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Preface

This book on recent investigations of the dynamics of celestial bodies in the solar
and extra-Solar System is based on the elaborated lecture notes of a thematic school
on the topic, held as a result of cooperation between the SYRTE Department of
Paris Observatory and the section of astronomy of the Vienna University. Each
chapter corresponds to a lecture of several hours given by its author(s). The book
therefore represents a necessary and very precious document for teachers, students,
and researchers in the field.

The first two chapters by A. Lemaitre and H. Skokos deal with standard topics
of celestial mechanics: the first one explains the basic principles of resonances in
mechanics and their studies in the case of the Solar System. The differences between
the various cases of resonance (mean motion, secular, etc.) are emphasized together
with resonant effects on celestial bodies moving around the Sun. The second one
deals with approximative methods of describing chaos. These methods, some of
them being classical, as the Lyapounov exponents, other ones being developed in
the very recent past, are explained in full detail. The second one explains the basic
principles of resonances in mechanics and their studies in the case of the Solar
System. The differences between the various cases of resonance (mean motion, sec-
ular, etc.) are emphasized together with resonant effects on celestial bodies moving
around the Sun.

The following three chapters by A. Cellino, by P. Robutel and J. Souchay, and
by M. Birlan deal with the recent improvements in the knowledge of the celestial
mechanics of the Solar System and of the extra-Solar System. The discovery and
the determination of various asteroid families in the two last decades from both
their dynamical features and their physical characteristics constitute a tremendous
step in the understanding of the constitution and the evolution of the asteroid belt
as well as the Trojans. We explain how numerical integrations at a very large time
scale can associate various bodies from a single parent one.

The astrometric space mission Gaia, to be launched in early 2012, will constitute
a revolution in the precision of position and velocity determinations of celestial
objects among which are the asteroids and the comets. In an extensive chapter
Hestroffer, A. dell’Oro, A. Cellino, and P. Tanga present our current understanding
relating to astro-photometric measurements and the dynamical properties of these
bodies, as well as the dramatic improvements expected from the Gaia mission.



vi Preface

Comets are still a subject of deep investigation concerning their origins and
the characteristics of the Oort’s cloud, from which they are assumed to originate.
Their dynamical evolution inside the Solar System strongly depends on their pos-
sible interactions with the large planets, in particular with Jupiter. A complete
review on these objects is given by H. Rickmann. This is followed by a chapter by
M. Fouchard explaining in full detail the way by which a perturbation from galac-
tic tides and passing stars can trigger a mechanism leading to deviation of comets
toward the inner Solar System.

A large part of the studies in celestial mechanics and dynamical astronomy is
based on numerical integration. In an extensive chapter S. Eggl and R. Dvorak
present various numerical methods used for solving the gravitational N-body prob-
lem and discuss their main properties.

Finally, the always-increasing number of recorded stellar systems with their
escort of exoplanets leads to the fundamental questions of their dynamical stabil-
ity as well as the existence of the zones in which conditions for life are gathered.
E. Lohinger presents abundant examples of such systems and shows how their
dynamical stability can be addressed.

We are sure that the present book will be very useful for any graduate student or
specialist aiming at an up-to-date review of the most exciting topics in the fields of
celestial mechanics and planetology of solar and extra-Solar Systems.

Both editors thank very strongly the Springer Editorial Board as well as the
authors for their acceptance of the work and their nice contributions.

Paris, France J. Souchay
Vienna, Austria R. Dvorak
July 2009
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Resonances: Models and Captures

A. Lemaitre

Abstract The resonances in the Solar System are present everywhere and can be
represented by simple models. This chapter presents a review of the main cases:
mean motion, secondary, secular, spin orbit and gravitational resonances are intro-
duced and modelled up by pendulum like or more sophisticated models. Dissipative
mechanisms introducing slow variations of the parameters can produce capture into,
jumps over or escapes from resonances. Hamiltonian dynamics and adiabatic invari-
ant are combined to reproduce and understand these behviours.

1 Introduction

This chapter presents the basic models of resonance, playing a role (as first approx-
imations) in the main situations of planetary systems: mean motion resonances,
secular resonances, secondary resonances, spin—orbit resonances, and gravitational
resonances. It shows how to reduce a complex problem to its most important res-
onant contribution and how to calculate captures into resonances or escapes from
these resonances.

Of course most of these models are far too simple to describe the complex reality
of a resonant N-body problem; however, they can give a qualitative idea about the
dominant dynamics; the superposition of the various levels of resonance creates
chaotic zones to be estimated and located.

This chapter is written in Hamiltonian formalism and intends to give the main
tools to manipulate and model up a resonance in any context; it is not a review
of the present state of the art of the resonances and their present knowledge. The
references chosen in this chapter correspond to this peculiar and specific approach.

A. Lemaitre (<)
Unité de Systemes Dynamiques, Département de Mathématique, FUNDP, Rempart de la Vierge 8,
B5000 Namur, Belgium, anne.lemaitre@fundp.ac.be

Lemaitre, A.: Resonances: Models and Captures. Lect. Notes Phys. 790, 1-62 (2010)
DOI 10.1007/978-3-642-04458-8_1 (© Springer-Verlag Berlin Heidelberg 2010



2 A. Lemaitre
2 The Hamiltonian Theory

First of all, let us remind the fundamental characteristics of the Hamiltonian for-
malism. A one degree of freedom Hamiltonian system is defined by a function ‘H
(called the Hamiltonian), function of g, p, and ¢, where ¢ designates the variable, p
the momentum, and ¢ the time,

H="H(g,p.1)

and an associated set of two differential equations:

. oH
q = _(517 P, t)a
ap
. oH
p=——(q,p,1).
dq

The Hamiltonian H is called autonomous if it does not depend explicitly on the
time: in this case, it is a first integral or a constant of the motion:

dH oH .+8H 50
dt ~ dq a4 op p="5
We introduce a new set of variables (Q, P) depending on ¢, p, and ¢, defined by

0=0(q,p,1),
P = P(q, p,t).

We consider that the inverse of this time-dependent transformation LI is also defined
symbolically by

q=4q(Q, P,1),

p=pQ,P,1).
This transformation is canonical if for any Hamiltonian H(q, p, t) there exists a
function KC(Q, P, t) so that the differential equations system associated to H is

transformed into a new system with respect to U which is also Hamiltonian, i.e.,
which can be written as

'—%( P, 1) P——%( P, 1)
Q_aPQ” _aQQ”'

The Hamiltonian of the problem expressed in Q and P is given by

K(Q., P.t) = nH(g(Q, P, 1), p(Q, P, 1), 1) + R(Q, P, 1),
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where w(¢) is called the multiplier and R the remaining function; they depend on the
transformation 7 and not on the initial Hamiltonian H (see [11] for more details).
If the transformation 7 is independent of £, R = 0.

The role of u(t) is not fundamental; a simple scaling can easily eliminate this
parameter:

1
O=aQ and P =8P with —=aBf.
nw

The canonical transformations of parameter . = 1 are also called the symplectic
transformations.

This new canonical set (Q, P) is not always given by an explicit relationship with
q, p, and t; it can be introduced in a more implicit way, through a generic function
S = S8(g, P, t) (function of the old variable g and of the new momentum P) which
defines the canonical transformation by the partial differential equations:

S S
p=— and Q=

g TP
For example, for the identical transformation, this generic function is simply
S(q, P)=qP.
We can generalize this one degree of freedom approach to n degrees of freedom;
the phase space is then of dimension 2n, n dimensions for the variables ¢; or Q;,
and n dimensions for the momenta p; or P;.

3 The Action-Angle Variables

Let us first consider a one degree of freedom autonomous integrable Hamiltonian:
H(q, p) = h. Even in simple models, the frequency associated to the variable g is
not constant, it is dependent on the momentum p and on q itself: g = %—g(q, p).

Among all the possible canonical transformations, we are interested in the so-
called action-angle ones, resulting in a Hamiltonian function depending only on the
new momentum (and not on the new angle ¥):

(g, p)= W,J) sothat H(q,p)=K(—,J)=K({). (1)

We introduce a generic function S(g, J) so that p = g—‘; and ¥ = %, determined
by the Hamilton—Jacobi equation:

0S
H <q, 5(% J)) = K(J).

If we impose that ¥ is an angular variable, increasing by 27 along a complete circuit
on a periodic orbit, we can identify J (with a correcting factor 2;r) with the area
enclosed by the trajectory, and the (constant) frequency is now o (see again [11]):
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J ! d d 17 oK
= — an = = —.
2w p P @ 397

4 The Restricted Three-Body Problem

Let us remind first the physical context in which the different types of resonances
will be encountered. For this first part, the bodies are considered as point masses
and their motions are described by pure gravitational interactions.

The simplest model to encounter a resonance is the restricted three-body prob-
lem, starting with a classical two-body configuration, where the small mass is then
perturbed by a larger external body on a simplified orbit.

4.1 Two-Body Hamiltonian Formulation

Let us start with the two-body problem, where the central mass is denoted by M; we
follow the motion of a test mass m. Its orbit is an ellipse, and the focus of this ellipse
is the barycenter of both masses. With respect to an inertial frame, we introduce the
classical and less classical elliptic elements (Fig. 1):

S

the semi-major axis

the eccentricity

the inclination

o the argument of the pericenter

§2 the longitude of the ascending node

M  the mean anomaly (v is the true anomaly)

~ a

Celestial body

f
True anomaly}; )

[}

/ Argument of pgriapsis
Q (;

Longitude of ascending node

—
Reference
direction

Plane
of rerefence
Inclination
£

Ascending node

Fig. 1 Definition of the elliptic elements: a, e, i, ®, §2, and v
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This set of elements is not canonical; to write them in a Hamiltonian formalism,
we keep three angles as variables and we calculate the associated momenta (by a
transformation of Matthieu) to get Delaunay elements:

Variables Associated momenta  Dynamical equations

. oH . oH
v oL oM

0 . 0
» G=LJVI=& o= oo M
0G ow

. 9 . d
2 H = Gcosi .Q:—H H=__H
oH 082

where
GM?

=—>~gM if M>>m, with the gravitational constant.
“E My Y g thee

The Hamiltonian H coincides with the energy of the two-body problem called
Hz B-

2
I n
H:H = - =,

28 2a 212

and we conclude obviously that L, G, H (and consequently a, e, and i), o, and £2
are constants of motion; M = nt + M, where M, is the sixth initial condition and

_ 0Hap w?

n= = — is the mean motion.
oL L3

This set is degenerate for e = 0 (no definition of w) and for i = 0 (no definition
of £2). This is the reason for which we prefer another set of variables—momenta,
called the modified Delaunay elements and defined as

Variables Associated momenta ~ Dynamical equations
r=M+o+2 L = R
== w = — —_
aL oA
oH . oH
aP ap
oH . oH
=-—-8 =G—-H ] = — =——
q 0 1= %50 0 0

The choice here is to keep the new momenta P and Q positive for the ellipses
(e < 1), which induces the changes of signs in the angles p and ¢. If we choose to
keep the initial signs of the angles, we have to pay attention to the negative signs of
the momenta in the canonical transformation to cartesian coordinates.

The momentum P is proportional to the square of the eccentricity and Q to the
square of (the sine of) the inclination.
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4.2 The Third Body Perturbation

The potential generated by a third body (of mass m’ and of position s in the chosen
reference frame) introduces a perturbation on the motion of the small body (of mass
m and position r) which can be expressed by

1 s-r
V=-Gm—-2—
o (A s3>

where A = |r — s]|.

We introduce the elliptic elements for both masses: a, e, i, , £2, M, and A have
already been introduced for m, completed by v the true anomaly and 6 = v+w+ 2
the true longitude, and similar quantities but primed for the mass m’: @’ the semi-
major axis, ¢’ the eccentricity, i’ the inclination, @’ the argument of pericenter, £2’
the longitude of the ascending node, M’ the mean anomaly, A’ = M’ + o’ + 2’ the
mean longitude, v’ the true anomaly, and 8’ = v' 4+ o’ + £2’ the true longitude. Of
course the corresponding modified Delaunay angles are also defined for m’, called
p’ and ¢’, and are associated to the momenta P’ and Q’, linked to L' = //a’. n’
denotes the mean motion of the third body, n’ = Z—,, with ' = %

As we are interested in the motion of the small mass m, we consider in the
restricted problem that the mass m’ is not affected by m; consequently, all the primed
variables are known functions of time, solutions of a two-body problem in the sim-
plest cases, or of a full body planetary problem (not including the test mass m) in
the most complete analyses.

We introduce the Legendre polynomials (here in the case of an outer perturber,
with s > r):

[} N
V=-"— Z (—) Pi(cos¥) with res=rscos¥,
= S

where the symbol e designates the scalar product. Using the series expansions in e
and i and Fourier developments (see classical references, like [37]), we can write
the potential in the following form:

V=—Gm Z Swa,a' e, e, i,i') cos(i) + Lo + L300 + Lo
(O)=(L1,02,£3,04,L5,46)
+ 052+ £682), (2

which we express in Delaunay-modified canonical variables and momenta:
V = V()"v p’ q’ L7 Pv Q9 )V/7 p/9 q/7 L/v P/v Q/)

to add to the two-body Hamiltonian H;p:
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2
M= —% + VO p.g.L.P.O.X.p g L.P.Q)

known functions of
2
=——=+V(@,p,q,L,P,0,1). 3
2 tVp.g 0.1 3)
A similar expression can be deduced for the case s < r (see [37]).
In most problems of the Solar System, M >> m’ >> m as in the problem
Sun-Jupiter-Asteroid or Earth-Moon-artificial satellite or Saturn-natural satellite-

particle, for which we assume that u = G(M +m) ~ G(M +m’) >~ GM.

4.3 The Angles and Their Frequencies

The next step is to classify the frequencies of the different angles with respect to
each other. In our Solar System, we have clear separations of the frequencies, which
means of the associated periods. Again, we are going to take this scale for this
chapter, but it is obvious that other orders of magnitude could also be considered
and treated by the same tools.

In this context we can conclude, from the Hamiltonian differential equations, that
A" and A have larger frequencies (and then shorter periods) than p, p’, ¢, and ¢’. We
shall, therefore, refer to A and A" as short periodic angles and to p, p’, g, and ¢’ as
long periodic or secular angles.

As an example, for an asteroid in the main belt, the period of A is about a few
years, while the periods of p and ¢ are of the order of 10* or 10° years.

5 The Mean Motion Resonances

5.1 Simplifications

First of all, we are looking for resonances between the short periodic angles, which
means A and A’; their frequencies are given in first approximations by the mean
motions n and n’. We introduce a series of hypotheses which lead to a simplified
model, describing this type of resonance.

As first simplification, we consider that both orbits are coplanar (we choose i =
i’ = 0) which means that Q = Q" = 0 and that ¢ and ¢’ do not appear anymore (by

D’ Alembert characteristic) which leads to a reduced potential V:
o Yoo PE L aa) I P R cog [(k + ja — (k — jo)

M 502,15 J2 37
kyiviz, jis o

+ jip+ pp'l “)

The coefficients P¥

inin,j1,jp AT€ functions of @ and a’ combinations of Laplace coeffi-
cients.
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This expression is written with explicit reference to the powers of the two eccen-
tricities, e and ¢’, because it checks the D’ Alembert characteristic: it means that the
powers of the eccentricities are always greater than the corresponding multiples of
the pericenter and that these two integers have the same parity:

2ig + |js| > js»  2is + | js| has the same parity as j; fors =1, 2.

Let us remind that, to refer to the Hamiltonian variables and momenta, ¢ = e(L, P)
and a = a(L).

In the general case, a’ = d'(t), ¢ = €'(t), and p’ = p/(¢), but in this present
simplified context, we shall consider that the third body evolves on a fixed (planar)
Keplerian orbit, a’ = a(), ¢’ = ¢, and p’ = pj,, characterized by a constant mean
motion n’.

We obtain a two degree of freedom Hamiltonian, time dependent through the
(known) motion of 7’ (through the mean longitude A" = n't 4 (), with the dispari-
tion of two variables, A and p, and two momenta, L and P.

Finally, for the most simplified case, we consider that the perturbing body m’ lies
on a circular orbit, which means ¢, = 0 and the disappearing of p, to get

2 l
our um L
H()\,,L,p, P,[)——m—ﬂ Pi],jl

kv, i

(a,a’) 717 cos[(k+ j)A—k M+ ji pl,

(&)
in which ¢’ has disappeared, as well as the longitude of the pericenter p’; the only
angle still defined for the perturbing mass m’ is A’, the mean longitude.

5.2 The Resonance

We can now introduce the mean motion resonance. The two resonant frequencies
are here the mean motions of the masses m and m’. The motion is resonant if the
ratio of the two frequencies is very close to the ratio of two small integers, i.e.,

n J+i . L .. .

— = —— with(j + i) and j incommensurable small integers.

n

It means that the mass m performs j + i revolutions, while the mass m’ performs j
revolutions. If a < a’ the resonance is internal or inner, the orbit of m is inside the
orbit of m’ and j > 0; if @ > a’ the resonance is external or outer, the orbit of m is
outside that of m’ and j < O (Fig. 2).

This also means that the ratio of the two semi-major axes is blocked to a specific
value given by

/5 !/ 3 . . . 3
n_ =<a_> :J_l._l = ar“:(,J > a. (6)
n’ 5 a j j+i

=
=
Q
i

(SIS

Q
t‘_
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Fig. 2 Schematic view of a mean motion resonance: the inner planet performs (j 4+ i) revolutions
when the outer (perturbing) one performs j revolutions

The integer i = (j + i) — j (difference between the numerator and denominator
of the quotient) is called the order of the resonance.

The main resonances are given by the following ratios of the mean motions (as
for the Galilean satellites represented in Fig. 3)

n/n 2/1 3/2 3/1 5/2 7/3 1/2 2/3 1/3
Jj 1 2 1 2 3 -2 -3 -3
i = order 1 1 2 3 4 1 1 2.

The coefficients Pi’f_ i (a,a’) are functions of the ratio 7 or “; (corrected by a
power of a’ = ay)) following the type of the resonance, inner or outer. This develop-

1 Ganymede day = 2 Europa days = 4 lo days

Fig. 3 Three Galilean satellites (Io, Europa, and Ganymede) blocked in mean motion resonances:
the periods of revolution are in the ratios 1, 2, and 4
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ment comes from an expansion, which means that this ratio has to be smaller than 1.
The case of the resonance 1/1, like the Trojans asteroids, is analyzed through a
different approach which will not be presented in this chapter (see Chap. 4).

5.3 The Time Dependence

The two degree of freedom Hamiltonian (5) is time dependent through the variable
A" = n't + X;; it means that any canonical transform performed on this Hamiltonian
will depend on time and will introduce corrective terms in the Hamiltonian function.
However, because this dependence in time is purely linear, the usual way of tackling
the problem is to introduce a third variable " combined to an artificial corresponding
momentum A’ so to get an autonomous three degree of freedom Hamiltonian H' =
H+n'A"

/ ’ N o I’Lz /oAl /"Lm/ k 2i1+1 1l
HO, L, p, PN, A= — —— +1n'A - > Pl (L)eL, P)

212 i Ji
kv, 1

cos [(k + jur — k2 + ji pl.
The third degree of freedom is associated with the differential equations:

o oM

V= =n' (already known) and A =—
A’ oA

(never used).

5.4 The Resonant Angle

In a specific region, where the semi-major axis a =~ (J.L_'H.)%a’, there is a resonant
combination of the two angles A and A" which has a smaller frequency (close to 0)
than all the other linear combinations of these two angles, which should induce a
long periodic motion.

The idea of a resonant model is then to isolate this specific frequency, to follow its
long-term dynamics and to forget about all the other small short periodic variations.
The technique consists in isolating this combination in a specific canonical variable,
in averaging over all the other angles except the selected one and in reducing the
problem to a one degree of freedom averaged resonant problem.

Let us define the resonant angle o to be introduced in the canonical transformation:

j+i
oc=—

)\’—Jf)»—i-p.
1 l

o has a frequency close to 0, because of the resonance between A and A’, and because
p = —w — §2 is a slow angle.
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‘We introduce a canonical transformation:
(A" L, p’ P? )\'/’ A/) :> ()\" N? U’ S? )\‘,7 F/)’

with the three new momenta

Jti
i

P

N=L+2p, sS=pP, and I'=A —
l

easily deduced from the (sufficient) condition of canonicity, i.e., the conservation of
a differential form:

Ndi+Sdo+T"dN =Ldr+Pdp+ A d).

The next step is to introduce the new variables and momenta in the (autonomous
three degree of freedom) Hamiltonian H’:

2
H(. N0, S\ . I')= —ﬁ+ n'r’ n—S u— Z i € cos gy
k,it, 1

where L = N — %P,e =e(N, S) and

Ok, =k+jOr—kX + jip

= (k4 jOr — kN + i <a—ix+fx/>

. . L Jti
=]10+<k+11—h] >X+<1——k>

. . ,
=]10+<k—]1—>)»+(]1lf—k))»

Ifk =k =t  in the summation (if this value is an integer), all the short periodic
terms are ehmmated. For this particular value of k = k* (and after elimination of all
the other angular combinations by averaging), we end up with the Hamiltonian:

WG N0 53,1 = —m+nr—n’JS v M Z l/f']l eHrHlil cos(jy o).
i1

(N

The variables and momenta present in this Hamiltonian H* are now averaged

quantities; for the sake of simplicity, we designate them by the same letters as the

corresponding non-averaged ones, but formally we should designate them by A, N,
&,S, A, and I

The artificially introduced third degree of freedom (connected to A") does not

play any role anymore; consequently, the term n’'I"’ can be dropped. Let us also
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- < 0.15
\ \”'e

- \ 4 0.05

1 1 1 1 1 L :'l
0.59 0.6 0.61 0.62 0.63 0.64 0.65 .66

a

Fig. 4 The curves N = constant in the plane (a, e) for the resonance 2:1

note that the variable A is not present anymore in the Hamiltonian. Then its conju-
gated momentum N is a constant (Fig. 4). Finally, the degree of freedom variable—
momentum (o, S) describes the whole (averaged) dynamics.

As N =L + {— P, each constant value of N corresponds to a set of coupled
values of a and e; however, very often, it is associated to a specific value of a, the
value a* corresponding to the circular orbit on the plane identified by N = Ny :
No = N(a, e) = N(a*, 0). With this convention, we can designate by N, the value
of N defined by N,.; = N(a,s, 0).

5.5 Position of the Mean Motion Resonances

The important mean motion resonances between Jupiter and an asteroid are known
since 1866, on the diagrams of Kirkwood, with a few hundreds of asteroids; they
are obvious in Fig. 5.

5.6 The Models of Mean Motion Resonances

If we analyze the value of k*, we see that the order of the resonance plays a role
in its calculation. Indeed, if i = 1, k* = £ j; is always an integer; then, the first
resonant term appears for j; = %1 and the first power of e (obtained for i; = 0)
is 1.

On the opposite, if i = 2, k* = :I:% J1; let us now remind that j + i and j should
be incommensurable integers, it means that here j is odd. So k* is half an integer
for j; = =£1, which is impossible for a summation index. In consequence, the first
possible value of j; is &2 and the first corresponding value of the eccentricity power
is 2.
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Distribution of the Minor Planets: Semimajor axis

Prepored 2008 vay 21. (C) 2008 Minor Planet Center.
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Fig. 5 Histogram of the minor planets of the main belt (May 2008) produced by the Minor Planet
Center

If we generalize to any order of resonance, if the order of the resonance is i, the
first value of j; acceptable is i and the first power of the eccentricity is i. The first
resonant term is always proportional to e’ cosio.

For small values of the eccentricity, this means that the amplitude of the resonant
terms decreases rapidly, with the order of the resonance. In order words, only low-
order resonances really play a significant role in the dynamics.

A last point before describing the fundamental reference models is to develop the
first part of the Hamiltonian with the same level of approximation as the perturbation
term; let us analyze the L momentum in the new set of momenta.

L=N - JTS where N is a constant and § = P is proportional to ¢*.
l

Having used series expansions of e in the perturbation, it seems logical to perform
and truncate the term of the two-body problem in the same way:

2 . 2 . -2 . .

M rJ I J ;] Tl

- —pts=-"—(N-1Ls S 8
22 2 ( i > T ®

2 -2 . .
W Jj S JJ i
= (1-1Z I7%g 9
2N2< zN) e ©)
2 2 2 . .
W J S J S , ]t
= (1422243 (2) (=) +- AL
2N? < TNt (z) (N) + >+" i

C(N)+a(N) S+ B(N) $* + -
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where C(N) is a constant term which can be dropped, «(N) = —]’t,—i {— + n”li and
B(N) = —;—1’\‘; (%)2; o(N) measures the distance between the mean motion and the

exact resonance; there is a value of the first integral N which exactly coincides with

the resonance:
2 .
eN=E_1 _ N

u? it _
j n' l+] res*

a(N) =0 5 =

The value of N obtained by putting o = 0 is N,,,, corresponding to the value of
the exact resonance in semi-major axis given by (6).

In summary, with the help of (7) and (10), for a first-order resonance, we obtain
the second fundamental model of resonance [9] or Andoyer model:

H\(N,o,8) = a(N) S+ B(N) S> — % PE, ecoso

= a(N) S+ B(N) S* + €(N) V2S5 coso (10)
where
m . 1 28
e(N)= —p — P (N) — and &>~ .
For a second-order resonance, we obtain

m

Ha(N,0,S8) =a(N) S+ B(N) §* — o €2 cos20

M
=a(N) S+ B(N) S* + €(N) 28 cos2o,
where
€N) = —u 2 PEW)
= TRy Ty

For a third-order resonance:

m
M
=a(N) S+ B(N) S* + €(N) (v/25) cos3o.

H3(N,0,S) =a(N) S+ B(N) S* — P(;‘3 e’cos3o

All these models can still be simplified if the variation of S is supposed to be
very small around a specific value Sp; in that case all these models reduce to a
simple (translated) pendulum called the First fundamental model of resonance:

Ho(N, W, S) = a(N) S+ B(N) S* + (N, Sp)cos ¥, an

where ¥ =i 0, i being the order of the resonance.
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On the opposite, some of these models suffer from the sharp truncation in S
(which means in eccentricity) to represent correctly the physical or topological
situations. This is why we keep a term further in the expansion of the perturbation:

H{(N,0,8)=a(N) S+ B(N) S +€(N) coso +n(N) cos20. (12)

The angle o in all these models becomes a slow angle in comparison with the
fast angles A and A’ (see [1, 18]).

6 The Secondary Resonances

The secondary resonances appear in a primary resonance problem, described by an
angle o, when a second degree of freedom, characterized by an angle v or one of
its multiples, enters in resonance with o. We present here the secondary resonances
inside a mean motion resonance; it is clear that the situation described here can be
adapted to any other resonance case.

Let us consider, in our mean motion resonance hypothesis, that the third body
evolves on a non-circular Keplerian coplanar orbit, characterized by non-zero values
of ¢’ and p’:

pum'’ k N 20+ 2+l
V= — _./\/l Z Pil,iz,j]’jz(a,a)e e
k,iy,iz, j1, 2
cos [(k+ jr— (k= jp)A + jip + j2p'].

In that case, we introduce a second resonant angle v taking into account p’:

S

V= - k’+]k—p’.

i i
We introduce a canonical transformation:

A L,p,P.A, A= (v, N,0,8, 1, T"),
with the three new momenta:

J+i

1

P.

N=L+P S=P, and I'=A+
j

The linear transformation is easily checked by the conservation of the differential
form:

drL+dp P+d\N A =dv N +do S+d\ I,
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The momentum N is related to N by a simple factor: N = %N . A function of N is
then a function of V.
The argument of the cosine can be written as

(k + jor—(k — )X + jip + jop’

. +1 i+
= (k+ jOr — (k — jo) +Jl(<f—]—?»+ )\)+]( v—]—A+ A)

J
—JIG_]2V+(k_J1——J2 )k+( k+Jz+J1 +Jz )?»’

To eliminate the short periodic terms in A and A’, we choose the value k* of k:

J -I-l
k* _Jl__]2

In that case, for example, an averaged first-order resonant model, with a third
body on a elliptic orbit, is characterized by the Hamiltonian:

H(o, S, v, N) = a(N) + BN)S* + «/2_52 €, ,(N) eH2HEl cos(o — jov).

2, ]2

The angles o and v are both long periodic; a secondary resonance can occur
where the angle o (the resonant angle of the primary resonance) enters into reso-
nance with a multiple of v: 6 = jv, i.e.,

 +i . . j+ i j - .
%A—{—,A/er:h(—%w%x—p)

D+ pp =(1+]2)[ZT)» —T)»i|

1 it
[ L)
1 [p+sz] p

It means that the primary resonance is characterized by a frequency as small as
some combination of the pericenter frequencies. We consider that the pericenters
are not in resonance.

The secondary resonances can be represented locally by a pendulum-like model,
the angle of which is ¥ = o — j,v. We can indeed perform a canonical transforma-
tion:

(0,8, v, \) = &, S, v, N),

and by the sufficient condition of canonicity do S +dv N = d¥ S+dv N, we can
deduce that N/ = N + j» S.
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After an averaging over v, considered now as a fast variable in comparison with
¥, the dynamics is given by [¥, §) on a plane N = N{. Indeed, N is constant
because its associated variable v is not present anymore in the Hamiltonian after
this last averaging process.

Again, we should have replaced all the variables and momenta by their mean
values, and describe the dynamics in (&, S)on planes N constant; however, we use
the same notations as before, even if they designate other quantities.

The position of the secondary resonances inside the mean motion resonances has
been analyzed by several authors, in particular [10, 29, 30].

7 The Secular Resonances

The secular resonances concern the slow angles, like the arguments of the pericen-
ters or the longitudes of the nodes (Fig. 6). We first make the hypothesis that there
is no efficient mean motion resonance in the neighborhood of the small mass m.

Fig. 6 Schematic graphic of a secular resonance with Jupiter or Saturn

7.1 The Keplerian Case: Kozai Resonances

We can rewrite the three-dimensional non-resonant Hamiltonian (3) in the Keplerian
case, where L', P/, Q’, p’, and ¢’ are constants. Let us assume that the perturbing
body is on a circular and planar orbit.

The only remaining function of time is A:

2

! ,
H=—-—"- 4V, p,q,L, P, O,N).

2L2+ (A, p.q 0,1)

We average over the two short periodic angles A and A’. The resulting Hamilto-
nian is a two degree of freedom function given by V(p, P, g, Q). Developing this
function in Fourier’s series, we can write [20]
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V(p, P.q, Q)= Fxu(P, Q) cos2i(p —q),

where g — p = —§2 + w + £2 = w the argument of the pericenter.
We define a new set of canonical variables: ¥ = p — ¢ (conjugated to P) and ¢
(conjugated to a new momentum M) so that

Pdp + Qdg = Pd¥Y +Mdq < Pdp+ Qdg = Pdp — Pdq + Mdq,

whichgives M =P+ Q0=L-G+G—-H=L—-H.
In this set of variables, the Hamiltonian reduces to

V(p, P.q, Q)= V(¥ P,q,M)=)_ Fy(P, M) cos2i¥.

Letusnotethat P =L — G =~ L%.
The dynamics is given by the differential equations:

.V v
U=, =——, and M = M,.
apP '
This is a one degree of freedom Hamiltonian system, in the phase space (¥, P),
parametrized by the values of M.
M is a function of e and i given by M = L(1 — /1 —¢? cosi). It can be
associated with a maximum value of the inclination, i,,,, corresponding to e = 0:

M=My=L(—+1—¢2 cosi) = Ll — coSinay).

Indeed, on the same plane M = M), any positive value of e will give a smaller value
of /1 — €% to be compensated by a larger value of cosi, which means a smaller
value of i. S0 i,,,, is obtained for e = 0. The case i = 0 gives the maximal value of
e called e,,,, on the plane M = M:

M:MO:L(l—mcosi)=L<l—m>-

The numerical integration of the differential equations shows that for values of i,
quite small, the phase space (see Figs. 7a and b) has a simple target-like look, with a
stable equilibrium at e = 0 and circulation of the argument of pericenter; for higher
values of i, (see Fig. 7c), the circular orbit is unstable, and two stable equilibria
appear for o = 7 and © = 37” A separatrix (called Kozai separatrix) separates the
circulation zone of the pericenter from the two librating (North and South) regions.

We can also say that an exact Kozai resonance is characterizedby o =0 =¢g—p
orp=gq.

In the two libration regions, the pericenter is blocked in a Kozai resonance. Let
us remind that this behavior only concerns orbits with high values of i,,,, and e, .
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1210 e« 15 1220 e<.325 1230  e<.5

Fig. 7 Phase spaces in Cartesian coordinates related to the eccentricity and longitude of the peri-
center for three different values of M, corresponding to i, = 10° and e,,,, = 0.15 for the left
figure, iqc = 20° and e, = 0.325 for the central one, and i,,,, = 30° and e, = 0.5 for the
right one. The border circle corresponds to i = 0° and the center to e = 0 in the three cases (taken
from [35]

7.2 The Non-Keplerian Case

Let us assume now that p’ = o’ — 2’ and ¢’ = —£2’ are time dependent and given
by linear functions of the time:

!/

=g't+ py,
q =s't+qy.

To avoid to work with a time-dependent Hamiltonian, we introduce p’ and ¢” as two
supplementary degrees of freedom to which we associate artificial momenta called
P’ and Q'. After averaging the potential (2) over the two fast angles A and A/, the
autonomous Hamiltonian is given by

Kp,P,q.0,p.P'.q',0)=V(p.q,P,0.p'.q)+ &P +50Q,

V==0m > Spla.d ec.ii') cos(sp' +Llip+lsq +Lsq).
(6)=(£3,84,€5,L6)

A linear secular resonance is present when the frequency associated to the angle
Wy = £3p' +Lap+Lsq’ + Leq becomes very close to zero. It means that the motion
of the pericenter or of the node (or a linear combination of the two) of the massless
body follows the linear motion of the pericenter or the node of one of the perturbers
(or a linear combination of the two) and remains blocked in this configuration for
long periods of time. For an asteroid, we can identify secular resonances like g = gs,
g=8h=s56,8+5s=85+5 8+5=8 +58—5 =85 — 5685 = 8 — 56
and 2g = g5 + g for the most important ones, where g¢ and s¢ are g’ and s when
the perturber is Saturn, and gs is g’ when it is Jupiter (Fig. 8).

g and s represent the frequencies of p and g, which are not constant: they depend
on the values of the eccentricity and of the inclination. Strictly speaking, g and s



20 A. Lemaitre

10 =

2.0

Fig. 8 Position of the main secular resonances with Jupiter or Saturn in the plane (a, i) (taken from
[35]) for e = 0.1. The numbers correspond to the following secular resonances: 1 = g = gs,
2=g=g¢,3=h=s6,4=g+5s=8g+5,5=g+5=gs+5, 10=g —5 = g5 — 56,
11 Eg—s:g()—s@,and952g=g5+g6

are the frequencies of the angles, after local transformation of the variables into
action-angle variables (in which the angle is always a linear function of time). g
and s can be considered as mean values of the frequencies of p and ¢; they are also
called the proper frequencies of p and q.

A secular resonance means that a critical combination of two (or four) slow
angles becomes a very slow angle, ten or hundred times slower than the two secular
initial ones.

Once the resonant combination is isolated (for a specific set of values for ¢;,
i =3,...,6,denoted by £7), after having defined a resonant angle o by

o =00 + o+ 52 + (£,

we can average over all the other combinations of the secular angles and obtain
again a pendulum-like Hamiltonian as first approximation or one of the classical
models of resonance following the terms kept in the expansion.

For example, Morbidelli and Henrard [35], for the resonance g = g¢, obtained
a phase space (limited by a circle) very similar (topologically) to the second funda-
mental model of resonance. The resonant angle o represents, after passage to angle
variables and averaging, the difference @ — @y (Fig. 9).

The calculation of the positions of the secular resonances inside the main mean
motion resonances (in the inner and outer minor planet belt) has contributed to
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Fig. 9 Phase space for the secular resonance g¢ for a specific value of the semi-major axis a =
2.6 AU and for different values of i,,,, [36]

understand much better the dynamics of the small bodies of the Solar System; it has
been determined by the tools described in this chapter but with many more variables
and degrees of freedom, by semi-numerical techniques to avoid series expansions in
eccentricities and inclinations (see [32-34] or [31]).

8 The Pendulum
As we have seen, many problems of resonances (mean motion, secondary, or sec-

ular) have a pendulum-like dynamics as first approximation. Let us formulate the
pendulum differential equations and comment on the associated motions.

8.1 Formulation and Scaling

The first model of resonance is the pendulum, as already mentioned in (11); in
celestial mechanics cases (development of the third body perturbation, spin—orbit
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resonance, geostationary resonances), it is generally given first in the following
Hamiltonian form:

H(o, S) = aS? + BS + € cos(o — op).

We introduce a change of phase to make oy disappear (r = o — 0y) and a trans-
lation on S to get rid of the linear term: R = § — Sy. H becomes

H(r, R) = a (R + So)> + B (R + Sp) + € cosr
= aR*+2aR Sy + aS} + BR + BSy + € cosr
= aR?>+ ecosr + Cy,

if we choose Sy = —%. Cy is a constant term depending on Sy. After addition of a
constant and a scaling, the Hamiltonian H is replaced by K given by

1 R?
K(r,R) = E(H(r, R)—Cy) = - = bcosr,

with b = —5- the unique parameter of the model.

8.2 Equilibria and Phase Space

The dynamics of the system is given by the differential equations:

oK
— =R
oR
. K )
R=——=—b sinr.
ar

The equilibria are characterized by R = 0 and sin» = 0, which means r = 2kn
orr = + 2k, k is an integer. The stable equilibria (corresponding to a minimum
of K) are r = 2k and R = 0, the unstable ones R = 0 and r = (2k + 1)r. We
choose the interval [, [ to represent the periodic motion.

Starting from —s and arriving to ¥ (R > 0) or starting from 7 and going to —x
(R > 0) in an infinite time, the two separatrices (called C| and C,) divide the phase
space into three distinct regions called, in reference with the classical pendulum in
mechanics, positive circulation, negative circulation, and resonance (Fig. 10).

The equation of the separatrix (corresponding to the level curves K = b) is given
by
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R=dr/dt

il
Ny

Fig. 10 The three regions of the pendulum

RZ
b= — —bcosr

RZ
> =b(1+cosr)

R? = 4b cos® E
2

The corresponding action (the area enclosed by the two separatrices, C; and C,
divided by 21) can be calculated as follows:

1 4 T
JSeparatriszS o c,ucszr:E /0 Rdr=

4v/b / r 8vb
—_— cos —dr =
T 0 2

T

8.3 Action-Angle Variables

Action-angles variables can be introduced in the two types of dynamics: circulation
or resonance. Both cases are characterized by values of K = h, giving the curve
implicit equation

R2
h = > —bcosr or R?>=2(h+bcosr).

The idea, as already described in (1), is to introduce for each level curve, a canonical
transformation from (r, R) to (¥, J) so that the Hamiltonian only depends on J,
which means that ¥ is automatically a linear function of time.
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8.3.1 Circulation case: h > b

The action J is the area (divided by 27) enclosed between the level curve  and the
r-axis and vertically between the axes r = —z and r = 7 (Fig. 11).

Fig. 11 The positive circulation case

By obvious symmetry, it can be reduced to twice the calculation on the interval
[0, [,

271]:2/ v 2(h + b cosr) dr
0
T r
=2/ \/2(h+b—2bsin2—) dr
A 2
:4«/5/2\/h+b—2bsin2u du  where r = 2u
0
=4ﬁf2¢h+b—2bsin2u du
0

5 2%
—4 z<h+b>/zmdu where 2= 2
0
=42(h +b) E(k),

where E(k) = fo% V1 — k2sin® u) du is the classical complete elliptic integral.

We can easily deduce %
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aJ dE(k) dk
o= 2(h — ———— E(k)+4+/2(h + b) TR
B 4 — E(k) — Kk) —b
V2 +Db) Bl +4vak+8)1 k ] k(h + b)?
4
= —— K(k),
V2(h + b) ®

where K(k) = fo m du is the other complete elliptic integral. The fol-

lowing relation is easy to check by derivation with respect to k:

O _ A [Vt = PO TEO,

Q_‘»

It means that each trajectory is characterized by a different frequency w = % =

The angle ¥ is defined as

K
— 1
aJ

1 /ldt 1 /" dtd
= — = — J— y == —
g—z 0 g—]‘: 0 dr

9
(— k)

:-li’ -

o\;

x| —
U
>

K(k)

where F(x, k) = fo m du is the incomplete elliptic integral (F(Z, k) =
K(k)).

8.3.2 Resonance case: —b < h < b

The action J is here related to the area (divided by 27) enclosed by a complete
closed curve C and by symmetry, four times the same area between r = (0 and
r = ry. ry is the value of » when R = 0, which means cos ry = —% (Fig. 12),
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28]

[

Fig. 12 The resonance case

2nJ:f\/2(h+bcosr) dr
C
ro r
:4&/ \/h+b—2bsin2§ dr
0
’70
=8J§/ Vh4+b—2bsin*u du
0

3 d
:8&[2\/h+b—2b si? P sinv 22 gv
0 2 dv

where

. . To .
smu = sin E s v.

Let us calculate Z_Z’

. ho
cosu du = s1n5 cosv dv,

. 210 . . 1o
\/1 — sin? ) sinv du = smE cosv dv,
du . 1o CcoS v
o = s1n5 dv,
v 1 — sin? %’ sin” v

and the square root in the integral,

h2
h+b—2b sin2%s1n2v=h+b—2b(1 —ﬁ) sin® v.

A. Lemaitre

13)

(14)

(15)

(16)
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We introduce (15) and (16) in (13) to obtain
2n1=;xﬁuammﬁ—n+E@n

This gives J as a function of k, and then as a function of %, from which we can
extract the inverse of the frequency:

aJ  2K(k)
oh b’
The angle ¥ is obtained by the same way as in the circulation case:
0K
VY= — ¢
aJ
g ) T
= F(s, k), where sins = ksin —.
2K (k)

8.4 The Harmonic Oscillator

When 4 is close to —b, which means that the curve is close to the stable equilib-
rium, the pendulum can be approximated by a simple harmonic oscillator; it also
corresponds to the approximation cosr = 1 — 5. The Hamiltonian writes

2 2 R2 r2

R r
K=—-b(1—— K+b=—+b—. 17
> ( 2) or + 2+ 7 (17)

In that case, the action-angle canonical coordinates ¥ and J are introduced in an
easy way, without any elliptic integral:

R =v~2JcosVY,
1
— A/2Jsin¥Y,
v

r

where v is a constant to be determined by the ellipsoid equation (17). Indeed, let us
replace these new variables in the Hamiltonian:

2 }"2

K=K+b=—+b—
+ 2+ 2
1
=v2J0052l1/+b—2]sin211/
v

1
=1v2J if vzzb—2 or vi=0b

V
=b J.
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This gives automatically the fundamental frequency of the resonance:

P/

8.5 Generalization

This procedure can be generalized and applied about any stable equilibrium (center);
let us start with a Hamiltonian H = H(g, p) and consider a stable equilibrium
(g0, po) solution of <% ’m =0= ‘”;

In the nelghborhood of (g0, po), we develop the Hamiltonian:

oH oH
=H(go, po) + — (@—qo)+—— (p— po)

aq 40, Po 3p 40, Po

1 [3*H 0°H
i g — 2 — —
+5 (aq2 (@ —q0) + 3q0p (g —qo)(p — po)

40, Po 40, Po
2

0°H
+ﬁ (P—P0)2>+"',
P 40, Po

which gives

1
H = Hqo, po) = 5 (a (Aq)’ +2b AgAp +c (Ap)* +--),
with a, b, and c¢ representing the second partial derivatives: Aqg = g — qo and
Ap = p — Do-
The problem is now a simple reduction of conic; we introduce first a rotation (of

angle 0) to get rid of the Ag Ap term, followed by a scaling transformation similar
as that of the harmonic oscillator, to obtain

p' = Aq sinf + Ap cos® = v ~/2J cos ¥,
1

q = Aq cos — Ap sinf = — /2J sinV.
v

The angle 0 is defined by the equation
(a —c) sin20 + 2b cos26 = 0.

The Hamiltonian is then

1 1
H—H(qo, po) = 3 (Ag”+CpH=A— Jsi®W+Cv*Jcos’W =Cv J,
%
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where vﬁz =Cvior % =*. A and C are related to a, b, ¢, and 0 by the relations:

A =a cos’0 —2b sinf cosf + ¢ sin’ 0,
C =a sin®6 + 2b sin® cosf + ¢ cos’ 0.

The fundamental frequency associated with this stable equilibrium is then
Cv:=+vAC=v¥ and H —H(go, po) =~ ACJ.

The passage to action-angle variables is the only correct way of calculating such
a frequency, in the case of libration; it replaces a librating angle by a circulating
angle ¥, for which it is meaningful to calculate a frequency (or a period) around the
center.

9 The Second Fundamental Model of Resonance

The following toy model of resonance (called the second fundamental model of
resonance or also Andoyer’s model) allows us to introduce a non-constant amplitude
in front of the cosine term (10); this amplitude is here dependent on the momentum
S. The dynamics of such a model is less symmetric than the pendulum one. Let us
write the simplest formulation of this Hamiltonian:

H =aS + BS* 4 /25 coso.
As already mentioned, the parameters «, 8, and € are functions of N, constant in
this context. To perform the analysis of the model, it seems adequate to reduce those

three parameters to a unique one. The procedure consists in changing the time and
the momentum scales and modifying the sign and the phase of the angle o.

9.1 Reduction to One Parameter

Let us describe this procedure for this model; we introduce a new time t, a new
momentum R, and a new angle r related to our initial set through the relations

T=at,
R=bS,
r=co +d.

The constants a > 0, b > 0, c = %1, and d have to be calculated to keep a Hamil-
tonian formulation in the new set of variable—momentum (r, R) with reference to
anew time 7 (see [9]).
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It also induces a rescaling of the Hamiltonian; in other words, the related trans-
formation is not completely canonical, but only canonical of parameter 11). The new
Hamiltonian is called K and is linked to the initial one by the relation:

K(r, R) = ju H(o (), S(R) = ju H (% 5) ,

b

where u = pu(a, b, c, d) and the differential equations associated are as follows:

dr 9K
dr ~ 9R’
drR 0K
dt — or’
If we connect this system to the initial one, we obtain, through a succession of partial
derivatives
dr do dt dK 9H dS
do dt dv  dH 3S dR’
) do 1 oH 1
which means ¢ — — =y ——,
a aS b
dR dSdt  dK dHdo
dS dtdt  dH 9o dr’
dS1 IH 1
which means b —— = — —H—.
dt a do ¢

We obtain yu = %.
We choose a very simple form for K, with a unique constant A:

K(r, R) = AR + R> — 2+/2R cosr. (18)

In this formulation we keep the unique parameter in the linear term in R; this is
purely arbitrary and other transformations would have introduced a unique param-
eter in front of the quadratic term or in front of the trigonometric contribution. We
are now going to prove that there exists a canonical transformation arriving to such
an Hamiltonian.

We can write

K(r, R) = n H(o(r), S(R))
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- %R + l;,_fRz + MTZ V2R cos(r — d) because ¢ = 1

AR + R?* — 2v/2R cosr

and consequently,

Ao he_bea  «
b ab a
[ _KB_bch_ P
= — =Cc —,
2 ab? ab
€ bc e
—2cosr = —cos(r —d) = cos(r — d),
N a~/b
b
=c Vhe cos(r —d)

Asa > 0and b > 0, the second equation allows to choose ¢ = +1; if 8 > 0,
c=+l,andif 8 <0,c = —1,1.e.,

c = sign B.
The third equation determines d according to the sign of (S¢):

Vb |€|
a

€ cos(r —d) = sign (Be) cos(r — d).

—2cosr = sign B

If fe <0,d =0andif fe > 0,d =m.
To finda > 0and b > 0, we use ab = |ﬂ|and@ = 2 to obtain

2 2\ 3
b=<2|§|) and a:("BJf),

16,32)5

4

. 4N ey
= signpo (W) = (@) |

which gives

bc . (
u=— = signpf
a

and

9.2 Equilibria

We calculate the equilibrium of the Hamiltonian K (r, R) by equating the partial
derivatives of K to zero. To avoid the well-known singularities in polar coordinates,
we introduce a canonical transformation to introduce Cartesian coordinates:
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x = v/2R cosr the momentum,
y = /2R sinr the variable,

and the Hamiltonian becomes

2 2\ 2 2 2
K(x,y):(x ;y) +A <x ;’y )—Zx. (19)

The associated dynamical system is equating to zero to find the equilibria:

dy 0K 2 )

_— = — = A _220’
g = gy S HY) et ax

dx 0K s

e % (F*+y)y—Ay

From the second equation, we deduce
y=0 or x’4y’=-A.

Replacing the second solution in the first equation leaves to —2 = 0; so all the
equilibria are characterized by the condition y = 0 and x satisfies a cubic equation:

x3—|—Ax—2=0,

which gives 1 or 3 real roots, following the values of A.
To distinguish clearly the cases with 1 or 3 roots, we introduce a new parameter
d to replace A:

A=-=36+1.

The case § < 0 will correspond to the phase spaces with only one equilibrium, the
case § > 0 to the phase spaces with three equilibria.

Let us remind here the expression of the first root of a cubic equation given in
the following general formulation: a3x3 + a>x? 4+ a;x + ay = 0,

I I
x=(R+ 7+ 07) +(R= 7+ 0%) QP+ R 20,
x =2J— cos(%arccos R >_a_2 if 0+ R?> <0,

03 3as
with
Q (l% i ai d R ap aydap a;
=——2=+— an = —— — .
9a§ 3a; 2a; 6a§ 27a§

Applying these expressions to our case, az = 1,a, = 0,a; = A = -3 + 1),
and ap = —2, we obtain the analytical formulation of the equilibria.
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When § < 0 the unique real equilibrium x; is given by

=04y +(1—y) (20)

with y2 =1 — (8 4+ 1)?, and when § > 0 the three real equilibria x;, x,, and x3 are
explicitly calculated as follows:

X1 =25 cosA,
Xy = —5cosA—+3s sin A,
x3 = —scos A++/3s sinA,

with s = 4/§ + 1 and cos3A = %
The stability of these equilibria is easily obtained by the calculation of the second
partial derivatives of K for each of them: x; is stable for any §, x; is stable, and x3

unstable for § > 0.

9.3 The Phase Space

The Hamiltonian (19) is a function of x and y and of the parameter §; for each value
of §, we can draw the curves K = constant, in the Cartesian phase space (x, y).
Different cases are represented in Fig. 13: 6 = —3,6 = —1,6 = 2, and § = 5.
The first two cases correspond to negative values of §, with only one stable real
equilibrium. The level curves are almost ellipses for § = —3, far from the resonance,
giving a target-like global picture; for 6 = —1 this is not the case anymore and the
curves are different, their behavior already showing the proximity of the resonance.
For the last two cases, corresponding to positive values of §, we see clearly the three
equilibria and the two separatrices (C| and C,) dividing the phase space in three
regions: an internal, a resonant, and an external region. For large values of §, the
separatrices are far away from the origin (x = 0, y = 0) and the phase space, near
the origin, looks again like a target.

The case § = 0 is characterized by the apparition of two separatrices C; and
C, emerging from the unstable equilibrium x3; for any positive value of &, these
separatrices are present. Their intersection points with the axis y = 0, x4 and x5 can
be calculated ([2]) as functions of §:

2
X4 = =+ 2Rmm and Ruyin = % (6 - tz) - 2\/57
52
X5 = 2Rmax and Ripax = 5 (6 - tz) + 2\/5,

with # = cos A + +/3 sin A.
We can also explicitly calculate the area enclosed by these two curves C; and C5,
which are functions of the parameter §: the function A;(§) corresponds to the area
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a b
4 4
2 2
>~ o} > 0
-2 -2
-4 | —4}
-4 -2 0 2 4 -4 =2 0 2 4
X X
Cc
4.
2.
> 0t
w3k
-4}
4 2 o 2 4 4 2 o 2 4
X X

Fig. 13 The phase spaces for6 = -3, = —1,6 =2,and§ =5

(divided by 27 as in the action-angle variables) of the curve C; starting from x3,
crossing the axis y = 0 at x4 and encircling the stable equilibrium x;; the function
A,(8) corresponds to the area (divided by 2m) of the curve C, starting from x3,
crossing the axis y = 0 at x5 and encircling the two stable equilibria x; and x;
(Figs. 14 and 15).

Their analytical expressions are quite simple ([2, 21]):

Vst —1,
Vst — 1.

