distribution [48];

– Hipparcos astrometry enabled the determination of the mass of (20) Massalia
from a close encounter with the asteroid (44) Nysa [4];

– High-accuracy astrometry of asteroids enabled to improve their ephemerides [52]
and also to detect small systematic effects due to the photocentre offset [46];

– High-accuracy astrometry of asteroids enables to link the dynamical inertial
frame to the catalogue [107, 5, 22];

– The stellar astrometric catalogue, mostly Tycho2, has an indirect consequence
on science for the Solar System. Such stars provide better astrometric reductions
for modern CCD observations of solar system objects, as well as re-reduction
for older plates (the problem is still the low density when compared to, e.g.
UCAC2); they also provide much better predictions for stellar occultation path
[28, 108, 30].

Compared to Gaia observation and science of solar system objects, Hipparcos was
mostly a (nice) prototype or a precursor. They still have many common points:

– obviously space-based telescopes are exempt from many of all atmosphere-
related problems (seeing, refraction, etc.) and provide better stability (mechanical
thermal) and a better sky coverage (not limited to one hemisphere);

– scanning law with a slowly precessing spin axis (going down to solar elongations
≈ 45◦);

– simultaneous observation of two fields of view for global astrometry;
– astrometric and photometric measurement, the colour photometry being manda-

tory for correction to the astrometry.

The main difference between the two missions arises from the use of CCD device
for Gaia instead of a photo-multiplier channel with Hipparcos/Tycho, and to a
lesser extent the capabilities of onboard data storage as well as data transmission
to the ground segment. Albeit CCD observations were already in use in astronomy
and astrometry in particular during the 1980s, Hipparcos could not benefit of this
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technique: CCDs were still not validated for use in space (which requires a higher
quality and robustness) and in any case the design of the satellite had to be set
long before the beginning of the mission (often satellites are launched with out-
dated material). The consequences are dramatic in terms of number of celestial
bodies observable and general astrometric and photometric accuracy: Gaia is not
an Hipparcos-II. The limiting magnitude of Tycho was V ≤ 12, but the catalogue
is far from being complete3 at that level; in comparison, the limiting magnitude of
Gaia will be V ≤ 20. The border of Hipparcos is at 200 kpc, while Gaia will reach
a large part of the Milky Way up to the Magellanic Clouds.

In this respect also Gaia is different from the SIM mission [104, 105] (USA)
which will provide very accurate parallax but for a very limited number of targets.
The smaller Japanese mission Jasmine has more common points but, observing in
the infrared, the scientific goals are orthogonal and complementary. Last, the two
European satellites differ in their location in space, Hipparcos missed its geostation-
ary orbit and was on an eccentric one, Gaia will be at the L2 Sun–Earth Lagrangian
point. Gaia will also observe a large number of solar system objects (mainly aster-
oids) whose data will provide new insights and scientific results as developed in the
next sections.

2.2 What Is Gaia?

The Gaia mission was designed to provide a renewed insight in the Galaxy struc-
ture, through a homogeneous set of very accurate measurements of stellar positions,
motions and physical properties [73, 74]. However, the independence from any input
catalogue grants that a very large number of non-stellar sources will be additionally
observed. In fact, Gaia will automatically select observable sources with a criterium
mainly based on a single parameter, the magnitude threshold (V ≤ 20).

During the preliminary study of the mission, the community of planetologists
realised that the observations of asteroids by Gaia may have a strong scientific
impact, allowing a general improvement of our view of the Solar System of the same
order as in the case for stars [72]. Of course, the reasons are similar and are built
on the unprecedented astrometric accuracy of Gaia and on its spectro-photometric
capabilities.

One will note, however, that the strongest quality of the Gaia data—besides
accuracy—will reside in homogeneity. In fact, no other single survey has produced
an equivalent wealth of data for 300,000 solar system objects, as is expected for
Gaia [75]. As we will illustrate in the following, a complete characterisation of the
small bodies of the Solar System will be possible.

3 Hipparcos with its larger band filter can reach slightly fainter magnitudes, 12.5, but is anyway
much less complete than Tycho.
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We can also compare Gaia to other forthcoming deep surveys, such as the very
important Pan-STARRS,4 expected to map the whole observable sky three times
per month at greater depth (V∼24, for the single observation at SNR=5). In this
case, even more objects will be detected, and this will constitute a serious advantage
to feed investigations of smaller or more distant and fainter asteroids. However,
the astrometric and photometric accuracy—despite being optimised—will remain
limited by ground-based conditions, and spectro-photometry will not be of the same
level as in the case of Gaia. Other typical observational constraints for ground-based
investigations also apply to Pan-STARRS, including the minimum Sun elongation
that will be reached, severely limiting its capabilities for the investigation of peculiar
asteroid categories, like Earth-crossers or the inner-Earth objects. Lastly, the sky
coverage is limited to one hemisphere and global astrometry is hardly achieved
with such systems (on the other hand, they will benefit the Gaia catalogue of stars).

For these reasons, and despite the limitation in brightness to V∼20, we believe
that Gaia is rather unique and really has the potential to have a major impact in
solar system science. In this lecture, we will try to focus on the kind of data that the
mission will provide and on the corresponding data treatment that is being conceived
in order to extract the relevant information. Hopefully, the observer will appreciate
the techniques allowing to reach an exceptional accuracy, and the theoretician will
find interesting new problems that must be solved to fully exploit the Gaia data
scientific content.

3 The Gaia Mission

3.1 Launch and Orbit

The Gaia satellite will fit into the payload bay of a Soyuz fregat vector that will be
launched from the European base of Kourou (French Guyana). After a ∼1-month
travel, it will reach the L2 Lagrangian equilibrium point, that is situated 1.5 million
km from Earth, opposite to the Sun. The satellite will then deploy the solar panels,
fixed on a large, circular sunscreen (diameter: 10 m) that lies on a plane perpendicu-
lar to the spin axis (Fig. 1). The visibility of the satellite and the data link is reduced
when compared to a geostationary orbit, but the environment is quieter. The L2
point is a dynamically unstable equilibrium location, requiring firing the satellite
thrusters to apply trajectory corrections every ∼1 month. Gaia will thus be main-
tained on a Lissajous orbit around L2, allowing it to avoid eclipses of the Sun in the
Earth shadow. The location thus appears as an optimal choice for constant sunlight
exposure and for maximum thermal stability. The planned operational lifetime of
the mission will be 5 years.

4 http://pan-starrs.ifa.hawaii.edu/public/
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Fig. 1 The Hipparcos (left) and Gaia (right) satellites in a pictorial view. Hipparcos: one sees
above the thruster and solar arrays one of the telescope baffle, for one of the observing direction.
Gaia: the large, circular sunscreen will be deployed after launch and cargo to L2, it protects the
instruments and permits their thermal stability. The telescopes, detectors and associated circuitry
are situated inside the hexagonal or cylindrical housing (Copyright ESA)

3.2 The Spacecraft

The beating heart of the satellite is enclosed in an approximately cylindrical struc-
ture, including all the relevant parts: the thrusters openings and their fuel tanks, the
electronic equipment, and, of course, the optical train. Since we are interested in the
observations, we will just give some fundamental design principles concerning the
latter component [87].

The optical bench structure is based on an octagonal toroid built in silicon car-
bide. This is a critical component, supporting all the optics and the focal plane. The
measurement principle—being similar to that of Hipparcos—requires two different
lines of sight, materialised by two Cassegrain telescopes. The primary mirrors are
rectangular and measure 1.45×0.50 m2. Five additional mirrors are required to fold
the optical path, obtaining an equivalent focal length of 30 m. The light beams are
combined and focused on a single focal plane, composed of a matrix of 106 CCDs.
The extreme rigidity of the toroidal structure (actively monitored during the mis-
sion) ensures that the angle between the two telescopes (also called “basic angle”)
remains constant at 106.5◦.

The CCD array constitutes a large, 1-G pixel camera that can be compared (in
pixel number) to the Pan-STARRS cameras. However, it remains unrivalled in sur-
face, since it extends over 0.93×0.46 m, by far the largest CCD array ever con-
ceived.
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Fig. 2 The focal plane receives the light beams of both telescopes. While spinning, Gaia scans the
sky in such a way that images of sources enter the focal plane from the left and cross it moving
towards the right. The whole crossing takes about 1 min. Each CCD is crossed in 4.42 s. See the
text for instrument details. The basic angle monitoring (BAM) and wavefront sensor (WFS) CCDs
are used for monitoring tasks (Copyright EADS Astrium)

The resolution anisotropy due to the rectangular entrance pupil of the telescopes
are matched by strongly elongated pixels, about three times larger along the direc-
tion in which the diffraction spot is more spread.

The general organisation of the focal plane is illustrated in Fig. 2. Different
groups of CCDs are identified depending on their functions, since they correspond
in all respects to different instruments. The main Gaia instrument is the astromet-
ric field (AF), receiving unfiltered light, which is devoted to produce ultra-precise
astrometry of the sources [65]. The other instruments are aimed at achieving spectral
characterisation. The figure shows the red and blue photometers (RP and BP), which
will be receiving light dispersed by a prism, and have optimised sensitivity in two
different, contiguous portions of the visible spectrum. The resolution of RP and BP
is rather low, each portion being spread on ∼30 pixels. The radial velocity spec-
trograph (RVS), on the other hand, provides a spectrum in a restricted wavelength
range (847–874 nm) but with much higher resolution. It is aimed at sampling some
significant spectral lines that can be diagnostic of stellar composition and can be
used to derive radial velocities with a ∼ 1 km s−1 typical uncertainty. Due to star
crowding (superposition of spectra) and SNR constraints, RVS will have a limit
magnitude at V = 17. This instrument will provide no scientific information for
asteroids. On the other hand, the measures for the bright asteroids will be used to
calibrate the kinematic zero point of the RVS, as a complement to the data from IAU
standard stars.

Since Gaia is continuously spinning with a rotation period of 6 h, the sources will
drift on the focal plane, entering from the left in the scheme of Fig. 2 and travelling
towards the right. The displacement will be compensated by a continuous drift of
the photoelectrons on the CCD at the same speed; this technique (also used on fixed
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ground-based telescopes) is known as “TDI mode” (from “time delay integration”).
The resulting integration time (4.42 s) corresponds to the time interval required by
a source to cross each CCD. Of course, this principle applies to all instruments. As
a consequence, while an image of the source drifts on the AF CCDs, it will take the
form of a dispersed spectra while moving on RP, BP and RVS.

An important part of the focal plane, the sky mapper (SM), requires some addi-
tional explanation. In fact, Gaia will neither record nor transmit to the ground read-
ing values for all the pixels, due to constraints on the data volume. Conversely, only
a reduced number of values (“samples”), representing the signal in the immediate
surroundings (“window”) of each source, will be processed and transmitted, and
only for objects brighter than V = 20. These samples represent either the value of
single pixels or of some binning of couples of pixels, depending on the star bright-
ness. For stars with V > 16 (i.e. the largest fraction of sources) only six samples will
be available, corresponding to the signal binned along six pixel rows in the direction
perpendicular to the scan motion. These samples will be transmitted for each CCD
in the AF field. Larger samples are required to accommodate the dispersion of RP,
BP and RVS spectra.

As a consequence, the AF information on positions will be essentially one dimen-
sional, being very precise along the scanning circle, but very approximate in the
across-scan direction. One should also note that the windows are assigned by the
onboard algorithm after SM detection. Beside a confirmation of detection that is
expected from the first AF column, no other controls are executed all along the focal
plane crossing, and the window follows the object on each CCD, assuming that it
shifts at the nominal scanning speed. While this is true for stars, we will see that
solar system objects will suffer measurement losses due to their apparent motion.

3.3 Observation Principles: The Scanning Law

The accuracy requirements of the mission can be reached only if the sky coverage
is fairly uniform. To obtain this result, the direction of the spin axis of the probe
cannot obviously stay fixed, but it must change, slowly but continuously, to change
correspondingly the orientation of the scanning circle on the sky.

Two additional rotational motions are thus added to the four- revolutions per day
satellite spin (Fig. 3).

The first one is a precession of the spin axis in 70 days, along a cone whose
axis points towards the Sun. The change in orientation of the latter, provided by the
orbital revolution around the Sun in 1 year, is the last additional rotation.

The overall motion, beside being derived from the scanning law optimisation,
is also compatible with the need of keeping the system in thermal stability, since
the incidence angle of the Sun light on the solar screens remains constant, and the
enclosure of the scientific instruments is always consistently shadowed.

The scanning law that results from the combination of the three rotations permits
60–100 observations of any direction on the sky. Each one occurs with different
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Fig. 3 The Gaia scanning law, composed of three rotations (spin, precession and orbital revolution)
as explained in the text (Copyright ESA)

orientations of the scan circle, allowing to reconstruct the full two-dimensional
position of fixed sources from positional measurements that are essentially one
dimensional.

The availability of the observations in two simultaneous directions, and their
multiplicity, has an important consequence: the star measurements contain both the
information needed to map their position on the sky and that needed to reconstruct
the orientation of the probe at any epoch. For this reason, the process of astrometric
data reduction—the so-called Global iterative solution—is an inversion procedure
allowing to retrieve at the same time the parameters that define star positions, their
proper motion and the attitude of the probe. The applicability and performances of
this strategy have been fully proved in the previous Hipparcos mission.

4 Solar System Science

While scanning the sky, sources corresponding to solar system objects (planets,
dwarf planets, asteroids, comets, natural satellites, etc.) will enter the Gaia field
of view and will be detected and recorded. The main difference with respect to
stars will come from their motion. Their displacement on the sky has two main
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consequences: they will not be re-observed at the same position; their motion will
not be negligible even during a single transit.

These two basic statements are sufficient to dictate the need of a special data
treatment for these objects. Several specific problems can thus be identified at first
order, deserving an appropriate data reduction chain; we cite here:

– image smearing during integration time;
– signal shape due to resolved size and/or shape;
– de-centring relative to CCD windows or total loss during one transit;
– identification of new objects from detections at different epochs.

These issues are strictly related to the basic characteristics of the mission, but also
other challenges are present when the science content to be extracted is considered.
They will be discussed in the following sections.

A specific management activity for Solar System data reduction has been created
in the frame of the DPAC (Data Processing and Analysis Consortium), as a part
of the “Coordination Unit 4” devoted to process specific objects needing special
treatment (double stars, exoplanet systems, extended objects, solar system objects).

Following the most recent mission specifications, one can identify the categories
of objects that will be really observed by Gaia. In fact, all sources that will appear
larger than ∼ 200 milli-arcs (mas) will probably be discarded and have no window
assigned. This selection automatically excludes from observations the major planets,
some large satellites (such as the Galilean satellites of Jupiter or Titan) and also the
largest asteroids (or dwarf planets) when closer to Earth (Ceres, Pallas, Vesta, in
particular).

On the other hand, small planetary satellites very close to major planets will
be accessible, thanks to the low level of contamination from light scattered by the
nearby planet. However, the vast majority of the observed objects will consist of
asteroids of every category: mostly from the main belt, then small ones belonging to
the near-Earth object population, and some additional tens among Jupiter Trojans,
Centaurs and trans-Neptunians. Using the most recent survey data, we can estimate
a population of ∼ 300,000 asteroids to be observable by Gaia, representing just
1/4000th of all the sources that Gaia will measure.

Each asteroid will be observed (by the AF) ∼ 60–80 times during the nomi-
nal mission operational lifetime of 5 years, although the number of detections can
be much lower for near Earth-objects, sensibly depending on the geometry of the
observation. On average, we can estimate that no less than 1 asteroid will enter the
Gaia astrometric instrument when the viewing direction is close to the ecliptic.

Most asteroids will be known when Gaia will fly, so the discovery potential of
Gaia remains low and does not constitute in itself a reason of special interest for
the mission. One exception can probably be represented by specific object cate-
gories easily escaping most ground-based surveys, such as low-elongation inner-
earth objects.

In fact, the geometry of the observations relatively to the positions of the Sun
and the Earth can be easily estimated since most of the solar system objects orbit
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Fig. 4 At any given position along Earth orbit, the sky not accessible to the Gaia scan motion
is delimited by two cones centred around opposition and conjunction with the Sun. When pro-
jected on the ecliptic, the unobservable region appears as the two grey regions in this picture. The
observable portion of the orbit of a NEA and an MBA is enhanced

the Sun at very low ecliptic inclinations. It is thus straightforward to use the relevant
angles to identify the regions of the ecliptic plane that can be visited by the Gaia
scanning circle. The result is shown in Fig. 4 where the dashed sectors represent the
viewing directions that are compatible with the scanning law. As one can see, Gaia
will observe neither at the opposition nor towards conjunction, but mostly around
quadrature.

More precisely, while quadrature represents the average direction, it would not
be the most frequent one, since the intersection of the scan plane with the ecliptic
spends most of the time preferentially close to the extremes of the accessible region.

The region at ∼ 45◦ elongation from the Sun will thus be explored and could
represent the most fruitful area for discovery purposes. Another poorly known pop-
ulation, not easily accessible from the ground, is the one represented by asteroid
satellites. In fact, binaries larger than ∼120 mas will be seen as separate sources by
Gaia, and today it is hard to estimate how many of them will be discovered.

However, we stress that the full physical and dynamical characterisation of
known objects is the much more ambitious and rewarding goal that is expected from
the Gaia mission. In fact, preliminary studies have shown that the precision of Gaia
observations (both for photometry and astrometry) will be able to improve by more
than two orders of magnitude the quality of asteroids orbits [110], to derive a mass
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from mutual perturbations for ∼150 asteroids [75], to derive for most of them a
shape and the rotational properties by lightcurve inversion [20], to measure general
relativity PPN parameters [47], to directly measure asteroid sizes [25], to constrain
non-gravitational accelerations acting on Earth-crossers [111]. We will detail in the
following the most relevant of these issues.

As a result, we can already guess today that Gaia will open new perspectives for
a better understanding of the Solar System—of asteroids in particular—portraying
in a self-consistent way both dynamical and physical properties. Subsequent studies
will take profit of the situation, for example, by rebuilding observational approaches
that exploit better orbit and size and shape data (see, e.g., the asteroid occultation
case [109]).

5 Analysis of the Astrometric Signals

5.1 Introduction

The CCD signal of a minor body transiting in the field of view of Gaia is charac-
terised by some features that make it different from the ideal signal produced by
a fixed star, and for this reason it requires a special treatment with respect to the
standard processing pipeline adopted for stars.

First, it is important to understand what we mean in this lecture when we speak of
“fixed stars”. A fixed star is an ideal point-like source whose motion on the celestial
sphere can be considered nil during the time taken by the source to make a transit
across the Gaia field of view (FOV). In practical terms, the celestial objects that
most closely fit the above definition are not stars, but distant quasars.

It is obvious that the property of being a non-moving source refers to the celestial
sphere and not to the Gaia focal plane, since the Gaia field of view continuously
changes while the satellite makes its scan of great circles on the celestial sphere
(as a first approximation). However, as we will see in the following discussion, it
may be said that the apparent motion of a fixed star in the Gaia FOV is at least
approximately cancelled out by the adopted process of signal acquisition.

In general, a point-like source produces a photon flux distribution across the focal
plane that, for a rectangular pupil like that of Gaia, is essentially the Fraunhofer
diffraction pattern corrected for the aberrations introduced by the instrument optics
itself. It is not our intention to discuss here all the details of the optical configuration
of Gaia, but it is necessary to point out at least a few basic concepts. First, the
response of the instrument to the distribution of photons produced by a point-like
source is called point spread function (PSF). The PSF is necessarily the starting
point to develop any description of the astrometric performances expected from
Gaia. More in particular, the diffraction pattern produced on the focal plane by a
point-like source not moving across the field of view is known as the optical PSF.
By “diffraction pattern” we mean the bi-dimensional spatial distribution of the inci-
dent photons on the focal plane per unit area per unit of time. This includes the
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aberrations introduced by the instrument optics, the transmittance of the instrument,
the response of the CCD detectors, and it depends also on the spectral distribution of
the source. In particular, if we call “quasi-monochromatic optical PSF” the optical
PSF produced by a source for which the spectral distribution of its emitted radiation
is limited to a very small interval of wavelengths, then we may define a polychro-
matic optical PSF as the average of different monochromatic optical PSFs, each one
weighted according to the spectral distribution of the source.

The situation is more complex if we consider the effects related to the actual area
of the focal plane (that in the case of Gaia is quite large). Distortions introduced by
the instrument aberrations depend on the position of the source in the field of view.
Sources in different positions in the field of view produce PSFs centred in different
locations in the focal plane. Then, PSFs detected in different points of the focal
plane, even if produced by the same kind of source and spectral distribution, show
different features.

Moreover, due to the fact that in the adopted Gaia instrument configuration the
signals are detected by an array of distinct CCDs, each having a well-defined quan-
tum efficiency (QE) which is wavelength-dependent, it follows that the different
spectral components of the PSF are detected with different efficiencies. For this
reason, when we talk about the PSF, or in general the signal, of a generic source,
it is more convenient and straightforward to refer to the number of photoelectrons
produced by the CCD detectors per unit of time instead of the number of incident
photons per time unit on the detector itself. In other terms, in the rest of this lecture
we will call PSF the diffraction pattern including the effect of CCD quantum effi-
ciency. It is worthwhile to point out that the QE of the CCDs in the Gaia astrometric
focal plane is nominally the same for all of them and that no additional filters are
placed in front of them.

As a matter of fact, however, the PSF of fixed stars is even not observable in
the sense explained above, due to two fundamental reasons. First of all, the spatial
resolution of the detector is finite because so is the dimension of the CCD pixels. As
a consequence, the detector does not give the number of photoelectrons generated
in any arbitrary point of the CCD per unit area and unit time, but it gives the total
(integrated) number of photoelectrons collected by each pixel during the integration
time. In other terms, the optical PSF has to be integrated within the rectangular
area of the pixel and within the duration of the integration time. The second reason
why the optical PSF is not directly observable is that, due to the complex motion
of the satellite which allows it to scan the celestial sphere, any source moves within
the field of view during the time in which it produces photoelectrons in the focal
plane (source transit in the Gaia FOV). As a consequence, the PSF moves on the
focal plane. Accordingly, the PSF is collected by all pixels and CCDs on which
the PSF itself transits. Due to the effect of the apparent motion of the source in the
FOV, the detected PSF should be smeared along the path that the image follows on
the focal plane. In order to avoid this very undesirable effect, a transfer of charges
from pixel to pixel towards the readout register is done at the same velocity and
along the same direction of the apparent image motion. This technique of readout
of the CCD is known as time delayed integration (TDI) mode. In TDI, the generated
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photoelectrons “follow” the portions of the PSF that produced them. Ideally, if the
motion of the charges followed exactly the same trajectory as that of the image in the
focal plane and at the same continuous rate, the spatial distribution of the recorded
photoelectrons would reproduce exactly the PSF. Unfortunately, this is not strictly
true in practice, for the charge transfer is not a continuous process. What happens in
practice is that the motion of the collected photoelectrons is produced by transferring
all charges within one pixel into the adjacent one in the along-scan direction at
regular time steps. The duration of the time step, indicated as the TDI period, is set
in order to minimise the spread of the PSF due to the source motion. Nevertheless,
the TDI mode cannot guarantee a perfect cancellation of the PSF smearing. The
reason is that, even if the TDI period is kept constant and the charge transfer is done
along the instantaneous scan direction, what happens is that the motion of the image
is neither uniform nor aligned exactly in the along-scan direction. On one hand, this
is simply due to the precession motion of the spin axis of the satellite, which is
constantly changing the orientation of the along-scan direction. But even in the case
that the motion of the image on the focal plane was perfectly uniform and exactly
aligned with the along-scan direction, nevertheless the TDI mode could not correct
completely the PSF smearing. The reason is that during each single TDI period the
charges are not transferred, whereas the image moves and the signal is smeared. In
this way, photons coming from the same point of the optical PSF may be collected
by two different pixels. The final effect is that the PSF is broader and systematically
displaced in the along-scan direction.

In principle, the TDI period should be equal to the along-scan dimension of
the pixels divided by the image velocity. Non-uniformity of the along-scan motion
introduces further distortion due to deceleration and acceleration of the image with
respect to the TDI mean motion.

The PSF including the finite size of the pixels and the effect of the TDI mode is
called total or effective PSF. But the real signal is affected also by other sources of
noise and distortion. First of all, the signal is produced by a stochastic process, corre-
sponding to the random sequence of photon arrivals and photoelectron generation.
Then, the final number of charges collected in a given pixel is a random number,
typically governed by the Poisson statistics. Moreover, the signal is distorted by the
effect of cosmic rays on the CCD, affecting also the charge transfer efficiency (CTE)
from one pixel to another. Some studies point out that some packets of charges can
be entrapped and be released later without correlation with the regular TDI mode.
All these effects introduce distortions of the final signal that are under investigation.

The treatment of the signals produced by solar system objects (SSOs) is even
more difficult than in the “simple” case of fixed stars described above. SSOs are
different from stars, in that they are characterised by a much faster apparent motion.
When we say that SSOs move we intend that they display a motion with respect
to the fixed stars. As a consequence, the trajectory of SSO images across the focal
plane does not follow the same pattern of fixed stars in the same field of view and
their motion is not properly corrected by the TDI mode.

SSOs have a residual velocity with respect to the apparent motion of a fixed
star, and this residual velocity has components both on the along-scan and the
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across-scan direction. This fact has the consequence that their final signals are
spread. Moreover, while we may expect that for fixed stars the time interval between
the transit on a given CCD and the adjacent one in the along-scan direction is con-
stant, being about equal to the number of pixels in the along-scan direction in a
CCD multiplied by the TDI period, this is no longer valid for a SSO. The transit of
a SSO image on a CCD is either delayed or anticipated with respect to that of stars,
depending on the residual velocity.

Velocity is not the only one peculiar features of SSOs to be taken into account.
Another effect is that these objects may appear in general, or very often, as extended
sources. This means that the final signal is not simply due to the PSF as for the case
of point-like stars, but each point of a SSO image produces an independent PSF,
and the final signal is the sum of all these PSFs. This means that the signal of a SSO
depends on the size, the shape and the brightness distribution of its image.

For all the above reasons the analysis of the signals of SSOs requires a special
treatment with respect to the simpler one used for fixed stars.

5.2 Signal Computation

Let x and y be the coordinates of a Cartesian system associated to the focal plane,
having the x-axis set along the scan direction and directed as the movement of
charges of the TDI mode. Let I (x, y) be the photoelectron distribution produced
by the optical image of a non-moving source, that is, the number of photoelectrons
generated per unit area and unit time around the point of coordinates (x, y). The
function I (x, y) contains information about both the PSF photoelectron distribution
f (x, y) and the apparent brightness distribution of the observed object g(x, y). From
a mathematical point of view, I is the convolution of f and g:

I (x, y) =
∫∫

g(x ′, y′) f (x − x ′, y − y′) dx ′dy′. (1)

For the sake of brevity multiple integrals signs will be omitted in the following. Let
now τ be the TDI period. The signal, that is, the number of photoelectrons collected
by a pixel whose centre has coordinates (α, β), during the interval of time τ , from a
source image with centre located at coordinates (xc, yc), is given by:

S(α, β) =
∫

I (x − xc, y − yc)Π

(
x − α

Δx

)
Π

(
y − β

Δy

)
Π

(
t

τ

)
dx dy dt, (2)

where Δx and Δy are the along-scan and across-scan dimensions of the pixels, t is
the time and Π(u) is the gate function equal to 1 for −1/2 ≤ u ≤ 1/2 and zero
otherwise.

If now we assume that the image source moves with constant velocity, so that

xc = ẋ t + x0 yc = ẏt + y0,
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the signal becomes:

S(α, β) =
∫

I (x− ẋ t−x0, y− ẏt− y0)Π

(
x − α

Δx

)
Π

(
y − β

Δy

)
Π

(
t

τ

)
dx dy dt.

(3)
Two comments are necessary at this point. For fixed stars it is assumed that Δx =

ẋτ , but for SSOs this is not the case in general. In particular, if vτ is the mean transfer
velocity of the charges, so that vτ = Δx/τ , the relevant parameter for SSOs is the
residual along-scan velocity μ = ẋ − vτ . Second, at every time interval of duration
τ the charges in a pixel are moved to its immediate adjacent pixel. In this process
α → α + Δx , while at the same time xc → xc + (μ + vτ )τ = xc + Δx + μτ

and yc → yc + ẏτ . For fixed stars we have α − x0 = constant, assuming an ideally
perfect clocking, then in this case the total number of electrons recorded during the
integration time T is simply T/τ times the number obtained over one pixel. This
is not true for SSOs, and the computation of the integral has to be done for the
entire integration time. For sake of simplicity the computation can be done under
the assumption that the optical PSF is locally constant, or in other words that we
may use the same PSF over one whole CCD.

In practical terms, the preferred option to attack the problem of signal compu-
tation has been so far based on a different, numerical ray-tracing approach. Let us
then come back to consider the incoming photons from the source, before they start
to interact with the optical system to produce the recorded image. We may imagine
a coordinate system following the moving object and with origin in (xc, yc) and
axes parallel to the along- and across-scan directions. In this reference system, the
photons coming from the source would produce an image in an hypothetic detector,
and the coordinates of a given point belonging to this (static) image would be x ′ and
y′. Now, we can easily compute the corresponding coordinates (x, y) in the moving
Gaia focal plane of the photons coming from the (x ′, y′) point just defined above.
These are:

x = x ′ + ẋ t + x0

y = y′ + ẏt + y0. (4)

In the adopted method of image simulation, based on a Monte Carlo algorithm,
all the quantities x ′, y′ and t are randomly generated. The time t is uniformly gen-
erated between −T/2 and T/2 where T is the integration time, while x ′, y′ are
randomly generated according to a given surface luminosity distribution g(x, y) of
the object (chosen a priori), using a ray-tracing algorithm which also takes into
account an assumed light scattering law characterising the object’s surface. For the
details of the numerical algorithm of generation of the sampling positions x ′ and y′

see [26]. The number N of sampling points (x ′, y′) depends on the magnitude of the
object and on instrument characteristics including the CCD quantum efficiency. In
particular, we have that M = −2.5 log N + C , where M is the apparent magnitude
and C is a suitable constant. At magnitude 12, corresponding to the saturation limit
of the CCD in astrometric focal field, the number of collected photoelectrons are
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about 1 million. The nominal magnitude limit of detection is V ≈ 20 and corre-
sponds to about 1000 photoelectrons [89]; see also Sect. 5.4.

Of course, the above optical image, or in other words the (x, y) distribution of
incoming photons from the observed object, is not yet the final recorded signal.
We have still to take into account the fact that each photon incident on the opti-
cal system suffers an angular deviation δx and δy, respectively, in the along-scan
and across-scan directions due to the diffraction of the instrument aperture. The
numerical model reproduces the instrument diffraction effect by generating δx and
δy randomly, but according to a parent distribution given by the PSF of the system.
In other words, the probability of a given deviation is proportional to the value of
the PSF f (δx, δy) for this particular deviation. In order to obtain the real arrival
position of a single photon on the focal plane, we have then to add δx to x and δy to
y. Obviously all the quantities x ′, y′, δx and δy are expressed with the same unit.

As mentioned in the previous section, the spreading of the recorded photoelec-
trons in the along-scan direction on the focal plane due to the scanning motion of
the satellite is reduced by the time delayed integration (TDI) readout mode. For
this reason we introduce a moving coordinate system (X, Y ) synchronised with the
TDI charge transfer. Obviously Y = y because no TDI correction is performed in
the across-scan direction. In this way, the “effective” position of the photoelectron
inside the CCD image turns out to be:

X = θ (x ′ + δx + ẋ t + x0, t),
Y = y′ + δy + ẏt + y0, (5)

where θ is a special function accounting for the step-by-step TDI translation, and
depending on time t explicitly, according to the phase of the TDI charge transfer. In
practical terms, however, TDI blurring is included in the adopted PSF, so that the
θ function reduces to a simple continuous translation (see [26] for details). In this
case, we may simply write down the following:

X = x ′ + δx + ẋ t + x0,

Y = y′ + δy + ẏt + y0, (6)

where ẋ and ẏ represent the residual velocity of the object with respect to the TDI
motion. For SSOs, this corresponds in practice to the apparent motion with respect
to the fixed stars.

The final step of the numerical procedure is the allocation of the photoelectrons
into the corresponding pixels. The Gaia CCD detectors have rectangular pixels with
smaller side ΔX = Δx in the along-scan direction and larger side ΔY = Δy in
the across-scan direction. Each pixel is labelled with integer indexes i and j and
corresponds to the rectangular region defined by the points (X, Y ) such that

Xi ≤ X < Xi +ΔX ; Xi = iΔX Y j ≤ Y < Y j +ΔY ; Y j = jΔY (7)
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in this way the origin of the coordinates system coincides with the left-hand, lowest
corner of the pixel labelled as i = 0, j = 0.

In the astrometric focal plane of Gaia only a limited region of the CCD grid is
actually readout. This window is, again, a rectangular n × m one, with a number
n of pixels in the along-scan direction and m pixels in the across-scan direction. In
this way 0 ≤ i ≤ n − 1 and 0 ≤ j ≤ m − 1. Following the sampling scheme
proposed by [54], 12 × 12 pixels windows should be used for stars between 12 and
16 magnitude (in the G-band of Gaia) and 6× 12 windows for stars between 16 and
20 magnitude. We indicate by Ni j the number of photoelectrons in the i th pixel of
the window in the along-scan direction and the j th in the across-scan direction.

It is important to note that, in general, the recorded signal is binned, that is, the
numbers of pixels in the across-scan direction are integrated (summed up), so that
the final signal consists of the n numbers:

Ni =
m−1∑
j=0

Ni j 0 ≤ i ≤ n − 1. (8)

In the following, we will assume that CCD window is always binned, and what we
call “signal” is actually given by the set of discrete photoelectron counts just defined
above.

5.3 CCD Processing

In general terms, we call “CCD processing” a sequence of numerical procedures
aiming at extracting from the recorded signal Ni all possible information of interest.
In particular, in the case of SSOs, four parameters are of great importance: the posi-
tion of the object, its angular size, its velocity and its apparent magnitude. Basically,
both for stars and SSOs, the adopted method of determination of all the relevant
parameters is based on a best-fit procedure.

It is assumed that a mathematical model of the signal is at disposal, or in other
terms that we are able to compute the numbers Ni for any set of values of the
unknown parameters. This computation can be done analytically or throughout
numerical codes. In addition to a signal model, one has to decide a criterion of
comparison between the computed (C) and the observed (O) signal, in order to min-
imising or maximising some target function expressing the mathematical distance
between C and O .

We note that, in principle, an alternative approach, based on a full reconstruc-
tion of the image, could also be adopted. A number of refined techniques of image
reconstruction have been actually developed in the literature in several situations.
On the other hand, it seems that such kind of approach can hardly be applied with
success to poorly sampled signals covering only a few pixels, like those from faint,
nearly point-like sources detected by Gaia. For this reason, we focus on the approach
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based on the determination of a limited number of relevant unknown properties of
the sources by means of a signal best-fit approach.

For sake of simplicity, in order to focus on a few fundamental concepts rather
than on unnecessary technical details, let us limit now to a one-dimensional case.
Let L be the model function used to fit the recorded signal. For a fixed star this
reduces to the PSF integrated in the across-scan direction and convoluted with the
Π function describing the shape of the pixel. This leads to derive the so-called
line spread function (LSF). For fixed stars, this depends only on the position c in
pixels of the star and on its apparent magnitude or, in other words, on the total
number of collected photoelectrons. The signal is proportional to the flux and can
be reproduced by translating the centre of the LSF into the star position. If we call
L the LSF per unit of flux (that is, normalised to one collected photoelectron) the
expected number of photoelectrons in the pixel i , E(Ni ), is given by:

E(Ni ) = r2 + b + N L(i − c), (9)

where N is the total number of photoelectrons produced by the source and r is
the RMS readout Poisson noise in electrons. The term b is the contribution of the
background in electrons per sample. We assume that r2 +b is known with sufficient
accuracy.

If Ni is the number of electrons really collected in the sample i , a method of
estimation of the unknown parameters c and N , corresponding to the unknown pho-
tocentre position and apparent magnitude of the source, can be based on a maximum
likelihood criterion. More precisely, c and N are varied in order to maximise the
probability of collecting the observed counts Ni , assuming the signal model L . For
Poisson statistics this probability is given by the likelihood function:

f (c, N ) =
m−1∏
i=0

[r2 + b + N L(i − c)]Ni

Ni !
exp
[−(r2 + b + N L(i − c))

]
. (10)

The numerical problem is then to find the values of c and N that maximise f (c, N ).
Without entering into too many details, let us take into account the case of a

SSO. In this case, the signal model does not depend only on the parameters c and
N . Assuming that the object has a known shape and brightness distribution, we
have to introduce as additional parameters its size s in pixels and its velocity v. As
we have already discussed above, the meaning of v is the difference between the
velocity of the image on the focal plane and the mean TDI transfer velocity of the
electrons. In this case the likelihood function becomes:

f (c, s, v, N )=
m−1∏
i=0

[r2 + b + N L(i − c, s, v)]Ni

Ni !
exp
[−(r2 + b+ N L(i − c, s, v))

]
.

(11)
For fixed stars the TDI motion is set according to the image motion, so on the
average the position c is at rest. In the case of a moving source, however, this is
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no longer true. For this reason it is necessary to specify what we mean by c for a
moving source. In particular, the meaning of c must be that of the position of the
image at a particular epoch, for example, at the epoch of the signal readout.

We have just assumed that the brightness distribution of the source is known and
the only parameter to be determined is its size s. This can be a critical point for
some applications to SSOs and in particular to asteroids. In general, each asteroid
has its own shape, spin axis orientation and rotation period. Moreover, when it is
observed at some given epoch it is seen under some illumination condition, quan-
tified by the value of the so-called phase angle. The phase angle is defined as the
angle between the directions to the observer and to the Sun, as measured from the
asteroid barycentre. We note that Gaia will never observe asteroids at zero phase
angle, corresponding to object opposition from the Sun, but at phase angles larger
than 10◦, as a rule. This means that, due to the defect of illumination, the position
of the “photocentre” of the collected signal will not be coincident with the position
of the (sky-projected) barycentre of the object. This effect will have to be taken into
account for the purposes of using Gaia astrometric measurements of asteroids to
obtain refined orbital elements.

In addition to the above problems, the surface of any asteroid is characterised by
its own reflectance properties that may well be different for different objects and
also may vary, in principle, from point to point of the same object, determining an
apparent brightness distribution which will vary depending on the observing circum-
stances. Finally, other problems may also arise in the cases of non-resolved binary
systems and of objects characterised by the presence of some kind of cometary
activity (and Gaia will certainly observe comets).

Of course, the above-mentioned effects make the CCD processing of SSOs a
quite challenging task. As opposite to other kind of sources, the signal of any aster-
oid transiting in the field of view is inherently different with respect to the signals
collected for the same asteroid during different transits, corresponding to different
observing circumstances. All this makes SSOs completely different for what con-
cerns the CCD processing and reduction of the collected astrometric signals, with
respect to the case of fixed, point-like stars.

5.4 Accuracy Estimation

In order to estimate the accuracy of the measurement of the most important parame-
ters, that for asteroids include apparent magnitudes, motions, positions and sizes, it
is necessary to take into account all the disturbing factors that affect the generation
of the recorded signal. The main sources of noise include photon statistics, CCD
readout noise (RON), dark current, the noise introduced by the background, errors in
the calibration of the PSF, perturbation of the electronic devices due to the satellite’s
environment, like the radiation damage of the CCDs produced by cosmic rays.

Some of these noise sources are still under investigation, including PSF calibra-
tion and CCD radiation damage, whereas for others an estimation is already avail-
able. For what concerns the RON, its total amount should be about 4 photoelectrons
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(e−). Including also the dark noise and other electronic disturbing factors, the total
detection noise (TDN) should be of the order of 6–7 e− for each CCD in the focal
plane. This means that in the signal acquisition process the counted numbers Ni are
affected by an uncertainty of this order.

Background contribution to the signal deserves a separate discussion. Sky bright-
ness does not introduce an error in the photoelectrons readout, but rather an addi-
tional contribution of some number of photoelectrons to be added to the number
of photoelectrons produced by the source. According to the HST/WFPC2 Instru-
ment Handbook, the sky brightness at high ecliptic latitudes should be around 23.3
mag.arcs−2, while it is around 22.1 mag.arcs−2 on the ecliptic plane, because of
the zodiacal light [89]. According to the most updated configuration of the instru-
ment [102], taking into account the size of the CCD pixels in the astrometric
field (10 × 30 μm), the focal length of the telescope (35 m), the pupil aperture
(1.45 × 0.50 m), and the CCD integration time (4.42 s), we expect a background
contribution of about 2 e−/pixel on the ecliptic and 0.6 e−/pixel at high latitude.
These two values should be considered as the extreme limits of background contri-
bution per CCD.

The major source of noise is certainly due to photon statistics. The total num-
ber N of collected photons depends on the source’s magnitude M , and M =
−2.5 log N + C , where C is a constant (neglecting the effect of the windowing
cut-off). Visual magnitude M = 0 corresponds to an energy flux of 2.52 × 10−8

Wm−2. Considering a mean wavelength of collected photons about 550 nm, this
energy flux corresponds to a photon flux around 7× 106 photons/cm2/s. Taking into
account an integration time of 4.42 s and an aperture of 1.45× 0.50 m2, the number
of incoming photons should be around 1.6 × 101110−M/2.5 or Ns ∼ 101110−M/2.5

including a factor 1/2 due to CCD quantum efficiency. So we expect about 106

photoelectrons at magnitude 12, corresponding also to the saturation level of the
CCDs, and about 103 at magnitude 20, that is, the nominal detection limit.

A quick estimation of the error in the position measurement can be done in the
following way. Let us assume for simplicity the case of the signal from a nearly
point-like, non-moving source. Its signal corresponds more or less to the instrument
LSF. As we have explained above, the signal can be regarded as the distribution
over a few pixel rows of the recorded photoelectrons. Then, the mean value of the
photoelectrons’ positions can be used as an estimator of the image position. As it
is well known from statistics, the standard deviation of the mean is equal to the
standard deviation of the distribution divided by the square root of the number of
samples, that is, in this case, the number of the collected photoelectrons. The stan-
dard deviation of the LSF is about 2–3 pixels. Thus, at magnitude 12, which gives
106 electrons as seen above, we expect that the standard deviation of the mean is
about 2–3 × 10−3 pixels (∼ 0.1–0.2 mas). In the same way, at magnitude 20, when
we expect to collect more or less 103 electrons, the accuracy of the mean should be
about 0.05–0.1 pixels (∼ 3–6 mas).

We note that the above values for the effective uncertainty in the photocentre
determination of SSOs are much higher than the final, end of mission uncertainty in
the determination of the positions of single stars. The reason is that for SSOs, which
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move and are seen in different observational circumstances in different transits on
the Gaia focal plane, we cannot merge together the results of different detections,
and we are forced to limit ourselves to derive separately the positions of the objects
at different transits based on signals collected at these single transits. As opposite,
the determination of the position of the stars will be performed by cross-matching
the information derived from the measurements of tens of different transits. For this
reason the final accuracy for stars at magnitude 12 is expected to be of the order of
10−4 pixel (see [89]), corresponding to about 0.004 mas.

The accuracy in the determination of the angular size of SSOs may be estimated
by means of some numerical tests based on a simplified method of measurement.
We have seen that the position of the object is related to the mean of the spatial
distribution of the recorded photoelectrons. In the same way, the angular size of the
source is related to the standard deviation of the same photoelectron distribution. Let
us assume for simplicity that the shape of the object of which we want to measure
the angular size is a perfect sphere with a uniform brightness distribution. Let us
assume also that the object is observed at zero phase angle. In other words, we
assume that the object appears as a flat, uniform disc in the sky. In order to avoid
complications with the truncation of the signal, we assume also that the object’s
residual velocity is zero. This means that the final signal is well centred and it is
not truncated. If the number of collected photons was infinite, then a deterministic
relationship between the standard deviation σ of the signal and the diameter D of the
disc would exist. So, by computing the expected standard deviation for each possible
value of the disc’s size, it should be possible to obtain the corresponding value of
the size from the observed signal. In the real world, however, due to the fluctuations
of the numbers Ni caused by photon statistics, to each value of the measured size
of the disc may correspond different values of D. The distribution of these possible
values is characterised by a mean and a dispersion around it. An example is given in
Fig. 5, obtained by means of a numerical Monte Carlo simulation. The figure shows
that a given value of σ can be produced by some interval of possible values of D.
Using this kind of plot we can assess the expected accuracy in size determination.

In particular, the dispersions of the values of σ for a single value of the size D
depend on the magnitude of the source, and it increases as the magnitude increases
(or the flux decreases). Moreover, the relation between σ and D is not linear, but
rather it can be written as:

σ 2 = D2

16
+ σ 2

0 ,

where the first term is introduced by the angular distribution of the incoming photons
and σ 2

0 is the variance introduced by the LSF. It follows that if we wish to estimate
the value of D from the measured value of σ , the error dD is given by:

dD = 16 σ dσ

D
, (12)
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Fig. 5 Standard deviation σ (in pixels) of signals produced by an ideal spherical and homoge-
neously emitting object seen at zero phase angle, as a function of its apparent diameter D. The bar
corresponds to the standard deviation of σ due to photon statistics

where dσ is the error, mainly due to the photon statistics, in the measurement of the
standard deviation σ of the signal. So, for a given value of dσ , the uncertainty of the
size estimation increases as the size itself decreases. In other terms the slope dσ/dD
of the function σ (D) decreases as D decreases, as it is clear from Fig. 5.

Since dσ is magnitude-dependent, it is possible to associate to any possible mag-
nitude value a corresponding critical value of the size D for which the resulting
relative error dD/D is equal to some given limit, like 10%, as an example. The
result of this exercise is shown in Fig. 6. In the figure, the size limit corresponding
to a relative size determination accuracy of 10% is plotted versus the magnitude. The
domain of this plot below the 10% line corresponds to observational circumstances
in which the image cannot be distinguished from that of a point-like source. At
magnitude 12 it is possible to appreciate the apparent size for objects with a diam-
eter of 20 mas, but at magnitude 20 this limit raises up to 150 mas. In conclusion,
points below the 10% line in the figure correspond to observational circumstances
for which the object is too far or is too faint for its angular size to be measured with
an accuracy better or equal to 10%.

5.5 Size Measurement of Main Belt Asteroids

In order to assess the capabilities of Gaia in measuring the sizes of main-belt aster-
oids, we take advantage of existing simulations of observations of these objects
by Gaia during its operational lifetime [72]. These simulations provide the list of
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Fig. 6 The smallest size measurable with a precision of 10% plotted as a function of the object
apparent magnitude

the transits of main-belt objects on the field of view of the instrument, specifying
the distance r from the satellite and its apparent magnitude M . Among the full set
of simulated observations, we selected only those of objects for which a value of
diameter d is available (taken from the most recent issue of the IRAS catalogue of
asteroid sizes and albedos [114]) and for which the apparent magnitude should range
between 12 and 20. We assumed for sake of simplicity that the objects are spherical.
The apparent size of the objects for each of the above observations will be obviously
D = d/r . Having at disposal such a set of simulated observing circumstances for
a large sample of objects (about 2000), it is possible to assess whether for each
single detection the object’s size can be determined with a precision better (good
observation) or worse (bad observation) than 10% on the basis of the diagram in
Fig. 6.

For any object, in general, some observations will be good and others will be bad
according to the observing circumstances. Let S be the total number of observations
of one single asteroid, and let s be the total number of good observations of the
object, in the sense explained above. The resulting ratio ρ = s/S can be taken as an
evaluation of the efficiency of Gaia in measuring the size of this asteroid.

We show in Fig. 7 the result of this exercise. Each asteroid is plotted as a small
cross in the efficiency – diameter plane. The solid line is the average value of the
efficiency versus real diameter resulting from a running-box analysis. For asteroids
having a size larger than 100 km the measurement efficiency is well above 50%,
and almost all observations are good. Below 20 km no good observation is possible,
because the objects are either too small or too faint or both (note the group of crosses
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Fig. 7 Efficiency of Gaia in measuring the diameters of the main-belt asteroids

Fig. 8 Number of observations of main-belt asteroids of different sizes, allowing a size measure-
ment with an accuracy of 10% or better

with ρ = 0%). At the limiting size of 20–30 km, the measurement efficiency is only
a few percent.

A slightly different plot is shown in Fig. 8, where the number of good observa-
tions s is plotted against the real diameter for each asteroid. Again, the solid line
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is a running-box average. The crosses are rather scattered meaning that apart from
the average scenario there are very different situations, depending on the individual
orbital and physical properties of the objects. We note that in the case of very large
asteroids the observation efficiency can decrease due to the paradoxical fact that in
many cases they are too bright and they reach the CCD saturation limit of magnitude
12 (examples are the group of crosses in Fig. 8 at D � 150 km and s ≤ 10 corre-
sponding to the asteroids 11 Parthenope, 18 Melpomene, 20 Massalia, 39 Laetitia,
89 Julia, 349 Dembowska).

5.6 Limits and Margins of Improvement

The results discussed in the previous sections have been obtained under some
simplifying assumptions. In particular, we assumed that the objects had spherical
shapes, and that the optical properties of the emitting surfaces were homogeneous.
Or, in other words, we made the assumption that the surface albedo of the objects
was homogeneous throughout the surface. Moreover, even if we did not mention
this explicitly, the results shown in Figs. 5, 6, 7, and 8 were based on simulations
in which some assumptions concerning the diffusive properties of the object sur-
faces were made. In fact, a well-defined light scattering law was assumed when
running the ray-tracing part of the signal simulator. Without entering into details,
the assumption was that of surfaces scattering the incident sunlight according to a
composition of a Lambertian and a Lommer–Seeliger scattering law.

Now, we can ask ourselves whether the above simplifying assumptions are rea-
sonable, and if there is some way to possibly improve the model. In this respect, the
answer seems to be yes, and the way of improving the model is based on ancillary
information that is expected to become available when the full set of recorded sig-
nals from each object at all transits collected during the Gaia operational lifetime
will be available. In particular, the idea is that of taking profit of the analysis of
the disc-integrated magnitude measurements performed at each object transit. The
measurement of the apparent magnitude at each transit on the Gaia focal plane is a
less complicated task with respect to the determination of the astrometric position
and apparent size of the object, as seen in the previous section. Given the full set of
measured apparent magnitudes of an object, it will be possible to derive from that a
big deal of information concerning the rotational properties (spin rate and direction
of the spin axis) and overall shape, assumed for simplicity to be that of a triaxial
ellipsoid. The derivation of the above parameters is described in section 6 of this
lecture. Having at disposal the object’s pole direction and a more realistic triaxial
shape, it will be possible to compute for each transit the corresponding observational
circumstances in terms of apparent shape and orientation of the illuminated part of
the body visible from Gaia at the epoch of the observation. In this way, a much
improved object’s model, with respect to that of a simple homogeneous sphere, will
be adopted and used to derive refined estimates of the object’s size and also of the
offset between the position of the barycentre and that of the photocentre during the
transits for which the object becomes resolvable.
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As for the choice of the scattering law, the situation is intrinsically more difficult,
yet not completely hopeless. In particular, it will be possible to take profit of the
fact that at least for a few objects (433 Eros, 243 Ida, 951 Gaspra, 253 Mathilde,
and probably in the near future 1 Ceres and 4 Vesta) we have at disposal data taken
in situ by space probes. For these objects, we have very detailed information about
size, shape, spin and surface properties. The idea is then that of using this ancillary
information to possibly improve the adopted scattering laws in the reduction of Gaia
data. In particular, the most correct scattering law, at least for the objects of the above
list, should be the one producing a better agreement between the Gaia results and
the known properties of the objects.

6 The Determination of Asteroid Physical Properties

6.1 Introduction

The determination of asteroid physical properties will be one of the fundamental
contributions of Gaia to Planetary Science. As we have seen in Sect. 5, asteroid
sizes will be directly measured for a number of objects that should be of the order
of 1000, according to current signal simulations. This spectacular result, however,
will be only one of a longer list that includes

– the measurement of about 150 asteroid masses;
– as just mentioned above, the direct measurement of about 1000 asteroid sizes;
– based on the measured masses and volumes, the determination of the average

densities for about 100 objects belonging to practically all the known taxonomic
classes;

– the determination of the rotational properties (spin period and polar axis orienta-
tion) and overall shapes for a number of the order of 10,000 objects;

– a new taxonomic classification based on reflectance spectra (including wave-
lengths in the blue region of the spectrum) obtained for several tens of thousands
of objects;

– the measurement of the Yarkovsky acceleration for some tens of near-Earth
objects.

To the items of the above list, we have to add, of course, the derivation of much
improved orbits for a data set of about 300,000 objects, taking profit of the unprece-
dented astrometric accuracy of the Gaia mission. A detailed description of the
expected performances of Gaia in the determination of orbits, masses and Yarkovsky
acceleration is given in Sect. 8.

In what follows, we will focus on the remaining items of the above list, namely
spin properties and taxonomy.
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6.2 Inversion of Disk-Integrated Photometric Data

Historically, photometry has been one of the first observing techniques applied to
obtain information on some physical properties of the asteroids.

Due to the fact that these objects have non-spherical shapes and their appar-
ent brightness is due to solar photons scattered by the illuminated surface, there is
a periodic modulation of the brightness due to the object’s rotation. Photometric
observations over a sufficiently long interval of time to cover a full rotation cycle
produce then what is usually called a lightcurve, namely a plot of the apparent
brightness as a function of time, which shows the periodic variation in magnitude
due to rotation. Lightcurves provide thus in a straightforward way one of the many
physical properties of an object, namely its rotation period.

The morphology of a lightcurve at a given epoch is the complex result of the
shape of the object, the orientation of its rotation axis (the “asteroid pole”) and the
light scattering properties of the surface. The difference in magnitude between the
maximum and the minimum brightness of the object during a rotational cycle is
called lightcurve amplitude.

The fact that asteroids are moving objects on the celestial sphere has the conse-
quence that the geometric configuration Sun–asteroid–observer changes for obser-
vations carried out at different epochs. The observing circumstances at a given epoch
are characterised by different values of the heliocentric and geocentric distances
of the illumination conditions, which are described by the so-called phase angle
described in Sect. 5.3, and by two quantities that describe the orientation of the
asteroid spin axis with respect to the direction to the observer and to the Sun. These
two quantities are two angles: the aspect angle, normally indicated as ξ , and the
obliquity angle. The aspect angle is the angle between the directions of the spin axis
and the direction to the observer, measured at the object’s barycentre. The obliquity
angle is the angle between the plane containing the object, the observer and the spin
axis of the object and the plane containing the asteroid-observer direction – which
is perpendicular to the plane containing the observer, the object and the Sun. This
angle is indicated as o in Fig. 9, which shows in a graphical way the meaning of the
above angles. Finally, another angle φ describes the rotational phase of the object in
its rotation around its axis. In practice, the values of all the above-mentioned angles
reduce to the computation of the sub-observer (normally called sub-Earth) and
sub-Solar points, namely the latitude and longitude coordinates of the two points
which are the intersections of the body’s surface with the vectors from the object’s
barycentre to the observer and to the Sun, respectively.

Due to the variations of the observing circumstances at different epochs,
lightcurves taken at different oppositions of the same object will generally exhibit a
variation in their morphologies, and in particular their amplitude. This is due to the
fact that the aspect angle of an object is a function of the ecliptic longitude (or equiv-
alently, the Right Ascension) at which it is observed at a given epoch. For instance,
if we assume that the object has the shape of a triaxial ellipsoid with semi-axes
a > b > c, spinning around the shortest axis c, the maximum lightcurve amplitude
will be reached when the object is seen in equatorial view, when ξ = 90◦. This view



280 D. Hestroffer et al.

Z

Y

Z’

ξ

α

OBSERVER

X

SUN

O

Fig. 9 Graphical explanations of the aspect (ξ ) and the obliquity (o) angles. The angle α in this
figure is the phase angle. Vector Z′ is the direction of the positive spin

is in principle always reachable and corresponds to two well-defined values of the
Right Ascension of the object (separated by an angle of 180◦), which depend on
the spin axis orientation. Just to make the things more clear, to observe an object at
ξ = 90◦ means observing it when it reaches one of its two equinoxes.

We only remind that the choice that we make here of a triaxial ellipsoid shape
with semi-axes a > b > c is particularly suitable to illustrate the predictable mag-
nitude variations. Triaxial ellipsoids seen at zero phase angle project in the sky an
ellipse. The apparent surface S of this ellipse is given by the following relation:

S = πa2(A1 sin2(φ) + A2)1/2, (13)

where φ is the rotation angle of the object, assumed to be zero at lightcurve maxi-
mum (when the projected ellipse has the major semi-axis equal to a). A1 and A2 are
given by:

A1 =
( c

a

)2
[(

b

a

)2

− 1

]
sin2(ξ ) (14)

and:

A2 =
( c

a

)2
sin2(ξ ) +

(
b

a

)2

cos2(ξ ). (15)

It is easy to verify that, at the maximum and the minimum of luminosity, the
projected areas of the ellipse are, respectively,

Smax = πa ·
√

b2 cos2(ξ ) + c2 sin2(ξ ) (16)
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and

Smin = πb ·
√

a2 cos2(ξ ) + c2 sin2(ξ ) . (17)

We may assume in first approximation that the received flux of scattered sunlight
coming from the asteroid will be simply proportional to the apparent projected sur-
face S, so that, by neglecting any realistic effect of light scattering on the surface,
we can simply write m = −2.5 log(S)+ c, where c is a constant. As a consequence,
it is easy to verify that if we call A the lightcurve amplitude, namely the difference
of magnitude between the maximum and the minimum brightness, when we are
in equatorial view (ξ = 90◦) we have that A = −2.5 log(a/b). This means that
observations of a triaxial ellipsoid asteroid taken in equatorial view, something that
is always possible to obtain sooner or later, in principle provide also an estimate of
the value of the a/b ratio.

The lightcurve amplitude progressively decreases as the aspect angle decreases
from its maximum possible value of 90◦. The minimum possible value of the aspect
angle for a given object depends on the orientation of its spin axis. For an object
whose spin axis lies on the ecliptic plane, a pole-on view becomes possible (ξ = 0),
and in that geometric configuration the lightcurve amplitude in principle becomes
zero and the object’s magnitude does not change during the rotation. In that sit-
uation, the projected area will be S = πab, which corresponds to the maximum
possible value among all the possible projections of the triaxial ellipsoid, and then
it corresponds also to the maximum possible brightness of the object. In general,
however, the spin axis will be oriented in such a way as not to allow to reach a
pole-on view.

Due to the fact that the lightcurve changes as a function of the aspect angle,
having at disposal several lightcurves of an object obtained at different oppositions,
it becomes in principle possible to derive the direction of its spin axis (“asteroid
pole”). Different techniques have been developed for this purpose [68, 56]. Predic-
tions concerning asteroid shapes and spin axis directions based on ground-based
photometry have been found to be fairly accurate, according to the results of in situ
investigations carried out by space probes [56].

One major advantage of observing from an orbiting platform like Gaia, with
respect to traditional ground-based observations, is that from space it is easier to
observe the objects even when they are far from opposition, since from space there
is no strong observing constraint related to the diurnal and seasonal cycles of the
Earth. In particular, from space the asteroids can be seen at small solar elongation
angles, which are hardly achievable from the ground.

Each main-belt asteroid will be typically observed tens of times during the 5
years of the planned operational lifetime of Gaia. The simulations indicate that each
object will be detected over a wide variety of ecliptic longitudes. Correspondingly,
Gaia will make a good sampling of the interval of possible aspect angles of each
object. The same variety of aspect angles, needed to derive the orientation of the
spin axis, may be sampled from the ground only over much longer times. As a
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consequence, Gaia will be very efficient in providing disk-integrated photometry
data sufficient to derive the poles of the asteroids in a relatively short time, as well
as the sidereal periods and the overall shapes.

However, it must be noted that there is a fundamental difference with respect to
the situation usually encountered in traditional ground-based asteroid photometry.
In fact, Gaia will detect each object only during very short transits when it crosses
the field of view at epochs determined by the rotational and precessional motion of
the satellite and by the orbital motion of the asteroid.

This means that Gaia photometry will not consist of full lightcurves, but only of
a number of sparse, single photometric measurements lasting a few seconds. This
would seem in principle a crucial limitation, but it is more than compensated by the
high number of photometric measurements that will be recorded for each object (on
the average, between 60 and 80 for main-belt asteroids) and by the good accuracy of
Gaia photometry. In particular, the photometric accuracy will depend on the bright-
ness of the target and it is expected to be better than 0.01 mag for single detections
of objects down to approximately V = 20.0.

As we have seen above, the magnitudes of the objects detected at different epochs
will depend on several parameters: the most important ones being the sidereal
period, the shape and the orientation of the spin axis and the illumination circum-
stances, described by the phase angle. Additional variations may come in principle
also from possible albedo variegation of the surfaces, but this is not expected to
be very relevant for the majority of the objects. The possible existence of a non-
negligible fraction of binary systems must also be taken into account, but for the
moment we will not deal with this problem.

Gaia will obviously measure apparent magnitudes that will be immediately con-
verted to magnitudes at unit distance from both the Sun and the satellite (reduced
magnitudes). When reducing photometric data, the epochs of observations will also
be corrected for light-time, being known the distance of the object at each detection.

Assuming now for the sake of simplicity to deal with an object having a triaxial
ellipsoid shape, orbiting around the Sun along a typical main-belt asteroid orbit, it
is possible to compute how the reduced magnitude is expected to vary as a function
of time, depending on the coordinates of the pole. In particular, when making this
exercise, it is convenient to work in terms of differences of reduced magnitude with
respect to a reference observation (for instance, the first one in a series of different
observations collected at different epochs). In this way, any potential error related
to the constant appearing in the definition of magnitude (m = −2.5 log(Φ) + c,
where m is the magnitude, Φ is the received–normalised–flux and c is a constant
depending on the chosen units) is automatically removed.

If, for the sake of simplicity, we make also the assumption that the object is
always observed at zero phase angle, it is easy to produce the plots shown in
Figs. 10, 11, 12, 13, and 14, which have been computed assuming that the object
has the same orbit of asteroid (39) Laetitia, a typical main-belt asteroid. Note that
a choice for the object orbit must be done, because the aspect angle at any epoch
depends both on the coordinates of the rotation pole and on those of the object itself,
which is a function of its orbit.
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Fig. 10 The domain of possible values of magnitude (expressed as a difference with respect to the
magnitude measured at a reference epoch) as a function of time (expressed in Julian Days) for a
triaxial ellipsoid object having the same orbit of the asteroid (39) Laetitia. The axial ratios of the
object are b/a = 0.7 and c/a = 0.5. The coordinates of the asteroid pole are given in the figure
(λ being the ecliptic longitude and β the ecliptic latitude of the positive pole). The time interval
covers 5 years, equal to the expected operational lifetime of Gaia

The plots shown in Figs. 10, 11, 12, 13, and 14 represent the domains in the
time–Δm plane, Δm being the difference between the magnitude at time t and the
magnitude at reference time t = t0, occupied by the object during an interval of
5 years. In particular, the figures show how the domain of permitted Δm changes
as a function of the object’s shape (axial ratios) for a fixed pole of rotation or vice
versa, as it changes by assuming a fixed shape, but varying the coordinates of the
rotation pole. It must be noted that the above plots are used only to give a qualitative
idea of the role played by shape and pole orientation in determining the possible
range of photometric variation of an object, but they are not at all detailed represen-
tations of the real world.

In particular, the plots correspond to a very ideal situation in which the object
has a perfect triaxial ellipsoid shape, and it is always seen at perfect Sun opposition.
Thus, the effect on the apparent magnitude that arises from the fact of observing
the object at different phase angles in different illumination conditions is not taken
into account. Equally important, no realistic effect of light scattering is taken into
account, and the magnitude is assumed to be purely due to the extent of visible
illuminated area seen from the observer.

Of course, the real objects will only be sparsely observed by Gaia during the
mission operational lifetime. As a consequence, what is more interesting is not the
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Fig. 11 The same as Fig. 10, but this time the ecliptic latitude of the asteroid’s pole is β = 30◦.
Together with Fig. 12, these three figures give some idea of the role played by the latitude of the
pole in determining the photometric behaviour of a triaxial ellipsoid object

Fig. 12 The same as Fig. 10, but this time the ecliptic latitude of the asteroid’s pole is β = 0◦
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Fig. 13 The same as Fig. 10, but this time for an object having the same pole (λ = 30◦, β = 60◦),
but a more elongated shape: b/a = 0.7, c/a = 0.3

Fig. 14 The same as Fig. 13, but this time for an object having the same pole, but axial ratios:
b/a = c/a = 0.7. The fact that b = c has the effect of making constant the lightcurve maximum
at all aspects
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whole possible photometric domain where a given object can be seen during 5 years,
but rather the way how the actual Gaia observations will sample the whole domain
of photometric variation. To do this, one can take profit of detailed simulations of
the mission, including observing circumstances of known asteroid detections, devel-
oped by a team including one of the authors of the present chapter (PT).

Figure 15 shows the results of such an exercise. In particular, it shows how Gaia
would sample the photometric variation of an ideal triaxial ellipsoid object having
the same orbit of the asteroid (311) Claudia; a spin period P = 19.15 h; axial ratios
b/a = 0.86, c/a = 0.71; and pole ecliptic coordinates λP = 49◦, βP = 51◦.
As can be seen, the sampling of the photometric variation seems fairly good. Even
better, it is interesting to do the same computation, but showing the results in an
ecliptic longitude–magnitude plot, as done in Fig. 16. (expressing the coordinates
in the equatorial reference frame, Right Ascension and Declination would be totally
equivalent.) We recall that different ecliptic longitudes of the object correspond to
different aspect angles. Figure 16 shows therefore that an object having a typical
main-belt orbit, like (311) Claudia, will be observed in a fairly wide variety of aspect
angles. This is encouraging when trying to develop methods to use these sparse
photometric data to achieve an actual data inversion, leading to the determination of
objects’ rotation properties and overall shapes.

Fig. 15 Simulated observing circumstances of Gaia observations of a triaxial ellipsoid object hav-
ing the same orbit of the main-belt asteroid (311) Claudia; rotation period P = 19.15 h; axial ratios
b/a = 0.86, c/a = 0.71; and pole ecliptic coordinates (49◦, 51◦). The predicted magnitudes as a
function of time are plotted. The envelop represents the whole domain of photometric variation for
such an object during the predicted operational lifetime of Gaia (5 years)
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Fig. 16 The same as Fig. 15, but here the predicted magnitude is plotted against the ecliptic longi-
tude of the object at the epochs of Gaia observations

Plots like the one shown in Fig. 16 are useful, because in principle a well-sampled
longitude–magnitude plot may provide per se a lot of information. In particular, we
have seen that the maximum lightcurve amplitude is achieved in equatorial view and
directly provides an estimate of the b/a axial ratio, if we assume a triaxial ellipsoid
shape. Moreover, the minimum lightcurve amplitude is reached at an ecliptic lon-
gitude corresponding to that of the asteroid pole. A minimum lightcurve amplitude
close to zero means that the object may be seen nearly pole-on. Finally, a nearly
flat maximum of the observed magnitude corresponds to an axial ratio b/c close to
unity.

Of course, what is not known a priori when examining a longitude–magnitude
plot like the one shown in Fig. 16 is the rotation period of the object. It is this
parameter that determines the measured magnitude of the object at each single
epoch of observation, which may be considered as a single snapshot of a continuous
magnitude modulation superposed to the effects of the varying geometric observing
circumstances.

In other words, the set of sparse photometric measurements that will be obtained
by Gaia, as well as, it is important to note this, those from the ground-based tele-
scopes of the next generation of sky surveys like Pan-STARRS, can be considered as
single points of a complex, time-extended hyper-lightcurve. The goal of the analysis
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of these data will be then that of being able to derive from them the main physical
properties of the objects that are responsible for these observed hyper-lightcurves.

In particular, these are a list of parameters that should be determined by the pho-
tometric inversion:

– the asteroid’s rotation period;
– the coordinates of the asteroid’s pole, namely the intersection of the direct spin

axis of the object with the celestial sphere. These two coordinates may be indif-
ferently expressed in the equatorial or in the ecliptic J2000 system. Following the
IAU convention [103] the ecliptic J2000 system should be preferred;

– some parameters describing the shape of the asteroid. In the case of a triaxial
ellipsoid shape with semi-axes a ≥ b ≥ c, this reduces to two simple parameters,
namely the axial ratios b/a and c/a;

– a parameter specifying the variation of the asteroid’s brightness as a function
of the phase angle. In practice, since Gaia will observe asteroids in a range of
phase angles far from Sun opposition, and because the phase function is generally
linear in the range 20–30◦, the simplest approximation is to consider a linear
magnitude–phase relation, described by one single slope parameter;

– a value specifying the rotational phase of the asteroid at a reference epoch, usu-
ally taken to be the epoch of the first recorded observation;

The above list corresponds therefore to a set of seven unknown parameters to be
determined by the inversion, assuming that the objects have triaxial ellipsoid shapes.
Of course, this particular shape choice is not the unique possibility that might be
considered. Some explanation is then necessary and is given in the next section.

6.3 Notes on the Choice of a Triaxial Ellipsoid Shape

Asteroids are small rocky bodies whose shapes are normally determined by solid
state forces rather than by self-gravitation. Asteroid images taken from short dis-
tances by space probes have generally revealed, mainly for the smallest visited
objects, fairly irregular, “potato-like” shapes. Even objects of greater sizes, like
(253) Mathilde, have revealed shapes strongly affected by the presence of giant
concavities due to large impact craters. Moreover, in recent times there has been the
development of methods of lightcurve and even sparse-data inversion that have pro-
duced complex reconstructed shapes and that have been in several cases confirmed,
directly or indirectly, by other pieces of independent evidence [56].

Based on the above evidence, the choice of approximating objects by means of
triaxial ellipsoid shapes looks a priori very questionable. On the other hand, there
are several reasons why this choice has been done for at least a preliminary inver-
sion of the future Gaia data. Most of these reasons are strictly related to the need
of reducing as much as possible the number of free parameters to be determined
by the photometry inversion algorithm that will be described in the next section.
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Summarising, a list of reasons justifying the choice of a triaxial ellipsoid approxi-
mation is the following:

In spite of being simple and depending on only two parameters (the b/a and c/a
axial ratios), triaxial ellipsoid shapes are fairly flexible and allow to represent
a fairly wide variety of shapes, from elongated “cigar-like” shapes, to flat
discs, up to regular spheres.

There are reasons to believe that, at least among the biggest asteroids, triaxial
ellipsoid shapes might be a good approximation. The reason is that this is the
equilibrium shape expected for re-accumulated objects having a large angular
momentum. These objects, commonly called “rubble piles”, are expected to
exist, and correspond to the so-called LASPA (large-amplitude short-period
asteroids) objects, identified in the 1980s [34, 35].

Triaxial ellipsoid shapes have been successfully used by several authors in the
past to compute asteroid rotation poles that have been confirmed also by other
techniques [68].

The shapes of impact fragments collected in laboratory experiments have been
approximated in the past by triaxial ellipsoids [16]. The reason is that when
dealing with a variety of irregular fragments produced by energetic impact
experiments, circumscribed triaxial ellipsoids turned out to be simple and
sufficiently accurate to be used for building a reasonable statistics of the
shapes of these fragments.

One fundamental advantage of triaxial ellipsoid shapes is that they admit ana-
lytical solutions of the problem of computation of visible and illuminated
areas as seen from an observer in any geometric configuration. This property
is decisive for the choice of this kind of shape to be implemented in the kind
of inversion algorithm that will be described in the following section.

As we will see, the choice of triaxial ellipsoid shapes is justified a posteriori by
the fact that it can be proven to be able to produce successful inversion not
only of simulated objects having a wide variety of shapes and light scattering
properties but also of real objects previously observed during space missions
in the past.

As a final remark, we note that using a model in which a triaxial ellipsoid shape is
assumed to fit the objects simply means that the corresponding inversion of available
data will look for the triaxial ellipsoid shape that best fits the observations. One
should be aware that this triaxial ellipsoid can well not be adequate to represent
the fine details of the real shape, but this is not equivalent to state that the resulting
inversion must be necessarily bad, in particular for the period determination. The
goodness of the solutions must be checked a posteriori by extensive simulations and
by applications of the inversion algorithm to real data. We also note that it might
be over-ambitious to try to use sparse photometric data to get, in addition to spin
periods and poles, also very detailed reconstruction of the shapes. We remind, for
instance, that even the most advanced methods of shape reconstruction based on
lightcurve data cannot deal with shape concavities in a straightforward way [56].
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For this reason, even an apparently modest triaxial ellipsoid approximation can well
prove to be useful to derive global shape estimations, and this may be convenient
if this can be made with only a modest investment of CPU power, as we will see
below.

6.4 Photometry Inversion by Means of a Genetic Algorithm

Before describing the details of the adopted algorithm for the inversion of sparse
photometric data, it should be useful to point out that this is a problem that hardly
can be attacked by means of a pure “brute force” approach based on the power of
modern computers. The reason is that, although the number of unknown parame-
ters is only seven (the rotation period, two pole coordinates, two axial ratios, one
magnitude–phase linear slope, and one initial rotation phase), the number of possi-
ble combination of these parameters, corresponding to single possible solutions, is
large, mostly due to the required accuracy in the spin period determination.

In fact, if one considers for instance the case of an object having a rotation period
of 6 h, the need to have the final photometric observations “in phase” within a
not-so-small error of 0.8 in rotational phase, means that the spin period must be
computed with an accuracy not worse that 10−5 h. A brute force approach based
on computing the best solution by building of grid of possible cases in the space
of the seven unknown parameters would then lead to the need of performing a
huge number of iterations of the order of 1019, as it is easy to verify taking into
account the range of variability of the seven parameters (the period between 0 and
tens of hours, the pole longitude between 0 and 360◦, the pole latitude between
−90 and +90◦, the axial ratios between 0 and 1, the initial rotational phase between
0 and 0.5 (an ambiguity of 0.5 is permitted for this parameter), linear slope of the
magnitude–phase relation between 0 and some tenths of magnitude per degree).

The above estimate means that the photometric inversion of each object would
require an exceedingly big investment in CPU power. On the other hand, other
approaches exist that may avoid the use of brute computing power and may permit
to save a lot of computing time.

Among these approaches, a one based on the development of a so-called genetic
algorithm has been chosen for the processing of Gaia photometric data. Genetic
algorithms are adaptive algorithms developed to solve some classes of problems that
are particularly suited to being attacked using this kind of approach. Some general
ideas which are at the basis of the genetic algorithm approach are borrowed from
natural sciences, and in particular from the processes of natural evolution of living
species and survival of the fittest.

In particular, we can consider any possible solution of the problem of inversion
of sparse photometric data as an individual “organism” characterised by its own
“genome”. The genome consists of a single value for each of the seven unknown
parameters to be determined by the inversion. Any possible solution, therefore, is
uniquely characterised by its own set of parameters (spin period, pole coordinates,



The Gaia Mission and the Asteroids 291

axial ratios, slope of the magnitude–phase relation and initial rotational phase),
which can be seen as the “genes” or the “DNA” of the given solution.

Of course, different solutions can be more or less good. The range goes from
completely bad solutions of the problem up to excellent solutions, which may be
accepted as the result of photometry inversion. The goodness of any given solution
is assessed on the basis of its corresponding residuals with respect to a set of real (or
simulated) observations. Better solutions give a better fit of the observational data,
corresponding to smaller residuals (O − C) between the observed data and those
computed according to the given set of parameters. In the application to the Gaia
problem, the parameter that has been used so far to quantify the goodness of a given
solution is the following:

ε =
√∑

i (Oi − Ci )2

Nobs
, (18)

where Nobs is the number of available observations and Oi and Ci are the observed
and calculated values of the i th observation, respectively.

The idea of the genetic approach is then to find a good solution of the inversion
problem by taking an initial set of tentative solutions, randomly generated, and then
let them “evolve” by mixing their genomes during a series of successive gener-
ations, until the correct solution of the problem emerges spontaneously. In other
words, starting from an initial set of “parent” solutions randomly generated, and
which are generally very bad, as one would expect a priori from a set of completely
random attempts, an iterative process of production of new generations of solutions
is started. The generation process consists in a random coupling of the parameters of
two parent solutions, randomly selected, and/or in some random variation (“genetic
mutation”) of the “genome” of one single solution.

At each generation, a check is performed of the residuals generated by each
newly born “baby” solution. If it is better than some of those solutions saved until
that step, it enters the “top list”, whereas the previously worst solution of the parent
population is removed from the population.

In this way, after a number of the order of 1 million of “generations”, a very
good solution is usually found, which produces small residuals and basically solves
the inversion problem. Due to the intrinsically random nature of this “genetic”
approach, the right solution is not forcedly found always, but if the genetic algorithm
is repeatedly applied to the same set of observed data (typically 20 times), then the
right solution (giving the minimum residuals in different attempts) is usually found
several times.

Based on the above description, it may be now clear why the assumption of a
triaxial ellipsoid shape turns out to be very convenient using this approach. The
basic advantage is that each of the millions of computations of the brightness corre-
sponding to the observing circumstances of each recorded observation can be made
by using analytical formulae, instead of numerical computations of more complex
shapes based on an approximation of the shape by means of plane facets, followed
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by the computation of the contribution of each facet to the total brightness. Such
an approach, in principle feasible and more flexible, would lead in practice to a
huge investment in CPU power and in much longer computing times. The apparent
illuminated surface of a triaxial ellipsoid seen by any observer in any geometric
configuration Sun–asteroid–observer can be instead computed by using analytical
formulae, as shown by [96].

The performances of the adopted genetic algorithm for the inversion of sparse
photometric data have been tested by means of a large number of numerical simula-
tions and by application to real data. In particular, simulations have been performed
considering a large variety of situations for what concerns

– the orbits of the simulated objects, to check whether orbital properties may have
important consequences on the number of Gaia detections and on the variety of
observing circumstances. In particular, the simulations have also dealt with near-
Earth objects, taking into account that many objects of this type will be observed
by Gaia, although the majority of detections will refer to main-belt asteroids;

– the rotation periods of the simulated objects;
– the spin axis direction;
– the object shape. Both triaxial shapes characterised by a large variety of axial

ratios and more complex shapes, often taken from available observations (optical
and radar) of real objects, have been simulated;

– different numbers of available observations, and different photometric uncertain-
ties, in order to test the conditions of applicability of the inversion algorithm
when the available data are scarce and/or the error bars of the data are large;

– different light scattering laws, ranging from pure geometric scattering to Lommel–
Seeliger and Hapke scattering models.

For what concerns the last item in the above list, Fig. 17 shows the results of sim-
ulations of regular triaxial ellipsoid shapes in the simplified case of geometric light
scattering (no limb darkening). Simulations produced cases with varying numbers
of available observations and different photometric uncertainties for each observa-
tion. As can be seen, the results are strongly encouraging in these simplified cases,
because they indicate that the inversion method should be applicable even in situa-
tions much worse than those expected to hold for Gaia data (numbers of observa-
tions of the order of 70, typical photometric uncertainties of the order of 0.01 mag).
Even taking into account that the real objects will have surfaces scattering sunlight
in a more complicated way, and non-ellipsoidal shapes, it seems nevertheless that
the inversion method does a good job and it is not too much constrained by the
number of data and their accuracy.

Figure 18 shows what the fit of simulated data can be in cases in which a signif-
icant photometric uncertainty of 0.03 mag is added to the computed magnitudes of
a simulated triaxial ellipsoid body. As expected, there are not negligible (O − C)
residuals, but they are fully corresponding to what should be predicted a priori.
The resulting inversion, in fact, turns out to be practically perfect in this case: this
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Fig. 17 Conditions of applicability of the photometry inversion method for triaxial ellipsoid shapes
and simple geometric light scattering. The horizontal axis gives the number of available observa-
tions, while the vertical axis gives the photometric uncertainty of the observations (supposed for
simplicity to be the same for each observation). The different symbols in the plot indicate whether
the photometry inversion method successfully finds the right solution, if it does not find a unique,
right solution or if it fails

0 100 200 300
1

0.5

0

–0.5

–1

Fig. 18 Results of the inversion of a simulated triaxial ellipsoid asteroid with a fairly large super-
imposed photometric error of 0.03 mag. Filled symbols: simulated observations. Open symbols:
corresponding computed brightness at each epoch of observation
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Fig. 19 The same as Fig. 18, but this time the simulated object had the shape of the irregular
asteroid (433) Eros as resulting from the images taken by the NEAR-Shoemaker probe. In addition,
the simulated surface was assumed to scatter sunlight according to a realistic Hapke scattering law

means a computed period solution within 0.00001 mag from the correct one and
pole coordinates within less than 2◦ from the correct pole solution.

If simulations of triaxial ellipsoids without light scattering effect may seem too
poor to assess the effectiveness of the photometry inversion algorithm, Fig. 19 is
representative of what is encountered when much more realistic simulated cases
are taken into account. The plot shows the simulated photometric data of an object
having the same shape of (433) Eros as it has been derived from in situ observations
by the NEAR-Shoemaker probe, and simulating a surface scattering of the light
according to a Hapke light scattering law with the usual parameters used to repre-
sent the photometric behaviour of real asteroids. In the same plot, the magnitudes
computed—based on the result of the photometric inversion algorithm—are also
shown for a comparison. As expected, there are large values of the (O−C) residuals,
like one should expect from a body as irregular as Eros (see Fig. 20) when approx-
imated by a simple triaxial ellipsoid. In spite of the obvious oversimplification of
the shape model used in the inversion algorithm, however, the solution turns out to
be excellent, with the spin period being exact within a few thousandths of an hour,
and the pole solution differing from the simulated one by less than 3◦, justifying our
previous statement in Sect. 6.3. Even the very elongated, cigar-like shape of Eros
is not badly reproduced by the shape solution, with b/a and c/a axial ratios both
of the order of 0.4. This is not an isolated success of the inversion method. Equally
good results have been obtained also for other complicated simulated shapes and
scattering laws, including that of the asteroid (6489) Golevka, an Apollo asteroid
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Fig. 20 A NEAR-Shoemaker image of asteroid (433) Eros (Courtesy of NASA)

observed by radar technique for which a detailed and highly non-convex shape
model is available.

The most important test so far performed for the effectiveness of the adopted pho-
tometry inversion algorithm has been the application to Hipparcos observations. We
remind that the Hipparcos satellite is the immediate precursor of Gaia (see Sect. 2.1).
What is important in the context of this discussion is that Hipparcos obtained sparse
photometric data for a limited number (48) of the brightest asteroids. Among these
objects, many were observed only a few times and/or the obtained data had large
error bars. If we refer to the results shown in Fig. 17, only 26 objects satisfy the
number of observations plus error bar conditions that made inversion possible for
simple simulated triaxial ellipsoid shapes without limb darkening. Among these 26
objects, moreover, some were just at the limit of acceptability.

A systematic analysis of these data has demonstrated that a successful inversion
of Hipparcos data, in terms of successful determination of the orbital period and
pole, has been obtained for 14 objects. In addition, inversion of the two big objects
(1) Ceres and (4) Vesta was obtained, but with a resulting spin period equal to twice
the correct value. These two results can well be explained by the fact that Ceres and
Vesta are peculiar asteroids, whose photometric variation is due to albedo spots on
the surface and not to shape effects. Also the results of Hipparcos data inversion
seem thus to indicate that the photometry inversion algorithm based on the genetic
approach discussed in this section seems quite effective and reliable.
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According to the results of these tests, it is reasonable to expect that the inversion
of Gaia disc-integrated photometric data will lead to the determination of the spin
properties and overall shapes for a number of the order of 10,000 asteroids. More-
over, the triaxial shapes and pole coordinates obtained from photometry inversion
will be also used to refine the determination of asteroid sizes as explained in Sect. 5.

7 The Expected Gaia-Based Asteroid Taxonomy

We have considered so far the photometric signal acquired in the broad Gaia photo-
metric G-band and, more specifically, its temporal variation. As seen in Sect. 3.2
there are, after the crossing of the main astrometric field, two additional CCD
columns (RP and BP). These will provide low-resolution spectroscopy similar to
multiband colour-photometry measurements. One could again analyse variations
due to the spin of the asteroids. We focus here on the information that can be
obtained on the surface of the body and the taxonomy of asteroids that can be
derived.

The relevant spectro-photometric capability of Gaia will be used to obtain spec-
tral reflectance data for a very large number of asteroids. As seen before, there
should be a number of the order of 300,000 main-belt asteroids that will exhibit
apparent magnitudes brighter than V ≤ 20 light when detected by Gaia. When
passing through the BP and RP detectors of Gaia, the colours of these objects will
be recorded. In particular, the whole range of wavelengths covered by the BP and
RP detectors is from about 330 up to 1000 nm. This will make it possible to obtain
spectro-photometric data covering about 20 bands in the above-mentioned wave-
length interval, producing a very valuable data set of spectral reflectance data for
asteroids. Of course, many objects will be faint, and, especially at short wavelengths,
at some transits across the Gaia field of view the recorded fluxes will be below the
detection limit. Moreover, in some cases the objects may move sufficiently fast as
to be lost from the observing window before reaching the RP and BP detectors.
Although detailed studies have not yet been produced at the moment, however, it
seems that taking profit of the fact that each object will be detected several times
during the operational lifetime of Gaia (a number of detections of the order of
65 being typical for main-belt asteroids), and some detections will be better than
others since the objects will be brighter being at smaller geocentric distances, it is
reasonable to expect that for a quite large fraction of the total number of detected
bodies a complete coverage of the spectro-photometric behaviour from blue to red
wavelengths will be obtained. These data will be very important because they will
be used to derive a new taxonomic classification of a very big asteroid sample, much
larger than any similar data set currently available.

In particular, Gaia low-resolution spectral data will be obtained for objects over
a wide range of sizes, and this will be important to analyse possible size-dependent
effects on asteroid colours related to the interplay of collisional and dynamical ages
and effects of surface space weathering. For instance, it is known that the surfaces
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of young S-type asteroids that belong to the near-Earth population have spectral
properties that are more similar to those of ordinary chondrite meteorites than those
of larger, main-belt object’s orbiting belonging to the same taxonomic class.

From the point of view of taxonomy, Gaia will have a couple of excellent prop-
erties: first, this very large spectro-photometric database will be obtained using a
unique, homogeneous photometric system and not merging together data coming
from different instruments. Second, and equally important, the spectral coverage
will include the blue region of the reflectance spectrum. This is a very useful prop-
erty, because the regions of the spectrum corresponding to the classical Johnson U
and B colours, which were included in classical UBV spectro-photometric databases
obtained many years ago by means of photoelectric photometers, are currently
largely missed by the most recent spectroscopic surveys, like SMASS and SMASS2
[14].

One should consider, in fact, that the blue region of the reflectance spectrum
is very important to distinguish between several groups of primitive, low-albedo
bodies. Among the many thousands of asteroids that are expected to be classified
based on the Gaia spectro-photometric database, a large fraction will consist of
primitive, dark objects belonging to the so-called C superclass, which dominates
the asteroid inventory in the outer regions of the asteroid belt. As opposite to spec-
troscopic surveys like SMASS and SMASS2, that were limited in practice to an
interval of wavelengths between 0.5 and 0.95 μm, Gaia is expected to do a better job
in discriminating among different subclasses of the big C complex and to determine
the relative abundance of these different subclasses.

A typical example of an important class of asteroids that has been lost in recent
taxonomies is the F class. These objects have low albedos, are generally more
abundant in the outer belt, but they exhibit a local overabundance in the inner belt,
possibly associated with a dynamical family (Polana [21]). Interestingly, F objects
have been found to exhibit unusual polarimetric properties [6] and may also have
some relations with comets, since comet Wilson–Harrington was classified as an F
asteroid, before its cometary nature was discovered, and also the near-Earth object
(3200) Phaeton, which is known to be associated with the Geminid meteor shower,
was also classified as an F-type [6].

The Gaia taxonomy will be an important tool for studying the overall composi-
tional gradient of the material which accreted into the planetary bodies in our Solar
System [18]. Moreover, the availability of spectral reflectance data and taxonomic
classification will also be important for future studies of the identification of asteroid
dynamical families. The reason is that classical family searches have been based so
far on the distribution of the objects in the space of proper elements. Since many
families tend to overlap in this space, spectroscopic data may add a new dimen-
sion to the problem and should be very useful to discriminate among members of
different families overlapping in the space of proper orbital elements [19].

We note that new taxonomic classifications of the minor bodies of the Solar
System based on spectral reflectance data will be obtained in the next years also
by the next generation of dedicated ground-based surveys like Pan-STARRS and/or
the LSST. The Gaia-based taxonomy, however, in spite of the existence of such
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“competitors” will “come for free”, being an automatic sub-product of the BP and
RP detections. Taking into account the above-mentioned coverage of the B region
of the spectrum, and the general link with other unique results that will be produced
by Gaia asteroid observations, it is certain that Gaia taxonomy will be a very useful
addition to the extremely important scientific value of the Gaia mission for asteroid
science. For instance, it will be possible to link immediately the obtained average
density determinations for about 100 objects with the taxonomic classification of
the same objects, a very important result to interpret taxonomy in terms of overall
composition of the objects. In this respect, also the determination of Gaia albedos
of the same objects will be extremely important to sketch an overall interpretation
paradigm of such a wealth of physical information.

8 Dynamical Model Improvement with Gaia

We have seen before in Sect. 4, that the Gaia mission will provide the orbits of
a large number of asteroids with high accuracy. Not only will the observations be
precise on the CCD (no refraction, no personal equation, well-calibrated measure
through one single instrument independently of the northern/southern hemisphere,
etc.), but mostly all positions are referred to a very homogeneous reference frame
(materialised by QSOs and primary reference stars), avoiding many systematic
errors. Such refined orbits (for at least over the period of the Gaia observations) will
enable to detect and/or measure small and subtle effect, either dynamical, relativistic
or non-gravitational. We will see some aspects for the determination of asteroids
mass, test of general relativity and linking of reference frames. Because we have to
wait to acquire the real Gaia data all results given below are hence obtained from
simulations of the observations, and they mostly concern the precision of parameters
estimation. Combining on one side the image simulation on the focal plane and a
centroiding precision (Sect. 5.4) to the Gaia scanning law and asteroids ephemerides
on the other side, one gets the useful data to derive the quantities presented below.

8.1 Asteroid Mass

As we will see later (Sect. 10), monitoring the orbits of binary and multiple sys-
tems will provide their total mass, and in some circumstances, the mass of each
component. The other way to derive the mass of an asteroid is to measure the
mutual gravitational perturbation during a close encounter [124, 53, 81 and ref-
erences therein]. This can be done from the perturbations of asteroids on Mars or
asteroids–asteroids perturbations. Indeed, this generally involves a large massive
asteroid influencing several massless target asteroids, although target asteroids can
in some encounters act as perturber too. Given the high precision with which Gaia
can derive the orbit of an asteroid (see Fig. 21), one can detect small effects affecting
the orbit, in particular small perturbations during close encounters. It is clear that the
effect can be detected only if the astrometric observations are obtained before and
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Fig. 21 Left: Orbit improvement; relative precision obtained on the semi-major axis from the 5
years of Gaia observations. Right: Precision of asteroid mass determination with Gaia from gravi-
tational perturbation during close encounters

after the encounter itself. The more general and straightforward problem would be
to integrate the equations of motions (and variational equations) of the dynamical
system at once. This means an N -body integration with N of the order of 300,000
plus the eight planets, relativistic effects, the effect of the oblate Sun and a ring of
asteroids, etc. The step size would need to be automatic and would be governed
by the encounters. However, such high CPU-consuming algorithm is not necessary
in our more hierarchical problem, where many asteroid orbits can be considered as
perturbed two-body solutions. In fact the gravitational effect of a given asteroid i on
a planet or an asteroid j is in most cases negligible and should not be computed, not
only to decrease the CPU time but also to avoid unnecessary numerical noise. It is
hence better to perform the integration by taking into account only relevant perturba-
tions and thus derive a list of potential perturbers. These perturbing asteroids are to
be added to the classical perturbing major planets that are systematically taken into
account in the perturbing function [80]. Note also that a perturbing asteroid can still
be a target for another one, but the size of the N -body system is decreased by several
orders of magnitude. So, the first step is to provide the list of targets for each large
asteroid and inversely the list of perturbers to include for a given asteroid. In the
second step, one computes the partial derivatives for the additional unknown masses.
Note that when the error on the mass is large, the problem is likely to be non-linear.
In the other case one starts with a linear least squares treatment of the problem. It
has been shown in [79] that Gaia will derive the mass of about 150 asteroids with
a relative precision better than 50% (see Fig. 21). Since the number of targets is
often large, systematic effects are reduced, so that Gaia will increase the precision
of the mass determination, but also and mostly its accuracy.5 Some of the targets

5 Note the semantic. Broadly, the precision corresponds to the dispersion or variance of a quantity
around the mean or expectancy, while the accuracy will give the error between the true and the
mean. A parameter estimation or determination can be of very high precision, in particular when
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can be poorly observed with the Gaia scanning law, or the encounter can take place
close to the beginning or the end of the 5 years mission. In the latter case, having
only half of the data is totally useless; so it could be interesting to complement the
space-based data with additional ground-based astrometry. These should, however,
be of good precision and over a limited time span to reduce the effects of systematic
errors. Again, conservative simulations have shown that additional masses can be
derived from such data combination [83].

The mass of Ceres and Vesta will surely be known with higher accuracy from
the future Dawn mission, and they will help to validate the method. Some of the
targets are also binary asteroids which will provide additional calibrations. Interest-
ingly other asteroids in the list of Gaia mass determination have currently no mass
determination or act as large perturber on Mars [79]. Since the present limitation on
the ephemerides of inner planets arises from the poor knowledge on the asteroids
mass, Gaia will bring some improvement. Combining the measures of mass and
size–shape–volume provides another fundamental physical parameter, the bulk den-
sity. With the aid of ground-based high-angular resolution observations this quantity
will be obtained with high precision for about 60 targets, covering many taxonomic
classes and enabling to test possible links between density and taxonomy. We know
for instance that rubble-pile asteroids or highly fractured ones can have substantial
porosity making this link non-trivial [12].

8.1.1 Global Solution

Let us stress that—in contrast to previous works on mass determinations—these
estimations are obtained while treating the problem globally: all targets for a per-
turber are treated simultaneously and cross-perturber terms are also taken into
account. The system of observational equations takes the form of a sparse diagonal–
column block matrix:

P ·

⎛
⎜⎜⎜⎝

A1 0 · · · · · · G1 M1

0 A2 0 · · · G2 M2
...

. . .
...

...
0 · · · · · · AN GN MN

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dq1

dq2
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dqN

dg
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...
dm p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

dλ1

dλ2
...

dλN

⎞
⎟⎟⎟⎠ (19)

obtained from a large number of observations, but in severe error if there are uncorrected bias in
either the observations or the model. An illustration can be given by a badly built ruler where the
graduation starts at 1 not 0, the precision of the measure is about 0.5 mm which is fair, but all
measures are systematically wrong by 1 cm, hence inaccurate.
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where

– N is the total number of asteroids (≈ 300, 000);
– P projection matrix to transform heliocentric (barycentric) position vector x to

observed quantities λ (or RA, Dec);
– Ai is the Jacobian matrix (ni × 6) of the partial derivatives with respect to the

initial conditions for asteroid i ,
[

∂x
∂qo

]
i
;

– qi is the vector of corrections to the six initial conditions for asteroid i ;
– Gi is the Jacobian matrix for asteroid i (ni × n par ) of the partial derivatives with

respect to global parameters common to all asteroids
[
∂x
∂g

]
i
;

– dg is the vector of the n par global parameters;
– Mi is the Jacobian matrix for asteroid i (ni × p) of the partial derivatives with

respect to the mass corrections relevant to asteroid i . It is again a sparse matrix;
– dm j is the mass correction for massive asteroid j perturbing asteroid i . As said

before the list of perturber has been previously selected from a simulation of
close encounters [81, 82].

This system is inverted for all parameters together and combining various target
asteroids simultaneously.

8.1.2 Other Small Effects—Estimated and/or Considered Parameters

The photocentre offset corresponds to the difference—projected on the sky—between
the centre of gravity of the body (the one to be considered in the equations of
motion) and the point derived from some centroiding giving for instance the mode
of the light distribution on the focal plane [64, 45]. For a sphere observed at full
phase there is no difference as long as the light distribution is radially symmetric.
Of course, if the phase is important the difference will be large; it scales with the
apparent size of the body and its surface properties, light scattering and albedo var-
iegation. Such effect is generally taken into account for planets and large planetary
satellites [77] since it amounts to several mas. Considering only the phase i and the
size of the object which is assumed to be spherical (of apparent diameter φ) and
with no albedo markings on its surface, one can write

δλp = C(i) sin(i/2) φ/2, (20)

where the displacement δλp is given in the direction of the Sun. The function C(i)
depends on the scattering properties of the surface; for a perfect and hypothetical
Lambertian sphere one has C(i) ∼ 3

4 + 3
32 i2 + o(i3), which generally yields an esti-

mation of the maximum offset. This offset is also noticeable in the Hipparcos data for
the largest asteroids [46]. With the high precision measure from Gaia, it will be of
importance for a larger number of objects. There are three different cases depend-
ing on the size of the target, and our knowledge of its size, shape and brightness
distribution. If the body is small, the effect can be negligible; if the object is bright
and large, the effect can be modelled with enough accuracy or some parameters
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can even be estimated from the inversion of the system of (19) itself [46]. Dynam-
ical (state-vector initial conditions) and physical parameters (size, shape, etc.) can
be derived simultaneously for a combination of both astrometric and photometric
data [55]; however, as long as they remain largely decoupled one can also proceed
iteratively with separate estimations of shape and light scattering properties from
the photometry and size estimations from the astrometry. However, there remains
the third and intermediate case where the effect (generally systematic, see below)
is neither negligible nor can it be fully modelled or estimated for instance from
incomplete knowledge of the shape and light scattering at the surface of the body
[57]. In this case there will be additional random noise in the modelled photocentre
offset which, in turn, will decrease the accuracy of other parameters estimation,
this can be handled through consider covariance matrix [112]. The LLS problem to
solve can be written as Ax.x + Ac.c = b, where only x is the unknown vector to
be estimated; the consider vector c of input parameters is assumed to be known but
with some a priori uncertainty, e.g. σ 2(c) = σ 2.I. Clearly, both the LLS solution for
x and its variance/covariance matrix will depend on the choice of c and associated a
priori variance/covariance matrix. Such procedure also allows to yield the sensitivity
of the estimated parameter x with respect to the considered parameter c.

One should note that the photocentre offset is a systematic effect, always directed
towards the direction of the Sun, hence typically in the ecliptic plane for an asteroid.
Being systematic, such effect should not be compared to the precision of a single
observation in the error budget, but to the precision foreseen for global parame-
ters, which—compared to the observation precision—scales as N−1/2 and more
specifically to their correlations. As analysed in [107, 45] for the Hipparcos data,
the photocentre offset effect mimics a global rotation along the ecliptic pole. The
situation is very similar to another systematic effect due to thermal inertia of the
body, the Yarkovsky effect.

In addition to the perturbations already mentioned, one can consider non-
gravitational forces acting on the dynamics of the body (out-gazing comet, asteroid,
meteoroid, particle, etc.) such as Poynting–Robertson or solar pressure. Here we
consider the Yarkovsky drag which is a thermal effect. An asteroid is not a perfectly
reflecting body and is re-emitting part of the solar energy in the thermal infrared.
Due to thermal inertia (and the asteroid rotation) this re-emission has some lag in
time; to illustrate this, consider for instance the hottest time in the day: it is not at
solar noon but a couple of hours later in the day. Thus the photons are re-emitted in a
direction different from the (radial) reception direction. Taking the balance of energy
one sees that the force created can be decomposed by one part in the radial direc-
tion and by another part in the tangent direction and hence create some additional
non-gravitational force or acceleration (see Fig. 22). This effect that was previously
considered for small particles such as meteoroids has been detected on larger bodies,
first on the LAGEOS satellite [100] and later for asteroids [101, 127]. For a fast
rotating body or a non-spinning one there is no diurnal effect. The Yarkovsky effect
scales with the object size, its thermal inertia (or equivalently thermal conductiv-
ity) and lastly its distance to the Sun. The general trend effect is most noticeable
in the NEOs population [23]. From its astrometric measurements alone, Gaia will
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Fig. 22 The diurnal (left) and seasonal (right) Yarkovsky effects. Depending on the prograde (resp.
retrograde) spin axis direction, the force will secularly decrease (resp. increase) the semi-major
axis of the asteroid (diurnal). In case of zero obliquity (purely seasonal) one always has da/dt ≤ 0
(Credits GSFC NASA)

not be able to derive all physical parameters involved in the Yarkovsky effect, but
for some NEOs can derive one scaling parameter. This means that if the diameter
and spin state are well known, the thermal inertia can be derived for a half dozen
of bodies [79]. Again when not completely negligible such systematic effect can
affect other parameter estimations, such as those involved in the local test of general
relativity.

8.2 Local Tests of General Relativity and Reference Frame Link

There are three historical and fundamental tests that assessed with some success6 the
theory of General Relativity of Einstein (1916): precession of the perihelion of Mer-
cury, light deflection by the Sun and gravitational redshift. A fourth can be added
to that list that arrived later, the radar-echo delay, also called Shapiro effect. Last,
let us note the importance of the work of Schwarzschild who derived—under given
hypotheses—an exact solution to the equations enabling to predict quantitatively
these effects.

It was known since Le Verrier in the middle of the nineteeth century that the
(Newtonian–Euclidian) planetary theories from celestial mechanics could not match
with the precession of the perihelion of Mercury’s orbit around the Sun of 43′′/cycle.

6 The two experiments for the light deflection during the Solar eclipse of 1919 were not free of
some errors, but nevertheless gave a result close enough to the prediction to convince Eddington
and Dyson and further the scientific community. The precession for Mercury’s perihelion matches
the observations but the part due to the oblateness of the Sun is not well known.
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No satisfactory explanation could be given until the theory of general relativity that
nicely predicts this very effect. Alternative theories to the GR do exist; a particular
class of metric theories can be linearised and grouped in a parameterised formalism
when gravity is weak and massive bodies move slowly v " c, the parameterised
post-Newtonian formalism [131]. This expansion, in its “first” order7 corresponds to
the classical Newtonian gravity, and in its “second order”, to post-Newtonian correc-
tions [76]. Among the parameters of this formalism, γ reflects the light deflection
and β the relativistic precession of the perihelion, they are both equal to one in
general relativity. Test of general relativity, at least when dealing with phenomena
in the Solar System, usually consists in measuring the deviation to the canonical
value predicted by GR for these PPN parameters [129, 130].

Excluding the part due to planetary perturbations that can be modelled precisely,
the precession of the perihelion of the orbit of a solar system body is governed by
the relativistic effect and an additional effect due to the oblateness of the Sun, given
by its quadrupole moment J2. Within the PPN formalism, the secular term for the
argument of the perihelion ω is given by

Δω = Δω|P P N +Δω|J2

=
[

6πm#
a5/2 (1 − e2)

Γ+ 6πR2
#

4

5 cos2 i − 1

a7/2 (1 − e2)2
J2

]
(t − t0)

= 3m#
a (1 − e2)

[
Γ+ R2

#
4 a m#

(5 cos2 i − 1)

(1 − e2)
J2

]
n (t − t0), (21)

where m# = G M#/c2 ≈ 1.48 km, Γ = 2+2γ−β

3 , a is in AU, t in year, n in
rad/year and, last, Δω is in radian. Neglecting the contribution due to the Sun,
the relativistic effect from the general relativity is Δ� = Δω = 6πm# [a (1 −
e2)]−1 λp [rad/cycle], which for Mercury yields a precession rate of 43′′/cycle.
However it clearly appears from the equation above that the effect of the Sun and
the relativistic effect are linearly coupled, and one cannot derive both unknown
parameters from one single value of the precession of one planet. On the other hand,
having different bodies spanning a larger range of eccentricities and semi-major axis
improves the separation of the unknowns; moreover, there is an additional effect on
the precession of the ascending node ΔΩ = ΔΩ|J2 that arrises from the Sun only,
while there is no particular relativistic effect on that argument.

The asteroids act as test particles in the gravity field of the Sun, having hence
orbits that are well defined by Gaia enables—in theory—to derive both parameters
separately. Performing simulations of the motions and Gaia observations of syn-
thetic populations of NEAs [50] again yields a variance analysis. Since the actual
known population of NEAs is not complete to apparent magnitude 20, we should
not restrict ourselves to the known population only, but estimate also the NEAs yet
to be discovered before Gaia. Heuristic samples have been produced following the
(un-correlated) distribution in orbital elements and absolute magnitudes derived by

7 All small parameters are expanded simultaneously.
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[10]. For each possible set of Gaia observations we have determined the variance
matrix for the unknown parameters including Γ and J2 either simultaneously or
separately.

Similarly one can add as global parameter a possible variation of the gravitational
constant G, a problem similar to Gyldén–Mestchersky problem [71], also present
in the analysis of lunar-laser Ranging data and planetary ephemerides [132, 94].
One should note that depending on the definition of the osculating elements, the
results for the variation can differ [58, 43]. In addition one can also perform a
link of reference frames. All computed positions are given with respect to a frame
defined by the equations of motions and associated parameters (time scale, masses,
etc.): the dynamical reference frame. This frame is materialised by the positions
of solar system objects. All observed positions, in contrast, are given with respect
to a frame defined as kinematically non-rotating. This frame is materialised by the
distant QSOs (extra-galactic, quasi-stellar objects) and next by reference stars for
which the motion is well modelled. Both reference frames are non-rotating, either
dynamically or kinematically; nevertheless, a global rotation might subsist. In any
case the reference plane and origin of longitudes in this plane are conventional and
completely independent in each frame; in the case of the ICRF (the reference frame
defined by the QSO from VLBI astrometry), it is close to the FK5 J2000 mean equa-
tor and equinox but the x-axis does not point exactly in the direction of the vernal
point. Again, all accurate observations of solar system objects can act as reference
point to derive the rotation vector W = W0 + Ẇ (t − t0), i.e. both the rotation for
the link to the dynamical reference frame W0 at some given reference epoch t0 and a
possible test of rotation rate Ẇ. One sees from Table 1 that the rotation rate will be
derived with a precision similar to the one of the Gaia optical ICRF reference frame
itself.

Table 1 Standard deviation (1 σ ) for various global parameters derived simultaneously by Gaia.
The rotation and rotation rate vector components are given in the ecliptic J2000

β J2 Ġ/G Wo Ẇ
– – yr−1 μas μas.yr−1 References

Gaia 5 × 10−4 2 × 10−8 2 × 10−12 2-2-5 1-1-2 [50]
LLR 2 × 10−4 – 9 × 10−13 – 100 [132]
EMP 1 × 10−4 3 × 10−8 1 × 10−13 – – [94]
INPOP – 2 × 10−8 – – – [36]
1μas/yr ∼ 5 × 10−12 rad/yr

9 Orbit Determination and Improvement

9.1 Introduction—A Historical Perspective

Determination or more exactly the representation of orbits is an old problem starting,
after Babylonian tables, with the epicycles and later with the work of Kepler who
derived the correct form of orbits with the conics [106]. Another ancient aspect
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connected to this topic is the determination of the orbits of comets which shows
some interest, or more recently the orbits and motion of meteoroids and meteor
streams.8 As noted by Gauss in his fundamental “Theoria Motvs9” preface [39, 38,
40], the problem for the comets (and now, for the asteroids too) is different from
that for the planets for which many observations can or have already been gath-
ered. In fact this amount of data collected principally by Tycho Brahe led Kepler
to find his eponym laws; now, in the case of the small bodies, the problem to solve
is different: we know the orbit has to be an ellipse or an hyperpola and we want
to derive its parameters with only few data in hand. As shown by the historical
examples of Olbers, and Halley for his famous comet,10 and also Piazzi, Gauss,
von Zachs for Ceres, the practical significance to the determination of an orbit is
to be able to compute the ephemeris and hence to be able to track the object in
the telescope (consider nowadays typical ≈ 10′ large/small fields of view) at its
next apparition. If not, the body can be lost, necessitating some painful effort to
catch it again; one illustrative example is given by the long-lost asteroid 719 Albert,
discovered in 1911, it was re-discovered as 2000 JW8 in year 2000, about 9 decades
later. With modern archives data mining techniques [117] it becomes also inter-
esting to be able to go back into the past and see whether additional data already
exist.

Before the discovery of asteroids and the particular work of Gauss, the history
of orbit determination was closely related to comets. Indeed comets were intriguing
and furtive objects yet bright and showing large motion in the sky; but even their
parallax remained for long unknown. Many attempts to derive their orbits were
unsuccessful, mainly because the exact nature of the curve was not known,11 and
often assumed to be a straight line. Newton proposing in his “Principia” (1686,
book III, prop. XLI) a geometric method based on a description by a parabola with
the Sun at the focus paved the way to future successes. While we shall note some
contributions from Euler, Lambert and Lagrange in the field, the comet of Halley—
or comet of 1759—is the first case for which an orbit and precise prediction was
computed. Halley, following the work of Newton, identified in 1705 from the com-
putation of the parabolic orbital elements, the apparent periodicity and successive
returns of this celestial body (meaning the orbit is an elongated ellipse rather than
a parabola). Next, from the calculation of the planetary perturbations on the comet
provided by Clairaut (1762), it was possible to give accurate enough predictions
for the 1759 apparition with all its spectacular outcome and a beginning of a new
era in the cometary science. The oldest apparition attested in observation goes back
to 240 BC, in China, possibly 467 BC [29, and reference therein]. We will end

8 Interestingly, it appears that comets were associated to meteors—in the etymological sense—by
ancient philosophers [2].
9 Theoria Motvs Corporvm Cœlestivm in Sectionibvs Conicis Solem Ambientivm. Autore Carlo
Friderico Gauss.
10 Nowadays comets are named after their discoverer, it was not the case at the time of Halley.
11 Tycho Brahe having observed the comet of 1577 noted it could not be on a circular orbit, hence
differing from the planets.
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this short historical review by mentioning the later work of Olbers, and by far the
most used technique for deriving the orbits of comets. Contemporary to Olbers,
Gauss recognised the advances obtained by Newton for the orbit determination of
comets: “The great Newton himself, the first geometer of his age [...] he came out
of this contest also the victor”, but added, however, that having one of the unknown
removed (either eccentricity or semi-major axis for the parabola) advantageously
reduced the complexity of the problem (there are more equations than unknowns
and no transcendental equations). The problem of the determination of an aster-
oid’s orbit generally resides in the determination of the elliptic elements having
several topocentric observations of the target spread over a limited interval of time
(say a few weeks). In many situations in the Solar System—and in contrast to a
full N -body problem—the Keplerian two-body problem studied by Newton gives
a satisfactory approach; which can be, if needed, iteratively developed to higher
degree of accuracy later on by considering the small perturbations. The two-body
problem is of importance also because it has a complete solution in closed form. In
the following we shall focus mainly on orbits of asteroids, possibly as test particles
in our Solar System, and sometimes massive bodies that show mutual perturbations
or gravitational perturbations on Mars and/or other inner planets. We will at some
point consider a perturbed two-body problem (the mass and attraction of the Sun is
preponderant, the attraction of the planets act as small perturbation) with small addi-
tional gravitational forces. We will not develop the case of comets, for which well-
known non-gravitational acceleration can be important, neither will we discuss here
the problem of the orbit determination of meteoroids or meteors, see [29, Chap. 12].
We will not discuss the case of range and range-rate data although it is of major
importance in modern data for NEAs and space vehicles. We will focus mainly on
the problem of orbit determination for an asteroid given classical telescopic RA
and/or Dec data.

The most impressive work performed on the determination of the orbit of asteroid
was performed by a great mathematician and astronomer, Carl Friedrich Gauss.12 It
took some time to Gauss to publish13 his work in the “Theoria Motvs” (1809), where
he explains and exposes his method with great details but certainly with additional
refinements that were not used in the original work applied to the Ceres case. Indeed
the illustrative example of the orbit determination is given not for asteroid (1) Ceres
but for (3) Juno [40, Book II, Sect. I]; Ceres is also treated with the additional
observations obtained in 1805. One can note a few technical details that maybe are
of no more use today: little use of rectangular coordinates, use of manipulations
to carry out calculations with the aid of logarithms, use of a fictitious place of the
Earth in the plane of the ecliptic to decrease the effect of unknown parallax and
reduction of time of observations to the meridian of Paris. After the discovery of the

12 Karl Friedrich Gauß for the German spelling, this can be helpful for bibliographic research.
13 It also took some time to have the text translated, 1857, 1859 and 1864 for the English, Russian
and French version, respectively. The collected works of Gauss were published starting from 1862.
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Fig. 23 G. Piazzi (1746–1826) on the left showing—not Gauss but—his newly discovered minor
planet Ceres Fernandinea; and C. F. Gauß (1777–1855) on the right in a portrait (extract) painted
well after the Ceres story (he was 24 at that time) (Piazzi: (public domain) Gauss: painting from
Christian Albrecht Jensen (1792–1870)-copies)

asteroid (or minor planet14) Ceres by the astronomer Piazzi at Palermo observatory
in January 1801 (see Fig. 23), a large excitation arose to be able to predict its next
apparition. Ceres15 was observed starting from its discovery until the beginning of
February down to a solar elongation of 70◦, corresponding to a relatively short arc
of 3◦ over 40 days. Being suspected to be a star, then a comet, it appeared clear
at the discovery time that its orbit was more likely planetary. With his pioneering
work and correspondence with astronomers, Gauss was able to predict Ceres’ next
apparition in December 1801 with a small 0.1◦ error as observed by Von Zach and
next Olbers 1 year after its discovery. This was better than any other predictions and
assessed the success of Gauss’ method and collaborator observers16. The case of
Ceres at discovery is given from his correspondence in the collected works, Band
VI [37], with the data from 2 January, 22 January and 11 February 1811. These
dates are not too much separated in time and one moreover has t2 ≈ 1/2 (t2 + t3).
The presentation of the method of orbit determination is generally separated in two

14 The discovery of Piazzi is in some sense remarkable, he did find—depending on the nomencla-
ture in use—the first planetoid, the first minor planet the first asteroid, the first dwarf planet, and
possibly [69] the first trans-Neptunian that was injected into the inner Solar System!
15 Originally called Ceres Fernandinea by Piazzi, referring to the King Ferdinand III of Sicily.
16 All these names are now associated with asteroids: 999 Zachia, 1000 Piazzia, 1001 Gaussia and
1002 Olbersia.
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parts, as was done by Gauss; in a first time one develops relation in the orbit and in
space from positions or position and velocity, and in a second time one derives the
method starting from three or more geocentric observations.