Ai(8) = 65° (% — (arcsinst)_%) —

Sloaz|o

Ax(8) = 657 (% — (arcsinst)’%) +

We can note thatif § = 0, s = 1, then A;(0) = 0 and A,(0) = 6.
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6 T T T T
41 4
2t A
w 0
=2k -
-4 L | B
|
...G i Il L ' Il
-6 -4 -2 0 2 4 6
X

Fig. 14 The three equilibria (x;, x;, and x3) and the two limits of the separatrix on the x-axis (x4
and xs) on the horizontal axis, for each value of § on the vertical axis

90 L} T T T T

critical area

Fig. 15 The two critical areas included in both parts of the separatrix, A;(5) and A»(5)
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The derivatives of the two functions A; and A, with respect to § which we shall
need later, % and dj?;, can be calculated and are also functions of §. We can also
notice that in the most interesting region for resonant motions (between, for exam-
ple,d = 2 and § = 4, i.e., for positive but not too large values of §) these derivatives

are quasi-constants but not equal:

dA,

A
— ~84 and u ~ 10.4.
das ds

9.4 The Three Zones

These two separatrices C; and C, divide the phase space into three zones or regions:
the internal zone inside the curve Cy, the external zone outside the curve C,, and
the resonant zone between the two curves. Many authors refer to this last zone as
the libration zone which emphasizes the fact that the angle o is (in most cases) not
circulating, but oscillating between two extrema. However, let us remark that some
orbits in the internal zone could also librate, and that this property of libration can
be easily destroyed by a simple translation of the origin. On the opposite, the reso-
nance zone definition is a topological characteristic, invariant by change of reference
frames.

9.5 The Resonant Frequency

For the stable equilibrium x; in the resonant region (for § > 0), we can calculate
the fundamental resonant frequency by the passage to local action-angle variables,
as described in (1), using the Cartesian canonical variables x and y, around x = x;
and y = 0 (Fig. 16).

resonant frequency

-6 -4 -2 0 2 4 6
o

Fig. 16 The fundamental frequency associated to the resonant equilibrium x;
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It leads to a frequency w; given by

dy
— = w = JJac,
dt

where

a=-306+1)+x7,
c=-36+1)+3x%

Let us give an example on the plane § = 2, we select a curve very close to the
equilibrium x;; we calculate its period (here, 1.75 units of the time called 7); if we
check the fundamental frequency for § = 2, we obtain w; = 3.58 (per unit of time).
It is easy to check (Fig. 17) that

. 2 2 . .
Period = — = —— = 1.75 units of time.
wq 3.58
312
0.06
3015
0.04
311
- o /\/V\A/
B 0 1 = 31
—0.02 3.095
_0.04 3.09 Period = 1.75 units of time
3085
—0.06
- . 308 - . ;
308 3090 310 311 312 0 1 2 3 4 5 6 7 8
X !

Fig. 17 A curve close to the exact resonance on the plane § = 2: (x, y) on the left, (¢, x) on the
right

10 The Probability of Capture

Let us start with a one degree of freedom Hamiltonian, expressed in coordinates
o (the variable) and S (the momentum) and depending on a parameter §, slowly
varying with time:

H(o,S,8) with ¢ of d § oH
o W1 o= — an = -
. 0S oo
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10.1 Conservative Dynamics

We first consider that, for § constant, the problem is integrable (H = h) and that
suitable action-angle variables (¥, J) can be introduced through a generating func-
tion F(o, J, §), such that the new Hamiltonian K is only dependent on the action J
and not on the angle ¥':

oF oF
h=H(,S,8)=K(—,J,§) with S=— and ¥ =—.
do aJ
The Hamilton—Jacobi equation becomes
oF
th(G, _98)=K(_a J78)7 (21)
do
with its implicit solution
IF
S=—=25(, J,9),
do

or starting with an initial value oy:

o

F(0.1,8) = f S’ J.8) do’.

o0

Y is chosen such that it makes a revolution of 27 along any closed trajectory char-
acterized by H = h. We introduce the generating function G corresponding to F on
a closed trajectory:

G(J,8) = % S(o’, J,8) do’.

Because ¥ = %, on a closed trajectory it becomes
G g 1
2r = — J=—=— @ S(c’,J,8) do’,
T 2 om f (0. J.0)do

which corresponds to the oriented area of the closed trajectory divided by 2.
We call oriented area the area of the trajectory when it is followed clockwise and
minus the area of the trajectory when it is followed counterclockwise.

) 0S8
Let us remark that 5 = f ﬁ(a/ ,J,8) do’ and that S depends on J through
the Hamilton—Jacobi equation (21), which means through K = K(J):
S 9§ 0K 1 9K 1 9K
0J 9K oJ M 9] 6 9J’
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o = 0 at the unstable equilibrium, which means that this calculation as no meaning
for closed orbits near the separatrices.

Another useful expression for J and consequently for the oriented area is given
by

1 1 1
J:—%Sdo:——fodS:—%(Sdo—adS).
2 2 4

10.2 Dissipative Dynamics

Let us now remind that § is a parameter slowly varying with time which means, in
mathematical context:

5l <¢ and 3] <¢°

where ¢ is a slow parameter with respect to the characteristic periods of the closed
trajectories (at least a factor 10 slower).

We perform the same canonical transformation to action-angle variables as in the
conservative case; however, the Hamiltonian H and the generating function F are
time dependent through §; this means that the new Hamiltonian K is obtained by a
corrected formula with respect to H:

a
H(o, S, 6) — 8;1: = K(—, J,9).

The Hamiltonian writes

KW, J,8) = H(o¥, J,8),S\W, J,é),3)
oF

=K(—.J,)+—
( )t

. O0F
=K(—,J,8)+4 ﬁ(lp’ J, 8)

and is associated to the dynamics:

y KK s i K o
T 97 T a7 g TR

We can conclude that for small n the area J is quasi-constant, as long as we avoid
the separatrices regions, and for times smaller than 1. We follow the behavior of
the dynamical system by the help of a guiding trajectory, the area of which is
quasi-constant; § is slowly changing with time, but at each time we fix its value
and calculate the enclosed area, we get a quasi-constant quantity (with variations
smaller than 7 for times smaller than %). We give in Fig. 18 an example of this
behavior, for a pendulum of parameter §, evolving from § = §y to § = §;: the eye
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b=bhy

Fig. 18 The area enclosed by the guiding trajectory is kept constant on different phase spaces

of the cat is growing, the guiding trajectory evolves, but keeps a constant enclosed
area, which allows to identify it from phase space to phase space.

10.3 Crossing of Separatrices

The interesting situation for capture (or escape) in resonance is obvious when the
guiding trajectory approaches a separatrix.

Let us take any of the models that we have presented before, with an unstable
equilibrium, from which two critical curves C; and C, start, dividing the space
phase in three distinct regions, called 1, 2, or 3; they correspond to the positive
circulation, the libration, and the negative circulation regions for the pendulum, and
to the internal, the resonant and the external zones for the second fundamental model
of resonance (Fig. 19).

Here we assume that the area enclosed by the guiding trajectory coincides, for a
specific value of §, with the area enclosed by one of the separatrices.

The adiabatic invariant approach fails and has to be replaced by a calculation of
jumps from a region i to a region j, associated with a probability. Let us denote the
unstable equilibrium by o* and S* and let us consider a new Hamiltonian B relative
to this equilibrium:

o~ T~ Zone 3

Zone 2 Y
\

."J Ve ﬁ\\

[ ]
. . o 5 /
2 [ 5l — /
Zone 3
-3 ' -3 \\

4 -3 -2 -1 0 1 2 3 4 4 2 o 2 4

r X

Fig. 19 The zones 1, 2, and 3 for the pendulum and the second fundamental model of resonance
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B(0,S,8) = H(o, S,8) — H(c*, S*, 8).

It means that the two separatrices (joining at the unstable point) are characterized
by alevel B = 0:

dB . dB

dt — ds’
We can associate a sign, denoted by s;, to B for each of the regions i, with the
following characteristic: s; s3 > 0 and s; 5, < 0.
We also introduce a curve y; in each region i, which corresponds to a closed
curve following the separatrix in this region (Fig. 20).
The energy (lost or gained) along a revolution on the curve y; can be approxi-
mated by the quantity B; given by

> . dB
Vi —00
d dB S 0B
o —)d

, dé
© /3B
Z/OO‘S(aa 5 T35 3 B
:8[w<8—38—0+a—3§+8—3>m
o \do 35 ' 9S 38 ' 85

9 9B 9 .

%[/Oo<£a+ﬁS+B>dt]+0(8)

[

~§

~6 (So+aS)dt]+0(8) (B=0 ony)
='i[%( dSa—i—dch)dt]—i—O(cS)
35
_ o A
3

where A; is the oriented area of y;.

Fig. 20 The three curves y;(i = 1, 2, 3) following the separatrices (C; and/or C,) in the regions 1,
2, or 3 for the pendulum model and for the SFMR model
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For the pendulum (A is the area of the libration region):
A A
Al:f’ A=A, A =-

and for the second fundamental model of resonance:
A=A, A=—-(A—A), A =-A,.
The balance of energy gives

s1B1 4+ s2By + s3B3 = 0.

10.4 Probability of Capture

We start with a trajectory in region i; we calculate the local situation of the
energy: s; B;.

e 5;B; > 0: it means that either we gain energy (B; > 0) in a region where the
separatrix has the minimum energy level (s; > 0) or we loose energy (B; < 0)
in a region where the separatrix has the maximum energy level (s; > 0); in
both cases, we leave the separatrix and enter deeper in region i; no crossing of
separatrix occurs and the orbit does not leave the region i.

e 5;B; < 0:again or aloss of energy corresponds to getting closer to the separatrix;
the crossing of the separatrix is then obvious, but to which other region, j or k ?
(i, j, k being different and € {1, 2, 3}). From the balance of energy, we know that
$;Bj + sy By > 0 and then two cases are possible:

— 5;B; > 0and sy By < 0: it means that if we enter the region k, by our previous
discussion, we are going out quite immediately. So the capture in the region j
is the only possibility.

- 5;B; > 0 and sy By > 0: the capture in regions j and k is possible, both
behaviors are associated with probabilities of capture given by the following
expressions:

s;Bj
Sij + SkBk
8B,

s; B
Prioy = — 0 3)
S; Bj + s By,

SkBk

=—— 24
5B, 24)

Pri*)j = (22)
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2.5

external to resonant

no jump

1 1.5 2 2.5 3 3.5
X

Fig. 21 A soft capture into resonance, without jump, observed in the second fundamental model
of resonance from an initial external orbit: the trajectory for negative values of § is a (deformed)
ellipse, and when § increases and reaches positive values, the trajectory is continuously moving to
the resonant region, keeping its enclosed area constant

Another way of describing these probabilities is to say that the phase of the
system at the capture is unknown, and that the transition to region j or k
depends on the phase of the system at that moment. Using a probability argu-
ment means that we assume that all phases are equiprobable.

We see in (24) that the probability of capture is not dependent on § (at first order)
and is directly linked to the increasing or decreasing of the critical areas as functions
of 8.

When the capture does not occur, the same formulae could explain a jump from
an external to an internal orbit or from a positive to a negative circulation (Figs. 21

external to internal

Fig. 22 A jump observed in the second fundamental model of resonance from an initial external
orbit to an internal one
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and 22). These parts of the theory have been used, in particular, to explain the
depletion of the Kirkwood gaps in the asteroid main belt [22] and the differences
between several resonances [23].

This is the simplest formula of capture into resonance that we can give; it can
be applied and completed in several more specific contexts. For example, Malhotra
calculated probabilities of capture in a secondary resonance and applied it to the
case of Miranda and Umbriel in the Uranian system [26, 27]. Let us also mention
the sweeping of secular resonances analyzed by the same model [24].

11 More Complicated Models: SFMRAS

Similar studies can be performed in more complicated models in which the num-
ber of equilibria, their stability, and the number of topological zones can be more
important (Fig. 23).

For the resonances of order 2 and 3, the models can be described by a unique
parameter (the § parameter) and simple expressions for the probabilities of capture
can be deduced [21].

For the order 4 a second parameter (called b) is already introduced, which com-
plicates the topology of the phase space; however, this parameter is, for many appli-
cations, much more stable than § and can be assigned to a specific constant value in
local approaches.

For the second fundamental model of resonance with asymmetric equilibria,
there are also two parameters, § and b: indeed, if we start with the expression given
by (12)

H{(N,o,S)=a(N) S+ B(N) S+ €(N) cos(o) + n(N) cos 20,

we can introduce the same scalings (of time and momentum) and change of phase
as for the classical case with symmetric equilibria (see (18)):

Unstable
Asymmelric
equilibria

-

Fig. 23 Stability of symmetric and asymmetric equilibria in the second fundamental model of
resonance with asymmetric equilibria (taken from [19])



Resonances: Models and Captures 45

-2

-3

-4

-4 w3 0 2 4

Fig. 24 Capture of a trajectory in an asymmetric equilibrium; § varies from —1 to —0.75

K(r,R)=—-3B+1)R+ R* —2+2R cosr +2 b R cos 2r.

The stability of the symmetric and asymmetric equilibria can be very different fol-
lowing their sign and values as functions of § and b [19]. If a slow dissipation is
introduced in the model, the parameters § and b slowly change with respect to the
time, giving adiabatic behavior of the trajectories. The areas are conserved as far as
no critical curve is encountered. For the crossings of the separatrices, appropriate
formulas of probability of capture are calculated (see Jancart 2004). As an illus-
tration, we give a case of capture in asymmetric equilibrium; the initial value of §
is —1, b is kept constant (b = 2), and the dissipation is introduced by the coefficient
8 = 0.05. The parameter § evolves from —1 to —0.75. Figure 24 clearly shows the
capture in the upper asymmetric equilibrium.

12 The Spin—Orbit Resonance

A very interesting class of resonances concerns the synchronous rotations, like the
Moon, the Jovian, or the Saturnian satellites, and also the unique case of spin—orbit
resonance 3:2, Mercury (Fig. 25).

12.1 The Rotation Variables

Let us assume that the body is not a point mass anymore. It is here considered as
a rigid body, of mass M with three momenta of inertia A, B, and C, chosen as
A<B<C.

We will use Andoyer’s variables [5] to describe the rotation of the rigid body
around its center of mass. They are based on two linked sets of Euler’s angles
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Fig. 25 A schematic view of a synchronous rotation, like the Moon or the Galilean satellites where
the period of rotation equals the period of revolution around the primary, and the case of Mercury,
where the period of rotation is 2/3 of the period of revolution

(Fig. 26). The first set (h, K, g) locates the position of the angular momentum vector
G in an inertial frame of reference (the ecliptic plane at some epoch, for example);
the second Euler’s set (g, J, [) locates the body frame (the axis of inertia) in the

plane perpendicular to
the angular

Fig. 26 The linked sets of Euler angles (I, K, g) and (g, J, h) from which the Andoyer’s angular
variables are defined. They locate the body frame (f, f,, f3) with respect to the inertial frame
(e, €, €3)
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previous frame tied to the angular momentum. The origin of both frames is the
center of mass as origin, and the axes are the principal axes of inertia of the body.
The canonical set of Andoyer’s variables consists of the three angular variables
l, g,h and of their conjugated momenta defined by the norm G of the angular
momentum and two of its projections: L is its projection onto the axis of figure
and H onto the inertial axis.
Therefore, we define the following set of Andoyer’s variables:

Variables Momenta
l L =GcosJ
g G
h H =GcosK

With these variables the vectors @ (the instantaneous rotation vector) and G (the
angular momentum vector referred to the center of mass) can be computed. Their
components in the frame of the principal axis of the body are

w = (A_leianinl, B~ 'Gsin J cosl, C~'G cos J),
G = (GsinJsinl, Gsin J cosl, G cos J).

The kinetic energy of the rotation is thus

%(wIG)

1 5 ., |sin®l cos’l | G*cos®J
> G~ sin” J " + +

T

B 2C

1 in”1 2] L?
=—(G2—L2)|:&+COS ]+ (25)

2 A B 20"

Notice that the only angular variable appearing in it is /. Hence the dynamics
of the free motion is reduced to a one degree of freedom (/, L) problem, the phase
space of which is described in [5].

Andoyer’s variables present so-called virtual singularities; when J = 0 the angu-
lar variables / and g are undefined but their sum is well defined; when K = 0, the
angles g and & are not defined, although their sum is well defined. In order to avoid
these singularities, we shall thus use the following modified Andoyer’s variables:

AM=I1l+g+h, A =G,
J
o= —l, A2=G—L=G(1—cosJ)=2Gsin2§,

K
Ay = —h, A3=G—H=G(1—cos1<)=2csin2?
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This set of variables—momenta (A;, A;) is canonical and called the set of modi-
fied Andoyer’s elements, which partially solves the problem of virtual singularities.

The fast spin motion is given by the variable g in Andoyer’s variables, which
means by the first variable A, in the modified set of variables. The spin velocity is
given by the main contribution:

AT A
A= = 2L (26)
A, C

We can associate canonical Cartesian coordinates to (A, A;) by the usual trans-
formation: (§ = /2A;,sinA;, n = +/2A; cos A,). Then the Hamiltonian takes the
following form:

H=A_%+4A1—52—772|: nty .o Y= ’72] 27)
2C 8C l—yi—» l—yi+y |’
where

Nn=QC—A—B)2C and > =(B— A)/2C. (28)

12.2 Perturbation

To introduce a spin—orbit resonance, we need to mix the rotation dynamics (mainly
the angle X;) with the orbital motion (mainly the mean longitude).

Let us consider that the orbital dynamics of the rigid body of mass M is perfectly
known; in the simplest cases, it is given by a Keplerian orbit, in a two-body config-
uration with a point mass m (the Earth for the lunar motion, the Sun for Mercury’s
orbit). In the reference frame linked to M, the orbit of m is described by elliptic ele-
ments (a, e, i, w, 2, £) defined as always: a the semi-major axis, e the eccentricity,
i the inclination, ¢ the mean anomaly, w the argument of the pericenter, and 2 the
longitude of the node, defined with respect to the selected inertial frame.

G (M+m
a’

The gravitational potential due to the presence of m can be expressed by

—
w r

where p is the density inside the volume W of the body and r’ is the distance
between m and any volume element d W inside the body.
Using the usual expansion of the potential in spherical harmonics, we find

We also introduce the mean motion of m denoted by n =
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r

Gm | " .
V=-1- {1+Zr—nZPn (sing) [CI" cosm¥ + " smmlll]},

n>1 m=0

where ¥ and ¢ are the longitude and latitude of m in the body frame, and r is the
distance between m and the center of mass of the body.

We limit the expansion to the second order terms; the first term G ”7’ will be
taken into account later on, it has no direct effect on the rotation. Then we limit
the potential to the following formula:

B 3Gm
o3

14 [CY(x? + yP) = 2C3(x* — yD)]. (29)

where (x, y, z) are the components, in the body frame, of the unit vector pointing to
m (x>+y*+z? = 1). The unscaled coefficients C = 4+£=2C and C7 = £54 in the
potential are related to their usual scaled coefficients J, and C, by Cg = —MR?*J,
and C% = MR2C22.

The potential now reads:

3
V =n?C (?) [81(x% + ) + 8 —y))]., (30)
with
3 my 3 m MR?
81 = —= = —= JZ»
2m+M 2m+M C
3 MR?
S =—z nro_3 o Co,

2m+M m+M C

The Hamiltonian is time dependent through the orbital motion of m; we introduce
a new angular variable, the mean longitude of m, A = L +w + 2 =n t + Ag to
which we associate a momentum A.

The complete Hamiltonian, obtained by the summation of the kinetic energy (25),
the orbital motion (classical two-body potential), and the perturbing potential (30),
becomes

A2 4N — 82— 2 -
Henay 2 40 —8—n [ nty o, n-w 2}
2C 8C l—yi—m l—yi+n
a\3
+12C (2) [5167 + 3D + 0202 = ). 31)

The first term is the two-body energy, in which the term G m of the gravitational
r

potential is inserted.
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12.3 The 1:1 Resonance

We then introduce the set of resonant canonical variables, with the apparition of
the difference between the two quasi-synchronous variables following [12] but
also [28]:

o = )\.1 -2 S = A1

A r=A+44,

The spin velocity of the body, given by its first approximation (26), i.e. by S/C,
is assumed to be almost equal to its orbital velocity given by n. A is then a fast
variable while o in a 1: 1 spin-orbit case, becomes much slower.

The next step in the theory of the rotation is to perform an averaging canonical
transformation in order to eliminate the fast variable (which is hidden in x and y)
from the expression of the Hamiltonian and to follow the dynamics of the resonant
angle o. As it is well known and already applied in the previous sections, the effect
of a first-order averaging transformation is simply to remove all the terms which
contain this variable. We assume that this step has been performed and we finally
obtain the averaged Hamiltonian (33).

In other words, the original Hamiltonian contains periodic terms with linear com-
binations of the angles o, A, and A3 + £2; we average over the short periods, which
means over A. The remaining Hamiltonian (for a circular orbit and neglecting the
terms of fourth order in & and 1) becomes

s S _
H=nF—nS+_+_|: ity 2 4 Vi — 72
2C 2C l_yl_VZ 1—'}/1—|—y2

+ n?C [81(x2 + 92) + 8 (x% — )’2)] )

n2] (32)

with

x*+y* = Fy+ Ficosv + F>cos2v
— (E2+ 1P [Go+ Gicosv + G, cos 2v]
5
—E = ZBl- cos (20 +iv)
i=0
5
+2&n ZA,- sin 2o + iv),
i=0

5
=y =Q-£—n) ZC; cos (20 +iv)
i=0
— (£ —n*) [Hy + H, cos v + Hy cos 2v]
5
+2&n Z D; sin(2o +iv), (33)
i=0
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where v = A3 + £2. The functions F;, G;, H;, A;, B;, ¢;, and D; are polynomials in
cos K, sin K, cos i, and sini (see [12] for explicit formulations), which also means
functions of S and As;. I' is now a constant because its conjugate variable A (the
fast variable) is not present anymore in the averaged Hamiltonian H; then it can be
forgotten.

12.4 Precessing Motion

To give an immediate and interesting generalization, we can assume that m is on
a slowly precessing circular orbit, with a precession frequency §2 measured on the
same inertial frame, centered on M.

In that case, we also introduce a fictitious momentum P associated to §2 and a
term §2 P in the Hamiltonian. The variables and momenta are now:

(U’ g’ )\‘3’ Q’ S7 n! A3’ P)?

and if we use v = A3 + £2 instead of A5 and if we introduce the momentum P’ =
P — Aj, we obtain the following new set of variables:

(0,&,v,8,8,n, A3, P').

The corresponding Hamiltonian becomes

- s S Vit Vi—
H:.Q(P/+A)—nS+—+—|: 24+ ?
3 2 2C 1=y — l—yi+m

+n2C [81(x7 + y) + 52 — ).

12.5 The Equilibrium

Writing up the differential equations generated by this Hamiltonian, we calculate
the equilibria by putting them to zero.

The interesting stable equilibrium (the exact spin—orbit resonance) is character-
ized by

e o = 0: the axis of smallest moment of inertia points toward the perturber.

e £ = 0 = n : the axis of largest moment of inertia is aligned with the angular
momentum.

e v = (: the lines of node of the orbit and of the equator are aligned.

e The equation % = 0 fixes the value of the obliquity K™ of the equilibrium by
the equation:

. R n*C . N . . . .
4 2sin K —T((281+82) sin(2K* — 21i) 4 28, sin (K —l)):O. (34)
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e The equation % = 0 gives the value of § at the equilibrium:

5* 2C (1 - cos K*
S=n- % ((z 5, + 8) sin(2K* — 2i) + 28, sin (K* — i()3)5.)

Let us notice that if we neglect the precession rate (2 = 0) in (34), the obliquity
at the equilibrium K* coincides with the inclination i, and the two frequencies are
exactly equal: $* = nC.

On the opposite, if Q # 0, there is a difference between K* and i and (35) shows
the correction to add on the exact commensurability.

If the inclination 7 is very small (sini >~ i and cosi =~ 1), the equilibrium equa-
tion gives an analytical solution for K*:

81+
K*— 1102

81+ 8, — 52

The sign of this quantity is the sign of its denominator: let us first remark that at first
order, we can write

Consequently,

e if§;+8, < % the value of K* < 0, as for the Moon, for example, where Q2 is
large; '

o ifd+6, > % the value of K* > 0, as in the case of Europa, where the precession
rate £2 is smaller.

12.6 The Models

If we want a very simple one degree of freedom model of resonance for the spin—
orbit motion, it is quite easy by eliminating the precession (£2 = 0) and keeping
two degrees of freedom to their values at the equilibrium: we simply assume that
E=0=nv=0and K* =1i.
We can show that x? 4 y? is then reduced to a constant term (that we drop) and
x?—y? is proportional to cos 2o. The only degree of freedom is the couple (o, ).
The Hamiltonian (after elimination of the constants) is reduced to



Resonances: Models and Captures 53

SZ
H = —nS+i+n2C 8y € cos2o

g1 8 e m MR
=-nS+-—+n
2C m+M C
S2 3m
= —nS+ — +n?
Yo Ry
s2 3m (B —A)
= —nS+ — +n? ~
WE et M 4

Cy € cos2o

MR2C22 € cos2o

€ cos2o,

where € is a numerical factor depending on the functions defined in (33).

We obtain a classical pendulum model, which describes the averaged motion
in the case of the spin—orbit resonance. The linear term is easily eliminated by a
translation around S* = nC and the final momentum is AS = § — §*:

2C 2C
=-nAS—nS" + AS? + 2455 + (577
2C 2C 2C
= A—SZ + AS (—n + g) + constant terms
2C C
_ AS?

If we reintroduce the short periodic terms, we get time-dependent contributions
which affect the dynamics of the pendulum, especially in the region of the separatri-
ces. These models have been developed and analyzed by several authors, especially
[4, 3], based on the differential equation (perturbed pendulum):

G+e Y Aje) sinQo — jnr) =0.
J

12.7 The Fundamental Frequencies

Let us calculate the three fundamental proper frequencies (often called free frequen-
cies) associated to the three-dimensional equilibrium. We assume to be very close to
the equilibrium, and we expand the Hamiltonian in powers of six small quantities;
they represent the distances from each variable or momentum to its value at the
equilibrium:

AUZO' AS:S—S’k
AUIV AA=A3—A;
Ag:%‘ An=77
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and the expansion gives

2H::a1Ai+2a2AgAv+a3A]2}
+ by A% 42Dy Ag Ay + by A
+ ¢ A§+62A2,

where a;, b;, and ¢; are the second partial derivatives of the Hamiltonian evaluated
at the equilibrium coordinates (see [12] for explicit expressions).

An untangling transformation [16] is necessary to dissociate the contributions of
the first and second degrees of freedom; a final scaling allows to write the Hamilto-
nian (written in action-angle variables) as a summation of three momenta multiplied
by a frequency:

H=w J1 +w J» + w3 J3.

The three frequencies w; (and the corresponding periods 7;) are the fundamental
frequencies of the rotation: the free motion is a quasi-periodic function of these three
motions, perturbed by forced terms coming from external bodies or interactions.
Of course, in non-averaged models, the orbital period is also present as the fourth
period.

This formalism has been developed not only for the Galilean satellites, Europa
and Io [13-15, 17], but also for Titan [38].

12.8 The Case of Mercury

The case of Mercury is slightly different from these mentioned above: it is blocked
in a 3:2 spin-orbit resonance, which means that the basic (kernel) model depends on
the eccentricity, which is not the case for the 1:1 commensurability. The influence of
the precession of the orbit (£2) is much less important, the equilibrium obliquity K*
is moved by a quantity of the order of 2’ from the inclination of Mercury, which is
about 7° with respect to the ecliptic. One of the first analyses of this 3:2 spin-orbit
was done by [41] with very recent contributions [40, 39].

A complete Hamiltonian analysis of this spin-orbit resonance can be found in
[6] for the first two frequencies, [7] for the third frequency, and [42] for the cou-
pling (and untangling) of the first two degrees of freedom (o, S) and (v, A3). The
three fundamental periods for Mercury are (depending on the values for Cy,), and
calculated in the case of a rigid body, of the order of

e For o, the longitude of the libration in longitude: between 10 and 15 years
e For v, the nodes commensurability: around 1060 years
e For &, the wobble: around 585 years
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and the fourth period is, of course, 88 days which corresponds to the orbital period.
For a more complete analysis, let us refer to [25]. The frequencies change drastically
if Mercury is assumed to have a liquid core [8].

13 The Gravitational Resonances

Another interesting family of resonances concerns the commensurabilities between
the orbital period of a first object (called here the satellite) orbiting a second body
(called here the planet) with the rotation period of this planet; typically the geosta-
tionary situation of an artificial satellite in gravitational resonance 1:1.

13.1 The Potential of the Earth

The apparition of such a resonance comes from the fact that the planets are neither
spherical nor homogeneous. The potential function induced by such a body on an
external body is written as

U(r):u/ MdV,
v

[r—r,]

where p(r,) stands for the density at some position r, inside the planet, |r —r,|| is
the distance between the body and any particular volume element located at r,, and
uw = G M, with G is the gravitational constant and M the mass of the planet.

This potential is developed in several steps. First, we introduce the Legendre
polynomials:

1 1 o= /rp\" r r
— = Z (—p> P, (cos ¥)  where eyl _ £,
lr—r,| ris\r el r

where ¥ is the geocentric angle between r and r,, and P, are the Legendre polyno-
mials of degree n.

Second, by introducing the spherical coordinates in the planet-fixed reference
frame, i.e., the longitude A and the latitude ¢ of the body of position r and of
coordinates x, y, and z:

X =7 CcOS¢ CcoSA
y =7 cos¢ sink
z =rsing,

as well as the corresponding quantities A, and ¢,, for the volume element at r,, and
by using the decomposition formula, the Legendre polynomials can be expanded
into spherical harmonics
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(n —m)!

)] Pl (singp) cos(m(h — A,)),

P, (cos W) = Z(z Som) ————

m=0

where §;; = 1 fori = j and zero otherwise. P’ are the so-called associated
Legendre functions. We write the gravity potential in the form

o0 n Re n
Ur, &, ¢) = _% >3 (T) P (Si0 $)(Cpy COS MA + Sy sin m2),  (36)
n=0 m=0

where R, is the equatorial radius of the planet and where the quantities C,,,,, and S,,,,
are the spherical harmonics coefficients which are given by

C 2= Son ("_m)!/ " nP'"(' ¢,) cos (mh,,) p(r,)dV
= —_— mn
o Mg (m+m) Jy \ R, n (SI@p) COSUMAP) LTy ’

_2—80m (n—m)! p " o .
Spm = Mg (n+ m)! [\/(Re) Prsingpsinutn) ) AV

The coefficient Cyy is equal to 1; all terms S, are obviously zero, the coefficients
Cio, C11, and Sy correspond to the center of mass coordinates divided by the equa-
torial radius. Therefore, these coefficients are zero if the coordinate system refers
to the planet center of mass. Similarly, the coefficients C; and S,; are zero if the
z-axis is aligned with the planet main axis of inertia. Finally, it can be shown that

2C-B-A W cL_B-4
e an =
2M R? 2T AMRY

J=—Cy =

where A, B, and C (with A < B < C) are the principal moments of inertia of the
planet.

With these choices, the potential is expressed in the following form, with a single
cosine term, a phase difference A, as well as a new J,,;,, coefficient:

oo n n
R
U(r7 )‘-9 ¢) = _% + % E E <Te> 'P,T(Sll’l(f)) Jnm COSm()\. - )‘-nm)9
n=2 m=0

using the definitions forn > m > 0

Cnm = —Jnm COS (m)\nm)v Snm = —Jum sin (m)‘-nm)’

_Snm
Jom = m, m Ap, = arctan <?> .

nm

The next step is to develop the gravity field in terms of the satellite orbital
elements (a, e, i, 2, w, M)
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n +0oo

U ==L 33 S %(%) Fanp@®) Gupg ©) Sunpa (2. 0, M. 6),

n=2 m=0 p=0 g=—00

where the functions S,,,,p, depend on the geopotential coefficients C,,, and S,,,,

+Cnm

- Snm

n—m €VEN
i| €S Opppe(£2, 0, M, 0)

Snmpq(ga w,M,0)= [
n—modd

+ [*S"’" i Oy (2, 0, M. 0) ,

n—m €VEIN
+Cnm i|

n—modd
and the angle is defined by
Opmpg(2, 0, M,0) = —2p)o+m—2p+qg)M+m(2 —0).
where 6 is the sidereal time. The subscript indexes represented by n, m, p, g are

integers that identify the terms in the so-called inclination functions F,,,(i) and
eccentricity functions Gp,(e) for a particular harmonic (n, m).

13.2 Resonance with the Rotation of the Planet

The orbital period of an object in orbit is said to be in resonance with the rotation
of the planet if a small integer number ¢g; of sidereal days of the planet is equal to a
small integer number g, of revolution periods of the object, that is,

PR _ ﬂ
Popj  q2

’

where Py is the rotational period of the planet, that is, 2w /ng = 1 planetary day
(ng = 9) and P,y; is the orbital period of the satellite orbiting the planet.

These resonances occur when the rate of the Kaula gravitational argument is
close to zero, that is,

Oumpg (82,0, M, 0) = (n —2p)é>+ (n —2p +q) M +m(2 —0) = 0.

Typically, when the condition ¢ = 0 is satisfied (when we consider a zero-order
expansion with respect to the eccentricity), we have

(n—2p) @+ M) ~m@ — £2),

or similarly



58 A. Lemaitre

d)+MN@

0—-2 ¢

(37)

Such resonances are also said to be Repeat Ground-Track Resonances. The rates of
both w and 2 are small and the simplified resonance condition reads

M a
0 9 h q2 '

When the ratio q;/¢- is close to 1, the resonance is clearly associated with the geo-

stationary orbit whereas it is close to 2 for the GPS satellites.

13.3 Resonant Hamiltonian Formalism—the Resonance Angle

Let us write the potential truncated at the second order and degree harmonic,
denoted by U, :

4R2

2 o _ _ o
ufzz =3 L6 [C22 (xz - yz) + Son (2xy)] ,

where X = x/r and y = y/r and let us confine ourselves to the circular orbits
in the equatorial plane (i = 0 and e = 0). Within these assumptions and in order
to outline the main features of the 1:1 resonance, we consider the following “min-
imum” resonant Hamiltonian A including the two-body problem, the (simplified)
potential {{;,, and a contribution coming from the external angle 6, the sidereal
time, which introduces the rotation of the planet in the dynamics and is associated
to a momentum A:
112

H@JﬁaAr=—ﬂ7+éA+umngan

where A is the mean longitude and L is the Delaunay-associated momentum,

L =.GMa.

In the case of a 1: 1 gravitational resonance, we define the resonant angle o by
o=X\—0.

In order to keep a canonical set of variables with L associated to o, we use the
following symplectic transformation (see [43]) :

doL'+d0' A" =drL +df A,
leading to the new set of canonical variables

o=Air—-0, L'=1L, 0 =0, AN=A+1L,
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and the new Hamiltonian formulation including the resonant angle

2
H(o. L.6, A) = —2% FO(A — L)+ Uy, (0, L6, A).

13.4 Simplified Analytical Averaged Model

To get the final model of resonance, we average the Hamiltonian function over the
fast angular variable 6, and we obtain the following result:

2
oo " . 1 _ A
H(L,O',A):—ﬁ—el‘-l-ﬁ[a] COSZU+O[2 SIII20'],

in which the quantities are all averaged; for simplicity we shall use again the same
letters (without bars) in the calculations of the equilibria.

The numerical values of «; and @, come from the coefficients C», and S»,. For
the Earth, their values are

a; >~ 0.1077 x 107°, ar >~ —0.6204 x 1077 .

Two stable equilibria (07|, L},), (o}, L},) as well as two unstable equilibria
(031, L3)), (035, L},) are found to be solutions of

8H_8H_0
aL — 9o
where
o] = A" oh=A"+m
* * T * * 37[
oy =2 T op =h T
as well as

L}, =L}, =0.99999971, L3, = L3, = 1.00000029,

where the distance unit has been set to the exact resonant position, namely 42,
164 km for the Earth. Again for the Earth, the angular value A* is the first quadrant
solution of

Sn

tan20* = — = =,
n o

that is, A* ~ 75.07°. (Fig. 27)
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13.5 The Resonant Frequency

The Hamiltonian is reduced to a quadratic form in a neighborhood of the stable
equilibrium point.

Let us introduce the resonant Cartesian coordinates (x = \/i coso, y =
V2L sino) and at any equilibrium (x* = +/2L*coso*, y* = +/2L* sinco*). Devel-
oping the Hamiltonian function in Taylor series around one of the stable equilibria
(x*, ¥¥), up to the second order, we find, after having dropped the constant additive
terms and setting X = (x —x™)and Y = (y — y*):

1
H(X,Y) = E(aXz +2bXY +cYH) + -
The values a, b, and c stand for the second-order derivatives

_OPH p_ M I*H

. = , c= — ,
0x% | (e o) XY | (L oy Y% |(1e.0)

where (L*, 0*) are the values of (L, o) evaluated at the first stable equilibrium. We
use the reducing transformation from (X, Y) to (g, p) by means of the rotation angle
v

X=pcos¥+qgsin¥ and Y =-—psin¥+gqcos¥,

where ¥ is solution of (¢ — ¢) sin2¥ + 2b cos2¥ = 0.
As a consequence, we find the new Hamiltonian formulation

1
H(p,a)=5[Ap*+Cq’],

with A = acos2¥ —2bsin ¥ cos ¥ +csin2¥ and C = a sin2¥ +2bsin ¥ cos ¥ +
ccos2y.
A last scaling canonical transformation of the form p = o p’ and ¢ = é q

C
obtained by solving the following equation A a®> = — allows us to write the new
o

Hamiltonian as
H(J, ¢, A)=~ACJ, where p' =+2Jcos¢p and ¢ =~2Jcos¢

J and ¢ are the corresponding action-angle variables.
Subsequently, we find the resonant fundamental frequency v at equilibrium.

oH
VfZWZVAC.
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05

Fig. 27 The resonant phase space in the case of the Earth

Numerical computation for the Earth leads to the following value v, = 7.674 x
1073 /days, that is a period of 818.7 days.

13.6 Width of the Resonance

By a similar approach, we can easily estimate the width of the resonant zone; we
take the Hamiltonian level curve corresponding to one of the unstable equilibria L,
and o,

2

HLuv u =Hu:__
(Lu, ou) T

. 1
— 6L + 76 [y cos20 + ap sin20]

and we find the maxima and minima of this “banana curve,” corresponding to the
values of o at the stable equilibria; by a quadratic approximation about L,, we
obtain the width of the banana at the stable points, i.e., the width A of the resonant
zone. It can be approached by

y2 + 888 ) 3u? wo
R e L Y ol VN G T
p? Lecos2o,” P= 720 VT3 %)

The numerical value of the width of the geostationary resonant zone is of the
order of 69 km.
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The Lyapunov Characteristic Exponents
and Their Computation

Ch. Skokos

For want of a nail the shoe was lost.

For want of a shoe the horse was lost.
For want of a horse the rider was lost.
For want of a rider the battle was lost.
For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.
For Want of a Nail (proverbial rhyme)

Abstract We present a survey of the theory of the Lyapunov Characteristic
Exponents (LCEs) for dynamical systems, as well as of the numerical techniques
developed for the computation of the maximal, of few and of all of them. After
some historical notes on the first attempts for the numerical evaluation of LCEs, we
discuss in detail the multiplicative ergodic theorem of Oseledec [102], which pro-
vides the theoretical basis for the computation of the LCEs. Then, we analyze the
algorithm for the computation of the maximal LCE, whose value has been exten-
sively used as an indicator of chaos, and the algorithm of the so-called standard
method, developed by Benettin et al. [14], for the computation of many LCEs. We
also consider different discrete and continuous methods for computing the LCEs
based on the QR or the singular value decomposition techniques. Although we
are mainly interested in finite-dimensional conservative systems, i.e., autonomous
Hamiltonian systems and symplectic maps, we also briefly refer to the evaluation
of LCE:s of dissipative systems and time series. The relation of two chaos detection
techniques, namely the fast Lyapunov indicator (FLI) and the generalized alignment
index (GALI), to the computation of the LCEs is also discussed.

Ch. Skokos (=)

Astronomie et Systemes Dynamiques, IMCCE, Observatoire de Paris, 77 avenue Denfert—
Rochereau, F-75014 Paris, France; Max Planck Institute for the Physics of Complex Systems,
Nothnitzer Strasse 38, D-01187 Dresden, Germany, hskokos@pks .mpg . de

Skokos, Ch.: The Lyapunov Characteristic Exponents and Their Computation. Lect. Notes
Phys. 790, 63—135 (2010)
DOI 10.1007/978-3-642-04458-8_2 (© Springer-Verlag Berlin Heidelberg 2010



64 Ch. Skokos

1 Introduction

One of the basic information in understanding the behavior of a dynamical system
is the knowledge of the spectrum of its Lyapunov Characteristic Exponents (LCEs).
The LCEs are asymptotic measures characterizing the average rate of growth (or
shrinking) of small perturbations to the solutions of a dynamical system. Their
concept was introduced by Lyapunov when studying the stability of nonstationary
solutions of ordinary differential equations [96] and has been widely employed in
studying dynamical systems since then. The value of the maximal LCE (mLCE) is
an indicator of the chaotic or regular nature of orbits, while the whole spectrum of
LCE:s is related to entropy (Kolmogorov-Sinai entropy) and dimension-like (Lya-
punov dimension) quantities that characterize the underlying dynamics.

By dynamical system we refer to a physical and/or mathematical system consist-
ing of (a) a set of / real state variables x;, x, ..., x;, whose current values define
the state of the system, and (b) a well-defined rule from which the evolution of the
state with respect to an independent real variable (which is usually referred as the
time 7) can be derived. We refer to the number / of state variables as the dimension
of the system and denote a state using the vector x = (xy, x ..., x;), or the matrix
X =[x1x...x ]T notation, where (T) denotes the transpose matrix. A particular
state x corresponds to a point in an /-dimensional space S, the so-called phase space
of the system, while a set of states x(¢) parameterized by ¢ is referred as an orbit of
the dynamical system.

Dynamical systems come in essentially two types:

1. Continuous dynamical systems described by differential equations of the form

L
x=— =fx,1),
dt

with dot denoting derivative with respect to a continuous time ¢ and f being a set
of [ functions fi, f> ..., f; known as the vector field.

2. Discrete dynamical systems or maps described by difference equations of the
form

Xp+1 = f(Xn)a

with f being a set of [ functions fi, f> ..., f; and x,, denoting the vector x at a
discrete time ¢ = n (integer).

Let us now define the term chaos. In the literature there are many definitions. A
brief and concise presentation of them can be found, for example, in [90]. We adopt
here one of the most famous definitions of chaos due to Devaney [35, p. 50], which
is based on the topological approach of the problem.

Definition 1. Let V be a set and f: V — V a map on this set. We say that f is
chaoticon Vif
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1. f has sensitive dependence on initial conditions.
2. fis topologically transitive.
3. periodic points are dense in V.

Let us explain in more detail the hypothesis of this definition.

Definition 2. f : V — V has sensitive dependence on initial
conditions if there exists § > 0 such that, for any x € V and any neighborhood
A of x, there existy € A and n > 0, such that |[f"(x) — f"(y)| > 8, where f" denotes
n successive applications of f.

Practically this definition implies that there exist points arbitrarily close to x which
eventually separate from x by at least § under iterations of f. We point out that not
all points near x need eventually move away from x under iteration, but there must
be at least one such point in every neighborhood of x.

Definition 3. f : V — Vissaidtobe topologically transitiveif forany
pair of open sets U, W C V there exists n > 0 such that f*(U) N W # .

This definition implies the existence of points which eventually move under iteration
from one arbitrarily small neighborhood to any other. Consequently, the dynamical
system cannot be decomposed into two disjoint invariant open sets.

From Definition 1 we see that a chaotic system possesses three ingredients: (a)
unpredictability because of the sensitive dependence on initial conditions, (b) inde-
composability because it cannot be decomposed into noninteracting subsystems due
to topological transitivity, and (c) an element of regularity because it has periodic
points which are dense.

Usually, in physics and applied sciences, people focus on the first hypothesis of
Definition 1 and use the notion of chaos in relation to the sensitive dependence
on initial conditions. The most commonly employed method for distinguishing
between regular and chaotic motion, which quantifies the sensitive dependence on
initial conditions, is the evaluation of the mLCE y;. If x; > O the orbit is chaotic.
This method was initially developed at the late 1970s based on theoretical results
obtained at the end of the 1960s.

The concept of the LCEs has been widely presented in the literature from a prac-
tical point of view, i.e., the description of particular numerical algorithms for their
computation [54, 44, 62, 92, 36]. Of course, there also exist theoretical studies on the
LCEs, which are mainly focused on the problem of their existence, starting with the
pioneer work of Oseledec [102]. In that paper the Multiplicative Ergodic Theorem
(MET), which provided the theoretical basis for the numerical computation of the
LCEs, was stated and proved. The MET was the subject of several theoretical studies
afterward [108, 114, 76, 141]. A combination of important theoretical and numerical
results on LCEs can be found in the seminal papers of Benettin et al. [13, 14], written
almost 30 years ago, where an explicit method for the computation of all LCEs was
developed.

In the present report we focus our attention both on the theoretical framework
of the LCEs and on the numerical techniques developed for their computation. Our
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goal is to provide a survey of the basic results on these issues obtained over the
last 40 years, after the work of Oseledec [102]. To this end, we present in detail the
mathematical theory of the LCEs and discuss its significance without going through
tedious mathematical proofs. In our approach, we prefer to present the definitions
of various quantities and to state the basic theorems that guarantee the existence
of the LCE, citing at the same time the papers where all the related mathemat-
ical proofs can be found. We also describe in detail the various numerical tech-
niques developed for the evaluation of the maximal, of few or even of all LCEs,
and explain their practical implementation. We do not restrict our presentation to
the so-called standard method developed by Benettin et al. [14], as it is usually
done in the literature (see e.g., [54, 44, 92]), but we include in our study modern
techniques for the computation of the LCEs like the discrete and continuous meth-
ods based on the singular value decomposition (SVD) and the QR decomposition
procedures.

In our analysis we deal with finite-dimensional dynamical systems and in partic-
ular with autonomous Hamiltonian systems and symplectic maps defined on a com-
pact manifold, meaning that we exclude cases with escapes in which the motion can
go to infinity. We do not consider the rather exceptional cases of completely chaotic
systems and of integrable ones, i.e., systems that can be solved explicitly to give
their variables as single-valued functions of time, but we consider the most general
case of “systems with divided phase space” [30, p. 19] for which regular' (quasiperi-
odic) and chaotic orbits co-exist. In such systems one sees both regular and chaotic
domains. But the regular domains contain a dense set of unstable periodic orbits,
which are followed by small chaotic regions. On the other hand, the chaotic domains
contain stable periodic orbits that are followed by small islands of stability. Thus,
the regular and chaotic domains are intricately mixed. However, there are regions
where order is predominant, and other regions where chaos is predominant.

Although in our report the theory of LCEs and the numerical techniques for their
evaluation are presented mainly for conservative systems, i.e., system that preserve
the phase space volume, these techniques are not valid only for such models. For
completeness sake, we also briefly discuss at the end of the report the computation
of LCEs for dissipative systems, for which the phase space volume decreases on
average, and for time series.

We tried to make the paper self-consistent by including definitions of the used
terminology and brief overviews of all the necessary mathematical notions. In addi-
tion, whenever it was considered necessary, some illustrative examples have been
added to the text in order to clarify the practical implementation of the presented
material. Our aim has been to make this review of use for both the novice and the
more experienced practitioner interested in LCEs. To this end, the reader who is
interested in reading up on detailed technicalities is provided with numerous sign-
posts to the relevant literature.

1 Regular orbits are often called ordered orbits (see, e.g., [30, p. 18]).
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Throughout the text bold lowercase letters denote vectors, while matrices are
represented, in general, by capital bold letters. We also note that the most frequently
used abbreviations in the text are LCE(s), Lyapunov characteristic exponent(s);
p-LCE, Lyapunov characteristic exponent of order p; mLCE, maximal Lyapunov
characteristic exponent; p-mLCE, maximal Lyapunov characteristic exponent of
order p; MET, multiplicative ergodic theorem; SVD, singular value decomposition;
PSS, Poincaré surface of section; FLI, fast Lyapunov indicator; GALI, generalized
alignment index.

This chapter is organized as follows.

In Sect. 2 we present the basic concepts of Hamiltonian systems and symplectic
maps, emphasizing on the evolution of orbits, as well as of deviation vectors about
them. In particular, we define the so-called variational equations for Hamiltonian
systems and the tangent map for symplectic maps, which govern the time evolution
of deviation vectors. We also provide some simple examples of dynamical systems
and derive the corresponding set of variational equations and the corresponding tan-
gent map.

Section 3 contains some historical notes on the first attempts for the application
of the theoretical results of Oseledec [102] for the actual computation of the LCEs.
We recall how the notion of exponential divergence of nearby orbits was eventually
quantified by the computation of the mLCE, and we refer to the papers where the
mLCE or the spectrum of LCEs were computed for the first time.

The basic theoretical results on the LCEs are presented in Sect. 4 following
mainly the milestone papers of Oseledec [102] and Benettin et al. [13, 14]. In
Sect. 4.1 the basic definitions and theoretical results of LCEs of various orders are
presented. The practical consequences of these results on the computation of the
LCEs of order 1 and of order p > 1 are discussed in Sects. 4.2 and 4.3, respectively.
Then, in Sect. 4.4 the MET of Oseledec [102] is stated in its various forms, while
its consequences on the spectrum of LCEs for conservative dynamical systems are
discussed in Sect. 4.5.

Section 5 is devoted to the computation of the mLCE y;, which is the oldest
chaos indicator used in the literature. In Sect. 5.1 the method for the computation
of the mLCE is discussed in great detail and the theoretical basis of its evaluation is
explained. The corresponding algorithm is presented in Sect. 5.2, while the behavior
of x; for regular and chaotic orbits is analyzed in Sect. 5.3.

In Sect. 6 the various methods for the computation of part or of the whole spec-
trum of LCEs are presented. In particular, in Sect. 6.1 the standard method devel-
oped in [119, 14] is presented in great detail, while the corresponding algorithm
is given in Sect. 6.2. In Sect. 6.3 the connection of the standard method with the
discrete QR decomposition technique is discussed and the corresponding QR algo-
rithm is given, while Sect. 6.4 is devoted to the presentation of other techniques for
computing few or all LCEs, which are based on the SVD and QR decomposition
algorithms.

In Sect. 7 we briefly refer to various chaos detection techniques based on the
analysis of deviation vectors, as well as to a second category of chaos indicators
based on the analysis of the time series constructed by the coordinates of the orbit
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under consideration. The relation of two chaos indicators, namely the fast Lyapunov
indicator (FLI) and the generalized alignment index (GALI), to the computation of
the LCEs is also discussed.

Although the main topic of our presentation is the theory and the computation
of the LCEs for conservative dynamical systems, in the last section of our report
some complementary issues related to other types of dynamical systems are con-
cisely presented. In particular, Sect. 8.1 is devoted to the computation of the LCEs
for dissipative systems, while in Sect. 8.2 some basic features on the numerical
computation of the LCEs from a time series are presented.

Finally, in Appendix we present some basic elements of the exterior algebra
theory in connection to the evaluation of wedge products, which are needed for
the computation of the volume elements appearing in the definitions of the various
LCEs.

2 Autonomous Hamiltonian Systems and Symplectic Maps

In our study we consider two main types of conservative dynamical systems:

1. Continuous systems corresponding to an autonomous Hamiltonian system of N
degrees (ND) of freedom having a Hamiltonian function

H(q1,q2,...,9N, P1> P2, -- -, PN) = h = constant, (1)
where g; and p;,i = 1,2, ..., N are the generalized coordinates and conjugate

momenta, respectively. An orbit in the [ = 2/N-dimensional phase space S of
this system is defined by a vector:

X(t) = (ql(t)v QZ(I)v ceey QN(I), pl(t)a p2(t)’ ceey PN(I)),
with x; = ¢;, xiyy = pi, i = 1,2,..., N. The time evolution of this orbit is

governed by the Hamilton equations of motion, which in matrix form are given
by

k=t = [ 2 —ﬁ]TszN-DH, @)

ap aq

with q = (q1(1), q2(2), . . ., gn (D), p = (P1(2), p2(2), ..., pn(1)), and

pH = [t o . on on om an "
[ 91 942 dgn Op1 Op2 opn

Matrix J,y has the following block form:
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with Iy being the N x N identity matrix and Oy being the N x N matrix with
all its elements equal to zero. The solution of (2) is formally written with respect
to the induced flow @' : S — S as

x(1) = @' (x(0)). 3)
2. Symplectic maps of [ = 2N dimensions having the form

X1 = f(x,,). 4
A symplectic map is an area-preserving map whose Jacobian matrix

3)(1 3x2 3)(2}\/
3 h ... 3

M — Df(X) — ? — 3)(1 3x2 3)(2}\/ ,
X . . .

dx;  0xa dxoN
satisfies
M- Joy - M = Joy. &)

The state of the system at the discrete time ¢ = n is given by
X, = @" (x0) = ()" (%), (6)

where (f)" (xo) = f(f(- - - f(x¢) - - - )), n times.

2.1 Variational Equations and Tangent Map

Let us now turn our attention to the (continuous or discrete) time evolution of devi-
ation vectors w from a given reference orbit of a dynamical system. These vectors
evolve on the tangent space T,S of S. We denote by dy @’ the linear mapping which
maps the tangent space of S at point x onto the tangent space at point @’(x), and so
we have dy @' : T,S — ’Tq)z(x)S with

w(t) = dx®' w(0), (7

where w(0), w(#) are deviation vectors with respect to the given orbit at times r = 0
and 7 > 0, respectively.