9.2 Orbit Determination

Since the pioneering book of Gauss, several textbooks summarise the problem of
the determination of an orbit (elliptic or parabolic) and the evolution with time up
to the modern ones allowing the use of fast computing machine [85, 86, 119, 93,
29, 32, 99]. Considering the two-body problem in the rest of this section, there
are two classical problems encountered in celestial mechanics and astrodynamics
computation of the position and velocity at a given time of a body given the orbital
elements, or, inversely, obtain the orbital elements given the initial position–velocity
conditions or state vector [99]. The latter form is of particular interest since it says
that the (heliocentric or barycentric) orbit is completely defined from the knowledge
of such (heliocentric) state vector. Another possibility to fully characterise the orbit
is to have two (heliocentric) radius vectors, at any two different epochs (excluding,
however, data separated by half periods or colinear vectors). These are the basis
of the methods for the determination of orbits developed by Gauss and Laplace.
They are in fact very similar as pointed out by H. Poincaré in his preface of the
Leçons17 from Tisserand [120]. The problems of Laplace and Gauss are indeed
very similar but technically different and have encountered various success depend-
ing on the practical aspects to solve. Both Gauss and Laplace approximations will
provide reliable results, possibly with different convergence speed. One can also
note here that some practical refinement has been proposed by various authors (in
particular [98] for the method of Gauss, or [67] for the method of Olbers). Actually,
Gauss method is most widely used (it was already the case before modern computers
[95]), although Laplace can be applied with modern CCD observations that allow
to estimate the apparent motion of the body, e.g. [15]. It remains dependent on
the precision with which one is able to derive the second derivatives of the right
ascension and declination [29]. A comparison of the practical aspects with modern
computations can be found in [17] (which also introduces a less famous method
developed by the Italian astronomer Mossotti). The conclusion of their simulation
runs is that Gauss method gives, in general (more than twice times), better results
(when compared to the reference orbital parameters a, e, i) than the one of Laplace.

All methods for deriving the orbit of an elliptic motion necessitate to solve non-
linear problems, involving transcendental functions, hence with no close form or
general algebraic solution. Approximations are thus needed which generally also
imply that observations are not too far apart but neither too close to encounter
degeneracy of the problem. Gauss method supplants the one of Lagrange, in fact
Gauss showed that it is more convenient to reduce the problem to two unknowns x, y

17 Note that only the methods of Olbers and Gauss are developed in these Leçons.
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involved in two equations X = Y = 0 as simple as possible. He also gave a method
to compute the ratio of sector to triangle (Sect. 9.3.1), one of the fundamental
quantities used. These classical methods require three (or more) observations, hence
sufficient equations to derive the six unknowns of the problem. One other method of
interest has been developed—in the case where only two topocentric observations
are available—by Väisälä (in addition to the determination of a circular orbit, e.g.
[118, 29]). If the orbital plane is close to the ecliptic the—classical—method fails,
Gauss also considered this case and gives the extension to find the orbit from four
observations. Before starting the orbit computation itself one can also want to cor-
rect the observations (apparent directions given in, say, the true frame of the date,
though today such frame will have to be replaced by the CIP and its non-rotating
origin) for various classical effects of (stellar) aberration, precession/nutation, par-
allax. These being in any case small, they can often be ignored on the first step.

We give in the following a sketch of Gauss’ method of orbit determination. Let
us as before reproduce a remark extracted from the preface of the French translator
(E. Dubois [38]) of Gauss’ work: “Or il est bien probable que la zone située entre
Mars et Jupiter n’est pas encore suffisemment explorée et que le chiffre de 79 auqel
on est arrivé, sera encore augmenté. Qui sait ce que réserve l’avenir !!... Bientôt
alors les astronomes officiels n’y pourront plus suffire, si des calculateurs dévoués
à l’astronomie et à ses progrès ne leurs viennent aussi en aide de ce coté18”. Well,
the future actually gave an increase by several orders of magnitudes of objects in
that zone (and a few more in the Trojan and trans-Neptunian region) which number
is still increasing exponentially; we shall ask again what will the future hold for us
with ongoing surveys like Pans-STARRS, LSST and others?

9.3 Gauss Method—A Sketch

The general scheme of Gauss method is to reduce the problem to a system of two
equations X = Y = 0 involving two variables x, y; one sets these two variables
for two of the observations, derives the orbital parameters and tests whether the
equations are satisfied for the third observation. Generally they would not, so the
next step is to derive the (small) corrections λ,μ to apply to x, y from the knowl-
edge of the first-order derivatives of ∂(X, Y )/∂x, ∂(X, Y )/∂y and repeat the process
until convergence to a solution that will satisfy all three observations together is
reached. Actually Gauss does not give one, but five methods with additional exten-
sions [40, Book II, Sect. I, 124–129] and comparison to the observed geocentric
position itself is not always necessary. The first, and more natural, process given by
Gauss is to take for the two variables x, y the geocentric distances (or the logarithm
of these distances projected on the equator) for the first and last observations. From

18 It is likely that the zone between Mars and Jupiter is not yet sufficiently explored and that the
number of 79 that has been reached will still be increased. Who knows what the future will hold
for us!! Soon official astronomers will not suffice, if some computers devoted to astronomy and its
progress do not come to their rescue also on that side.
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there on derives the heliocentric position vectors of the target, the orientation of the
orbital plane in the inertial reference frame and—from the timing and longitudes
in this plane—all other elliptical elements. Computing the values for the third–and
middle–observation will yield two equations, that, for the computed orbit to be a
solution, should satisfy X = Y = 0. Another variable that could be tested is the
time difference for the third observations, but this is not as precise. The most com-
mon process is to take as unknown the heliocentric and geocentric distances of the
asteroid at the second observation.

9.3.1 The f and g Series and Sector to Triangle Ratio

A Keplerian orbit is fully characterised from the knowledge of the six elliptic orbital
elements or also from the initial conditions of the equations of motion ro, ṙo at some
reference epoch to. Gauss also showed that it can equivalently be derived from the
knowledge of two heliocentric radius vectors r1, r2 at time t1 and t2.

The so-called f and g series are of fundamental use in such problems of pre-
liminary orbit determination and approximation. Following [27, 32, 99] we shall
introduce them broadly here. Starting with the equation of motion

d2r
dt2

+ μ
r
r3

= 0 (22)

and introducing a transformation of time τ = μ1/2 t = k t , one can write

d2r
dτ 2

+ r
r3

= 0 (23)

and

r = f (τ ) ro + g(τ )

(
dr
dτ

)
o

. (24)

Expressing r in Taylor expansion from the starting position ro and expressing
also the derivatives dnr/dτ n from (23) one gets the f, g series:

f = 1 − τ 2

2 r3
+ τ 3

2 r4

dr

dτ
+ o(τ 4),

g = τ

(
1 − τ 3

6 r3
+ τ 3

4 r4

dr

dτ
+ o(τ 4)

)
, (25)

note that g is given, without particular reason, to order O(τ 4). On the another
hand, by introducing the eccentric anomalies, one can also derive a closed form
for f and g:
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f = 1 − a

r0

(
1 − cos(E − E0)

)
,

g = τ − a3/2

μ1/2

(
(E − E0) − sin(E − E0)

)
, (26)

where E is the eccentric anomaly. Introducing the true anomalies v in the orbital
plane, one can write one of Gauss’ fundamental relations giving the ratio of sector
to triangle:

y =
√

a (1 − e2) τ

|ro × r| . (27)

Another formulation, not reproduced here, will give a similar—yet more complex—
relation with the eccentric anomalies. This ratio can be obtained from continuous
fraction of Hansen:

y = 1 + 10

9

h

1 + 11
9 h

1+
11
9 h

1+···

(28)

involving the quantity h = h(r, ro, τ ).
Starting from the knowledge of the two radius vectors r1, r2 at time t1 and t2,

Gauss provides—from the ratio of sector to triangle relation—a formulation to com-
pute f, g from (26) . We can now write

ṙ2 = (r1 − f r2)/g (29)

and consider that the orbit is fully characterised from the knowledge of the state
vector (r2, ṙ2) at time t2.

9.4 Orbit Determination from Three Positions

Since we are looking for a Keplerian orbit, all three position vectors ri at time ti are
coplanar, so that one can write

r2 = [r2, r3]

[r1, r3]
r1 + [r1, r2]

[r1, r3]
r3, (30)

where the coefficients of this liner relation are exactly the ratio of the era of the
triangles formed by the respective vectors. Taking into account now Kepler’s law
of era, Gauss showed that one can get iteratively an approximation of the triangles
era [r1, r3] from the elliptic sectors era (r1, r3) with high precision. Expressing the
areas from the vector cross products, and making use of the f, g series (Sect. 9.3),
one will get an approximation for their formulation:
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c1 ≡ [r2, r3]

[r1, r3]
= g3

f1g3 − f3g1
,

c3 ≡ [r1, r2]

[r1, r3]
= −g1

f1g3 − f3g1
. (31)

Putting

τ1 = k (t3 − t2)

τ2 = k (t3 − t1)

τ3 = k (t2 − t1) (32)

and expressing the f, g coefficient with the modified time, one has

c1 = τ1

τ2

(
1 + τ 2

2 − τ 2
1

6 r3
2

)
+ o(τ 3),

c3 = τ3

τ2

(
1 + τ 2

2 − τ 2
3

6 r3
2

)
+ o(τ 3), (33)

which still involves three unknowns. Examination of these relations shows that
taking for the time of the second observation, t2 = 1/2(t1 + t3), will derive this
approximation with higher precision. Writing the simple triangle vectorial relation
Sun, Earth and asteroid position at ti

ri = Ri + ρi , (34)

where ri , ρi are the heliocentric and geocentric positions of the asteroid and Ri is
the heliocentric position of the Earth, one obtains the system of three equations:

ρ2 − c1ρ1 − c3ρ3 = c1R1 + c3R3 − R2, (35)

and after some manipulation, one finally obtains a relation involving only r2, ρ2 of
the form:

ρ2 = A + B/r3
2 , (36)

and similar for others ρi , ri .
This provides one equation involving the two unknowns ρ2, r2. Simple geometry

of (34) at t2 yields an additional one:

r2
2 = R2

2 + 2 R2 · ρ2 + ρ2
2 . (37)

This system of two equations and two unknowns can be solved numerically. Gauss,
however, either reduced the system to a single equation of the eighth degree or to a



314 D. Hestroffer et al.

transcendental equation. Having solved for r2 and ρ2 yields the other ρi and next all
ri. From the three position vectors at the three dates, or equivalently r2 and ṙ2 at t2,
the orbit is fully determined (see Sect. 9.3).

Starting from a first good approximation, it is an iterative method which improves
the results at each step. In the next iterations the values for the triangles ratio c1, c3

given above to o(τ 3) will be improved. There are several ways to do so, Gauss
developed his use of the sector to triangle ratio Sect. 9.3, and no new equations are
to be used. Making use of Kepler’s law of era, the ratio of triangles can be expressed
as a function of the ratio of sectors:

c1 ≡ [r2, r3]

[r1, r3]
= (r2, r3)

(r1, r3)

y2

y1
= τ1

τ2

y2

y1
, (38)

where now the modified time should include corrections for light-time travel, etc. As
noted by Gauss himself, three iterations are generally sufficient. This basic method
is very performing when the angular observations are close together (but neither
too much, to the point they would correspond to a single observation), the case for
which Gauss designed his algorithm(s). Gauss also gives conditions for the method
to work [40, Book II, Sect. I, 130]. If the observations are spread over a large interval
of time, the method is less well suited and might not converge. One can instead use
the “double r-iteration” technique [32] or very similarly the “statistical ranging”
technique (Sect. 9.5). In that case one simply takes randomly—with some initial
guess on the nature of the object, NEA, MBA, etc.—two values for the geocentric
distance at two of the observations. This defines all two radius vectors and one pos-
sible orbit. The “double r-iteration” will iteratively correct the initial guess for the
distances to converge to a solution, the statistical ranging will more simply proceed
to straight trial/error Monte Carlo sampling of possible values.

9.4.1 The Method of Laplace—Briefly

In the method of Laplace one writes the first and second derivatives of the position
vector r considering that the observations can provide the corresponding derivatives
for the observed apparent direction. Let us write the heliocentric position vector of
(34):

ri = Ri + ρi ui ; |ui | = 1. (39)

Putting this expression in the equations of motion (22), one has a system of four
unknowns (r, ρ, dρ/dt, d2ρ/dt2), the quantities for the Earth being given by the
ephemerides.19 One again will write the additional equation (37) from the triangle.
The system can be reduced to an equation of an eighth-degree resultant (as with
Gauss’ method) involving only r2 for the observation at time t2. This is solved

19 To be found in the “Connaissance des Temps” for the Leçon of F. Tisserand, the “Astronomical
Almanach” for Roy, or at URL http://ssd.jpl.nasa.gov and http://www.imcce.fr, here.
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numerically by successive approximation. The characteristics of the solution have
been studied by Charlier [93, Chaps. 3–21] who gave a geometrical interpretation
for the various roots from a strophoid curve. The first and second derivative of u̇
are often derived from an expansion instead of being measured, this is also given
by Laplace. The approximation of the geocentric distance will not be obtained as
accurately than with Gauss method.

9.5 Other Methods

Before developing the linear case that is well adapted to refinement of asteroids’
orbit with large number of observations, of good quality and over large space and
time span, we will briefly present non-linear techniques than can be of interest for
different purposes, in particular when convergence of the linearisation method is
not obtained or when the problem remains highly non-linear and/or non-gaussian.
Some of semi-linear or statistical inversion methods are presented in [11]; we also
note with particular emphasis a filtering method already discussed some time ago
[31]. Some of the methods making use of descent gradient or filters will still need
some linearisation parts and/or some relatively good initial guess of the solution.
They do not exactly correspond to the case of what we have defined here as orbit
determination, because they can fail if the initial conditions taken are too far from
the true—and completely unknown—one. Another quite different approach is to
tackle the problem of parameter estimation from the other side by some trial/error
process: take one set of parameters randomly (either elliptic or equinoctial elements,
or state vector, etc.) and test if it is a solution (that is, including some possible
error). One illustration can be given, in the one-dimensional case, by the dichotomy
method for finding the real root of some monotone function f (x) = 0. Here one
will sample the R space randomly with, however, some additional improvement
from the fact that xi ≤ x ≤ xi+1, where f (xi ). f (xi+1) ≤ 0. Some other methods
rely on Monte Carlo technique, MCMC or Bayesian statistical inversion [63], or
also genetic algorithms. In this case the full space-phase of the unknowns is sampled
with some adapted strategy or algorithm to find the solution(s) in terms of χ2 values.
These techniques are fully generic and well adapted to modern computation facili-
ties including possibilities of parallel computations. The genetic algorithm has been
introduced before in Sect. 6.4 for deriving unknown parameters from the measured
photometric data, they are also used recently in orbit determination of extra-solar
planets from measured radial velocities [88, 24]. Statistical ranging [125] is another
algorithm of statistical inversion that provides the full set of orbits from Monte Carlo
technique. This method is particularly well adapted to the case where observations
are scarce and cover short arcs. It is very similar in nature to the method described
before for the orbit determination when two positions at two dates are known. Given
two observed geocentric directions ui at two dates t1 and t2 (generally close in
time) one will now span the range of plausible geocentric distances ρi for both
observations to construct two heliocentric positions (ri = ρi ui + Ri , ti ). Once the
candidate orbit is computed from these two positions, it is tested whether it fits all
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available observations. This process is repeated in a Monte Carlo run until suffi-
cient successful trials have been obtained for sampling the actual distribution of the
orbital elements. The algorithm is combined to Bayesian approach involving a priori
knowledge of the unknown quantities, this yields the full probability density of the
solution. Obviously, when the number of observations becomes large, spanning a
large range in time for several orbits, and the problem can be linearised locally; any
trial/error methods will become not only much less efficient, but useless compared
to classical linear least squares.

9.6 Orbit Improvement

The previous section was dealing with the orbit determination, i.e. find the orbital
elements of the newly discovered asteroid, with little information and few measures,
while nothing is known on its actual characteristics (distance to Sun or Earth, eccen-
tricity, etc.). The previous method was based on the assumptions that the obser-
vations were not too much separated in time and/or space. When more data are
acquired and over a larger time span compared to the orbital period, one shall get a
better idea of these elements. Having at our disposal some initial guess of the orbit,
we will now look for orbit improvement (or differential correction of orbit); this is
the aim of the second part of Gauss’ book, where he also puts the basis of the least
squares method that we are going to present briefly. There are several methods for
orbit improvement, the most commonly used being the linear least squares (LLS)
from differential correction that will converge rapidly to the least squares solution.
If the system is highly non-linear one might use a general least-squares method (e.g.
Levenberg–Marquardt). In both cases, the solution is the one that will minimise the
L2 norm of the residuals,20 and the confidence region around this solution will be an
n-axial ellipsoid obtained from a local linear approximation. Last, in more general
cases where the problem to invert is non-linear and the input data are not of the same
distribution, one can obtain maximum likelihood estimators (MLE) other than the
least squares solution.

We will hereafter develop the LLS method for orbit improvement of asteroids
and briefly discuss another approach from statistical inversion. We also implicitly
assume the object is an asteroid and do not consider here the cases of satellites of
the Earth, planetary satellites or comets, for which different adapted methodologies
have been developed.

9.7 Linear System—LLS

Starting from the equations of motion and writing the Taylor expansion to first order
for the barycentric (resp. heliocentric) position vector denoted by x(t) (resp. r)

20 One can also, in case of poor robustness of the least squares solution, consider other norms such
as the L1 one.
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x(qo + dqo, p1 · · · pm, t) = x(qo, pk, t) + dx

= x(qo, pk, t) + ∂x(t)

∂qo
dqo + o(dq2

o ), (40)

where the position/velocity state vector qo = [x(to), ẋ(to)] gives the initial con-
ditions at to of the system, the one obtained from the orbit determination in
Sect. 9.2, and where pk are other dynamical parameters such as the perturbing plan-
ets and asteroids masses, etc. The computed geocentric directions21 of the object
u(ti ) = (αi , δi , ti ) are derived from the barycentric (resp. heliocentric) position of
(40) u(t) = 〈x(t − τ ) − xE(t)〉, where τ accounts for the light-time travel and xE is
the position of the Earth.

9.8 Partial Derivatives

After correcting these directions for aberration, light deflection, precession/nutation,
etc., one can compare them to the observed directions and derive the differences
O–C vector (Δαi cos δi ,Δδi , ti ). Further, by neglecting all terms of the order of
o(dq2

o ) for the small corrections |dqo| " 1, one writes the linear system to solve

O − C ≡ b = P .

[
∂x(t)

∂qo

]
. dqo, (41)

where the expression of P defining the projection from three-dimensional to the
n-dimensional observational space is left to the reader (see, e.g., [13]). The 3 × 6
Jacobian matrix

J =
[
∂x(t)

∂qo

]
(42)

has now to be computed. One can distinguish three different ways to compute such
quantity in general, depending whether (a) nothing is known about the function
and only tabulated values are available, (b) one can approximate the partial deriva-
tive computation to obtain analytical closed-form formulations and (c) we know
the function to integrate and compute the variational equations. The first case also
corresponds to the case where the variational equations might be too complex to
derive and/or integrate.

a. Finite difference. The variant or finite difference method is practical for numer-
ical computation either by using the Cartesian form or the elliptical elements for
the initial conditions. It is obtained from the limit definition of a derivative:

21 We restrict the discussion to classical telescopic observations, but these could be other quantities
as, e.g., range and range rate with radar, laser ranging, or any other technique, and from other
positions in space than the geocentre as well.
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∂ f (q)

∂h
= lim

h→0

f (q + h)

h

by

∂ f (qo, t)

∂hi
= f (qo + hi , t) − f (qo − hi , t)

2hi
+ o(h3

i ), (43)

where the small variation hi is applied to each element of the initial conditions
qo separately. With this formulation correct to the third order of the small param-
eter, one has to perform in general three numerical integration or ephemerides
computation for q, qo + hi and qo − hi . One can reduce this number to two
numerical integration with an approximation correct to only O(hi ). The value
of the quantity hi has to be defined by the experience of the user; too small it
increases numerical errors, too large it reduces the precision of the approxima-
tion. A practical value can be found by successive tests until the results of the
partial derivative computation remain robust. It will, in general, be sufficient to
use the same step for all objects and all observation dates.

b. Two-body, analytical. The analytical formulation with elliptic elements is given
in [93, Chap. 7] [13, Chap. 9] and [29, Chap. 11], it is also given with Cartesian
elements in [29, 32]. They are obtained from the derivation of the two-body
problem. We reproduce here without details the matrix for the more general
use as given by [13], it is given as a function of corrections to the elements
dq = (dlo + dr, dp, dq, e.dr, da/a, de) and the position and velocity (x, ẋ) at
time t :

dx(t) =
[

ẋ
n

; P × x ; Q × x ;
1

e

(
− ẋ

n
+ R × x

)
; x − 3

2
t ẋ ; H x + K ẋ

]
.

(44)
The quantities H, K are given by

H = r − a(1 + e2)

a e(1 − e2)
,

K = r ṙ (r + a(1 − e2))

a3n2 e(1 − e2)
, (45)

and the vectors P,Q,R are given by the rotation, transformation from the con-
ventional equatorial frame to the frame associated with the orbital plane and orbit
periastron:

[P; Q; R] = Rz(−Ω).Rx(−I).Rz(−ω), (46)

so that the variation of the angles (dΩ, d I, dω) is represented by new variables
(dp, dq, dr ) given in Fig. 24 representing an infinitesimal rotation along the
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Fig. 24 Elements for the infinitesimal rotation associated with the asteroid orbit

directions of the periastron, the direction directly perpendicular in the orbital
plane and the direction of the orbital pole, respectively.

c. Variational equations. The variational equations are well adapted to the per-
turbed two-body problem and are computed during the numerical integration of
the equations of motion themselves. The reader may have noticed that we did not
yet explicitly mention the system to solve22: the equations of motion. In the case
of a test particle orbiting a massive central body of mass M# and perturbed by
N planetary bodies (planets, dwarf planets, asteroids, etc.) of masses Mi , we can
write the equation of motion for the heliocentric position:

r̈ = −G M#
r
r3

+
N∑

i=1

G Mi

(
ri − r
|ri − r|3 − ri

r3
i

)
. (47)

Because of its properties one can write the differentiation:

d

dt2

(
∂r
∂qo

)
= ∂ r̈

∂qo
.

The 3 × 6 Jacobian matrix J can hence be obtained by integrating the system

22 It was only implicitely used in method (b), but in its simple algebraic form for the two body
approximation.
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J̈ = d

dt2
J =

[
∂ r̈
∂r

]
J (48)

and where now [∂ r̈/∂r] is given in closed form and depends on the dynamical
system to consider. For our perturbed two-body problem one gets the second-
order derivatives [8]:

∂ r̈
∂r

= −G M#∇
( r

r3

)
−

N∑
i=1

G Mi∇
(

ri − r
|ri − r|3

)
(49)

with the operator ∇ on vector s:

∇
( s

s3

)
= − 3

s5

⎛
⎝s2

1 − s2/3 s1 s2 s1 s3

s2 s1 s2
2 − s2/3 s2 s3

s3 s1 s3 s2 s2
3 − s2/3

⎞
⎠ = 1

s3

(
I − 3

s2
s · s′

)
, (50)

and where both I the identity matrix and the outer product s·s′ are 3×3 matrices.
One can extend such formulation to other perturbative forces and accelerations
and also to the more general N -body problem [8]. The initial conditions associ-
ated with the system in (48) are given by J11 = J22 = J33 = J̇14 = J̇25 = J̇36 and
Ji j = 0 elsewhere. The additional equations (49) having been written, one has
to solve simultaneously from numerical integration (e.g. some typical methods
for ODEs integration: Bülirsch & Stoer, Adams Moulton, Radau, RK-k, etc.,
cf. [33]) the system of (47) and (48), which will provide simultaneously the
ephemerides and the partial derivatives.

Note that the effect of perturbing forces or perturbing bodies is not directly con-
sidered in cases (a) and (b), but through the computation of the position of the
target only. This is particularly true for the analytical formulation of Brouwer and
Clemence [13] given here, which formulation is somewhat hybrid since the posi-
tion and velocities can also—and should—be computed not analytically, but from
a numerical integration of the perturbed problem. In the case of the perturbed two-
body problem, i.e. all forces of the perturbing planets are small and the asteroid does
not influence the positions of the planets (no cross terms), the formulations (b) and
(c) remain fully tractable. In the case of a fully N-body problem, more cross terms
and equations that have to be integrated appear in formulation (c).

9.9 Observational Equations

The partial derivatives J being computed one can derive the solution and associ-
ated errors by classical linear algebra and matrices computations. The observational
equations:
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O − C ≡ b = P . J . dqo = A . dqo (51)

give the observed and measured quantities as a function of the foreseen corrections
dqo. The unweighted23 least square solution to this linear system is given by:

dqo = (A′A)−1 A′ .b (52)

and the variance–covariance matrix σ 2(dqo) for the errors and correlation is the
inverse of the normal matrix (A′A)−1.σ 2(b). In the simplest case of one aster-
oid orbit to improve, this involves a 6 × 6 matrix inversion. In the more general
case where more unknowns (initial conditions to the Cauchy problem and addi-
tion dynamical, physical and instrumental parameters) have to be derived different
techniques can be adapted such as Cholesky or QR algorithms for dense matrix;
in the case of sparse matrices and iterative processes the conjugate gradient, which
consist in minimising the quadratic form f (x) = ( 1

2 x′ A′A x − b′A x) will be pre-
ferred [97, 41]. Here we will focus on another method, based on the singular value
decomposition (SVD), that is not optimal in terms of computation speed, but that is
robust and is well adapted to the case of degenerate and/or rank-deficient problems.
The SVD also deals with non-square matrix, which is the case here when the number
of observations exceeds the number of unknowns. Having a m×n matrix A, m ≥ n,
of observational equations one can write the SVD decomposition [97]:

A = U .W .V′, (53)

where U, m × n, is orthogonal to the left U′U = 1; V, n × n, is orthogonal V′V =
VV′ = 1; W = [wi ]D, n× n, is diagonal; and the wi are called the singular values24

of matrix A. The solution of our LLS problem is given from:

dqo = V . [1/wi ]D .U′ .b (54)

which does not necessitate to explicitly compute the normal matrix, neither to invert
any matrix. Obviously if one of the singular value is zero the above expression
is not defined, or in other words the determinant of the normal matrix (A′A) is
null too and there is no unique solution. Similarly if one singular value is small
(0 < wi/wmax " 1) the matrix is ill-conditioned. This is encountered, for instance,
in case of degeneracy of the problem or of high correlation between two (or more)
unknown parameters, showing that given the available data they cannot be deter-
mined separately but only one (or more) linear combination can be derived. In such
case the matrix can be considered to be rank deficient, and the solution retained—
among all possible one—will be the one of minimal norm. The dimension of the

23 One can weight the equations to better take into account different observations noise by mul-
tiplying A and (O–C) by the diagonal weight matrix

√
p = [1/σi ]D where σi is the standard

deviation of the observed quantity at time ti as estimated by the observer.
24 The singular values of A are related to the eigenvalues of the positive symmetric normal matrix
A′A, λi = w2

i .
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kernel corresponds to the number of zero singular values, and a vector basis of
this sub-space is given by the vectors of V corresponding to these zero singular
values. In practice the SVD has one advantage, since in that case one simply sets
to zero all small singular values, without any other modification to the computation
software. The solution so obtained is the one of minimal norm, but the solution to
the general problem is not unique and is given by dq = dqo +

∑
k=1,K αkvk , where

K is the dimension of the (quasi)kernel and A . vk ≈ 0. To ensure the validity of
the assumption that a singular value is zero one can test whether A . vk ≈ 0, and
also that the residuals v = b − A .dqo do not statistically differ, for instance from
its L2 norm, from the one obtained from the full inversion. Let us also mention
the possible introduction of so-called consider covariance matrix which contains
additional variance/covariance information on the model. This is useful when some
parameters c were set in the observational or dynamical linearised model, whose
parameters cannot be estimated from the data at hand but that, however are known
with some uncertainty σ 2(c). The uncertainty of these assumed model parameters
can increase the formal error of the unknowns [112].

Finally, independent of the method used to compute the partial derivatives of
(42), and next to solve the linearised system of Eq. (51), one has a correction to
apply to the initial conditions qo that improves the asteroid’s orbit and fits—to the
least squares sense—all available data. However, the linearisation of the equations
is valid as long as the corrections are small. Additional iterations will be performed
until the corrections to be applied are statistically non-significant.

The least squares estimator (LSE) is only under certain given conditions (often
satisfied) equal to the maximum likelihood estimator (MLE). We do not discuss here
methods of generalised least squares (GLS) that apply to non-linear systems, these
are iterative too, they also need to have a starting point close to the true solution,
and last they generally provide a biased solution. In a linear model Ax = b + ε,
where ε is the error, the Gauss–Markov theorem states that if the errors are centred
E(ε) = 0 and also un-correlated and of same variance εε′ = σ 2I (homoscedasticity)
then among all estimators without bias, the LSE is the most precise, i.e. of minimum
variance.

9.10 Confidence Region

In the previous sections we have derived a solution, an orbit, that fits the data.
If one chooses to weight the equation with some particular rule, or equivalently
to suppress some data, or to apply another norm than the L2, the results will be
different. If the sensitivity of the solution is high with respect to these changes,
the robustness of the solution is poor and should be taken with caution. Moreover
the observational data are not free of stochastic (and possibly systematic) errors as
recognised by Legendre (1806), their noise can be considered to follow a centred
Gaussian distribution ε ∈ N (0, σ ) (as did C. F. Gauss in his pioneering work). So,
as for any physical measure, one has to ask how accurate and precise (see Note 5)
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is the solution obtained? It is known for instance that in the case of the orbit of
planet Neptune [119] or comet Lexell (Le Verrier again!) [121] that the orbital
elements are in rather strong error when compared to those that can be derived
with large number of observations, but they nevertheless reproduce the available
data well and possibly they were the most probable solution. One will hence asso-
ciate to any solution a confidence region. Other discussion and aspects to the orbit
determination and improvement methods connected to observations of various type
of asteroids can be found in [11] and [112] for satellites. In the case of a linear
system, the observation noise being assumed to be Gaussian, the resulting LSE will
follow a Gaussian distribution. The variance–covariance matrix (A′A)−1 defines the
n-dimensional probability density function (p.d.f.) of the solution. Let us remind
that the multivariate Gaussian distribution is entirely defined by the variance and
covariance of the parameter. This is associated to an ellipsoid or to a quadratic
form. One can hence decompose this matrix in the space of the proper elements
(A′A)−1 = P′.D.P where the matrix P gives the orientation of the principal axis
of the ellipsoid in the frame of the physical parameters and where the diagonal
matrix gives the standard deviation 1σ of the parameters in the eigenspace. Also all
probabilities or confidence region can be obtained from the 1σ value; for instance
P(|x − μ| ≤ 1σ ) = 0.68268 ; P(|x − E(x)| ≤ 3σ ) = 0.99730. In the non-linear
case GLS or if the observational noise is non-Gaussian, the LSE will provide one
solution but little or no indication on its distribution or error. One can derive an
error bar locally from a linear approximation, but if the error is large this estimation
of the error or standard deviation can fail, giving rise to the question “What is the
error on your error?”. The χ2 for a multivariate distribution can be complex and
can be sampled around this solution by Monte Carlo run or by use of the technique
given in [3, 61, 128]. Depending hence on the problem to solve, one will have very
different topology for the probability distribution that—only in the case of the mul-
tivariate Gaussian of the linear case—will be summarised in a simple way from the
variance–covariance matrix (see Fig. 25).

10 Binary Stars and Asteroids

We discuss in the following section the case of astrometric observation of binary
and multiple systems (stars, asteroids, etc.). The star ζ UMA, Mizar, was the first
one found accidentally to appear as a double star through a refractor by Italian
astronomer G. Riccioli25 in 1650, well before E. Halley noticed to the attention of
the Royal Society that stars do have proper motions (1718). Later, the German-born
English astronomer Sir W. Herschel—the one that discovered Uranus and some of
its moons with his stupendous telescopes, the one that also coined the denomina-
tion “asteroid”—while cataloguing double stars, discovered their motion around one

25 Riccioli might have been preceded by B. Castelli in 1617, reporting to Galilei about Mizar “una
delle belle cose che siano in cielo”.
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Fig. 25 Examples of two-dimensional projections from a multivariate orbital element distributions
for the different cases of linear (top-left), semi-linear (top-right) and non-linear (bottom) problems
of orbit determination/improvement

another, defining them as binary stars (1802, 1803) [1]. Since the time of Herschel,
such observations and measures of binary stars’ relative positions, in opposition to
optical double that happen only by chance to be close on the sky from projective
effect, are of high value. Of course they confirm that gravitation is universal and not
only present for bodies orbiting around the Sun, for the orbits of satellites around
their planets, but also for objects outside of our Solar System. Another very impor-
tant impact is that it is possible to derive—with good accuracy—a fundamental
parameter of the system otherwise inaccessible: the mass. The story for the asteroids
in the Solar System is not much different starting with some supposition of their
existence with no clear evidence [68], to the accidental discovery of the satellite of
the asteroid Ida by the space probe Galileo, and next to detection from ground-based
observations [70, and references therein]. Satellites of asteroids are found in the
near-Earth asteroid population as well as in the main belt, the Trojans, Centaurs and
the trans-Neptunian region. The typical mass ratio, orbital period and separation of
these systems are generally different between the various populations, indicating
different mechanism of formation (e.g. but neither exclusively nor definitely, YORP
spin-up for the NEOs, catastrophic collision in the main belt, chaos assisted capture
for the TNOs).

In the zoology of denominations of stellar multiple and binary systems depending
on their nature and techniques of observations, we will consider two particular cases:
resolved and astrometric binaries.
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– Resolved binaries, also previously called visual binaries, are systems for which
each component is clearly detected or separated in the telescope, either in the
visible domain or in other wavelength26;

– Astrometric binaries are, similarly to most of the presently detected extra-solar
planets, systems for which only one component is visible (the brightest) but the
reflex motion of the photocentre shows a wobble with respect to the barycentre.

There are several techniques of orbit determination, graphical, semi-graphical, ana-
lytical, that were adapted to different cases and to different observations techniques.
We will develop hereafter the one of Thiele [115] an analytical one that provides the
true orbit from three observations. Before that, let us briefly mention the graphical
method of Zwiers [93] that derives the true orbit after having drawn the observed
and apparent one. In this method one will measure one important parameter charac-
terising the orbit: the areal velocity constant; in order to do so, one shall cut in some
paperboard the elliptical sectors and simply weight them on a balance to derive
C ′ = ρ2 θ̇ ; this sounds straightforward indeed, but surely not much in use today!
In the following we will focus on the orbit determination of a pair once it has been
discovered, and/or only few sparse and scarce data is available. In a first approach all
orbits can be considered to be Keplerian (two-body problem). We will derive, from
statistical inversion, not only one single solution but the (usually broad) bundle of
orbits that fit to the data and subsequently their density distribution (Fig. 26).

10.1 Resolved Binary—Thiele–Innes

In the case of a resolved binary, one has at his disposal the relative position of the two
components, at the different epochs of observations. This position is often given in
polar coordinates (North up and position angle counted positive from North to East)
or more recently in Cartesian coordinates. Assume now we have such Cartesian
coordinates for n observations (ti , xi , yi ); i ∈ [1, . . . , n] at time ti . The objective or
problem is to find a solution orbit, i.e. derive the orbital parameters of the orbit that
fits the data. In case of under-constrained problem there is no unique solution. In the
case of over-constrained problem, there is no exact solution, and we will look for a
solution that fits the data in a way statistically acceptable. Based on the “statistical
ranging” technique of [126], a method of statistical orbit determination of binary
systems has been constructed [51]. This later technique differs from the more recent
one used in [42] since it makes use of the well-known Thiele-Innes algorithm [115].
The Thiele–Innes–van den Bos algorithm [1, 44, and references therein] provides,
when it exists, the Keplerian solution starting from three observational positions and
one assumed orbital period (or conversely the constant of areal velocity). Following
[1] and putting:

26 The reason why the terminology visual was abandoned because of a possible confusion with the
“visible domain”.
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Fig. 26 Two famous binary stars observers from older and modern time. Sir W. Herschel (1738–
1822) on the left and R. G. Aitken (1864–1951) on the right (Aitken: Photo 1923, courtesy Mary
Lea Shane Archives, Lick Observatory)

X = cos E − e,

Y =
√

1 − e2 sin E, (55)

one can write the relative position of the secondary:

x = A X + F Y
y = B X + G Y
z = C X + H Y, (56)

where the last equation corresponds to the radial (non-observed) quantity which—in
contrast to stars—will be of particular use for solar system objects. This last linear
system is also convenient to compute the relative position in space at any given
epoch and makes use of the Thiele–Innes constants (A, B, F,G,C, H ) instead of
the usual elliptic elements:

A = a (cosω cosΩ − sinω sinΩ cos i)

B = a (cosω sinΩ + sinω cosΩ cos i)

C = a sinΩ sin i

F = a (− sinω cosΩ − cosω sinΩ cos i)

G = a (− sinω sinΩ − cosω cosΩ cos i).

H = a cosΩ sin i (57)
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Here the angles are referred to the tangent plane and one origin axis in this plane
(see [1] for more details). By considering two observations p and q, the double area
of the triangle is given by:

Δp,q = x p yq − xq yp = (AG − B F) (X pYq − XqYp),

it can be related to the eccentric anomalies yielding the fundamental equation of
Thiele:

tq − tp − C−1Δp,q = n−1 [(Eq − E p) − sin(Eq − E p)]. (58)

Starting with three observations at time (t1, t2, t3), and a given orbital period, one
can then solve a system of three equations:

t2 − t1 − C−1Δ1,2 = n−1 [u − sin u]
t3 − t2 − C−1Δ2,3 = n−1 [v − sin v]
t3 − t1 − C−1Δ1,3 = n−1 [u + v − sin(u + v)], (59)

involving the unknown areal constant C and the two differences in eccentric anoma-
lies u = (E2 − E1) and v = (E3 − E2), from which one eventually gets:

e cos E2 = Δ23 cos(E2 − E1) +Δ12 cos(E3 − E2) −Δ13

Δ12 +Δ23 −Δ13
,

e sin E2 = Δ23 sin(E2 − E1) −Δ12 sin(E3 − E2)

Δ12 +Δ23 −Δ13
, (60)

and the values for e and E2, next E1 and E3, and corresponding mean anomalies
from Kepler equation, time of periastron passage, then the values of X and Y from
(55) and finally the Thiele–Innes constants and elliptical elements. Note that the
solution from this algorithm is almost obtained in closed form. The Keplerian equa-
tion is used and remains transcendental, but the numerical solution is easily obtained
(at least for reasonable eccentricities of our—supposed—elliptic orbits). The system
(59) of three unknowns is non-linear but can be solved with Brown’s method with
good convergence whatever the starting point in [0, 2π ] and C = −1, whatever
the system under consideration, main-belt binary, trans-Neptunian Binary, brown
dwarf, etc.

Once the orbital elements are known one can compute subsequent positions for
future as well as for past epochs. As said before, (56) will readily provide such
positions, but Thiele–Innes constants are related to one particular tangent plane. This
plane is invariant for distant stars,27 but not for a solar system object where, after
several months or years, the observer can observe the same system from an opposite

27 Parallax in this case will introduce, as for the precession, small corrections to add linearly to the
nominal solution.
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direction. One can take into account this parallax in the Thiele–Innes constants from
a transformation from one plane of sky to another one, from a linear relation:

⎛
⎝A′ F ′

B ′ G ′

C ′ H ′

⎞
⎠ = P · A

⎛
⎝A F

B G
C H

⎞
⎠ , (61)

where

A =
⎛
⎝− sinαE − cosαE sin δE cosαE cos δE

cosαE − sinαE sin δE sinαE cos δE

0 cos δE sin δE

⎞
⎠ (62)

is a transformation matrix from the POS (αE , δE ) to some conventional reference
frame (ecliptic, equatorial, etc.) independent of the system. Matrix P is simply an
inverse rotation to some other direction (α′

E , δ
′
E ). Last, the apparent orbit (x ′, y′) in

this new POS is given by

x ′ = A′ X + F ′ Y
y′ = B ′ X + G ′ Y
z′ = C ′ X + H ′ Y, (63)

where (X, Y ) are obtained from (55), and the radial coordinate z′ is optional. We
can note here that (58) involving the classical Thiele–Innes constants (A, B, F,G)
does not depend on the sign of the inclination i , so that there are two symmetric
true orbits that project to the same apparent one. The coefficient in the new POS,
in contrast, depends on the inclination and will not project to the same apparent
trajectory, as will be discussed in Sect. 10.3.

10.2 Monte Carlo

The previous algorithm provides one single solution starting from three positions or
observations. This is not sufficient or satisfactory for at least two reasons:

– The observations are not free from errors, and one also needs to provide the con-
fidence region around this nominal solution, including the fact that the solution
might not be unique. Since the problem to solve is highly non-linear, the error on
the orbital parameters should not be Gaussian even from an observational noise
that follows a normal distribution. A Monte Carlo (i.e. random) run will provide
such information [63, 113].

– There are, in general, more than three observations and one wants to derive the
most likely solution (e.g. in the sense of least squares) and also the bundle of
orbits that fits the observations with associated probability. Bootstraping or Jack-
knife without replacement will provide the bundle of orbits.
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This goal can be achieved from statistical inversion with a trial/error Monte Carlo
technique. At each step of the Monte Carlo computation one chooses a set of three
of the observations for the (semi-) analytical computation of the orbit, and addition-
ally one chooses an orbital period generally following a uniform distribution with
no particular prior. The computed orbit is then tested for fitting all other available
observations. Such statistical inversion will provide the bundle of orbits and their
distribution as well as prediction of the position to other epochs and error propa-
gation estimates. All retained solutions are mathematically satisfactory in the sense
that they fit the available relative positions data. One can then add additional filter
by taking into account either an a priori distribution of the orbital element or prior
knowledge on the mass if some other satellite has been better observed, and more
efficiently a limit on the total mass (or density) obtained, which in some cases can
be physically unrealistic, making it readily adapted to a Bayesian analysis approach.

Note that one can introduce the observational error directly from a normal dis-
tribution, and also as uniform distribution with subsequent normalisation filter to
be applied to the final set of solutions. Note also that the spurious symmetric solu-
tion can generally be removed if the parallax is large enough as in the case of an
MBB. Using the Monte Carlo approach also enables one to analyse the propaga-
tion of errors to past or future epochs. In the latter case it is possible to derive
the best epoch to observe a trans-Neptunian binary (TNB) and remove the spu-
rious solution (see Fig. 27). Indeed, there generally remains four intersections of
the two symmetric orbits (i.e. intersection of the apparent trajectory at the same
date) which observations would not enable to separate the spurious from the true
one. This is of particular importance for at least two reasons: prediction of mutual
phenomena and test of formation models. Knowing the true inclination of the orbit
enables one to predict the mutual phenomena (eclipses/occultation between the pri-
mary and secondary) that are of high value to better constrain many of the system’s
components physical parameters [116, 9]. Let us add that, similarly to equinoxes,
such phenomenon occurs twice during a revolution of the binary system around
the Sun, approximately every 150 years, hence extremely rare! The second reason
why the inclination is an important parameter to know unambiguously is that dif-
ferent models of formation of binary systems exist [ 84, 133 and references therein]
which do not give the same prediction. In particular the angular momentum can
show an asymmetric distribution which can be tested from a measure of the relative
frequency of prograde/retrogade orbits [62].

10.3 A Summary

We can now resume the complete algorithm in the following sequence:

1. choose randomly three observations among the n available. These should never-
theless belong to a same group or run of observations, not to two very different
tangent planes;
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Fig. 27 Two apparent orbits bundle for the TNB Borasisi (ex. 1999 RZ253) corresponding to the
two symmetric solutions that fit equally well the data obtained 4 years before. The predicted posi-
tions at three different dates are also indicated. It is clear that at the epoch J D = 2 454 302.0 the
orbits (not only the apparent trajectories) intersect, making it again impossible to distinguish the
spurious from the true solution

2. add stochastic error from the observational noise model (ε ∈ N (0, σ )) with
Box–Müller method [97, Chap. 7], or prefer a more general uniform distribution
that will ease further normalization or introduction of any other noise distribu-
tion;

3. choose one orbital period from stochastic distribution (e.g. P ∈ U [Pmin, Pmax ]);
4. compute the orbit and Thiele–Innes coefficients from the algorithm described in

the previous paragraph. In fact there are two fully symmetric orbits;
5. compute the positions for both symmetric orbits for all other n-3 observations,

including parallax and other precession effects;
6. test if the resulting O–C for all these positions is acceptable with respect to the

observational noise

– if no: return to Step 1;
– if yes: accept the solution with all parameters and return to Step 1.
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Because a subset of the observations sample is chosen, one can make use of
the jack-knife technique for automatically detecting outlier points. Moreover, since
only the orbital period is chosen arbitrarily, this Monte Carlo run is most efficient
leaving a one-dimensional space to explore instead of the initial, more general and
“brute force”, seven-dimension problem to solve. Another possibility is to use the
statistical ranging approach [126, 42]; in this case one has to choose two arbitrary
relative distances for two different observations epoch. This increases the dimension
of the problem, though still to practicable application. Having only one parameter of
the space-phase to be explored (the orbital period) when all other orbital parameters
are easily derived, the algorithm practical and fast in terms of CPU. At the beginning
of the process one might have no indication of the orbital period and should span
a large interval, e.g. [0, 100] days, depending on the system to be analysed (MBB,
TNB, binary star, etc.), or on the other hand, one might reduce the interval to scan
if the position angle of the secondary has almost span an entire cycle. As a matter
of illustration, a bundle of ≈ 7500 orbits, with 4% efficiency in the trial/error throw
(period range P ∈ [10; 70] days), has been obtained for the data analysis of the
trans-Neptunian (136,108) Haumea’s second satellite Namaka, with no particular
optimisation, in 40 s real time on a personal laptop.

10.4 Astrometric Binary

Let us briefly mention in this last paragraph a subset of problem closely related
to resolved or visual binaries: the astrometric binaries. The first detection of such
systems was made by Bessel [7] from his analysis of the abnormal proper motions
of Sirius and Procyon. Luminosity, as he said, is not a straight propriety of stellar
mass.28 Astrometric binaries are binary system for which both components are not
observed separately (either the secondary is too faint to be detected in the instru-
ment, or similarly it is too close to the bright primary), but instead one observes
the photocentre of the system. This photocentre differs periodically from the centre
of mass with an amplitude that depends on the mass ratio for the position of the
barycentre, the brightness distribution and ratio for the position of the photocentre,
and the inclination of the orbit [122, 1]. What is observed is not the Keplerian orbit
a but the photometric orbit α which are related by

f = α/a + β ; β = (1 + 100.4ΔV )−1, (64)

where f is the fractional mass, and β is the fractional light. The photometric orbit
is thus scaled from the Keplerian one by ( f − β). In the case of a stellar system
one will consider particular mass–luminosity relation [44], a key parameter that
links mass and luminosity. In the case of solar system objects, considering that both
components are spherical with same albedo and there is no strong phase effect, the

28 Let us add that it seems to be the same for the matter in the Universe.
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relative position of the barycentre and photocentre is given as a function of mass
ratio 0 < q ≤ 1:

α =
(

1

1 + q−2/3
− 1

1 + q−1

)
a. (65)

It can be seen from the equations above that there is no astrometric signal in the
two extreme cases q = 0 and q = 1, the peak being at q ∼ 0.15. One can put this
additional parameter in the Monte Carlo run for resolved binaries, having now two
dimensions (P, q) to explore which remains tractable. In the case of asteroids and if
one solution orbit exists, one will end up with a possible separation that will have to
be compared to prior knowledge. If the separation is relatively large it can plausibly
be a binary system, if the “separation” is small, it will likely be a non-symmetric
single object.

In contrast to the situation in the main belt (and assumed as such by us) where
multiple systems involve mostly small moonlet, or in the near-Earth region where
separations are small making them difficult to distinguish from a single body, the
trans-Neptunian and Centaur binaries can have much larger separation and mass
ratio, well in the detection range for modern astrometric observations. The other
parameter of importance in this study is the orbital period which can be large [92].
Given the ratio of known (resolved) binaries in TNO population, one could follow
the statement of Bessel for stars [66] and wondering how many targets should be
suspicious of being binaries in our outer Solar System?

11 Conclusion

Starting with the Hipparcos catalogue birthday, we have reviewed in this lecture
the different aspects of the Gaia mission, its payload, its instruments and observa-
tions, and the results to be expected from the direct observations of asteroids. From
the highly accurate astrometry and photometry gathered over the 5 year mission
duration, Gaia will provide a breakthrough in our knowledge of these bodies and
subsequently on the formation of the Solar System and its dynamical evolution. Gaia
will provide a wealth of data and results from the direct observations (photometric
in many bands from the low-resolution spectra, astrometric and imaging; the high-
resolution spectroscopy is very marginal) of asteroids and small bodies of the Solar
System. We will have a clearer view of their dynamical and physical characteristics,
for an incredibly and yet unprecedented number of objects of different kinds. One
of the high impacts is obtained from the large number of targets observed, from
which one will get simultaneously sharp information and large statistical analysis,
all programme that could not be achieved by a single team from ground-based obser-
vations, or a space probe rendezvous, and surely not over such short time span of
observations.

Moreover Gaia will also provide a new area in asteroids and small bodies science
from astrometric catalogue of stars. The current—and severe—limitation to the use
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of the Hipparcos or Tycho2 astrometric catalogues in the reduction of photographic
or CCD plates is their poor numbers of star or low density: there are tiny chances to
have one Hipparcos star in a typical 12′×12′ field of view, but this is useless because
at least three are needed. The situation will be considerably improved with Gaia, so
that next generation post-Gaia era astrometry will have a gain of one order of mag-
nitude in the classical astrometric reductions. Surveys that go to deeper magnitudes
(Pan-STARRS, LSST, etc.) will dramatically benefit the Gaia astrometric catalogue.
Similarly the computations of both asteroids and stars ephemeris will be increased,
yielding much more accurate stellar occultation predictions for different kinds of
bodies, MBAs to TNOs, with or without atmospheres, and again a huge step in our
understanding of the physical characteristic of small and faint bodies that were not
even observable with Gaia.
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Acronyms

AF astrometric field
BP/RP blue/red photometry
CCD charge-coupled device
CTE charge transfer efficiency
PSF point spread function
RVS radial velocity spectrometer
SM sky mapper
TDI time-delayed integration
GLS general least squares
GR general relativity
LLS linear least squares
mas milli-arcsecond
MCMC Monte Carlo Markov chain
MLE maximum likelihood estimator
O-C observed-minus-calculated
ODE ordinary differential equation
p.d.f. probability distribution function
PPN parameterised post-newtonian
SNR signal-to-noise ratio
SVD singular value decomposition
TI thermal inertia
FK5 Fundamental Katalog, 5th version
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ICRF International Celestial Reference Frame
IAU/UAI International Astronomical Union – Union Astronomique Internationale
LSST large-aperture synoptic survey telescope
MBA main-belt object
MBB main-belt binary
NEO near-earth object
QSO quasi-stellar object
SSO solar system object
SSSB small solar system bodies
TNB trans-Neptunian binary
TNO trans-Neptunian object
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Cometary Dynamics

H. Rickman

Abstract We present a review of cometary dynamics focusing on the long-term
evolutions of cometary orbits that are responsible for the transfer of comets between
different parts of the Solar System. The underlying mechanisms are described with
particular emphasis on planetary perturbations. In order to place the dynamical the-
ory into its proper context, we also discuss the distribution of observed cometary
orbits and how this is affected by discovery biases. We end the review by a pre-
liminary discussion of two current problems dealing with cometary dynamics: the
formation and evolution of the scattered disk and the Oort Cloud and the capture of
comets into short-period orbits.

1 Introduction

A comet is defined to be a small body of the Solar System, which develops an
outgassing activity. The force that governs its orbital motion will hence include both
the gravity of the Sun and other objects and the jet force caused by gases leaving
the nucleus. This is one distinctive feature of cometary dynamics as compared with,
e.g., planetary dynamics. However, the nongravitational force is relatively small and
is of interest mainly when discussing models for the thermophysical behaviour of
the cometary nucleus or the linkage of all apparitions of a periodic comet during a
long time interval (see, e.g., [88]). It is rarely of importance when dealing with the
large-scale evolution of cometary orbits, which this review focuses on, so we will
not pay much attention to it.

Another issue is what we shall mean by cometary orbits. A straightforward defi-
nition would be the orbits of observed comets, but these evolve into or have evolved
from very different orbits, quite unlike those of the observed comets, with much
larger perihelion distances such that no cometary activity can be expected. In fact, it
is natural to also include these other kinds of orbits. We thus treat some aspects of the
dynamics of Centaurs and transneptunian objects as well as Oort Cloud objects way
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beyond the limits of cometary activity, regarding these as true features of cometary
dynamics.

The mechanisms of orbital transfer include both gravitational scattering during
encounters with planets or passing stars and the secular effects of planetary gravity
or the gravity of the entire Galactic disk. We will also pay some attention to how the
transfer of comets may have differed in the early Solar System from what it is now,
but we shall not indulge into the complicated dynamics that characterized the newly
formed comets, when they were immersed into the solar nebula with its effects of
gravity and aerodynamic drag—see, e.g., [8]).

2 General Transfer Scenarios

It is important to understand the basic role of perihelion and aphelion distances in
cometary dynamics—these are the minimum and maximum distances from the Sun
in an elliptic heliocentric orbit. In particular, the perihelion distance (q) governs
the amount of outgassing activity of a comet such that, in general, comets are only
observable if q <∼ 2.5–3 AU, well inside the orbit of Jupiter. On the other hand, the
aphelion distances (Q) are practically always larger than Jupiter’s mean distance
from the Sun, so that the observed comets are practically always Jupiter-crossing.
This cometary property is quite distinctive when compared to other small Solar
System bodies, but is of course shared by the particles of cometary meteor streams.
Apart from the Trojans, which may indeed have an origin similar to that of comets
[71], only a small minority of asteroids share the Jupiter-crossing type of orbits
that characterize the periodic comets, and these are generally believed to be defunct
cometary nuclei based on their dynamical and spectral properties [62, 79].

Jupiter-crossing short-period comets sometimes avoid encountering the planet
due to mean motion resonance (in case of small inclination) or libration of the
argument of perihelion (in case the inclination is substantial), but long-term inte-
grations show that these protections do not last for very long. Thus one may think
of these comets as dominated by close encounters with Jupiter and as part of a
larger population of objects—not always observable—sharing the same property
and linked to the observed comets by special dynamical routes. As we shall see, this
is a fruitful idea when studying cometary origins. In fact, the idea of the giant planets
as powerful transformers of cometary orbits [47] through successive encounters is at
the heart of the currently preferred scenario for linking the observed Jupiter Family
(see Sect. 3.1) to the transneptunian scattered disk [19].

To a large part, cometary dynamics can be understood as the chaotic migration
of comets on a complicated network of routes connecting different orbits, of which
we see only those that come closest to the Sun. But the picture would remain mys-
terious without considering certain integrable, secular effects that do play essential
roles. Consider Fig. 1, which is copied from Rickman and Froeschlé [84]. These two
plots, showing lg q versus lg Q, were devised to illustrate the main transfer routes of
comets in the Solar System, as far as they were known at that time. Note the absence
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of the transneptunian population, which remained speculative and is indicated by a
large question mark. The main idea was that external influences (mainly the so-
called Galactic tide) perturb the angular momenta of Oort Cloud comets (upper
right) so that some have their perihelion distances reduced practically to zero, thus
falling into the inner Solar System and getting perturbed by the giant planets. Then
the comets enter into a random walk in orbital energy (mainly along the abscissa),
caused by close and distant encounters with the planets. This may finally lead to
ejection into interstellar space (“unstable orbits”) or into “rapid destruction” by
falling into the Sun or disintegrating in the solar heat, but some comets will find
their ways into the short-period population like the Jupiter Family (lower left).

Fig. 1 Summary of cometary dynamics according to [84]. The left diagram shows the comets
discovered at that time, and the right one illustrates the main dynamical transfer routes believed to
be important for delivering observable comets at that time

In this picture, an essential ingredient of secular dynamics was the angular
momentum transfer by the Galactic tide, but the rest could in fact be understood as
resulting from planetary encounters. However, the progress made since Fig. 1 was
first published has been enormous, and we now need to replace the plots by new ones
shown in Fig. 2. First, of course, the transneptunians have been discovered, and these
have been included into Fig. 2a even though they are not counted as comets. More-
over, there has been a drastic increase of the number of Centaurs, which we have
also included into the new plot. The emerging theoretical scenario, shown in Fig. 2b,
is now different from before. A central role is played by the scattered disk, which
was probably much more massive, when the Solar System was young. Objects have
leaked away from this reservoir, both inwards into the Centaur and Jupiter Family
populations and outwards into the Oort Cloud. Some leakage also occurred into
orbits inside the Oort Cloud like that of (90377) Sedna—especially during the early
days of the Solar System, when the scattered disk was massive and the influences
due to neighbouring stars may have been very large [7]. The Oort Cloud is still
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generally considered to be the main source of long-period and Halley-type comets
(see Sect. 3.1), but it now appears to be to a large extent a secondary structure that
has arisen from the scattered disk [32].
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Fig. 2 (a) Comets discovered until the end of 2005 (plus signs), and Centaurs and transneptunians
discovered until the end of 2007 (open circles), in a diagram of the log of the perihelion distance
versus the log of the aphelion distance, both counted in AU. (b) A rough picture of the limits of
cometary and related populations in the same kind of diagram, along with arrows aimed to indicate
the current picture of the transfer between the different populations. See the text for details

The role of secular cometary dynamics appears more prominent today than 20
year ago. It is almost exclusively a question of so-called Kozai cycles (see Sect. 5.2),
which lead to coupled variations of eccentricity and inclination so that the perihelion
distance may undergo large changes. The Galactic tide can basically be seen as an
example of a Kozai cycle, but there are other examples too. For instance, secular
effects are important in the dynamics of the scattered disk, even though a decisive
role is played by close encounters with Neptune. There are resonant routes linking
the disk with the exterior Edgeworth–Kuiper Belt, so that a certain exchange of
objects is unavoidable over long periods of time. In this regard, Kozai cycles may
be important in bringing perihelia away from the vicinity of Neptune’s orbit [36].
Another example is the case of sungrazers, i.e. comets falling into the Sun or into
orbits with perihelia so close to the Sun that the objects disintegrate rapidly. This
has been shown to be a fairly common end state of comets [2], caused by Kozai
cycles. As a final, somewhat related example, the famous comet D/Shoemaker-Levy
9, which fell into Jupiter in 1994, was experiencing a temporary satellite capture
(see Sect. 4.3), where the orbit changed due to a Kozai cycle caused by the solar
perturbations.

Moreover, the role of indirect perturbations in contributing to the scatter in
orbital energy for new comets from the Oort Cloud or long-period comets with
small perihelion distances is now better understood (see Sect. 5.1), thereby adding
a component to this part of cometary dynamics that is not induced by planetary
encounters. A mapping for cometary dynamics, i.e., an algebraic transformation
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of orbital elements between successive revolutions, based on indirect perturbations
was devised by Chambers [12], in particular to study the dynamics of Halley-type
comets.

Finally, we have to realize that transient features may play an important role
in cometary dynamics. The reason is that there are phase space domains where
the “usual” perturbations are totally negligible, so normally these are isolated from
the regions where active dynamical transfer proceeds. However, on rare occasions
comets can be stored there or return into the active regions. For instance, Hills [42]
pioneered the study of temporary peaks in the influx of Oort Cloud comets due to
rare, close stellar passages (“comet showers”), assuming that the cloud has a massive
inner core that is inert to the action of usual stars passing at large distances. Recent
investigations of Oort Cloud formation [7, 8] show that the dense stellar environ-
ment of the early Solar System may indeed have created such inner populations,
like that of Sedna-type objects, so the picture of “dynamically dormant” cometary
populations that may be “awakened” by close enough stellar encounters remains
highly relevant.

After this introductory description of how comets are believed to be transferred
between different orbits, we next describe in some detail how the distributions of
orbital elements of observed comets are interpreted in terms of possible source
populations, selection effects, and observable lifetimes. Then we will concentrate
on the effects of close planetary encounters, stellar passages, Galactic tides, and
Kozai cycles, and finally we will discuss some current problems plaguing the current
understanding of the main transfer mechanisms.

3 Orbital Elements of Observed Comets

3.1 Short-Period Comets and the Tisserand Parameter

One of the most striking features of cometary orbits is that they span an enormous
range of periods (P), from just over 3 yr (comet 2P/Encke) to an upper limit that
is hard to define for reasons to be demonstrated below, but in any case extends to
millions of years. Separating comets into classes with different orbital periods is
natural and may actually have some dynamical relevance, but the classification used
is rather made for practical reasons. Long-period comets are those with P > 200 yr,
and short-period comets have P < 200 yr. Sometimes the short-period comets are
referred to as “periodic”, because they have usually been seen during more than one
perihelion passage (“multi-apparition comets”), or they will likely be seen again
soon. On the other hand, for long-period comets the previous perihelion passage
happened before there were any serious attempts at discovering comets, and the next
one will occur far into the future. There is only one case of a comet that has been
observed during two consecutive perihelion passages separated by more than 200 yr,
namely, comet 153P/Ikeya-Zhang with perihelia in 1661 and 2002, and this is listed
with the periodic comets. Another peculiar case is comet D/1770 L1 (Lexell), which
was observed during one perihelion passage with an orbital period of 5.6 yr but
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encountered Jupiter shortly afterwards and was expelled into a long-period orbit
with P ∼ 300 yr, where it is still performing its first revolution [47].

The latter example illustrates an inconvenience of the period-based classification,
namely, that comets can easily change categories following close encounters with
Jupiter, as the orbital period can then be drastically perturbed. The same remark
holds for attempts in old literature to classify the short-period comets into families
associated with the different giant planets based on where the aphelion is located.
Such families have no dynamical meaning, since Jupiter is almost always the planet
that dominates the orbital perturbations on observed comets, independent of their
aphelion distance. A much more useful quantity can be formulated using the fact that
Jupiter is the dominant planet. In the approximation where Jupiter’s orbit is circular
and no other planets have any effects (the so-called circular restricted three-body
problem) one can write down the Jacobi integral, which is the energy integral in the
corotating frame, and Tisserand [90] found an expression for this in terms of orbital
elements (the Tisserand criterion) that holds approximately as long as the comet is
not in the vicinity of either Jupiter or the Sun. The quantity in question is called the
Tisserand parameter:

T = aJ

a
+ 2

√
a

aJ
(1 − e2) cos i. (1)

Here a and aJ are the orbital semi-major axes of the comet and Jupiter, e is
the eccentricity, and i is the inclination of the cometary orbit. Since the circular
restricted three-body problem is a fairly good approximation for observed comets,
T remains nearly constant even in the presence of close encounters between the
comets and Jupiter. Thus, using T , one may classify comets in a way that reflects
their orbital history as well as their present orbits.

The prime example of the use of T concerns the separation of short-period
comets into two types, the Jupiter Family and the Halley-type comets (usually
abbreviated JF and HT, respectively). Historically, the JF was recognized as a peak
around aJ in the histogram of aphelion distances of short-period comets, and thus
the JF was the prototype of the above-mentioned comet families. Figure 3a illus-
trates this, showing the Q distribution for short-period comets discovered before
1980. Figure 3b shows the bivariate distribution of i versus Q for the same sample of
comets, and here we see something quite peculiar. The concentration of comets with
Q � aJ shows a very strong preference for small inclinations, but going to larger
values of Q, there is a sharp transition to a different regime, where all inclinations
exist in relatively equal proportions. Thus, with the historical definition of the JF,
there follows the peculiar property of a very flattened orbital distribution that is not
shared by other comets.

In fact, low-inclination comets generally tend to remain at low inclination even
after close encounters with Jupiter that may change the orbits considerably. This
means that their orbital evolution can be approximately traced in a parametric plane
such as (a, e) or (Q, q), putting cos i ≡ 1. In Fig. 4 we show the (Q, q) plane with
evolutionary curves derived from (1) for different values of T . We also show the
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Fig. 3 (a) Histogram of aphelion distances for short-period comets discovered before 1980. The
mean distances from the Sun of the giant planets are marked at the top. (b) Inclinations of the same
comets plotted versus their aphelion distances
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Fig. 4 Orbital evolutionary curves in a diagram of perihelion distance versus aphelion distance,
as given by the Tisserand criterion with zero inclination. The four curves represent, from top to
bottom, T = 3.0, 2.9, 2.8, and 2.5, respectively. Symbols have been plotted for comets with incli-
nations i < 30◦ discovered before 1980 (open circles) and after 1980 (plus signs). The leftmost
symbol corresponds to the peculiar comet 133P/Elst-Pizarro

observed comets with i < 30◦, using different symbols for discovery dates before
and after 1980.

Since cos i is close to unity, the actual T values are well approximated by inter-
polation between the curves, and we see that the comets forming the concentration
near Q = aJ mostly fall between T = 2.5 and T = 3. A general feature of the
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evolutionary curves for 2.5 < T < 3 is that with increasing orbital periods, the
perihelion distances increase towards q � aJ . The concentration of observed comets
seen at low q values and Q � aJ is hence expected to continue towards the upper
right in the diagram, where the objects are much less easily observable, and Jupiter
may have “captured” comets into their observed orbits along the evolutionary curves
in question. The start of a verification of this scenario can be seen in the diagram,
since the more recent discoveries tend to dominate in the region to the upper right.

This allows us to introduce a dynamical definition of the Jupiter Family as
short-period comets with T > 2 [11, 54], which is indeed the accepted definition
nowadays. The rest of the short-period comets (with T < 2) are referred to as
Halley-type comets. The HT comets generally avoid the range of orbital periods
covered by Fig. 4, but a few exceptions exist. Moreover, the recent improvements
in detection techniques that have allowed the discovery of JF comets with larger
perihelion distances (Fig. 4) tend to wash out the concentration to Q � aJ . Thus,
the latter is only an effect of observational selection, and the JF actually extends to
orbital periods typical of the HT comets although these members remain difficult to
observe. Figure 5 illustrates the mixture that exists in orbital period between JF and
HT comets—mainly due to recent discoveries. Less than 30 yr ago the P = 20 yr
line was an excellent proxy for the T = 2 line, since comets were practically absent
in the 1st and 3rd quadrants.

Due to the stability of T , very few comets are able to transit across the T = 2
border [56]. Thus, even if the JF and HT groups may or may not have belonged
to the same orbital population a long time ago, they are currently distinct and have
arrived via different pathways. Let us note an interesting physical interpretation of
this classification. We use (1) with the customary units of the restricted three-body
problem (see [15]), so that aJ = 1. If a comet approaches Jupiter, its velocity V in
a fixed frame satisfies the relation

V 2 = 2 − 1

a
(2)

expressed in the same units. We also recognize that the component of cometary
angular momentum perpendicular to Jupiter’s orbit is

Lz =
√

a(1 − e2) cos i = VT , (3)

where VT is the cometary velocity component parallel to Jupiter’s velocity upon
encounter, so that the Tisserand parameter can be expressed as

T = 2 − V 2 + 2VT . (4)

The relative encounter velocity U between the comet and Jupiter can be written as

U 2 = (V − C)2 = V 2 + 1 − 2V · C = V 2 + 1 − 2VT , (5)
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Fig. 5 Tisserand parameters versus semi-major axes of short-period comets. The horizontal line
marks the difference between Jupiter Family and Halley-type comets, and the vertical dashed line
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where C is Jupiter’s velocity vector (C = 1), and from (4) and (5) we get

U 2 = 3 − T . (6)

This relation [74] shows that T can be seen as a way to express the relative
encounter velocity as a comet approaches Jupiter in units of Jupiter’s orbital speed.
If Jupiter’s orbit were circular, T = 3 would correspond to zero-velocity encounters,
and Jupiter crossers would have to have T < 3. The fact that some comets appear
to have T > 3 in Fig. 4 is partly an illusion, since the comets do not have zero incli-
nations. A small number actually do have T > 3, but they are still able to encounter
Jupiter due to the planet’s orbital eccentricity. However, these encounters occur at
very low velocities and often involve temporary satellite captures. The Jupiter Fam-
ily is—quite generally—composed of those comets that encounter Jupiter at low
velocities (smaller than Jupiter’s orbital speed), while Halley-type comets have high
encounter velocities.
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3.2 Inclinations and Perihelion Distances

In connection with Fig. 3b we noted that comets with aphelia near Jupiter’s mean
distance from the Sun tend to have low inclinations, while short-period comets with
aphelia further out do not share this property. The former correspond closely to the
Jupiter Family, and the latter to the Halley-type comets. If we use P = 20 yr as a
proxy for the separation of JF from HT comets (Fig. 5), we can illustrate the different
inclination distributions of all observed comets by means of a plot of i versus 1/a.
Figure 6 shows such a diagram. Retrograde comets (cos i < 0) are in the lower half
of the plot, and prograde comets (cos i > 0) are in the upper half.
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Fig. 6 The cosine of the inclination versus the inverse semi-major axis for all the comets. Different
symbols are used for long-period comets (P > 200 yr), short-period comets with P > 20 yr, and
short-period comets with P < 20 yr. The last two groups closely correspond to the Halley-type
and Jupiter Family comets, respectively

We see that, indeed, JF comets are extreme in their preference for low incli-
nations. The HT comets appear intermediate in the sense that they keep some such
preference although a much smaller one, while the long-period comets (P > 200 yr)
appear to have a more or less flat distribution of cos i . This would be characteris-
tic of a uniform distribution of the orbital planes, but a uniform distribution is not
necessarily implied. The distribution of cos i may be flat, even if the orbital planes
are not uniformly distributed (see Sect. 5.2). Near 1/a = 0 we see a characteristic
feature of long-period comets, to which we shall return in Sect. 3.3, namely, a sharp
pile-up in a narrow range of orbital energies. The comets contributing to this pile-up
have a very flat distribution of cos i .
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The difference of inclination distributions between JF and HT comets is in line
with our above statement that the two populations are basically distinct from each
other and that they have followed different dynamical routes into their current orbits.
We shall return to a discussion of these routes in Sect. 6.2.
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Fig. 7 The distribution of perihelion distances of Jupiter Family comets is shown by the white
histogram, while the black histogram shows the same distribution limited to comets discovered
before 1950. Note that there are relatively few recent discoveries of comets with small perihelion
distances—instead, a large fraction concern comets with q >∼ 2.5 AU

Let us now concentrate on the perihelion distances and recent trends in extending
observations of cometary activity to larger heliocentric distances. Figure 7 shows
how q is distributed for JF comets, and since these are often subject to large per-
turbations of q at close encounters with Jupiter, we have plotted the value of q of
each comet at the time when it was discovered. Thus the diagram is useful as an
indicator of the most important discovery bias for comets—that of selecting small
enough (but not too small) perihelion distances. This bias obviously depends on
the observational facilities used for comet discoveries, and as the diagram shows,
recent developments in this regard have tended to push the limit of detection of
a JF comet outwards. Before 1950 there were practically no JF comets that had
been discovered with q > 2.5 AU (although a few more were being observed with
q > 2.5 AU after having been discovered closer in). But nowadays a significant
fraction are being discovered with q > 4 AU, and the main peak in the histogram
extends to q � 3 AU.

It has to be emphasized, however, that a comet at 4 AU from the Sun is not
the same thing as one at 1 AU. The advantage of recent techniques is not just
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that they reach to fainter magnitudes, but they are able to detect and characterize a
low-level cometary activity around objects that might otherwise be taken for distant
asteroids. In fact, many of the recent discoveries at large heliocentric distance have
happened in a peculiar way. Some asteroid search programme (e.g. LINEAR) finds
an apparently asteroidal object, but orbit determinations indicate a “cometary” orbit,
and observers are alerted to this fact. They quickly find that the object actually has
cometary activity, so a new comet has been found, but it often continues to carry its
preliminary, asteroidal designation.

Fig. 8 A thermal model of
H2O sublimation flux (Z )
versus heliocentric distance
(r ) yields the solid curve, and
the dashed extension closest
to the Sun is an extrapolation
following a r−2 dependence.
The dotted curve shows the
g(r ) function commonly used
in non-gravitational orbit
determinations for comets.
Both curves have been scaled
to log(Z/Z0) = 0 at
r = 1 AU. From [78]

In Fig. 8 we show the results of theoretical model calculations of the H2O subli-
mation rate from an icy object as a function of its heliocentric distance. The “knee”
in the curve marks a shift of the surface energy balance such that at smaller distances
from the Sun, where the insolation rate is higher, most of the energy absorbed goes
into sublimation of ice, while at larger distances, the energy goes mostly into thermal
radiation and the sublimation rate drops rapidly. Therefore, the position of the knee
at r ∼ 2.5–3 AU is often interpreted as the effective limiting distance of cometary
activity—at least that driven by H2O sublimation. One can easily understand why
the activity sometimes seen at larger distances is at a lower level and has been hard to
observe until recently. There are also exceptional cases of comets that show a strong
activity very far away, and these are believed to be comets with a large amount of
volatiles—in particular, CO.

Comet Hale-Bopp (C/1995 O1) was an important example among the long-
period comets, but there are short-period comets too. Historically the most famous
example is comet 29P/Schwassmann-Wachmann 1, which has a low-eccentricity
orbit between those of Jupiter and Saturn and is well known since its discovery in
the late 1920s for irregularly occurring outbursts of activity. During the interven-
ing periods of quiescence the comet is active too [46], and the gas that causes this
activity was identified in 1993. Radio observations at millimetre wavelengths [87]
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then showed that the comet is outgassing CO at a significant rate at all times, but the
reason for the outbursts is still unknown.

For a very long time comet 29P was a unique short-period comet with its large
perihelion distance, but the situation changed with the discovery of 95P/Chiron in
the late 1970s. This object was first listed with the asteroids with the number 2060,
but its orbit with perihelion near Saturn’s orbit and aphelion near that of Uranus was
clearly not asteroidal at all. It rather appeared to be a possible precursor of the JF
comets, in case Saturn would capture it along an evolutionary curve with T between
2.5 and 3 with respect to Saturn, so that the perihelion would come closer to Jupiter’s
orbit and Jupiter could take control of the evolution. Discovery of cometary activity
in the form of a grain coma had to wait until 1990 [63], but whether CO vapour is
the main driver remains to be convincingly demonstrated. It is true that Chiron with
its estimated radius of ∼100 km is much larger than any of the JF comet nuclei,
and the nucleus of comet 29P is extremely large as well, but it was evident already
in the 1980s that the distant source populations of the Jupiter Family in the regions
between the giant planet orbits should be much more numerous than the JF, and the
largest objects should then be much larger too [77].

Fig. 9 The orbital
distribution of Centaurs with
aphelion distances
Q < 35 AU, showing the
ones that have exhibited
cometary activity by plus
signs (the leftmost one is
comet 29P) and the so far
inactive ones by black dots.
An upper limit of 25 AU has
been adopted for the
perihelion distances
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More recently there have been many discoveries of objects moving among the
orbits of the giant planets, and they have come to be called Centaurs. With the usual
definition of this term, all objects with perihelia beyond Jupiter’s orbit but inside
that of Neptune are Centaurs, so both comets 29P and 95P are included. But what
about the other objects? If this is really a protocometary population, it is obviously
of interest to find out if they show some signs of cometary activity like the members
that we already discussed. Indeed such activity has been looked for and found in
several cases, and Fig. 9 shows a plot of the Centaur orbits in a (Q, q) diagram (all
the inclinations are low), identifying those that have so far shown cometary activity.

Thus we see that the observations of comets are being pushed to larger distances
than before, and we are beginning to explore the source populations from where the
comets have been captured. This of course includes the transneptunian population
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too, although cometary activity has not been observed there except—somewhat
marginally—in the case of the giant object (134 340) Pluto with its tenuous and
partially escaping atmosphere. The latter, however, has not been imaged like one
usually does with cometary comae. The Centaur comets on the other hand have
in fact received official cometary designations, so they must be regarded as short-
period comets, but their T values are usually very large since they are moving far
beyond Jupiter’s orbit (see Fig. 4). It does not appear appropriate to include them
into the JF, so one tends to include an upper limit of T into the JF definition, and
this may be taken to be 3 or slightly larger.

3.3 The Oort Cloud and Cometary Fading

Let us now turn to the most distant cometary reservoir in the Solar System. The
evidence for its existence is of a very special kind. One starts from orbit determi-
nations for long-period comets, which lead to osculating elements valid at a time
near perihelion passage, when the observations were made. This orbit can then be
integrated backwards or forwards in time, allowing for the perturbations due to all
the planets (mainly the giant planets) in a heliocentric frame. After this is done
one can transform the heliocentric orbits before entry into and after exit from the
planetary system into the barycentric frame of the Solar System. Those orbits are
called the original and future orbits, respectively. They are of great interest, since
they show whether the comet approached the Sun along an elliptic or a hyperbolic
orbit and, thus, whether it came as a member of the Solar System or as an intruder
from interstellar space. They also show if the comet will remain in the Solar System
or escape into interstellar space.

Such calculations—initially using simple numerical integrators but no electronic
computers—were first done about a century ago by Elis Strömgren and his col-
leagues at Copenhagen Observatory and Gaston Fayet at Paris Observatory. Of
course it took a long time before the number of resulting orbits started to grow
considerably, but today we have access to more than 400 of them. Figure 10 shows
combined histograms of original and future inverse semi-major axes (1/aori and
1/afut, respectively), and it reveals a very peculiar feature of the original orbits.
There is a strong tendency for the values of 1/aori to pile up in the interval from 0
to 10−4 AU−1. Those orbits are very weakly bound to the Solar System, and they
extend to very large distances, the semi-major axes being larger than 10,000 AU.

There is no counterpart of this peak among the future orbits. These scatter over
both positive and negative values of 1/afut with nearly equal probabilities as a result
of the planetary perturbations experienced during their visits in the planetary sys-
tem. The average planetary perturbation (mainly due to Jupiter) is much larger than
the width of the original peak, so the latter is completely wiped out. Nearly half
the comets contributing to these statistics are ejected from the Solar System by the
planets, demonstrating one essential characteristic of cometary dynamics—the risk
of ejection into interstellar space. In fact, this is a fate that has been shared by most
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Fig. 10 Double histogram
showing the distributions of
the original inverse
semi-major axes of
long-period comets on top
and the future ones (after exit
from the planetary system)
inverted below, using data
listed in [65]. From [78]

comets, which entered in a similar way during the age of the Solar System, and the
enrichment of interstellar space by comets may be considerable, in case other stars
tend to have systems of comets and planets like our own.

Evidently the rest of the comets will return to perihelia in the future, and appar-
ently their distribution of original orbits will then look like the tail seen to the right
of the peak in the 1/aori distribution. Thus it is natural to think that the comets
contributing to this tail are returning comets, but there clearly needs to be a special
source for the comets of the peak, which must be newcomers injected from this
source. From the size of the orbits, and the fact that the comets spend most of the
time in relative proximity of their aphelia more than 20,000 AU away, we conclude
that the source must be a vast region of space in the outskirts of the Solar System.
From the flat distribution of cos i in Fig. 6 we see that it extends in all directions.
Jan Oort [72] was the first to plot the distribution of original orbits (he actually had
only 19 orbits in his sample!) and to realize the significance of the pile-up. After
him, the peak is called the Oort peak, and the distant source from which the new
comets arrive is called the Oort Cloud.

The mechanism envisaged by Oort for inserting comets from the Oort Cloud into
observable orbits is “stellar perturbations”, i.e. the gravitational impulses received
by comets in the cloud from passing stars. Oort was able to estimate that the fre-
quency of close passages is large enough to cause a significant scatter of the angular
momentum vectors of comets at distances of ∼104 AU, and thus it was clear both
that the cloud should be essentially isotropic and that there is a way to remove angu-
lar momentum from some members so that they finally penetrate into the observable
region with small perihelion distances. We look closer at these perturbations in
Sect. 5.1, and in Sect. 6.1 we consider the question about the interaction of indi-
vidual passing stars and the tidal influence of the entire Galactic disk, as well as the
importance of nongravitational effects when determining the original orbits. All this
is very important when investigating the size and mass of the Oort Cloud.

Let us now use the Oort peak to illustrate the phenomenon of cometary fad-
ing or observable lifetimes, which is of essence for linking cometary dynamics
to the observed distributions of orbital elements. As a test of the above idea of
new and returning comets, consider the following simulation. From the IAU/MPC
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Catalogue of Cometary Orbits [67] we extract two data sets. One is the original
inverse semi-major axes for a sample of 279 orbits of quality class 1,1 and the other
is the differences 1/afut − 1/aori for the corresponding sample of 418 comets repre-
senting all the quality classes. During each time step we introduce a constant num-
ber of new comets with random values of 1/aori uniformly chosen between 0 and
0.8 · 10−4 AU−1. These get perturbed by quantities Δ(1/a) that we pick at random
from the second data set. If the new orbit is hyperbolic, or if the new semi-major
axis is larger than 200, 000 AU � 1 pc, the comet is considered lost from the Solar
System. Otherwise, it comes back after one orbital period in an elliptic orbit and
gets perturbed again.

If this is allowed to run for a very long time, a steady state is reached so that no
matter which time interval we pick for extracting the statistics of inverse semi-major
axes of new and returning comets, the resulting distribution will approximate a con-
stant parent distribution. In Fig. 11 we show both the observed 1/aori distribution for
the class 1 sample (first data set above) and the simulated steady-state distribution
scaled to the same peak height. It is obvious that the two do not agree. In particular,
the background flux of returning comets is far too large in the simulated distribution.
So where is the error?
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Fig. 11 (a) Histogram of original inverse semi-major axes for the class 1 comets of [67]. This
corresponds to the upper histogram in Fig. 10, but the sample is considerably larger. (b) The corre-
sponding histogram for a simulated sample of fictitious comets injected from the Oort Cloud at a
constant rate and subject to the planetary perturbations shown in Fig. 12 at each perihelion passage.
See the text for details

There is nothing wrong about the dynamics. The sample distribution of Δ(1/a)
(shown in Fig. 12) is just as symmetric about zero as the one to be expected during

1 The catalogue divides the comets into quality classes that are meant to indicate the reliability
or accuracy of the derived 1/aori values. These are assigned mainly in dependence of the mean
residual of the astrometric observations with respect to the ephemeris provided by the orbit and the
length of the underlying observational arc. Class 1 contains the best determined orbits.
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a very long time interval, so we are not biasing against ejections from the Solar
System and thereby favouring the return of comets. It is true that the limited size of
our sample makes the distribution miss the far tails of the parent distribution entirely
(see Sect. 5.1), but this does not lead to too many returning comets. Another con-
cern would be warranted if the successive perturbations experienced at the different
returns of a comet are not uncorrelated, as we have assumed. But we shall return
to this point in Sect. 5.1, and it will be seen that real sequences of perturbations
are indeed stochastic for long-period comets. Thus we are correct in modelling the
evolution as a random walk.
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Fig. 12 Histogram of planetary perturbations of 1/a taken from [67] and used for the dynamical
simulation of Fig. 11b. The number at the lower left indicates one extra comet that experienced
Δz � −0.016 AU−1

Only two possibilities remain. Either we are not in a steady state or comets disap-
pear (i.e. become unobservable) before they return. The first scenario is unattractive,
because the comets come from such large distances that the reservoir should indeed
be thermalized by stellar passages. Thus either it would recently have been captured
by the Solar System, which is an extremely unlikely event to assume, or it would
recently have experienced a very strong perturbation caused by a very massive or
slow-moving object that passed. This again is unlikely, and we see no evidence
for such a recent passage in the observations of stars and gas clouds in the solar
neighbourhood of the Galaxy.

The importance of the loss of comets by some physical mechanism for explaining
the large contrast between the Oort peak and the returning background has been
realized since a long time. It was discussed already by Oort and Schmidt [73] in
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terms of a rapid fading. The intrinsic brightness of a comet may decrease from one
apparition to the next, and as a result the comet may be missed, if it does not reach
the limiting magnitude of the search telescopes used. Modern theories about the
origin of cometary activity often see fading as a result of the burial of subsurface
gas production beneath a thickening dust layer, and for the case in point it may be
that the new comets have nuclei with special chemical or physical properties.

Observational statistics of short-period comets also show that these often enter
into a “dormant” state—sometimes for many orbits around the Sun, before they may
eventually be woken up again [49]. Thus, at first sight, the idea of cometary fading
is attractive, but it may be a problem that asteroid search programmes have not
detected the amount of long-period asteroids that one would expect on the basis of
fading and dormancy of long-period comets [59]. An alternative physical scenario
that would avoid this problem is the sudden splitting or disintegration of cometary
nuclei, which is known to occur due to numerous observations and would have the
same effect of limiting the lifetimes of returning comets.

Whatever is the true mechanism, or combination of mechanisms, that shapes the
distribution of orbital energies of long-period comets, it is clear that both observa-
tional selection and limited lifetimes must generally be taken into account, when
interpreting observed orbital distributions of comets in terms of dynamical path-
ways. When it comes to short-period comets, rapid fading based on comparison of
observed absolute magnitudes at different apparitions has been both claimed [96]
and disputed [50]. It is very difficult to reach any safe conclusions based on these
magnitudes, and the picture appears more complicated than a simple time depen-
dence. In Fig. 13 we show evidence for an interplay of physical and dynamical
evolution, based on the well-known orbital histories of some Jupiter Family comets
during about a century backwards and forwards [4].

We plot the perihelion distances of each comet relative to that during the discov-
ery apparition versus the number of revolutions before or after discovery. While the
perihelia are seen to have diffused both inwards and outwards after discovery, there
is a strong tendency for the pre-discovery perihelia to have been much further out.
That is not enough to demonstrate anything interesting, because if the population
of JF comets is already known to a good degree of completeness, newly discovered
members will likely be found directly after they are captured by means of a close
encounter with Jupiter that reduces the perihelion distance. One may think of a
greedy child who has already eaten all the goodies in a candy box, and each time a
new candy is put there, it is eaten at once. Thus all the candies that are eaten would
be fresh. What we need is instead a situation, where the child is presented with a
box containing both new and old candies, where nothing has been eaten yet. In this
case the child would not have any reason to pick a fresh candy rather than one that
has already come of age, unless the candies really deteriorate.

In Fig. 13 we have attempted to simulate this situation by plotting comets dis-
covered before 1950 with perihelion distances in excess of 1.5 AU, because from
the black part of the histogram in Fig. 7 we see that this sample is far from com-
pleteness. The fact that we nonetheless see a clear preference for “fresh captures”
indicates that there is indeed a physical evolution such that the comets “deteriorate”
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Fig. 13 Perihelion distances of Jupiter Family comets discovered before 1950 with qdisc > 1.5 AU
relative to qdisc, plotted versus the number of orbital revolutions counted from the discovery appari-
tion. The data used are from [4]

with time elapsed since the capture occurred. This indicates that one must take care
about the definition of any sample of JF comets used for estimating the necessary
flux of captures and the size of the source population.

4 Close Encounter Dynamics

Although most of the concepts to be described in this section are valid for encounters
with any planet, we will focus on encounters with Jupiter. These provide the princi-
pal agent for changing the semi-major axes of observable comets. As an introduction
we consider the equation of motion of a comet in the heliocentric frame and in the
presence of one perturbing planet:

r̈ = −∇U# − ∇Rp, (7)

where U# = −G M#/r is the solar gravitational potential and

Rp = −G Mp

{
1

|r − rp| −
rp · r

r3
p

}
(8)
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is the planetary perturbing function. Taking the scalar product of the heliocentric
velocity vector ṙ with (7), we obtain

Ė = −ṙ · ∇Rp, (9)

with E = T + U# = −G M#/2a denoting the total orbital energy. Let ap denote
the semi-major axis of the planetary orbit. We can then write

d

dt

(1

a

)
= 2m p

ap
ṡ ·
{

(sp − s)

|sp − s|3 + sp

s3
p

}
, (10)

where m p is the mass of the planet in solar masses, and s and sp are dimensionless
position vectors of the comet and the planet defined by s = r/ap and sp = rp/ap.

We see that the time derivative of the inverse semi-major axis is expressed as
a scaling factor proportional to m p/ap times the time derivative of a dimensionless
quantity that depends on the geometrical configuration Sun–comet–planet. The inte-
gration of this quantity with respect to time is a complicated matter especially when
the comet and the planet experience a close approach, but we may note that the
result scales as m p/ap, if different planets are considered with similar geometrical
configurations.2 This brings out the fact that Jupiter, with a ratio m p/ap that by far
surpasses those of the other planets, is the dominant perturber of cometary orbits. In
fact, if distributions of Δ(1/a) like that shown in Fig. 12 were plotted separately for
the contributions from the different planets, we would be able to verify the propor-
tionality just derived.

Before embarking on a description of close encounter dynamics, let us note the
role that such encounters play in promoting chaos in the orbital evolutions of comets.
There are different sources of chaos or unpredictability affecting different kinds of
cometary orbits. For long-period comets successive perturbations Δ(1/a) are like
random choices from the parent distribution, essentially because due to the long
periods involved, the position of Jupiter at the next perihelion passage is very sen-
sitive to minor changes in the perturbation applied (see Sect. 5.1). For Oort Cloud
comets the regular dynamics normally imposed by the Galactic tides is interrupted
by stellar passages in a way that has to do with the distribution of stars in the Galaxy
but is completely independent on how the comets move. Thus the sequence of pas-
sages is random and represents an externally imposed chaos.

Finally, coming to short-period comets, close encounters with Jupiter happen
frequently, and even a slight change in the outcome of one such encounter will lead
to a major change of the circumstances around the next encounter, implying com-
pletely different evolutions. This is the reason why it is in fact impossible to trace
the evolutions of individual JF comets over more than a couple of centuries (the
typical interval between close encounters) from the observed motion even with very

2 Note that this result is not exact concerning the closest encounters because of the finite extent of
the planets, as will be discussed in Sect. 4.2.
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Fig. 14 Long-term evolution of the semi-major axis of Chiron’s orbit. Two variants, plotted by red
and black curves, were integrated with a minute difference in the initial conditions, using the same
planetary system model. Due to close encounters with the planets, the orbits diverge considerably
after ∼105 yr. The two objects have lost all memory of their initial vicinity, and the dynamics is
clearly chaotic. Courtesy H.F. Levison

accurate starting orbits and the best numerical integrators and dynamical models. An
illustration is provided in Fig. 14. This shows the orbital evolution of 95P/Chiron,
which is a Centaur (Sect. 3.2) affected only by Saturn and Uranus, but the phe-
nomenon of extreme sensitivity to initial conditions is evident even in the absence
of close encounters with Jupiter.

4.1 Sphere of Influence

Consider the acceleration of a comet situated close to a planet. The equations of
motion in an inertial frame for the three-body system Sun–planet–comet are

r̈# = G Mp

|rp − r#|3
(
rp − r#

)
, (11)

r̈p = − G M#
|rp − r#|3

(
rp − r#

)
, (12)

r̈c = − G M#
|rc − r#|3 (rc − r#) − G Mp

|rc − rp|3
(
rc − rp

)
. (13)
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The acceleration of the comet in the heliocentric frame is thus

r̈c − r̈# = − G M#
|rc − r#|3 (rc − r#) − G Mp

|rc − rp|3
(
rc − rp

)− G Mp

|rp − r#|3
(
rp − r#

)
.

(14)
CENTRAL=⇒ PERTURBING =⇒

Since |rc − rp| << |rp − r#|, the last term can be neglected, and we have approxi-
mate values of the magnitudes of the other terms:

central G M#
a2

p
; perturbing G Mp

Δ2 ,

where Δ is the planet–comet, distance and ap is the Sun–planet distance . The value
of Δ, for which the two accelerations are equal, is

Δh = ap ·
(

Mp

M#

)1/2

. (15)

The acceleration of the comet in the planetocentric frame is

r̈c − r̈p = − G Mp

|rc − rp|3
(
rc − rp

)− G M#
|rc − r#|3 (rc − r#) + G M#

|rp − r#|3
(
rp − r#

)
.

(16)
CENTRAL=⇒ PERTURBING =⇒

Both |rc − r#| and |rp − r#| are �ap, so we get the approximate magnitudes of the
accelerations:

central G Mp

Δ2 ; perturbing G M#Δ
a3

p
.

The value of Δ, for which the two accelerations are equal, is

Δp = ap ·
(

Mp

M#

)1/3

. (17)

Finally, the ratio of central to perturbing acceleration is for the heliocentric frame:

M#
Mp

·
(
Δ

ap

)2

,

and for the planetocentric frame:

Mp

M#
·
(
Δ

ap

)−3

.

Equality of the two ratios occurs for
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Δh/p = ap ·
(

Mp

M#

)2/5

. (18)

For instance, for Jupiter the three values are Δh = 0.16 AU; Δp = 0.52 AU; and
Δh/p = 0.33 AU.

We see that there is a small region around Jupiter (Δ < Δh), where the helio-
centric orbit gets unstable. There is a larger region (Δ < Δp), where the jovicentric
orbit is reasonably stable. For Δh < Δ < Δp, both orbits may be called stable,
though only marginally so. The three zones are shown schematically in Fig. 15.
Similar spheres of influence may be drawn around any planet, and the radii then
scale as shown above.

Fig. 15 Rough sketch of the
spheres of influence around
Jupiter. Δh marks the region
of instability of the
heliocentric Keplerian orbit,
Δp is the maximum distance
where the planetocentric
Keplerian orbit is reasonably
stable, and Δh/p is the
distance where both orbits are
equally stable

Δp represents a stability criterion for planetocentric motion that differs somewhat
from that of the Hill sphere (the largest closed zero-velocity surface around the
planet in the circular restricted three-body problem). The limiting distance is a factor
31/3 � 1.44 smaller for the Hill sphere, which is the more stringent of the two
criteria, when discussing the stability of satellite motion.

4.2 Hyperbolic Deflections

An approximate way to treat close encounters is to follow the unperturbed helio-
centric orbit until Δ = Δh/p, and then shift to a hyperbolic planetocentric orbit
that is followed until Δ = Δh/p again, and a new heliocentric orbit is computed.
This means that the close encounters can be treated using “hyperbolic deflections”
in a scattering problem analogous to, e.g., nuclear particle scattering. Now recall the
result we derived in Sect. 3.1, namely, U 2 = 3 − T for the square of the encounter
velocity. The conservation of T is equivalent to that of U , so that it can be seen to
follow from a hyperbolic deflection approach to the close encounters as well as from
the Jacobi integral.
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When following the hyperbolic deflection, or “matched conic sections”, approach,
we may assume the interaction to be instantaneous so that Jupiter remains in the
same place during the event. We thus see that it is simply a matter of keeping U
constant while turning the relative velocity vector by an angle that follows from the
impact parameter and geometry of the encounter. Analytic applications of this are
common in cometary research and are based on a fundamental theory developed by
Ernst Öpik [74, 75].

Before illustrating some results of the Öpik theory, let us note a condition which
a cometary orbit must fulfil, if Jupiter shall be able to eject the comet from the
Solar System by close encounters, based on the assumption that Jupiter’s orbit is
circular. In the units usually adopted for the circular restricted three-body problem,
the velocity of escape from the Solar System at Jupiter’s orbit is VE = √

2. The
encounter velocity must hence obey U >

√
2 − 1, and we get 3 − T > (

√
2 − 1)2,

which implies T < 2
√

2 ≈ 2.82.
Let us for simplicity consider only zero-inclination encounters, i.e. encounters

where the planet’s velocity vector is situated in the plane of the comet’s hyper-
bolic planetocentric orbit. Figure 16 illustrates the deflection of the relative velocity
vector by an angle θ , which we may—as an approximation—take to be the full
angle between the asymptotes of the hyperbola, even though of course the sphere of
influence does not extend to infinity.

UVP

VP

θ

ϕ

Fig. 16 Schematic diagram showing the incoming and outgoing velocity vectors of a comet that
encounters a planet. These velocity vectors are planetocentric, while the vector Vp is the heliocen-
tric orbital velocity of the planet. The incoming velocity of the comet makes the angle ϕ with Vp ,
while the outgoing one has been deflected by the angle θ in the direction of ϕ. Note that θ may be
positive or negative, depending on which side of the planet the comet passes on

Introducing Vp as the orbital velocity of the planet, the figure shows how the plan-
etocentric velocity of the comet is a vector of length U Vp, whose initial direction
makes an angle ϕ with that of the planet’s orbital motion. After the encounter this
angle is changed to ϕ + θ . If the encounter is characterized by an impact parameter
b, the absolute value of the deflection angle is given by

tan
|θ |
2

= G Mp

b(U Vp)2
(19)
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if Mp is the mass of the planet. The notations used here for the angles in Fig. 16
differ from those used by Öpik [75] and in subsequent papers, e.g., [94].

Let us investigate the maximum deflection angle achievable with a certain
encounter velocity U for a planet of radius Rp and mass Mp. This occurs for a
grazing encounter, where the planetocentric hyperbola has a pericentre distance
= Rp. If the impact parameter for such an orbit is bg , and the comet’s velocity
at pericentre is Vg , we get from angular momentum conservation

RpVg = U Vpbg (20)

and from energy conservation

V 2
g = V 2

e + U 2V 2
p , (21)

where Ve is the escape velocity from the planetary surface. We introduce E =
Ve/Vp as a parameter describing the planet’s capability of deflecting orbits, i.e. the
ratio of the escape velocity and the orbital velocity of the planet. For the Earth
we have Ve � 11 km/s and Vp � 30 km/s, while for Jupiter Ve � 60 km/s and
Vp � 13 km/s, so we see that EJ % EE , Combining (20) and (21), we find

bg = Rp ·
√

1 + E2

U 2
(22)

and inserting this into (19), we get

tan
|θg|
2

= E2

2U
√

U 2 + E2
. (23)

Figure 17 shows how the maximum deflection angle |θg| varies with the encounter
velocity U for the two cases of the Earth and Jupiter. This illustrates a general dif-
ference between terrestrial and giant planets. Even for grazing encounters, large
deflection angles can only be achieved with very small encounter velocities for ter-
restrial planets, while such angles are the rule for nearly grazing encounters with
giant planets.

Let us now use the deflection angle approach to estimate perturbations of orbital
energy during close encounters. When a comet encounters a planet moving in a
circular orbit with velocity Vp, its heliocentric velocity is given by

V 2 = V 2
p

(
2 − ap

a

)
, (24)

from which we derive, with the aid of Fig. 16,

Δ
(ap

a

)
= −ΔV 2

V 2
p

= 2U
{

cosϕ − cos(ϕ + θ )
}
= 4U sin

θ

2
sin
(
ϕ + θ

2

)
, (25)
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Fig. 17 The maximum
attainable deflection angle (in
degrees) for grazing
encounters with Jupiter
(full-drawn curve) and the
Earth (dashed curve), as a
function of the approach
velocity at infinite distance
(in units of the planet’s
orbital velocity)
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and we see that encounters with very small values of U yield small energy perturba-
tions, even though |θ | may be large. On the other hand, (23) shows that, as U →∞,
sin θ/2 → 0 proportional to U−2. Hence Δ(ap/a) also approaches zero according
to (25). Figure 18 illustrates the behaviour for close encounters with Jupiter, using
a constant impact parameter b = 100 RJ .

Fig. 18 Perturbations of
aJ /a, computed from (19)
and (25) for encounters with
Jupiter, as functions of U for
different approach directions
given by the angle ϕ, as
marked at each of the three
curves. A constant value of
b = 100 RJ , typical of close
encounters, has been used
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Note that for this case the largest energy perturbations are obtained with encounter
velocities U � 0.3−0.4. In fact, this result holds for close encounters in general, as
long as they are not extremely close, i.e. nearly grazing. It is interesting to translate
this into a range of T using (6), because we thus get T � 2.8–2.9 in good agreement
with many of the Jupiter Family comets.

4.3 Slow Encounters

One may build a probability distribution of Δ(1/a) due to close encounters for any
particular range of U (and, thus, of T ) in the three-dimensional case by purely ana-
lytic means [93] using a generalization of (25), where the angles ϕ and θ are sup-
plemented by an angle ψ that defines the orientation of the planet’s orbital velocity
vector with respect to the plane of the hyperbolic deflection. One may also choose
many random values of U , b, ϕ, and ψ , and calculate one value of Δ(1/a) for
each combination. These values would define the probability distribution of energy
perturbations for random encounters.

Methods of this kind have been widely used in cometary dynamics or related
problems (e.g. [33, 34]) and are remarkably accurate in view of the approximations
made. In fact, the Öpik formulae give a good representation of the perturbation
distribution even for distant encounters, where b is comparable to Δp (Fig. 15).
However, there still are situations where the outcome of the encounter cannot be
accurately estimated in terms of hyperbolic deflection [38], and this is generally the
case for very slow encounters by comets with T � 3.

Such encounters can be considered in the framework of the zero-velocity sur-
faces of the restricted three-body problem—in particular those that penetrate into
the vicinity of the planet. As explained in celestial mechanics textbooks (e.g. [15]),
T is an approximation of the Jacobi constant C of the circular restricted three-body
problem, and for C % 3 the motion of the massless object can occur either far
outside the planet, within a large ovoid around the Sun, or within a small ovoid
engulfing the planet. Let us now consider the case of Jupiter. When C decreases
towards 3, it first reaches the value C1 = 3.0388, when the two ovoids meet at
the inner Lagrangian point L1 situated 0.35 AU from Jupiter, and then the value
C2 = 3.0375, when the jovicentric ovoid opens up on the outer side at L2 (0.36 AU
outside Jupiter). This is illustrated in Fig. 19, which shows zero-velocity curves in
Jupiter’s orbital plane for the two critical values of C . The smaller of the jovicentric
ovoids corresponds to what is usually called the Hill sphere.

Now consider comets that approach Jupiter from the outside or inside with T
values in the vicinity of C1 and C2. If Jupiter’s orbit were circular and the influences
of the other planets were nil, the zero-velocity surface would remain unchanged.
Thus, if there was a large gap at the Lagrangian point in question, this gap would
remain constant, and if the comet would enter into the ovoid, it could escape as eas-
ily. If there was a gap at the opposite Lagrangian point, exit could also occur there,
and the comet could transit between orbits inside and outside Jupiter’s orbit. These
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Fig. 19 Zero-velocity curves
in the region around Jupiter
have been plotted in Jupiter’s
orbital plane for two values of
the Jacobi constant,
corresponding to the
Lagrangian points L1

(dashed) and L2 (full-drawn).
Distances are expressed in
AU, the Sun is at the origin,
and Jupiter has been placed at
x = 5.2
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orbits would in fact be nearly tangent to Jupiter’s orbit at aphelion and perihelion,
respectively.

With a non-circular jovian orbit and non-negligible perturbations by other planets
(primarily Saturn), the ovoid that applies at any moment is no longer constant but
may close and open up in phase with Jupiter’s changing heliocentric distance and
the changing relative position of Saturn. Thus comets in the relevant range of T
may easily experience temporary satellite captures (TSCs) around Jupiter, when
they stay for extended periods of time in the ovoid region, orbiting around Jupiter
with some degree of gravitational binding. Such captures in the near past or future
are known for several Jupiter Family comets, and an example is shown in Fig. 20.
The relationship between TSCs and nearly tangent encounters with Jupiter was first
explored and explained by Carusi and Valsecchi [10].

Another example worth noting is comet D/Shoemaker-Levy 9, which was expe-
riencing a long-lasting TSC [14] during which the solar perturbations imposed a fast
oscillation between orbits of low eccentricity and high inclination on the one hand
and high eccentricity and low inclination on the other. It was the decrease of the
perijove distance caused by this Kozai cycle that eventually brought the comet into
tidal break-up and collision with Jupiter.

When comets exit from Jupiter’s vicinity after TSCs or other slow encounters,
they enter into a special range of heliocentric orbits, as explained by Tancredi et al.
[89]. They tend to get new aphelion distances close to that of Jupiter’s L1 point
(Q � 4.7 AU) and orbital periods close to 2/3 that of Jupiter. Since this resonance is
also shared by the Hilda group of asteroids, the comets in question are often called
quasi-Hildas. They are profoundly distinct from their asteroidal counterparts in that
no protection from close encounters with Jupiter exists. Thus they are just temporary
visitors, but the slight concentration seen in Fig. 4 at q � 3.5 AU and Q � 4.7 AU
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Fig. 20 Trajectory of comet
111P/Helin-Roman-Crockett
with respect to Jupiter,
plotted at the origin, during a
temporary satellite capture
predicted to occur around
2075. The frame is rotating
so that the Sun is always on
the negative x-axis. Both
entry and exit occur in the
general vicinity of the L1

point. From [89]
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is likely a real feature caused by the particular dynamics of slow encounters with
Jupiter.

This behaviour of the quasi-Hilda comets illustrates a more general phenomenon
that applies to all comets in aphelion- or perihelion-tangent orbits with respect to
Jupiter, i.e. a strong asymmetry of the probability distribution of energy perturba-
tions upon close encounters. From Fig. 16 it is seen that the heliocentric velocity
of the comet just before the encounter is Vc = Vp(1 + U cosϕ). Suppose that the
comet is perihelion-tangent. Then we have ϕ � 0 and cosϕ � 1, and no matter how
the jovicentric velocity is deflected, the orbital energy (as expressed by V 2

c ) cannot
increase substantially. On the other hand, it may decrease by a large amount in case
U and |θ | are large, and the post-encounter orbit may even be aphelion-tangent with
cos(ϕ + θ ) � −1. The opposite holds if the initial orbit is aphelion-tangent. Then
the orbital energy cannot decrease substantially but may increase all the way to a
perihelion-tangent orbit.

Another way to describe the same phenomenon is to look at Fig. 4 and realize that
close encounters are restricted to crossing orbits. Therefore, if a comet encountering
Jupiter is situated close to one of the dashed lines (perihelion- or aphelion-tangent
orbits), it is near an extreme of the allowed portion of its evolutionary curve (with
constant T or U ), and thus it can only evolve in one direction.

Let us end this section by mentioning two examples of comets that have tran-
sited between perihelion- and aphelion-tangent orbits and illustrate what has just
been said. Comet 39P/Oterma illustrates the quasi-Hilda behaviour with T � 3. It
was captured as a result of a slow, long-lasting encounter with Jupiter with closest
approach in 1937 from an outer orbit with q � 5.8 AU and Q � 8 AU into an inner
orbit with q � 3.4 AU and Q � 4.5 AU, and it was discovered in 1943. After three
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orbits a new slow encounter with closest approach in 1963 transferred the comet
back into an outer orbit with q � 5.5 AU and Q � 9 AU. It was rediscovered in this
distant orbit in 2001.

The second example involves encounters at much higher velocity and is of great
historical interest [92]. Comet D/1770 L1 (Lexell) was captured in 1767 at a close
encounter with Jupiter that changed the orbit from q � 2.9 AU and Q � 5.9 AU
into q = 0.67 AU and Q � 5.6 AU. The Tisserand parameter is T � 2.6. Since
the post-capture orbit was in 2/1 resonance with Jupiter, a new close encounter took
place in 1779 and led to ejection into an orbit with q � 5.2 AU and Q ∼ 80 AU [4].

5 Long-Term Orbital Evolution

The long-term evolution of cometary orbits can usually be described in terms of
Kozai cycles or random walks in energy or angular momentum. Sometimes the
combination of these regular and stochastic phenomena—when they take place
simultaneously—has an important influence on the results. In this section we give
an introduction to all of these topics, explaining the background of the dynamical
processes and how they work, in particular for long-period comets. We also discuss
the limitations of the simple concepts (Kozai cycles and random walks) and describe
some circumstances where they do not apply in a strict sense.

5.1 Random Walks

5.1.1 Orbital Energy

Let us first consider the near-parabolic cometary orbits discussed in Sect. 3.3. Their
distribution of Δ(1/a) due to planetary perturbations was presented in Fig. 12. This
corresponds to a sample of comets with a nearly isotropic distribution of orbital
planes, where the giant planets had random orientations with respect to the comets,
as the latter passed perihelion. In the simulation represented in Fig. 11b it was used
as an approximation of the parent distribution, from which the sequences of Δ(1/a)
values experienced by the test comets were drawn at random. But is such a random
walk model relevant? Does it approximate the sequences experienced by the real
comets?

The answer is that it does, if an insignificant change in Δ(1/a) at one apparition
may lead to a completely different sample from the parent distribution at the next
apparition. Using this criterion, we can take the half-width of the bins in Fig. 12
(0.0001 AU−1) as a finite but rather insignificant difference of Δ(1/a), since we are
sampling a minor fraction of the distribution. Now, if the perturbation leads to an
orbit with period P � 10,000 yr (a � 500 AU), the difference of P will be ΔP �
500–1000 yr, and the positions of the giant planets at the next perihelion passage
are completely undetermined. The criterion for a random walk is thus fulfilled. If
the new period is P � 1000 yr (a � 100 AU), we instead get ΔP � 15 yr,
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and we may still consider the criterion as marginally fulfilled, since Jupiter is the
dominating planet with a period PJ <∼ ΔP .

We conclude that the random walk scenario is relevant as long as the comets
stay in the interval 0 < 1/a <∼ 0.01 AU−1. Brasser et al. [8] derived an even larger
value for 1/ac as the limit of energy diffusion in a somewhat different way (for
Jupiter it was ∼ 0.04 AU−1), but considering the arbitrary choice of the bin width in
Fig. 12 that we applied in the above estimate, we should consider the two analyses
to be in reasonable agreement. There are several ways to model the random walk
of comets numerically, and the Monte Carlo simulation scheme used in Sect. 3.3 is
one. Another method is a Markov chain [82], where one divides the range of orbital
energy into bins of 1/a. From a numerical representation of the parent distribution
f (Δ1/a) obtained by integrating a large number of fictitious comets, one derives
a matrix of jump probabilities per unit time between the different bins. The orbital
distribution can be represented by a state vector containing the number of comets
in each bin, and this vector is evolved by multiplication with the jump matrix and
addition of a source vector, representing injection of new comets from the Oort
Cloud.

More detailed information on the perturbation distributions are given in Fig. 21,
which uses samples of 100,000 accurate integrations of comets passing through a
planetary system made up of the four giant planets on realistic orbits. The initial
semi-major axis is always ao = 25,000 AU, and the distributions of cos i , ω, and Ω

are uniform. The time of perihelion passage with respect to the planetary phases is
also random. One sample has q uniformly distributed between 5 and 6 AU, and and
the other sample has 0 < q < 1 AU. The four panels in Fig. 21 show distributions
of Δ(1/a) for two subsamples of each q range: one with low-inclination prograde
orbits, where T is close to its maximum possible value, and one for strongly ret-
rograde orbits, where T is close to its minimum. All cases of close approach to
Saturn, Uranus, or Neptune have been excluded, while all close encounters with
Jupiter are kept. We can thus consider the distributions to approximate those of
jovian perturbations.

By comparing the panels we find the following main features. The far tails are
most prominent in panel (a) for low-inclination, nearly Jupiter-tangent orbits, and
they are nearly non-existent in panel (b), where the comets are strongly retrograde.
The orbits with small perihelion distances are intermediate, and we can see that
one needs very large samples of perturbations in order to get a good statistical
representation of such tails. The central peaks have quite different widths as well,
and interestingly, these are largest for small perihelion distances. Thus, the part of
the random walk that is caused by perturbations of normal size is quicker for such
orbits than for orbits with larger q . In particular, the large-q, retrograde orbits have
an extremely narrow central peak in addition to the almost complete lack of far tails.

The differences of the tails are easy to understand using the above results on
close encounters. The comets of panel (a) have very small encounter velocities,
which makes such encounters efficient in changing the orbital energy. Those of
panels (c) and (d) are intermediate, and those of panel (b) have by far the highest
velocities, making them very difficult to perturb. Let us now analyse the central
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Fig. 21 Histograms of the perturbations of inverse semi-major axis for large samples of randomly
distributed orbits typical of new Oort Cloud comets. Panels (a)–(d) are for subsamples with dif-
ferent perihelion distances and Tisserand parameters as indicated in each plot. Whenever relevant,
the numbers of outliers (perturbations larger than the plotted range) are printed at the bottom left
and right

peaks in some more detail. A double-peaked structure is evident in panels (a) and
(d) and might possibly exist in panel (c). In general, the shapes of the central peaks
are not quasi-Gaussian but much more intricate. They can be understood by looking
into the geometrical circumstances of the cometary passages with respect to Jupiter.

Figure 22 illustrates a simplified picture, where Jupiter is made to move on a
circular orbit and the comet follows an unperturbed parabola. The latter assumption
would break down if a close encounter would occur, but we will now exclude such
cases. For simplicity we will only consider the co-planar case, so that the cometary
inclination is either 0◦ or 180◦. It is evident that the perturbations experienced by the
comet in this case only depend on one parameter, i.e. the angle φ describing Jupiter’s
position at the time of perihelion passage of the comet. Taking a particular value of
φ, one can integrate (10) over the time period when the comet passes the orbital arc
inside a given distance (to be taken as 11 AU). Both terms within the curly brackets
can be integrated separately, thus giving the direct and indirect parts of the energy
perturbation as well as the total value. This calculation is done in the same spirit as
the Keplerian estimator of perturbations by Rickman and Froeschlé [83].
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Fig. 22 Simplified sketch of the geometry of a cometary passage through the planetary system
along a parabolic orbit. A circular planetary orbit—supposed to represent Jupiter—is shown, and
the positions of Jupiter and the comet at the latter’s perihelion are marked. Jupiter’s position can
be specified by the angle φ

In Fig. 23 we plot the results of such calculations for four cometary orbits typical
of the samples used in the four panels of Fig. 21. Consider first the indirect perturba-
tions shown by dotted curves. These always follow a sinusoidal variation with φ, and
the amplitude is much higher for prograde orbits than for retrograde ones (note the
different scales of the plots). The largest negative perturbations for prograde orbits
occur around φ � 90◦, when both the x and y components of the cometary velocity
tend to be directed opposite to the radius vector of Jupiter. For retrograde orbits,
however, the x and y components of the scalar product are of opposite signs, and
depending on the perihelion distance the variation can be of either equal or opposite
phase, as shown by panels (b) and (d).

The direct perturbations are always small in case the comet stays far from close
approach for the entire orbit, but they grow considerably in the proximity of encoun-
ters. The intervals that have been excluded due to close encounters correspond to
cases when the unperturbed comet–Jupiter distance decreases below 1 AU for pro-
grade orbits and 0.25 AU for retrograde orbits. As a general pattern, the perturbation
is positive—corresponding to a net deceleration of the comet—for small values of φ
and negative for the largest values of φ. For an external orbit such as in panel (a) the
close encounters occur around φ = 180◦ with large perturbations showing the start
of the far positive tail to the left and opposite ones corresponding to the negative
far tail to the right. For a crossing orbit such as in panels (c) and (d) there are two
intervals of close encounters, one on either side of φ = 180◦, and between them
there is a region where the perturbation grows from large negative to large positive
values.