In the case of the Hamiltonian system (1) an initial deviation vector
w(0) = (6x1(0), 5x2(0), ..., 5x,5(0)) from the solution x(¢) (3) evolves on the tan-
gent space 7S according to the so-called variational equations:
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of
w = Df(x(1)) - w = a—X(X(l)) w=[Joy - D’H®)] - w = A@)-w, (8)

with D?’H(x(¢)) being the Hessian matrix of Hamiltonian (1) calculated on the ref-
erence orbit x(¢) (3), i.e.,

0’H
8)6,‘3)6] @f(x(()))

D*H(x(1)); j = , 0, j=1,2,...,2N.

We underline that (8) represents a set of linear differential equations with respect to
w, having time-dependent coefficients, since matrix A(¢) depends on the particular
reference orbit, which is a function of time 7. The solution of (8) can be written as

w(t) = Y(1) - w(0), )

where Y(¢) is the so-called fundamental matrix of solutions of (8), satisfying the
following equation.

Y (1) = Df(x(1)) - Y(t) = A(t) - Y(t) , with Y(0) = Ly. (10)

In the case of the symplectic map (4) the evolution of a deviation vector w,,, with
respect to a reference orbit x,, is given by the corresponding tangent map:

Wiy = DE(x,) - W, = g—i(xn) Wy = M, - Wy, (1D
Thus, the evolution of the initial deviation vector w is given by

w,=M,_1 - M,_»-...-My-wyg=:Y, - W, (12)
with Y, satisfying the relation

Y, i1 =M, Y, =Df(x,) - Y,, with Yo =Ly. (13)

2.2 Simple Examples of Dynamical Systems

As representative examples of dynamical systems we consider (a) the well-known
2D Hénon-Heiles system [72], having the Hamiltonian function
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1 1 1
Hy = 5(p3 + 7)) + 507 + ) + 0%y — 237, (14)

with equations of motion

X X+ 2xy X = py

. ¥ y+x2—y? y =py

x=|? |=J,-DH, =], - =1 . (15
Px 4 2 4 Px PxZ—X—zx)’ ( )
Py Py py=—y—x*+y?

and (b) the 4-dimensional (4d) symplectic map

X n+1 = X1,0 + X35
X2 n4+1 = X2.n + X4
X341 = X3 — VSIN(XY 1) — (1 — COS(X1 nt1 + X2,041)]
X441l = X4 — Kk SIN(X2,11) — [l — cOS(X1 g1 + X2.041)]

(mod2m), (16)

with parameters v, «, and u. All variables are given (mod 2x), so x;, € [, ),
fori = 1,2, 3,4. This map is a variant of Froeschlé’s 4d symplectic map [52] and
its behavior has been studied in [31, 123]. It is easily seen that its Jacobian matrix
satisfies Eq. (5).

2.3 Numerical Integration of Variational Equations

When dealing with Hamiltonian systems the variational equations (8) have to be
integrated simultaneously with the Hamilton equations of motion (2). Let us clarify
the issue by looking to a specific example. The variational equations of the 2D
Hamiltonian (14) are the following:

8x 0 0 10 8x
sy | 0 0 01 8y
Yl ep | T —1—2y —2x 00 || ep |7
3p, —2x —-142y00 opy an
Sx = 8p«
8y =dpy

8p, = (=1 = 2y)dx + (=2x)8y
dpy = (=2x)dx + (=14 2y)dy

This system of differential equations is linear with respect to éx, 8y, dpx, ép,, but
it cannot be integrated independently of system (15) since the x and y variables
appear explicitly in it. Thus, if we want to follow the time evolution of an initial
deviation vector w(0) with respect to a reference orbit with initial condition x(0),
we are obliged to integrate simultaneously the whole set of differential equations
(15) and (17).
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A numerical scheme for integrating the variational equations (8), which exploits
their linearity and is particularly useful when we need to evolve more than one
deviation vectors is the following. Solving the Hamilton equations of motion (2)
by any numerical integration scheme we obtain the time evolution of the refer-
ence orbit (3). In practice this means that we know the values x(¢;) for t;, = i At,
i =0,1,2,..., where At is the integration time step. Inserting this numerically
known solution to the variational equations (8) we end up with a linear system of
differential equations with constant coefficients for every time interval [7;, t; + At),
which can be solved explicitly.

For example, in the particular case of Hamiltonian (14), the system of variational
equations (17) becomes

Sx = 8p,
5)’ = épy
8py = [—1 = 2y(t)]8x + [2x(1:)] 8y
Spy = [—2x(@)]dx + [—1 + 2y(#:)] 6y

, fort e [t;,t; + At), (18)

which is a linear system of differential equations with constant coefficients and thus,
easily solved. In particular, (18) can by considered as the Hamilton equations of
motion corresponding to the Hamiltonian function:

HV(8x7 5)’, (prv 8py) =

1 1
5 (8p3 +8p3) + 3 {11+ 2y(t)18x> + [1 = 2y(t)]8y* + 2 [2x(1,)] 8x8y} . (19)

The Hamiltonian formalism (19) of the variational equations (18) is a specific
example of a more general result. In the case of the usual Hamiltonian function

1 N
H@.p) =75 rf+V@, (20)
i=1

with V(q) being the potential function, the variational equations (8) for the time
interval [t;, t; + At) take the form (see, e.g., [12])

-8} Tbunt] 3
dp —D?V(q(1;)) Oy dp

with 8q = (891(1), 8¢2(2), ..., 8qn(1)), 8p = (6p1(2), 8p2(1) . .., 8pN (1)), and

3*V(q)
0q;9qk

D*V(q(t;)jx =

q(t;)

Thus, the tangent dynamics of (20) is represented by the Hamiltonian function (see,
e.g., [105])
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N N
1 1
Hy (8, 8p) = 5 > 5pf + 3 > " D’V(q(t:) k8954
=1 ik

2.4 Tangent Dynamics of Symplectic Maps

In the case of symplectic maps, the dynamics on the tangent space, which is
described by the tangent map (11), cannot be considered separately from the phase
space dynamics determined by the map (4) itself. This is because the tangent map
depends explicitly on the reference orbit x,,.

For example, the tangent map of the 4d map (16) is

5x1,n+1 = 5xl,n + 5x3,n

5x2,n+1 = 8x2.n + 8)647,1

8x3,n+1 = an5x1,n + b;15x2,n + (] + an)5x3,n + bn8x4,n ’
8x4,n+l = bnsxl,n + cnaxln + bn8x3,n +1+ cn)8x4,n

21

with
Ay = —V COS(X1 1) — MU SIN(X] py1 + X2,041)
by, = —psin(xy py1 + x2,041) ,
Cp = —K COS(X2 py1) — M SIN(X] g1 + X2 041)

which explicitly depend on x,, X2, X3.,, X4,. Thus, the evolution of a devia-
tion vector requires the simultaneous iteration of both the map (16) and the tangent
map (21).

3 Historical Introduction: The Early Days of LCEs

Prior to the discussion of the theory of the LCEs and the presentation of the various
algorithms for their computation, it would be interesting to go back in time and see
how the notion of LCEs, as well as the nowadays taken-for-granted techniques for
evaluating them, were formed.

The LCEs are asymptotic measures characterizing the average rate of growth
(or shrinking) of small perturbations to the orbits of a dynamical system, and their
concept was introduced by Lyapunov [96]. Since then they have been extensively
used for studying dynamical systems. As it has already been mentioned, one of
the basic features of chaos is the sensitive dependence on initial conditions and the
LCEs provide quantitative measures of response sensitivity of a dynamical system
to small changes in initial conditions. For a chaotic orbit at least one LCE is positive,
implying exponential divergence of nearby orbits, while in the case of regular orbits
all LCE:s are zero. Therefore, the presence of positive LCEs is a signature of chaotic
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behavior. Usually the computation of only the mLCE y; is sufficient for determining
the nature of an orbit, because x; > 0 guarantees that the orbit is chaotic.

Characterization of the chaoticity of an orbit in terms of the divergence of nearby
orbits was introduced by Hénon and Heiles [72] and further used by several authors
(e.g., [48, 51, 52, 131, 22, 21]). In these studies two initial points were chosen
very close to each other, having phase space distance of about 10~7 — 107°, and
were evolved in time. If the two initial points were located in a region of regular
motion their distance increased approximately linearly with time, while if they were
belonging to a chaotic region the distance exhibited an exponential increase in time
(Fig. 1).

260° 1
2000° 1
o
B0
o
10:6° | ﬂ N L
‘hﬂ-a -
0 + + + + +
0 50 100 150 200 250 0 50 100 150 200 250
TIME  (COMPUTER UNITS) TIME (COMPUTER UNITS)

Fig. 1 Typical behavior of the time evolution of the distance D between two initially close orbits
in the case of regular and chaotic orbits. The particular results are obtained for a 2D Hamiltonian
system describing a Toda lattice of two particles with unequal masses (see [22] for more details).
The initial Euclidian distance of the two orbits in the 4-dimensional phase space is Dy = 107°.
D exhibits a linear (on the average) growth when the two orbits are initially located in a region of
regular motion (left panel), while it grows exponentially in the case of chaotic orbits (right panel).
The big difference in the values of D between the two cases is evident since the two panels have
the same horizontal (time) axis but different vertical ones. In particular, the vertical axis is linear
in the left panel and logarithmic in the right panel (after [22])

Although the theory of LCEs was applied to characterize chaotic motion by
Oseledec [102], quite some time passed until the connection between LCEs and
exponential divergence was made clear [10, 106]. It is worth mentioning that
Casartelli et al. [21] defined a quantity, which they called “stochastic parameter,”
in order to quantify the exponential divergence of nearby orbits, which was realized
afterward in [10] to be an estimator of the mLCE for t — oo.

So, the mLCE x; was estimated for the first time in [10], as the limit for
t — oo of an appropriate quantity X(¢), which was obtained from the evolution of
the phase space distance of two initially close orbits. In this paper some nowadays
well-established properties of X;(¢) were discussed, like for example, the fact that
X1(¢) tends to zero in the case of regular orbits following a power law oc !, while
it tends to nonzero values in the case of chaotic orbits (Fig. 2). The same algorithm
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Fig. 2 Evolution of X(¢) (denoted as k,) with respect to time # (denoted by n x 7) in log—log
scale for several orbits of the Hénon—Heiles system (14). In the left panel X(¢) is computed for
five different regular orbits at different energies H, (denoted as E) and it tends to zero following
a power law o t~'. A dashed straight line corresponding to a function proportional to #~! is also
plotted. In the right panel the evolution of X(¢) is plotted for three regular orbits (curves 1-3) and
three chaotic ones (curves 4-6) for H, = 0.125. Note that the values of the initial conditions given
in the two panels correspond to g1 = x, g2 = y, p1 = px, p2 = py in (14) (after [10])

was immediately applied for the computation of the mLCE of a dissipative system,
namely the Lorenz system [99].

The next improvement of the computational algorithm for the evaluation of the
mLCE was introduced in [34], where the variational equations were used for the
time evolution of deviation vectors instead of the previous approach of the simulta-
neous integration of two initially close orbits. This more direct approach constituted
a significant improvement for the computation of the mLCE since it allowed the
use of larger integration steps, diminishing the real computational time and also
eliminated the problem of choosing a suitable initial distance between the nearby
orbits.

In [11] a theorem was formulated, which led directly to the development of a
numerical technique for the computation of some or even of all LCEs, based on
the time evolution of more than one deviation vectors, which are kept linearly inde-
pendent through a Gram-Schmidt orthonormalization procedure (see also [9]). This
method was explained in more detail in [119], where it was applied to the study of
the Lorenz system, and was also presented in [12], where it was applied to the study
of an ND Hamiltonian system with N varying from 2 to 10.

The theoretical framework, as well as the numerical method for the computation
of the maximal, some or even all LCEs were given in the seminal papers of Benettin
etal. [13, 14]. In [14] the complete set of LCEs was calculated for several different
Hamiltonian systems, including 4- and 6-dimensional maps. In Fig. 3 we show the
results of [14] concerning the 3D Hamiltonian system of [34]. The importance of the
papers of Benettin et al. [13, 14] is reflected by the fact that almost all methods for
the computation of the LCEs are more or less based on them. Immediately the ideas
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Fig. 3 Time evolution of appropriate quantities denoted by X 5,’) p = 1,2, 3, having, respectively,

as limits for r — oo the first three LCEs xi, x2, x3, for two chaotic orbits (left panel) and one
regular orbit (right panel) of the 3D Hamiltonian system initially studied in [34] (see [14] for
more details). In both panels Xg) tends to zero implying that x3 = 0. This is due to the fact
that Hamiltonian systems have at least one vanishing LCE, namely the one corresponding to the
direction along the flow (this property is explained in Sect. 4.5). On the other hand, x; and x, seem
to get nonzero values (with x; > x») for chaotic orbits, while they appear to vanish for regular
orbits (after [14])

presented in [13, 14] were used for the computation of the LCEs for a variety of
dynamical systems like infinite-dimensional systems described by delay differential
equations [46], dissipative systems [44], conservative systems related to Celestial
Mechanics problems [53, 55], as well as for the determination of the LCEs from a
time series [144, 118].

4 Lyapunov Characteristic Exponents: Theoretical Treatment

In this section we define the LCEs of various orders presenting also the basic the-
orems which guarantee their existence and provide the theoretical background for
their numerical evaluation. In our presentation we basically follow the fundamental
papers of Oseledec [102] and of Benettin et al. [13] where all the theoretical results
of the current section are explicitly proved.

We consider a continuous or discrete dynamical system defined on a differen-
tiable manifold S. Let @’(x) denote the state at time 7 of the system which at time
t = O was at x (see (3) and (6) for the continuous and discrete case respectively). For
the action of @' over two successive time intervals ¢ and s we have the following
composition law:

O = @l o P*,
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The tangent space at x is mapped onto the tangent space at @’(x) by the dif-
ferential dy@" according to (7). The action of @(x) is given by (9) for continuous
systems and by (12) for discrete ones. Thus, the action of dy®’ on a particular initial
deviation vector w of the tangent space is given by the multiplication of matrix Y(¢)
for continuous systems or Y, for discrete systems with vector w. From (9) and (12)
we see that the action of dy@' over two successive time intervals ¢ and s satisfies
the composition law:

dy @'t = dq)s(x)gb’ o dy®°. (22)
This equation can be written in the form
R(t +5,x) = R(t, ' (x)) - R(s, %), (23)

where R(z,x) is the matrix corresponding to dy®’. We note that since
Y(0) = Yo = Ly we get dy®@’w = w and R(0, x) = L. A function R(z, X) satis-
fying relation (23) is called a multiplicative cocycle with respect to the dynamical
system @',

Let S be a measure space with a normalized measure p such that

WS =1 u(@'A) = uA) (24)

for A C S. Suppose also that a smooth Riemannian metric || || is defined on S.
We consider the multiplicative cocycle R(z, x) corresponding to dy@’ and we are
interested in its asymptotic behavior for + — =£o00. Since, as mentioned by Oseledec
[102], the case t — 400 is analogous to the case t — —o0, we restrict our treatment
to the case t — 400, where time is increasing. In order to clarify what we are
practically interested in let us consider a nonzero vector w of the tangent space 7xS
at x. Then the quantity

' wl
Iwl

Ay (X)
is called the coefficient of expansion in the direction of w. If

1
lim sup n InA,(x) >0

—>00

we say that exponential diverge occurs in the direction of w. Of course the basic
question we have to answer is whether the characteristic exponent (also called char-
acteristic exponent of order 1)

1
lim —InX;(x)

t—00 [

exists.
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We will answer this question in a more general framework without restrict-
ing ourselves to multiplicative cocycles. So, the results presented in the following
Sect. 4.1 are valid for a general class of matrix functions, a subclass of which con-
tains the multiplicative cocycles which are of more practical interest to us, since
they describe the time evolution of deviation vectors for the dynamical systems we
study.

4.1 Definitions and Basic Theorems

Let A; be an n x n matrix function defined either on the whole real axis or on the
set of integers, such that Ay = I, for each time ¢ the value of function A, is a
nonsingular matrix and ||A;| the usual 2-norm of A,.? In particular, we consider
only matrices A, satisfying

max {|A, [, 1A'} < e (25)

with ¢ > 0 a suitable constant.

Definition 4. Considering a matrix function A, as above and a nonzero vector w of
the Euclidian space R” the quantity

1
x(A;, w) = lim sup " In ||A,w|| (26)

—>00

is called the 1-dimensional Lyapunov Characteristic Exponent
or the Lyapunov Characteristic Exponent of order 1 (1-LCE)
of A, with respect to vector w.

For simplicity we will usually refer to 1-LCEs as LCEs.

‘We note that the value of the norm ||w|| does not influence the value of x (A;, w).
For example, considering a vector Bw, with 8 € R a nonzero constant, instead of w
in Definition 4, we get the extra term In | 8]/t (with | | denoting the absolute value)
in (26) whose limiting value for # — oo is zero and thus does not change the value
of x(A,, w). More importantly, the value of the LCE is independent of the norm
appearing in (26). This can be easily seen as follows: Let us consider a second norm
|| || satisfying the inequality

Bulwl < llwl" < Ballwll

2 The 2-norm ||A || of an n x n matrix A is induced by the 2-norm of vectors, i.e., the usual Euclidean
e 12
norm [1x|| = (X7, )", by

i=1"i

I AX]]
Al = max )
20 x|l

and is equal to the largest eigenvalue of matrix vATA.
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for some positive real numbers B, B,, and for all vectors w. Such norms are called
equivalent (see, e.g., [73, Sect. 5.4.7]). Then, by the above-mentioned argument it is
easily seen that the use of norm || || in (26) leaves unchanged the value of x (A;, w).
Since all norms of finite-dimensional vector spaces are equivalent, we conclude that
the LCEs do not depend on the chosen norm.

Letw;,i =1,2,..., p be aset of linearly independent vectors in R”, E? be the
subspace generated by all w; and vol,(A,, E”) be the volume of the p-parallelogram
having as edges the p vectors A,;w;. This volume is computed as the norm of the
wedge product of these vectors (see Appendix for the definition of the wedge prod-
uct and the actual evaluation of the volume)

vol,(A;, EP) = [[A;w) AAWL A - AAW,.

Let also vol, (Ao, E”) be the volume of the initial p-parallelogram defined by all
w;, since A is the identity matrix. Then the quantity

3 (EP) = vol,(A;, E?)
vol,(Ag, EP)

is called the coefficient of expansion in the direction of E” and it depends only on
E? and not on the choice of the linearly independent set of vectors. Obviously for
an 1-dimensional subspace E' the coefficient of expansion is ||A,;w;||/||w1||. If the
limit

o1
lim —InA,(E?)
t—00

exits it is called the characteristic exponent of order p in the direction of E”.

Definition S. Considering the linearly independent set w;, i = 1,2, ..., p and the
corresponding subspace E? of R” as above, the p-dimensional Lyapunov
Characteristic Exponent or the Lyapunov Characteristic
Exponent of order p (p-LCE) of A, with respect to subspace E? is
defined as

1
x(A;, E?) = limsup — Invol,,(A,, E?). 27

t—oo I

Similarly to the case of the 1-LCE, the value of the initial volume vol,(Ag, E?), as
well as the used norm, do not influence the value of x(A,, E7).

From (25) and the Hadamard inequality (see, e.g., [102]), according to which the
Euclidean volume of a p-parallelogram does not exceed the product of the lengths
of its sides, we conclude that the LCEs of (26) and (27) are finite.

From the definition of the LCE it follows that

XAy, ciwy + cowp) < max {x (A, wi), x (A, wa)}
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for any two vectors w;, w, € R"” and c¢j,c; € R with ¢j,c; # 0, while the

Hadamard inequality implies thatif w;, i = 1,2, ..., n is a basis of R" then
. 1
> XA wh) zlimsup?ln|detAt|, (28)
—>00

i=1

where det A, is the determinant of matrix A,.

It can be shown that for any r € R the set of vectors {w € R" : x(A,, w) <r}is
a vector subspace of R” and that the function x(A,, w) with w € R", w # 0 takes
at most n different values, say

V>V >--->vp with 1 <s <n. 29)
For the subspaces
Li={weR": x(A,w) < v}, (30)
we have
R'=L,>Ly> L > Ly o), 31)

with L; 1y # L; and x(A;,w) =v; ifandonlyifwe L; \ L, fori =1,2,...,s.
So in descending order each LCE “lives” in a space of dimensionality less than
that of the preceding exponent. Such a structure of linear spaces with decreasing
dimension, each containing the following one, is called a filtration.

Definition 6. A basis w;,i = 1,2, ..., n of R" is called normal if Z?=1 x(A;, W;)
attains a minimum at this basis. In other words, the basis w;, is a normal basis
if

D oxAnw) <Y XA ),
i=1 i=1

where g;,i = 1, 2, ..., n is any other basis of R".

A normal basis w;, i = 1,2, ..., n is not unique but the numbers y (A;, w;) depend
only on A, and not on the particular normal basis and are called the LCEs of function
A,. By a possible permutation of the vectors of a given normal basis we can always
assume that x (A,, wi) > x(A;, W2) > -+ > x(A;, Wp).

Definition 7. Let w;, i = 1,2,...,n be a normal basis of R" and
X1 > Xx2> > xn, With x; = x(A;,w;), i = 1,2,...,n, the LCEs of these
vectors. Assume that value v;, i = 1,2,...,s appears exactly k; = k;(v;) > 0

times among these numbers. Then k; is called the multiplicity of value v; and
the collection (v;, k;)i = 1,2, ..., s is called the spectrum of LCEs.
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In order to clarify the used notation we stress that x;, i = 1,2,...,n are
the n (possibly nondistinct) LCEs, satisfying x; > x» > --- > x,, while
vi,i = 1,2,...,s represent the s (1 < s < n), different values the LCEs have,

with vy > vy > -+ > vy
Definition 8. The matrix function A, is called regular ast — oo if for each
normal basis w;, i = 1,2, ..., n it holds that
. 1
ZX(A,, w;) = liminf — In | det A, |,
Py t—oo

which, due to (28) leads to

1 1
liminf — In |detA;| = limsup — In | det A;|
t—oo t t

1—>00

guaranteeing that the limit
o1
lim —In|det A;|
t—oo t

exists, is finite, and is equal to

1 n s
lim —In|detA,| = A, W) = kiv;.
Jim = In| il IZ:;X( 1 Wi) 12:1: v

We can now state a very important theorem for the LCEs:

Theorem 1. [f the matrix function A, is regular then the LCEs of all orders are given
by (26) and (27) where the lim sup is substituted by lim
—>00

—00

1
XA, w) = lim —In[|A,w]| (32)
t—oo t

1
x(A;, EP) = tlim A Invol,(A;, EP). (33)
—00

In particular, for any p-dimensional subspace E? C R" we have

P
XALED) =X, (34)
j=1

with a suitable sequence 1 <i; <i) <--- <i, <n.
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The part of the theorem concerning equations (32) and (33) was proved by Oseledec
in [102], while (34), although was not explicitly proved in [102], can be considered
as arather easily proven byproduct of the results presented there. Actually, the valid-
ity of (34) was shown in [13].

4.2 Computing LCEs of Order 1

Let us now discuss how we can use Theorem 1 for the numerical computation of
LCEs, starting with the computation of LCEs of order 1.

As we have already mentioned in (29), the LCE takes at most n different values
vi,i=1,2,....5,1 <s < n.If we could know a priori the sequence (31) of
subspaces L; i = 1,2,...,s of R” we would, in principle, be able to compute the
values v; of all LCEs. This could be done by taking an initial vector w; € L; \ L;1;
and compute

1
v; = lim —In||A;w;|| , i=1,2,...,5s. 35)
t—o00 t

Now apart from L; = R” all the remaining subspaces L;, i = 2,3,...,s have
positive codimension codim(L;) (= dimR"” — dimL; > 0) and thus, vanishing
Lebesgue measure. Then a random choice of w € R" would lead to the computation
of x; from (35), because, in principle w will belong to L; and not to the subspaces
L;i=2,...,s.Letus consider a simple example in order to clarify this statement.

Suppose that L; is the usual 3-dimensional space R®, L, C L, is a partic-
ular 2-dimensional plane of R3, e.g., the plane z = 0, L3 C L, is a particu-
lar 1-dimensional line, e.g., the x axis (Fig. 4a) and the corresponding LCEs are
X1 > X2 > x3 with multiplicities k; = k, = k3 = 1. For this case we have
dimL, = 3,dimL, = 2,dimL3; = 1 and codim(L;) = 0, codim(L,) = 1,
codim(L3) = 2. Concerning the measures . of these subspaces of R, it is obvi-
ous that w(L,) = u(L3) = 0, since the measure of a surface or of a line in the
3-dimensional space R? is zero.

If we randomly choose a vector w € R3 it will belong to L; and not to L,,
i.e., having its z coordinate different from zero and thus, (35) would lead to the
computation of the mLCE ;. Vector w; in Fig. 4(b) represents such a random
choice. In order to compute x, from (35) we should choose vector w not ran-
domly but in a specific way. In particular, it should belong to L, but not to L3,
so its z coordinate should be equal to zero. Thus this vector should have the form
w = (wy, wy, 0) with wy, wy € R, wy # 0, like vector w, in Fig. 4b. Our choice
will become even more specific if we would like to compute x3 because in this case
w should be of the form w = (wy, 0, 0) # 0 with w; € R. Vector w3 of Fig. 4bis a
choice of this kind.

From this example it becomes evident that a random choice of vector w in (35)
will lead to the computation of the largest LCE y; with probability one. One more
comment concerning the numerical implementation of (35) should be added here.
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Fig. 4 (a) A schematic representation of the sequence of subspaces (31) where L; identifies with
R3, L, C L, is represented by the xy plane and the x axis is considered as the final subspace
L3 C L,. (b) A random choice of a vector in L; = R?® will result with probability one to a vector
belonging to L; and not to L,, like vector w;. Vectors w, w3 belonging, respectively, to L, \ L3
and to L3 are not random since their coordinates should satisty certain conditions. In particular,
the z coordinate of w, should be zero, while both the z and y coordinate of w3 should vanish. The
use of wi, wy, w3 in (35) leads to the computation of x;, x», and x3, respectively

Even if in some special examples one could happen to know a priori the subspaces
L;i=1,2,...,s,so that one could choose w € L; \ L;y; with i # 1 then the
computational errors would eventually lead to the numerical computation of x;.
Such an example was presented in [14].

4.3 Computing LCEs of Order p > 1

Let us now turn our attention to the computation of p-LCEs with p > 1. Equation
(34) of Theorem 1 actually tells us that the p-LCE x(A;, E”) can take at most

(Z) distinct values, i.e., as many as all the possible sums of p 1-LCEs out of n

are. Now, as the choice of a random vector w € R", or in other words, of a random
1-dimensional subspace of R" produced by w, leads to the computation of the max-
imal 1-LCE, the random choice of a p-dimensional subspace E” of R”", or equiva-
lently the random choice of p linearly independent vectors w; i = 1,2, ..., p, leads
to the computation of the maximal p-LCE (p-mLCE) which is equal to the sum of
the p largest 1-LCEs

P
X(ALED) =) xi. (36)

i=1
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This relation was formulated explicitly in [11, 9] and proved in [13] but was implic-
itly contained in [102]. The practical importance of (36) was also clearly explained
in [119]. Benettin et al. [13] gave a more rigorous form to the notion of the random
choice of E”, which is essential for the derivation of (36), by introducing a con-
dition that subspace E” should satisfy. They named this condition Condition R (at
random). According to Condition R a p-dimensional space E” C R”" is chosen at
random if for all j = 2,3, ..., s we have

j-1
dim(EpﬂLj)zmax{O,p—Zki}, (37)
i=1

where L ; belongs to the sequence of subspaces (31) and ; is the multiplicity of the
LCE v; (Definition 7).

In order to clarify these issues let us consider again the example presented in
Fig. 4, where we have three distinct values for the 1-LCEs x; > x» > x3 with
multiplicities k; = k» = k3 = 1. In this case the 2-LCE can take one of the three
possible values x; + x2, x2 + x3, X1 + x3, while the 3-LCE takes only one possible
value, namely x; + x2 + x3.

The computation of the 2-LCE requires the choice of two linearly indepen-
dent vectors w, w, and the application of (33). The two vectors w;, w, define a
2-dimensional plane E? in R* and x(A,, E?) practically measures the time rate of
the coefficient of expansion of the surface of the parallelogram having as edges the
vectors A, wi, A;w».

By choosing the two vectors w;, w, randomly we define a random plane E? in
R3 which intersects the subspace L (plane xy) along a line, i.e., dim(E> N L,) = 1
and the subspace L3 (x axis) at a point, i.e., dim(E2N L) = 0 (Fig. 5a). This
random choice of plane E 2 satisfies Condition R (37) and thus, (33) leads to the
computation of the 2-mLCE, namely x; + x». This result can be also understood
in the following way. Plane E? in Fig. 5a can be considered to be spanned by two
vectors Wi, W, such that w; € L; but not in its subspace L, and w, € L, but not in
its subspace Lj. Then the expansion of w; € L; \ L, is determined by the LCE y;
and the expansion of w, € L, \ L3 by the LCE x,. These 1-dimensional expansion
rates result to an expansion rate equal to x; + yx» for the surface defined by the two
vectors.

Other more carefully designed choices of the E? subspace lead to the computa-
tion of the other possible values of the 2-LCE. If for example w; € L, \ L3 and
w; € L3 (Fig. 5b) we have E* = L, withdim(E>N L,) = 2 and dim(E*>N L3) = 1.
In this case the expansion of w; is determined by the LCE x, and of w; by x3, and
so the computed 2-LCE is x, + xs. Finally, a choice of E? of the form presented
in Fig. 5¢ leads to the computation of x; + x3. In this case the plane E? is defined
by w; € Ly \ L, and w, € L3 and intersects subspaces L, and L3 along the line
corresponding to L3, i.e., dim(E?> N L,) = 1 and dim(E? N L3) = 1. It can be easily
checked that for the last two choices of E? (Fig. 5b, c¢) for which the computed
2-LCE does not take its maximal possible value, Condition R (37) is not satisfied,
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Fig. 5 Possible choices of the 2-dimensional space E? for the computation of the 2-LCE in the
example of Fig. 4, where R? is considered as the tangent space of a hypothetical dynamical
system. In each panel the chosen “plane” E? is drawn, as well as one of its possible basis con-
stituted of vectors w;, w,. (a) A random choice of E? leads to a plane intersecting L, along
line € (dim(E>NLy)=1) and L, at point A (dim(E> N L3) = 0). In this case (33) gives
x(A;, E*) = x1 + x2. More carefully made choices of E? (which are obviously not made at
random) results to configurations leading to the computation of x, + x3 (b) and x; + x3 (c) from
(33). In these cases EZ does not satisfy Condition R (37) since dim(E>NL;) = 2, dim(E*NL3) = 1
in (b) and dim(E% N L,) = 1, dim(E?> N L3) = 1 in (¢)

as one should have expected from the fact that these choices correspond to carefully
designed configurations and not to a random process.

Similarly to the case of the computation of the 1-LCEs we note that, even if in
some exceptional case one could know a priori the subspaces L; i = 1,2,...,s, so
that one could choose w; i = 1, 2, ..., p to span a particular subspace E? in order to
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compute a specific value of the p-LCE, smaller than ) /_, x; (like in Fig. 5b ¢), the
inevitable computational errors would eventually lead to the numerical computation
of the maximal possible value of the p-LCE.

Summarizing we point out that the practical implementation of Theorem 1 guar-
antees that a random choice of p initial vectors w; i = 1,2,...,pwithl < p <n
generates a space E7 which satisfies Condition R (37) and leads to the actual com-
putation of the corresponding p-mLCE, namely x; + x2 +. ..+ x,. This statement,
which was originally presented in [11, 9], led to the standard algorithm for the com-
putation of all LCEs presented in [14]. This algorithm is analyzed in Sect. 6.1.

4.4 The Multiplicative Ergodic Theorem

After presenting results concerning the existence and the computation of the LCEs
of all orders for a general matrix function A,, let us restrict our study to the case
of multiplicative cocycles R(#, x), which are matrix functions satisfying (23). The
multiplicative cocycles arise naturally in discrete and continuous dynamical systems
as was explained in the beginning of Sect. 4.

In particular, we consider the multiplicative cocycle dy@’ which maps the tangent
space at X € S to the tangent space at @’ (x) € S for a dynamical system defined on
the differentiable manifold S. We recall that S is a measure space with a normalized
measure y and that @' is a diffeomorphism on S, i.e., @' is a measurable bijection
of § which preserves the measure © (24) and whose inverse is also measurable.
We remark that in measure theory we disregard sets of measure 0. In this sense @’
is called measurable if it becomes measurable upon disregarding from S a set of
measure 0. Quite often we will use the expression “for almost all x with respect to
measure " for the validity of a statement, implying that the statement is true for all
points x with the possible exception of a set of points with measure 0.

A basic property of the multiplicative cocycles is their regularity, since Theorem
1 guarantees the existence of characteristic exponents and the finiteness of the LCEs
of all orders for regular multiplicative cocycles. Thus, it is important to determine
specific conditions that multiplicative cocycles should fulfill in order to be regular.
Such conditions were first provided by Oseledec [102] who also formulated and
proved the so-called Multiplicative Ergodic Theorem (MET), which is often referred
as Oseledec’s theorem.

The MET gives information about the dynamical structure of a multiplicative
cocycle R(z, x) and its asymptotic behavior for #+ — oo. The application of the
MET for the particular multiplicative cocycle dy@’ provides the theoretical frame-
work for the computation of the LCEs for dynamical systems. The MET is one of
the milestones in the study of ergodic properties of dynamical systems and it can
be considered as a sort of a spectral theorem for random matrix products [113].
As a testimony to the importance of this theorem one can find several alternative
proofs for it in the literature. The original proof of Oseledec [102] applies to both
continuous and discrete systems. In view to the application to algebraic groups,
Raghunathan [108] devised a simple proof of the MET, which nevertheless could
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not guarantee the finiteness of all LCEs. Although Raghunathan’s results apply
only to maps, an extension to flows, following the ideas of Oseledec, was given by
Ruelle [114]. Benettin et al. [13] proved a somewhat different version of the theorem
being mainly interested in its application to Hamiltonian flows and symplectic maps.
Alternative proofs can also be found in [76, 141].

In [102] Oseledec proved that a multiplicative cocycle R(z, x) is regular and thus,
the MET is applicable to it, if it satisfies the condition

sup In* |R*(r, x)|| € LS, n), (38)

lr]=1
where In" @ = max {0, Ina}. From (38) we obtain the estimate
IR@, x)|| < &/™M, (39)

for t — Foo for almost all x with respect to i, where J(x) is a measurable function.
From (39) it follows that R(z, x), considered as a function of ¢ for fixed x, satisfies
(25). Benettin et al. [13] considered a slightly different version of the MET with
respect to the one presented in [102]. Their version was adapted to the framework of
a continuous or discrete dynamical system with @’ being a diffeomorphism of class
C!,i.e.,both @' and its inverse are continuously differentiable. They formulated the
MET for the particular multiplicative cocycle dy®’, which they proved to be regular.
Since our presentation is mainly focused on autonomous Hamiltonian systems and
symplectic maps we will also state the MET for the specific cocycle dy®’. The
version of the MET we present is mainly based on [102, 114, 13] and combines
different formulations of the theorem given by various authors over the years.

Theorem 2 (Multiplicative Ergodic Theorem—MET). Consider a dynamical sys-
tem as follows: Let its phase space S be an n-dimensional compact manifold with a
normalized measure w, u(S) = 1, and a smooth Riemannian metric || ||. Consider
also a measure-preserving diffeomorphism ®' of class C' satisfying

¢t+s :®to¢s ,

with t denoting time and having real (continuous system) or integer (discrete system)
values. Then for almost all X € S, with respect to measure |1 we have:

1. The family of multiplicative cocycles dy®' : T,S — T(b’(x)‘s’ where 1T, S
denotes the tangent space of S at point X, is regular.

2. The LCEs of all orders exist and are independent of the choice of the Riemannian
metric of S.

3 We recall that a measurable function f S — R (or C) of the measure space (S, i) belongs to
the space L'(S, p) if its absolute value has a finite Lebesgue integral, i.e.,

/Ifldu < .
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In particular, for any w € IS the finite limit
1 ¢
x(X,w) = lim —In ||dx@'W|| (40)
=00

exists and defines the LCE of order I (I-LCE). There exists at least one normal
basis v;, i = 1,2,...,n of IS for which the corresponding (possibly nondis-
tinct) 1-LCEs x;(X) = x (X, V;) are ordered as

X1(X) > x2(X) > -+ > xu(X). (41)

Assume that the value v;(X), i = 1,2,...,s withs = s(x), | <s < n appears
exactly k;(X) = k;(X, v;) > O times among these numbers. Then the spectrum of
LCEs (vi(x), ki(x)), i = 1,2, ...,s is a measurable function of X, and as w # 0
varies in Iy S, x(x, w) takes one of these s different values

V(X)) > X)) > - > pe(X). 42)
It also holds
5 ) 1 ,
E ki(x)v;(x) = lim — In|detdy®’|. 43)
t—00

i=1

For any p-dimensional (1 < p < n) subspace E¥ C T,S, generated by a

linearly independent set w;, i = 1,2, ..., p the finite limit
1 p
x(x, E?) = lim " Invol,(dx®', E?), (44)
11— 00

where vol,(dy®', E?) is the volume of the p-parallelogram having as edges the
vectors dy®'w;, exists, and defines the LCE of order p (p-LCE). The value of
X (X, E?) is equal to the sum of p I-LCEs x;(x),i = 1,2,...,n.

The set of vectors

Lix)={weLsS: xx,w) =vX} , 1=i=<s

is a linear subspace of I4S satisfying

T:8= L0 5 LX) > 5 Li® > L Loy, 1)

Ifwe Li(x)\ Li+1(x) then x(x, w) = v;(X) fori = 1,2, ...,s. The multiplicity
ki (X) of values v;(X) is given by k;(x) = dim L;(x) — dim L;4(x).
The symmetric positive-defined matrix

Ax= lim (¥'@) - ¥(0) ™
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exists. Y(t) is the matrix corresponding to dy®' and is defined by (10) and (13)
for continuous and discrete dynamical systems, respectively. The logarithms of
the eigenvalues of Ax are the s distinct 1-LCEs (42) of the dynamical system.
The corresponding eigenvectors are orthogonal (since Ax is symmetric), and for
the corresponding eigenspaces V(X), Va(X), ..., Vs(X) we have

ki(x) = dim Vi(x) . Li(x) =P V,(x) for i =1.2,....5s.

r=i

Thus, 14S is decomposed as
TS =Vix) @ Va(x) @ - - @ Vi(x),
and for every nonzero vector w € Vi(x),i = 1,2,...,s, we get
X (X, W) = v;(x).

A short remark is necessary here. The regularity of dy®', which guarantees the
validity of (40) and (44) and the finiteness of the LCEs of all orders, should not be
confused with the regular nature of orbits of the dynamical system. Regular orbits
have all their LCEs equal to zero (see also the discussion in Sect. 5.3).

Benettin et al. [11, 13] have formulated also the following theorem which pro-
vides the theoretical background for the numerical algorithm they presented in [14]
for the computation of all LCEs.

Theorem 3. Under the assumptions of the MET, the p-LCE of any p-dimensional
subspace EP C IS satisfying Condition R (37) is equal to the sum of the p largest
I-LCEs (41):

1 P
Py — lim — tEPYy — 2: )
x(x, EP) = tlinoqo ; Invol,(dy®", E?) = Xi (X). (46)

i=1

4.5 Properties of the Spectrum of LCEs

Let us now turn our attention to the structure of the spectrum of LCEs for ND
autonomous Hamiltonian systems and for 2N d symplectic maps, which are the main
dynamical systems we are interested in. Such systems preserve the phase space
volume, and thus, the r. h. s. of (43) vanishes. So for the sum of all the 1-LCEs we
have

2N
> xix) =0. 47)
i=1
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The symplectic nature of these systems gives indeed more. It has been proved in
[13] that the spectrum of LCEs consists of pairs of values having opposite signs

XZ(X) = _X2N7i+l(x) i i = 1327 ceey N. (48)

Thus, the spectrum of LCEs becomes

X1(X) > 2(X) > - = xn(X) = — X)) = - > —x2(x) = —x1(X).

For autonomous Hamiltonian flows we can say something more. Let us first
recall that for a general differentiable flow on a compact manifold without stationary
points at least one LCE must vanish [13, 70]. This follows from the fact that, in the
direction along the flow a deviation vector grows only linearly in time. So, in the
case of a Hamiltonian flow, due to the symmetry of the spectrum of LCEs (48), at
least two LCEs vanish, i.e.,

av(x) = xn+1(x) =0,

while the presence of any additional independent integral of motion leads to the
vanishing of another pair of LCEs.

Let us now study the particular case of a periodic orbit of period 7, such that
@7 (x) = x, following [9, 12]. In this case dy® is a linear operator on the tangent
space 74S so that for any deviation vector w(0) € 7,S we have

w(T) =Y -w(0), 49)
where Y is the constant matrix corresponding to dx®”. Suppose that Y has 2N
(possibly complex) eigenvalues A;, i = 1,2,...,2N, whose magnitudes can be
ordered as

Al = A2 = ..o > [Aon].

Letw;,i = 1,2,...,2N, denote the corresponding unitary eigenvectors. Then for
w(0) = W; (49) implies

wkT) = w, , k=1,2,... (50)
and so we conclude from (40) that
. 1 :
XX, W;) = 71I1|)w'| =xi), i=1,2,...,2N.
Furthermore for a deviation vector

w(0) = c1W| + caWo + ... + coyWan
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with ¢; € R, i = 1,2,...,2N, it follows from (50) that the first nonvanishing
coefficient ¢; eventually dominates the evolution of w(#) and we get x (X, w) = x;.
In this case we can define a filtration similar to the one presented in (45) by defin-
ing Ly = [Wy,Wy,...,Won] = IS, Ly = [Wa,..., Wonl, ..., Loy = [Wopl,
Loyny1 = [0], where [ ] denotes the linear space spanned by vectors W, Wa, ..., Won
and so on. It becomes evident that a random choice of an initial deviation vector
w(0) € 7ZxS will lead to the computation of the mLCE x;(x) since, in general,
w(0) e L\ L,.

So, in the case of an unstable periodic orbit where |A;| > 1 we get x;(x) >
0, which implies that nearby orbits diverge exponentially from the periodic one.
This orbit is not called chaotic, although its mLCE is larger than zero, but simply
“unstable”. In fact, unstable periodic orbits exist also in integrable systems. Since
the measure of periodic orbits in a general dynamical system has zero measure,
periodic orbits (stable and unstable) are rather exceptional.

In the general case of a nonperiodic orbit we are no more allowed to use con-
cepts as eigenvectors and eigenvalues because the linear operator dy®’ maps 7, S
into T@r(x)S # 1S, while eigenvectors are intrinsically defined only for lin-
ear operators of a linear space into itself. Nevertheless, in the case of nonperi-
odic orbits the MET proves the existence of the LCEs and of filtration (45). In
a way, the MET provides an extension of the linear stability analysis of periodic
orbits to the case of nonperiodic ones, although one should always keep in mind
that the LCEs are related to the real and positive eigenvalues of the symmetric,
positive-defined matrix Y'(z) - Y(¢) [63, 98]. On the other hand, linear stability
analysis involves the computation of the eigenvalues of the nonsymmetric matrix
Y(#), which solves the linearized equations of motion (10) for Hamiltonian flows
or (13) for maps. These eigenvalues are real or come in pairs of complex conju-
gate pairs and, in general, they are not directly related to the LCEs which are real
numbers.

An important property of the LCEs is that they are constant in a connected chaotic
domain. This is due to the fact that every nonperiodic orbit in the same connected
chaotic domain covers densely this domain, thus, two different orbits of the same
domain are in a sense dynamically equivalent. The unstable periodic orbits in this
chaotic domain have in general LCEs that are different from the constant LCEs of
the nonperiodic orbits. This is due to the fact that the periodic orbits do not visit
the whole domain, thus, they cannot characterize its dynamical behavior. In fact,
different periodic orbits have different LCEs.

5 The Maximal LCE

From this point on, in order to simplify our notation, we will not explicitly write the
dependence of the LCEs on the specific point x € S. So, in practice, considering
that we are referring to a specific point x € S, we denote by x; the LCEs of order 1
and by Xi(p ) the LCEs of order p.
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For the practical determination of the chaotic nature of orbits a numerical com-
putation of the mLCE x; can be employed. If the studied orbit is regular x; = 0,
while if it is chaotic x; > 0, implying exponential divergence of nearby orbits. The
computation of the mLCE has been used extensively as a chaos indicator after the
introduction of numerical algorithms for the determination of its value at late 1970s
[10, 99, 8, 34, 14].

Apart from using the mLCE as a criterion for the chaoticity or the regularity of
an orbit its value also attains a “physical” meaning and defines a specific timescale
for the considered dynamical system. In particular, the inverse of the mLCE, which
is called Lyapunov time,

1
=—, (51
X1
gives an estimate of the time needed for a dynamical system to become chaotic and

in practice measures the time needed for nearby orbits of the system to diverge by e
(see e.g, [30, p. 508]).

5.1 Computation of the mLCE

The mLCE can be computed by the numerical implementation of (40). In Sect. 4.2
we showed that a random choice of the initial deviation vector w(0) € 7S leads to
the numerical computation of the mLCE. We recall that the deviation vector w(t) at
time ¢ > 0 is determined by the action of the operator dy®' on the initial deviation
vector w(0) according to (7)

Ww(t) = dy®' W(0). (52)

This equation represents the solution of the variational equations (8) or the evolution
of a deviation vector under the action of the tangent map (11) and takes the form
(9) and (12), respectively. We emphasize that, both the variational equations and the
equations of the tangent map are linear with respect to the tangent vector w, i.e.,

dx®' (aw) = ady®'w, forany a € R. (53)

In order to evaluate the mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of a deviation
vector w from this orbit with initial condition w(0). In the case of a Hamiltonian
flow (continuous time) we solve simultaneously the Hamilton equations of motion
(2) for the time evolution of the orbit and the variational equations (8) for the time
evolution of the deviation vector. In the case of a symplectic map (discrete time)
we iterate the map (4) for the evolution of the orbit simultaneously with the tangent
map (11), which determines the evolution of the tangent vector. The mLCE is then
computed as the limit for t+ — oo of the quantity
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1 dyy®@' w(0 1 t
X0 = L ldxy@" w(O)| _ L lw(®)l] (54)
t lw(O)]| r wO)’
often called finite time mLCE. So, we have
—00

The direct numerical implementation of (54) and (55) for the evaluation of x;
meets a severe difficulty. If, for example, the orbit under study is chaotic, the norm
|lw(?)|| increases exponentially with increasing time ¢, leading to numerical over-
flow, i.e., ||w(z)] attains very fast extremely large values that cannot be represented
in the computer. This difficulty can be overcome by a procedure which takes advan-
tage of the linearity of dy®' (53) and of the composition law (22). Fixing a small
time interval T we express time ¢ with respectto t ast = kt, k = 1,2, .... Then
for the quantity X (¢) we have

1 k
Xotkey = 1 IWEO

k [w(O)l

_ < Wkl Ilw(tk = Do)l [[wCo)] |IW(T)I|>
kt w(k — Do)l w(k —2)D)| W)l [Iw(O)]]
k
1 _iwGoll
= =
ke ; IIw(@ — Dol
k .
dy@'" w(0
Xy(kr) = = 3 1n 1 EOPZWOU_ (56)
ket = ||y @ w(O)|
Denoting by Dy the norm of the initial deviation vector w(0)
Dy = [Iw(0)],
we get for the evolved deviation vector at time t = k1
dyy®@* W(0) = dyp®@ " w(0) d¢(. b (O))¢T(dx(0)¢(i’l)fw(0))
(5:3) ||dx(0)q5(l—l)1 W(O)” d et r( dx(O)@(f—l)TW(O) >:>
Do @ x0) ||dx(0)<15("*1)’ w(0)|l 0
. T dx(0)¢ w(0)
dyoy@ " w(0) -1 () P <\|dxm)d5“"" W)l DO) 57)
ldxoy@ """ WOl Dy '

Let us now denote by

dy0y®@" " VTW(0)

w((i — Dr) = —
l|dx0y@“ " w(O)|

0
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the deviation vector at point @ ~17(x(0)) having the same direction with w((i —1)7)
and norm Dy, and by D; its norm after its evolution for T time units

D; = |ldgu-r, o WG — DT

(x(0))

Using this notation we derive from (57)

dy0 @' T w(0 D;
[ x(0) ('_1)?]( )l =In— =Ingy, (58)
lldy0y® =17 w(0)]| Do

with o; being the local coefficient of expansion of the deviation vector for a
time interval of length t when the corresponding orbit evolves from position
@ =D7(x(0)) to position @'7(x(0)) (Ine; /7 is also called stretching number [135],
[30, p. 257]).

From (55), (56), and (58) we conclude that the mLCE y; can be computed as

k
1 D;
= lim X = lim — In— = lim 1
Jim Xar) = lim 222 In T, = lim i Z nar. (69
Since the initial norm Dy can have any arbitrary value, one usually sets it to Dy = 1.
Equation (59) implies that practically y; is the limit value, for t — oo, of the mean
of the stretching numbers along the studied orbit [14, 57, 135].

5.2 The Numerical Algorithm

In practice, for the evaluation of the mLCE we follow the evolution of a unitary
initial deviation vector W(0) = w(0), ||[w(0)|| = Dy = 1 and every r = t time units
we replace the evolved vector w(kt), k = 1,2, ..., by vector W(kt) having the same
direction but norm equal to 1 (||W(kt)|| = 1). Before each new renormalization the
corresponding o, is computed and y; is estimated from (59).

More precisely at t = 7 we have oy = ||w(7)||. Then we define a unitary vector
w(7) by renormalizing w(7) and using it as an initial deviation vector we evolve it
along the orbit from x(7) to x(27) according to (52), having w(2t) = dyq®@* W(7).
Then we define o, = ||w(27)| and we estimate x; (see Fig. 6). We iteratively
apply the above-described procedure until a good approximation of x; is achieved.
The algorithm for the evaluation of the mLCE y; is described in pseudo-code in
Table 1.

Instead of utilizing the variational equations or the tangent map for the evolution
of a deviation vector in the above-described algorithm, one could integrate (2) or
iterate (4) for two orbits starting nearby and estimate w(z) by difference. Indeed, this
approach, influenced by the rough idea of divergence of nearby orbits introduced
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Vi(0)

x(0)

Fig. 6 Numerical scheme for the computation of the mLCE x;. The unitary deviation vector
w((i—1)1),i =1,2,...,is evolved according to the variational equations (8) (continuous time) or
the equations of the tangent map (11) (discrete time) for # = 7 time units. The evolved vector w(i )
is replaced by a unitary vector w(it) having the same direction with w(i7). For each successive
time interval [(i — 1)t, i7] the quantity o; = ||w(i7)| is computed and y; is estimated from (59)

Table 1 The algorithm for the computation of the mLCE x; as the limit for 1 — oo of X(¢)
according to (59). The program computes the evolution of X;(¢) as a function of time ¢ up to a
given upper value of time ¢+ = Tj, or until X,(z) attains a very small value, smaller than a low
threshold value X,

Input: 1. Hamilton equations of motion (2) and variational equations (8), or
equations of the map (4) and of the tangent map (11).
2. Initial condition for the orbit x(0).
3. Initial unitary deviation vector w(0).
4. Renormalization time 7.
5. Maximal time: T); and minimum allowed value of X;(z): X1,,.

Step 1 Set the stopping flag, SF < 0, and the counter, k < 1.

Step 2 While (SF = 0) Do
Evolve the orbit and the deviation vector from time t = (k — 1)t
tot = kt,i. e. Compute x(k7) and w(kT).

Step 3 Compute current value of o = ||w(k7)]|.

Compute and Store current value of X(kt) = ﬁ Zf;] Inc;.
Step 4 Renormalize deviation vector by Setting w(kt) < w(kt)/o.
Step 5 Set the counter k < k + 1.
Step 6 If [(kt > Ty) or (X1((k — 1) < X41,,)] Then

Set SF <« 1.
End If
End While

Step 7 Report the time evolution of X (¢).

in [72], was initially adopted for the computation of the mLCE [10, 99, 8]. This
technique was abandoned after a while as it was realized that the use of explicit
equations for the evolution of deviation vectors was more reliable and efficient [34,
119, 14], although in some cases it is used also nowadays (see, e.g., [145]).
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5.3 Behavior of X,(t) for Regular and Chaotic Orbits

Let us now discuss in more detail the behavior of the computational scheme for the
evaluation of the mLCE for the cases of regular and chaotic orbits.