Note that the frequency function of Δ(1/a) would be obtained by adding up
the contributions from all relevant values of φ, and thus it increases for values
where the derivative dΔ(1/a)/dφ is small. The double peaks in Fig. 21 are thus
the result of the fact that in certain intervals of φ the combination of direct and
indirect perturbations leads to a slow variation of Δ(1/a). The lack of a double
peak in Fig. 21b can be explained by noting that almost all the orbits have even
smaller perturbations than the one shown in Fig. 23b, and thus any central dip
must be very narrow and probably washed out by effects of the eccentricity of
Jupiter’s orbit. The complicated appearance of the central peak for prograde orbits
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Fig. 23 Plots of direct and indirect perturbations of 1/a due to Jupiter on a circular orbit for comets
passing perihelion on a parabolic orbit, as functions of the angle φ defined in Fig. 21. Panels (a)–(d)
are for different orbital elements of the comet, as indicated in each plot. The direct perturbations
are shown by dashed curves and the indirect perturbations by dotted curves. The thick solid curves
show the total perturbations. Intervals of φ that have been excluded due to close encounters are
indicated

with small q is very well explained by Fig. 23c, where it is seen that the interval
with |Δ(1/a)| <∼ 0.0005–0.001 AU−1 must be highly populated, followed by the
one directly on the outside extending to |Δ(1/a)| � 0.002 AU−1. For even larger
values we are in the close encounter dominated regime, where Δ(1/a) varies rapidly
with φ.

We conclude this discussion by noting that Rickman et al. [85], after finding that
the orbits with the smallest perihelion distances stand a relatively high chance of
being “captured” into a < 1000 AU on their first perihelion passage, suggested that
this had to do with the relatively large indirect perturbations experienced thanks to
the large velocity by which the comets pass their perihelia. We now find the same
phenomenon but a slightly different explanation. The effect comes not from the size
of the indirect perturbations but from the way they cooperate with direct perturba-
tions in the φ range between the close encounters, making the total perturbation
grow at relatively small slope with respect to φ all the way to ∼0.002 AU−1.
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5.1.2 Angular Momentum

In Sect. 3.1 we demonstrated that the Tisserand parameter can be expressed as

T = 2Lz − E, (26)

where E = −1/a is the orbital energy and Lz is the angular momentum compo-
nent perpendicular to the planetary orbit (4). Hence, since T is a quasi-conserved
quantity, the random walk in E discussed in the previous section is directly cou-
pled to a random walk in Lz . Independent of this, a random sequence of planetary
perturbations must cause a random walk of the entire angular momentum vector L.
However, if we consider long-period comets, the relation

L =
√

G M#a(1 − e2) =
√

G M#q(1 + e) (27)

shows that the planetary perturbations—requiring q <∼ ap—effectively limit L to
its smallest possible values, since q " a, and the allowed range of L extends to
Lmax =

√
G M#a.

The fundamental reason why planets are efficient perturbers of the orbital energy
of long-period comets but inefficient in changing their angular momenta is that they
act when the comets are near their perihelia. Perturbations applied near the aphelia
would behave in the opposite way—the orbital energies would be relatively insen-
sitive, while the angular momenta might be strongly affected. The latter is often the
case for the stellar perturbations mentioned in Sect. 3.3, to which we will now turn
our attention.

Figure 24 shows the inverse frequency of stellar encounters within a distance R of
the Sun as a function of R. This is an approximate relation based on a given number
density n∗ in the solar neighbourhood and a given mean encounter velocity 〈v∗〉
for these stars. The statistics is dominated by red dwarfs, which are low-mass stars

Fig. 24 The typical time
interval between consecutive
encounters between the Sun
and Galactic objects as a
function of the miss distance.
Both quantities are plotted on
log scales. The two lines
show the relations for the
field stars of the current solar
neighbourhood and for Giant
Molecular Cloud complexes,
respectively
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passing, typically, at high velocities. This means that they are relatively inefficient
perturbers of cometary orbits, and early-type main sequence stars with high masses
and low velocities contribute significantly to the overall effect in spite of their low
number density [80]. A full discussion of the stellar perturbations must therefore
account for the different contributions of different stellar types rather than lumping
all the stars together as in Fig. 24.

Another possible shortcoming concerns the very close encounters with intervals
of >∼1 Gyr. Obviously, the frequency of such encounters should correspond to the
time average of n∗ and 〈v∗〉 over the relevant intervals, but these may be quite differ-
ent from the current values used in Fig. 24. For instance, the Sun has probably spent
most of the time at larger distances from the Galactic midplane with lower values of
n∗ and 〈v∗〉. Moreover the infant Sun may have had an orbit closer to the Galactic
centre than it currently has, and it may even have been born in a stellar cluster with
very large n∗ and small 〈v∗〉 [8].

When a star passes at relatively close range, each comet in the Oort Cloud suffers
an externally induced chaotic perturbation. To evaluate these perturbations, in most
cases the method used has been the Classical Impulse Approximation (CIA), which
considers the comet at rest with respect to the Sun, while the star passes at a high
velocity (the near-aphelion velocities of Oort Cloud comets are indeed much smaller
than typical stellar encounter velocities). In addition, the heliocentric orbit of the
star, which really is a high-eccentricity hyperbola (e∗ % 1), is approximated as a
straight line (e∗ → ∞) with constant speed. Impulses are thus imparted to the Sun
and the comet (Fig. 25), and the heliocentric impulse of the comet is

Δv = 2G M∗
v∗

{
d̂c

dc
− d̂#

d#

}
(28)

[76], showing the importance of the stellar mass to velocity ratio for the strength of
the perturbation. In principle it is easy to understand the limitations of the CIA, and

Fig. 25 The geometry of a
stellar passage, as used to
develop the Classical Impulse
Approximation. d̂c and d̂#
are unit vectors pointing from
the comet and the Sun,
respectively, towards the
points of closest approach of
the star. From [76]
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the problems mainly concern stars with slow and/or close encounters. The straight-
line motion of the star may then become a bad approximation, and neglecting the
motion of the comet during the stellar encounter may not be warranted. It is true
that the cases in point are rare, but they represent the largest effects, and thus it is
important to try to model them with a good accuracy.

It has been common in recent years to resort to numerical integration of the equa-
tions of motion, but of course there is a limitation to this approach too in terms of
CPU time, when very extensive simulations are performed. However, other analyti-
cal approximations with better performance than the CIA have been developed and
found useful. Dybczyński [21] introduced an improved version of the CIA, where
the impulses received by the comet and the Sun are calculated from the hyperbolic
deflections of their asterocentric motions. Eggers and Woolfson [23] were the first
to introduce a sequential treatment of the stellar passages, where separate impulses
were computed using the CIA for finite steps along the stellar path. A combina-
tion of both these improvements, called the Sequential Impulse Approximation, was
developed by Rickman et al. [81] and was found to give results of high accuracy in
almost all cases while saving a large majority of the CPU time expended in accurate
numerical integrations.

When the stellar encounter is relatively distant, as illustrated in Fig. 26, (28) can
be recast in approximate form as

Δv ≈ 2G M∗rc sinα

v∗d2#
· d̂#. (29)

Fig. 26 The geometry of a
distant stellar passage, as
used to develop the
approximate equation (29). In
this case the differential
impulses on the comet and
the Sun correspond to a tidal
perturbing effect. From [76]
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Within this approximation, using the fact that the angular momentum perturbation
is ΔL = rc · Δv, we see that its absolute value |ΔL| is proportional to r2

c . Thus,
statistically, over a given period of time, when a large number of stars pass with
different geometries and at different distances, we get the relationship |ΔL| ∝ a2 in
terms of the semi-major axis a of the cometary orbit. Since the perturbation of the
perihelion distance is Δq ∝ √

qΔL , we get the statistical relationship

E(|Δq|) ∝ √
q · a2 (30)

for the expectation of the variation of perihelion distance during the interval in ques-
tion. Figure 27 shows that such a relationship is a good approximation at least for
the small to normal size range of star-induced Δq per passage, while the approx-
imation is a bit worse for the largest perturbations, where the encounter distances
are too small for the “tidal” formula of (29) to work. In such cases, as mentioned by
Rickman et al. [81], one should rather expect |Δq| ∝ a according to (28).

Fig. 27 Median, upper quartile, 99th percentile, and 99.9th percentile of the distribution of |Δq| for
samples of nearly 16 million Sun–comet–star interactions, computed with the Sequential Impulse
Approximation. All the comet orbits have q = 100 AU, and the results for five different values of
a are shown by symbols. The straight lines are fits with a slope of 2. From [81]

Note that about one perturbation in 1000 has a value 1000 times larger than
the median. Consider a random walk picture, where the total |Δq| experienced is
the result of a large number N of random perturbations, and consider such results
based on median-size perturbations (|Δq|M ) and on the very large perturbations
(|Δq|L ) separately. Those results will be approximately the respective individual
perturbation size times the square root of the number of perturbations (NM and NL ,
respectively). We thus find that the largest long-term effect will be given by the
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largest perturbations, once again emphasizing the need to treat these perturbations
accurately.

If one considers just one orbital revolution by the comet, it appears justified to
use the a2 dependence and multiply the result by the orbital period P ∝ a3/2, so one
gets the expected change in q per orbital period

|Δq|1 ∝ √
q · a7/2. (31)

Now, return to the phenomenon found in Sect. 3.3 (Fig. 10), i.e. that the newcom-
ers from the Oort Cloud that form the spike in the distribution of original inverse
semi-major axes (1/aori) are removed from this range by planetary perturbations.
In fact, the same thing would happen even if the perihelion distances were as large
as 10–15 AU [26]. The phenomenon was known already to Oort in 1950, and he
introduced the concept of the loss cylinder, which means a narrow cylinder along the
radial direction in velocity space, corresponding to the smallest perihelion distances
and angular momenta. This is expected to be efficiently cleared by planetary per-
turbations, and the existence of the observed newcomers with very small perihelion
distances indicates that there is a mechanism to inject comets deep inside the loss
cylinder on a time-scale of one orbital revolution.

Oort realized that stellar perturbations can do this, but the very steep relation
with a in (31) means that only the largest values of a can be considered realistic.
It is therefore no surprise that the spike is situated in close vicinity of the parabolic
limit. However, imagine that the Oort Cloud also contains many comets with smaller
semi-major axes, say, with a <∼ 10,000 AU where usually there is no way to inject
them into observable orbits. This hypothetical population has been termed the inner
core of the Oort Cloud. It is easy to see that the inner core may be activated from
time to time as a consequence of very close stellar encounters, which temporarily
invalidate (31) by encountering many comets in the inner core and bringing them
into the depths of the loss cylinder. This phenomenon was first investigated by Hills
[42] and is referred to as comet showers. From Fig. 24 we see that one may expect
such temporary enhancements of the flux of newcomers on time-scales of ∼108 yr.

5.2 Kozai Cycles

Let us now consider the secular perturbations in cometary dynamics. They are not
very important in the case of low-inclination, Jupiter-crossing orbits like those of
the Jupiter Family, where the dynamics is dominated by close encounters. We rather
have to concentrate on orbits of large inclinations and moderate to high eccentric-
ities like those of the Halley-type and long-period comets. The secular dynamics
in such cases differs from that of main belt asteroids, where the slow precession
of the apsidal and nodal lines induces oscillations of eccentricity and inclination,
respectively, and resonances with the orbital precession rates of Jupiter and Saturn
may bring the objects into Earth-crossing orbits. In the cometary case the orbit is
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Jupiter-crossing to begin with, and the chance of close encounters—like the general
perturbations—depends on the argument of perihelion (ω).

Jupiter’s orbital eccentricity and the orientation of its apsidal line do not matter
very much in this case, and when short-period terms are averaged out, the cometary
orbit essentially feels the attraction of a circular ring of mass around Jupiter’s orbit.
This perturbing force does not change the orbital energy, and since it is confined
by circular symmetry to the meridional plane spanned by the normal vector to
the planet’s orbital plane and the comet’s heliocentric radius vector, the associated
torque does not change the comet’s angular momentum component perpendicular to
the planetary orbit. Thus the quantity Lz =

√
a(1 − e2) cos i in (3) is conserved, as

is a, and the secular perturbations are limited to a coupled periodic oscillation of e
and i , resulting from the variation of ω. Due to the conservation of Lz , the maximum
eccentricity occurs at the time of minimum inclination and vice versa.

Two kinds of motion are possible. Either ω circulates or it librates around ±π/2.
If the latter occurs, it means that there is a 1:1 resonance between the preces-
sional periods of the nodal and apsidal lines. This is commonly referred to as the
Kozai resonance, since it was first investigated by Yoshihide Kozai [48],3 and the
associated—often substantial—variations of e and i are called Kozai cycles.

5.2.1 Galactic Tides

A special case of Kozai cycles—though an extremely important one—occurs in
the Oort Cloud due to the fact that the Solar System is immersed in the Galactic
disk, and the disk potential—varying smoothly with distance from the midplane—
causes a tidal force on Oort Cloud comets in the direction perpendicular to this
plane. Figure 28 illustrates both this disk tide and the radial tide (with respect to the
Galactic centre) that arises from the central force field in the plane.

The strength of the tide can be expressed in terms of the local density of the disk
(ρo) and the kinematic parameters of Galactic differential rotation—the so-called
Oort constants A and B. For example, using cartesian coordinates (x ′, y′, z) centred
on the Sun such that the unit vectors x̂′ and ŷ′ point towards the Galactic anticentre
and transversely along the local circular velocity in the Galactic plane, and ẑ is
perpendicular to this plane, the equation of motion can be written as

r̈ = −∇U#+(A−B)(3A+B)x ′x̂′−(A−B)2 y′ŷ′−[4πGρo−2(B2−A2)]zẑ. (32)

With modern estimates of A = +13 km/s/kpc and B = −13 km/s/kpc [39] and ρo =
0.1 M# pc−3 [44] we realize that (1) only the term involving ρo is nonvanishing in
the z component; (2) this term is almost ten times larger than the coefficients of the
x ′ and y′ components. Thus the disk tide is much stronger than the radial tide.

3 It has recently been recognized that this resonance was first studied in Russia by M.L. Lidov,
whose first paper in English [61] appeared almost simultaneously with that of Kozai. It thus seems
more correct to refer to the Lidov–Kozai resonance or Lidov–Kozai cycles.
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Tensional tidal field
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Fig. 28 Illustration of the tidal action of the Galaxy on comets in the Oort Cloud. The upper panel
shows the disk tide due to the attraction of the Galactic disk, and the lower panel shows the radial
tide due to the gravity of the Galactic bulge and inner parts of the disk

By neglecting the latter, one may thus get a first approximation to the long-term
dynamical behaviour of Oort Cloud comets by using the equation

r̈ = −∇
{
−G M#

r
+ 2πGρoz2

}
(33)

[41]. In this paper Heisler and Tremaine developed a theory for the motion by using
orbital averaging of the corresponding Hamiltonian, thus eliminating its dependence
on the mean anomaly and securing an energy integral. Furthermore, due to the con-
servation of the angular momentum component Lz perpendicular to the Galactic
plane that follows from the absence of any in-plane perturbing force component,
they found the problem to be integrable with only one degree of freedom, where the
angular variable can be taken as the Galactic argument of perihelion ωG . The orbital
evolution was found to follow patterns like the ones illustrated in Fig. 29, so that the
eccentricity e and the Galactic inclination iG vary in phase with ωG .

The curves in each panel correspond to different values of the energy constant

C = 1 − e2 + 5e2 sin2 iG sin2 ωG (34)

and a common value of the perpendicular angular momentum constant

Lz =
√

1 − e2 cos iG . (35)
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Fig. 29 Variations of eccentricity due to libration or circulation of the Galactic argument of peri-
helion due to the Galactic disk tide. Panels (a) and (b) show two examples for different values of
the perpendicular component of the angular momentum, and the curves show projections of the
phase space trajectories for different values of the Hamiltonian. The dashed lines correspond to
L ≡ Lmin = Lz

The separatrix between ωG libration and circulation corresponds to C = 1. An inter-
esting relation can be derived for the time rate of change of the perihelion distance
as a function of the semi-major axis a and the Galactic latitude of perihelion βG .
Analogous to the discussion of stellar perturbations in Sect. 5.1, we have

dq

dt
∝ √

q
d L

dt
(36)

and from the expression for the averaged Hamiltonian [41] we obtain a maximum
rate of change of the angular momentum:

∣∣∣d L

dt

∣∣∣ � 5πGρoa2| sin 2βG |. (37)

We thus find that the perturbation of the perihelion distance during one orbital rev-
olution is generally expressible as

|Δq|1 ∝ √
q · a7/2 · | sin 2βG |, (38)

analogous to the corresponding equation for stellar perturbations (31). In order
to inject comets directly into observable orbits from outside the loss cylinder
(Sect. 5.1), i.e. |Δq|1 >∼ 10 AU, one generally needs to have a >∼ 3 · 104 AU.

Comparing the relative magnitudes of the stellar and Galactic perturbations of q,
Duncan et al. [20] found the latter to be larger, although not by a very large margin.
Hence one would expect there to be a Galactic signature in the latitudes of perihelia
(βG) of new Oort Cloud comets due to the presence of the factor | sin 2βG |. Comets
with βG � ±π/4 should most easily be perturbed into the depths of the loss cylinder
and therefore be dominating the statistics of βG for new comets. Delsemme [16]
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Fig. 30 Histogram of Galactic latitudes of perihelion for new comets from the Oort Cloud, using
original orbital elements from [67]. The double peak is consistent with the prediction based on
injection of comets via the Galactic disk tide

was the first to show evidence for this effect, and a more recent distribution of βG is
shown in Fig. 30. It is important to consider possible effects of discovery biases, but
it is generally concluded that the effect is real and thus the Galactic disk tide plays an
important role in providing new comets from the Oort Cloud into observable orbits.
The fact that the histogram in Fig. 30 peaks at ±30◦ instead of ±45◦ is explained
by the fact that the perturbation efficiency variation of (38) has to be convolved with
cosβG for an isotropic distribution of orbits in the Oort Cloud.

Finally, from the expression given by Heisler and Tremaine [41] for the period
of ωG libration we obtain an approximate estimate of

Plib ∼ 6 · 108
( a

20, 000

)−3/2
, (39)

with Plib in yr and a in AU. For the active, outer part of the Oort Cloud with
a >∼ 30,000 AU, the period is a few hundred million years or less, so the current age
of the Solar System spans many cycles. But for the inner core with a < 10,000 AU,
the period starts to approach the age of the Solar System. We see that the long-term
evolution of the Oort Cloud should involve such slow oscillations of e and iG , as long
as the integrable approximation holds, i.e. the orbital averaging of the Hamiltonian
is a relevant procedure. This will, however, break down when the orbital period
becomes non-negligible compared to the period of the oscillation. For the outermost
parts of the Oort Cloud this is the case—the orbital periods are counted in tens of
million years, while the oscillation period is ∼ 100 Myr or less. The effect is that
the oscillations are still seen but the maximum and minimum values are no longer
constant, since the C and Lz integrals break down. In addition, the radial tide plays
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an important role and may even cause the loss of comets from the Solar System
through migration out of the Sun’s Hill sphere in the Galaxy [1].

5.2.2 Sungrazing Comets

As already mentioned, the secular effect of planetary perturbations on typical
cometary orbits is that of a circular annulus with uniform density, and this will lead
to orbital variations like those caused by the Galactic tide—i.e. a coupled oscillation
of eccentricity and inclination, this time with respect to the ecliptic. As seen in
Fig. 29, the largest eccentricity variations occur near the separatrix, especially if
the perpendicular angular momentum component is small. In the case of the Kozai
cycles caused by planetary perturbations, this means high-inclination orbits with i
in the general vicinity of 90◦. Such comets do not exist in the Jupiter Family, but the
orbits are common among Halley-type and long-period comets.

Evidently, objects with Lz � 0 and C <∼ 1 will reach eccentricities very near
unity, when ω passes 90◦ or 270◦, and the perihelion distance may then fall to prac-
tically zero. Actually, comets with such orbits have been known since centuries,
and they are usually referred to as sungrazing comets. As noted by Marsden [66]
in a recent review of sungrazers, the first cometary orbit computed using Newton’s
law of gravity (comet C/1680 V1) belonged to a sungrazer. Other comets of this
type were discovered until recently at a rate of several per century from the ground
or from airplanes, but coronagraphic observations from satellites and space probes
(especially SOHO) have caused an enormous surge of discoveries during the last
decades, so that the number of sungrazing comets is now well over 1000.

Almost all the sungrazing comets seen before the 1980s had similar orbits—in
particular with regard to the perihelion direction (latitude +35◦ and longitude 283◦).
For the best observed cases, orbital periods had also been established and found to be
in the range of 500−1000 yr. In recognition of the seminal work by Kreutz [51, 52]
the sungrazers were often collectively called the Kreutz group. It was natural to
think that they had originated from the tidally induced splitting of a common parent
comet, and this idea was explored by, e.g., Marsden [64]. But until much more
recently, there was no real progress in understanding how this parent comet had
come into such a peculiar orbit.

The turning point came when long-term numerical integrations for short-period
comets started to be performed on a routine basis. Comet 96P/Machholz 1 was
discovered in 1986 in an uncommon orbit with a high inclination (i � 60◦) and
a small perihelion distance (q � 0.12 AU) in spite of a period P < 6 yr. With
the above definitions it is a Halley-type comet, although the period is typical of the
Jupiter Family. Rickman and Froeschlé [84] noted with surprise a secular evolution
unlike that of Jupiter Family comets and dominated by a large-scale oscillation of
q and i , which would take the comet to qmin � 0.04 AU around the year 2400.
The explanation came when Bailey et al. [2] showed that this evolution is due to the
Kozai resonance. Figure 31 illustrates their results for comet 96P, showing that the
comet may actually fall into the Sun more than 10,000 yr from now. The oscillation
does not have a constant period or amplitude, perhaps due to a breakdown of the
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Fig. 31 Orbital elements of comet 96P/Machholz 1 resulting from numerical integrations by Bailey
et al. [2], plotted versus time in yr A.D. The semi-major axis and perihelion distance, in AU, are
plotted on a log scale in the upper panel, and the inclination and half the argument of perihelion
are shown in the lower panel. Courtesy M.E. Bailey

integrable approximation caused by the closeness of the 9/4 mean motion resonance
with Jupiter. The variation of ω is a circulation in proximity of the resonance.

In the same paper, Bailey et al. [2] also showed that similar phenomena occur for
a few other short-period comets and, importantly, for the sungrazers. Their conclu-
sion was that evolution into a sungrazing state is a common feature for comets that
start with inclinations not very far from 90◦ and q <∼ 2 AU, so that this should be an
important end state for comets, and the occurrence of the Kreutz group—if due to
the splitting of just one parent that was perturbed into a sungrazing orbit—is not a
very peculiar feature.

During the last decade the space-based discoveries of sungrazing comets have
led to the identification of a few more groups with somewhat larger perihelion dis-
tances than the Kreutz group. These other groups (the Meyer, Marsden, and Kracht
groups) are also believed to have arisen from tidal splittings of parent comets. The
Marsden and Kracht groups have similar perihelion directions, and both are similar
to the one of comet 96P/Machholz 1 [66], suggesting a relationship of all these
comets (implying that the two sungrazing groups are also of short period) with the
Quadrantid meteor stream [68, 37].
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6 Current Problems

6.1 Source Populations: Formation and Evolution

Already Oort [72] commented on possible mechanisms of formation of his proposed
reservoir of comets at extremely large distances. He favoured the expulsion of icy
material from the nascent planetary system but placed the region of origin (near the
asteroid belt) likely too close to the Sun. Since then there have been many models
and suggestions for the creation of the Oort Cloud, and while some of them have
even considered comet formation outside the Solar System and capture of the cloud
from the star cluster where the Sun was born (e.g. [99]), the main line of thought
has remained the one favoured by Oort. However, the formation of comets is now
believed to have occurred either in the same region where the giant planets grew or
somewhat outside so that they could be gravitationally scattered into larger orbits
by these planets.

The mechanism of emplacement thus involves two parts. First, there has to be a
sequence of close encounters with a giant planet so that the orbital energy random
walks towards the parabolic limit. When the semi-major axis is large enough, and
before ejection into a hyperbolic escape orbit occurs, the external influence of stellar
encounters or the Galactic tide raises the perihelion distance away from the vicinity
of the planetary orbit. Hence, eventually, the comet may end up in the Oort Cloud.

In earlier works [86], where only stellar passages typical of the present Solar
System were considered for raising the perihelion distances, a severe problem was
identified. If comets had been formed near the orbits of Jupiter or Saturn, where
there was certainly enough material to form them in huge numbers, the gravitational
scattering would have been so efficient that practically all the comets would have
been ejected into interstellar space. The chance of halting in the narrow range of
1/a where the external perturbers were efficient would have been very small. Thus
the concept arose that Uranus and Neptune are more likely providers of the Oort
Cloud comets, so that the most likely place of origin is near their orbits. However,
there remains the problem of efficiency of emplacement, because due to the smaller
masses of these planets, the amount of material available to form the comets was
quite limited.

Some worry also arose from the possibility that encounters with Giant Molecu-
lar Clouds [6] might have disrupted the outer parts of the Oort Cloud, so that the
currently active cloud producing observable comets might be only a bleak shadow
of what it was, when it had just been formed. If thus a very large initial mass would
be required, the problem of emplacing it from the Uranus–Neptune region would
perhaps be unsurmountable. This worry was only partially relieved by the study
of Hut and Tremaine [45], who found that the parameters of the GMCs are too
uncertain to say, if the disruption problem is severe or not.

After the importance of the Galactic disk tide was realized, these problems were
somewhat reduced. In their study of Oort Cloud formation, Duncan et al. [20] found
that the cloud would start at a ∼ 3000 AU, because this is where the timescales
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of orbital diffusion in 1/a and tidal torquing of q are equal. Thus the cloud would
necessarily form with an inner core. Such a core would serve as a reservoir to bring
new comets into the outer parts, if the latter were disrupted by GMC encounters.
However, if the Oort Cloud still contains a massive inner core, its total mass may
be much higher than one estimates using the flux of new comets from the outer
parts (see below). The picture of the current Oort Cloud that emerges from such
a scenario is illustrated in Fig. 32 from [29]. While the relaxation of the angular
momentum distribution in the outer parts of the cloud is complete, and thus the cloud
is spherically symmetric, the inner core may not yet have been fully thermalized
and might still show some concentration towards the ecliptic plane, thus forming a
transition towards the flattened shape of the transneptunian scattered disk.

Fig. 32 Sketch of the semi-major axis and inclination distribution of the Oort Cloud, the scattered
disk, and populations (Centaurs and JF comets) interior to the latter being captured from it. Note
the log scale of distances from the Sun. The ecliptic plane is marked by the horizontal line passing
through the Sun. From [29] with the author’s permission

In view of the remaining problems to understand the formation of the Oort Cloud,
Fernández [27] introduced a new idea, i.e. that the association of the new-born
Solar System with its parent molecular cloud and a surrounding star cluster would
have made the perihelion extraction process much more efficient. Thus, even if the
scattering of icy planetesimals from the region of the giant planets would actually
make Jupiter and Saturn responsible for most of the outwards diffusion, the range
of 1/a where extraction occurs would be wide enough to allow for a rather efficient
emplacement process. Fernández and Brunini [30] found that a few Earth masses of
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comets might have been emplaced into an initial Oort Cloud extending from a few
hundred AU with most of the comets residing in the inner core.

The discovery in 2003 of the very large object (90377) Sedna in an orbit with
q � 76 AU and a ∼ 490 AU [9] made a further case for such an Oort Cloud
formation scenario, since very close and very slow stellar encounters could have
happened when the Solar System was young, and the extraction of a Sedna-type
population from the early scattered disk thus appeared as a viable idea [70]. This
population might thus be identified with the innermost part of the Oort Cloud’s inner
core. However, when Brasser et al. [7, 8] attempted to model the extraction of both
Sedna-type objects and the Oort Cloud with the assumption that the new-born Solar
System was immersed in an embedded star cluster of the type invoked by Fernández
[27], they ran into new problems.

1

10

100

1000

10000

1 10 100 1000 10000

q 
[A

U
]

q 
[A

U
]

q 
[A

U
]

a [AU]

1 10 100 1000 10000

a [AU]

1 10 100 1000 10000

a [AU]

t = 10 kyr

 1

 10

 100

 1000

 10000
t = 100 kyr

 1

 10

 100

 1000

 10000

t = 1 Myr

Fig. 33 Three snapshots of the distribution of q and a from the simulation of Oort Cloud formation
by Brasser et al. [7]. Note the growing scatter of q for semi-major axes of several hundred AU or
more. The three points indicate extended scattered disk objects, the rightmost one being Sedna.
Courtesy R. Brasser

In the first paper [7] they found that the extraction mechanism works nearly per-
fectly, considering a timescale of ∼1 Myr during which the comets are perturbed
by the planets, the encounters with cluster stars, and the tidal action of the entire
cluster (see Fig. 33). But when, in the second paper [8], they considered also the
gravity and gas drag effect of the Solar System gas disk (the “solar nebula”), they
found that emplacement into the outer regions is practically impossible for objects
the size of typical comet nuclei (∼ a few kilometres), because the gas drag circu-
larizes the orbits much faster than the gravitational scattering can proceed. Thus,
during this early phase, only very large objects would have been able to reach into
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the Oort Cloud, and essentially the whole cloud would have to be explained in a
different way.

Currently it seems unclear if the embedded cluster environment could have out-
lived the solar nebula, since both have similar estimated lifetimes of a few mil-
lion years. A more likely scenario for Oort Cloud formation appears to involve the
emplacement of much more material into the early scattered disk than just the resid-
ual planetesimals from Neptune’s own accretion zone. This might have occurred,
e.g., as a consequence of Neptune’s migration through the outer planetesimal disk
in the “Nice Model” [91] or due to the gas drag effects in the model of Brasser
et al. [8]. Thus, via the intermediary of an early, massive scattered disk, one may
still consider an Oort Cloud with a mass of ∼1 Earth mass to be a viable idea.
It would have arisen as a byproduct of the “erosion” of the scattered disk, when
Neptune scattered objects both inwards and outwards and thus caused many objects
to diffuse into orbits with large semi-major axes. Fernández et al. [32] showed that
this process is efficient in populating the Oort Cloud when applied to the current
scattered disk. Hence, the creation of the Oort Cloud may be an ongoing process,
even though the rate should have been much higher long ago, when the Solar System
was young and the scattered disk was much more massive than today.

Charnoz and Morbidelli [13] discussed the consequences of such a picture of
Oort Cloud formation for the collisional evolution of the transneptunian population.
They concluded that, if the mass deficit of the classical Kuiper Belt had been caused
by collisional grinding (as would be the case for a steep size distribution), the scat-
tered disk would have been severely depleted too, and the estimated mass of the Oort
Cloud would be hard to explain. Thus, either there is still a problem to explain the
Oort Cloud or the Kuiper Belt has rather been depleted by dynamical mechanisms.
It is obviously very important to evaluate the number of comets in the Oort Cloud
and its total mass as realistically as possible.

However, this is easier said than done. The basic equation from which the number
of Oort Cloud comets (NOC ) can be derived using the observed rate of perihelion
passages (Rp) of new Oort Cloud comets with perihelion distances less than qo is

Rp = NOC ×
∫ amax

amin

ϕ(a) · flc(a) · 2qo

a
· a−3/2 da, (40)

if the cloud extends from amin to amax in semi-major axis with a frequency function
ϕ(a) and if flc denotes the filling factor of the observable part of the loss cone
with q < qo [3]. This factor expresses the ratio between the actual population of
this phase space domain and the one that would apply if the cloud was completely
thermalized.

One first has to estimate Rp and then apply a dynamical model of the cloud with
assumed values for amin, amax, and ϕ(a) in order to find flc(a) and finally derive
NOC . Note that the value used for Rp will refer to some limit in the brightness of
the comets, which may be roughly associated with a minimum mass of the nuclei.
Using this, one may estimate an average mass 〈M〉 and compute the mass of the
Oort Cloud as MOC = NOC · 〈M〉.
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Francis [35] analysed recent comet discovery statistics with particular empha-
sis on the results of the LINEAR survey programme. His conclusion was that
Rp � 0.8 new comets per AU of perihelion distance per year with absolute magni-
tudes H10 <∼ 11, which is lower than most previous estimates. Concerning dynamical
models, we may compare several of those found in the literature with regard to the
ratio between the value used for Rp and the number NOC found for a >∼ 20,000 AU.
If we refer to this as the injection efficiency E p of the outer Oort Cloud, we can
see a trend towards increasing values during the past decades. Weissman [97] found
E p ∼ 2 ·10−12, Bailey and Stagg [3] found E p ∼ 3 ·10−12, Heisler [40] and Wiegert
and Tremaine [99] found E p ∼ 4 · 10−12, Dones et al. [17] found E p ∼ 6 · 10−12,
and most recently Emel’yanenko et al. [25] found E p ∼ 15 · 10−12 (the unit is
comets/AU/yr).

The latter simulation is the only one that has included a realistic treatment of
planetary perturbations. Earlier models considered the whole loss cylinder to be
dynamically opaque, i.e. all the comets that enter there are immediately removed
by the planets. But in reality there is a chance of survival, so that some new comets
may have made previous passages in the loss cylinder [22]. It appears that this extra
contribution of “new” comets is quite important in Emel’yanenko et al.’s study.

Comets with H10 < 11 may be estimated to have nuclei with radii R >∼ 1 km
[3, 98], and with an average density of ∼ 500 kg/m3 we expect masses M >∼ 2 ·
1012 kg. Combining the Francis [35] and Emel’yanenko et al. [25] results, we get
NOC ∼ 6 · 1010 comets in the outer Oort Cloud (a > 2 · 104 AU) corresponding
to a total mass MOC ∼ 0.1 Earth masses. Even with an important inner core the
total mass would not be much larger than 1 Earth mass. This does not appear to be
excessive, but a full study of the problem—yet to be made in a realistic way—should
include the evolutionary histories of the Oort Cloud and the scattered disk.

6.2 The Capture of Comets

Let us return to some of the issues mentioned in Sect. 2 and in particular the origin
of the short-period comets. This is traditionally called the capture problem. We have
already seen in Sect. 3 that the Jupiter Family and Halley-type populations appear to
have little in common, so we will discuss them separately, starting with the Halley-
types.

This capture process begins with the injection of Oort Cloud comets into planet-
crossing orbits—in particular those that have small enough perihelion distances to
be observable. We have seen that as such comets enter, they are perturbed by the
giant planets so that the ensuing random walk in orbital energy may eventually lead
into the HT population. Recent simulations of the dynamical history of the Oort
Cloud using 106 comets during 5 Gyr perturbed either by the Galactic tides, by
passing stars, or by both in common by Rickman et al. [80] reveal that the injections
are largely due to synergy effects between the two perturbing mechanisms. This
causes an increase of the injection efficiency and a shift of the median semi-major
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Fig. 34 Distributions of −1/a, where a is the cometary semi-major axis (top panels) and | sin b|,
where b is the Galactic latitude of perihelion (bottom panels), for simulated comets entering into
observable orbits during a 170 Myr time interval. When present, numbers in the top-left corners
of −1/a distribution panels correspond to comets with −1/a < −1 · 10−4 AU−1. The left column
corresponds to a model with Galactic tide alone, the middle column to passing stars alone, and the
right column to a model with both effects combined. From [80]

axis of new comets to lower values compared to earlier results. Figure 34 illustrates
these findings for a time interval that is probably representative of the current Solar
System containing no significant comet shower.

These computations were made without including planetary perturbations, and
all the injected comets have jumped directly from q > 15 AU to q < 5 AU. How-
ever, it would be very interesting to use a full dynamical model to get an indication
of the ratio of such “jumpers” to the “creepers”, i.e. comets that have passed one or
more perihelia in the outer parts of the loss cylinder before reaching the observable
orbits, as a function of semi-major axis. One obvious reason is that it might then be
possible to check the following interesting suggestion on the origin of HT comets.

Levison et al. [55] found that capture of HT comets from an isotropic flux of
new Oort Cloud comets—even allowing for the possibility of finite active lifetimes
[31]—leads to the wrong inclination distribution for the Halley-types. Figure 35
illustrates this discrepancy, showing that the observed HT comets have a much
stronger preference for prograde orbits than the simulated sample. Levison et al. [58]
found a possible solution of the dilemma by invoking the same outwards diffusion
from the scattered disk as studied by Fernández et al. [32]—only that they consid-
ered the objects for which the Galactic tide decreases the perihelion distance rather
than increasing it. This process should yield an additional source of new comets
that come almost directly from the scattered disk and thus keep a preference for
low-inclination orbits.

One may ask if this suggestion is not in contradiction with the observed flat distri-
bution of cos i for new comets (see Fig. 6), and this question is still open. Fernández
[28] analysed the inclination distribution of long-period comets by separating them
into subsamples with different original semi-major axes. He argued that the tidal
injection limit from q >∼ 15 AU is at aori � 30,000 AU and thus the comets with



392 H. Rickman

Fig. 35 Cumulative
distributions of inclination of
Halley-type comets. The
observed sample is shown by
a dotted line, and the sample
of captured HT comets from
orbital integrations of new
Oort Cloud comets is shown
by the solid line. From [55]
with the authors’ permission
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aori >∼ 30,000 AU should be jumpers, while those with aori < 30,000 AU should be
creepers. The latter must have a preference for retrograde orbits, since the chance
of survival in the outer parts of the loss cylinder is larger due to the smaller plane-
tary perturbations (cf. Fig. 21). This was indeed seen, but Fernández also found an
unexpected preference for prograde orbits among the jumpers, which Levison et al.
[58] argued to be evidence for a new comet flux directly from the scattered disk.

However, there are several reasons to cast doubt on this interpretation. One is
the evidence from Fig. 34 that jumpers have a much broader distribution of aori

than previously believed, and another is the result that non-gravitational effects have
a strong influence on the aori values of comets with q ∼ 1 AU as soon as they
are included into the orbital solutions [53]—the general trend being that including
such effects leads to smaller aori. Thus great care is needed in order to reach any
conclusion on whether there is evidence for a flattened source of new comets in
addition to the Oort Cloud.

But the implications may be far-reaching. As noted above, the scattered disk may
be providing an important source of replenishment of the Oort Cloud, and it is quite
likely that it also contributes to the flux of new comets, thus reducing even further
the number of comets in the Oort Cloud. At present the constraints are too few
and vague to reach a proper understanding of these relationships, but progress in
dynamical modelling and observed statistics of the orbits of new comets may soon
lead to better insight.

Finally, the origin of Jupiter Family comets is likewise open to debate. The only
thing that is clear is that a population of low-inclination Neptune-crossers may form
a relevant source, if it is rich enough to supply the required capture rate in order for
the JF to be in a steady state. Figure 36 shows a rough sketch of how comets can then
be handed over by one giant planet to the next inner one along evolutionary curves
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Fig. 36 Sketch of possible evolutionary routes leading from low-inclination Neptune-crossers into
the Jupiter Family via a multi-planet capture process, as suggested by Duncan et al. [19]. Each
planet dominates the evolution as long as the perihelion is near or inside the orbit of that planet
but has not reached the orbit of the next inner planet. Thus the evolution proceeds along curves of
constant Tisserand parameter with respect to the governing planet. From [78]

in the (Q, q) plane with constant T referring to the first planet (T � 2.8–2.9) in a
chain that leads from Neptune to Jupiter and inwards.

An important though difficult question is, what is the origin of those Neptune-
crossers, and how many comet-sized objects need there be in the source population
in order to maintain the Jupiter Family? There are several different ideas. The clas-
sical Kuiper Belt is able to provide a flux of objects into Neptune-crossing orbits via
resonant eccentricity pumping (the region at a � 40–42 AU is a possible source due
to overlapping secular resonances), and Holman and Wisdom [43] and Levison and
Duncan [57] estimated the necessary number of comet-sized objects as 5–7 · 109.
Duncan and Levison [18] instead considered the scattered disk with emphasis on
the part of it that may encounter Neptune (q � 30 AU), and in this case only 6 · 108

objects would be enough. Since the populations of large, ∼ 100-km objects in the
Kuiper Belt and the scattered disk appear to be of similar sizes, the conclusion was
that the scattered disk is the prime source of JF comets [19].

Emel’yanenko et al. [24] found that the part of the scattered disk corresponding
to near-Neptune high-eccentricity objects is unlikely to have evolved solely from
the Kuiper Belt source (note the paucity of non-resonant Kuiper Belt objects with
q < 40 AU in Fig. 37), but that it may provide a relevant source of JF comets with an
estimated population of 1010 objects of cometary size with perihelion distances 28 <

q < 35.5 AU. In addition, Morbidelli [69] found that Neptune-crossing Plutinos
leak out of the 2:3 resonance on Gyr timescales due to slow, chaotic diffusion, thus
possibly providing an important source of JF comets, and the number of comet-sized
Plutinos should then be ∼108–109.
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However, it is currently not clear—perhaps not even likely—that the above num-
bers fit with reality. Volk and Malhotra [95] emphasize that the break in the transnep-
tunian size-distribution power law with a shallower slope at smaller sizes, suggested
by the HST observations by Bernstein et al. [5], leads to a number of kilometre-sized
scattered disk objects that is orders of magnitude too small compared to the above
requirements. It is possible that an alternative source of Jupiter Family comets is
called for, such as the above-mentioned Plutinos or the fragmentation of large scat-
tered disk objects as they approach the Sun during the capture process [95].

Another problem was mentioned by Fernández et al. [32]. Figure 37 shows an
update and extension of their Fig. 1 based on the data files of the MPC web site of
15 July 2008. Most scattered disk objects have perihelion distances too large to be
Neptune-encountering in the sense of Duncan and Levison’s [18] investigation, and
Fernández et al. [32] found that such objects tend to diffuse outwards, eventually
feeding the Oort Cloud as discussed in Sect. 6.1, rather than being captured into
the Centaur and JF comet populations. This would mean that the requirement on
the total number of comet-sized scattered disk objects in order to feed the Jupiter
Family would be even harder.
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Fig. 37 Orbital distribution of transneptunians and Centaurs as plotted on the (a, e) plane. The
dots show Kuiper Belt objects and the open circles show scattered disk objects and Centaurs,
all with at least 5 days’ observational arc. The dashed curves indicate crude perihelion distance
limits of the scattered disk. Open circles above and to the left indicate Centaurs, while those below
and to the right indicate the “extended scattered disk”. There are five objects to the right of the
diagram, whereof one scattered disk object, two Centaurs, and two extended scattered disk objects:
(90377) Sedna and 2004 VN112. Data from the IAU Minor Planet Center lists
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It appears that there are still several important, unanswered questions regard-
ing the capture of short-period comets, and the picture shown in Fig. 2b, which
is intended to represent current thinking, is not likely to be the final word. Further
studies of the evolution of the scattered disk and its relations with the Oort Cloud and
the fate of Oort Cloud comets upon entry into the planetary system are warranted
on the theoretical side. Concerning observations, the access to larger and better
telescopes aiding in the search for distant Solar System objects in the near future
is bound to yield significantly improved statistics both for the orbital distribution of
transneptunians and for the detailed structure of the Oort peak.

There is thus reason to hope for continued, rapid progress in understanding both
the real workings of cometary dynamics and the origin and shaping of the Solar
System’s cometary populations. This should aid importantly in the interpretation of
recent and future cometary space mission results, which provide a lot of detailed
insights about the chemical and physical build-up of cometary nuclei—thus playing
an essential part in the use of comets as cosmogonic probes.
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83. Rickman, H., Froeschlé, C.: Cometary dynamics. Celest. Mech. 43, 243–263 (1988) 372
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Dynamical Features of the Oort Cloud Comets

M. Fouchard, C. Froeschlé, H. Rickman, and G. B. Valsecchi

Abstract The Oort cloud which corresponds to the outer boundary of our Solar sys-
tem, is considered to be the main reservoir of long period comets. At such distance
from the Sun (several times 10 000 AU), the comet trajectories are affected by the
galactical environment of the Solar System. Two main effects contribute to inject
comets from the Oort cloud to the inner Solar system where comets may become
observable: the Galactic tide which is due to the difference of the gravitational
attraction of the entire Galaxy on the Sun and on the comets, and the gravitational
effects of stars passing close to the Sun. In this lecture the characteristics and the
long term effects of these two mechanisms, taken independently and simultaneously,
will be illustrated.

1 Introduction

In 1950 from the distribution of semi-major axes of 22 well determined of observed
comets, Oort [32] showed that a clear peak, named later the “Oort peak” around
100,000 AU, was present. The orbital energy of such comets is such that the plan-
etary perturbations by Jupiter or Saturn can easily remove the comets from this
region, i.e., the comets go either in the interstellar medium or are sent on a much
tighter orbit to the Sun. Consequently the comets in the peak are “new,” they were
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entering the planetary region of the Solar system for the first time and should form
a reservoir surrounding the Sun between 104 and 105 AU : the Oort cloud.

Once in this reservoir, since the comets are so far from the Sun, Oort showed that
only perturbations from random passing stars, can change significantly the angular
momenta of comets and send some of them into the planetary region. Thus from this
time stellar perturbations were the only mechanism considered to inject comets in
the planetary region (e.g., [35, 40, 16, 26, 34]).

However, since 1983 the importance of galactic tides was pointed out first by
Byl [9]. Then several papers [10, 23, 39] have confirmed the main influence of the
tides. Moreover an observational confirmation of the action of the vertical galactic
tide was pointed out by Delsemme [11], who studied the distribution of the galactic
latitudes of perihelia of 152 known original orbits of comets and found that these
new Oort Cloud comets present a double-peaked distribution that is a characteristic
of the disk tide.

Duncan et al. [12] have shown that the characteristic timescale for changing the
perihelion distance, whatever the semi-major axis, is shorter for the galactic tide than
for the stellar perturbations. Further numerical integrations [23] have confirmed the
dominant role of the galactic tide to inject comets in the planetary region. Moreover
the result obtained by [12] has been verified by analytical work [18].

Consequently from that time, stellar perturbations have been neglected when
cometary injection is concerned; however, as shown by Hill [26] very close stellar
passages may produce a short but strong increase (many orders of magnitude) of the
inward flux of “new comets.” During these so-called comet showers, comets coming
from the inner part of the Oort cloud, i.e., below 10–20,000 AU are observable.

In fact three main perturbers may disturb the Oort cloud comets:

• The Giant Molecular clouds, but it has been shown that an encounter of the Solar
System with such a cloud will generate huge perturbations of the Oort cloud. But
such encounters are so rare [29] that they are almost never taken into account
when dynamics of the Oort cloud comets is concerned.

• The Galactic tide, which is due to the difference between the gravitational attrac-
tion of the entire Galaxy on the Sun and of course on the Oort cloud surrounding
the Sun.

• The passing stars, though as said previously they are often neglected, we will see
that they may have an important role when they are considered together with the
galactic tide.

Thus the present lecture is devoted to the presentation of the dynamics gener-
ated by the Galactic tide and the passing stars. In Sect. 2, we will first consider the
effects of the Galactic tide, starting with the development of the equations of motion
(Sect. 2.1). We will see that accordingly some assumptions which are considered
lead to the integrability of the long-term dynamics (Sect. 2.2). However, we will see
(Sect. 2.3) that, when the full tide is at work and none assumptions are done, the
integrability does not hold any more.
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The stellar perturbations are introduced in Sect. 3. We will first discuss some
general characteristics of the stellar encounters, leading to a very simple model of
its effects on cometary orbits (Sect. 3.1). Then, in Sect. 3.2 we will focus on the
cumulative effects of stellar encounters on long timescales.

In Sect. 4, we will show that when both perturbers are at work, i.e., the full
galactic tides and stellar perturbations are considered, a synergy takes place. The
main conclusions are summarized in Sect. 5.

2 The Galactic Tide

2.1 Equations of Motion

The Galactic tide which is due to the difference between the gravitational attraction
of the Galaxy applied on the Sun and that applied on the comets was not considered
until 1983 [9]. Such difference may be obviously neglected when one considers an
object close to the Sun such as planets, asteroids, or Kuiper belt objects, however,
for the Oort cloud which may extent as far as 1 pc from the Sun, the tide may
turn out to be one of the main disturbers of the cometary orbits. From [23, 12] the
Galactic tide has had a growing role (see [3] for a review). It is now considered
as the main perturber of the Oort cloud [42] and many studies were devoted to its
effects [4, 5, 20, 29, 30].

When the tide was first considered, only the central bulk of the Galaxy was
taken into account [9], but it appeared [10, 23] that the Galactic mid-plane in the
solar neighborhood generates a major contribution to the Galactic tide. We will now
derive the equations of motion of a comet orbiting the Sun under the influence of
the Galactic tide, taking into account both the central bulk and the mid-plane of the
Galaxy. First of all, in order to simplify the equations of motion, and in the limit
of our knowledge of the Galactic neighborhood of the Sun on long timescale, the
following assumptions are made:

• the potential does not depend on time;
• the Galaxy is axisymmetric; and
• the Sun moves around the Galactic center with an uniform speed on a circular

orbit in the Galactic mid-plane.

Let R0 and Ω0 be the radius and the angular speed of the Sun trajectory around
the Galactic center. One then defines two different frames. The first one called the
rotating frame is defined as a heliocentric frame with the x̂ ′ axis in the radial direc-
tion pointing toward the galaxy center, ẑ axis normal to the galactic plane pointing
toward the north galactic pole, and the ŷ′ axis completing a right-handed system.
The second one, referred as the fixed frame (x̂, ŷ, ẑ), heliocentric as well, is such that
it coincides with the rotating frame (x̂ ′, ŷ′, ẑ) at t = 0 and then keeps its directions
fixed (see Fig. 1). If αr is an angle in the galactic plane measured in the rotating
frame from x̂ ′, and α the corresponding angle measured in the fixed frame from x̂
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Fig. 1 The fixed frame x̂, ŷ, ẑ and the rotating frame x̂ ′, ŷ′, ẑ used in this lecture. S denotes the
Sun angular, G the galactic center. Ω0 is the Sun angular speed around the galactic center. The
relation of an angle α measured in the fixed frame from the x̂ vector and the corresponding angle
αr measured in the rotating frame from the x̂ ′ vector is α = αr +Ω0t at time t

at time t then one has the following relation α = αr + Ω0t . One should note that
in both frames, since the motion of the Sun around the galaxy is retrograde, Ω0 is
negative. The subscript r will denote an angle measured in the rotating frame.

Because the Galaxy is axisymmetric, the Galactic potential may be written as
Ug(R, z) where R is the distance to the Galactic axe of rotation and z = 0 is the
Galactic mid-plane. Following [23] the Galactic potential is developed at order 2 in
the neighborhood of the Sun, i.e., a development of order 1 of the force deriving
from the potential Ug .

The gravitational attraction of the Galaxy on a comet and on the Sun are, respec-
tively,

fc = −∇ Ug(R, z),

f# = −Ω2
0 R0,

where R is the distance between the comet and the Galactic axe of rotation, z is
the third coordinate of the comet in any frame, and R0 is the Galactic center—Sun
vector.
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The force per unit of mass on a test particle orbiting the Sun is then given by

F = −μM#
r3

r + f f − f#,

where r is the Sun–comet vector of length r , M# the mass of the Sun, and μ the
gravitational constant.

Hence, one has

F = −μM#
r3

r −∇Ug +Ω2
0 R0. (1)

Taking into account that the angular speed of the Sun is given by

Ω# =
[

1

R

∂Ug(R, 0)

∂R

]1/2

R#
,

Equation (1) writes

F = −μM#
r3

r −
[
∂2Ug

∂R2

]
R0

x ′ x̂ ′ −
[

1

R

∂Ug

∂R

]
R0

y′ ŷ′ −
[
∂2Ug

∂z2

]
R0

zẑ, (2)

+0(x2, y2, z2),

where (x, y, z)T and (x ′, y′, z)T are the coordinates of the particle in the non-
rotating and rotating frame, respectively (thus x ′ = x cos(Ω0t) + y sin(Ω0t) and
y′ = −x sin(Ω0t) + y cos(Ω0t)).

Let us consider the usual Oort cloud constants defined by

A = −
[

R

2

dΩ

dR

]
R0

,

B = −
[
Ω

R

2

dΩ

dR

]
R0

,

and the total density in the Solar neighborhood ρ0 obtained through the Poisson’s
equation:

4πμρ0 =
[

∂

∂R

(
∂Ug

∂R

)
+ ∂2Ug

∂z2

]
R0

= 2(B2 − A2) +
[
∂2Ug

∂z2

]
R0

.

Then, (2) becomes

F = −μM#
r3

r+ (A− B)(3A+ B)x ′ x̂ ′ − (A− B)2 y′ ŷ′ − [4πμρ0 − 2(B2 − A2)]zẑ,

where the terms of order 2 in x , y, and z are neglected.
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The force F may be further simplified using the constants G1, G2, and G3 given
by

G1 = −(A − B)(3A + B)

G2 = (A − B)2

G3 = 4πμρ0 − 2(B2 − A2).

Hence

F = −μM#
r3

r − G1x ′ x̂ ′ − G2 y′ ŷ′ − G3zẑ, (3)

from which the Cartesian equations of motion may be easily obtained. It is com-
mon to call the component of the tide in the Galactic mid-plane depending on G1

and G2 the radial component, and the component normal to the Galactic mid-plane
depending on G3 the normal component.

As regards the values of the Oort constants A and B, and of the Galactic density
ρ0, the following values are commonly used [27]: ρ0 = 0.1 M# pc−3, an angular
velocity of the Sun around the Galaxy center Ω0 = B − A = −26 km s−1 kpc−1

and with the approximation A = −B (thus G1 = −Ω2
0 ). Thus, one gets

G1 = −7.0706 × 10−16years−2

G2 = −G1

G3 = 5.6530 × 10−15years−2.

The values of G1, G2, and G3 tell us that the radial component of the tide
is almost ten times smaller than the normal one. This is the reason why many
authors neglected the radial component, i.e., G1 = G2 = 0. The special case where
G1 = G2 = 0 will be investigated in Sect. 2.2.

As an alternative to the Cartesian coordinates, one can also use an Hamiltonian
formalism to write down the equations. The complete Hamiltonian writes

H = Hkep + Htide,

Hkep = = −μM#
2a

,

Htide = G1
x ′2

2
+ G2

y′2

2
+ G3

z2

2
.

Some useful Hamiltonian variables are the so-called Delaunay’s elements L ,G,

Θ, M, ω,Ω defined by

M , L = √
μM#a

ω, G = L
√

1 − e2

Ω , Θ = G cos i ,
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where M is the mean anomaly of the comet, a the semi-major axis, e the eccentric-
ity, ω the argument of perihelion, and Ω the longitude of the ascending node. The
Hamiltonian equations are then obtained from

dM
dt = ∂H

∂L , dL
dt = − ∂H

∂M ,

dω
dt = ∂H

∂G , dG
dt = −∂H

∂ω
,

dΩ
dt = ∂H

∂Θ
, dΘ

dt = −∂H
∂Ω

.

(4)

For a typical Oort cloud comet, one has Htide/Hkep ∼ 10−3(a/20,000)3, where a
is the semi-major axis of the comet, thus one may neglect short-period perturbations
and average the Hamiltonian H over one orbital period with respect to the mean
anomaly. One obtains the averaged Hamiltonian 〈H〉 given by

〈H〉 = − μ2

2L2
+ L4

4μ2

{
G3

(
1 − Θ2

G2

)[G2

L2
+ 5
(

1 − G2

L2

)
sin2 ω

]

+
(
G1 cos2 Ωr + G2 sin2 Ωr

)[G2

L2
+ 5
(

1 − G2

L2

)
cos2 ω

]
(5)

+
(
G1 sin2 Ωr + G2 cos2 Ωr

)[G2

L2
+ 5
(

1 − G2

L2

)
sin2 ω

]Θ2

G2

−10
(
G1 − G2

)(
1 − G2

L2

)
cosω sinω cosΩr sinΩr

Θ

G

}
.

The averaged Hamiltonian equations of motion may be deduced from (4) using the
averaged Hamiltonian 〈H〉. The solutions will correspond to averaged elements of
the cometary orbit. But, as far as Oort cloud comets dynamics is concerned, we are
more interested in long-term behavior and statistical properties rather than in high
accuracy. Hence, in this frame, averaged elements are a good approximation of the
osculating elements of the cometary orbit at any time (except for the mean anomaly
obviously) as long as they do not diverge from osculating elements and conserve
the same statistical properties on long timescale. For the complete equations of the
Hamiltonian system one is referred to [20], where different sets of Hamiltonian
equations are also used.

From a computational point of view it turns out that a Lie–Poisson formalism,
which is more general than the Hamiltonian one, allows to build a very efficient
integrator. For a general discussion on the numerical integration of the galactic tide
effects on Oort cloud comets one should read [7, 19].

The dynamics generated by the averaged equations of motion is also discussed
in [6] where the existence and stability of stationary orbits are investigated.
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2.2 The Integrable Case

From the averaged Hamiltonian 〈H〉 given in (5), one easily deduces that L is con-
served with time (see (4)). In addition, when the radial component of the tide is
neglected (which corresponds to G1 = G2 = 0), Ω cancels in the averaged Hamil-
tonian, thus the third component of the angular momentum Θ is also conserved.

Consequently, one gets three integrals of motion which means that under the
hypothesis that (i) the average of the Hamiltonian is justified and (ii) the radial
component is negligible, the dynamics is completely integrable.

In this case, one notes that L and Θ being constant, the dynamics is completely
described in the G, ω variables. The Hamiltonian equations of motion for these
variables can be writen as

dG

dt
= −G3

5 L2

4μ2
(L2 − G2)

(
1 − H 2

G2

)
sin 2ω, (6)

dω

dt
= G3

L2 G

2μ2

[
1 − 5 sin2 ω

(
1 − L2 H 2

G4

)]
. (7)

The dynamics generated by (6) and (7) was extensively studied by analytical and
numerical methods [4, 5, 8, 23, 29, 30]. We will summarize the main implications
of the integrability when long-term dynamics is concerned.

Figure 2 shows the phase portrait of the dynamics in the (ω,G/L) plane with
Θ/L = √

1 − e2 cos i = 1.7321×10−2 and a = 30,000 AU. The value of Θ/L tells
us that for these orbits [8, 30], the lowest bound of the minimum of the perihelion
distance may be equal to 4.5 AU [8, 30].

One notes that different families of orbits may be observed (stationary, circu-
lating, librating). A detailed discussion on the different families of orbit may be
found in [5, 8]. Each orbit has a perihelion distance librating with a period given by
[8, 29, 30]:

Pperi = K(k)

γ
, (8)

where K is the complete elliptic function of the first kind and:

k2 = min(G2
0,G2

2) − G2
1

max(G2
0,G2

2) − G2
1

,

γ =
2πρ0 L2

√
max(G2

0,G2
2) − G2

1

μ
,

G2
0 = Θ2 +

(
1 − Θ

G

) (
G2 + 5 (L2 − G2) sin2 ω

)
,
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Fig. 2 Phase portrait of the dynamics in the G/L , ω plane with Θ/L = 1.7321 × 10−2 and
a = 30,000 AU. The two main families of orbits are shown: gray curves correspond to circulating
argument, whereas black curves correspond to librating argument, The horizontal dotted line in the
bottom of the frame corresponds to G/L = 1.7321 × 10−2

G2
1 =

1

8

(
5 L2 + 5Θ2 − G2

0 −
√

(5L2 + 5Θ2 − G2
0)2 − 80L2 Θ2

)
,

G2
2 =

1

8

(
5 L2 + 5Θ2 − G2

0 +
√

(5L2 + 5Θ2 − G2
0)2 − 80L2 Θ2

)
.

Figure 3 shows the period of the perihelion cycle Pperi given by (8) versus the
minimum value reached by the perihelion over one cycle qmin which is directly
obtained from G1 which is the minimum of G over one cycle [30]. The gray part of
the curve corresponds to circulating argument of perihelion, whereas the black part
to librating argument of perihelion. One notes that the period Pperi goes to infinity
for orbits getting closer to the homoclinic motion between orbits with circulating
argument of perihelion and orbits with librating argument [8]. The black horizontal
dotted line on Fig. 3 corresponds to the minimal value Pmin

peri of Pperi when a =
30, 000 AU. This lower bound is given by [30]:

Pmin
peri =

π

2
√

5μρ0

· 1

Porbi
, (9)

where Porbi is the orbital period of the comet. Thus Pmin
peri depends only on the semi-

major axis a and is proportional to P−1
orbi.
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Fig. 3 Period of the perihelion cycle versus the minimum value reached by the perihelion on one
cycle. The gray part of the curve correspond to circulating argument of perihelion, whereas the
black part to librating argument of perihelion. The dotted curve is the minimal value Pmin

peri of Pperi

when a = 30, 000 AU

Consequently, under the assumption that the dynamics is integrable, when long-
term effects of the Galactic tide are concerned, there are two main points that one
should keep in mind [29, 30]:

(i) the minimum heliocentric distance reached by the perihelion of a comet may be
computed analytically from the initial conditions,

(ii) the lower bound Pmin
peri of the perihelion cycles is proportional to P−1

orbi, where
Porbi is the orbital period of the comets.

An illustration of these properties may be observed on Fig. 4 where the evolution
of the semi-major axis and the perihelion distance versus time of two comets are
shown. All the initial elements are the same except the semi-major axes which are,
respectively, equal to 30,000 AU (top panel) and 20,000 AU (bottom panel). For
both comets the semi-major axis remains constant for 5 Gyr. The perihelion distance
librates perfectly with a longer period for the comet having the lower semi-major
axis and will never be smaller than the critical value qc = 15 AU (see later for the
choice of this value).

Let us now consider the effects of an integrable tide(the radial component of the
tide is neglected) on a hypothetical Oort cloud of comets.

We consider as [36] a thermalized Oort cloud of 106 comets with the following
initial osculating elements:
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Fig. 4 Semi-major axis a (gray curve) and perihelion distance q (black curve) versus time for
the same initial condition except for the semi-major axis a0: top panel: a0 = 30,000 AU, bottom
panel: a0 = 20,000 AU. The dotted curve corresponds to qc = 15 AU

• the initial semi-major axes a0 are between 3000 and 100,000 AU with a distribu-
tion ∝ a−1.5

0 ;
• the starting eccentricity e0 is chosen with a density probability ∝ e0;
• the initial inclination i0 is such that the distribution of cos i0 is uniform between −1

and 1;
• the initial argument of perihelion ω0, longitude of ascending node Ω0, and the

mean anomaly M0 are uniformly distributed in the range 0 − 2π .

The comets are integrated during 5 Gyr unless the heliocentric distance of a
comet becomes r < qc = 15 AU (the comet is lost due to planetary perturbations)
or the comet reaches r = 4×105 AU (it escapes directly into the interstellar space).

Since only the vertical tide is considered and the averaging over one orbital
period is valuable, i.e., the dynamics is integrable. Figure 5 shows the number
of comets entering the target region (heliocentric distance smaller than 15 AU)
and the observable region (heliocentric distance smaller than 5 AU) per period
of 50 Myr versus time. For each period of 50 Myr, the black area is proportional
to the number of comets with semi-major axis a < 20,000 AU—the inner Oort
cloud—, the gray area is proportional to the number of comets with semi-major axis
20,000 < a < 50,000 AU—central cloud—and the white area to the comets with
a > 50,000 AU or on hyperbolic orbit—the outer Oort cloud (in the present case
the conservation of a prohibits the existence of such orbits).

If one first considers the flux toward the target zone, one clearly observes a
decreasing of the flux with time. In addition the decrease is faster for the outer
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Fig. 5 Top panel: number of comets entering the target region (q < 15 AU) per period of 50 Myr
versus time. Bottom panel: number of comets entering the observable zone (q < 5 AU) per period
of 50 Myr versus time. For each period of 50 Myr, the black area is proportional to the number of
comets with semi-major axis a < 20,000 AU (the inner Oort cloud), the gray area is proportional
to the number of comets with semi-major axis 20,000 < 50,000 AU (central cloud), and the white
area to the comets with a > 50,000 AU (outer cloud)
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parts of the cloud rather than for the inner parts. This is easily explained from the
two points (i) and (ii) stated previously. Indeed, only the infeed trajectories, i.e., the
trajectories for which the minimum of the perihelion distance qmin over one cycle is
smaller than 15 AU, may enter the target zone. Consequently, when time goes on,
these comets enter the target zone and are removed from the Oort cloud. Thus the
number of infeed trajectories in the Oort cloud decreases with time, which induces
the decrease of the flux toward the target zone. In addition, we have seen that the
lower bound of the periods of the perihelion cycle is proportional to P−1

orbi, thus the
majority of the infeed trajectories with large semi-major axis will enter the target
zone more rapidly than infeed trajectories with moderate semi-major axis. This last
point explains why the decrease is steeper for the outer cloud rather than for the
inner cloud.

As regards the flux toward the observable region, the same arguments explain
the decrease of the flux. In addition one should note that, because the entrance in
the target zone corresponds to an end state, the comets in the observable zone have
had their perihelion distance decreased from outside the target zone to inside the
observable zone in less than one orbital period. However, the variation of the peri-
helion distance over one orbital period is proportional to a7/2 (see (6)), thus only the
comets with a sufficiently large semi-major axis may enter the target region. This is
why, no comet from the inner cloud is found in the observable region.

One notes a marginal flux from the outer cloud until the end of the integration.
This contradicts that the flux from the outer cloud should decrease faster than the
flux from the central cloud. However, this is easily explained by the fact that the
heliocentric distance of the comets itself is considered, rather than the perihelion
distance, for the flux toward the observable and the target zone. Let qmin be the min-
imal value of the perihelion distance over one cycle, if qmin < qc the lapse of time
Δtperi during which the perihelion distance q < qc may be considered as a fraction
of Pperi, that is, Δtperi = c · Pperi, where c may be considered as independent of a.
Similarly, when q < qc, the lapse of time Δtorbi per orbital period during which the
comet is at heliocentric distance smaller than qc may be considered as independent
of a, since all the orbits are quasi-parabolic. Thus, on an average, during a lapse
time T the comet is at heliocentric distance smaller than qc for c Pperi Δtorbi T/Porbi.

In conclusion, using Pmin
peri instead of Pperi, and using (9), when qmin < qc, the

lapse of time during which the comets is at heliocentric distance smaller than qc

over one orbital period is proportional to P−1
orbi.

Because the number of orbital periods during a fixed lapse time T is also pro-
portional to P−1

orbi one can say that, statistically, the lapse of time spent by a comet
at heliocentric distance smaller than qc when qmin < qc during T is proportional to
P−2

orbi. In other words, it will need more time for the comet with a large semi-major
axis to get in the target zone rather than for comets with low semi-major axis.

2.3 Non-Integrable Case

The assumptions over which the integrability relies are usually not fulfilled. First
of all, the radial component is not negligible; and furthermore, for a comet with a
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Fig. 6 Semi-major axis a (gray curve) and perihelion distance q (black curve) versus time for the
same initial condition as for Fig. 4 (top) but when the effects of the tide is due to its two component

semi-major axis a ∼ 50,000 AU, at aphelion one may have Htide/Hkep ∼ 0.125;
which means that the average is not justified anymore.

One example for which the integrability is broken is shown on Fig. 6. The comet
with the same initial conditions as that of Fig. 4 (top) is integrated over 5 Gyr,
but both components of the tide are taken into account and without averaging the
equations of motion. Contrarily to Fig. 4, the minima of the perihelion distance q are
not equal, since the radial component has broken the integrability of the system. In
the case of Fig. 6 the perihelion distance becomes smaller than 15 AU after 1.5 Gyr
and may become as small as 4.5 AU after 4.8 Gyr.
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Fig. 7 Number of comets entering the observable zone (q < 5 AU) per period of 50 Myr versus
time. For each period of 50 Myr, the gray area is proportional to the number of comets with semi-
major axis 20,000 < a < 50,000 AU (central cloud) and the white area to the comets with
a > 50,000 AU. No comet with a < 20,000 AU is injected in the observable region
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Now the same simulation as in Sect. 2.2 is performed but considering a full tide
(the vertical and radial components are taken into account) rather than an integrable
tide. Figure 7 shows the flux of comets toward the observable region per period of
50 Myr versus time, i.e., Fig. 7 is the same as Fig. 5 (bottom) but considering the
two components of the tide.

There still be no comets coming from the inner cloud. Indeed, the fact that the
perturbation of the perihelion distance over one orbital period is proportional to a7/2

is still valid for the full tide, consequently the tide is still unable to send directly
comets from the inner cloud into the observable region. The fast decrease of the
flux in less than 2 Gyr for the central cloud shows that the discussion presented in
Sect. 2.2 for the integrable tide is still valid. However, this time there is a marginal
flux until quite the end of the integration which was not found in Fig. 4 (bottom).
This marginal flux is due to the fact that for the central Oort cloud the radial com-
ponent of the tide breaks the integrability [20].

For the outer cloud, the decrease of the flux is gradual until 2.5 Gyr and almost
constant until the end of the integration. This behavior shows that the previous dis-
cussion made in Sect. 2.2 is not valid any more. Indeed, for the outer Oort cloud
the integrability is broken by both the presence of the radial component and the fact
that the procedure of averaging is not valid anymore. As a consequence the infeed
trajectories toward the observable region are efficiently refilled, which induces that
the flux is quite constant during the last 2.5 Gyr.

3 Stellar Perturbations

3.1 The Stellar Impulse on a Cometary Orbit

As underlined in the introduction random passing stars are external perturbers which
may affect the dynamical evolution of Oort cloud comets. Oort [32] considered that
the stars are the only perturbers able to inject a comet from the Oort cloud to the
planetary region, decreasing drastically its perihelion distance. Close or penetrating
passages through the Oort cloud can deflect large numbers of comets on orbits that
enter the planetary region and consequently producing a cometary shower [26].

The heliocentric velocity of a star is about several thousands larger than the
velocity of a comet. In effect a star has a typical velocity of about 40 km s−1, whereas
the heliocentric velocity of Oort cloud comets is of the order of 10 m s−1. Thus the
effects of a stellar passage in the Oort cloud was modeled has an impulsion given
to the heliocentric velocity of the comets. To estimate stellar perturbations Oort
[32] used the so-called impulse approximation, introduced in [33], to investigate the
influence of stellar encounters on a cloud of meteoroids or comets. This approxima-
tion allows to obtain analytical solutions using simplifying assumptions, namely:

• the star velocity is constant and the motion follows a straight line;
• the star velocity is large enough that the comet and the Sun can be considered to

be at rest during the stellar passage.
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This approximation was used in a large number of papers (e.g., [2, 26, 28, 35, 41])
and have been found to be useful as a quick estimator in numerical Monte Carlo sim-
ulations of cometary orbital evolutions (e.g., [12, 16, 17, 22, 24, 27, 31, 34, 38, 40]).

Under this approximation, the comet is held fixed with respect to the Sun, while
the star passes with constant velocity along the straight line defined by the impact
parameter b∗, a unit vector b̂∗ that defines the direction of closest approach, and
the velocity vector V∗ of the star with respect to the Sun. The impulse of the comet
relative to that of the Sun caused by the time-integrated stellar attraction is computed
from

Δv = 2G M∗
V ∗

{ b̂c

bc
− b̂∗

b∗
}

; (10)

adding this value of Δv to the heliocentric velocity of the comet at the orbital posi-
tion in question, one obtains a new orbital velocity and thus new values of the orbital
elements. Figure 8 illustrates the geometry considered. As for the Galactic tide,
accurate and fast methods have been developed (see [37] for a detailed discussion).

Figure 9 gives some examples of the effects of two stellar passages on typical
Oort cloud comets. The stellar passages were modeled with a more accurate method
than the classical impulse for which the stellar heliocentric trajectory is considered
as hyperbolic, and the comet is allowed to move on its trajectory [37].

For each panel, the motion of the comet and the star are shown on the plane
containing the stellar path and the Sun and such that the star comes from the right
with a velocity at infinity anti-parallel to the x axis. The stellar effects are taken
into account when the distance of the star to the plane x = 0 (the impact plane) is
less than 1 × 106 AU. During this period the comet moves on its trajectory. This
motion corresponds to the black portion of the comets trajectories shown on Fig. 9.
The unperturbed orbits of the comets prior and after the stellar passages are also
shown. The two top panels correspond to a star Sweak with an impact parameter b∗ =
51,000 AU, the velocity at infinity V ∗ = 96 km s−1, and mass 0.9 M#, whereas the
two bottom panels to a star Sstrong with impact parameter b∗ = 6600 AU, V ∗ =

Sun
Comet

A

B

c

r

V

*

b*

c

b *

Star

Fig. 8 Geometry of a stellar passage considered for the Classical Impulse Approximation
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Fig. 9 Stellar perturbations on typical comets of the Oort cloud. The star comes from infinity on
the x axis from the right. For each passage the plane contains the star trajectory and the Sun. The
filled gray ellipse is the unperturbed cometary orbit prior to the stellar perturbations, whereas the
dotted gray ellipse is the unperturbed trajectory after the stellar passage. The top panels correspond
to a star of mass 0.9 M#, an impact parameter b∗ = 51,000 AU and the velocity at infinity V ∗ =
96 km s−1. The two comets have an initial semi-major axis equal to 20,000 AU. The two bottom
panels correspond to a star of mass 2.1 M#, an impact parameter b∗ = 6600 AU, and the velocity at
infinity V ∗ = 24 km s−1. The initial semi-major axis and perihelion distance are a = 20,000 AU,
q = 10,000 AU for the comet of the bottom left panel and a = 5000 AU, q = 70 AU for the right
bottom panel

24 km s−1, and mass 2.1 M#. For the star Sweak the two comets have the same initial
semi-major axis a = 20,000 AU and the same perihelion distance q = 100 AU. For
both comets the perihelion perturbation is smaller than 1 AU. For the star Sstrong the
initial semi-major axis and perihelion distance are a = 20,000 AU, q = 10,000 AU
for the comet of the bottom left panel, and a = 5000 AU, q = 70 AU for the
right bottom panel. The perturbations on the perihelion distance are, respectively,
Δq = −2600 AU and Δq = −66 AU. One remarks the wide amplitude of these
perturbations. The star is even able to decrease the perihelion distance of a comet
with initial semi-major axis a = 5000 AU from 70 AU to ∼ 4 AU. Such passages
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are rather rare and are responsible of the so called comets showers [26] during which
comets from the inner Oort cloud may become observable.

From (10) one easily sees that the stars are mainly able to change the angular
momentum h = r × v of a comet, and in a minor importance, the orbital energy.
When the encounter is distant with respect to the sun (b∗ > bc), this change is
proportional to M∗/(V ∗bc). Consequently, if one assumes a uniform spatial distri-
bution of the comets in the Oort cloud, the number of comets for which the stellar
impulse will be greater that an arbitrary threshold will be proportional to (M∗/V ∗)2.
It means that apart of the impact distance of the star with the Sun, the stellar mass
and the stellar velocity are key parameters to measure or predict the strength of a
comet shower.

3.2 Cumulative Stellar Impulsions

Obviously during its life time, the Solar System and its Oort cloud suffer many close
encounters with stars. When recent history or close future are investigated one may
relay on observations to deduce the sequence of encounters of the Solar System with
the neighboring stars [21]. However, on long timescales (of the order of 1 Gyr),
it is obviously impossible to know the encounters of the Solar System with stars.
Consequently, if one wants to investigate the evolution of the Oort cloud during a
timescale of 5 Gyr, one should make some hypothesis, namely that (i) the Solar
neighborhood is statistically constant over its lifetime and that (ii) the neighborhood
at present time may be used to build a statistical sequence of stellar encounters of
the Solar System during its lifetime.

In this way, we have built a set of 197,906 stellar encounters. The encounters
occur at random times during a lapse of tmax = 5 × 109 yr, with random solar
impact parameters up to dmax = 4 × 105 AU, and with random stellar masses and
velocities. We use 13 categories of stellar type as in [38] with parameters listed
in Table 1. To each category we associate one value of the stellar mass. These
masses are generally taken as those of the archetypal spectral classes along the main
sequence (see Table 1) according to [1]. The relative encounter frequencies fi of
Table 1 are taken from [21], where they were derived from the respective products
of number density and mean velocity, ni 〈vi 〉. A random number ξi is used to pick a
stellar category i with the probability fi/

∑
fi .

Considering the above sequence of stellar encounters on the comet already used
in Sect. 2 with semi-major axis a = 30,000 AU, one obtains the evolution of semi-
major axis and perihelion distance versus time shown on Fig. 10. One notes that the
perihelion distance and the semi-major axis show a behavior similar to a random
motion, which highlights the stochastic aspect of the stellar perturbations. In par-
ticular, the perihelion of the comet becomes as small as 5 AU in less than 200 Myr
and then takes value greater than 1000 AU in a 100 Myr lapse time. As regards the
semi-major axis, the comet starts in the central cloud, but after 3 Gyr it has shifted
to the inner cloud with semi-major axis ∼ 18,000 AU. This example shows that
the stellar perturbations are able to induce wide drifts of the perihelion distance on
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Table 1 Stellar parameters. The types are mostly MK types for main sequence stars; “wd” indi-
cates white dwarfs and “gi” indicates giant stars. The encounter frequencies are given in number
per Myr within 1 pc. The following two columns list the solar apex velocity with respect to the
corresponding type and the spherical Maxwellian velocity dispersion. The last two columns give
the mean heliocentric encounter velocity and its standard deviation according to our results

Type Mass (M#) Enc. freq v# (km/s) σ∗ (km/s) 〈V 〉 (km/s) σV (km/s)

B0 9 0.005 18.6 14.7 24.6 6.7
A0 3.2 0.03 17.1 19.7 27.5 9.3
A5 2.1 0.04 13.7 23.7 29.3 10.4
F0 1.7 0.15 17.1 29.1 36.5 12.6
F5 1.3 0.08 17.1 36.2 43.6 15.6
G0 1.1 0.22 26.4 37.4 49.8 17.1
G5 0.93 0.35 23.9 39.2 49.6 17.9
K0 0.78 0.34 19.8 34.1 42.6 15.0
K5 0.69 0.85 25.0 43.4 54.3 19.2
M0 0.47 1.29 17.3 42.7 50.0 18.0
M5 0.21 6.39 23.3 41.8 51.8 18.3
wd 0.9 0.72 38.3 63.4 80.2 28.2
gi 4 0.06 21.0 41.0 49.7 17.5

timescales comparable to that of the Galactic tide and also to be responsible of a
stochastic diffusion of the cometary semi-major axis.

Let us now model the same sequence of stellar pertubations on our hypothetical
initial Oort cloud. Figure 11 shows the comets entering the observable zone per
period of 50 Myr (top panel) and 10 Myr (bottom panel) versus time when only
the stellar perturbations are included. One notes that the flux is very sporadic and is
characterized by a sequence of comets showers occurring at random. The strongest
showers are evidenced on the bottom panel. The characteristics of the stars which
are responsible of the showers are shown on Table 2. The shower S2 is due to the
star Sstrong already considered in Sect. 3.1.

However, if one looks to the semi-major axis of the comets injected, one remarks
that for the central and outer cloud, the stellar perturbations induce a flux which is
less affected by the showers. Indeed, the flux from these regions exhibits rather a
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Fig. 10 Semi-major axis a (gray curve) and perihelion distance q (black curve) versus time for the
same initial condition as for Fig. 4 (top)
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Fig. 11 Top panel: same as Fig. 7 but only the stellar pertubations are taken into account. Bottom
panel: the total flux toward the observable region per period of 10 Myr versus time. The strongest
showers are evidenced by letters. See Table 2 for the characteristics of the stars causing the showers

small and regular decrease on long timescale. This decrease is due to the depletion
of the Oort cloud with time under stellar perturbations.

On the contrary the inner part of the cloud (a < 20,000 AU) is very sensitive
to close stellar passages. The increase of the flux from this region during a close
passage of a star to the Sun lasts for a very short time (less than 10 Myr) and may
be several orders of magnitude higher than the flux out of the showers. However, a
flux from this region of the cloud is nevertheless observed even when no showers
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Table 2 Characteristics of the stars causing the showers shown on the bottom panel of Fig. 11

Star Type d∗ (AU) V ∗ (km s−1)

S1 M5 1400 25
S2 A5 6600 24
S3 G5 3150 35
S4 M5 1700 17
S5 gi-M5 13,400–2300 37/20
S6 M5 2000 18

are observable. This distinction between a background flux coming mainly from
the central and outer cloud under distant passage of star in the Oort cloud and a
sporadic flux coming from the inner cloud during a close passage to the Sun was
already identified by [22, 26].

4 The Combined Effects of Galactic and Stellar Perturbations

Let us now consider the dynamics of the Oort cloud comets when both the galactic
tide and the stellar perturbations are at work. Figure 12 shows again the evolution of
the semi-major axis and the perihelion distance versus time for the same comet as for
Fig. 6. The two effects (full tide and stellar pertubations) are now at work. During the
first 1.5 Gyr one clearly sees the cycle of the perihelion due to the tide. Obviously
the dynamics is not integrable and the minimum that the perihelion distance may
reach is now almost a random quantity. In the present case the comet could reach
heliocentric distances as small as 0.5 AU because of the combined effects of both
the galactic tide and stellar perturbations. After the first 1.5 Gyr the semi-major
axis is increasing due to stellar perturbations which affects deeply the regime of
the perihelion cycle which becomes much shorter. However, the minimum of the
perihelion distance of one cycle is above 100 AU, i.e., very far from our dynamical
barrier at 15 AU. This comet is still in the outer Oort cloud after 5 Gyr.

Let us now consider the dynamical evolution of our fictive Oort cloud of 106

comets under the combined effects of Galactic tide and stellar perturbations. The
upper part of Fig. 13 shows a histogram plot of the number of comets injected

Fig. 12 Semi-major axis a (gray curve) and perihelion distance q (black curve) versus time for the
same initial condition as for Fig. 4 (top)
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Fig. 13 The upper diagram shows the number of comets entering the observable zone per 50 Myr
versus time. The white histogram corresponds to the combined model, the black histogram to the
Galactic tide alone, and the gray histogram to the passing stars alone. The asterisks indicate the
number of comets remaining in our simulation for the combined model at every 500 Myr with scale
bars to the right. The middle diagram shows the excess number of injections into the observable
region per 50 Myr in the combined model with respect to the sum of the stars-only and tides-only
models. The lower diagram shows this excess expressed in percent of the mentioned sum

into the observable region per period of 50 Myr as a function of time from the
beginning till the end of the simulation. Three histograms are shown together: the
one in black corresponds to the model with only Galactic tides, and the gray one to a
model including only stellar perturbations—they correspond to the white histogram
of Figs. 7 and 11, respectively. Finally, the top, white histogram corresponds to the
combined model that includes both tides and stars.

Because the stars are the same in the two simulations where stellar perturbations
are at work, we see the same comet showers appearing and the same quasi-quiescent
periods in between. The white area at the top of each bin corresponds to the extra
contribution of the combined model as compared with that of the stars only. If the
numbers plotted in the white, gray, and black histograms are called NC , NS , and
NG , respectively, we can define ΔNC = NC − NS − NG as an absolute measure
of this extra contribution 1. Already at first glance, looking at the later part of the

1 Towards the end of our simulation the number of Oort Cloud comets has decreased in all three
models but most in the combined one. We then have about 930, 000, 840, 000, and 760, 000 comets
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simulation, we see that this is very significant. In the two lower panels of the figure,
we plot histograms of ΔNC and τ = ΔNC/(NS + NG),s i.e, the extra contribution
expressed as a fraction of NS + NG .

The basic observations are as follows. While during the first Gyr the level of NG

is generally higher than that of NS , this situation gets reversed after more than two
Gyr. Even outside the main showers, NS is then at a somewhat higher level than
NG . The white histogram, showing NC , shares the spikes of the strongest showers,
but the contrast between the spikes and the background is less than in the gray
histogram. Indeed, the ΔNC histogram shows no spikes at all. Therefore, during the
later part of the simulation, the τ parameter shows fluctuations anticorrelated with
those of NS . It reaches a few hundred percent, when NS drops to its lowest levels,
but sometimes decreases to nearly zero during the peaks of NS .

In order to smooth out those fluctuations we present in Table 3 time averages
of τ over 1 Gyr periods along with the corresponding integrals of NC , NS , and
NG . During the first Gyr the flux of the combined model is not much larger than
the sum of the two fluxes with separate effects, and the difference is just a small
fraction of the total flux. But toward the end the synergy effect of the combined
model, as measured by ΔNC , has grown—on the average—to nearly the same level
as NS + NG . During the last Gyr we find that 〈NC 〉 is about 2.5 times larger than
〈NS〉 in fair agreement with earlier estimates by [24, 22]. After an initial, relatively
fast decrease due to the emptying of the tidal infeed trajectories, 〈NC 〉 continues
to decrease approximately in proportion to the total number of Oort Cloud comets
(NOC ), and 〈NS〉 and 〈NG〉 show similar behaviors.

Looking in detail at the ΔNC and τ histograms in Fig. 13 for the beginning of our
simulation, we see that they start from negative values and turn into positive ones
after ∼ 0.5 Gyr. Thus, in the very beginning, the sum of the separate fluxes is larger
than the combined flux. This phenomenon was found by [28], whose calculations
were limited to only 5 Myr, and as they explained, it is typical of a situation where
both tides and stars individually are able to inject comets into the observable region
to a high degree.

Table 3 Number of comets entering the observable region during periods of 1 Gyr. Model G
corresponds to the Galactic tide alone, S to passing stars alone, and C to Galactic tide and passing
stars together. 〈τ 〉 is the increment from the sum of the two first rows (Galactic tide plus passing
stars separately) to the third row (Galactic tide and passing stars together)

Model [0 − 1] Gyr [1 − 2] Gyr [2 − 3] Gyr [3 − 4] Gyr [4 − 5] Gyr

G 2128 797 481 307 248
S 1425 1555 1030 717 511
C 3618 3141 2412 1733 1274
〈τ 〉 1.8% 33.6% 59.6% 69.2% 67.9%

in the tides-only, stars-only and combined models, respectively. This means that ΔNC actually
underestimates the extra contribution of the combined model.
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The large amount of synergy (τ ∼ 70%) seen in the later part of our simulation is
remarkable and indicates that both the tides and the stars on their own are seriously
inefficient in injecting comets in the observable region. It is only by means of the
synergy of both effects that we are able to explain an important degree of the flux of
comets toward the observable region at the current epoch.

The most important synergy mechanism of the Galactic tide and stellar perturba-
tions is that the latter are able to repopulate the critical phase space trajectories that
in the quasi-regular dynamics imposed by the tide lead into the observable region
[13, 18]. Our results appear to verify and quantify this picture.

Figure 14 shows the distributions of the opposite of the inverse semi-major axis
(−1/a) and the sine of the Galactic latitude of perihelion (for clarity we use the
absolute value | sin b|) of the comets entering the observable region, i.e., heliocentric
distance smaller than 5 AU, during a typical 170 Myr interval near the end of our
simulation, where no strong comet showers are registered. We show an average of
three such periods, i.e., 4.38−4.55 Gyr, 4.55−4.72 Gyr, and 4.80−4.97 Gyr. In fact,
comparing the three data sets, we find a rather good agreement, so that tentatively,
the expected error of the mean is not very large. Three histograms are shown for
each quantity: the one in black is for the model with Galactic tides only, the gray
one is for the model with only stellar perturbations, and the white one shows the
combined model.

After more than 4 Gyr the Galactic tides alone are practically only able to inject
comets into the observable region if a > 50,000 AU, so that the non-integrable
part of the tides may provide new comets into the emptied infeed trajectories of
the vertical component. Thus the feeble flux of new observable comets is strictly
confined to the outermost parts of the Oort cloud. If only the stellar perturbations
are at work, the injected comets are almost as few as in the case of the Galactic tides.
However, the distribution of −1/a shows that the stellar perturbations are relatively
efficient injectors of comets with semi-major axes in the whole range from 25,000
to more than 100,000 AU, and there is some marginal infeed all the way into the
inner core. Note that this concerns a time interval without any strong comet showers.

When both the processes are at work, the number of comets entering the observ-
able zone is 206, about 86% more than the sum of the two separate contributions
(39 + 72). This estimate of τ is a bit higher than for the entire 1 Gyr interval,
listed in Table 3, because the three intervals have been selected as particularly calm,
avoiding even the smaller peaks of NS that can be seen in Fig. 13. We have shown
above that larger values of NS lead to smaller values of τ . The distribution of −1/a
is as wide as for the stellar perturbations alone. However, the picture has changed,
since the additional 86% of the comets are strongly concentrated to the interval from

�
Fig. 14 (continued) during 170 Myr near the end of the simulation. When present, numbers in the
top-left corners of −1/a distribution panels correspond to comets with −1/a < −1× 10−4 AU−1.
The left column corresponds to the model with Galactic tide alone, the middle column to passing
stars alone, and the right column to the model with both effects
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Fig. 14 Distributions of −1/a, where a is the semi-major axis (top panels), and | sin b|, where b is
the Galactic latitude of perihelion (bottom panels), for the comets entering the observable region
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−4 × 10−5 to −2 × 10−5 AU−1 (25, 000 < a < 50, 000 AU). The local values of
ΔNC for the five 1/a intervals (0−1), (1−2), (2−3), (3−4), and (4−5)×10−5 AU−1

are −2, −22, +63, +36, and +10, respectively. The negative values of NC for the
two outermost bins of semi-major axis may be explained in the same way as for
the negative values of NC at the begining of the integration, i.e., for the outer Oort
cloud both the tides and the stellar perturbations are independently able to inject
efficiently comets into the observable region.

We see that the mechanism of synergy that increases the flux of injections in
the combined model prefers the range of semi-major axis (a > 30,000 AU) where
the vertical Galactic tide is able to provide the injections, once the relevant trajec-
tories are populated. But there is an important extension of the synergy to smaller
semi-major axes as well, extending at least to a � 20,000 AU. We conclude that
another synergy mechanisms must be at work. The repopulation mechanism is obvi-
ously important, but the shift to smaller semi-major axes can only be explained by
a “constructive interference” mechanism which decrease the threshold from which
the tide is able to eject comet toward the observable region due to the help of stellar
perturbation (see [36] for more details).

Looking at the distributions of | sin b|, indeed the signature of the Galactic tide
is clearly present in the left diagram and absent in the middle one. However, it
appears again to some extent in the right-hand diagram, where the combined model
is presented. Thus we have evidence that the synergetic injection of comets in the
combined model carries an imprint in the latitudes of perihelia similar to that of the
Galactic tide, though the feature is strongly subdued.

5 Conclusion

The effects of the Galactic tide and the stellar perturbations on the long-term behav-
ior of Oort cloud comet trajectories have been investigated. Our study has two main
limitations. We do not treat encounters with very massive Galactic perturbers, such
as star clusters or Giant Molecular Cloud complexes, the justification being that they
occur so rarely that the current Solar System is unlikely to feel the direct reverber-
ations of any such encounter and that even if they modify the structure of the Oort
cloud, our interest is not primarily in its dynamical history but rather in the way stars
and Galactic tides currently interact when injecting observable comets. Moreover,
we do not treat planetary perturbations in any direct manner. Like most previous
investigators (e.g., [22]) we use a dynamical barrier defined by a limiting perihelion
distance (in our case, 15 AU) outside which no planetary effects are included and
inside which all comets are considered lost from the cloud through perturbations by
Jupiter and Saturn. In terms of “transparency” of the planetary system [14, 15], our
model is completely opaque (P = 1). This means that we are limiting our attention
to a subset of the observed population of “new” Oort cloud comets, i.e., those that
have jumped directly from q > 15 AU into their observed orbits with q < 5 AU.

We have first investigated the effects of the Galactic tide and the stellar perturba-
tions separately in order to highlight their own characteristics. For each perturbator,
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after having observed how it acts on individual case, we have simulated the evolution
of the Oort cloud over 5 Gyr, using for initial conditions a relaxed model with a
distribution of semi-major axis f (a) ∝ a−1.5 within the interval 3000−100,000 AU.
This model is based on the results of simulation of Oort Cloud formation and evo-
lution by [12].

As regards the Galactic tide, the following conclusions may be drawn:

• it generates a quasi-integrable dynamics,
• it induces large oscillation of the perihelion distance, whereas the semi-major

axis is almost constant,
• the period of the oscillation is shorter for large semi-major axis,
• the larger the semi-major axis is, the greater is the variation of the perihelion

distance over one orbital period.

From these observations, one deduces that

• the efficiency of the tide to inject comet in the observable region increases with
the semi-major axis of the comets (no comet with a < 20,000 AU—the inner
Oort cloud—were found in the observable region with the tide only model),

• the feeding zone from which the tide is able to inject comet in the observable
region, get depleted as time increases, the outer feeding zone (in the outer Oort
cloud: a > 50,000 AU) being depleted more rapidly than the central ones (in the
central Oort cloud: 20,000 < a < 50,000 AU).

As regards the stellar perturbations, we have seen that they generate a stochastic
process characterized by comet showers due to close encounters with stars. Such
stars were able to inject comet into the observable region even from the inner part of
the Oort cloud. The total flux of comets to the observable region during the shower
being several orders of magnitude higher than when no showers are observed, which
correspond to a background flux, mainly coming from the outer and central part of
the cloud. The stellar perturbations, on the contrary to the Galactic tides, are able
to change the semi-major axis of the comets, inducing an exchange of populations
between the different regions of the Oort cloud.

The model with the combined effects of the Galactic tides and the stellar pertur-
bations, has highlight that an efficient synergy takes place. We have indeed shown
that, during the later parts of our simulation, there is a very important synergy effect
of the Galactic tide and stellar perturbations such that the combined injection rate is
on the average ∼ 70% larger than that of the stars alone plus that of the tide alone.
This synergy is strongest for semi-major axes between ∼ 20,000 and 50,000 AU
but continues all the way into the inner core. During comet showers the synergy
effect in the outer parts of the cloud practically disappears, but the one affecting the
inner parts becomes very important.

We have identified two mechanisms for the synergy during quiescent periods in
the outer parts of the Oort Cloud. One is that the stellar perturbations provide a
supply of new comets that replenishes the depleted tidal infeed trajectories, and the
other is that the gain of comet injections, when stellar perturbations decrease the
perihelion distance, dominates over the loss caused by opposing perturbations. For
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the synergy of the inner cloud we hypothesize that the Galactic tides provide the
material for stellar injections by slowly feeding the region of phase space in the
vicinity of the loss cone. Thus, the general picture spawned by our results is that
injection of comets from the Oort Cloud is essentially to be seen as a team work
involving both tides and stars. It appears meaningless to rank the two effects in
terms of strength or efficiency.

Indeed, for the smaller semi-major axes the Galactic tide does not dominate the
injection of comets, contrary to the conclusions of [24] and [22]2. It only contributes
to a synergy with stellar perturbations, and without the stars one would not have any
injections of comets with a � 20, 000 AU.

The distribution of Galactic latitudes of perihelia of the observable comets
exhibits a maximum for | sin b| � 0.5 as expected in the tides-only model, but
in the combined model this feature can hardly be seen at all. The tides form part
of the synergetic injection, but their imprint is largely washed out by the stellar
contribution.
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An Introduction to Common Numerical
Integration Codes Used in Dynamical
Astronomy

S. Eggl and R. Dvorak

Abstract As the tree of numerical methods used to solve ordinary differential equa-
tions develops more and more branches, it may, despite great literature, become
hard to find out which properties should be aimed for, given certain problems in
celestial mechanics. With this chapter the authors intend to give an introduction to
common, symplectic, and non-symplectic algorithms used to numerically solve the
basic Newtonian gravitational N-body problem in dynamical astronomy. Six meth-
ods are being presented, including a Cash–Karp Runge–Kutta, Radau15, Lie Series,
Bulirsch-Stoer, Candy, and a symplectic Hybrid integrator of Chambers (Mon. Not.
R. Astron. Soc. 304: 793–799, 1999). Their main properties, as for example, the han-
dling of conserved quantities, will be discussed on the basis of the Kepler problem.

1 Introduction

For several thousands of years astronomers have been asked to predict positions
of the Sun, the Moon, and the planets on the celestial sphere. Especially during the
Babylonian and Egyptian eras, the “oldest of all sciences” had been essential for pro-
ducing calendars used not only for agricultural demands but also for religious rituals.
The ancient methods were rather descriptive in nature, nevertheless the predictions,
e.g., for Solar and Lunar eclipses were quite precise (for often the astronomer’s
life was tied to them). Even Kepler’s laws were derived from observations without
an understanding of the underlying true “nature” of the related phenomena. It is
interesting to note that Kepler already mentioned a meanwhile familiar concept, a
power determining the elliptic motion of the planets, a so-called “force”. The most
renowned scientific minds tried to grasp its nature by using various tool-sets, be
it Galileo Galilei’s experiments or Isaac Newton’s first comprehensive theoretical
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description by introducing his law of gravitation. Of course, our understanding of
the basic principles of gravity as an interplay of space time with massed particles, as
proclaimed by Einstein, has grown enormously since Newton’s times, although it is
far from being comprehensive, as the current problem of “dark matter” shows quite
plainly. Still, the dominant influence of gravity on the motion of massed particles –
at least in our Solar System – is very well modeled by Newton’s ansatz.
Newton’s Law of Universal Gravity describes the force F acting between two point
masses mν and mμ

Fνμ = k2 mνmμ

ρ2
νμ

rν − rμ

ρνμ
,

where rν and rμ are the position vectors in an inertial frame. The scalar distance
between particles is called ρ = ρνμ = ‖rν − rμ‖, and k denotes the Gaussian Grav-
itational Constant.1 Unfortunately, the resulting system of differential equations is
non-integrable for more than two bodies. So, in principle, one can use two different
methods for treating the equations of motion:

1. Perturbation theory:
Perturbation theory works with series expansions of the equations of motion, or
their related Hamiltonian equations, often including thousands of terms, com-
puting analytical approximations to the solutions for a whole bundle of initial
conditions. The results produced are mostly retained in form of series (also
Fourier series) in a continuous parameter being identified with time, so that
inserting a certain date in the series immediately leads to the particles’ posi-
tions in space and on the sky. The main problems are a rather constrained time
interval, for which these series produce reliable results, and series-convergence
issues.

2. The method of numerical integration:
Even though the solution of the multi-body gravitational problem may not be
manageably representable by means of analytical functions, it is possible to fol-
low the system’s development, through calculating evolution of the system step
by step, instead of trying to achieve results, that are valid for all times. This dis-
cretization procedure constitutes the main difference to analytical approaches.2

The price one has to pay, in turn, is that solutions gained in such a way are in fact
approximations that stay close to the true system for a certain, limited time inter-
val. This is due to truncation errors caused by algorithms used for integration,
and roundoff errors, that are a consequence of a finite number representation

1 The Gaussian Gravitational Constant is used to do calculations in problem-specific units, which
is especially important for numeric treatments, avoiding the appearance of very small and very

large numbers that contribute to roundoff errors. k � 0.01720209895AU
3
2 D−1 M

− 1
2# .

2 Appendix offers a short introduction to the main concepts and terms related to numeric algo-
rithms that will be used in the following sections.
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within today’s computer architecture. For comets and near-Earth asteroids this
time span is in the order of years, for the planets in the order of ten thousands of
years. In contrast to perturbation theory, the solution gained is representing just
a single trajectory in phase space for a whole system of equations of motion.

The Nautical Almanac Service at the Naval Observatory in Washington pub-
lishes the ephemerides using numerical integrations provided by the JPL in
Pasadena. In generating these ephemerides even the perturbations of the major
asteroids are taken into account and corrections arising from General Relativity
are included.

Due to the enormous progress in the field of CPU processing power, numerics
have become very popular over the last decades. Large-scale numerical experiments
are feasible today, thus feeding the desire for potent algorithms. In the next sec-
tions, we will treat common numerical methods that are used to solve the gravita-
tional multi-body problem. Though, it is always recommendable to see, if one can
derive some basic information on the main properties of the equations governing a
system’s behavior, before focusing on the computational aspects. The force acting
from N bodies with masses mμ(μ = 0, ..., N , μ �= ν) on mν can be written as
follows:

Fν = mν r̈ν = k2mν

N∑
μ=0,μ �=ν

mμ

ρ3
νμ

(rμ − rν). (1)

Summing all forces we derive

N∑
ν=0

mν r̈ν = k2
N∑

ν=0

N∑
μ=0,μ �=ν

mνmμ

ρ3
νμ

(rμ − rν) = 0, (2)

which is zero, simply because each vector rμ − rν is canceled by its inverse vector
rν − rμ. A double integration with respect to time leads to the linear motion of
the barycenter of the dynamical system, which can be described by the vector s =
at + b. This result can be used to reduce the number of equations of the system due
to the fact that a and b are constants; it is also obvious that the barycenter qualifies
as the origin of an inertial coordinate system. In addition to these six constants
of motion—the components of a and b—another four integrals of motion exist,
namely the angular momentum integral (three constants) and the energy integral
Ekin + Epot = const.

These 10 constants of motion are the classical integrals of the Newtonian N -body
problem. In order to describe the motion of the planets of our Solar System, one
may keep in mind, that more than 99.9% of the mass is accumulated in the Sun
(m0). As a consequence one often transforms the equations of motion of the planets
to a heliocentric relative coordinate system; the relative (heliocentric) vectors will
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be denoted by qν = rν− r0.3 This transformation can be achieved by separating the
attraction of the Sun on each planet mν from the other terms in (2),

r̈ν = k2

⎡
⎣m0

ρ3
0ν

(r0 − rν) +
N∑

μ=1,μ �=ν

mμ

ρ3
νμ

(rμ − rν)

⎤
⎦ . (3)

Considering the Sun’s equation of motion in the same form yields (4).

r̈0 = k2

⎡
⎣mν

ρ3
0ν

(rν − r0) +
N∑

μ=1,μ �=ν

mμ

ρ3
μ0

(rμ − r0)

⎤
⎦ . (4)

Subtracting (4) from (3) and separating the vector rν − r0, we get the following—
now heliocentric—equations of motion of the planet mν

q̈ν = k2

[
−m0

ρ3
0ν

(rν − r0) + mν

ρ3
0ν

(rν − r0)

]
+

+
N∑

μ=1,μ �=ν

[
mμ

ρ3
μν

(rμ − rν) − mμ

ρ3
μ0

(rμ − r0)

]
(5)

which lead to

q̈ν = k2

⎡
⎣−m0 + mν

ρ3
0ν

qν +
N∑

μ=1,μ �=ν

mμ

(
qμ − qν

ρ3
μν

− qμ

ρ3
μ0

)⎤
⎦ . (6)

The first term (6 r.h.s) represents just the unperturbed two-body motion of the
respective particle around the Sun. As the solution of the gravitational two-body
problem can be expressed in terms of conic sections, we can see why the bound
orbits of the planets are—in a first approximation—ellipses. Size and orientation
of these ellipses can be represented by five constants: semi-major axis (a) and
(numeric) eccentricity (e) fixing the form of the conic section, plus three angles,
consisting of the inclination (i) to a fixed plane, the position-angle of the peri-
helion (ω), as well as the argument of the ascending node (Ω), which gives the
position of the intersection point of the orbit with the fixed plane. Together with
some parameter pointing out the current position of the planet on the conic section,
named mean anomaly (M), those six expressions constitute the Keplerian orbital
elements. Keplerian elements are more appropriate to investigate the behavior of
systems in celestial mechanics than the ever-changing position and velocity vectors

3 r0 designates the vector from the artistically chosen origin of the coordinate system. This
vector equation stays valid for its time derivatives, which means it is also true for the velocities
and the accelerations.
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and thus are the output of choice, when it comes to facilitating evaluation processes.
Yet they are cumbersome to be dealt with in a numeric way, that is why practically
all algorithms are derived from equations containing positions and velocities. The
rest of the terms in (6) contain a factor including the planets’ masses, which are only
in the order of 10−1 to 10−4 percent of the Sun’s mass as far as our Solar System is
concerned. Therefore the equations of motion of the planets may be written as

q̈ν = −k2 m0 + mν

ρ3
0ν

qν + Pν, (7)

where the perturbing vector Pν is

Pν = k2
N∑

μ=1,μ �=ν

mμ

(
qμ − qν

ρ3
μν

− qμ

ρ3
μ0

)
. (8)

Most of the classical numerical algorithms use a barycentric coordinate system as
a reference frame, due to the fact that it is an inertial system and will not produce
extra-pseudoforces. However, it may not always be the best choice, since the plan-
ets’ movements are usually tied to Keplerian orbits, meaning that this information on
the planets’ motion is simply being neglected. The symplectic mappings of Wistom
and Holman [35] also included in the hybrid algorithm of Chambers [4] contain an
ansatz similar to that of (7), leading to smaller errors in standard planetary motion
compared to, e.g., the method of Candy and Rozmus [1]. Of course, choosing
a special set of coordinates has also disadvantages. Consider binary systems, for
example, where the perturbation terms will be in the order of the terms describing
the Keplerian motion. In this case, heliocentric types of coordinate systems will
have to deal with non-negligible pseudo forces, slowing the integration process or
elevating the integration errors. Generally speaking, the N second-order differential
equations (7) may be reasonably used for planets, asteroids, and also comets, just
taking Newtonian forces into account. For satellites and the Moon, it is preferable
to use a coordinate system centered at the Earth or at the satellite’s hosting planet.
Considering the perturbing vector Pν , the appearance of the third power of the
distances | qμ − qν |= ρμν in the denominator may lead to large accelerations,
when these distances become small. In planetary theories this fact is not a problem,
because planets move on well-separated orbits. Treating comets is a different story,
because they approach planets (especially Jupiter) quite often, which will change
their orbits significantly. In addition to that, the equations of motion given above
are not really suited for near-Earth asteroids (NEAs) like the Atens, Apollos, and
Amors which also have frequent close encounters with a planet. Allowing for a
reasonable description of close encounters is the main reason, why an adaptive
choice of step-size is a requirement for any algorithm intended to prevail in the field
of celestial mechanics. As the polar nature of the gravitational N-body problem also
tends to enlarge roundoff errors, special regularization methods have been developed
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(see, e.g., Mikkola and Aarseth [24]) that are meant to prevent divisions by small
quantities during close encounters.

In the following, we will give a glimpse into the ideas behind six different meth-
ods often used to solve the gravitational N-body problem4. We will briefly compare
their performance concerning conservational properties in the two body problem.
With two exceptions,5 we will restrict our introduction to explicit one-step methods
with adaptive step-size control.

2 Classic Explicit Runge–Kutta-Type Integrators

2.1 Introduction

Explicit Runge–Kutta (RK)-type integrators are among the most popular algorithms
concerning numerical analysis of initial value problems. This popularity may be
due to a history dating back over a century, thus resulting in a well understood,
elaborated theory. Also the possibility of a straightforward implementation and the
relative ease of error control add to their appealing aura.

Nevertheless, their need for a relatively high number of right-hand side func-
tion evaluations and unfavorable energy conservation properties in their classic,
non-symplectic forms are downsides, that will have to be taken into account, if an
application to the field of Celestial Mechanics is intended.

2.2 Formalities

As a representative for the grand family of classic RK algorithms, the Cash-Karp
version [3] has been chosen for the following reason: Although non-symplectic, the
coefficients derived by Cash and Karp [3] have shown to work quite well-solving,
non-stiff, ordinary differential equations, because they contain embedded formulas
for lower order RK algorithms, which allow for a quick change in order, resulting
in fewer function evaluations and a high-quality step-size control.

The 3N second-order differential equations describing Newtonian gravitational
forces (9) of ν = 1, ...., N interacting bodies can be rewritten in 6N differential
equations of first order (10) and (11).6

4 The algorithms presented may not be the methods of choice when N tends to be very large.
5 The Bulirsch–Stoer algorithm being an extrapolation method has been included for its popularity,
and the Candy symplectic mapping, that does not support step-size control, is used for demonstra-
tional reasons.
6 Actually, relations (9), (10), and (11) describe the gravitational influence of N bodies acting on
a particle with index ν, which are just three second-order differential equations. Though, since we
would like to monitor the progress of the whole system, we have to calculate these equations for
all particles with indices ν = 1, ...., N , ending up with 3N second-order equations.
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Fig. 1 The five Keplerian elements determining size and orientation of the orbit: semi-major axis
(a), eccentricity (e), inclination (i), argument of perihelion (ω), and the argument of the ascending
node (Ω)

mν r̈ν = k2
N∑

μ=1,ν �=μ

mνmμ(rμ − rν)

‖rμ − rν‖3
, (9)

ṙν = vν, (10)

v̇ν = k2
N∑

μ=1,ν �=μ

mμ(rμ − rν)

‖rμ − rν‖3
. (11)

Let us combine r and v in order to gain a six-dimensional vector y,

yν =
(

rν
vν

)
. (12)

Adding index n, that will denote the current time tn , (10) and (11) can be reformu-
lated accordingly, with their right-hand sides being put into an evaluation function f :

ẏn,ν = f (tn, yn,ν). (13)

The essence of the RK method is the combination of intermediate results for the
slopes between the old and new y values gained from function evaluations at
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different points within the next time-step τ .7 This procedure eliminates terms of
lower orders in τ , as can be proven by Taylor expansion [33]. So the RK algorithm
can be written in the following way:

yn+1,ν = yn,ν +
s∑

l=1

bl kl,ν , (14)

with ks , the “intermediate slopes” being defined as

k1,ν = τ f (tn, yn,ν)

k2,ν = τ f (tn + c2τ, yn,ν + a21k)

... ,

ks,ν = τ f (tn + csτ, yn,ν +
s−1∑
m=1

asm km,ν)

bl , cm , and asm are constants that can be chosen according to the corresponding
Butcher tableau (Table 1).

Usually, when constants asm and bl are being derived for different orders of RK
algorithms without additional constraints, the spacings cmτ where the functions f

Table 1 Butcher tableau for Cash–Karp Runge–Kutta coefficients [3]

0 0
c2 a21 0
c3 a31 a32 0
c4 a41 a42 a43 0
c5 a51 a52 a53 a54 0
c6 a61 a62 a63 a64 a65 0

0 0
1
5

1
5 0

3
10

3
40

9
40 0

3
5

3
10 − 9

10
6
5 0

1 − 11
54

5
2 − 70

27
35
27 0

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096 0

b1 b2 b3 b4 b5 b6

37
378 0 250

621
125
594 0 512

1771 order 5
2825

27648 0 18575
48384

13525
55296

277
14336

1
4 order 4

19
54 0 − 10

27
55
54 0 0 order 3

− 3
2

5
2 0 0 0 0 order 2

1 0 0 0 0 0 order 1

7 A time-step τ is defined as follows: τ = tn − tn−1.
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are evaluated are unrelated. That is leading to an enormous amount of function eval-
uations necessary to calculate different orders.8 The great advantage of embedded
formulae used in the Cash–Karp RK is the fact, that all previous orders are con-
tained in an (s − 1)th order method. So one does not have to recalculate all function
evaluations for each desired, new order. Instead, one uses the results of previous
orders, resulting in a vast reduction of computational time required.

2.3 Variable Step-Size Determination

The choice of step-size within the RK algorithm depends on the local difference of
two results yn of varying orders. Let ERR(n, i) be the local difference of two results
of orders i and i + 1 at time tn , and E(n, i) the error relative to a user-specified
tolerance ε, then the next step size will be

ERR(n, i) = ‖y i+1
n − y i

n ‖ 1/(i+1) i ∈ 1, 2, 4, (15)

E(n, i) = ERR(n, i)

ε1/(i+1)
, (16)

τn+1 = SF · τn

E(n, i)
. (17)

SF is a safety factor, often taken to be SF = 0.9. Here the order sequence 3 − 4 is
excluded from the step-size control for performance reasons. For further details see
Cash and Karp [3].

2.4 Improvements

The relatively high number of right-hand side function evaluations necessary to
solve a given differential equation, and their poor energy conservation behavior have
made standard Runge–Kutta methods rather unappealing for problems concerning
celestial mechanics. Even though continuing research on these algorithms brought
up interesting results. Among others, Lasagni [21], Sanz-Serna [30], and Suris [31]
started a detailed study on the construction of symplectic Runge–Kutta methods.
Okunbor and Skeel [27] were able to construct explicit symplectic algorithms by
putting up special relations for the Butcher coefficients, Cash and Gridlestone [2]
even derived symplectic, variable step Runge–Kutta Nyström codes. This ongoing
progress may well lead to a renaissance of Runge–Kutta-type integrators in dynam-
ical astronomy.

8 As the evaluation functions in the gravitational problem include the pair distances of each body
to every other particle, the number of calculations having to be performed to evaluate f scales
with N 2. Thus, viable measures of computational time required to solve the gravitational N-body
problem can only be achieved by minimizing right-hand side function evaluations.
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3 Gauss–Radau Quadratures

3.1 Introduction

The basic idea behind Gaussian quadratures is that the integral of a function can
be approximated by the sum of functional evaluations taken at arbitrary points,
respectively times, being multiplied by some weighting coefficients. Gauss–Radau
quadrature uses one fixed abscissa point at the beginning of the integration inter-
val, and chooses the other ones, as well as the weights, in order to maximize the
degree of exactness of the quadrature rule. One of the first published applications of
Gauss–Radau-based algorithms to astrodynamical problems was done by Everhart
[12], even though they had already been used for nearly a decade back then. Posi-
tive attributes of Gauss–Radau algorithms are their affinity to implicit Runge–Kutta
algorithms inheriting a very generous convergence behavior, their ability to integrate
polynomials of an order that is related to the number of abscissa nodes up to machine
precision, and their relatively moderate requirements concerning right-hand side
function evaluations. A major drawback lies in the fact that all optimized coefficients
as well as abscissa points have to be recalculated from scratch, if another order of
the integration algorithm is needed. This makes order switching procedures very
inefficient when compared to embedded schemes as the Cash–Karp Runge–Kutta
method.