The LCE of regular orbits vanish [10, 23] due to the linear increase with time
of the norm of deviation vectors. We illustrate this behavior in the case of an ND
Hamiltonian system, but a similar analysis can be easily carried out for symplectic
maps. In such systems regular orbits lie on N-dimensional tori. If such tori are
found around a stable periodic orbit, they can be accurately described by N formal
integrals of motion in involution, so that the system would appear locally integrable.
This means that we could perform a local transformation to action-angle variables,
considering as actions Ji, Ja, ..., Jy the values of the N formal integrals, so that
Hamilton’s equations of motion, locally attain the form

Ji=0, 6 =wi(Ji,Jo,...,Jy), i=1,2,...,N. (60)
These equations can be easily integrated to give
Ji(t) = Jio, 6i(t) =060 + w;(Ji0, J20, ---, INo)Et, i =1,2,..., N,
where J;g, 6;0,1 = 1,2, ..., N are the initial conditions of the studied orbit.
By denoting as &;, n;,i = 1,2, ..., N small deviations of J; and 6; respectively,

the variational equations (8) of system (60) describing the evolution of a deviation
vector are as follows:

N

él‘ =0, 7'71‘ =Za),~j 'Ejv i = 1,2,...,N,
j=1
where
ow;
a)l]__l ) 1J=172" 7N’
aJ; T
and Jo = (J10, S0, - .., Jyo) = constant represents the N—dimensional vector of

the initial actions. The solution of these equations is

&i(r) = &(0) 19 N 6D
i=1,2,...,N.

mi(0) =m0 + [ 2, 08,0 1

From (61) we see that an initial deviation vector w(0) with coordinates &;(0),
i = 1,2,..., N in the action variables and 1,;(0), i = 1,2,..., N in the angles,
ie., w(0) = (£1(0), 6(0), ..., &n(0), n1(0), n2(0), ..., nn(0)), evolves in time in
such a way that its action coordinates remain constant, while its angle coordinates
increase linearly in time. This behavior implies an almost linear increase of the norm
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of the deviation vector. To see this, let us assume that vector w(0) has initially unit
magnitude, i.e.,

N N
Y EO+Y O =1
i=1 i=1

whence the time evolution of its norm is given by

5 1/2

N N N N
wl =31+ | D[ D wu&O | |2+ [ 2D [ m© ) wy&©) | |
i=1 j=1

i=1 \ j=I
This implies that the norm for long times grows linearly with #:
W)l o 1. (62)

So, from (54) we see that for long times X;(¢) is of the order O(In¢/t), which
means that X;(¢) tends asymptotically to zero, as t — oo like ¢~!. This asymptotic
behavior is evident in numerical computations of the mLCE of regular orbits, as we
can see, for example, in the left panel of Fig. 2.

The asymptotic behavior of X;(¢) for regular orbits, described above, represents
a particular case of a more general estimation presented in [63]. In particular, Gold-
hirsch et al. [63] showed that, in general, after some initial transient time the value
of the mLCE y; is related to its finite time estimation by

b
Xi(0) = 1 + +f“), (63)

where b is a constant and z(¢) is a “noise” term of zero mean. According to their
analysis, this approximate formula is valid for both regular and chaotic orbits. It is
easily seen that from (63) we retrieve again the asymptotic behavior X;(¢) oc ¢!
for the case of regular orbits (x; = 0).

In the case of chaotic orbits the variation of X(¢) is usually irregular for rela-
tively small 7 and only for large ¢ the value of X (¢) stabilizes and tends to a constant
positive value which is the mLCE ;. If, for example, the value of y; is very small
then initially, for small and intermediate values of ¢, the term proportional to ¢!
dominates the r.h.s. of (63) and X(¢) o t~'. As t grows the significance of term
(b + z(t))/t diminishes and eventually the value of x; becomes dominant and X (¢)
stabilizes. It becomes evident that for smaller values of x; the larger is the time
required for X(¢) to reach its limiting value, and consequently X () behaves as in
the case of regular orbits, i.e., X(¢) o t~! for larger time intervals. This behavior
is clearly seen in Fig. 7 where the evolution of X(#) of chaotic orbits with small
mLCE is shown. In particular, the values of the mLCE are x; ~ 8 x 1073 (left
panel) and x; ~ 1.6 x 1077 (right panel). In both panels the evolution of X, (z) of
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Fig. 7 Evolution of X(¢) (denoted as L) with respect to the discrete time ¢ (denoted as N) in
log—log scale for regular (grey curves) and chaotic (black curves) orbits of the 4d map (16) (left
panel) and of a 4d map composed of two coupled 2d standard maps (right panel) (see [122] for
more details). For regular orbits X;(¢) tends to zero following a power law decay, X, () o< t~!.
For chaotic orbits X () exhibits for some initial time interval the same power law decay before
stabilizing to the positive value of the mLCE x;. The length of this time interval is larger for
smaller values of x;. The chaotic orbits have x; ~ 8 x 1073 (left panel) and x; ~ 1.6 x 10~/
(right panel) (after [122])

regular orbits (following the power law oc t~!) is also plotted in order to facilitate
the comparison between the two cases.

6 Computation of the Spectrum of LCEs

While the knowledge of the mLCE y; can be used for determining the regular
(x1 = 0) or chaotic (x; > 0) nature of orbits, the knowledge of part, or of the whole
spectrum of LCEs, provides additional information on the underlying dynamics and
on the statistical properties of the system and can be used for measuring the fractal
dimension of strange attractors in dissipative systems.

In Sect. 4.5 it was stated that for Hamiltonian systems the existence of an integral
of motion results to a pair of zero values in the spectrum of LCEs. As an example of
such case we refer to the Hamiltonian system studied in [12]. This system has one
more integral of motion apart from the Hamiltonian function and so four LCEs were
always found to be equal to zero. Thus, the determination of the number of LCEs
that vanish can be used as an indicator of the number of the independent integrals
of motion that a dynamical system has.

It has been also stated in Sect. 4.5 that the spectrum of the LCEs of orbits in
a connected chaotic region is independent of their initial conditions. So, we have
a strong indication that two chaotic orbits belong to connected chaotic regions if
they exhibit the same spectrum. As an example of this situation we refer to the case
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studied in [3] of two chaotic orbits of a 16D Hamiltonian system having similar
spectra of LCEs but very different initial conditions.

Vice versa, the existence of different LCEs spectra of chaotic orbits provides
strong evidence that these orbits belong to different chaotic regions of the phase
space that do not communicate. In [14] two chaotic orbits, previously studied in
[34], were found to have significantly different spectra of LCEs and they were
considered to belong to different chaotic regions which were called the “big” (cor-
responding to the largest x;) and the “small” chaotic sea. It is worth mentioning
that the numerical results of [14] suggested the possible existence of an additional
integral of motion for the “small” chaotic sea, since x, seemed to vanish. This
assumption was in accordance to the results of [34] where such an integral was
formally constructed.

The spectrum of LCEs is also related to two important quantities namely, the
metric entropy, also called Kolmogorov—Sinai (KS) entropy h, and the information
dimension Dj, which are trying to quantify the statistical properties of dynamical
systems. For the explicit definition of these quantities, as well as detailed discussion
of their relation to the LCEs the reader is referred, for example, to [9, 46, 54, 44]
[92, pp. 304-305] for the KS entropy and to [79, 46, 47, 66, 44] for the information
dimension.

In particular, Pesin [106] showed that under suitable smoothness conditions the
relation between the KS entropy 4 and the LCE:s is given by

h:/M S x| du.

Xi(x)>0

where the sum is extended over all positive LCEs and the integral is defined over a
specified region M of the phase space S.

Kaplan and Yorke [79] introduced a quantity, which they called the Lyapunov
dimension

/ Xi
Dy = j+ == (64)
[Xj+1]

where j is the largest integer for which y; + x» + ... + x; > 0. The Kaplan—
Yorke conjecture states that the information dimension D; is equal to the Lyapunov
dimension Dy, i.e.,

Dy =Dy, (65)

for a typical system, and thus, it can be used for the determination of the frac-
tal dimension of strange attractors. The meaning of the word “typical” is that it
is not hard to construct examples where (65) is violated (see, e.g., [47]). But the
claim is that these examples are pathological in that the slightest arbitrary change
of the system restores the applicability of (65) and that such violation has “zero
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probability” of occurring in practice. The validity of the Kaplan—Yorke conjecture
has been proved in some cases [146, 87] although a general proof has not been
achieved yet. We note that in the case of a 2ND conservative system Dy, is equal to
the dimension of the whole space, i.e., D = 2N, because j = 2N in (64) since
21251 xi = 0 according to (47).

So, it becomes evident that developing an efficient algorithm for the numerical
evaluation of few or of all LCEs is of great importance for the study of dynamical
systems. In this section we present the different methods developed over the years
for the computation of the spectrum of LCEs, focusing on the method suggested by
Benettin et al. [14], the so-called standard method.

6.1 The Standard Method for Computing LCEs

The basis for the computation of few or even of all LCEs is Theorem 3, which
states that the computation of a p-LCE from (44), considering a random choice of p
(1 < p <2N) linearly independent initial deviation vectors, leads to the evaluation
of the p-mLCE Xfp ) which is equal to the sum of the p largest 1-LCEs (46).

In order to evaluate the p-mLCE of an orbit with initial condition x(0), one has
to follow simultaneously the time evolution of the orbit itself and of p linearly inde-
pendent deviation vectors with initial conditions w(0), w2(0), ..., w,(0) (using
the variational equations (8) or the equations of the tangent map (11)). Then, the
p-mLCE is computed as the limit for # — oo of the quantity

1 vol, (deyoy®@' wi(0), dy0y®' W2(0), - - - , dy0y®' W, (0
X0y = L YO (dxo) 100), dx() 2(0), - ) »(0))
t vol, (wl(O), w2(0), .. w,,(O))
_ L Iw@awa A awol 1AL f<f>|| (66)
t wi0) AW2(0) A AW,O)] ||/\
which is also called the finite time p-mLCE. So we have
0" = x4 a2 g = lim XP0). (67)
We recall that the quantity vol, (wl, Wo, .o, W p) appearing in the above definition
is the volume of the p-parallelogram having as edges the vectors wi, wa, --- , W,

(see (106) and (105) in Appendix).

The direct numerical implementation of (66) and (67) faces one additional dif-
ficulty apart from the fast growth of the norm of deviation vectors discussed in
Sect. 5.1. This difficulty is due to the fact that when at least two vectors are involved
(e.g., for the computation of sz) ), the angles between their directions become too
small for numerical computations.

This difficulty can be overcome on the basis of the following simple remark:
an invertible linear map, as dx(o)q)’ , maps a linear p-dimensional subspace onto
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a linear subspace of the same dimension, and the coefficient of expansion of any
p-dimensional volume under the action of any such linear map (for example,
IAL; wi@)]| /|| AL, wi(0)| in our case) does not depend on the initial volume
[14]. Since the numerical value of H /\f’:l w;(0) ” does not depend on the choice of
the orthonormal basis of the space (see Appendix for more details), in order to show
the validity of this remark we will consider an appropriate basis which will facilitate
our calculations.

In particular, let us consider an orthonormal basis {él, €,..., ép} of the
p-dimensional space E? C Ty)S spanned by {w;(0), w2(0), ..., w,(0)}. This
basis can be extended to an orthonormal basis of the whole 2/N-dimensional space
{él, €, ...,8), 81, ..., éZN} and E? C Ty)S can be written as the direct sum of
E? and of the (2N — p)-dimensional subspace E’ spanned by {&,.1, ..., &y}

/TX(())S =FE? @E/.

Consider also the 2N x p matrix W(0) having as columns the coordinates of vec-

tors w;(0), i = 1,2,..., p with respect to the complete orthonormal basis & s
j=1,2,...,2N, in analogy to (102). Since w;(0) € E? this matrix has the form
W(0) = [ WO ] ,
O(ZNfP)Xp

where W(O) is a square p x p matrix and Oy —_p)x is the (2N — p) x p matrix with
all its elements equal to zero. Then, according to (105) and (106) the volume of the
initial p-parallelogram is

= |det W(0)|, (68)

P
A\ wi0)
i=1

since det WT(O) = det \7\”(0) for the square matrix \TV(O).

Each deviation vector is evolved according to (7) and it can be computed through
(9) or (12), with Y(z) being the 2N x 2N matrix representing the action of dy)®'.
By doing a similar choice for the basis of the 7 - (X(O))S space, (102) gives for the
evolved vectors

[Wi) wa@) - W) ] =[& & - &,] Y1) - W(O)=[& & ---&,]  W().
Writing Y(¢) as
Y(t)=[Yi() Yan) ],
where Y(¢) is the 2N x p matrix formed from the first p columns of Y(¢) and Y,(¢)
is the 2N x (2N — p) matrix formed from the last 2N — p columns of Y(z), W(¢)

assumes the following form:

W) = Y1) - W(0).
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Then from (105) we get

= \/det (WT(O) Y)Y (1) - W(O))

V4
J\wi)
i=1

= \/ det W' (0) det (Y] (1) - Y, (1)) det W(0)

= | det V~V(0)|\/ det (Y1) - Y1 (). (69)

Thus, from (68) and (69) we conclude that the coefficient of expansion

IAZ wio] Jaet (1

” AL w,-(O)|| det (Y1 ) Yl(t))

does not depend on the initial volume but it is an intrinsic quantity of the subspaces
defined by the properties of dy)®'. Note that in the particular case of p = 2N
the coefficient of expansion is equal to | det Y(¢)| in accordance to (43). An alter-
native way of expressing this property is that, for two sets of linearly independent
vectors {Wl(()), wy(0), ..., w,,(O)} and {fl(O), £,00), ..., fp(O)} spanning the same
p-dimensional subspace of TS, the relation

INZ wi] _ AL G
INZ w@f - AL O]

(70)

holds [119].

Let us now describe the method for the actual computation of the p-mLCE. Sim-
ilarly to the computation of the mLCE we fix a small time interval t and define
quantity XP(¢) (66) as

k p it k
1 I A\j=1 dx)@" w;0)]l 1
X(P)(k-[) — E In /p\j—l x(0) — J — § In yi(P)’ (71)
kT = I N\j=i dxo® w; (0l T

where yi(” ) ,i1=1,2,...,1s the coefficient of expansion of a p-dimensional volume

fromt = (i — 1)t tot = it. According to (70) yi(p ) can be computed as the coef-

ficient of expansion of the p-parallelogram defined by any p vectors spanning the
same p-dimensional space. A suitable choice for this set is to consider an orthonor-
mal set of vectors {\?vl((i — D), Wo(i — D7), ..., W (G — 1)1’)} giving to (71) the
simplified form

k k P
1 1
(p) _ (p) _ . T & (4
x (kt) = _kt ig:l In Yy, = _k‘[ i:él In j/:\ldx((,_l)r)¢ W]((l — Do) . (72)
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Thus, from (67) and (72) we get

k
1
» . 2: »)
X1P=X1+X2+...+Xp=kli>rgloa'lln‘}/l_p (73)
i=

for the computation of the p-mLCE. This equation is valid for I < p < 2N since
in the extreme case of p = 1 it is simply reduced to (59) with o; = yl.(l). In order
to estimate the values of x;,7 = 1,2, ..., p, which is our actual goal, we compute
from (73) all the Xl(p ) quantities and evaluate the LCEs from

Xi = Xl(i) — Xl("fl), i=2,3,...,p, (74)

with " = x; [119].

Benettin et al. [14] noted that the p largest 1-LCEs can be evaluated at once by
computing the evolution of just p deviation vectors for a particular choice of the
orthonormalization procedure, namely performing the Gram-Schmidt orthonormal-
ization method.

Let us discuss the Gram-Schmidt orthonormalization method in some detail. Let
w;(it), j = 1,2,..., p be the evolved deviation vectors W;((i — 1)7) from time
t = (i — 1)t tot = it. From this set of linearly independent vectors we construct a
new set of orthonormal vectors W;(i7) from equations

. . . A . u;(it)
w (i) =wi(it), yiu = [lmGo)ll, wi(it) = 1',
W(it) = Wa(it) — (Walit), Wi(i7)) W (iT),
o = ool Watir) = 202,
Vai (75)

w3(it) = wa(it) — (W3(it), Wi 7)) Wi (it) — (W3(iT), Wa(iT))Wa(iT),

. . w3 (it)
v = [lwmGr)|l, W3(it) = ,
3

which are repeated up to the computation of W, (i 7). We remark that (w, u) denotes
the usual inner product of vectors w, u. The general form of the above equations,
which is the core of the Gram-Schmidt orthonormalization method, is

k—1
w(iT) =wiit) — Y (WeliT), W (iT)W,(iT),
j=! (76)
v =lugoll, Witir) = 20T
Vki

forl <k <p.
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As we will show in Sect. 6.3 the volume of the p-parallelogram having as edges
the vectors dyi—1)n)@" W;((i — Dt) = w;(it), j = 1,2,..., p is equal to the
volume of the p-parallelogram having as edges the vectors u;(i7), i.e.,

4
/\dx«i—l)r)@TVAVj((i—l)r) = /\uj(ir) ) (77)
Jj=1 j=1

Since vectors u;(it) are normal to each other, the volume of their p-parallelogram
is equal to the product of their norms. This leads to

P P
Nwiio)| =[] (78)
j=1

Then, (73) takes the form

1
(p) i
XIP_X1+X2+...+Xp:kIl)I{:OEZ:1n l—[yjl

Using now (74) we are able to evaluate the 1-LCE x, as

" _ D _ L Zk In Hf 17/]: Zl
= = m — = n
Xp T X5 kioo kT 4 ; 1_[ i k—>oo k‘L’ Ypi-
=

In conclusion we see that the value of the 1-LCE x, with 1 < p < 2N can be
computed as the limiting value, for 1 — oo, of the quantity

k
1
X, (k1) = - Zln Vpis
i=1

ie.,
1k
Xp = Jim X,(kt) = lim -— > Iny,, (79)
i=1
where y;;, j = 1,2,...,p,i = 1,2,... are quantities evaluated during the suc-

cessive orthonormalization procedures ((75) and (76)). Note that for p = 1 (79) is
actually (59) with «; = yy;.
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6.2 The Numerical Algorithm for the Standard Method

In practice, in order to compute the p largest 1-LCEs with 1 < p < 2N we fol-
low the evolution of p initially orthonormal deviation vectors W;(0) = w;(0) and
every t = t time units we replace the evolved vectors w;(k7), j = 1,2,..., p,
k =1,2,... by a new set of orthonormal vectors produced by the Gram—Schmidt
orthonormalization method (76). During the orthonormalization procedure the quan-
tities y;x are computed and xi, x2, ..., X, are estimated from (79). This algorithm
is described in pseudo-code in Table 2 and can be used for the computation of few or
even all 1-LCEs. A Fortran code of this algorithm can be found in [144], while [117]
contains a similar code developed for the computer algebra platform “Mathematica”
(Wolfram Research Inc.).

Let us illustrate the implementation of this algorithm in the particular case of
the computation of the two largest LCEs x; and x,. As shown in Fig. 8 we start
our computation with two orthonormal deviation vectors w;(0) and w,(0) which
are evolved to wi(t), wa(t) at t = 7. Then according to the the Gram-Schmidt
orthonormalization method (75) we define vectors u;(t) and u,(7). In particular,

Table 2 The standard method. The algorithm for the computation of the p largest LCEs
X1» X2+ - - -» Xp as limits for # — oo of quantities X;(¢), X2(?), ..., X,(¢) (71), according to (79).
The program computes the evolution of X(¢), X(¢), ..., X,(¢) with respect to time ¢ up to a
given upper value of time t = T, or until any of the quantities X(¢), X2(¢), ..., X, (¢) attain a
very small value, smaller than a low threshold value X,,

Input: 1. Hamilton equations of motion (2) and variational equations (8), or

equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.

3. Initial condition for the orbit x(0).

4. Initial orthonormal deviation vectors w(0), wz(0), ..., w,(0).

5. Renormalization time .

6. Maximal time: T); and minimum allowed value of X(7),
Xo(t), .. Xp(0): X

Step 1 Set the stopping flag, SF < 0, and the counter, k < 1.
Step 2 While (SF = 0) Do
Evolve the orbit and the deviation vectors from time t = (k — 1)t
tot = kt,i. e. Compute x(k7) and w;(kt), wa(kT), ..., W,(kT).
Step 3 Perform the Gram-Schmidt orthonormalization procedure
according to (76):
Dofor j =1top
Compute current vectors u;(k7) and values of y ;.
Compute and Store current values of X ;(kt) = kir Zf‘: Inyj.
Set w; (k1) < u;(kT)/Vji.
End Do
Step 4 Set the counter k < k + 1.
Step 5 If [(kt > Ty) or (Any of X;((k — 1) < X,, j =1,2,..., p)] Then
Set SF « 1.
End If
End While
Step 6 Report the time evolution of X(¢), X»(1), ..., X, (t).
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u(=w (1) AH]

-——’--—-

W

y: i wl(r)
Y s —

x(v) =

WOwo/ 4w

W ,(0)=w(0) u (™7
x(0)

Fig. 8 Numerical scheme for the computation of the two largest LCEs x;, x» according to the
standard method. The orthonormal deviation vectors w;(0), w»(0) are evolved according to the
variational equations (8) (continuous time) or the equations of the tangent map (11) (discrete time)
for t = t time units. The evolved vectors w; (7), wa(7), are replaced by a set of orthonormal vectors
W1 (1), W2(7), which span the same 2-dimensional vector space, according to the Gram-Schmidt
orthonormalization method (76). Then these vectors are again evolved and the same procedure is
iteratively applied. For each successive time interval [(i — 1)7,it], i = 1,2,..., the quantities
yii = [lwi(@7)ll, y2i = |lua(it)| are computed and y;, x» are estimated from (79)

u;(7) coincides with w;(t) while, uy(7) is the component of vector w,(t) in the
direction perpendicular to vector u;(r). The norms of these two vectors define
the quantities y;; = [[ui(7)]l, y21 = |lua(7)|| needed for the estimation of xj,
x2 from (79). Then vectors W;(7) and W,(7) are defined as unitary vectors in the
directions of u;(7) and u,(7), respectively. Since the unitary vectors W;(t), W»(7)
are normal by construction they constitute the initial set of orthonormal vectors
for the next iteration of the algorithm. From Fig. 8 we easily see that the paral-
lelograms defined by vectors w(t), w,(t) and by vectors u;(r) and u,(t) have
the same area. This equality corresponds to the particular case p = 2,i = 1 of
(77). Evidently, since vectors u;(7), uy(7) are perpendicular to each other, we have
vol, (ui(7), up(t)) = Y1121 in accordance to (78).

6.3 Connection Between the Standard Method
and the QR Decomposition

Let us rewrite (75) of the Gram-Schmidt orthonormalization procedure, by solving
them with respectto w;(it), j =1,2,..., p,with1 < p <2N

wi(it) = yWi(it)
wa(it) = (Wi (iT), w2 (iT)) W (iT) 4 y2i Wa(iT)

W3(iT) = (W1(T), W3(iT))W1(iT) + (Wo(iT), W3(i D) Wa(iT) + yzWa(ir) (80
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and get the general form
k-1
wi(it) = Z(wj(ir), WG T)W;(T) + i Wi(it), k=1,2,..., p.
j=1
This set of equations can be rewritten in matrix form as follows:

[Wl(i‘[) wo(iT) --- W,,(ir)] = [v"vl(ir) wo(it) --- \?v,,(ir)] .

Vi (Wi(it), wa(it)) (Wi(iT), w3(iT)) - -+ (Wi(iT), wp(iT))

0 Vai (Wa(it), w3(it)) -+ (Wa(iT), Wp(iT))
0 0 Vai - (W3(iT), Wy(iT))
6 0 0 V;n‘

So the 2N x p matrix W(it) = [w;(it) W2(iT) - -- W,(i7) ], having as columns

the linearly independent deviation vectors w;(it), j = 1,2, ..., p is written as a
product of the 2N x p matrix Q = [Wl(ir) Wo(it) -+ - W,(iT) ], having as columns
the coordinates of the orthonormal vectors W;(it), j = 1,2, ..., p and satisfying

Q'Q = I,,, and of an upper triangular p x p matrix R(it) with positive diagonal
elements

Rjj(if):)/j[, j:1,2,...,p, l:1,2,

From (80) we easily see that (W;(it), w;(it)) = y;; and so matrix R(it) can be
also expressed as

(Wi(it), wi(it)) (Wi(iT), wa(iT)) - (W1(iT), W, (iT))

. 0 (Wa(iT), Wa(iT)) - -+ (Wa(iT), W,(iT))
R(it) = : : :

6 0 (‘?v,,(ir),.w,,(ir))

The above procedure is the so-called QR decomposition of a matrix. In practice,
we proved by actually constructing the Q and R matrices via the Gram-Schmidt
orthonormalization method, the following theorem.

Theorem 4. Let A be an n x m (n > m) matrix with linearly independent columns.
Then A can be uniquely factorized as

A=Q-R,

where Q is an n x m matrix with orthogonal columns, satisfying Q'Q = I, and R
is an m x m invertible upper triangular matrix with positive diagonal entries.
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Although we presented the QR decomposition through the Gram—Schmidt
orthonormalization procedure this decomposition can also be achieved by others,
computationally more efficient techniques like for example the Householder trans-
formation [62] [107, Sect. 2.10].

Observing that the quantities y;;, j = 1,2..., p,i = 1,2..., needed for the
evaluation of the LCEs through (79) are the diagonal elements of R(it) we can
implement a variant of the standard method for the computation on the LCEs, which
is based on the QR decomposition procedure [44, 62, 36, 40]. Similarly to the pro-
cedure followed in Sect. 6.2, in order to compute the p (1 < p < 2N) largest LCEs
we follow the evolution of p initially orthonormal deviation vectors w;(0) = w;(0),

j=1,2..., p, which can be considered as columns of a 2N x p matrix Q(0). Every
t = 1 time units the matrix W(it),i = 1,2, ..., having as columns the deviation
vectors

dxi—1yn@" Wi((i — D) =w;(it), j=1,2,...,p,

i.e., the columns of Q((i — 1)7) evolved in time interval [(i — 1)t, i7] by the action
of dy(i—1yry®", undergoes the QR decomposition procedure

W(it) = QGit) - R(it) (81)

and the new Q(i7) is again evolved for the next time interval [i 7, (i +1)t], and so on
and so forth. Then the LCEs are estimated from the values of the diagonal elements
of matrix R(i1) as

k
o1 .
xp = lim — 2_1: InR,,(i1). (82)

The corresponding algorithm is presented in pseudo-code in Table 3. From the
above-presented analysis it becomes evident that the standard method developed
by Shimada and Nagashima [119] and Benettin et al. [14] for the computation of
the LCEs is practically a QR decomposition procedure performed by the Gram—
Schmidt orthonormalization method, although the authors of these papers formally
do not refer to the QR decomposition. We note that both the standard method and
the QR decomposition technique presented here can be used for the computation of
part (p < 2N) or of the whole (p = 2N) spectrum of LCEs.

As a final remark on the QR decomposition technique let us show the validity
of (77) by considering the QR decomposition of matrix W(it) (81). According to
(105) and (106) we have
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Table 3 Discrete QR decomposition. The algorithm for the computation of the p largest LCEs
X1, X2+ - - -» Xp according to the QR decomposition method. The program computes the evolution
of X (1), X»(t), ..., X,(¢) with respect to time ¢ up to a given upper value of time ¢ = T), or until
any of the these quantities becomes smaller than a low threshold value X,

Input: 1. Hamilton equations of motion (2) and variational equations (8), or

equations of the map (4) and of the tangent map (11).

2. Number of desired LCEs p.

3. Initial condition for the orbit x(0).

4. Initial matrix Q(0) having as columns orthonormal deviation vectors
w1(0), w2(0), ..., w,(0).

5. Time interval T between successive QR decompositions.

6. Maximal time: T),; and minimum allowed value of X(¢),
Xo(t), ..., Xp(0): X

Step 1 Set the stopping flag, SF < 0, and the counter, k < 1.

Step 2 While (SF = 0) Do
Evolve the orbit and the matrix Q((k — 1)7) from time t = (k — 1)T
tot = kt,i. e. Compute x(k7) and W(i 7).

Step 3 Perform the QR decomposition of W(it) according to (81):
Compute Q(kt) and R(kT).
Compute and Store current values of X ;(kt) = kif Zle InR;j;(i7),
ji=1L2...,p.

Step 4 Set the counter k < k + 1.

Step 5 If [(kt > Ty) or (Any of X;((k — D7) < X, j =1,2,..., p)] Then

Set SF « 1.
End If
End While
Step 6 Report the time evolution of X (t), X»(1), ..., X, (?).

P
A wjin)| = \/det (WTGit) - W(it))
j=1

= Jdet (R™(7) - Q") - QUir) - R(iv)

= \/detRT(ir)detR(ir) = |detR(i7)|

P P P
= HVji = 1_[ u;io)| = /\llj(if) ,
=1 =1 j=1

where the identities QTQ = I, and detR(it) = ]_[Jp.=1 ;i have been used.

6.4 Other Methods for Computing LCEs

Over the years several methods have been proposed and applied for computing the
numerical values of the LCEs. The standard method we discussed so far is the
first and probably the simplest method to address this problem. As we showed
in Sect. 6.3 the standard method, which requires successive applications of the
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Gram-Schmidt orthonormalization procedure, is practically equivalent to the QR
decomposition technique.

The reorthonormalization of deviation vectors plays an indispensable role for
computing the LCEs and the corresponding methods can be distinguished in discrete
and continuous methods. The discrete methods iteratively approximate the LCEs in
a finite number of (discrete) time steps and therefore apply to both continuous and
discrete dynamical systems [62, 36, 40]. The standard method and its QR decompo-
sition version are discrete methods. A method is called continuous when all relevant
quantities are obtained as solutions of certain ordinary differential equations, which
maintain orthonormality of deviation vectors continuously. Therefore such methods
can only be formulated for continuous dynamical systems and not for maps. The
use of continuous orthonormalization for the numerical computation of LCEs was
first proposed by Goldhirsch et al. [63] and afterward developed by several authors
[67, 62, 36, 40, 26, 110, 109, 94, 38].

Discrete and continuous methods are based on appropriate decomposition of
matrices performed usually by the QR decomposition or by the SVD procedure.
The discrete QR decomposition which has already been presented in Sect. 6.3 is
the most frequently used method and has proved to be quite efficient and reliable.
The continuous QR decomposition and methods based on the SVD procedure are
discussed in some detail at the end of the current section.

Variants of these techniques have been also proposed by several authors. Let us
briefly refer to some of them. Rangarajan et al. [110] introduced a method for the
computation of part or of the whole spectrum of LCEs for continuous dynamical
systems, which does not require rescaling and renormalization of vectors. The key
feature of their approach is the use of explicit group theoretical representations of
orthogonal matrices, which leads to a set of coupled ordinary differential equations
for the LCEs along with the various angles parameterizing the orthogonal matri-
ces involved in the process. Ramasubramanian and Sriram [109] showed that the
method is competitive with the standard method and the continuous QR decompo-
sition.

Carbonell et al. [20] proposed a method for the evaluation of the whole spectrum
of LCEs by approximating the differential equations describing the evolution of an
orbit of a continuous dynamical system and their associated variational equations by
two piecewise linear sets of ordinary differential equations. Then an SVD or a QR
decomposition-based method is applied to these two new sets of equations, allowing
us to obtain approximations of the LCEs of the original system. An advantage of
this method is that it does not require the simultaneous integration of the two sets of
piecewise linear equations.

Lu et al. [94] proposed a new continuous method for the computation of few or
of all LCEs, which is related to the QR decomposition technique. According to their
method one follows the evolution of orthogonal vectors, similarly to the QR method,
but does not require them to be necessarily orthonormal. By relaxing the length
requirement Lu et al. [94] established a set of recursive differential equations for
the evolution of these vectors. Using symplectic Runge—Kutta integration schemes
for the evolution of these vectors they succeeded in preserving automatically the
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orthogonality between any two successive vectors. Normalization of vectors occurs
whenever the magnitude of any vector exceeds given lower or upper bounds.

Chen et al. [24] proposed a simple discrete QR algorithm for the computation
of the whole spectrum of LCEs of a continuous dynamical system. Their method
is based on a suitable approximation of the solution of variational equations by
assuming that the Jacobian matrix remains constant over small integration time
steps. Thus, the scheme requires the numerical solution of the 2N equations of
motion but not the solution of the (2N)? variational equations since their solution is
approximated by an explicit expression involving the computed orbit. This approach
led to a computationally fast evaluation of the LCEs for various multidimensional
dynamical systems studied in [24].

It is worth mentioning here a completely different approach, with respect to the
above-mentioned techniques, which was developed at the early 1980s. In particular,
Frgyland proposed in [60] an algorithm for the computation of LCEs, which he
claimed to be quite efficient in the case of low-dimensional systems, and applied it
to the Lorenz system [61]. The basic idea behind this algorithm is the implemen-
tation of appropriate differential equations describing the time evolution of volume
elements around the orbits of the dynamical system, instead of defining these vol-
umes through deviation vectors whose evolution is governed by the usual variational
equations (8).

Apart from the actual numerical computation of the values of the LCEs, methods
for the theoretical estimation of those values have been also developed. For example,
Li and Chen [90] provided a theorem for the estimation of lower and upper bounds
for the values of all LCEs in the case of discrete maps. These results were also
generalized for the case of continues dynamical systems [91]. The validity of these
estimates was demonstrated by a comparison between the estimated bounds and
the numerically computed spectrum of LCEs of some specific dynamical systems
[90, 91].

Finally, let us refer to a powerful analytical method which allows one to verify
the existence of positive LCEs for a dynamical system, the so-called cone technique.
The method was suggested by Wojtkowski [142] and has been extensively applied
for the study of chaotic billiards [142, 143, 43, 97] and geodesic flows [41, 42, 19].
A concise description of the techniques can also be found in [7] [25, Sect. 3.13].
Considering the space R" a cone C,,, with y > 0, centered around R * is

Cy ={, v) e RF xR : Jlul < y|v]I} U (0,0). (83)

Note that {0} x R"~*  C, for every y. In the particular case of n = 3, k = 2,C,
corresponds to the usual 3-dimensional cone, while in the case of the plane (n = 2)
a cone C, around an axis L is the set of vectors of R? that make angle ¢ < arctan y
with the line L. In the case of Hamiltonian systems (and symplectic maps) a cone
can get the simple form 8q-§p > 0. Finding an invariant family of cones (83) in 7S,
which are mapped strictly into themselves by dy®’, guarantees that the values of the
n — k largest LCEs are positive [142, 143]. We emphasize that the cone technique is
not used for the explicit numerical computation of the LCEs, but for the analytical
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proof of the existence of positive LCEs, providing at the same time some bounds
for their actual values.

6.4.1 Continuous QR Decomposition Methods

The QR decomposition methods allow the computation of all or of the p (1 < p <
2N) largest LCEs. Let us discuss in more detail the developed procedure for both
cases following mainly [62, 36, 94].

Computing the complete spectrum of LCEs

The basic idea of the method is to avoid directly solving the differential equation
(10), by requiring Y(¢) = Q(#)R(7) where Q(¢) is orthogonal and R(¢) is upper tri-
angular with positive diagonal elements, according to Theorem 4. With this decom-
position, one can write (10) into the form

Q"Q +RR™' =Q"AQ,
where, for convenience, we dropped out the explicit dependence of the matrices on

time 7, i.e., Q(r) = Q. Since Q"Q is skew and RR ! is upper triangular, one reads
off the differential equations

Q=Qs, (84)
where S is the skew-symmetric matrix
S=Q"Q
with elements
Q'AQ); i>j
Sij = 0 i=j, i,j=12,...,2N, (85)
—(QTAQ)ji i<j

and

R,
R_"l =(Q'AQ),,, p,=1,2,...,2N (86)
pp

where R, are the diagonal elements of R. As we have already seen in (82) the
LCEs are related to the elements R, through

1
Xp = tl_l)l’& " InR,,(?).
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Thus, in order to compute the spectrum of LCEs only (84) and (86) have to be
solved simultaneously with the equations of motion (2). In practice, the knowledge
of matrix R is not necessary for the actual computation of the LCEs. Noticing that

-

R—”” =(Q"AQ),, =q, - Aq,, (87)
124

d
i (ln Rpp) =
where q, is the pth column vector of Q, we can compute the LCEs using
t

.1
xp = lim — [ q, Aqp,dt.

t—oo t 0

In practice, the LCEs can be estimated through a recursive formula. Let

1 kt
X,(kt) = k_r/O q, - Aqpdt.

Then we have

1 (k+1)t
X, (k+1D1)= —=— -Aqpdt
p (( + )t) (k + 1)_’: /(; dp q,

1

kt (k+1)t
- -Aq,dt + — -Aq,dt.
(k+1)T/o - A4y +(k+1>r/ 4 Ady

kt
Replacing the first integral with k7 X ,(kT) we get
k 1 (k+1)t
X, ((k+11)= ——X,(k —_— - Aq,dt, 88
Pt D) = S X0+ o [ 4 A 89

and
Xp = kli)rrolo X, (k7). (89)

The basic difference between the discrete QR decomposition method presented in
Sect. 6.3, and the continuous QR method presented here, is that in the first method
the orthonormalization is performed numerically at discrete time steps, while the
latter method seeks to maintain the orthogonality via solving differential equations
that encode the orthogonality continuously.

Computation of the p > 1 largest LCEs

If we want to compute the p largest LCEs, with 1 < p < 2N, we change (10) to

Y(r) = A1) Y() , with Y(0)'Y(0) = I, (90)
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where Y(7) is in practice, the 2N x p matrix having as columns the p deviation vec-
tors wi(t), wa(t), ..., w,(t). Applying Theorem 4 we get Y(¢) = Q(#)R(#) where
Q(¢) is orthogonal so that the identity Q"Q = I holds but not the QQ" = I. Then
from (90) we get

R = (Q"AQ-9S)R,

where S = QTQ is a p x p matrix whose elements are given by (85) for
i,j=1,2,..., p.Since R is invertible, from the relations

RR™' = QTAQ-S

and
Q=AQ-QRR', 1)
we obtain
Q=(A-QQ'A+QsQ")Q,
or
Q=H(Q,NQ, 92)
with

HQ, 1) =A — QQ'A + QSQ".

Notice that the matrix H(Q, #) in not necessarily skew-symmetric, and the term
QQ' is responsible for lack of skew-symmetry in H. Of course for p = 2N (92)
reduces to equation Q = QS (84). The evolution of the diagonal elements of R are
again governed by (86), but for p < 2N, and so the p largest LCEs can be computed
again from (87, 88, 89).

The main difference with respect to the case of the computation of the whole
spectrum is the numerical difficulties arising in solving (92), since H is not skew-
symmetric as was matrix S in (84). Due to this difference usual numerical integration
techniques fail to preserve the orthogonality of matrix Q.

A central observation of [36] is that the matrix H has a weak skew-symmetry
property. The matrix H is called weak skew-symmetric if

Q" (HQ, ) + H'(Q, 1)) Q =0, whenever Q"Q =1,.

A matrix H is said to be strongly skew-symmetric if it is skew-symmetric, i.e.,
H" = —H. Christiansen and Rugh [26] proposed a method according to which, the
numerically unstable equations (91) for the continuous orthonormalization could be
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stabilized by the addition of an appropriate dissipation term. This idea was also used
in [18], where it was shown that it is possible to reformulate (92) so that H becomes
strongly skew-symmetric and thus, achieve a numerically stable algorithm for the
computation of few LCEs.

6.4.2 Discrete and Continuous Methods Based on the SVD Procedure

An alternative way of evaluating the LCEs is obtained by applying the SVD pro-
cedure on the fundamental 2N x 2N matrix Y(¢), which defines the evolution of
deviation vectors through (9) and (12) for continuous and discrete systems, respec-
tively. According to the SVD algorithm a 2N x p matrix (p < 2N) B can be written
as the product of a 2N x p column-orthogonal matrix U, a p x p diagonal matrix F
with positive or zero elements 0;,i = 1, ..., p (the so-called singular values), and
the transpose of a p x p orthogonal matrix V:

B=U-F-V.
We note that matrices U and V are orthogonal so that
Ul u=v.v=1,. 93)

For a more detailed description of the SVD method, as well as an algorithm for its
implementation the reader is referred to [107, Sect. 2.6] and references therein. The
SVD is unique up to permutations of corresponding columns, rows, and diagonal
elements of matrices U, V, and F respectively. Advanced numerical techniques for
the computation of the singular values of a product of many matrices can be found
for example in [130, 101].

So, for the purposes of our study let

Y=U-F.V", (94)

where we dropped out as before, the explicit dependence of the matrices on time
t. In those cases where all singular values are different, a unique decomposition
can be achieved by the additional request of a strictly monotonically decreasing
singular value spectrum, i.e., o((t) > o2(t) > --- > oyn(t). Multiplying (94) with
the transpose

Y'=V.F'.U",
from the left we get
Y'Y=V .F'.U".U.F V' =V.diagc?(t))- V', (95)

where (93) has been used. From (95) we see that the eigenvalues of the diagonal
matrix diag(aiz(t)), i.e., the squares of the singular values of Y(¢), are equal to the
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eigenvalues of the symmetric matrix Y'Y. Then from point 4 of the MET we con-
clude that the LCEs are related to the singular values of Y(¢) through [62, 130]

1
xp = lim —Ino;(¥), p=1,2,...,2N,
t—o0 t

which implies that the LCEs can be evaluated as the limits for 1 — oo of the time
rate of the logarithms of the singular values.

Theoretical aspects of the SVD technique, as well as a detailed study of its ability
to approximate the spectrum of LCEs can be found in [101, 37, 38]. Continuous
[67, 62, 39] and discrete [130] versions of the SVD algorithm have been applied for
the computation of few or of all LCEs, although this approach is not widely used. A
basic problem of these methods is that they fail to compute the spectrum of LCEs if
it is degenerate, i.e., when two or more LCEs are equal or very close to each other,
due to the appearance of ill-conditioned matrices.

7 Chaos Detection Techniques

A simple, qualitative way of studying the dynamics of a Hamiltonian system is by
plotting the successive intersections of its orbits with a Poincaré surface of sec-
tion (PSS) (e.g., [72] [92, pp. 17-20]). Similarly, in the case of symplectic maps
one simply plots the phase space of the system. This qualitative method has been
extensively applied to 2d maps and to 2D Hamiltonians, since in these systems the
PSS is a 2-dimensional plane. In such systems one can visually distinguish between
regular and chaotic orbits since the points of a regular orbit lie on a torus and form a
smooth closed curve, while the points of a chaotic orbit appear randomly scattered.
In 3D Hamiltonian systems (or 4d symplectic maps), however, the PSS (or the phase
space) is 4-dimensional and the behavior of the orbits cannot be easily visualized.
Things become even more difficult and deceiving for multidimensional systems.
One way to overcome this problem is to project the PSS (or the phase space) to
spaces with lower dimensions (see, e.g., [139, 140, 105]) although these projections
are often very complicated and difficult to interpret. Thus, we need fast and accurate
numerical tools to give us information about the regular or chaotic character of
orbits, mainly when the dynamical system has many degrees of freedom.

The most commonly employed method for distinguishing between regular and
chaotic behavior is the evaluation of the mLCE x;, because if x; > 0 the orbit is
chaotic. The main problem of using the value of y; as an indicator of chaoticity
is that, in practice, the numerical computation may take a huge amount of time,
in particular for orbits which stick to regular ones for a long time before showing
their chaotic behavior. Since yx; is defined as the limit for t — oo of the quantity
X(t) (54), the time needed for X;(¢) to converge to its limiting value is not known
a priori and may become extremely long. Nevertheless, we should keep in mind that
the mLCE gives us more information than just characterizing an orbit as regular or
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chaotic, since it also quantifies the notion of chaoticity by providing a characteristic
timescale for the studied dynamical system, namely the Lyapunov time (51).

In order to address the problem of the fast and reliable determination of the
regular or chaotic nature of orbits, several methods have been developed over the
years with varying degrees of success. These methods can be divided in two major
categories: Some are based on the study of the evolution of deviation vectors from
a given orbit, like the computation of y;, while others rely on the analysis of the
particular orbit itself.

Among other chaoticity detectors, belonging to the same category with the eval-
uation of the mLCE, are the fast Lyapunov indicator (FLI) [58, 59, 56, 89, 49, 69]
and its variants [4, 5], the smaller alignment index (SALI) [122, 124, 125] and its
generalization, the so-called generalized alignment index (GALI) [126, 127], the
mean exponential growth of nearby orbits (MEGNO) [28, 29], the relative Lyapunov
indicator (RLI) [115, 116], the average power law exponent (APLE) [95], as well as
methods based on the study of spectra of quantities related to the deviation vectors
like the stretching numbers [57, 93, 135, 138], the helicity angles (the angles of
deviation vectors with a fixed direction) [32], the twist angles (the differences of
two successive helicity angles) [33], or the study of the differences between such
spectra [88, 136].

In the category of methods based on the analysis of a time series constructed by
the coordinates of the orbit under study, one may list the frequency map analysis of
Laskar [83, 86, 84, 85], the “0-1" test [64, 65], the method of the low-frequency
spectral analysis [137, 81], the “patterns method” [120, 121], the recurrence plots
technique [147, 148], and the information entropy index [100]. One could also refer
to several ideas presented by various authors that could be used in order to distin-
guish between chaoticity and regularity, like the differences appearing for regular
and chaotic orbits in the time evolutions of their correlation dimension [50], in the
time averages of kinetic energies related to the virial theorem [74], and in the sta-
tistical properties of the series of time intervals between successive intersections of
orbits with a PSS [80].

A systematic and detailed comparative study of the efficiency and reliability of
the various chaos detection techniques has not been done yet, although comparisons
between some of the existing methods have been performed sporadically in studies
of particular dynamical systems [122, 125, 132, 133, 82, 95, 6].

Let us now focus our attention on the behavior of the FLI and of the GALI and
on their connection to the LCEs. The FLI was introduced as an indicator of chaos
in [58, 59] and after some minor modifications in its definition, it was used for the
distinction between resonant and not resonant regular motion [56, 49]. The FLI is
defined as

FLI(¢) = sup In||w(1)]|,
t

where w(¢) is a deviation vector from the studied orbit at point x(¢), which initially
had unit norm, i.e., ||[w(0)|| = 1. In practice, FLI(¢) registers the maximum length
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that an initially unitary deviation vector attains from the beginning of its evolution
up to the current time 7. Using the notation appearing in (59), the FLI can be com-
puted as

k k
D;
FLI(kt) = sup In — = sup Ino;,

with the initial norm Dy of the deviation vector being Dy = 1.

According to (62) the norm of w(#) increases linearly in time in the case of regular
orbits. On the other hand, in the case of chaotic orbits the norm of any deviation vec-
tor exhibits an exponential increase in time, with an exponent which approximates
x1 for t — oo. Thus, the norm of a deviation vector reaches rapidly completely
different values for regular and chaotic orbits, which actually differ by many orders
of magnitude. This behavior allows FLI to discriminate between regular orbits, for
which FLI has relatively small values, and chaotic orbits, for which FLI gets very
large values.

The main difference of FLI with respect to the evaluation of the mLCE by (59)
is that FLI registers the current value of the norm of the deviation vector and does
not try to compute the limit value, for t — oo, of the mean of stretching numbers
as x; does. By dropping the time average requirement of the stretching numbers,
FLI succeeds in determining the nature of orbits faster than the computation of the
mLCE.

The generalized alignment index of order p (GALI,) is determined through the
evolution of 2 < p < 2N initially linearly independent deviation vectors w;(0), i =
1,2,..., p and so it is more related to the computation of many LCEs than to the
computation of the mLCE. The evolved deviation vectors w;(#) are normalized from
time to time in order to avoid overflow problems, but their directions are left intact.
Then, according to [126] GALI,, is defined to be the volume of the p-parallelogram
having as edges the p unitary deviation vectors W;(¢),i =1,2,..., p

GALI, (1) = [[Wi(t) A Wa(t) A -+ AW, (). (96)

In [126] the value of GALI, is computed according to (105), while in [2, 127] a
more efficient numerical technique based on the SVD algorithm is applied. From the
definition of GALI, it becomes evident that if at least two of the deviation vectors
become linearly dependent, the wedge product in (96) becomes zero and the GALI,
vanishes.

In the case of a chaotic orbit all deviation vectors tend to become linearly depen-
dent, aligning in the direction which corresponds to the mLCE and GALI,, tends to
zero exponentially following the law [126]:

GALI[) (t) ~ e*[(Xl —x2)+0a—x3)++0a—xp) |t ;
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where xi, x2, ..., x, are the p largest LCEs. On the other hand, in the case of
regular motion all deviation vectors tend to fall on the N-dimensional tangent space
of the torus on which the motion lies. Thus, if we start with p < N general devi-
ation vectors they will remain linearly independent on the N-dimensional tangent
space of the torus, since there is no particular reason for them to become linearly
dependent. As a consequence GALI, remains practically constant for p < N. On
the other hand, GALI, tends to be zero for p > N, since some deviation vectors
will eventually become linearly dependent, following a particular power law which
depends on the dimensionality N of the torus and the number p of deviation vectors.
So, the generic behavior of GALI,, for regular orbits lying on N-dimensional tori is
given by [126]:

constant if 2 < p < N
GALI, () {ﬁ N < p <2N

o7

The different behavior of GALI,, for regular orbits, where it remains different
from zero or tends to zero following a power law, and for chaotic orbits, where
it tends exponentially to zero, makes GALI,, an ideal indicator of chaoticity inde-
pendent of the dimensions of the system [126, 127, 15]. GALI,, is a generalization
of the SALI method [122, 124, 125] which is related to the evolution of only two
deviation vectors. Actually GALI, o« SALI. However, GALI, provides significantly
more detailed information on the local dynamics and allows for a faster and clearer
distinction between order and chaos. It was shown recently [27, 127] that GALI,
can also be used for the determination of the dimensionality of the torus on which
regular motion occurs.

As we discussed in Sect. 6.1 the alignment of all deviation vectors to the direction
corresponding to the mLCE is a basic problem for the computation of many LCEs,
which is overcome by successive orthonormalizations of the set of deviation vectors.
The GALIs on the other hand, exploit exactly this “problem” in order to determine
rapidly and with certainty the regular or chaotic nature of orbits.

It was shown in Sect. 4.1 that the values of all LCEs (and therefore the value of
the mLCE) do not depend on the particular used norm. On the other hand, the quan-
titative results of all chaos detection techniques based on quantities related to the
dynamics of the tangent space on a finite time, depend on the used norm, or on the
coordinates of the studied system. For example, the actual values of the finite time
mLCE X, (¢) (54) will be different for different norms, or for different coordinates,
although its limiting value for t — o0, i.e., the mLCE x;, will be always the same.
Other chaos detection methods, like the FLI and the GALI, which depend on the
current values of some norm-related quantities and not on their limiting values for
t — oo will attain different values for different norms and/or coordinate systems.
Although the values of these indices will be different, one could expect that their
qualitative behavior would be independent of the chosen norm and the used coor-
dinates, since these indices depend on the geometrical properties of the deviation
vectors. For example, the GALI quantifies the linear dependence or independence
of deviation vectors, a property which obviously does not depend on the particular
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used norm or coordinates. Indeed, some arguments explaining the independence of
the behavior of the GALI method on the chosen coordinates can be found in [126].
Nevertheless, a systematic study focused on the influence of the used norm on the
qualitative behavior of the various chaos indicators has not been performed yet,
although it would be of great interest.

8 LCEs of Dissipative Systems and Time Series

The presentation of the LCEs in this report was mainly done in connection to con-
servative dynamical systems, i.e., autonomous Hamiltonian flows and symplectic
maps. The restriction to conservative systems is not necessary since the theory of
LCE:s, as well as the techniques for their evaluation are valid for general dynamical
systems like dissipative ones. In addition, within what is called time series analysis
(see, e.g., [78]) it is of great interest to measure LCEs in order to understand the
underlying dynamics that produces any time series of experimental data. For the
completeness of our presentation we devote the last section of our report to a concise
survey of results concerning the LCEs of dissipative systems and time series.

8.1 Dissipative Systems

In contrast to Hamiltonian systems and symplectic maps for which the conservation
of the phase space volume is a fundamental constraint of the motion, a dissipative
system is characterized by a decrease of the phase space volume with increasing
time. This leads to the contraction of motion on a surface of lower dimensionality
than the original phase space, which is called attractor. Thus any dissipative dynam-
ical system will have at least one negative LCE, the sum of all its LCEs (which
actually measures the contraction rate of the phase space volume through (43)) is
negative and after some initial transient time the motion occurs on an attractor.

Any continuous n-dimensional dissipative dynamical system without a stationary
point (which is often called a fixed point) has at least one LCE equal to zero [70] as
we have already discussed in Sect. 4.5. For regular motion the attractor of dissipa-
tive flows represents a fixed point having all its LCEs negative, or a quasiperiodic
orbit lying on a p-dimensional torus (p < n) having p zero LCEs while the rest
n — p exponents are negative. For dissipative flows in three or more dimensions
there can also exist attractors having a very complicated geometrical structure which
are called “strange.”

Strange attractors have one or more positive LCEs implying that the motion on
them is chaotic. The exponential expansion indicated by a positive LCE is incompat-
ible with motion on a bounded attractor unless some sort of folding process merges
separated orbits. Each positive exponent corresponds to a direction in which the sys-
tem experiences the repeated stretching and folding that decorrelates nearby orbits
on the attractor. A simple geometrical construction of a hypothetical strange attrac-
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tor where orbits are bounded despite the fact that nearby orbits diverge exponentially
can be found in [92, Sect. 1.5].

The numerical methods for the evaluation of the mLCE, of the p (1 < p < n)
largest LCEs and of the whole spectrum of them, presented in Sects. 5 and 6, can be
applied also to dissipative systems. Actually, many of these techniques were initially
used in studies of dissipative models [99, 119, 61, 62]. For a detailed description of
the dynamical features of dissipative systems, as well as of the behavior of LCEs
for such systems the reader is referred, for example, to [103, 44] [92, Sect. 1.5,
Chaps. 7, and 8] and references therein.

8.2 Computing LCEs from a Time Series

A basic task in real physical experiments is the understanding of the dynamical
properties of the studied system by the analysis of some observed time series of
data. The knowledge of the LCEs of the system is one important step toward the
fulfillment of this goal. Usually, we have no knowledge of the nonlinear equations
that govern the time evolution of the system which produces the experimental data.
This lack of information makes the computation of the spectrum of LCEs of the
system a hard and challenging task.

The methods developed for the determination of the LCEs from a scalar time
series have as starting point the technique of phase space reconstruction with delay
coordinates [104, 134, 112] [78, Chaps. 3 and 9]. This technique is used for recre-
ating a d-dimensional phase space to capture the behavior of the dynamical system
which produces the observed scalar time series.

Assume that we have N measurements of a dynamical quantity x taken at times
t, =ty +nt,ie, x(n) = x(tp + nt),n =0,1,2,..., Np — 1. Then we produce
N; = Np — (d — 1)T d-dimensional vectors x(t,,) from the x’s as

x(t,) = [x() x( + T) ... x(n + (d — DD ]",

where T is the (integer) delay time. With this procedure we construct N, points in
a d-dimensional phase space, which can be treated as successive points of a hypo-
thetical orbit. We assume that the evolution of x(7,,) to x(#,) is given by some map
and we seek to evaluate the LCEs of this orbit.

The first algorithm to compute LCEs for a time series was introduced by Wolf et
al. [144]. According to their method (which is also referred as the direct method),
in order to compute the mLCE we first locate the nearest neighbor (in the Euclidean
sense) x(#) to the initial point x(#y) and define the corresponding deviation vector
w(ty) = X(tp) — X(#) and its length L(#9) = ||[w(#)l||. The points x(fy) and x(#;) are
considered as initial conditions of two nearby orbits and are followed in time. Then
the mLCE is evaluated by the method discussed in Sect. 5.2, which approximates
deviation vectors by differences of nearby orbits. So, at some later time #,,, (which
is fixed a priori or determined by some predefined threshold violation of the vector’s
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length) the evolved deviation vector W'(#,,,) = X(f,) — X(fx+m,) is normalized and

its length L'(7,,,) = |[[W (1))l is registered. The “normalization” of the evolved
deviation vector is done by looking for a new data point, say x(#;), whose distance
L(t,,) = [x(t,,) — X(#;)|| from the studied orbit is small and the corresponding

deviation vector w(t,,,) = x(f,,) — x(/) has the same direction with wW'(z,,). Of
course with finite amount of data, one cannot hope to find a replacement point x(/)
which falls exactly on the direction of wW'(z,,) but chooses a point that comes as
close as possible. Assuming that such point is found the procedure is repeated and
an estimation X (t,,) of the mLCE Y, is obtained by an equation analogous to (56):

n

Li(tw,)
Xty ) = In 12
1(m,) = - > In IO

my, Io i—1

with my = 0. A Fortran code of this algorithm with fixed time steps between
replacements of deviation vectors is given in [144].

Generalizing this technique by evolving simultaneously p > 1 deviation vectors,
i.e., following the evolution of the orbit under study, as well as of p nearby orbits,
we can, in principle, evaluate the p-mLCE Xl(p ) of the system, which is equal to the
sum of the p largest 1-LCEs (see (67)). Then the values of x; i = 1,2, ..., p canbe
computed from (74). This procedure corresponds to a variant of the standard method
for computing the LCEs, presented in [119] and discussed in Sect. 6.1, in that devi-
ation vectors are defined as differences of neighboring orbits. The implementation
of this approach requires the repeated replacement of the deviation vectors, i.e., the
replacement of the p points close to the evolved orbit under consideration, when
the lengths of the vectors exceed some threshold value. This replacement should be
done in a way that the volume of the corresponding p-parallelogram is small, and
in particular smaller than the replaced volume, and the new p vectors point more or
less to the same direction like the old ones. This procedure is explained in detail in
[144] for the particular case of the computation of )({2) = X1 + x2, where a triplet
of points is involved.

It is clear that in order to achieve a good replacement of the evolved p vectors,
which will lead to a reliable estimation of the LCEs, the numerical data have to
satisfy many conditions. Usually this is not feasible due to the limited number of
data points. So the direct method of [144] does not yield very precise results for the
LCEs. Another limitation of the method, which was pointed out in Wolf et al. [144],
is that it should not be used for finding negative LCEs which correspond to shrink-
ing directions, due to a cut off in small distances implied mainly by the level of
noise of the experimental data. An additional disadvantage of the direct method is
that many parameters which influence the estimated values of the LCEs like the
embedding dimension d, the delay time T, the tolerances in direction angles during
vector replacements and the evolution times between replacements have to be tuned
properly in order to obtain reliable results.

A different approach for the computation of the whole spectrum of LCEs is based
on the numerical determination of matrix Y,,, n = 1,2, ..., of (12), which defines
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the evolution of deviation vectors in the reconstructed phase space. This method
was introduced in [118] and was studied in more detail in [44, 45] (see also [78,
Chap. 11]). According to this approach, often called the tangent space method,
matrix Y, is evaluated for each point of the studied orbit through local linear fits
of the data. In particular, for every point x(#,) of the orbit we find all its neighboring
points, i.e., points whose distance from x(#,) is less than a predefined small value €.
Each of these point define a deviation vector. Then we find the next iteration of all
these points and see how these vectors evolve. Keeping only the evolved vectors hav-
ing length less than € we evaluate matrix Y, through a least-square-error algorithm.
By repeating this procedure for the whole length of the studied orbit we are able to
evaluate at each point of the orbit matrix Y,, which defines the evolution of deviation
vectors over one time step. Then by applying the QR decomposition version of the
standard method, which was presented in Sect. 6.3, we estimate the values of the
LCEs. The corresponding algorithm is included in the TISEAN software package
of nonlinear time series analysis methods developed by Hegger et al. [71]. It is also
worth mentioning that Brown et al. [17] improved the tangent space method by
using higher order polynomials for the local fit.

If, on the other hand, we are interested only in the evaluation of the mLCE of
a time series we can apply the algorithm proposed by Rosenstein et al. [111] and
Kantz [77]. The method is based on the statistical study of the evolution of dis-
tances of neighboring orbits. This approach is in the same spirit of Wolf et al. [144]
although being simpler since it compares distances and not directions. A basic dif-
ference with the direct method is that for each point of the reference orbit not one,
but several neighboring orbits are evaluated leading to improved estimates of the
mLCE with smaller statistical fluctuations even in the case of small data sets. This
algorithm is also included in the TISEAN package [71], while its Fortran and C
codes can be found in [78, Appendix B].
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Appendix A:
Exterior Algebra and Wedge Product: Some Basic Notions

We present here some basic results of the exterior algebra theory along with an
introduction to the theory of wedge products following [1] and textbooks such as
[128, 68, 129]. We also provide some simple illustrative examples of these results.
Let us consider an M-dimensional vector space V over the field of real numbers
R. The exterior algebra of V is denoted by A(V) and its multiplication, known as
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the wedge product or the exterior product, is written as A. The wedge product is
associative:

WAVIAW=UuA(VAW),
for u, v, w € V and bilinear

(ctu4+cv) Aw=ci(@A W)+ c(v AW),
WA (ciu+ cav) = ci(WwA) + (WA V),

foru,v,w € V and ¢y, ¢; € R. The wedge product is also alternating on V
uAu=0,
for all vectors u € V. Thus we have that
UAV=-VAWU,

for all vectorsu, v € V and

UyAMA---Au =0, (98)
whenever uj,up,...,u; € V are linearly dependent. Elements of the form
u; Aup A - A withag, up, ..., u, € V are called k-vectors. The subspace of
{)\y( \;\)k (g;r)lerated by all k-vectors is called the k-th exterior power of V and denoted

Let {€,, €, ..., €y} be an orthonormal basis of V, i.e.,&,i = 1,2,..., M are
linearly independent vectors of unit magnitude and

& -& =14,
where “-” denotes the inner product in V and
SAAZ{lfori:j
Y Ofori#j"~
It can be easily seen that the set
(€, A€y, A A& |1 <ii<ir<- - <ip <M} (99)

is a basis of A¥(V) since any wedge product of the form u; A uy A --- A u; can
be written as a linear combination of the k-vectors of (99). This is true because
every vector u;, 7 = 1,2, ...,k can be written as a linear combination of the basis
vectors €;,i = 1,2, ..., M and using the bilinearity of the wedge product this can
be expanded to a linear combination of wedge products of those basis vectors. Any
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wedge product in which the same basis vector appears more than once is zero, while
any wedge product in which the basis vectors do not appear in the proper order can
be reordered, changing the sign whenever two basis vectors change places. The
dimension d;, of A¥(V) is equal to the binomial coefficient:

M!

Ordering the elements of basis (99) of AX(V) according to the standard lexico-
graphical order

wizéil/\éiz/\"'/\éi“ 1<ii<ihb<--<iz <M, i=1,2,---,d, (100)

any k-vector @t € A¥(V) can be represented as
di
u= Zﬂiwi , Uj € R. (101)
i=1

A k-vector which can be written as the wedge product of k linear independent vec-
tors of V is called decomposable. Of course, if the k vectors are linearly dependent
we get the zero k-vector (98). Note that not all k-vectors are decomposable. For
example, the 2-vector i = e; Ae; +e3 A eq € A%(R%) is not decomposable as it
cannot be written as u; A uy with uy, u, € R*.

Let us consider a decomposable k-vector i = u; Aup A - - - A . Then the coef-
ficients it; in (101) are the minors of matrix U having as columns the coordinates of
vectorsu;, i = 1,2, ..., k with respect to the orthonormal basis €;,i = 1,2, ..., M.
In matrix form we have

Uip Ui -0 Uk
Uzy U -+ Uk

Upmi Upm2 -+ Upk

(102)
where u;;, i = 1,2,..., M, j = 1,2,...,k are real numbers. Then, the wedge
product u; Auy A - - - A Uy is written as

di
l_l:lll/\llz/\-”/\llk:Zﬁ,‘w[ =
i=1
Wil U2 -0 Ujk (103)

Uiyl Ui ==+ Uigk | R R
Z . . L€ A€ A AN,
I<iy<ir<<iz<M | * * :
Uj1 Uj2 = Uk
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where the sum is performed over all possible combinations of k indices out of the
M total indices and | | denotes the determinant. So, the coefficient of a particular
k-vector &, A &, A --- A&, is the determinant of the k x k submatrix of the M x k
matrix of coefficients appearing in (102) formed by its iy, io, . . ., iy TOWS.

The inner product on V induces an inner product on each vector space A*(V) as
follows: Considering two decomposable k-vectors

U=u AWA---AU and V=V{ AVy A--- AV,
withw;, v; € V,i, j =1,2,..., k, the inner product of @i, V € AX(V) is defined by

ul.vl ul.vz...ul.vk

uz.vluz.vz...u2.vk T
@)=, . . . |=utv

, (104)

uk.vluk.vz...uk.vk
where U, V are matrices having as columns the coefficients of vectors w;, v;,
i =1,2,..., k with respect to the orthonormal {€,, &, ..., €} (see (102)). Since

every element of A¥(V) is a sum of decomposable elements, this definition extends
by bilinearity to any k-vector. Obviously for the basis (100) of A¥(V) we have

<wi’wj>k=8ij ) ivj:1’21""dk’

implying that the basis is orthonormal. Inner product (104) defines a norm || || for

k-vectors by
Il = v/(@ @) =/|U" - U].

Thus, the norm of a decomposable k-vector (103) is given by

& 12
||ﬁ||=||u1AuzA--~Auk||=\/|UT-U|=(Zﬁ?) =

2 l1721
Uil Uiy - Uik (105)

Z Mizl uizz e u[zk
I<ij<iy<w-<iz<M | - :
Uj1 U2 = Ujyk
and it measures the volume vol(P;) of the k-parallelogram P, having as edges the k

vectors uy, Uy, - - - , Uy, since this volume is defined as (see, e.g., [75, p. 472])

vol(P) = ,/[UT - U| . (106)
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The use of a different orthonormal basis does not change the numerical value of
vol(Py). This can be easily seen as follows: Let f;,i = 1,2, ---, M be a different
orthonormal basis of V related to basis €; through

where A is an orthogonal M x M matrix, i.e., A~ = AT From (102) we get

A A A

[wiw - w]=[Ht - tn] AU,

whence the volume vol'(P;) with respect to the new basis 'f',-, i=1,2,---,Mis
given by

vol'(Py) = \/|(A U)TAU| = \/|UT AT AU = \/|UT -U| = vol(Py),

where the orthogonality of A was used. This result is not surprising since an orthog-
onal matrix corresponds to a rotation that leaves unchanged the norms of vectors
and the angles between them.

Finally we note that the equality

Uil Uj2 0 Ujk

Uiyl Ujy2 == Ujpk
U"U| = >

1<iy<ir<-<ip<M

Uil U2 -0 Ujke

appearing in (105) is the so-called Lagrange identity (e.g., [68, p. 108], [16, p. 103]).

An Illustrative Example
In order to illustrate the content of the previous section we consider here a specific

example. Let V be the vector space of M = 4-dimensional real vectors, i.e., V = R*
and

€ =(1,0,0,0), &=(0,1,0,0), & =(0,0,1,0), & =(0,0,0, 1), (107)

the usual orthonormal basis of R*. Then the lexicographically ordered orthonormal
basis (100) of the d, = 6-dimensional vector space A*(R*) is

W =€ A&, a)zzél/\é3, a)3=é1/\é4,

A A A A A A (108)
Ws =€ Ne3, W5 =€ Nes, Wg =263 Neg.

The A3(R?) vector space has dimension d3 = 4 and the set
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Vi=C@ A& A, o= A& AE,
Vi=@ A& A, M= A& AE,

as an orthonormal basis, while the d; = 1-dimensional vector space A*(R%) is
spanned by vector:

Xlzél/\éz/\é3/\é4.

Let us now consider four linearly independent vectors uy, up, usz, uy of R* and
the matrix

Ujp Uip U13 U4
Uzl Uz U23 U4 ..
, 1,j=1,2,3,4,
U3y U3z U3z Us4
Ugqr Ug U43 Ugq

U=[yj]l=[mpwuuy]=

having as columns the coordinates of these vectors with respect to the basis (107) of
R%,
Considering basis (108) of AZ(R*) the 2-vector u; A uy is given by

U AW = Uip U2 Ui U2 Uy U2 w3+
Uzl U2 Uzl Uz Ugr Ug2
Uz U2 Uzy U Uz U3z
Uz U3 Ugy Ugp Ugy Ug2

according to (103). For the norm of this vector we get from (104) and (105):

) 2 2
g A || = llag [I* wy 'l122 _ | un Uiy U
u - up fjupl Uzy U u3| Uz

un w0 us usn [P [ uay ux usp U3

U4y Usp u3p U3 U4y Usgp U4y U4

where || || is used also for denoting the usual Euclidian norm of a vector.
In a similar way we conclude that the norm of the 3-vector produced by u;, uy,
u3

Uyp Uy U3 upp Uy U3
Uy AUy A3 = |Upp Upp U3 | Y1 + | U2 Up U2z | Y2+
U3y Uz U33 Ugqr Ug U43
Uyp U2 U13 Uy Uz U3

+ | U3y Usp U3z |y3 + | U3 U3 U33 | Y4
Ug) Uq U43 Uq) Ugd U43

is
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lu)? - wp uy - us
lug Aw Ausf? = |up - uy [uf” uy - us
uzupus - u [lus)?

2 2 2
Ui U2 u13 Uy U2 u13 Uy U2 u13 Uy Up U3

= |Upy Upp U3 | —+ |Upy Upp U3 | + | U3 U3 U33| + | U3 U3 U33|
U3l Usp U3z Ugql Usp U43 Ugqy Usp U43 Ugqy Usp U43

while the norm of the 4-vector produced by u;, u,, us, uy
u A Auz Ay = |U|xg
is given by
2
lugll® wy -up wp -u3 uy -uy
2
u-up upf] w-uzunuy

uz U Uz U flus]? usuy
U U Uy U Uy ug [luglf?

la; Aup Auz Awgl? = = [UP.
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Asteroid Dynamical Families

A. Cellino and A. dell’Oro

Abstract Asteroid dynamical families are extremely important for our understand-
ing of the origin, evolution, and general physical properties of the asteroid pop-
ulation. First identified on the basis of their dynamical properties, families have
been soon recognized as the products of well-defined physical processes, namely
the disruption of single parent bodies as the consequence of energetic collisional
events. The identification of dynamical families has opened important perspectives
in all fields of research in asteroid science. The “paradigm” of interpretation of
family data has been quickly evolving during the last decade and is now based on
the evidence of a complex interplay of different physical and dynamical processes,
some of which only recently have been fully recognized. In this chapter, we attempt
to give a general and comprehensive review of the subject.

1 Introduction

Asteroid dynamical families are still a very important and fascinating subject in
asteroid science, in spite of being a long debated topic that is now about 100 years
old. It is difficult to find a line of research in asteroid science that does not lead
sooner or later to face the enigmas posed by the families, as schematically shown in
Fig. 1.

First discovered at the beginning of the twentieth century by Hirayama [1, 2],
families were very soon interpreted as the likely products of collisional events taking
place in the asteroid main belt. Any progress in the study of families, however, was
long hampered by the difficulty in developing objective methods of family identi-
fication and by correspondingly huge discrepancies among the results obtained by
different authors, as extensively discussed in [3].
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Starting from the year 1990, new reliable methods of family identification led to
the identification of at least 20 statistically robust asteroid families. This triggered
a lot of activity in theoretical and observational studies of these groupings that led
to important results and produced a general “paradigm” of interpretation. At the
beginning of the new century, however, new theoretical and observational facts led to
a deep change in this general paradigm of family interpretation. Currently, however,
anew paradigm has not yet been completely established, some controversies are still
open, and in general the interpretation of families is in a phase of general transition,
in which most of the new developments are accepted, but the real extent to which
some old results must be considered as fully incorrect is not yet completely clear.

In this chapter, we do not want to follow strictly a historical approach, but, start-
ing from the most important pieces of evidence that have been accumulating with
time, we try to give a comprehensive overview of the importance of dynamical fam-
ilies in the most general context of asteroid science. According to previous consid-
erations, we pay particular attention to the important discontinuity that occurred in
the general interpretation of family properties starting approximately since the year
2000, when the realization of the importance of new dynamical mechanisms that
had not been previously taken into account has produced a big change of paradigm
in the interpretation of family data. In particular, we focus on a number of subjects
which are still debated, and we make a few predictions about possible developments
in the future.

2 Families in the Twentieth Century

Figure 2 shows the observational evidence that was available to any attempt of iden-
tifying dynamical families in the asteroid main belt in the mid-1990s. This figure
shows the plots of proper eccentricity and sinus of proper inclination versus proper
semi-major axis, respectively. To understand the meaning of these plots, it is neces-
sary first to understand what the proper orbital elements are. As is well known, the
orbits of the bodies of our Solar System are not constant in time like in the ideal
case of a two-body system, but they vary continuously due to the effect of mutual
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Fig. 2 Plots of proper eccentricity and proper inclination as a function of proper semi-major axis,
using the data available in the early 1990s

gravitational perturbations between the many bodies present in the system. These
effects may be very important for minor bodies like the asteroids, whose motion
may be strongly perturbed by the major planets, and particularly by Jupiter. For
this reason, the orbit of any given object at a certain epoch is described by a set of
orbital elements, called osculating elements, which are not constant in time. If we
want to make some quantitative analysis of the similarity of the orbits of different
asteroids, therefore, we need to use, if possible, some quantities which may be more
stable over time than the simple osculating elements. A classical definition states
that what we call proper elements are quasi-integrals of the motion and that they are
therefore nearly constant in time. Alternatively, one can say that proper elements
are true integrals, but of a conveniently simplified dynamical system. In any case,
proper elements are obtained as a result of the elimination of short- and long-term
periodic perturbations from their instantaneous, osculating counterparts (the oscu-
lating elements) and thus represent a kind of “average” characteristics of motion,
which normally varies very little over long timescales [4].

Since the early 1990s, the development of refined and fast techniques to compute
proper elements [5] put at disposal of family searches increasingly larger databases
of asteroid proper elements, much larger than those adopted in previous analyses.
An example is given in Fig. 2. If one looks at this figure, it is easy to see that the main
belt asteroids are not uniformly distributed in the space of orbital proper elements.
Apart from the evident presence of forbidden zones that appear to be empty (like the
vertical narrow strips known as “Kirkwood gaps”), which correspond to resonant
orbits that are not stable [6]; it is clear that the distribution of the objects, in the
populated regions of the proper elements space, is very irregular, and even a quick
visual inspection is sufficient to find evidence of several more or less pronounced
clusters of objects. According to the meaning of proper elements, these clusters
represent groups of objects that have very similar orbits, even over long timescales.
These clusters of objects sharing similar orbits are what we call dynamical families.
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What is the interpretation of the existence of these families? There are not purely
dynamical mechanisms that should be expected to be able to produce some very
compact and sharp clusterings of orbits like some of those that are evident in Fig. 2,
starting from some more homogeneous distribution of orbits. On the other hand, it is
hard to imagine that asteroids were originally accreted in clusters, and they are still
there after 4 billions of years. To understand the origin of families, we must con-
sider what are the most important mechanisms that have determined the evolution of
the asteroidal population since the epoch of its formation. In this respect, although
there are still some uncertainties on the very early stages of the asteroids’ history,
in particular concerning the process that was responsible for the early depletion of
over 99% of the solid matter originally located in this region of the Solar System
[71, it is widely accepted that catastrophic collisions have been the major physical
process that has governed the evolution of the asteroid population for most of the
time passed since the early epochs of planetary accretion.

In particular, collisions may naturally explain the existence of dynamical fam-
ilies. The idea is that a family is a swarm of fragments created by the collisional
disruptions of an original parent body. This is a nice example of a situation in
which dynamical properties provide convincing evidence of the occurrence of very
interesting physical processes. Asteroid families become, like the tilt of the Uranus’
spin axis, the existence of our Moon, the presence of great impact basins on all
atmosphereless bodies observed remotely and in situ, new witnesses of the complex
collisional history of our Solar System.

The idea that families are collisional outcomes can be expressed in a more quan-
titative way. In particular, let us assume that a given body orbiting the Sun suffers
a sudden velocity change due to some reason, like in the case of a fragment ejected
from its parent body in a catastrophic collision event. As a consequence of this
change of its velocity vector, the body will achieve a new orbit, described by a
new set of orbital parameters. The relation between the velocity change experienced
by the body and the variation of its orbital elements is well known. In particular,
the conversion from velocities to orbital elements or vice versa is expressed by the
so-called Gauss formulae, that can be written as follows, under the assumption that
the velocity change is much smaller than the initial orbital velocity of the body:

2
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where n is the mean motion around the Sun, na is the mean orbital velocity, and
8Vr, 8Vg, and §Vy are the components of the velocity vector change (ejection
velocity) along the direction of the motion, radial, and normal to the orbital plane,
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respectively. The parameters f and w are the a priori unknown true anomaly and
argument of perihelion of the body at the epoch of the velocity change on its original
orbit. If we consider the case of a fragment ejected from a parent body in a typical
collisional event, we see that the condition that the velocity change is much smaller
than the original orbital speed of the parent body is well satisfied. In fact, typical
orbital velocities for main belt asteroids are of the order of 10 km/s, whereas the
typical ejection velocities are generally more than one order of magnitude lower,
according to current physical models of these events [8].

The Gauss equations (1) are fundamental in many respects in family studies, and
we will refer often to them in this chapter. At this point we only note that they
can be used to demonstrate that the collisional disruption of a parent body must
necessarily be expected to produce a swarm of fragments with very similar orbits
that, in the space of the orbital elements, should appear as a cluster of objects. Since
the orbits are subject to perturbations and are subject to short- and long-timescale
variations, the similarity of the original orbits will be kept more evident over longer
times in the space of the proper elements, which are much less subject to time
variations.

Having recognized that dynamical families are collisional outcomes, the first
problem that was encountered in the early family studies was that of the reliable
identification of these groupings. In other words, by looking at plots like those
shown in Fig. 2, a fundamental question is which ones among the apparent clusters
are real and correspond to true collisional processes, and which ones are local over-
densities of objects in the proper elements space due only to chance and not to phys-
ical processes. This is the first problem that was faced by the family studies that were
carried out in the twentieth century. The following sections are aimed at presenting
in a schematic way what happened in the field of asteroid families starting since
the last decade of the past century, when family studies experienced a moment of
very intense development. In Sect. 3, we will then focus on what happened starting
from the early years of the present century, when the importance of new dynamical
mechanisms was realized, leading to new concepts and interpretations of available
data.

2.1 Family Identification

We cannot make here a comprehensive summary of all the results produced by
different authors in their identifications of dynamical families since the epoch of
discovery of these groupings. Here we only recall the fact that the most notable
property of the early results in this field was that different family searches wildly
disagreed with each other, the number of identified families ranging from a few up
to more than 100. This was due to big differences between the data sets of proper
elements used by different authors, as well as by differences in the adopted identifi-
cation criteria, which were often based on subjective analyses of the available data.
A review of this topic can be found in [9].
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Starting since 1990, a couple of new identification methods, based on repro-
ducible and well-defined algorithms, were independently developed by two teams
in Torino (Italy) and Nice (France). These two methods, named HCM (standing for
hierarchical clustering method) and WAM (standing for wavelet analysis method),
were completely independent, being based on a classical multivariate clustering
analysis approach (HCM) and on a wavelet-based technique for local overdensity
recognition (WAM), respectively. Both techniques had in common the idea of quan-
tifying the distance between two points in the proper element space by introducing a
suitable metric (a definition of distance) in that space. An identical standard metric
was adopted, complemented by another alternative metric to be used as a check in
order to test the stability of family identification upon the metric choice.

Due to the relation existing between differences in orbital elements and differ-
ences in fragment ejection velocity in an impact event (expressed by the Gauss
equations (1) seen above), the distance in the space of proper elements was cho-
sen to have the dimension of a velocity, expressed in m/s. Based on a number of
considerations explained in a classical paper by Zappala et al. [10], the adopted
standard metric had the form

dv = na'\/5/48a’ Ja')? + 2(8¢')? + 2(8 sini’)?,

where dv is the distance between two points in the proper element space (corre-
sponding to two orbits) expressed in m/s, and according to Gauss’ equations, 7 is
the mean motion and na’ is correspondingly the mean orbital velocity of the first
orbit.

Having defined a metric in the space of proper elements, the next step was to
develop algorithms to identify clusters of objects that, from a statistical point of
view, had zero probability to be due to chance. HCM and WAM differed in the
way they identified object clusters, but apart from that both of them were based on
the idea of eventually comparing the identified clusters with those resulting from a
randomly generated synthetic population of objects. In other words, the idea was to
compare the real clusters of objects present in a given region of the proper element
space with those that may be produced by a random distribution of objects in the
same region.

More in particular, it was thought that doing a purely random generation of
objects in the same volume of the proper element space occupied by a given pop-
ulation of real objects could be misleading. The reason is that such a fully random
population could be distributed in a too much different way with respect to the real
objects present the same region of the proper element space, and any comparison
between the real and the simulated objects might be questionable. For instance,
in a given volume of the proper element space the real objects might be found to
fill preferentially some regions of the volume, for a variety of reasons related to
the overall history and dynamical properties of the asteroid main belt, whereas a
fully random population would tend to fill the same volume in a homogeneous way.
For this reason, in order to generate synthetic populations having something to do
with the real objects, the synthetic objects were created imposing as an additional
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constraint that the overall distribution of their three proper elements should
separately fit the observed @', ¢/, and i’ distributions of the real objects.

In other words, the «@’, ¢/, and i’ histograms of the simulated populations can-
not be distinguished from the analogous histograms of the real population, but the
synthetic population does not contain any correlation between the «’, ¢/, and i’
coordinates of each object. The synthetic populations generated in this way were
called quasi-random populations. The general idea of the family identification algo-
rithms was then to compare the clusters of the real and quasi-random population in
a given region of the proper element space. The quasi-random population was used
to identify the maximum local overdensity that can be randomly created among a
population of objects distributed in some way in a given region of the proper ele-
ment space. Families had to be clusters more compact and more populous than those
produced by any quasi-random population, corresponding to groupings that could
not be due to pure chance. Figure 3 shows, as an example, the comparison between
the population of real objects present in an arbitrary volume of the proper element
space and a corresponding quasi-random population built according to the above
explanation. In particular, the figure shows the comparison in the a’— sini’ plane.

The HCM method is particularly suitable to explain in practice how the above
approach can be actually implemented. Having introduced a metrics, the first step
consists of computing all the mutual distances between each couple of objects of the
considered sample. Having at disposal this distance matrix, an iterative procedure is
performed, consisting of the following operations at each step:
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Fig. 3 Distribution in the (a’, sini’) plane of the real asteroid population in a region of the main
belt (left) and of the corresponding quasi-random population (right)
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1. Identification of the two mutually closest objects (i, j) of the sample.

2. Conglomeration of i and j: this means that from this moment this couple counts
as one single object i U j, and by definition the distance d of any object k from
i U j is assumed to be the minimum between d(k, i) and d(j, k).

3. The matrix of the distances is updated (it loses one row and one column) and go
back to step (1).

The above procedure is iterated until there is only one remaining object, correspond-
ing to the conglomeration of all the original objects of the considered sample.

In this way, a dendrogram can be built, which allows one to get immediately,
being given some desired value of mutual distance, how many objects are clustered
at that level of distance and also the identity of the members of the resulting group-
ings. In [10] it was introduced for the first time a kind of diagram that proved to be
very useful to represent in a graphical way the results of the above analysis. One
example of these diagrams, called stalactite diagrams, is shown in Fig. 4.
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Fig. 4 Example of a stalactite diagram for a sample of main belt asteroids having proper semi-
major axis between 2.501 and 2.825 AU. The vertical axis gives the mutual distance (in m/s) while
the horizontal axis shows the number of objects that are included in separate clusters as a function
of the distance level. The tips of the stalactites represent then very compact groupings formed by
objects strictly similar in orbital proper elements
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As one can see in this figure, as far as the considered level of distance increases,
the objects tend to group together in increasingly bigger clusters, whereas only a
few, compact groupings are found at small distance levels. Of course, the most
compact and deepest groupings are the most interesting ones, since they correspond
to very dense clusters of orbits. By producing stalactite diagrams for quasi-random
populations in the same volume of the proper element space, it is possible to intro-
duce some criteria for the identification of dynamical families, that is, groupings that
cannot be due to pure chance. In several papers based on the HCM starting since
1990, the adopted criterion was, generally speaking, that families are either deeper
than the deepest stalactites produced by the quasi-random population or they reach
the same depth, but include much larger numbers of members. A minimum critical
number of objects was introduced in this respect, and the reader should address to
the original papers for a whole explanation. In addition, tests to check the statisti-
cal robustness of the resulting families for possible changes of the adopted metrics
(distance function) and for variations of the proper elements of the objects corre-
spondingly with the nominal accuracy of the proper elements computation were
done.

This kind of analysis produced for the first time results that were based on a well-
defined “objective” algorithm, did not depend on a visual inspection of the data, and
were reproducible. This was a big step forward, and the result was the unambiguous
identification of about 20 dynamical families, plus a number of other more uncertain
groupings whose real interpretation was postponed to later times, when larger data
sets of proper elements might become available. The last peer-reviewed paper in
this series of family searches was published in 1995 [11]. It included the analysis
of a sample of more than 12,000 proper elements, limited to objects having proper
eccentricity and sinus of proper inclination both smaller than 0.3. For the first time,
both HCM and WAM results were presented at the same time for the same sample
of objects. This paper has been the reference for family studies for many years. The
most important families identified in this analysis are listed in Table 1, while the
families identified by the HCM (only) are shown in Fig. 5 (in the a’—¢’ plane) and 6
(in the plane a’—sini’).

2.2 Spectroscopic Confirmations

In the early 1990s, in a situation characterized by a big confusion in the field of
family identification, the introduction of new methods like HCM and WAM could
not be seen as a very important achievement in the absence of some convincing
confirmation of their reliability. This kind of confirmation came soon, however,
when Binzel and Xu carried out a spectroscopic survey of the Vesta family recently
identified by the HCM [10].

A spectroscopic study of Vesta family members was at that time an ideal tool
to test the supposedly collisional origin of this family. The reason is that Vesta had
been for a long time a unique object among the asteroid population in terms of
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Table 1 A comparison between the most prominent dynamical families identified by [11] in a
joint analysis in which both the HCM and the WAM were applied to an identical sample of more
than 12,400 asteroids. Each family of the list is indicated using the name of its resulting least
numbered member (that can be different for HCM and WAM). Only families having an intersection
(numbers of objects in common) of 75% (upper block) or 50% (lower block) are listed. These
families represent, therefore, the most reliable groupings identified in that analysis

Identified families Number of members

HCM WAM HCM WAM
8 Flora 43 Ariadne 604 575
44 Nysa 135 Hertha 381 374
4 Vesta 4 Vesta 231 242
163 Erigone 163 Erigone 45 49
1 Ceres 83 Minerva 89 88
170 Maria 170 Maria 77 83
668 Dora 168 Dora 77 79
145 Adeona 145 Adeona 63 67
808 Merxia 808 Merzia 26 29
569 Misa 569 Misa 25 27
410 Chloris 410 Chloris 21 27
1644 Rafita 1644 Rafita 21 23
1128 Astrid 1128 Astrid 10 11
24 Themis 24 Themis 550 517
221 Eos 221 Eos 477 482
158 Koronis 158 Koronis 325 299
137 Meliboea 137 Meliboea 13 16
845 Naema 845 Naema 6 7
20 Massalia 20 Massalia 49 45
15 Eunomia 15 Eunomia 439 393
110 Lydia 110 Lydia 26 50
128 Nemesis 58 Concordia 20 38
1639 Bower 342 Endymion 10 15
10 Hygiea 10 Hygiea 103 175
490 Veritas 92 Undina 22 36
293 Brasilia 293 Brasilia 10 18

spectroscopic properties and corresponding mineralogic composition. At the begin-
ning of the 1990s Vesta was still a fairly unique object characterized by a reflectance
spectrum similar to that of terrestrial basalts, characterized by deep absorption fea-
tures at wavelengths around 1 and 2 wm. As a consequence of these properties,
Vesta was the prototype of a unique taxonomic class, named V after its name. The
interpretation of its spectrum was that Vesta should likely be considered as a unique
example of a fully differentiated asteroid, with the likely presence of a metallic
core surrounded by an olivine mantle and a lighter basaltic crust. From the point
of view of the studies of collisional evolution of the asteroid population, Vesta was
considered to put some important constraint on the collision rate. In fact, any model
of the collisional evolution process should have been constrained by the fact that
the fragile basaltic crust of Vesta has remained intact until our days. On the other
hand, the presence of a large, hemispheric-sized albedo spot, possibly due to the
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Fig. 5 Locations in the a’—¢’ plane of the families identified by the HCM according to [11]

presence of a large impact crater on the surface, had been discovered by means of
polarimetric and photometric studies of this asteroid [12].

The presence of a dynamical family associated with Vesta was therefore not
discouraged by the observational evidence available at that time, provided that the
family could have been produced by an energetic cratering event, able to excavate
a large crater on the surface, but without being able to break the object apart. At
the same time, spectroscopy was the ideal tool to test the hypothesis of a dynam-
ical family of Vesta, since the members of this supposed family would have been
presumably sharing the unique spectral reflectance properties of Vesta itself, then
should have been expected to belong to the V taxonomic class.

The results of the first spectroscopic investigation of the Vesta family published
in 1993 [13] were a spectacular confirmation of the real collisional origin of the
family identified by the new methods. Not only a sample of objects listed as Vesta
members by an HCM analysis turned out to be V-type, but even a number of
other, small objects not belonging to the family, but orbiting with orbital semi-major
axes between that of Vesta and the inner border of the 3:1 mean motion resonance
with Jupiter at 2.50 AU, corresponding to one of the major forbidden zones in the
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Fig. 6 Locations in the a’—sini’ plane of the families identified by the HCM according to [11]

asteroid belt (Kirkwood gaps), were found to have V-type spectra. These findings
not only confirmed the existence of the Vesta family, but they also suggested that
many fragments might have been ejected at large velocities, reaching a so large dis-
tance from the parent body that they cannot be recognized as family members. The
fragments that might possibly have reached the 3:1 resonance, which is an effective
“dynamical engine” to move objects from the asteroid main belt to the region of the
terrestrial planets, as we will discuss in separate sections, might have become the
parent bodies of HED achondrites, as well of the V-type near-Earth asteroids that
were found around those years. A copy of the original plot showing the results of
Binzel and Xu is shown in Fig. 7.

After the successful observations of the Vesta family, spectroscopic studies of
families became very popular starting since the mid-1990s. The many studies pub-
lished before 2002 are reviewed in the “Family Spectroscopy” chapter of the Aster-
oids III book [14]. One fundamental result of these campaigns was that families
turn out to be quite homogeneous in spectral reflectance properties, and hence they
are also likely homogeneous in composition. On one hand, this fact can be seen as
a further proof that families identified by modern identification methods are real.
In fact, no “impossible” assemblages of objects with spectra incompatible with the
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hypothesis of a common origin have been found among families. Only in some cases
some objects are found to have distinctly inconsistent spectra with respect to the
majority of other members of the same family. In these cases, however, there are, in
general, good reasons to suspect that the discrepant objects are random interlopers,
not belonging to the family. As an example, Fig. 8 shows a sample of the bright-
est and largest members of the Dora family. This figure represents these objects
as points in the a’-diameter and in the ¢’-diameter planes, where a’ and ¢’ are as
usual the proper semi-major axis and eccentricity, respectively, and the diameter
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Fig. 8 a'-D (left) and ¢'-D (right) plots for some of the largest members of the Dora family.
Filled symbols identify objects that have been found to have spectral reflectance properties hardly
compatible with those of the majority of family members. Due also to their anomalous locations
in these plots, these objects are thought to be likely interlopers in this family (see text)
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in kilometers is derived from the known albedos and absolute magnitudes of the
objects using the formula

log D = 3.1236 — 0.2 H — 0.5log(py), )

where D is the diameter in km, H is the absolute magnitude, and py is the albedo,
and the value of 3.1236 constant is due to the definition of magnitude and the choice
of expressing the sizes in kilometers.

Looking at Fig. 8, it is easy to see that the objects tend to occupy triangular
domains in the a’~D and ¢’-D plots. In particular, smaller objects tend to have more
spread proper elements. Thus, smaller objects are, in general, more dispersed in the
proper elements space than larger ones. This is a fairly natural phenomenon if we
interpret this in terms of ejection from an original parent body, since smaller objects
may have been ejected at higher velocities and/or have experienced a more intense
orbital evolution. We touch here some delicate point that will be more extensively
discussed in Sect. 2.3. The filled circles in the figure represent objects that have
anomalous spectra with respect to those that are normal for this family. If one looks
at the plots, it is easy to say that these discrepant objects tend to occupy positions in
the plots that are outside the triangular domains occupied by most family members.
For this reason, we do believe that the discrepant objects are actually random inter-
lopers, that only by chance share the same range of proper elements that character-
izes the Dora family. The presence of random interlopers in the nominal membership
lists is not unexpected. Due to the statistical criteria adopted to identify families, it is
always possible that some objects that have nothing to do with a family are actually
included in the member lists [15]. Another possibility is also just the opposite: in
the case that the adopted criteria for family memberships are too conservative, it is
possible to exclude from the member lists large numbers of actual family members.
These facts are always to be taken into account, as we will see later, since it is
always possible to infer erroneous conclusions on the family members inventory,
simply looking at the nominal member lists.

The quoted example of Dora is fully representative of what is found in general
among other families. Spectroscopy becomes in this way a very powerful tool not
only for confirming the collisional origin of families but also to identify among the
member lists some likely interlopers.

The fact that families turn out to be spectrally homogeneous has been seen as a
fairly disappointing fact by some observers. The reason was that for some time, the
Holy Graal of spectroscopic campaigns was to find evidence of some heterogeneous
family, compatible with the scenario expected for the complete disruption of a fully
differentiated object like Vesta, which means to find a number of M-type members
(supposed to be metal-rich), in a larger cloud of V-type and A-type (the taxonomic
class believed to be most likely diagnostic of an olivine composition). The fact that
such a kind of family has not been found may put some further constraints to the
models of collisional evolution of the main belt population. In particular, if at least
some of the asteroids belonging to the M taxonomic class are really metallic in com-
position, we may conclude that Vesta is not a unique example of fully differentiated
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asteroid, and other objects of this kind were produced in the early phases of the
Solar System history (as shown in any case by the existence of metallic meteorites).
However, if these differentiated objects were destroyed by collisions, the supposedly
big families that were produced by these events are no longer recognizable today.
According to some authors [16] this fact is surprising and can hardly be explained, if
we do not conclude that these events took place very early, possibly in an era when
a much larger total mass of planetesimals was still present in the region presently
occupied by the asteroid main belt.

Apart from the discovery that families are likely homogeneous in surface com-
position, the spectroscopic campaigns led to other exciting discoveries. One of them
is shown in Fig. 9.

This figure shows the results of comparative analysis of the reflectance spec-
tra of members of the big Eos family, and those of a handful of objects that are
currently located inside the 9:4 mean motion resonance with Jupiter. This reso-
nance is known to be not among the most efficient resonant strips in the asteroid
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Fig. 9 These two plots in the a’—¢’ and a’—sin i’ planes show the Eos family as it was known in the
mid-1990s. Small symbols are the family members. Open circles represent a sample of asteroids
not belonging to the family and located into the 9:4 mean motion resonance with Jupiter. Filled
circles are a sample of the above objects that were observed spectroscopically [17] and were found
to share the same unusual reflectance spectrum of the members of the Eos family
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main belt, nevertheless dynamical studies show that objects injected into it start to
undergo wide oscillations in eccentricity and inclination, and eventually are decou-
pled from the resonance as a consequence of planetary perturbations, to be either
ejected from the solar system or with a much smaller probability, to be captured by
Mars, eventually becoming near-Earth asteroids [17]. The resonant objects observed
during the spectroscopic campaign did not belong to the Eos family, being clearly
decoupled from it in the proper element space, as shown in Fig. 9. Their reflectance
spectra, however, were unambiguously found to be similar to those of Eos family
members. This result was made easier by the fact that the Eos family is composed
of objects belonging to an unusual taxonomic class, named K, that can be clearly
distinguished from more usual taxonomic classes. Since the observed objects in the
9:4 resonance were found to be K -type, it was natural to conclude that these objects
came originally from the Eos family, and are seen now just at the beginning of a
complex dynamical evolution that will eject them out of the asteroid main belt, a
quite remarkable result.

The case of the Eos family, composed of uncommon K-type asteroids, is not
unique. Actually, a surprisingly high number of families have been found to be
composed of objects belonging to rare taxonomic classes, like F, L, K. Among
them, the Polana family is a remarkable cluster of F-type objects located in a region
of the inner belt where low-albedo objects like those belonging to the F' class are
quite rare. The Polana family is one of two overlapping families that were found to
be clearly distinguishable only on the base of spectroscopic properties [18].

The interpretation of the evidence of a relative overabundance of families com-
posed of objects belonging to rare taxonomic classes [14] has long been a puzzle,
and the situation is still not clear. Some evidence of the presence of collisional heat-
ing seems to be present in some meteorites [19], but this subject has not been very
deeply investigated so far.

What can certainly be said when mentioning spectroscopic observations of fam-
ilies is that this technique is becoming increasingly important as a powerful tool not
only to analyze existing families and to look for interlopers, as mentioned above, but
also to complement the family searches in the proper elements space, by adding a
full new dimension to the problem. In fact, as we will see in Sect. 2.3, the number of
objects for which there are currently computed proper elements is steadily growing,
and we have now nearly 30 times the number of objects that were analyzed in the
family searches carried out in the 1990s. This does not mean, however, that things
are easier today. The situation is just the opposite in some respects. In particular, due
to the huge number of objects in the current databases, it is extremely more difficult
now to disentangle between different families in the regions of the proper element
space where they tend to overlap. In these situations, only spectroscopy may be an
effective tool to decide whether some objects belong to a family or to another.

2.3 Size Distributions

In the years between 1990 and 1995 the problem of family identification could be
considered to have been convincingly solved, mainly after the first confirmations
coming from spectroscopic studies. At that point, the attention started to focus on
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the task of deriving from these families as much information as possible about the
physical processes that had been responsible of their formation, namely collisions.

By researchers interested in the outcomes of catastrophic disruption processes,
families can be seen as the results of experiments that are many orders of magnitude
beyond what we can do in our laboratories in terms of energy in play. In the labora-
tory, it is possible to set up experiments of hypervelocity collisions in which targets
having sizes of some centimeters can be disrupted, in order to analyze the outcomes
of these events, including the size distribution of the fragments, the ejection velocity
distributions, and the spin properties of the fragments. But there is no hope to have
the possibility of disrupting bodies up to hundreds of kilometers in size, by means of
collisions with projectiles with sizes between hundreds of meters and some kilome-
ters, impacting the targets at typical speeds of 5 km/s. Nature performed for free this
kind of experiments, when asteroid families were produced, because family-forming
events exactly correspond to the kind of collisions just described above.

Since the physics of catastrophic collisions is obviously required to understand
and develop models of the collisional history of the asteroid population, when fam-
ilies were finally identified in an unambiguous way, they quickly became a major
source of information in this field and the objects of many researches.

One of the first topics of interest was the size distribution of these groupings.
Figure 10 shows the cumulative size distributions of five of the most prominent
asteroid families as they appeared to be about 10 years ago. The plots show the
log of the numbers of objects larger than a given size D as a function of log D.
The log—log representation is due to the well-known fact that the size distributions
of family (and non-family) asteroids are generally well fitted by power-laws, with
the number of increasingly smaller objects increasing exponentially for decreasing
sizes.

What turned out to be really remarkable in the early studies of family size dis-
tributions is the fact that these distributions, down to the values of size for which
the family inventory is complete (objects of that size are all sufficiently bright to
have been discovered) are really steep. To be more precise, family size distributions
turned out to be much steeper than the theoretical slope of a collisionally relaxed
population.

Some ancillary information is needed here. In the 1970s and 1980s, there was
a lot of activity in the field of modeling the collisional history of the asteroid pop-
ulation. One of the first theoretical studies on this subject was done by Dohnanyi,
who developed a model in which the disruption of a single object produced a swarm
of fragments with a given size distribution [21, 22]. It was also assumed that this
process is size-invariant, in the sense that the disruptions of bodies of very different
sizes should behave in the same way, producing swarms of fragments whose size
distributions scale with the size of the parent body. Under these assumptions, it
was shown that a population of such objects, subject only to the evolutive pro-
cess given by mutual collisions among its members, tends to quickly relax to a
fixed cumulative size distribution described by a power-law with an exponent equal
to —2.5.
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Fig. 10 Cumulative size distributions of the families of Flora, Eos, Themis, Koronis, and Vesta
according to [20]

As opposite, starting since the early studies of the size distributions of families
and non-family asteroids [23] it was found that the families have power-law expo-
nents well beyond the —2.5 limit, in some cases even beyond —3, the limit value
that gives an infinite reconstructed mass. For this reason, it was believed that at
sizes smaller than the completeness limit these family size distributions had to relax
to more moderate values, although it was not clear at all at which size this change
of slope would usually take place.

At this point, historically a few years before the end of the twentieth century,
two main problems were open: to discuss the consequences of what had been found
concerning the steep size distributions of families and to understand how these size
distributions could be so steep.

Let us start first with the latter problem. Let us make, as it was actually done in
those years [24] two simple assumptions: (1) in a catastrophic collision the mass of
the parent body is conserved (it is equal to the sum of the masses of its fragments);
(2) the mass distribution of the fragments is represented by a bi-truncated power-
law, in a range of masses between an upper limit, corresponding to the mass of
the largest fragment (the largest remnant, as it is usually named), and a lower limit
corresponding to the smallest produced fragment. The latter limit may well be very
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low, corresponding to dust grains, but it is not zero. Now, by making the above
two assumptions, and making a few computations, it is possible to derive some
well-defined predictions for the size distributions of families. In particular, a well-
defined relation can be found between the slope of the cumulative size distribution
of the family’s and the value of the ratio m g /m pp between the mass of the family’s
largest remnant and the mass of the original parent body. Such a relation is shown
in Fig. 11.

As can be seen, the slope of the power-law which describes the size distribution
turns out to be increasingly steeper for decreasing values of the mg/mpp mass
ratio. This is not surprising in the framework of this model, because a more massive
largest member means that a smaller amount of mass is left to be distributed among
the other fragments. Unfortunately, this predicted trend is spectacularly contradicted
by the behavior exhibited by real families. If we go back to Fig. 10, we may see that
the steepest size distribution is that of families with a very big largest remnant, like
in the case of Vesta, whereas a much shallower trend is exhibited by the family
of Koronis, which is characterized by a large number of largest fragments having

0.1 1 10 100 1000
4 — T T — T T .vnn?
— 0.10 b
© 0.30 1
=== 0.50 1
— = Q.70
3 -
"""" 0.90 ]
— 4
a
)
=z 2 =3
3 ]
3 ]
1 -
N
o AN B
-1 0 1 2 3

Ltog(D} (km)

Fig. 11 Predicted size distributions of asteroid families characterized by different mass ratios
between the largest remnant and the parent body (indicated in the figure) according to the purely
mathematical model [24] (See text. Plot taken from [20])
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approximately the same size. Then, something is wrong in the model expectations,
and this must be explained in some way.

If one looks again at the size distribution of the Vesta family shown in Fig. 10,
it is easy to see that the trend is characterized by a long straight segment link-
ing the size of Vesta to that of the second largest member of the family. Starting
from this object, the size distribution becomes a continuous curve composed of
a large number of points, distributed according to a very steep power-law. This
behavior is the key to understand the explanation that was given to the observed
family size distributions in a classical paper in 1999 [20]. The argument is the
following: any prediction based on an abstract mathematical form of the size dis-
tribution and on mass conservation must fail if it does not take into account some
geometrical constraints imposed by the sizes of the individual fragments. In par-
ticular, different fragments cannot mutually overlap, and the space at disposal is
limited by the finite volume of the parent body. Let us suppose for sake of sim-
plicity that both the parent body and the fragments have all spherical shapes (an
assumption which is not critical for the conclusions of this argument). Now, if the
parent body has a diameter of, say, 100 km, and the largest remnant has a diam-
eter of, say, 60 km, there is not any possibility for the second largest fragment to
have a diameter larger than 40 km in the best possible case. In other words, the
volume of each single fragment limits the space available to the formation of the
others.

It is clear that we are implicitly making an oversimplification of the process of
fragmentation, since real fragments are produced as a complicated effect of propa-
gation of mechanical waves in the volume of the parent body. The latter is charac-
terized by its own properties, including the presence of pre-existing material faults
and cracks, and it is clear that the fragments are not obliged a priori to have prede-
termined shapes. Moreover, the final fragments may also be affected by effects of
mutual reaccumulation. Bearing in mind these obvious objections, in order to avoid
overinterpretation of the results, one can nevertheless write some simple numerical
algorithm which simulates the formation of fragments taking into account the con-
straint of non-mutual overlapping and non-extrusion from the original parent body’s
volume. This exercise was first done in 1999 [20], and the results were striking. The
resulting size distributions give an excellent fit of the observed size distributions of
real families. Figure 12 is the same as Fig. 11, but this time it shows the predictions
based on the geometric model just mentioned above. This time, the behavior is in
good agreement with the trend shown by real families in Fig. 10. Families with a
very big largest remnant, like Vesta, exhibit the steepest size distribution, whereas a
more “democratic” family like Koronis, having a large number of largest fragments
approximately equal in size, exhibits a much shallower slope.

Some fits of individual families, obtained by using the geometric model and
looking for the values of the parent body size and the m g /m pp mass ratio which
produces a best fit to the data, are shown in Fig. 13. As can be seen, the fits appear
quite good, even surprisingly good by taking into account the above-mentioned
oversimplifications of this geometric model.
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Fig. 12 Predicted size distributions of asteroid families characterized by different mass ratios
between the largest remnant and the parent body (indicated in the figure) according to the geometric
model [20]

After the publication of the paper presenting the geometric model [20], the steep
slopes of the size distributions of asteroid families could be, at least qualitatively,
explained. The geometric model not only gave some excellent fits of the size distri-
butions exhibited by the major families known at that time, but also could be used
to derive at least some indication concerning the a priori unknown values of the
original parent bodies’ sizes and the m g /m pp mass ratios for these families. The
general results of this exercise are summarized in Table 2. As can be seen, many
families were formed, according to this kind of modeling, by the disruptions of
objects up to 300-400 km in size. Moreover, some families are likely the outcomes
of extremely energetic events, capable of producing largest remnants with masses
only a few hundredths of the parent body.

We stress again that, due to obvious oversimplifications of the basic assumptions
of the geometrical model, the results shown in Table 2 cannot be taken too literally
and should be interpreted mostly in a statistical way than as an accurate fit of single
families.