3.2 Formalities

Stating once again the second-order differential equations of a classical gravity
induced force exerted by N particles on a particle ν, and dividing these equations
(18) by the mass mν will produce the acceleration r̈ν of particle ν:

mν r̈ν = k2
N∑

μ=1,ν �=μ

mνmμ(rμ − rν)

‖rμ − rν‖3
, (18)

r̈ν = k2
N∑

μ=1,ν �=μ

mμ(rμ − rν)

‖rμ − rν‖3
. (19)

For the sake of a compact notation we will refer to the right-hand side of (19) as
being a function of all particle positions Fν(rμ, rν),

r̈ν = Fν(rμ, rν) μ = 1, ..., N μ �= ν (20)

and omit the index ν denoting a certain particle, keeping in mind that

r ≡ rν .
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So the basic equation treated is of the form

r̈ = F. (21)

We will now perform a series expansion of (21) around time t1 = 0 with initial
conditions r1 and ṙ1,

r̈ = F = F1 + A1t + A2t2 + A3t3 + · · · + Antn. (22)

Integrating (22) will result in

r = r1 + ṙ1t + F1t2/2 + A1t3/6 + · · · + Antn+2/((n + 1)(n + 2)),

ṙ = ṙ1 + F1t + A1t2/2 + A2t3/3 + · · · + Antn+1/(n + 1).
(23)

In contrast to a Taylor series, the coefficients A will not be chosen to represent
F as well as possible for all times t . Instead, they are adapted to calculating r ,
and ṙ as exactly as possible for a given time interval τ . The way to finding the
weighting coefficients A is somehow similar to Runge–Kutta algorithms, because
one explores the function F at several unequally spaced sub-steps t2, t3, t4, ... with
τ > ti > t1 i ∈ N. Let Fn be the function F evaluated at positions rn(tn), so we
can perform an auxiliary expansion

F = F1 + α1t + α2t(t − t2) + α3t(t − t2)(t − t3) + · · · . (24)

Of course, this series development and all following terms must be consistent in
order with the number of terms kept in (22).

As the functions Fn can easily be evaluated, truncations of (24) can be used to
determine the coefficients αi :

F2 = F1 + α1t2
F3 = F1 + α1t3 + α2t3(t3 − t2)

... .

α1 = (F2 − F1)/t2
α2 = ((F3 − F1)/t3 − α1)/(t3 − t2)

α3 = (((F4 − F1)/t4 − α1)/(t4 − t2) − α2)/(t4 − t3)

α4 = ((((F5 − F1)/t5 − α1)/(t5 − t2) − α2)/(t5 − t3) − α3)/(t5 − t4)

(25)

The relation between weighting coefficients A and α can be established by com-
paring corresponding powers of t in (22) and (24):
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A1 = c11α1 + c21α2 + (t2t3)α3 + · · ·
A2 = c22α2 + c32α3 + · · ·
A3 = c33α3 + · · · .

(26)

With coefficients ci j being defined as

ci i = 1

ci1 = −ti ci−1,1 i > 1

ci j = ci−1, j−1 − ti ci−1, j 1 < j < i

. (27)

The actual integration algorithm will work as follows: Let us assume, we inte-
grate a sequence of three sub-steps at times t2, t3, t4 that are not uniformly spaced.
Actually t4 does not even have to coincide with the end of the integration interval of
length τ . At the starting point t1 = 0 all initial conditions r1, ṙ1, and F1 are known.
In this case we will have one (vector-valued) predictor equation per sub-step:

r2 = r1 + ṙ1t2 + F1t2
2/2 + [A1t3

2/6 + A2t4
2/12 + A3t5

2/20]

r3 = r1 + ṙ1t3 + F1t2
3/2 + A1t3

3/6 + [A2t4
3/12 + A3t5

3/20]

r4 = r1 + ṙ1t4 + F1t2
4/2 + A1t3

4/6 + A2t4
4/12 + [A3t5

4/20]

(28)

and two (vector-valued) corrector equations to find the positions and velocities at
the end of the integration interval,

r(τ ) = r1 + ṙ1τ + F1τ
2/2 + A1τ

3/6 + A2τ
4/12 + A3τ

5/20

ṙ(τ ) = ṙ1 + F1τ + A1τ
2/2 + A2τ

3/3 + A3τ
4/4

. (29)

As the bracketed terms in the predictor equations (28) are not known in advance,
the system is implicit. During the initial phases of an integration, where the brack-
eted terms are zero, it is thus recommended to make several passes through these
equations improving estimates for rn and corresponding α and A values. If the
integration is already in progress, it is possible to extrapolate current α values from
the previous steps and calculate new As, if the problem is “well behaved,” meaning
that it does not contain near discontinuous jumps.

So, if there are current α values at hand, then a first prediction of r2 will be
possible from (28). Evaluating F2 will allow for a correction of α1 and consequently
A1 still using all the previous α2,α3, ... except for the renewed α1. Using the second
equation in (28) one finds r3, including the improved A1 and the old A2, A3 values.
Evaluating F3, one obtains better estimates for α2, and consequently A2 having just
α3 left in its old form. This procedure is continued until all values for α and A have
been updated and can be used in the corrector step.
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3.3 Variable Step-Size Determination

In the previous section, we showed an example of a Gauss–Radau algorithm with
three sub-steps, containing terms proportional to τ 5 in the corresponding corrector
equations. For such a case, one can define a control parameter C that characterizes
the desired size of the last term in (29) which is A3τ

5/20. Let H = (‖A3‖)/20
then the new step-size τ ′ = (C/H )1/5. If the number of sequence terms is altered
to achieve higher order integration algorithms, the corresponding, last terms of (29)
and the exponent 1/5 will have to be adapted, of course.

3.4 Gauss–Radau Spacings

As the algorithm presented contains terms up to order τ 5, one may initially assume
that it is of order 5. One of the main advantages of Gauss–Radau quadrature is
the possibility to choose the spacings between the sub-steps t2, t3, t4 in such a way
that the results for both r and ṙ are accurate to seventh order in τ without adding
additional nodes. The essence of the method to find these spacings is that one adds
two additional sub-steps t5, t6: watches the improvement of r and ṙ and chooses
t2, t3, t4 such that these improvements tend to zero. For further details on this topic,
and a table of optimal spacings for different orders of the Gauss–Radau algorithm,
the authors would like to refer the reader to Everhart [12].

4 Bulirsch–Stoer Method

4.1 Introduction

Though extrapolation methods were developed some time ago, they still rank among
the most effective concerning high-accuracy solutions of ordinary differential equa-
tions. The so-called Bulirsch–Stoer method [32] is actually a clever combination of
two separate algorithms.

Part I. In a first step, the treated differential equations are solved with a fast numer-
ical integration method beginning at time T using a time-step of τ . Actually,
there is no need for the integration algorithm to be of high order. The results R
gained at time T + τ are not used as new starting points for the computation of
the next time step. Instead the interval τ is split into nm smaller intervals of size
τm = τ

nm
, and the integration is now performed over all nm intervals, up to the

endpoint of the former one-step integration T + nm · τm = T + τ . Assuming that
numerical rounding errors are negligible compared to the local error produced by
the computing algorithm, the nm integrations with the smaller step-size τ

nm
will

give a better estimate of the result R. This interval splitting procedure is repeated,
so that the step-sizes are reduced in a sequence proposed by Deuflhard [8]:



444 S. Eggl and R. Dvorak

nm = 1 m = 0

nm = 2 · m m ∈ N
. (30)

As a solver for the given differential equations the modified midpoint method is
very popular.

Part II. The second part of the extrapolation method consists of an implementation
of the idea to interpret the results Rm gained through the interval splitting proce-
dure of Part I, as supporting points of a function depending on the step-size τ :

Rm = R(
τ

nm
). (31)

This function Rm will then be extrapolated to its value R∞. That result corre-
sponds to the whole interval being calculated with a step size of τ = 0. For
this procedure, the Aitken–Neville scheme, based on polynomial interpolation,
is used [14].

T+τT

R

R 0

R 1

R 3

R 2

extrapolation
to ∞ steps

6 steps

1 step

2 steps

4 steps

Fig. 2 Bulirsch–Stoer method. The results Rm after a time-step τ are sampled with different num-
bers of sub-steps τ

nm
. These results are seen as a function of the number of sub-steps, and will

finally be extrapolated to a value R∞, that represents—in principle—the solution of a differential
equation calculated with a (sub-) step size of τm = 0

4.2 Formalities

Part I. Modified Midpoint Method:
Just as shown in Chap. 2, the main equations of the Newtonian gravitational
problem (10) and (11) are reformulated as a set of first-order differential equa-
tions with yn,ν denoting the current phase space vector for the νth particle at
time tn , and f being the evaluating function (13):
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yn,ν =
(

rn,ν

vn,ν

)
, (32)

ẏn,ν = f (tn, yn,ν). (33)

Rooting in the so-called midpoint approximation for first derivatives, the mid-
point method can be derived as follows9:

ẏn+1 �
yn+2 − yn

2τ
,

yn+2 = yn + 2τ ẏn+1.

(34)

τ denoting the current time-step: tn+1 = tn + τ . Substituting (33) in (34) will
produce

yn+2 = yn + 2τ f (tn+1, yn+1). (35)

As we do not know the value of yn+1, we will perform a Taylor expansion up to
first-order terms in τ :

yn+1 = y(tn + τ ) � y(tn) + τ ẏ(tn) = yn + τ f (tn, yn). (36)

Again substituting the approximation (36) in (35) will result in

yn+2 � yn + 2τ f (tn+1, yn + τ f (tn, yn)). (37)

The final equation (37) approximates the true solution of (33) up to second-order
terms in τ , but the main reason for its choice as a core algorithm in the Bulirsch–
Stoer method is its cost-effectiveness concerning CPU time. As can be seen from
(37) the midpoint method, once running, uses two evaluations of f performing
two steps with step-size τ . This results in one evaluation per step, which is quite
“cheap” compared to most of the second-order algorithms.

The most widespread formulation of the midpoint method is the “modified-
midpoint” version, that can be found, e.g., in Numerical Recipes [28], that dif-
fers from the ordinary midpoint method in the way of calculating the first and
the last points. In order to propagate a system over one relatively large time-
step τ , having initial conditions y0 at time T , a sequence of sub-steps of size
τm = τ

n can be introduced with vectors w being intermediate approximations
for y

9 The particle index ν will be omitted during the derivation section.
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w0 = y0

w1 = w0 + τm f (T, w0)

wl+2 = wl + 2τm f (T + (l + 1)τm, wl+1)

l = 0, 1, 2, ...n − 2

y(T + τ ) � 1

2
[wn + wn−1 + τm f (T + τ,wn)]

. (38)

The reason for introducing sub-steps is that as their number increases, the result
y(T + τ ) will improve drastically, due to the reduced fractional time-step τm .
This behavior will be used to extrapolate virtually perfect values for y(T + τ ) in
Part II of this section.

Counting the number of necessary function evaluations for the modified scheme
will result in n + 1, meaning that it is still quite efficient compared to, e.g., a
second-order Runge–Kutta, that would need 2 · n.

Part II. Polynomial Interpolation:
The problem of gaining a function, that may be able to extrapolate the results10

Rm to the ideal result R∞, theoretically achieved through numerical integration
of an interval τ using a vanishing step-size is targeted by a polynomial inter-
polation algorithm. The Aitken–Neville method will fulfill that request without
too much additional cost, because the results Rm are sufficient to calculate a
polynomial of order q recursively. An error estimate is also possible, which will
play an essential role in the choice of a fitting step-size.

Let q be the order of a polynomial, fit to m supporting points, that will give
a vector of results Rq (0) for a supposed step-size equal to zero. Introducing
the tabling index i , the Aitken-Neville recursive scheme can be constructed as
follows [14]:

i = m − q i ≥ 0, (39)

Ri
q (0) = τi+q Ri

q−1(0) + τi Ri+1
q−1(0)

τi − τi+q
. (40)

Consequently τi+q correspond to τm = τ
nm

mentioned in the introduction
(Sect. 4.1).
As an example, the Aitken–Neville table for a polynomial of third order improv-
ing results will be presented in Table 2.

10 The results Rm correspond to y(T + τ ) in the former section, with index m denoting different
subdivisions of the interval τ .
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Table 2 Recursion for results-vector Ri
q (0)

Time-step: τ τ
2

τ
4

τ
6

Results for the corresponding time-step R0
0 R1

0 R2
0 R3

0
First step of recursion R0

1 R1
1 R2

1
Second step of recursion R0

2 R1
2

Third step of recursion R0
3

4.3 Variable Step-Size Determination

The implementation of an efficient step-size choosing algorithm can be done fol-
lowing a method proposed by Deuflhard, which can be found in the Recipes [27].

The goal is to find the right trade-off between a further separation of the global
time-step τ , thus increasing the order of the extrapolation polynomial which will
allow for larger jumps, and its corresponding costs in function evaluations growing
drastically in this process.

Assuming that the error estimate of the extrapolation algorithm in the i th column
of the Aitken–Neville scheme is given by εi , the following relation holds

εi < ε. (41)

Deufelhard’s interval splitting sequence ni (30) is correlated with εi through

εi ∼ τ 2i+1. (42)

Of course, this equation has to be adapted to the order of the core algorithm (see
Sect. 4.2). From this relation, one can estimate a first approximation for the step-size
aiming for convergence in the i th column of the extrapolation scheme:

τi = τ · (
ε

εi
)

1
2i+1 . (43)

But which column should be targeted to achieve convergence in?
A simple answer to this question is found in watching the work that has to be

performed in order to build the Aitken–Neville scheme. Essentially, the costs will
be defined via the number of interval parts ni , where a full turn of the “Modified
Midpoint” algorithm is defined to have a working expenditure of a = 1. So the total
amount of work of an interval splitting procedure following Deuflhard [8] will be.

a0 = 1

ai+1 = ai + ni+1 .
(44)

Consequently, one introduces the dimensionless work per unit-step W :
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Wi = aiτ

τi

= ai

(εi

ε

) 1
2i+1

.

(45)

The best column for convergence is, of course, the one achieved by a minimum of
Wi :

Wiopt = min Wi . (46)

For the sake of consequent notation, the index iopt is renamed to q.
While performing the numerical integration, this method will work perfectly

well. For the initial step, a method of information theory is used to determine the
best column of convergence q , namely the mean estimated convergence behavior
α(i, q):

α(i, q) = ε
ai+1−aq+1

(2i+1)·(aq+1−a1+1) i < q. (47)

The mean estimated convergence behavior allows for an assessment of the devel-
opment of the step-size τ :

τi+1 = τiα(i, i + 1). (48)

Finding the optimal column of convergence q will now be possible via

Wi > Wi+1 i ≤ q. (49)

Using (45) and (48) one can deduce the inequality condition:

ai · α(i, i + 1) > ai+1 i ∈ N. (50)

If the inequality is being breached, the minimum of Wi and with it, the optimal
column qstart has been found. Another spinoff is the upper boundary for i , namely
imax, because a further augmentation of i will no longer cause a gain in efficiency
(see relation (49)).

The introduction of a so-called order window will prevent the program to degen-
erate to low orders i and small step-sizes. This is achieved by allowing a change of
step-size just in a certain interval centered around iopt.

4.4 Improvements

Apart from the ansatz of Deuflhard to improve the step-size adaption by means of
information theory, Fukushima [15] successfully implemented the idea of extrapo-
lating increments instead of results, thus reducing round-off-errors.



Introduction to Common Numerical Integration Codes 449

5 Lie Series Integrator

5.1 Introduction

Lie Series, named after the famous Norwegian mathematician Sophus Lie, were
used in some papers concerning the first lunar missions of NASA as analytical
means to approximate solutions of non-trivial differential equations.11 Their appli-
cation as a numerical tool for gravitative N-body simulations was first investigated
by Hanslmeier and Dvorak [19], Delva [7], and Lichtenegger [23]. Similar to sym-
plectic algorithms, the ansatz for achieving a solution for the equations of motion
with Lie Series is an infinitesimal transformation of a Hamiltonian system with
respect to time. The striking difference between a Lie Series integration algorithm
and its symplectic counterparts is the fact that the exponential operator of the time
transformation will be expanded into a series, instead of being split up into separate
mappings. Known downsides of Lie Series-based algorithms are their poor porta-
bility (Lie Series algorithms have to be completely redesigned if applied to other
problems), the need to find recurrence relations between consecutive derivatives,
and the lack of symplecticity in its current form. A major advantage is their excellent
performance, especially when used with an adaptive choice of step-size.

5.2 Formalities

Once again, the three non-relativistic differential equations describing the gravita-
tionally derived motion of particle ν are of the following form:

mν r̈ν = k2
N∑

μ=1,ν �=μ

mνmμ(rμ − rν)

‖rμ − rν‖3
,

k hereby denotes the Gaussian gravitational constant, rν the position vector of
particle ν with mν being its corresponding mass.

Dividing these equations by mν and splitting them into six first-order differential
equations will produce (51) and (52)

ṙν = vν, (51)

v̇ν = k2
N∑

μ=1,ν �=μ

mμ(rμ − rν)

‖rμ − rν‖3
. (52)

For the sake of not having to mention the Gaussian gravitational constant k
explicitly all the way, we propose the following transformation of time T :

11 For a detailed treatment of Lie Series, see Gröbner [17].
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t = k · T

t j = t j−1 + τ j ∈ Z. (53)

Here, τ denotes the current step-size. The discrete solutions of (51) and (52) for a
given time-step τ may be written in the following way:

rν(t j ) = eτ D rν(t j−1) (54)

vν(t j ) = eτ Dvν(t j−1). (55)

Without any loss in generality, one can substitute the time relation (53) in (54)
and (55) and choose a starting point t j−1 ≡ 0, ending up with

rν(τ ) = eτ D rν(0) (56)

vν(τ ) = eτ Dvν(0). (57)

D is denoting the Lie operator [19]:

D =
3∑

i=1

N∑
ν=1

⎛
⎝vi

ν

∂

∂r i
ν

+
N∑

μ=1,ν �=μ

mμr i
μνρ

−3
νμ

∂

∂vi
ν

⎞
⎠ . (58)

The index i corresponds to the i th component of the respective vectors. We will
define the Lie operator to act on one argument only, so the expression Drνvν really
means (Drν)vν , and we will use the notation Dn rν instead of D(D(D . . . rν)).

In order to simplify the description of gravitational interactions we further intro-
duce the connecting position vector of particles ν and μ (rνμ), its norm (ρνμ) denot-
ing the scalar distance between particles ν and μ and their mutual velocity (vνμ):

rνμ = rμ − rν = −rμν
ρνμ = ‖rμ − rν‖ = ‖rνμ‖ .

vνμ = vμ − vν = −vμν

Up to this point, the procedure has not been too different from the initial stages
of symplectic integrators, though, the next steps contain the essential difference of
the Lie Series integration to symplectic methods. Instead of separating eτ D into
multiple symplectic mappings, we will perform a series expansion of the whole
exponential:

rν(τ ) = eτ D rν(0) = (
∞∑

n=0

(τ D)n

n!
)rν(0)

=
(

1 + τ D + (τ )2

2!
D2 + (τ )3

3!
D3 + ...+ O

(
(τ )n

n!
Dn

))
rν(0) n ∈ N0.
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It is fairly obvious, that computing the Dn r(0) up to the required order will con-
stitute the main challenge.12 Let us have a look at the first sequential applications of
the Lie operator to given initial conditions r(0) and v(0):

D0rν = rν position

D1rν = vν velocities

D2rν =
N∑

μ=1,ν �=μ

mμ(rμνρ−3
νμ ) acceleration

D3rν =
N∑

μ=1,ν �=μ

mμ(Drμνρ−3
νμ + rμν Dρ−3

νμ )

=
N∑

μ=1,ν �=μ

mμ(Drμνρ−3
νμ − 3rμνρ−4

νμ Dρνμ)

=
N∑

μ=1,ν �=μ

mμ(Drμνρ−3
νμ − 3rμνρ−4

νμ ρ
−1
νμ (rμν · vμν))

=
N∑

μ=1,ν �=μ

mμ(Drμνρ−3
νμ − 3rμνρ−5

νμ (rμν · vμν)).

In order to make things more transparent for higher derivatives, we will introduce
the new variables φ and Λ [19]:

φνμ = ρ−3
νμ

Λμν = rμν · vμν = rμν · Drμν

Another glance at D3rν provides:

D3rν =
N∑

μ=1,ν �=μ

mμ(Drμνρ−3
νμ + rμν Dρ−3

νμ )

=
N∑

μ=1,ν �=μ

mμ(φνμDrμν + Dφνμrμν)

=
N∑

μ=1,ν �=μ

mμ(Drμνφνμ − 3rμνρ−2
νμ φνμΛμν),

12 As a further convention will refer to all variables related to r and v as being initial conditions
r(0), v(0), if not explicitly stated otherwise.
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with Dφνμ = (−3)ρ−2
νμ φνμΛμν . Admittedly, it seems like we have not won a lot by

throwing in φ and Λ, but it can be shown that, using these two variables, it is possible
to find recurrence relations for higher derivatives. As the order of the derivative Dn

is proportional to the order of the time-step τ , such recurrence relations allow —
in theory13 — to calculate solutions that are exact to arbitrary orders of τ very
efficiently.

One may be able to grasp that idea by watching the behavior of the following
derivatives D4rν to D6rν :

D3rν =
N∑

μ=1,ν �=μ

mμ(φνμDrμν + Dφνμrμν)

D4rν =
N∑

μ=1,ν �=μ

mμ(φνμD2rμν + 2DφνμDrμν + D2φνμrμν)

D5rν =
N∑

μ=1,ν �=μ

mμ(φνμD3rμν + 3DφνμD2rμν + 3D2φνμDrμν + D3φνμrμν)

D6rν =
N∑

μ=1,ν �=μ

mμ(φνμD4rμν + 4DφνμD3rμν + 6D2φνμD2rμν

+ 4D3φνμDrμν + D4φνμrμν).

The boxed recurrence formulae picture the backbone of the Lie Series integration
algorithm:

Dn rν =
N∑

k=1,l �=k

mμ

n−2∑
l=0

(
n − 2

l

)
DlφνμDn−2−l rμν (59)

Dnφνμ = ρ−2
νμ (

n−1∑
l=0

an,l+1 Dn−1−lφνμDlΛμν) (60)

with coefficients

an,n = −3 n ≥ 0

an,1 = an−1,1 − 2 n ≥ 1

an,l = an−1,l−1 + an−1,l 1 ≤ l < n

13 As can be seen from the series expansion of the exponential, factorial numbers have to be evalu-
ated for this process. Their rapid growth, as well as the weak convergence behavior at high orders,
constitutes the major limitations of the accuracy of Lie Series expansions.
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DnΛμν =
3∑

i=1

nint( n
2 )∑

l=0

bn,l Dl rμν Dn+1−l rμν (61)

with

bn,0 = 1 n ≥ 0

bn,l = bn−1,l−1 + bn−1,l 1 < l < nint( n
2 )

bn,nint( n
2 ) = bn−1,nint( n

2 )−1 n uneven

bn,nint( n
2 ) = 2bn−1,nint( n

2 ) + bn−1,nint( n
2 )−1 n even

The final nth order approximation to the solution of (51) and (52) for one time-step
τ are given by

rν(τ ) =
(

1 + τ D + (τ )2

2!
D2 + (τ )3

3!
D3 + · · · + O

(
(τ )n

n!
Dn

))
rν(0), (62)

vν(τ ) =
(

1 + τ D + (τ )2

2!
D2 + (τ )3

3!
D3 + · · · + O

(
(τ )n

n!
Dn

))
vν(0) (63)

=
(

D + τ D2 + (τ )2

2!
D3 + (τ )3

3!
D4 + · · · + O

(
(τ )n

n!
D(n+1)

))
rν(0),

where nint(x) is a function giving the nearest integer (e.g., nint(2.345) = 2,
nint(2.5) = 3, nint(2.876) = 3). A major point concerning the performance of
the Lie Series integrator is the fact that the distances between bodies have to be
evaluated only once, namely for D2rν . As this operation scales with the number
of bodies squared (N 2), it is the most resource demanding part in every N -body
algorithm. The rest of the calculations performed will scale with the number of
terms of the Lie Series times the number of bodies (n · N ). Due to the fact that
the best trade off between truncation error and CPU time was found to be around
n = 12 [19] the Lie Series algorithm will really boost its performance for N > 12.

5.3 Variable Step-Size Determination

The fact that the Lie Series integration algorithm is based on a series expansion of an
exponential function ((56), (57)) explains its missing symplecticity, due to the fact,
that there is no nearby Hamiltonian solved exactly, as is the case with a symplectic
partitioning of eτ D . On the other hand it does allow for a fairly easy implementation
of a step-size choosing mechanism, through a simple estimate of the remainder of
the exponential series.
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eτ D =
n∑

l=0

(τ D)l

l!
+ Rn+1 (64)

‖Rn+1‖ � 2
‖τ D‖n+1

(n + 1)!
, (65)

which holds if ‖τ D‖ � n
2 + 1.

n ∈ N is, as stated above, the number of included terms in the exponential series.
This estimate was achieved using the geometric series in Forster [13]. Assuming the
error of neglecting the remainder Rn+1 to be less than a certain boundary value ε,
one can derive the following relations using (65):

‖Rn+1‖ � ε,

τ �
(
ε

(n + 1)!

2‖Dn+1‖
) 1

n+1

. (66)

As the argument of the exponential function contains an operator part (64), it is
essential to know, if all of the arguments are commutating. If this was not the case,
then partitioning ‖τ D‖n+1 � ‖(τ )‖n+1 · ‖Dn+1‖ would not work without taking the
Baker–Campbell–Hausdorff development into account. Though, as the Lie operator
D does not depend explicitly on time, both arguments of the exponential function
commutate indeed.

For practical reasons, the authors would recommend to use the maximum value
of all components of Dn+1rν for the choice of the next-time step, because this term
will also yield a maximum influence on the remainder (see (65)).

Strictly speaking, relation (66) gives the right step-size for the current values
of the derivatives, which means for the current step. As it is not very efficient to
compute everything twice per step, the prime assumption is made, that the problem
is so “well behaved” that the best fitting current τ will also be valid for the next
time-step.

5.4 Order Control

An appealing alternative to the common step-size control mechanism stated in the
previous section is the notion of Order Control. The basic idea is to use a fixed
step-size but adapting the order of the integration algorithm to keep errors below a
certain boundary. Let us look once more at (65). Assuming a fixed time-step τ it is
very easy to compute the remainder at the end of an integration step. If the value
of the remainder falls below the desired error ε, then the algorithm may proceed
with the next step. If not, then the number of terms in the series is raised by one
remaining at the same point in time. At the end of this turn, the remainder is again
compared to the desired error, and so on. Consequently, the Lie Series algorithm
chooses the optimal order for a given time-step throughout the whole integration.
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As the order of the Lie Series expansion is actually limited by a computer’s abil-
ity to calculate and store greater factorial numbers, and as the global convergence
weakens with growing order, the adaptive potential of an order-controlled algorithm
is rather limited. Nevertheless, Order Control is a possible way to decrease the aver-
age error of fixed step Lie Series integration in “not-too-badly behaved” problems.

6 Symplectic Integrators

6.1 Introduction

The theory of symplectic integrators is rooted in the fact that certain geometri-
cal properties of the phase space of a conservative mechanical system are time-
invariant. In the case of a phase space being spanned by generalized coordinates q
and their conjugated momenta p, the conservation of symplectic geometry can be
defined via the invariant differential form ω with

ω =
n∑

i=1

dpi ∧ dqi , (67)

where n defines the dimension in configuration space, and 2n the dimension of
the associated phase space. For the current non-relativistic gravitational N -body
problem, n equals 3N .

The link of symplecticity to classical descriptions of mechanical systems is given
through Hamilton’s equations:

ṗ = −∇q H

q̇ = ∇ p H,
(68)

which are symplectomorphic, i.e., they support the conservation of the symplectic
differential form (67).

By their special way of construction, symplectic algorithms are “aware” of these
geometrical properties and thus very potent in modeling the propagation of dynam-
ical systems of this kind.

For systems supporting a Hamiltonian of the form:

H = T ( p) + V (q), (69)

Candy and Rozmus [1] were able to construct a symplectic integration algorithm of
fourth order, which will be described in the following section.
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6.2 Formalities

Following Neri [26] we introduce q and p which are three-dimensional generalized
coordinates and conjugate impulses of the point masses numbered ν = 1, ..., N .
The Hamiltonian be separable, which means it has to be of the form:

H = T ( p) + V (q). (70)

The Hamiltonian equations (68) can be rewritten using the phase-space vector z and
Poisson’s differential operator DH :

ż = {z, H (z)}
ż = DH z

(71)

with

z =
(

q
p

)

DH = { , H}.
(72)

Here the braces { , } denote the Poisson brackets

{F,G} =
n∑

i=1

(
∂F

∂qi

∂G

∂pi
− ∂F

∂pi

∂G

∂qi

)
. (73)

The formal solution of (71) is given by

z(τ ) = eτ DH z(0) (74)

z(τ ) = eτ (DT+DV ) z(0). (75)

In a next step eτ (DT+DV ) will be decomposed into two independent mappings, one in
direction of DT and a second one in direction of DV .

eτ (DT+DV ) → eτ DT eτ DV .

As DT and DV will not commutate, one has to be careful about splitting the expo-
nential function eτ (DT+DV ). A quick look at the Baker–Campbell–Hausdorff identity
(76) reveals, that the intended decomposition matches up to terms of commutators
[ , ] in DT and DV :

eτ DT eτ DV = e(τ (DT+DV )+ τ2

2 [DT ,DV ]+ τ3

12 ([DT ,[DT ,DV ]]−[DV ,[DT ,DV ]])+...) (76)

with
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[DT , DV ] = DT DV − DV DT .

For this reason an expansion with coefficients ai and bi is being performed, in order
to cancel out unwanted terms containing commutators in (76) up to O(τ k+1):

eτ (DT+DV ) O(τ k+1)=
k∏

i=1

eai τ DT ebi τ DV . (77)

Both exponentials eai τ DT and ebi τ DV are symplectic mappings in their own right,
and through properties of symplectic mappings, their product will be symplectic,
too [18].

Consider a mapping eai τ DT :

(
q i−1

p i−1

)
→
(

q i

p i−1

)
=
(

q i−1 + τai∇ pi−1 T

pi−1

)
. (78)

This changes just the coordinates q. ∇ pi−1 states the directional derivative with
respect to our generalized impulses pi−1. The second mapping ebi τ DV completes
the transformation

(
q i

p i−1

)
→
(

q i

p i

)
=
(

q i

pi−1 − τbi∇qi V

)
. (79)

∇qi again states the directional derivative, but this time with respect to the general-
ized coordinates. The resulting Candy algorithm can be set up as follows [34].

Initial conditions q 0
t,ν and p 0

t,ν for a particle ν are taken at time t . Put up a loop
with counting index i = 1, ..., 4 containing

q i
t,ν = q i−1

t,ν + τa i∇ pi−1 Tν

p i
t,ν = p i−1

t,ν − τb i∇qi Vν,
(80)

with the coefficients

a1 = a4 = 1

2(2 − 21/3)
a2 = a3 = 1 − 21/3

2(2 − 21/3)
.

b1 = b3 = 1

2 − 21/3
b2 = −21/3

2 − 21/3
b4 = 0

The results of this time-step will be the initial conditions of the next one:

p 0
t+1,ν = p 4

t,ν q 0
t+1,ν = q 4

t,ν . (81)
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The Hamiltonian of the N -body gravitational problem is given by

H =
N∑

ν=1

⎛
⎝ pν

2

2mν

− k2 mν

N∑
μ �=ν

mμ∣∣qμ − qν

∣∣
⎞
⎠ . (82)

The necessary derivatives for a particle ν are calculated as follows:

−∇q Hν = k2 mν

N∑
μ �=ν

mμ∣∣qμ − qν

∣∣3
(
qμ − qν

)
,

∇ p Hν = ∇ p
pν

2

2 mν

= 1

2 mν

(
2 pν∇ p pν

) = pν

mν

.

(83)

As stated earlier, (80) constitute two symplectic mappings, one performing the
transformation

( p i−1

q i−1

) → ( p i

q i−1

)
and the other one producing

( p i

q i−1

) → ( p i

q i

)
. The

combined mapping is again symplectic [20], so the phase space structure remains
intact throughout the integration process.

Equation (77) does not mean that the method constructed is equivalent to an arbi-
trary algorithm, which simply conserves the Hamiltonian up to order O(τ k). Yoshida
[36] was able to prove that a symplectic algorithm will conserve a nearby Hamilto-
nian H̃ exactly, which explains why there is no secular increase in the deviation of
energy. The conserved nearby Hamiltonian H̃ differs from the original Hamiltonian
H because of (76):

eτ DH = eτ (DT+DV )

H = T + V

eτ DT eτ DV = eτ DH̃ ,

H̃ = T + V + τ

2
[T, V ] + τ 2

12
([T, [T, V ]] − [V, [T, V ]]) + .... (84)

If, of course, commutating terms are eliminated, as was done in (77) the integrated
Hamiltonian H̃ will be closer to the original Hamiltonian H .

6.3 Improvements

For applications in the field of Dynamical Astronomy, Wisdom and Holman [35]
found that splitting the Hamiltonian in terms of kinetic and potential energy is not
the only possibility. In fact, separating the Hamiltonian into a part representing the
Keplerian motion of each planet (HKep) and a second part, containing perturbation
terms due to mutual interactions with other planets (HInt), leads to a decrease in
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longterm integration error proportional to O(ετ 2) instead of O(τ 2) for a second-
order symplectic scheme, assumed that (HInt � εHKep ) with ε denoting the plane-
tary to stellar mass ratio. A very natural way to achieve this separation of the Hamil-
tonian arises when using Jacobi coordinates, where the position of the innermost
planet is defined with respect to the central star, the other planets are added one
by one and their positions are measured with respect to the consequently updated
barycenter of the system. Another advantage of this method is the fact that the Kep-
lerian part of the Hamiltonian can be advanced through Gauss’s f and g functions
[6] very efficiently, and as HInt is a function of coordinates only within a Jacobian
system, it may also be solved analytically.

Unfortunately this special separation of the Hamiltonian will loose its advantages
when the condition HInt � εHKep is violated, which will happen, when members of
the system come close to each other (close encounters). Apart from that, the choice
of Jacobi coordinates is not quite suited, if the radial ordering of the planets’ orbits
will not remain constant, which may be due to large eccentricities, for example.

6.4 Variable Step-Size

It was found (see, e.g., Saha and Tremaine [29], Yoshida [37]) that usual step-size-
choosing techniques will destroy the favorable properties of symplectic algorithms.
The reason for this behavior can be found in (84). As stated in the previous sec-
tion, the Hamiltonian, that is conserved exactly, is H̃ . This Hamiltonian H̃ depends
on the step-size τ , even though some of the lower order dependencies may have
been eliminated, as in (77). Consequently, if the step-size is changed, the integrated
Hamiltonian also will, and a secular increase in the energy error will arise.

Different ansaetze have evolved to counter this dilemma, e.g., to use different
timescales during the integration [22], symplectic implicit Runge–Kutta methods
with symmetric determination of step-sizes [2], or hybrid solutions [4], the latter
one being investigated in the following section.

7 Hybrid Integrators

7.1 Introduction

The main problem with symplectic integration algorithms is their inherent inability
to adapt step-sizes during an ongoing computation. This is due to the fact, that the
Hamiltonian actually solved by numerical integration Hnum differs from the analytic
Hamiltonian Han by an expression proportional to all orders of the step-size τ , which
means that changing the step-size automatically alters the integrated Hamiltonian,
and will thus destroy the algorithm’s energy conserving properties [29].
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Given the need to calculate so-called close encounters (CE)14 in celestial mechan-
ics, this situation leaves users of symplectic algorithms with the utterly displeasing
possibilities of choosing a tiny step-size right from the start, which will radically
increase computational resource demands and round-off errors,15 stopping calcula-
tions whenever a CE occurs, or simply ignoring CE, admitting that from this point
onward the calculation has statistical significance at best.

An intriguing approach to circumnavigate this dilemma has been brought up by
Chambers [4]. He combined a second-order mixed variable symplectic integrator
[35] with fixed step-size and a Bulirsch–Stoer type extrapolation algorithm [32],
using the symplectic part plus analytical advancing via Gauss’s f and g functions
[6], while close encounters that require changes in step-size are performed by the
Bulirsch–Stoer method.

As there are some subtleties involved, the following section will just give a rough
outline of the ideas involved.

7.2 Formalities

Let us again have a look at the time propagation equation (74), found in Chap.6

z(τ ) = eτ DH z(0),

with z being the phase space vector of the observed system

z =
(

q
p

)

DH = { , H}

and { , } denoting the Poisson brackets defined in (73). As the Hamiltonian H is
separable in terms of coordinates and momenta, (74) can be rewritten as (75)

H = T ( p) + V (q)

z(τ ) = eτ (DT+DV ) z(0).

Actually, there is no need to separate the Hamiltonian in this special way. Let
us instead split the Hamiltonian in a part representing the unperturbed Keplerian

14 “Close encounters” are very close approaches of two members of an N -body system for a finite
time span, where the two-body interactions become the dominant forces.
15 Round-off errors result from finite precision number representation and calculations in comput-
ers. Roughly speaking the round-off error grows with

√
N , where N is the number of calculations

performed. For a more detailed review of round-off errors in symplectic integration algorithms see
Gladman et al. [16].
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motion of each planet around its guiding center (HKep) and the mutual perturbations
(HInt):

H = HKep(z) + HInt(z) z(τ ) = eτ (DHKep+DHInt ) z(0). (85)

Wisdom and Holman [35] found that for such a separation of the Hamiltonian, it is
rather convenient to use Jacobi coordinates. The problem with Jacobi coordinates
is that they assume the radial ordering of planets in the system to be fixed, which
will not be the case in general when notable eccentricities are being introduced.
Consequently, a new set of coordinates has to be found that include the benefits of
Jacobi coordinates, such as three spatial coordinates for the center of mass of the
system, but treat them without making any assumptions on their orbits. In order
to fulfill these requirements, we perform a change from barycentric to “democratic
heliocentric” variables (DHV) derived in Duncan et al. [10], where the position of
each planet is measured with respect to the central body, but the coordinates of the
central body are replaced by those of the barycenter:

Q0 =
m0q0 +

∑N
μ=1 mμqμ

mtot
, (86)

Qν = qν − q0. (87)

Qν denotes the new DHV, qν the old barycentric coordinates, and mν the mass of
body i . N+1 is the total number of bodies involved, and index 0 refers to the central
body.

The canonically conjugate momenta are defined as

P0 = p0 +
N∑

μ=1

pμ, (88)

Pν = pν −
mν

mtot

⎛
⎝ p0 +

N∑
μ=1

pμ

⎞
⎠ . (89)

Again, the momenta of the central body are replaced by the total momentum of the
system, whereas the others simply correspond to barycentric momenta.

Even though the DHV are canonical, they produce some extra terms in the sep-
aration of our Hamiltonian (H ), which we will denote HJump. More precisely the
separated parts of the Hamiltonian will be

H = HKep(Z) + HInt(Z) + HJump(Z) (90)

Z(τ ) = eτ (DHKep+DHInt+DHJump ) Z(0). (91)
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For the sake of clarity the compact notation in phase space coordinates Z will be
interrupted in the next set of equations. Instead we reintroduce the momenta Pν and
mutual distances Rνμ = ‖Qμ − Qν‖ of bodies ν, μ ∈ N :

HKep =
N∑

ν=1

(
P2
ν

2mν

− k2 m0mν

Rν

)
, (92)

HInt = −k2
N∑

ν=1

N∑
μ>ν

mνmμ

Rνμ

, (93)

HJump = 1

2m0

(
N∑

ν=1

Pν

)2

. (94)

Here, a term P2
0

2mtot
has been omitted in the previous equations, because it would

only account for a constant motion of the barycenter. As one can see from (93) and
(94), HInt and HJump are small corrections to the Keplerian motion, assuming that
the mutual distances Rνμ are great and the momenta Pν are small compared to the
momentum of the central body.

We may gain a second-order symplectic integration algorithm by a symmetrized
reformulation of (91), keeping in mind that the Baker–Campbell–Hausdorff formula
holds (see [4]).

Z(τ ) = e( τ
2 DHInt )e( τ

2 DHJump )e(τ DHKep )e( τ
2 DHJump )e( τ

2 DHInt ) Z(0) (95)

Just as with the mapping of Wisdom and Holman [35], the Keplerian part of the
motion can be advanced through Gauss’s f and g functions [6]. The fact that HInt

and HJump — small adjustments by definition — contain direct terms only is another
advantage of DHV compared to Jacobi coordinates.

This algorithm works fine, as long as

HInt << HKep. (96)

Allowing for CEs will, of course, violate this relation, because the mutual influence
of the participating bodies becomes comparable to Keplerian forces (HKep � HInt).
As the reason for separating the Hamiltonian in a Keplerian and an interaction part is
the improvement of the integration method’s error properties,16 a failure to comply
to relation (96) will result in a substantial loss of accuracy.

Following Chambers [4], this problem can be remedied by ensuring that con-
dition (96) remains satisfied even during CEs. This is done by transferring the
increasing terms of HInt to HKep via some partition function Γ that has the following
properties:

16 If HInt � εHKep holds, then the approximation of the algorithm will be O(ετ 2) instead of
O(τ 2), with ε denoting the planetary to stellar mass ratio [35].
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if R is large, then Γ(R) = 1 if R → 0, then Γ(R) → 0.

This will result in a new separation of the Hamiltonian:

HLarge =
N∑

ν=1

(
P2
ν

2mν

− k2 m0mν

Rν

)
− k2

N∑
ν=1

N∑
μ>ν

mνmμ

Rνμ

[1 − Γ(Rνμ)], (97)

HSmall = −k2
N∑

ν=1

N∑
μ>ν

mνmμ

Rνμ

Γ(Rνμ), (98)

HJump = 1

2m0

(
N∑

ν=1

Pν

)2

. (99)

The new mapping will be constructed the same way as (95):

Z(τ ) = e( τ
2 DHSmall )e( τ

2 DHJump )e(τ DHLarge )e( τ
2 DHJump )e( τ

2 DHSmall ) Z(0). (100)

Unlike HKep, HLarge contains terms describing three-body motion and can there-
fore no longer be advanced analytically. Chambers [4] decided to evolve the system
through such phases, by using a Bulirsch–Stoer algorithm with adaptive step-size,
that calculates the advancement through HLarge to machine precision, so that —
in theory — there should be no difference to analytically derived solutions. As the
introduction of sequences of Bulirsch–Stoer integration will result in a significant
loss of computation time, the non-symplectic integration will be performed for the
interacting bodies only, while HLarge of all unperturbed particles is still advanced
using Gauss’s functions.

In summary, the Hybrid algorithm proposed by Chambers [4], reformulates the
mixed variable symplectic algorithm of Wisdom and Holman [35] by introducing
a new set of canonical coordinates (DHV) and includes a common non-symplectic
algorithm with adaptive step-size. This enables the Hybrid integrator, even though
having still a fixed step-size for its symplectic mapping part, to deal with CEs quite
efficiently.

7.3 Improvements

The Hybrid algorithm described in the previous section is known to work for sys-
tems with one dominating central mass. When applied to binary systems, one will
encounter some difficulties, as the second star will influence HJump heavily due to
its enormous momentum, so that the condition HJump << HKep will not be satisfied.
Consequently the error per step becomes large compared to central mass systems.
Solutions to this problem are discussed by Chambers [4]. Similar to the fact that the
use of DHV instead of Jacobi coordinates made it possible to treat problems with no
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constant radial order of orbits, the change from DHV to specially designed binary
variables, and later on “Yosemite coordinates” in connection with a scheme derived
by Duncan and Levison [11] solved most of the difficulties.

8 Comparison

In order to get an impression of the governing properties of the six algorithms
presented, we will briefly compare the methods to analytically predicted solutions.
Since the two-body problem is the only multibody gravitating system, that is per-
fectly integrable, it is an obvious choice in this respect. For testing, the system of the
Sun and Jupiter has been chosen. Initial conditions for the equinox J2000 are readily
available at Solar System Dynamics of JPL [25]. All numeric calculations were per-
formed using the mercury6 package [4] on the one hand containing Bulirsch–Stoer,
Radau15, and the Hybrid algorithms, and the author-developed nie package on the
other hand containing, among others, a Cash–Karp Runge–Kutta, a Lie Series and
a fourth-order Candy integrator.

8.1 The Kepler Problem

As all the Keplerian elements, except for the mean anomaly (M), describe the size
and orientation of a given orbit, they are to be viewed as constants of motion. This
means, in principle, that the semi-major axis (a), numeric eccentricity (e), inclina-
tion (i), argument of perihelion (ω), and argument of the ascending node (Ω) are
meant to remain unchanged for all times, if Jupiter alone orbits the Sun in an empty
universe that is ignoring relativity. The fact that the only force acting in this setup
is Newtonian gravitation leads to conservation of total energy (E) as well as total
angular momentum (L)17 in our system.18

So, the easiest way to check on the reliability of the algorithms presented, is to
watch the behavior of these conserved quantities:

E = Ekin + E pot =
N∑

ν=1

p2
ν

2mν

− k2
N∑

ν=1,μ �=ν

mνmμ

‖qνμ‖
, (101)

L = ‖
N∑

ν=1

(qν × pν)‖. (102)

17 In fact as the angular momentum is a vectorized quantity, not only its length but also its direction
is conserved. In the following we will just check its length directly.
18 Actually, more conserved quantities do exist in the two body problem, e.g. the Laplace-Runge-
Lenz vector, pointing towards the pericenter. Yet, there is no analogon for N > 2, therefore we
omit its calculation for the lack of comparability to general N-body results.
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In order to being able to compare six numerical algorithms with entirely different
orders and step choosing mechanisms, the Jupiter–Sun system was integrated to
have roughly the same overall deviation of total energy from its initial value19 for
each method at the end of a time span of 107 ephemerical days [D]. That way, all
the solutions are of comparable quality at the end of this interval.

The final error in energy achieved here, is by far not the best each algorithm
is able to manage, though, as we would like to see the actual behaviour of these
methods, there is no point in choosing stricter error constraints, that would lead
to a major influence of round-off errors. As Fig. 3 demonstrates, this cannot be
done perfectly, so we were content to ensure that this requirement was fulfilled to
the same order of magnitude. Having a closer look at Fig. 3 reveals that the main
desired property of symplectic algorithms, namely a linear growth in total energy
error, can indeed be detected, whereas all non-symplectic methods show a quadratic
total deviation from the initial energy.

In the picture presenting the total angular momentum error, the symplectic meth-
ods are so low valued that they do not even register.

The reason for this becomes clear in Fig. 4. These pictures show the logarithmic,
normalized values of momentary deviation from initial energy and initial angular
momentum. It is quite obvious that the momentary deviations in energy and angular
momentum of non-symplectic algorithms follow the same, roughly linear growth.
In contrast to this, the angular momentum conservation of symplectic algorithms is
practically flawless causing the random walk pattern (Fig. 4, below), that is typical
for calculations close to machine precision.20 Another intriguing topic is the form of
the logarithm of the deviation from initial energy of the Candy and Hybrid methods
(Fig. 4, middle picture). First of all, the maximum deviation from initial energy stays
bounded during the whole integration interval, thus, when summed, leading to the
celebrated linear slope of the total energy error. The peculiar, seemingly osculating
appearance is caused by the fact that a nearby Hamiltonian is exactly integrated.
During its evolution, this nearby system comes close to the original system, explain-
ing the constant drop in local energy errors also seen in Fig. 4.

Until now, the symplectic integrators seem to be the obvious choice for solving
astrodynamical problems. Let us have a look at the development of the Keplerian
orbital elements. As every element except for the mean anomaly should theoreti-
cally remain constant, we can apply the same procedure, as for energy and angular
momentum, summing over the difference between initial values and numerically
evaluated results. The mean anomaly will be compared to its analytically derived
value.

19 The overall deviation of energy is defined as the sum of all deviations measured every time a
snapshot of the problem was taken: ΣΔE =∑ts

(Ets − E0). In other words, after each output time
interval, the deviation from the initial energy value was calculated and summed. The output time
interval has been the same for each algorithm.
20 The fact that symplectic integrators actually conserve some nearby Hamiltonian flawlessly also
leads to the conservation of all functions f (q, p) whose Poisson bracket with the Hamiltonian van-
ishes. As this is the case for the angular momentum vector, it is perfectly conserved in symplectic
integrators.
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accuracy parameters of all algorithms were chosen, such that the total sum of deviations of energy
at time 107 [D] are roughly in the same order of magnitude. The symplectic algorithms show a
linear trend in the deviation of total energy, whereas the non-symplectic show a quadratic trend
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a trademark of symplectic integrators; logarithm of the momentary deviation of angular momen-
tum (L) from its initial value; the tested symplectic algorithms show excellent angular momentum
conservation properties (below)

The development of the semi-major axis (a) and the numeric eccentricity (e)
in Fig. 5 mirrors the energy behaviour already encountered in Fig. 3, which means
linear growth in errors for all symplectic and quadratic growth for all non-symplectic
methods. It is quite interesting to see, that, even though Candy and Hybrid methods
are both symplectic, they show a complementary behaviour.

Watching the development of numeric eccentricity (e), it can be seen that
behaviour there is a quadratic error growth with non-symplectic integrators, yet
the difference to both symplectic algorithms is still considerable at the end of the
integration interval.

None of the methods explored shows any major deviations concerning inclination
(i) or argument of the ascending node (Ω), meaning that the direction of the angular
momentum, which has not been checked until now, actually is conserved by all
integrators.

A weak spot of symplectic algorithms is their so-called phase error denoting an
artificially induced circulation of the argument of pericenter (ω). This has already
been found, e.g., in Gladman et al. [16] and will be treated more thoroughly in the
next section.
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The fact that the error in mean anomaly of the symplectic Candy and Hybrid
algorithms seems to grow quadratically comes as a bit of a surprise.21 Yet, finding
an explanation for this result is relatively easy. As the momentary deviations of
symplectic integrators in mean anomaly are known to grow linearly [16], the sum
function of these momentary deviations will be of quadratic form. Non-symplectic
algorithms will have a quadratic growth right from the start, resulting in a third-order
polynomial, when summed. This can also be seen in Fig. 6, keeping an eye on the
steepness of ascent of symplectic and non-symplectic curves.

In summary, the error in mean anomaly in Fig. 6 is bigger for symplectic meth-
ods, because the linear growth in error is a slight disadvantage in our setup. The
overall integration time is chosen in such a way that the linear error function of sym-
plectic and the quadratic error function of non-symplectic algorithms will intersect
just at the end of the time interval. This means that the error of the non-symplectic
methods will be smaller up to the moment of intersection, but from that point
onward, this effect will turn tide.

8.2 Symplectic Phase Error

A distinct disadvantage of symplectic integration algorithms is their artificially
introduced circulation of the argument of pericenter (ω).22 This can be seen in Fig. 7
when one compares the symplectic to the non-symplectic error curves. Compared
to the Candy algorithm, the Hybrid mapping exhibits a much smaller trend, that
is nevertheless larger than that of all non-symplectic methods. In order to plainly
visualize this effect, we manipulated the Sun–Jupiter problem, enlarging Jupiter’s
eccentricity by a factor of 10 and taking rather large time-steps regarding the order
and fixed step-size of the Candy algorithm. The results in configuration space can
be seen in Fig. 8. Such harsh initial conditions may seem a bit far fetched, but as
more and more exoplanets are found, having highly eccentric orbits and knowing
that such eccentricities are pretty common for comets, one has to be fully aware of
these effects when using symplectic integrators. Taking a look at Fig. 7, it is clear
that the way of construction of symplectic algorithms influences the extent of such
a behaviour.

The reasons for the Hybrid integrator to show a better phase-error behaviour than
the Candy algorithm (Fig. 7) are twofold. First of all, the Hybrid is able to reduce its
current step-size when the planet approaches perihelion, which will greatly reduce
truncation errors during this period. Secondly, the Hybrid integrator is based on the
second-order mapping of Wisdom and Holman [35], which uses a set of coordinates

21 The authors would like to stress that the results for the sum of deviations of the argument
of pericenter (ω) and the mean anomaly (M) are not to be directly compared to the results in,
e.g., Gladman et al. [16], as they have plotted the momentary deviation of ω and M which are
both linear, of course. In contrast, we calculated the sum of deviations which is rather an integral
measure, and therefore linear for constant deviations and quadratic for linear deviations.
22 See, e.g., Kinoshita et al. [20].
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that take Keplerian motion into account, and therefore shows a better behaviour in
the conservation of orbital elements.

8.3 Performance

Conservational properties are not the only indicators for the quality of integrators.
The amount of computational resources consumed during the calculation process
is equally important, as any algorithm can be trimmed to produce highly accurate
results. Yet, methods will become rather unappealing, when the timescales involved
in gaining usable data start to surpass weeks.

Of course, comparing algorithms contained in different package environments is
rather tricky and cannot be entirely fair.23 This is the reason, why the authors chose
to split the results of CPU-time measurements to be seen in Figs. 9 and 10 according
to package memberships. As the quality of the results was set to be comparable with
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Fig. 9 CPU time needed to calculate the Sun–Jupiter system up to 107 [D]. Full histogram: CPU-
time consumption of algorithms contained in the mercury6 package; Dashed histogram: CPU-time
consumption of algorithms contained in the nie package

23 Different values of integration time may be due to internal transformations and output routines
that are not necessarily connected to the integration algorithms themselves.



Introduction to Common Numerical Integration Codes 475

0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7

C
P

U
 ti

m
e 

[s
]

Number of Integrator

 1: Bulirsch–Stoer   2: Radau   3: Hybrid   4: Lie Series   5: Candy   6: Runge–Kutta

Solar-System
 CPU time
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respect to total energy conservation, one just has to time the integration. The interfer-
ence of the operating system was tracked and taken into account in the following fig-
ures.24 These measurements have been done for two configurations. Figure 9 shows
the results for the Sun–Jupiter system that was integrated up to 107[D]. As one
can see quite clearly, the algorithms within the mercury6 package are comparable
for such short integration periods. As the Hybrid algorithm accomplishes a linear
error growth in the same time span, it is to be considered the most efficient. The
performance of the Lie Series integrator is in the same order of magnitude as the
Candy algorithm. As to be expected, Runge–Kutta takes longest, which is due to its
high number of right-hand side function evaluations, which are not only taking time
by themselves, they also scale with the number of bodies squared. Figure 10 depicts
the CPU times for a run including all the planets of the Solar System over 106[D].
Certainly, the algorithms have been set to produce the same quality of output data,
in order to make their performance comparable within their respective packages.

24 Figs. 9 and 10 show the statistical means of a series of repeated calculations timed with the
Unix-based “time” command. The number of calculation runs was chosen such that the standard
deviation of all measured values was below 1%.
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Table 3 A rough summary of the main properties of the six common N -body integration
algorithms described in this chapter

Variable
Integrator Symplectic step-size Pros Cons

Cash–Karp
Runge–Kutta

No Yes Easy implementation
adaptability

Performance

Gauss Radau No Yes Accuracy above order,
stability

Adaptability

Bulirsch–Stoer No Yes Results for τ = 0 Weak performance
when many substeps
are required

Lie Series No Yes High performance Specifically designed
for a given problem

Candy Yes No Energy and angular
momentum
conservation

Fixed step-size,
symplectic
phase-error

Hybrid Yes Yes Energy and angular
momentum
conservation

Specifically designed
for a given problem,
symplectic phase
error

The global picture did not change too much. Still the mercury6 routines are almost
on the same performance level, just like the Lie Series and the Candy mapping.
Far off resides the Runge Kutta algorithm, which suffers most from the increased
number of particles. Another important point, that can be taken out of Figs. 9 and 10
is that inter-package comparison is not easy a task, and should be avoided where
possible. Obviously, the mercury6 integrators were less influenced by the num-
ber of bodies involved. This is at least partly caused by its clever output policy
(for details see [4]).

9 Conclusions

In this chapter the authors have given a short overview concerning six common
integration algorithms used to solve the gravitational N -body problem in dynamical
astronomy. A listing of integration methods together with a short overview concern-
ing advantages and disadvantages can be found in Table 3.

The main dividing lines between the algorithms presented are symplecticity
on the one hand, and adaptive step-size control on the other. For long-time inte-
grations, where the orientation of single orbits is not as important as the overall
energetic behaviour, symplectic algorithms are probably the better choice, due to
their favourable energy and angular momentum conservation properties. If one is
interested in short-term, high-accuracy calculations, non-symplectic methods may
be more effective. As every integrator mentioned in this chapter, except for the
Candy algorithm, contains step-size control mechanisms, close encounters during
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calculation-runs should - in theory - not pose any major problems, although this
is still an ongoing field of research. Binary systems require an updated version
of the hybrid algorithm contained in the mercury6 package [5]. The differences
between non-symplectic algorithms are basically restricted to performance issues,
and directions of energy-drifts. Concerning performance, the inner-package com-
petitions showed that the only algorithm that is too far off to be recommended is
the Cash–Karp Runge–Kutta, simply because the ratio of step-size to righthand side
function evaluations is rather low compared to its competitors.