On the other hand, it is also worth to remind that since a long time it is known that
some dust belts identified in the sky by thermal infrared surveys are associated with
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Fig. 13 Best fits of the size distributions of the families of Eos, Adeona, Eunomia, and Flora,
obtained by applying the geometric model [20]. The thickness of the observed family size distri-
butions is due to uncertainties in the sizes of the objects

some families. This is another reason to conclude that family-forming events, possi-
bly followed by further second-generation object disruptions, may actually produce
huge amounts of fragments down to very small sizes.

2.4 The Role of Families in the Asteroid Inventory

Figure 14 shows that, even qualitatively, asteroid families tend to become more
evident if increasingly larger samples of asteroid proper elements are considered.
According to this and other kinds of evidence discussed in Sect. 2.3, there was
growing evidence in the 1990s that the size distributions of asteroid families were
described by quite steep power-laws, much steeper than those found to describe
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Table 2 The parent body size Dpp and the m g /m pp mass ratio for some major asteroid families
analyzed by [25]

Famlly DPB (km) mLR/mpB
Adeona 189 0.51
Dora 88 0.03
Eos 218 0.11
Erigone 91 0.50
Eunomia 284 0.73
Flora 164 0.57
Gefion 74 0.06
Hygiea 481 0.61
Koronis 119 0.04
Maria 130 0.05
Massalia 151 0.90
Merxia 42 0.35
Themis 369 0.31
Vesta 468 0.95

the size distribution of non-family objects in different regions of the asteroid main
belt. In particular, it turned out that non-family asteroids exhibited exponents of the
size distribution shallower than the —2.5 theoretical value for a collisionally relaxed
population, according to Dohnanyi’s theory, as explained above. As opposite, fam-
ilies exhibited much steeper slopes than the Dohnanyi value. This fact had been
already apparent based on a preliminary analysis of the database of asteroid sizes
and albedos produced by the thermal IR observations of the IRAS satellite [23], as
shown in Fig. 15.

Taken at face value, the above-mentioned results concerning the different size
distribution of family and non-family asteroids have some important consequence
on the inventory of the main belt population down to small sizes. In particular, if
family size distributions are so much steeper than the size distribution of the popu-
lation of non-family objects, it follows that at small sizes, below the limit of com-
pleteness of the observed population, family members should dominate the asteroid
inventory.

Some care is needed, however, before drawing conclusions that might be shown
to be erroneous. To better understand this delicate point, it may be useful to examine
the plot shown in Fig. 16, which shows the size distribution of the Eunomia family
according to data available around 1995.

The figure clearly shows that the size distribution of this, as of most families, is
characterized by a trend corresponding to a steep power-law exponent down to some
limit size value. At smaller sizes, the curve starts to become shallower, until the
number of objects becomes constant, corresponding to the total number of known
family members. The fact that the size distribution becomes shallower at small sizes
should not be interpreted as an intrinsic property of the size distribution, because it
is simply due to the fact that starting at some critical size level, the completeness
of the sample is no longer full, or in other words we do not have yet observed all
the really existing objects smaller than the completeness limit. The completeness
size limit corresponds to the size value at which the cumulative distributions exhibit
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Fig. 14 Proper eccentricity versus proper semi-major axis plots for increasingly larger samples
of asteroids. The plots show numbered asteroids up to N = 1,000 (top left), up to N = 3,000
(top right), up to N = 5,000 (bottom left), and N = 12,000 (bottom right). From the plots, it is
apparent that asteroid families become progressively more evident when considering increasingly
larger samples of objects

a change of slope and start to become shallow. In the figure, it turns out that the
completeness limit for the Eunomia family as it was known a dozen of years ago is
about 10 km.

To estimate the number of existing family members at sizes smaller than the com-
pleteness limit, some extrapolation is thus necessary. Such extrapolation, however,
is a delicate affair.

In 1996 [26] this problem was analyzed using the following approach: the size
distribution extrapolation was done down to a value of 1 km using two different
methods. One method was a simple extrapolation of the observed size distribution
above the completeness level. In this way, one gets some resulting n; number of
objects larger than 1 km, as shown in Fig. 16. This led to an upper limit of the
number of 1-km family members. Such kind of extrapolation may be questionable,
however, because in many cases the size distribution above the completeness value is
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Fig. 15 Log-log plots of the size distribution of non-family main belt asteroids compared with
that of some families as they were known in 1991 [23]

really very steep, so that a simple extrapolation of it may possibly lead to some likely
overestimate of the number of objects at small sizes. When the size distribution
exponent is above the —3 value, moreover, it is certain that the slope must relax
to more moderate values at some size below the completeness limit, just because a
simple extrapolation down to zero would give an infinite number of family members,
corresponding to an infinite mass of the parent body. Unfortunately, on the other
hand, there is not any a priori reason to believe that the size distribution should
change at some known value of size, nor is it clear to which value of the exponent
the size distribution should converge, if any.

The second extrapolation method adopted by [26] consisted of an extrapolation
of the observed size distribution composed by two parts: the first one was a sim-
ple extrapolation of the observed size distribution, but limited only to the interval
between the completeness size limit and a size of 5 km (chosen arbitrarily). Below 5
km, it was assumed that the size distribution followed a Dohnanyi law, characterized
by a —2.5 power-law exponent. This led to an alternative value n, for the number
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Fig. 16 The size distribution of the Eunomia family as it was known around the year 1995. The
plot shows the size completeness limit at that epoch, as well as two possible extrapolations of the
size distributions down to 1 km in size

of objects larger than 1 km. Figure 16 gives a graphical representation of the two
methods.

The result of this analysis was that, although with large uncertainties, the contri-
bution of asteroid families to the inventory of the main belt population is extremely
important. While at a size of 10 km, family and non-family asteroids contribute
approximately for a 50% each of the population, at smaller sizes the contribution of
family members, mainly from a few very big ones like Themis, increases very much.
The nominal value of the family contribution at a size of 1 km turned out to be 99%.

These results have never been universally accepted. Even in those same years,
some analyses of the likely inventory and size distribution of the asteroid popula-
tion, based on an assessment of the discovery efficiency of objects having different
apparent magnitudes, concluded that the size distribution of main belt asteroids is
not very steep at small sizes, and there is not any evidence of a likely domination of
family members [27]. A more detailed discussion of the situation taking into account
the observational evidence that is available today will be presented in Sect. 3.

A main belt population dominated by asteroid families would have several con-
sequences, and some of them will be discussed in the following sections. Here, we
only note that, among them, one would be an important effect on the intrinsic col-
lision probability throughout the main belt. In particular, in a main belt dominated
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by a few very populous families, the collision probability would be higher in the
regions of the semi-major axis—eccentricity plane swept by the members of these
families [28].

2.5 The Reconstruction of Family Velocity Fields

We have seen in Sect. 2 that a relation exists between the components of the ejection
velocity of a fragment escaping from its parent body and the resulting difference
between its orbital elements and those of the parent body. This relation is expressed
by the Gauss equations (1). As a consequence, we have that in principle one could,
having at disposal a family, try to infer the values of the original ejection veloc-
ity components of each family member by simply looking at its coordinates in the
proper element space. The idea is that, if we assume that each object was ejected
from the location of the current family barycenter, one could compute the com-
ponents of its original ejection velocity from the parent body, by simply using the
Gauss equations, knowing the differences in proper elements between the object and
the family barycenter.

Of course, this would be in principle a very interesting result in many respects. In
particular, a reliable reconstruction of the kinematical properties of an event of catas-
trophic disruption would provide very important constraints to the physical models
of these events and possibly would shed some light on some structural properties of
the family parent bodies.

However, the idea of reconstructing the original ejection velocity fields of family-
forming events must face two fundamental problems. One, that will be discussed in
Sect. 3, is related to the fact that it is not granted for sure that current family mem-
bers have not experienced significant dynamical evolution since the time of their
creation. In fact, if the proper elements of current family members have changed for
any reason with respect to their original values, any attempt at deriving information
on the original ejection velocity values starting from the present proper element
values is intrinsically dangerous and might lead to misleading, or completely wrong,
results. As quoted above, this problem will be more extensively discussed in Sect. 3,
then for the moment let us forget it.

The second problem is that, if one looks at Gauss’ equations, it is easy to see
that the link between velocity components and proper element differences is not
immediate, but it depends on the values of two a priori unknown parameters, namely
the true anomaly f of the family parent body at the epoch of its disruption and the
value of its argument of perihelion w at the same epoch.

The problem that f and w are unknown seems in principle a fundamental one.
Any method of reconstruction of the original ejection velocity field of the fragments
should be in principle able to produce some reliable estimate of these unknown
angles, but it is hard to imagine how this could be achievable in practice. However,
an analysis carried out in 1996 [29] showed that the problem is not hopeless. The
basic idea is the following: if one tries to invert Gauss equations using the right
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values of f and w, the correct ejection velocity field will be obtained. The resulting
field will be instead increasingly wrong as one chooses increasingly wrong values
of the unknown angles. If the ejection velocity fields could be assumed to be com-
pletely random, with structures not showing any predictable properties, the inversion
of the Gauss equations would not be possible in principle. But laboratory experi-
ments tell us that the situation is different. Some common properties of the ejection
velocity fields observed in laboratory hypervelocity collisions show that the ejection
velocity fields generally present some characteristic properties. The most common
and general property is that the fields turn out to be noticeably axisymmetric. The
symmetry axis generally coincides with the diameter connecting the center of the
disrupted object and the impact point.

According to the above considerations, one cannot pretend that the ejection
velocity values of single fragments can be accurately predicted. However, based
on the symmetry properties of the ejection velocity field, one can expect, in general,
that the distributions of the velocity components V7, Vg, and Vy are not simply ran-
dom, but they satisfy some properties dictated by the general structure of the velocity
field. This fact can be directly exploited to obtain an estimate of the unknown angles
in Gauss equations. Focusing on the V7, Vi velocity components, which are affected
by the f angle only, some dimensionless parameters were built, which are functions
of the unknown f angle in the Gauss equations. The following two were used in
[29]:

7 — ZZVI%,_ZIV%
iVt Vi

and

ZI(VT: ) VRi)

. ) V/i- D V%,»

The above Z and o parameters can be used as indicators of the overall symmetry
of the field and vary as a function of the assumed value of the unknown f angle. The
dependence of Z and « upon f was tested in a number of numerical simulations
in which synthetic ejection velocity fields were created, being characterized by a
variety of possible structures (spherical fields, ellipsoidal fields, conic fields, etc.)
and using different values of the “true” f angle. The result was that the hypothesis
of axial symmetry of the resulting field could be translated into the requirement
that the Z parameter reaches a minimum, or that o« becomes equal to zero. These
requirements were found to be sufficient to find a corresponding value of the f
angle satisfactorily close to the “true” value used to build the simulations. In other
words, the symmetry properties of the velocity field could be used to derive a fairly
good estimate of the unknown f angle appearing in Gauss’ equations. The same
was found to be true also for the other unknown angle, w, although in this case the
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Fig. 17 Plot of the estimated angles f versus the “true” f; angles for a large set of simulations.
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gles), and asymmetric triaxial ellipsoidal (squares) fields, respectively. This figure is taken from
the original paper [29]

uncertainty was larger. The results of this analysis are shown in Fig. 17 and 18,
respectively.

The results of this analysis [29] were thus quite encouraging, and indicated that,
in a large variety of simulated cases, the reconstructed fields obtained by apply-
ing this technique were on the average similar to the simulated fields, as shown in
Fig. 19.

Based on this technique, it was possible to derive the overall structures of the
fields of several families. A couple of results, referring to the families of Vesta and
Maria, are shown in Figs. 20 and 21, respectively. In Fig. 20, both the apparent
structure of the Vesta family in the proper element space is shown, as well as the
corresponding structure in the space of ejection velocity components. Figure 21
only shows one projection of the Maria family structure in the velocity space. The
overall kinematical structures of the two families look “reasonable” when compared
with similar plots referring to the outcomes of experiments of catastrophic disrup-
tion in the laboratory. In both figures, the size of the symbols used to represent
family members is directly proportional to the corresponding size of the object in
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Fig. 18 The same as Fig. 17, but for the w + f angle

kilometers. Since in this way the asteroid (4) Vesta would appear exceedingly big,
it has not been included in Fig. 20, and its location is indicated by the intersection
of two perpendicular lines in the plot. In Fig. 21 the plot also includes the locations
of the borders of the strong 3:1 mean motion resonance with Jupiter in the velocity
space. It is evident that the family is just hanging on “3:1 precipice,” and this leads
us to Sect. 2.6.

2.6 Families as Sources of Asteroid Showers on the Earth

The case of the Maria family, which appears to be located just on the border of one
strong resonance, as shown in Fig. 21, is certainly not unique. Several important
families are located on the border of one or more resonances. A list includes, in
addition to Maria, the families of Themis, Eos, Koronis, Dora, and Gefion. The
above list includes then several of the most important and populous families in the
main belt. It is known that the most important mean motion resonances with Jupiter
correspond to the well-known Kirkwood gaps in the asteroid main belt, namely
some narrow strips corresponding to forbidden values of the orbital semi-major
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Fig. 19 Example of an application of the method of ejection velocity field reconstruction in a
simulated case of a velocity field having an overall conic structure. Above, two projections of the
simulated velocity field. Bottom, the same projections, but for the reconstructed field. Plot taken
from [29]

axis. The same is true for the secular vg secular resonance, as well as for a number
of other resonances which are found to cross the proper element space in the region
of the asteroid main belt. Figure 22, taken from [30], shows a visual representa-
tion of several of these resonances. The mean motion resonances with Jupiter, that
produce the Kirkwood gaps, are also evident in other figures, for instance Fig. 2.
The important fact is that all these resonances are associated with the notion of
chaotic motion. In other words, any object whose orbital elements are such as to fall
into one of these resonant zones, is subject to a chaotic dynamical evolution, which
rapidly produces wide oscillations of the orbital elements, mainly eccentricity and
inclination, possibly leading to close encounters with some major planet, producing
big changes in orbital semi-major axis and consequent removal from the region of
the asteroid belt.

The fact that many important families appear to be sharply cut by some neigh-
boring resonance was interpreted in the 1990s as an indication that the original
disruption events that produced these families had been sufficiently energetic as
to eject many fragments into such resonances. These objects are no longer there,
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Fig. 20 The reconstruction of the ejection velocity field of the Vesta family according to [29]. The
two plots on the top show the structure of the family in the proper elements space, whereas the
two plots at bottom show the same, but in the space of the velocity ejection components. The sizes
of the symbols are directly proportional to the corresponding sizes of the asteroids in kilometers.
Since the very big (4) Vesta asteroid would be represented by an exceedingly large symbol in this
plot, it is not represented in the plots, but the location of Vesta is indicated by the intersection of
two perpendicular lines drawn throughout the plots

because they have experienced a chaotic dynamical evolution and have long been
removed from the asteroid belt. In particular, many of them may have been moved
to the region of the terrestrial planets, contributing to the inventory of near-Earth
objects (NEOs).

It is known that the NEO population is composed by objects having short
dynamical lifetimes and cannot exist for long times before being either disrupted
or removed from the NEO region. For this reason, new objects must be steadily
supplied by some mechanisms. In the 1990s, the discovery that many families are
just on the border of some powerful resonances led to the natural idea that these
families might be an important source of NEOs, and numerical simulations were
performed to test this hypothesis.

In 1997 a fundamental paper [31] was published, presenting the results of an
extensive analysis based on simulations of the orbital evolution of a large number of
simulated family members injected into nearby resonances. The simulations were
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Fig. 21 The reconstruction of the Maria family according to [29]. Only one projection in the space
of the components of ejection velocity is shown. The sizes of the symbols are proportional to the
corresponding sizes of the Maria family members. Note that the sizes of the objects shown in this
plot are not negligible, being in general of the order of 10 km or larger. The location in this plot
of the borders of the 3:1 mean motion resonance with Jupiter is also shown. The two semi-circles
have not any particular meaning, but for the fact of showing how an isotropic ejection velocity field
(considered at two different values of velocity) appear to be cut and destroyed by the presence of
the resonance, which is a strongly chaotic region in the space of orbital elements. Note also that
the two objects in the plot located beyond the left border of the 3:1 resonance are likely not real
family members

based on reasonable extrapolations of the possible original structures of a number
of current families which are known to be cut by some resonance. Many of these
family members were found to fall into these resonances, and their orbital evolution
was numerically integrated to analyze their final fates.

The results of this analysis were striking. The orbital evolution of the objects
injected into resonances were very fast. Objects injected into the 3:1 or vg reso-
nances were led to impact the Sun itself, as a consequence of orbital eccentricity
being pumped up to the point that the perihelion distance becomes smaller than the
Sun’s size. It is worth to note that objects following such kind of evolution have also
non-zero probability to impact the terrestrial planets during their evolution. Many
other objects turned out to be quickly removed from the Solar System. This was
mostly the case for objects injected into resonances in the outer region of the main
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Fig. 22 The location of several of the most important resonances crossing the asteroid main belt.
The plot is taken from [30]

belt, for which an eccentricity increase likely leads to close encounters with Jupiter.
The typical timescales of the evolutions of objects injected into different resonances
are shown in Fig. 23.

The simulation [31] showed clearly that the lifetimes of objects injected into
resonances like the 3:1 or the vg are extremely fast, even too fast, as we will dis-
cuss below. Taken at face value, and under the above-mentioned hypothesis that
family members were immediately and directly injected into nearby resonances at
the epoch of the disruption of the family parent body, the results show that family-
forming events could produce real asteroid “showers” [32] which could affect the
terrestrial planets. Table 3 summarizes for different families the number of 1-km
family members that could be expected to have impacted the Earth as a consequence
of family formation and the duration of these showers in Myr. The resulting number
of potential impactors and the duration of the shower is a complicated function of
the family structure, location, and efficiency of the involved resonance(s). In several
cases it appeared that the expected showers could have been sufficiently energetic as
to produce likely consequences on the evolution of the terrestrial biosphere, a quite
interesting result per se.

It is important to note already at this stage that the dynamical evolutions of
objects injected into resonances like 3:1 or vg turned out to be unexpectedly fast
at the epoch when these results were first obtained [31]. A couple of fundamental
difficulties were that, to sustain the NEO population in a steady state, the required



Asteroid Dynamical Families

Fig. 23 This plot, taken from
[31], shows the number of
remaining objects (expressed
in percent) as a function of
time for samples of simulated
family members injected into
different resonances. The
remaining objects are those
that, as a function of time, are
still existing, not having been
removed from the Solar
System and not having
impacted the Sun (see text).
For a comparison, the
evolution of known
near-Earth asteroids (NEAs)
is also shown
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flux of family members would be exceedingly high, if the evolution of these objects
are so fast. In other words, to supply a steady state of NEOs able to explain the
population that exists today, many family-forming events should be assumed to be
necessary, if direct injection into resonance was the only one or the most important
mechanism of NEO supply. There would be thus a problem of “missing families,”
since those that we identify today are not sufficient to justify a steady state NEO
population over long timescales.

Table 3 Summary of predicted “asteroid showers” following the formation of different families

according to [32]

Family Resonance Nimpacts Duration (Myr)
Flora Vg 4-11 30
Vesta 3:1 0-1 10
Eunomia 3:1 12-135 10
Eunomia Vg 04 15
Gefion 5:2 2-30 5
Dora 5:2 2-14 5
Koronis 5:2 0-2 5
Eos 9:4 2-10 140
Themis 2:1 3-7 90

The different columns give the family number, the resonance through
which fragments are delivered to Earth, the range of predicted impacts
by fragments 1 km in size, and the overall duration of the expected

shower
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Another great problem was that the resulting orbital evolutions, with typical life-
times of 2 or 3 millions of years were exceedingly fast also when compared with
the observed cosmic rays exposure ages exhibited by meteorites. Meteorite analyses
show that these objects have been subject to irradiation from cosmic rays and solar
wind over timescales much longer than the resulting dynamical lifetimes of their
supposed progenitors, if we have to believe that direct injection into resonance fol-
lowing collisional events is the only one mechanism to supply NEOs and meteorites.

The solution of this paradox will be discussed in Sect. 3. Here, we only note that,
in any case, whatever is the duration of the dynamical evolution of family members
eventually injected into some resonant zone, it is in any case true that the events
that produced big families must be expected to have produced large numbers of
fragments that, possibly with a larger variety of possible timescales as it will be
discussed in Sect. 3, may later have been delivered to the NEO region.

2.7 The Size-Ejection Velocity Relation in Families

The last logical step in the studies of the physical properties performed between
1990 and 2000 was an analysis of a possible size—ejection velocity relation among
family members. We have seen above (see 2) that the sizes of the objects may be
derived from knowledge of their absolute magnitudes and using an average albedo
value for each family, as suggested by the overall homogeneity in surface composi-
tion of family members resulting from spectroscopic studies. On the other hand, the
ejection velocity of a family member may also be derived from knowledge of the
difference in its proper elements and those of the family barycenter, as we have also
seen in Sect. 2.5.

In 1999, an extensive analysis of a size—velocity relation among family members
was published [33]. The basic idea developed in that paper was that one may gener-
alize to families a result found in laboratory experiments, namely that in a collisional
event a fraction fxpg of the specific impact energy E/M is converted into kinetic
energy of the fragments. Here, E indicates the impact energy, practically equal to
the kinetic energy of the impacting body, while M is the mass of the impacted
body. If one assumes that the resulting kinetic energy of ejection of any fragment
is 1/2mv?, where m is the fragment’s mass and v is its ejection velocity, one has
that, assuming that a given fragment has a fraction A of the total amount of energy
converted into kinetic energy of the fragments, it is possible to write

1m 2 A E
——v° = —.
oM KEM

By developing the above relation, one has that

2
log(d/D) = —glogv - K/,
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and
K = 11 QQAf E)
——~1o =
3 & KEN

where d is the size of the fragment and D is the size of the parent body. This relation
should hold for all fragments. In other words, if one plots log(d /D) versus log(v) for
the members of a family, it should be expected that the domain occupied by family
members should be delimited by a straight line having a —2/3 angular coefficient,
corresponding at each size to some permitted maximum value of kinetic energy.
Since it is not reasonable to expect that a strict energy equipartition principle holds,
the velocity of ejection of a fragment is not expected to be uniquely determined by
its size. Instead, it may be expected that, at each size, family members should be dis-
tributed over an interval of possible velocities, up to a maximum limit depending on
the size itself. These expectations were qualitatively confirmed as shown in Fig. 24.
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Fig. 24 Size—ejection velocity relation for some asteroid families, as published in [33]. The lines
displayed in each plot have an angular coefficient equal to —2/3, the value predicted according
to some simple physical considerations, considering a weak version of an energy equipartition
principle (see text and quoted paper)
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Although the plot shown in Fig. 24 looks fairly encouraging and in agreement
with the expectations, some caveats are needed in order to avoid to overinterpret it.
In particular, one basic assumption is implicit in this analysis, as well as in many
other physical studies of families carried out in the same years: this implicit assump-
tion, that we have already mentioned previously, is that the family members have not
been dynamically evolving since the time of their formation. Under this hypothesis,
the current proper elements correspond to those originally achieved at the epoch of
the disruption from the parent body. We will see that this assumption has been found
to be non-realistic when new dynamical effects, discussed in Sect. 3, have started to
be taken into account.

The fact that something could be wrong in the physical studies of families carried
out in the 1990s was already starting to emerge mainly for what concerns some
apparent problems with the reconstruction of the ejection velocity fields of fami-
lies derived by means of the methods described in Sect. 2.5, as it will be briefly
mentioned in what follows.

2.8 Known Problems

We have seen in Sect. 2.5 that a method was developed in 1996 to carry out a recon-
struction of the original ejection velocity fields of asteroid families. The method
was able to estimate the values of the a priori unknown f and w angles appearing
in the Gauss equations (1). Numerical simulations were performed to show that the
method was reasonably efficient and reliable.

When an analysis of the distribution of the f angle (the true anomaly of the par-
ent body at the epoch of its disruption) was carried out, however, some unexpected
feature became apparent. A priori, one should expect that, when analyzing several
families, the resulting f angles should turn out to be uniformly distributed in the
(0°, 180°) range. The reason is that an analysis of the impact probabilities among
asteroids predicts that the true anomaly of the impacted bodies should be distributed
in a fairly homogeneous way, without any particular preference. A glance at Fig. 25,
however, shows the distribution of the resulting f values turning out from a recon-
struction of the ejection velocity fields of known families.

It is easy to see that the histogram of the resulting f values is strongly peaked on
a value of about 90°. This fact, which cannot be easily explained, triggered a more
detailed analysis [34] that, although published in 2004, is already described in this
section, also because this analysis is strictly related to another problem in asteroid
family studies that was well known since a long time. In particular, this is the prob-
lem of the apparent asymmetry of families. In [34] extensive numerical simulations
were performed to derive what should be the statistically expected dispersions in
orbital semi-major axis and eccentricity, resulting from a large number of collisions
producing completely symmetric ejection velocity fields (spherical velocity fields)
and occurring according to a uniform distribution of the values of the true anomaly
angle f.
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According to [34], if one calls ay the value of the semi-major axis of a family
barycenter, Aa the range of semi-major axes of the members of the same family, and
Ae and Ai the corresponding ranges of eccentricity and inclination, respectively,
statistics predicts that for spherical velocity fields one should expect that for a large
number of families one should find Ae >~ 0.77Aa/ag and Ai ~ 0.35Aa/ay. If one
looks at real families, however, one finds that Ae turns out to be about 1.2 times
the predicted value, while Al turns out to be about twice the predicted value. As
mentioned above, moreover, the distribution of the f angle should be expected to
be fairly homogeneous, whereas this certainly not the case with real families.

In [34], some explanation of the above discrepancies was attempted. In particular,
it was investigated whether some evolution of the orbital semi-major axis and eccen-
tricity with respect to their original values achieved at the epoch of family formation
could be responsible of the observed family asymmetries and non-homogeneous
distribution of the f angle.

The result was that the observed asymmetries and f distributions could be
explained if we assume that the current eccentricities of family members have been
increased by a factor between 1.4 and 1.9, and at the same time the semi-major
axes have been increased by a factor between 1.3 and 1.8, since the time of their
formation. This analysis did not propose any particular mechanism to justify the
above resulting orbital element increases, but it showed that such kind of diffusion
would at the same time produce a distribution of f angles in complete agreement
with the results of the reconstruction of real families. A very important conclusion
of this study was that families that we see today should be on the average between
1.5 and 2 times more diffused in semi-major axis and eccentricity with respect to
their original structures.

It is important to note that the above conclusions are not based on any assump-
tion about the possible evolutive mechanisms of asteroid families, but are based on
purely statistical arguments. The importance of these results will be more evident in
Sect. 3.
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2.9 Summary: The Twentieth Century Family “Paradigm”

To summarize the great body of results obtained in asteroid family studies in the
years between 1990 and 2000, let us summarize now the “twentieth century family
paradigm” as it appeared at the end of the above decade.

— Families exist and can be reliably identified.

— Families have a collisional origin.

— Family members dominate the asteroid inventory at small sizes.

— The original ejection velocity fields can be reconstructed from analysis of the
current distribution of family members in the proper element space.

— Family members were ejected at high velocities, up to some hundreds of meters
per second, and following some general size velocity relation.

— Families can be (or have been) important sources of NEOs through direct injec-
tion into neighboring resonances.

— The creation of big families triggers the collisional evolution of the whole aster-
oid population.

— The original parent bodies of asteroid families were not differentiated.

Some problems, like the real role played by family members in the overall asteroid
inventory and the reasons of the observed structural asymmetries of many families
and the anomalous distribution of the reconstructed f angles (see Sect. 2.8), were
already apparent at this stage, but they were not yet considered so strong as to rule
out the overall correctness of the above paradigm.

New facts, however, were going to be recognized in the immediately following
years, leading to a general conceptual revolution whose full implications are not yet
completely clear at the moment of writing this chapter.

3 Families in the Twenty-First Century

Since we have just explained above what we call in this chapter the “twentieth cen-
tury” family paradigm, and we have mentioned several times that there has been in
recent years a deep revision of common ideas about families, let us start this section
by giving what seems to be the “twenty-first century” family paradigm, in order
to directly introduce the changes that have taken place in recent years. The new
paradigm is the following:

— Families exist and can be reliably identified.

— Families have a collisional origin.

— Family members do not dominate the asteroid inventory.

— Families did not eject collisional fragments at high velocities.

— Families have been strongly modified by evolutionary mechanisms.
— The original ejection velocity fields can hardly be reconstructed.
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— Family ages can be evaluated.
— Family members are mostly re-accumulated.
— The original parent bodies of asteroid families were not differentiated.

As can be seen, some fundamental items in the family paradigm are still there (for-
tunately, the fact that families exist, can be identified and have a collisional origin
has not been questioned!). On the other hand, several items in the above list directly
contradict some ideas contributing to twentieth century paradigm. In particular, the
most important change is that family members are now believed to have experienced
important evolutionary processes, and this fact implies that several conclusions of
the twentieth century paradigm, based on the implicit assumptions that family mem-
bers are still directly reminiscent of the process of their formation, can no longer be
accepted. As a consequence, the reconstruction of the ejection velocity fields of
families as it was done in the 1990s [29] seems to be currently to the majority of
researchers working in this field as a sterile exercise leading to misleading results.

In addition to this, it is now generally believed that families do not dominate
the asteroid inventory even at small sizes, based on the results of some observing
campaigns like the Sloan Digital Sky Survey (SDSS).

An important new item in the twenty-first century family paradigm is the idea
that family ages can now be determined, something that was not considered to be
possible in the framework of the older paradigm. Finally, there is the general idea
that family members are mostly re-accumulated objects. This result comes from a
number of numerical simulations based on refined hydrocodes used to study the
fragmentation and fragment ejection process, followed by an N-body numerical
integrator used to follow the trajectories and mutual interactions of the fragments
immediately after their ejection.

In the following sections we will separately discuss the major facts that have led
to the present family paradigm. Some problems that are apparently still unsolved
will also be mentioned.

3.1 The Yarkovsky and YORP Effects

A big development in asteroid science that occurred in recent years has been the
realization of the importance of the so-called Yarkovsky effect [35].

The physical process at the base of the Yarkovsky effect is the re-emission at
thermal infrared wavelengths of the heat absorbed from the Sun. Two different ver-
sion of the effect, named diurnal and seasonal Yarkovsky effect, respectively, exist.
Since the seasonal effect turns out to be much weaker, we focus in what follows on
the diurnal version of the effect. The mechanism is schematically shown in Fig. 26
and is briefly summarized in what follows. A rotating asteroid is exposed to incident
sunlight. A minor fraction of the incident radiation is immediately scattered by the
surface, but the rest is absorbed and delivers heat to the surface. The surface then
irradiates the absorbed heat at thermal IR wavelengths. At this point, two processes
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Fig. 26 Visual representation “
of the mechanism of the

diurnal Yarkovsky effect. Plot
derived from an original
figure in [36]

Asteroid

take place, which determine the diurnal Yarkovsky effect. First, the asteroid surface
is not an ideal medium, and some thermal inertia determines that the thermal flux is
emitted not instantaneously with respect to the absorption of sunlight, but with some
delay. Second, the object rotates around its spin axis, then the peak of the thermal
emission is not directed toward the Sun, but along a direction that makes a small
angle with respect to the direction of the star, due to the effect of rotation.

As a consequence, the irradiated thermal flux produces an impulse that can be
either along the direction of the orbital motion or in the opposite direction, depend-
ing on the sense of rotation of the object. Consequently, the orbital motion of the
body is either accelerated or decelerated, and its orbital semi-major axis changes
accordingly. The net effect of the diurnal Yarkovsky effect is then a drift in orbital
semi-major axis.

The efficiency of the effect is a function of many parameters. First, it depends
on the obliquity angle of the asteroid, namely the angle between the plane of orbital
motion and the direction of the polar axis of the object. Asteroids whose spin axis is
directed toward the Sun do not experience a diurnal Yarkovsky effect. On the other
hand, the effect is maximum when the obliquity angle is 90°. In addition, the effect
is inversely proportional to the object’s size and depends on the spin rate, thermal
inertia, and the heliocentric distance. In particular, it turns out that the drift in orbital
semi-major axis decreases approximately with the square of the orbital semi-major
axis itself. The reason is, of course, that bodies orbiting at large heliocentric dis-
tances are more scarcely heated up by solar radiation.

The Yarkovsky effect is a nice example of a link between physical and dynamical
mechanisms. The effectiveness of the effect has been estimated by several authors as
a function of the different parameters mentioned above. According to [36], typical
values of the drift in semi-major axis experienced by main belt asteroids of 1 km
in size are around 10~* AU per million of years, with an uncertainty of the order
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of a factor of 2 or 3, depending on the value of the thermal inertia of the surface.
For objects of 10 km in diameter the corresponding drift is ten times smaller. In
the same paper, an estimate of the total drift in semi-major axis experienced by
objects of different sizes during their expected collisional lifetimes is also given.
The corresponding values are between 0.02 and 0.08 AU depending on the thermal
inertia. For 10-km objects the corresponding interval is between 0.03 and 0.05 AU.
A direct confirmation of the existence of a measurable Yarkovsky effect has also
been obtained through radar ranging observations of the near-Earth asteroid (6489)
Golevka [37].

The importance of the Yarkovsky effect for asteroid family studies is that it
introduces an evolutionary mechanism that had not been taken into account in the
twentieth century analyses. The idea is that newly born family members start to drift
in semi-major axis due to the Yarkovsky effect. The families start then to diffuse
in semi-major axis, mainly and more quickly at smaller sizes. Due to their semi-
major axis drift, family members may be injected into resonant zones of the orbital
element space. As a consequence, they experience chaotic changes in eccentricity
and inclination, and they may be removed from their family, and start a complex
dynamical evolution that may lead them to have close encounters with major planets,
causing them to be injected in the region of the terrestrial planets or to be removed
from the Solar System. Another possibility is also, for asteroids located in the inner
region of the main belt, to steadily drift to smaller values of semi-major axis, until
they become Mars-crossers. Close encounters with Mars lead them subsequently to
become NEOs [38].

An example of the resulting evolution of a simulated Koronis family, based on
numerical integrations of the orbits taking into account a model of the Yarkovsky
effect, is shown in Fig. 27. The figure shows in the semi-major axis—eccentricity
plane the time evolution of the simulated family. The simulated objects are indi-
cated by segments showing their total orbital evolution at three epochs after the
family formation. The members of the real Koronis family are shown as dots in the
background. The plots show that the simulated objects progressively tend to mimic
the distribution of the real asteroids, and in particular, it is possible to see that as
objects cross a narrow resonance strip, which is found to cross the family, they
start to increase their eccentricity and form the strange “tail” of family members
exhibiting a larger eccentricity in the outer part of the family. Although the fit of the
real family members is not really perfect, nevertheless the unusual structure of the
family is qualitatively fit in a reasonable way, something that had not been possible
to do in the pre-Yarkovsky era.

An indirect proof of the correctness of the Yarkovsky-based model is the fact
that it explains why families are practically never found to include objects located
beyond the borders of some powerful neighboring resonance, like the 3:1 or 5:2
mean motion resonances with Jupiter. The idea is that, if family members were
originally ejected at high speeds, sufficient to reach these resonances and to inject
bodies into them, then it would be strange that no objects are found today beyond
the borders of these resonances. As opposite, by assuming that families were orig-
inally more compact and have been only subsequently spread in semi-major axis
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Fig. 27 Time evolution of a
simulated Koronis family
taking into account a model
of the Yarkovsky effect in the
numerical integration of the
orbital motion of the
simulated objects. The real
Koronis members are shown
as dots in the background.
Plot taken from [36]
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due to the Yarkovsky effect, one can explain why there are not resonance-crossing
family members beyond very powerful resonances. If the objects underwent a slow
Yarkovsky-driven orbital drift, it is reasonable to assume that, when reaching very
powerful resonances like the 3:1 Kirkwood gap, they were quickly removed from
the asteroid main belt and could not “reach the opposite shore of the river.”
Another advantage of the Yarkovsky-based paradigm is that it naturally recon-
ciles the extremely rapid dynamical evolutions of asteroids injected into the most
important resonances [31] (see Sect. 2.6), with the much longer cosmic rays expo-
sure ages exhibited by meteorites. The idea is that an immediate injection into
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resonance of family members at the epoch of family creation would imply exceed-
ingly short lifetimes for these objects, whereas a slower Yarkovsky drift in semi-
major axis, eventually leading to injection into resonances, could reconcile the
dynamical lifetimes of these objects with cosmic rays exposure ages of meteorites.
At the same time, a slower process of delivery of objects into resonances, would also
be more easily reconciled with a reasonable rate of NEO supply from the asteroid
main belt.

After the realization of the importance of the Yarkovsky effect, numerical simu-
lations have been performed to reproduce the observed structures of several families
in the proper element space [39—41]. In these studies it was found that a better fit of
the observed families may in several cases be obtained when one also includes in the
model the role of the so-called Yarkovsky—O’Keefe—Radzievskii—Paddack (YORP)
effect.

Like the Yarkovsky effect, the YORP effect is also due to a mechanism of thermal
irradiation from the surface. What is important here, however, is the fact that due
to the irregular shape of real objects, the thermal irradiation may well produce net
torque effects which progressively modify the angular momentum of an object. In
particular, since the moment of inertia remains constant as the object keeps its shape,
what does change is the state of rotation. In particular, the YORP effect can modify
both the spin period and the direction of the spin axis of an object [42].

Again, we deal here with a physical mechanism which depends in a complicate
way upon many parameters, some of whom are poorly known. In particular, there
is a dependence on the objects’s shape, size, thermal conductivity, heliocentric dis-
tance, and spin axis orientation.

As for the shape, an object must have some “windmill” asymmetry for YORP to
work, as shown in Fig. 28, taken from [36]; energy re-radiated from a fully sym-
metrical body (e.g., a sphere or an ellipsoid) produces no net YORP torque [42, 36].
These ideal shapes, however, are not encountered in the real world, so it may be

CLQ.., Spin axis

Incident solar radiation

Fig. 28 Spin up of a simulated asteroid, ideally modeled as a sphere with two wedges attached
to the equator. It is assumed that the asteroid is an ideal black body, so it absorbs all incident
solar radiation and then re-emits it at infrared wavelengths as thermal radiation. Because the kicks
produced by photons leaving the wedges are in different directions (note that the two wedges in
the plot are not coplanar), a net torque is produced that, in the situation illustrated in this plot, with
the object spinning as shown, causes the asteroid to spin up. Plot taken from [36]
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expected that YORP torques always take place with real objects, although its actual
effectiveness may vary much, depending on the exact shape and direction of the spin
axis. Of course, the response of a body to the YORP torque is inversely proportional
to its mass, then bigger objects are much less affected than small ones.

YORP can either spin up or spin down an object depending on its shape and
rotation. YORP torque produces also a change of obliquity angle. The obliquity
angle tends to reach an asymptotic value. In turn, however, when the obliquity angle
increases sufficiently, the rotation rate may change, and possibly tumbling rotation
occurs before a new stable rotation state is reached again, and so on, leading to the
possible occurrence of YORP cycles [36].

It is now generally believed that including the YORP effect in the models of
the evolution of the rotation state of main belt asteroids may be very important
to explain the basic features of the distribution of measured rotation periods, in
particular at small sizes, where there is abundance of both slow and fast rotators
[43]. Moreover, another indirect proof of the role played by the YORP effect is also
given by the discovery of an apparent bimodality in the distribution of the spin axis
directions and spin rates of the members of the Koronis family [44]. More precisely,
the observed bimodality of Koronis members should be due to the interplay of the
YORP effect and a mechanism of spin—orbit resonance [45].

Of course, the YORP effect is important in affecting the effectiveness of the
Yarkovsky evolution since it affects the rotation state, and the Yarkovsky effect
depends on the direction of the spin and also on the spin rate. For instance, an
ideally non-rotating body is not subject to the Yarkovsky effect. Similarly, objects
rotating so rapidly as to become isothermal are neither affected by the Yarkovsky
effect.

It is important to note that, when performing simulations of asteroids evolving
under the effect of the Yarkovsky and YORP effects, it has to be taken into account
that collisions also play arole in this game, since they may affect the rotation state by
changing the angular momentum vector in such a way as to have a significant effect
on the effectiveness of the thermal radiation mechanisms. The typical collision rates
and collisional lifetimes for objects having different sizes thus become other non-
negligible factors to be taken into account in simulations.

According to several studies, the inclusion of the YORP effect in numerical sim-
ulations seems to improve the fit of real families modeled by taking into account
the Yarkovsky drift in semi-major axis. Some improved estimates of likely family
ages come from these simulations, although the dynamical evolution of the objects
masks the original ejection velocity fields and makes it difficult to evaluate ages
of very old and/or small families [36]. Moreover, also some estimate of the initial
ejection velocities of family members may be obtained as we will see below.

3.2 Ejection Velocities

We have seen that family studies performed in the 1990s were accepting as typ-
ical for the ejection velocity of small family members values up to 100 m/s or
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even beyond. Such values resulted from interpreting the observed differences in
semi-major axis between the smallest family members and the family barycenter in
terms of ejection velocities according to Gauss’ equations (1). This interpretation,
according to more recent ideas, is wrong, because it does not take into account that
the semi-major axis values of family members, mainly at smaller sizes, have been
strongly affected by a Yarkovsky-driven drift.

Moreover, high values for the original ejection velocities of family members have
always been hard to reconcile with the results of simulations of catastrophic disrup-
tion events [46, 47].

The importance of the initial ejection velocity values in family-forming events
is that they represent the initial conditions to any simulation of the evolution of
family members subject to the Yarkovsky effect. This leads to the possibility in
principle to estimate the ages of asteroid families, by computing the rate of spread-
ing in semi-major axis due to the Yarkovsky drift. Knowing the current width of
families in semi-major axis, it becomes then possible to derive the time needed to
reach the observed dispersions, starting from the initial conditions, namely the initial
distributions of semi-major axis values of family members.

In the first analyses, the initial dispersion in semi-major axis of families was
generally assumed to be very small, if not negligible, corresponding to very low
values of the original ejection velocities, according to the results of hydrocode sim-
ulations. The most recent analyses, which include also the YORP effect, however,
are more detailed and look for a simultaneous solution for the family age and the
initial ejection velocities of family members.

According to a recent analysis of the Eos family [41], the original ejection veloc-
ity values for this family turn out to be of the order, on the average, of several tens of
meters per second. The results indicate also that the original, post-impact width of
the family in semi-major axis was about one half of what is observed today. By the
way, such aresultis in a very good agreement with the estimate of the average family
spreading done by [34], based on the observed family asymmetry and distribution
of the computed values of the f angle, as mentioned in Sect. 2.8.

A more systematic analysis of several families subject to the Yarkovsky and
YORP effects has been recently published [48]. Typical ejection velocity values
of a few tens of meters per second for family members having sizes of the order
of 5 km were found. Although the authors claim that such values are in agreement
with hydrocode results, taken at face value and assuming a simple dependence of the
ejection velocity upon the inverse of size, the obtained values would imply ejection
velocities of the order of 100 m/s for fragments having sizes of 1 km. Moreover,
once again, the resulting initial spread of family members in semi-major axis turned
out to be between 30 and 50% of the currently observed values, in good agreement
with the independent above-mentioned estimates of the post-impact evolution of
families based on the apparent asymmetries of the ejection velocity fields derivable
by the current structures of families in the proper element space [34].

We think that the coincidence between the results of these completely indepen-
dent results concerning the initial spreading in semi-major axis of asteroid families
and the corresponding typical values of the ejection velocities of family members
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are very remarkable and may suggest that the problem of evaluating these initial
velocities seems to be close to a definitive solution.

This means also that the estimated values of the initial ejection velocities of fam-
ily members are raising again somewhat, according to the most updated analyses,
with respect to the assumptions made by the first Yarkovsky-based numerical inte-
grations. This also means that the initial velocity values might have been not really
so low for the smallest objects, and some revision of the hydrocode results might be
necessary.

We note, finally, that the expected dispersion in eccentricity and inclination com-
ing out from numerical simulations including the Yarkovsky and YORP effects turn
out to be generally smaller by a factor of about 2 with respect to the observed values.
We will come back to this point in Sect. 3.5

3.3 Inventory and Size Distributions

As mentioned in Sect. 2.3, the surprisingly steep slopes of family size distributions
and their interpretation in terms of a dominance of small family members in the
asteroid inventory have been long debated [25]. Recently, the results concerning the
slope and shape of family size distributions based on the simple geometric model
[20] mentioned in Sect. 2.3 has been generally confirmed by detailed hydrocode +
N-body modeling, as shown in Fig. 29.

In the last years, the assumption that family size distributions are steeper than the
size distributions of non-family asteroids down to small sizes has been adopted to
develop a so-called statistical asteroid model (SAM), aimed at simulating the inven-
tory and distributions of size, albedo, and orbital elements of main belt asteroids
down to 1 km in size [50].

The dominance of family members at small sizes, however, has been questioned
by several authors. From the point of view of the consequences of the previously
neglected Yarkovsky effect, the idea is that the Yarkovsky drift should produce
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Fig. 29 A couple of size distribution frequencies (SFD) obtained by [49]. The obtained trends are
in good agreement with previous results obtained by means of a much simpler model [20]
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a rapid removal of the smallest family members. The final fate of these objects
should be a complete removal from the main belt over fairly short timescales, due
to resonance crossing occurring during their drift in semi-major axis. This seems
confirmed by the fact that the SDSS [51] has found that the general size distribution
of the asteroid main belt population is described by a power-law having an exponent
much less steep than the value that would be predicted based on an extrapolation of
the family size distributions observed beyond the limit of completeness.

In this respect, according to a study of SDSS results carried out a few years ago
[52], it turns out that asteroid family size distributions at small diameters might be
even less steep than the size distributions exhibited by non-family objects. Other
authors have noted that such SDSS-based findings are not conclusive since SDSS
data seem to be not always self-consistent [53]. In particular, it was noted that the
SDSS-based inference about quite shallow slopes of family size distributions at
small sizes would be in contradiction with another independent conclusion about
the dominance of families in the overall asteroid inventory based on SDSS color
data [54].

As a matter of fact, the fundamental problem seems to be that observations have
not yet provided a conclusive evidence about the inventory and size distribution
of the asteroid population. In particular, the results of different surveys are con-
tradictory, and the interpretation of the data in terms of asteroid sizes is also not
straightforward, as we will see in a moment.

On one hand, the SDSS data and the Subaru surveys [55, 56], both carried out
from the ground at visible wavelengths, both found a quite shallow size distribution
of the main belt population down to sizes smaller than 5 km. On the other hand,
space-based surveys carried out at thermal infrared wavelengths find a much larger
number of objects in the same size range [57]. The difference between ground-based
and space-based surveys for objects 1 km in size turns out to be of the order of
a factor between 2 and 3. This means that the results of thermal IR surveys are
still compatible with predictions based on a predominance of family members [50],
whereas ground-based surveys are not.

When deriving asteroid size distributions from sky surveys, one should always
take into account that what is observed and recorded is a distribution of apparent
magnitudes, not directly of sizes. The conversion from apparent magnitudes to sizes
is done by converting apparent magnitudes into absolute magnitudes, and assuming
some value of the albedo, according to Eqn. (2). Both the conversion to absolute
magnitude and the assignment of an albedo value are important sources of errors.

Some recent studies have been based on the idea that the SDSS distribution of
absolute magnitudes has a correct slope, and that a de-biased distribution of abso-
lute magnitudes must be based on that slope value, but complementing it with the
known number of asteroids having absolute magnitude H < 12. Having done so,
the corresponding size distribution has been obtained by assigning to the objects an
average albedo value equal to 0.092 [58]. According to this study, there should be
about 1.2 x 10° main belt asteroids larger than 1 km. The above estimate is just in
between the SDSS-based estimate of about 7 x 10° objects and the SAM estimate
of 1.7 x 10°.
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As mentioned above, however, the derived size distributions are still quite uncer-
tain. On one hand, the albedo is a parameter that may vary over an order of mag-
nitude (between about 0.05 and 0.5), and is also dependent on the heliocentric
distance, since darker objects are more abundant in the outer asteroid belt. Then,
any albedo assignment based on an average value is intrinsically dangerous. On
the other hand, another big problem has been becoming increasingly manifest in
recent times, namely the problem of the reliability of the absolute magnitudes H. We
remind that the absolute magnitude of an asteroid is an abstract parameter, having
the meaning of the apparent magnitude that the object would exhibit if observed at
unit distance from both the observer and the Sun and at zero phase angle (perfect
Sun opposition). The values of H listed in asteroid catalogs are then derived from an
extrapolation to zero phase angle of apparent magnitudes observed at (often, few)
different epochs at corresponding phase angles different from zero. What seems
currently to be a big problem is that the listed values of absolute magnitude seem to
be very often extremely inaccurate, as shown in Fig. 30. The figure shows that the
currently adopted H values may be wrong, in many cases dramatically wrong, due to
the presence of both random and systematic errors, as a function of the magnitude
itself. If this is the situation, any conclusion on the size distribution of the main
belt population, and on the possible dominance of family members in the asteroid
inventory at small sizes, seems premature. The problem is still open, and only new
observations and a drastic correction of available catalogs of asteroid absolute mag-
nitudes may lead to a real solution.
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Fig. 30 Differences between the values of H absolute magnitudes of a sample of objects as they
are listed in the JPL Horizon orbital element database and the H values derived from direct obser-
vations during a recent observing campaign (Plot taken from [25])
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3.4 New Young Families and Implications

One big achievement of family studies in the last decade has been the discovery of a
few very young families. In particular, the discovery of the Karin family [59]. This
is a small clustering of objects within the much bigger Koronis family. It is likely
the outcome of a second-generation collision involving an original member of the
Koronis family, having a size around 30 km. The mass ratio between the parent body
and the largest surviving fragment, (832) Karin, is about 0.15-0.2. The Karin family
has been identified due to its peculiar structure in the proper element space, being
characterized by a filament-like structure in the a’—e’ plane. This kind of structure is
expected, according to Gauss equations, in cases in which the true anomaly of the
parent body, f, was very close to 0° to the epoch of the impact.

Numerical integrations back in time have directly shown that the Karin family
should have an age around only 5.8 millions of years, and it is thus extremely young.
It represents, therefore, an ideal grouping to test current ideas about the properties of
asteroid families immediately after their formation. The cumulative size distribution
of the family is shown in Fig. 31. As it can be seen, the size distribution is very
steep and is fitted by a power-law having an exponent of —5.3 [60]. This family
provides, therefore, a nice confirmation of the steep size distributions characterizing
the outcomes of family-forming events.

According to [60] the ejections speeds of small fragments produced by the event
were larger than those of larger fragments, in qualitative agreement with the general
“twentieth century” idea of an original size—velocity relation for the members of
asteroid families [33]. In particular it has been found that the ejection velocity shows
a simple dependence on the inverse of size. It must be noted, however, that the
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smallest Karin members are still undiscovered, due to their apparent faintness. The
mean ejection speeds of fragments above 3 km in diameter have been found to be
of the order of 10 m/s, but the morphology of the observed ejection velocity field
derived from the structure of the family in the proper element space has been found
to be not easily reproducible using the approach adopted by [60]. It is also worth
to note that, in spite of its youth, current models of the family evolution include
some small Yarkovsky-driven evolution to improve the fit between the models and
the appearance of the real family.

Another recent discovery has been that of the likely disruption of a parent body
that produced the asteroid (298) Baptistina, an object previously included in the big
Flora clan in the inner belt [11]. The Flora family has long been considered to be a
puzzle, due to the fact that it is very big and dispersed, and there is the possibility
that it might consist of the overlapping of separate groupings. According to [61],
the collision that produced a family including (298) Baptistina may have occurred
recently, about 100 millions of years ago. Such event, according to simulations,
might have been responsible of an asteroid shower (see Sect. 2.6), which led to an
increase of the lunar and terrestrial cratering rate during the last 100 Myr and was
likely including the big impact occurred at the end of the Cretaceous about 65 Myr
ago. This was the impact that, according to a consistent body of evidence, produced
the Chicxulub crater in Yucatan and was likely responsible of the mass extinction
event leading to the disappearance of dinosaurs.

3.5 Some Problems

The twenty-first century family paradigm is based on a convincing body of evidence,
coming both from theory and observations. The inclusion of the Yarkovsky and
YORP effects, in particular, constitutes certainly a big step forward in the interpre-
tation of the properties of asteroid families.

Having clearly made the above statement, we cannot yet conclude that everything
is now clear and that there are no pending problems. A list of problems affecting
current ideas about families is the following (not in any particular order):

1. Up to which size the Yarkovsky effect is really effective?

2. Does YORP eventually strengthen or weaken Yarkovsky?

3. What is the explanation of the D versus proper elements relations observed for
families?

4. How to put together consistently dynamical and physical effects having different
and size-dependent timescales (resonance crossing, resonance-driven dynamical
evolution, spin axis collisional realignment)?

5. How to explain why real families have ¢’ and i’ distributions which look often
more dispersed than the results of Yarkovsky-based simulations?

6. The initial family structures are not directly known and are mostly derived from
numerical simulations. Can they be estimated from the distributions of the largest
members of families?



Asteroid Dynamical Families 189

Item (1) in the above list is strictly related to item (6). The idea is that we know
that the effectiveness of the Yarkovsky effect decreases with the size of the objects.
In other words, the Yarkovsky-driven drift in semi-major axis is inversely propor-
tional to the mass of the object. The net effect of the Yarkovsky drift is then that of
mimicking a size—ejection velocity relation in orbital semi-major axis. On the one
hand, this precludes the possibility to infer information on the original structure of
families directly from a simple and direct inspection of the distribution of the current
proper elements of family members at small sizes. On the other hand, however, it
is still true that large family members, not appreciably affected by the Yarkovsky
force, should be more directly reminiscent of their original ejection velocity values.
The problem is to make a reliable assessment of a size limit beyond which we may
assume that the Yarkovsky drift has been negligible. This depends on the age of
the family and on the complicated dependence of the Yarkovsky effect itself upon
many physical parameters, which are also subject to changes due to collisions, like
the rotation period and the spin axis orientation. As a general comment, we note
that the reconstruction of the ejection velocity fields of several families done in the
pre-Yarkovsky era [29] included in general many family members that were fairly
large, due to the effect that the family membership lists derived in the 1990s were
limited to fairly small databases not including the proper elements of many small
and faint objects that are available today. For this reason, it is not sure that all the
old results are completely and systematically wrong, although it is clear that they
should be deeply revised, taking also into account the indications coming from the
uneven resulting distribution of the resulting f angles [34] (see Sect. 2.5).

The item (2) in the previous list expresses some uncertainty concerning the inter-
play between the Yarkovsky and YORP effects. The reason is that both effects
depend on many parameters, and the resulting evolution determined by YORP is
also related to complicated effects of spin—orbit resonance [45]. In this situation,
it is not completely clear whether the YORP effect really makes Yarkovsky more
effective, as it might look reasonable at a first glance, assuming that YORP simply
tends to bring the obliquity angle to reach a value of 90°. The situation seems more
complicated, and further analyses and modeling seem necessary.

The other items of the above problem list are different aspects of the following
general problem: the effect of the Yarkovsky effect on the evolution of orbital eccen-
tricity and inclination is eminently indirect. The effect itself has only a weak direct
influence on the evolution of the eccentricity and no effect at all on the evolution
of orbital inclination. Eccentricity and inclination change mostly because during its
drift in semi-major axis under the effect of the Yarkovsky effect, an object may enter
some resonant zone, and start wide chaotic oscillations in eccentricity and inclina-
tion. While being located in a resonant strip, the object still continues its drift in
semi-major axis, and more or less quickly, depending on its mass, reaches the other
border of the resonance, taking again a state of regular orbital motion. Of course, if
it enters a wide and powerful resonance, like the 3:1 mean motion resonance with
Jupiter, the chances of the object to be strongly perturbed and removed from the
asteroid main belt before leaving the resonance are high, yet the main belt is crossed
by many weaker resonances, that may be progressively reached by any single object
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during its drift in semi-major axis, mainly if it is small and consequently its drift is
more rapid. The residence time in any given resonance and the number of resonances
crossed in a given time are then size dependent. At the same time, the object is also
subject to a collisional evolution that may change its size and rotational state. The
net result of such kind of complex evolution seems, therefore, quite complicated and
hardly predictable. It is then not really surprising that Yarkovsky-based models do
not produce in general very good fits of the structures of the families in eccentricity
and inclination and of the resulting relations between size and the above orbital
parameters.

The very surprising fact, however, is that the size—eccentricity and size—inclination
relations appear to be fairly simple and regular, as shown in Fig. 32. In particular, in
spite of complications related in several cases to the presence of nearby resonances,
that may have some evident role in shaping the borders of the families in semi-major
axis, it turns out that the dispersions of eccentricities and inclinations generally
turn out be inversely proportional to the asteroid size, as it would be expected by
assuming that a size—velocity relation holds. The problem then is: Can this apparent
relation be simply explained by a mechanism based on a pure Yarkovsky-based evo-
Iution? Some further work seems still necessary to properly deal with this problem.

4 B S
18 0.01 0.02 0.03 0.04

I x
3 0 0.02 0.04 006 008 0.1

29 295 3 305 31 004 006 008 010 012 015
a (AU) €

Fig. 32 The d/, ¢/, and sini’ versus size relations exhibited by the Themis, Koronis, and Eos
families (from fop to bottom). Plots based on still unpublished 2007 data

4 Discussion and Conclusions

In spite of tremendous improvements in our models, especially following the real-
ization of the importance of thermal radiation mechanisms, a lot of work seems still
necessary to achieve a really satisfactory comprehension of the whole family puzzle.
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Based on the overall discussion made in the previous sections, it seems that a
list of lines of research that should deserve a careful attention in planning future
activities in this field includes the following:

— New, updated family lists are needed.

— More spectroscopic data are needed to identify interlopers and help in the assign-
ing members to mutually overlapping groupings in the proper element space.

— Better estimates of Yarkovsky effectiveness seem desirable.

— A refined interpretation of the proper elements versus size plots are needed.

— A better assessment of what remains of the primordial structures of asteroid fam-
ilies in spite of the Yarkovsky evolution is needed. This mainly refers to the
biggest objects belonging to family member lists.

— New photometric data are needed to test the possible existence of systematic
trends in the orientations of the spin axes and on the rotation periods of the mem-
bers of a same family, as in the case of the Koronis family discussed above [44].
These data will certainly be produced by the next generation of ground-based
(Pan-STARRS) and space-based (Gaia) sky surveys.

For what concerns the need of new family lists, some attempts have been already
done in recent years, but the situation is intrinsically difficult due to the effect of
mutual family overlapping. This is an undesirable consequence of having at dis-
posal, in the present situation, huge data sets of asteroid proper elements, containing
much more small objects with respect to the databases adopted for family identifi-
cation in the 1990s. We note also that the criterion adopted for establishing family
membership is crucial, and a lot of care must be devoted to this problem. The rea-
son is that a too liberal criterion may produce family member lists including large
numbers of interlopers, or of actual members of other families. As opposite, a too
restrictive criterion may produce member lists depleted of large numbers of actual
family members, so increasing artificially the inventory of non-family objects. For
the above reasons some improved methods of family identification must probably
be developed, and at the same time the role played by ancillary spectroscopic data
is going to become increasingly important.
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An Introduction to the Dynamics of Trojan
Asteroids

P. Robutel and J. Souchay

Abstract The dynamics of Trojan asteroids constitutes one of the richest fields of
celestial mechanics, as a real application of the three-body problem. It involves the
L4 and Ls Lagrange points and the conditions of stability around these two points.
In this chapter we propose to present the fundamentals of the dynamics of Trojan
asteroids. After a brief historical overview, we come back to the definitions and
characteristics of the collinear Lagrange points L, L,, and L3, as well as the tri-
angular ones, L4 and Ls. We show how observational data of Trojan asteroids have
confirmed the existence of real bodies librating around these two last points. Then
we focus on the linearization of the equations of motion around L4 and Ls from a
general and purely theoretical point of view. In addition, we show how qualitative
results can be extracted to describe the properties of Trojan asteroids. We complete
our study by summarizing many previous and up-to-date investigations, which focus
on their dynamical behavior.

1 Introduction

Dynamics of Trojans is directly linked with the notion of Lagrange points, tra-
ditionally called L points. These five points correspond to positions in which an
object with a small mass, when subjected to the sole gravitational attraction of two
other objects with a much larger mass, can theoretically be stationary relative to
these objects in such a way that the geometrical configuration of the three objects
remains permanently the same. If the mass of the small body is in fact negligible
with respect to the two other masses (which corresponds to the so-called Restricted
three-body problem), we can explain the presence of the stationary positions in the
following way: the two large bodies undergoing a Keplerian motion, in the frame
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of the two-body problem, we can simplify the problem by considering a circular
motion. Thus we consider a rotating reference frame with the same period as the
co-orbiting bodies.

Then the Lagrange points can be viewed as the positions where the combined
gravitational attraction of the two large bodies on the third one and the centrifugal
force are in balance, so that the third body is at rest in the rotating frame. Notice that
the presence of these points of equilibrium still exists when we adopt an elliptical
motion for the primaries, instead of a circular one. Among the five Lagrange points,
three of them (L, Ly, and L3) are collinear, along the line joining the two large
bodies. The two remaining ones are symmetrical with respect to this line, in such a
way that they form an equilateral triangle.

This chapter is devoted to the basic analytical development explaining the dynam-
ical behavior of test particles around the L4 and Ls Lagrange equilateral positions
and to the real case represented by the Trojans asteroids influenced by the combined
gravitational torque of Jupiter and of the Sun. Our aim is principally to give the
reader in the most detailed manner the theoretical foundations on which classical
investigations of the dynamics of Trojan asteroids are carried out. Describing an
exhaustive account of the recent and up-to-date developments is largely beyond the
scope of this chapter. Despite this, we hope that it will be informative enough to
allow any graduate student to easily acquaint themselves with the subject.

At first we will explain intuitively and without any calculation the physical mean-
ing of the five Lagrange points. Then we will give a historical account of the sub-
ject, both on a theoretical and on an observational level. After that we will write
the fundamental equation of the dynamics for the restricted three-body problem,
thus showing the theoretical existence of the Lagrange points. A particular attention
will be paid to the dynamical behavior of the equilibrium points L4 and Ls in the
framework of the restricted three-body problem. The last section will present a brief
discussion concerning the stability of (hypothetical) Trojan swarms harbored by the
eight planets of the Solar System, including a substantial bibliography.

2 Intuitive Explanations of the Lagrange Points

In order to understand the meaning and characteristics of the Lagrange points, let us
consider a planet P with mass Mp orbiting around the Sun S with mass Mg, on a
circular orbit. According to the Kepler’s third law, the closer a planet is to the Sun,
the faster it will move around it, in terms of both angular velocity and amplitude of
the velocity.

2.1 The Ly, L,, and L3 Lagrange Points

Following this principle, a body M with negligible mass orbiting on a circular orbit
around the Sun at a distance smaller than S P will not be able to remain fixed with
respect to the SP line. In fact this is not always true. If M is placed between the



Dynamics of Trojan Asteroids 197

Sun and the planet on the S P line, the gravity exerted by P pulls it in the opposite
direction than that exerted by the Sun and cancels some of the attraction exerted by
the Sun. Therefore, with a weaker pull toward the Sun, M will need less speed to
maintain its orbit. The distance SM can be calculated so that the period of revolution
of M will be exactly equal to the period of revolution of the planet. This distance
corresponds to the Lagrange point L. Then, the three points S, M, and P remain
aligned in that order.

‘We can explain the presence of L, with exactly the same kind of demonstration as
for L,: suppose now that M is aligned along SP with SM > S P. Then the period of
revolution of M is a priori longer than the period of revolution of P, since its angular
velocity is slower. In fact this is not always the case. The gravitational attraction of P
on M is superimposed to that of the Sun. Therefore the central acceleration is bigger
than the Keplerian motion and this allows M to move faster. If the distance P M is
suitably chosen, the acceleration is such that the corresponding angular velocity is
rigorously equal to that of P, and the three bodies S, P, and M remain aligned in
that order.

The last aligned Lagrange point, L3, is located at the opposite side of the Sun
with respect to the planet P. Here, M is still subjected to the double attraction of
S and P, as was the case in the L, configuration. This still causes an increase of
orbital velocity with respect to a purely Keplerian motion, and if the distance S P is
suitably chosen, the orbital period of M might become exactly identical to that of P.

Notice that if the mass of M is negligible with respect to the mass of P, as we
have supposed above, then L and L, are at approximately equal distances ry from
the secondary object. ry corresponds to the radius of the Hill sphere, given by:
rg ~ R(Mp/3Ms)'/3. In the case of the Sun—Earth system, the third mass should
be placed at 1.5 x 10° km away from the Earth, and in the case of the Earth-Moon
system it should be placed at 61,500 km away from the Moon.

The Ly, L,, and L3 Lagrange points are unstable, which means that if M slips off
these positions, then it will softly drift away and irreparably leave the equilibrium.

2.2 The Lagrange Points L, and Ls

Still considering the planet P orbiting the Sun on a circular orbit, the two Lagrange
points L4 and Ls lie at the same distance SP = SM at 60° ahead of and behind P
so that (S, P, M) are forming an equilateral triangle. This case is less easy to under-
stand intuitively. In this situation, the ratio of the gravitational attraction exerted by
the two massive bodies S and P on the third one M is the same as the mass ratio
of the two bodies. As a consequence, the resultant force acts through the barycenter
of the system. In addition, the fact that the three bodies lie on the avertices of an
equilateral triangle ensures that the resultant acceleration is to the distance from the
barycenter in the same ratio as that of the two massive bodies. This is exactly what
is required to keep the body M in orbital equilibrium with the rest of the system.
Notice that the Lagrange points L4 and Ls correspond to neutral equilibrium
points, which means that when M is gently pushed away from these positions of
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equilibrium, it orbits around these positions without drifting farther and farther.
This, in particular, is the start point of all the very interesting analytical develop-
ments of the next chapters.

3 A Few Historical Points

The three collinear Lagrange points L, Ly, and L3 were first discovered by Euler
(1707-1783) in 1765. He applied his calculations to the system Sun—Earth with
the Moon as a test particle. He mentioned that if the Moon were four times more
distant from the Earth than it is presently, then its motion would be such that it
would be permanently in a full Moon configuration. In 1736 the mathematician
Joseph Louis Lagrange was born in Torino (Piemont) and moved to Paris in 1787,
where he remained until his death in 1813. In 1772, he worked actively on the three-
body problem among other topics of celestial mechanics. Investigating the relative
positions and velocities of the three bodies starting from the gravitational attraction,
he found the famous equilibrium configurations where the three bodies are located
at the vertices of an equilateral triangle’.

A half-century later the French mathematician Joseph Liouville examined the
position of equilibrium proposed by Euler concerning the Moon. In 1842, he demon-
strated that this position was unstable. Notice that this had some philosophical
impact. Indeed, Laplace in his Exposition du Systéme du monde maintained that
the Moon was created in order to shine on the Earth by night, and argued that
the Moon would have been placed initially in the position of equilibrium men-
tioned above. By pointing the instability of the configuration, Liouville invalidated
Laplace’s argument.

One year later, in 1843, a fundamental property was found by Gascheau [26]
when, while making specific studies about the equilateral configuration, he proved
that for a circular motion of the three bodies, the positions of the three bodies at the
vertex of an equilateral triangle were stable if their masses satisfied:

(mo 4+ my + my)?

momy + momy + mymy

> 27.

In the case for which m, is negligible with respect to m( and m, this leads to
uw(l — @) < 1/27 with p = (m(jilml)' The corresponding value is: u = %(1 -
/23/27) =~ 0.0385. Notice that we consider only the values of u < % for which
m; < my (the opposite case being symmetrical). For instance we can immediately
deduce from this law that in the case of the pair Sun—Jupiter (x =~ 0.001) and
Earth—-Moon (u ~ 0.012) the equilibrium is stable, whereas in the case of the pair

Pluton—Charon (. =~ 0.083) it is unstable.

! This configurations lead to the two relative equilibria L4 and Ls when the mass of one of the
bodies is negligible with respect to the masses of the others.
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3.1 Physical Existence of the Lagrange Equilibria: Trojans
satellites and other cases.

For more than one century the Lagrange points were only a subject of theoretical
investigations, without any confirmation in the nature. In February 1906, the Ger-
man astronomer Max Wolf put an end to this situation when discovering the first
Trojan asteroid Achilles, with the number 588, at the L4 Lagrange point. After a
few months, the strangeness of its orbit was noticed, and soon after that other aster-
oids were discovered close to the L4 and Ls points of Jupiter, as Hector, the largest
Trojan asteroid, was discovered in February 1907 by August Kopff, another German
astronomer. With dimensions of 370 km x 200 km, Hector is particularly elongated
with respect to other celestial objects of the same size. The theory which claims
Hector should be a dual asteroid was suspected for a long time, and finely confirmed
by a recent observation in July 2006 by the Keck 10 m telescope, with a resolution
of 0.06 arcsec. All the asteroids found at the L4 and Ls points of Jupiter accepted
names associated with Iliade. The L4 group is named “group of Achilles” whereas
the Ls group is called group of Trojans, also called the “Patroclus group” to avoid
confusion. In fact the Trojans group traditionally corresponds to the combination of
the two above groups.

The drastic improvement of observational techniques led to the discovery of a
large number of Trojans asteroids, more than one thousand in the two symmetric
Lagrange points. As shown in Fig. 1, the Trojan asteroids can be found at very large
distance from their respective Lagrange points, both for their projection on Jupiter’s
orbital plane (Fig. la) and on the plane perpendicular to the Sun—Jupiter line
(Fig. 1b), for which the angular difference can reach +40°. Figure 2 shows the
cumulative number of recorded L, and Ls Trojans at a given year from 1900

_al ‘\\\ ’/,” i oL ‘..‘:‘ ‘ --:. . N

-6 I I
- -4 -2

, .
0 2 4 6 -6 -4 -2 0 2 4 6
X (UA) X (UA.)

Fig. 1 Bi-dimensional positions of the first 400 recorded Trojan asteroids with respect to Jupiter
(small circle). (a) Planar positions (projection on Jupiter’s orbital plane). (b) Vertical positions
(projections on the plane perpendicular to the Sun—Jupiter line)
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Fig. 2 Histograms representing the cumulative number of known Trojans asteroids at the L4 and
Ls Lagrange points for a given year, between 1960 and 1980 (a) and between 1980 and 2008 (b).
The corresponding histograms (¢) represent the ratio of the numbered L, asteroids to the numbered
Ls ones. (d) Same as (b) for all observed Jovian Trojans (numbered as well as unnumbered)

to 1980 (Fig. 2a), from 1980 to 2008 (Fig. 2b), with the L4/Ls respective ratio
(Fig. 2¢). In contrast to Fig. 2b, ¢ where only numbered Trojans® are taken into
account, Fig. 2d gives the cumulative number are all observed bodies, numbered as
well as unnumbered.

We can observe that the number of L, asteroids at a given date have always been
larger than the corresponding number of Ls ones. In some periods (for instance
between 1960 and 1980), the abnormally large value of the ratio is obviously due to
an observational bias (the L4 zone being largely more explored than the Ls one).

The Trojans can be, for instance, manually identified from their short trails
compared to those of the main-belt asteroids. Close to opposition this proved to
work fine, but with larger phase angles problems occur as explained by Lagerkvist

2 A number is assigned to a given body after accurate orbital elements have been determined.
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et al. [33]. A survey of for L, Trojans was made by Van Houten et al. [68] with
the Palomar Schmidt telescope. They gave an estimate of around 700 objects
down to absolute magnitude H = 13. This first survey was accompanied by
additional ones during several apparitions in September 1973 for L4, in March
1971, and October 1977 for Ls. They were, respectively called T1, T3 and T2.
Lagerkvist et al. used the ESO Schmidt telescopes during apparitions in 1996,
1997, 1998 to study the L4 point of Jupiter. For instance their first survey in 1996
covered a field of view of about 700 square degrees and they found 399 mov-
ing objects classified as Trojans. From this they concluded that about 1100 Tro-
jans are present down to the absolute magnitude H = 13. These various system-
atic surveys carried out during limited time span explain the big jumps appear-
ing in Fig. 2. On January 19, 2009, 1632 numbered Trojans were recorded at the
L4 point, 1277 at the Ls one. Notice that a complete and up-to-date database of
Jupiter Trojans discovered and confirmed, can be found at the following URL:
http://www.cfa.harvard.edu/iau/lists/JupiterTrojans.html.

The equilateral triangle configuration has also been discovered in the Satur-
nian system. Saturn’s moon Thetys is in relation with two small bodies located at
the Saturn—-Thetys’ L4 and Ls Lagrange points, named respectively, Telesto and
Calypso. The other Saturnian moon Dione is another example, with Helena at the
L4 point and Polydeuces at the Ls one. These two bodies present large longitude
variations with respect to the Saturn—Dione line, reaching more than 30° degrees in
the case of Polydeuces.

In addition the Sun—Earth system and the Earth—Moon system are subject to some
concentration of dust at their respective L4 and Ls points, called Kordylewski clouds
in the second case (see [37]).

Mars itself possess four asteroids located at L4 and Ls, which were discovered in
1990 (Eureka), 1998, 1999, and 2007. Neptune has six trojans discovered between
2001 and 2007.

At last the Earth companion Cruithne (3753) has a dynamical behavior similar
to that of the Trojans. It alternates between two kinds of orbits due to close encoun-
ters with the Earth. When the asteroid is in the smallest and fastest orbit it gains
orbital energy when close to the Earth, and then moves on the larger and slower
orbit. A similar case of exchange of energy happens for the two satellites of Saturn
Epimetheus and Janus.

3.2 Lagrange Collinear Points Artificial Population

The collinear Lagrange points L, and L, have recently been a big source of interest
for people involved in present and future space missions. The Sun—Earth L; point
is ideal for making observations of the Sun. Objects there are never shadowed by
the Earth or by the Moon. The Sun—Earth L, point is a well-suited spot to carry out
space-based observatories. One of the reasons is that a probe in the neighborhood of
L, will always maintain the same orientation with respect to the Sun—Earth system,



202 P. Robutel and J. Souchay

and for this reason, shielding and calibration are much simpler. At the L, point,
a spacecraft would not have to make constant orbits around the Earth, resulting in
it passing in and out of the Earth’s shadow and causing it to heat up and down,
thus perturbing its observing mission. Free from that inconvenience and far away
from the heat radiated by the Earth, the Sun—Earth L, point provides a very stable
viewpoint.

Although the L and L, points are nominally unstable, it is possible to find stable
periodic orbits around these points, in the frame of the restricted three-body prob-
lem. These orbits can be ranged in three categories: vertical Lyapounor, horizontal
Lyapounor and “halo” orbits. This classification is not obvious when the third body
with negligible mass is undergoing the small gravitational perturbations exerted by
other celestial bodies in the context of n-body problem, which is the case of the
Solar System. Nevertheless, quasiperiodic orbits can be found following Lissajous
curve trajectories in the N-body system. Although the orbits are not perfectly stable,
a relatively small ballistic effort can allow a space probe to stay in a Lissajous orbit
for a long period of time.

3.2.1 Recent Missions

e The ISEE-3 (International Sun Earth Explorer) was a probe launched on Septem-
ber 12, 1978 and sent directly on the L; Sun—Earth Lagrange point around which
it described a halo to study the interactions between the Sun and the Earth, in
particular the solar wind, the magnetosphere and the rays at high energy.

e The WIND probe describes a Lissajous orbit around the Sun—Earth L; point,
after undergoing a swing-by around the Moon. It was launched on November 1,
1994 to study the solar wind.

e The SOHO (Solar Heliospheric Observatory) was launched on December 2, 1995
with the purpose of studying the Sun from the core to the corona. It reached
directly the L; Sun—Earth Lagrange point after a direct transfer. Its orbit is a halo
around the L point.

e The ACE (Advanced Composition Explorer) launched on August 25, 1997.

e The WMAP (Wilkinson Microwave Anisotropy Probe) launched on June 30,
2001 reached the L, Sun—Earth Lagrange point after a 2 month travel and is
now librating around it, taking huge data on the cosmic microwave background
which represents the signature of the big bang. The probe lost only 1/10 of its
total fuel after reaching its location, and the remaining fuel will allow the probe
to hang around the unstable L, point for nearly a century.

3.2.2 Future Missions

Because of the advantages mentioned above, the Sun—Earth L, Lagrange point is
rapidly establishing itself as a prominent location for spacecrafts. For instance ESA
has a number of missions that will make use of this very well-suited spot. As mis-
sions we can mention Herschel, Planck, Eddington, Gaia, the James Webb Space
Telescope, and Darwin.
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4 Restricted Three-Bodies Problem and the Lagrange’s
Equilibrium Points

4.1 n + 1 Body Problem: General Setting
Let us consider n + 1 bodies noted (Py, Py, ..., P,) with respective masses
(mg, my, ..., m,) each of them undergoing the sole gravitational attraction exerted
by the other ones. Let us consider the vector u; such that
u; = G P; where G is the center of masse of the system. The fundamental equa-
tion of the dynamics writes
J#i )
l
=G Yy m—1— (1)
0<j=n ”“1 W ”
Note that the equation is invariant by translation:

w—u +v veR}

which is equivalent to the conservation of the linear momentum:

P: Z m,u,=0

0<i<n

An usual and advantageous way to perform this reduction is to use coordinates r;
relative to one of the bodies, let us say Py, so that we get the following relationships:

r; =u; — U, 1<i<n
r0=@u0+...+ﬂun=07m=m0+...+mn' (2)
m m
Consequently, using relative coordinates (2) the (1) can be written as:
g = 0
. ; ; r, —r; r; .
r, = —Gmo—}_’;n r; +Z{f/<n ij J 3 / 3 (3)
i | - [rj=xf™ ]

We are left with a 3n degrees of freedom system rather than 3(n + 1). It is always
possible to reduce the number of degrees of freedom of the differential system, by
taking into account the conservation of angular momentum [7, 15] or by using the
Jacobi reduction [58], or partial reduction [38], but in the following sections, we
will not need these techniques.
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4.2 Application to the Three-Body Problem: The Lagrance Points

In the case of the three-body problems (three bodies Py, P;, and P, with respective
masses mg, mp, and m,) (3) become:

Iy = 0
. mo + my I, —r I

[lry]] lra — 1yl 2|l “4)
.. mo + m; r—n I
r2=—G—3r2—|—Gm1< 3 — 3)

[l ] vy —ral el

4.2.1 Collinear Solutions of Equilibrium L, L,, and L3

First of all we can investigate the existence of collinear positions of equilibrium,
simply by setting r, = ar;. Notice that in that case « can a priori depend on 7. Then
r; —rp = (1 — a)r;. By substitution in (4) we find

.. 1_ r
r = —G<mo+m1+m2( a3+ 013)> 13
| o | [1—o] ”rl” (3)

3
| o |

. o 1l—«a r
rz:—G<m0+m2+m1 (r— 3)) 23
a [1—a [lr2|]

In addition, r, = ar; leads to ¥, = «¥;. This condition mixed with the equations
above gives

o l -«
m0+m1+m2(|a|3+ |1—0t|3):
1 o |? l -« ©
W<m0+m2+ml a a- |1—a|3))’

It can be shown that, when removing the absolute values, (6) leads to three differ-
ent polynomial equations of degree 5 possessing only one real root each. These three
real solutions of (6) verify a3 < 0 < &1 < ay. If the condition ry A ¥y = ozizrl AT
is verified for i = 1,2, 3 then the three points P;, P,, and P; are permanently
aligned. The orbits of P; and P, around P, are two conics around Py, coplanar and
homothetic with the ratio «;. The semi-major axes of these conics are aligned and
they have the same eccentricity.

4.2.2 Equilateral Positions of Equilibrium L4 and L5

In order to understand the possibility of equilibrium in an equilateral triangle con-
figuration, let us transform (4) in the following form:
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Iy = 0
. moy +my + my r,—r; I r
r1=—G—3r1+Gm2( 7 — 3+ 3>
llrll ry — 1yl x|l ledi”/ . (D)
. mo +my +my r—r I | )
[[x2]] [ty —r2l fles ] [[r2]]
Then if we set the following equalities | r; |=| r, |=| r; — r [, the second

part of the right-hand side annulates and the equations above can be written in the
simplified manner:

Iy = 0
i1 = —G(mo + my +m)—!
1= —Gmo +my my)——m=x
el (8)
.. | ¥
r, = —G@mo +m; +my)——
[l

The conditions of equalities of the three distances above are satisfied at the con-
dition that the three points Py, P;, and P, are located at the vertices of an equilateral
triangle, whereas the two last correspond to the classical two-body problem. There-
fore these conditions and these equations can be satisfied simultaneously if P; and
P, are describing coplanar orbits around Py, with the same semi-major axis and the
same eccentricity, in fact if these orbits are the same but shifted by a 60° rotation
angle around Py. Moreover as the gravitational constant u = G(my + m; + my)
is the same for the two Keplerian equations (8), the motions along the two orbits
will be synchronous, with the same period in the case for which the two orbits are
elliptic.

4.3 Equilateral Configurations in the Restricted-Three-Body
Problem

In this section, we consider the restricted three-body problem, which means that
one of the masses is zero. For instance we put m, = 0. Then the motion of P; with
respect to Py becomes a two-body problem, and we are interested only in the motion
of the third body P, with zero mass. As the motion of P, is the only subject of study,
and for the sake of simplicity, we take r = r, Thus, the equations become:

.. (mo +my)
r=-G——=5-r
[y | ©
(mo +my) < r—r r; r ) :
= -G———Lr+Gm - +
Ir|? Iee—rl> e el

Denoting, respectively, by o and w; the quantities G(my + m;) and Gm, the
previous equation can be writen as:
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i o
1= —HoT—3

[yl . (10)
. r +M< ry—r r| N r )
r=—W-——-3 1 -

) e —xll* el gel?

If we assume that each of these three bodies is located at a vertices of an equi-
lateral triangle and that the primaries do not evolve on a straight line, we will show
that this configuration is conserved at any instant if and only if this triangle lies in
the plane of the motion of the two primaries.

Indeed, if the mutual distances between the three bodies are equal (but not nec-
essarily constant), that is ||r|| = [ri]| = |[r — || = p(¢), the last factor of the
second line of (10) vanishes. Consequently, the two vectors r and r; satisfy the
same differential equation:

X
—Ho———3-
Ix()|?

(1)

It turns out that if the equilateral configuration is preserved, the motions of the
bodies are Keplerian. Let us now assume that the motion of the primaries is bounded,
that is to say elliptic (the following proofs are quite identical when the trajectories
are parabolic or hyperbolic).

As |[r(¢)]| = ||r1(2)|| for all # and knowing that

Irll =a(l —ecos E) and |r{|| =a;(1 —ejcosE}), (12)

we can make the following remarks: in the two ellipses we have the same minimum
and maximum distances for PyP; and Py P, . Thus the two ellipses have the same
semi-major axis and eccentricity: a = aj, ¢ = e;. Consequently, we have E(¢) =
E\(¢) for all . In other words P; and P, describe exactly the same ellipse shifted
with 60° and the eccentric anomalies E and E, as well as the true anomalies v and
vy at any instant are the same.

It remains to show that the two ellipses lie in the same plane. In order to facilitate
the demonstration, we can adopt the following reference frame: the plane (P, x, y)
is the orbital plane of P; around P, and the axis (P, x) is chosen in such a way that
it is directed toward the perihelion. Then we adopt the classical orbital parameters
2, w, v, i, and @ to represent the motion of P, in (Py, x, y, 7).

If S is the angle between r and r; the relation cos S = 1/2 must be satisfied, for
the angle between the two points P; and P, is 60°. As v; = v, the coordinates of
the two vectors can be written as:

COoS v
ry = | | sinv |, (13)
0
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cos(w + v) cos £2 — sin(w + v) sin §2 cos i
r = ||r|| | cos(w + v)sin £2 + sin(w + v) cos §2 cosi | , (14)
sini sin(w + v)

which is equivalent to

cos(£2 + w + v) + (1 — cosi) sin £2 sin(w + v)
r = |r| | sin(£2 + w 4+ v) — (1 — cosi)cos £2 sin(w + v) | . (15)
sini sin(w + v)

A straightforward computation gives

1 r-r;
Yv: - =cosS§S = ——
2 llefl ffe i (16)
= cos(£2 + w) + (cosi — 1) sin(w + v) sin(v — £2).
Ifv = —w we get cos(£2 +w) = % consequently, the condition (16), is equivalent
to
cos(2 +w) = 3 [ 2+o==%%
{ (cosi — 1) sin(w -+ v)sin(v — 2) = 0 vy 1AL i—o - a7D

As a result, the two ellipses possess the same elliptic elements, excepted their
arguments of the perihelia which is translated by +73.

5 Behavior of the Trajectories in a Neighborhood of Equilateral
Points L, and L5

In this section, we analyze in details the study of the motion of the massless particle
P; in the vicinity of the Lagrange points L4 and (or) Ls. For that purpose, we assume
that the motion of the two primaries Py and P; is a bounded Keplerian motion such
that r; A1y # 0. We have seen in Sect. 4 that the points L to Ls lie on the plane of
the motion of the primaries, but in order to study their local stability, it is necessary
to consider both planar and spatial (vertical) variations. To this aim, the motion of
the primaries do not lying on a straight line, we define the normal unit vector k by

I AT ) ) o
k = ————— such that the basis (ry, 1, K) is direct.
ey Axql

Consequently, the vector r = PyP; splits naturally in r = r, + z where r,, is the
orthogonal projection of r on the plane of the primaries (i.e., the plane generated by
(ry, 1)), and z is the projection of r on k.
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5.1 Linearization of the Equation of the Motion in a Neighborhood
of the Equilateral Points

Let us assume that sy(#) is a solution of the restricted three-body problem. In order to
study the dynamics around this trajectory, the first step leads in the derivation of the
variational equation (linearization of the equations of the motion along the solution
o). In other words, if s satisfy the equation X = f(x) the variational equation along
So is obtained by the linearization in the neighborhood of s of the equation: sy+# =
f(so + n), that is

i = Df(so())n, (18)

where Df(sg) is the differential of the function f (which can be identified to the
Jacobian matrix f) evaluated on the vector sy. Equation (18) is of great interest in
the sense that its solutions drive the dynamics in a neighborhood of the trajectory
So. In particular, if  is small enough, the temporal evolution of » tells us what is
the behavior of the neighboring solutions of sy, namely the solution sy + 5. If ()
remains always small, the solution sy(¢) 4+ 9(¢) evolves around sy(7), and we will
talk of linear stability. In the contrary if ||p|| goes to infinity with 7, we will talk of
instability, in the sense that the difference between the two neighbor solutions sy(#)
and so(t) + 5(¢) diverge.

In order to derive the variational equations around the solution sy of the equation:

. r n rr—r I I r (19)
F=—uo—s + - ,
([ ee—el® el e

we first expend the right hand side of (19) at order one in 3, where r = sp + 7.

If x and y are two vectors of R?, we denote by x - y their usual scalar product
and by x? the scalar product of x by itself. Using this notations, the expansion of
(x+n)/lx + n|1* at first order in 5 writes

XD (x84 2x g )
Ix + nll
. (20)
= 5 = 3x + 0P,
Ix* fx) x ||5
This expression leads to the expansions
So+7 So n
s= ot 30— + 0 @
llso+nl”  llsoll” ol I oII
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and
N—S—n _ Ti—So n
ey —=so=nl* iy = soll® r||l'1_;So||3 22)
+3(r) = 80) - ) ——5 + O(p?).
llrr — soll

Replacing (21) and (22) in (19) we get

o So ( r; —So S
So TN = —Mo 3 231 3 = 3 3
lIsoll lr1 — soll flryl lIsoll

n So
o (3
< lIsoll® lIsoll®

n So n ry —So
T < Tsol® % sl T —solP T TS Y —So||5>
+0ap)
(23)
and finally, the variational equation can be written as:
. n So
= — — —_ — 38—
1=l ( sl ||So||5>
(24)

n ry —So
— M1 <— —3(ry _SO)'W—> .

3 5
lry —soll lry —soll

This second-order linear differential system which describes the infinitesimal vari-
ations around the solution sy(#) is in general time dependent and consequently not
integrable. We will see later that, when sy(#) is an equilateral solution of the circular
restricted three-body problem, this equations become independent of the time, and
then can be solved.

Before going further, let us assume that the solution sy(¢) lies on the plane of
the primaries. In this particular case, the vertical component (perpendicular to the
primaries plan) of the variational equation (24) can be drastically simplified. Indeed,
setting n = h 4+ z = h + zk, where h is the planar component of » and z its vertical
one, the because sy - k = r; - k = 0, (24) splits in two equations: the horizontal
variational equation given by

h=—( ) b >
=—Wo—p) | 7—3 90 h—=s
lIsoll® lIsoll®

h 3( ) h rr—9
-y | ——— = 3@ —s)) - h——
ey — soll® vy — soll®

and the vertical variational equation:

(25)
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: ‘4 ! ! (26)
= —MNo M1 - Z.
lIsoll® Isoll®  Ilrr — soll®

5.2 The Linear Vertical Variations

The linear equation (26) given the vertical infinitesimal variations of a planar solu-
tion of (19) is generally time dependent, but in some particular cases, its solution can
be find easily. Let the trajectory so(¢) be an equilateral solution restricted three-body
problem, circular as well as elliptic. In both cases, the relation ||so|| = ||r; — soll =
lr1]| holds, and the differential equation gives

"
-2 @7)
eyl

If the motion of the primaries is circular, the vector ||r;|| is constant. Thus, (27) is

the equation of an harmonic oscillator whose eigenvalues are equal to %/ o/ 013 =
=+in;. This implies linear stability in the vertical direction and imposes the solutions
of the vertical variational equation to be 2w /n; periodic. It worth mentioning that
the “vertical frequency” and the orbital frequency are in 1:1 resonance.

When the planetary trajectory is an ellipse, ||r;|| is no more constant and (27) is
not autonomous, and its general solution is usually unknown. But here again, a very
simple argument yields the explicit solution of (27). Indeed, the vector r; satisfies
the differential equation:

.. Mo
r=- ri, (28)
e

which is obviously not a linear equation. But the motion of the primaries being
given, ||r;|| can be considered as a known time-dependent function. Therefore, x|,
v1, and z (it is also true for x and y) are solution of the linear scalar differential
equation:

Ly
e ()l

(29)

According to the theory of the linear differential equations, every solutions of (29)
are a linear combination of two linearly independent particular solutions of (29).
The determinant

x1(t) yi1(2)
x1(1) y1(1)
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being different from zero for all time,>, there exist two real numbers « and B,
depending on the initial conditions z(0) and z(0) such that

2(1) = ax(t) + Byi1(1). (30)

It turns out that the infinitesimal vertical variation is a periodic function which the
frequency is equal to the mean motion n; of the primaries. As for the circular
restricted three-body problem, the equilateral solutions are linearly stable in the
vertical direction.

It worth mentioning that, using the same arguments, the solution (30) can also be
written as

2(t) = a'x(t) + By (1), €Y

where x and y are the two co-ordinates of the vector sy and («’, 8) two real numbers
depending only on z(0) and z(0). Therefore, the trajectories associated to infinites-
imal inclinations lie on a fixed plane. This implies that the precession frequency of
the ascending node of an asteroid evolving in a neighborhood of L4 or Ls tends to
zero with its inclination.

5.3 The Horizontal Variational Equation

We have seen in Sect. 5.1 that the variational equation (24) could be split in two
independent systems of equation: one driving the vertical variations and the other
one associated to the linearized motion in the plane of the primaries. The vertical
equation derived from an equilateral solution was solved easily, even in the elliptic
case. It will not be so straightforward for the horizontal equation (25). Let us first
investigate the simplest situation of the circular restricted three-body problem.

5.3.1 The Case of the Circular Three-Body Problem

When the orbit of the trajectory sy is circular, even if the quantities ||so| and
|lr; — sol| are constant, (25) is not autonomous. But, as along this solution the
mutual distances between the bodies remain constant, in a reference frame rotating
with the two primaries the solution sy becomes a fixed point. Consequently, in a suit-
able coordinates system the horizontal variational equation is a linear autonomous
differential system. In order to derive this system, let us chose the most massive
body P, as the origin of the mobile reference frame, its basis (e;, ;) being defined
by e; = PyP; and e; = R(7r/2)e;, where R(;r/2) is the rotation of angle /2 in the
plane of the primaries. More generally, the matrix of R(6) (rotation of angle ) is
given by

3 The motion being elliptic, the two vectors r; and r; are always linearly independent.
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R©) = <cos€ —sin@)

sinf cos@

in the basis (e, ;). Let us notice that, as we consider in this section only planar
motions, it is necessary to use a 3-dimensional co-ordinate system.
Let p and p; be the position of P and P, in the mobile reference frame. We have

p1= (‘8) ri(t) = R(nit)p; and () = R(nit)p(?). (32)

n

—eiRO) = RO + n7/2).

the second derivative of the vector r with respect to ¢ expressed in the mobile frame
writes

¥(t) = n3R(nt + m)p + 2n Ryt + 1/2)p + R(nit)p

(33)
= R(nit)[p + 2n1R(w/2)p — nip].

Using formulas (32), the right-hand side of (19) gives

. P p1L—p P1 P
P(t) = R(ni) | —po + 1 - + (34)
[ lol® (IIm —ol® lol? ||p||3>]

and plugging the transformation (33) in the above equation, the equation of the
motion of the massless body in the rotating frame is

b+ 2m R/ Dp—ntp = —(o— )~ + ( L — g) . (39)
ol o1 — pll ol

In order to derive the horizontal variational equation in the mobile frame, two

paths can be followed: First, we can linearize the previous equation in the neighbor-

hood of p (which is a fixed point in the mobile frame). Second, in a more straightfor-

ward manner, the horizontal variational equation (25) is directly written in rotating

coordinates by the mean of the transformation (32). The relations between the main
quantities in fixed reference frame and in mobile frame are

So(t) = R(O)ri(r) = R(O + nit)p, (36)
where 6 = /3 if we consider L4 and —mr/3 if itis Ls, and

ri(t) = R(nmit)p1,  h(t) = R(mnu(r), (37)
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where u if the infinitesimal horizontal variation in the rotating frame.
In the mobile frame the left-hand side of (25) becomes

h = R(n 1) [ii + 211 R(r/2)u — niu]. (38)

Now, let us transform terms by terms on the right-hand side of (25). First of all,
according to (36), (37), and because the motion of the primaries is circular, we have

h h h RGu) u (39)
= = — = nlt —,
ey —soll®  llsoll® @} aj
identically we have
So Q1
— = RmDRO) S (40)
lIsoll aj
and
ry —So p1— R(O)p1 P1
— . = Ron————— = RouDR(-0)=, 1)
lr; — soll a; ay

the last equation being satisfied as long as 8 = £ /3. these formulas lead to the
following expressions:

So Q1
so-h—— = (R(®)p; - w) R(n1)R(O)~ (42)
lIsoll a4
and
ry —So P1
(ry —so) - h————= = (R(=0)p1 - w) R(n11)R(—0)—.. 43)
lr; —soll a4

The two previous expressions are linear in u and thus can be written as Mu, where
M is a 2 x 2 real matrix. Noticing that these two expressions can be written (if
we forget the constant a;” 3 and the matrix R(n;¢) which will be factorized later) as
(x - u)x , the matrix M = xx’ can be derived from the identities:

(x-wx=x(x-u) =x(x'u) = (xx’ )u = Mu 44)

Consequently, we get
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So 1 R( )M
so - h——— = —R(nt u,
Isoll®  4a3 ‘
r; —So 1 )
(r; —so) -h———— = — R ;1)M_.u with (45)

5 3
Ity —soll day

Mo—d cos? sinfcosf\ [ 1 €3 wheree—i
€7 "\sinfcosf sin’0 ] \es3 3 ey

Finally, using the expressions (36), (37), (38) and (42), (43), (44), (45), and after
having eliminated the matrix R(n,t) from the equations, the horizontal variational
equation (25) written in the rotation frame leads to

Mo
3
a

3
it + 21 R(7 /200 — nfu = ——u+ % (M, +pn(M_c — M) u, (46)
a)

with u = w1/ = my/(my + my). According to the Kepler’s third law, we have
n? = po/ai, and the terms n3u and po/a;u vanish. This leads to the second-order

differential equation in R?:

3
il 4 21 R(w/2)u — Zn%Mwu =0 with

Vo ( 1 ev/3(1 — 2M))
ST\ eV3(1 = 2p) 3.

(47)

In order to solve this second differential system of second order in R?, a classical
process is to bring it back to a differential system of order one in R*. Introducing
u; = uandu, = u, we get

ill =u
L 3, (48)
W =u=—-2nR(7/2)u; + anME,,Lul,
or
d (u 0 I u u
U=—(")=13 "J=a(')=4U = 9
ar <u2> M, —2n RGT/2) (Uz> <l12 @9
The matrix of this linear system takes the form:
0010
00 01
A=1q g0 s\’ (50)
By =80
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where

3 3 9
o= Zn%, B = Ze«/?(l —2uwn?, y= Zn%, .8 =2n. 51

Now the horizontal variational equation is reduced to a linear and homogeneous
differential system of order one in R*. In order to study its stability (that is the
linear stability of the fixed points L4 and Ls), we will use some classical results of
the theory of the linear ordinary differential equations. For details concerning this
theory, the reader will refer, for example, to [2, 56]. For the sake of simplicity, we
assume that the matrix A is diagonalizable* (eventually in C). In this case, their
exists a basis, made of eigenvectors of A, such that the expression of A in this basis
(denoted by D) is diagonal. The diagonal entries of D are the eigenvalues of A. If
A is an eigenvalue of A, i.e., a root of the characteristic polynomial of A given by
Par) = det(AI — A), we will denote by e; an eigenvector of A associated to A.
Obviously, this vector satisfies the relation Ae;, = Ae;. Using a decomposition in a
basis of eigenvectors, the solution of (49) takes the form: U(r) = ), <j<alt j(e,.
By replacing this expression in (49), we get

U=AU= Z l;tje)\j = Z ujAe,\,, = Z uj)\je,\j. (52)

1<j=<4 1<j<4 1<j=<4

By uniqueness of the decomposition we obtain for all j the equation i; = Aju;
whose solutions are given by u (1) = e”/'c; where c; is an arbitrary constant num-
ber. Therefore, the general solution of (49) is

Uty = ) cietle,. (53)

1<j<4

If the eigenvalues are all real numbers, their eigenvectors have real co-ordinates and
U(?) has real coefficients as long as the c; are real. In this case, if one of the A; is
strictly positive, the solution U(¢) tends to infinity when ¢ > +4-00. The fixed point
is unstable. In the other cases, the solution remains bounded and the equilibrium is
stable.

If an eigenvalue of A is complex, the solution given by (53) is no more valid,
because the coefficients of U become complex numbers. But this difficulty can be
overcome quite easily. Indeed, the coefficients of the characteristic polynomial P4
being real, if A is one of its complex roots, the conjugated quantity X is a root too.
The corresponding eigenvectors, whose coefficients are complex themselves, satisfy
the relationship: e; = €;. If we define the two real vectors f; and g; by e, = f, +ig;,
a straightforward computation shows that the projection of the vector U(#) on the
subset spanned by the complex eigenvectors e; and ej can be replaced by the real
quantity:

4 This hypothesis is not always satisfied, in this case Jordan’s reduction is applied.
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e [(a cos(Bt) — b sin(Bt))fy, + (b cos(Bt) + a sin(Bt))g,] , 54)

where a and b are constant real numbers and « and S the real and imaginary parts of
M. This expression shows that in the plane spanned by the two vectors f; and g;, the
trajectories spirals toward the fixed point if @ < 0 and toward infinity when o > 0.
In the special case « = 0 (pure imaginary eigenvalues), the trajectory rotates around
the fixed point with a frequency equal to 8. This case, called center, is stable.

Let us now come back to the Lagrange points. According to (50), the character-
istic polynomial of A is equal to

Pa) =+ —a— A2 +ay — g2 =0. (55)

It turns out that if X is one of its roots, —A is a root too. Consequently, if, for the
sake of simplicity, we eliminate the degenerated cases where zero is a double or
quadruple root of P4, we are left with four distinct dynamical situations.

(a) Hyperbolic fixed point: Saddle x Saddle (Fig. 3a).
The eigenvalues of A are equal to (o1, —ay, @z, —an) with o; > 0. In the two
planes generated, respectively, by (e, , €_4,) and (e,,, €_4,), the trajectories are
hyperbolas defined by the parametric representation (ae®’, be~%"), unless a =
0 or b = 0. Let us notice that these two conditions correspond, respectively,
to the contracting and to the expending directions. Because the product of the
expansion factor ¢*/ with the contraction factor e~ is equal to one, the area
of a given close domain is preserved by the flow of the system. Unless the
initial condition is proportional to one of the two contracting eigenvectors e_,
the solution tends to infinity with the time #. The fixed point is consequently
unstable. Figure 3a shows the dynamics on this two planes.

(b) Hyperbolic fixed point: Saddle x Center (Fig. 3b)
This situation arises when one of the eigenvalues is real and another one
pure imaginary. The four eigenvalues are thus given by (o, —«, i, —if8) with
a, B > 0. In the plane generated by (e,, e_,) the trajectories are almost always
hyperbolas, as mentioned above, while in the plane (fig, g;s) the trajectories are
ellipses described periodically with a frequency equal to 8. In this case too, the
fixed point is unstable.

(c) Elliptic fixed point: Center x Center (Fig. 3c)
When the four roots are pure imaginary: (i8;, —if, i1, —iB2), the equilibrium
is stable. The trajectories lie on a torus of dimension two in R*. If the fre-
quencies B; and B, are commensurable (their ratio is a rational number), the
motion is periodic. If the two frequencies are not commensurable, the motion is
quasiperiodic, and the trajectory becomes dense in the torus.

(d) Hyperbolic fixed point: (stable) Focusx (unstable) Focus (Fig. 3d)
Ifxr =«a+iB, witha > 0and B > 0, the eigenvalues are (o« + i, ¢ —
iB,—a + if, —a — if). The planes spanned by (f;, g,) and (f_;, g_,) are
invariant by the flow of the system. In the first plane the trajectories spiral
outward to infinity, while in the second one the trajectories spiral inward.
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Fig. 3 Four different dynamical behaviors of the linear differential system in R* associated to the
matrix A. In the first column are plotted the four eigenvalues of A in the complex plan where
the real axis (horizontal line) and the pure imaginary axis (vertical line) are represented. The two
others columns represents the dynamics on two independent eigensubspaces. The lines labeled,
respectively, by (a), (b), (c), and (d) correspond to the four situation described in the text. Among
these four different kinds of dynamics, only the case (c) is stable

Unless the initial condition belongs to the contracting plane (the second one),

the associated trajectory goes to infinity, and the equilibrium is unstable.

After these general considerations, let us return to the Trojans. According to (51)
and (55) the characteristic polynomial of the matrix A is equal to

27
Pat) =1 +nia? + IM(l — wn.

Its discriminant is given by

A=(1=27p(1 — p)ni = (1 —anj,

where a = 27u(1 — ). Consequently, the square of the roots of P, satisfies

(56)

(57)
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n2
2= (=1+£/1 —a)E‘ (58)

The dynamical behavior of the equilibrium point depending on the location of its
eigenvalues in the complex plane, let us first notice that A> € R if and only if @ < 1,
that is u € [0, n.], where 1. has been defined at the end of Sect. 3.2. a being, in
this case always positive, we have: A2 < 0. Thus the roots of P4 are pure imaginary
quantities given by A; = Fiw; with

27
wlznuNl—vl—aV2=n1QWIM+4NJD)
wy =niy/(1++1—-a)/2=n (1 — 2:77# + 0(,u)> .

We are left with an elliptic fixed point of the kind Centre x Center (see Fig. 3a) which
insures the linear stability of the equilibrium. Let us notice that the two bounds of the
interval of stability [0, u.] correspond to particular situations. When p = 0, we are
in the presence of the well-known case of linearization along the Keplerian problem
in the rotating frame, which is obviously degenerated. Indeed, on the opposite of
the case  # 0 where 2 equilibrium points exist on the circle of radius a; centered
at the most massive body, all the points of this circle are invariant. For this reason
the problem is degenerated, imposing two eigenvalues to be equal to zero and to the
other ones to be equal to £in;.

The upper bound of the interval, which limits the linear stability of the equilateral
points is also of interest. Indeed, according to formulas (59),

(59)

w] = wyr = ﬂ (60)

V2

corresponds to a 1:1 resonance between these two frequencies. For © = pu., a
bifurcation arises and changes deeply the dynamical behavior of the fixed points.
For v €]u., 1/2], the system becomes now unstable. In this interval, 1 — a is neg-
ative, and from (58), we deduce that the squares of the roots of the characteristic
polynomial P4 become complex numbers. This corresponds to the unstable situa-
tion described in Fig. 3d. Thus, the four eigenvalues take the form A = +o £ if

with
Va-—1 VVa+1

w="———m ad = ———n. 61)

The quantity —o is associated to convergence speed toward the fixed point, « to the
divergence speed from the fixed point, while f is the rotation frequency around the
equilibrium point. Let us notice that the combination of these two motions, rotation
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Fig. 4 Eigenvalues (divided by n;) in the complex half-plane J(z) > 0. See the text for more
details

plus convergence or divergence, leads the Trojan to spiral inward or outward (see
Fig. 3d). Figure 4 summarizes the evolution of the eigenvalues of the triangular
equilibrium points under the variation of the mass ratio x from 0 to 1/2. Due to the
symmetry of the eigenvalues with respect to the real axis, A and A are both roots
of the characteristic polynomial, only the two eigenvalues with positive imaginary
part are represented. When ;1 = 0 one of the eigenvalue starts at 0 and the other
one starts at inj; then, the first one increases (more precisely, its imaginary part),
while the other one decreases until they collide for &« = .. At this point, the stable
behavior of the fixed points vanishes while the eigenvalues leave the imaginary axis.
For u > u. these values evolve along two different branches symmetric with respect
to the imaginary axis which end at

i\/«/2_—2+i\/ﬁ+2

~ 40.63208 + i 0.94842,
232 232

when = 1/2.