For a more detailed analysis of every method presented, the authors would like
to refer the reader to the respective papers:

Cash–Karp Runge–Kutta: Cash and Karp [3]
Gauss Radau: Everhart [12]
Bulirsch–Stoer: Deuflhard [8] and references therein [8]
Lie Series: Hanslmeien and Dvorak [19]
Candy: Candy and Rozmus [1]
Hybrid: Chambers [4]
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Appendix

This chapter contains a short introduction to the most familiar terms concerning
algorithms used to solve ordinary, first-order differential equations.
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A simple example, how a transition from analytics to discrete mathematics may
be used to solve an ordinary first-order differential equation can be constructed from
the definition of a functional derivative of a function f with argument t :

lim
τ→0

f (t + τ ) − f (t)

τ
= ḟ (t). (103)

The discrete equivalent of this equation simply allows τ to be a non-vanishing num-
ber called step-size, or, in this case time-step.

f (t + τ ) − f (t)

τ
= ḟ (t),

f (t + τ ) = f (t) + τ ḟ (t). (104)

Equation (104) states, that, given f (t) and ḟ (t) as initial values at time t , one can
calculate the value of f (t + τ ), which is the approximate result of the true integral
F |t+τ

t = ∫ t+τ

t ḟ (s)ds in the interval [t, t + τ ]. f is the approximate result, because
we have taken τ as being a real number instead of tending towards zero, which
will therefore produce some discretisation error. Consequently, when we down-size
τ , our estimates of the true integral will improve, yet, more steps will have to be
performed in order to cover a given integration interval. As equation (104) is linear
in τ , so will be the approximation to F , and we will call this algorithm to be of first
order.25 Integration algorithms of first order lead to rather time consuming compu-
tations in practice, as many computational steps are required to gain viable solu-
tions. Due to the finite number representation within today’s computational archi-
tectures, each calculation step will result in round-off errors. Therefore, the more
steps an algorithm requires, the larger will be the result’s round-off error. We will
have another look at equation (104), which reveals a resemblance to a Taylor series
expansion of f (t + τ ) up to the first order in τ . In order to decrease the truncation
error of this expansion ansatz, a logical, next step would be to construct algorithms
of higher order by simply enhancing the corresponding Taylor polynomial. This
works, but it is rather inefficient, as for each added order, a higher functional deriva-
tive has to be calculated at each step. As a consequence, many different ideas have
evolved to gain access to high orders with a minimum of additional computations,
constituting the broad spectrum of solvers for differential equations.

Another aspect of (104) is the fact that the results for the next step are gained
exclusively through values of the previous step. This is the reason for calling such
algorithms one-step methods. If values of more previous steps are used, these algo-
rithms are named multi-step methods.

f (t + τ ) = g
(
τ, f (t), ḟ (t), f (t − τ ), ḟ (t − τ ), ...

)
(105)

25 The algorithm described in equation (104) is usually referred to as explicit Euler method.
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Multi-step methods tend to be very efficient compared to one-step methods, as
one can save and reuse the previous results leading to very few extra function eval-
uations (e.g., Predictor Corrector algorithms). Plus, especially if they are symmetric
with respect to time inversion, they are very well behaved as far as conservational
properties are concerned. Yet the computational overhead of an implemented vari-
able step-choosing technique and certain problems with resonance induced errors
often even the odds toward one-step algorithms [33].

There is still one major criterion, that separates different numerical methods for
solving ordinary differential equations. Once again referring to (104), it occurs that
the results at time t + τ are computed from initial values, that are already known.
Let us call this type of method explicit. Though, the relation leading to results of the
next time-step could actually be of the form:

f (t + τ ) = h
(
τ, f (t + τ ), ḟ (t + τ ), f (t), ḟ (t), ...

)
(106)

Such formulations are called implicit, as the function values f (t + τ ), that are
required to calculate the results for the next step, are not known when first needed.
Mostly, implicit methods rely on additional interpolation steps to solve differential
equations, which is granting them a large stability region, meaning that in theory
there is no upper limit to the time-step τ , except for limits imposed by the trunca-
tion error. These interpolation steps are, on the other hand, responsible for the rather
weak performance of implicit algorithms.

In order to be certain, that a chosen algorithm is suited for a given problem, it is
also necessary, to check for stability and convergence. An algorithm is referred to as
being convergent, if the solution of the discrete equations will tend towards the true
integral for vanishing step-sizes.

lim
τ→0

f = F (107)

Checking for stability can be considered as the search for the largest step-size τ that
will not permit errors to grow with time. Usually, stability is huge an issue with
explicit, but not with implicit algorithms.

There is quite a lot of literature on the topic of numerical integration of ordinary
differential equations, so the following references are simply due to the authors’
preferences. For a detailed development and stability analysis of numerical meth-
ods in general, see, e.g., Stoer and Bulirsch [33], Deuflhard and Bornemann [9] or
Vesely [34].
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Abstract In this chapter we discuss the orbital stability of extra-solar planetary
systems. After a short general introduction into the very popular topic of extra-
solar planets, we classify the more than 400 planets that have been detected so
far according to dynamical aspects. We discuss planetary motion in (i) single-star
single-planet, (ii) multi-planet systems, and (iii) binary systems. For the first group
we show the application of a general stability study which helps to verify the dynam-
ical behavior of an additional planet that may be discovered in the future. For the
other two groups—that are more complicated from the dynamical point of view—
we selected some interesting systems—like Jupiter–Saturn analogs and the close
binary systems HD41004 AB, Gliese 86, and γ Cephei—for which we discuss the
dynamical stability . Finally, we provide an insight into dynamical contributions to
the interdisciplinary research of habitability.

1 Introduction

Planets outside the solar system are called extra-solar planets and have been
detected numerously since 1989 [41]. By now (November 2009) we have knowl-
edge of more than 400 extra-solar planets (see, e.g., the Web site of J. Schneider:
http://www.exoplanet. eu) that were primarily discovered by radial velocity mea-
surements. A very sensitive Doppler technique reveals perturbations of a star due to
an accompanying planet. Since the star is forced to move around the center of mass,
the spectrum is shifted periodically to the blue (the star is moving towards the Earth)
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and to the red (the star is moving away from the Earth). From the radial velocity
measurements we are able to determine the planet’s mass—or more precisely the
minimum mass1—its orbital period and its distance to the star with the aid of the
Newtonian law.

The discoveries were quite surprising. In 1992 the first planet orbiting a pulsar
was discovered (see [71]). For such a detection a precision of a few μs is needed,
hence Earth-like planets can be discovered easily by pulsar timing. Three years later,
the discovery of a planet orbiting the Sun-like star 51 Peg by [46] was certainly
the breakthrough for the extra-solar planetary science. The analysis of the orbital
parameters of 51 Peg b showed an astonishing result, since the Jupiter-like planet is
orbiting its host star in a very close orbit (much closer than Mercury, the innermost
planet of our solar system). Nowadays, many such close-in planets (also called hot-
Jupiters) are known, which is probably a bias due to the observation technique. We
are also faced with high-eccentric motions of the planets, so that the systems are
quite different compared to our planetary system.

Another, very promising detection method is the transit, where we observe the
planet passing in front of the star, which produces a drop in the star light. With
this method we are able to determine the exact mass of a planet and it allows the
discovery of (a) Jupiter-size planets with ground-based observations and (b) Earth-
size planets from space. In fact, it is presently the only method to detect an exo-
Earth. Moreover, this method is used by the first true exo-planetary mission CoRoT
(Convection, Rotation, and planetary Transits; see [11]) and will gain more and
more importance in the forthcoming years. Other observational methods are

• Astrometrie measurements: where a wobble in the star’s motion can be observed
that is caused by an accompanying planet. Nowadays the best astrometric mea-
surements can reach a precision of about 100 μarcs which allows the detection
of Jupiter-size planets.

• Gravitational lensing: where an Exo-planet can produce a gravitational amplifi-
cation of the light of background stars for a certain time depending on its trans-
verse velocity;

• Direct imaging: a direct observation of planets outside the solar system near a
Sun-like star is up to now impossible,2 even the Hubble Space Telescope would
not be able to detect them at the expected distances from their stars, since Sun-
like stars are about 1 billion times brighter than planets in the visible light. Even
if four objects have been imaged so far, we have to point out that either they
are very massive (most probably brown dwarfs), or they move around very low-
massive M-dwarfs so that their imaging was easier. From the observations (until
November 2009) the following systems are known:

1 We cannot determine the exact mass with this method, since the inclination of the system with
respect to the line of sight is not known.
2 The announcement of GQ Lupi—the possibly first direct discovered extra-solar planet by
Neuhäuser and coworkers in 2004 with the ESO VLT NACO—has still to be proven and is not
accepted by all researchers yet.
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321 planets have been detected by the radial velocity method
9 planets by microlensing
11 planets by imaging
8 planets by Pulsar timing.

From the dynamical point of view it is useful to distinguish between

(1) Single-star single-planet systems
(2) Single-star multi-planet systems
(3) Planets in double star systems.

The first group contains most of the detected systems and is with respect to the
dynamics the simplest one. For such systems we are able to predict the stability
of an additional planet via global stability studies (like the one by [68]). The latter
two groups are more complicated from the dynamical point of view, since the stable
planetary motion is restricted to certain regions of the phase space of a system due
to the gravitational interactions between the celestial bodies. Up to now we have
knowledge of about 30 multi-planet systems and about 31 binary systems that host
one or more planets.

The necessity to verify the dynamical stability of multi-planet systems was
demonstrated by Ferraz–Mello, who showed in a numerical simulation of the system
HD82943 that the two planets might end in a catastrophe after about 50,000 years,
using the orbital parameters given by the observations. Therefore, it is quite evident
that the determination of the orbital parameters is quite a tricky task. Especially,
when only few observations for a system are available, the errors of the data set are
relatively high, particularly in the eccentricity.

In this chapter we discuss the stability of planetary motion for the three dynam-
ical groups mentioned above. We present some selected general stability studies
as well as the application to some real extra-solar planetary systems. And we will
end with a brief discussion about the stability of terrestrial planets moving in the
so-called habitable zone (HZ).

2 Single-Star Single-Planet Systems

The majority of the detected extra-solar planetary systems (EPSs) belong to this
group, that consists of a star and a giant planet. However, we should rule out that
other small planets—maybe Earth-like planets—may exist in these systems. There-
fore, it is interesting to study the dynamical stability of such systems in order to
determine the regions where other planets might exist. This can be done (i) by
exploring the stable and unstable regions of the phase space of each EPS separately
or (ii) by calculating general stability maps for a large set of orbital parameters as it
was done by [68]. This second method has the advantage that the stability properties
of a low-mass planet in an EPS can be easily established, when the orbital parame-
ters of the giant planet of the system are modified due to new observational runs. In
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that case, normally one has to re-explore the phase space of the individual EPS after
each modification of the orbital parameters of the giant planet. This is not necessary
in the case of the second method, since the stability properties of the investigated
EPS can be re-established easily from the existing stability maps.

The so-called “Exocatalogue” consists of 92 stability maps covering 23 mass-
ratios (μ = m2/(m1 + m2)) of the star and the giant planet (from 0.0001 to 0.05).
The semi-major axis of the giant planet (aG P ) was set to unity and its eccentricity
(eG P ) was varied from 0 to 0.5. Moreover, two starting positions were used for
the giant planets defined by the variation of its mean anomaly MG P . Using the
elliptic restricted three-body problem (ERTBP)3 as dynamical model we studied
(i) the inner region (i.e., the region between the host-star and the giant planet),
where the test-planets have starting positions between 0.1 and 0.9, and (ii) the outer
region (i.e., outside the giant planet) from 1.1 to 4. To distinguish between regular
and chaotic motion, three methods were used: (1) the relative Lyapunov indicator
(RLI) [66, 67], (2) the fast Lyapunov indicator (FLI) [25, 28], and (3) the maximum
eccentricity (max-e) (see, e.g., [19]).

The RLI measures the convergence of the finite time Lyapunov indicators to the
maximal Lyapunov characteristic exponent of two very close orbits. This method
is extremely fast to determine the dynamical behavior of individual orbits ([67],
e.g., sticky orbits). When applying the FLI, one measures the growth of the largest
tangent vector, which increases either linearly (in the regular case) or exponentially
(in the chaotic case). For the calculation of the max-e one needs long-term orbital
computations of the orbits (105 orbital periods in this chapter) and determines the
maximum eccentricity of the whole time interval. All methods have been applied
successfully to several EPSs to determine their dynamical stability properties: for
the RLI see [21, 67], for the FLI see [55, 19, 10], and for the max-e see [19, 21].

A comparison of the results of the different methods, showed them in good agree-
ment. Since more than 80,000 orbits were calculated for each stability map, it is
obvious that the computation time was a crucial parameter to select the method for
the huge amount of computations. According to different numerical experiments,
the RLI needs only a few 100 periods of the giant planet to determine the motion,
while the FLI showed good results after several tens of thousands orbital periods.
So that the RLI seemed to be the appropriate tool for the whole computations of the
stability map catalogue.

In Fig. 1 we show two example maps of the catalogue, where Fig. 1a (upper
panel) displays the stability of the inner region for μ = 0.001 and Fig. 1b
(lower panel) shows the outer region for this mass ratio (which corresponds to
the mass ratio of the Sun and Jupiter). In both panels the stable motion is given
by the colors yellow to dark orange, which are connected to the lowest values
of the RLI. Higher RLI values (see the color scale of Fig. 1a, b) label chaotic
motion in this system, where dark blue and black indicate strong chaotic orbits.

3 The elliptic restricted three body problem studies the motion of a massless body moving in the
gravitational field of two massive bodies, which move in Keplerian orbits around their center of
mass.
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Fig. 1 RLI stability maps for μ = 0.001 and MG P = 0◦. Yellow to orange (representing small
values of the RLIs) show the stable regions, red to blue indicate chaotic motion and dark blue and
black mark the strong chaotic regions, where collisions and escapes might occur

It is clearly seen, that an increase of the planet’s eccentricity (eG P , i.e., the y-
axis) decreases the stable region in this system. Perturbations indicated by vertical
lines mark the mean motion resonances (MMRs) with respect to the giant planet.
These MMRs were found very numerous in the RLI maps. A comparison with
the corresponding FLI map shows the same overall structure but a complementary
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character of the results was obtained by the two methods: The RLI detects the
chaotic separatrices of the resonances (dark V-shaped stripes in Fig. 1a, b), while
the FLI finds the stable resonant orbits inside the resonances. For details of this
work we recommend the reader to the paper by Sándor et al. [68] or to the Web
Site: http://astro.elte.hu/exocatalogue.html that provides all nec-
essary information about this tool.

To get information about the stability of a new discovered planet, one needs
to know (i) the mass ratio between the star and the giant planet and (ii) whether
the new planet orbits the star inside or outside the giant planet, so it is possible
to select the appropriate stability map. Then it is necessary to convert the system
units into the units of the catalogue. With the new semi-major axis (i.e., x-axis
of the stability map) and the eccentricity of the existing giant planet (eG P , i.e.,
y-axis of the stability map) one is able to locate the position in the stability map,
where the color defines the dynamical behavior of the orbital parameters of the
new discovered planet. In this context we advice the reader of “ExoStab” (see
http://www.univie.ac.at/adg/exostab)—an Internet tool that does the necessary con-
version and displays the appropriate stability map of the Exocatalogue.

However, we have to point out that stability maps are mostly valid for small plan-
ets (e.g., terrestrial planets) and low-eccentric motion (e < 0.2) since the computa-
tions were performed in the ERTBP. If the new planet is very massive (> MJupiter)
and moves in an eccentric orbit, it is advisable to proof the stability of using the
three-body problem.

3 Multi-Planet Systems

Currently (November 2009) we know 40 multi-planet systems – most of them con-
sist of only 2 planets, only 9 systems have 3 planets, 2 systems with 4 and 1 with 5
planets. From the dynamical point of view, we can distinguish four classes of multi-
planet systems (according to [23]) that are based on the mutual distance between
the planets and the orbital eccentricities:

Class Ia—Planets in mean motion resonance (MMR): Planet pairs with large
masses moving in eccentric orbits that are relatively close to each other, so that
strong gravitational interactions might occur. Such systems remain stable if the
two planets are in mean motion resonance, i.e., if the ratio of the orbital periods
of two planets is quite close to a ratio of two integers. A MMR can be written
as (p + q)/q, where p and q are integers and the latter represents the order of the
resonance. The critical angles of a MMR are defined as θi = (p+q)λ2−qλ1−q�i ,
where λi , i = 1, 2 are the mean longitudes of the planets, and �i , i = 1,2 are the
longitudes of perihelion. The behavior of these angles show whether a system is
in resonance or not. If one of these angles oscillates then the system is inside the
resonance. There are many examples of planet pairs in MMRs like, e.g., GJ 876, 55
Cnc, HD829422, HD202206, HD160691, ν And, and GJ873. Since these systems
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Table 1 Discovered multi-planet systems (part I)

Star Mpl [MJup] apl [AU] epl

GJ 876 1.935 0.20783 0.0249
0.56 0.13 0.27
0.018 0.020807 0.0

GJ 581 0.0492 0.041 0.02
0.0158 0.073 0.16
0.0243 0.25 0.2

HD 69830 0.0322 0.0789 0.1
0.0374 0.187 0.13
0.0573 0.633 0.07

55 Cnc 0.824 0.115 0.014
0.169 0.24 0.086
3.835 5.77 0.025
0.034 0.038 0.07
0.144 0.781 0.2

HD 82943 1.81 0.752 0.39
1.74 1.19 0.02

47 Uma 2.6 2.11 0.049
1.34 7.73 0.005

HD 128311 2.19 1.1 0.25
3.22 1.76 0.17

HD 160691 1.675 1.501 0.132
1.814 5.171 0.097
0.033 0.091 0.172
0.522 0.919 0.049

HD 190360 1.502 3.92 0.36
0.057 0.128 0.01

υ And 3.95 2.51 0.242
1.98 0.83 0.254
0.69 0.059 0.029

HD 11964 0.09 0.2527 0.23
0.213 1.132 0.63
0.77 3.46 0.05

HD 12661 2.3 0.83 0.35
1.57 2.56 0.2

HIP 14810 3.91 0.0692 0.147
0.76 0.407 0.4091

OGLE-06-109L 0.71 2.3 -
0.27 4.6 0.11

are of special interest in dynamical studies, the most interesting ones have been
examined by many research groups, see, e.g., [43, 44, 29, 1, 2, 10].

Class 1b—Low-eccentricity near-resonant planet pairs: In this case a mean
motion resonance of the planet pair is not needed to guarantee the long-term stability
of the system. Therefore, the eccentricities of the planets have to be small to exclude
a crossing of the orbits. Our solar system belongs to this group and the recently
discovered OGLE-06-109L system [26]. Even if there is no other multi-planet
system with similar characteristics known at the moment, we have to take in mind
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Table 2 Discovered multi-planet systems (part II)

Star Mpl [MJup] apl [AU] epl

HD 37124 0.624 0.519 0.079
0.574 1.61 0.15
0.695 3.142 0.297

HD 38529 0.852 0.131 0.248
13.2 3.74 0.3506

HD 73526 2.9 0.66 0.19
2.5 1.05 0.14

HD 74156 1.88 0.29 0.64
8.03 3.86 0.43
0.4 1.04 0.25

HD 108874 1.36 1.051 0.07
1.018 2.68 0.25

HD 155358 0.89 0.628 0.112
0.504 1.224 0.176

HD 168443 7.48 0.29 0.53
16.87 2.84 0.222

HD 169830 2.88 0.81 0.31
4.04 3.6 0.33

HD 187123 0.522 0.0426 0.0099
1.95 4.8 0.249

HD 202206 17.4 0.83 0.435
2.44 2.55 0.267

HD 217107 1.33 0.073 0.132
2.5 4.41 0.537

HD 102272 5.9 0.614 0.05
2.6 1.57 0.68

GJ 436 0.072 0.0287 0.15
0.015 0.045 0.2

14 Her 4.975 2.864 0.359
7.679 9.037 0.184

HD 82943 0.88 0.73 0.54
1.63 1.16 0.41

PSR 1257+12 0.00007 0.19 0.0.0
0.013 0.36 0.0186
0.012 0.46 0.0252

that only six far away planetary systems have been detected so far. Out of these
systems, one has similarities with our solar system, therefore, it can be assumed that
many such systems may exist but have not been discovered yet.

In a numerical investigation by Pilat-Lohinger et al. [60] the stability of different
fictitious Jupiter–Saturn configurations were studied. To obtain similar systems, the
mass of Saturn (mS) was increased by factors of 2— 40 and its initial semi-major
axis (aS) was varied from 8 to 11 AU. To see the mutual perturbations of Jupiter
and Saturn, we show in Fig. 2a summary of all fictitious Jupiter–Saturn configura-
tions. The dynamical state for each (aS,mS) was determined by a method base d
on the frequency analysis described in [65]: First Saturn’s “proper mean motion”
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Fig. 2 MMRs between Jupiter and Saturn in the region between 8 and 11 AU (x-axis) for various
masses of Saturn (y-axis). The colors show whether a trajectory can be considered as quasiperiodic
one (i.e., dark blue) or as perturbed orbit (blue to yellow) for which the associated diffusion remains
(for almost all initial condition) bounded or if they are in areas indicating that the planetary system
is chaotic and its destruction is possible (orange and red) (taken from [60])

was determined by a quasiperiodic approximation of aS exp (iλS)—where λS is the
mean longitude of Saturn. Then, for each Saturn-mass the second derivative of the
proper mean motion with respect to Saturn’s semi major axis was computed and
is related to some diffusion rate in the frequency space [40]. Therefore, it defines
the dynamical state of motion of the two giant planets, which is described by the
index of quasiperiodicity in the interval [0, 1], where 0 means that the trajectory
is quasiperiodic, and 1 that the trajectory is no longer quasiperiodic at all. If the
index in Fig. 2 is lower than 0.2 (dark blue), the orbit cannot be distinguished from
a quasiperiodic one. When the index is between 0.2 and 0.7 (blue to yellow), the
instability increases, but the associated diffusion remains (for almost all initial con-
ditions) bound, which means that the disruption probably does not occur on a billion
years timescale. For higher values of the index (orange to red), the corresponding
planetary system is chaotic and its destruction is possible.

Class II—Non-resonant planets with significant secular dynamics: Planet pairs of
this class can have strong gravitational interactions, where long-term variations are
ascribed to secular perturbations, large variations of the eccentricities and dynamical
effects like the alignment and anti-alignment for the apsidal lines [47]. For the long-
term stability of such a system, it is not necessary that the planets are in MMR.
Examples are, e.g., 55 Cnc (e and b), HD169830, and HD37124.

Class III—Hierarchical planet pairs: In this class one finds all planet pairs with a
large ratio of their orbital periods—P1/P2>10. So that the gravitational interaction
are not so strong like in class II and the probability of a capture in a MMR is negligi-
ble. The weaker interactions lead to stable motion in the numerical simulations, even
if the orbits of the planets are not so determined. Examples are well HD168443,
HD74156, and HD38529.
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For a detailed description of the interesting topic of multi-planet systems we refer
the reader to [23] or [48].

4 Binary Systems

The fact that more than 60% of the stars in the solar neighborhood build double- or
multiple star systems (see [12]) underlines the necessity of stability studies for bina-
ries. It is well known that in such systems the stable planetary motion is restricted
to certain regions of the phase space due to the gravitational interactions between
the celestial bodies. From the dynamical point of view, we distinguish three types
of motion in double star systems [13]:

(i) the satellite-type (or S-type) motion, where the planet moves around one stellar
component;

(ii) the planet-type (or P-type) motion, where the planet surrounds both stars in a
very distant orbit and

(iii) the libration-type (or L-type) motion, where the planet moves in the same orbit
as the secondary but 60◦ before or behind, furthermore, they are locked in 1:1
mean motion resonance.

Long before the first planet in a binary system has been discovered, astronomers,
working in Dynamical Astronomy, carried out theoretical and numerical stability
studies for the different types of motion (see, e.g., [13, 14, 62, 15, 16, 45, 32, 55,
56]) using the elliptic restricted three body problem (ER3BP)4 for the numerical
simulations. Between 1988 and 1998 Benest [3–8], studied in a series of papers
several binaries. The discovery of planets in such systems encouraged other research
groups to examine special double star systems (see, e.g., [31, 17, 19, 18, 58]).

Additionally, there are investigations, that used the general three body problem:
see, e.g., [30, 27, 9], and more recently by [33] or [52].

At the moment the S-type motion is the most interesting one, since all detected
extra-solar planets in binary systems orbit one of the stars (see Table 2).

The P-type motion will be more important as soon as planets will be discovered
in very close binaries. In principle we know that the planetary motion around both
stars is only stable for distances (from the mass center) > 2× the distance of the
two stars. In the case of high-eccentric motion of the binary (around 0.7) the planet’s
distance has to be more than 4× that of the two stars to be stable. For details see,
e.g., [32, 56, 59].

The third type (L-type motion)—where the planet librates around one of the two
Lagrangian triangular points of one of the stars is not so interesting for planetary

4 The elliptic restricted three-body problem describes the motion of a massless body in the grav-
itational field of two massive bodies; the so-called primaries move in elliptic orbits (Keplerian
motion) around their center of mass, without being influenced by the massless body.
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motion in double stars due to a limitation in the mass ratio of the two stars:

μ = m2/(m1 + m2) < 1/26.

This motion is more interesting for single-star—giant planet—systems, where the
limit of the mass ratio is easily fulfilled.

4.1 Discovered Planets in Binary Systems

From the more than 300 extra-solar planets discovered so far only a small part
(around 30) were found to move in double star systems (see Table 3). According
to Table 3 it is obvious that all discovered planets in binary systems move in S-type
orbits due to the fact that most of these systems are wide binaries, where the distance
between the two stars is more than 100 AU, except the systems Gliese 86, HD41004
AB, and γ Cephei. These are the most interesting ones from the dynamical point of
view, therefore, we will discuss the orbital stability in these systems. First a short
overview about general stability studies of S-type motion will be given.

4.2 S-Type Motion

Most of the general stability studies of S-type motion5 in the planar ERTBP deter-
mined the stable region as a function of the binary’s eccentricity, where the motion
of the planet is initially circular (see, e.g., [62], 1988 [62] (= RD), or [32] (=HW)).
Only the numerical investigation by [55] (=PLD) analyzed also the influence of the
planet’s eccentricity.

The three cited works determined the stable regions of planetary motion in a sim-
ilar way. The host-star about which the planet (which is the massless body) moves
is always m1, then the initial conditions of the binaries are a fixed semi-major axis
of 1 AU, a variation of the eccentricity between 0 and 0.9 with a step of 0.1 and two
starting positions for the second star m2 (the peri-center and the apo-center). The
initial conditions of the planets are a semi-major axis between 0.1 and 0.7 AU with
a various step δa and four starting positions were used for each orbit (i.e., mean
anomaly = 0o, 90o, 180o, 270o). The initial eccentricity was zero in RD and HW
and was varied between 0 and 0.5 with a step of 0.1 for all mass ratios and in some
cases up to 0.9 in PLD.

In PLD the orbital behavior was determined by means of the FLI [25], which is
quite a fast tool to distinguish between regular and chaotic motion. Chaotic orbits
can be found very quickly because of the exponential growth of the tangent vector
in the chaotic region. For most chaotic orbits only a few number of primary revo-
lutions is needed to determine the orbital behavior. In order to distinguish between

5 S-type motion is also called circumstellar motion.
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Table 3 Planets in double stars [63]

Star abinary [AU] aplanet [AU] Mpl sin i [MJup] eplanet

HD38529 12042 0.129 0.78 0.29
3.68 12.7 0.36

HD40979 6394 0.811 3.32 0.23
HD222582 4746 1.35 5.11 0.76
HD147513 4451 1.26 1.00 0.52
HD213240 3909 2.03 4.5 0.45
Gl 777 A 2846 0.128 0.057 0.1

3.92 1.502 0.36
HD89744 2456 0.89 7.99 0.67
GJ 893.2 2248 0.3 2.9 –
HD80606 1203 0.439 3.41 0.927
55 Cnc 1050 0.038 0.045 0.174

0.115 0.784 0.02
0.24 0.217 0.44
5.25 3.92 0.327

GJ 81.1 1010 0.229 0.11 0.15
3.167 0.7 0.3

16 Cyg B 860 1.66 1.69 0.67
HD142022 794 2.8 4.4 0.57
HD178911 789 0.32 6.292 0.124
Ups And 702 0.059 0.69 0.012

0.83 1.89 0.28
2.53 3.75 0.27

HD188015 684 1.19 1.26 0.15
HD178911 640 0.32 6.29 0.124
HD75289 621 0.046 0.42 0.054
GJ 429 515 0.119 0.122 0.05
HD196050 510 2.5 3.00 0.28
HD46375 314 0.041 0.249 0.04
HD114729 282 2.08 0.82 0.31
ε Ret 251 1.18 1.28 0.07
HD142 138 0.98 1.00 0.38
HD114762 132 0.3 11.02 0.25
HD195019 131 0.14 3.43 0.05
GJ 128 56 1.30 2.00 0.2
HD120136 45 0.05 4.13 0.01

γ Cep 20.3 2.03 1.59 0.2
Gl 86 21 0.11 4.01 0.046
HD41004 AB 23 1.7 2.64 0.5

stable and chaotic motion we defined a critical value for the FLIs depending on
the computation time. In the general stability study of S-type motion the FLIs were
computed for 1000 periods of the binary.6 A comparison of the results of RD, HW,

6 Even if the computation time seems to be quite short, one has to take into account that the results
are valid for a much longer time due to the application of the FLI. Test computations of three
selected mass ratios over a longer time (of 104, 105, and 106 primary periods) did not change the
result significantly.
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Table 4 Stable zone (in units of length) of S-type motion for all computed mass ratios and eccen-
tricities of the binary. The given size for each μ, ebinary pair is the lower value of the studies by
HW and PLD

Mass ratio (μ)

ebinary 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0 0.45 0.38 0.37 0.30 0.26 0.23 0.20 0.16 0.13
0.1 0.37 0.32 0.29 0.27 0.24 0.20 0.18 0.15 0.11
0.2 0.32 0.27 0.25 0.22 0.19 0.18 0.16 0.13 0.10
0.3 0.28 0.24 0.21 0.18 0.16 0.15 0.13 0.11 0.09
0.4 0.21 0.20 0.18 0.16 0.15 0.12 0.11 0.10 0.07
0.5 0.17 0.16 0.13 0.12 0.12 0.09 0.09 0.07 0.06
0.6 0.13 0.12 0.11 0.10 0.08 0.08 0.07 0.06 0.045
0.7 0.09 0.08 0.07 0.07 0.05 0.05 0.05 0.045 0.035
0.8 0.05 0.05 0.04 0.04 0.03 0.035 0.03 0.025 0.02

and PLD show them in good agreement. Minor variations are caused by the different
methods used to determine the stable region. In some cases the FLI results gave a
slightly larger stable region due to the fact that only four starting positions were
used whereas HW used eight. Table 4 shows the border of the stable region (i.e., the
semi-major axis of the last stable orbit) for different mass ratios, where we took the
lower value of the two studies by HW and PLD.

The variation in the size of the stable zone due to an increase of ebinary or eplanet

is shown in Table 5 for all mass ratios. For each μ we show the extension of the
stable zone for circular motion of the binary and the planet and for an eccentric
motion of 0.5 for both bodies.

Table 5 Stable zone (in dimension less units) of S-type motion for different mass ratios

Stable zone

Mass ratio μ = m2/(m1 + m2) ebinary eplanet = 0 eplanet = 0.5

0.1 0 0.45 0.36
0.5 0.18 0.13

0.2 0 0.40 0.31
0.5 0.16 0.12

0.3 0 0.37 0.28
0.5 0.14 0.11

0.4 0 0.30 0.25
0.5 0.12 0.07

0.5 0 0.27 0.22
0.5 0.12 0.07

0.6 0 0.23 0.21
0.5 0.10 0.07

0.7 0 0.20 0.18
0.5 0.09 0.07

0.8 0 0.16 0.16
0.5 0.09 0.05

0.9 0 0.13 0.12
0.5 0.06 0.04
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It can be seen that the reduction of the stable zone due to an increase of the
binary’s eccentricity is between 0.07 AU (i.e., for the initially circular motion in
a binary with μ = 0.9) and 0.28 AU (i.e., for the initially circular motion in a
binary with μ = 0.1). Even if the size of the stable region does not show a strong
dependence on the eccentricity of the planet, it is not negligible, especially if a planet
is close to the border of chaotic motion and moves in a highly eccentric orbit.

Figure 3 shows a summary of this study for μ = 0.2, where we see for each
(eBinary, ePlanet ) pair on the (x ,y) plane the respective extension of the stable zone
(z-axis), which is defined by the semi-major axis of the last stable orbit (correspond-
ing to the largest distance of the planet to its host-star). The grey plane represents
the limiting plane for stable motion. Similar 3-D plots for all mass ratios (from 0.1
to 0.9) as well as a detailed discussion of this work is given in PLD. As an example
we show that the results for μ = 0.2 given in Fig. 3 can be applied to the binary γ

Cephei that hosts a giant planet.

Fig. 3 The size of the stable zone of S-type motion in a binary with mass-ratio μ = 0.2 depending
on the eccentricity of the binary (x-axis) and of the planet (y-axis). It is clearly seen that the
variation of eBinary influences the extension of the stable zone stronger than the variation of ePlanet

4.3 γ Cephei

γ Cephei is one of the most interesting double star systems that hosts a planet. It is
about 11 pc away from our solar system and consists of a K1 IV star (of 1.6 solar
masses) and a M4 V star (of 0.4 solar masses). Thus the mass ratio (m2/(m1 +m2))
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of this system is 0.2. The detected planet of 1.76 Jupiter-masses orbits the K1 IV
star at distance of 2.13 AU.

In Table 6 we show the extension of the stable zone (last column) for the old
(upper part) and the new (lower part) orbital parameters using the results of PLD. In
any case the stable region exceed 3 AU so that the detected giant planet at about 2
AU is clearly inside the stable zone.

Table 6 Stable zone derived from the study by [55]

Old orbital parameters

M4 V star Giant planet Border of stable zone

Mass 0.4 MSun 1.7 MJup

Semi-major axis [AU] ∼ 22 AU ∼ 2 AU
Eccentricity 0.44 0.21

∼ 3.6 AU
New orbital parameters

Mass 0.4 MSun 1.7 MJup

Semi-major axis [AU] ∼ 18.5 AU ∼ 2.13 AU
Eccentricity 0.36 0.12

∼ 3.2 AU

Since the work by HW [32] is often used to confirm the stability of a detected
planet in a binary, we show in Fig. 4a, b that one has to be careful, especially in
the case of eccentric motion of the planet. As HW studied only circular planetary
motion, they give a larger stable zone. This is well visible in Fig. 4b, where the two
dashed lines show the zone for the stability borders defined by the relation given in
HW. The plotted results of all eccentricities of a planet indicate that the majority of
the stability borders is outside the given zone by HW. Figure 4a shows the results
for circular orbits (full line with crosses) and low-eccentric motion (eplanet = 0.1,
dashed line with stars), as well as the results of HW (dotted line with white squares).
It is clearly seen that the results for the circular problem (ebinary = 0) are the same
for the three cases; but for the elliptic problem (ebinary from 0.1 to 0.8) the stability
borders determined by PLD are closer to m1. Moreover, the results for eplanet = 0
and 0.1 are the same up to ebinary = 0.3 and again for ebinary ≥ 0.7; and two cases
(ebinary = 0.1 and 0.2) are outside the zone determined with the relation of HW. A
higher eccentricity of the planetary motion shows that most of the stability borders
are closer to the host-star. This could be important if the detected planet is quite
close to the border of the stable zone.

4.3.1 Influence of the Secondary

To study the influence of the secondary, we examined in the system γ Cephei the
region between the host-star and the detected planet by doing the calculations with
(left panel of Fig. 5) and without (right panel of Fig. 5) secondary. A comparison of
the two results shows significant differences. The presence of the perturbing star (see
Fig. 5a) decreases the stable region (i.e., the faint region in the panels) and shows
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Fig. 4 A comparison of the results of PLD and HW. The area between the two dashed lines defines
the zone for the stability border according to the relation given in HW. Panel (a) shows the results
of PLD for eplanet = 0 (full line with crosses) and eplanet = 0.1 (dashed line with stars) and the
result of HW (dotted line with white squares). Panel (b) shows the results for all eplanet (from 0 to
0.9) in comparison with the theoretical zone for the borderline of stability
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Fig. 5 FLI-stability maps for a fictitious planet in the vicinity of γ Cephei: left panel shows the
result in the restricted four body problem (R4BP) (i.e., γ Cephei + secondary + detected planet +
fictitious planet) and right panel shows the result in the restricted three body problem (R3BP) (i.e.,
γ Cephei + detected planet + fictitious planet). The dark region shows the chaotic zone and the
white area the stable one

an arc-like chaotic path with a stable island around 1 AU (which corresponds to the
3:1 MMR). A first study about this significant difference is given in [57], where a
variation of the semi-major axis of the detected giant planet shows the following.

When the giant planet is close enough to the host-star (e.g., around 1.3 AU) the
region is mainly perturbed by MMRs with respect to the giant planet. An curved
chaotic structure appears if the giant planet is shifted toward the secondary, so that
a secular perturbation occurs, which means that the secondary causes a precession
of the perihelion of the giant planet.7

4.4 Gliese 86

The binary Gliese 86 is about 11 pc away from the Sun in the constellation Eridanus
and consists of a K1 main sequence star (m1 = 0.7MS) and in all probability a
white dwarf (with a minimum mass of 0.55MS) at about 21 AU as proposed by
[50] using NAOS-CONICA (NACO) and its new Simultaneous Differential Imager
(SDI). The former detection by coronagraphic images using the ESO adaptive optic
system ADONIS [20] identified a late brown dwarf (BD) of about 50 Jupiter-masses
moving at a distance of at least 18.75 AU. But [20] could not explain the linear
trend in the observation, which was possible with the new detection by [50] (=MN).

7 Since all massive bodies were placed in the same plane a precession of the ascending node cannot
be modeled.
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However, the first who suggested a white dwarf (WD) companion for Gliese 86 was
[35] in 2001.

A planet was found to be very close to the K1 V star, at 0.11 AU with an orbital
period of less than 16 days [61]. Due to the CORALIE measurements a minimum
mass of 4MJupiter was determined. It is evident that this close-in planet is not per-
turbed by the secondary star at 18.75 or 21 AU.

Since the eccentricity of the binary is not known, we examined numerically the
dynamical behavior of fictitious low-mass planets orbiting Gliese 86. As we were
interested in the size of the stable region for different eccentricities of the binary,
we neglected the detected planet. The initial conditions of the massive bodies (m1

and m2 were taken from Table 7 and all angles (inclination (i), node (Ω), perihelion
distance (ω), and mean anomaly (M)) were set to zero.

Table 7 Orbital parameters of the binary Gliese 86

m1 (K1 V star) m2 (BD) m2 (WD) m3 (planet)

Mass 0.79 MS 50 MJ 0.55 MS 4 MJ

Semi-major axis [AU] 0 18.75 21 0.11
Eccentricity 0.0–0.9 0.0–0.9 0.0–0.7 0.046

The FLIs were used to determine the dynamical behavior of the trajectories and
the integration time was between 1000 and 100,000 periods of the binary, using the
ER3BP as dynamical model. The massless bodies were started in the semi-major
axes range between 0.3 and 12 AU with a step of 0.01 AU, and e, i, ω, ΩM were
set to 0.

The results of the FLI computations are shown in Fig. 6 which splits the (semi-
major axis ebinary) parameter space into three zones: (i) a stable zone whose bor-
der (dashed lines with black squares (for m2 = WD)/solid line with black circles
(for m2 = BD)) is defined by the largest distance from Gliese 86 up to which we
have found only regular motion; (ii) a chaotic zone, where no regular motion can
be found—which is outside the dashed line with open circles. In between the two
border lines one can see (iii) a mixed zone where both regular and chaotic motion
can be found. It is clearly seen that for low-eccentric motion of the binary the two
border-lines of stable motion coincide whereas those of the chaotic zone are not at
the same position. Therefore, the new system (WD secondary) has a smaller mixed
zone. For the new system we observe a linear decrease of the stable zone when
increasing ebinary from 0.1 to 0.9. Moreover, the mixed zone shrinks significantly
at ebinary = 0.4 and remains nearly constant for higher eccentricities (except for
ebinary = 0.6). When ebinary ≥ 0.4, one can see that both border lines of the new
system lie inside the stable zone of the old system (BD secondary). This means that
especially for eccentric motion of the binary the mass of the perturbing star plays
an important role for the size of the stable zone. The result of the old system shows
a quite constant extension of the mixed zone for ebinary ≤ 0.2, while for higher
eccentricities a linear decrease in the size can be observed.
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Fig. 6 The stability of a fictitious massless body in the gravitational field of the binary
Gliese86 AB, where the detected planet at 0.11 AU was neglected. One can see three zones (stable,
mixed, and chaotic) for both configurations: dashed lines with open and full squares for a WD and
full lines with open and full circles for a BD as secondary

Remark. As a comparison we did some computations using the general three
body problem with a planet’s mass of about five Jupiter-masses. For such a system
the stable zone shrinks significantly only for high-eccentricity motion of the fictitious
planet (eplanet ≥ 0.3).

To get a first picture about the gravitational influence of the secondary (i.e., the
brown dwarf) and of the discovered planet on a fictitious planet moving in the region
between these two bodies, we computed the MMR up to the order 20. Its repre-
sentation is given in Fig. 7, where the lower part refers to the detected planet, the
upper part refers to the secondary, and the dotted region labels the habitable zone.
It is clearly seen that most of the resonances with respect to the detected planet
are concentrated to distances < 0.3 AU from the K1V star and only a few, very
high-order resonances were found in the habitable zone.

4.5 HD41004 AB

Another interesting binary system is HD41004 AB, which was in the sample of the
Geneva extra-solar planet search program using the Coralie spectrograph at La Silla
Observatory. For the first analysis, 86 radial velocity measurements were used [69],
where they identified a brown dwarf orbiting HD41004 B with an observed period of
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Fig. 7 The mean motion resonances (MMRs) up to the order 20 of an additional fictitious planet
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the high-order MMRs with respect to the detected planet, which are not that important. We have to
note that the MMR plot for the new system (m2 = WD) is quite similar to Fig. 2 — so it is useless
to show both

only 1.3 days. Moreover, the observed long-term linear trend in the radial velocities
was ascribed primarily to the motion of HD41004 A around component B—but it
could also be caused by an additional component, which was proofed by further
observations and analyses of the system that showed a planetary companion near
HD41004 A [73]. The system HD41004 AB can be divided into 2 subsystems, with
a projected distance of the two stellar components between 20 and 23 AU according
to the different observations. Both stars have a sub-stellar companion, whose orbital
parameters are given in Table 8.

Since the different observational samples change the orbital parameters of this
planetary system drastically, we examine the stability of planetary motion for the
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Table 8 Orbital parameters of the binary HD41004 AB [74], where we divide the binary system
into two subsystems, with a distance of at least 23 AU

HD41004 A (m = 0.7MSun) HD41004 B (m = 0.4MSun)

Planet (IC1) Planet (IC2) Planet (IC3) brown dwarf

m P [MJup] 2.3 2.436 ± 0.098 2.6 ± 1.8 18.64 ± 0.26
aP [AU] 1.31 1.64 1.7 ± 0.11 0.0007544
eP 0.39 ± 0.17 0.5 0.74 ± 0.2 0.065 ± 0.014
ωP [deg] 114 ± 10 71.7 ± 4.6 97 ± 31 171 ± 11
P [days] 655 ± 37 924 ± 25 963 ± 38 1.328199

different orbital parameters in the (aP , eB-plane)8 fixing the eccentricity of the giant
planet to the different observed values. So that we are able to determine a max-
imum eccentricity for the binary that assures long-term stability for the detected
giant planet, since we have no knowledge about the eccentricity of the binary. In
addition, we are faced with a large error in the eccentricity of the detected giant
planet. Figure 8 shows clearly that—depending on the planet’s eccentricity—eB has
to be < 0.6 in all cases, and for eP = 0.74, eB has to be < 0.15, otherwise the
detected planet would not be in the stable region.

5 Planets in the Habitable Zone (HZ)

The HZ is the region around a star, where liquid water is stable on the surface of
an Earth-like planet [37]. Another assumption for such a planet is the existence of
an appropriate planetary atmosphere. The study of habitability is certainly an inter-
disciplinary venture including astrophysical, biological, geophysical, and chemical
studies. From the astrophysical point-of-view studies of the stellar luminosity and
its influence on the distance of the HZ, as well as the planet’s mass (to maintain an
atmosphere) and planetary composition (assuming a terrestrial planet), are important
contributions to the science of habitability.

The evolution of a biosphere is a process over a long time, therefore, it is obvious
that long-term orbital stability in the HZ represents one of the basic requirements
for habitability. This emphasizes the importance of such numerical investigations
for known and future extra-solar planetary systems.

To define the boundaries of this zone we used the work by [37], that is, based
on a planet with a terrestrial ocean of superficial water, the carbonate–silicate cycle
which controls the CO2 level in the atmosphere and the surface temperature that
is above freezing in the HZ. The conservative estimate of the outer boundary in
the solar system is at 1.3 AU. For larger semi-major axes CO2 condensates in the
atmosphere producing CO2 clouds that can affect the temperature-CO2 coupling
significantly. The inner boundary is at 0.93 AU. For a < 0.93 AU, H2 O becomes
a major atmospheric compound and is rapidly lost to space after UV photolysis.

8 aP is the semi-major axis of the giant planet and eB is the eccentricity of the binary.
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Fig. 8 FLI-stability maps for
the different parameter sets:
(a) the old HD41004 A
system with eP = 0.39, and
the new HD41004 A system
with (b) eP = 0.5 and
(c) eP = 0.74. A variation of
the planet’s semi-major axis
aP (x-axis) and the binary’s
eccentricity eB (y-axis)
allows to determine the
maximum eB for which we
have found long-term
stability of the detected giant
planet (see the horizontal
black line). The vertical line
in each panel labels the
observed position of the
detected planet for the
different orbital parameters.
Long-term stability can be
expected in the red region
while dark blue mark highly
chaotic orbits

(a)

(b)

(c)
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Further studies find a potentially larger HZ for a Sun-like star—see e.g., [24] or [49]
(two groups that include C O2 cloud effects).

The size of the HZ is limited to a small region, depending on the spectral type and
the age of the host-star, therefore the planet’s eccentricity has to be small enough if
we require that the planet is always in the HZ. In dynamical studies we distinguish
different types of HZ depending on the giant planet of the system:

(1) The solar system type HZ, where the HZ is between the host-star and the
detected giant planet; this is the case for HD41004 A, which is studied in this
chapter.

(2) The hot-Jupiter type HZ, where the HZ is outside the giant planet.
(3) The giant planet habitable zone (GPHZ) where the detected giant planet moves

in the HZ. In this case we can only expect so-called habitable moons or habit-
able Trojan planets (see [42, 18, 22]).

If an Earth-like planet is found in a single-star single-planet system, it is possible
to apply the Exocatalogue like it is described in Sect. 2 or more detailed in [68].

In this investigation we give only a brief introduction to the very interesting study
of planets in the HZ — showing results for Jupiter–Saturn like-systems and for the
two binary systems Gliese 86 and HD41004 AB. For a detailed information of this
topic we recommend the reader to the book Extrasolar planets ed. Dvorak [48],
where several articles provide a good overview about the problematic of the HZ.

5.1 EPS Similar to the Jupiter–Saturn Configuration

The influence of Jupiter and Saturn on the motion in the HZ of a Sun-like star was
studied by the computation of test-planets (with negligible mass) between atp = 0.6
and 1.6 AU.9 For the giant planets, we used the orbital parameters of Table 9 and for
the test-planets, we varied the semi-major axis between 0.6 and 1.6 AU in steps of
0.02 AU and assumed Earth’s orbital parameters for the eccentricity etp = 0.0167—
the inclination itp = 0.0008o—the argument of perihelion ωtp = 103.946o—the
node Ωtp = 358.859o—and the mean anomaly Mtp = 206.900o.

Table 9 Orbital elements of the gas giants

Planet a [AU] e Inc. [deg] ω [deg] Ω [deg] M [deg] Mass [mSun]

Jupiter 5.2028 0.0483 1.3046 275.201 100.471 183.898 0.9547907e-3
Saturn 9.5300 0.0533 2.4864 339.520 113.669 238.293 0.2858776e-3

Calculating the test-planets for the different starting positions of Saturn (between
8 and 11 AU in steps of 0.1 AU), a stability map representing the (atp, aS) plane

9 The HZ defined by [37] (i.e., from 0.93 to 1.3 AU) was extended to get additional information
for the positions of Venus and Mars for the solar system configuration (i.e., [κ = 1]), which is
interesting from the dynamical point of view.
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contains information for 1581 data pairs (see, e.g., Fig. 9). This figure shows the
perturbations of the Jupiter–Saturn system via the maximum eccentricity (max-e)
over the whole computation time, where red labels the region of lowest max-e and
blue that of the highest one. Analyzing this result, we find that most of the HZ is not
affected by Jupiter and Saturn (i.e., the red region). The stability map is dominated
by an arched band that indicates higher eccentricities of the test-planet due to a
stronger influence of the giant planets in this region. Within this band are several
positions, where the eccentricity is about 0.5 (green regions) or even higher (see,
e.g., the blue region near the position of Mars). Apart from this significant stripe
some smaller regions show an increase in eccentricity, especially in the outer part
of the HZ (atp > 1.2 AU), e.g., when Saturn is nearly in 2:1 MMR with Jupiter.
In that case, a test-planet moving near the position of Mars would be influenced
by the gas giants, causing an eccentricity of about 0.2 for the test-planet. An even
higher eccentricity can be observed when Saturn is placed between 10 and 10.7 AU,
especially for the region outside the orbit of Mars. If Saturn orbits the Sun at 11 AU
perturbations in the area between 1.15 and 1.5 AU appear.

Fig. 9 Stability map for Earth-like planets under the influence of Jupiter and Saturn. Both axes
show different initial semi-major axes either of the massless Earth-like planets (x-axis) or of Sat-
urn (y-axis)—grid-size in x is 0.02 AU and in y 0.1 AU. The vertical black full lines indicate
the positions of Venus (V), Earth (E), and Mars (M); and the horizontal one represents that of
Saturn (Sat). The dashed horizontal lines label the positions of different mean motion resonances.
Different colors belong to different values of max-e (see the color scaling)

Another interesting result is the heightened eccentricity for a test planet at the
position of Venus, especially in the case, when Saturn is placed at its actual semi-
major axis. The color scaling indicates a max-e around 0.2, in contrast Venus is
moving in a nearly circular orbit in our solar system.
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Plotting the eccentricity of the test-planet at 0.72 AU one can see a regular signal
with large variations between nearly 0 and 0.22 (see the red line in Fig. 10). The
same result was found when we replaced our initial orbital elements for the test-
planets with those of Venus10 or when we started with etp, itp, ωtp, Ωtp, Mtp = 0.
Even the mass of Venus did not change the result significantly (see the blue line in
Fig. 10). Only, the presence of the Earth in this system causes a significant decrease
in the eccentricity of Venus’ orbit: in the case of a massless body the eccentricity
will not exceed 0.09 (green line in Fig. 10) and for a body with Venus-mass the
eccentricity is always < 0.05 (see the black line in Fig. 10).

The increase in Venus’ eccentricity caused by the absence of the Earth–Moon
system has been already found by [34], when studying the dynamical stability of
the inner solar system. In one of their models,11 that can quasi be compared to our
dynamical model (for κ = 1), they have found the maximum of eV near 0.6 and a
period of eV ’ variation of about 8.1 Myrs. In our restricted four body model (Sun–
Jupiter–Saturn + massless test-planets) the period of the variation in eV is around 4

0
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Fig. 10 The eccentricity (y-axis) of a (test-)planet placed at Venus’ semi-major axis, computed
over 2 × 107 years (x-axis). We compare the evolution of eV (t) in different systems: (i) Venus in
the Jupiter–Saturn system as massless test-planet (red line) and as massive body (blue line); (ii)
Venus in the Jupiter–Saturn–Earth system as massless test-planet (green line) and as massive body
(black line)

10 aV = 0.7233 AU, eV = 0.007, iV = 3.3947o, ω = 54.7176o, Ω = 76.6953o, M =
254.37111o; note that in our calculation we took 0.72 AU as initial aV .
11 Consisting of Sun increased by the mass of Mercury and the planets Mars through Neptune.
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Myr and the maximum of eV is about 0.22. This disagreement results mainly from
differences in the models used. For details of this study, we recommend the reader
to the paper by Pilat-Lohinger et al. [60], where systems with higher Saturn-mass
are also analyzed.

5.2 Planets in the HZ of Close Binary Systems

5.2.1 Gliese 86 A

In the case of Gliese86 A the HZ is—according to [37]—between 0.48 and 0.95 AU.
As the detected gas giant moves at 0.11 AU, its gravitational influence on the HZ
cannot be strong, as we have already seen in Fig. 7 that only high-order resonances
can be found in this zone. Our stability study shows the HZ of Gliese 86 in a very
stable state up to an eccentricity of the binary of 0.75 (for a BD secondary) an 0.7
(for a WD secondary). While for higher ebinary the HZ will be chaotic (see Fig. 6).

The most important question for the binary Gliese86 AB is, where was the planet
built? If it was formed at a distance between 4 and 5 AU12 and migrated toward the
star through the HZ, an already existing terrestrial planet would have been ejected
from the system. But if the gas giant was built closer to the star—maybe quite near
to the region, where it was found (see [72]), then we can expect terrestrial planets
in the HZ (which cannot be detected up to now). However, there are only a few
studies that deal with the difficult problem of planetary formation in binaries (see,
e.g., [39, 38, 53] or [54]), which needs still a lot of work.

In a paper by [64] results of simulations are discussed, where they have shown
the formation of several Earth-mass planets in systems with a close-in planet. They
claim that more than a third of the known systems might harbor Earth-like planets.

5.2.2 HD41004 A

Taking the old parameter of this system and using the R4BP as numerical method we
calculated various stability maps of the HZ of HD41004A to have a global overview
of the dynamical state of motion in this region.

Each map contains between 900 and 1500 orbits, which are analyzed using both
methods: (i) the FLIs (for 104 periods of the binary) to cancel out the fast diffusion
and (ii) the max-e (for 105 years) to determine those orbits, which are always in
the HZ. In total we computed 44 stability maps (26 FLI-maps and 18 max-e maps).
A selection of these results is given in figs.11(a-i). All stability maps show that

(i) the stable motion is limited to the inner region of the HZ (aT P < 0.7 AU) and
(ii) the stability region is fragmented into several stable stripes, which reminds one

of the distribution of the main-belt asteroids, where a similar resonant structure

12 Before the discovery of extra-solar planets it was claimed by A. Boss that the formation of gas
planets is at or outside 5 AU (which is called snow-line).
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Fig. 11 Stability maps (max-e) in the a–i plane for different eccentricities of the binary and of the
giant planet. The different colors indicate zones of different max-e: < 0.1 (red), . . . , > 0.8 (dark
blue). For details see the text

can be found due to the so-called Kirkwood gaps (see, e.g., Murray and
Dermott [51] for a detailed explanation). It is well known that the Kirkwood
gaps occur as a result of resonances with Jupiter. The similar structure in the
HZ of HD41004 A can be explained by MMRs with the detected giant planet
— where the 4:1 MMR is near 0.52 AU, the 7:2 MMR is near 0.57 AU, the 3:1
MMR is near 0.63 AU, and the 8:3 MMR is near 0.68 AU.

In the 9 panels of Fig. 4 we summarize our computations, and show how the
stable regions depend on (i) the eccentricity of the binary (left: eB = 0.1, middle:
eB = 0.28 and right: eB = 0.5) and (ii) the eccentricity of the giant planet (top: eP =
0.22, middle: eP = 0.26, and bottom: eP = 0.3). In all plots, the red region marks
the orbits with the lowest e-max (< 0.15) and the dark blue area labels the orbits
with the highest e-max (i.e., corresponding to unstable motion) that the test-planets
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achieved during the computations. Besides the restriction of eB to values < 0.7, one
can see from Fig. 11a limitation in the inclination of the test-planets to iT P < 50◦.
Comparing the different panels, it is clearly seen that an increase of either eP or eB

would lead to smaller stable areas.
The study of the existence of possible “dynamically habitable planets” (DHPs)

in the HZ of HD41004 A yields the following result:
If we consider planetary motion with eccentricities eT P < 0.25 to be dynamically

habitable, then about 10% of the orbits are DHPs when eP = 0.22 and eB = 0.1
(Fig. 4a). An increase of either eB to 0.5 (see Fig. 4c) or eP to 0.3 (see Fig. 4g)
would reduce the DHPs to 3 or 2, respectively. If both eccentricities are quite large
(see Fig. 4i), only a small stable island near the inner border of the HZ remains.
Another remarkable feature, that can be seen in most of the dynamical maps of
Fig. 4, is an increase of the lowest e-max area around aT P = 0.61 AU for higher
inclinations (up to 30◦—visible by the V-shape of the dark region).

The most appropriate regions for habitable planets are found around 0.51 AU,
where the planetary motion has to be nearly circular (e < 0.5), to remain in the HZ,
and around 0.61 AU, where eccentricities up to about 0.24 are allowed for DHPs.
Here we should note, that the application of the HZ defined by [36]—i.e., between
0.36 and 0.71 AU—would allow higher eccentricities for DHPs near 0.51 AU (up to
nearly 0.3) while in the region around 0.61 AU the DHPs should have an eccentricity
< 0.17 to guarantee that the orbit of the terrestrial planet is confined to the HZ. Even
if [70] claim that a habitable planet may leave the HZ in the peri-center/apo-center
without loss of its habitability (to allow a higher eccentricity for habitable planets),
we remind the reader that in the case of HD41004 A a high-eccentricity motion of a
terrestrial planet would enter the planet into the chaotic zone outside 0.7 AU.
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1. Beaugé, C., Ferraz-Mello, S., Michtchenko, T.: Astron. Astrophys. J. 598, 1124 (2003) 487
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23. Ferraz-Mello, S., Michtchenko, T.A., Beaugé, C., Callegari, Jr.: LNP Proceedings. In: Dvorak,

R. et al. (eds.) Springer, Heidelberg 683, 219 (2005) 486, 490
24. Forget, F., Pierrehumbert, R.T.: Science. 278, 1273 (1997) 503
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