5.3.2 What Happens in the Elliptic Three-Body Problem

Let us assume that the motion of the planet harboring the Trojan is now elliptic. We
have shown in Sect. 4 that the equilateral configurations still exist and that the ellip-
tic elements of the test particle are the same as the elements of the planet, except the
argument of the perihelion which is translated from £ /3. Consequently, if we use,
as in the circular case, a reference frame in uniform rotation whose angular velocity
is the planet mean one, the equilateral configurations will not be equilibrium points.
In order to get fixed points, another way to proceed is to rewrite the equations of the
motion in a rotating—pulsating reference frame related to the planet. In other words,
we first chose a co-ordinate system in non-uniform rotation (the angle of rotation
being the true anomaly of the planet) and rescale this system by a factor 1/ r%(t). In
this new co-ordinate system, the planet and the equilateral configurations are both
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at rest. The derivation of the equation of the motion being straightforward but quite
long, we prefer to refer the reader to classical books of celestial mechanics like [66].
The next step lies in the linearization of the differential system in the neighborhood
of the fixed points L4 and LS. In contrast to the circular case, the linearized system
is not autonomous, but depends periodically on the time (the period being equal
to 2 /ny). Although the solutions of this kind of system cannot, in general, be
expressed in a closed form, Floquet’s theory (see for example [42, 56]) proves that
a fundamental system of solutions X (¢) can be written as

X(t) = P(1)B,

where P(¢) is a matrix with periodic coefficients, and B a matrix which is inde-
pendent of the time. As in the case of autonomous systems, the stability of the
equilibrium can be deduced from the eigenvalues of the matrix B. This matrix being
not explicitly known, two different approaches have been followed in order to under-
stand the dynamical nature of the equilibria. The first one lies in numerical integra-
tions of the linear system in order to compute the eigenvalues of B [12, 57], while the
second one is based on an expansion of the system in power series of the planetary
eccentricity, followed by the reduction of the equations to a normal form[44]. The
results of these two approaches are presented in Fig. 5. In this figure, the X-axis is
related to the mass of the two bodies by the parameter 0 = /27u(1 — u), while
the Y-axis corresponds to the eccentricity of the planet. For ¢ = 0, the stability
domain coincides with the one obtained in the circular problem, because ¢ = 1
is equivalent to u© = .. For e # 0, the stability domain is split into two regions
intersecting at the point of coordinates (o, €) = (*/75, 0). This value of o is reached

for 1 = (3 — 2/2)/6 ~ 0.02859548. On both sides of these points linear stability
exist for non zero eccentricities. The right part of the stability domain shows that

1
0.8 \

0.6
e
0.4
0.2
0.2 0.4 0.6 0.8 1
c

Fig. 5 Stability diagram of the equilateral solutions in the elliptic restricted three-body problem.
The X-axis represents the quantity o related to the mass ratio of the massive bodies by the relation
o2 = 27u(1 — ). The eccentricity of the planet (of relative mass 1) is represented by the Y-axis.
The fixed point is linearly stable in the hatched regions, while it is unstable outside
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eccentricity of the orbits of the primaries have a stabilizing effect on the linearized
problem, since it can be stable for u > .. Indeed, the coordinates of the extremal
point of the right part of the stability domain are (1, e) & (0.04698, 0.3143).

5.4 Beyond the Linear Stability

The linear stability of a fixed point is not a property that persists under perturbation.
Practically, the stability properties of the equilateral solutions of the restricted three-
body problem discussed above may disappear considering higher order expansion
of the equation of the motion around the equilibrium point. When we consider the
linearized system around an elliptic fixed point, every initial condition leads to a
quasiperiodic trajectory. Consequently, a solution starting near the fixed point will
always stay close to it. But this strong stability property does not, in general, persist
when expansion of higher degrees is considered (even in Hamiltonian systems).
Indeed, perturbations of the linear system may generate unstable directions along
which the massless body escapes; and even if it is not the case, a lot of quasiperiodic
trajectories mentioned above may not subsist, giving rise to diffusion phenomena.
In Hamiltonian systems,> the behavior of quasiperiodic trajectories is at the core
of KAM theory (see [3, 4, 52]). To give a very rough idea of this theory, we can
say that starting with an integrable Hamiltonian system whose phase space is the
union of invariant tori filled with quasiperiodic trajectories, under suitable condi-
tions, a large amount of tori is preserved under a sufficiently small Hamiltonian
perturbation. For Hamiltonian systems of 2 degrees of freedom, this theory allows
to prove the stability in numerous situations. Indeed, for a Hamiltonian system of n
degrees of freedom, the dimension of the phase space is 2n. Due to the invariance
of the Hamiltonian, a trajectory evolves on a (2n — 1)-dimensional space, and there-
fore, the codimension of a torus is n — 1. Consequently, in a 2-degrees of freedom
Hamiltonian system, a KAM torus is a surface of codimension 1 which divides
the phase space in two disconnected parts. In this case, the existence of KAM tori
imposes a property of confinement which leads to stability for infinite time. The
circular and planar restricted three-body problem corresponding to a 2-degrees of
freedom Hamiltonian system, KAM theory can be applied to prove the stability in
some particular domains of its phase space. This is the reason why KAM theory has
been wildly employed in the aim to prove the stability of the equilateral solutions
of the circular restricted three-body problem. According to [34], a direct application
of KAM theory proves that invariant tori exist in the neighborhood of the points
L4 s for almost all v in the interval [0, u.]. More recent studies [16, 43] show
that the equilateral solutions are stable for all x in [0, w.] except for two values:
n = (1 —+/213/15)/2 ~ 0.013516 and u = (1 — +/1833/45)/2 ~ 0.024294,
for which instabilities take place [39]. Regarding the spatial three-body problem or

5 The restricted three-body problem, like the general n-body, can be written in Hamiltonian form
(see [52]).
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the planar and elliptic three-body problem, KAM theory does not allow to bound
the trajectories. Indeed, for more than 2 degrees of freedom, the tori which are
of codimension three or more do not separate the phase space anymore, leading
to Arnold’s diffusion phenomena [1]. Nevertheless, Nekhoroshev theorem makes
possible to bound the diffusion on a finite, but exponentially long time [54]. In
[6], the authors show that L, and Ls are stable in the sense of Nekhoroshev for
all but a few values of u up to the Gascheau value .. But this result, like the
direct applications of KAM theory, does not give any information concerning the
size of the stable neighborhood. Nevertheless, Nekhoroshev theorem leads to the
concept of “effective stability” of the considered differential system, the idea being
the following: a system is effectively stable if the time needed to observe significant
changes is longer than the expected lifetime of the system itself (see [22]). This
idea is particularly efficient in the case of Jovian Trojans. Indeed, numerous Trojans
orbiting near L4 or Ls seem to be stable for billion years. This was first applied
in [27], where the authors show, using Nekhoroshev-like estimations, that Jovian
Trojans cannot escape from a bowl of radius R centered at L4 5 before a period of
time comparable to the age of the Solar System. This nice result, which is developed
in the framework of the circular and planar restricted three-body problem is unfor-
tunately valid only for R lower that 10 km (the closest observed Jovian Trojans orbit
at more that 10° km from the Lagrangian points). By significant improvements of
the estimates employed in [27] several authors [10, 28, 65] obtain stability radius
big enough to include a few known Trojan asteroids. More sophisticated models and
estimates of the stability radius have been developed recently [19, 22-24, 36], but
in spite of all these efforts, this kind of methods seem far from being applicable to
realistic models. Indeed, even if the elliptic and spatial restricted three-body problem
provides a reasonable approximation of the motion, a lot of important dynamical
phenomena arise when the gravitational perturbations of the four giant planets of
the Solar system are taken into account (the phenomena already appear considering
the asteroid—Sun—Jupiter—Saturn model [25, 60]). But these models possessing at
least highest degrees of freedom are beyond the reach of the methods based on
Nekhoroshev-like estimates.

6 Further Reading

This last section gathers some results dealing with the dynamics of Trojans in the
solar system. It does not pretend to give a complete review of the subject and will
not furnish an exhaustive bibliography. Its purpose is only to give some tracks for
the interested reader. We have already mentioned in the previous section that the
restricted three-body problem does not give a good approximation of the real trajec-
tories of the Trojans of Jupiter and that the gravitational influence of the other giant
planets, at least Saturn, must be taken into account. An important pioneer work was
done by Erdi (see [20] and references therein), in the aim of increasing the precision
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of the calculations of the Trojan orbits including the perturbations of the other plan-
ets. The most precise models are used at the present time for the calculation of the
proper elements of the Jupiter Trojans. These quantities, which can be viewed as
approximated integrals of the motion, i.e., as quantities varying in a very small and
slow manner characterizing a given celestial object, have been introduced by J. G.
Williams in 1969 [69]. In the case of an asteroid whose the motion is regular enough
(in particular in the case of the lack of specific resonances), these proper elements
are perfectly defined (although there are several ways to define them) and very sta-
ble in function of the time. On the opposite, for less regular orbits, the temporal
variations of the proper elements can give a measurement of the irregularity of the
motion (i.e. the orbital diffusion). One of the principal applications of the calcu-
lations of proper elements is the determination of the dynamical asteroid families.
Asteroid families are clustering in the proper elements space, which are the result
of the catastrophic disruption of a parent body after collision.

The calculation of the proper elements developed in the frame of the dynamical
study of the asteroid belt (see [49]) has been applied to the Jupiter Trojans [5, 47, 48,
64] and has enabled to prove the existence of Trojan dynamical families (see [61]) as
in the case of numerous ones in the asteroid belt (see Cellino in this volume). From
the calculations of their proper elements, A. Milani [47] showed that some Trojans
are subject to unstable behaviors, ranging from a bounded diffusion to the ejection
from the swarm. In [35] the authors showed, starting from a numerical integration
of the Jupiter Trojans for one billion years, that the swarms were not permanently
stable. Some of the objects could escape from the swarm, their lifetime inside it
depending on the distance to the Lagrange point. This phenomenon of slow erosion
was confirmed a posteriori by [45, 55] which showed that unstable structures exist
inside the swarms themselves. These unstable structures were studied exhaustively
in [60, 59] where the authors showed that several Trojans known as unstable ones
were evolving inside resonances. They also proved that diffusion phenomena along
resonances could lead some objects orbiting deep inside the swarms to be ejected in
a timescale of the order of 1 billion years. This phenomenon is related to the slow
erosion suggested by [35].

Another important question concerns the high inclinations of some Trojans with
respect to Jupiter’s orbital plane. In some cases this inclination exceeds 40° as was
shown in Fig. 1. Indeed, it is very unlikely that a population having a small initial
inclination could reach more than 25° of inclination (see[40, 59]). Consequently, in
order to reproduce the range of inclinations reached by the Trojans in the present
Solar System, it seems necessary to have, in the initial population, Trojans with
high inclinations. Moreover, if the dynamical mechanisms inside the Trojan swarms
seem to be well understood now, except a few specific points, the question of the
dissymmetry which seems to exist between the populations around the L4 point and
the Ls one, as shown in Fig. 2, is not entirely solved. On this topic, an observational
bias is no more considered as a suitable explanation. Moreover the cause of the
dissymmetry does not seem to be linked to a dynamical effect as this was suggested
by [18, 55, 60] for the Jupiter Trojans and by [17] for Neptune Trojans. The origin
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of the dissymmetry might be found somewhere else, for instance in the formation
of swarms inside a Solar System initially very dense and dominated by collisions
between small bodies (see [13]).

If we have only very few clues about this last point, an effective scenario devel-
oped by Gomes, Levison, Morbidelli, and Tsiganis in 2005 seems to give a rea-
sonable explanation to the formation and inclination problems. Indeed, it is shown
for the first time in [29, 53, 67] that the planetary migration is compatible with the
hypothesis that the Jupiter’s Trojans are captured just after the crossing of the 1:2
mean motion resonance between Jupiter and Saturn. Moreover, these numerical sim-
ulations give a distribution of the Trojans inclination that agrees with the observed
one.

In 1989, although no Trojan related to another planet than Jupiter was discov-
ered, Innanen and Mikkola [31] presented a study of the dynamics of hypothetical
Trojan swarms associated to the four giant planets using a numerical integration
over 10 million years. They confirmed the existence of large regions of stabil-
ity in the neighborhood of the Lagrange points L4 and Ls of Jupiter and showed
that the same property held for Uranus and Neptune. On the opposite, their study
showed the existence of strong instabilities around the equilateral configurations of
Saturn.

These instabilities were confirmed and investigated more deeply by M. J. Holman
and J. Wisdom [30]. The interesting dynamical situation of Saturn Trojans was
detailed in other papers as [14, 40, 41]. According to these authors, the combination
of the perturbations generated simultaneously by secular resonances and the quasi-
resonance 2:5 between Jupiter and Saturn (called the “great inequality”) leads to the
instability as it is observed. The dynamical behavior of the Uranus and Neptune Tro-
jans was also studied by Nesvorny and Dones [55], who predicted in which region of
the sky they should be located in the case they really exist. It is inside such a region
that the first Neptune Trojan, 2001QR322 was discovered. Some complementary
studies can be found on the subject (see for instance [41, 32]).

Let us finish this section by some ideas about the Trojans of the tellurian planets.
Numerous studies were devoted on their existence. We can refer for instance to
[8,9, 11, 21, 46] or [63, 62] for specific studies about Venus or Mars Trojans.

Except the planet Mars for which the four co-orbital objects discovered recently
have a stable motion for a very long time, the possibility to discover stable Tro-
jan swarms is fairly small. Indeed, according to the studies mentioned above, these
regions are strongly unstable and do not harbor long-life Trojans. More precisely,
according to [50, 51] the lifetime inside these regions should not exceed several
millions years. But on the other hand, temporary populations of Trojans supplied by
flux of asteroids visiting the inner Solar System might exist. But the conditions of
observation of these potential bodies are hardly determined, in particular because of
their small elongation with respect to the Sun.
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The Physics of Asteroids and Their Junction
with Dynamics

M. Birlan and A. Nedelcu

Abstract The study of asteroid families is an important current topic. New insights
obtained by dynamical considerations motivating the interest in completing the
knowledge of the physics and the composition inside asteroid families. The dis-
covery of young families offers a new frame of study of interaction between the
family members, the family and the other solar system bodies, the consequence of
a “hostile” medium for asteroid surface, the importance of cumulative, and long-
term, non-gravitational effects. The last decade has shown that long-term dynamics
of family objects can be explained by accounting for new physical effects such
as Yarkovsky and Yarkovsky—O’Keefe—Radzievskii—Paddack effects. A review of
these topic reveals the complexity and the importance of interdisciplinary research
on these bodies.

1 Introduction

The asteroids are a population of objects in the solar system containing more than
404,923 objects.! Due to their large number and the location in their inner planetary
system, this population represents a laboratory of study for celestial mechanics prob-
lems such as the dynamics of orbits, stability, chaos, and the long-term evolution of
orbits.

New remote-sensing capabilities have opened the early history of individual
asteroids and their parent bodies to sophisticated investigation. Based on the small
size of the planetesimals and on meteorite chronologies, it is known that all signifi-
cant chemical processes that affected these minor planets were essentially complete
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within the first 0.5% of solar system history. Asteroids represent the sole surviv-
ing in situ population of early inner solar system planetesimals, bodies from which
the terrestrial planets subsequently accreted. Thus, one of the central questions of
current asteroid physical studies concerns the geologic issues related to the original
compositions of asteroidal parent bodies and the chemical and thermal processes
that altered the original planetesimals [35].

The asteroid families are widely believed to be produced by large collisions
over the solar system history. A short definition of the syntagma “asteroid family”
is a cluster of objects which are genetically and dynamically linked, a result of
a catastrophic event (collision of two bodies followed by the destruction of both
target and impactor). As a corollary, clusters that are recognizable only because
they occupy peculiar zones in the orbital elements space, which are isolated by
the presence of secular and mean motion resonances, should not be termed as
“family” [99].

Historically, the existence of families of asteroids was suggested by Hyraiama in
1918, who noticed “condensation here and there” in the distribution of the asteroids
with respect their orbital elements, in particularly the mean motion n, the eccentric-
ity e, and the inclination i [41]. Depicted by Hirayama as “curiously,” “still curi-
ously”, or “remarkable coincidence,” the distributions of some asteroids around the
same value of orbital elements outline the major families of 158 Koronis, 221 Eos,
and 24 Themis.

Asteroid families research has become a hot topic in the last decade [92]. This
increasing interest will be developed in the following sections. The second sec-
tion will treat briefly the dynamical aspects linked to families (both old and young
ones). The overview of new, interesting physical aspects will be developed in the
third section. The scientific aspects linked to the young families of asteroids will be
developed in the fourth section of this article. Finally, some ideas and directions of
research are proposed as conclusions.

2 Dynamical Considerations

2.1 Identification of Asteroid Families: Choice of Orbital Elements

The time variation of osculating elements of asteroids is due to the presence of
several gravitational fields (major planets and other minor bodies). Jupiter’s gravi-
tational field is the most important for the evolution of the osculating elements of
main-belt asteroids, but contributions of other planet gravitational fields should be
also taken into account. This variation of osculating elements makes them inappro-
priate for the purposes of asteroid family identification [99].

The research of time-invariant orbital elements was developed in numerous arti-
cles [14, 1, 95, 22, 95, 46]. The appropriate semantics accepted by the researchers
is “orbital proper elements” and designates the quasi-integrals of motion which are
nearly constant in time [47].
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Depending on the scientific approach, the computation of proper elements is
based on analytical, semi-analytical, or synthetic methods [61-63, 52, 53, 47].
Knezevi¢ et al. [47] emphasized some particular cases (asteroids near resonances,
Hildas, Trojans) of asteroids with proper elements on which different approaches
could give different results. They also point out the importance of the accuracy,
reliability, and the time-interval stability of the proper elements of minor bodies.

The importance of high-accuracy proper elements is crucial in the age determi-
nation of young families [73, 92]. These articles (along with others [71, 74, 21]
use numerical integration in order to find the moment of nearly identical orbital
elements of the family. However, orbital element integration backward in time, used
as a direct method of age determination, is limited to families younger than 10 Myr
[92]. Orbital element convergence of the family members becomes more precise
when cumulative, non-gravitational, long-term forces [74] are taken into account.

2.2 Dynamics of the Families and the Dust Bands

The main belt is most probably a population dynamically relaxed which contained
at least several times as much mass during planet formation as it does nowadays.
Numerical simulations suggest that the asteroid belt was excited and depleted before
the terrestrial planets completed their growth process [79]. In the assumption of
giant planet migration proposed as the cause of the Late Heavy Bombardment
(LHB), the asteroid belt was strongly perturbed [55]. The LHB largely erases the
traces of the original distribution of objects in the region between Mars and Jupiter
[65, 37]. Catastrophic collisions followed by the competition of superimposed grav-
itational influences of the Sun and planets “sculpted” the actual dynamical distribu-
tion of the main belt.

Main-belt collisions followed by disruption can liberate a wide range of frag-
ments from micrometers to tens of kilometers. Two processes will differentiate the
asteroid-sized fragments from the micrometer-sized ones. The large fragments will
gravitationally evolve. Depending on their relative velocities, large fragments also
will be spread somewhat in the interplanetary space. For low relative velocity frag-
ments, the process of reaccretion(coalescence) could play an important role. Most
of the asteroid-sized fragments which remain near the location of the parent body
are identified nowadays as asteroid family members. Both family members and the
small-size particle (sometimes defined as by-product of the collision) could give
important insights on the main-belt evolution.

Numerical simulations of the collisional disruption of large asteroids were per-
formed using sophisticated 3D codes [57, 56, 58, 60] and the gravitational inter-
action and evolution of the resulted fragments were traced. One of the simulation
objectives was to deduce the formation process of big families such are Eunomia,
Koronis, or Flora. Some major conclusions are drawn from the simulations, such as
(1) all large family members must contain gravitationally re-accumulated fragments,
(ii) the family distribution is composed of a large body and the rest of members
follows a quasi-linear size—frequency distribution (SFD). New studies [29] suggest
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that about 20 observed main-belt families are produced over the age of the solar
system by catastrophic collisions of parent bodies larger than 100 km.

The small fragments produced by a disruptive collision have a different evolu-
tion. Models of interplanetary dust based on a variety of dynamical and physical
processes (planetary perturbations, Poynting—Robertson drag, radiation pressure,
electromagnetic forces, mutual collisions, sublimation, etc.) are used to explain the
presence and evolution of fragments through a dust band. The origin of zodiacal
dust bands? was related to the Eos, Koronis, and Themis large families of asteroids
[27] and to newly identified young families of Karin and Veritas [73]. New studies
of the evolution of dust trails into bands in the main-belt region suggest other very
young families (e.g., Datura) reside at the origin of other zodiacal dust bands [94].
The budget of dust particles seems to be favorable to the younger families rather
than the older ones. Morbidelli et al. [66] conclude there is collisional equilibrium
for objects with diameter lower than 5 km inside the families of Eos, Themis, and
Koronis, which limit their ability to produce dust particles.

The actual science of asteroid families is very well synthesized into the paradigm
of Cellino et al. [23] in the frame of Yarkovsky and YORP non-gravitational forces.
The post-Yarkovsky?® paradigm allows plausible/reliable explanation for open prob-
lems such as [23]: (i) a better agreement for the size distribution objects in the main
belt with some observational data; (ii) a better agreement between the observed
structures of families and the hydrocode simulations; (iii) a natural explanation for
the confinement of large families between powerful mean motion resonances.

Some asteroid families also contribute to the current population of near-Earth
asteroids (NEAs). Large families as Themis and Eos were strongly depleted by the
mean motion resonances 9:4 and 2:1 [64]. Numerical integrations [36] show that
some objects injected in these resonances later achieve near-Earth-like orbits in only
few million years. This is an indication that the NEA population and the impact rate
to the terrestrial planets are related with collisional events in the main belt. From the
analysis of terrestrial craters it was found a twofold increase of the impact flux from
kilometer-sized bodies over the last 100 Myr. This apparent surge was produced
by a catastrophic, family-forming impact in the inner region of the main belt 160
Myr ago [13]. The breakup of a 170 km parent body produced the current Baptistina
family. This event was most likely the source of Chicxulub impactor that produced
the Cretaceous/Tertiary (K/T) mass extinction event 65 Myr ago.

2 The zodiacal dust bands were discovered by the satellite IRAS and could be defined as extended
regions with strong emissions in the infrared region, slightly inclined to the ecliptic. The particles
have a toroidal distribution located between Mars and Jupiter, but the ratio between the zodiacal
dust produced by comets and that produced by asteroid collisions is not known.

3 Yarkovsky effect is a thermal effect consisting of the absorption of solar radiation by a body
and its subsequent anisotropic thermal reemission. The temperature differences on the surface,
together with an irregular shape, produce a force and a torque. The strength of the reradiation
force varies along the orbit as a result of thermal inertia. We can distinguish between a seasonal
effect and a diurnal one. In the literature this thermal effect can be referenced as Yarkovsky and/or
Yarkovsky/YORP [12].
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Similar studies [78] were developed as a possible explanation of delivering mete-
orites from the vg secular resonance to Earth-crossing orbits, and the authors under-
line the possibility of such “express delivery” scenario for explaining an L-chondrite
meteorite falling in Sweden ~470 Myr ago.

Investigation of the important link between the main belt and NEA populations
requires a combined knowledge of their dynamical and physical evolutions and
properties.

3 Physical Considerations

3.1 Physical Properties Inside a Family

In the case of asteroids, the physical properties of these bodies globally follow
dynamical ones. Observations of physical properties were also enlarged to other
wavelength regions, other than the visible region, from the ultraviolet to the infrared
and the radio.

Two aspects will be developed during this subsection: insights in the asteroid
population obtained by spectroscopy and constraints imposed by the spin of mem-
bers of families of asteroids.

The visible spectroscopy of asteroids has become a dominant method of physical
investigation during the last decade of the twentieth century. Results of large spec-
troscopic surveys [97, 20, 50], as well as spectral data of large families members,
were published [28, 31, 32, 51].

Based on the visible spectroscopy, the family members share, globally, the same
spectral behaviors [28, 31, 32, 51]. However, the articles that treat large families
must deal with the spectra spanning a certain range of slopes, must speculate on
the presence of interlopers in the observed sample, and must extrapolate the results
obtained for a few dozen objects to the entire family.* Figures 1 and 2 present the
visible spectra of families Flora and Eunomia available from the SMASSII [20]
database,’ with respect to the families determined by Zappala et al. [100].

One of the key parameters for statistical studies of the spectra of a family is the
spectral slope, usually obtained using data from the spectral region 0.50-0.75 pm.
The family members span a wide range of this spectral slope for each major family
(e.g., Eos, Flora, Eunomia). Several scenarios were proposed in support of such
variety, starting with a partially differentiated genitor of the family and finishing
with subtle mechanisms of different surface alteration of family members by cosmic
rays, solar wind, irradiation processes, etc., for which the generic term is space
weathering.

4 The families of Eos, Koronis, and Flora contain more than 300 objects each, thus these statistics
concern roughly less than 10% of the largest bodies inside the family.
5 Data are available online at http://smass.mit.edu
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Fig.1 Smoothed visible spectra of 45 asteroids belonging to Flora family extracted from SMASSII
[20]. Two objects (asteroids 1324 and 2952) present distinct spectra. These two objects were not
observed in S20S3 [50]. These spectra were completed with spectra of 14 objects from SMASS-
IR, obtained in the spectral region of 0.9-1.6 wm [18]. The spectra are normalized to 0.55 and
1.25 wm, respectively, and the family members were selected from Zappala et al. [100]. With some
exceptions, these spectra reveal good similitude

Each spectroscopic study of asteroid families must also deal with the interlopers
problem. For example, several authors identified objects whose spectra are quite
different for the majority of the observed family members [28, 31, 32, 49]. Some-
times the percentage of objects with different spectra can reach 10% of the observed
sample family. These objects are usually treated as objects non-genetically related
to the family. Some explanations are based on the background objects sharing the
same space as the family and the limitation of methods—the boundary limits [51]
and the choice of metrics [75]—of family identification. The term of “clan” [30] was
proposed as a designation, for groups for which unequivocal membership and/or
separation from other background groups is not possible. This seems to be a good
compromise because it answers the dilemma created by the presence of spectral
characteristics for both primitive (B-,C-type asteroids) and evolved (E-, S-, A-types)
among objects of the same family.

If we discuss our relative knowledge of spectral behaviors in the visible spectral
range for some big asteroid families, the near-infrared (NIR) spectral properties
are still poorly known. We can emphasize the efforts of Burbine and Binzel [18]
who performed a spectral survey of about 181 objects in the frame of the MIT
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Fig. 2 Visible smoothed spectra of 16 asteroids belonging to the Eunomia family, extracted from
SMASSII [20]. The spectra are normalized to 0.55 pm and the family members were selected from
Zappala et al. [100]. The spectra span a wide range of slopes in the visible range. The asteroids 85,
141, and 1094 present flat no-features spectra, typical for C-F-X asteroids. A similar plot could be
seen in Bus [19]

program Small Main-Belt Asteroid Spectroscopic Survey.® As long as the program
was devoted to the main belt as a whole, the observed number of a certain family
is limited (as it can be seen in Fig. 1); thus, general conclusions for families are
difficult to be drawn.

Recently, a mineralogical analysis of 30 members of Eos family [69] was pub-
lished using the spectral range 0.8—2.5 pwm. The major conclusion is that the surface
of the majority of their sample is dominated by forsteritic olivine, consistent with
carbonaceous chondrites. One of the most plausible explanations is that Eos family
(or at least their sample) might be composed by pieces of the mantle of a partial
differentiated parent body.

These recent spectroscopic results bring forth the importance of a global visi-
ble+NIR spectral investigation extended to at least 2.5 pm. Indeed, this region con-
tains a series of features (broadbands around 0.4, 1, and 2 wm, shallow absorption
around 0.7 pwm, etc.) that must be considered together when a mineralogical solution
is computed.

Observations of rotation lightcurves for the family members is an important
topic in deciphering the history of asteroid families. According to post-Yarkovsky
paradigm [23], the family members should exhibit some preferential spin axis align-
ment. Laborious, long-term work on lightcurves for the Koronis family members

6 The survey was performed in the spectral range 0.9-1.65 pm.
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revealed a correlation between the lightcurve amplitude and the ecliptic longitude
[5]; this correlation is a consequence of the alignment of spin axes [84]. This Slivan
state deduced for the obliquity of spin axis was detailed later’ [85]. This result could
be corroborated to explain the rotation period distribution of 40 members of Koronis
family [86]. This new result concludes a non-Maxwellian distribution of rotation
rates inside this family strengthening the excesses in both slow- and fast-rotator
objects.

The interpretation of such distribution of rotational period and spin axis orienta-
tion inside the Koronis family could be seen as a consequence of the YORP effect
[91]. Thus, for the objects with prograde spin, the synodic periods are in the range
7.5-9.5h and obliquities in the range of 42°-50°, while for the objects with ret-
rograde rotation, the objects are slow (P,,, > 15h) and fast (P;,, < 5h) rotators,
and the obliquity is in the range of 154°-169°. The non-random distribution of the
orientations axis and of the synodic periods is considered as the consequence of the
diurnal Yarkovsky effect. Moreover, the authors suggested that this thermal torque
may be more important than collisions in changing the spin state of asteroids greater
than 40 km in diameter.

3.2 Space Weathering and Asteroids Spectral Properties

Space weathering is defined by Chapman in 2004 [24] as being the observed phe-
nomena caused by those processes (known or unknown) operating at or near the
surface of an atmosphereless Solar System body that modify the remotely sensed
properties of the body’s surface from those of the unmodified, intrinsic, subsurface
bulk of the body.

This definition stresses the difficulty of assessing a specific mineralogy of an
atmosphereless body via remote observations. Indeed, accretion or erosion of partic-
ular materials, or modification of materials in situ by energetic impacts or irradiation
will modify and contaminate the asteroid surface over a long period of time. The
phenomenon of space weathering was first evidenced in the lunar soils. Labora-
tory analysis of the returned lunar soils revealed optical properties that differ from
those of pristine lunar rocks.® These differences were attributed to several types of
processes associated into the generic term of space weathering: regolith vitrification
by high-speed micrometeorites, creation of grains (1-30 pwm in size) of metallic iron
(nanophase metallic iron), saturation of minerals by hydrogen implanted by the solar
wind, and melted by micrometeoritic impacts.

7 The article reveals a preferential spin axis alignment using the pole solution of 10 members of
Koronis family, including the asteroid 243 Ida observed by Galileo spacecraft.

8 The mature soil generally shows only the weak absorption features and red slope compared to
the spectrum of the fragmental breccia.



The Physics of Asteroids and Their Junction with Dynamics 237

In the case of asteroids, the phenomenon of space weathering is a very interesting
subject for several reasons. One of the most important is linked to the OC paradigm.’
From the 1970s, during several decades, the debate concerning the origin of ordinary
chondrite meteorites proposed objects located in the inner part of main belt, or the
extinct comets, or bodies which are delivered from the chaotic zones located inside
secular resonances [67]. The association between some S-type' asteroids and OCs
is still an open subject.

Another direction involving space weathering processes is that of explaining the
spectral trend of Vesta or Vesta-like asteroids. The Vesta family is considered as the
origin of most HED!! meteorites. Their spectra exhibit features similar to a pristine,
unaltered surface. While the maturation effect on asteroids surface from microme-
teorite bombardment was estimated to be around two or three order of magnitude
lower than on the Moon surface [33] the simple extrapolation of space weathering
mechanisms explaining the Moon soils cannot be used. However, the long exposure
of the surface to the solar wind must heavily alter its spectral properties, which is not
the case for Vesta-like objects. New laboratory studies by irradiation of meteorites
suggest that the pristine surface, such is that on Vesta asteroid, could be preserved
in the presence of a remnant magnetic field of about 0.2 T [87], acting like a shield
against charged particles of the solar wind.!? If this hypothesis seems to work for
large, differentiated asteroids such as Vesta, the question of pristine materials on
smaller ones, most probable fragments of Vesta crust and mantle, remains open.

Laboratory experiments might be also useful in simulating potential space weath-
ering processes. These experiments allow the modification of the central wavelength
of the 0.9—1.0 wm absorption band [68]. Such an alteration processes could allow
different combinations of minerals which can simulate the central wavelength of
the large band presented in asteroids spectra. Thus, space weathering is at the core
of the debate of non-unique mineralogical interpretation of the surface of asteroids
belonging to the same taxonomic class.

Experiments with pulse lasers [80], simulating micrometeorite impacts, conclude
the modification of surface properties of samples and the production of nanophase
iron deposits. The relevant timescale for the space weathering in this case was esti-
mated to be of order of 100 Myr.

Space weathering becomes an interesting subject of study in the frame of catas-
trophic collisions in the main belt, namely (i) the young families discovered in the
last decade and (ii) asteroids complexes (double, multiple, or binary asteroids).
Indeed, the members of young families may exhibit surfaces younger (or rejuve-
nated) than the original parent body. This could be evidenced by spectroscopic mea-

9 The ordinary chondrite (OC’s) are by far the largest class of samples among meteorite falls; up
to now there is no main-belt asteroid having spectral properties identical to that of OCs.

10 We refer the reader to the articles of Gaffey et al. [34], Belton et al. [2, 3], Binzel et al. [6-8],
Chapman [24].

1 Group of Howardite, Eucrite, Diogenite meteorite classes.

12 The presence of magnetic field of asteroids and its interaction with the solar wind was studied
by Greenstadt [38], and Ip and Herbert [42].
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surements and may give quantitative constraints on the timescale of space weather-
ing alteration processes. In the case of binary or multiple asteroids, the spectroscopy
of each component of the system could reveal differences in spectra. These differ-
ences could be interpreted in terms of homogeneity/heterogeneity of the original
body, but also as a consequence of different ages of the surfaces.

Last but not least, observations “in situ” of spacecraft instruments reveal impor-
tant clues about the asteroid surfaces. Spectral analysis (by NEAR-Shoemaker
spacecraft) of (433) Eros craters shows albedo contrasts of order of factor of two
[26], with fresh material on the rims and the crater walls. In the case of the asteroid
(25143) Itokawa, recently visited by Hayabusa mission, spectroscopic observations
reveal a single-scatter albedo 30-40% lower than that of Eros [45].

4 Young Families of Asteroids

Emerging directions in asteroid research which may bring forth the link between
family members dynamics and their surface properties are being investigated. The
most promising in this sense seem to be the study of young families [72-76]. Three
families with ages between 1 and 10 Myr were identified during the last decade: the
Tannini family (1-5 Myr old), Karin (5.75 £ 0.05 Myr old), and Veritas (8.3 £ 0.1
Myr old). Among them, the Karin cluster is located in a densely populated region
of the large Koronis family,'* while Iannini and Veritas are families with inclinated
orbits (12°.15 and 9°.26, respectively).

A new family was identified [76] around the asteroid (1270) Datura. This is a
small family (only 7 members were identified) and it is considered as the result of a
breakup of a main-belt asteroid approximately 450,000 years ago.

Using the osculating elements and a modified metric for the identification of
young families [75], new clusters were proposed. This technique allows identifica-
tion of three new clusters and to partially find again the families of Karin, lannini,
and Datura. These new clusters, each of them composed by three objects are (14627)
Emilkowalski, 1992YC2,'* and (21509) Lucascavin (Table 1 of [75]). The age esti-
mation for the new clusters was less than 800,000 years for Emilkowalski members
and less than 250,000 years for the other two clans. Recently [48, 90] efforts for
characterizig these new families were published.

The synthesis of the young families currently proposed is given in Table 1.

It is important to mention the utilization of fine tuning induced by the Yarkovsky
effect [15, 93] in the numerical integration backward in time for finding the origin
of the catastrophic event at the origin of the young families.

13 The Jargest body of the Karin family is the asteroid (832) Karin, identified previously also as
member of the larger (and older) Koronis family.
14 Identified also as 1989 AHS.



The Physics of Asteroids and Their Junction with Dynamics 239

Table 1 The current knowledge of the young (less than 10 Myr old) families of asteroids. Family
name, number of members, semi-major axis, eccentricity, and inclination of the largest member of
the family (the osculating elements at April 16, 2008), and references are presented

Family Number of a e i References
name members AU °

Karin 90 2.864719 0.07861 1.00525 [74]
Iannini 49 2.642372 0.31233 11.09786 [96]
Veritas 259 3.168739 0.09886 9.2649 [73]
Datura 7 2.234749 0.20768 5.98964 [75]
Emilkowalski 3 2.598794 0.15047 17.73248 [75]
Lucascavin 3 2.280641 0.11288 5.98683 [75]

1992 YC2 3 2.622319 0.2188 1.62903 [75]

Two subjects must be mentioned, presented here as questions:
(1) What is the number of families that can be identified in the main belt? Can we
talk about the completeness of the families in the main belt?
(2) How relevant are the physical parameters (and the parameters derived from
spectroscopic measurements) in the general context of the new (young) families
proposed by dynamicists?

4.1 Generalities on Karin Family

Older asteroid families (~1 Gyr) have been substantially eroded and dispersed,
making difficult the accurate determination of the age or the nature of the family
formation after the catastrophic impact. The younger families instead, experiencing
little dynamical and collisional evolution after the breakup event, provide us with
a valuable tool to understand disruptive asteroids collisions and even more subtle
processes such as the dispersion of the asteroid families due to the Yarkovsky effect.

The announcement of the new family around the asteroid (832) Karin was made
in 2002 [72]. This result proposed a cluster of 39 bodies on which the first two
larger ones have comparable sizes ((832) Karin and (4507) 1990 FV). This new
configuration stimulated the interests of scientists involved in collisional process
within the main belt [59, 60].

The catastrophic disruption of the parent body asteroid was traced back in time
by numerically integrating 13 numbered asteroids from the cluster of 39 asteroids
in the (a,, ep, i, space) [72]. It was found a remarkable agreement of the £2 and w
(nodal longitude and perihelion argument) for all the 13 asteroids 5.8 4= 0.2 Myr ago.
Accordingly, at this time, they were following nearly identical orbits. Accounting
for the undetected family members the diameter of the parent body was estimated
at 24.5 £ 1 km. Later the age of Karin family was revised by numerically integrat-
ing a larger number of asteroids having osculating elements similar to those of the
Karin cluster asteroids [74]. The output of the numerical integration was digitally
filtered to suppress high frequencies retaining all the periods longer than ~5 kyr.
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The filtered signal was analyzed using the frequency-modified Fourier transform
[83] to eliminate the terms corresponding to the secular planetary frequencies and
to finally obtain the synthetic proper elements a,, e, i,,, and the proper perihelion
and nodal frequencies g and s. Applying HCM (hierarchical clustering method)
on this proper elements set, 97 Karin cluster members, were identified. Seven of
them were found to be interlopers since their nodal and perihelion longitude were
not aligned with those of (832) Karin at t = —5.8 Myr. Among them was (4507)
1990 FV, previously considered as the second largest member of the cluster. How-
ever small (£ 40°), the spread of £2, ® (nodal and perihelion longitudes) for the
Karin cluster at t = —5.8 Myr is still too large to be a consequence of the breakup
event itself that could account for ~1° in both angles. A semi-major axis drift due
to a non-gravitational effect was proposed as an explanation of this discrepancy
and it was validated using a numerical integrator that explicitly accounted for the
Yarkovsky effect [16]. The new integration'® by improving the convergence of the
proper elements provides a new estimate of the cluster age: 5.75 £ 0.05 Myr and,
for the first time, the direct detection of the Yarkovsky effect for main-belt asteroids.
With (4507) 1990 FV classified as an intruder, the size of the family parent body
was revised to ~20km. Thus, the SFD of the Karin family becomes a classical
one, containing a large body and a continuum of small members. Extrapolating the
current semi-major axis drift rates, it was found that in ~100 My the Yarkovsky
effect will erase the genetic link between the cluster members making the family
indistinguishable from the background asteroids for the HCM.

Hydrocode simulations which take into account the unobserved sub-kilometer
fragments, which are believed to represent a large fraction of the parent body mass,
obtain an estimate for the parent body of about 33 km in size [77]. The parent body
of the Karin cluster was produced by the earlier collision that created the larger
family of Koronis about 2-3 Gyr ago.

The discovery of young families (Karin being the most studied among them)
offers an excellent opportunity for physical studies of the members that apparently
suffered limited dynamical and collisional erosion. The spectroscopic investigation
of the family members allows information on the structure and composition of the
parent body. Thus, similar spectral features of the members are an indicator of the
possible homogeneous composition of the parent body, while some differences in
behavior or wavelength position of the spectral features could give some information
about a possible differentiated structure of the parent body [88].

The processes of irradiation by cosmic and solar wind ions, the bombardment
by interplanetary dust particles (micrometeorites), induce relevant surface modifi-
cations on atmosphereless bodies. Generally, the alteration affects the spectral prop-
erties of asteroids, induces progressive darkening, and reddening of solar reflectance

15 The SWIFT code of Levison and Duncan [54] was principally used. Following the authors,
several integration methods could be used via SWIFT: Wisdom—Holman Mapping (WHM or
MVS), regularized mixed variable symplectic (RMVS), a fourth order T+U symplectic (TU4),
and Burlisch-Stoer (BS). A particular package (SWIFT-RMVSY), which takes into account the
Yarkovsky effect and the second-order symplectic integration scheme (MVS2) is also available
and was used for backward integration for the young families.
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spectra in the range 0.2-2.7 pm. The differences in the distribution of the spectral
slopes of members inside the family can also be used for the evaluation of degree
of space weathering . The precise dating of young family members (corresponding
to the catastrophic collision) allows the link between remote spectroscopy and the
laboratory data of irradiation experiments.

4.2 Physical Properties Inside the Karin Family

The dynamical considerations about this family should be completed by observa-
tions concerning the physics and the reflectance properties. Except for limited phys-
ical data for the asteroid (832) Karin, no physical properties were known for family
members before the identification of the family.

4.2.1 Photometry

The most accessible member for observations is the asteroid (832) Karin. The first
determination of its synodic period yielded 18.82 &£ 0.01 h and the lightcurve dis-
played an amplitude of 0™.32 [4]. A new campaign of observations (performed dur-
ing the opposition of 2003) revised these values to 18.35 &£ 0.02h for the synodic
period and to 0".61 £ 0™.02 for the composite lightcurve amplitude [98]. However,
the authors mention a possible second period of 19.00 £ 0.03 h. The slope parameter
was estimated of 0.19 % 0.04.

Photometric observations were performed during the object’s opposition in 2005,
using the 1.2m telescope at the Observatoire de Haute-Provence, France. The
observations were obtained in February 9 and 11, 2005. Figure 3 presents these
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Fig. 3 Composite lightcurve of the asteroid (832) Karin. The observation points (with errorbars)
were obtained on February 9 and 11, 2005, at Observatoire de Haute-Provence, France (in blue)
and were superimposed by the composite lightcurve (red color) of Yoshida et al. [98]
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observations (in blue) superimposed on the composite lightcurve obtained during
the 2003 opposition [98]. These data are less dense but globally in accordance with
the period previously proposed by Yoshida et al. [98].

B-V and U-B colors were reported in 1987 [4] while B-V, V-R, and V-I colors
were reported in 2004 [98]. We underline the color variation over the rotational
phase [98, 43] and the hypothesis concerning the inhomogeneity of Karin surface.

Both articles [4, 98] conclude for Karin having colors typical of S-type asteroids.
In the assumption of an albedo of 0.2, Yoshida et al. [98] estimated the object size
of an ellipsoid of 20.1 x 11.5km.

Two other members of Karin family were observed recently [39]: (11728) Einer
and (93690) 2000VE21. The rotational period was estimated to 12.92 + 0.16h, a
lightcurve amplitude of 0™.19 for (11728) Einer, and no relevant discernable period
for the asteroid (93690) 2000VE21.

As can be seen, efforts for characterizing this family in terms of rotational periods
are still incipient, and at present these data do not allow a general conclusion.

4.2.2 Spectroscopy of the Karin Family

Spectroscopic results are more consistent for the Karin family, mainly due to a coor-
dinated campaign [88] involving several observatories and telescopes. Visible spec-
troscopy was performed with NTT/EMMI (La Silla, Chile), CFHT/MOS (Mauna
Kea, Hawaii), and TNG/Dolores (La Palma, Gran Canaria Island) for 24 members
of Karin family, while 0.8-2.5 pum near-infrared spectroscopy was obtained using
IRTF/SpeX (Mauna Kea, Hawaii) and TNG/NICS (La Palma, Gran Canaria Island)
for six members. Observations with IRTF/SpeX were performed remotely using
CODAM [9] infrastructure at the Paris Observatory.

By far, the Karin family is the most completely observed one in the visible range
by spectroscopic techniques. Indeed we can find in the literature [88] the visible
spectra for 26% of the family members.

The sixth-order polynomial function fitting the visible spectra are presented in
Fig. 4. This representation of polynomial fit is preferred to the real data for qual-
itative considerations on the family as a whole. The global trend of the spectra is
typical for a surface rich in silicates. Depending on Fe and Ca content in the olivine
and pyroxene on the asteroid’s surface, the maximum of spectra varies around
0.75 £ 0.02 pm. The wavelength variation for the maximum could be associated
either with space weathering processes or with surface diversity (i.e., different min-
eralogies) among the family members.

Another variable used to describe the spectral trend is the slope parameter. For
23 objects the average slope is roughly 0.23 4 0.19 um™!; the slope of one object
(the asteroid (20089) 1994PA14) was estimated to have a value of 0.58 pm. A total
of 40% of the family objects share the slope range similar to that obtained from the
analysis of spectra of 300 ordinary chondrites'® [49]. This result is consistent with

16 The study of Lazzarin et al. [49] reveals that 95% of the OC slopes are below 0.208 um™'; they
associate this value as an indicator of detection of space weathering processes.
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Fig. 4 Karin family spectra is depicted as sixth-order polynomial function fitting for 24 visible
spectra and normalized to unity at 0.55 pm. The spectral trend is compatible with the presence of
silicates for all the members and a slight difference in spectra is revealed. The red line represents
the polynomial fit for the asteroid (832) Karin

the analysis of colors of Koronis members (especially objects from Karin family) of
Sloan Digital Sky Survey Moving Object Catalog and the OC meteorites [44, 70].
These values may suggest that spectra of Karin family members are redder than the
OCs and this trend could be associated to a low (but measurable) degree of space
weathering.

How are the visible spectra of Karin family placed in the context of the Koronis
family, at the origin of parent body of Karin clan? Figure 5 presents the spectral
range of the Karin members (the domain is bordered by red color) in the context
of other Koronis family members (green lines) obtained from the SMASS database.
This comparison shows that the spectra of Karin members are less red that the ones
of Koronis family.

NIR spectra (0.8-2.5 pm) of six members of the Karin family are also presented
in the literature [11, 88, 17, 89, 25]. With one exception (the asteroid (832) Karin'”)
the data are very noisy and their interpretation is speculative. All the objects exhibit
a detectable absorption band around 1 pm. Tentative interpretation (desirable to be
improved in the future) of this spectral domain was done [88].

We can emphasize spectroscopy as a powerful tool to detect intruders inside a
family. If we assume that Karin family members spectra are quite similar (i.e., com-
ing from a relative homogeneous parent body), any asteroid having a spectral trend
far from the majority of members is highly suspected to be an interloper.

17 Karin spectra will be discussed in detail, the NIR counterpart of its composite spectrum is our
basis for its mineralogical interpretation.
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Fig. 5 The spectra of the Koronis family members (green lines) obtained from the SMASS
database. In red, the domain representing 92% of the Karin members spectra. In blue, from bottom
to top: the mean S-type spectrum and the mean S-type spectrum [20]. The slopes of Koronis mem-
bers are greater than the ones of Karin young family. These values could be related to surfaces
experiencing an important degree of space weathering for the Koronis members. The figure is
reproduced from Vernazza et al. [87, 88]

The case of the asteroid (47640) 2000CA30 is interesting to be noted. The aster-
oid was observed on two nights, in November 4 and 5, 2003 using SpeX/IRTF. NIR
spectrum shows a highly positive slope (0.8240.02 um™~") and no absorption feature
(Fig. 6). The visible counterpart, obtained with Dolores/TNG used in LR-B mode
on October 28, 2003, completes this figure. Considering the asteroid spectrum, there
is a strong probability that (47640) 2000CA30 is a intruder. While low S/N spectra
are recorded, new data are needed to confirm the asteroid spectrum.

This case of the asteroid (4507) 1991FV is puzzeling. Initially the asteroid was
considered as member of Karin family [72]. However, its recently observed NIR
spectrum is relatively close to the one of (832) Karin (Fig. 7).

4.2.3 Spectroscopy of (832) Karin

Soon after the publication of dynamical detection of the young family of Karin,
efforts for observing spectroscopically the asteroid (832) Karin were undertaken.
Near-infrared (0.8-2.5 pum) observations with CISCO/Subaru system were reported
[81, 82]. The authors presented three spectra, identifying them on the composite
lightcurve of (832) Karin obtained by Yoshida et al. [98] and discussed the differ-
ences among the observed spectra.'® They noted a correlation of one of the spectrum

18 The photometry was performed mainly during the 2003 opposition, and the spectral observa-
tions were carried out in September 2003.
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Fig. 6 Visible and NIR spectra of (47640) 2000CA30. The visible spectrum was obtained using
Dolores/TNG used in LR-B mode. Data reduction was performed using the Hya64 standard star.
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T T T T
1.4 -
(0]
2
o 1.2F .
O
o
©
[0
5 1.0f -
©
& *
[72)
0.8+ ,
4507 1991FV, January 27, 2009
1 1 1 1

1.0 1.5 2.0 2.5
wavelength (micron)

Fig. 7 NIR spectrum of the asteroid (4507) 1991 FV, initially considered as belonging to the Karin
family. The observations were performed in January 27, 2009, using SpeX/IRTF and CODAM
infrastructure. Data reduction was performed using Landolt 102-1081 standard star. The NIR
spectrum (with errorbars and normalized to 1.25 pm) is similar to an S-type asteroid. The visible

counterpart is presented by Vernazza et al. [87, 88]
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with the color variation observed in Yoshida et al. [98]. The main conclusions were
(1) Karin asteroid belongs to the S-type taxonomic class and (ii) because of spectral
differences, Karin asteroid should have both mature and fresh surfaces, consequence
of space weathering mechanisms.

This 0.8-2.5 pm spectral region was observed on November 4 and 5, 2003, using
SpeX/IRTF [10]. These spectra, presented in Fig. 8, are in relatively good agreement
with two of spectra published by Sasaki et al. [81, 82]. However, the absorption band
around 1 pm exhibits a different depth, which cannot be explained by the error bars
in the spectra. This may suggest that the surface spectral variation is real. However,
this result shoud be reconsidered after some spectral anomalies reported on SpeX
by Hardersen et al. [40].
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Fig. 8 NIR spectra obtained on November 4 and 5, 2003. The spectra are offset for clarity. The
spectral trend is similar to a typical S-type asteroid. This graphic shows a relatively clear difference
(which is not within the spectra error bars) in the region around 1 um absorption band. This result
should be reconsidered after some SpeX anomailes reported by Hardersen et al. [40]

New results were published recently [89, 25] based on observations in the vis-
ible and the near-infrared spectral regions. The new observations were performed
between January and April 2006. These new results, obtained by two independent
team of scientists, show no spectral variation in the Karins’ spectra and sustain the
hypothesis of a homogeneous superficial layer being at the origin of the reflected
spectrum.

One of the questions that requires an answer is the following: What is the asteroid
aspect during the 2003 opposition, compared to the 2006 one? This question could
not have a trivial answer as long as the pole position of Karin is not determined yet.
Thus, for this case our choice was to take into account all the possible pole solutions
for the 2003 opposition and to see how they are placed during the 2006 opposition.
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Fig. 9 Karin’s sub-Earth latitudes for September 2003 and January 2006 as a function of all the
possible pole solutions. The sub-Earth latitude is color coded; the domain yielding a near-equatorial
(yellow color) aspect (sub-Earth latitude in the range [—15deg: +15deg]) is delimited by the black
lines. All the possible aspect angles (sub-Earth latitudes) that Karin could take assuming an equato-
rial aspect during the September 2003 observations are clearly displayed on both figures. To avoid
the redundancy of figures, we eliminate the representation from April 2006 while it is similar to
that of January 2006

The result is presented in Fig. 9. We consider a near-equatorial aspect of the asteroid
during the 2003 opposition and the comparison of sub-Earth latitudes for 2003 and
2006. From the region delimited by the black lines we can derive a high probability
that Karin was at an equatorial aspect for both runs (Fig. 10). While the new spectral
results [89, 25] cover all the rotational phase of the asteroid, the conclusion of a
homogeneous surface is the most probable.

Quantitative results for space weathering were proposed [17] using both labora-
tory minerals and Karin reflectance spectra. Laboratory experiments on silicates by
ion irradiation were modeled in terms of space weathering and accounting the Shku-
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Fig. 10 Karin’s sub-Earth latitudes in January and April 2006 versus their frequency. It appears that

there is a quite high probability that Karin was close to the equatorial aspect during all observing
runs
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ratow law of diffusion. The proposed model (a mineralogical solution 58.5% olivine
and 38% of orthopyroxene) was applied to the composite visible+NIR spectrum of
(832) Karin. The results highlighted irradiation exposure time slightly lower than
the dynamical age of the Karin family could be interpreted in terms of mechanisms
allowing the renewal of surface with fresh materials.

5 Conclusions

The study of asteroid families is an importan